
A Probe parameterization

We parameterized the probe functions with a single
layer MLP. When masking input tokens, ‘votes’ are
computed as v(`)i = g

(`)
φ (h

(`)
i) where

γ
(`)
i = ξ · tanh

(
NN(`)([xi;h

(`)
i])

)
+ b(`) , (4)

v
(`)
i ∼ HardConcrete(v

(`)
i ; τ, γ

(`)
i , l, r) , (5)

where ξ = 10, τ = 0.2, l = −0.2, r = 1.0 are
fixed hyperparameters. See Appendix B for details
about the Hard Concrete distribution including its
parameterization. NN are feed-forward neural net-
works with architecture [H/4, tanh, 1] where H
is the BERT hidden size, bs are learnable biases.
We use the same functional form to compute z(`)

(masking hidden states) but xi omitted from the
input of the feed-forward NN. For the input probe
the output of the last projection (but not the bias) is
constrained to be ∈ (−ξ, ξ) for numerical stability.
We initialized the bias of the last FFNN layer to 5
to start with high probability of keeping states (fun-
damental for good convergence as the initialized
DIFFMASK has not learned what to mask yet).

B The Hard Concrete distribution

The Hard Concrete distribution, assigns density
to continuous outcomes in the open interval (0, 1)
and non-zero mass to exactly 0 and exactly 1. A
particularly appealing property of this distribution
is that sampling can be done via a differentiable
reparameterization (Rezende et al., 2014; Kingma
and Welling, 2014). In this way, the L0 loss in
Equation 1 becomes an expectation

L0(φ, b|x) =
N∑
i=1

Epφ(zi|x) [zi 6= 0] . (6)

whose gradient can be estimated via Monte Carlo
sampling without the need for REINFORCE and
without introducing biases. We did modify the
original Hard Concrete, though only so slightly, in
a way that it gives support to samples in the half-
open interval [0, 1), that is, with non-zero mass
only at 0. That is because we need only distinguish
0 from non-zero, and the value 1 is not particularly
important.7

7Only a true 0 is guaranteed to completely mask an input
out, while any non-zero value, however small, may leak some
amount of information.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
z

0

1

2

3

4

5

p(
z)

pC(= 0.5, = 0.8)
pSC(= 0.5, = 0.8)

(a)

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
z

0.0

0.2

0.4

0.6

0.8

1.0

p(
z)

pHC(= 1.0, = 0.1)

(b)

Figure 9: Binary Concrete distributions: (a) a Concrete
pC and its stretched version pSC ; (b) a rectified and
stretched (Hard) Concrete pHC .

The distribution A stretched and rectified Bi-
nary Concrete (also known as Hard Concrete) dis-
tribution is obtained applying an affine transforma-
tion to the Binary Concrete distribution (Maddison
et al., 2017; Jang et al., 2017) and rectifying its sam-
ples in the interval [0, 1] (see Figure 9). A Binary
Concrete is defined over the open interval (0, 1)
(pC in Figure 9a) and it is parameterised by a loca-
tion parameter γ ∈ R and temperature parameter
τ ∈ R>0. The location acts as a logit and it con-
trols the probability mass skewing the distribution
towards 0 in case of negative location and towards
1 in case of positive location. The temperature pa-
rameter controls the concentration of the distribu-
tion. The Binary Concrete is then stretched with an
affine transformation extending its support to (l, r)
with l ≤ 0 and r ≥ 1 (pSC in Figure 9a). Finally,
we obtain a Hard Concrete distribution rectifying
samples in the interval [0, 1]. This corresponds to
collapsing the probability mass over the interval
(l, 0] to 0, and the mass over the interval [1, r) to
1 (pHC in Figure 9b). This induces a distribution
over the close interval [0, 1] with non-zero mass at
0 and 1. Samples are obtained using

s = σ ((log u− log(1− u) + γ) /τ) ,

z = min (1,max (0, s · (l − r) + r)) ,
(7)

where σ is the Sigmoid function σ(x) = (1 +
e−x)−1 and u ∼ U(0, 1). We point to the Ap-
pendix B of Louizos et al. (2018) for more informa-
tion about the density of the resulting distribution
and its cumulative density function.

Latent rationales There is a stream of work on
learning interpretable models by means of extract-
ing latent rationales (Lei et al., 2016; Bastings
et al., 2019). Some of the techniques underlying
DIFFMASK are related to that line of work, but
overall we approach very different problems. Lei

et al. (2016) use REINFORCE to minimize a down-
stream loss computed on masked inputs, where the
masks are binary and latent. They employ L0 regu-
larization to solve the task while conditioning only
on small subsets of the input regarded as a ratio-
nale for the prediction. To the same end, Bastings
et al. (2019) minimize downstream loss subject
to constraints on expected L0 using a variant of
the sparse relaxation of Louizos et al. (2018). In
sum, they employ stochastic masks to learn an in-
terpretable model which they learn by minimizing
a downstream loss subject to constraints on L0, we
employ stochastic masks to interpret an existing
model and for that we minimize L0 subject to con-
straints on that model’s downstream performance.

C Hyperparameters

C.1 Toy task

Data We generate sequences of varying length
(up to 10 digits long) sampling each element in-
dependently: with 50% probability, we draw uni-
formly n or m and, with 50% probability, we draw
uniformly from the remaining digits. We generate
10k data-points, keeping 10% of them for valida-
tion. The space of input sequences is >1010. Thus,
a model that solves the task cannot simply memo-
rize the training set.

Model The precise model formulation is the fol-
lowing: given a query q = 〈n,m〉 and an input
x = 〈x1, . . . xt〉, they are embedded as

n′ = Embq(n) ,

m′ = Embq(m) ,

x′i = Embx(xi) ∀i ∈ 1 . . . t ,

(8)

where Embq and Embx are embedding layers of
dimensionality 64. The prediction is computed as

h
(1)
i = FFNN([n′;m′;x′i]) ∀i ∈ 1 . . . t ,

h
(2)
0 = [0 . . . 0]> ,

h
(2)
i = GRU(h

(1)
i , h

(2)
i−1) ∀i ∈ 1 . . . t ,

y = w>h
(2)
t + b ,

(9)

where [·; ·] denotes concatenation, FFNN is a
feed-forward neural network with architecture
[64× 3, tanh, 2], GRU is a Gated Recurrent Net-
work (Cho et al., 2014) with hidden size of 64, and
w ∈ R64, b ∈ R are the weight and bias parameter
of the final classifier respectively.

Model Value

Type BERTBASE (uncased)
Layers 12
Hidden units 768
Pre-trained masking standard
Optimizer Adam*
Learning rate 3 · 10−5
Train epochs 50
Batch size 64

DIFFMASK Value

Optimizer Lookahead RMSprop**
Learning rate φ, b 3 · 10−4
Learning rate λ 1 · 10−1
Train epochs 100
Batch size 64
Constrain DKL[y‖ŷ] < 0.5

Table 3: Hyperparameters for the sentiment classifica-
tion experiment. Optimizers: * Kingma and Ba (2015),
** Tieleman and Hinton (2012); Zhang et al. (2019).

Attribution methods Integrated gradient attribu-
tion (Sundararajan et al., 2017) is computed with
500 steps. Attribution of Schulz et al. (2020) is
computed at token level with β = 10/k where k
is the token embedding size. We optimized us-
ing the RMSprop (Tieleman and Hinton, 2012)
with learning rate 10−1 for 500 steps. Attribu-
tion of Guan et al. (2019) is computed at token
level with λ = 10−4 using RMSprop with learn-
ing rate 10−1 for 500 steps. Our DIFFMASK is
optimized for 100 epochs using Lookahead RM-
Sprop (Tieleman and Hinton, 2012; Zhang et al.,
2019) with learning rate 10−2 for φ, b and 10−1 for
α. For these attribution methods we used our own
re-implementation.

C.2 Sentiment Classification

Data We used the Stanford Sentiment Treebank
(SST; Socher et al., 2013) available here8. We
pre-processed the data as in Bastings et al. (2019).
Training and validation sets contain 8544 and 1101
sentences respectively.

Model For the sentiment classification experi-
ment we downloaded9 a pre-trained model from

8https://nlp.stanford.edu/sentiment/
trainDevTestTrees_PTB.zip

9https://huggingface.co/transformers/
pretrained_models.html

https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip
https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip
https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html

Model Value

Type BERTLARGE (uncased)
Layers 24
Hidden units 1024
Pre-trained masking whole-word
Optimizer Adam*
Learning rate 3 · 10−5
Train epochs 2
Batch size 24

DIFFMASK Value

Optimizer Lookahead RMSprop**
Learning rate φ, b 3 · 10−4
Learning rate λ 1 · 10−1
Epochs (inputs) 1 (per layer)
Epochs (hidden) 4
Batch size 8
Constrain DKL[y‖ŷ] < 1

Table 4: Hyperparameters for the question answering
experiment. Optimizers: * Kingma and Ba (2015),
** Tieleman and Hinton (2012); Zhang et al. (2019).

the Huggingface implementation10 of Wolf et al.
(2019), and we fined-tuned on the SST dataset. We
report hyperparameters used for training the model
and our DIFFMASK in Table 3.

C.3 Question Answering

Data We used the Stanford Question Answering
Dataset (SQUAD V1.1; Rajpurkar et al., 2016)
available here11. Pre-processing excluded QA pairs
with more than 384 BPE tokens to avoid memory
issues. After this we end up having 86706 training
instances and 10387 validation instances.

Model For the question answering experiment
we downloaded 9 an already fine-tuned model from
the Huggingface implementation10 of Wolf et al.
(2019) We report hyperparameters used by them
for training the original model and the ones used
for our DIFFMASK in Table 4.

D Additional plots and results

In Figure 10 we show an overview of the variant
of DIFFMASK to analyze the hidden states of a
model (see Figure 1 to compare the two versions).

10https://github.com/huggingface/
transformers

11https://rajpurkar.github.io/
SQuAD-explorer

Model with
gated hidden states

Model

Figure 10: DIFFMASK for hidden states: states up to
layer ` from a model (top) are fed to a classifier g that
predicts a mask z(`). We use this to mask the `ih hid-
den state and re-compute the forward pass from that
point on (bottom). The classifier g is trained to mask
the hidden state as much as possible without changing
the output (minimizing a divergence D?).

0 2 4 6

1

0

1

2

3

4

5 = m
= n

m, n

Figure 11: Hidden state values for the two-neuron toy
task. Clusters of whether the input digit is equal to the
first or second position in the query (= n or = m re-
spectively) or not at all (6= n,m) are completely linear
separable.

D.1 Toy task
In Figure 11 we show the distribution of hidden
states in the toy task where we highlight whether
they belong to a state corresponding to n,m or
neither of them.

D.2 Sentiment Classification
In Figure 13 we show an additional comparison
example between attribution method for hidden
layers w.r.t the predicted label.

D.2.1 Ablation
As argued in the introduction and shown on the toy
task, many popular methods (e.g., erasure and its
approximations) are over-aggressive in discarding
inputs and hidden units. Amortization is a funda-
mental component of DIFFMASK and is aimed at
addressing this issue. In Figure 12 we show how
our method behaves when ablating amortization
and thus optimizing on a single example instead.
Noticeable, our method converges to masking out

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://rajpurkar.github.io/SQuAD-explorer
https://rajpurkar.github.io/SQuAD-explorer

E 3 6 9 12
[SEP]

.
movie

enjoyable
highly

,
funny

,
fast

A
[CLS]

(a) Masking hidden states with amortization.

E 3 6 9 12
[SEP]

.
movie

enjoyable
highly

,
funny

,
fast

A
[CLS]

(b) Masking hidden states without amortization.

E 3 6 9 12
[SEP]

.
movie

enjoyable
highly

,
funny

,
fast

A
[CLS]

(c) Masking hidden states without amortization and with-
out baseline.

Figure 12: Sentiment classification: ablation study on
amortization and baseline.

all hidden states at any layer (Figure 12b). This
happens as it learns an ad hoc baseline just for that
example. When we ablate both amortization and
baseline learning (Figure 12c), the method strug-
gles to uncover any meaningful patterns. This high-
lights how both core components of our method
are needed in combination with each other.

D.3 Question Answering
In Figure 14 we report statistics on the average
number of layers that predict to keep input tokens
aggregating by POS tag. We report additional two
examples of expectation predicted by DIFFMASK

in Figure 15.

E 3 6 9 12
[SEP]

.
stands

the
in
sit

who
men

grown
the
as

well
as

fields
baseball

on
boys
little

of
dreams

and
hopes

the
perfectly

so
capture

films
Few

[CLS]

(a) Attention.

E 3 6 9 12
[SEP]

.
stands

the
in
sit

who
men

grown
the
as

well
as

fields
baseball

on
boys
little

of
dreams

and
hopes

the
perfectly

so
capture

films
Few

[CLS]

(b) Sundararajan et al. (2017).

E 3 6 9 12
[SEP]

.
stands

the
in
sit

who
men

grown
the
as

well
as

fields
baseball

on
boys
little

of
dreams

and
hopes

the
perfectly

so
capture

films
Few

[CLS]

(c) Schulz et al. (2020).

E 3 6 9 12
[SEP]

.
stands

the
in
sit

who
men

grown
the
as

well
as

fields
baseball

on
boys
little

of
dreams

and
hopes

the
perfectly

so
capture

films
Few

[CLS]

(d) Guan et al. (2019).

E 3 6 9 12
[SEP]

.
stands

the
in
sit

who
men

grown
the
as

well
as

fields
baseball

on
boys
little

of
dreams

and
hopes

the
perfectly

so
capture

films
Few

[CLS]

(e) DIFFMASK.

E 3 6 9 12
[SEP]

.
stands

the
in
sit

who
men

grown
the
as

well
as

fields
baseball

on
boys
little

of
dreams

and
hopes

the
perfectly

so
capture

films
Few

[CLS]

(f) DIFFMASK on input.

Figure 13: Sentiment classification: comparison be-
tween attribution method for hidden layers w.r.t. the
predicted label. All plots are normalized per-layer by
the largest attribution. Attention heatmap is obtained
max pooling over heads and averaging across positions.

E 4 8 12 16 20 24

CCONJ
ADP

PART
PRON

INTJ
VERB
SYM

X
PROPN

ADV
NUM

NOUN
ADJ
DET

PUNCT

(a) Question inputs.

E 4 8 12 16 20 24

CCONJ
ADP
SYM

PART
PRON
VERB

DET
X

PUNCT
INTJ

PROPN
NUM
ADJ

ADV
NOUN

(b) Question hidden states.

E 4 8 12 16 20 24

CCONJ
ADP

PART
PRON

ADV
SYM

VERB
X

ADJ
NOUN

PROPN
INTJ
DET

NUM
PUNCT

(c) Context inputs.

E 4 8 12 16 20 24

CCONJ
ADP

PART
PRON

PUNCT
ADV

X
VERB

DET
SYM
ADJ

NUM
NOUN

INTJ
PROPN

(d) Context hidden states.

E 4 8 12 16 20 24

CCONJ
ADP

PART
ADV
INTJ

PRON
VERB

X
DET
ADJ

SYM
NOUN

PROPN
PUNCT

NUM
[SEP] 1
[SEP] 2

[CLS]

(e) All inputs.

E 4 8 12 16 20 24

CCONJ
ADP

PART
PRON

PUNCT
X

ADV
VERB

DET
SYM
ADJ

NUM
NOUN

INTJ
PROPN
[SEP] 2
[SEP] 1

[CLS]

(f) All hidden states.

Figure 14: Question answering: average number of lay-
ers that predict to keep input tokens (a), (c) and (e) or
hidden states (b), (d) and (f) aggregating by part-of-
speech tag (POS) on validation set.

E 3 6 9 12 15 18 21 24
[SEP]

.
Marriott

Clara
Santa

the
at

stayed
and

University
Stanford

at
practiced

Broncos
The

.
Marriott

Jose
San
the
at

stayed
and

facility
practice

State
Jose
San
the

used
Panthers

The
[SEP]

?
Bowl

Super
the
for

used
Panthers

the
place

practice
the
was

Where
[CLS]

 p
as

sa
ge

 q
ue

st
io

n

(a) Gating the input.

E 3 6 9 12 15 18 21 24
[SEP]

.
Marriott

Clara
Santa

the
at

stayed
and

University
Stanford

at
practiced

Broncos
The

.
Marriott

Jose
San
the
at

stayed
and

facility
practice

State
Jose
San
the

used
Panthers

The
[SEP]

?
Bowl

Super
the
for

used
Panthers

the
place

practice
the
was

Where
[CLS]

 p
as

sa
ge

 q
ue

st
io

n

(b) Gating hidden states.

E 3 6 9 12 15 18 21 24
[SEP]

.
translation

)
##L

AS
(

Language
Sign

American
provided

##lin
Mat

##lee
Mar

winner
Award

Academy
while

,
anthem
national

the
performed

Gaga
Lady

nominee
Award

Academy
and

winner
Grammy

time
-

Six
[SEP]

?
anthem
national

the
sang
Who

[CLS]
 p

as
sa

ge
 q

ue
st

io
n

(c) Gating the input.

E 3 6 9 12 15 18 21 24
[SEP]

.
translation

)
##L

AS
(

Language
Sign

American
provided

##lin
Mat

##lee
Mar

winner
Award

Academy
while

,
anthem
national

the
performed

Gaga
Lady

nominee
Award

Academy
and

winner
Grammy

time
-

Six
[SEP]

?
anthem
national

the
sang
Who

[CLS]

 p
as

sa
ge

 q
ue

st
io

n

(d) Gating hidden states.

Figure 15: Expectation predicted by DIFFMASK to
keep the inputs in (a) (c) and hidden states in (b) (d)
on two different QA pairs. The correct answers is high-
lighted in bold.

