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Abstract

In this paper, we describe the research
using machine learning techniques to
build a comma checker to be integrated
in a grammar checker for Basque. After
several experiments, and trained with a
little corpus of 100,000 words, the sys-
tem guesses correctly not placing com-
mas with a precision of 96% and a re-
call of 98%. It also gets a precision of
70% and a recall of 49% in the task of
placing commas. Finally, we have
shown that these results can be im-
proved using a bigger and a more ho-
mogeneous corpus to train, that is, a
bigger corpus written by one unique au-
thor.

1 Introduction

In the last years, there have been many studies
aimed at building a grammar checker for the
Basque language (Ansa et al., 2004; Diaz De II-
arraza et al., 2005). These works have been fo-
cused, mainly, on building rule sets —taking into
account syntactic information extracted from the
corpus automatically— that detect some erro-
neous grammar forms. The research here presen-
ted wants to complement the earlier work by fo-
cusing on the style and the punctuation of the
texts. To be precise, we have experimented using
machine learning techniques for the special case
of the comma, to evaluate their performance and
to analyse the possibility of applying it in other
tasks of the grammar checker.

However, developing a punctuation checker
encounters one problem in particular: the fact
that the punctuation rules are not totally estab-
lished. In general, there is no problem when us-
ing the full stop, the question mark or the ex-
clamation mark. Santos (1998) highlights these
marks are reliable punctuation marks, while all
the rest are unreliable. Errors related to the reli-
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able ones (putting or not the initial question or
exclamation mark depending on the language, for
instance) are not so hard to treat. A rule set to
correct some of these has already been defined
for the Basque language (Ansa et al., 2004). In
contrast, the comma is the most polyvalent and,
thus, the least defined punctuation mark (Bayrak-
tar et al., 1998; Hill and Murray, 1998). The am-
biguity of the comma, in fact, has been shown
often (Bayraktar et al., 1998; Beeferman et al.,
1998; Van Delden S. and Gomez F., 2002).
These works have shown the lack of fixed rules
about the comma. There are only some intuitive
and generally accepted rules, but they are not
used in a standard way. In Basque, this problem
gets even more evident, since the standardisation
and normalisation of the language began only
about twenty-five years ago and it has not fin-
ished yet. Morphology is mostly defined, but, on
the contrary, as far as syntax is concerned, there
is quite work to do. In punctuation and style,
some basic rules have been defined and accepted
by the Basque Language Academy (Zubimendi,
2004). However, there are not final decisions
about the case of the comma.

Nevertheless, since Nunberg’s monograph
(Nunberg, 1990), the importance of the comma
has been undeniable, mainly in these two as-
pects: 1) as a due to the syntax of the sentence
(Nunberg, 1990; Bayraktar et al., 1998; Garzia,
1997), and ii) as a basis to improve some natural
language processing tools (syntactic analysers,
error detection tools...), as well as to develop
some new ones (Briscoe and Carroll, 1995;
Jones, 1996). The relevance of the comma for the
syntax of the sentence may be easily proved with
some clarifying examples where the sentence is
understood in one or other way, depending on
whether a comma is placed or not (Nunberg,
1990):

a. Those students who can, contribute to the
United Fund.

b. Those students who can contribute to the
United Fund.
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In the same sense, it is obvious that a well
punctuated text, or more concretely, a correct
placement of the commas, would help consider-
ably in the automatic syntactic analysis of the
sentence, and, therefore, in the development of
more and better tools in the NLP field. Say and
Akman (1997) summarise the research efforts in
this direction.

As an important background for our work, we
note where the linguistic information on the
comma for the Basque language was formalised.
This information was extracted after analysing
the theories of some experts in Basque syntax
and punctuation (Aldezabal et al., 2003). In fact,
although no final decisions have been taken by
the Basque Language Academy yet, the theory
formalised in the above mentioned work has suc-
ceeded in unifying the main points of view about
the punctuation in Basque. Obviously, this has
been the basis for our work.

2 Learning commas

We have designed two different but combinable
ways to get the comma checker:

e based on clause boundaries

e Dbased directly on corpus

Bearing in mind the formalised theory of
Aldezabal et al. (2003)', we realised that if we
got to split the sentence into clauses, it would be
quite easy to develop rules for detecting the exact
places where commas would have to go. Thus,
the best way to build a comma checker would be
to get, first, a clause identification tool.

Recent papers in this area report quite good
results using machine learning techniques. Car-
reras and Marquez (2003) get one of the best per-
formances in this task (84.36% in test). There-
fore, we decided to adopt this as a basis in order
to get an automatic clause splitting tool for
Basque. But as it is known, machine learning
techniques cannot be applied if no training cor-
pus is available, and one year ago, when we star-
ted this process, Basque texts with this tagged
clause splits were not available.

Therefore, we decided to use the second al-
ternative. We had available some corpora of
Basque, and we decided to try learning commas
from raw text, since a previous tagging was not
needed. The problem with the raw text is that its
commas are not the result of applying consistent
rules.

! From now on, we will speak about this as “the accepted theory of Basque
punctuation”.

Related work

Machine learning techniques have been applied
in many fields and for many purposes, but we
have found only one reference in the literature
related to the use of machine learning techniques
to assign commas automatically.

Hardt (2001) describes research in using the
Brill tagger (Brill 1994; Brill, 1995) to learn to
identify incorrect commas in Danish. The system
was developed by randomly inserting commas in
a text, which were tagged as incorrect, while the
original commas were tagged as correct. This
system identifies incorrect commas with a preci-
sion of 91% and a recall of 77%, but Hardt
(2001) does not mention anything about identify-
ing correct commas.

In our proposal, we have tried to carry out
both aspects, taking as a basis other works that
also use machine learning techniques in similar
problems such as clause splitting (Tjong Kim
Sang E.F. and Déjean H., 2001) or detection of
chunks (Tjong Kim Sang E.F. and Buchholz S.,
2000).

3 Experimental setup

Corpora

As we have mentioned before, some corpora
in Basque are available. Therefore, our first task
was to select the training corpora, taking into ac-
count that well punctuated corpora were needed
to train the machine correctly. For that purpose,
we looked for corpora that satisfied as much as
possible our “accepted theory of Basque punctu-
ation”. The corpora of the unique newspaper
written in Basque, called Egunkaria (nowadays
Berria), were chosen, since they are supposed to
use the “accepted theory of Basque punctuation”.
Nevertheless, after some brief verifications, we
realised that the texts of the corpora do not fully
match with our theory. This can be understood
considering that a lot of people work in a news-
paper. That is, every journalist can use his own
interpretation of the “accepted theory”, even if
all of them were instructed to use it in the same
way. Therefore, doing this research, we had in
mind that the results we would get were not go-
ing to be perfect.

To counteract this problem, we also collected
more homogeneous corpora from prestigious
writers: a translation of a book of philosophy and
a novel. Details about these corpora are shown in
Table 1.



Size of the corpora

Corpora from the newspaper Egunkaria 420,000 words

Philosophy texts written by one unique author 25,000 words

Literature texts written by one unique author 25,000 words

Table 1. Dimensions of the used corpora

A short version of the first corpus was used in
different experiments in order to tune the system
(see section 4). The differences between the re-
sults depending on the type of the corpora are
shown in section 5.

Evaluation

Results are shown using the standard measures in
this area: precision, recall and f-measure?, which
are calculated based on the test corpus. The res-
ults are shown in two colums ("0" and "1") that
correspond to the result categories used. The res-
ults for the column “0” are the ones for the in-
stances that are not followed by a comma. On the
contrary, the results for the column “1” are the
results for the instances that should be followed
by a comma.

Since our final goal is to build a comma
checker, the precision in the column “1” is the
most important data for us, although the recall
for the same column is also relevant. In this kind
of tools, the most important thing is to first ob-
tain all the comma proposals right (precision in
columns “17), and then to obtain all the possible
commas (recall in columns “17).

Baselines

In the beginning, we calculated two possible
baselines based on a big part of the newspaper
corpora in order to choose the best one.

The first one was based on the number of
commas that appeared in these texts. In other
words, we calculated how many commas ap-
peared in the corpora (8% out of all words), and
then we put commas randomly in this proportion
in the test corpus. The results obtained were not
very good (see Table 2, baselinel), especially for
the instances “followed by a comma” (column
“17).

The second baseline was developed using the
list of words appearing before a comma in the
training corpora. In the test corpus, a word was
tagged as “followed by a comma” if it was one of
the words of the mentioned list. The results (see
baseline 2, in Table 2) were better, in this case,
for the instances followed by a comma (column
named “17”). But, on the contrary, baseline 1
provided us with better results for the instances
not followed by a comma (column named “0”).
That is why we decided to take, as our baseline,

2 f-measure = 2*precision*recall / (precision+recall)

the best data offered by each baseline (the ones
in bold in table 2).

| 0 1

Prec. |Rec. |Meas. |Prec. |Rec. [|Meas.
baseline 1 |0.927 | 0.924 | 0.926 | 0.076 | 0.079 | 0.078
baseline2 |0.946| 0.556| 0.700| 0,096 | 0.596 | 0.165

Table 2: The baselines

Methods and attributes

We use the WEKA®’ implementation of these
classifiers: the Naive Bayes based classifier (Na-
iveBayes), the support vector machine based
classifier (SMO) and the decision-tree (C4.5)
based one (j48).

It has to be pointed out that commas were
taken away from the original corpora. At the
same time, for each token, we stored whether it
was followed by a comma or not. That is, for
each word (token), it was stored whether a
comma was placed next to it or not. Therefore,
each token in the corpus is equivalent to an ex-
ample (an instance). The attributes of each token
are based on the token itself and some surround-
ing ones. The application window describes the
number of tokens considered as information for
each token.

Our initial application window was [-5, +5];
that means we took into account the previous and
following 5 words (with their corresponding at-
tributes) as valid information for each word.
However, we tuned the system with different ap-
plication windows (see section 4).

Nevertheless, the attributes managed for each
word can be as complex as we want. We could
only use words, but we thought some morpho-
syntactic information would be beneficial for the
machine to learn. Hence, we decided to include
as much information as we could extract using
the shallow syntactic parser of Basque (Aduriz et
al., 2004). This parser uses the tokeniser, the
lemmatiser, the chunker and the morphosyntactic
disambiguator developed by the IXA* research
group.

The attributes we chose to use for each token
were the following:

e word-form
lemma
category
subcategory
declension case

subordinate-clause type

3 WEKA is a collection of machine learning algorithms for data mining tasks
(http://www.cs.waikato.ac.nz/ml/weka/).
* http://ixa.si.chu.es



e Dbeginning of chunk (verb, nominal, enti-
ty, postposition)
e end of chunk (verb, nominal, entity, post-
position)
e part of an apposition
e other binary features: multiple word to-
ken, full stop, suspension points, colon,
semicolon, exclamation mark and ques-
tion mark
We also included some additional attributes
which were automatically calculated:
e number of verb chunks to the beginning
and to the end of the sentence
e number of nominal chunks to the begin-
ning and to the end of the sentence
e number of subordinate-clause marks to
the beginning and to the end of the sen-
tence
e distance (in tokens) to the beginning and
to the end of the sentence
We also did other experiments using binary
attributes that correspond to most used colloca-
tions (see section 4).
Besides, we used the result attribute “comma”
to store whether a comma was placed after each
token.

4 Experiments

Dimension of the corpus

In this test, we employed the attributes de-
scribed in section 3 and an initial window of [-5,
+5], which means we took into account the pre-
vious 5 tokens and the following 5. We also used
the C4.5 algorithm initially, since this algorithm
gets very good results in other similar machine
learning tasks related to the surface syntax
(Alegria et al., 2004).

I 0 1

Prec. |Rec. |Meas. |Prec. |Rec. |Meas.

100,000 train / 30,000 test ] 0,955 0,981 | 0,968 | 0,635 | 0,417 | 0,503

160,000 train / 45,000 test | 0,947 | 0,981 [ 0,964 | 0,687 | 0,43 [ 0,529

330,000 train / 90,000 test | 0,96 | 0,982 0,971 0,701 0,504 0,587

Table 3. Results depending on the size of corpora
(C4.5 algorithm; [-5,+5] window).

As it can be seen in table 3, the bigger the
corpus, the better the results, but logically, the
time expended to obtain the results also increases
considerably. That is why we chose the smallest
corpus for doing the remaining tests (100,000
words to train and 30,000 words to test). We
thought that the size of this corpus was enough to
get good comparative results. This test, anyway,
suggested that the best results we could obtain

would be always improvable using more and
more corpora.

Selecting the window

Using the corpus and the attributes described be-
fore, we did some tests to decide the best applic-
ation window. As we have already mentioned, in
some problems of this type, the information of
the surrounding words may contain important
data to decide the result of the current word.

In this test, we wanted to decide the best ap-
plication window for our problem.

0 1

Prec. |Rec. |Meas.|Prec. |Rec. |Meas.
-5+5 ]0,955]0,981|0,968] 0,635| 0,417 | 0,503
-2+5 10,956]0,982] 0,969] 0,648 0,431] 0,518
-3+5 10,957]0,979] 0,968] 0,627 0,441] 0,518
-4+5 ]0,957| 0,98 | 0,968] 0,634 0,446 | 0,52
-5+2 10,956 0,982]0,969] 0,65 | 0,424 | 0,514
-5+3 10,956]0,981] 0,969] 0,643 0,432] 0,517
-5+4 10,955]0,982] 0,968] 0,64 | 0,417 ] 0,505
-6+2 10,956]0,982]0,969] 0,645 0,421 ] 0,509
-6+3 ]0,956]0,982] 0,969] 0,646 0,426 | 0,514
-8+2 10,956]0,982] 0,969] 0,645 0,425] 0,513
-8+3 10,956]0,979]| 0,967] 0,615 0,431 | 0,507
-8+8 10,956]0,978| 0,967] 0,604 ] 0,422 ] 0,497

Table 4. Results depending on the application
window (C4.5 algorithm; 100,000 train / 30,000
test)

As it can be seen, the best f-measure for the
instances followed by a comma was obtained us-
ing the application window [-4,+5]. However, as
we have said before, we are more interested in
the precision. Thus, the application window [-5
,+2] gets the best precision, and, besides, its f-
measure is almost the same as the best one. This
is the reason why we decided to choose the [-5
,+2] application window.

Selecting the classifier

With the selected attributes, the corpus of
130,000 words and the application window of [-5
, 12], the next step was to select the best classifi-
er for our problem. We tried the WEKA imple-
mentation of these classifiers: the Naive Bayes
based classifier (NaiveBayes), the support vector
machine based classifier (SMO) and the decision
tree based one (j48). Table 5 shows the results
obtained:



On the other hand, one to two means that the

0 1 training corpus had two instances not followed
Prec. |Rec. |Meas.|Prec. [Rec. |Meas. | by a comma for each word followed by a
NB 0,948 [0,956{ 0,952] 0,376 [ 0,335] 0,355 | comma, and so on.
SMO ] 0,9360,994(0,965] 0,672 |0,143| 0,236
J48 | 0,956 0,982] 0,969] 0,652 | 0,424] 0,514 l 0 !
Table 5. Results depending on the classifier Prec._|Rec |Meas fPrec_[Rec [Meas
(100,000 train / 30,000 test; [-5, +2] window).  |pormal 0,955 | 0,981 0,968 0,635 | 0,417 | 0,503
one toone | 0,989 |0,633]0,772] 0,164 0,912 0,277
As we can see, the f-measure for the instances Jonetotwo | 0,977 [ 0,902] 0,938 0,367 | 0,725 | 0,487
not followed by a comma (column “0”) is almost ~ |one to three 0,969 | 0,93410,951] 0,427 | 0,621 | 0,506
the same for the three classifiers, but, on the con-  |one to four | 0,966 [ 0,952 0,959 0,484 | 0,575 | 0,526
trary, there is a considerable difference when we |one to five | 0,966 | 0,961]0,963] 0,534 | 0,568 | 0,55
refer to the instances followed by a comma |Jonetosix | 0,963 | 0,9660,964] 0,55 | 0,524 | 0,537

(column “1”). The best f-measure gives the C4.5
based classifier (J48) due to the better recall, al-
though the best precision is for the support vector
machine based classifier (SMO). Definitively,
the Naive Bayes (NB) based classifier was dis-
carded, but we had to think about the final goal
of our research to choose between the other two
classifiers. Since our final goal was to build a
comma checker, we would have to have chosen
the classifier that gave us the best precision, that
is, the support vector machine based one. But the
recall of the support vector machine based classi-
fier was not as good as expected to be selected.
Consequently, we decided to choose the C4.5
based classifier.

Selecting examples

At this moment, the results we get seem to be
quite good for the instances not followed by a
comma, but not so good for the instances that
should follow a comma. This could be explained
by the fact that we have no balanced training cor-
pus. In other words, in a normal text, there are a
lot of instances not followed by a comma, but
there are not so many followed by it. Thus, our
training corpus, logically, has very different
amounts of instances followed by a comma and
not followed by a comma. That is the reason why
the system will learn more easily to avoid the un-
necessary commas than placing the necessary
ones.

Therefore, we resolved to train the system
with a corpus where the number of instances fol-
lowed by a comma and not followed by a comma
was the same. For that purpose, we prepared a
perl program that changed the initial corpus, and
saved only x words for each word followed by a
comma.

In table 6, we can see the obtained results.
One to one means that in that case, the training
corpus had one instance not followed by a
comma, for each instance followed by a comma.

Table 6. Results depending on the number of
words kept for each comma (C4.5 algorithm;
100,000 train / 30,000 test; [-5, +2] window).

As observed in the previous table, the best
precision in the case of the instances followed by
a comma is the original one: the training corpus
where no instances were removed. Note that
these results are referred as normal in table 6.

The corpus where a unique instance not fol-
lowed by a comma is kept for each instance fol-
lowed by a comma gets the best recall results,
but the precision decreases notably.

The best f-measure for the instances that
should be followed by a comma is obtained by
the one to five scheme, but as mentioned before,
a comma checker must take care of offering cor-
rect comma proposals. In other words, as the pre-
cision of the original corpus is quite better (ten
points better), we decided to continue our work
with the first choice: the corpus where no in-
stances were removed.

Adding new attributes

Keeping the best results obtained in the tests de-
scribed above (C4.5 with the [-5, +2] window,
and not removing any “not comma” instances),
we thought that giving importance to the words
that appear normally before the comma would in-
crease our results. Therefore, we did the follow-
ing tests:

1) To search a big corpus in order to extract
the most frequent one hundred words that pre-
cede a comma, the most frequent one hundred
pairs of words (bigrams) that precede a comma,
and the most frequent one hundred sets of three
words (trigrams) that precede a comma, and use
them as attributes in the learning process.

2) To use only three attributes instead of the
mentioned three hundred to encode the informa-
tion about preceding words. The first attribute
would indicate whether a word is or not one of



the most frequent one hundred words. The
second attribute would mean whether a word is
or not the last part of one of the most frequent
one hundred pairs of words. And the third attrib-
ute would mean whether a word is or not the last
part of one of the most frequent one hundred sets
of three words.

3) The case (1), but with a little difference:
removing the attributes “word” and “lemma” of
each instance.

0 1
Prec. |Rec. |Meas. |Prec. |Rec. |Meas.
(0): normal 0,956 | 0,982 | 0,969 | 0,652 | 0,424 | 0,514
(1): 300 attributes | 0,96 | 0,983 | 0,972 0,696 | 0,486 | 0,572
(2): 3 attributes + 0,96 | 0,981 | 0,97 | 0,665 | 0,481 | 0,558
(3): 300 attributes +, | o551 987 | 0,971 | 0,71 | 0,406 | 0,517
no lemma, no word

Table 7. Results depending on the new attributes
used (C4.5 algorithm; 100,000 train / 30,000 test;
[-5, +2] window; not removed instances).

Table 7 shows that case number 1 (putting the
300 data as attributes) improves the precision of
putting commas (column “1”) in more than 4
points. Besides, it also improves the recall, and,
thus, we improve almost 6 points its f-measure.

The third test gives the best precision, but the
recall decreases considerably. Hence, we decided
to choose the case number 1, in table 7.

5 Effect of the corpus type

As we have said before (see section 3), depend-
ing on the quality of the texts, the results could
be different.

In table 8, we can see the results using the dif-
ferent types of corpus described in table 1. Obvi-
ously, to give a correct comparison, we have
used the same size for all the corpora (20,000 in-
stances to train and 5,000 instances to test, which
is the maximum size we have been able to ac-
quire for the three mentioned corpora).

0 1
Prec. |Rec. [Meas.|Prec. |[Rec. |Meas.
Newspaper ]0.923 [0.977 [0.949 ]0.445 |10.188 |0.264
Philosophy [0.932 [0.961 [0.946 |]0.583(0.44 |0.501
Literature 0.925 [0.976 |0.95 ]0.53 ]0.259 [0.348

Table 8. Results depending on the type of corpo-
ra (20,000 train / 5,000 test).

The first line shows the results obtained using
the short version of the newspaper. The second
line describes the results obtained using the
translation of a book of philosophy, written com-
pletely by one author. And the third one presents

the results obtained using a novel written in
Basque.

In any case, the results prove that our hypo-
thesis was correct. Using texts written by a
unique author improves the results. The book of
philosophy has the best precision and the best re-
call. It could be because it has very long sen-
tences and because philosophical texts use a
stricter syntax comparing with the free style of a
literature writer.

As it was impossible for us to collect the ne-
cessary amount of unique author corpora, we
could not go further in our tests.

6 Conclusions and future work

We have used machine learning techniques for
the task of placing commas automatically in
texts. As far as we know, it is quite a novel ap-
plication field. Hardt (2001) described a system
which identified incorrect commas with a preci-
sion of 91% and a recall of 77% (using 600,000
words to train). These results are comparable
with the ones we obtain for the task of guessing
correctly when not to place commas (see column
“0” in the tables). Using 100,000 words to train,
we obtain 96% of precision and 98.3% of recall.
The main reason could be that we use more in-
formation to learn.

However, we have not obtained as good res-
ults as we hoped in the task of placing commas
(we get a precision of 69.6% and a recall of
48.6%). Nevertheless, in this particular task, we
have improved considerably with the designed
tests, and more improvements could be obtained
using more corpora and more specific corpora as
texts written by a unique author or by using sci-
entific texts.

Moreover, we have detected some possible
problems that could have brought these regular
results in the mentioned task:

® No fixed rules for commas in the Basque
language
® Negative influence when training using
corpora from different writers
In this sense, we have carried out a little ex-
periment with some English corpora. Our hypo-
thesis was that a completely settled language like
English, where comma rules are more or less
fixed, would obtain better results. Taking a com-
parative English corpus® and similar learning at-
tributes® to Basque’s one, we got, for the in-
stances followed by a comma (column “1” in
tables), a better precision (%83.3) than the best

5 A newspaper corpus, from Reuters

6 Linguistic information obtained using Freeling (http://garraf.ep-

sevg.upc.es/freeling/)



one obtained for the Basque language. However,
the recall was worse than ours: %38.7. We have
to take into account that we used less learning at-
tributes with the English corpus and that we did
not change the application window chosen for
the Basque experiment. Another application win-
dow would have been probably more suitable for
English. Therefore, we believe that with a few
tests we easily would achieve a better recall.
These results, anyway, confirm our hypothesis
and our diagnosis of the detected problems.

Nevertheless, we think the presented results
for the Basque language could be improved. One
way would be to use “information gain” tech-
niques in order to carry out the feature selection.
On the other hand, we think that more syntactic
information, concretely clause splits tags, would
be especially beneficial to detect those commas
named delimiters by Nunberg (1990).

In fact, our main future research will consist
on clause identification. Based on the “accepted
theory of the comma”, we can assure that a good
identification of clauses (together with some sig-
nificant linguistic information we already have)
would enable us to put commas correctly in any
text, just implementing some simple rules. Be-
sides, a combination of both methods —learning
commas and putting commas after identifying
clauses— would probably improve the results
even more.

Finally, we contemplate building an ICALL
(Intelligent Computer Assisted Language Learn-
ing) system to help learners to put commas cor-
rectly.
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Abstract

In this paper, we describe a rote extrac-
tor that learns patterns for finding seman-
tic relationships in unrestricted text, with
new procedures for pattern generalization
and scoring. These include the use of part-
of-speech tags to guide the generalization,
Named Entity categories inside the pat-
terns, an edit-distance-based pattern gen-
eralization algorithm, and a pattern accu-
racy calculation procedure based on eval-
uating the patterns on several test corpora.
In an evaluation with 14 entities, the sys-
tem attains a precision higher than 50% for
half of the relationships considered.

1 Introduction

Recently, there is an increasing interest in auto-
matically extracting structured information from
large corpora and, in particular, from the Web
(Craven et al., 1999). Because of the difficulty of
collecting annotated data, several procedures have
been described that can be trained on unannotated
textual corpora (Riloff and Schmelzenbach, 1998;
Soderland, 1999; Mann and Yarowsky, 2005).
An interesting approach is that of rote extrac-
tors (Brin, 1998; Agichtein and Gravano, 2000;
Ravichandran and Hovy, 2002), which look for
textual contexts that happen to convey a certain re-
lationship between two concepts.

In this paper, we describe some contributions
to the training of Rote extractors, including a pro-
cedure for generalizing the patterns, and a more
complex way of calculating their accuracy. We
first introduce the general structure of a rote ex-
tractor and its limitations. Next, we describe the
proposed modifications (Sections 2, 3 and 4) and
the evaluation performed (Section 5).
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1.1 Rote extractors

According to the traditional definition of rote ex-
tractors (Mann and Yarowsky, 2005), they esti-
mate the probability of a relationship 7(p, ¢) given
the surrounding context A1pAsqAs. This is calcu-
lated, with a training corpus 7, as the number of
times that two related elements r(z, y) from T" ap-
pear with that same context A;xAsyAs, divided
by the total number of times that x appears in that
context together with any other word:

e yer C(A1zA2yA3)

P(r(p,q)|A1pAaqAsz) = S c(AraAaaAs)
T,z

1

x is called the hook, and y the target. In order
to train a Rote extractor from the web, this proce-
dure is usually followed (Ravichandran and Hovy,
2002):

1. Select a pair of related elements to be used

as seed. For instance, (Dickens,1812) for the
relationship birth year.

. Submit the query Dickens AND 1812 to a
search engine, and download a number of
documents to build the training corpus.

. Keep all the sentences containing both ele-
ments.

. Extract the set of contexts between them and
identify repeated patterns. This may just be
the m characters to the left or to the right,
(Brin, 1998), the longest common substring
of several contexts (Agichtein and Gravano,
2000), or all substrings obtained with a suf-
fix tree constructor (Ravichandran and Hovy,
2002).

. Download a separate corpus, called hook cor-
pus, containing just the hook (in the example,
Dickens).

. Apply the previous patterns to the hook cor-
pus, calculate the precision of each pattern

Proceedings of the COLING/ACL 2006 Main Conference Poster Sespagss 9-16,
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in the following way: the number of times it
identifies a target related to the hook divided
by the total number of times the pattern ap-
pears.

Repeat the procedure for other examples of
the same relationship.

To illustrate this process, let us suppose that we
want to learn patterns to identify birth years. We
may start with the pair (Dickens, 1812). From the
downloaded corpus, we extract sentences such as

Dickens was born in 1812
Dickens (1812 - 1870) was an English writer
Dickens (1812 - 1870) wrote Oliver Twist

The system identifies that the contexts of the last
two sentences are very similar and chooses their
longest common substring to produce the follow-

ing patterns:
<hook> was born in <target>
<hook> ( <target> - 1870 )

In order to measure the precision of the ex-
tracted patterns, a new corpus is downloaded us-
ing the hook Dickens as the only query word, and
the system looks for appearances of the patterns
in the corpus. For every occurrence in which the
hook of the relationship is Dickens, if the target
is 1812 it will be deemed correct, and otherwise
it will be deemed incorrect (e.g. in Dickens was
born in Portsmouth).

1.2 Limitations and new proposal

We have identified the following limitations in this
algorithm: firstly, to our knowledge, no Rote ex-
tractor allows for the insertion of wildcards (e.g.
*) in the extracted patterns. Ravichandran and
Hovy (2002) have noted that this might be dan-
gerous if the wildcard matches unrestrictedly in-
correct sentences. However, we believe that the
precision estimation that is performed at the last
step of the algorithm, using the hook corpus, may
be used to rule out the dangerous wildcards while
keeping the useful ones.

Secondly, we believe that the procedure for cal-
culating the precision of the patterns may be some-
what unreliable in a few cases. For instance,
Ravichandran and Hovy (2002) report the follow-
ing patterns for the relationships Inventor, Discov-
erer and Location:

Relation Prec.  Pattern

Inventor 1.0 <target> ’s <hook> and
Inventor 1.0 that <target> ’s <hook>
Discoverer 091  of <target> ’s <hook>
Location 1.0 <target> ’s <hook>

In this case, it can be seen that the same pattern
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(the genitive construction) may be used to indi-
cate several different relationships, apart from the
most common use indicating possession. How-
ever, they all receive very high precision values.
The reason is that the patterns are only evaluated
for the same hook for which they were extracted.
Let us suppose that we obtain the pattern for Loca-
tion using the pairs (New York, Chrysler Building).
The genitive construction can be extracted from
the context New York’s Chrysler Building. After-
ward, when evaluating it, only sentences contain-
ing <target>’s Chrysler Building are taken into
account, which makes it unlikely that the pattern
is expressing a relationship other than Location,
so the pattern will receive a high precision value.

For our purposes, however, we need to collect
patterns for several relations such as writer-book,
painter-picture, director-film, actor-film, and we
want to make sure that the obtained patterns are
only applicable to the desired relationship. Pat-
terns like <target> ’s <hook> are very likely to
be applicable to all of these relationships at the
same time, so we would like to be able to discard
them automatically.

Hence, we propose the following improvements
for a Rote extractor:

e A new pattern generalization procedure that
allows the inclusion of wildcards in the pat-
terns.

The combination with Named Entity recogni-
tion, so people, locations, organizations and
dates are replaced by their entity type in the
patterns, in order to increase their degree of
generality. This is in line with Mann and
Yarowsky (2003)’s modification, consisting
in replacing all numbers in the patterns with
the symbol ###4#.

A new precision calculation procedure, in a
way that the patterns obtained for a given re-
lationship are evaluated on the corpus for dif-
ferent relationships, in order to improve the
detection of over-general patterns.

2 Proposed pattern generalization
procedure

To begin with, for every appearance of a pair of
concepts, we extract a context around them. Next,
those contexts are generalized to obtain the parts
that are shared by several of them. The procedure
is detailed in the following subsections.



Birth year:
BOS/BOS <hook> (/( <target> -/- number/entity )/) EOS/EOS
BOS/BOS <hook> (/( <target> -/- number/entity )/) British/JJ writer/NN
BOS/BOS <hook> was/VBD born/VBN on/IN the/DT first/JJ of/IN time_expr/entity ,/, <target> ,/, at/IN location/entity ,/, of/IN
BOS/BOS <hook> (/( <target> -/- )/) a/DT web/NN guide/NN

Birth place:
BOS/BOS <hook> was/VBD born/VBN in/IN <target> ,/, in/IN central/JJ location/entity ,/,
BOS/BOS <hook> was/VBD born/VBN in/IN <target> date/entity and/CC moved/VBD to/TO location/entity
BOS/BOS Artist/NN :/, <hook> -/- <target> ,/, location/entity (/( number/entity —-/-
BOS/BOS <hook> ,/, born/VBN in/IN <target> on/IN date/entity ,/, worked/VBN as/IN

Author-book:
BOS/BOS <hook> author/NN of/IN <target> EOS/EOS
BOS/BOS Odysseus/NNP :/, Based/VBN on/IN <target> ,/, <hook> ’s/POS epic/NN from/IN Greek/JJ mythology/NN
BOS/BOS Background/NN on/IN <target> by/IN <hook> EOS/EOS
did/VBD the/DT circumstances/NNS in/IN which/WDT <hook> wrote/VBD "/’’ <target> "/’’ in/IN number/entity ,/, and/CC
.
Capital-country:
BOS/BOS <hook> 1is/VBZ the/DT capital/NN of/IN <target> location/entity ,/, location/entity correct/JJ time/NN
BOS/BOS The/DT harbor/NN in/IN <hook> ,/, the/DT capital/NN of/IN <target> ,/, is/VBZ number/entity of/IN location/entity
BOS/BOS <hook> ,/, <target> EOS/EOS
BOS/BOS <hook> ,/, <target> -/- organization/entity EOS/EOS

Figure 1: Example patterns extracted from the training corpus for each several kinds of relationships.

2.1 Context extraction procedure 1. Store all the patterns in a set P.

2. Initialize a set R as an empty set.

3. While P is not empty,

For each possible pair of patterns, cal-
culate the distance between them (de-
scribed in Section 2.3).

After selecting the sentences for each pair of re-
lated words in the training set, these are pro-
cessed with a part-of-speech tagger and a module @)
for Named Entity Recognition and Classification
(NERC) that annotates people, organizations, lo-

cations, dates, relative temporal expressions and (b) Take the two patterns with the smallest
numbers. Afterward, a context around the two distance, p; and p;.

words in the pair is extracted, including (a) at most (c) Remove them from P, and add them to
five words to the left of the first word; (b) all the R.

words in between the pair words; (c) at most five (d) Obtain the generalization of both, py
words to the right of the second word. The context (Section 2.4).

never jumps over sentence boundaries, which are (e) If py does not have a wildcard adjacent

marked with the symbols BOS (Beginning of sen- to the hook or the target, add it to P.
tence) and EOS (End of sentence). The two related 4. Return R
concepts are marked as <hook> and <target>. At the end, R contains all the initial patterns
Figure 1 shows several example contexts extracted and those obtained while generalizing the previous
for the relationships birth year, birth place, writer- ~ ©nes. The motivation for step (e) is that, if a pat-
book and capital-country. tern contains a wildcard adjacent to either the hook
Furthermore, for each of the entities in the re- or the target, it will be impossible to know where
lationship, the system also stores in a separate file it starts or ends. For instance, when applying the
the way in which they are annotated in the training ~ Pattern <nook> wrote « <target> to a text, the
corpus: the sequences of part-of-speech tags of ev- wildcard prevents the system from guessing where
ery appearance, and the entity type (if marked as the title of the book starts.
such). So, for instance, typical PoS sequences for
names of authors are “NNP”’! (surname) and “NNP
NNP” (first name and surname). A typical entity  So as to calculate the similarity between two pat-
kind for an author is person. terns, a slightly modified version of the dynamic
programming algorithm for edit-distance calcula-
tion (Wagner and Fischer, 1974) is used. The dis-
In order to identify the portions in common be-  tance between two patterns A and B is defined as
tween the patterns, and to generalize them, we ap-  the minimum number of changes (insertion, addi-
ply the following pseudocode (Ruiz-Casado et al.,  tion or replacement) that have to be done to the
in press): first one in order to obtain the second one.

2.3 Edit distance calculation

2.2 Generalization pseudocode

'All the PoS examples in this paper are done with Penn The calculation is carried on by filling a ma-
Treebank labels (Marcus et al., 1993). trix M, as shown in Figure 2 (left). At the same
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A: wrote the well known novel
B: wrote the classic novel

Ul-hb-)Nl—tci
W N = =N W
DN WA o

2
2
1
0
1
2
3

N WD~ O e
B WO RO = -

D] o

ARAR T~ -
AR AE—~ =
AR~ —~—~w
HO—~ ==&

NRRN =S
AR RAA

Figure 2: Example of the edit distance algorithm. A and B are two word patterns; M is the matrix in which the edit distance
is calculated, and D is the matrix indicating the choice that produced the minimal distance for each cell in M.

time that we calculate the edit distance matrix, it
is possible to fill in another matrix D, in which we
record which of the choices was selected at each
step: insertion, deletion, replacement or no edi-
tion. This will be used later to obtain the gener-
alized pattern. We have used the following four
characters:
e T means that it is necessary to insert a token
in the first pattern to obtain the second one.
e R means that it is necessary to remove a to-
ken.
e £ means that the corresponding tokens are
equal, so no edition is required.
e U means that the corresponding tokens are
unequal, so a replacement has to be done.
Figure 2 shows an example for two patterns,
A and B, containing respectively 5 and 4 to-
kens. M (5,4) has the value 2, indicating the dis-
tance between the two complete patterns. For in-
stance, the two editions would be replacing well
by classic and removing known.

2.4 Obtaining the generalized pattern

After calculating the edit distance between two
patterns A and B, we can use matrix D to obtain
a generalized pattern, which should maintain the
common tokens shared by them. The procedure
used is the following:

e Every time there is an insertion or a deletion,
the generalized pattern will contain a wild-
card, indicating that there may be anything in
between.

e Every time there is replacement, the general-
ized pattern will contain a disjunction of both
tokens.

e Finally, in the positions where there is no edit
operation, the token that is shared between

the two patterns is left unchanged.
The patterns in the example will produced the
generalized pattern

Wrote the well known novel
Wrote the classic novel

Wrote the well|classic * novel

The generalization of these two patterns pro-
duces one that can match a wide variety of sen-
tences, so we should always take care in order not
to over-generalize.

2.5 Considering part-of-speech tags and
Named Entities

If we consider the result in the previous example,
we can see that the disjunction has been made be-
tween an adverb and an adjective, while the other
adjective has been deleted. A more natural result,
with the same number of editing operations as the
previous one, would have been to delete the adverb
to obtain the following generalization:

Wrote the well known novel
Wrote the classic novel

Wrote the x known|classic novel

This is done taking into account part-of-speech
tags in the generalization process. In this way, the
edit distance has been modified so that a replace-
ment operation can only be done between words of
the same part-of-speech.”? Furthermore, replace-
ments are given an edit distance of 0. This favors
the choice of replacements with respect to dele-
tions and insertions. To illustrate this point, the
distance between known | classic/JJ and o1d/JJ

Note that, although our tagger produces the very detailed
PennTreebank labels, we consider that all nouns (NN, NNS,
NNP and NNPS) belong to the same part-of-speech class, and
the same for adjectives, verbs and adverbs.

12



Hook Birth  Death  Birth place  Author of Director of Capital of
{Oliver Twist,
Charles Dickens 1812 1870  Portsmouth  L1¢ Pickwick Papers, - g o None
Nicholas Nickleby,
David Copperfield...}
{Bananas,
Woody Allen 1935 None Brooklin None Annie_Hall, None
Manbhattan, ... }
Luanda None None None None None Angola

Table 1: Example rows in the input table for the system.

will be set to 0, because both tokens are adjectives.
In other words, the d function is redefined as:

0 if PoS(A[i]) = PoS(B[j])
1 otherwise

d(A[d], Blj]) = { @

Note that all the entities identified by the NERC
module will appear with a PoS tag of entity,
so it is possible to have a disjunction such as
location|organization/entity in a general—
ized pattern (See Figure 1).

3 Proposed pattern scoring procedure

As indicated above, if we measure the precision of
the patterns using a hook corpus-based approach,
the score may be inadvertently increased because
they are only evaluated using the same terms with
which they were extracted. The approach pro-
posed herein is to take advantage of the fact that
we are obtaining patterns for several relationships.
Thus, the hook corpora for some of the patterns
can be used also to identify errors done by other
patterns.

The input of the system now is not just a list
of related pairs, but a table including several rela-
tionships for the same entities. We may consider
it as mini-biographies as in Mann and Yarowsky
(2005)’s system. Table 1 shows a few rows in the
input table for the system. The cells for which
no data is provided have a default value of None,
which means that anything extracted for that cell
will be considered as incorrect.

Although this table can be written by hand, in
our experiments we have chosen to build it auto-
matically from the lists of related pairs. The sys-
tem receives the seed pairs for the relationships,
and mixes the information from all of them in a
single table. In this way, if Dickens appears in
the seed list for the birth year, death year, birth
place and writer-book relationships, four of the
cells in its row will be filled in with values, and
all the rest will be set to None. This is probably a
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very strict evaluation, because, for all the cells for
which there was no value in any of the lists, any re-
sult obtained will be judged as incorrect. However,
the advantage is that we can study the behavior of
the system working with incomplete data.

The new procedure for calculating the patterns’
precisions is as follows:

1. For every relationship, and for every hook,

collect a hook corpus from the Internet.

2. Apply the patterns to all the hook corpora
collected. Whenever a pattern extracts a re-
lationship from a sentence,

o If the table does not contain a row for
the hook, ignore the result.

o If the extracted target appears in the cor-
responding cell in the table, consider it
correct.

o If that cell contained different values, or
None, consider it incorrect.

For instance, the pattern <target> ’s <hook>
extracted for director-film may find, in the Dick-
ens corpus, book titles. Because these titles do not
appear in the table as films directed by Dickens,
the pattern will be considered to have a low accu-
racy.

In this step, every pattern that did not apply at
least three times in the test corpora was discarded.

4 Pattern application

Finally, given a set of patterns for a particular
relation, the procedure for obtaining new pairs is
straightforward:

1. For any of the patterns,

2. For each sentence in the test corpus,

(a) Look for the left-hand-side context in
the sentence.

(b) Look for the middle context.

(c) Look for the right-hand-side context.

(d) Take the words in between, and check
that either the sequence of part-of-
speech tags or the entity type had been



Applied  Prec.  Pattern

3 1.0 BOS/BOS On/IN time_expr/entity TARGET HOOK was/VBD baptized|born/VBN EOS/EOS

15 1.0 "/’’ HOOK (/( TARGET —-/-

4 1.0 ,/, TARGET ,/, */x Eugne|philosopher|playwright|poet/NNP HOOK earned|was/VBD */* at|in/IN

23 1.0 -|--/- HOOK (/( TARGET —-/-

12 1.0 AND|and|or/CC HOOK (/( TARGET -/-

48 1.0 By|about|after|by|for|inof|with/IN HOOK TARGET —/-

4 1.0 Onloflon/IN TARGET ,/, HOOK emigrated|faced|graduated|grew|has|perjured|settled|was/VBD

12 1.0 BOS/BOS HOOK TARGET —|-—/-

49 1.0 ABOUT|ALFRED|Amy|Audre|Authors|BY| (...) |teacher|writer/NNPS HOOK (/( TARGET —|--/-

7 1.0 BOS/BOS HOOK (/( born/VBN TARGET )/)

3 1.0 BOS/BOS HOOK ,/, */% ,/, TARGET ,/,

13 1.0 BOS/BOS HOOK ,|:/, TARGET —-/-

132 0.98 BOS/BOS HOOK (/( TARGET -|--/-

18 094  By|Of|about|as|between|by|for|from|of|on|with/IN HOOK (/( TARGET -/-

33 0.91 BOS/BOS HOOK ,|:/, */* (/( TARGET —|--/-

10 0.9 BOS/BOS HOOK ,|:/, «*/ ,|:/, TARGET -/-

3 0.67 ,|:li/, TARGET ,|:/, +/+ Birth|son/NN of/IN /% General|playwright/NNP HOOK ,|;/,

210 0.63 ,|:|i/, HOOK (/( TARGET -|--/-

7 029  (/( HOOK TARGET )/)

Table 3: Patterns for the relationship birth year.

Relation Seeds Extr. Gener. Filt. Relation Precision Incl. prec. Applied
Actor-film 133 480 519 10 Actor-film 0% 76.84% 95
Writer-book 836 3858 4847 171 Writer-book 6.25% 28.13% 32
Birth-year 492 2520 3220 19 Birth-year 79.67% 79.67% 477
Birth-place 68 681 762 5 Birth-place 14.56% 14.56% 103
Country-capital 36 932 1075 161 Country-capital 72.43% 72.43% 599
Country-president 56 1260 1463 119 Country-president 81.40% 81.40% 43
Death-year 492 2540 3219 16 Death-year 96.71% 96.71% 152
Director-film 1530 3126 3668 121 Director-film 43.40% 84.91% 53
Painter-picture 44 487 542 69 Painter-picture - - 0
Player-team 110 2903 3514 195 Player-team 52.50% 52.50% 120

Table 2: Number of seed pairs for each relation,
and number of unique patterns after the extraction
and the generalization step, and after calculating
their accuracy and filtering those that did not apply
3 times on the test corpus.

seen in the training corpus for that role
(hook or target). If so, output the rela-
tionship.

5 Evaluation and results

The procedure has been tested with 10 different
relationships. For each pair in each seed list, a
corpus with 500 documents has been collected us-
ing Google, from which the patterns are extracted.
Table 2 shows the number of patterns obtained. It
is interesting to see that for some relations, such as
birth-year or birth-place, more than one thousand
patterns have been reduced to a few. Table 3 shows
the patterns obtained for the relationship birth-
year. It can also be seen that some of the patterns
with good precision contain the wildcard *, which
helped extract the correct birth year in roughly 50
occasions. Specially of interest is the last pattern,
(/( HOOK TARGET )/)
which resulted in an accuracy of 0.29 with the pro-
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Table 4: Precision, inclusion precision and num-
ber of times that a pattern extracted information,
when applied to a test corpus.

cedure here indicated, but which would have ob-
tained an accuracy of 0.54 using the traditional
hook corpus approach. This is because in other
test corpora (e.g. in the one containing soccer
players and clubs) it is more frequent to find the
name of a person followed by a number that is not
his/her birth year, while that did not happen so of-
ten in the birth year test corpus.

For evaluating the patterns, a new test corpus
has been collected for fourteen entities not present
in the training corpora, again using Google. The
chosen entities are Robert de Niro and Natalie
Wood (actors), Isaac Asimov and Alfred Bester
(writers), Montevideo and Yaounde (capitals),
Gloria Macapagal Arroyo and Hosni Mubarak
(country presidents), Bernardo Bertolucci and
Federico Fellini (directors), Peter Paul Rubens and
Paul Gauguin (painters), and Jens Lehmann and
Thierry Henry (soccer players). Table 4 shows the
results obtained for each relationship.

We have observed that, for those relationships
in which the target does not belong to a Named



Entity type, it is common for the patterns to extract
additional words together with the right target. For
example, rather than extracting The Last Emperor,
the patterns may extract this title together with
its rating or its length, the title between quotes,
or phrases such as The classic The Last Emperor.
In the second column in the table, we measured
the percentage of times that a correct answer ap-
pears inside the extracted target, so these examples
would be considered correct. We call this metric
inclusion precision.

5.1 Comparison to related approaches

Although the above results are not comparable to
Mann and Yarowsky (2005), as the corpora used
are different, in most cases the precision is equal
or higher to that reported there. On the other hand,
we have rerun Ravichandran and Hovy (2002)’s
algorithm on our corpus. In order to assure a
fair comparison, their algorithm has been slightly
modified so it also takes into account the part-of-
speech sequences and entity types while extract-
ing the hooks and the targets during the rule ap-
plication. So, for instance, the relationship birth
date is only extracted between a hook tagged as
a person and a target tagged as either a date or
a number. The results are shown in Table 5. As
can be seen, our procedure seems to perform bet-
ter for all of the relations except birth place. It
is interesting to note that, as could be expected,
for those targets for which there is no entity type
defined (films, books and pictures), Ravichandran
and Hovy (2002)’s extracts many errors, because
it is not possible to apply the Named Entity Rec-
ognizer to clean up the results, and the accuracy
remains below 10%. On the other hand, that trend
does not seem to affect our system, which had
very poor results for painter-picture, but reason-
ably good for actor-film.

Other interesting case is that of birth places.
A manual observation of our generalized patterns
shows that they often contain disjunctions of verbs
such as that in (1), that detects not just the birth
place but also places where the person lived. In
this case, Ravichandran and Hovy (2002)’s pat-
terns resulted more precise as they do not contain
disjunctions or wildcards.

(1) HOOK ,/, returned|travelled|born/VBN
to|in/IN TARGET

It is interesting that, among the three relation-
ships with the smaller number of extracted pat-
terns, one of them did not produce any result, and
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Ravichandran

Relation Our approach and Hovy’s
Actor-film 76.84% 1.71%
Writer-book 28.13% 8.55%
Birth-year 79.67% 49.49%
Birth-place 14.56% 88.66%
Country-capital 72.43% 24.79%
Country-president 81.40% 16.13%
Death-year 96.71% 35.35%
Director-film 84.91% 1.01%
Painter-picture - 0.85%
Player-team 52.50% 44.44%

Table 5: Inclusion precision on the same test cor-
pus for our approach and Ravichandran and Hovy
(2002)’s.

the two others attained a low precision. Therefore,
it should be possible to improve the performance
of the system if, while training, we augment the
training corpora until the number of extracted pat-
terns exceeds a given threshold.

6 Related work

Extracting information using Machine Learning
algorithms has received much attention since the
nineties, mainly motivated by the Message Un-
derstanding Conferences (MUC6, 1995; MUC7,
1998). From the mid-nineties, there are systems
that learn extraction patterns from partially an-
notated and unannotated data (Huffman, 1995;
Riloff, 1996; Riloff and Schmelzenbach, 1998;
Soderland, 1999).

Generalizing textual patterns (both manually
and automatically) for the identification of re-
lationships has been proposed since the early
nineties (Hearst, 1992), and it has been applied
to extending ontologies with hyperonymy and
holonymy relationships (Kietz et al., 2000; Cimi-
ano et al., 2004; Berland and Charniak, 1999),
with overall precision varying between 0.39 and
0.68. Finkelstein-Landau and Morin (1999) learn
patterns for company merging relationships with
exceedingly good accuracies (between 0.72 and
0.93).

Rote extraction systems from the web have
the advantage that the training corpora can be
collected easily and automatically. Several
similar approaches have been proposed (Brin,
1998; Agichtein and Gravano, 2000; Ravichan-
dran and Hovy, 2002), with various applications:
Question-Answering (Ravichandran and Hovy,
2002), multi-document Named Entity Corefer-
ence (Mann and Yarowsky, 2003), and generating



biographical information (Mann and Yarowsky,
2005).

7 Conclusions and future work

We have described here a new procedure for build-
ing a rote extractor from the web. Compared to
other similar approaches, it addresses several is-
sues: (a) it is able to generate generalized patterns
containing wildcards; (b) it makes use of PoS and
Named Entity tags during the generalization pro-
cess; and (c) several relationships are learned and
evaluated at the same time, in order to test each
one on the test corpora built for the others. The re-
sults, measured in terms of precision and inclusion
precision are very good in most of the cases.

Our system needs an input table, which may
seem more complicated to compile that the list of
related pairs used by previous approaches, but we
have seen that the table can be built automatically
from the lists, with no extra work. In any case,
the time to build the table is significantly smaller
than the time needed to write the extraction pat-
terns manually.

Concerning future work, we are currently trying
to improve the estimation of the patterns accuracy
for the pruning step. We also plan to apply the ob-
tained patterns in a system for automatically gen-
erating biographical knowledge bases from vari-
ous web corpora.

References

E. Agichtein and L. Gravano. 2000. Snowball: Ex-
tracting relations from large plain-text collections.
In Proceedings of ICDL, pages 85-94.

M. Berland and E. Charniak. 1999. Finding parts in
very large corpora. In Proceedings of ACL-99.

S. Brin. 1998. Extracting patterns and relations from
the World Wide Web. In Proceedings of the WebDB
Workshop at the 6th International Conference on Ex-
tending Database Technology, EDBT’98.

P. Cimiano, S. Handschuh, and S. Staab. 2004. To-
wards the self-annotating web. In Proceedings of the
13th World Wide Web Conference, pages 462—-471.

M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery. 1999. Learn-
ing to construct knowledge bases from the world
wide web. Artificial Intelligence, 118(1-2):69-113.

M. Finkelstein-Landau and E. Morin. 1999. Extracting
semantic relationships between terms: supervised
vs. unsupervised methods. In Workshop on Ontolo-
gial Engineering on the Global Info. Infrastructure.

16

M. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. In COLING-92.

S. Huffman. 1995. Learning information extraction
patterns from examples. In IJCAI-95 Workshop on
New Approaches to Learning for NLP.

J. Kietz, A. Maedche, and R. Volz. 2000. A method
for semi-automatic ontology acquisition from a cor-
porate intranet. In Workshop “Ontologies and text”.

G. S. Mann and D. Yarowsky. 2003. Unsupervised
personal name disambiguation. In CoNLL-2003.

G. S. Mann and D. Yarowsky. 2005. Multi-field in-
formation extraction and cross-document fusion. In
ACL 2005.

M. Marcus, B. Santorini, and M.A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: the Penn Treebank. Computational Linguis-
tics, 19(2):313-330.

MUCS6. 1995. Proceedings of the 6! Message Under-
standing Conference (MUC-6). Morgan Kaufman.

MUC7. 1998. Proceedings of the 7" Message Under-
standing Conference (MUC-7). Morgan Kaufman.

D. Ravichandran and E. Hovy. 2002. Learning surface
text patterns for a question answering system. In
Proceedings of ACL-2002, pages 41-47.

E. Riloff and M. Schmelzenbach. 1998. An empirical
approach to conceptual case frame acquisition. In
Proceedings of WVLC, pages 49-56.

E. Riloff. 1996. Automatically generating extraction
patterns from untagged text. In AAAL

M. Ruiz-Casado, E. Alfonseca, and P. Castells. in
press. Automatising the learning of lexical pat-
terns: an application to the enrichment of wordnet
by extracting semantic relationships from wikipedia.
Data and Knowledge Engineering.

. Soderland. 1999. Learning information extraction
rules for semi-structured and free text. Machine
Learning, 34(1-3):233-272.

R. Wagner and M. Fischer. 1974. The string-to-
string correction problem. Journal of Association

for Computing Machinery, 21.



MT Evaluation: Human-lik e vs. Human Acceptable

Enriqgue Amig6 1, JedisGiménezi , Julio Gonzalot , and LluisMarquez i

1 Departamentale Lenguajes Sistemadnformaticos
Universidad\acionalde Educaobn a Distancia
Juandel Rosal, 16, E-28040 Madrid
{enrique,julio}@si.uned.es

I TALP ResearciCenter LS| Department
UniversitatPolitecnicade Catalurya
JordiGironaSalgado1-3,E-08034 Barcelona
{j gi menez, | | ui smi@si . upc. edu

Abstract

We presenta comparatre study on Ma-

chine TranslationEvaluationaccordingto

two different criteria: Human Likeness
and Human Acceptability We provide

empiricalevidencethatthereis arelation-
ship betweenthesetwo kinds of evalu-

ation: Human Likenessimplies Human
Acceptability but the reverseis not true.

Fromthe point of view of automaticeval-

uation this implies that metricsbasedon

HumanLikenessaremorereliablefor sys-
temtuning.

Our resultsalsoshav that currentevalua-
tion metricsare not alwaysableto distin-
guishbetweerautomati@andhumantrans-
lations. In orderto improve the descrip-
tive power of currentmetricswe propose
the use of additional syntax-basednet-
rics, and metric combinationsinside the
QARLA Framavork.

1 Intr oduction

Currentapproacheso AutomaticMachineTrans-
lation (MT) Evaluationare mostly basedon met-
ricswhichdeterminghequality of agiventransla-
tion accordingo its similarity to agivensetof ref-
erencdranslationsThecommonlyacceptedrite-
rion thatdefineghequality of anevaluationmetric

is its level of correlationwith humanevaluators.

High levels of correlation(Pearsorover 0.9) have
beenattainedat the systemlevel (Eck and Hori,
2005). But this is an averageeffect: the degreeof
correlationachieved at the sentencdevel, crucial
for anaccurateerroranalysisjs muchlower.

We aguethatthereis two mainreasonshatex-
plainthisfact:
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Firstly, currentMT evaluationmetricsarebased
onshallav featuresMostmetricswork only atthe
lexical level. However, naturallanguagesrerich
andambiguousallowing for mary possiblediffer-
entwaysof expressinghe sameidea. In orderto
capturehisflexibility, thesemetricswouldrequire
a combinatorialnumberof referencdranslations,
whenindeedin mostcasesnly asinglereference
is available. Therefore,metricswith higher de-
scriptive power arerequired.

Secondly there exists, indeed, two different
evaluationcriteria: (i) HumanAcceptability i.e.,
to what extent an automatictranslationcould be
consideredicceptabldy humansand(ii) Human
Likenessi.e.,to whatextentanautomatidransla-
tion could have beengeneratedy a humantrans-
lator. Most approacheso automaticMT evalu-
ation implicitly assumethat both criteria should
leadto the sameresults;but this assumptiorhas
not beenproved empirically or evendiscussed.

In this work, we analyzethis issuethroughem-
pirical evidence. First, in Section2, we inves-
tigate to what extent current evaluation metrics
areableto distinguishbetweenhumanand auto-
matictranslationfHumanLikeness) As individ-
ualmetricsdo not capturesuchdistinctionwell, in
Section3 we study how to improve the descrip-
tive power of currentmetricsby meansof met-
ric combinationsinside the QARLA Framevork
(Amigb et al., 2005), including a nenv family of
metricsbasedon syntacticcriteria. Second,we
claim thatthe two evaluationcriteria (HumanAc-
ceptabilityand HumanLikeness)re indeedof a
differentnature,andmay leadto differentresults
(Section4). However, translationsexhibiting a
high level of HumanLikenesbtaingoodresults
in humanjudges.Therefore automaticevaluation
metricshasecdn similarity to referenceshouldbe
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optimizedover their capacityto representHuman
LikenessSeeconclusionsn Section5.

2 Descriptive Power of Standard Metrics

In this sectionwe performa simpleexperimentin
orderto measurghe descriptve power of current
state-of-the-anmnetrics,i.e., theirability to capture
thefeaturesvhichcharacterizédumantranslations
with respecto automaticones.

2.1 Experimental Setting

We usethe datafrom the Openlab 2006 Initiative!
promotedby the TC-STAR Consortiumd. This
test suite is entirely basedon EuropeanParlia-
ment Proceedings covering April 1996to May
2005.Wefocusonthe Spanish-to-Englistransla-
tion task. For the purposeof evaluationwe usethe

developmentetwhich consistof 1008sentences.

However, dueto lack of availableMT outputsfor
the whole setwe usedonly a subsetof 504 sen-
tencescorrespondingo thefirst half of the devel-
opmentset. Threehumanreferenceper sentence
areavailable.

We employ ten systemoutputs;nine are based
on Statistical Machine Translation (SMT) sys-
tems(GiménezandMarquez,2005; Crego et al.,
2005), and one is obtainedfrom the free Sys-
trarf on-line rule-basedMT engine. Evalua-
tion resultshave beencomputedby meansof the
|Qur® Framavork for AutomaticMT Evaluation
(GiménezandAmigo, 2006).

We have selectedarepresentate setof 22 met-
ric variantscorrespondingo six different fami-
lies: BLEU (Papinenietal.,2001),NIST (Dodding-
ton, 2002), cGTM (Melamedet al., 2003), mMPER
(Leuschetal., 2003),mwEeR (NielRenetal., 2000)
andROUGE (Lin andOch,2004a).

2.2 Measuring Descriptive Power of
Evaluation Metrics

Our mainassumptioris thatif anevaluationmet-
ric is ableto characterizédumarntranslationsthen,
humanreferenceshouldbe closerto eachother
thanautomatictranslationgo otherhumanrefer
encesBasedonthis assumptionwe introducetwo
measuregORANGE and KING) which analyze

http://tc-staiitc.it/openlab2006/

2http://wwwtc-starorg/

3http:/iww.europarl.eu.int/

“http://www.systransoft.com.

5The 1Qur Framevork may be freely downloaded at
http://wwwIsi.upc.edu/nlp/IQMT.
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the descriptve power of evaluationmetricsfrom
diferentpointsof view.

ORANGE Measure

ORANGE comparesautomatic and manual
translationsone-on-one Let A and R bethe sets
of automaticand referencetranslations,respec-
tively, andz(a, R) anevaluationmetricwhichout-
putsthe quality of anautomatidranslationa € A
by comparisorto R. ORANGE measureshe de-
scriptive powerastheprobabilitythatahumarref-
erencer is moresimilarthananautomatidransla-
tion a to therestof humanreferences:

ORANGE s p(z) =
P(re R,ae A:z(r,R—{r}) > z(a,R—{r}))

ORANGE was introduced by Lin and Och
(2004b$ for the meta-@aluation of MT evalua-
tion metrics. The ORANGE measureprovides
information aboutthe averagebehaior of auto-
matic and manualtranslationsgegardingan eval-
uationmetric.

KING Measure

However, ORANGE doesnot provide informa-
tion abouthow mary manualtranslationsaredis-
cerniblefrom automatidranslationsThe KING
measurecomplementsthe ORANGE, tackling
thesetwo issuesby universally quantifying on
variablea:

KING A p(z) =
P(re€ R,Va € A:z(r,R—{r}) > z(a, R—{r}))

KING representsthe probability that, for a
given evaluation metric, a human referenceis
moresimilar to therestof humanreferenceshan
any automatidranslation’.

KING doesnot dependon the distribution of
automaticranslationsandidentifiesthe casedor

®They definedthis measuresthe averagerankof theref-
erencetranslationswithin the combinedmachineandrefer
encetranslationdist.

"Originally KING is definedover the evaluation metric
QUEEN, satisfyingsomerestrictionswhich arenot relevant
in our context (Amigo etal., 2005).



which the given metric hasbeenable to discern
humantranslationsfrom automaticones. That
is, it measureshow mary manual translations
can be usedas gold-standardor systemevalua-
tion/improvementpurposes.

2.3 Results

Figure 1 shavs the descriptve power, in termsof
the ORANGE and KING measurespver the test
setdescribedn Subsectior?.1.

0,5 - WORANGE
AKING

0,4 -

| o
0,3 \m

0,2 - aha AALaaa. Lk Fy

0,1 -

0

Figurel: ORANGEandKING valuesfor standard
metrics.

@ Automatic translations
O Manualtranslations
® ® @
@] O
s O @0 ® 80
e__0 O e_ O
@] ® L N
® o
Porance ~ 0 Porance ~ 0.5 Porance ~ 1
Prang ~ 0 Pring ~ 0 Pring ~ 1

Figure2: ORANGE andKING behaior.

ORANGE Results

All valuesof the ORANGE measureare lower
than0.5, which is the ORANGE valuethata ran-
dom metric would obtain (seecentralrepresenta-
tion in Figure 2). This is a rather counterintu-
itive result. A reasonablexplanation,however,
is that automatictranslationsbehae as centroids
with respectto humantranslations pecausehey
somevhat averagethe vocalulary distribution in
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themanuakeferencesasaresult,automatidrans-
lations are closerto eachmanualsummarythan
manualsummarieso eachother(seeleftmostrep-
resentatiornin Figure2).

In other words, automatictranslationstend to
share (lexical) featureswith most of the refer
encesput not to matchexactly ary of them. This
is acombinedeffect of:

e The natureof MT systemsmostly statisti-
cal, which computetheir estimatedasedon
the numberof occurrencef words, tend-
ing to rely more on eventsthat occur more
often. Consequentlyautomatictranslations
typically consistof frequentwords,whichare
likely to appeaiin mostof thereferences.

e The shallavnessof current metrics, which
arenot ableto identify the commonproper
ties of manualtranslationswith regardto au-
tomatictranslations.

KING Results

KING values,on the other hand, are slightly
higherthanthe valuethata randommetric would
obtain (ﬁ = 0.1). This meansthat every stan-
dardmetricis ableto discriminatea certainnum-
ber of manualtranslationsfrom the set of auto-
matic translationsfor instance,GT™M-3 identifies
19% of the manualreferences. For the remain-
ing 81%of thetestcaseshowever, GTM-3 cannot
make thedistinction,andthereforecannotbeused
to detectandimprove weaknessesf theautomatic
MT systems.

Theseresults provide an explanationfor the
low correlationbetweerautomatievaluationmet-
rics and humanjudgementsat the sentencdevel.
Thenecessargonclusions thatnenv metricswith
higherdescriptve power arerequired.

3 Impr oving Descriptive Power

The designof a metric thatis ableto captureall
thelinguisticaspectshatdistinguishhumantrans-
lations from automaticonesis a difficult pathto
trace. We approactthis challengeby following a
‘divide andconquer’stratgy. We suggesto build
a setof specializedsimilarity metricsdevoted to
the evaluation of partial aspectsof MT quality.
Thechallengds thenhow to combinea setof sim-
ilarity metricsinto a single evaluationmeasureof



MT quality. The QARLA framevork providesa
solutionfor this challenge.

3.1 Similarity Metric Combinationsinside
QARLA

The QARLA Framavork permitsto combineser-
eral similarity metricsinto a single quality mea-
sure(QUEEN). Besidesconsideringhe similarity
of automaticdranslationgo humanreferencesthe
QUEEN measuredditionallyconsiderghedistri-
bution of similaritiesamonghumanreferences.

The QUEEN measureoperatesunder the as-
sumptionthat a good translationmustbe similar
to humanreferencegR) accordingto all similar
ity metrics.QUEEN(a) is definedasthe probabil-
ity, over R x R x R, thatfor every metricz in a
given metric set X the automatictranslationa is
moresimilar to ahumanreferencehantwo other
referenceso eachother:

QUEEN g(a) =
P(Vz € X : z(a,r) > z(r',r"))

whereaq is the automatidranslationbeingeval-
uated,(r,r’, ") arethreedifferenthumanrefer
encesn R, andz(a,r) standdor the similarity of
r t0 a.

In the caseof Openlabdata,we cancountonly
on threehumanreferencegper sentenceln order
to increasahe numberof samplegor QUEEN es-
timationwe canusereferenceimilaritiesz (1, ")
betweenmanualtranslationpairsfrom othersen-
tencesassuminghatthe distancebetweerman-
ual referencesare relatively stableacrossexam-
ples.

3.2 Similarity Metrics

We bagin by defininga setof 22 similarity metrics
taken from the list of standardevaluationmetrics
in Subsectior2.1. Evaluationmetricscanbetuned
into similarity metricssimply by consideringonly
onereferencevhencomputingits value.
Secondlywe explore the possibility of design-
ing complementangimilarity metricsthat exploit
linguistic information at levels further than lexi-
cal. Inspiredin thework by Liu andGildea(2005),
who introduceda seriesof metricsbasedon con-
stituent/dependencgyntacticmatching,we have
designedthree subgroupsof syntacticsimilarity
metrics. To computethem, we have usedthe de-
pendeng treesprovided by the MINIPAR depen-
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deny parser(Lin, 1998). Thesemetrics com-
putethelevel of word overlapping(unigrampreci-
sion/recall)betweendependeng treesassociated
to automaticandreferencedranslationsfrom three
differentpointsof view:

TREE-X overlappingbetweerthe wordshanging
from non-terminalnodesof type X of the
tree. For instancethe metric TREE_PRED re-
flectsthe proportionof word overlappingbe-
tweensubtreeof type ‘pred’ (predicateof a
clause).

GRAM-X overlapping betweenthe words with
the grammaticalcategory X. For instance,
themetric GRAM_A reflectsthe proportionof
word overlappingbetweenterminalnodesof
type‘A’ (Adjective/Adwerbs).

LEVEL-X overlappingbetweenthe words hang-
ing ata certainlevel X of thetree,or deeper
For instance LEVEL-1 would considerover
lapping betweenall the words in the sen-
tences.

In addition,we alsoconsiderthreecoarsemet-
rics, namelyTREE, GRAM andLEVEL, which cor
respondto the averagevalue of the finer metrics
correspondingo eachsubfamily.

3.3 Metric SetSelection

We can compute KING over combinationsof
metricsby directly replacingthe similarity met-
ric z(a,r) with the QUEEN measure. This cor
respondsexactly to the KING measureusedin
QARLA:

KING o r(X) = P(r € R,Ya € A:

QUEENy p_{;}(r) > QUEENy p_(a))

KING representsthe probability that, for a
givensetof humanreferences?, andasetof met-
rics X, the QUEEN quality of a humanreference
is greaterthan the QUEEN quality of ary auto-
matictranslationin A.

The similarity metricsbasedon standardevalu-
ationmeasuresogethemwith thetwo new families
of similarity metricsform asetof 104metrics.Our
goalis to obtainthe subsebf metricswith highest
descriptve power; for this, we rely on the KING
probability A bruteforce explorationof all possi-
ble metric combinationds not viable. In orderto



performan approximatesearchfor a local maxi-
mumin KING over all the possiblemetriccombi-
nationsdefinedby X, we have usedthe following
greedyheuristic:

1. Individual metricsareranked by their KING
value.

2. In decreasingankorder metricsareindivid-
ually addedto the setof optimal metricsif,
andonly if, theglobal KING is increased.

After applyingthe algorithmwe have obtained
the optimalmetricset:

{GTM-1, NIST-2, GRAM_A, GRAM-N,
GRAM_AUX, GRAM_BE, TREE, TREE_AUX,
TREE_PNMOD, TREE_PRED, TREE_REL, TREE_S
andTREE_WHN}

which hasaKING valueof 0.29. Thisis signif-
icantly higherthanthe maximumKING obtained
by ary individual standardnetric(whichwas0.19
for GTm-3).

As to the probability ORANGEthatareference
translatiorattainsahigherscorethananautomatic
translation this metric setobtainsa value of 0.49
vs. 0.42. This meansthat still the metricsare,
onaverageunableto discriminatebetweerhuman
referencesand automatictranslations. However,
the proportionof sentencesor which the metrics
are able to discriminate(KING value)is signifi-
cantlyhigher

The metric setwith highestdescriptie power
contains metrics at different linguistic levels.
For instance,GTM-1 and NIST-2 reward n-gram
matchesat the lexical level. GRAM_A, GRAM_N,
GRAM_AUX andGRAM _BE captureword overlap-
ping for nouns, auxiliary verbs, adjectves and
adwerbs, and auxiliary usesof the verb ‘to be’,
respectiely. TREE, TREE_AUX, TREE_PNMOD,
TREE_PRED, TREE_REL, TREE_S and TREE_WHN
reward lexical overlappingover differenttypesof
dependeng subtrees: surface subjects, relative
clauses predicatesauxiliary verbs, postnominal
modifiers,andwhn-elementat C-specpositions,
respectiely.

Theseresultsareaclearindicationthatfeatures
from several linguistic levels are useful for the
characterizatiof humantranslations.

4 Human-likevs. Human Acceptable

In this sectionwe analyzethe relationshipbe-
tweenthe two different kinds of MT evaluation
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presented:(i) the ability of MT systemsto gen-
eratehuman-lile translations,and (ii) the ability
of MT systemso generateranslationghat look
acceptabléo humanjudges.

4.1 Experimental Setting

The ideal test setto study this dichotomyinside
the QARLA Frameavork would consistof a large
numberof humarreferencepersentenceandau-
tomatic outputsgeneratedy heterogeneouMT
systems.

4.2 Descriptive Power vs. Corr elation with
Human Judgements

We usethe dataand resultsfrom the IWSLT04
Evaluation Campaigf. We focus on the evalu-
ation of the Chinese-to-Englis{CE) translation
task,in whichasetof 500shortsentencefomthe
Basic Travel ExpressionsCorpus (BTEC) were
translateqAkiba etal.,2004).For purpose®f au-
tomatic evaluation, 16 referencetranslationsand
outputsby 20 differentMT systemsare available
for eachsentence.Moreover, eachof theseout-
puts was evaluatedby threejudgeson the basis
of adequag andflueng/ (LDC, 2002). In our ex-
perimentswe considerthe sum of adequag and
flueng/ assessments.

However, the BTEC corpushasa seriousdraw-
back: sentencesre very short(8 word lengthin
average).In orderto considera sentencedequate
we arepracticallyforcing it to matchexactly some
of the humanreferences.To alleviate this effect
we selectedsentencesonsistingof at leastten
words.A total of 94 sentenceéof 13wordslength
in average)satisfiedthis constraint.

Figure3 shaws, for all metrics,therelationship
betweenthe power of characterizatiorof human
referencegKING, horizontalaxis) andthe corre-
lation with humanjudgementgPearsoncorrela-
tion, verticalaxis). Dataareplottedin threediffer-
entgroups:original standardmetrics,singlemet-
rics inside QARLA (QUEEN measure)andthe
optimal metric combinationaccordingto KING.
Theoptimalsetis:

{GRAM_N, LEVEL_2, LEVEL_4, NIST-1, NIST-
3, NIST-4, and1-WER}

This setsuggestshatall kinds of n-gramsplay
animportantrolein the characterizatiomf human

8http://wwwislt.atrco.jp/IWSLT2004/



translations.The metric GRAM_N reflectstheim-

portanceof nountranslationsUnlike the Openlab
corpus,levels of the dependengc tree (LEVEL_2

andLEVEL_4) aredescriptve featureshut depen-
deny relationsare not (TREE metrics). This is

probablydueto the small averagesentencéength
in IWSLT.

Metrics exhibiting a high level of correlation
outsideQARLA, suchas NiIsT-3, also exhibit a
high descriptve power (KING). Thereis also a
tendeng for metricswith a KING value around
0.6to concentratat a level of Pearsorcorrelation
around0.5.

But the main point is the factthatthe QUEEN
measurabtainedby the metriccombinationwith
highestKING doesnot yield the highestlevel of
correlationwith humanassessmentsshich is ob-
tained by standardmetrics outside QARLA (0.5
vs. 0.7).

< Original metrics
2 Single metrics inside QUEEN

@ Optimal metric set according to KING
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Figure 3: Humancharacterizatiows. correlation
with humanjudgementdor IWSLT'04 CE trans-
lation task.

=
o

Human judges
O =2 N W AR OO N O W

02 04 06 08 1

o 4

QUEEN values with optimal metrics set

Figure4: QUEEN valuesvs. humanjudgements
for IWSLT’04 CE translatiortask.

22

4.3 Human Judgementsvs. Similarity to
References

In orderto explainthe above results,we have ana-
lyzedtherelationshipbetweerhumanassessments
andthe QUEEN valuesobtainedby the bestcom-
bination of metrics for every individual transla-
tion.

Figure 4 shavs that high values of QUEEN
(i.e., similarity to references)mply high values
of humanjudgementsBut thereverseis nottrue.
Therearetranslationsacceptabléo ahumanjudge
but not similar to humantranslationsaccording
to QUEEN. This fact can be understoodby in-
spectinga few patrticularcases. Table 1 shavs
two casesof translationsexhibiting a very low
QUEEN value and very high human judgment
score. The two casespresentthe samekind of
problem: there exists someword or phraseab-
sentfrom all humanreferencesin the first exam-
ple, the automatictranslationusesthe expression
“seats”to make a resenation, wherehumansin-
variably choose'table”. In the secondexample,
theautomatidranslationusers‘rack” astheplace
to putabag,while humanshoose'overheadin”,
“overheadcompartment”put never “rack”.

Therefore,the QUEEN measuraiscriminates
theseautomatictranslationsregardingto all hu-
manreferencesthusassigningthema low value.
However, humanjudgesfind the translationstill
acceptableand informative, althoughnot strictly
human-lile.

These results suggestthat inside the set of
human acceptabletranslations, which includes
human-lile translationsthereis also a subsetof
translationsunlikely to have beenproducedby a
humantranslator This is a dravbackof MT eval-
uationbasedn humanreferencesvhentheevalu-
ation criteriais HumanAcceptability The good
news are that when Human Likenessincreases,
HumanAcceptabilityincreasesswell.

5 Conclusions

We have analyzedhe ability of currentMT eval-
uationmetricsto characterizdhumantranslations
(asopposedo automatidranslations)andthere-
lationship betweenMT evaluation basedon Hu-
manAcceptabilityandHumanLikeness.

Thefirst conclusionis that,over alimited num-
ber of referencesstandardmetricsare unableto
identify thefeatureghatcharacterizéumantrans-
lations. Instead systemsehae ascentroidswith



respectto humanreferences.This is due,among
otherreasonsto the combinedeffect of the shal-
lownessof currentMT evaluationmetrics(mostly
lexical), and the fact that the choice of lexical

itemsis mostly basedon statisticalmethods.We
suggestwo complementaryways of solving this
problem. First, we introducea nev family of

syntax-basednetrics covering partial aspectsof

MT quality. Secondwe usethe QARLA Frame-
work to combine multiple metricsinto a single
measureof quality. In the future we will study
thedesignof new metricsworking at differentlin-

guistic levels. For instancewe are currently de-
velopinganew family of metricsbasedn shallov

parsing(i.e., part-of-speecHemma,andchunkin-

formation).

Second,our resultssuggestthat there exists a
clearrelationbetweenthe two kinds of MT eval-
uation described. While Human Likenessis a
sufiicient condition to get Human Acceptability
Human Acceptability doesnot guaranteeHuman
LikenessHumanjudgesmay consideracceptable
automatictranslationghat would never be gener
atedby a humantranslator

Consideringtheseresults, we claim that im-
proving metrics accordingto their descriptve
powver (Human Likeness)is more reliable than
improving metricsbasedon correlationwith hu-
manjudges. First, becausehis correlationis not
grantedsinceautomatianetricsarebasedn sim-
ilarity to models. Second,becauseéhigh Human
Likenesensuredigh scorefrom humanjudges.
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Automatic

Translation: | my nameis endoi 've resened seatsfor nineo’clock
Human
Referencel: | thisis endoi booledatable atnineo’clock
2: | i reseredatable for nineo’clock andmy nameis endo
3: | my nameis endoandi madearesenrationfor atable atnineo’clock
4. | i amendoandi have aresenationfor atable atninepm
5: | my nameis endoandi boolkedatable atnineo’clock
6: | thisis endoi reseredatable for nineo’clock
7. | my nameis endoandi reseredatable with youfor nineo’clock
8: | i 've boolked atable underendofor nineo’clock
9: | my nameis endoandi have atable reseredfor nineo’clock
10: | i 'm endoandi have aresenrationfor atable at nineo’clock
11: | my nameis endoandi reseredatable for nineo’clock
12: | thenameis endoandi have aresenrationfor nine
13: | i have atable reseredfor nineunderthe nameof endo
14: | hellomy nameis endoi reseredatable for nineo’clock
15: | my nameis endoandi have atable reseredfor nineo’clock
16: | my nameis endoandi madeareserationfor nineo’clock
Automatic
Translation: | couldyou helpmeputmy bagontherack please
Human
Referencel: | couldyouhelpmeputmy bagin theoverheadbin
2: | canyou helpmeto getmy baginto the overheadbin
3: | wouldyou give mea handwith gettingmy baginto the overheadbin
4. | wouldyou mind assistingmeto put my baginto the overheadbin
5: | couldyou give mea handputtingmy bagin the overhead compartment
6: | pleasehelpmeput my bagin the overheadbin
7: | wouldyoumind helpingme put my bagin the overhead compartment
8: | doyoumind helpingme put my bagin the overhead compartment
9: | couldi getahandwith puttingmy bagin the overhead compartment
10: | couldi askyouto helpmeputmy bagin the overhead compartment
11: | pleasehelpme put my bagin theoverheadbin
12: | would you mind helpingme putmy bagin the overhead compartment
13: | i 'd like youto helpme putmy bagin the overhead compartment
14: | wouldyou mind helpinggetmy bagup into the overhead storagecompartment
15: | mayi getsomeassistancgettingmy baginto the overhead storagecompartment
16: | pleasehelpmeput my into the overhead storagecompartment

Tablel: Automatictranslationswith high scorein humanjudgementandlow QUEEN value.
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Abstract

We investigate the effect of corpus size
in combining supervised and unsuper-
vised learning for two types of attach-
ment decisions: relative clause attach-
ment and prepositional phrase attach-
ment. The supervised component is
Collins’ parser, trained on the Wall
Street Journal. The unsupervised com-
ponent gathers lexical statistics from
an unannotated corpus of newswire
text. We find that the combined sys-
tem only improves the performance of
the parser for small training sets. Sur-
prisingly, the size of the unannotated
corpus has little effect due to the noisi-
ness of the lexical statistics acquired by
unsupervised learning.

1 Introduction

The best performing systems for many tasks in
natural language processing are based on su-
pervised training on annotated corpora such
as the Penn Treebank (Marcus et al., 1993)
and the prepositional phrase data set first de-
scribed in (Ratnaparkhi et al., 1994). How-
ever, the production of training sets is ex-
pensive. They are not available for many
domains and languages. This motivates re-
search on combining supervised with unsu-
pervised learning since unannotated text is in
ample supply for most domains in the major
languages of the world. The question arises
how much annotated and unannotated data
is necessary in combination learning strate-
gies. We investigate this question for two at-
tachment ambiguity problems: relative clause
(RC) attachment and prepositional phrase
(PP) attachment. The supervised component
is Collins’ parser (Collins, 1997), trained on
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the Wall Street Journal. The unsupervised
component gathers lexical statistics from an
unannotated corpus of newswire text.

The sizes of both types of corpora, anno-
tated and unannotated, are of interest. We
would expect that large annotated corpora
(training sets) tend to make the additional in-
formation from unannotated corpora redun-
dant. This expectation is confirmed in our
experiments. For example, when using the
maximum training set available for PP attach-
ment, performance decreases when “unanno-
tated” lexical statistics are added.

For unannotated corpora, we would expect
the opposite effect. The larger the unanno-
tated corpus, the better the combined system
should perform. While there is a general ten-
dency to this effect, the improvements in our
experiments reach a plateau quickly as the un-
labeled corpus grows, especially for PP attach-
ment. We attribute this result to the noisiness
of the statistics collected from unlabeled cor-
pora.

The paper is organized as follows. Sections
2, 3 and 4 describe data sets, methods and
experiments. Section 5 evaluates and discusses
experimental results. Section 6 compares our
approach to prior work. Section 7 states our
conclusions.

2 Data Sets

The unlabeled corpus is the Reuters RCV1
corpus, about 80,000,000 words of newswire
text (Lewis et al., 2004). Three different sub-
sets, corresponding to roughly 10%, 50% and
100% of the corpus, were created for experi-
ments related to the size of the unannotated
corpus. (Two weeks after Aug 5, 1997, were
set apart for future experiments.)

The labeled corpus is the Penn Wall Street
Journal treebank (Marcus et al., 1993). We
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created the 5 subsets shown in Table 1 for ex-
periments related to the size of the annotated
corpus.

unlabeled R

100% 20/08/199605/08/1097 (351 days)
50% 20/08,/1996-17/02/1997 (182 days)
10% 20/08/1996-24/09,/1996 (36 days)
labeled WSJ

50% sections 00-12 (23412 sentences)
25% lines 1 — 292960 (11637 sentences)
5% lines 1 — 58284 (2304 sentences)
1% lines 1 — 11720 (500 sentences)
0.05% lines 1 — 611 (23 sentences)

Table 1: Corpora used for the experiments:
unlabeled Reuters (R) corpus for attachment
statistics, labeled Penn treebank (WSJ) for
training the Collins parser.

The test set, sections 13-24, is larger than in
most studies because a single section does not
contain a sufficient number of RC attachment
ambiguities for a meaningful evaluation.

which-clauses subset highA | lowA total
develop set (sec 00-12) 71 211 282
test set (sec 13-24) 71 193 264
PP subset verbA | nounA | total
develop set (sec 00-12) | 5927 6560 | 12487
test set (sec 13-24) 5930 6273 | 12203

Table 2: RC and PP attachment ambigui-
ties in the Penn Treebank. Number of in-
stances with high attachment (highA), low at-
tachment (lowA), verb attachment (verbA),
and noun attachment (nounA) according to
the gold standard.

All instances of RC and PP attachments
were extracted from development and test
sets, yielding about 250 RC ambiguities and
12,000 PP ambiguities per set (Table 2). An
RC attachment ambiguity was defined as a
sentence containing the pattern NP1 Prep NP2
which. For example, the relative clause in Ex-
ample 1 can either attach to mechanism or to
System.

(1) ... the exchange-rate mechanism of the
European Monetary System, which

links the major EC currencies.

A PP attachment ambiguity was defined as
a subtree matching either [VP [NP PP]] or [VP
NP PP]. An example of a PP attachment am-
biguity is Example 2 where either the approval
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or the transaction is performed by written con-
sent.
(2) ...a majority ...have approved the
transaction by written consent ...

Both data sets are available for download
(Web Appendix, 2006). We did not use the
PP data set described by (Ratnaparkhi et al.,
1994) because we are using more context than
the limited context available in that set (see
below).

3 Methods

Collins parser. Our baseline method for
ambiguity resolution is the Collins parser as
implemented by Bikel (Collins, 1997; Bikel,
2004). For each ambiguity, we check whether
the attachment ambiguity is resolved correctly
by the 5 parsers corresponding to the different
training sets. If the attachment ambiguity is
not recognized (e.g., because parsing failed),
then the corresponding ambiguity is excluded
for that instance of the parser. As a result, the
size of the effective test set varies from parser
to parser (see Table 4).

Minipar. The unannotated corpus is ana-
lyzed using minipar (Lin, 1998), a partial de-
pendency parser. The corpus is parsed and all
extracted dependencies are stored for later use.
Dependencies in ambiguous PP attachments
(those corresponding to [VP NP PP] and [VP
[NP PP]] subtrees) are not indexed. An ex-
periment with indexing both alternatives for
ambiguous structures yielded poor results. For
example, indexing both alternatives will create
a large number of spurious verb attachments
of of, which in turn will result in incorrect high
attachments by our disambiguation algorithm.
For relative clauses, no such filtering is nec-
essary. For example, spurious subject-verb
dependencies due to RC ambiguities are rare
compared to a large number of subject-verb
dependencies that can be extracted reliably.

Inverted index. Dependencies extracted
by minipar are stored in an inverted index
(Witten et al., 1999), implemented in Lucene
(Lucene, 2006). For example, “john subj
buy”, the analysis returned by minipar for
John buys, is stored as “john buy john<subj



subj<buy john<subj<buy”. All words, de-
pendencies and partial dependencies of a sen-
tence are stored together as one document.
This storage mechanism enables fast on-line
queries for lexical and dependency statistics,
e.g., how many sentences contain the depen-
dency “john subj buy”, how often does john
occur as a subject, how often does buy have
john as a subject and car as an object etc.
Query results are approximate because double
occurrences are only counted once and struc-
tures giving rise to the same set of dependen-
cies (a piece of a tile of a roof of a house vs.
a piece of a roof of a tile of a house) cannot
be distinguished. We believe that an inverted
index is the most efficient data structure for
our purposes. For example, we need not com-
pute expensive joins as would be required in a
database implementation. Our long-term goal
is to use this inverted index of dependencies
as a versatile component of NLP systems in
analogy to the increasingly important role of
search engines for association and word count
statistics in NLP.

A total of three inverted indexes were cre-
ated, one each for the 10%, 50% and 100%
Reuters subset.

Lattice-Based Disambiguation. Our
disambiguation method is Lattice-Based
Disambiguation (LBD, (Atterer and Schiitze,
2006)). We formalize a possible attachment
as a triple < R,i,X > where X is (the
parse of) a phrase with two or more possible
attachment nodes in a sentence S, ¢ is one of
these attachment nodes and R is (the relevant
part of a parse of) S with X removed. For
example, the two attachments in Example 2
are represented as the triples:

< approved,;, the transaction;,, i1, by consent >,
< approved;, the transaction,,i2, by consent >.

We decide between attachment possibilities
based on pointwise mutual information, the
well-known measure of how surprising it is to
see R and X together given their individual
frequencies:

MI(< R,i,X >) = logy T5ss?
for P(< R,i,X >), P(R), P(X) #0
MI(< R,i,X >) = 0 otherwise

where the probabilities of the dependency
structures < R,i, X >, R and X are estimated
on the unlabeled corpus by querying the in-
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MN:pMN

MN:pN MN:pM

—

P

Figure 1: Lattice of pairs of potential attach-
ment site (NP) and attachment phrase (PP).
M: premodifying adjective or noun (upper or
lower NP), N: head noun (upper or lower NP),
p: Preposition.

verted index. Unfortunately, these structures
will often not occur in the corpus. If this is
the case we back off to generalizations of R
and X. The generalizations form a lattice as
shown in Figure 1 for PP attachment. For ex-
ample, MN:pMN corresponds to commercial
transaction by unanimous consent, N:pM to
transaction by unanimous etc. For 0:p we com-
pute MI of the two events “noun attachment”
and “occurrence of p”. Points in the lattice in
Figure 1 are created by successive elimination
of material from the complete context R:X.
A child ¢ directly dominated by a parent p
is created by removing exactly one contextual
element from p, either on the right side (the
attachment phrase) or on the left side (the at-
tachment node). For RC attachment, general-
izations other than elimination are introduced
such as the replacement of a proper noun (e.g.,
Canada) by its category (country) (see below).

The MI of each point in the lattice is com-
puted. We then take the maximum over all
MI values of the lattice as a measure of the
affinity of attachment phrase and attachment
node. The intuition is that we are looking for
the strongest evidence available for the attach-
ment. The strongest evidence is often not pro-
vided by the most specific context (MN:pMN
in the example) since contextual elements like
modifiers will only add noise to the attachment
decision in some cases. The actual syntactic
disambiguation is performed by computing the
affinity (maximum over MI values in the lat-
tice) for each possible attachment and select-
ing the attachment with highest affinity. (The



default attachment is selected if the two values
are equal.) The second lattice for PP attach-
ment, the lattice for attachment to the verb,
has a structure identical to Figure 1, but the
attachment node is SV instead of MN, where
S denotes the subject and V the verb. So the
supremum of that lattice is SV:pMN and the
infimum is 0:p (which in this case corresponds
to the MI of verb attachment and occurrence
of the preposition).

LBD is motivated by the desire to use as
much context as possible for disambiguation.
Previous work on attachment disambiguation
has generally used less context than in this
paper (e.g., modifiers have not been used for
PP attachment). No change to LBD is neces-
sary if the lattice of contexts is extended by
adding additional contextual elements (e.g.,
the preposition between the two attachment
nodes in RC, which we do not consider in this

paper).
4 Experiments

The Reuters corpus was parsed with minipar
and all dependencies were extracted. Three
inverted indexes were created, corresponding
to 10%, 50% and 100% of the corpus.! Five
parameter sets for the Collins parser were cre-
ated by training it on the WSJ training sets
in Table 1. Sentences with attachment am-
biguities in the WSJ corpus were parsed with
minipar to generate Lucene queries. (We chose
this procedure to ensure compatibility of query
and index formats.) The Lucene queries were
run on the three indexes. LBD disambigua-
tion was then applied based on the statistics
returned by the queries. LBD results are ap-
plied to the output of the Collins parser by
simply replacing all attachment decisions with
LBD decisions.

4.1 RC attachment

The lattice for LBD in RC attachment is
shown in Figure 2. When disambiguating
an RC attachment, instances of the
lattice are formed, one for NP1 and one

two

n fact, two different sets of inverted indexes were
created, one each for PP and RC disambiguation. The
RC index indexes all dependencies, including ambigu-
ous PP dependencies. Computing the RC statistics
on the PP index should not affect the RC results pre-
sented here, but we didn’t have time to confirm this
experimentally for this paper.
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for NP2 in NP1 Prep NP2 RC. Figure 2
shows the maximum possible lattice.  If
contextual elements are not present in a
context (e.g., a modifier), then the lattice
will be smaller. The supremum of the lat-
tice corresponds to a query that includes
the entire NP (including modifying adjec-
tives and nouns)?, the verb and its object.

Example: exchange_rate<nn<mechanim
&& mechanism< subj<link &&
currency<obj<link.

Figure 2: Lattice of pairs of potential attach-
ment site NP and relative clause X. M: pre-
modifying adjective or noun, Nf: head noun
with lexical modifiers, N: head noun only, n:
head noun in lower case, C: class of NP, V:
verb in relative clause, O: object of verb in
the relative clause.

To generalize contexts in the lattice, the fol-
lowing generalization operations are employed:

strip the NP of the modifying adjec-
tive/noun (weekly report — report)

use only the head noun of the NP (Catas-
trophic Care Act — Act)

e use the head noun in lower case (Act — act)
e for named entities use a hypernym of the NP
(American Bell Telephone Co. — company)
strip the object from X (company have sub-
sidiary — company have)

The most important dependency for disam-
2From the minipar output, we use all adjectives that

modify the NP via the relation mod, and all nouns that
modify the NP via the relation nn.



biguation is the noun-verb link, but the other
dependencies also improve the accuracy of
disambiguation (Atterer and Schiitze, 2006).
For example, light verbs like make and have
only provide disambiguation information when
their objects are also considered.

Downcasing and hypernym generalizations
were used because proper nouns often cause
sparse data problems. Named entity classes
were identified with LingPipe (LingPipe,
2006). Named entities identified as companies
or organizations are replaced with company in
the query. Locations are replaced with coun-
try. Persons block RC attachment because
which-clauses do not attach to person names,
resulting in an attachment of the RC to the
other NP.

[ query [ MI ]
~+exchange_rate(nn({mechanism 12.2
+mechanism(subj(link +currency(obj(link
~+exchange_rate(nn({mechanism 4.8
-+mechanism(subj(link
+mechanism(subj(link +currency(obj(link | 10.2
mechanism(subj(link 3.4
+European_Monetary _System (subj(link 0
+currency (obj(link
+System(subj(link +currency(obj(link 0
European_Monetary _System (subj(link 0
System (subj(link 0
+system (subj(link +currency (obj(link 0
system (subj(link 1.2
+company (subj(link +currency (obj(link 0
company (subj(link -1.1
empty 3

Table 3: Queries for computing high attach-
ment (above) and low attachment (below) for
Example 1.

Table 3 shows queries and mutual informa-
tion values for Example 1. The highest values
are 12.2 for high attachment (mechanism) and
3 for low attachment (System). The algorithm
therefore selects high attachment.

The value 3 for low attachment is the de-
fault value for the empty context. This value
reflects the bias for low attachment: the ma-
jority of relative clauses are attached low. If
all MI-values are zero or otherwise low, this
procedure will automatically result in low at-
tachment.3

3We experimented with a number of values (2, 3,
and 4) on the development set. Accuracy of the algo-
rithm was best for a value of 3. The results presented
here differ slightly from those in (Atterer and Schiitze,
2006) due to a coding error.

Decision list. For increased accuracy, LBD
is embedded in the following decision list.

1. If minipar has already chosen high attach-
ment, choose high attachment (this only oc-
curs if NP1 Prep NP2 is a named entity).

2. If there is agreement between the verb and

only one of the NPs, attach to this NP.

3. If one of the NPs is in a list of person entities,

attach to the other NP.4

4. If possible, use LBD.
5. If none of the above strategies was successful

(e.g. in the case of parsing errors), attach
low.

4.2 PP attachment

The two lattices for LBD applied to PP at-
tachment were described in Section 3 and Fig-
ure 1. The only generalization operation used
in these two lattices is elimination of contex-
tual elements (in particular, there is no down-
casing and named entity recognition). Note
that in RC attachment, we compare affinities
of two instances of the same lattice (the one
shown in Figure 2). In PP attachment, we
compare affinities of two different lattices since
the two attachment points (verb vs. noun) are
different. The basic version of LBD (with the
untuned default value 0 and without decision
lists) was used for PP attachment.

5 Evaluation and Discussion

Evaluation results are shown in Table 4. The
lines marked LBD evaluate the performance
of LBD separately (without Collins’ parser).
LBD is significantly better than the baseline
for PP attachment (p < 0.001, all tests are
x? tests). LBD is also better than baseline
for RC attachment, but this result is not sig-
nificant due to the small size of the data set
(264). Note that the baseline for PP attach-
ment is 51.4% as indicated in the table (upper
right corner of PP table), but that the base-
line for RC attachment is 73.1%. The differ-
ence between 73.1% and 76.1% (upper right
corner of RC table) is due to the fact that for
RC attachment LBD proper is embedded in a
decision list. The decision list alone, with an

“This list contains 136 entries and was semiauto-
matically computed from the Reuters corpus: An-

tecedents of who relative clauses were extracted, and
the top 200 were filtered manually.
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RC attachment
Train data # | Coll. only | 100% R | 50% R | 10% R | 0% R
LBD 264 78.4% 78.0% | 76.9% | 76.1%
50% 251 | 71.7% 78.5% 781% | 76.9% | 76.1%
25% 250 | 70.0% 78.0% 77.6% | 76.4% | 76.4%
5% 238 | 68.9% 78.2% 7% | 76.9% | 76.1%
1% 245 | 67.8% 78.8% 784% | 771% | 76.7%
0.05% 194 | 60.8% 76.8% 76.3% | 75.8% | 73.7%

PP attachment
Train data # | Coll. only | 100% R | 50% R | 10% R | 0% R
LBD 12203 73.4% 73.4% | 73.0% | 51.4%
50% 11953 | 82.8% 73.6% 73.6% | 73.2% | 51.7%
25% 11950 | 81.5% 73.6% 73.7% | 73.3% | 51.7%
5% 11737 | 77.4% 74.1% 74.2% | 73.7% | 52.3%
1% 11803 | 72.9% 73.6% 73.6% | 73.2% | 51.6%
0.05% 8486 | 58.0% 73.9% 73.8% | 74.0% | 52.8%

Table 4: Experimental results. Results for LBD (without Collins) are given in the first lines. #
is the size of the test set. The baselines are 73.1% (RC) and 51.4% (PP). The combined method
performs better for small training sets. There is no significant difference between 10%, 50% and

100% for the combination method (p < 0.05).

unlabeled corpus of size 0, achieves a perfor-
mance of 76.1%.

The bottom five lines of each table evalu-
ate combinations of a parameter set trained
on a subset of WSJ (0.05% — 50%) and a par-
ticular size of the unlabeled corpus (100% —
0%). In addition, the third column gives the
performance of Collins’ parser without LBD.
Recall that test set size (second column) varies
because we discard a test instance if Collins’
parser does not recognize that there is an am-
biguity (e.g., because of a parse failure). As
expected, performance increases as the size of
the training set grows, e.g., from 58.0% to
82.8% for PP attachment.

The combination of Collins and LBD is con-
sistently better than Collins for RC attach-
ment (not statistically significant due to the
size of the data set). However, this is not
the case for PP attachment. Due to the good
performance of Collins’ parser for even small
training sets, the combination is only superior
for the two smallest training sets (significant
for the smallest set, p < 0.001).

The most surprising result of the experi-
ments is the small difference between the three
unlabeled corpora. There is no clear pattern in
the data for PP attachment and only a small
effect for RC attachment: an increase between
1% and 2% when corpus size is increased from
10% to 100%.

We performed an analysis of a sample of in-

30

correctly attached PPs to investigate why un-
labeled corpus size has such a small effect. We
found that the noisiness of the statistics ex-
tracted from Reuters were often responsible
for attachment errors. The noisiness is caused
by our filtering strategy (ambiguous PPs are
not used, resulting in undercounting), by the
approximation of counts by Lucene (Lucene
overcounts and undercounts as discussed in
Section 3) and by minipar parse errors. Parse
errors are particularly harmful in cases like
the impact it would have on prospects, where,
due to the extraction of the NP impact, mini-
par attaches the PP to the verb. We did
not filter out these more complex ambiguous
cases. Finally, the two corpora are from dis-
tinct sources and from distinct time periods
(early nineties vs. mid-nineties). Many topic-
and time-specific dependencies can only be
mined from more similar corpora.

The experiments reveal interesting dif-
ferences between PP and RC attachment.
The dependencies used in RC disambiguation
rarely occur in an ambiguous context (e.g.,
most subject-verb dependencies can be reli-
ably extracted). In contrast, a large propor-
tion of the dependencies needed in PP dis-
ambiguation (verb-prep and noun-prep depen-
dencies) do occur in ambiguous contexts. An-
other difference is that RC attachment is syn-
tactically more complex. It interacts with
agreement, passive and long-distance depen-



dencies. The algorithm proposed for RC ap-
plies grammatical constraints successfully. A
final difference is that the baseline for RC is
much higher than for PP and therefore harder
to beat.?

An innovation of our disambiguation system
is the use of a search engine, lucene, for serv-
ing up dependency statistics. The advantage
is that counts can be computed quickly and
dynamically. New text can be added on an
ongoing basis to the index. The updated de-
pendency statistics are immediately available
and can benefit disambiguation performance.
Such a system can adapt easily to new topics
and changes over time. However, this archi-
tecture negatively affects accuracy. The un-
supervised approach of (Hindle and Rooth,
1993) achieves almost 80% accuracy by using
partial dependency statistics to disambiguate
ambiguous sentences in the unlabeled corpus.
Ambiguous sentences were excluded from our
index to make index construction simple and
efficient. Our larger corpus (about 6 times as
large as Hindle et al.’s) did not compensate for
our lower-quality statistics.

6 Related Work

Other work combining supervised and unsu-
pervised learning for parsing includes (Char-
niak, 1997), (Johnson and Riezler, 2000), and
(Schmid, 2002). These papers present inte-
grated formal frameworks for incorporating in-
formation learned from unlabeled corpora, but
they do not explicitly address PP and RC at-
tachment. The same is true for uncorrected
colearning in (Hwa et al., 2003).

Conversely, no previous work on PP and RC
attachment has integrated specialized ambi-
guity resolution into parsing. For example,
(Toutanova et al., 2004) present one of the
best results achieved so far on the WSJ PP
set: 87.5%. They also integrate supervised
and unsupervised learning. But to our knowl-
edge, the relationship to parsing has not been
explored before — even though application to
parsing is the stated objective of most work on
PP attachment.

SHowever, the baseline is similarly high for the PP
problem if the most likely attachment is chosen per
preposition: 72.2% according to (Collins and Brooks,
1995).
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With the exception of (Hindle and Rooth,
1993), most unsupervised work on PP attach-
ment is based on superficial analysis of the
unlabeled corpus without the use of partial
parsing (Volk, 2001; Calvo et al., 2005). We
believe that dependencies offer a better basis
for reliable disambiguation than cooccurrence
and fixed-phrase statistics. The difference to
(Hindle and Rooth, 1993) was discussed above
with respect to analysing the unlabeled cor-
pus. In addition, the decision procedure pre-
sented here is different from Hindle et al.’s.
LBD uses more context and can, in princi-
ple, accommodate arbitrarily large contexts.
However, an evaluation comparing the perfor-
mance of the two methods is necessary.

The LBD model can be viewed as a back-
off model that combines estimates from sev-
eral “backoffs”. In a typical backoff model,
there is a single more general model to back
off to. (Collins and Brooks, 1995) also present
a model with multiple backoffs. One of its vari-
ants computes the estimate in question as the
average of three backoffs. In addition to the
maximum used here, testing other combina-
tion strategies for the MI values in the lattice
(e.g., average, sum, frequency-weighted sum)
would be desirable. In general, MI has not
been used in a backoff model before as far as
we know.

Previous work on relative clause attachment
has been supervised (Siddharthan, 2002a; Sid-
dharthan, 2002b; Yeh and Vilain, 1998).6
(Siddharthan, 2002b)’s accuracy for RC at-
tachment is 76.5%."

7 Conclusion

Previous work on specific types of ambiguities
(like RC and PP) has not addressed the in-
tegration of specific resolution algorithms into
a generic statistical parser. In this paper, we
have shown for two types of ambiguities, rel-
ative clause and prepositional phrase attach-
ment ambiguity, that integration into a sta-
tistical parser is possible and that the com-

SStrictly speaking, our experiments were not com-
pletely unsupervised since the default value and the
most frequent attachment were determined based on
the development set.

"We attempted to recreate Siddharthan’s training
and test sets, but were not able to based on the de-
scription in the paper and email communication with
the author.



bined system performs better than either com-
ponent by itself. However, for PP attachment
this only holds for small training set sizes. For
large training sets, we could only show an im-
provement for RC attachment.

Surprisingly, we only found a small effect
of the size of the unlabeled corpus on disam-
biguation performance due to the noisiness of
statistics extracted from raw text. Once the
unlabeled corpus has reached a certain size (5-
10 million words in our experiments) combined
performance does not increase further.

The results in this paper demonstrate that
the baseline of a state-of-the-art lexicalized
parser for specific disambiguation problems
like RC and PP is quite high compared to
recent results for stand-alone PP disambigua-
tion. For example, (Toutanova et al., 2004)
achieve a performance of 87.6% for a train-
ing set of about 85% of WSJ. That num-
ber is not that far from the 82.8% achieved
by Collins’ parser in our experiments when
trained on 50% of WSJ. Some of the super-
vised approaches to PP attachment may have
to be reevaluated in light of this good perfor-
mance of generic parsers.
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Abstract

Short Messaging Service (SMS) texts be-
have quite differently from normal written
texts and have some very special phenom-
ena. To translate SMS texts, traditional
approaches model such irregularities di-
rectly in Machine Translation (MT). How-
ever, such approaches suffer from
customization problem as tremendous ef-
fort is required to adapt the language
model of the existing translation system to
handle SMS text style. We offer an alter-
native approach to resolve such irregulari-
ties by normalizing SMS texts before MT.
In this paper, we view the task of SMS
normalization as a translation problem
from the SMS language to the English
language ' and we propose to adapt a
phrase-based statistical MT model for the
task. Evaluation by 5-fold cross validation
on a parallel SMS normalized corpus of
5000 sentences shows that our method can
achieve 0.80702 in BLEU score against
the baseline BLEU score 0.6958. Another
experiment of translating SMS texts from
English to Chinese on a separate SMS text
corpus shows that, using SMS normaliza-
tion as MT preprocessing can largely
boost SMS translation performance from
0.1926 to 0.3770 in BLEU score.

1 Motivation

SMS translation is a mobile Machine Translation
(MT) application that translates a message from
one language to another. Though there exists
many commercial MT systems, direct use of
such systems fails to work well due to the special
phenomena in SMS texts, e.g. the unique relaxed
and creative writing style and the frequent use of
unconventional and not yet standardized short-
forms. Direct modeling of these special phenom-
ena in MT requires tremendous effort. Alterna-
tively, we can normalize SMS texts into

' This paper only discusses English SMS text normalization.

grammatical texts before MT. In this way, the
traditional MT is treated as a “black-box” with
little or minimal adaptation. One advantage of
this pre-translation normalization is that the di-
versity in different user groups and domains can
be modeled separately without accessing and
adapting the language model of the MT system
for each SMS application. Another advantage is
that the normalization module can be easily util-
ized by other applications, such as SMS to
voicemail and SMS-based information query.

In this paper, we present a phrase-based statis-
tical model for SMS text normalization. The
normalization is visualized as a translation prob-
lem where messages in the SMS language are to
be translated to normal English using a similar
phrase-based statistical MT method (Koehn et al.,
2003). We use IBM’s BLEU score (Papineni et
al., 2002) to measure the performance of SMS
text normalization. BLEU score computes the
similarity between two sentences using n-gram
statistics, which is widely-used in MT evalua-
tion. A set of parallel SMS messages, consisting
of 5000 raw (un-normalized) SMS messages and
their manually normalized references, is con-
structed for training and testing. Evaluation by 5-
fold cross validation on this corpus shows that
our method can achieve accuracy of 0.80702 in
BLEU score compared to the baseline system of
0.6985. We also study the impact of our SMS
text normalization on the task of SMS transla-
tion. The experiment of translating SMS texts
from English to Chinese on a corpus comprising
402 SMS texts shows that, SMS normalization as
a preprocessing step of MT can boost the transla-
tion performance from 0.1926 to 0.3770 in
BLEU score.

The rest of the paper is organized as follows.
Section 2 reviews the related work. Section 3
summarizes the characteristics of English SMS
texts. Section 4 discusses our method and Sec-
tion 5 reports our experiments. Section 6 con-
cludes the paper.

2 Related Work

There is little work reported on SMS normaliza-
tion and translation. Bangalore et al. (2002) used
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a consensus translation technique to bootstrap
parallel data using off-the-shelf translation sys-
tems for training a hierarchical statistical transla-
tion model for general domain instant messaging
used in Internet chat rooms. Their method deals
with the special phenomena of the instant mes-
saging language (rather than the SMS language)
in each individual MT system. Clark (2003)
proposed to unify the process of tokenization,
segmentation and spelling correction for nor-
malization of general noisy text (rather than SMS
or instant messaging texts) based on a noisy
channel model at the character level. However,
results of the normalization are not reported. Aw
et al. (2005) gave a brief description on their in-
put pre-processing work for an English-to-
Chinese SMS translation system using a word-
group model. In addition, in most of the com-
mercial SMS translation applications >, SMS
lingo (i.e., SMS short form) dictionary is pro-
vided to replace SMS short-forms with normal
English words. Most of the systems do not han-
dle OOV (out-of-vocabulary) items and ambigu-
ous inputs. Following compares SMS text
normalization with other similar or related appli-
cations.

2.1 SMS Normalization versus General

Text Normalization

General text normalization deals with Non-
Standard Words (NSWs) and has been well-
studied in text-to-speech (Sproat et al., 2001)
while SMS normalization deals with Non-Words
(NSs) or lingoes and has seldom been studied
before. NSWs, such as digit sequences, acronyms,
mixed case words (WinNT, SunOS), abbrevia-
tions and so on, are grammatically correct in lin-
guistics. However lingoes, such as “b4” (before)
and “bf” (boyfriend), which are usually self-
created and only accepted by young SMS users,
are not yet formalized in linguistics. Therefore,
the special phenomena in SMS texts impose a
big challenge to SMS normalization.

2.2 SMS Normalization versus Spelling

Correction Problem

Intuitively, many would regard SMS normaliza-
tion as a spelling correction problem where the
lingoes are erroneous words or non-words to be
replaced by English words. Researches on spell-
ing correction centralize on typographic and
cognitive/orthographic errors (Kukich, 1992) and
use approaches (M.D. Kernighan, Church and

% http://www.etranslator.ro and http://www.transI8bit.com

Gale, 1991) that mostly model the edit operations
using distance measures (Damerau 1964; Leven-
shtein 1966), specific word set confusions (Gold-
ing and Roth, 1999) and pronunciation modeling
(Brill and Moore, 2000; Toutanova and Moore,
2002). These models are mostly character-based
or string-based without considering the context.
In addition, the author might not be aware of the
errors in the word introduced during the edit op-
erations, as most errors are due to mistype of
characters near to each other on the keyboard or
homophones, such as “poor” or “pour”.

In SMS, errors are not isolated within word
and are usually not surrounded by clean context.
Words are altered deliberately to reflect sender’s
distinct creation and idiosyncrasies. A character
can be deleted on purpose, such as “wat” (what)
and “hv” (have). It also consists of short-forms
such as “b4” (before), “bf’ (boyfriend). In addi-
tion, normalizing SMS text might require the
context to be spanned over more than one lexical
unit such as “lemme” (let me), “ur” (you are) etc.
Therefore, the models used in spelling correction
are inadequate for providing a complete solution
for SMS normalization.

2.3 SMS Normalization versus Text Para-

phrasing Problem

Others may regard SMS normalization as a para-
phrasing problem. Broadly speaking, paraphrases
capture core aspects of variability in language,
by representing equivalencies between different
expressions that correspond to the same meaning.
In most of the recent works (Barzilay and
McKeown, 2001; Shimohata, 2002), they are
acquired (semi-) automatically from large com-
parable or parallel corpora using lexical and
morpho-syntactic information.

Text paraphrasing works on clean texts in
which contextual and lexical-syntactic features
can be extracted and used to find “approximate
conceptual equivalence”. In SMS normalization,
we are dealing with non-words and “ungram-
matically” sentences with the purpose to normal-
ize or standardize these words and form better
sentences. The SMS normalization problem is
thus different from text paraphrasing. On the
other hand, it bears some similarities with MT as
we are trying to “convert” text from one lan-
guage to another. However, it is a simpler prob-
lem as most of the time; we can find the same
word in both the source and target text, making
alignment easier.
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3 Characteristics of English SMS

Our corpus consists of 55,000 messages collected
from two sources, a SMS chat room and corre-
spondences between university students. The
content is mostly related to football matches,
making friends and casual conversations on
“how, what and where about”. We summarize
the text behaviors into two categories as below.

3.1 Orthographic Variation

The most significant orthographic variant in
SMS texts is in the use of non-standard, self-
created short-forms. Usually, sender takes advan-
tage of phonetic spellings, initial letters or num-
ber homophones to mimic spoken conversation
or shorten words or phrases (hw vs. homework or
how, b4 vs. before, cu vs. see you, 2u vs. to you,
oic vs. oh I see, etc.) in the attempt to minimize
key strokes. In addition, senders create a new
form of written representation to express their
oral utterances. Emotions, such as “:(“ symboliz-
ing sad, “:)” symbolizing smiling, “:()” symbol-
izing shocked, are representations of body
language. Verbal effects such as “hehe” for
laughter and emphatic discourse particles such as
“lor”, “lah”, “meh” for colloquial English are
prevalent in the text collection.

The loss of “alpha-case” information posts an-
other challenge in lexical disambiguation and
introduces difficulty in identifying sentence
boundaries, proper nouns, and acronyms. With
the flexible use of punctuation or not using punc-
tuation at all, translation of SMS messages with-
out prior processing is even more difficult.

3.2 Grammar Variation

SMS messages are short, concise and convey
much information within the limited space quota
(160 letters for English), thus they tend to be im-
plicit and influenced by pragmatic and situation
reasons. These inadequacies of language expres-
sion such as deletion of articles and subject pro-
noun, as well as problems in number agreements
or tenses make SMS normalization more chal-
lenging. Table 1 illustrates some orthographic
and grammar variations of SMS texts.

3.3 Corpus Statistics

We investigate the corpus to assess the feasibility
of replacing the lingoes with normal English
words and performing limited adjustment to the
text structure. Similarly to Aw et al. (2005), we
focus on the three major cases of transformation
as shown in the corpus: (1) replacement of OOV

words and non-standard SMS lingoes; (2) re-
moval of slang and (3) insertion of auxiliary or
copula verb and subject pronoun.

Phenomena Messages

1. Dropping ‘?’ at | btw, wat is ur view

the end of (By the way, what is your
question view?)
. Eh speak english mi malay
2. Not using any not tt good

punctuation at

(Eh, speak English! My Ma-
all

lay is not that good.)

3. Using spell- goooooood Sunday morning
ing/punctuation| ///!!!
for emphasis | (Good Sunday morning!)

4. Using phonetic |dat iz enuf
spelling (That is enough)
5. Dropping i hv em to ¢ my luv.
vowel (I have come to see my love.)

yar lor where u go juz now
(ves, where did you go just
now?)

6. Introducing
local flavor

1 hv 2 go. Dinner w parents.
(I have to go. Have dinner
with parents.)

7. Dropping verb

Table 1. Examples of SMS Messages

Transformation | Percentage (%)
Insertion 8.09

Deletion 5.48
Substitution 86.43

Table 2. Distribution of Insertion, Deletion and
Substitution Transformation.

Substitution Deletion | Insertion
u->you m are

2 —>to lah am

n — and t is

r —>are ah you

ur =your leh to

dun —don’t 1 do

man — manches- | huh a

ter

no — number one in

intro — introduce | lor yourself
wat — what ahh will

Table 3. Top 10 Most Common Substitu-
tion, Deletion and Insertion

Table 2 shows the statistics of these transfor-
mations based on 700 messages randomly se-
lected, where 621 (88.71%) messages required
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normalization with a total of 2300 transforma-
tions. Substitution accounts for almost 86% of all
transformations. Deletion and substitution make
up the rest. Table 3 shows the top 10 most com-
mon transformations.

4 SMS Normalization

We view the SMS language as a variant of Eng-
lish language with some derivations in vocabu-
lary and grammar. Therefore, we can treat SMS
normalization as a MT problem where the SMS
language is to be translated to normal English.
We thus propose to adapt the statistical machine
translation model (Brown et al., 1993; Zens and
Ney, 2004) for SMS text normalization. In this
section, we discuss the three components of our
method: modeling, training and decoding for
SMS text normalization.

4.1 Basic Word-based Model

The SMS normalization model is based on the
source channel model (Shannon, 1948). Assum-
ing that an English sentence e, of length N is
“corrupted” by a noisy channel to produce a
SMS message s, of length M, the English sen-
tence e, could be recovered through a posteriori
distribution for a channel target text given the
source text P(s|e), and a prior distribution for

the channel source text P(e).

e = argmaX{P(elN |slM)}

€

(1)
=arg max{P(slM le )eP(e] )}

Assuming that one SMS word is mapped ex-
actly to one English word in the channel model
P(s|e) under an alignment A, we need to con-

sider only two types of probabilities: the align-
ment probabilities denoted by P(m|a,) and the

lexicon mapping probabilities denoted by
P(s, le, ) (Brown et al. 1993). The channel

model can be written as in the following equation
where m is the position of a word in s and a,, its

alignment ine .

P(s" |ef') =D P(s!", Ale")
A

=Y P(A|e)P(s!" | A,e) 2)
A

~ Z[ﬁ{P(m |a,)P(s, | e, )}]

If we include the word “null” in the English
vocabulary, the above model can fully address
the deletion and substitution transformations, but
inadequate to address the insertion transforma-
tion. For example, the lingoes “duno”, “ysnite”
have to be normalized using an insertion trans-
formation to become “don’t know” and “yester-
day night”. Moreover, we also want the
normalization to have better lexical affinity and
linguistic equivalent, thus we extend the model
to allow many words to many words alignment,
allowing a sequence of SMS words to be normal-
ized to a sequence of contiguous English words.
We call this updated model a phrase-based nor-
malization model.

4.2 Phrase-based Model

Given an English sentence e and SMS sentence
s, if we assume that e can be decomposed into
K phrases with a segmentation 7, such that
each phrase €, in e can be corresponded with

one phrase §, in s, we have ¢' =¢,...¢,...¢,

and s =5,...5,...5, . The channel model can be
rewritten in equation (3).

P(s" |¢") = P(s!".T|¢")
T

=Y P(T|e))P(s" | T,e")
T 3)
= > P(T| e )PGF |&F)
T
zm}gx{P(T|elN)°P(§1K élK)}

This is the basic function of the channel model
for the phrase-based SMS normalization model,
where we used the maximum approximation for
the sum over all segmentations. Then we further

decompose the probability P(5;" | &) using a

phrase alignment A as done in the previous
word-based model.

P(§l |é1K):ZP(§1K>"a|é1K)
A

= S (PCAIE PG A2

K . “4)
Z(H{P(kla})-l’(fk |§(“,é;-’;f)}j

A k=1

zZ[ﬁ{P(kl@)-P(ﬁk 2, )}j

We are now able to model the three transfor-
mations through the normalization pair (5:,€;,) »
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with the mapping probability P(s; |e; ). The fol-

lowings show the scenarios in which the three
transformations occur.

Insertion |Sk| <le,
Deletion €, =null
Substitution |Sk| =le;,

The statistics in our training corpus shows that
by selecting appropriate phrase segmentation, the
position re-ordering at the phrase level occurs
rarely. It is not surprising since most of the Eng-
lish words or phrases in normal English text are
replaced with lingoes in SMS messages without
position change to make SMS text short and con-
cise and to retain the meaning. Thus we need to
consider only monotone alignment at phrase
level, i.e., kK =a,, as in equation (4). In addition,

the word-level reordering within phrase is
learned during training. Now we can further de-
rive equation (4) as follows:

K
P(s éf)“Z[
=1
The mapping probability P(5, |€,) is esti-

k

[T{Pck1a)-PG, |, )}
P 5)
= HP(§k |ék)

mated via relative frequencies as follows:
_ NGoé)

P(5, |ék)_ZN(§}faék)

(6)
Here, N(5,,€,) denotes the frequency of the
normalization pair (§,,€, ) .
Using a bigram language model and assuming

Bayes decision rule, we finally obtain the follow-
ing search criterion for equation (1).

&' =argmax{P(e])-P(s)" |€)))
N
zargmax{HP(en le, 1)
e;’”v n=1
K
.m?x{P(T|elN)'HP(§k |ék)}}
k=1

N K
~rarg maX{HP(en le, )'H P(5; | ¢, )}
e, n=1 k=1

T

(7

For the above equation, we assume the seg-
mentation probability P(T|e') to be constant.
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Finally, the SMS normalization model consists of
two sub-models: a word-based language model
(LM), characterized by P(e, | e, ,) and a phrase-

based lexical mapping model (channel model),
characterized by P(5, | ¢,) -

4.3 Training Issues

For the phrase-based model training, the sen-
tence-aligned SMS corpus needs to be aligned
first at the phrase level. The maximum likelihood
approach, through EM algorithm and Viterbi
search (Dempster et al., 1977) is employed to
infer such an alignment. Here, we make a rea-
sonable assumption on the alignment unit that a
single SMS word can be mapped to a sequence
of contiguous English words, but not vice verse.
The EM algorithm for phrase alignment is illus-
trated in Figure 1 and is formulated by equation

(8).

The Expectation-Maximization Algorithm

(1) Bootstrap initial alignment using ortho-
graphic similarities

(2) Expectation: Update the joint probabili-
ties P(5,.€,)

(3) Maximization: Apply the joint probabili-
ties P(5,,é,)to get new alignment using

Viterbi search algorithm

(4) Repeat (2) to (3) until alignment con-
verges

(5) Derive normalization pairs from final
alignment

Figure 1. Phrase Alignment Using EM Algorithm

K
. ~ ~ | M N
Vs 8> :argmaXHP(Skaek |51 .6 ) (8)

V<sp o> k=1

The alignment process given in equation (8) is
different from that of normalization given in
equation (7) in that, here we have an aligned in-

put sentence pair, s;” and e’ . The alignment

process is just to find the alignment segmentation

]9<§k’§k> =<S§,,6, >,_x between the two sen-
tences that maximizes the joint probability.
Therefore, in step (2) of the EM algorithm given
at Figure 1, only the joint probabilities

P(s,,e,)are involved and updated.

Since EM may fall into local optimization, in
order to speed up convergence and find a nearly
global optimization, a string matching technique
is exploited at the initialization step to identify
the most probable normalization pairs. The or-



thographic similarities captured by edit distance
and a SMS lingo dictionary’ which contains the
commonly used short-forms are first used to es-
tablish phrase mapping boundary candidates.
Heuristics are then exploited to match tokens
within the pairs of boundary candidates by trying
to combine consecutive tokens within the bound-
ary candidates if the numbers of tokens do not
agree.

Finally, a filtering process is carried out to
manually remove the low-frequency noisy
alignment pairs. Table 4 shows some of the ex-
tracted normalization pairs. As can be seen from
the table, our algorithm discovers ambiguous
mappings automatically that are otherwise miss-
ing from most of the lingo dictionary.

(s,e) log P(s|e)
2,2) 0

(2, to) -0.579466
(2, too) -0.897016
(2, null) -2.97058
4,4) 0

(4, for) -0.431364
(4, null) -3.27161
(w, who are) -0.477121
(w, with) -0.764065
(w, who) -1.83885
(dat, that) -0.726999
(dat, date) -0.845098
(tmr, tomorrow) -0.341514

Table 4. Examples of normalization pairs

Given the phrase-aligned SMS corpus, the
lexical mapping model, characterized by
P(5,]¢é,), 1s easily to be trained using equation
(6). Our n-gram LM P(e, |e, ) is trained on

English Gigaword provided by LDC using
SRILM language modeling toolkit (Stolcke,
2002). Backoff smoothing (Jelinek, 1991) is used
to adjust and assign a non-zero probability to the
unseen words to address data sparseness.

4.4 Monotone Search

Given an inputs , the search, characterized in
equation (7), is to find a sentence e that maxi-

3 The entries are collected from various websites such as
http://www.handphones.info/sms-dictionary/sms-lingo.php,
and http://www.funsms.net/sms_dictionary.htm, etc.

mizes P(s|e)*P(e) using the normalization
model. In this paper, the maximization problem
in equation (7) is solved using a monotone search,
implemented as a Viterbi search through dy-
namic programming.

5 Experiments

The aim of our experiment is to verify the effec-
tiveness of the proposed statistical model for
SMS normalization and the impact of SMS nor-
malization on MT.

A set of 5000 parallel SMS messages, which
consists of raw (un-normalized) SMS messages
and reference messages manually prepared by
two project members with inter-normalization
agreement checked, was prepared for training
and testing. For evaluation, we use IBM’s BLEU
score (Papineni et al., 2002) to measure the per-
formance of the SMS normalization. BLEU score
measures the similarity between two sentences
using n-gram statistics with a penalty for too
short sentences, which is already widely-used in
MT evaluation.

Setup BLEU score (3-
gram)

Raw SMS. without 0.5784

Normalization

Dictionary Look-up 0.6958

plus Frequency

Bi-gram Language

Model Only 0.7086

Table 5. Performance of different set-
ups of the baseline experiments on the
5000 parallel SMS messages

5.1 Baseline Experiments: Simple SMS
Lingo Dictionary Look-up and Using
Language Model Only

The baseline experiment is to moderate the texts
using a lingo dictionary comprises 142 normali-
zation pairs, which is also used in bootstrapping
the phrase alignment learning process.

Table 5 compares the performance of the dif-
ferent setups of the baseline experiments. We
first measure the complexity of the SMS nor-
malization task by directly computing the simi-
larity between the raw SMS text and the
normalized English text. The 1% row of Table 5
reports the similarity as 0.5784 in BLEU score,
which implies that there are quite a number of
English word 3-gram that are common in the raw
and normalized messages. The 2" experiment is
carried out using only simple dictionary look-up.
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Lexical ambiguity is addressed by selecting the
highest-frequency normalization candidate, i.e.,
only unigram LM is used. The performance of
the 2" experiment is 0.6958 in BLEU score. It
suggests that the lingo dictionary plus the uni-
gram LM is very useful for SMS normalization.
Finally we carry out the 3™ experiment using
dictionary look-up plus bi-gram LM. Only a
slight improvement of 0.0128 (0.7086-0.6958) is
obtained. This is largely because the English
words in the lingo dictionary are mostly high-
frequency and commonly-used. Thus bi-gram
does not show much more discriminative ability
than unigram without the help of the phrase-
based lexical mapping model.

5.2 Using Phrase-based Model

We then conducted the experiment using the pro-
posed method (Bi-gram LM plus a phrase-based
lexical mapping model) through a five-fold cross
validation on the 5000 parallel SMS messages.
Table 6 shows the results. An average score of
0.8070 is obtained. Compared with the baseline
performance in Table 5, the improvement is very
significant. It suggests that the phrase-based
lexical mapping model is very useful and our
method is effective for SMS text normalization.
Figure 2 is the learning curve. It shows that our
algorithm converges when training data is
increased to 3000 SMS parallel messages. This
suggests that our collected corpus is representa-
tive and enough for training our model. Table 7
illustrates some examples of the normalization
results.

5-fold cross validation | BLEU score (3-gram)
Setup 1 0.8023
Setup 2 0.8236
Setup 3 0.8071
Setup 4 0.8113
Setup 5 0.7908
Ave. 0.8070

Table 6. Normalization results for 5-
fold cross validation test

0.82
0.8 .
0.78 —

0.76 7'4/

0.74
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1000 2000 3000 4000
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Figure 2. Learning Curve

Experimental result analysis reveals that the
strength of our model is in its ability to disam-
biguate mapping as in “2” to “two” or “to” and
“w” to “with” or “who”. Error analysis shows
that the challenge of the model lies in the proper
insertion of subject pronoun and auxiliary or
copula verb, which serves to give further seman-
tic information about the main verb, however this
requires significant context understanding. For
example, a message such as “u smart” gives little
clues on whether it should be normalized to “Are
you smart?” or “You are smart.” unless the full
conversation is studied.

Takako w r u?

Takako who are you?

Im in ns, lik soccer, clubbin hangin w frenz!
Wat bout u mee?

I'm in ns, like soccer, clubbing hanging with
friends! What about you?

fancy getting excited w others' boredom

Fancy getting excited with others' boredom

If u ask me b4 he ask me then i'll go out w u all
lor. N u still can act so real.

If you ask me before he asked me then I'll go
out with you all. And you still can act so real.

Doing nothing, then u not having dinner w us?

Doing nothing, then you do not having dinner
with us?

Aiyar sorry lor forgot 2 tell u... Mtg at 2 pm.

Sorry forgot to tell you... Meeting at two pm.

tat's y 1 said it's bad dat all e gals know u...
Wat u doing now?

That's why I said it's bad that all the girls know
you... What you doing now?

Table 7. Examples of Normalization Results
5.3 Effect on English-Chinese MT

An experiment was also conducted to study the
effect of normalization on MT using 402 mes-
sages randomly selected from the text corpus.
We compare three types of SMS message: raw
SMS messages, normalized messages using sim-
ple dictionary look-up and normalized messages
using our method. The messages are passed to
two different English-to-Chinese translation sys-
tems provided by Systran® and Institute for Info-
comm Research’(I’R) separately to produce three
sets of translation output. The translation quality
is measured using 3-gram cumulative BLEU
score against two reference messages. 3-gram is

4 http://www.systranet.com/systran/net
3 http:/nlp.i2r.a-star.edu.sg/techtransfer.html
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used as most of the messages are short with aver-
age length of seven words. Table 8 shows the
details of the BLEU scores. We obtain an aver-
age of 0.3770 BLEU score for normalized mes-
sages against 0.1926 for raw messages. The
significant performance improvement suggests
that preprocessing of normalizing SMS text us-
ing our method before MT is an effective way to
adapt a general MT system to SMS domain.

I'R Systran Ave.
Raw Message | 0.2633 0.1219 0.1926
Dict Lookup 0.3485 | 0.1690 0.2588
Normalization | 0.4423 | 0.3116 0.3770

Table 8. SMS Translation BLEU score with or
without SMS normalization

6 Conclusion

In this paper, we study the differences among
SMS normalization, general text normalization,
spelling check and text paraphrasing, and inves-
tigate the different phenomena of SMS messages.
We propose a phrase-based statistical method to
normalize SMS messages. The method produces
messages that collate well with manually normal-
ized messages, achieving 0.8070 BLEU score
against 0.6958 baseline score. It also signifi-
cantly improves SMS translation accuracy from
0.1926 to 0.3770 in BLEU score without adjust-
ing the MT model.

This experiment results provide us with a good
indication on the feasibility of using this method
in performing the normalization task. We plan to
extend the model to incorporate mechanism to
handle missing punctuation (which potentially
affect MT output and are not being taken care at
the moment), and making use of pronunciation
information to handle OOV caused by the use of
phonetic spelling. A bigger data set will also be
used to test the robustness of the system leading
to a more accurate alignment and normalization.
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Evaluating the Accuracy of an Unlexicalized
Statistical Parser on the PARC DepBank

Ted Briscoe
Computer Laboratory
University of Cambridge

Abstract

We evaluate the accuracy of an unlexi-
calized statistical parser, trained on 4K
treebanked sentences from balanced data
and tested on the PARC DepBank. We
demonstrate that a parser which is compet-
itive in accuracy (without sacrificing pro-
cessing speed) can be quickly tuned with-
out reliance on large in-domain manually-
constructed treebanks. This makes it more
practical to use statistical parsers in ap-
plications that need access to aspects of
predicate-argument structure. The com-
parison of systems using DepBank is not
straightforward, so we extend and validate
DepBank and highlight a number of repre-
sentation and scoring issues for relational
evaluation schemes.

1 Introduction

Considerable progress has been made in accu-
rate statistical parsing of realistic texts, yield-
ing rooted, hierarchical and/or relational repre-
sentations of full sentences. However, much
of this progress has been made with systems
based on large lexicalized probabilistic context-
free like (PCFG-like) models trained on the Wall
Street Journal (WSJ) subset of the Penn Tree-
Bank (PTB). Evaluation of these systems has been
mostly in terms of the PARSEVAL scheme using
tree similarity measures of (labelled) precision and
recall and crossing bracket rate applied to section
23 of the WSJ PTB. (See e.g. Collins (1999) for
detailed exposition of one such very fruitful line
of research.)

We evaluate the comparative accuracy of an un-
lexicalized statistical parser trained on a smaller
treebank and tested on a subset of section 23 of
the WSJ using a relational evaluation scheme. We
demonstrate that a parser which is competitive
in accuracy (without sacrificing processing speed)
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can be quickly developed without reliance on large
in-domain manually-constructed treebanks. This
makes it more practical to use statistical parsers in
diverse applications needing access to aspects of
predicate-argument structure.

We define a lexicalized statistical parser as one
which utilizes probabilistic parameters concerning
lexical subcategorization and/or bilexical relations
over tree configurations. Current lexicalized sta-
tistical parsers developed, trained and tested on
PTB achieve a labelled F;-score — the harmonic
mean of labelled precision and recall — of around
90%. Klein and Manning (2003) argue that such
results represent about 4% absolute improvement
over a carefully constructed unlexicalized PCFG-
like model trained and tested in the same man-
ner.! Gildea (2001) shows that WSJ-derived bilex-
ical parameters in Collins’ (1999) Model 1 parser
contribute less than 1% to parse selection accu-
racy when test data is in the same domain, and
yield no improvement for test data selected from
the Brown Corpus. Bikel (2004) shows that, in
Collins’ (1999) Model 2, bilexical parameters con-
tribute less than 0.5% to accuracy on in-domain
data while lexical subcategorization-like parame-
ters contribute just over 1%.

Several alternative relational evaluation
schemes have been developed (e.g. Carroll et al.,
1998; Lin, 1998). However, until recently, no
WSJ data has been carefully annotated to support
relational evaluation. King et al. (2003) describe
the PARC 700 Dependency Bank (hereinafter
DepBank), which consists of 700 WSJ sentences
randomly drawn from section 23. These sentences
have been annotated with syntactic features and
with bilexical head-dependent relations derived
from the F-structure representation of Lexical
Functional Grammar (LFG). DepBank facilitates

'Klein and Manning retained some functional tag infor-
mation from PTB, so it could be argued that their model re-
mains ‘mildly’ lexicalized since functional tags encode some
subcategorization information.
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comparison of PCFG-like statistical parsers
developed from the PTB with other parsers whose
output is not designed to yield PTB-style trees,
using an evaluation which is closer to the protypi-
cal parsing task of recovering predicate-argument
structure.

Kaplan et al. (2004) compare the accuracy and
speed of the PARC XLE Parser to Collins’ Model
3 parser. They develop transformation rules for
both, designed to map native output to a subset of
the features and relations in DepBank. They com-
pare performance of a grammatically cut-down
and complete version of the XLE parser to the
publically available version of Collins’ parser.
One fifth of DepBank is held out to optimize the
speed and accuracy of the three systems. They
conclude from the results of these experiments that
the cut-down XLE parser is two-thirds the speed
of Collins’ Model 3 but 12% more accurate, while
the complete XLE system is 20% more accurate
but five times slower. Fj-score percentages range
from the mid- to high-70s, suggesting that the re-
lational evaluation is harder than PARSEVAL.

Both Collins’ Model 3 and the XLE Parser use
lexicalized models for parse selection trained on
the rest of the WSJ PTB. Therefore, although Ka-
plan et al. demonstrate an improvement in accu-
racy at some cost to speed, there remain questions
concerning viability for applications, at some re-
move from the financial news domain, for which
substantial treebanks are not available. The parser
we deploy, like the XLE one, is based on a
manually-defined feature-based unification gram-
mar. However, the approach is somewhat differ-
ent, making maximal use of more generic struc-
tural rather than lexical information, both within
the grammar and the probabilistic parse selection
model. Here we compare the accuracy of our
parser with Kaplan et al.’s results, by repeating
their experiment with our parser. This compari-
son is not straightforward, given both the system-
specific nature of some of the annotation in Dep-
Bank and the scoring reported. We, therefore, ex-
tend DepBank with a set of grammatical relations
derived from our own system output and highlight
how issues of representation and scoring can affect
results and their interpretation.

In §2, we describe our development method-
ology and the resulting system in greater detail.
§3 describes the extended Depbank that we have
developed and motivates our additions. §2.4 dis-
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cusses how we trained and tuned our current sys-
tem and describes our limited use of information
derived from WSIJ text. §4 details the various ex-
periments undertaken with the extended DepBank
and gives detailed results. §5 discusses these re-
sults and proposes further lines of research.

2 Unlexicalized Statistical Parsing

2.1 System Architecture

Both the XLE system and Collins’ Model 3 pre-
process textual input before parsing. Similarly,
our baseline system consists of a pipeline of mod-
ules. First, text is tokenized using a deterministic
finite-state transducer. Second, tokens are part-of-
speech and punctuation (PoS) tagged using a 1st-
order Hidden Markov Model (HMM) utilizing a
lexicon of just over 50K words and an unknown
word handling module. Third, deterministic mor-
phological analysis is performed on each token-
tag pair with a finite-state transducer. Fourth, the
lattice of lemma-affix-tags is parsed using a gram-
mar over such tags. Finally, the n-best parses are
computed from the parse forest using a probabilis-
tic parse selection model conditioned on the struc-
tural parse context. The output of the parser can be
displayed as syntactic trees, and/or factored into a
sequence of bilexical grammatical relations (GRs)
between lexical heads and their dependents.

The full system can be extended in a variety of
ways — for example, by pruning PoS tags but al-
lowing multiple tag possibilities per word as in-
put to the parser, by incorporating lexical subcate-
gorization into parse selection, by computing GR
weights based on the proportion and probability
of the n-best analyses yielding them, and so forth
— broadly trading accuracy and greater domain-
dependence against speed and reduced sensitivity
to domain-specific lexical behaviour (Briscoe and
Carroll, 2002; Carroll and Briscoe, 2002; Watson
et al., 2005; Watson, 2006). However, in this pa-
per we focus exclusively on the baseline unlexical-
ized system.

2.2 Grammar Development

The grammar is expressed in a feature-based, uni-
fication formalism. There are currently 676 phrase
structure rule schemata, 15 feature propagation
rules, 30 default feature value rules, 22 category
expansion rules and 41 feature types which to-
gether define 1124 compiled phrase structure rules
in which categories are represented as sets of fea-



tures, that is, attribute-value pairs, possibly with
variable values, possibly bound between mother
and one or more daughter categories. 142 of the
phrase structure schemata are manually identified
as peripheral rather than core rules of English
grammar. Categories are matched using fixed-
arity term unification at parse time.

The lexical categories of the grammar consist
of feature-based descriptions of the 149 PoS tags
and 13 punctuation tags (a subset of the CLAWS
tagset, see e.g. Sampson, 1995) which constitute
the preterminals of the grammar. The number
of distinct lexical categories associated with each
preterminal varies from 1 for some function words
through to around 35 as, for instance, tags for main
verbs are associated with a VSUBCAT attribute tak-
ing 33 possible values. The grammar is designed
to enumerate possible valencies for predicates by
including separate rules for each pattern of pos-
sible complementation in English. The distinc-
tion between arguments and adjuncts is expressed
by adjunction of adjuncts to maximal projections
(XP — XP Adjunct) as opposed to government of
arguments (i.e. arguments are sisters within X/
projections; X/ — X0 Argl... ArgN).

Each phrase structure schema is associated with
one or more GR specifications which can be con-
ditioned on feature values instantiated at parse
time and which yield a rule-to-rule mapping from
local trees to GRs. The set of GRs associated with
a given derivation define a connected, directed
graph with individual nodes representing lemma-
affix-tags and arcs representing named grammati-
cal relations. The encoding of this mapping within
the grammar is similar to that of F-structure map-
ping in LFG. However, the connected graph is not
constructed and completeness and coherence con-
straints are not used to filter the phrase structure
derivation space.

The grammar finds at least one parse rooted in
the start category for 85% of the Susanne treebank,
a 140K word balanced subset of the Brown Cor-
pus, which we have used for development (Samp-
son, 1995). Much of the remaining data consists
of phrasal fragments marked as independent text
sentences, for example in dialogue. Grammati-
cal coverage includes the majority of construction
types of English, however the handling of some
unbounded dependency constructions, particularly
comparatives and equatives, is limited because of
the lack of fine-grained subcategorization infor-
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mation in the PoS tags and by the need to balance
depth of analysis against the size of the deriva-
tion space. On the Susanne corpus, the geometric
mean of the number of analyses for a sentence of
length n is 1.31™. The microaveraged F;-score for
GR extraction on held-out data from Susanne is
76.5% (see section 4.2 for details of the evaluation
scheme).

The system has been used to analyse about 150
million words of English text drawn primarily
from the PTB, TREC, BNC, and Reuters RCV1
datasets in connection with a variety of projects.
The grammar and PoS tagger lexicon have been
incrementally improved by manually examining
cases of parse failure on these datasets. How-
ever, the effort invested amounts to a few days’
effort for each new dataset as opposed to the main
grammar development effort, centred on Susanne,
which has extended over some years and now
amounts to about 2 years’ effort (see Briscoe, 2006
for further details).

2.3 Parser

To build the parsing module, the unification gram-
mar is automatically converted into an atomic-
categoried context free ‘backbone’, and a non-
deterministic LALR(1) table is constructed from
this, which is used to drive the parser. The residue
of features not incorporated into the backbone
are unified on each rule application (reduce ac-
tion). In practice, the parser takes average time
roughly quadratic in the length of the input to cre-
ate a packed parse forest represented as a graph-
structured stack. The statistical disambiguation
phase is trained on Susanne treebank bracketings,
producing a probabilistic generalized LALR(1)
parser (e.g. Inui et al., 1997) which associates
probabilities with alternative actions in the LR ta-
ble.

The parser is passed as input the sequence of
most probable lemma-affix-tags found by the tag-
ger. During parsing, probabilities are assigned
to subanalyses based on the the LR table actions
that derived them. The n-best (i.e. most proba-
ble) parses are extracted by a dynamic program-
ming procedure over subanalyses (represented by
nodes in the parse forest). The search is effi-
cient since probabilities are associated with single
nodes in the parse forest and no weight function
over ancestor or sibling nodes is needed. Proba-
bilities capture structural context, since nodes in



the parse forest partially encode a configuration of
the graph-structured stack and lookahead symbol,
so that, unlike a standard PCFG, the model dis-
criminates between derivations which only differ
in the order of application of the same rules and
also conditions rule application on the PoS tag of
the lookahead token.

When there is no parse rooted in the start cat-
egory, the parser returns a connected sequence
of partial parses which covers the input based
on subanalysis probability and a preference for
longer and non-lexical subanalysis combinations
(e.g. Kiefer et al., 1999). In these cases, the GR
graph will not be fully connected.

2.4 Tuning and Training Method

The HMM tagger has been trained on 3M words
of balanced text drawn from the LOB, BNC and
Susanne corpora, which are available with hand-
corrected CLAWS tags. The parser has been
trained from 1.9K trees for sentences from Su-
sanne that were interactively parsed to manually
obtain the correct derivation, and also from 2.1K
further sentences with unlabelled bracketings de-
rived from the Susanne treebank. These brack-
etings guide the parser to one or possibly sev-
eral closely-matching derivations and these are
used to derive probabilities for the LR table us-
ing (weighted) Laplace estimation. Actions in the
table involving rules marked as peripheral are as-
signed a uniform low prior probability to ensure
that derivations involving such rules are consis-
tently lower ranked than those involving only core
rules.

To improve performance on WSJ text, we exam-
ined some parse failures from sections other than
section 23 to identify patterns of consistent fail-
ure. We then manually modified and extended the
grammar with a further 6 rules, mostly to handle
cases of indirect and direct quotation that are very
common in this dataset. This involved 3 days’
work. Once completed, the parser was retrained
on the original data. A subsequent limited inspec-
tion of top-ranked parses led us to disable 6 ex-
isting rules which applied too freely to the WSJ
text; these were designed to analyse auxiliary el-
lipsis which appears to be rare in this genre. We
also catalogued incorrect PoS tags from WSJ parse
failures and manually modified the tagger lexicon
where appropriate. These modifications mostly
consisted of adjusting lexical probabilities of ex-
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tant entries with highly-skewed distributions. We
also added some tags to extant entries for infre-
quent words. These modifications took a further
day. The tag transition probabilities were not rees-
timated. Thus, we have made no use of the PTB
itself and only limited use of WSJ text.

This method of grammar and lexicon devel-
opment incrementally improves the overall per-
formance of the system averaged across all the
datasets that it has been applied to. It is very
likely that retraining the PoS tagger on the WSJ
and retraining the parser using PTB would yield
a system which would perform more effectively
on DepBank. However, one of our goals is to
demonstrate that an unlexicalized parser trained
on a modest amount of annotated text from other
sources, coupled to a tagger also trained on
generic, balanced data, can perform competitively
with systems which have been (almost) entirely
developed and trained using PTB, whether or not
these systems deploy hand-crafted grammars or
ones derived automatically from treebanks.

3 Extending and Validating DepBank

DepBank was constructed by parsing the selected
section 23 WSJ sentences with the XLE system
and outputting syntactic features and bilexical re-
lations from the F-structure found by the parser.
These features and relations were subsequently
checked, corrected and extended interactively with
the aid of software tools (King et al., 2003).

The choice of relations and features is based
quite closely on LFG and, in fact, overlaps sub-
stantially with the GR output of our parser. Fig-
ure 1 illustrates some DepBank annotations used
in the experiment reported by Kaplan et al. and
our hand-corrected GR output for the example
Ten of the nation’s governors meanwhile called
on the justices to reject efforts to limit abortions.
We have kept the GR representation simpler and
more readable by suppressing lemmatization, to-
ken numbering and PoS tags, but have left the
DepBank annotations unmodified.

The example illustrates some differences be-
tween the schemes. For instance, the subj and
ncsubj relations overlap as both annotations con-
tain such a relation between call(ed) and Ten), but
the GR annotation also includes this relation be-
tween limit and effort(s) and reject and justice(s),
while DepBank links these two verbs to a variable
pro. This reflects a difference of philosophy about



DepBank: obl(call”0, on~2)

stmt_type(call™0, declarative)
subj(call™0, ten”1)

tense (call™0, past)
number_type (ten”1l, cardinal)
obl (ten”1, governor~35)
obj(on”2, justice”30)
obj(limit~7, abortion™15)

subj (limit~7, pro~21)
obj(reject™8, effort™10)
subj(reject™8, pro~27)

adegree (meanwhile™9, positive)
num(effort™10, pl)

xcomp (effort™10, limit~™7)

GR:

(ncsubj called Ten _)
(ncsubj reject justices _)
(ncsubj limit efforts _)
(iobj called on)
(xcomp to called reject)
(dobj reject efforts)
(xmod to efforts limit)
(dobj limit abortions)
(dobj on Jjustices)
(det justices the)

(ta bal governors meanwhile)
(ncmod poss governors nation)
(iocbj Ten of)

(dobj of governors)

(det nation the)

Figure 1: DepBank and GR annotations.

resolution of such ‘understood’ relations in differ-
ent constructions. Viewed as output appropriate to
specific applications, either approach is justifiable.
However, for evaluation, these DepBank relations
add little or no information not already specified
by the xcomp relations in which these verbs also
appear as dependents. On the other hand, Dep-
Bank includes an adjunct relation between mean-
while and call(ed), while the GR annotation treats
meanwhile as a text adjunct (ta) of governors, de-
limited by balanced commas, following Nunberg’s
(1990) text grammar but conveying less informa-
tion here.

There are also issues of incompatible tokeniza-
tion and lemmatization between the systems and
of differing syntactic annotation of similar infor-
mation, which lead to problems mapping between
our GR output and the current DepBank. Finally,
differences in the linguistic intuitions of the an-
notators and errors of commission or omission
on both sides can only be uncovered by manual
comparison of output (e.g. xmod vs. xcomp for
limit efforts above). Thus we reannotated the Dep-
Bank sentences with GRs using our current sys-
tem, and then corrected and extended this anno-
tation utilizing a software tool to highlight dif-
ferences between the extant annotations and our
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own.” This exercise, though time-consuming, un-
covered problems in both annotations, and yields
a doubly-annotated and potentially more valuable
resource in which annotation disagreements over
complex attachment decisions, for instance, can be
inspected.

The GR scheme includes one feature in Dep-
Bank (passive), several splits of relations in Dep-
Bank, such as adjunct, adds some of DepBank’s
featural information, such as subord_form, as a
subtype slot of a relation (ccomp), merges Dep-
Bank’s oblique with iobj, and so forth. But it
does not explicitly include all the features of Dep-
Bank or even of the reduced set of semantically-
relevant features used in the experiments and eval-
uation reported in Kaplan ef al.. Most of these
features can be computed from the full GR repre-
sentation of bilexical relations between numbered
lemma-affix-tags output by the parser. For in-
stance, num features, such as the plurality of jus-
tices in the example, can be computed from the
full det GR (det justice+s_NN2:4 the_AT:3)
based on the CLAWS tag (NN2 indicating ‘plu-
ral’) selected for output. The few features that can-
not be computed from GRs and CLAWS tags di-
rectly, such as stmt_type, could be computed from
the derivation tree.

4 Experiments

4.1 Experimental Design

We selected the same 560 sentences as test data as
Kaplan et al., and all modifications that we made
to our system (see §2.4) were made on the basis
of (very limited) information from other sections
of WSJ text.> We have made no use of the further
140 held out sentences in DepBank. The results
we report below are derived by choosing the most
probable tag for each word returned by the PoS
tagger and by choosing the unweighted GR set re-
turned for the most probable parse with no lexical
information guiding parse ranking.

4.2 Results

Our parser produced rooted sentential analyses for
84% of the test items; actual coverage is higher

>The new version of DepBank along with evaluation
software is included in the current RASP distribution:
www.informatics.susx.ac.uk/research/nlp/rasp

The PARC group kindly supplied us with the experimen-
tal data files they used to facilitate accurate reproduction of
this experiment.



Relation  Precision Recall F1 P R F1 Relation
mod 754 712 733
ncmod 729 679 703
xmod 477 455 46.6
cmod 514 316 39.1
pmod 30.8 333 320
det 887 91.1 899
arg_mod 719 679 699
arg 76.0 734 746
subj 80.1 66.6 727 | 737373
ncsubj 80.5 66.8 73.0
xsubj 50.0 28.6 364
csubj 200 50.0 28.6
subj_or_dobj  82.1 749 784
comp 74.5 76.4 755
obj 784 779 78.1
dobj 834 814 824 | 7575750bj
obj2 242  38.1 29.6 | 4236 39 obj-theta
iobj 68.2 68.1 682 | 6483720bl
clausal 63.5 71.6 67.3
xcomp 75.0 764 757 7473 74
ccomp 512 656 575 78 64 70 comp
pcomp 69.6  66.7 68.1
aux 928 905 091.6
conj 717 71.0 714 | 686265
ta 39.1 482 432
passive 93.6 70.6  80.5 80 83 82
adegree 89.2 724 799 | 817276
coord_form 92.3 857 889 | 929393
num 922 898 910 | 868786
number_type  86.3 92.7 894 | 969596
precoord_form 100.0 16.7 28.6 | 100 50 67
pron_form 92.1 919 920 | 888989
prt_form 71.1 587 643 | 726568
subord_form 60.7 48.1 53.6
macroaverage 69.0 634 66.1
microaverage  81.5 78.1  79.7 807979
Table 1: Accuracy of our parser, and where

roughly comparable, the XLE as reported by King
et al.

than this since some of the test sentences are el-
liptical or fragmentary, but in many cases are rec-
ognized as single complete constituents. Kaplan
et al. report that the complete XLE system finds
rooted analyses for 79% of section 23 of the WSJ
but do not report coverage just for the test sen-
tences. The XLE parser uses several performance
optimizations which mean that processing of sub-
analyses in longer sentences can be curtailed or
preempted, so that it is not clear what proportion
of the remaining data is outside grammatical cov-
erage.

Table 1 shows accuracy results for each indi-
vidual relation and feature, starting with the GR
bilexical relations in the extended DepBank and
followed by most DepBank features reported by
Kaplan et al., and finally overall macro- and mi-
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croaverages. The macroaverage is calculated by
taking the average of each measure for each indi-
vidual relation and feature; the microaverage mea-
sures are calculated from the counts for all rela-
tions and features.* Indentation of GRs shows
degree of specificity of the relation. Thus, mod
scores are microaveraged over the counts for the
five fully specified modifier relations listed imme-
diately after it in Table 1. This allows comparison
of overall accuracy on modifiers with, for instance
overall accuracy on arguments. Figures in italics
to the right are discussed in the next section.

Kaplan et al’s microaveraged scores for
Collins’ Model 3 and the cut-down and complete
versions of the XLE parser are given in Table 2,
along with the microaveraged scores for our parser
from Table 1. Our system’s accuracy results (eval-
uated on the reannotated DepBank) are better than
those for Collins and the cut-down XLE, and very
similar overall to the complete XLE (evaluated
on DepBank). Speed of processing is also very
competitive.> These results demonstrate that a
statistical parser with roughly state-of-the-art ac-
curacy can be constructed without the need for
large in-domain treebanks. However, the perfor-
mance of the system, as measured by microrav-
eraged Fi-score on GR extraction alone, has de-
clined by 2.7% over the held-out Susanne data,
so even the unlexicalized parser is by no means
domain-independent.

4.3 Evaluation Issues

The DepBank num feature on nouns is evalu-
ated by Kaplan et al. on the grounds that it is
semantically-relevant for applications. There are
over 5K num features in DepBank so the overall
microaveraged scores for a system will be signifi-
cantly affected by accuracy on num. We expected
our system, which incorporates a tagger with good
empirical (97.1%) accuracy on the test data, to re-
cover this feature with 95% accuracy or better, as
it will correlate with tags NNx1 and NNx2 (where
‘X’ represents zero or more capitals in the CLAWS

*We did not compute the remaining DepBank features
stmt_type, tense, prog or perf as these rely on information
that can only be extracted from the derivation tree rather than
the GR set.

SProcessing time for our system was 61 seconds on one
2.2GHz Opteron CPU (comprising tokenization, tagging,
morphology, and parsing, including module startup over-
heads). Allowing for slightly different CPUs, this is 2.5-10
times faster than the Collins and XLE parsers, as reported by
Kaplan et al.



System Eval corpus Precision Recall F,
Collins DepBank 78.3 712 74.6
Cut-down XLE DepBank 79.1 76.2 77.6
Complete XLE DepBank 79.4 79.8 79.6
Our system DepBank/GR 81.5 78.1  79.7

Table 2: Microaveraged overall scores from Kaplan et al. and for our system.

tagset). However, DepBank treats the majority
of prenominal modifiers as adjectives rather than
nouns and, therefore, associates them with an ade-
gree rather than a num feature. The PoS tag se-
lected depends primarily on the relative lexical
probabilities of each tag for a given lexical item
recorded in the tagger lexicon. But, regardless
of this lexical decision, the correct GR is recov-
ered, and neither adegree(positive) or num(sg)
add anything semantically-relevant when the lex-
ical item is a nominal premodifier. A strategy
which only provided a num feature for nominal
heads would be both more semantically-relevant
and would also yield higher precision (95.2%).
However, recall (48.4%) then suffers against Dep-
Bank as noun premodifiers have a num feature.
Therefore, in the results presented in Table 1 we
have not counted cases where either DepBank or
our system assign a premodifier adegree(positive)
or num(sg).

There are similar issues with other DepBank
features and relations. For instance, the form of
a subordinator with clausal complements is anno-
tated as a relation between verb and subordina-
tor, while there is a separate comp relation be-
tween verb and complement head. The GR rep-
resentation adds the subordinator as a subtype of
ccomp recording essentially identical information
in a single relation. So evaluation scores based on
aggregated counts of correct decisions will be dou-
bled for a system which structures this informa-
tion as in DepBank. However, reproducing the ex-
act DepBank subord_form relation from the GR
ccomp one is non-trivial because DepBank treats
modal auxiliaries as syntactic heads while the GR-
scheme treats the main verb as head in all ccomp
relations. We have not attempted to compensate
for any further such discrepancies other than the
one discussed in the previous paragraph. However,
we do believe that they collectively damage scores
for our system.

As King et al. note, it is difficult to identify
such informational redundancies to avoid double-
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counting and to eradicate all system specific bi-
ases. However, reporting precision, recall and F;-
scores for each relation and feature separately and
microaveraging these scores on the basis of a hi-
erarchy, as in our GR scheme, ameliorates many
of these problems and gives a better indication
of the strengths and weaknesses of a particular
parser, which may also be useful in a decision
about its usefulness for a specific application. Un-
fortunately, Kaplan et al. do not report their re-
sults broken down by relation or feature so it is
not possible, for example, on the basis of the ar-
guments made above, to choose to compare the
performance of our system on ccomp to theirs for
comp, ignoring subord_form. King ef al. do re-
port individual results for selected features and re-
lations from an evaluation of the complete XLE
parser on all 700 DepBank sentences with an al-
most identical overall microaveraged F; score of
79.5%, suggesting that these results provide a rea-
sonably accurate idea of the XLE parser’s relative
performance on different features and relations.
Where we believe that the information captured
by a DepBank feature or relation is roughly com-
parable to that expressed by a GR in our extended
DepBank, we have included King et al.’s scores
in the rightmost column in Table 1 for compari-
son purposes. Even if these features and relations
were drawn from the same experiment, however,
they would still not be exactly comparable. For in-
stance, as discussed in §3 nearly half (just over 1K)
the DepBank subj relations include pro as one el-
ement, mostly double counting a corresponding
xcomp relation. On the other hand, our ta rela-
tion syntactically underspecifies many DepBank
adjunct relations. Nevertheless, it is possible to
see, for instance, that while both parsers perform
badly on second objects ours is worse, presumably
because of lack of lexical subcategorization infor-
mation.



5 Conclusions

We have demonstrated that an unlexicalized parser
with minimal manual modification for WSJ text —
but no tuning of performance to optimize on this
dataset alone, and no use of PTB — can achieve
accuracy competitive with parsers employing lex-
icalized statistical models trained on PTB.

We speculate that we achieve these results be-
cause our system is engineered to make minimal
use of lexical information both in the grammar and
in parse ranking, because the grammar has been
developed to constrain ambiguity despite this lack
of lexical information, and because we can com-
pute the full packed parse forest for all the test sen-
tences efficiently (without sacrificing speed of pro-
cessing with respect to other statistical parsers).
These advantages appear to effectively offset the
disadvantage of relying on a coarser, purely struc-
tural model for probabilistic parse selection. In fu-
ture work, we hope to improve the accuracy of the
system by adding lexical information to the statis-
tical parse selection component without exploiting
in-domain treebanks.

Clearly, more work is needed to enable more
accurate, informative, objective and wider com-
parison of extant parsers. More recent PTB-based
parsers show small improvements over Collins’
Model 3 using PARSEVAL, while Clark and Cur-
ran (2004) and Miyao and Tsujii (2005) report
84% and 86.7% F-scores respectively for their
own relational evaluations on section 23 of WSJ.
However, it is impossible to meaningfully com-
pare these results to those reported here. The rean-
notated DepBank potentially supports evaluations
which score according to the degree of agreement
between this and the original annotation and/or de-
velopment of future consensual versions through
collaborative reannotation by the research com-
munity. We have also highlighted difficulties for
relational evaluation schemes and argued that pre-
senting individual scores for (classes of) relations
and features is both more informative and facili-
tates system comparisons.
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Abstract ¢ hyponym(dog,canine)

_ e coordinate(dog,cat)
We show that we can automatically clas-

sify semantically related phrases into 10 Lexical resources such as WorqlNgt (Miller,
classes. Classification robustness is im- 1995) are extremely useful, but are limited by be-

ing manually constructed. They do not contain se-
of evidence, including within-document mantic class relationships for the many new terms
cooccurrence, HTML markup, syntactic we encounter in text such as web documents, for
relationships in sentences, substitutability ~ €xample “mp3 player” or “ipod”. We can use

in query logs, and string similarity. Our WordNet as training c_ja_ta for suc_h cIaSS|f|9at|on to
work provides a benchmark for automatic the extent that the training on pairs found in Word-
n-way classification into WordNet's se- Net and testing on pairs found outside WordNet

mantic classes, both on a TREC news cor-  Provides accurate generalization.

pus and on a corpus of substitutable search e describe a set of features used to train
guery phrases. way supervised machine-learned classification of

semantic classes for arbitrary pairs of phrases. Re-
1 Introduction dundancy in the sources of our feature informa-

tion means that we are able to provide coverage
Identifying semantically related phrases has beegyer an extremely large vocabulary of phrases. We
demonstrated to be Useful il’l information retrievalcontrast th|s W|th techniques that require parsing
(Anick, 2003; Terra and Clarke, 2004) and spon-of natural language sentences (Snow et al., 2005)
sored search (Jones et al., 2006). Work on semaRyhich, while providing reasonable performance,
tic entailment often includes lexical entailment ascgn only be applied to a restricted vocabulary of

a subtask (Dagan et al., 2005). phrases cooccuring in sentences.
We draw a distinction between the task of iden- Oyr contributions are:

tifying terms which are topically related and iden-
tifying the specific semantic class. For example,

proved by training with multiple sources

e Demonstration that binary classification re-
the terms “dog”, “puppy”, “canine”, “schnauzer’ moves the difficult cases of classification into

scat’ and “pet’ are highly related terms, which closely relat.ed semantic classes
can be identified using techniques that include ® Demonstration that dependency parser paths

distributional similarity (Lee, 1999) and within- are inadequate for semantic classification into

document cooccurrence measures such as point- ¢ WordNet classes on TREC news corpora
wise mutual information (Turney et al., 2003). *® A benchmark of 10-class semantic classifica-

These techniques, however, do not allow us to dis-  tion over highly substitutable query phrases

tinguish the more specific relationships: e Demonstration that training a classifier us-
ing WordNet for labeling does not generalize
e hypernym(dog,puppy) well to query pairs
*This work was carried out while these authors were at  ® pemon;tratiqn that much of Fhe perfgrmance
Yahoo! Research. in classification can be attained using only
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syntactic features for classification: a TREC-WordNet intersection
¢ A learning curve for classification of query and query logs.
phrase pairs that suggests the primary bottle- _ o
neck is manually labeled training instances:3'1 Noun-Phrase Pairs Cooccuring infREC
we expect our benchmark to be surpassed. News Sentences
The first is a data-set derived from TREC news
2 Relation to Previous Work corpora and WordNet used in previous work for
binary semantic class classification (Snow et al.,

005). We extract two sets of candidate-related

WordNet (Miller, 1995) as a source of training la- pairs from these corpora, one restricted and one
bels. Using dependency parse tree paths as fedlore complete set.

tures, they were able to generalize from WordNet Snow et al. obtained training data from the inter-
labelings to human labelings. section of noun-phrases cooccuring in sentences in

Turney et al. (2003) combined features to an-@ TREC news corpus and those that can be labeled

swer multiple-choice synonym questions from the!"@mbiguously as hypernyms or non-hypernyms

TOEFL test and verbal analogy questions fromusing WordNet. We use a restricted set since in-
the SAT college entrance exam. The multiple-St2NCes selected in the previous work are a subset

choice questions typically do not consist of mul-©f the instances one is Iikgly to encour_lter in text.
tiple closely related terms. A typical example isThe pairs are generally either related in one type
given by Turney: of relationship, or completely unrelated.

In general we may be able to identify related
e hidden:: (&) laughable (c) ancient phrases (for example with distributional similarity
(b) veiled (d) revealed (Lee, 1999)), but would like to be able to automat-

Note that only (b) and (d) are at all related to theicallly classify the related phrases by the type of

term, so the algorithm only needs to distinguishthe relationship. For this task we identify a larger

antonyms from synonyms, not synonyms from say’ et of candidate-related phrases.

hypernyms. 3.2 Query Log Data

We use as input phrase pairs recorded in queri find ph that il bstitutable f
logs that web searchers substitute during searc 0 find phrases that are similar or substittabie for
eb searchers, we turn to logs of user search ses-

sessions. We find much more closely relateow . .
phrases: sions. We look afguery reformulations a pair

Snow et al. (2005) demonstrated binary classi
fication of hypernyms and non-hypernyms usin

(a) secret (e) hiden of successive queries issued by a single user on

e hidden:: (b) hidden camera (f) voyeur a single day. We collapse repeated searches for
(c) hidden cam (9) hide the same terms, as well as query pair sequences
(d) spy repeated by the same user on the same day.

This set contains a context-dependent synonyng.2.1  Substitutable Query Segments
topically related verbs and nouns, and a spelling \yhole queries tend to consist of several con-

correction. All of these could cooccur on web cepts together, for example “new yorknaps” or

pages, so simple cooccurrence stat_istics may ”%ritney speard mp3s”. We identify segments or
be sufficient to classify each according to the Sehhrases using a measure over adjacent terms sim-

mantic type. ilar to mutual information. Substitutions occur at

~We show that the techniques used to performyg |eye| of segments. For example, a user may
binary semantic classification do not work as We”initially search for “britney spearsmp3s”, then

when extended to a fulk-way semantic classifi- gaqrch for “Dritney spearsmusic”. By aligning

cation. We show that using a variety of featuresquery pairs with a single substituted segment, we
performs better than any feature alone. generate pairs of phrases which a user has substi-
tuted. In this example, the phrase “mp3s” was sub-
stituted by the phrase “music”.

Aggregating substitutable pairs over millions of
In this section we introduce the two data sourcesisers and millions of search sessions, we can cal-
we use to extract sets of candidate related phrasesilate the probability of each such rewrite, then

3 Identifying Candidate Phrases for
Classification
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test each pair for statistical significance to elim-parallel movement, term variations, operator us-
inate phrase rewrites which occurred in a smallge, error correction, general resource, special re-
number of sessions, perhaps by chance. To tesburce,andsite URLs We redefine these slightly
for statistical significance we use the pair inde-to apply to query segments. The summary of the
pendence likelihood ratio, or log-likelihood ratio, definitions is shown in Table 1, along with the dis-
test. This metric tests the hypothesis that the probtribution in the data of pairs passing the statistical
ability of phrases is the same whether phrase test.

has been seen or not by calculating the likelihood .

of the observed data under a binomial distributionﬂ"z'1 Hand Labeling

using probabilities derived using each hypothesis More than90% of phrases in query logs do not
(Dunning, 1993). appear in WordNet due to being spelling errors,

web site URLS, proper nouns of a temporal nature,
L (P(Ble) = P(B|~a))

logh = log etc. Six annotators labelet] 463 segment pairs
L(P(Bla) # P(Bl-a)) selected randomly from our sample. Annotators
A high negative value fol suggests a strong agreed on the label aB% of pairs, with a Kappa
dependence between quernand querys. statistic of.74.

4 Labeling Phrase Pairs for Supervised 5 Automatic Classification

Learning _ . S
We wish to perform supervised classification of

We took a random sample of query segment subpairs of phrases into semantic classes. To do this,
stitutions from our query logs to be labeled. Thewe will assign features to each pair of phrases,
sampling was limited to pairs that were frequentwhich may be predictive of their semantic rela-
substitutions for each other to ensure a high probtionship, then use a machine-learned classifier to
ability of the segments having some relationship. assign weights to these features. In Section 7 we
4.1 WordNet Labeling will look at the learned weights and discuss which

_ _ ~features are most significant for identifying which
WordNet is a large lexical database of Englishgemantic classes.

words. In addition to defining several hun-
dred thousand words, it definegnonym setfsor 5.1 Features

synsets of words that represent some underly-peatyres for query substitution pairs are extracted
ing lexical concept, plus relationships betweenyom query logs and web pages.
synsets. The most frequent relationships between

noun-phrases argynonym, hyponym, hypernym,5.1.1 Web Page / Document Features

andcoordinate defined in Table 1. We also may We submit the two segments to a web search

usemeronymandholonym defined as thearRT-OF  engine as a conjunctive query and download the

relationship. top 50 results. Each result is converted into an
We used WordNet to automatically label the HTML Document Object Model (DOM) tree and

subset of our sample for which both phrases occusegmented into sentences.

in WordNet. Any sense of the first segment having

a relationship to any sense of the second would rePependency Tree PathsThe path from the first

sult in the pair being labeled. Since WordNet con- ~ segment to the second in a dependency parse
tains many other relationships in addition to those ~ tree generated by MINIPAR (Lin, 1998)
listed above, we group the rest into thier cate- from sentences in which both segments ap-
gory. If the segments had no relationship in Word- ~ Pear. These were previously used by Snow
Net, they were labeledo relationship et al. (2005). These features were extracted
from web pages in all experiments, except
4.2 Segment Pair Labels where we identify that we used TREC news

Phrase pairs passing a statistical test are com- stories (the same data as used by Snow et al.).
mon reformulations, but can be of many semanHTML Paths The paths from DOM tree nodes
tic types. Rieh and Xie (2001) categorized types  the first segment appears in to nodes the sec-
of query reformulations, defining 10 general cat- ond segment appears in. The value is the
egories: specification, generalization, synonym, number of times the path occurs with the pair.
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Class Description Example %
synonym one phrase can be used in place of the other without loss inimga low cost; cheap 4.2
hypernym X isahypernym ol if and only if Y is a X muscle car; mustang | 2.0
hyponym X is a hyponym oft” if and only if X is aY (inverse of hypernymy) lotus; flowers 2.0
coordinate there is somé& such thatX andY are bothZs aquarius; gemini 13.9
generalization X is a generalization of if X contains less information about the topidyrics; santana lyrics 4.8
specialization X is a specification ot if X contains more information about the topjccredit card; card 4.7
spelling change | spelling errors, typos, punctuation changes, spacingggsan peopl; people 14.9
stemmed form X andY have the same lemmas ant; ants 3.4
URL change X andY are related an& orY is a URL alliance; alliance.com| 29.8
other relationship| X andY are related in some other way flagpoles; flags 9.8
no relationship X andY are not related in any obvious way crypt; tree 104

Table 1: Semantic relationships between phrases rewiiitgonery reformulation sessions, along with their prevaéem our
data.

Lexico-syntactic Patterns (Hearst, 1992) A sub- | Source Snow (NIPS 2005) Experiment
. . Task binary hypernym | binary hypernym
string occurring between the two segments pao WordNet-TREC | WordNet-TREC
extracted from text in nodes in which both| Instance Count| 752,311 752,311
Features minipar paths minipar paths

fegments appear. In the exam”ple fragmertFeature Count 69’582 p 6975%2 P
authors such as Shakespeare”, the featureciassifier logistic Regression linear SVM
is “such as” and the value is the number of| maxF 0.348 0.453

times the substring appears between al’IthorTabIe 3: Snow et al's (2005) reported performance using lin-

and “Shakespeare”. ear regression, and our reproduction of the same experiment
using a support vector machine (SVM).

5.1.2 Query Pair Features

Table 2 summarizes features that are induce('E}'3'_2 Evaluat.ic.Jn o
from the query strings themselves or calculated Binary classifiers are evaluated by ranking in-

from query log data. stances by classification score and finding the Max
F1 (the harmonic mean of precision and recall;
5.2 Additional Training Pairs ranges from O to 1) and area under the ROC curve

We can double our training set by adding for eaclfAUC;”r‘”"ngeS from 0.5 to 1 with at least 0.8 being
pairuy, us a New paitus, u1. The class of the new good”). The meta-classifier is evaluated by pre-
pair is the same as the old in all cases hyper- cision and recall of each class and classification

nym, hyponym, specificatioand generalization ~ accuracy of all instances.
which are inverted. Features are reversed fro
f(ul, ’LLQ) to f(UQ7 ul).

A pair and its inverse have different sets of fea-6.1 Baseline Comparison to Snow et al.’s
tures, so splitting the set randomly into training Previous Hypernym Classification on
and testing sets should not result in resubstitution ~ WordNet-TREC data

error. Nonetheless, we ensure that a pair and it§now et al. (2005) evaluated binary classifi-
inverse are not separated for training and testing.cation of noun-phrase pairs asypernymsor

" non-hypernyms When training and testing on
53 Classifier WordNet-labeled pairs from TREC sentences,
For each class we train a binary one-vs.-all linearthey report classifier Max F of 0.348, using de-
kernel support vector machine (SVM) using thependency path features and logistic regression. To
optimization algorithm of Keerthi and DeCoste justify our choice of an SVM for classification, we

"8 Experiments

(2005). replicated their work. Snow et al. provided us with
- their data. With our SVM we achieved a Max F of
53.1 Meta-Classifier 0.453, 30% higher than they reported.

For n-class classification, we calibrate SVM _ ,
scores to probabilities using the method describe§-2 Extending Snow et al.’s WordNet-TREC

by Platt (2000). This gives uB(class|pair) for Binary Classification to N Classes
each pair. The final classification for a pair isSnow et al. select pairs that are “Known Hyper-
argmazqqss P(class|pair). nyms” (the first sense of the first word is a hy-
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Feature Description

Levenshtein Distance # character insertions/deletions/substitutions to changerya to querys (Levenshtein, 1966)
Word Overlap Percent # words the two queries have in common, divided by num. wardke longer query.
Possible Stem 1 if the two segments stem to the same root using the Portenste

Substring Containment 1 if the first segment is a substring of the second.

Is URL 1 if either segment matches a handmade URL regexp.

Query Pair Frequency # times the pair was seen in the entire unlabeled corpus of qaers.

Log Likelihood Ratio The Log Likelihood Ratio described in Section 3.2.1 FornRia1

Dice and Jaccard Coefficients Measures of the similarity of substitutes for and by the tlwoages.

Table 2: Syntactic and statistical features over pairs chgbs.

ponym of the first sense of the second and botl6.3.1 Classification Using Only Dependency
have no more than one tagged sense in the Brown Paths
corpus) and “Known Non-Hypernyms” (no sense e first limit features to dependency paths in
of the first word is a hyponym of any sense of theyger 1o compare to the prior results. Dependency
second). We wished to test whether making the,ihs cannot be obtained for all query phrase pairs,
classes less cleanly separable would affect the re5ce the two phrases must appear in the same sen-
sults, and also whether we could use these featurgg, e together. We used only the pairs for which
for n-way classification. we could get path features, about 32% of the total.
From the same TREC corpus we extracted Taple 5(a) shows results of binary classification
known synonym, known hyponym, known coordizng metaclassification on those instances using de-
nate, known meronynandknown holonynpairs.  hendency path features only. We can see that de-
Each of these classes is defined analogously to ”E‘endency paths do not perform very well on their
known hypernyrolass; we selected these six rela-g\yn: most instances are assigned to the “coordi-
tionships because they are the six most common,5¢e” class that comprises a plurality of instances.
A pair is labelecknown no-relationshijif no sense A comparison of Tables 5(a) and 4(a) suggests

of the first word has any relationship to any sensgy,+ |assifying query substitution pairs is harder
of the second word. The class distribution was S€fhan classifying TREC phrases.

lected to match as closely as possible that observed
in query logs. We labeled 50,000 pairs total.
Results are shown in Table 4(a). Although AUC

Table 5(b) shows the results of binary clas-
sification and metaclassification on the same in-
R > ] stances using all features. Using all features im-
is fairly high for all classes, MaxF is low for all 665 performance dramatically on each individ-

but two. MaxF has degraded quite a bit for hyper 5 pinary classifier as well as the metaclassifier.
nyms from Table 3. Removing all instances except

hypernym and no relationship brings MaxF up 106.3.2 Classification on All Query Pairs Using
0.45, suggesting that the additional classes make it All Features

harder to sepgrate hypemYmS- ~ . We now expand to all of our hand-labeled pairs.
Metaclassifier accuracy is very good, but this istap|e 6(a) shows results of binary and meta classi-
due to high recall oho relationshipand coordi-  fication; Figure 1 shows precision-recall curves for
natepairs: more than 80% of instances with Somey g pinary classifiers (excluding URLS). Our clas-
relationship are predicted to be coordinates, andifier does quite well on every class but hypernym
most of the rest are predicted no relationship. Ity hyponym. These two make up a very small
seems that we are only distinguishing between e centage of the data, so it is not surprising that

vs. somerelationship. performance would be so poor.

The size of theo relationshipclass may be bi- e metaclassifier achieved 71% accuracy. This
asing the results. We removed those instances, b}g significantly better than random or majority-

performance of the n-class classifier did not im-;555 paselines, and close to our 78% interanno-
prove (Table 4(b)). MaxF of binary classifiers did tator agreement. Thresholding the metaclassifier

improve, even though AUC is much worse. to pairs with greater than .5 max class probability
(68% of instances) gives 85% accuracy.

Next we wish to see how much of the perfor-
We now use query pairs rather than TREC pairs. mance can be maintained without using the com-

6.3 N-Class Classification of Query Pairs

53



binary n-way data binary n-way data
class maxF | AUC || prec | rec % maxF | AUC || prec | rec %
no rel 980 | .986 || .979 | .985 || 80.0 - - - - 0
synonym .028 | .856 0 0 0.3 .086 | .683 0 0 1.7
hypernym | .185 | .888 | .512| .019 2.1 .337 | .708 || .563 | .077 || 10.6
hyponym 193 | .890 || .462 | .016 2.1 .341 | .720 || .527 | .080 || 10.6
coordinate| .808 | .971 || .714 | .931 | 14.8 .857 | .737 || .757 | .986 || 74.1
meronym .158 | .905 | .615 | .050 0.3 .251 | .777 || .500 | .068 15
holonym .120 | .883 || .909 | .062 0.3 277 | 767 || .522 | .075 15
metaclassifier accuracy .927 - .749

(a) All seven WordNet classes. The high accuracy (I3) Removing no relationship instances
mostly due to high recall afo relandcoordinateclasses. improves MaxF and recall of all classes,
but performance is generally worse.

Table 4: Performance of 7 binary classifier and metaclassifie phrase-pairs cooccuring in TREC data labeled with Wetd
classes, using minipar dependency features. These featareot seem to be adequate for distinguishing classes thiduer
coordinateandno-relationship

binary n-way binary n-way data
class maxf | auc || prec| rec maxf | auc || prec| rec % | % full
no rel .281 | .611 || .067 | .006 .602 | .883 || .639 | .497 || 10.6 35
synonym .269 | .656 || .293 | .167 A77 | 851 .571| .278 4.5 15
hypernym .140 | .626 0 0 .167 | .686 || .125| .017 3.7 1.2
hyponym 121 | .610 0 0 .136 | .660 0 0 3.7 1.2
coordinate .506 | .760 || .303 | .888 747 | 935 || .624 | .862 || 21.0 6.9
spelling .288 | .677 || .121 | .022 .814 | 970 || .703 | .916 || 11.0 3.6
stemmed 571 | .834 | .769 | .260 .781| 972 || .788 | .675| 4.8 1.6
URL 742 | 919 || .767 | .691 1 1 1 1 16.2 53
generalization| .082 | .547 0 0 490 | .883 || .489 | .393 3.5 11
specification .085 | .528 0 0 .584 | .854 || .600 | .589 3.5 1.1
other .393 | .681 || .384 | .364 .641| .895 || .603 | .661 || 17.5 5.7
metaclassifier accuracy .385 - .692 —
(a) Dependency tree paths only. (b) All features.

Table 5: Binary and metaclassifier performance on the 32%ofifiabeled instances with dependency path featuresngddi
all our features significantly improves performance ovst jising dependency paths.

putationally expensive syntactic parsing of depensign of falling off with more instances.

dency paths. To estimate the marginal gain of the

other features over the dependency paths, we ef-4 Training on WordNet-Labeled Pairs Only
cluded the latter features and retrained our clasFigure 2 implies that more labeled instances will
sifiers. Results are shown in Table 6(b). Evenead to greater accuracy. However, manually la-
though binary and meta-classifier performance debeled instances are generally expensive to obtain.
creases on all classes but generalizations and spadere we look to other sources of labeled instances
ifications, much of the performance is maintainedfor additional training pairs.

Because URL changes are easily identifiable by
the IsURL feature, we removed those instance-4-1 Training and Testing on WordNet
and retrained the classifiers. Results are shown in We trained and tested five classifiers using 10-
Table 6(c). Although overall accuracy is worse,fold cross validation on our set of WordNet-
individual class performance is still high, allow- labeled query segment pairs. Results for each class
ing us to conclude our results are not only due taare shown in Table 7. We seem to have regressed
the ease of classifying URLSs. to predictingno vs. somerelationship.

We generated a learning curve by randomly Because these results are not as good as the
sampling instances, training the binary classifiersiuman-labeled results, we believe that some of our
on that subset, and training the metaclassifier operformance must be due to peculiarities of our
the results of the binary classifiers. The curve iglata. That is not unexpected: since words that ap-
shown in Figure 2. With 10% of the instances, wepear in WordNet are very common, features are
have a metaclassifier accuracy of 59%; with 100%mnuch noisier than features associated with query
of the data, accuracy is 71%. Accuracy shows ne&ntities that are often structured within web pages.
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binary n-way binary n-way data binary n-way
class maxf | auc || prec| rec | maxf| auc| prec| rec % || maxf | auc || prec| rec
no rel 531 | .878 ]| .616 | .643 | .466 | .764 || .549 | .482 | 10.4 | .512| .808 || .502 | .486
synonym .355| .820 || .506 | .212 || .351| .745 || .493 | .178 || 4.2 || .350 | .759 || .478 | .212
hypernym .73 | .821 || .100 | .020 | .133 | .728 0 0 2.0| .156| .710 || .250 | .020
hyponym 73| .797 || .059 | .010 || .163| .733 0 0 2.0 || .187| .739 || .125| .020
coordinate .635| .921 || .590 | .703 | .539 | .832 | .565 | .732| 13.9| .634| .885 | .587 | .706
spelling 778 | 960 || .625| .904 || .723 | .917 || .628 | .902 || 14.9 || .774 | .939 || .617 | .906
stemmed .703 | .973 || .786 | .589 | .656 | .964 || .797 | .583 | 3.4| .717 | .967 || .802 | .601
URL 1 1 1 1 1 1 1 1] 29.8 - - - -
generalization| .565 | .916 || .575 | .483 | .492| .852 || .604 | .604 || 4.8 | .581| .885 | .598 | .634
specification | .661 | .926 || .652 | .506 || .578 | .869 || .670 | .644 || 4.7 || .665 | .906 || .657 | .468
other .539 | .898 || .575| .483| .436| .790|| .550 | .444 | 9.8 | .529 | .847 || .559 | .469

metaclassifier accuracy 714 — 714 - .587
(a) All features. (b) Dependency path features removed. (c) URL class removed.

Table 6: Binary and metaclassifier performance on all ckaasd all hand-labeled instances. Table (a) provides a beargh
for 10-class classification over highly substitutable gushrases. Table (b) shows that a lot of our performance caclieved
without computationally-expensive parsing.

binary meta data 0.72
class maxf | auc || prec| rec % o7
no rel .758 | .719 || .660 | .882 || 57.8 ’

0.68 -

synonym 431 .901 || .617 | .199 2.4
hypernym | .284 | .803 || .367 | .061 1.8
hyponym .212 | .804 || .415| .056 1.6
coordinate| .588 | .713 || .615 | .369 || 35.5

0.66 -

0.64 -

0.62 -

Metaclassifier accuracy

other .206 | .739 || .375| .019 0.8
metaclassifier accuracy .648 06
0.58 -
Table 7: Binary and metaclassifier performance on WordNet- oB6 L .o
labeled instances with all features. "0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of query pairs
Binar — Tt Figure 2: Meta-classifier accuracy as a function of number of
ary eta ata labeled instances for training.
class maxf | auc | prec| rec %
no rel .525] 671 .485| .354 || 31.9
synonym .381 | .671 | .684 | .125 || 13.0 : .
hypernym | 211| 605|| 0| o 6.2 7 Discussion
hyponym 125 | .501 0 0 6.2 . . .
ngrd%ate 623 | 628l 485 844l 426 Almost all high-weighted features are either
metaclassifier accuracy .490 HTML paths or query log features; these are the

- . . ones that are easiest to obtain. Many of the
Table 8: Training on WordNet-labeled pairs and testing on, . h iah f
hand-labeled pairs. Classifiers trained on WordNet do noh'g est-weight HTML tree .eatures are symmet-
generalize well. ric, e.g. both words appear in cells of the same ta-
ble, or as items in the same list. Here we note a
selection of the more interesting predictors.

6.4.2 Training on WordNet, Testing on synonym —“X or Y” expressed as a dependency
WordNet and Hand-Labeled Pairs path was a high-weight feature.
hyper/hyponym —"Y and other X" as a depen-
We took the five classes for which human and ~ dency path has highest weight. An interesting
WordNet definitions agreedsynonyms, coordi- feature is X in a table cell and Y appearing in
nates, hypernyms, hyponyrasdno relationship) text outside but nearby the table.
and trained classifiers on all WordNet-labeled in-sibling —many symmetric HTML features. “X to
stances. We tested the classifiers on human- the Y”asin “80s to the 90s”. “X and Y”, “X,
labeled instances from just those five classes. Re- Y, and Z” highly-weighted minipar paths.
sults are shown in Table 8. Performance wageneral/specialization—the top three features
not very good, reinforcing the idea that while our are substring containment, word subset dif-
features can distinguish between query segments, ference count, and prefix overlap.
they cannot distinguish between common words. spelling change—many negative features, indi-
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Figure 1: Precision-recall curves for 10 binary classif@rsll hand-labeled instances with all features.

cating that two words that cooccur in a webTed E. Dunning. 1993. Accurate methods for the statistics
page araotlikely to be spelling differences. of surprise and coincidenceComputational Linguistics

_ 19(1):61-74.
other —many symmetric HTML features. Two

words emphasized in the same way (e.g. botﬁ/larti A. Hearst. 1992. Automatic acquisition of hyponyms

. . . from large text corpora. lfProceedings of Coling 1992
bolded) may indicate some relationship. pages 5%9_545_ P g 9

hone —many ?‘Symmemc HTML features, e.g. Rosie Jones, Benjamin Rey, Omid Madani, and Wiley
one word in a blockquote, the other bolded Greiner. 2006. Generating query substitutions. 1%th
in a different paragraph. Dice coefficient is a Eé?fgatb#al World Wide Web Conference (WWW-2006)
good negative features. inourgh.

Sathiya Keerthi and Dennis DeCoste. 2005. A modified fi-
nite newton method for fast solution of large scale linear
svms.Journal of Machine Learning Resear@341-361,
March.

8 Conclusion

We have provided the first benchmark far N o S
Lillian Lee. 1999. Measures of distributional similaritin

class semantic CIaSSIflcatlor? of highly SUbS_“' 37th Annual Meeting of the Association for Computational
tutable query phrases. There is much room for im-  Linguistics pages 25-32.

provement, and we expect that this baseline WI”\/. I. Levenshtein. 1966. Binary codes capable of cor-

be surpassed. recting deletions, insertions, and reversafSybernetics
and Control Theory10(8):707—710. Original iboklady
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Abstract

To enable conversational QA, it isimpor-
tant to examine key issues addressed in
conversational systems in the context of
guestion answering. In conversational sys-
tems, understanding user intent is criti-
cal to the success of interaction. Recent
studies have also shown that the capabil-
ity to automatically identify problematic
situations during interaction can signifi-
cantly improve the system performance.
Therefore, this paper investigates the new
implications of user intent and problem-
atic situations in the context of question
answering. Our studies indicate that, in
basic interactive QA, there are different
types of user intent that are tied to dif-
ferent kinds of system performance (e.g.,
problematic/error free situations). Once
users are motivated to find specific infor-
mation related to their information goals,
the interaction context can provide useful
cues for the system to automatically iden-
tify problematic situations and user intent.

1 Introduction

Interactive question answering (QA) has been
identified as one of the important directions in QA
research (Burger et al., 2001). One ultimate goal is
to support intelligent conversation between a user
and a QA system to better facilitate user informa-
tion needs. However, except for afew systems that
use dialog to address complex questions (Small et
a., 2003; Harabagiu et al., 2005), the general di-
alog capabilities have been lacking in most ques-

*Thiswork was partially supported by 11S-0347548 from
the National Science Foundation.
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tion answering systems. To move towards conver-
sational QA, it isimportant to examine key issues
relevant to conversational systems in the context
of interactive question answering.

This paper focuses on two issues related to con-
versational QA. The first issue is concerned with
user intent. In conversational systems, understand-
ing user intent isthe key to the success of theinter-
action. In the context of interactive QA, one ques-
tion iswhat type of user intent should be captured.
Unlike most dialog systems where user intent can
be characterized by dialog acts such as question,
reply, and statement, in interactive QA, user in-
puts are aready in the form of question. Then
the problems become whether there are different
types of intent behind these questions that should
be handled differently by a QA system and how to
automatically identify them.

The second issue is concerned with problem-
atic situations during interaction. In spoken di-
alog systems, many problematic situations could
arise from insufficient speech recognition and lan-
guage understanding performance. Recent work
has shown that the capability to automatically
identify problematic situations (e.g., speech recog-
nition errors) can help control and adapt dialog
strategies to improve performance (Litman and
Pan, 2000). Similarly, QA systems also face chal-
lenges of technology limitation from language un-
derstanding and information retrieval. Thus one
guestion is, in the context of interactive QA, how
to characterize problematic situations and auto-
matically identify them when they occur.

In interactive QA, these two issues are inter-
twined. Questions formed by a user not only de-
pend on his/her information goals, but are aso in-
fluenced by the answers from the system. Prob-
lematic situations will impact user intent in the

Proceedings of the COLING/ACL 2006 Main Conference Poster Sespagss 57—64,
Sydney, July 20062006 Association for Computational Linguistics



follow-up questions, which will further influence
system performance. Both the awareness of prob-
lematic situations and understanding of user in-
tent will allow QA systems to adapt better strate-
gies during interaction and move towards intelli-
gent conversational QA.

To address these two questions, we conducted
a user study where users interacted with a con-
trolled QA system to find information of inter-
est. These controlled studies allowed us to fo-
cus on the interaction aspect rather than informa-
tion retrieval or answer extraction aspects. Our
studies indicate that in basic interactive QA where
users always ask questions and the system always
provides some kind of answers, there are differ-
ent types of user intent that are tied to differ-
ent kinds of system performance (e.g., problem-
atic/error free situations). Once users are moti-
vated to find specific information related to their
information goals, the interaction context can pro-
vide useful cues for the system to automatically
identify problematic situations and user intent.

2 Reated Work

Open domain question answering (QA) systems
are designed to automatically locate answers from
large collections of documents to users natural
language questions. In the past few years, au-
tomated question answering techniques have ad-
vanced tremendously, partly motivated by a se-
ries of evaluations conducted at the Text Retrieval
Conference (TREC) (Voorhees, 2001; Voorhees,
2004). To better facilitate user information needs,
recent trends in QA research have shifted towards
complex, context-based, and interactive question
answering (Voorhees, 2001; Small et a., 2003;
Harabagiu et al., 2005). For example, NIST initi-
ated a special task on context question answering
in TREC 10 (Voorhees, 2001), which later became
aregular task in TREC 2004 (Voorhees, 2004) and
2005. The motivation is that users tend to ask a
sequence of related questions rather than isolated
single questions to satisfy their information needs.
Therefore, the context QA task was designed to
investigate the system capability to track context
through a series of questions. Based on context
QA, somework hasbeen doneto identify clarifica-
tion relations between questions (Boni and Man-
andhar, 2003). However context QA is different
from interactive QA in that context questions are
specified ahead of time rather than incrementally
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asin an interactive setting.

Interactive QA has been applied to process com-
plex questions. For analytical and non-factual
questions, it is hard to anticipate answers. Clari-
fication dialogues can be applied to negotiate with
users about the intent of their questions (Small et
a., 2003). Recently, an architecture for interactive
guestion answering has been proposed based on a
notion of predictive questioning (Harabagiu et a.,
2005). The idea is that, given a complex ques-
tion, the system can automatically identify a set of
potential follow-up questions from a large collec-
tion of question-answer pairs. The empirica re-
sults have shown the system with predictive ques-
tioning is more efficient and effective for users to
accomplish information seeking tasks in a partic-
ular domain (Harabagiu et a., 2005).

The work reported in this paper addresses a
different aspect of interactive question answering.
Both issues raised earlier (Section 1) are inspired
by earlier work on intelligent conversational sys-
tems. Automated identification of user intent has
played an important role in conversational sys-
tems. Tremendous amounts of work has focused
on this aspect (Stolcke et a., 2000). To improve
dialog performance, much effort has also been put
on techniques to automatically detect errors during
interaction. It has shown that during human ma
chine dialog, there are sufficient cues for machines
to automatically identify error conditions (Levow,
1998; Litman et al., 1999; Hirschberg et al., 2001,
Walker et a., 2002). The awareness of erroneous
situations can help systems make intelligent de-
cisions about how to best guide human partners
through the conversation and accomplish the tasks.
Motivated by these earlier studies, the goal of this
paper isto investigate whether these two issues can
be applied in question answering to facilitate intel-
ligent conversational QA.

3 User Studies

We conducted a user study to collect data concern-
ing user behavior in a basic interactive QA set-
ting. We are particularly interested in how users
respond to different system performance and its
implication in identifying problematic situations
and user intent. As a starting point, we charac-
terize system performance as either problematic,
which indicates the answer has some problem, or
error-free, which indicates the answer is correct.
In this section, we first describe the methodol ogy



and the system used in this effort and then discuss
the observed user behavior and its relation to prob-
lematic situations and user intent.

3.1 Methodology and System

The system used in our experiments has a user in-
terface that takes a natural language question and
presents an answer passage. Currently, our inter-
face only presents to the user the top one retrieved
result. This simplification on one hand helps us
focus on the investigation of user responses to dif-
ferent system performances and on the other hand
represents a possible situation where a list of po-
tential answers may not be practical (e.g., through
PDA or telephone line).

We implemented a Wizard-of-Oz (WOZ) mech-
anism in the interaction loop to control and simu-
late problematic situations. Users were not aware
of the existence of this human wizard and were
led to believe they were interacting with a rea
QA system. This controlled setting alowed us
to focus on the interaction aspect rather than in-
formation retrieval or answer extraction aspect of
question answering. More specificaly, during in-
teraction after each question was issued, a ran-
dom number generator was used to decide if a
problematic situation should be introduced. If
the number indicated no, the wizard would re-
trieve a passage from a database with correct ques-
tion/fanswer pairs. Note that in our experiments
we used specific task scenarios (described later),
S0 it was possible to anticipate user information
needs and create this database. If the number in-
dicated that a problematic situation should be in-
troduced, then the Lemur retrieval engine ! was
used on the AQUAINT collection to retrieve the
answer. Our assumption is that AQUAINT data
arenot likely to provide an exact answer given our
specific scenarios, but they can provide a passage
that is most related to the question. The use of the
random number generator was to control the ratio
between the occurrence of problematic situations
and error-free situations. In our initial investiga-
tion, since we are interested in observing user be-
havior in problematic situations, we set theratio as
50/50. In our future work, we will vary this ratio
(e.g., 70/30) to reflect the performance of state-of-
the-art factoid QA and investigate the implication
of thisratio in automated performance assessment.

http:/ww-2.cs.cmu.edu/ lemur/
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3.2 Experiments

Eleven users participated in our study. Each user
was asked to interact with our system to com-
plete information seeking tasks related to four
specific scenarios. the 2004 presidential debates,
Tom Cruise, Hawaii, and Pompeii. The exper-
imental scenarios were further divided into two
types: structured and unstructured. In the struc-
tured task scenarios (for topics Tom Cruise and
Pompeii), users had to fill in blanks on a dia-
gram pertaining to the given topic. Using the dia-
gram wasto avoid the influence of these scenarios
on the language formation of the relevant ques-
tions. Because users must find certain informa-
tion, they were constrained in the range of ques-
tionsin which they could ask, but not the way they
ask those questions. Thetask was completed when
al of the blanks on the diagram were filled. The
structured scenarios were designed to mimic the
real information seeking practice in which users
have real motivation to find specific information
related to their information goals. In the unstruc-
tured scenarios (for topics the 2004 presidential
debates and Hawaii), users were given a general
topic to investigate, but were not required to find
specific information. This gave the user the abil-
ity to ask a much wider range of questions than
the structured scenarios. Users were generaly in
an exploration mode when performing these un-
structured tasks. They were not motivated to find
specific information and were content with any in-
formation provided by the system. In our view,
the unstructured scenarios are less representative
of the true information seeking situations.

3.3 Observations and Analysis

From our studies, atotal of 44 interaction sessions
with 456 questions were collected. Figure 1 shows
an example of afragment of interaction related to
Tom Cruise. In this example, both problematic sit-
uations applied to answers (e.g., Problematic and
Error-Free) and user intent (described later) ap-
plied to questions are annotated.

There are several observations from this data.
First, questions formed during interactive QA tend
to be self-contained and free of definite noun
phrases, pronouns, or ellipsis. Only one question
in the entire data set has a pronoun (i.e.,, What
are the best movies with Tom Cruise in them?).
Even in this case, the pronoun them did not re-
fer to any entities that occurred previously in the



Figure 1. An example fragment of interaction

QA process. Thisphenomenon could be caused by
how the answers are presented. Unlike specific an-
swer entities, the answer passages provided by our
system do not support the natural use of referring
expressions in the follow-up questions. Another
possible explanation could be that in an interac-
tive environment, users seem to be more aware of
the potentia limitation of a computer system and
thus tend to specify self-contained questions in a
hope to reduce the system’s inference load.

The second observation is about user behavior
in response to different system performances (i.e.,
problematic or error-free situations). We were
hoping to see different strategies users might ap-
ply to deal with the problematic situations. How-
ever, based on the data, we found that when a prob-
lem occurred, users either rephrased their ques-
tions (i.e., the same question expressed in a dif-
ferent way) or gave up the question and went on
specifying anew guestion. (Here we use Rephrase
and New to denote these two kinds of behaviors.)
We have not observed any sub-dialogs initiated by
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# Question/Answer Annotation ‘ Problematic ‘ Error-free ‘ Total ‘
Q1 When was Tom Cruise born? New SWitCh Continue
Al R Baseq on thel memoir of combgt veteran Prob‘le— unstruct. 29 20 119
on Kovic, the film stars Tom Cruise as matic
Kovic, whose gunshot wound in Vietnam struct. 29 133 162
left him paralyzed from the chest down. .
....a powerfully intimate portrait that entire 58 223 281
unfolds on an epic scale, Born on the F
Fourth of July is arguably Stone's best film Rephrase Re_try NegOtlate
(if you can forgive its often strident tone), unstruct. 19 4 23
Q2 What year was Tom Cruise born? Re-try S[I':JCt. 12? 160 1(;?
entire
A2 ...'I;Eon;a; Cfr;lisle l\lllgggtper '||V V\_/as_I botrn Error-Free Total-unst 48 94 142
on the 3rd of July, eerily similar to
his film Born on the 4th of July), in TotaI-St 131 139 270
Syracuse, New York. He was the only boy
of four children.... Total-ent 179 233 412
3 What d T Cruise do fi living? Conti . . . .
° o7 oes Tom mhise fo ora ng ornee Table 1: Categorization of user intent with the cor-
A3 ...you get a very nice role that shows you Proble- H
differently, not the heavy, and youre matic responding number of occurrences from the un-
working with a George Clooney or a Tom structured scenarios, the structured scenarios, and
Cruise or a Nicolas Cage or a Martin . ! !
Scorsese. | can live with that ... the entire dataset.
Q4 What is Tom Cruise's profession? Re-try
A4 | ...Sowe may agree that Cruise’s Proble- the user to clarify a previous question or answer.
professional standing accounts for some matic . . . .
measure of his fame.... One possible explanation is that the current inves-
Q5 | What are the best movies with Tom Cruise Switch tigation was conducted in abasic interactive mode
in them? : : : where the system was only capable of providing
A% | 1006 s i wan were e e || ErroreFree some sort of answers. Thismay limit users expec-
starred with Oscar-winner Dustin Hoffman. tation in the kind of questions that can be handled
Oliver Stone's Born on the Fourth of July K i
(1989) earned him a Best Actor Oscar by the system. Our assumption is that, once the
nomination for his hard-hitting portrayal of . .
anti-war activist Ron Kovic... QA system becomes more intelligent and able to

carry on conversation, different types of questions
(i.e., other than rephrase or new) will be observed.
This hypothesis certainly needs to be validated in
acornversational setting.

Thethird observation isthat the rephrased ques-
tions seem to strongly correlate with problematic
situations, athough not always. New questions
cannot distinguish a problematic situation from
an error-free situation. Table 1 shows the statis-
tics from our data about different combinations
of new/rephrase questions and performance situ-
ations’. What is interesting is that these different
combinations can reflect different types of user in-
tent behind the questions. More specifically, given
a question, four types of user intent can be cap-
tured with respect to the context (e.g., the previous
guestion and answer)

Continue indicates that the user is satisfied with
the previous answer and now moveson to this
new question.

Switch indicates that the user has given up on the
previous question and now moves on to this

2The last question from each interaction session is not in-
cluded in these statistics because there is no follow-up ques-
tion after that.



new question.

Re-try indicates that the user is not satisfied with
the previous answer and now tries to get a
better answer.

Negotiate indicates that the user is not satisfied
with the previous answer (although it ap-
pears to be correct from the system’s point
of view) and now tries to get a better answer
for his’/her own needs.

Table 1 summarizes these different types of
intent together with the number of correspond-
ing occurrences from both structured and unstruc-
tured scenarios. Since in the unstructured sce-
narios it was hard to anticipate user's questions
and therefore take a correct action to respond to a
problematic/error-free situation, the distribution of
these two situations is much more skewed than the
distribution for the structured scenarios. Also as
mentioned earlier, in unstructured scenarios, users
lacked the motivation to pursue specific informa-
tion, so the ratio between switch and re-try ismuch
larger than that observed in the structured scenar-
ios. Nevertheless, we did observe different user
behavior in response to different situations. As
discussed later in Section 5, identifying these fine-
grained intents will allow QA systems to be more
proactive in helping users find satisfying answers.

4 Automatic | dentification of
Problematic Situations and User | ntent

Given the discussion above, the next question is
how to automatically identify problematic situa-
tions and user intent. Weformulate thisasaclassi-
fication problem. Given a question @Q);, its answer
A;, and the follow-up question Q;41:
(1) Automatic identification of problematic situa-
tions is to decide whether A4; is problematic (i.e.,
correct or incorrect) based on the follow-up ques-
tion ;41 and the interaction context. Thisis a
binary classification problem.
(2) Automatic identification of user intent is to
identify the intent of Q); 11 given the interaction
context. Because we only have very limited in-
stances of Negotiate (see Table 1), we currently
merge Negotiate with Re-try since both of them
represent a situation where a better answer is re-
quested. Thus, this problem becomes a trinary
classification problem.

To build these classifiers, we identified a set of
features, which areillustrated next.
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4.1 Features

Given aquestion Q;, itsanswer A;, and thefollow-
up question @;+1, the following set of features are
used:

Target matching(TM): a binary feature indicat-
ing whether the target type of @, isthe same as
the target type of ();. Our data shows that the rep-
etition of the target type may indicate a rephrase,
which could signal a problematic situation hasjust
happened.

Named entity matching (NEM): abinary feature
indicating whether all the named entities in Q;;
also appear in ;. If no new named entity is in-
troduced in Q; 41, itislikely Q;; isarephrase of
Q-

Similarity between questions (SQ): a numeric
feature measuring the similarity between @), and
Q;. Our assumption is that the higher the simi-
larity is, the more likely the current question is a
rephrase to the previous one.

Similarity between content words of questions
(SQC): this feature is similar to the previous fea
ture (i.e., SQ) except that the similarity measure-
ment is based on the content words excluding
named entities. This is to prevent the similarity
measurement from being dominated by the named
entities.

Similarity between @; and A; (SA): this feature
measures how close the retrieved passage matches
the question. Our assumption isthat although are-
trieved passage is the most relevant passage com-
pared to others, it still may not contain the answer
(e.g., when an answer does not even exist in the
data collection).

Similarity between @; and A; based on the con-
tent words (SAC): this feature is essentialy the
same as the previous feature (SA) except that the
similarity is calculated after named entities are re-
moved from the questions and answers.

Note that since our data is currently collected
from simulation studies, we do not have the confi-
dence score from the retrieval engine associated
with every answer. In practice, the confidence
score can be used as an additional feature.

Since our focusis not on the similarity measure-
ment but rather the use of the measurement in the
classification models, our current similarity mea-
surement is based on a simple approach that mea-
sures commonality and difference between two
objects as proposed by Lin (1998). More specifi-
cally, the following equation is applied to measure



the similarity between two chunks of text 7; and
Ts:

—log P(T1 N Tg)

—log P(Th UT?)

siml (Tl y TQ) =

Assume the occurrence of each word is indepen-
dent, then:

— Dweninm, log P(w)

- Zw€T1UT2 log P(w)

where P(w) was cal culated based on the data used
in the previous TREC evaluations.

siml (Tl, TQ) =

4.2

To identify problematic situations, we experi-
mented with three different classifiers: Maxi-
mum Entropy Model (MEM) from MALLET?,
SVM from SVM-Light*, and Decision Trees from
WEKA?®. A leave-one-out validation was applied
where one interaction session was used for testing
and the remaining interaction sessions were used
for training.

Table 2 shows the performance of the three
models based on different combinations of fea
turesinterms of classification accuracy. The base-
line result is the performance achieved by sim-
ply assigning the most frequently occurred class.
For the unstructured scenarios, the performance
of the classifiers is rather poor, which indicates
that it is quite difficult to make any generaliza-
tion based on the current feature sets when users
are less motivated in finding specific information.
For the structured scenarios, the best performance
for each model is highlighted in bold in Table 2.
The Decision Tree model achieves the best per-
formance of 77.8% in identifying problematic sit-
uations, which is more than 25% better than the
baseline performance.

| dentification of Problematic Situations

4.3

To identify user intent, we formulate the problem
as follows: given an observation feature vector f
where each element of the vector corresponds to
a feature described earlier, the god is to identify
an intent ¢* from a set of intents I ={Continue,
Switch, Re-try/Negotiate} that satisfies the follow-
ing equation:

| dentification of User Intent

" = argmax . P(c|f)

*http://mallet.cs.umass.edu/index.php/
*http://svmlight.joachims.org/
5http ://www.cs.waikato.ac.nz/ml/weka/
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Our assumption is that user intent for a ques-
tion can be potentially influenced by the intent
from a preceding question. For example, Switch
islikely to follow Re-try. Therefore, we have im-
plemented a Maximum Entropy Markov Model
(MEMM) (McCallum et al., 2000) to take the se-
guence of interactions into account.

Given asequence of questions @1, @2, Upto Q;,
there is an observation feature vector £ associated
with each @;. In MEMM, the prediction of user
intent ¢, for Q¢ not only depends on the observa-
tion f;, but also the intent ¢;_; from the preceding
question Q;_1. Infact, this approach finds the best
sequence of user intent C* for Q1 up to Q; based
on a sequence of observations fi, f5, ..., f; as fol-
lows:

C* = argmaxgc i« P(C|f1, fa, ..., f;)

where C' is asequence of intent and I is the set of
all possible sequences of intent with length ¢.

To find this sequence of intent C*, MEMM
keeps a variable oy (i) which is defined to be the
maximum probability of seeing a particular se-
quence of intent ending at intent ¢ (¢ € I) for
guestion @, given the observation sequence for
questions Q1 up to Q;:

max Plcy,..
Cl,-.,Ct—1

Ozt(’i): .,Ct_l,Ct:i‘fl,...,ft)
This variable can be calculated by a dynamic
optimization procedure similar to the Viterbi algo-

rithm in the Hidden Markov Model:

(i) = mjaxat_l(j) x Pley =ilei—1 = 7,f)

where P(¢; = i|c;—1 = j, 1) is estimated by the
Maximum Entropy Model.

Table 3 shows the best results of identifying
user intent based on the Maximum Entropy Model
and MEMM using the leave-one-out approach.

The results have shown that both models did not
work for the data collected from unstructured sce-
narios (i.e., the baseline accuracy for intent iden-
tification is 63.4%). For structured scenarios, in
terms of the overal accuracy, both models per-
formed significantly better than the baseline (i.e.,
49.3%). The MEMM worked only dightly better
than the MEM. Given our limited data, it is not
conclusive whether the transitions between ques-
tions will help identify user intent in abasic inter-
active mode. However, we expect to see more in-
fluence from the transitions in fully conversationa

QA.



MEM SVM DTree
Features un S ent un S ent un S ent
Baseline 66.2 515 563|662 515 56.3| 66.2 515 56.3
™, SQC 50.0 574 549|535 60.0 578|535 559 551
NEM, SQC 373 744 617|373 744 617|373 744 617
™, SQ 61.3 648 636|570 641 617|599 644 629
NEM, SQC, SAC 408 76.7 643|380 744 619|493 778 68.0
™, SQ, SAC 59.2 674 646|613 663 646|627 656 64.6
TM, NEM, SQC 542 752 680|542 752 680|535 744 67.2
™, SQ, SA 634 719 689|585 715 670|676 756 728
TM, NEM, SQC, SAC | 549 756 684 542 752 68.0| 556 744 68.0

* un - unstructured, s - structured, ent - entire

Table 2: Performance of automatic identification of problematic situations

MEM MEMM

un S un S

CONTINUE 644 69.7
96.7 85.8

773 76.8

67.3 70.8
80.0 88.8
73.1 787

RE-TRY
INEGOTIATE

286 762|371 790
87 741 |55 731

133 751|448 759

SWITCH - - - 500
0 0 0 3.6

- - | - 87

M2 OV T TV TAOTO

Overdl accuracy | 62.7 722 | 59.9 73.7

* un - unstructured, s - structured

Table 3: Performance of automatic identification
of user intent

5 Implicationsof Problematic Situations
and User Intent

Automated identification of problematic situations
and user intent have potential implications in the
design of conversational QA systems. Identifica-
tion of problematic situations can be considered as
implicit feedback. The system can use this feed-
back to improve its answer retrieval performance
and proactively adapt its strategy to cope with
problematic situations. One might think that an
alternative way is to explicitly ask users for feed-
back. However, this explicit approach will defeat
the purpose of intelligent conversational systems.
Soliciting feedback after each question not only
will frustrate users and lengthen the interaction,
but also will interrupt the flow of user thoughts and
conversation. Therefore, our focus hereisto inves-
tigate the more challenging end of implicit feed-
back. In practice, the explicit feedback and im-

plicit feedback should be intelligently combined.
For example, if the confidence for automatically
identifying a problematic situation or an error-free
situation islow, then perhaps explicit feedback can
be solicited.

Automatic identification of user intent also has
important implications in building intelligent con-
versationa QA systems. For example, if Con-
tinue isidentified during interaction, then the sys-
tem can automatically collect the question answer
pairs for potential future use. If Switch is identi-
fied, the system may put aside the question that has
not been correctly answered and proactively come
back to that question later after more information
is gathered. If Re-try isidentified, the system may
avoid repeating the same answer and at the same
time may take the initiative to guide users on how
to rephrase a question. If Negotiate is identified,
the system may want to investigate the user’s par-
ticular needs that may be different from the gen-
eral needs. Overdl, different strategies can be de-
veloped to address problematic situations and dif-
ferent intents. We will investigate these strategies
in our future work.

This paper reports our initial effort in investi-
gating interactive QA from a conversational point
of view. The current investigation has severad
simplifications. First, our current work has fo-
cused on factoid questions where it is relatively
easy to judge a problematic or error-free situation.
However, as discussed in earlier work (Small et
a., 2003), sometimes it is very hard to judge the
truthfulness of an answer, especially for analyti-
cal questions. Therefore, our future work will ex-
amine the new implications of problematic situa-
tions and user intent for analytical questions. Sec-



ond, our current investigation is based on a ba-
sic interactive mode. As mentioned earlier, once
the QA systems become more intelligent and con-
versational, more varieties of user intent are an-
ticipated. How to characterize and automatically
identify more complex user intent under these dif-
ferent situations is another direction of our future
work.

6 Conclusion

This paper presents our initial investigation on
automatic identification of problematic situations
and user intent in interactive QA. Our results have
shown that, once users are motivated in finding
specific information related to their information
goals, user behavior and interaction context can
help automatically identify problematic situations
and user intent. Although our current investigation
is based on the data collected from a controlled
study, the same approaches can be applied dur-
ing online processing as the question answering
proceeds. The identified problematic situations
and/or user intent will provide immediate feed-
back for a QA system to adjust its behavior and
adapt better strategies to cope with different situa-
tions. Thisis an important step toward intelligent
conversational question answering.
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Abstract

Pipeline computation, in which a task is
decomposed into several stages that are
solved sequentially, is a common compu-
tational strategy in natural language pro-
cessing. The key problem of this model
is that it results in error accumulation and
suffers from its inability to correct mis-
takes in previous stages. We develop
a framework for decisions made via in
pipeline models, which addresses these
difficulties, and presents and evaluates it
in the context of bottom up dependency
parsing for English. We show improve-
ments in the accuracy of the inferred trees
relative to existing models. Interestingly,
the proposed algorithm shines especially
when evaluated globally, at a sentence
level, where our results are significantly
better than those of existing approaches.

1 Introduction

A pipeline process over the decisions of learned
classifiers is a common computational strategy in
natural language processing. In this model a task
is decomposed into several stages that are solved
sequentially, where the computation in the ith
stage typically depends on the outcome of com-
putations done in previous stages. For example,
a semantic role labeling program (Punyakanok et
al., 2005) may start by using a part-of-speech tag-
ger, then apply a shallow parser to chunk the sen-
tence into phrases, identify predicates and argu-
ments and then classify them to types. In fact,
any left to right processing of an English sentence
may be viewed as a pipeline computation as it pro-
cesses a token and, potentially, makes use of this
result when processing the token to the right.
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The pipeline model is a standard model of
computation in natural language processing for
good reasons. It is based on the assumption that
some decisions might be easier or more reliable
than others, and their outcomes, therefore, can be
counted on when making further decisions. Nev-
ertheless, it is clear that it results in error accu-
mulation and suffers from its inability to correct
mistakes in previous stages. Researchers have re-
cently started to address some of the disadvantages
of this model. E.g., (Roth and Yih, 2004) suggests
a model in which global constraints are taken into
account in a later stage to fix mistakes due to the
pipeline.  (Punyakanok et al., 2005; Marciniak
and Strube, 2005) also address some aspects of
this problem. However, these solutions rely on the
fact that all decisions are made with respect to the
same input; specifically, all classifiers considered
use the same examples as their input. In addition,
the pipelines they study are shallow.

This paper develops a general framework for
decisions in pipeline models which addresses
these difficulties. Specifically, we are interested
in deep pipelines — a large number of predictions
that are being chained.

A pipeline process is one in which decisions
made in the ith stage (1) depend on earlier deci-
sions and (2) feed on input that depends on earlier
decisions. The latter issue is especially important
at evaluation time since, at training time, a gold
standard data set might be used to avoid this issue.

We develop and study the framework in the con-
text of a bottom up approach to dependency pars-
ing. We suggest that two principles to guide the
pipeline algorithm development:

(i) Make local decisions as reliable as possible.
(i1) Reduce the number of decisions made.
Using these as guidelines we devise an algo-

Proceedings of the COLING/ACL 2006 Main Conference Poster Sespagss 65-72,
Sydney, July 20062006 Association for Computational Linguistics



rithm for dependency parsing, prove that it satis-
fies these principles, and show experimentally that
this improves the accuracy of the resulting tree.

Specifically, our approach is based on a shift-
reduced parsing as in (Yamada and Matsumoto,
2003). Our general framework provides insights
that allow us to improve their algorithm, and to
principally justify some of the algorithmic deci-
sions. Specifically, the first principle suggests to
improve the reliability of the local predictions,
which we do by improving the set of actions taken
by the parsing algorithm, and by using a look-
ahead search. The second principle is used to jus-
tify the control policy of the parsing algorithm —
which edges to consider at any point of time. We
prove that our control policy is optimal in some
sense, and that the decisions we made, guided by
these, principles lead to a significant improvement
in the accuracy of the resulting parse tree.

1.1 Dependency Parsing and Pipeline Models

Dependency trees provide a syntactic reresenta-
tion that encodes functional relationships between
words; it is relatively independent of the grammar
theory and can be used to represent the structure
of sentences in different languages. Dependency
structures are more efficient to parse (Eisner,
1996) and are believed to be easier to learn, yet
they still capture much of the predicate-argument
information needed in applications (Haghighi et
al., 2005), which is one reason for the recent in-
terest in learning these structures (Eisner, 1996;
McDonald et al., 2005; Yamada and Matsumoto,
2003; Nivre and Scholz, 2004).

Eisner’s work — O(n?) parsing time generative
algorithm — embarked the interest in this area.
His model, however, seems to be limited when
dealing with complex and long sentences. (Mc-
Donald et al., 2005) build on this work, and use
a global discriminative training approach to im-
prove the edges’ scores, along with Eisner’s algo-
rithm, to yield the expected improvement. A dif-
ferent approach was studied by (Yamada and Mat-
sumoto, 2003), that develop a bottom-up approach
and learn the parsing decisions between consecu-
tive words in the sentence. Local actions are used
to generate a dependency tree using a shift-reduce
parsing approach (Aho et al., 1986). This is a
true pipeline approach, as was done in other suc-
cessful parsers, e.g. (Ratnaparkhi, 1997), in that
the classifiers are trained on individual decisions
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rather than on the overall quality of the parser, and
chained to yield the global structure. Clearly, it
suffers from the limitations of pipeline process-
ing, such as accumulation of errors, but neverthe-
less, yields very competitive parsing results. A
somewhat similar approach was used in (Nivre and
Scholz, 2004) to develop a hybrid bottom-up/top-
down approach; there, the edges are also labeled
with semantic types, yielding lower accuracy than
the works mentioned above.

The overall goal of dependency parsing (DP)
learning is to infer a tree structure. A common
way to do that is to predict with respect to each
potential edge (i, j) in the tree, and then choose a
global structure that (1) is a tree and that (2) max-
imizes some score. In the context of DPs, this
“edge based factorization method” was proposed
by (Eisner, 1996). In other contexts, this is similar
to the approach of (Roth and Yih, 2004) in that
scoring each edge depends only on the raw data
observed and not on the classifications of other
edges, and that global considerations can be used
to overwrite the local (edge-based) decisions.

On the other hand, the key in a pipeline model
is that making a decision with respect to the edge
(i,j) may gain from taking into account deci-
sions already made with respect to neighboring
edges. However, given that these decisions are
noisy, there is a need to devise policies for reduc-
ing the number of predictions in order to make the
parser more robust. This is exemplified in (Ya-
mada and Matsumoto, 2003) — a bottom-up ap-
proach, that is most related to the work presented
here. Their model is a “traditional” pipeline model
— a classifier suggests a decision that, once taken,
determines the next action to be taken (as well as
the input the next action observes).

In the rest of this paper, we propose and jus-
tify a framework for improving pipeline process-
ing based on the principles mentioned above: (i)
make local decisions as reliably as possible, and
(i1) reduce the number of decisions made. We
use the proposed principles to examine the (Ya-
mada and Matsumoto, 2003) parsing algorithm
and show that this results in modifying some of
the decisions made there and, consequently, better
overall dependency trees.

2 Efficient Dependency Parsing

This section describes our DP algorithm and jus-
tifies its advantages as a pipeline model. We pro-



pose an improved pipeline framework based on the
mentioned principles.

For many languages such as English, Chinese
and Japanese (with a few exceptions), projective
dependency trees (that is, DPs without edge cross-
ings) are sufficient to analyze most sentences. Our
work is therefore concerned only with projective
trees, which we define below.

For words «x, y in the sentence T' we introduce
the following notations:

x — y: x is the direct parent of y.

x —™* y: x is an ancestor of y;

Ty T —yory — T.

x < y:xistotheleftof yinT.

Definition 1 (Projective Language) (Nivre,
2003) Va,b,c € T,a <> band a < ¢ < bimply
thata —* ¢ or b —" c.

2.1 A Pipeline DP Algorithm

Our parsing algorithm is a modified shift-reduce
parser that makes use of the actions described be-
low and applies them in a left to right manner
on consecutive pairs of words (a,b) (¢ < b) in
the sentence. This is a bottom-up approach that
uses machine learning algorithms to learn the pars-
ing decisions (actions) between consecutive words
in the sentences. The basic actions used in this
model, as in (Yamada and Matsumoto, 2003), are:

Shift: there is no relation between a and b, or
the action is deferred because the relationship be-
tween a and b cannot be determined at this point.

Right: b is the parent of a,

Left: a is the parent of b.

This is a true pipeline approach in that the clas-
sifiers are trained on individual decisions rather
than on the overall quality of the parsing, and
chained to yield the global structure. And, clearly,
decisions make with respect to a pair of words af-
fect what is considered next by the algorithm.

In order to complete the description of the algo-
rithm we need to describe which edge to consider
once an action is taken. We describe it via the no-
tion of the focus point: when the algorithm con-
siders the pair (a, b), a < b, we call the word a the
current focus point.

Next we describe several policies for determin-
ing the focus point of the algorithm following an
action. We note that, with a few exceptions, de-
termining the focus point does not affect the cor-
rectness of the algorithm. It is easy to show that
for (almost) any focus point chosen, if the correct
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action is selected for the corresponding edge, the
algorithm will eventually yield the correct tree (but
may require multiple cycles through the sentence).
In practice, the actions selected are noisy, and a
wasteful focus point policy will result in a large
number of actions, and thus in error accumulation.
To minimize the number of actions taken, we want
to find a good focus point placement policy.

After S, the focus point always moves one word
to the right. After L or R there are there natural
placement policies to consider:

Start Over: Move focus to the first word in 7.
Stay: Move focus to the next word to the right.
That is, for T = (a, b, ¢), and focus being a, an
L action will result is the focus being a, while R
action results in the focus being b.

Step Back: The focus moves to the previous word
(on the left). That is, for 7" = (a, b, ¢), and focus
being b, in both cases, a will be the focus point.

In practice, different placement policies have a
significant effect on the number of pairs consid-
ered by the algorithm and, therefore, on the fi-
nal accuracy!. The following analysis justifies the
Step Back policy. We claim that if Step Back
is used, the algorithm will not waste any action.
Thus, it achieves the goal of minimizing the num-
ber of actions in pipeline algorithms. Notice that
using this policy, when L is taken, the pair (a, b) is
reconsidered, but with new information, since now
it is known that c is the child of b. Although this
seems wasteful, we will show this is a necessary
movement to reduce the number of actions.

As mentioned above, each of these policies
yields the correct tree. Table 1 compares the three
policies in terms of the number of actions required
to build a tree.

Policy H #Shift ‘ # Left ‘ # Right ‘
Start over || 156545 | 26351 | 27918
Stay 117819 | 26351 | 27918
Step back || 43374 | 26351 | 27918

Table 1: The number of actions required to build
all the trees for the sentences in section 23 of Penn
Treebank (Marcus et al., 1993) as a function of
the focus point placement policy. The statistics are
taken with the correct (gold-standard) actions.

It is clear from Table 1 that the policies result

"Note that (Yamada and Matsumoto, 2003) mention that
they move the focus point back after R, but do not state what
they do after executing L actions, and why. (Yamada, 2006)
indicates that they also move focus point back after L.



Algorithm 2 Pseudo Code of the dependency
parsing algorithm. getFeatures extracts the fea-
tures describing the word pair currently consid-
ered; getAction determines the appropriate action
for the pair; assignParent assigns a parent for the
child word based on the action; and deleteWord
deletes the child word in 7" at the focus once the

action is taken.
Let ¢ represents for a word token

For sentence 1" = {t1,t2,...,tn}
focus=1
while focus< |T'| do
U = getFeatures(tfocus, t focus+1)
a = getAction(t focus, t focus+1, V)
if « = L or = R then
assignParent(t focus: t focus+1, )
deleteWord(T, focus, )
/I performing Step Back here
focus = focus — 1
else
focus = focus + 1
end if
end while

in very different number of actions and that Step
Back is the best choice. Note that, since the ac-
tions are the gold-standard actions, the policy af-
fects only the number of S actions used, and not
the L and R actions, which are a direct function
of the correct tree. The number of required ac-
tions in the testing stage shows the same trend and
the Step Back also gives the best dependency ac-
curacy. Algorithm 2 depicts the parsing algorithm.

2.2 Correctness and Pipeline Properties

We can prove two properties of our algorithm.
First we show that the algorithm builds the de-
pendency tree in only one pass over the sentence.
Then, we show that the algorithm does not waste
actions in the sense that it never considers a word
pair twice in the same situation. Consequently,
this shows that under the assumption of a perfect
action predictor, our algorithm makes the smallest
possible number of actions, among all algorithms
that build a tree sequentially in one pass.

Note that this may not be true if the action clas-
sifier is not perfect, and one can contrive examples
in which an algorithm that makes several passes on
a sentence can actually make fewer actions than a
single pass algorithm. In practice, however, as our
experimental data shows, this is unlikely.
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Lemma 1 A dependency parsing algorithm that
uses the Step Back policy completes the tree when
it reaches the end of the sentence for the first time.

In order to prove the algorithm we need the fol-
lowing definition. We call a pair of words (a,b) a
free pair if and only if there is a relation between
a and b and the algorithm can perform L or R ac-
tions on that pair when it is considered. Formally,

Definition 2 (free pair) A pair (a,b) considered
by the algorithm is a free pair, if it satisfies the
following conditions:

1. a<b

2. a, b are consecutive in T (not necessary in
the original sentence).

3. No other word in T is the child of a or b. (a
and b are now part of a complete subtree.)

Proof. : It is easy to see that there is at least one
free pair in T, with |T'| > 1. The reason is that
if no such pair exists, there must be three words
{a,b,c} st. a = bya < c <band =(a — ¢V
b — c). However, this violates the properties of a
projective language.

Assume {a, b, d} are three consecutive words in
T. Now, we claim that when using Step Back, the
focus point is always to the left of all free pairs in
T. This is clearly true when the algorithm starts.
Assume that (a, b) is the first free pair in T and let
c be just to the left of a and b. Then, the algorithm
will not make a L or R action before the focus
point meets (a, b), and will make one of these ac-
tions then. It’s possible that (c,a V b) becomes a
free pair after removing a or b in T’ so we need
to move the focus point back. However, we also
know that there is no free pair to the left of c.
Therefore, during the algorithm, the focus point
will always remain to the left of all free pairs. So,
when we reach the end of the sentence, every free
pair in the sentence has been taken care of, and the
sentence has been completely parsed. O

Lemma 2 All actions made by a dependency
parsing algorithm that uses the Step Back policy
are necessary.

Proof. : We will show that a pair (a, b) will never
be considered again given the same situation, that
is, when there is no additional information about
relations a or b participate in. Note that if R or



L is taken, either a or b will become a child word
and be eliminate from further consideration by the
algorithm. Therefore, if the action taken on (a, b)
is R or L, it will never be considered again.

Assume that the action taken is S, and, w.l.o.g.
that this is the rightmost S action taken before a
non-S action happens. Note that it is possible that
there is a relation between a and b, but we can-
not perform R or L now. Therefore, we should
consider (a,b) again only if a child of a or b has
changed. When Step Back is used, we will con-
sider (a,b) again only if the next action is L. (If
next action is R, b will be eliminated.) This is true
because the focus point will move back after per-
forming L, which implies that b has a new child
so we are indeed in a new situation. Since, from
Lemma 1, the algorithm only requires one round.
we therefore consider (a, b) again only if the situ-
ation has changed. O

2.3 Improving the Parsing Action Set

In order to improve the accuracy of the action pre-
dictors, we suggest a new (hierarchical) set of ac-
tions: Shift, Left, Right, WaitLeft, WaitRight. We
believe that predicting these is easier due to finer
granularity — the S action is broken to sub-actions
in a natural way.

WaitlLeft: a < b. a is the parent of b, but it’s
possible that b is a parent of other nodes. Action is
deferred. If we perform Left instead, the child of b
can not find its parents later.

WaitRight: a < b. b is the parent of a, but it’s
possible that a is a parent of other nodes. Similar
to WL, action is deferred.

Thus, we also change the algorithm to perform
S only if there is no relationship between a and b?.
The new set of actions is shown to better support
our parsing algorithm, when tested on different
placement policies. When WaitLeft or WaitRight
is performed, the focus will move to the next word.
It is very interesting to notice that WairRight is
not needed in projective languages if Step Back
is used. This give us another strong reason to use
Step Back, since the classification becomes more
accurate — a more natural class of actions, with a
smaller number of candidate actions.

Once the parsing algorithm, along with the fo-
cus point policy, is determined, we can train the

YInterestingly, (Yamada and Matsumoto, 2003) mention
the possibility of an additional single Wait action, but do not
add it to the model.
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action classifiers. Given an annotated corpus, the
parsing algorithm is used to determine the action
taken for each consecutive pair; this is used to train
a classifier to predict one of the five actions. The
details of the classifier and the feature used are
given in Section 4.

When the learned model is evaluated on new
data, the sentence is processed left to right and the
parsing algorithm, along with the action classifier,
are used to produce the dependency tree. The eval-
uation process is somewhat more involved, since
the action classifier is not used as is, but rather via
a look ahead inference step described next.

3 A Pipeline Model with Look Ahead

The advantage of a pipeline model is that it can use
more information, based on the outcomes of previ-
ous predictions. As discussed earlier, this may re-
sult in accumulating error. The importance of hav-
ing a reliable action predictor in a pipeline model
motivates the following approach. We devise a
look ahead algorithm and use it as a look ahead
policy, when determining the predicted action.

This approach can be used in any pipeline
model but we illustrate it below in the context of
our dependency parser.

The following example illustrates a situation in
which an early mistake in predicting an action
causes a chain reaction and results in further mis-
takes. This stresses the importance of correct early
decisions, and motivates our look ahead policy.

Let (w, z, y, z) be a sentence of four words, and
assume that the correct dependency relations are
as shown in the top part of Figure 1. If the system
mistakenly predicts that x is a child of w before y
and z becomes x’s children, we can only consider
the relationship between w and y in the next stage.
Consequently, we will never find the correct parent
for y and z. The previous prediction error propa-
gates and impacts future predictions. On the other
hand, if the algorithm makes a correct prediction,
in the next stage, we do not need to consider w and
y. As shown, getting useful rather than misleading
information in a pipeline model, requires correct
early predictions. Therefore, it is necessary to uti-
lize some inference framework to that may help
resolving the error accumulation problem.

In order to improve the accuracy of the action
prediction, we might want to examine all possible
combinations of action sequences and choose the
one that maximizes some score. It is clearly in-



Figure 1: Top figure: the correct dependency rela-
tions between w, x, y and z. Bottom figure: if the
algorithm mistakenly decides that x is a child of w
before deciding that y and z are x’s children, we
cannot find the correct parent for y and z.

tractable to find the global optimal prediction se-
quences in a pipeline model of the depth we con-
sider. Therefore, we use a look ahead strategy,
implemented via a local search framework, which
uses additional information but is still tractable.

The local search algorithm is presented in Algo-
rithm 3. The algorithm accepts three parameters,
model, depth and State. We assume a classifier
that can give a confidence in its prediction. This is
represented here by model.

As our learning algorithm we use a regularized
variation of the perceptron update rule, as incorpo-
rated in SNoW (Roth, 1998; Carlson et al., 1999),
a multi-class classifier that is tailored for large
scale learning tasks and has been used successfully
in a large number of NLP tasks (e.g., (Punyakanok
et al., 2005)). SNoW uses softmax over the raw
activation values as its confidence measure, which
can be shown to produce a reliable approximation
of the labels’ conditional probabilities.

The parameter depth is to determine the depth
of the search procedure. State encodes the config-
uration of the environment (in the context of the
dependency parsing this includes the sentence, the
focus point and the current parent and children for
each word). Note that State changes when a pre-
diction is made and that the features extracted for
the action classifier also depend on State.

The search algorithm will perform a search of
length depth. Additive scoring is used to score
the sequence, and the first action in this sequence
is selected and performed. Then, the State is up-
dated, the new features for the action classifiers are
computed and search is called again.

One interesting property of this framework is
that it allows that use of future information in ad-
dition to past information. The pipeline model nat-
urally allows access to all the past information.
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Algorithm 3 Pseudo code for the look ahead algo-
rithm. y represents a action sequence. The func-
tion search considers all possible action sequences
with |depth| actions and returns the sequence with
the highest score.

Algo predictAction(model, depth, State)

x = getNextFeature(Srate)

y = search(x, depth, model, State)

lab = y[1]

State = update(State, lab)

return lab

Algo search(z, depth, model, State)
maxScore = —o0
F={y | |lyll = depth}
for y in F' do
s = 0, TmpState = State
for i =1...depthdo
x = getNextFeature(TmpState)
s = s+ score(y[i], x, model)
TmpState = update(TmpState, y|i])
end for
if s > maxScore then
y=Yy
maxScore = s
end if
end for
return y

Since the algorithm uses a look ahead policy, it
also uses future predictions. The significance of
this becomes clear in Section 4.

There are several parameters, in addition to
depth that can be used to improve the efficiency of
the framework. For example, given that the action
predictor is a multi-class classifier, we do not need
to consider all future possibilities in order to de-
cide the current action. For example, in our exper-
iments, we only consider two actions with highest
score at each level (which was shown to produce
almost the same accuracy as considering all four
actions).

4 Experiments and Results

We use the standard corpus for this task, the Penn
Treebank (Marcus et al., 1993). The training set
consists of sections 02 to 21 and the testing set is
section 23. The POS tags for the evaluation data
sets were provided by the tagger of (Toutanova et
al., 2003) (which has an accuracy of 97.2% section



23 of the Penn Treebank).

4.1 Features for Action Classification

For each word pair (w1, ws) we use the words,
their POS tags and also these features of the chil-
dren of wy and wy. We also include the lexicon
and POS tags of 2 words before w; and 4 words
after wo (as in (Yamada and Matsumoto, 2003)).
The key additional feature we use, relative to (Ya-
mada and Matsumoto, 2003), is that we include
the previous predicted action as a feature. We
also add conjunctions of above features to ensure
expressiveness of the model. (Yamada and Mat-
sumoto, 2003) makes use of polynomial kernels
of degree 2 which is equivalent to using even more
conjunctive features. Overall, the average number
of active features in an example is about 50.

4.2 Evaluation

We use the same evaluation metrics as in (McDon-
ald et al., 2005). Dependency accuracy (DA) is the
proportion of non-root words that are assigned the
correct head. Complete accuracy (CA) indicates
the fraction of sentences that have a complete cor-
rect analysis. We also measure that root accuracy
(RA) and leaf accuracy (LA), as in (Yamada and
Matsumoto, 2003). When evaluating the result,
we exclude the punctuation marks, as done in (Mc-
Donald et al., 2005) and (Yamada and Matsumoto,
2003).

4.3 Results

We present the results of several of the experi-
ments that were intended to help us analyze and
understand several of the design decisions in our
pipeline algorithm.

To see the effect of the additional action, we
present in Table 2 a comparison between a system
that does not have the WaitLeft action (similar
to the (Yamada and Matsumoto, 2003) approach)
with one that does. In both cases, we do not use the
look ahead procedure. Note that, as stated above,
the action WaitRight is never needed for our pars-
ing algorithm. It is clear that adding WaitLeft in-
creases the accuracy significantly.

Table 3 investigates the effect of the look ahead,
and presents results with different depth param-
eters (depth= 1 means “no search”), showing a
consistent trend of improvement.

Table 4 breaks down the results as a function
of the sentence length; it is especially noticeable
that the system also performs very well for long
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| method | DA| RA| CA | LA |
wio WaitLeft || 90.27 | 90.73 | 39.28 | 93.87
w WaitLeft || 90.53 | 90.76 | 39.74 | 93.94

Table 2: The significant of the action WaitLeft.

[ method [ DA RAJ] CAJ LA]
depth=1 90.53 | 90.76 | 39.74 | 93.94
depth=2 || 90.67 | 91.51 | 40.23 | 93.96
depth=3 90.69 | 92.05 | 40.52 | 93.94
depth=4 || 90.79 | 92.26 | 40.68 | 93.95

Table 3: The effect of different depth settings.

sentences, another indication for its global perfor-
mance robustness.

Table 5 shows the results with three settings of
the POS tagger. The best result is, naturally, when
we use the gold standard also in testing. How-
ever, it is worthwhile noticing that it is better to
train with the same POS tagger available in test-
ing, even if its performance is somewhat lower.

Table 6 compares the performances of several
of the state of the art dependency parsing systems
with ours. When comparing with other depen-
dency parsing systems it is especially worth notic-
ing that our system gives significantly better accu-
racy on completely parsed sentences.

Interestingly, in the experiments, we allow the
parsing algorithm to run many rounds to parse a
sentece in the testing stage. However, we found
that over 99% sentences can be parsed in a single
round. This supports for our justification about the
correctness of our model.

5 Further Work and Conclusion

We have addressed the problem of using learned
classifiers in a pipeline fashion, where a task is de-
composed into several stages and stage classifiers
are used sequentially, where each stage may use
the outcome of previous stages as its input. This
is a common computational strategy in natural lan-
guage processing and is known to suffer from error
accumulation and an inability to correct mistakes
in previous stages.

[Sent. Len. | DA RA[ CA| LA ]

<11 || 934 | 96.7 | 85.2 | 94.6
11-20 || 92.4 | 93.7 | 56.1 | 94.7
21-30 || 904 | 91.8 | 325 | 934
31-40 || 90.4 | 89.8 | 16.8 | 94.0

>40 || 89.7 | 87.9 8.7 | 93.3

Table 4: The effect of sentences length. The ex-
periment is done with depth = 4.



[ Train-Test | DA RA [ CA ] LA ]

gold—pos || 90.7 | 92.0 | 40.8 | 93.8
pos—pos || 90.8 | 92.3 | 40.7 | 94.0
gold—gold || 92.0 | 93.9 | 43.6 | 95.0

Table 5: Comparing different sources of POS tag-
ging in a pipeline model. We set depth= 4 in all
the experiments of this table.

[ System | DA [ RA [ CA ] LA |

Y&MO3 || 90.3 | 91.6 | 384 | 93.5
N&S04 || 87.3 | 84.3 | 30.4 | N/A
M&C&PO5 || 909 | 94.2 | 37.5 | N/A
Current Work || 90.8 | 92.3 | 40.7 | 94.0

Table 6: The comparison between the current
work with other dependency parsing systems.

We abstracted two natural principles, one which
calls for making the local classifiers used in the
computation more reliable and a second, which
suggests to devise the pipeline algorithm in such
a way that minimizes the number of decisions (ac-
tions) made.

We study this framework in the context of de-
signing a bottom up dependency parsing. Not only
we manage to use this framework to justify several
design decisions, but we also show experimentally
that following these results in improving the accu-
racy of the inferred trees relative to existing mod-
els. Interestingly, we can show that the trees pro-
duced by our algorithm are relatively good even
for long sentences, and that our algorithm is do-
ing especially well when evaluated globally, at a
sentence level, where our results are significantly
better than those of existing approaches — perhaps
showing that the design goals were achieved.

Our future work includes trying to generalize
this work to non-projective dependency parsing,
as well as attempting to incorporate additional
sources of information (e.g., shallow parsing in-
formation) into the pipeline process.
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A Hybrid Convolution Tree Kernel for Semantic Role Labeling
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Abstract

A hybrid convolution tree kernel is pro-
posed in this paper to effectively model
syntactic structures for semantic role la-
beling (SRL). The hybrid kernel consists
of two individual convolution kernels: a
Path kernel, which captures predicate-
argument link features, and a Constituent
Structure kernel, which captures the syn-
tactic structure features of arguments.
Evaluation on the datasets of CoNLL-
2005 SRL shared task shows that the
novel hybrid convolution tree kernel out-
performs the previous tree kernels. We
also combine our new hybrid tree ker-
nel based method with the standard rich
flat feature based method. The experi-
mental results show that the combinational
method can get better performance than
each of them individually.

1 Introduction

In the last few years there has been increasing in-
terest in Semantic Role Labeling (SRL). It is cur-
rently a well defined task with a substantial body
of work and comparative evaluation. Given a sen-
tence, the task consists of analyzing the proposi-
tions expressed by some target verbs and some
constituents of the sentence. In particular, for each
target verb (predicate) all the constituents in the
sentence which fill a semantic role (argument) of
the verb have to be recognized.

Figure 1 shows an example of a semantic role
labeling annotation in PropBank (Palmer et al.,
2005). The PropBank defines 6 main arguments,
Arg0 is the Agent, Argl is Patient, etc. ArgM-
may indicate adjunct arguments, such as Locative,
Temporal.

Many researchers (Gildea and Jurafsky, 2002;
Pradhan et al., 2005a) use feature-based methods
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s
N‘P VP
|
PRP VBD NP PP
| | VA NVZAN
She bought D‘T N‘N ”Tl NN
Arg0 V' the sik in China
Arg1 ArgM-LOC

Figure 1: Semantic role labeling in a phrase struc-
ture syntactic tree representation

for argument identification and classification in
building SRL systems and participating in eval-
uations, such as Senseval-3 !, CoONLL-2004 and
2005 shared tasks: SRL (Carreras and Marquez,
2004; Carreras and Marquez, 2005), where a
flat feature vector is usually used to represent a
predicate-argument structure. However, it’s hard
for this kind of representation method to explicitly
describe syntactic structure information by a vec-
tor of flat features. As an alternative, convolution
tree kernel methods (Collins and Duffy, 2001)
provide an elegant kernel-based solution to im-
plicitly explore tree structure features by directly
computing the similarity between two trees. In
addition, some machine learning algorithms with
dual form, such as Perceptron and Support Vector
Machines (SVM) (Cristianini and Shawe-Taylor,
2000), which do not need know the exact presen-
tation of objects and only need compute their ker-
nel functions during the process of learning and
prediction. They can be well used as learning al-
gorithms in the kernel-based methods. They are
named kernel machines.

In this paper, we decompose the Moschitti
(2004)’s predicate-argument feature (PAF) kernel
into a Path kernel and a Constituent Structure ker-

"http://www.cs.unt.edu/~rada/senseval/senseval3/
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nel, and then compose them into a hybrid con-
volution tree kernel. Our hybrid kernel method
using Voted Perceptron kernel machine outper-
forms the PAF kernel in the development sets of
CoNLL-2005 SRL shared task. In addition, the fi-
nal composing kernel between hybrid convolution
tree kernel and standard features’ polynomial ker-
nel outperforms each of them individually.

The remainder of the paper is organized as fol-
lows: In Section 2 we review the previous work.
In Section 3 we illustrate the state of the art
feature-based method for SRL. Section 4 discusses
our method. Section 5 shows the experimental re-
sults. We conclude our work in Section 6.

2 Related Work

Automatic semantic role labeling was first intro-
duced by Gildea and Jurafsky (2002). They used
a linear interpolation method and extract features
from a parse tree to identify and classify the con-
stituents in the FrameNet (Baker et al., 1998) with
syntactic parsing results. Here, the basic features
include Phrase Type, Parse Tree Path, Position.
Most of the following works focused on feature
engineering (Xue and Palmer, 2004; Jiang et al.,
2005) and machine learning models (Nielsen and
Pradhan, 2004; Pradhan et al., 2005a). Some
other works paid much attention to the robust SRL
(Pradhan et al., 2005b) and post inference (Pun-
yakanok et al., 2004).

These feature-based methods are considered as
the state of the art method for SRL and achieved
much success. However, as we know, the standard
flat features are less effective to model the syntac-
tic structured information. It is sensitive to small
changes of the syntactic structure features. This
can give rise to a data sparseness problem and pre-
vent the learning algorithms from generalizing un-
seen data well.

As an alternative to the standard feature-based
methods, kernel-based methods have been pro-
posed to implicitly explore features in a high-
dimension space by directly calculating the sim-
ilarity between two objects using kernel function.
In particular, the kernel methods could be effective
in reducing the burden of feature engineering for
structured objects in NLP problems. This is be-
cause a kernel can measure the similarity between
two discrete structured objects directly using the
original representation of the objects instead of ex-
plicitly enumerating their features.
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Many kernel functions have been proposed in
machine learning community and have been ap-
plied to NLP study. In particular, Haussler (1999)
and Watkins (1999) proposed the best-known con-
volution kernels for a discrete structure. In the
context of convolution kernels, more and more
kernels for restricted syntaxes or specific do-
mains, such as string kernel for text categoriza-
tion (Lodhi et al., 2002), tree kernel for syntactic
parsing (Collins and Duffy, 2001), kernel for re-
lation extraction (Zelenko et al., 2003; Culotta
and Sorensen, 2004) are proposed and explored
in NLP domain. Of special interest here, Mos-
chitti (2004) proposed Predicate Argument Fea-
ture (PAF) kernel under the framework of convo-
lution tree kernel for SRL. In this paper, we fol-
low the same framework and design a novel hybrid
convolution kernel for SRL.

3 Feature-based methods for SRL

Usually feature-based methods refer to the meth-
ods which use the flat features to represent in-
stances. At present, most of the successful SRL
systems use this method. Their features are usu-
ally extended from Gildea and Jurafsky (2002)’s
work, which uses flat information derived from
a parse tree. According to the literature, we
select the Constituent, Predicate, and Predicate-
Constituent related features shown in Table 1.

Feature [ Description

Constituent related features

Phrase Type
Head Word
Last Word
First Word
Named Entity
POS

Previous Word
Next Word

syntactic category of the constituent

head word of the constituent

last word of the constituent

first word of the constituent

named entity type of the constituent’s head word
part of speech of the constituent

sequence previous word of the constituent
sequence next word of the constituent

Predicate related features

Predicate
Voice

SubCat
Predicate POS
Suffix

predicate lemma

grammatical voice of the predicate, either active or passive
Sub-category of the predicate’s parent node

part of speech of the predicate

suffix of the predicate

Predicate-Constituent related features

Path

Position

Path Length
Partial Path
Clause Layers

parse tree path from the predicate to the constituent

the relative position of the constituent and the predicate, before or after
the nodes number on the parse tree path

some part on the parse tree path

the clause layers from the constituent to the predicate

Table 1: Standard flat features

However, to find relevant features is, as usual,
a complex task. In addition, according to the de-
scription of the standard features, we can see that
the syntactic features, such as Path, Path Length,
bulk large among all features. On the other hand,
the previous researches (Gildea and Palmer, 2002;
Punyakanok et al., 2005) have also recognized the
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Figure 2: Predicate Argument Feature space

necessity of syntactic parsing for semantic role la-
beling. However, the standard flat features cannot
model the syntactic information well. A predicate-
argument pair has two different Path features even
if their paths differ only for a node in the parse
tree. This data sparseness problem prevents the
learning algorithms from generalizing unseen data
well. In order to address this problem, one method
is to list all sub-structures of the parse tree. How-
ever, both space complexity and time complexity
are too high for the algorithm to be realized.

4 Hybrid Convolution Tree Kernels for
SRL

In this section, we introduce the previous ker-
nel method for SRL in Subsection 4.1, discuss
our method in Subsection 4.2 and compare our
method with previous work in Subsection 4.3.

4.1 Convolution Tree Kernels for SRL

Moschitti (2004) proposed to apply convolution
tree kernels (Collins and Duffy, 2001) to SRL.
He selected portions of syntactic parse trees,
which include salient sub-structures of predicate-
arguments, to define convolution kernels for the
task of predicate argument classification. This por-
tions selection method of syntactic parse trees is
named as predicate-arguments feature (PAF) ker-
nel. Figure 2 illustrates the PAF kernel feature
space of the predicate buy and the argument Argl
in the circled sub-structure.

The kind of convolution tree kernel is similar to
Collins and Duffy (2001)’s tree kernel except the
sub-structure selection strategy. Moschitti (2004)
only selected the relative portion between a predi-
cate and an argument.

Given a tree portion instance defined above, we
design a convolution tree kernel in a way similar
to the parse tree kernel (Collins and Duffy, 2001).
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Firstly, a parse tree 1" can be represented by a vec-
tor of integer counts of each sub-tree type (regard-
less of its ancestors):

®(T) = (# of sub-trees of type 1,. ..,
# of sub-trees of type ¢, . . .,
# of sub-trees of type n)

This results in a very high dimension since the
number of different subtrees is exponential to the
tree’s size. Thus it is computationally infeasible
to use the feature vector ®(7°) directly. To solve
this problem, we introduce the tree kernel function
which is able to calculate the dot product between
the above high-dimension vectors efficiently. The
kernel function is defined as following:

K(T1,T2) = (®(Th), (1)) = Y, d:(T1), ¢:(T2)

Zi ]1(77,1) * Ii(’rlz)

ni1€Ny ng€Ng

where N1 and Ns are the sets of all nodes in
trees 17 and 7%, respectively, and I;(n) is the in-
dicator function whose value is 1 if and only if
there is a sub-tree of type i rooted at node n and
0 otherwise. Collins and Duffy (2001) show that
K (Ty,T,) is an instance of convolution kernels
over tree structures, which can be computed in
O(|N1| x |N2|) by the following recursive defi-
nitions (Let A(ny,n2) = Y, Li(n1) * I;(n2)):

(1) if the children of nq and n9 are different then
A(nl, ’I’Lg) = 0;

(2) else if their children are the same and they are
leaves, then A(ny,n2) = u;

[ an(n1 )

(3) else  A(ny,n9) j=1

A(ch(ni, j), ch(na, j)))

where nc(n) is the number of the children of
n1, ch(n, 7) is the % child of node n and p(0 <
i < 1) is the decay factor in order to make the
kernel value less variable with respect to the tree
sizes.

- (1 +

4.2 Hybrid Convolution Tree Kernels

In the PAF kernel, the feature spaces are consid-
ered as an integral portion which includes a pred-
icate and one of its arguments. We note that the
PAF feature consists of two kinds of features: one
is the so-called parse tree Path feature and another
one is the so-called Constituent Structure feature.
These two kinds of feature spaces represent dif-
ferent information. The Path feature describes the
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linking information between a predicate and its ar-
guments while the Constituent Structure feature
captures the syntactic structure information of an
argument. We believe that it is more reasonable
to capture the two different kinds of features sepa-
rately since they contribute to SRL in different fea-
ture spaces and it is better to give different weights
to fuse them. Therefore, we propose two convo-
lution kernels to capture the two features, respec-
tively and combine them into one hybrid convolu-
tion kernel for SRL. Figure 3 is an example to il-
lustrate the two feature spaces, where the Path fea-
ture space is circled by solid curves and the Con-
stituent Structure feature spaces is circled by dot-
ted curves. We name them Path kernel and Con-
stituent Structure kernel respectively.

Figure 4 illustrates an example of the distinc-
tion between the PAF kernel and our kernel. In
the PAF kernel, the tree structures are equal when
considering constitutes NP and PRP, as shown in
Figure 4(a). However, the two constituents play
different roles in the sentence and should not be
looked as equal. Figure 4(b) shows the comput-
ing example with our kernel. During computing
the hybrid convolution tree kernel, the NP-PRP
substructure is not computed. Therefore, the two
trees are distinguished correctly.

On the other hand, the constituent structure fea-
ture space reserves the most part in the traditional
PAF feature space usually. Then the Constituent
Structure kernel plays the main role in PAF kernel
computation, as shown in Figure 5. Here, believes
is a predicate and A1 is a long sub-sentence. Ac-
cording to our experimental results in Section 5.2,
we can see that the Constituent Structure kernel
does not perform well. Affected by this, the PAF
kernel cannot perform well, either. However, in
our hybrid method, we can adjust the compromise
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of the Path feature and the Constituent Structure
feature by tuning their weights to get an optimal
result.

Having defined two convolution tree kernels,
the Path kernel K4, and the Constituent Struc-
ture kernel K.;, we can define a new kernel to
compose and extend the individual kernels. Ac-
cording to Joachims et al. (2001), the kernel func-
tion set is closed under linear combination. It
means that the following Ky piq is a valid kernel
if Kpq¢h and K4 are both valid.

Khybrid = )‘Kpath + (1 - A)Kcs (1)

where 0 < \ < 1.

According to the definitions of the Path and the
Constituent Structure kernels, each kernel is ex-
plicit. They can be viewed as a matching of fea-



tures. Since the features are enumerable on the
given data, the kernels are all valid. Therefore, the
new kernel Kp,yp,iq 1s valid. We name the new ker-
nel hybrid convolution tree kernel, Kpypriq.

Since the size of a parse tree is not con-
stant, we normalize K (77,7T5) by dividing it by
VE(T1,Th) - K(T», To)

4.3 Comparison with Previous Work

It would be interesting to investigate the differ-
ences between our method and the feature-based
methods. The basic difference between them lies
in the instance representation (parse tree vs. fea-
ture vector) and the similarity calculation mecha-
nism (kernel function vs. dot-product). The main
difference between them is that they belong to dif-
ferent feature spaces. In the kernel methods, we
implicitly represent a parse tree by a vector of in-
teger counts of each sub-tree type. That is to say,
we consider all the sub-tree types and their occur-
ring frequencies. In this way, on the one hand,
the predicate-argument related features, such as
Path, Position, in the flat feature set are embed-
ded in the Path feature space. Additionally, the
Predicate, Predicate POS features are embedded
in the Path feature space, too. The constituent re-
lated features, such as Phrase Type, Head Word,
Last Word, and POS, are embedded in the Con-
stituent Structure feature space. On the other hand,
the other features in the flat feature set, such as
Named Entity, Previous, and Next Word, Voice,
SubCat, Suffix, are not contained in our hybrid
convolution tree kernel. From the syntactic view-
point, the tree representation in our feature space
is more robust than the Parse Tree Path feature in
the flat feature set since the Path feature is sensi-
tive to small changes of the parse trees and it also
does not maintain the hierarchical information of
a parse tree.

It is also worth comparing our method with
the previous kernels. Our method is similar to
the Moschitti (2004)’s predicate-argument feature
(PAF) kernel. However, we differentiate the Path
feature and the Constituent Structure feature in our
hybrid kernel in order to more effectively capture
the syntactic structure information for SRL. In ad-
dition Moschitti (2004) only study the task of ar-
gument classification while in our experiment, we
report the experimental results on both identifica-
tion and classification.
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5 Experiments and Discussion

The aim of our experiments is to verify the effec-
tiveness of our hybrid convolution tree kernel and
and its combination with the standard flat features.

5.1 Experimental Setting
5.1.1 Corpus

We use the benchmark corpus provided by
CoNLL-2005 SRL shared task (Carreras and
Marquez, 2005) provided corpus as our training,
development, and test sets. The data consist of
sections of the Wall Street Journal (WSJ) part of
the Penn TreeBank (Marcus et al., 1993), with
information on predicate-argument structures ex-
tracted from the PropBank corpus (Palmer et al.,
2005). We followed the standard partition used
in syntactic parsing: sections 02-21 for training,
section 24 for development, and section 23 for
test. In addition, the test set of the shared task
includes three sections of the Brown corpus. Ta-
ble 2 provides counts of sentences, tokens, anno-
tated propositions, and arguments in the four data
sets.

Train Devel tWSJ | tBrown
Sentences 39,832 1,346 2,416 426
Tokens 950,028 | 32,853 | 56,684 7,159
Propositions 90,750 3,248 5,267 804
Arguments 239,858 8,346 | 14,077 2,177

Table 2: Counts on the data set

The preprocessing modules used in CONLL-
2005 include an SVM based POS tagger (Giménez
and Marquez, 2003), Charniak (2000)’s full syn-
tactic parser, and Chieu and Ng (2003)’s Named
Entity recognizer.

5.1.2 Evaluation

The system is evaluated with respect to
precision, recall, and Fg—; of the predicted ar-
guments. Precision (p) is the proportion of ar-
guments predicted by a system which are cor-
rect. Recall (r) is the proportion of correct ar-
guments which are predicted by a system. Fg—_;
computes the harmonic mean of precision and
recall, which is the final measure to evaluate the
performances of systems. It is formulated as:
Fs_1 = 2pr/(p + 7). srl-eval.pl? is the official
program of the CoNLL-2005 SRL shared task to
evaluate a system performance.

Zhttp://www.lsi.upc.edu/~srlconll/srl-eval.pl



5.1.3 SRL Strategies

We use constituents as the labeling units to form
the labeled arguments. In order to speed up the
learning process, we use a four-stage learning ar-
chitecture:

Stage 1: To save time, we use a pruning
stage (Xue and Palmer, 2004) to filter out the
constituents that are clearly not semantic ar-
guments to the predicate.

Stage 2: We then identify the candidates derived
from Stage 1 as either arguments or non-
arguments.

Stage 3: A multi-category classifier is used to
classify the constituents that are labeled as ar-
guments in Stage 2 into one of the argument
classes plus NULL.

Stage 4: A rule-based post-processing stage (Liu
et al., 2005) is used to handle some un-
matched arguments with constituents, such as
AM-MOD, AM-NEG.

5.1.4 Classifier

We use the Voted Perceptron (Freund and
Schapire, 1998) algorithm as the kernel machine.
The performance of the Voted Perceptron is close
to, but not as good as, the performance of SVM on
the same problem, while saving computation time
and programming effort significantly. SVM is too
slow to finish our experiments for tuning parame-
ters.

The Voted Perceptron is a binary classifier. In
order to handle multi-classification problems, we
adopt the one vs. others strategy and select the
one with the largest margin as the final output. The
training parameters are chosen using development
data. After 5 iteration numbers, the best perfor-
mance is achieved. In addition, Moschitti (2004)’s
Tree Kernel Tool is used to compute the tree kernel
function.

5.2 Experimental Results

In order to speed up the training process, in the
following experiments, we ONLY use WSJ sec-
tions 02-05 as training data. The same as Mos-
chitti (2004), we also set the ¢ = 0.4 in the com-
putation of convolution tree kernels.

In order to study the impact of A in hybrid con-
volution tree kernel in Eq. 1, we only use the hy-
brid kernel between K4, and K. The perfor-
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mance curve on development set changing with A
is shown in Figure 6.
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Figure 6: The performance curve changing with A

The performance curve shows that when A =
0.5, the hybrid convolution tree kernel gets the
best performance. Either the Path kernel (A = 1,
Fg—1 = 61.26) or the Constituent Structure kernel
(A =0, Fg=1 = 54.91) cannot perform better than
the hybrid one. It suggests that the two individual
kernels are complementary to each other. In ad-
dition, the Path kernel performs much better than
the Constituent Structure kernel. It indicates that
the predicate-constituent related features are more
effective than the constituent features for SRL.

Table 3 compares the performance comparison
among our Hybrid convolution tree kernel, Mos-
chitti (2004)’s PAF kernel, standard flat features
with Linear kernels, and Poly kernel (d = 2). We
can see that our hybrid convolution tree kernel out-
performs the PAF kernel. It empirically demon-
strates that the weight linear combination in our
hybrid kernel is more effective than PAF kernel for
SRL.

However, our hybrid kernel still performs worse
than the standard feature based system. This is
simple because our kernel only use the syntac-
tic structure information while the feature-based
method use a large number of hand-craft diverse
features, from word, POS, syntax and semantics,
NER, etc. The standard features with polynomial
kernel gets the best performance. The reason is
that the arbitrary binary combination among fea-
tures implicated by the polynomial kernel is useful
to SRL. We believe that combining the two meth-
ods can perform better.

In order to make full use of the syntactic
information and the standard flat features, we
present a composite kernel between hybrid kernel
(K hybria) and standard features with polynomial
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64.38

Linear
68.71

Hybrid
66.01

Poly
70.25
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Table 3: Performance (F3—1) comparison among
various kernels

kernel (Kpoy):

Kcomp = 'YKhyb'rid + (1 - ’Y)Kpoly (2)

where 0 < v < 1.
The performance curve changing with v in Eq. 2
on development set is shown in Figure 7.
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Figure 7: The performance curve changing with

We can see that when v 0.5, the system
achieves the best performance and Fg—; = 70.78.
It’s statistically significant improvement (x? test
with p = 0.1) than only using the standard features
with the polynomial kernel (y = 0, Fg—; = 70.25)
and much higher than only using the hybrid con-
volution tree kernel (y = 1, Fg—1 = 66.01).
The main reason is that the convolution tree ker-
nel can represent more general syntactic features
than standard flat features, and the standard flat
features include the features that the convolution
tree kernel cannot represent, such as Voice, Sub-
Cat. The two kind features are complementary to
each other.

Finally, we train the composite method using
the above setting (Eq. 2 with when ~ = (.5) on the
entire training set. The final performance is shown
in Table 4.

6 Conclusions and Future Work

In this paper we proposed the hybrid convolu-
tion kernel to model syntactic structure informa-
tion for SRL. Different from the previous convo-
lution tree kernel based methods, our contribution
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Precision Recall | Fg—;
Development 80.71% | 68.49% | 74.10
Test WSJ 82.46% | 70.65% | 76.10
Test Brown 73.39% | 57.01% | 64.17
Test WSJ Precision Recall | Fg—;
Overall 82.46% 70.65% | 76.10
A0 87.97% 82.49% | 85.14
Al 80.51% 71.69% | 75.84
A2 75.79% 52.16% | 61.79
A3 80.85% 43.93% | 56.93
A4 83.56% 59.80% | 69.71
AS 100.00% 20.00% | 33.33
AM-ADV 66.27% 43.87% | 52.79
AM-CAU 68.89% 4247% | 52.54
AM-DIR 56.82% 29.41% | 38.76
AM-DIS 79.02% 7531% | 77.12
AM-EXT 73.68% 43.75% | 54.90
AM-LOC 72.83% 50.96% | 59.97
AM-MNR 68.54% 42.44% | 52.42
AM-MOD 98.52% 96.37% | 97.43
AM-NEG 97.79% 96.09% | 96.93
AM-PNC 49.32% 31.30% | 38.30
AM-TMP 82.15% 68.17% | 74.51
R-A0 86.28% 87.05% | 86.67
R-Al 80.00% 74.36% | 77.08
R-A2 100.00% 31.25% | 47.62
R-AM-CAU | 100.00% 50.00% | 66.67
R-AM-EXT 50.00% | 100.00% | 66.67
R-AM-LOC 92.31% 57.14% | 70.59
R-AM-MNR 20.00% 16.67% | 18.18
R-AM-TMP 68.75% 63.46% | 66.00
[V [ 98.65% | 98.65% [ 98.65 |

Table 4: Overall results (top) and detailed results
on the WSJ test (bottom).

is that we distinguish between the Path and the
Constituent Structure feature spaces. Evaluation
on the datasets of CoNLL-2005 SRL shared task,
shows that our novel hybrid convolution tree ker-
nel outperforms the PAF kernel method. Although
the hybrid kernel base method is not as good as
the standard rich flat feature based methods, it can
improve the state of the art feature-based methods
by implicating the more generalizing syntactic in-
formation.

Kernel-based methods provide a good frame-
work to use some features which are difficult to
model in the standard flat feature based methods.
For example the semantic similarity of words can
be used in kernels well. We can use general pur-
pose corpus to create clusters of similar words or
use available resources like WordNet. We can also
use the hybrid kernel method into other tasks, such
as relation extraction in the future.
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Abstract

Named entity translation is indispensable
in cross language information retrieval
nowadays. We propose an approach of
combining lexical information, web sta-
tistics, and inverse search based on
Google to backward translate a Chinese
named entity (NE) into English. Our sys-
tem achieves a high Top-1 accuracy of
87.6%, which is a relatively good per-
formance reported in this area until pre-
sent.

1 Introduction

Translation of named entities (NE) attracts much
attention due to its practical applications in
World Wide Web. The most challenging issue
behind is: the genres of NEs are various, NEs are
open vocabulary and their translations are very
flexible.

Some previous approaches use phonetic simi-
larity to identify corresponding transliterations,
i.e., translation by phonetic values (Lin and Chen,
2002; Lee and Chang, 2003). Some approaches
combine lexical (phonetic and meaning) and se-
mantic information to find corresponding transla-
tion of NEs in bilingual corpora (Feng et al.,
2004; Huang et al., 2004; Lam et al., 2004).
These studies focus on the alignment of NEs in
parallel or comparable corpora. That is called
“close-ended” NE translation.

In “open-ended” NE translation, an arbitrary
NE is given, and we want to find its correspond-
ing translations. Most previous approaches ex-
ploit web search engine to help find translating
candidates on the Internet. Al-Onaizan and
Knight (2003) adopt language models to generate
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possible candidates first, and then verify these
candidates by web statistics. They achieve a Top-
1 accuracy of about 72.6% with Arabic-to-
English translation. Lu et al. (2004) use statistics
of anchor texts in web search result to identify
translation and obtain a Top-1 accuracy of about
63.6% in translating English out-of-vocabulary
(OOV) words into Traditional Chinese. Zhang et
al. (2005) use query expansion to retrieve candi-
dates and then use lexical information, frequen-
cies, and distances to find the correct translation.
They achieve a Top-1 accuracy of 81.0% and
claim that they outperform state-of-the-art OOV
translation techniques then.

In this paper, we propose a three-step ap-
proach based on Google to deal with open-ended
Chinese-to-English translation. Our system inte-
grates various features which have been used by
previous approaches in a novel way. We observe
that most foreign Chinese NEs would have their
corresponding English translations appearing in
their returned snippets by Google. Therefore we
combine lexical information and web statistics to
find corresponding translations of given Chinese
foreign NEs in returned snippets. A highly effec-
tive verification process, inverse search, is then
adopted and raises the performance in a signifi-
cant degree. Our approach achieves an overall
Top-1 accuracy of 87.6% and a relatively high
Top-4 accurracy of 94.7%.

2 Background

Translating NEs, which is different from translat-
ing common words, is an “asymmetric” transla-
tion. Translations of an NE in various languages
can be organized as a tree according to the rela-
tions of translation language pairs, as shown in
Figure 1. The root of the translating tree is the
NE in its original language, i.e., initially de-
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nominated. We call the translation of an NE
along the tree downward as a “forward transla-
tion”. On the contrary, “backward translation” is
to translate an NE along the tree upward.

SPANISH
Cien afios
soledad
FRENCH ENGLISH CHINESE
One Hundred
Cent ans de Years of B IR
solitude .
Solitude
JAPANESE CHINESE
HHEDIISR — B E MR

Figure 1. Translating tree of “Cien afios soledad”.

Generally speaking, forward translation is eas-
ier than backward translation. On the one hand,
there is no unique answer to forward translation.
Many alternative ways can be adopted to forward
translate an NE from one language to another.
For example, “Jordan” can be translated into “#
2 (Qiao-Dan)”, “#& % (Qiao-Deng)”, “ % -
(Yue-Dan)”, and so on. On the other hand, there
is generally one unique corresponding term in
backward translation, especially when the target
language is the root of the translating tree.

In addition, when the original NE appears in
documents in the target language in forward
translation, it often comes together with a corre-
sponding translation in the target language
(Cheng et al., 2004). That makes forward transla-
tion less challenging. In this paper, we focus our
study on Chinese-English backward translation,
i.e., the original language of NE and the target
language in translation is English, and the source
language to be translated is Chinese.

There are two important issues shown below
to deal with backward translation of NEs or
OOV words.

® Where to find the corresponding translation?
* How to identify the correct translation?

NEs seldom appear in multi-lingual or even
mono-lingual dictionaries, i.e., they are OOV or
unknown words. For unknown words, where can
we find its corresponding translation? A bilin-
gual corpus might be a possible solution. How-
ever, NEs appear in a vast context and bilingual
corpora available can only cover a small propor-
tion. Most text resources are monolingual. Can

82

we find translations of NEs in monolingual cor-
pora? While mentioning a translated name during
writing, sometimes we would annotate it with its
original name in the original foreign language,
especially when the name is less commonly
known. But how often would it happen? With
our testing data, which would be introduced in
Section 4, over 97% of translated NEs would
have its original NE appearing in the first 100
returned snippets by Google. Figure 2 shows
several snippets returned by Google which con-
tains the original NE of the given foreign NE.

CEPS [T H4d-- SLEEH:-1

4, CEANELE) NREFEMMEBENANETE. R
%4, Symbolic Means of the Author "The Old Man and the

Sea" .. Y, LIS RINITES (ZABE) A
W~ REAETTRREUREET THRRNRE - o 789
JEAE/ INast R LR R -
www.ceps.com.tw/ec/ecjnlarticleView.aspx?jnlcattype=1&
jnlptype=4&jnltype=29&jnliid=1370&i... - 26k - EJEFHE - $H

..JSDVD Mall:. tf 57 %% -3= \ B
SR N BLT - K5 B2 4 A (DTS) - AR
{HHEL Ik - B EER A5 16-BC - 3T - Fandl Skt - ¥ 5
Z-BAUEE - (RSN ... R A B, The
Old Man and The Sea. 4715320115018, FA LAY T
mall.jsdvd.com/product_info.php?products_id=3198 - 48k - f#
FLER - HIETEAE -

Figure 2. Several Traditional Chinese snippets of
“¥ A 2173” returned by Google which contains
the translation “The Old Man and the Sea”.

When translations can be found in snippets,
the next work would be identifying which name
is the correct translation of NEs. First we should
know how NEs would be translated. The com-
monest case is translating by phonetic values, or
so-called transliteration. Most personal names
and location names are transliterated. NEs may
also be translated by meaning. It is the way in
which most titles and nicknames and some or-
ganization names would be translated. Another
common case is translating by phonetic values
for some parts and by meaning for the others. For
example, “Sears Tower” is translated into “&
#r (Xi-Er-Si) = JE (tower)” in Chinese. NEs
would sometimes be translated by semantics or
contents of the entity it indicates, especially with
movies. Table 1 summarizes the possible trans-
lating ways of NEs. From the above discussion,
we may use similarities in phonetic values,
meanings of constituent words, semantics, and so



on to identify corresponding translations. Besides
these linguistic features, non-linguistic features
such as statistical information may also help use

well. We would discuss how to combine these
features to identify corresponding translation in
detail in the next section.

Translating Way

Description

Examples

Translating by Pho-
netic Values

The translation would have a similar
pronunciation to its original NE.

“New York” and “‘ ¥ (pronounced as Niu-
Yue)”

Translating by Mean-
ing

The translation would have a similar or a
related meaning to its original NE.

“ %= (red) # (chamber) ¥ (dream)” and “The
Dream of the Red Chamber”

Translating by Pho-
netic Values for Some
Parts and by Meaning
for the Others

The entire NE is supposed to be trans-
lated by its meaning and the name parts
are transliterated.

“Uncle Tom’s Cabin” and “/F #* (pronounced
as Tang-Mu)+x 4x sr(uncle’s)-] /£ (cabin)”

Translating by Both
Phonetic Values and

The translation would have both a similar
pronunciation and a similar meaning to

“New Yorker” and “= ¥](pronounced as Niu-
Yue) % (people, pronounced as Ke)”

Meaning its original NE.
Translating NEs by | The NE is translated by these hetero- “$ &> and “Yokohama”, “# * — ¥ ” and
Heterography graphic words in neighboring languages. “Ichiro Suzuki”

Translating by Se-
mantic or Content

The NE is translated by its semantic or
the content of the entity it refers to.

“The Mask” and “ & % (modern) ~ (great) &
(saint)”

Parallel Names

NE is initially denominated as more than

one name or in more than one language.

“3% ¥ £ (Sun Zhong-Shan)” and “Sun Yat-Sen”

Table 1. Possible translating ways of NEs.

3  Chinese-to-English NE Translation

As we have mentioned in the last section, we
could find most English translations in Chinese
web page snippets. We thus base our system on
web search engine: retrieving candidates from
returned snippets, combining both linguistic and
statistical information to find the correct transla-
tion. Our system can be split into three steps:
candidate retrieving, candidate evaluating, and
candidate verifying. An overview of our system
is given in Figure 3.

Google

NER &
Preprocessing Bilingual
/ Dictionary
\ Phonetic
Transformation

Table

Translation
of NE

Figure 3. An Overview of the System.

Returned
Snippets

Scores of
Candidates

Returned

Snippets Final Ranking

In the first step, the NE to be translated, GN,
is sent to Google to retrieve traditional Chinese
web pages, and a simple English NE recognition

method and several preprocessing procedures
are applied to obtain possible candidates from
returned snippets. In the second step, four fea-
tures (i.e., phonetic values, word senses, recur-
rences, and relative positions) are exploited to
give these candidates a score. In the last step, the
candidates with higher scores are sent to Google
again. Recurrence information and relative posi-
tions concerning with the candidate to be veri-
fied of GN in returned snippets are counted
along with the scores to decide the final ranking
of candidates. These three steps will be detailed
in the following subsections.

3.1 Retrieving Candidates

Before we can identify possible candidates, we
must retrieve them first. In the returned tradi-
tional Chinese snippets by Google, there are still
many English fragments. Therefore, the first
task our system would do is to separate these
English fragments into NEs and non-NEs. We
propose a simple method to recognize possible
NEs. All fragments conforming to the following
properties would be recognized as NEs:

¢ The first and the last word of the fragment
are numerals or capitalized.

¢ There are no three or more consequent low-
ercase words in the fragment.

¢ The whole fragment is within one sentence.

After retrieving possible NEs in returned snip-
pets, there are still some works to do to make a



finer candidate list for verification. First, there
might be many different forms for a same NE.
For example, “Mr. & Mrs. Smith” may also ap-
pear in the form of “Mr. and Mrs. Smith”, “Mr.
And Mrs. Smith”, and so on. To deal with these
aliasing forms, we transform all different forms
into a standard form for the later ranking and
identification. The standard form follows the
following rules:

¢ All letters are transformed into upper cases.

(7324

® Words consist “’”’s are split.

e Symbols are rewritten into words.

For example, all forms of “Mr. & Mrs. Smith”
would be transformed into “MR. AND MRS.
SMITH”.

The second work we should complete before
ranking is filtering useless substrings. An NE
may comprise many single words. These com-
ponent words may all be capitalized and thus all
substrings of this NE would be fetched as candi-
dates of our translation work. Therefore, sub-
strings which always appear with a same preced-
ing and following word are discarded here, since
they would have a zero recurrence score in the
next step, which would be detailed in the next
subsection.

3.2 Evaluating Candidates

After candidate retrieving, we would obtain a
sequence of m candidates, C;, Cy, ..., C,. An
integrated evaluating model is introduced to ex-
ploit four features (phonetic values, word senses,
recurrences, and relative positions) to score
these m candidates, as the following equation
suggests:
Score (C;,GN ) =
SScore (C,,GN ) - LScore (C,,GN )

LScore(C, GN) combines phonetic values and
word senses to evaluate the lexical similarity
between C; and GN. SScore(C;,GN) concerns
both recurrences information and relative posi-
tions to evaluate the statistical relationship be-
tween C; and GN. These two scores are then
combined to obtain Score(C;,GN). How to esti-
mate LScore(C,, GN) and SScore(C,, GN) would
be discussed in detail in the following subsec-
tions.

3.2.1 Lexical Similarity

The lexical similarity concerns both phonetic
values and word senses. An NE may consist of
many single words. These component words
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may be translated either by phonetic values or
by word senses. Given a translation pair, we
could split them into fragments which could be
bipartite matched according to their translation
relationships, as Figure 4 shows.

D2 0 Y Q= O A N =
P A
Uncle Tom ‘s Cabin

Figure 4. The translation relationships of “/F #*
N A

To identify the lexical similarity between two
NEs, we could estimate the similarity scores be-
tween the matched fragment pairs first, and then
sum them up as a total score. We postulate that
the matching with the highest score is the correct
matching. Therefore the problem becomes a
weighted bipartite matching problem, i.e., given
the similarity scores between any fragment pairs,
to find the bipartite matching with the highest
score. In this way, our next problem is how to
estimate the similarity scores between fragments.

We treat an English single word as a fragment
unit, i.e., each English single word corresponds
to one fragment. An English candidate C; con-
sisting of n single words would be split into n
fragment units, C;;, Cp, ..., C;,. We define a Chi-
nese fragment unit that it could comprise one to
four characters and may overlap each other. A
fragment unit of GN can be written as GN,,
which denotes the ath to bth characters of GN,
and b - a < 4. The linguistic similarity score be-
tween two fragments is:

LSim(GN,,,C,) =
Max{PVSim(GN,,,,C,),WSSim(GN,,,C,))

Where PVSim() estimates the similarity in pho-
netic values while WSSim() estimate it in word
senses.

B  Phonetic Value

In this paper, we adopt a simple but novel
method to estimate the similarity in phonetic
values. Unlike many approaches, we don’t in-
troduce an intermediate phonetic alphabet sys-
tem for comparison. We first transform the Chi-
nese fragments into possible English strings, and
then estimate the similarity between transformed
strings and English candidates in surface strings,
as Figure 5 shows. However, similar pronuncia-
tions does not equal to similar surface strings.
Two quite dissimilar strings may have very simi-
lar pronunciations. Therefore, we take this strat-



egy: generate all possible transformations, and
regard the one with the highest similarity as the
English candidate.

NE1 in Language 1

Figure 5. Phonetic similarity estimation of our
system.

Transformation

Transforn®d
Surface
Strings

Estimation of Edit
Distance

NE2 in
Language 2

Similarity
between NE1
and NE2

Edit distances are usually used to estimate the
surface similarity between strings. However, the
typical edit distance does not completely satisfy
the requirement in the context of translation
identification. In translation, vowels are an unre-
liable feature. There are many variations in pro-
nunciation of vowels, and the combinations of
vowels are numerous. Different combinations of
vowels may have a same phonetic value, how-
ever, same combinations may pronounce totally
differently. The worst of all, human often arbi-
trarily determine the pronunciation of unfamiliar
vowel combinations in translation. For these rea-
sons, we adopt the strategy that vowels can be
ignored in transformation. That is to say when it
is hard to determine which vowel combination
should be generated from given Chinese frag-
ments, we can only transform the more certain
part of consonants. Thus during the calculation
of edit distances, the insertion of vowels would
not be calculated into edit distances. Finally, the
modified edit distance between two strings A
and B is defined as follow:

ED, ,0,0)=t
ED, ,(s0)=s

ED, ,(s,t=1)+1Ins(t),

ED, (s—=L1)+1,

ED, ,(s—1,t—=1)+Rep(s,t)
0,if B, is a vowl
L if B, is a consonant
0,if A, =B,

1, else

ED, ,,(s,t) =min

Ins(t) = {

Rep(s,t) = {

The modified edit distances are then transformed
to similarity scores:
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ED, ,;(Len(A), Len(B))

PVSim(A,B)=1-
max{Len(A), Len(B)}

Len() denotes the length of the string. In the
above equation, the similarity scores are ranged
from 0 to 1.

We build the fixed transformation table manu-
ally. All possible transformations from Chinese
transliterating characters to corresponding Eng-
lish strings are built. If we cannot precisely indi-
cate which vowel combination should be trans-
formed, or there are too many possible combina-
tions, we ignores vowels. Then we use a training
set of 3,000 transliteration names to examine
possible omissions due to human ignorance.

B  Word Senses

More or less similar to the estimation of pho-
netic similarity, we do not use an intermediate
representation of meanings to estimate word
sense similarity. We treat the English transla-
tions in the C-E bilingual dictionary (reference
removed for blind review) directly as the word
senses of their corresponding Chinese word en-
tries. We adopt a simple 0-or-1 estimation of
word sense similarity between two strings A and
B, as the following equation suggests:

0, if Bis not a translation of A

. _ | in the dictionary
WSSim(A, B) = 1,if Bis a translation of A

in the dictionary

All the Chinese foreign names appearing in test
data is removed from the dictionary.

From the above equations we could derive
that LSim() of fragment pairs is also ranged from
0 to 1. Candidates to be evaluated may comprise
different number of component words, and this
would result the different scoring base of the
weighted bipartite matching. We should normal-
ize the result scores of bipartite matching. As a
result, the following equation is applied:

LScore(C,,GN) =
LSim(GN ,,C;)

z;ﬂl matched pairs GN ,;, and Cj;
Total # of words in C,
LSim(GN ,,,C;)-(b—a+1)

min
Zall matched pairs GN ,;, and C;;
Total # of characters in GN

3.2.2 Statistical Similarity

Two pieces of information are concerned to-
gether to estimate the statistical similarity: recur-
rences and relative positions. A candidate C;
might appear / times in the returned snippets, as
C.1, Cia, ..., C;. For each C;;, we find the dis-



tance between it and the nearest GN in the re-
turned snippets, and then compute the relative
position scores as the following equation:

GN)= !
| Distance(GN,C, )14 |+1

RP(C,,,

In other words, if the candidate is adjacent to the
given NE, it would have a relative position score
of 1. Relative position scores of all C;; would be
summed up to obtain the primitive statistical
score:

PSS(C;, GN) = L RP(C,;, GN)

As we mentioned before, since the impreci-
sion of NE recognition, most substrings of NEs
would also be recognized as candidates. This
would result a problem. There are often typos in
the information provided on the Internet. If some
component word of an NE is misspelled, the
substrings constituted by the rest words would
have a higher statistical score than the correct
NE. To prevent such kind of situations, we in-
troduce entropy of the context of the candidate.
If a candidate has a more varied context, it is
more possible to be an independent term instead
of a substring of other terms. Entropy provides
such a property: if the possible cases are more
varied, there is higher entropy, and vice versa.
Entropy function here concerns the possible
cases of the most adjacent word at both ends of

the candidate, as the following equation suggests:

Entropy(Context of C,) =

1 , while # of possible context =1
- ZCT‘ NCT, | NC, -log,,, NCT, / NC,,else

Where NCT, and NC; denote the appearing times
of the rth context CT, and the candidate C; in the
returned snippets respectively, and NPT; denotes
the total number of different cases of the context
of C;. Since we want to normalize the entropy to
0~1, we take NPT; as the base of the logarithm
function.

While concerning context combinations, only
capitalized English word is discriminated. All
other words would be viewed as one sort
“OTHER”. For example, assuming the context
of “David” comprises three times of (Craig,
OTHER), three times of (OTHER, Stern), and
six times of (OTHER, OTHER), then:

Entropy(Context of "David") =

—(ilog3i+i'log3i+£~log3

E) =0.946
12 12 12 12 12 12
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Next we use Entropy(Context of C;) to weight
the primitive score PSS(C;,, GN) to obtain the
final statistical score.:

SScore (C,,GN ) =
Entropy (Context of C,)- PSS (C,,GN )

3.3 Verifying Candidates

In evaluating candidate, we concern only the
appearing frequencies of candidates when the
NE to be translated is presented. In the other
direction, we should also concern the appearing
frequencies of the NE to be translated when the
candidate is presented to prevent common words
getting an improper high score in evaluation. We
perform the inverse search approach for this
sake. Like the evaluation of statistical scores in
the last step, candidates are sent to Google to
retrieve Traditional Chinese snippets, and the
same equation of SScore() is computed concern-
ing the candidate. However, since there are too
many candidates, we cannot perform this proc-
ess on all candidates. Therefore, an elimination
mechanism is adopted to select candidates for
verification. The elimination mechanism works
as follows:

1. Send the Top-3 candidates into Google for
verification.

Count SScore(GN, C;). (Notice that the or-
der of the parameter is reversed.) Re-weight
Score(C, GN) by multiplying SScore(GN,
(6)

3. Re-rank candidates

After re-ranking, if new candidates become
the Top-3 ones, redo the first step. Other-
wise end this process.

The candidates have been verified would be re-
corded to prevent duplicate re-weighting and
unnecessary verification.

There is one problem in verification we
should concern. Since we only consider recur-
rence information in both directions, but not co-
occurrence information, this would result some
problem when dealing rarely used translations.
For example, “Peter Pan” can be translated into
“HHEE” or “HALE” (both pronounced as Bi-
De-Pan) in Chinese, but most people would use
the former translation. Thus if we send “Peter
Pan” to verification when translating “{#. 484",
we would get a very low score.

To deal with this situation, we adopt the strat-
egy of disbelieving verification in some situa-



tions. If all candidates have scores lower than
the threshold, we presume that the given NE is a
rarely used translation. In this situation, we use
only Score(C,, GN) estimated by the evaluation
step to rank its candidates, without multiplying
SScore(GN, C;) of the inverse search. The
threshold is set to 1.5 by heuristic, since we con-
sider that a commonly used translation is sup-
posed to have their SScore() larger than 1 in both
directions.

4 Experiments

To evaluate the performance of our system, 15
common users are invited to provide 100 foreign
NEs per user. These users are asked to simulate
a scenario of using web search machine to per-
form cross-lingual information retrieval. The
proportion of different types of NEs is roughly
conformed to the real distribution, except for
creation titles. We gathers a larger proportion of
creation titles than other types of NEs, since the
ways of translating creation titles is less regular
and we may use them to test how much help
could the web statistics provide.

After removing duplicate entries provided by
users, finally we obtain 1,119 nouns. Among
them 7 are not NEs, 65 are originated from Ori-
ental languages (Chinese, Japanese, and Korean),
and the rest 1,047 foreign NEs are our main ex-
perimental subjects. Among these 1,047 names
there are 455 personal names, 264 location
names, 117 organization names, 196 creation
titles, and 15 other types of NEs.

Table 2 and Figure 5 show the performance of
the system with different types of NEs. We
could observe that the translating performance is
best with location names. It is within our expec-
tation, since location names are one of the most
limited NE types. Human usually provide loca-
tion names in a very limited range, and thus
there are less location names having ambiguous

translations and less rare location names in the
test data. Besides, because most location names
are purely transliterated, it can give us some
clues about the performance of our phonetic
model.

Our system performs worst with creation titles.
One reason is that the naming and translating
style of creation titles are less formulated. Many
titles are not translated by lexical information,
but by semantic information or else. For exam-
ple, “Mr. & Mrs. Smith” is translated into “€ %
#71Z 72(Smiths’ Mission)” by the content of the
creation it denotes. Another reason is that many
titles are not originated from English, such as “le
Nozze di Figaro”. It results the C-E bilingual
dictionary cannot be used in recognizing word
sense similarity. A more serious problem with
titles is that titles generally consist of more sin-
gle words than other types of NEs. Therefore, in
the returned snippets by Google, the correct
translation is often cut off. It would results a
great bias in estimating statistical scores.

Table 3 compares the result of different fea-
ture combinations. It considers only foreign NEs
in the test data. From the result we could con-
clude that both statistical and lexical features are
helpful for translation finding, while the inverse
search are the key of our system to achieve a
good performance.

100%

95% | By e 3% ——PER

——=L10C
—2—ORG
——Title
—*— Other
—o— Oriental
——Non-NE

90%

85%

80%

5% |

Recall at TOP N

70% |

1 5 13 21 25 29

17
Ranking

Figure 5. Curve of recall versus ranking.

Total Top-1 Top-2 Top-4 Top-M
Num Recall Num Recall Num Recall Num Recall
PER 455 408 | 89.7% 430 | 94.5% 436 | 95.8% 443 97.3%
LOC 264 242 | 91.7% 252 | 95.5% 253 | 95.8% 264 | 100.0%
ORG 117 98 | 83.8% 106 | 90.6% 108 | 92.3% 114 97.4%
TITLE 196 151 | 77.0% 168 | 85.7% 181 | 92.3% 189 96.4%
Other 15 10 | 66.7% 13| 86.7% 14 | 933% 15 | 100.0%
AllNE 1047 909 | 87.6% 969 | 92.6% 992 | 94.7% 1025 97.9%
Oriental 65 47 | 72.3% 52 | 80.0% 55| 84.6% 60 92.3%
Non-NE 7 6| 85.7% 6 | 85.7% 6 | 85.7% 7 | 100.0%
Overall 1119 962 | 86.0% 1027 | 91.8% 1053 | 94.1% 1092 97.6%

Table 2. Experiment results of our system with different NE types.
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Top-1 Top-2 Top-4
Num Recall Num Recall Num Recall
SScore 540 | 51.6% 745 | 71.2% 887 | 84.7%
LScore 721 | 68.9% 789 | 75.4% 844 | 80.6%
SScore + LScore 837 | 79.9% 916 | 87.5% 953 | 91.0%
+ Inverse Search 909 | 87.6% 969 | 92.6% 992 | 94.7%

Table 3. Experiment results of our system with different feature combinations.

From the result we could also find that our
system has a high recall of 94.7% while consid-
ering top 4 candidates. If we only count in the
given NEs with their correct translation appear-
ing in the returned snippets, the recall would go
to 96.8%. This achievement may be not yet good
enough for computer-driven applications, but it
is certainly a good performance for user querying.

5 Conclusion

In this study we combine several relatively sim-
ple implementations of approaches that have
been proposed in the previous studies and obtain
a very good performance. We find that the Inter-
net is a quite good source for discovering NE
translations. Using snippets returned by Google
we can efficiently reduce the number of the pos-
sible candidates and acquire much useful infor-
mation to verify these candidates. Since the
number of candidates is generally less than proc-
essing with unaligned corpus, simple models can
performs filtering quite well and the over-fitting
problem is thus prevented.

From the failure cases of our system, (see Ap-
pendix A) we could observe that the performance
of this integrated approach could still be boosted
by more sophisticated models, more extensive
dictionaries, and more delicate training mecha-
nisms. For example, performing stemming or
adopting a more extensive dictionary might en-
hance the accuracy of estimating word sense
similarity; the statistic formula can be replaced
by more formal measures such as co-occurrences
or mutual information to make a more precise
assessment of statistical relationship. These tasks
would be our future works in developing a more
accurate and efficient NE translation system.
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Appendix A. Some Failure Cases of Our

System

GN Top 1 Correct Translation |Rank
A CBS SADDAM HUSSEIN 2
2 23 JERSEY NEW JERSEY 2
x % il ONLINE ARABIAN NIGHTS 2
¥ Er R Er ROYCE ROLLS ROYCE 2
4 f1#7r° < INBA JULIUS ERVING 2
N2 LAVIGNE AVRIL LAVIGNE 2
Bk JK JK. ROWLING 2
% % 5. |RICKY DAVIS |CELTICS 3
B gp o) MONET IMPRESSION SUNRISE 9
B TUPOLEV TU USSR 33
w4 aE £ [INBA MEDVENDENKO N/A
8 E TOS SYMPHONY NO. 5 N/A
§ Ry AROUNDO3 CUORE N/A
Ry 1 JACK LAYTON |[DEMOCRATIC PARTY N/A
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Abstract semi-supervised methods employ the bootstrapping

framework, which only need to pre-define some ini-
This paper presents an unsupervised learn-  tial seeds for any particular relation, and then boot-
ing approach to disambiguate variousrela-  strap from the seeds to acquire the relation. How-
tions between name entities by use of vari-  ever, it is often quite difficult to enumerate all class
ous lexical and syntactic features fromthe  labels in the initial seeds and decide an “optimal”
contexts. It works by calculating eigen- number of them.
vectors of an adjacency graph’s Laplacian Compared with supervised and semi-supervised
to recover a submanifold of data from a  methods, Hasegawa et al. (2004)’s unsupervised ap-
high dimensionality space and then per-  proach for relation extraction can overcome the dif-
forming cluster number estimation on the ficulties on requirement of a large amount of labeled
eigenvectors. Experiment results on ACE  data and enumeration of all class labels. Hasegawa
corpora show that this spectral cluster-  etal. (2004)'s method is to use a hierarchical cluster-
ing based approach outperforms the other  ing method to cluster pairs of named entities accord-
clustering methods. ing to the similarity of context words intervening be-
tween the named entities. However, the drawback of
hierarchical clustering is that it required providing
cluster number by users. Furthermore, clustering is

In this paper, we address the task of relation extra@€rformed in original high dimensional space, which
tion, which is to find relationships between name erfay induce non-convex clusters hard to identified.
tities in a given context. Many methods have been This paper presents a novel application of spec-
proposed to deal with this task, including supervisetfal clustering technigue to unsupervised relation ex-
learning algorithms (Miller et al., 2000; Zelenko ettraction problem. It works by calculating eigenvec-
al., 2002; Culotta and Soresen, 2004; Kambhatl9rs of an adjacency graph'’s Laplacian to recover a
2004; Zhou et al., 2005), semi-supervised learrsubmanifold of data from a high dimensional space,
ing algorithms (Brin, 1998; Agichtein and Gravanoand then performing cluster number estimation on
2000; Zhang, 2004), and unsupervised learning ai transformed space defined by the first few eigen-
gorithm (Hasegawa et al., 2004). vectors. This method may help us find non-convex
Among these methods, supervised learning is usglusters. It also does not need to pre-define the num-
ally more preferred when a large amount of laber of the context clusters or pre-specify the simi-
beled training data is available. However, it idarity threshold for the clusters as Hasegawa et al.
time-consuming and labor-intensive to manually ta§2004)’s method.
a large amount of training data. Semi-supervised The rest of this paper is organized as follows. Sec-
learning methods have been put forward to minition 2 formulates unsupervised relation extraction
mize the corpus annotation requirement. Most aind presents how to apply the spectral clustering

1 Introduction
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technique to resolve the task. Then section 3 reporEntity Type: the entity type of both entities, which
experiments and results. Finally we will give acon-  can be PERSON, ORGANIZATION, FACIL-

clusion about our work in section 4. ITY, LOCATION and GPE.
2 Unsupervised Relation Extraction POS features: Part-Of-Speech tags corresponding
Problem to all words in the two entities and three con-

text windows.
Assume that two occurrences of entity pairs with

similar contexts, are tend to hold the same relatiofhunking features: This category of features are
type. Thus unsupervised relation extraction prob-  €xtracted from the chunklink representation,
lem can be formulated as partitioning collections of ~ Which includes:

entity pairs into clusters according to the similarity
of contexts, with each cluster containing only entity
pairs labeled by the same relation _type. And ther_1, in tag means that the word is outside of any
ga_tch cluster, the most represgntatlye wo_rds are iden- chunk. The “I-XP” tag means that this
tified from thg contexts of entity pairs to induce the word is inside an XP chunk. The “B-XP"
label of relation type. Here, we only focus on the
clustering subtask and do not address the relation
type labeling subtask.

In the next subsections we will describe our pro-
posed method for unsupervised relation extraction,
which includes: 1) Collect the context vectors in
which the entity mention pairs co-occur; 2) Cluster
these Context vectors.

e Chunk tag information of the two enti-
ties and three context windows. The “0”

by default means that the word is at the
beginning of an XP chunk.

¢ Grammatical function of the two entities

and three context windows. The last word
in each chunk is its head, and the function
of the head is the function of the whole
chunk. “NP-SBJ” means a NP chunk as
the subject of the sentence. The other
words in a chunk that are not the head have
“NOFUNC" as their function.

¢ |OB-chains of the heads of the two enti-
ties. So-called IOB-chain, noting the syn-
tactic categories of all the constituents on
the path from the root node to this leaf

2.1 Context Vector and Feature Design

Let X = {x;}}_, be the set of context vectors of oc-
currences of all entity mention pairs, whergepre-
sents the context vector of thxéh occurrence, and

is the total number of occurrences of all entity men-

tion pairs. . . : node of tree.
Each occurrence of entity mention pairs can be
denoted as follows: We combine the above lexical and syntactic fea-
tures with their position information in the context
R — (Cpre, €1, Cia; €2, Cpost) (1) to form the context vector. Before that, we filter out

_ _ low frequency features which appeared only once in
wheree; ande; represents the entity mentions, angpe entire set.

Cpre,Cmia,and Cpe are the contexts before, be-
tween and after the entity mention pairs respectivel2.2 Context Clustering

We extracted features fromy, ez, Cpre, Cmid»  Once the context vectors of entity pairs are prepared,

Cpost 10 CONStruct context vectors, which are coMye come to the second stage of our method: cluster
puted from the parse trees derived from Chamiajqese context vectors automatically.

Parser (Charniak, 1999) and the Chunklink sctipt | recent years, spectral clustering technique has
written by Sabine Buchholz from Tilburg University. raceived more and more attention as a powerful ap-
roach to a range of clustering problems. Among
he efforts on spectral clustering techniques (Weiss,
1999; Kannan et al., 2000; Shi et al., 2000; Ng et al.,

! Software available at http://ilk.uvt.nl/ sabine/chunklink/  2001; Zha et al., 2001), we adopt a modified version

Words: Words in the two entities and three contex
windows.
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related to the given graph, and construct data clus-

Table 1: Context Clustering with Spectral-based Clustering[ : .

technique. ers based on such spectral information.
Input: A set of context vectorX = {z1, 2, ..., Tn}, Thus the starting point of context clustering is to
X e prxd construct araffinity matrix Afrom the data, which

Output: Clustered data and number of clusters; . . . .
2 is ann x n matrix encoding the distances between
1. Construct an affinity matrix byl;; = exp(——4) if i #

7,01 i = 5. Here,s; is the similarity betweees; and the various points. Th_e affinity r_natn).( is then nor-
x; calculated by Cosine similarity measure. and the freBhalized to form a matrix. by conjugating with the

distance parameter” is used to scale the weights;  the diagonal matriX>~!/? which has as entries the
2. Normalize the affinity matrixA to create the matrix, = ..

D—1/2AD~1/2, whereD is a diagonal matrix whosé) square roots of the sum of the rows Af This is tq

element is the sum of’s ith row; take into account the different spread of the various
3. Setg=2 clusters (points belonging to more rarified clusters

4. Computeq eigenvectors of. with greatest eigenvalues. |, . .
Arrange them in a matrix’. will have lower sums of the corresponding row of

5. Perform elongated<-means withg + 1 centers ony, A). It is straightforward to prove thdt is positive

6 il?ittki]a"ziﬂgltphe(lqﬁl)-th ftnean in thde ?rigin_;t hen th definite and has eigenvalues smaller or equal,to
. eq -tn cluster contains any data points, then there . . . .
must be at least an extra cluster; get ¢ + 1 and go with equality holding in at least one case.

back to step 4. Otherwise, algorithm stops and outputs Let K be the true number of clusters present in
clustered data and number of clusters. the dataset. X is known beforehand, the firgt
eigenvectors of will be computed and arranged as

columns in a matrix’”. Each row ofY” corresponds

(Sanguinetti et al,, 2005) of the algorithm by Ng e&o a context vector of entity pair, and the above pro-

al. (2001) because it can provide us model order se- . . L
. - cess can be considered as transforming the original
lection capability.

Sj d t k h lation t context vectors in d-dimensional space to new con-
) |gce we odn(; nO\tNh ow manyl rs T |((j)n ¥pt?§ext vectors in theé<-dimensional space. Therefore,
N advance and do not have any fabeled relatiof o s ofy will cluster upon mutually orthogonal

training exar.nples.at ha_nd, the |_orob_lem of TOd_ oints on theK dimensional sphere,rather than on
order selection arises, i.e. estimating the “opti;

the coordinate axes.
mal” number of clusters. Formally, |6t be the
model order, we need to finkl in Equation:k = 2.4 The Elongated K-means algorithm

qrgmmk{c”tenon(k)}' Here, the criterion is de- 5¢ 4,0 step 5 of Table 1 shows, the result of elon-
fined on the result of specFraI clustering. . gatedK-means algorithm is used to detect whether
Table 1 shows the details of the whole algorithmy,e n mper of clusters selectes less than the true

for context clustering, which contains two main,,mnerf, and allows one to iteratively obtain the
stages: 1) Transformation of Clustering Space (St§Q, mber of clusters.

1-4); 2) Clustering in the transformed space uUsing ~gnsider the case when the number of clusters

Elongated K-means algorithm (Step 5-6). is less than the true cluster numb€mresent in the
dataset. In such situation, taking the figst< K
eigenvectors, we will be selectinggadimensional
We represent each context vector of entity pair assubspace in the clustering space. As the rows of the
node in an undirected graph. Each edige (h the K eigenvectors clustered along mutually orthogo-
graph is assigned a weight that reflects the similarityal vectors, their projections in a lower dimensional
between two context vectorsaandj. Hence, the re- space will cluster along radial directions. Therefore,
lation extraction task for entity pairs can be definethe general picture will be af clusters elongated in
as a partition of the graph so that entity pairs thahe radial direction, with possibly some clusters very
are more similar to each other, e.g. labeled by theear the origin (when the subspace is orthogonal to
same relation type, belong to the same cluster. Assame of the discarded eigenvectors).

relaxation of such NP-hard discrete graph partition- Hence, theK-means algorithm is modified as
ing problem, spectral clustering technique computabe elongatedk -means algorithm to downweight
eigenvalues and eigenvectors of a Laplacian matroistances along radial directions and penalize dis-

2.3 Transformation of Clustering Space
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tances along transversal directions. The elongated
K-means algorithm computes the distance of point
x from the center; as follows:

e If the center is not very near the origial ¢; > € (c is a
parameter to be fixed by the user), the distances are cal-
culated asedist(x, ;) = (z — ;)" M(x — ¢;), where

T T
M= 1(I,— Z';C;i )+ AZ;C; , Ais thesharpnesparam-
eter that controls the eiongation (the smaller, the more
elongated the cluster$)

e If the center is very near the origitf,c; < e, the dis-
tances are measured using the Euclidean distance.

In each iteration of procedure in Table 1, elon-
gated K-means is initialized withy centers corre-
sponding to data points in different clusters and one
center in the origin. The algorithm then will drag the
center in the origin towards one of the clusters not
accounted for. Compute another eigenvector (thus
increasing the dimension of the clustering space to
g + 1) and repeat the procedure. Eventually, when
one reach as many eigenvectors as the number of
clusters present in the data, no points will be as-
signed to the center at the origin, leaving the cluster
empty. This is the signal to terminate the algorithm.

2.5 Anexample

Figure 1 visualized the clustering result of three cir-
cle dataset using K-means and Spectral-based clus-
tering. From Figure 1(b), we can see that K-means
can not separate the non-convex clusters in three cir-
cle dataset successfully since itis prone to local min-
imal. For spectral-based clustering, as the algorithm
described, initially, we took the two eigenvectors of
L with largest eigenvalues, which gave us a two-
dimensional clustering space. Then to ensure that
the two centers are initialized in different clusters,
one center is set as the point that is the farthest from
the origin, while the other is set as the point that
simultaneously farthest the first center and the ori-
gin. Figure 1(c) shows the three elongated clustersin
the 2D clustering space and the corresponding clus-
tering result of dataset is visualized in Figure 1(d),
which exploits manifold structure (cluster structure)

Figure 1: An Example:(a) The Three Circle Datasein data.

(b) The clustering result using K-means; (c) Three

elongated clusters in the 2D clustering space using ° In this paper, thsharpnesparameten is set to 0.2
Spectral clustering: two dominant eigenvectors; (d)

The clustering result using Spectral-based clustering

(02=0.05). (\,0 and+ denote examples in different

clusters)
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n Iel", wher h entry, ; gives the num-
Table 2:Frequency of Major Relation SubTypes in the acedeney tablel’, where each entry; ; gives the nu

training and devtest corpus. per of the instances that belong to both iké es-
Type [ SubType [ Training  Devtest timated cluster ang-th ground truth class. More-
ROLE | General-Staff 250 132 over, to ensure that any two clusters do not share
Management 77 1 :
Citizen-Of 127 4 the same labels of rela'_uon types, we adopt a per-
Founder 11 5 mutation procedure to find an one-to-one mapping
g;/f\(lnetf part 1411613 ig function 2 from the ground truth classes (relation
lllate-Partner . .
Member 260 145 types) TC to the estimated clust_erlng reSLBI_C.
Client 67 13 There are at mosf’C'| clusters which are assigned
Other 15 ’ relation type tags. And if the number of the esti-
PART | Part-Of 490 103 ted clusters is less than th ber of th d
Subsidiary 85 19 mated clusters is less than the number of the groun
Other 2 1 truth clusters, empty clusters should be added so that
AT Located 975 192 |EC| = |T'C| and the one-to-one mapping can be
Based-In 187 64 . L
Residence 154 54 performed, which can be formulated as the function:
SOC | Other-Professiona] 195 25 Q = argmaxq 2 1 -, whereQ(j) is the in-
Other-Personal 60 10 dex of the estimajtéij cllgjs)f]er associated with;ttie
Parent 68 24 J
Spouse 21 4 class.
Associate 49 7 Given the result of one-to-one mapping, we adopt
Other-Relative 23 10 .
Sibling 7 4 Precision Recall and F-measureto evaluate the
GrandParent 6 1 clustering result.
NEAR | Relative-Location 88 32

3.3 Experimental Design

We perform our unsupervised relation extraction on
the devtest set of ACE corpus and evaluate the al-
3.1 Data Setting gorithm on relation subtype level. Firstly, we ob-

) ) ~ serve the influence of various variables, including
Our proposed unsupervised relation extraction i§jsiance Parameter?, Different Features, Context
evaluated on ACE 2003 corpus, which contains 513,40 size. Secondly, to verify the effectiveness

files from sources including broadcast, NewsWir€y o - method, we further compare it with other two
and newspaper. We only deal with intra'semencﬁnsupervised methods.

explicit relations and assumed that all entities have

been detected beforehand in the EDT sub-task 8t3.1 Choice of Distance Parametes>

ACE. To verify our proposed method, we only col- We simply search oves? and pick the value
lect those pairs of entity mentions which have beethat finds the best aligned set of clusters on the
tagged relation types in the given corpus. Then thgansformed space. Here, the scattering criterion
relation type tags were removed to test the unsupafrace(PVT,lPB) is used to compare the cluster qual-
vised relation disambiguation. During the evaluaity for different value of2 3, which measures the ra-
tion procedure, the relation type tags were used @i® of between-cluster to within-cluster scatter. The
ground truth classes. A break-down of the data bliigher thetrace(P;;' Pg), the higher the cluster

3 Experiments and Results

24 relation subtypes is given in Table 2. quality.
' _ In Table 3 and Table 4, with different settings of
3.2 Evaluation method for clustering result feature set and context window size, we find out the

When assessing the agreement between clustering® trace(Py;! Pg) is trace of a matrix which is the sum of
result and manually annotated relation types (grourit diagonal eIgmentsPW is the within-cluster scatter matrix

as: =Y Xi —m;)(X; —m;)t and P,
truth classes), we would encounter the problem that” * " j=1 2oxiex, Ko _’)( ‘ '71 b
: . is the between-cluster scatter matrix d; = » ._, (m; —
there was no relation type tags for each cluster in our , , i=1 _
. m)(m; — m)*, where m is the total mean vector and; is
clustering results.

~ the mean vector foj*" cluster andX; — m;)" is the matrix
To resolve the problem, we construct a continwranspose of the column vecteK; — m;).
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Table 3:Contribution of Different Features

Features | o cluster number trace value [ Precison Recall F-measure
Words 0.021 15 2.369 41.6% 30.2% 34.9%
+Entity Type 0.016 18 3.198 40.3% 42.5% 41.5%
+POS 0.017 18 3.206 37.8% 46.9% 41.8%
+Chunking Infomation| 0.015 19 3.900 43.5% 49.4% 46.3%

Table 4:Different Context Window Size Setting
Context Window Size] o  cluster number trace value [ Precision Recall F-measure

0 0.016 18 3.576 37.6% 48.1% 42.2%
2 0.015 19 3.900 43.5% 49.4% 46.3%
5 0.020 21 2.225 29.3% 34.7% 31.7%

corresponding value ef? and cluster number which
P 9 Table 5: Performance of our proposed method (Spectral-

maximize therace value in searching for a range of paseq clustering) compared with other unsupervised methods:
values?. ((Hasegawa et al., 2004))'s clustering method and K-means
clustering.

3.3.2 Contribution of Different Features | Precision Recall F-measure
. . . Hasegawa’'s Methodl 38.7% 29.8% 33.7%
As the previous section presented, we incorporate, - cojawa's Method2|  37.9%  36.0%  36.9%

various lexical and syntactic features to extract rela-Kmeans 34.3% 40.2% 36.8%
tion. To measure the contribution of different fea-_Our Proposed Method  43.5% 49.4% 46.3%

tures, we report the performance by gradually in-

creasing the feature set, as Table 3 shows. settings of context window size (0, 2, 5) as Table 4

Table 3 S.hOWS that aI_I of the four categories of feaéhows. From this table we can find that with the con-
tures contribute to the improvement of performanc

more or less. Firstly,the addition of entity type fea-‘f:)ext window size setting, 2, the algorithm achieves
ture is ver lljseful y\’/vhich i rovdé—me;lsgsab the best performance of 43.5%/49.4%/46.3% in
y e P DY precision/Recall/F-measuréNith the context win-
6.6%. Secondly, adding POS features can increage .
F-measurescore but do not imorove vervy much Ow size setting, 5, the performance becomes worse
: . b ery "‘because extending the context too much may include
Thirdly, chunking features also show their great USE- e features. but at the same time. the noise also
fulness with increasin@recision/Recall/F-measure increases ’ '
by 5.7%/2.5%/4.5%. '
We combine all these features to do all other evak 5 4 Comparison with other Unsupervised

uations In our experiments. methods

3.3.3 Setting of Context Window Size In (Hasegawa et al., 2004), they preformed un-

We have mentioned in Section 2 that the contex@upervised relation extraction based on hierarchical
vectors of entity pairs are derived from the contextslustering and they only used word features between
before, between and after the entity mention pairgntity mention pairs to construct context vectors. We
Hence, we have to specify the three context windowieported the clustering results using the same clus-
size first. In this paper, we set the mid-context wintering strategy as Hasegawa et al. (2004) proposed.
dow as everything between the two entity mentiondn Table 5, Hasegawa'’s Method1 means the test used
For the pre- and post- context windows, we couldéhe word feature as Hasegawa et al. (2004) while
have different choices. For example, if we specifyiasegawa’s Method2 means the test used the same
the outer context window size as 2, then it means thégature set as our method. In both tests, we specified
the pre-context (post-context)) includes two wordghe cluster number as the number of ground truth
before (after) the first (second) entity. classes.

For comparison of the effect of the outer context We also approached the relation extraction prob-
of entity mention pairs, we conducted three differenem using the standard clustering technique, K-
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means, where we adopted the same feature set deAs regards the clustering technique, the spectral-
fined in our proposed method to cluster the conbased clustering performs better than direct cluster-
text vectors of entity mention pairs and pre-specifiethg, K-means. Since the spectral-based algorithm
the cluster number as the number of ground truttvorks in a transformed space of low dimension-
classes. ality, data can be easily clustered so that the al-

Table 5 reports the performance of our proposegorithm can be implemented with better efficiency
method comparing with the other two unsupervisednd speed. And the performance using spectral-
methods. Table 5 shows our proposed spectral badealsed clustering can be improved due to the reason
method clearly outperforms the other two unsupethat spectral-based clustering overcomes the draw-
vised methods by 12.5% and 9.5%Hrmeasurae- back of K-means (prone to local minima) and may
spectively. Moreover, the incorporation of varioudind non-convex clusters consistent with human in-
lexical and syntactic features into Hasegawa et aluition.
(2004)'s method2 makes it outperform Hasegawa et Generally, from the point of view of unsu-
al. (2004)’s method1 which only uses word featurepervised resolution for relation extraction, our

] ] approach already achieves best performance of

3.4 Discussion 43.5%/49.4%/46.3% iRrecision/Recall/F-measure
In this paper, we have shown that the modified specompared with other clustering methods.
tral clustering technique, with various lexical and
syntactic features derived from the context of entit#  Conclusion and Future work
pairs, performed well on the unsupervised relatio
extraction problem. Our experiments show that b
the choice of the distance parametér we can esti-

th this paper, we approach unsupervised relation ex-
Yraction problem by using spectral-based clustering
technique with diverse lexical and syntactic features

%terived from context. The advantage of our method

clusters. We notice that the estimated cluster nuni15- that it doesn't need any manually labeled relation

erﬁstances, and pre-definition the number of the con-

in most cases. The reason for this phenomenon MAt clusters. Experiment results on the ACE corpus

be_that some relation type_s can no_t be easily dISt'ré_how that our method achieves better performance
guished using the context information only. For ex

. than other unsupervised methods, i.e.Hasegawa et
ample, the relation subtypes “Located”, “Based-lnt P g

) ) ) o : . al. (2004)’s method and Kmeans-based method.
and “Residence” are difficult to disambiguate even . . )
Currently we combine various lexical and syn-

for human experts to differentiate. ctic features to construct context vectors for clus-

The 'results also ShO.W that various ngmal an(it{:ring. In the future we will further explore other
syntactic features contain useful information for the

task. Especially. althouah we did not concern thsemantic information to assist the relation extrac-
' P Y 9 : : fion problem. Moreover, instead of cosine similar-
dependency tree and full parse tree information

alltsy measure to calculate the distance between con-

other supervised methods (Miller et al., 2000; Cu‘Eext vectors, we will try other distributional similar-

lotta and Soresen, 2004, Kambhatla, 2004; Zhou %t
) ; ) y measures to see whether the performance of re-
al., 2005), the incorporation of simple features, suc|y,. . . o
L . . ., lation extraction can be improved. In addition, if we
as words and chunking information, still can provide . . . :
. . . can find an effective unsupervised way to filter out
complement information for capturing the character-

istics of entity pairs. This perhaps dues to the facl%nrelated entity pairs in advapce, it would make our
that two entit i I i h oth .Rroposed method more practical.

y mentions are close to each other i
most of relations defined in ACE. Another observa-
tion from the result is that extending the outer conReferences
text window of entity mention pairs too much may htein E. and Gravano L. 2000Snowball: Ex
_nOt improve the perfo_rmgnce S'n(_:e the process mé tracting R'elations from Iaré'e Plain-Text Colléctions,
incorporate more noise information and affect the |, proc. of thest* ACM International Conference on
clustering result. Digital Libraries (ACMDL’00).
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Abstract

In this paper, we describe an empirical
study of Chinese chunking on a corpus,
which is extracted from UPENN Chinese
Treebank-4 (CTB4). First, we compare
the performance of the state-of-the-art ma-
chine learning models. Then we propose
two approaches in order to improve the
performance of Chinese chunking. 1) We
propose an approach to resolve the spe-
cial problems of Chinese chunking. This
approach extends the chunk tags for ev-
ery problem by a tag-extension function.
2) We propose two novel voting meth-
ods based on the characteristics of chunk-
ing task. Compared with traditional vot-
ing methods, the proposed voting methods
consider long distance information. The
experimental results show that the SVMs
model outperforms the other models and
that our proposed approaches can improve
performance significantly.

1 Introduction

Chunking identifies the non-recursive cores of
various types of phrases in text, possibly as a
precursor to full parsing or information extrac-
tion. Steven P. Abney was the first person
to introduce chunks for parsing(Abney, 1991).
Ramshaw and Marcus(Ramshaw and Marcus,
1995) first represented base noun phrase recog-
nition as a machine learning problem. In 2000,
CoNLL-2000 introduced a shared task to tag
many kinds of phrases besides noun phrases in
English(Sang and Buchholz, 2000). Addition-
ally, many machine learning approaches, such as
Support Vector Machines (SVMs)(Vapnik, 1995),
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Conditional Random Fields (CRFs)(Lafferty et
al., 2001), Memory-based Learning (MBL)(Park
and Zhang, 2003), Transformation-based Learn-
ing (TBL)(Brill, 1995), and Hidden Markov Mod-
els (HMMs)(Zhou et al., 2000), have been applied
to text chunking(Sang and Buchholz, 2000; Ham-
merton et al., 2002).

Chinese chunking is a difficult task, and much
work has been done on this topic(Li et al., 2003a;
Tan et al., 2005; Wu et al., 2005; Zhao et al.,
2000). However, there are many different Chinese
chunk definitions, which are derived from differ-
ent data sets(Li et al., 2004; Zhang and Zhou,
2002). Therefore, comparing the performance of
previous studies in Chinese chunking is very dif-
ficult. Furthermore, compared with the other lan-
guages, there are some special problems for Chi-
nese chunking(Li et al., 2004).

In this paper, we extracted the chunking corpus
from UPENN Chinese Treebank-4(CTB4). We
presented an empirical study of Chinese chunk-
ing on this corpus. First, we made an evaluation
on the corpus to clarify the performance of state-
of-the-art models in Chinese chunking. Then we
proposed two approaches in order to improve the
performance of Chinese chunking. 1) We pro-
posed an approach to resolve the special prob-
lems of Chinese chunking. This approach ex-
tended the chunk tags for every problem by a tag-
extension function. 2) We proposed two novel vot-
ing methods based on the characteristics of chunk-
ing task. Compared with traditional voting meth-
ods, the proposed voting methods considered long
distance information. The experimental results
showed the proposed approaches can improve the
performance of Chinese chunking significantly.

The rest of this paper is as follows: Section 2
describes the definitions of Chinese chunks. Sec-
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tion 3 simply introduces the models and features
for Chinese chunking. Section 4 proposes a tag-
extension method. Section 5 proposes two new
voting approaches. Section 6 explains the exper-
imental results. Finally, in section 7 we draw the
conclusions.

2 Definitions of Chinese Chunks

We defined the Chinese chunks based on the CTB4
dataset!. Many researchers have extracted the
chunks from different versions of CTB(Tan et al.,
2005; Li et al., 2003b). However, these studies did
not provide sufficient detail. We developed a tool?
to extract the corpus from CTB4 by modifying the
tool Chunklink>.

2.1 Chunk Types

Here we define 12 types of chunks*: ADJP, ADVP,
CLP, DNP, DP, DVP, LCP, LST, NP, PP, QP,
VP(Xue et al., 2000). Table 1 provides definitions
of these chunks.

Type Definition

ADJP | Adjective Phrase
ADVP | Adverbial Phrase
CLP Classifier Phrase
DNP DEG Phrase

DP Determiner Phrase
DVP DEV phrase

LCP Localizer Phrase
LST List Marker

NP Noun Phrase

PP Prepositional Phrase
QP Quantifier Phrase
VP Verb Phrase

Table 1: Definition of Chunks

2.2 Data Representation

To represent the chunks clearly, we represent the
data with an IOB-based model as the CoNLLOO
shared task did, in which every word is to be
tagged with a chunk type label extended with I
(inside a chunk), O (outside a chunk), and B (in-
side a chunk, but also the first word of the chunk).

'More detailed information at
http://www.cis.upenn.edu/ chinese/.

2Tool is available at
http://www.nlplab.cn/chenwl/tools/chunklinkctb.txt.

3Tool is available at http://ilk.uvt.nl/software. html#chunklink.

“There are 15 types in the Upenn Chinese TreeBank. The
other chunk types are FRAG, PRN, and UCP.

Each chunk type could be extended with I or B
tags. For instance, NP could be represented as
two types of tags, B-NP or I-NP. Therefore, we
have 25 types of chunk tags based on the IOB-
based model. Every word in a sentence will be
tagged with one of these chunk tags. For in-
stance, the sentence (word segmented and Part-of-
Speech tagged) “f-NR(He) /] iX-VV(reached)
/1t 5{-NR(Beijing) /HL1%-NN(airport) /. /” will
be tagged as follows:

Example 1:

S1: [NP fil][VP Z[IX][NP JL5/HLIA][0 - ]

S2: fB-NP /£IiAB-VP /1t 5{B-NP /HLIZI-NP /. O/
Here S1 denotes that the sentence is tagged with
chunk types, and S2 denotes that the sentence is
tagged with chunk tags based on the IOB-based
model.

With data representation, the problem of Chi-
nese chunking can be regarded as a sequence tag-
ging task. That is to say, given a sequence of
tokens (words pairing with Part-of-Speech tags),
r = x1, T2, ..., Tn, We need to generate a sequence
of chunk tags, vy = y1, 92, ..., Yn.

2.3 Data Set

CTB4 dataset consists of 838 files. In the ex-
periments, we used the first 728 files (FID from
chtb_001.fid to chtb_899.fid) as training data, and
the other 110 files (FID from chtb_900.fid to
chtb_1078.fid) as testing data. In the following
sections, we use the CTB4 Corpus to refer to the
extracted data set. Table 2 lists details on the
CTB4 Corpus data used in this study.

Training | Test
Num of Files 728 110
Num of Sentences | 9,878 5,290
Num of Words 238,906 | 165,862
Num of Phrases 141,426 | 101,449

Table 2: Information of the CTB4 Corpus

3 Chinese Chunking
3.1 Models for Chinese Chunking

In this paper, we applied four models, includ-
ing SVMs, CRFs, TBL, and MBL, which have
achieved good performance in other languages.
We only describe these models briefly since full
details are presented elsewhere(Kudo and Mat-
sumoto, 2001; Sha and Pereira, 2003; Ramshaw
and Marcus, 1995; Sang, 2002).



3.1.1 SVMs

Support Vector Machines (SVMs) is a pow-
erful supervised learning paradigm based on the
Structured Risk Minimization principle from com-
putational learning theory(Vapnik, 1995). Kudo
and Matsumoto(Kudo and Matsumoto, 2000) ap-
plied SVMs to English chunking and achieved
the best performance in the CoNLLOO shared
task(Sang and Buchholz, 2000). They created 231
SVMs classifiers to predict the unique pairs of
chunk tags.The final decision was given by their
weighted voting. Then the label sequence was
chosen using a dynamic programming algorithm.
Tan et al. (Tan et al., 2004) applied SVMs to
Chinese chunking. They used sigmoid functions
to extract probabilities from SVMs outputs as the
post-processing of classification. In this paper, we
used Yamcha (V0.33)° in our experiments.

3.1.2 CRFs

Conditional Random Fields is a powerful se-
quence labeling model(Lafferty et al., 2001) that
combine the advantages of both the generative
model and the classification model. Sha and
Pereira(Sha and Pereira, 2003) showed that state-
of-the-art results can be achieved using CRFs in
English chunking. CRFs allow us to utilize a large
number of observation features as well as differ-
ent state sequence based features and other fea-
tures we want to add. Tan et al. (Tan et al., 2005)
applied CRFs to Chinese chunking and their ex-
perimental results showed that the CRFs approach
provided better performance than HMM. In this
paper, we used MALLET (V0.3.2)®(McCallum,
2002) to implement the CRF model.

3.1.3 TBL

Transformation based learning(TBL), first in-
troduced by Eric Brill(Brill, 1995), is mainly
based on the idea of successively transforming the
data in order to correct the error. The transforma-
tion rules obtained are usually few , yet power-
ful. TBL was applied to Chinese chunking by Li
et al.(Li et al., 2004) and TBL provided good per-
formance on their corpus. In this paper, we used
fnTBL (V1.0)’ to implement the TBL model.

Yamcha is available at

http://chasen.org/ taku/software/yamcha/
SMALLET is available at

http://mallet.cs.umass.edu/index.php/Main_Page
"fnTBL is available at

http://nlp.cs.jhu.edu/ rflorian/fntbl/index.html

99

3.14 MBL

Memory-based Learning (also called instance
based learning) is a non-parametric inductive
learning paradigm that stores training instances in
a memory structure on which predictions of new
instances are based(Walter et al., 1999). The simi-
larity between the new instance X and example Y
in memory is computed using a distance metric.
Tjong Kim Sang(Sang, 2002) applied memory-
based learning(MBL) to English chunking. MBL
performs well for a variety of shallow parsing
tasks, often yielding good results. In this paper,
we used TIMBL8(Daelemans et al., 2004) to im-
plement the MBL model.

3.2 Features

The observations are based on features that are
able to represent the difference between the two
events. We utilize both lexical and Part-Of-
Speech(POS) information as the features.

We use the lexical and POS information within
a fixed window. We also consider different combi-
nations of them. The features are listed as follows:

e WORD: uni-gram and bi-grams of words in
an n window.

e POS: uni-gram and bi-grams of POS in an n
window.

¢ WORD+POS: Both the features of WORD
and POS.

where n is a predefined number to denote window
size.

For instance, the WORD features at the 3rd
position (4t 5{-NR) in Example 1 (set n as 2):
“fb L2 F3A L1 JE 510 LI R1 . R2”(uni-
gram) and “fth_FiA LB1 21k _Jb 5T B0 db 5t Al
% RB1 Hl¥_. _RB2”(bi-gram). Thus features
of WORD have 9 items(5 from uni-gram and
4 from bi-grams). In the similar way, fea-
tures of POS also have 9 items and features of
WORD+POS have 18 items(9+9).

4 Tag-Extension

In Chinese chunking, there are some difficult prob-
lems, which are related to Special Terms, Noun-
Noun Compounds, Named Entities Tagging and
Coordination. In this section, we propose an ap-
proach to resolve these problems by extending the
chunk tags.

8TiIMBL is available at http://ilk.uvt.nl/timbl/



In the current data representation, the chunk
tags are too generic to construct accurate models.
Therefore, we define a tag-extension function f
in order to extend the chunk tags as follows:

Te=f(T,Q)=T-Q )

where, T" denotes the original tag set, () denotes
the problem set, and 7, denotes the extended tag
set. For instance, we have an ¢ problem(q € Q).
Then we extend the chunk tags with gq. For NP
Recognition, we have two new tags: B-NP-q and
I-NP-q. Here we name this approach as Tag-
Extension.

In the following three cases study, we demon-
strate that how to use Tag-Extension to resolve the
difficult problems in NP Recognition.

1) Special Terms: this kind of noun phrases
is special terms such as ” [/ ZE fiy(Life)/ 2%
[X (Forbidden Zone)/ ] /7, which are bracketed
with the punctuation ” [, J, [, |, ( )™
They are divided into two types: chunks with these
punctuation and chunks without these punctua-
tion. For instance, ” [/ A=/ 250X/ ] /7 is an
NP chunk ( [B-NP/ 4= fifI-NP/ 25 [XI-NP/ ] I-
NP/) while » [/7K 2t (forever)/ 4% JT(full-blown)/
'1(DE)/ %3f{£(Chinese Redbud)/ ] /” is tagged
as ( [O/ 7K3ZO /& ITO/ IO/ % I 1EB-NP/
] O/). We extend the tags with SPE for Special
Terms: B-NP-SPE and I-NP-SPE.

2) Coordination: These problems are related
to the conjunctions “Hl(and), (and), B¥(or),
% (and)”. They can be divided into two types:
chunks with conjunctions and chunks without
conjunctions. For instance, “# #5(HongKong)/
Fl(and)/ ¥ [ J(Macau)/” is an NP chunk (Fr#5B-
NP/ FII-NP/ # [ JI-NP/), while in " {(least)/
T. % (salary)/ Fl(and)/ “E i 9% (living mainte-
nance)/” it is difficult to tell whether " {X” is a
shared modifier or not, even for people. We extend
the tags with COO for Coordination: B-NP-COO
and I-NP-COOQ.

3) Named Entities Tagging: Named Enti-
ties(NE)(Sang and Meulder, 2003) are not dis-
tinguished in CTB4, and they are all tagged as
”NR”. However, they play different roles in
chunks, especial in noun phrases. For instance,
1 J-NR(Macau)/ #13%-NN(Airport)” and ¥
#5-NR(Hong Kong)/ #13%-NN(Airport)” vs X5 /]y
*F--NR(Deng Xiaoping)/ 5G4:-NN(Mr.)” and A&
1 °F-NR(Song Weiping) T Ji-NN(President)”.
Here "##[]” and "7 #5” are LOCATION, while

"X/ and 74 31 are PERSON. To investi-
gate the effect of Named Entities, we use a LOCA-
TION dictionary, which is generated from the PFR
corpus’ of ICL, Peking University, to tag location
words in the CTB4 Corpus. Then we extend the
tags with LOC for this problem: B-NP-LOC and
I-NP-LOC.

From the above cases study, we know the steps
of Tag-Extension. Firstly, identifying a special
problem of chunking. Secondly, extending the
chunk tags via Equation (1). Finally, replacing the
tags of related tokens with new chunk tags. After
Tag-Extension, we use new added chunk tags to
describe some special problems.

5 Voting Methods

Kudo and Matsumoto(Kudo and Matsumoto,
2001) reported that they achieved higher accuracy
by applying voting of systems that were trained
using different data representations. Tjong Kim
Sang et al.(Sang and Buchholz, 2000) reported
similar results by combining different systems.

In order to provide better results, we also ap-
ply the voting of basic systems, including SVMs,
CRFs, MBL and TBL. Depending on the charac-
teristics in the chunking task, we propose two new
voting methods. In these two voting methods, we
consider long distance information.

In the weighted voting method, we can assign
different weights to the results of the individ-
ual system(van Halteren et al., 1998). However,
it requires a larger amount of computational ca-
pacity as the training data is divided and is re-
peatedly used to obtain the voting weights. In
this paper, we give the same weight to all ba-
sic systems in our voting methods. Suppose, we
have K basic systems, the input sentence is x =
Z1,Z2,..., Ty, and the results of K basic systems
are tj = tlj,tgj, ...,tnj, 1 < j < K. Then our
goal is to gain a new result y = 1,2, ..., yn by
voting.

5.1 Basic Voting

This is traditional voting method, which is the
same as Uniform Weight in (Kudo and Mat-
sumoto, 2001). Here we name it as Basic Voting.
For each position, we have K candidates from K
basic systems. After voting, we choose the candi-
date with the most votes as the final result for each
position.

“More information at http://www.icl.pku.edu
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5.2 Sent-based Voting

In this paper, we treat chunking as a sequence la-
beling task. Here we apply this idea in computing
the votes of one sentence instead of one word. We
name it as Sent-based Voting. For one sentence,
we have K candidates, which are the tagged se-
quences produced by K basic systems. First, we
vote on each position, as done in Basic Voting.
Then we compute the votes of every candidate by
accumulating the votes of each position. Finally,
we choose the candidate with the most votes as
the final result for the sentence. That is to say, we
make a decision based on the votes of the whole
sentence instead of each position.

5.3 Phrase-based Voting

In chunking, one phrase includes one or more
words, and the word tags in one phrase depend on
each other. Therefore, we propose a novel vot-
ing method based on phrases, and we compute the
votes of one phrase instead of one word or one sen-
tence. Here we name it as Phrase-based Voting.

There are two steps in the Phrase-based Voting
procedure. First, we segment one sentence into
pieces. Then we calculate the votes of the pieces.
Table 3 is the algorithm of Phrase-based Voting,
where F'(t;;,t;x;) is a binary function:

1 : b=ty
Fti: 1) — ig = li

In the segmenting step, we seek the ”"O” or ’B-
XP” (XP can be replaced by any type of phrase)
tags, in the results of basic systems. Then we get a
new piece if all K results have the ”O” or "B-XP”
tags at the same position.

In the voting step, the goal is to choose a result
for each piece. For each piece, we have K candi-
dates. First, we vote on each position within the
piece, as done in Basic Voting. Then we accumu-
late the votes of each position for every candidate.
Finally, we pick the one, which has the most votes,
as the final result for the piece.

The difference in these three voting methods is
that we make the decisions in different ranges: Ba-
sic Voting is at one word; Phrase-based Voting is
in one piece; and Sent-based Voting is in one sen-
tence.

2)

6 Experiments

In this section, we investigated the performance of
Chinese chunking on the CTB4 Corpus.

Input:

Sequence: © = x1, ..., Tn;

Kresults: t; = t1j,...,tn;,1 < j < K.
Output:

Voted results: y = y1, Y2, ..., Yn

Segmenting: Segment the sentence into pieces.

Pieces[]=null; begin = 1
For each i in (2, n){
For each j in (1,K)
if(¢;; is not ”O” and ”"B-XP”) break;
if(j > K){
add new piece: p = Tpegin, .-, Ti—1 into Pieces;
begin=1i; }}

Voting: Choose the result with the most votes for each
piece: p = Twegin, ---; Tend-

Votes[K] = 0;
For each k in (1,K)

Voteslk] = Z

begin<i<end,1<j<K

F(tij,ti) ()

kEmaz = argmazi<k<k (Votes[k]);
Choose thegin,kmaws -+ tend,kmas as the result for
piece p.

Table 3: Algorithm of Phrase-based Voting

6.1 Experimental Setting

To investigate the chunker sensitivity to the size
of the training set, we generated different sizes of
training sets, including 1%, 2%, 5%, 10%, 20%,
50%, and 100% of the total training data.

In our experiments, we used all the default pa-
rameter settings of the packages. Our SVMs and
CRFs chunkers have a first-order Markov depen-
dency between chunk tags.

We evaluated the results as CONLL2000 share-
task did. The performance of the algorithm was
measured with two scores: precision P and recall
R. Precision measures how many chunks found by
the algorithm are correct and the recall rate con-
tains the percentage of chunks defined in the cor-
pus that were found by the chunking program. The
two rates can be combined in one measure:

_2><P><R

Fy = 4
! R+P @)

In this paper, we report the results with F score.

6.2 Experimental Results
6.2.1 POS vs. WORD+POS

In this experiment, we compared the perfor-
mance of different feature representations, in-
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Figure 1: Results of different features

cluding POS and WORD+ POS(See section 3.2),
and set the window size as 2. We also inves-
tigated the effects of different sizes of training
data. The SVMs and CRFs approaches were used
in the experiments because they provided good
performance in chunking(Kudo and Matsumoto,
2001)(Sha and Pereira, 2003).

Figure 1 shows the experimental results, where
xtics denotes the size of the training data, "WP”
refers to WORD+POS, P’ refers to POS. We can
see from the figure that WORD+POS yielded bet-
ter performance than POS in the most cases. How-
ever, when the size of training data was small,
the performance was similar. With WORD+POS,
SVMs provided higher accuracy than CRFs in
all training sizes. However, with POS, CRFs
yielded better performance than SVMs in large
scale training sizes. Furthermore, we found SVMs
with WORD+POS provided 4.07% higher accu-
racy than with POS, while CRFs provided 2.73%
higher accuracy.

6.2.2 Comparison of Models

In this experiment, we compared the perfor-
mance of the models, including SVMs, CRFs,
MBL, and TBL, in Chinese chunking. In the ex-
periments, we used the feature WORD+POS and
set the window size as 2 for the first two mod-
els. For MBL, WORD features were within a one-
window size, and POS features were within a two-
window size. We used the original data for TBL
without any reformatting.

Table 4 shows the comparative results of the
models. We found that the SVMs approach was
superior to the other ones. It yielded results that
were 0.72%, 1.51%, and 3.58% higher accuracy
than respective CRFs, TBL, and MBL approaches.

! ! ! !
0.01 0.02 0.05 0.1 0.2 0.5 1

SVMs | CRFs | TBL | MBL
ADJP | 84.45 | 84.55 | 85.95 | 80.48
ADVP | 83.12 | 82.74 | 81.98 | 77.95
CLP 5.26 0.00 | 0.00 | 3.70
DNP | 99.65 | 99.64 | 99.65 | 99.61
DP 99.70 | 99.40 | 99.70 | 99.46
DVP | 96.77 | 92.89 | 99.61 | 99.41
LCP 99.85 | 99.85 | 99.74 | 99.82
LST 68.75 | 68.25 | 56.72 | 64.75
NP 90.54 | 89.79 | 89.82 | 87.90
PP 99.67 | 99.66 | 99.67 | 99.59
QP 96.73 | 96.53 | 96.60 | 96.40
VP 89.74 | 88.50 | 85.75 | 82.51
+ 91.46 | 90.74 | 89.95 | 87.88

Table 4: Comparative Results of Models

Method | Precision | Recall | F}

CRFs 91.47 90.01 | 90.74
SVMs | 92.03 9091 | 9146
Vi1 91.97 90.66 | 91.31
V2 92.32 90.93 | 91.62
V3 92.40 90.97 | 91.68

Table 5: Voting Results

Giving more details for each category, the SVMs
approach provided the best results in ten cate-
gories, the CRFs in one category, and the TBL in
five categories.

6.2.3 Comparison of Voting Methods

In this section, we compared the performance of
the voting methods of four basic systems, which
were used in Section 6.2.2. Table 5 shows the
results of the voting systems, where V1 refers
to Basic Voting, V2 refers to Sent-based Voting,
and V3 refers to Phrase-based Voting. We found
that Basic Voting provided slightly worse results
than SVMs. However, by applying the Sent-
based Voting method, we achieved higher accu-
racy than any single system. Furthermore, we
were able to achieve more higher accuracy by ap-
plying Phrase-based Voting. Phrase-based Voting
provided 0.22% and 0.94% higher accuracy than
respective SVMs, CRFs approaches, the best two
single systems.

The results suggested that the Phrase-based Vot-
ing method is quite suitable for chunking task. The
Phrase-based Voting method considers one chunk
as a voting unit instead of one word or one sen-
tence.
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SVMs | CRFs | TBL | MBL | V3
NPR [ 90.62 [ 89.72 | 89.89 [ 87.77 [ 90.92
COO [90.61 [ 89.78 [ 90.05 [ 87.80 | 91.03
SPE | 90.65 | 90.14 | 90.31 | 87.77 | 91.00
LOC [90.53 | 89.83 | 89.69 | 87.78 | 90.86
| NPR* | - - - - ]9113]

Table 6: Results of Tag-Extension in NP Recogni-
tion

6.2.4 Tag-Extension

NP is the most important phrase in Chinese
chunking and about 47% phrases in the CTB4 Cor-
pus are NPs. In this experiment, we presented the
results of Tag-Extension in NP Recognition.

Table 6 shows the experimental results of Tag-
Extension, where "NPR” refers to chunking with-
out any extension, "SPE” refers to chunking
with Special Terms Tag-Extension, ”COQO” refers
to chunking with Coordination Tag-Extension,
“LOC” refers to chunking with LOCATION Tag-
Extension, "NPR*” refers to voting of eight sys-
tems(four of SPE and four of COO), and ”V3”
refers to Phrase-based Voting method.

For NP Recognition, SVMs also yielded the
best results. But it was surprised that TBL pro-
vided 0.17% higher accuracy than CRFs. By ap-
plying Phrase-based Voting, we achieved better re-
sults, 0.30% higher accuracy than SVMs.

From the table, we can see that the Tag-
Extension approach can provide better results. In
COO, TBL got the most improvement with 0.16%.
And in SPE, TBL and CRFs got the same improve-
ment with 0.42%. We also found that Phrase-
based Voting can improve the performance signif-
icantly. NPR* provided 0.51% higher than SVMs,
the best single system.

For LOC, the voting method helped to improve
the performance, provided at least 0.33% higher
accuracy than any single system. But we also
found that CRFs and MBL provided better results
while SVMs and TBL yielded worse results. The
reason was that our NE tagging method was very
simple. We believe NE tagging can be effective
in Chinese chunking, if we use a highly accurate
Named Entity Recognition system.

7 Conclusions

In this paper, we conducted an empirical study of
Chinese chunking. We compared the performance
of four models, SVMs, CRFs, MBL, and TBL.

We also investigated the effects of using different
sizes of training data. In order to provide higher
accuracy, we proposed two new voting methods
according to the characteristics of the chunking
task. We proposed the Tag-Extension approach to
resolve the special problems of Chinese chunking
by extending the chunk tags.

The experimental results showed that the SVMs
model was superior to the other three models.
We also found that part-of-speech tags played an
important role in Chinese chunking because the
gap of the performance between WORD-+POS and
POS was very small.

We found that the proposed voting approaches
can provide higher accuracy than any single sys-
tem can. In particular, the Phrase-based Voting ap-
proach is more suitable for chunking task than the
other two voting approaches. Our experimental
results also indicated that the Tag-Extension ap-
proach can improve the performance significantly.
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Abstract

Word alignment methods can gain valu-
able guidance by ensuring that their align-
ments maintain cohesion with respect to
the phrases specified by a monolingual de-
pendency tree. However, this hard con-
straint can also rule out correct alignments,
and its utility decreases as alignment mod-
els become more complex. We use a pub-
licly available structured output SVM to
create a max-margin syntactic aligner with
a soft cohesion constraint. The resulting
aligner is the first, to our knowledge, to use
a discriminative learning method to train
an ITG bitext parser.

to be very different from their IBM counterparts.
They model operations that are meaningful at a
syntax level, like re-ordering children, but ignore
features that have proven useful in IBM models,
such as the preference to align words with simi-
lar positions, and the HMM preference for links to
appear near one another (Vogel et al., 1996).

Recently, discriminative learning technology
for structured output spaces has enabled several
discriminative word alignment solutions (Liu et
al., 2005; Moore, 2005; Taskar et al., 2005). Dis-
criminative learning allows easy incorporation of
any feature one might have access to during the
alignment search. Because the features are han-
dled so easily, discriminative methods use features
that are not tied directly to the search: the search
and the model become decoupled.

Given a parallel sentence pair, or bitext, bilin- N this work, we view synchronous parsing only
gual word alignment finds word-to-word connec-2S & vehicle to expose syntactic features to a dis-
tions across languages. Originally introduced as griminative model. This allows us to include the
byproduct of training statistical translation modelsconstraints that would usually be imposed by a
in (Brown et al., 1993), word alignment has pe-tree-to-string alignment method as a feature in our
come the first step in training most statistical trans/odel, creating a powerful soft constraint. We
lation systems, and alignments are useful to a hog&tdd our syntactic features to an already strong
of other tasks. The dominant IBM a”gnmemmod_flat-string discriminative solution, and we show
els (Och and Ney, 2003) use minimal linguistic in-that they provide new information resulting in im-
tuitions: sentences are treated as flat strings. The§g0ved alignments.
carefully designed generative models are difficul
to extend, and have resisted the incorporation o
intuitively useful features, such as morphology. Let analignment be the complete structure that
There have been many attempts to incorporateonnects two parallel sentences, andink be
syntax into alignment; we will not present a com-one of the word-to-word connections that make
plete list here. Some methods parse two flat stringgp an alignment. All word alignment methods
at once using a bitext grammar (Wu, 1997). Otherdenefit from some set of constraints. These limit
parse one of the two strings before alignment bethe alignment search space and encourage com-
gins, and align the resulting tree to the remainingpetition between potential links. The IBM mod-
string (Yamada and Knight, 2001). The statisti-els (Brown et al., 1993) benefit from a one-to-
cal models associated with syntactic aligners tenchany constraint, where each target word has ex-

1 Introduction

Constrained Alignment
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lend itself to a soft cohesion constraint. The im-
perfect beam search may not be able to find the
optimal alignment under a soft constraint. Further-
I I ey more, itis not clear what penalty to assign to cross-
| Impot  1cause ; " le 1 malaise ings, or how to learn such a penalty from an iter-
ative training process. The remainder of this pa-
per will develop a complete alignment search that
is aware of cohesion violations, and use discrimi-
actly one generator in the source. Methods like"aive learning technology to assign a meaningful
competitive linking (Melamed, 2000) and maxi- Penalty to those violations.
mum matching (Taskar et al., 2005) use a one-to- _
one constraint, where words in either sentence cafi  SYNtax-aware Alignment Search
participate in at most one link. Throughout this pa-

Figure 1: A cohesion constraint violation.

o "“"We require an alignment search that can find the
per we assume a one-to-one constraint in additiog; 4|y pest alignment under its current objective
to any syntax constraints. function, and can account for phrasal cohesion in
this objective. IBM Models 1 and 2, HMM (Vo-
geletal., 1996), and weighted maximum matching
Suppose we are given a parse tree for one of thalignment all conduct complete searches, but they
two sentences in our sentence pair. We will rewould not be amenable to monitoring the syntac-
fer to the parsed language as English, and théc interactions of links. The tree-to-string models
unparsed language as Foreign. Given this inforef (Yamada and Knight, 2001) naturally consider
mation, a reasonable expectation is that Engliskyntax, but special modeling considerations are
phrases will move together when projected ontacneeded to allow any deviations from the provided
Foreign. When this occurs, the alignment is saidree (Gildea, 2003). The Inversion Transduction
to maintainphrasal cohesion Grammar or ITG formalism, described in (Wu,
Fox (2002) measured phrasal cohesion in gold997), is well suited for our purposes. ITGs per-
standard alignments by counting crossings. Crosgorm string-to-string alignment, but do so through
ings occur when the projections of two disjoint a parsing algorithm that will allow us to inform the
phrases overlap. For example, Figure 1 shows abjective function of our dependency tree.
head-madifier crossing: the projection of ttiee
tax subtreejmpdt . . . le, is interrupted by the pro- 3.1  Inversion Transduction Grammar

jection of its headcause Alignments with no  An ITG aligns bitext through synchronous pars-
crossings maintain phrasal cohesion. Fox’s expeling. Both sentences are decomposed into con-
iments show that cohesion is generally maintainedtituent phrases simultaneously, producing a word
for French-English, and that dependency trees praglignment as a byproduct. Viewed generatively, an
duce the highest degree of cohesion among therG writes to two streams at once. Terminal pro-
tested structures. ductions produce atoken in each stream, or a token
Cherry and Lin (2003) use the phrasal cohesiorn one stream with the null symbélin the other.
of a dependency tree as a constraint on a beawe will use standard ITG notatio — e/ f in-
search aligner. This constraint produces a sigeicates that the tokenis produced on the English
nificant reduction in alignment error rate. How- stream, whilef is produced on the Foreign stream.
ever, as Fox (2002) showed, even in a languag®o allow for some degree of movement during
pair as close as French-English, there are situaranslation, non-terminal productions are allowed
tions where phrasal cohesion should not be mainto be either straight or inverted. Straight pro-
tained. These include incorrect parses, systematiguctions, with their non-terminals inside square
violations such asot — ne. .. pas paraphrases, brackets|...], produce their symbols in the same
and linguistic exceptions. order on both streams. Inverted productions, in-
We aim to create an alignment system thadicated by angled brackets. .), have their non-
obeys cohesion constraints most of the time, buterminals produced in the given order on the En-
can violate them when necessary. Unfortunatelyglish stream, but this order is reversed in the For-
Cherry and Lin’s beam search solution does nogign stream.

2.1 Cohesion Constraint
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the  Canadian agriculture industry

I'  industrie agricole Canadienne

——
Figure 2: An example of an ITG alignment. A I===mmmme A=A
horizontal bar across an arc indicates an inversiorkigure 3: lllustration of invalid spang;’, j] and

[7, k] are legal, whilgzx4, j] and[j, z2] are not.
An ITG chart parser provides a polynomial-

time algorithm to conduct a complete enumeration
of all alignments that are possible according to its thnaxqsgrest
grammar. We will use a binary bracketing ITG, the oo mmmmmeem |

simplest interesting grammar in this formalism: oo mmmmm e |

A — [AA] | (AA) |e/f Figure 4: The invalid spans induced by a depen-
dency tree.
This grammar enforces its own weak cohesion
constrgint: _for every pgssible alignment, a COMChas a subtreé}; ;) such that one endpoint of the
qundlng b|r_1ary constltu_en(?y tree must eX'St_forspan is internal7t(T[Z- k) While the other is external
which the alignment maintains phrasal cohesion ’

Fi 2 sh d ali t and th to it. Figure 3 illustrates this definition, while Fig-
'gure < shows a word alignment and the CoIrer, o 4 shows the invalid spans induced by a simple
sponding tree found by an ITG parser. Wu (1997)dependency tree

provides anecdotal evidence that only incorrect With these invalid spans in place, the ITG can

alignments are eliminated by ITG constraints. Inno longer merae part of a dependency subtree with
our French-English data set, an ITG rules out g gep P y

only 0.3% of necessary links beyond those alread anything other than another part of the same sub-

2 . ree. Since all ITG movement can be explained
eliminated by the one-to-one constraint (Cherry, . . . . :
. by inversions, this constrained ITG cannot in-
and Lin, 2006).

terrupt one dependency phrase with part of an-
3.2 Dependency-augmented ITG other. Therefore, the phrasal cohesion of the in-
. . put dependency tree is maintained. Note that this
;An ITG W.'tl)ll seba_lrch al allg_?ments tthat 0\7\? forr_nhwill not search the exact same alignment space
to a p?SS'thet |naryhc<t)ns ! uen%’ ree. q € WISh,s a cohesion-constrained beam search; instead it
doeﬁgyr/] Itrrlse anftirr?ate(l)ya \j\lpue(z 19€agi;$>;)roevri)§2; uses the union of the cohesion constraint and the

Aveaker ITG constraints (Cherry and Lin, 2006).
method to have an ITG respect a known partial . . .
Transforming this form of the cohesion con-

structure. One can seedthe ITG parse chart so tha{raint into a soft constraint is straight-forward.

. : S
spans that do not agree with the provided StrUCtuanStead of overriding the parser so it cannot use
épvalid English spans, we will note the invalid

are assigned a value efoo before parsing begins.
The result is that no constituent is ever constructe . .

Spans and assign the parser a penalty should it
use them. The value of this penalty will be de-

with any of thesénvalid spans
In the case of phrasal cohesmn,. the invalid SPANR mined through discriminative training, as de-
correspond to spans of the English sentence that

interrupt the phrases established by the provideacnbeo.I n Section 4. _Slnce the pe_znalty IS _ava|l-
. ) able within the dynamic programming algorithm,
dependency tree. To put this notion formally, we

. i ; the parser will be able to incorporate it to find a
first define some terms: given a subtrég,, P P

wherei is the left index of the leftmost leaf ifi; ; globally optimal alignment.

andk is the right index of its rightmost leaf, we say 4 Discriminative Training

any index;j € (i, k) isinternal to Tj; ;). Similarly,

any indexz ¢ [i, k] is external to Tj; ;. Anin-  To discriminatively train our alignment systems,
valid span is any span for which our provided treewe adopt the Support Vector Machine (SVM) for
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Structured Output (Tsochantaridis et al., 2004). This learning framework also incorporates a no-
We have selected this system for its high degree dion of structured loss. In a standard vector clas-
modularity, and because it has an API freely availsification problem, there is 0-1 loss: a vector is
ableé'. We will summarize the learning mechanismeither classified correctly or it is not. In the struc-
briefly in this section, but readers should refer totured case, some incorrect structures can be bet-
(Tsochantaridis et al., 2004) for more details. ter than others. For example, having thgmax
SVM learning is most easily expressed as a conselect an alignment missing only one link is bet-
strained numerical optimization problem. All con- ter than selecting one with no correct links and a
straints mentioned in this section are constraintslozen wrong ones. A loss functiax(y;, y) quan-
on this optimizer, and have nothing to do with thetifies just how incorrect a particular structuyés.

cohesion constraint from Section 2. Though Tsochantaridis et al. (2004) provide sev-
eral ways to incorporate loss into the SVM ob-
4.1 SVM for Structured Output jective, we will use margin re-scaling, as it corre-

Traditional SVMs attempt to find a linear sepa-sponds to loss usage in another max-margin align-
rator that creates the largest possibilargin be- ment approach (Taskar et al., 2005). In margin
tween two classes of vectors. Structured outpute-scaling, high loss structures must be separated
SVMs attempt to separate the correct structurérom the correct structure by a larger margin than
from all incorrect structures by the largest possibldow loss structures.
margin, for all training instances. This may sound To allow some misclassifications during train-
like a much more difficult problem, but with a few ing, a soft-margin requirement replaces our max-
assumptions in place, the task begins to look verynargin objective. A slack variablg is introduced
similar to a traditional SVM. for each training example;, to allow the learner

As in most discriminative training methods, we to violate the margin at a penalty. The magnitude
begin by assuming that a candidate structyre of this penalty to determined by a hand-tuned pa-
built for an input instance, can be adequately de- rameterC'. After a few transformations (Tsochan-
scribed using a feature vectdrx, y). We also as- taridis et al., 2004), the soft-margin learning ob-
sume that ou(z, ) decomposes in such a way jective can be formulated as a quadratic program:
that the features can guide a search to recover the 1 oo
structurey from x. That is: ming ¢ §y|wy|2 + o th s.t.Vi§; >0 (3)

i=1

struct(z; W) = argmax, ¢y, (W, ¥(z,y)) (1) Vi, VYyeYV\y: 4)

is computable, wher@ is the set of all possible (W ilys) = i) 2 Alyiny) = &

structures, ands is a vector that assigns weights Note how the slack variableg§ allow some in-

to each component of (z, y). o is the parameter correct structures to be built. Also note that the

vector we will learn using our SVM. lossA(y;, y) determines the size of the margin be-
Now the learning task begins to look straight-tween structures.

forward: we are working with vectors, and the Unfortunately, (4) provides one constraint for

task of building a structurg has been recast as every possible structure for every training exam-

anargmax operator. Our learning goal is to find a ple. Enumerating these constraints explicitly is in-

w so that the correct structure is found: feasible, but in reality, only a subset of these con-

straints are necessary to achieve the same objec-

Vi,Vy € Y\ yi : (0, ¥i(y;)) > (0, ¥i(y)) (2) tive. Re-organizing (4) produces:

where z; is the i training example,y; is its Vi,Vy € Y\ yi: (5)
correct structure, andl;(y) is short-hand for & > A(yi,y) — (0, ¥i(y:) — Wily))

U (z;,y). As severald will fulfill (2) in alinearly  \yhich is equivalent to:

separable training set, the unique max-margin ob-

jective is defined to be the that maximizes the Vi: & > max cost;(y; w) (6)

.. i . €EV\y;
minimum distance betweeg and the incorrect vV
structures iny. wherecost; is defined as:

LAt http:/ /svmlight.joachims.orgsvm struct.htm| cost; (y; W) = Ay, y) — (W, Wi(y;) — Yi(y))

108



Provided that the max cost structure can be foundatisfy our requirements for an aligner with a soft
in polynomial time, we have all the componentscohesion constraint. Our becomes a bilingual
needed for a constraint generation approach to thisentence-pair, while our becomes an alignment,
optimization problem. represented by a set of links.

Constraint generation places an outer Ioop421 Weighed Maximum Matching

around an optimizer that minimizes (3) repeatedly =~ ) ) )
Given a bipartite graph with edge values, the

for a growing set of constraints. It begins by min- - i i
imizing (3) with an empty constraint set in place Weighted maximum matching algorithm (West,
of (4). This provides values faf andé. The max 2001) will find the matching with maximum
cost structure summed edge values. To create a matching align-
ment solution, we reproduce the approach of
J = argmax, ey, cost; (y; &) (Taskar et al., 2005) within the framework de-
scribed in Section 4.1:
is found fori = 1 with the currents. If the re-
sultingcost; (; W) is greater than the current value
of &;, then this represents a violated constraint
our complete objective, and a new constraint of
the form¢; > cost;(y; W) is added to the con-
straint set. The algorithm then iterates: the opti-
mizer minimizes (3) again with the new constraint

1. We define a feature vectarfor each poten-
tial link { in z, and¥ in terms ofy’s compo-
nentlinks: ¥ (x,y) = 37, ¥(1).

2. Our structure search is the matching algo-

rithm. The input bipartite graph has an edge
for eachl. Each edge is given the value

set, and solves the max cost problemifef i + 1 v(l) — (@, (1)).
with the new:w, growing the constraint set if nec- 3. We adopt the weighted Hamming loss in de-
essary. Note that the constraintsohange with scribed (Taskar et al., 2005):

W, ascost is a function ofw. Once the end of
the training set is reached, the learner loops back
to the beginning. Learning ends when the entire  wherec, is an omission penalty and is a
training set can be processed without needing to  commission penalty.

A(y,g) = Co|y - ﬂ| + Cc‘g - y‘

will occur within a polynomial number of itera- loss-augmented matching problem. The in-

tions (Tsochantaridis et al., 2004). put graph is modified to prefer costly links:
With this framework in place, one need only fill .

in the details to create an SVM for a new struc- Vidy:u(l) < <Uja (1)) + ce

tured output space: Viey:v(l) — (0, 9()) — co

Note that our max cost search could not have been
implemented as loss-augmented matching had we
, _ selected one of the other loss objectives presented
2. A search to find the best structure given &n (Tsochantaridis et al., 2004) in place of margin

weight vector: argmax,, (w, ¥(z,y)). This rescaling.

has no role in train?ng, but it is necessary t0  \ye use the same feature representatiéh as

use the learned weights. (Taskar et al., 2005), with some small exceptions.
3. Asstructured loss functioA(y, i) Let! = (E;, Fy;) be a potential link between the
5" word of English sentencg and thek* word
of Foreign sentencg. To measure correlation be-
tween E; and Fj, we use conditional link proba-

1. A ¥(z,y) function to transform instance-
structure pairs into feature vectors

4. A search to find the max cost structure;
argmax, cost; (y; w)

4.2 SVMs for Alignment bility (Cherry and Lin, 2003) in place of the Dice
Using the Structured SVM API, we have createdcoemuem: '

two SVM word aligners: a baseline that uses ... ) = #Hlinks (£, Fy) — d
weighted maximum matching for ite-gmax op- 7 #fcooccurrences(Ej, Fy)

erator, and a dependency-augmented ITG that Willhere the link counts are determined by word-
2Generally the test to seedf > cost:(7; @) is approxi- ~ &igning SO0K sentence pairs with another match-
mated ag; > cost;(7; W) + e for a small constant. ing SVM that uses the)> measure (Gale and
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Church, 1991) in place of Dice. Th& measure ing systemx)r(r;) = ¢(I). Terminal productions
requires only co-occurrence countsis an abso- 1y corresponding to unaligned tokens are given
lute discount parameter as in (Moore, 2005). Alsoblank feature vectorspr(ry) = 0.
we omit the IBM Model 4 Prediction features, as The SVM requires complet& vectors for the
we wish to know how well we can do without re- correct training structures. Unfortunately, our
sorting to traditional word alignment techniques. training set contains gold standard alignments, not
Otherwise, the features remain the same|TG parse trees. The gold standard is divided into
including distance features that measuresure and possible link setsand P (Och and Ney,
abs (ﬁf‘ — |T’i|) orthographic features; word 2003). Links inS must be included in a correct
frequencies; common-word features; a bias ternalignment, whileP links are optional. We create

set always to 1; and an HMM approximation ITG trees from the gold standard using the follow-

cor(Eji1, Fit1)- ing sorted priorities during tree construction:

4.2.2 Soft Dependency-augmented ITG

Because of the modularity of the structured out-
put SVM, our SVM ITG re-uses a large amount
infrastructure from the matching solution. We
essentially plug an ITG parser in the place of
the matching algorithm, and add features to take
advantage of information made available by the _ _ _
parser.z remains a sentence pair, apdbecomes This creatgs trees_that represent hlgh scoring align-
an ITG parse tree that decomposesnd speci- ments, using a minimal number of invalid spans.

fies an alignment. Our required components are 88" the span and inversion counts of these trees
follows: will be used in training, so we need not achieve a

_ _ perfect tree structure. We still evaluate all methods
1. We define a feature vecter; on instances with the original alignment gold standard.
of production rules;. ¥ is a function of
the decomposition specified by U(z,y) = 5 Experiments and Results
Zréy @Z)T(T)- ) i
2. The structure search is a weighted ITG parsefVe conduct two experiments. ~ The first tests
that maximizes summed production scoresth® dependency-augmented ITG described in Sec-
Each instance of a production ruleis as- tion 3.2 as an aligner with hard cohesion con-
signed a score of, 7 (r)) straints. The second tests our discriminative ITG

. i . with soft cohesion constraints against two strong
3. Loss is unchanged, defined in terms of theoaselines

alignment induced by.

e maximize the number of links frorfd

e minimize the number of English dependency
span violations

e maximize the number of links from®
e minimize the number of inversions

4. Aloss-augmented ITGis used to find the max5.1  Experimental setup

cost. Productions of the forml — e/f : : .
. . We conduct our experiments using French-English
that correspond to links have their scores aug-

; . Hansard data. Oup? scores, link probabilities
mented as in the matching system. ) .
and word frequency counts are determined using a

The vector has two new features in addition to sentence-aligned bitext consisting of 50K sentence
those present in the matching systemi’'s These pairs. Our training set for the discriminative align-
features can be active only for non-terminal pro-ers is the first 100 sentence pairs from the French-
ductions, which have the formd — [AA] | (AA).  English gold standard provided for the 2003 WPT
One feature indicates an inverted productibr~  workshop (Mihalcea and Pedersen, 2003). For
(AA), while the other indicates the use of an in-evaluation we compare to the remaining 347 gold
valid span according to a provided English depenstandard pairs using the alignment evaluation met-
dency tree, as described in Section 3.2. Thessgcs: precision, recall and alignment error rate or
are the only features that can be active for nonAER (Och and Ney, 2003). SVM learning param-
terminal productions. eters are tuned using the 37-pair development set

A terminal productionr; that corresponds to a provided with this data. English dependency trees
link [ is given that link’s features from the match- are provided by Minipar (Lin, 1994).
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Table 1: The effect of hard cohesion constraints orTfable 2: The performance of SVM-trained align-

a simple unsupervised link score. ers with various degrees of cohesion constraint.
| Search | Prec | Rec | AER | | Method | Prec | Rec | AER |
Matching | 0.723| 0.845| 0.231 Matching | 0.916 | 0.860| 0.110
ITG 0.764| 0.860| 0.200 D-ITG 0.940| 0.854 | 0.100
D-ITG 0.830| 0.873| 0.153 SD-ITG | 0.944| 0.878| 0.086

5.2 Hard Constraint Performance trained by the matching SVM to assign link val-

The goal of this experiment is to empirically con- ues. This is the most straight-forward way to com-
firm that the English spans marked invalid bybine discriminative training with the hard syntactic
Section 3.2's dependency-augmented ITG provideonstraints.

useful guidance to an aligner. To do so, we The results are shown in Table 2. The first thing
compare an ITG with hard cohesion constraintsto note is that our Matching baseline is achieving
an unconstrained ITG, and a weighted maximunscores in line with (Taskar et al., 2005), which re-

matching aligner. All aligners use the same simports an AER of 0.107 using similar features and
pIe objective function. They maximize summedthe same training and test sets.

link valuesu(l), wherev(l) is defined as follows  The effect of the hard cohesion constraint has

forani = (E;, Fy): been greatly diminished after discriminative train-

. k ing. Matching and D-ITG correspond to the the

v(l) = ¢*(Ej, Fi,) — 10 %abs (é — F) entries of the same name in Table 1, only with a
Bl 1F much stronger, learned value functiof). How-

All three aligners link based om? correlation ~€Ver, in place of a 34% relative error reduction, the

scores, breaking ties in favor of closer pairs. Thighard constraints in the D-ITG produce only a 9%

allows us to evaluate the hard constraints outsidéeduction from 0.110 to 0.100. Also note that this
the context of supervised learning. time the hard constraints result in a reduction in

Table 1 shows the results of this experimentecall. This indicates that the hard cohesion con-

We can see that switching the search methodtraintis providing little guidance not provided by
from Weighted maximum matching to a Cohesion_other features, and that it is aCtuaiiy eliminating
constrained ITG (D-ITG) has produced a 34% rel-more sure links than it is helping to find.

ative reduction in alignment error rate. The bulk The soft-constrained SD-ITG, which has access
of this improvement results from a substantial in-to the D-ITG’s invalid spans as a feature during
crease in precision, though recall has also gone u®VM training, is fairing substantially better. Its
This indicates that these cohesion constraints areSER of 0.086 represents a 22% relative error re-
strong alignment feature. The ITG row shows thatduction compared to the matching system. The
the weaker ITG constraints are also valuable, butmproved error rate is caused by gains in both pre-
the cohesion constraint still improves on them. cision and recall. This indicates that the invalid
span feature is doing more than just ruling out
links; perhaps it is de-emphasizing another, less
We now test the performance of our SVM ITG accurate feature’s role. The SD-ITG overrides the
with soft cohesion constraint, @D-ITG, which  cohesion constraint in only 41 of the 347 test sen-
is described in Section 4.2.2. We will test againstences, so we can see that it is indeed a soft con-
two strong baselines. The first baselim@gtching  straint: itis obeyed nearly all the time, but it can be
is the matching SVM described in Section 4.2.1,broken when necessary. The SD-ITG achieves by
which is a re-implementation of the state-of-the-far the strongest ITG alignment result reported on
art work in (Taskar et al., 200%) The second this French-English set; surpassing the 0.16 AER
baselineD-ITG is an ITG aligner with hard co- reported in (Zhang and Gildea, 2004).

hesion constraints, but which uses the weights Training times for this system are quite low; un-

3Though it is arguably lacking one of its strongest fea- SUPErvised statistics can be collected quickly over
tures: the output of GIZA++ (Och and Ney, 2003) a large set, while only the 100-sentence training

5.3 Soft Constraint Performance
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set needs to be iteratively aligned. Our match- translation: Parameter estimationComputational Lin-
ing SVM trains in minutes on a single-processor 9uistics 19(2):263-312.

machine, while the SD-ITG trains in roughly one C. Cherry and D. Lin. 2003. A probability model to improve
hour. The ITG is the bottleneck, so training time word alignment. InVieeting of the Association for Com-

. ... tational Linguisticspages 88-95, Sapporo, Japan, July.
could be improved by optimizing the parser. putat nguisticsbag PP pan, July

C. Cherry and D. Lin. 2006. A comparison of syntacti-
6 Related Work cally motivated word alignment spaces. Pnoceedings
of EACL, pages 145-152, Trento, Italy, April.

Sey(?ral other aligners have usgd discriminativey j Fox. 2002. Phrasal cohesion and statistical machine
training. Our work borrows heavily from (Taskar translation. IrProceedings of EMNLFpages 304-311.
et' al., 2005_)’ which USQS a max-mar.gln ap_proaclgvl A. Gale and K. W. Church. 1991. Identifying word cor-
with a weighted maximum matching aligner. respondences in parallel texts. 4th Speech and Natural
(Moore, 2005) uses an averaged perceptron for Language Workshopages 152-157. DARPA.
training with a customized beam search. (Liu etD. Gildea. 2003. Loosely tree-based alignment for machine
al., 2005) uses a log-linear model with a greedy translation. InMeeting of the Association for Computa-

’ . . . tional Linguistics pages 80-87, Sapporo, Japan.
search. To our knowledge, ours is the first align-
ment approach to use this highly modular strucP- Lin.  1994. Principar - an efficient, broad-coverage,

. LT rinciple-based parser. Proceedings of COLIN(pages
tured SVM, and the first discriminative method to 22_45, Kyoto, Jgpan. g Rrag

use an ITG for the base aligner. Y. Liu, Q. Liu, and S. Lin. 2005. Log-linear models for word
. . . . Ly, Q. Liu, . Lin. . -l w
(Gildea, _2003) pre;ents ?nOther aligner W'th a alignment. InMeeting of the Association for Computa-
soft syntactic constraint. This work adds a cloning tional Linguistics pages 459—466, Ann Arbor, USA.
operation to the t.ree-to-strlng ggneratlve model IN. D. Melamed. 2000. Models of translational equivalence
(Yamada and Knight, 2001). This allows subtrees among words. Computational Linguistics26(2):221—
to move during translation. As the model is gen- 249
erative, it is much more difficult to incorporate a R. Mihalcea and T. Pedersen. 2003. An evaluation exer-
wide variety of features as we do here. In (Zhang ¢ise for word alignment. IHLT-NAACL Workshop on
. . Building and Using Parallel Texispages 1-10, Edmon-
and Gildea, 2004), this model was tested on the iy, canada.
same annotated French-English sentence pairs that o .
divided into traini d test sets f R. Moore. 2005. A discriminative framework for bilingual
yve VI e m_o raining and test sets for our exper- g alignment. InProceedings of HLT-EMNLPpages
iments; it achieved an AER of 0.15. 81-88, Vancouver, Canada, October.
F. J. Och and H. Ney. 2003. A systematic comparison of

various statistical alignment model€omputational Lin-
guistics 29(1):19-52, March.

7 Conclusion

We have presented a discriminative, syntactic

word alignment method. Discriminative training B. Tas'kar, S. Laposte-JuIien, andD. Kle_in. 2005. A discrimi-
native matching approach to word alignmentPiroceed-

is conducted using a highly modular SVM for  jngs of HLT-EMNLP pages 73-80, Vancouver, Canada.
structured OUtpUt.’ WhICh allows COd.e reuse be-I. Tsochantaridis, T. Hofman, T. Joachims, and Y. Altun.
_tween th(—:.* syntactic aligner ar?d amaximum ma_tCh' 2004. Support vector machine learning for interdependent
ing baseline. An ITG parser is used for the align- and structured output spaces. Rmoceedings of ICML
ment search, exposing two syntactic features: the Pages 823-830.
use of inverted productions, and the use of spans. Vogel, H. Ney, and C. Tillmann. 1996. HMM-based
that would not be available in a tree—to—string sys- word alignment in statistical translation. Rroceedings
. of COLING pages 836—-841, Copenhagen, Denmark.
tem. This second feature creates a soft phrasal co- pagd _ P 9 _
hesion constraint. Discriminative training allows B- Yest 200Lintroductionto Graph TheoryPrentice Hal,
L. nd edition.
us to maintain all of the features that are useful to
the maximum matching baseline in addition to thel- Wu. 1997. Stochastic inversion transduction grammars
tactic feat We h h that th a_nd b_ilingual parsing of parallel corpor&omputational
new syntactic reatures. vVve nave snown tnat tnese Linguistics 23(3):377—403.

features produce a 22% relative reduction in error _ -
K. Yamada and K. Knight. 2001. A syntax-based statisti-

rate with respect to a strong flat-string model. cal translation model. IMeeting of the Association for
Computational Linguisticgpages 523-530.

References H. Zhang and D. Gildea. 2004. Syntax-based alignment:

) ) Supervised or unsupervised? Rroceedings of COLING
P. F BI’OWI’I, S. A. De“a Pletl’a, V. J. De”a P|etra, and R. L. Geneva, Switzerland’ August_

Mercer. 1993. The mathematics of statistical machine

112



An Account for Compound Prepositionsin Farsi

Zahra Abolhassani Chime
Research Center of Samt, Tehran, 14636
Ph.D in Linguistics
zabolhassani@hotmail.com

Abstract

There are some sorts of ‘Preposition +
Noun’ combinations in Farsi that
apparently a Prepositional Phrase almost
behaves as Compound Prepositions. As
they are not completely behaving as
compounds, it is doubtful that the process
of word formation is a morphological
one.

The analysis put forward by this paper
proposes “incorporation” by which an N°
is incorporated to a P° constructing a
compound preposition. In this way
tagging prepositions and parsing texts in
Natural Language Processing is defined
in a proper manner.

1 I ntroduction

Prepositions have very versatile functions in
Farsi and at the same time very important roles
in linguistics especially in computational
linguistics. Most of the linguists consider them as
members of a closed set in which nothing can be
added and behavior of which is completely static.
However this paper tries to touch some aspects
of the fact that not only this set is not a closed
one but also the behaviors of its members are so
dynamic that we can call the set a productive
one. Having considered this fact about very
frequent Farsi prepositions, we can come up with
a useful model for language recognition.

There is a large discrepancy among linguists
in classifying Farsi prepositions that whether or
not there are compound prepositions and if there
are how the process of their word formation
should be accounted for as their characteristics
are not as straight forward as it is expected from
other compound categories.

Some Iranian Linguists have ignored this class
altogether (Khanlari (1351), Shafaii (1363),
Bateni (1356), Seyed wvafaii (1353)). Some

believe they are not compound without putting
forward any explanation but some sort of
description. (Homa'yanfarox (1337), Sadeghi
(1357), Kalbasi (1371)). Some believe they are
compounds without analyzing them (Mashkur
(1346), Khatib Rahbar (1367), Gharib (1371),
Meshkatodini (1366)) and still some have
defined them as prepositional phrases in one way
or another (Gholam Alizade (1371), Samiian
(1983)). However we <can not find a
comprehensive account for this class of
prepositions. This paper tries to tackle the
problem from a different generative view as well
as a familiar way in LA-morph (Hausser: 2001)
in parsing through which we can account for the
diversity of their behavior and present them in
tree configuration.

For reasons of computational efficiency and
linguistic concreteness (surface
compositionality) the morphological component
of the SLIM theory of language take great care to
assign no more than one category (syntactic
reading) per word form surface whenever
possible (Hausser, 2001: 244). As Farsi does not
enjoy the benefit of “space” in word recognition
we have to resort to other clues to find out exact
way of parsing and tagging. This paper helps to
make sure about the category of one construction
of prepositions.

2 Constructions of
Noun’ in Fars

‘Preposition  +

From among all constructions in Farsi in
which a preposition and a complement -generally
NPs - occurs, there are 4 classes which seem to
have different behaviors of that usual PPs
(prepositional phrases) although they have
exactly similar structure to that of PPs; These
classes are as follows from which we just turn
our attention to the first one:

1. preposition + noun
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e.g. /bar/ + /asas-e/

on + basis
/e/ an obligatory genitive ending,
2. noun + preposition
e.g.  /bana/+ /bar/

based + on
3. preposition + time / location item
e.g. /az/ + /pase/

from + behind

4. time / location item + preposition
e.g. /post/ + /be/

back +to

From the form point of view, we can simply
consider preposition such as /bar/ ‘on’, /az/
‘from/of”, /dar/ ‘in’, /ba/ ‘with’, /be/ ‘to’ as (real)
prepositions and what comes immediately after,
as complement.

However, a close observation reveals that not
in all constructions consisting of a proposition
and a noun the immediate noun can be
considered as the noun head of the NP
complement. That is in some phrases the head
preposition is the compound preposition (a
preposition and a noun) and then the noun after
this construction is the complement:

5. /bar/ + /asas-e/ + /motale’at/
complement (n)
“on + bases” (of) researches

The first question we try to answer is: Does
the immediate noun after the preposition in (5),
behave like other nouns as complements in PPs?

To answer this question we should make sure

whether the noun (complement) is as
independent as the other nouns in ‘preposition +
nouns’ making prepositional phrases, or it is
somehow merged with the preposition producing
compound preposition.
There are some structural tests to reveal this. If
the noun here expands as other nouns in other
prepositional phrases we can conclude that the
related structure is a phrase, otherwise it is better
to think about them as compound prepositions.

3 Extending the structure under

discussion
3.1 Premodifiers

The noun in prepositional phrases, can be
extended in different ways while as the examples
below show, the related structures cannot:

3.1.1 Demonstr atives

6. bar (*in) asas-e motale’ate daneSmandan

on (this) bases-of researches-of scientists
hava-ye zamin garmtarSode ast
climate-of earth increased has

“Based of scientists’ researches the climate of
earth has increased”.

6') bar (in) bam-e xane kasi rah miraft.
on (this) roof-of house someone (was) walking

3.1.2 Superlatives

7) bar (*jadid-tarin) asas-e motale’at-¢ ...
on the newest basis-of researches-of

7')bar (ziba-tarin)  bam-e xane ...
on the most beautiful roof-of house

3.1.3 Exclamatories

8) bar (*che!) asas-e  motale’at-e ...
on what! a basis-of researches-of

8") bar (che!) bam-e xane ...
on (what!) a roof of house

3.1.4 Quantifiers

9) bar (*har) asas-e motale‘at-e ...
on (every) basis-of researches-of

9') bar (har) bam-e¢ Xxane ...
on (every) roof-of house

3.1.5 Question words

10) bar (* che) asas-e motale‘at-¢ ...?
on what basis-of researches

10’) bar (che) bam-e xane-i...?
on what roof-of house

3.1.6 Indefinite /yek/ ‘on€’

11) bar (*yek) asas-e motale‘at-e ...
on one basis-of researches

11’) bar (yek) bam-e xane ...
on (one) roof-of house

3.2 Post Modifiers
Nouns in prepositional phrases can expand

with post modifiers while nouns in our structure
cannot.

114



3.21 Plural Markers

12) az Janeb (*haye) dowlat va mardom
from side (s)-of government and nation
masa’eli matrah Sod.

affairs raised was

“Some affairs were raised by government and
nation.”

12') as ketab (ha-ye) Ali estefade kardam.
from book (s)-of Ali used 1did.

“I used Ali’s books.”

3.2.2 Adjectives

13) be elate (*pus-e) barandegi madares ta’til
Sod.

to cause-of (vain-of) raining schools closed
were.

“schools were closed because of the vain reason
of raining.”

13') bar bam-e (ziba-ye) xane qadam bogzar.
on roof-of (beautiful-of) house step put.

“step on the beautiful roof of the house.”

3.23 Appositives

14) bar asas-e (*paye-ye) motale’at-e
daneSmandan
on basis-of (base-of) researches-of
scientists

14) Ali az xane (mahale zendegi)-ash dur Sode
ast.
Ali from house (place-of living)-his far made
is.

“Ali has left his house-his place of living.”
3.3 Conclusion

The conclusion we extract out of these
observations imposes some hypotheses:
1) The noun in these kinds of structures has lost
its independent status and the whole structure has
turned into a morphological compound
preposition.
2) The intended construction, is a special kind of
“compound” probably a syntactic compound, in
which not all characteristics of morphological
compounds can be observed.

To evaluate the first hypothesis, we should
first identify the criteria of compound words in
these apparent phrases.

4 Compound Wordsin Farsi

Farshid vard (1351) believes it’s very difficult
to identify and define the compound words in
Farsi, because to gain the criteria of compound
words, we should recognize compound forms
from some other related and close structures,
such as derived words and phrases.

In a phrase, grammatical roles of the parts are
devoted as one to the head and the whole group
rather than the parts contributes to the role of the
phrase. Different ways of argumentation that can
be established for distinction between phrases
and compound words can be classified into 4
classes: phonological, morphological, syntactic
and semantic

4.1 Phonological Argumentation

It is assumed that prepositions in Farsi do not
bear any accent. This assumption comes from the
fact that accent pattern in Farsi is in a any that
the last or the farthest member of the group
(phrase) takes the accent, except in marked
structures; and as prepositions do not occur at the
end of the phrase (PPs are head-first, as the other
phrases in Farsi), they never take the accent.
Eslami (1379: 28) states this fact as the “Head-
escape Principle”:

“In all cases, with expanding the head of a
syntactic phrase, the accent of the phrase falls on
the farthest member.”

15. [[az] ['xane]]
“from the house”

16. [[az] [xane-ye] ['reza]]
“from the house-of Reza”

The above observations, i.e.: 1. Accent on the
last modifier and 2. Accent on the last syllabus of
the word we conclude that the pattern of accent
of the compound prepositions and prepositional
phrases are absolutely the same.

In fact phonological reasons and criteria do
not help of any kind.

4.2 Morphological Argumentation

All what was mentioned in previous section as
expanding possibility of PPs can also be
considered as morphological criteria.

4.3 Syntactic Argumentation
431 Topicalization

In topicalization “one word” can be topicalized
out of a phrase but not out of a compound word.
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17. Tamiz kardan-e ketab-xane ba Ali-st.
cleaning-of  book-case with Ali is.

“cleaning book-case is with Ali”

17'. *ketab tamiz kardan-e xane-ash ba Ali-st.
book cleaning-of  case-its with Ali is.

“book, cleaning of its case is with Ali.”

In (17) (ketab) is a part of a compound word
from which no part can be topicalized.

Now let’s see what happens if we topicalize a
word in our construction.

18. ba Ali dar mored-e danesgah sohbat kardam.
with Ali in case-of university talk I made.

“I talked with Ali about the university.”

18'. *mored-¢ danesgah, ba Ali daresh sohbat
kardam.
case-of university, with Ali in-it talk I
made.

“About university, I talk about it with Ali.”
4.3.2 Coordination

Two similar constituents can be coordinated
but not parts of compound words:
Noun out of PPs:
19. Hasan ba [dust va doSman] modara mikonad.
Hassan with [friend and enemy] bears

“Hassan bears every one.”

Parts of prepositions:

19'. *be [dalil-e va ellat-e] sarma madrese-ha
ta‘til  Sod.
to [reason-of and cause-of] cold schools
closed became.

“Because of cold schools were closed.”

4.4 Semantic Argumentation

Close  semantic  observation of  these
constructions reveal that the nouns in the above
mentioned combinations are special kind of
nouns with particular semantic features.

All the nouns are “noun-referential” and
“abstract”.

/dar mored-e/, /dar zamine-ye/, /bar asas-e/
in case-of in field-of on basis-of
“ab()ut” Lcabout’, “On”

/bar hasb-e/,  /az heis-¢/, /az lahaz-e/
on according  from aspect from aspect
“according”  “according”  “point of view”

/bar asar-e/
on cause-of
“because of”

Another point to be mentioned is a delicate
semantic difference between the meaning of
these nouns in other constructions and in
combination with prepositions. For example
“dalil” in following two sentences does not bear
the same semantic features.

20. man dalil-e harf-haye Soma ra nemifahmam.
I reason-of talks your don’t understand.

“I do not understand the reason of your talks”.

20'. man be dalilt-e harf-haye Soma jalase ra tark
kardam.
I to cause-of talks your meeting left.
“I left the meeting because of your talks”.

“dalil” in (20) has the semantic components of
“argumentation, base, reason”, but in (20)
“because, for”.

Still another point worth mentioning is that
most of the class members are synonymous in
one way or another:

— dar mored-e, dar zamine-ye, dar xosus-e, dar
bare-ye, dar bab-e, dar atrafe,

“about”

— bar asas, bar paye-ye, bar hasb-¢

“on, on the basis”

— az nazar-e, az heis-e, az lahaz-e, az jahat-e

“according to”

— be mojarad-e, be mahze

“once”

— be mojeb-e, be ellat-e, be dalil-e

“because of”

5 Concluding the Discussion

Through same constituency tests, we showed
that these constituents do not obey the phrasal
characteristics. On the other hand, criteria of
distinguishing compound words from syntactic
phrases demonstrate that these forms are not so
merged into each other in a way that they can be
called fixed morphological compounds. It seems
that they are in a transition phase from PPs to
compound Ps. So although they are compounds
we should look for the process of word formation
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to take place in some other places rather than the
morphology, i.e. in syntax.

The argumentation proposed by the author is
“incorporation”, which can account for the
behavior of such constructions in Farsi.

6 I ncor por ation

Incorporation brings out two changes in
sentence representation: 1. It produces a
compound category of word level (X°). 2. It
establishes a syntactic relationship between two
places: the original position of the moved
category (situ) and the target position. The
former is a morphological and the latter is a
syntactic change.

Baker (1988) considers X° movements similar
to those of XP, with all constraints and
conditions applicable to both. He also proposes
“Government Transparency Corollary” to
account for the grammatical changes. Movement
automatically changes the governance features of
a structure and the reason is that it creates a
grammatical dependency between two distinct
phrases.

Leiber (1992: 14) says that there are some
facts that show to some extend there should be
same  interaction between syntax and
morphology. Thus X parameters and related
systems are not merely applicable to syntax, but
morphology too.

However incorporation of this kind in Farsi is
abstract, i.e. there is no overt movement.

During incorporation process head X° (here
N°) moves from its place towards P node and
attaches to the P (dar) as it is shown in figure 1
and 2.

PP
|
PV
/\
P° NP
|
NV
/\
N° NP
dar mored-e danesgah
in case-of university
Figure 1

PP
|
PV
/\
P NP
|
NY
/\
P° + N N° NP
dar t; mord 4-¢ danesgah
Figure 2

“dar+mored-¢” dominated by a P node has the
features of preposition and in this way 6-role
change of “mored” is realized as preposition in
combination with an original preposition. This
syntactic process gives the following results:

1. A noun head (N°) dominated by NP as a
complement of a pp, o--moves and incorporates
to the preposition head (P°).

2. Moved N° is governed and dominated by a
preposition node.

3. The output of the combination of the N° and P°
is a compound P°.

4. The preposition (dar) “in” which before
incorporation assigned 6-r to NP, after
incorporation together with the noun (mored-e)
assigns the 0-r to the NP (danesgah).

5. The resulted compound is a “syntactic
compound”.

The needed conditions for incorporation of N°
to P° can be summarized as follows:

1. P° should be morphologically simple and
among the members of this group: dar “in”, be
“to”, ba “with”, az “of, from”, bar “on”. They do
not take genitive ending /-¢/ (kasre-ezafe) and
having the [-V, -N] features are considered as
“true” prepositions (Samiian, 1992)

2. N° should be morphologically simple and
having all the features of [non-referential,
abstract, complement-taking, indefinite].

Hereby it becomes clear why not every
combination of “preposition + noun” lead to
“compound prepositions” through incorporation,
even if their occurrence bears a high frequency.
The algorithm-like of this process is shown in
figure 3.

2
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Lexicon checker

— referential
+ simple
+ abstract

Noun

Input [

Noun-movement
towards
Preposition node

I

Incorporation

Preposition

Module
Output
Compound Prepositional
Preposition (CP) Phrase (PP)

Figure 3

Prepositions are functional and so syntactic
categories rather than lexical ones. I believe
word formation of this category is motivated by
syntax, in different ways one of which was
argued here. This account contributes to the
discipline of computational linguistics in labeling
prepositions in Farsi, as this area of preposition
labeling has been very challenging.

Although Voutilainen (2003) believes that data-
driven taggers seem to be better suited for the
analysis of fixed-word-order poor-morphology
languages like English, but the finding of this
paper is applicable to Farsi parts of speech
recognition at least in the area of compound
prepositions.

Prepositions are one sort of parts of speech, the
recognition of which can be helpful in stemming
for information retrieval (IR), since knowing a
word’s POS can help tell us which
morphological affixes it can take. It can also help
an IR application by helping select out nouns or
other important words from a document.
Automatic POS taggers can help in building
automatic word-sense disambiguating
algorithms, and POS taggers are also used in
advanced ASR language models such as class-
based n-grams (Jurafsky and Martin, 2000: 288)
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Abstract

This paper explores techniques to take ad-
vantage of the fundamental difference in
structure between hidden Markov models
(HMM) and hierarchical hidden Markov
models (HHMM). The HHMM structure
allows repeated parts of the model to be
merged together. A merged model takes
advantage of the recurring patterns within
the hierarchy, and the clusters that exist in
some sequences of observations, in order
to increase the extraction accuracy. This
paper also presents a new technique for re-
constructing grammar rules automatically.
This work builds on the idea of combining

a phrase extraction method with HHMM
to expose patterns within English text. The
reconstruction is then used to simplify the
complex structure of an HHMM

The models discussed here are evaluated
by applying them to natural language tasks
based orCoNLL-2004 and a sub-corpus
of the Lancaster Treebafk

Keywords: information extraction, natu-
ral language, hidden Markov models.

Introduction

Hidden Markov model§HMMs) were introduced

in the late 1960s, and are widely used as a pro
abilistic tool for modeling sequences of obser-
vations (Rabiner and Juang, 1986).
proven to be capable of assigning semantic la-
bels to tokens over a wide variety of input types.

They have

This is useful for text-related tasks that involve
some uncertainty, including part-of-speech tag-
ging (Brill, 1995), text segmentation (Borkar et
al., 2001), named entity recognition (Bikel et al.,
1999) and information extraction tasks (McCal-
lum et al., 1999). However, most natural language
processing tasks are dependent on discovering a
hierarchical structure hidden within the source in-
formation. An example would be predicting se-
mantic roles from English sentences. HMMs are
less capable of reliably modeling these tasks. In
contrasthierarchical hidden Markov mode($1H-
MMs) are better at capturing the underlying hier-
archy structure. While there are several difficulties
inherent in extracting information from the pat-
terns hidden within natural language information,
by discovering the hierarchical structure more ac-
curate models can be built.

HHMMs were first proposed by Fine (1998)
to resolve the complex multi-scale structures that
pervade natural language, such as speech (Rabiner
and Juang, 1986), handwriting (Nag et al., 1986),
and text. Skounakis (2003) described the HHMM
as multiple “levels” of HMM states, where lower
levels represents each individual output symbol,
and upper levels represents the combinations of
lower level sequences.

Any HHMM can be converted to a HMM by
creating a state for every possible observation,

2 process called “flattening”. Flattening is per-
formed to simplify the model to a linear sequence
f Markov states, thus decreasing processing time.
But as a result of this process the model no longer
contains any hierarchical structure. To reduce the
models complexity while maintaining some hier-

The 2004 Conference on Computational Natural Lan-grchical structure, our algorithm uses a “partial
guage Learning, http://cnts.uia.ac.be/conll2004

2Lancaster/IBM Treebank,

http://www.ilc.cnr.itt EAGLES96/synlex/node23.html

flattening” process.

In recent years, artificial intelligence re-
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searchers have made strenuous efforts to re- The output of a HHMM is generated by a pro-
produce the human interpretation of languagecess of traversing some sequence of states within
whereby patterns in grammar can be recognisethe model. At each internal state, the automa-
and simplified automatically. Brill (1995) de- tion traverses down the tree, possibly through fur-
scribes a simple rule-based approach for learninther internal states, until it encounters a production
by rewriting the bracketing rule—a method for state where an observation is contained. Thus, as it
presenting the structure of natural language text—eontinues through the tree, the process generates a
for linguistic knowledge. Similarly, Krotov (1999) sequence of observations. The process ends when
puts forward a method for eliminating redundanta final state is entered. The difference between a
grammar rules by applying a compaction algo-standard HMM and a hierarchical HMM is that in-
rithm. This work draws upon the lessons learnedlividual states in the hierarchical model can tra-
from these sources by automatically detecting sitverse to a sequence of production states, whereas
uations in which the grammar structure can be reeach state in the standard model corresponds is a
constructed. This is done by applying the phrasgroduction state that contains a single observation.
extraction method introduced by Pantel (2001) to _
rewrite the bracketing rule by calculating the de-2-1 Merging
pendency of each possible phrase. The outcome
of this restructuring is to reduce the complexity onﬁ | ‘
the hierarchical structure and reduce the number : e
of levels in the hierarchy. (a)
This paper considers the tasks of identifying
the syntactic structure of text chunking and gram{_) .y
mar parsing with previously annotated text doc- @ @
uments. It analyses the use of HHMMs—both
before and after the application of improvement(b)
techniques—for these tasks, then compares the re-
sults with HMMs. This paper is organised as fol- Figure 1: Example of a HHMM
lows: Section 2 describes the method for training
HHMMs. Section 3 describes the flattening pro- Figure 1(a) and Figure 1(b) illustrate the process
cess for reducing the depth of hierarchical struc©f reconstructinga HMM as a HHMM. Figure 1(a)
ture for HHMMs. Section 4 discusses the use ofhows a HMM with11 states. The two dashed
HHMM s for the text chunking task and the gram- boxes () indicate regions of the model that have
mar parser. The evaluation results of the HMM, repeated structure. These regions are further-
the plain HHMM and the merged and partially flat- More independent of the other states in the model.
tened HHMM are presented in Section 5. Finally,Figure 1(b) models the same structure as a hier-

Section 6 discusses the results. archical HMM, where each repeated structure is
now grouped under an internal state. This HHMM
2 Hierarchical Hidden Markov Model uses a two level hierarchical structure to expose

more information about the transitions and proba-
A HHMM is a structured multi-level stochastic bilities within the internal states. These states, as
process, and can be visualised as a tree structureliscussed earlier, produce no observation of their
HMM (see Figure 1(b)). There are two types ofown. Instead, that is left to the child production
states: states within them. Figure 1(b) shows that each

internal state contains four production states.

e Production state a leaf node of the tree  In some cases, different internal states of a
structure, which contains only observationsHHMM correspond to exactly the same structure
(represented in Figure 1(b) as the empty cirin the output sequence. This is modelled by mak-
cle D). ing them share the same sub-models. Using a

HHMM allows for the merging of repeated parts
¢ Internal state: contains several production of the structure, which results in fewer states need-
states or other internal states (represented img to be identified—one of the three fundamen-
Figure 1(b) as a circle with a cross insig).  tal problems o