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Message from the General Chair

Welcome to Minneapolis! NAACL 2019 promises to further build our growing and increasingly diverse
community through substantive presentations, new diversity and inclusion initiatives, and a culturally-
rich social event!

Christy Doran, Thamar Solorio, and Ted Pedersen, our 2019 Program Co-Chairs have gracefully
managed the largest number of submissions at any NAACL to date — with submissions in 2019
almost doubling from the previous year. They demonstrated unrelenting dedication throughout the
conference planning process to ensure preparation of a balanced program with thoughtfully-crafted and
fair reviewing processes, on-time notifications, and a final careful selection of papers from a wide range
of topics of interest represented in the main conference program. They also introduced a number of
innovations in processes, including submission of abstracts before final submissions with the intention of
getting a head start on the reviewing process and securing sufficient reviewers by topic; video lightning
talks for posters to promote greater attendance and a preview of poster content; and, five categories of
Best Papers: 1) Best Long Paper, 2) Best Short Paper, 3) Best Theme, 4) Best Resource, and 5) Best
Explainable, to highlight a range of community values. The PCs introduced a conference theme this year
that reflects a concern around ethics in our research community. Specifically, the theme examines the
tension between data privacy and model bias in NLP. Our three invited talks, Arvind Narayanan, Rada
Mihalcea, and Kieran Snyder will all present keynotes related to the conference theme.

In 2019, back by popular demand, there is an Industry Track, co-chaired by Rohit Kumar, Anastassia
Loukina, and Michelle Morales. It will address practical issues in real-world deployment of Natural
Language Processing and Speech Processing technologies that describe key lessons learned and new
challenges posed by real-world implementations. There was an increase in the number of industry track
submissions from 2018 (when the track was started) which suggests a continued interest in this track.
A highlight this year is a Careers in NLP panel taking into consideration our more junior community
members and their mentors.

As our international community grows, we can expect increasing diversity. Consistent with an awareness
about diversity in the Natural Language Processing and Computational Linguistics community, at
NAACL HLT 2019, we have introduced the Diversity and Inclusion (D&I) committee, co-chaired
by Jason Eisner and Nathalie Schluter, and the Remote Presentation (RP) committee, co-chaired by
Abhinav Misra and Meg Mitchell. The D&I committee was intended to support community concerns
including, more diverse attendance through feasible childcare support efforts, community building
through mentoring and social networking through the conference app, and comfort of all attendees
through pronoun choice on badges and gender-neutral bathrooms. The RP committee responded to a
concern to provide all members of our community with greater access to conferences, especially with
regard to U.S. visa issues given the current political constraints. It is our hope that these new initiatives
enrich the conference experience by further promoting greater access, and in turn, community-building.

On behalf of the Natural Language Processing and Computational Linguistics community, I would
like to thank all of the organizers for their dedication, creativity, and lively communication that
lead to a successful program and set of events: Christy Doran, Thamar Solorio and Ted Pedersen
(program chairs); Rohit Kumar, Anastassia Loukina, and Michelle Morales (industrial track chairs);
Nitin Madnani (website and app chair); Smaranda Muresan, Swapna Somasundaran, and Elena Volodina
(workshop co-chairs); Anoop Sarkar and Michael Strube (tutorial co-chairs); Waleed Ammar, Annie
Louis, and Nasrin Mostafazahdeh, (demo co-chairs); Jason Eisner and Nathalie Schulter (Diversity and
Inclusion Co-Chairs) Stephanie Lukin and Alla Roskovskaya (publication co-chairs); Steve DeNeefe
(handbook chair); Laura Burdick, Sudipta Kar, and Farah Nadeem (student co-chairs) along with Greg
Durrett and Na-Rae-Han (Faculty Advisors) for the student research workshop; Lu Wang (student



volunteer coordinator); Jason Baldridge and Alexis Palmer (the Americas International Sponsorship
Team). Chris Callison-Burch and Tonya Custis (local sponsorships co-chairs); Yuval Pinter and Rachael
Tatman (publicity and social media chairs); Abhinav Misra and Meg Mitchell (Remote Presentation
co-chairs); Spencer Whitehead (video chair). Many thanks to Rich Gerber at SoftConf for on-going
and rapid support. Many thanks to Julia Hockenmaier and the NAACL Executive Board for their on-
going consultation, and Barbara Di Eugenio, Marti Hearst and David Yarowsky in their roles as ACL
Conference Officer, ACL President, and ACL Treasurer, respectively. We also thank the Organizers of
ACL 2019 and EMNLP 2019 for support in coordinating the programs, workshops and tutorials. We
have twenty workshops plus the student research workshop. As we do every year, we owe many, many
thanks to Priscilla Rasmussen for her guidance and moral support in addition to the mind-boggling task
list associated with large-scale event planning, including managing exhibitors and our large sponsors.
Thanks to Priscilla’s efforts we have a great social event planned at the Minneapolis Institute of Art. In
the spirit of community diversity, the museum offers internationally-themed galleries, and the food will
reflect the themes.

We are immensely grateful to our sponsors for their generous contributions to NAACL 2019. Diamond
sponsors are Amazon, ASAPP, Bloomberg Engineering, Facebook, and Google. Platinum sponsors
are Capital One, DeepMind Google, Thomson Reuters, and Two Sigma. Our Gold sponsors are
ByteDance and Megagon. Silver sponsors are Cisco, Duolingo, eBay, Grammarly, Microsoft Research,
and SAP. Bronze sponsors are Clinc, ETS, Raytheon BBN Technology, and USC Viterbi School
of Engineering/Information Sciences Institute. Additionally, Google is supporting our Diversity &
Inclusion initiative and Grammarly also made an in-kind donation of Grammarly codes to help with
proofreading. And, many of these same sponsors also generously support some of the workshops that
make such a great finale to our conference. We are also pleased to welcome many companies who
will participate in the Recruitment Lunch. There are many more people who through their hard work
and dedication have contributed to make this conference a success: the area chairs and reviewers, tutorial
presenters, workshop organizers, those who participated in D&I efforts, including student mentorship and
the ACL Office staff. Many thanks to all of the presenters and conference attendees for your participation.

NAACL HLT 2019, General Chair
Jill Burstein, Educational Testing Service
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Message from the Program Chairs

Welcome to Minneapolis and NAACL-HLT 2019! This conference is the largest by submission and
acceptance volume of any NAACL to date, and it was through the fantastic hard work of the organizing
committees, 94 Area Chairs, and 1321 reviewers that we were able to put together such a strong and
varied program from a large pool of submissions. Similar to what other PCs have done in the past, we
distributed a wide call for volunteers to recruit the Area Chairs and Reviewers—we seeded the areas with
volunteers who responded, and then Area Chairs filled out the remainder of their respective committees.
Our goal was to ensure greater diversity by including in each area some participants who may not have
been previously involved, and therefore would not have been invited if the committees were built from
lists of previous reviewers.

This year we followed a two-stage submission process, in which abstracts were due one week before full
papers. Our goal was to get a head start on assigning papers to areas, and recruiting additional area chairs
where submissions exceeded our predicted volume. Relative to the projected numbers from NAACL-
HLT 2018, several areas received a higher-than-predicted number of submissions: Biomedical/Clinical,
Dialogue and Vision. Text Mining ended up with the overall largest number of submissions. We used
a hybrid reviewing form, combining elements of the EMNLP 2018, NAACL-HLT 2018 and ACL 2018,
with a 6-point overall rating scale so there was no “easy out” mid-point, distinct sections of summary,
strengths and weaknesses to make easy to scan and compare relevant sections, and the minimum length
feature of START enabled to elicit more consistently substantive content for the authors.

Authors were permitted to switch format (long/short) when they submitted the full papers, so the total in
the chart below uses 2271 as the total number of submissions, discounting the 103 that never submitted
a full paper in the second phase. Seventy nine papers were desk-rejected due to anonymity, formatting,
or dual-submission violations; 456 papers withdrawn prior to acceptance decisions being sent, although
some were withdrawn part way through the review process; and an additional 11 papers were withdrawn
after acceptance notifications had been sent. Keeping the acceptance rate consistent with past years
meant we needed 5 parallel tracks to fit more papers into 3 days—as the conference grows, decisions
will have to be made about continuing to add more tracks, adding more days to the main conference,
or lowering the acceptance rate. The overall technical program consists of 423 main conference papers,
plus 9 TACL papers, 23 SRW papers, 28 Industry papers, and 24 demos. The TACL and SRW papers are
integrated into the program, and are marked SRW or TACL accordingly.

Acceptance break-down:

Long Short Total TACL
Reviewed 1067 666 1733
Accepted as talk 140 72 212 4
Accepted as poster | 141 70 211 5
Total Accepted 281 (26.3%) | 142 (21.3%) | 423 (24.4%) | 9

A select group of Area Chairs was identified to make the Best Paper decisions, with independent teams
assigned to select Best Long and Short Paper, Best Thematic Paper, Best Explainable NLP and Best
Resource paper. The candidate papers were nominated by reviewers and/or Area Chairs.
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It really takes a lot of volunteers’ hard work to organize a NAACL conference. Our hearty thanks go out

to:

Jill Burstein, our fearless leader and General Conference Chair
Priscilla Rasmussen, who knows everything and keeps the machine running

Rich Gerber and his team at Softconf for having illuminated the secret corners of START and
added several new features for us

Recent past chairs—Amanda Stent, Heng Ji, Julia Hockenmaier, Emily Bender, Leon Derczynski,
Iryna Gurevych and Yusuke Miyao—for answering piles of questions and generously sharing their
documentation and resources

All of the NAACL Organizing Committees

The 43 session chairs (Alessandro Moschitti, Ani Nenkova, Anna Rumshisky, Bridget McInnes,
Byron C. Wallace, Chenhao Tan, Daisuke Kawahara, Diyi Yang, Eduardo Blanco, Ekaterina
Shutova, Emily Prud’hommeaux, Fei Liu, Gerard de Melo, Grzegorz Kondrak, Heng Ji, Ion
Androutsopoulos, Kai-Wei Chang, Kevin Gimpel, Matt Gardner, Michael J. Paul, Mo Yu, Preslav
Nakov, Roi Reichart, Ryan Cotterell, Saif Mohammad, Samuel Bowman, Sara Rosenthal, Serguei
Pakhomov, Steven Bethard, Sujith Ravi, T. J. Hazen, Timothy Miller, Valia Kordoni, Vincent Ng,
Wei Xu, William Yang Wang, Xiaodan Zhu, Yang Liu, Zornitsa Kozareva, Ellen Riloff, Colin
Cherry, Joel Tetreault and Marine Carpuat)

The special projects team: John Henderson for help detecting duplicate submissions and building
us a clustering model to help with session creation, Sudipta Kar for additional help in detecting
duplicate submissions, Cash de Leon and Jalen Tran for their help in putting together the slides for
the poster highlights, Mahsa Shafaei for helping us screen volunteers, and Ted Pedersen for help
getting this whole effort off the ground.

NAACL-HLT 2019 Program Co-Chairs
Christy Doran, Interactions, USA
Thamar Solorio, University of Houston, USA
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Organizing Committee:

General Chair
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Program Co-Chairs
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Workshop Co-Chairs

Smaranda Muresan, Columbia University, USA

Swapna Somasundaran, Educational Testing Service, USA
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System Demonstration Co-Chairs

Waleed Ammar, Allen Institute for AI, USA
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Alla Roskovskaya, City University of New York, USA
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Farah Nadeem, University of Washington, USA

Laura Wendlandt, University of Michigan, USA
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Na-Rae Han, University of Pittsburgh, USA
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Diversity & Inclusion Co-Chairs
Jason Eisner, Johns Hopkins University, USA
Natalie Schluter, IT University, Copenhagen, Denmark

Publicity & Social Media Co-Chairs
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Rachael Tatman, Kaggle, USA
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Nitin Madnani, Educational Testing Service, USA
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Lu Wang, Northeastern University, USA

Video Chair
Spencer Whitehead, Rensselaer Polytechnic Institute, USA

Remote Presentation Co-Chairs
Meg Mitchell, Google, USA
Abhinav Misra, Educational Testing Service, USA

Local Sponsorship Co-Chairs
Chris Callison-Burch, University of Pennsylvania, USA
Tonya Custis, Thomson Reuters, USA
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Priscilla Rasmussen, ACL

Area Chairs:

Biomedical NLP & Clinical Text Processing
Bridget Mclnnes, Virginia Commonwealth University, USA
Byron C. Wallace, Northeastern University, USA

Cognitive Modeling — Psycholinguistics
Serguei Pakhomov, University of Minnesota, USA
Emily Prud’hommeaux, Boston College, USA

Dialog and Interactive systems

Nobuhiro Kaji, Yahoo Japan Corporation, Japan
Zornitsa Kozareva, Google, USA

Sujith Ravi, Google, USA

Michael White, Ohio State University, USA

Discourse and Pragmatics
Ruihong Huang, Texas A&M University, USA
Vincent Ng, University of Texas at Dallas, USA
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Ethics, Bias and Fairness
Saif Mohammad, National Research Council Canada, Canada
Mark Yatskar, University of Washington, USA

Generation

He He, Amazon Web Services, USA
Wei Xu, Ohio State University, USA
Yue Zhang, Westlake University, China

Information Extraction

Heng Ji, Rensselaer Polytechnic Institute, USA
David McClosky, Google, USA

Gerard de Melo, Rutgers University, USA
Timothy Miller, Boston Children’s Hospital, USA
Mo Yu, IBM Research, USA

Information Retrieval
Sumit Bhatia, IBM’s India Research Laboratory, India
Dina Demner-Fushman, US National Library of Medicine, USA

Machine Learning for NLP

Ryan Cotterell, Johns Hopkins University, USA

Daichi Mochihashi, The Institute of Statistical Mathematics, Japan
Marie-Francine Moens, KU Leuven, Belgium

Vikram Ramanarayanan, Educational Testing Service, USA

Anna Rumshisky, University of Massachusetts Lowell, USA
Natalie Schluter, IT University of Copenhagen, Denmark

Machine Translation

Rafael E. Banchs, Human Language Technology Institute for Infocomm Research A*Star, Singa-
pore

Daniel Cer, Google Research, USA

Haitao Mi, Ant Financial US, USA

Preslav Nakov, Qatar Computing Research Institute, Qatar

Zhaopeng Tu, Tencent, China

Mixed Topics
Ton Androutsopoulos, Athens University of Economics and Business, Greece
Steven Bethard, University of Arizona, USA

Multilingualism, Cross lingual resources

Zeljko Agié, IT University of Copenhagen, Denmark
Ekaterina Shutova, University of Amsterdam, Netherlands
Yulia Tsvetkov, Carnegie Mellon University, USA

Ivan Vulic, Cambridge University, UK
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NLP Applications

T. J. Hazen, Microsoft, USA

Alessandro Moschitti, Amazon, USA

Shimei Pan, University of Maryland Baltimore County, USA
Wenpeng Yin, University of Pennsylvania, USA

Su-Youn Yoon, Educational Testing Service, USA

Phonology, Morphology and Word Segmentation
Ramy Eskander, Columbia University, USA
Grzegorz Kondrak, University of Alberta, Canada

Question Answering

Eduardo Blanco, University of North Texas, USA
Christos Christodoulopoulos, Amazon, USA

Asif Ekbal, Indian Institute of Technology Patna, India
Yansong Feng, Peking University, China

Tim Rocktischel, Facebook, USA

Avi Sil, IBM Research, USA

Resources and Evaluation
Torsten Zesch, University of Duisburg-Essen, Germany
Tristan Miller, Technische Universitit Darmstadt, Germany

Semantics

Ebrahim Bagheri, Ryerson University, Canada

Samuel Bowman, New York University, USA

Matt Gardner, Allen Institute for Artificial Intelligence, USA
Kevin Gimpel, Toyota Technological Institute at Chicago, USA
Daisuke Kawahara, Kyoto University, Japan

Carlos Ramisch, Aix Marseille University, France

Sentiment Analysis

Isabelle Augenstein, University of Copenhagen, Denmark

Wai Lam, The Chinese University of Hong Kong, Hong Kong

Soujanya Poria, Nanyang Technological University, Singapore

Ivan Vladimir Meza Ruiz, Universidad Nacional Auténoma de México, Mexico

Social Media

Dan Goldwasser, Purdue University, USA

Michael J. Paul, University of Colorado Boulder, USA
Sara Rosenthal, IBM Research, USA

Paolo Rosso, Universitat Politecnica de Valéncia, Spain
Chenhao Tan, University of Colorado Boulder, USA
Xiaodan Zhu, Queen’s University, Canada

Speech
Keelan Evanini, Educational Testing Service, USA
Yang Liu, LAIX Inc, USA
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Style

Beata Beigman Klebanov, Educational Testing Service, USA

Manuel Montes y Gémez, Instituto Nacional de Astrofisica, Optica y Eletrénica, Mexico
Joel Tetreault, Grammarly, USA

Summarization

Mohit Bansal, University of North Carolina Chapel Hill, USA
Fei Liu, University of Central Florida, USA

Ani Nenkova, University of Pennsylvania, USA

Tagging, Chunking, Syntax and Parsing

Adam Lopez, University of Edinburgh, Scotland

Roi Reichart, Technion — Israel Institute of Technology, Israel
Agata Savary, University of Tours, France

Guillaume Wisniewski, Université Paris Sud, France

Text Mining

Kai-Wei Chang, University of California Los Angeles, USA
Anna Feldman, Montlcair State University, USA

Shervin Malmasi, Harvard Medical School, USA

Verdnica Pérez-Rosas, University of Michigan, USA

Kevin Small, Amazon, USA

Diyi Yang, Carnegie Mellon University, USA

Theory and Formalisms
Valia Kordoni, Humboldt University Berlin, Germany
Andreas Maletti, University of Stuttgart, Germany

Vision, Robotics and other grounding

Francis Ferraro, University of Maryland Baltimore County, USA
Vicente Ordéiiez, University of Virginia, USA

William Yang Wang, University of California Santa Barbara, USA

Reviewers:

We would like to recognize the following reviewers as outstanding reviewers nominated by the
Area Chairs:

Heike Adel, Miguel A. Alonso, Reinald Kim Amplayo, Caitrin Armstrong, Yoav Artzi, Timo-
thy Baldwin, Jeremy Barnes, Gemma Boleda, Benjamin Borschinger, Cristina Bosco, Antoine
Bosselut, Florian Boudin, Chris Brew, Jose Camacho-Collados, Ricardo Campos, Marie Candito,
Tanmoy Chakraborty, Khyathi Chandu, Angel Chang, Francine Chen, Lin Chen, John Conroy,
Chris Culy, Anna Currey, Rajarshi Das, Pradeep Dasigi, David DeVault, Bhuwan Dhingra, Geor-
giana Dinu, Mark Dredze, Ondfej Dusek, Hady Elsahar, Tobias Falke, Olivier Ferret, Michael
Flor, Daniel Fried, Rashmi Gangadharaiah, Julio Gonzalo, Chulaka Gunasekara, Nitish Gupta,
Hannaneh Hajishirzi, Hua He, Jack Hessel, Zhichao Hu, Peter Jansen, Kristiina Jokinen, David
Jurgens, Chris Kedzie, Eliyahu Kiperwasser, Rebecca Knowles, Thomas Kober, Ari Kobren, Eka-
terina Kochmar, Emiel Krahmer, Jayant Krishnamurthy, Vivek Kulkarni, Sachin Kumar, Junyi
Jessy Li, Wenjie Li, Timm Lichte, Daniel Loureiro, Daniel Marcu, Scott Martin, Yann Mathet,
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Yevgen Matusevych, Stephen Mayhew, Ryan McDonald, Nurit Melnik, Eva Mujdricza-Maydt,
Yugo Murawaki, Sudip Kumar Naskar, Vivi Nastase, Graham Neubig, Mark Neumann, Vlad Nic-
ulae, Debora Nozza, Lilja @vrelid, Gustavo Henrique Paetzold, Nikolaos Pappas, Natalie Parde,
Ramakanth Pasunuru, Panupong Pasupat, Slav Petrov, Maxime Peyrard, Scott Piao, Heather Pon-
Barry, Edoardo Maria Ponti, Vinodkumar Prabhakaran, Alexandre Rademaker, Marek Rei, Laura
Rimell, Yu-Ping Ruan, Manfred Sailer, Sylvain Salvati, Nathan Schneider, Ethan Selfridge, Pararth
Shah, Ian Stewart, Kristina Striegnitz, Alane Suhr, Xu Sun, Erik Tjong Kim Sang, Kentaro Tori-
sawa, Sowmya Vajjala, Martin Villalba, Svitlana Volkova, Henning Wachsmuth, Joachim Wagner,
Jakub Waszczuk, Ingmar Weber, Spencer Whitehead, Michael Wiegand, Adina Williams, Jiacheng
Xu, Kevin Yancey, Zhilin Yang, Jin-ge Yao, Dian Yu, Francois Yvon, Justine Zhang, Wei Zhao,
Victor Zhong, Li Zhou, Arkaitz Zubiaga

Many thanks to the almost 2,000 other reviewers as well!

Omri Abend, Sallam Abualhaija, Oliver Adams, Stergos Afantenos, Zeljko Agi¢, Wasi Ahmad,
Mohammad Akbari, Alan Akbik, Md Shad Akhtar, Syed Sarfaraz Akhtar, Khalid Al Khatib,
Nora Al-Twairesh, Firoj Alam, Nikolaos Aletras, Jan Alexandersson, Enrique Alfonseca, Dim-
itris Alikaniotis, Miltiadis Allamanis, Cissi Ovesdotter Alm, Hadi Amiri, Antonios Anastasopou-
los, Ion Androutsopoulos, Anietie Andy, Krasimir Angelov, Mohammed Ansari, Marianna Apid-
ianaki, Jun Araki, Timofey Arkhangelskiy, Ehsaneddin Asgari, Elliott Ash, Duygu Ataman, Kar-
tik Audhkhasi, Joe Austerweil, Eleftherios Avramidis, Amittai Axelrod, Mahmoud Azab, Wilker
Aziz, Joan Bachenko, AmirAli Bagher Zadeh, Sanaz Bahargam, Anusha Balakrishnan, Niran-
jan Balasubramanian, Miguel Ballesteros, David Bamman, Trapit Bansal, Francesco Barbieri,
Verginica Barbu Mititelu, Gianni Barlacchi, Loic Barrault, Alberto Barrén-Cedefio, Valerio Basile,
Riza Batista-Navarro, Timo Baumann, Yonatan Belinkov, Iz Beltagy, Anja Belz, Yassine Bena-
jiba, Farah Benamara, Emily M. Bender, Adrian Benton, Jonathan Berant, Dario Bertero, Nicola
Bertoldi, Gayatri Bhat, Suma Bhat, Archna Bhatia, parminder bhatia, Arnab Bhattacharya, Push-
pak Bhattacharyya, Sudha Bhingardive, Timothy Bickmore, Or Biran, Yonatan Bisk, Johannes
Bjerva, Johanna Bjorklund, Philippe Blache, Alan W Black, Graeme Blackwood, Su Lin Blodgett,
Michael Bloodgood, Théodore Bluche, Victoria Bobicev, Danushka Bollegala, Marcel Bollmann,
Daniele Bonadiman, Georgeta Bordea, Gerlof Bouma, Samuel R. Bowman, S.R.K. Branavan,
Chloé Braud, Felipe Bravo-Marquez, Chris Brockett, Julian Brooke, Thomas Brovelli (Meyer),
Christopher Bryant, Pawet Budzianowski, Razvan Bunescu, Laura Burdick, Kaylee Burns, Jan
Buys, Bill Byrne, José G. C. de Souza, Leticia Cagnina, Renqin Cai, Ruket Cakici, lacer Calixto,
Hiram Calvo, Nicoletta Calzolari, Erik Cambria, Burcu Can, Yixin Cao, Spencer Caplan, Annalina
Caputo, Cornelia Caragea, Doina Caragea, Dallas Card, Marine Carpuat, Xavier Carreras, Lu-
cien Carroll, Vittorio Castelli, Thiago Castro Ferreira, Asli Celikyilmaz, Fabio Celli, Daniel Cer,
Dustin Chacén, Joyce Chai, Nathanael Chambers, Arjun Chandrasekaran, Muthu Kumar Chan-
drasekaran, Shiyu Chang, Wei-Lun Chao, Geeticka Chauhan, Wanxiang Che, Ciprian Chelba,
Boxing Chen, Chen Chen, Danlu Chen, Danqi Chen, Kehai Chen, Lei Chen, Liwei Chen, Muhao
Chen, Nancy Chen, Qian Chen, Tongfei Chen, Wenhu Chen, Xilun Chen, Xinchi Chen, Yue Chen,
Yun-Nung Chen, Fei Cheng, Hao Cheng, Weiwei Cheng, Artem Chernodub, Ekaterina Chernyak,
Colin Cherry, Emmanuele Chersoni, Jackie Chi Kit Cheung, Niyati Chhaya, David Chiang, Manoj
Chinnakotla, Luis Chiruzzo, Eunsol Choi, Shamil Chollampatt, Leshem Choshen, Prafulla Kumar
Choubey, Monojit Choudhury, Shammur Absar Chowdhury, Thomas Christie, Chenhui Chu, Ken-
neth Church, Philipp Cimiano, Volkan Cirik, Seamus Clancy, Elizabeth Clark, Stephen Clark, Ann
Clifton, Martin Cmejrek, Maximin Coavoux, Arman Cohan, Trevor Cohen, Cagr1 Coltekin, Math-
ieu Constant, Danish Contractor, Paul Cook, Jodo Cordeiro, Silvio Cordeiro, Caio Corro, Marta
R. Costa-jussa, Benoit Crabbé, Josep Crego, Mathias Creutz, Paul Crook, Xiaodong Cui, Yiming
Cui, Aron Culotta, Luis Fernando D’Haro, Rossana da Cunha Silva, Daniel Dahlmeier,
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Zeyu Dai, Bhavana Dalvi, Amitava Das, Dipanjan Das, Vidas Daudaravicius, Elnaz Davoodi, Jo-
hannes Daxenberger, Adria de Gispert, Eric de la Clergerie, Miryam de Lhoneux, Maarten de
Rijke, Thierry Declerck, Luciano Del Corro, Louise Deléger, Vera Demberg, Thomas Demeester,
Berkan Demirel, Lingjia Deng, Yuntian Deng, Nina Dethlefs, Daniel Deutsch, Barry Devereux,
Kuntal Dey, Paramveer Dhillon, Maria Pia di Buono, Haibo Ding, Shuoyang Ding, Dmitriy Dli-
gach, Li Dong, Doug Downey, Gabriel Doyle, Mark Dras, Markus Dreyer, Rotem Dror, Lan Du,
Xinya Du, Nan Duan, Stefan Diick, Philipp Dufter, Kevin Duh, Ewan Dunbar, Jonathan Dunn,
Nadir Durrani, Greg Durrett, Tomasz Dwojak, Melody Dye, Chris Dyer, Steffen Eger, Markus
Egg, Vladimir Eidelman, Jacob Eisenstein, Layla El Asri, Heba Elfardy, Ahmed Elgohary, Michael
Elhadad, Micha Elsner, Erkut Erdem, Akiko Eriguchi, Katrin Erk, Marcelo Errecalde, Hugo Jair
Escalante, Maxine Eskenazi, Allyson Ettinger, Kilian Evang, Marzieh Fadaee, Cédrick Fairon, Ag-
nieszka Falenska, Ingrid Falk, James Fan, Hui Fang, Meng Fang, Hossein Fani, Manaal Faruqui,
Benoit Favre, Marcello Federico, Mariano Felice, Song Feng, Xiaocheng Feng, Elisabetta Fersini,
Besnik Fetahu, Simone Filice, Katja Filippova, Tim Finin, Mark Finlayson, Gregory Finley, Orhan
Firat, Nicholas FitzGerald, Eileen Fitzpatrick, Jeffrey Flanigan, Margaret Fleck, Lucie Flekova,
Antske Fokkens, José A. R. Fonollosa, Tommaso Fornaciari, Karén Fort, Meaghan Fowlie, Kath-
leen C. Fraser, Markus Freitag, André Freitas, Lea Frermann, Annemarie Friedrich, Jason Fries,
Lisheng Fu, Michel Galley, Michael Gamon, Kuzman Ganchev, Ashwinkumar Ganesan, Debasis
Ganguly, Qin Gao, Wei Gao, Jorge Garcia Flores, Claire Gardent, Matt Gardner, Dan Garrette,
Milica Gasic, Albert Gatt, Niyu Ge, Sebastian Gehrmann, Spandana Gella, Kallirroi Georgila,
Reza Ghaeini, Shabnam Ghaffarzadegan, Marjan Ghazvininejad, Debanjan Ghosh, Kevin Gimpel,
Filip Ginter, Rahul Goel, Darina Gold, Yoav Goldberg, Sujatha Gollapalli, Helena Gomez, Car-
los Gémez-Rodriguez, Teresa Gongalves, Fabio Gonzalez, Jonathan Gordon, Anuj Goyal, Pawan
Goyal, Mario Graff, Yvette Graham, David Grangier, Christan Grant, Yulia Grishina, Alvin Gris-
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Keynote Speaker: Rada Mihalcea, University of Michigan
When the Computers Spot the Lie (and People Don’t)

Abstract: Whether we like it or not, deception occurs everyday and everywhere: thousands of
trials take place daily around the world; little white lies: “I’m busy that day!” even if your calendar
is blank; news “with a twist” (a.k.a. fake news) meant to attract the readers attention or influence
people in their future undertakings; misinformation in health social media posts; portrayed iden-
tities, on dating sites and elsewhere. Can a computer automatically detect deception in written
accounts or in video recordings? In this talk, I will overview a decade of research in building
linguistic and multimodal resources and algorithms for deception detection, targeting deceptive
statements, trial videos, fake news, identity deception, and health misinformation. I will also show
how these algorithms can provide insights into what makes a good lie - and thus teach us how we
can spot a liar. As it turns out, computers can be trained to identify lies in many different contexts,
and they can often do it better than humans do.

Bio: Rada Mihalcea is a Professor of Computer Science and Engineering at the University of
Michigan and the Director of the Michigan Artificial Intelligence Lab. Her research interests
are in lexical semantics, multilingual NLP, and computational social sciences. She serves or has
served on the editorial boards of the Journals of Computational Linguistics, Language Resources
and Evaluations, Natural Language Engineering, Journal of Artificial Intelligence Research, IEEE
Transactions on Affective Computing, and Transactions of the Association for Computational Lin-
guistics. She was a program co-chair for EMNLP 2009 and ACL 2011, and a general chair for
NAACL 2015 and *SEM 2019. She currently serves as the ACL Vice-President Elect. She is the
recipient of an NSF CAREER award (2008) and a Presidential Early Career Award for Scientists
and Engineers awarded by President Obama (2009). In 2013, she was made an honorary citizen of
her hometown of Cluj-Napoca, Romania.
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Keynote Speaker: Kieran Snyder, Textio
Leaving the Lab: Building NLP Applications that Real People can Use

Abstract: There is a chasm between an NLP technology that works well in the research lab and
something that works for applications that real people use. Research conditions are often theoret-
ical or idealized. The first time they contribute to industry projects, many theoretical researchers
are surprised to discover how much goes into building outside the lab, and how hard it is to build
data products for real people ethically and transparently. This talk explores my NLP journey in
three stages: working as an academic NLP researcher, learning to be a practical creator of NLP
products in industry, and becoming the founding CEO of an NLP business. While each role has
used my background in computational linguistics in essential ways, every step has also required
me to learn and unlearn new things along the way. The further I have gone in my industry career,
the more critical it has become to define and work within a well-established set of principles for
data ethics. This talk is for academic researchers considering industry careers or collaborations,
for people in industry who started out in academia, and for anyone on either side of the divide who
wants to make NLP products that real people can use.

Bio: Kieran Snyder is the CEO and Co-Founder of Textio, the augmented writing platform. For
anything you write, Textio tells you ahead of time who’s going to respond based on the language
you’ve used. Textio’s augmented writing engine is designed to attach to any large text corpus
with outcomes to find the patterns that work. Prior to founding Textio, Kieran held product lead-
ership roles at Microsoft and Amazon. Kieran has a PhD in linguistics from the University of
Pennsylvania. Her work has appeared in Fortune, Re/code, Slate, and the Washington Post.
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Keynote Speaker: Arvind Narayanan, Princeton

Data as a Mirror of Society: Lessons from the Emerging Science of Fairness in Machine
Learning

Abstract: Language corpora reflect human society, including cultural stereotypes, prejudices, and
historical patterns. By default, statistical language models will absorb these stereotypes. As a
result, NLP systems for word analogy generation, toxicity detection, and many other tasks have
been found to reflect racial and gender biases. Based on this observation, I will discuss two emerg-
ing research directions. First, a deeper understanding of human culture can help identify possible
harmful stereotypes in algorithmic systems. The second research direction is the converse of the
first: if data is a mirror of society, machine learning can be used as a magnifying lens to study
human culture.

Bio: Arvind Narayanan is an Associate Professor of Computer Science at Princeton. His re-
search has shown how state-of-the-art word embeddings reflect racial, gender, and other cultural
stereotypes. He leads the Princeton Web Transparency and Accountability Project to uncover how
companies collect and use our personal information. His doctoral research showed the fundamen-
tal limits of de-identification, for which he received the Privacy Enhancing Technologies Award.
Narayanan also co-created a Massive Open Online Course as well as a textbook on Bitcoin and
cryptocurrency technologies.
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Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos
and Tom Mitchell
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17:36-17:54

17:54-18:12

18:12-18:30

17:00-17:18

17:18-17:36

17:36-17:54

17:54-18:12

18:12-18:30

Extract and Edit: An Alternative to Back-Translation for Unsupervised Neural Ma-
chine Translation
Jiawei Wu, Xin Wang and William Yang Wang

Consistency by Agreement in Zero-Shot Neural Machine Translation
Maruan Al-Shedivat and Ankur Parikh

Modeling Recurrence for Transformer
Jie Hao, Xing Wang, Baosong Yang, Longyue Wang, Jinfeng Zhang and Zhaopeng
Tu

Session 3E: Dialogue
Room: Northstar, Chair: Sujith Ravi

Rethinking Action Spaces for Reinforcement Learning in End-to-end Dialog Agents
with Latent Variable Models
Tiancheng Zhao, Kaige Xie and Maxine Eskenazi

Skeleton-to-Response: Dialogue Generation Guided by Retrieval Memory
Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojiang Liu, Wai Lam and Shuming
Shi

Jointly Optimizing Diversity and Relevance in Neural Response Generation
Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brockett, Michel Galley, Jianfeng Gao
and Bill Dolan

Disentangling Language and Knowledge in Task-Oriented Dialogs
Dinesh Raghu, Nikhil Gupta and Mausam

[TACL] DREAM: A Challenge Dataset and Models for Dialogue-Based Reading
Comprehension
Kai Sun, Dian Yu, Jianshu Chen, Dong Yu, Yejin Choi and Claire Cardie

Session 3F: Applications, Social Media, Biomedical NLP & Clinical Text Pro-
cessing (Posters)
NLP Applications

Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies

Together
Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang and Chengqi Zhang
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WiC: the Word-in-Context Dataset for Evaluating Context-Sensitive Meaning Rep-
resentations
Mohammad Taher Pilehvar and Jose Camacho-Collados

Does My Rebuttal Matter? Insights from a Major NLP Conference
Yang Gao, Steffen Eger, Ilia Kuznetsov, Iryna Gurevych and Yusuke Miyao

Casting Light on Invisible Cities: Computationally Engaging with Literary Criti-
cism
Shufan Wang and Mohit Iyyer

PAWS: Paraphrase Adversaries from Word Scrambling
Yuan Zhang, Jason Baldridge and Luheng He

Cross-Corpora Evaluation and Analysis of Grammatical Error Correction Models
— Is Single-Corpus Evaluation Enough?
Masato Mita, Tomoya Mizumoto, Masahiro Kaneko, Ryo Nagata and Kentaro Inui

Star-Transformer
Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue and Zheng
Zhang

[SRW] SEDTWik: Segmentation-based Event Detection from Tweets Using
Wikipedia
Keval Morabia, Neti Lalita Bhanu Murthy, Aruna Malapati and Surender Samant

Social Media

Adaptation of Hierarchical Structured Models for Speech Act Recognition in Asyn-
chronous Conversation

Tasnim Mohiuddin, Thanh-Tung Nguyen and Shafiq Joty

From legal to technical concept: Towards an automated classification of German
political Twitter postings as criminal offenses
Frederike Zufall, Tobias Horsmann and Torsten Zesch

Joint Multi-Label Attention Networks for Social Text Annotation
Hang Dong, Wei Wang, Kaizhu Huang and Frans Coenen

Multi-Channel Convolutional Neural Network for Twitter Emotion and Sentiment
Recognition
Jumayel Islam, Robert E. Mercer and Lu Xiao

Detecting Cybersecurity Events from Noisy Short Text

Semih Yagcioglu, Mehmet saygin Seyfioglu, Begum Citamak, Batuhan Bardak,
Seren Guldamlasioglu, Azmi Yuksel and Emin Islam Tatli
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White-to-Black: Efficient Distillation of Black-Box Adversarial Attacks
Yotam Gil, Yoav Chai, Or Gorodissky and Jonathan Berant

Analyzing the Perceived Severity of Cybersecurity Threats Reported on Social Me-
dia
Shi Zong, Alan Ritter, Graham Mueller and Evan Wright

Fake News Detection using Deep Markov Random Fields
Duc Minh Nguyen, Tien Huu Do, Robert Calderbank and Nikos Deligiannis

Issue Framing in Online Discussion Fora
Mareike Hartmann, Tallulah Jansen, Isabelle Augenstein and Anders Sggaard

Vector of Locally Aggregated Embeddings for Text Representation
Hadi Amiri and Mitra Mohtarami

Predicting the Type and Target of Offensive Posts in Social Media
Marcos Zampieri, Shervin Malmasi, Preslav Nakov, Sara Rosenthal, Noura Farra
and Ritesh Kumar

Biomedical NLP & Clinical Text Processing
Biomedical Event Extraction based on Knowledge-driven Tree-LSTM
Diya Li, Lifu Huang, Heng Ji and Jiawei Han

Detecting cognitive impairments by agreeing on interpretations of linguistic fea-
tures
Zining Zhu, Jekaterina Novikova and Frank Rudzicz

Relation Extraction using Explicit Context Conditioning
Gaurav Singh and Parminder Bhatia

Conversation Model Fine-Tuning for Classifying Client Utterances in Counseling
Dialogues
Sungjoon Park, Donghyun Kim and Alice Oh

Using Similarity Measures to Select Pretraining Data for NER
Xiang Dai, Sarvnaz Karimi, Ben Hachey and Cecile Paris

Predicting Annotation Difficulty to Improve Task Routing and Model Performance
for Biomedical Information Extraction
Yinfei Yang, Oshin Agarwal, Chris Tar, Byron C. Wallace and Ani Nenkova

Detecting Depression in Social Media using Fine-Grained Emotions

Mario Ezra Aragon, Adrian Pastor Lopez Monroy, Luis Carlos Gonzalez Gurrola
and Manuel Montes-y-Gomez
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9:00-10:30

9:00-9:18

9:18-9:36

9:36-9:54

9:54-10:12

10:12-10:30

9:00-9:18

9:18-9:36

9:36-9:54

9:54-10:12

10:12-10:30

[SRW] Kickstarting NLP for the Whole-person Function Domain with Representa-
tion Learning and Data Analysis
Denis Newman-Griffis

A Silver Standard Corpus of Human Phenotype-Gene Relations
Diana Sousa, Andre Lamurias and Francisco M Couto

Oral sessions (long papers) and Posters (long and short papers)

Session 4A: Phonology & Morphology
Room: Nicollet A, Chair: Greg Kondrak

Improving Lemmatization of Non-Standard Languages with Joint Learning
Enrique Manjavacas, Akos Kadar and Mike Kestemont

One Size Does Not Fit All: Comparing NMT Representations of Different Granu-
larities
Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Yonatan Belinkov and Preslav Nakov

A Simple Joint Model for Improved Contextual Neural Lemmatization
Chaitanya Malaviya, Shijie Wu and Ryan Cotterell

A Probabilistic Generative Model of Linguistic Typology
Johannes Bjerva, Yova Kementchedjhieva, Ryan Cotterell and Isabelle Augenstein

Quantifying the morphosyntactic content of Brown Clusters
Manuel Ciosici, Leon Derczynski and Ira Assent

Session 4B: Multilingual NLP
Room: Nicollet D, Chair: Ekaterina Shutova

Analyzing Bayesian Crosslingual Transfer in Topic Models
Shudong Hao and Michael J. Paul

Recursive Subtree Composition in LSTM-Based Dependency Parsing
Miryam de Lhoneux, Miguel Ballesteros and Joakim Nivre

Cross-lingual CCG Induction
Kilian Evang

Density Matching for Bilingual Word Embedding
Chunting Zhou, Xuezhe Ma, Di Wang and Graham Neubig

Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to

Zero-shot Dependency Parsing
Tal Schuster, Ori Ram, Regina Barzilay and Amir Globerson
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9:00-9:18

9:18-9:36

9:36-9:54

9:54-10:12

10:12-10:30

9:00-9:18

9:18-9:36

9:36-9:54

9:54-10:12

10:12-10:30

Session 4C: Social Media
Room: Nicollet B+C, Chair: Xiaodan Zhu

Early Rumour Detection
Kaimin Zhou, Chang Shu, Binyang Li and Jey Han Lau

Microblog Hashtag Generation via Encoding Conversation Contexts
Yue Wang, Jing Li, Irwin King, Michael R. Lyu and Shuming Shi

Text Processing Like Humans Do: Visually Attacking and Shielding NLP Systems
Steffen Eger, Gozde Giil Sahin, Andreas Riicklé, Ji-Ung Lee, Claudia Schulz,
Mohsen Mesgar, Krishnkant Swarnkar, Edwin Simpson and Iryna Gurevych

Something’s Brewing! Early Prediction of Controversy-causing Posts from Discus-
sion Features
Jack Hessel and Lillian Lee

No Permanent Friends or Enemies: Tracking Relationships between Nations from
News
Xiaochuang Han, Eunsol Choi and Chenhao Tan

Session 4D: Generation
Room: Northstar A, Chair: Ion Androutsopoulos

Improving Human Text Comprehension through Semi-Markov CRF-based Neural
Section Title Generation
Sebastian Gehrmann, Steven Layne and Franck Dernoncourt

Unifying Human and Statistical Evaluation for Natural Language Generation
Tatsunori Hashimoto, Hugh Zhang and Percy Liang

What makes a good conversation? How controllable attributes affect human judg-
ments
Abigail See, Stephen Roller, Douwe Kiela and Jason Weston

An Empirical Investigation of Global and Local Normalization for Recurrent Neural
Sequence Models Using a Continuous Relaxation to Beam Search

Kartik Goyal, Chris Dyer and Taylor Berg-Kirkpatrick

Pun Generation with Surprise
He He, Nanyun Peng and Percy Liang
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Session 4E: Industry Session: Real World Challenges
Room: Greenway

Session 4F: Discourse, Information Retrieval, Machine Translation, Vision &
Robotics (Posters)

Discourse
Single Document Summarization as Tree Induction
Yang Liu, Ivan Titov and Mirella Lapata

Fixed That for You: Generating Contrastive Claims with Semantic Edits
Christopher Hidey and Kathy McKeown

Box of Lies: Multimodal Deception Detection in Dialogues
Felix Soldner, Verénica Pérez-Rosas and Rada Mihalcea

A Crowdsourced Corpus of Multiple Judgments and Disagreement on Anaphoric
Interpretation

Massimo Poesio, Jon Chamberlain, Silviu Paun, Juntao Yu, Alexandra Uma and
Udo Kruschwitz

A Streamlined Method for Sourcing Discourse-level Argumentation Annotations
from the Crowd
Tristan Miller, Maria Sukhareva and Iryna Gurevych

Unsupervised Dialog Structure Learning
Weiyan Shi, Tiancheng Zhao and Zhou Yu

Modeling Document-level Causal Structures for Event Causal Relation Identifica-
tion
Lei Gao, Prafulla Kumar Choubey and Ruihong Huang

[TACL] Planning, Inference, and Pragmatics in Sequential Language Games
Fereshte Khani, Noah Goodman and Percy Liang

Information Retrieval

Hierarchical User and Item Representation with Three-Tier Attention for Recom-
mendation

Chuhan Wu, Fangzhao Wu, Junxin Liu and Yongfeng Huang

Ixvii
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Text Similarity Estimation Based on Word Embeddings and Matrix Norms for Tar-
geted Marketing
Tim vor der Briick and Marc Pouly

Glocal: Incorporating Global Information in Local Convolution for Keyphrase Ex-
traction
Animesh Prasad and Min-Yen Kan

A Study of Latent Structured Prediction Approaches to Passage Reranking
Iryna Haponchyk and Alessandro Moschitti

Combining Distant and Direct Supervision for Neural Relation Extraction
Iz Beltagy, Kyle Lo and Waleed Ammar

Tweet Stance Detection Using an Attention based Neural Ensemble Model
Umme Aymun Siddiqua, Abu Nowshed Chy and Masaki Aono

Machine Translation

Word Embedding-Based Automatic MT Evaluation Metric using Word Position In-
formation

Hiroshi Echizen’ya, Kenji Araki and Eduard Hovy

Learning to Stop in Structured Prediction for Neural Machine Translation
Mingbo Ma, Renjie Zheng and Liang Huang

Learning Unsupervised Multilingual Word Embeddings with Incremental Multilin-
gual Hubs
Geert Heyman, Bregt Verreet, Ivan Vuli¢ and Marie-Francine Moens

Curriculum Learning for Domain Adaptation in Neural Machine Translation
Xuan Zhang, Pamela Shapiro, Gaurav Kumar, Paul McNamee, Marine Carpuat and

Kevin Duh

Improving Robustness of Machine Translation with Synthetic Noise
Vaibhav Vaibhav, Sumeet Singh, Craig Stewart and Graham Neubig

Non-Parametric Adaptation for Neural Machine Translation
Ankur Bapna and Orhan Firat

Online Distilling from Checkpoints for Neural Machine Translation
Hao-Ran Wei, Shujian Huang, Ran Wang, Xin-Yu Dai and Jiajun Chen
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10:30-11:00

11:00-12:30

11:00-11:15

11:15-11:30

11:30-11:45

Vision & Robotics
Value-based Search in Execution Space for Mapping Instructions to Programs
Dor Muhlgay, Jonathan Herzig and Jonathan Berant

VOD: Visual Query Detection In Natural Scenes
Manoj Acharya, Karan Jariwala and Christopher Kanan

Improving Natural Language Interaction with Robots Using Advice
Nikhil Mehta and Dan Goldwasser

Generating Knowledge Graph Paths from Textual Definitions using Sequence-to-
Sequence Models
Victor Prokhorov, Mohammad Taher Pilehvar and Nigel Collier

Shifting the Baseline: Single Modality Performance on Visual Navigation & QA
Jesse Thomason, Daniel Gordon and Yonatan Bisk

ExCL: Extractive Clip Localization Using Natural Language Descriptions
Soham Ghosh, Anuva Agarwal, Zarana Parekh and Alexander Hauptmann

Coffee Break

Oral Sessions (short papers), Posters (long and short papers) & Demos

Session SA: Multilingual NLP

Room: Nicollet D, Chair: Valia Kordoni

Detecting dementia in Mandarin Chinese using transfer learning from a parallel
corpus

Bai Li, Yi-Te Hsu and Frank Rudzicz

Cross-lingual Visual Verb Sense Disambiguation
Spandana Gella, Desmond Elliott and Frank Keller

Subword-Level Language Identification for Intra-Word Code-Switching
Manuel Mager, Ozlem Cetinoglu and Katharina Kann

Ixix
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11:45-12:00

12:00-12:15

12:15-12:30

11:00-11:15

11:15-11:30

11:30-11:45

11:45-12:00

12:00-12:15

12:15-12:30

MuST-C: a Multilingual Speech Translation Corpus
Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli, Matteo Negri and Marco
Turchi

Contextualization of Morphological Inflection
Ekaterina Vylomova, Ryan Cotterell, Trevor Cohn, Timothy Baldwin and Jason
Eisner

A Robust Abstractive System for Cross-Lingual Summarization
Jessica Ouyang, Boya Song and Kathy McKeown

Session 5B: Machine Translation
Room: Nicollet B+C, Chair: Daisuke Kawahara

Improving Neural Machine Translation with Neural Syntactic Distance
Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Eiichiro Sumita and Tiejun Zhao

Measuring Immediate Adaptation Performance for Neural Machine Translation
Patrick Simianer, Joern Wuebker and John DeNero

Differentiable Sampling with Flexible Reference Word Order for Neural Machine
Translation
Weijia Xu, Xing Niu and Marine Carpuat

Reinforcement Learning based Curriculum Optimization for Neural Machine Trans-
lation
Gaurav Kumar, George Foster, Colin Cherry and Maxim Krikun

Overcoming Catastrophic Forgetting During Domain Adaptation of Neural Ma-
chine Translation

Brian Thompson, Jeremy Gwinnup, Huda Khayrallah, Kevin Duh and Philipp
Koehn

[SRW] Multimodal Machine Translation with Embedding Prediction
Tosho Hirasawa, Hayahide Yamagishi, Yukio Matsumura and Mamoru Komachi
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11:00-11:15

11:15-11:30

11:30-11:45

11:45-12:00

12:00-12:15

12:15-12:30

11:00-11:15

11:15-11:30

11:30-11:45

11:45-12:00

Session 5C: Social Media
Room: Greenway, Chair: Chenhao Tan

Short-Term Meaning Shift: A Distributional Exploration
Marco Del Tredici, Raquel Ferndndez and Gemma Boleda

Detecting Derogatory Compounds — An Unsupervised Approach
Michael Wiegand, Maximilian Wolf and Josef Ruppenhofer

Personalized Neural Embeddings for Collaborative Filtering with Text
Guangneng Hu

An Embarrassingly Simple Approach for Transfer Learning from Pretrained Lan-
guage Models
Alexandra Chronopoulou, Christos Baziotis and Alexandros Potamianos

Incorporating Emoji Descriptions Improves Tweet Classification
Abhishek Singh, Eduardo Blanco and Wei Jin

Modeling Personal Biases in Language Use by Inducing Personalized Word Embed-
dings
Daisuke Oba, Naoki Yoshinaga, Shoetsu Sato, Satoshi Akasaki and Masashi Toyoda

Session 5D: Text Analysis

Room: Northstar A, Chair: Saif Mohammad

Multi-Task Ordinal Regression for Jointly Predicting the Trustworthiness and the
Leading Political Ideology of News Media

Ramy Baly, Georgi Karadzhov, Abdelrhman Saleh, James Glass and Preslav Nakov

Joint Detection and Location of English Puns
Yanyan Zou and Wei Lu

Harry Potter and the Action Prediction Challenge from Natural Language
David Vilares and Carlos Gémez-Rodriguez

Argument Mining for Understanding Peer Reviews
Xinyu Hua, Mitko Nikolov, Nikhil Badugu and Lu Wang
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12:00-12:15

12:15-12:30

11:00-11:15

11:15-11:30

11:30-11:45

11:45-12:00

12:00-12:15

12:15-12:30

An annotated dataset of literary entities
David Bamman, Sejal Popat and Sheng Shen

Abusive Language Detection with Graph Convolutional Networks
Pushkar Mishra, Marco Del Tredici, Helen Yannakoudakis and Ekaterina Shutova

Session 5E: Semantics
Room: Nicollet A, Chair: Samuel Bowman

On the Importance of Distinguishing Word Meaning Representations: A Case Study
on Reverse Dictionary Mapping
Mohammad Taher Pilehvar

Factorising AMR generation through syntax
Kris Cao and Stephen Clark

A Crowdsourced Frame Disambiguation Corpus with Ambiguity
Anca Dumitrache, Lora Aroyo and Chris Welty

Inoculation by Fine-Tuning: A Method for Analyzing Challenge Datasets
Nelson F. Liu, Roy Schwartz and Noah A. Smith

[SRW] Word Polysemy Aware Document Vector Estimation
Vivek Gupta, Ankit Saw, Harshit Gupta, Pegah Nokhiz and Partha Talukdar

[SRW] EQUATE: A Benchmark Evaluation Framework for Quantitative Reasoning
in Natural Language Inference
Abhilasha Ravichander, Aakanksha Naik, Carolyn Rose and Eduard Hovy

Session S5F: Information Retrieval, Question Answering, Generation & Syntax
(Posters & Demos)

Information Retrieval
A Capsule Network-based Embedding Model for Knowledge Graph Completion and
Search Personalization
Dai Quoc Nguyen, Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen and Dinh Phung

Fartial Or Complete, That’s The Question
Qiang Ning, Hangfeng He, Chuchu Fan and Dan Roth

Sequential Attention with Keyword Mask Model for Community-based Question An-
swering
Jianxin Yang, Wenge Rong, Libin Shi and Zhang Xiong

Simple Attention-Based Representation Learning for Ranking Short Social Media

Posts
Peng Shi, Jinfeng Rao and Jimmy Lin
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AttentiveChecker: A Bi-Directional Attention Flow Mechanism for Fact Verification
Santosh Tokala, Vishal G, Avirup Saha and Niloy Ganguly

Practical, Efficient, and Customizable Active Learning for Named Entity Recogni-
tion in the Digital Humanities

Alexander Erdmann, David Joseph Wrisley, Benjamin Allen, Christopher Brown,
Sophie Cohen-Bodénes, Micha Elsner, Yukun Feng, Brian Joseph, Béatrice Joyeux-
Prunel and Marie-Catherine de Marneffe

Doc2hash: Learning Discrete Latent variables for Documents Retrieval
Yifei Zhang and Hao Zhu

Generation
Evaluating Text GANs as Language Models
Guy Tevet, Gavriel Habib, Vered Shwartz and Jonathan Berant

Latent Code and Text-based Generative Adversarial Networks for Soft-text Genera-

tion
Md Akmal Haidar, Mehdi Rezagholizadeh, Alan Do Omri and Ahmad Rashid

Neural Text Generation from Rich Semantic Representations
Valerie Hajdik, Jan Buys, Michael Wayne Goodman and Emily M. Bender

Step-by-Step: Separating Planning from Realization in Neural Data-to-Text Gener-
ation
Amit Moryossef, Yoav Goldberg and Ido Dagan

Evaluating Rewards for Question Generation Models
Tom Hosking and Sebastian Riedel

Text Generation from Knowledge Graphs with Graph Transformers
Rik Koncel-Kedziorski, Dhanush Bekal, Yi Luan, Mirella Lapata and Hannaneh
Hajishirzi

Question Answering

Open Information Extraction from Question-Answer Pairs

Nikita Bhutani, Yoshihiko Suhara, Wang-Chiew Tan, Alon Halevy and H. V. Ja-
gadish

Question Answering by Reasoning Across Documents with Graph Convolutional
Networks
Nicola De Cao, Wilker Aziz and Ivan Titov

A Qualitative Comparison of CoQA, SQuAD 2.0 and QuAC
Mark Yatskar
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BERT Post-Training for Review Reading Comprehension and Aspect-based Senti-
ment Analysis
Hu Xu, Bing Liu, Lei Shu and Philip Yu

Old is Gold: Linguistic Driven Approach for Entity and Relation Linking of Short
Text

Ahmad Sakor, Isaiah Onando Mulang’, Kuldeep Singh, Saeedeh Shekarpour, Maria
Esther Vidal, Jens Lehmann and S6ren Auer

Be Consistent! Improving Procedural Text Comprehension using Label Consistency
Xinya Du, Bhavana Dalvi, Niket Tandon, Antoine Bosselut, Wen-tau Yih, Peter
Clark and Claire Cardie

MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based
Formalisms

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi
and Hannaneh Hajishirzi

DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over
Paragraphs

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh and
Matt Gardner

Syntax
An Encoding Strategy Based Word-Character LSTM for Chinese NER
Wei Liu, Tongge Xu, Qinghua Xu, Jiayu Song and Yueran Zu

Highly Effective Arabic Diacritization using Sequence to Sequence Modeling
Hamdy Mubarak, Ahmed Abdelali, Hassan Sajjad, Younes Samih and Kareem Dar-
wish

SC-LSTM: Learning Task-Specific Representations in Multi-Task Learning for Se-
quence Labeling
Peng Lu, Ting Bai and Philippe Langlais

Learning to Denoise Distantly-Labeled Data for Entity Typing
Yasumasa Onoe and Greg Durrett

A Simple and Robust Approach to Detecting Subject-Verb Agreement Errors

Simon Flachs, Ophélie Lacroix, Marek Rei, Helen Yannakoudakis and Anders Sg-
gaard
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12:30-14:00

14:00-15:00

15:00-15:30

15:30-17:00

15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

16:42-17:00

A Grounded Unsupervised Universal Part-of-Speech Tagger for Low-Resource Lan-
guages
Ronald Cardenas, Ying Lin, Heng Ji and Jonathan May

On Difficulties of Cross-Lingual Transfer with Order Differences: A Case Study on
Dependency Parsing

Wasi Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard Hovy, Kai-Wei Chang and
Nanyun Peng

A Multi-Task Approach for Disentangling Syntax and Semantics in Sentence Repre-
sentations

Mingda Chen, Qingming Tang, Sam Wiseman and Kevin Gimpel

Lunch Break

Keynote 2: Rada Mihalcea "When the Computers Spot the Lie (and People Don’t)"
(Nicollet Grand Ballroom)

Coffee Break

Oral sessions (long papers), Posters (long and short papers) & Demos

Session 6A: Sentiment Analysis
Room: Northstar A, Chair: Sara Rosenthal

Self-Discriminative Learning for Unsupervised Document Embedding
Hong-You Chen, Chin-Hua Hu, Leila Wehbe and Shou-de Lin

Adaptive Convolution for Text Classification
Byung-Ju Choi, Jun-Hyung Park and SangKeun Lee

Zero-Shot Cross-Lingual Opinion Target Extraction
Soufian Jebbara and Philipp Cimiano

Adversarial Category Alignment Network for Cross-domain Sentiment Classifica-
tion
Xiaoye Qu, Zhikang Zou, Yu Cheng, Yang Yang and Pan Zhou

Target-oriented Opinion Words Extraction with Target-fused Neural Sequence La-

beling
Zhifang Fan, Zhen Wu, Xin-Yu Dai, Shujian Huang and Jiajun Chen
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15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

16:42-17:00

15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

16:42-17:00

Session 6B: Summarization
Room: Greenway, Chair: Ani Nenkova

Abstractive Summarization of Reddit Posts with Multi-level Memory Networks
Byeongchang Kim, Hyunwoo Kim and Gunhee Kim

Automatic learner summary assessment for reading comprehension
Menglin Xia, Ekaterina Kochmar and Ted Briscoe

Data-efficient Neural Text Compression with Interactive Learning
Avinesh P.V.S and Christian M. Meyer

Text Generation with Exemplar-based Adaptive Decoding
Hao Peng, Ankur Parikh, Manaal Faruqui, Bhuwan Dhingra and Dipanjan Das

Guiding Extractive Summarization with Question-Answering Rewards
Kristjan Arumae and Fei Liu

Session 6C: Vision & Robotics
Room: Nicollet A, Chair: William Yang Wang

Beyond task success: A closer look at jointly learning to see, ask, and GuessWhat
Ravi Shekhar, Aashish Venkatesh, Tim Baumgirtner, Elia Bruni, Barbara Plank,
Raffaella Bernardi and Raquel Ferndndez

The World in My Mind: Visual Dialog with Adversarial Multi-modal Feature En-
coding
Yiqun Yao, Jiaming Xu and Bo Xu

Strong and Simple Baselines for Multimodal Utterance Embeddings
Paul Pu Liang, Yao Chong Lim, Yao-Hung Hubert Tsai, Ruslan Salakhutdinov and
Louis-Philippe Morency

Learning to Navigate Unseen Environments: Back Translation with Environmental
Dropout
Hao Tan, Licheng Yu and Mohit Bansal

Towards Content Transfer through Grounded Text Generation
Shrimai Prabhumoye, Chris Quirk and Michel Galley
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15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

16:42-17:00

Session 6D: Question Answering
Room: Nicollet B+C, Chair: Eduardo Blanco

Improving Machine Reading Comprehension with General Reading Strategies
Kai Sun, Dian Yu, Dong Yu and Claire Cardie

Multi-task Learning with Sample Re-weighting for Machine Reading Comprehen-
sion
Yichong Xu, Xiaodong Liu, Yelong Shen, Jingjing Liu and Jianfeng Gao

Semantically-Aligned Equation Generation for Solving and Reasoning Math Word
Problems
Ting-Rui Chiang and Yun-Nung Chen

Iterative Search for Weakly Supervised Semantic Parsing
Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke Zettlemoyer and Eduard Hovy

Alignment over Heterogeneous Embeddings for Question Answering
Vikas Yadav, Steven Bethard and Mihai Surdeanu

Session 6E: Industry Session: Deployed Systems
Room: Nicollet D

Session 6F: Phonology, Speech and Text Mining (Posters & Demos)

Phonology

Bridging the Gap: Attending to Discontinuity in Identification of Multiword Expres-
sions

Omid Rohanian, Shiva Taslimipoor, Samaneh Kouchaki, Le An Ha and Ruslan
Mitkov

Incorporating Word Attention into Character-Based Word Segmentation
Shohei Higashiyama, Masao Utiyama, Eiichiro Sumita, Masao Ideuchi, Yoshiaki

Oida, Yohei Sakamoto and Isaac Okada

VCWE: Visual Character-Enhanced Word Embeddings
Chi Sun, Xipeng Qiu and Xuanjing Huang

Subword Encoding in Lattice LSTM for Chinese Word Segmentation
Jie Yang, Yue Zhang and Shuailong Liang
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Improving Cross-Domain Chinese Word Segmentation with Word Embeddings
Yuxiao Ye, Weikang Li, Yue Zhang, Likun Qiu and Jian Sun

Neural Semi-Markov Conditional Random Fields for Robust Character-Based Part-
of-Speech Tagging
Apostolos Kemos, Heike Adel and Hinrich Schiitze

Shrinking Japanese Morphological Analyzers With Neural Networks and Semi-
supervised Learning
Arseny Tolmachev, Daisuke Kawahara and Sadao Kurohashi

[TACL] Grammar Error Correction in Morphologically-Rich Languages: The Case
of Russian
Alla Rozovskaya and Dan Roth

[SRW] Deep Learning and Sociophonetics: Automatic Coding of Rhoticity Using
Neural Networks
Sarah Gupta and Anthony DiPadova

[SRW] Learn Languages First and Then Convert: towards Effective Simplified to
Traditional Chinese Conversion
Pranav A, S.F. Hui, I-Tsun Cheng, Ishaan Batra and Chiu Yik Hei

Speech
Neural Constituency Parsing of Speech Transcripts
Paria Jamshid Lou, Yufei Wang and Mark Johnson

Acoustic-to-Word Models with Conversational Context Information
Suyoun Kim and Florian Metze

A Dynamic Speaker Model for Conversational Interactions
Hao Cheng, Hao Fang and Mari Ostendorf

Fluent Translations from Disfluent Speech in End-to-End Speech Translation
Elizabeth Salesky, Matthias Sperber and Alexander Waibel

[SRW] Data Augmentation by Data Noising for Open-vocabulary Slots in Spoken
Language Understanding
Hwa-Yeon Kim, Yoon-Hyung Roh and Young-Kil Kim

[SRW] Expectation and Locality Effects in the Prediction of Disfluent Fillers and

Repairs in English Speech
Samvit Dammalapati, Rajakrishnan Rajkumar and Sumeet Agarwal
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Text Mining

Relation  Classification Using Segment-Level Attention-based CNN and
Dependency-based RNN

Van-Hien Tran, Van-Thuy Phi, Hiroyuki Shindo and Yuji Matsumoto

Document-Level Event Factuality Identification via Adversarial Neural Network
Zhong Qian, Peifeng Li, Qiaoming Zhu and Guodong Zhou

Distant Supervision Relation Extraction with Intra-Bag and Inter-Bag Attentions
Zhi-Xiu Ye and Zhen-Hua Ling

Ranking-Based Autoencoder for Extreme Multi-label Classification
Bingyu Wang, Li Chen, Wei Sun, Kechen Qin, Kefeng Li and Hui Zhou

Posterior-regularized REINFORCE for Instance Selection in Distant Supervision
Qi Zhang, Siliang Tang, Xiang Ren, Fei Wu, Shiliang Pu and Yueting Zhuang

Scalable Collapsed Inference for High-Dimensional Topic Models
Rashidul Islam and James Foulds

An Integrated Approach for Keyphrase Generation via Exploring the Power of Re-
trieval and Extraction
Wang Chen, Hou Pong Chan, Piji Li, Lidong Bing and Irwin King

Predicting Malware Attributes from Cybersecurity Texts
Arpita Roy, Youngja Park and Shimei Pan

Improving Distantly-supervised Entity Typing with Compact Latent Space Cluster-
ing

Bo Chen, Xiaotao Gu, Yufeng Hu, Siliang Tang, Guoping Hu, Yueting Zhuang and
Xiang Ren

Modelling Instance-Level Annotator Reliability for Natural Language Labelling
Tasks
Maolin Li, Arvid Fahlstrom Myrman, Tingting Mu and Sophia Ananiadou

Review-Driven Multi-Label Music Style Classification by Exploiting Style Correla-
tions
Guangxiang Zhao, Jingjing Xu, Qi Zeng, Xuancheng Ren and Xu Sun

Fact Discovery from Knowledge Base via Facet Decomposition
Zihao Fu, Yankai Lin, Zhiyuan Liu and Wai Lam

A Richer-but-Smarter Shortest Dependency Path with Attentive Augmentation for

Relation Extraction
Duy-Cat Can, Hoang-Quynh Le, Quang-Thuy Ha and Nigel Collier
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9:00-10:00

10:00-10:30

10:30-12:00

10:30-10:48

10:48-11:06

11:06-11:24

11:24-11:42

11:42-12:00

10:30-10:48

10:48-11:06

Keynote 3: Kieran Snyder "Leaving the Lab: Building NLP Applications that Real
People can Use" (Nicollet Grand Ballroom)

Coffee Break

Oral sessions (long papers) and Posters (long and short papers)

Session 7A: Question Answering
Room: Greenway, Chair: Alessandro Moschitti

Bidirectional Attentive Memory Networks for Question Answering over Knowledge
Bases
Yu Chen, Lingfei Wu and Mohammed J Zaki

BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions
Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael
Collins and Kristina Toutanova

Enhancing Key-Value Memory Neural Networks for Knowledge Based Question An-
swering
Kun Xu, Yuxuan Lai, Yansong Feng and Zhiguo Wang

Repurposing Entailment for Multi-Hop Question Answering Tasks

Harsh Trivedi, Heeyoung Kwon, Tushar Khot, Ashish Sabharwal and Niranjan Bal-
asubramanian

[TACL] CoQA: A Conversational Question Answering Challenge
Siva Reddy, Dangi Chen and Christopher D. Manning

Session 7B: Ethics, Bias & Fairness
Room: Nicollet A, Chair: Emily Prud’hommeaux

[TACL] Mind the GAP: A Balanced Corpus of Gendered Ambiguous Pronouns
Kellie Webster, Marta Recasens, Vera Axelrod and Jason Baldridge

GenderQuant: Quantifying Mention-Level Genderedness
Ananya, Nitya Parthasarthi and Sameer Singh
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11:06-11:24

11:24-11:42

11:42-12:00

10:30-10:48

10:48-11:06

11:06-11:24

11:24-11:42

11:42-12:00

10:30-10:48

10:48-11:06

Analyzing Polarization in Social Media: Method and Application to Tweets on 21
Mass Shootings

Dorottya Demszky, Nikhil Garg, Rob Voigt, James Zou, Jesse Shapiro, Matthew
Gentzkow and Dan Jurafsky

Learning to Decipher Hate Symbols
Jing Qian, Mai ElSherief, Elizabeth Belding and William Yang Wang

[TACL] Data Statements for Natural Language Processing: Toward Mitigating Sys-
tem Bias and Enabling Better Science
Emily M. Bender and Batya Friedman

Session 7C: Information Extraction
Room: Nicollet D, Chair: Heng Ji

Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Con-
volution Networks
Ningyu Zhang, Shumin Deng, Zhanlin Sun, Guanying Wang, Xi Chen, Wei Zhang
and Huajun Chen

GAN Driven Semi-distant Supervision for Relation Extraction
Pengshuai Li, Xinsong Zhang, Weijia Jia and Hai Zhao

A general framework for information extraction using dynamic span graphs
Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari Ostendorf and Hannaneh
Hajishirzi

OpenCeres: When Open Information Extraction Meets the Semi-Structured Web
Colin Lockard, Prashant Shiralkar and Xin Luna Dong

Structured Minimally Supervised Learning for Neural Relation Extraction
Fan Bai and Alan Ritter

Session 7D: Machine Translation
Room: Northstar A, Chair: Colin Cherry

Neural Machine Translation of Text from Non-Native Speakers
Antonios Anastasopoulos, Alison Lui, Toan Q. Nguyen and David Chiang

Improving Domain Adaptation Translation with Domain Invariant and Specific In-

formation
Shuhao Gu, Yang Feng and Qun Liu

Ixxx1



Wednesday, June 5, 2019 (continued)

11:06-11:24

11:24-11:42

11:42-12:00

10:30-10:48

10:48-11:06

11:06-11:24

11:24-11:42

11:42-12:00

Selective Attention for Context-aware Neural Machine Translation
Sameen Maruf, André F. T. Martins and Gholamreza Haffari

On Evaluation of Adversarial Perturbations for Sequence-to-Sequence Models
Paul Michel, Xian Li, Graham Neubig and Juan Pino

Accelerated Reinforcement Learning for Sentence Generation by Vocabulary Pre-
diction
Kazuma Hashimoto and Yoshimasa Tsuruoka

Session 7E: Text Analysis
Room: Nicollet B+C, Chair: Steven Bethard

Mitigating Uncertainty in Document Classification
Xuchao Zhang, Fanglan Chen, ChangTien Lu and Naren Ramakrishnan

Complexity-Weighted Loss and Diverse Reranking for Sentence Simplification
Reno Kriz, Joao Sedoc, Marianna Apidianaki, Carolina Zheng, Gaurav Kumar,
Eleni Miltsakaki and Chris Callison-Burch

Predicting Helpful Posts in Open-Ended Discussion Forums: A Neural Architecture
Kishaloy Halder, Min-Yen Kan and Kazunari Sugiyama

Text Classification with Few Examples using Controlled Generalization
Abhijit Mahabal, Jason Baldridge, Burcu Karagol Ayan, Vincent Perot and Dan
Roth

Reinforcement Learning Based Text Style Transfer without Parallel Training Corpus
Hongyu Gong, Suma Bhat, Lingfei Wu, JinJun Xiong and Wen-mei Hwu
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Session 7F: Machine Learning, Tagging, Chunking, Syntax & Parsing (Posters)

Machine Learning
Adapting RNN Sequence Prediction Model to Multi-label Set Prediction
Kechen Qin, Cheng Li, Virgil Pavlu and Javed Aslam

Customizing Grapheme-to-Phoneme System for Non-Trivial Transcription Prob-
lems in Bangla Language

Sudipta Saha Shubha, Nafis Sadeq, Shafayat Ahmed, Md. Nahidul Islam, Muham-
mad Abdullah Adnan, Md. Yasin Ali Khan and Mohammad Zuberul Islam

Connecting Language and Knowledge with Heterogeneous Representations for
Neural Relation Extraction
Peng Xu and Denilson Barbosa

Segmentation-free compositional n-gram embedding
Geewook Kim, Kazuki Fukui and Hidetoshi Shimodaira

Exploiting Noisy Data in Distant Supervision Relation Classification
Kaijia Yang, Liang He, Xin-Yu Dai, Shujian Huang and Jiajun Chen

Misspelling Oblivious Word Embeddings
Aleksandra Piktus, Necati Bora Edizel, Piotr Bojanowski, Edouard Grave, Rui Fer-
reira and Fabrizio Silvestri

Learning Relational Representations by Analogy using Hierarchical Siamese Net-
works
Gaetano Rossiello, Alfio Gliozzo, Robert Farrell, Nicolas Fauceglia and Michael
Glass

An Effective Label Noise Model for DNN Text Classification
Ishan Jindal, Daniel Pressel, Brian Lester and Matthew Nokleby

Understanding Learning Dynamics Of Language Models with SVCCA
Naomi Saphra and Adam Lopez

Using Large Corpus N-gram Statistics to Improve Recurrent Neural Language Mod-
els

Yiben Yang, Ji-Ping Wang and Doug Downey

Continual Learning for Sentence Representations Using Conceptors
Tianlin Liu, Lyle Ungar and Joao Sedoc
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Relation Discovery with Out-of-Relation Knowledge Base as Supervision
Yan Liang, Xin Liu, Jianwen Zhang and Yangqiu Song

Corpora Generation for Grammatical Error Correction
Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam Shazeer, Niki Parmar and
Simon Tong

Structural Supervision Improves Learning of Non-Local Grammatical Dependen-
cies
Ethan Wilcox, Peng Qian, Richard Futrell, Miguel Ballesteros and Roger Levy

Benchmarking Approximate Inference Methods for Neural Structured Prediction
Lifu Tu and Kevin Gimpel

Evaluating and Enhancing the Robustness of Dialogue Systems: A Case Study on a
Negotiation Agent
Minhao Cheng, Wei Wei and Cho-Jui Hsieh

Investigating Robustness and Interpretability of Link Prediction via Adversarial
Modifications
Pouya Pezeshkpour, Yifan Tian and Sameer Singh

Analysis Methods in Neural Language Processing: A Survey
Yonatan Belinkov and James Glass

[TACL] Attentive Convolution: Equipping CNNs with RNN-style Attention Mecha-
nisms
Wenpeng Yin and Hinrich Schiitze

[TACL] Rotational Unit of Memory: A Novel Representation Unit for RNNs with
Scalable Applications
Rumen Dangovski, Li Jing, Preslav Nakov, Mic¢o Tatalovi¢ and Marin Soljaci¢

Transferable Neural Projection Representations
Chinnadhurai Sankar, Sujith Ravi and Zornitsa Kozareva

[SRW] Gating Mechanisms for Combining Character and Word-level Word Repre-
sentations: an Empirical Study
Jorge Balazs and Yutaka Matsuo

Tagging, Chunking, Syntax & Parsing
Semantic Role Labeling with Associated Memory Network
Chaoyu Guan, Yuhao Cheng and Hai Zhao

Better, Faster, Stronger Sequence Tagging Constituent Parsers
David Vilares, Mostafa Abdou and Anders Sggaard
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12:00-12:30

12:30-13:30

13:30-15:00

13:30-13:48

13:48-14:06

14:06-14:24

14:24-14:42

CAN-NER: Convolutional Attention Network for Chinese Named Entity Recognition
Yuying Zhu and Guoxin Wang

Decomposed Local Models for Coordinate Structure Parsing
Hiroki Teranishi, Hiroyuki Shindo and Yuji Matsumoto

Multi-Task Learning for Japanese Predicate Argument Structure Analysis
Hikaru Omori and Mamoru Komachi

Domain adaptation for part-of-speech tagging of noisy user-generated text
Luisa Mirz, Dietrich Trautmann and Benjamin Roth

Neural Chinese Address Parsing
Hao Li, Wei Lu, Pengjun Xie and Linlin Li

[SRW] A Pregroup Representation of Word Order Alternation Using Hindi Syntax
Alok Debnath and Manish Shrivastava

Grab your lunch break

NAACL Business Meeting (Nicollet B+C)

Oral Sessions (long papers) and Posters (long and short papers)

Session 8A: Discourse

Room: Northstar A, Chair: Vincent Ng

Learning Hierarchical Discourse-level Structure for Fake News Detection
Hamid Karimi and Jiliang Tang

DiscoFuse: A Large-Scale Dataset for Discourse-Based Sentence Fusion
Mor Geva, Eric Malmi, Idan Szpektor and Jonathan Berant

Linguistically-Informed Specificity and Semantic Plausibility for Dialogue Genera-
tion
Wei-Jen Ko, Greg Durrett and Junyi Jessy Li

Learning to Describe Unknown Phrases with Local and Global Contexts

Shonosuke Ishiwatari, Hiroaki Hayashi, Naoki Yoshinaga, Graham Neubig, Shoetsu
Sato, Masashi Toyoda and Masaru Kitsuregawa
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14:42-15:00

13:30-13:48

13:48-14:06

14:06-14:24

14:24-14:42

14:42-15:00

13:30-13:48

13:48-14:06

14:06-14:24

14:24-14:42

Mining Discourse Markers for Unsupervised Sentence Representation Learning
Damien Sileo, Tim Van de Cruys, Camille Pradel and Philippe Muller

Session 8B: Machine Learning
Room: Nicollet B+C, Chair: Anna Rumshisky

How Large a Vocabulary Does Text Classification Need? A Variational Approach
to Vocabulary Selection
Wenhu Chen, Yu Su, Yilin Shen, Zhiyu Chen, Xifeng Yan and William Yang Wang

Subword-based Compact Reconstruction of Word Embeddings
Shota Sasaki, Jun Suzuki and Kentaro Inui

Bayesian Learning for Neural Dependency Parsing
Ehsan Shareghi, Yingzhen Li, Yi Zhu, Roi Reichart and Anna Korhonen

AutoSeM: Automatic Task Selection and Mixing in Multi-Task Learning
Han Guo, Ramakanth Pasunuru and Mohit Bansal

Studying the Inductive Biases of RNNs with Synthetic Variations of Natural Lan-

guages
Shauli Ravfogel, Yoav Goldberg and Tal Linzen

Session 8C: Applications
Room: Nicollet A, Chair: T. J. Hazen

Attention is not Explanation
Sarthak Jain and Byron C. Wallace

Playing Text-Adventure Games with Graph-Based Deep Reinforcement Learning
Prithviraj Ammanabrolu and Mark Riedl

Information Aggregation for Multi-Head Attention with Routing-by-Agreement
Jian Li, Baosong Yang, Zi-Yi Dou, Xing Wang, Michael R. Lyu and Zhaopeng Tu

Context Dependent Semantic Parsing over Temporally Structured Data
Charles Chen and Razvan Bunescu
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14:42-15:00

13:30-13:48

13:48-14:06

14:06-14:24

14:24-14:42

14:42-15:00

13:30-13:48

13:48-14:06

14:06-14:24

14:24-14:42

Structural Scaffolds for Citation Intent Classification in Scientific Publications
Arman Cohan, Waleed Ammar, Madeleine van Zuylen and Field Cady

Session 8D: Semantics
Room: Greenway, Chair: Matt Gardner

pair2vec: Compositional Word-Pair Embeddings for Cross-Sentence Inference
Mandar Joshi, Eunsol Choi, Omer Levy, Daniel Weld and Luke Zettlemoyer

Submodular Optimization-based Diverse Paraphrasing and its Effectiveness in
Data Augmentation
Ashutosh Kumar, Satwik Bhattamishra, Manik Bhandari and Partha Talukdar

Let’s Make Your Request More Persuasive: Modeling Persuasive Strategies via
Semi-Supervised Neural Nets on Crowdfunding Platforms
Diyi Yang, Jiaao Chen, Zichao Yang, Dan Jurafsky and Eduard Hovy

Recursive Routing Networks: Learning to Compose Modules for Language Under-
standing

Ignacio Cases, Clemens Rosenbaum, Matthew Riemer, Atticus Geiger, Tim Klinger,
Alex Tamkin, Olivia Li, Sandhini Agarwal, Joshua D. Greene, Dan Jurafsky,
Christopher Potts and Lauri Karttunen

Structural Neural Encoders for AMR-to-text Generation
Marco Damonte and Shay B. Cohen

Session 8E: Biomedical NLP & Clinical Text Processing
Room: Nicollet D, Chair: Timothy Miller

Multilingual prediction of Alzheimer’s disease through domain adaptation and
concept-based language modelling

Kathleen C. Fraser, Nicklas Linz, Bai Li, Kristina Lundholm Fors, Frank Rudzicz,
Alexandra Konig, Jan Alexandersson, Philippe Robert and Dimitrios Kokkinakis

Ranking and Selecting Multi-Hop Knowledge Paths to Better Predict Human Needs
Debjit Paul and Anette Frank

NLP Whack-A-Mole: Challenges in Cross-Domain Temporal Expression Extraction
Amy Olex, Luke Maffey and Bridget MclInnes

Document-Level N-ary Relation Extraction with Multiscale Representation Learn-

ing
Robin Jia, Cliff Wong and Hoifung Poon
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14:42-15:00

Inferring Which Medical Treatments Work from Reports of Clinical Trials
Eric Lehman, Jay DeYoung, Regina Barzilay and Byron C. Wallace

Session 8F: Dialogue, Multilingual NLP & Summarization (Posters)

Dialogue

Decay-Function-Free Time-Aware Attention to Context and Speaker Indicator for
Spoken Language Understanding

Jonggu Kim and Jong-Hyeok Lee

Dialogue Act Classification with Context-Aware Self-Attention
Vipul Raheja and Joel Tetreault

Affect-Driven Dialog Generation
Pierre Colombo, Wojciech Witon, Ashutosh Modi, James Kennedy and Mubbasir
Kapadia

Multi-Level Memory for Task Oriented Dialogs
Revanth Gangi Reddy, Danish Contractor, Dinesh Raghu and Sachindra Joshi

Topic Spotting using Hierarchical Networks with Self Attention
Pooja Chitkara, Ashutosh Modi, Pravalika Avvaru, Sepehr Janghorbani and Mub-
basir Kapadia

Top-Down Structurally-Constrained Neural Response Generation with Lexicalized
Probabilistic Context-Free Grammar
Wenchao Du and Alan W. Black

What do Entity-Centric Models Learn? Insights from Entity Linking in Multi-Party
Dialogue

Laura Aina, Carina Silberer, lonut-Teodor Sorodoc, Matthijs Westera and Gemma
Boleda

Continuous Learning for Large-scale Personalized Domain Classification
Han Li, Jihwan Lee, Sidharth Mudgal, Ruhi Sarikaya and Young-Bum Kim

Multilingual NLP
Cross-lingual Transfer Learning for Multilingual Task Oriented Dialog
Sebastian Schuster, Sonal Gupta, Rushin Shah and Mike Lewis

Evaluating Coherence in Dialogue Systems using Entailment
Nouha Dziri, Ehsan Kamalloo, Kory Mathewson and Osmar Zaiane
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On Knowledge distillation from complex networks for response prediction
Siddhartha Arora, Mitesh M. Khapra and Harish G. Ramaswamy

Cross-lingual Multi-Level Adversarial Transfer to Enhance Low-Resource Name

Tagging
Lifu Huang, Heng Ji and Jonathan May

Unsupervised Extraction of Partial Translations for Neural Machine Translation
Benjamin Marie and Atsushi Fujita

Low-Resource Syntactic Transfer with Unsupervised Source Reordering
Mohammad Sadegh Rasooli and Michael Collins

Revisiting Adversarial Autoencoder for Unsupervised Word Translation with Cycle
Consistency and Improved Training
Tasnim Mohiuddin and Shafiq Joty

Addressing word-order Divergence in Multilingual Neural Machine Translation for
extremely Low Resource Languages
Rudra Murthy, Anoop Kunchukuttan and Pushpak Bhattacharyya

Massively Multilingual Neural Machine Translation
Roee Aharoni, Melvin Johnson and Orhan Firat

A Large-Scale Comparison of Historical Text Normalization Systems
Marcel Bollmann

Combining Discourse Markers and Cross-lingual Embeddings for Synonym—
Antonym Classification

Michael Roth and Shyam Upadhyay

Context-Aware Cross-Lingual Mapping
Hanan Aldarmaki and Mona Diab

Polyglot Contextual Representations Improve Crosslingual Transfer
Phoebe Mulcaire, Jungo Kasai and Noah A. Smith

Typological Features for Multilingual Delexicalised Dependency Parsing
Manon Scholivet, Franck Dary, Alexis Nasr, Benoit Favre and Carlos Ramisch

Ixxxix



Wednesday, June 5, 2019 (continued)

15:00-15:30

15:30-16:30

15:30-15:45

15:45-16:00

Summarization
Recommendations for Datasets for Source Code Summarization
Alexander LeClair and Collin McMillan

Question Answering as an Automatic Evaluation Metric for News Article Summa-
rization
Matan Eyal, Tal Baumel and Michael Elhadad

Understanding the Behaviour of Neural Abstractive Summarizers using Contrastive
Examples
Krtin Kumar and Jackie Chi Kit Cheung

Jointly Extracting and Compressing Documents with Summary State Representa-
tions

Afonso Mendes, Shashi Narayan, Sebastido Miranda, Zita Marinho, André F. T.
Martins and Shay B. Cohen

News Article Teaser Tweets and How to Generate Them
Sanjeev Kumar Karn, Mark Buckley, Ulli Waltinger and Hinrich Schiitze

Cross-referencing Using Fine-grained Topic Modeling
Jeffrey Lund, Piper Armstrong, Wilson Fearn, Stephen Cowley, Emily Hales and
Kevin Seppi

Conversation Initiation by Diverse News Contents Introduction
Satoshi Akasaki and Nobuhiro Kaji

Positional Encoding to Control Output Sequence Length
Sho Takase and Naoaki Okazaki

Coffee Break
Oral Sessions (short papers) and Posters (Industry track)

Session 9A: Question Answering
Room: Greenway, Chair: Mo Yu

The Lower The Simpler: Simplifying Hierarchical Recurrent Models
Chao Wang and Hui Jiang

Using Natural Language Relations between Answer Choices for Machine Compre-

hension
Rajkumar Pujari and Dan Goldwasser

XC



Wednesday, June 5, 2019 (continued)

16:00-16:15

16:15-16:30

15:30-15:45

15:45-16:00

16:00-16:15

16:15-16:30

15:30-15:45

15:45-16:00

16:00-16:15

16:15-16:30

Saliency Learning: Teaching the Model Where to Pay Attention
Reza Ghaeini, Xiaoli Fern, Hamed Shahbazi and Prasad Tadepalli

Understanding Dataset Design Choices for Multi-hop Reasoning
Jifan Chen and Greg Durrett

Session 9B: Applications
Room: Nicollet A, Chair: Zornitsa Kozareva

Neural Grammatical Error Correction with Finite State Transducers
Felix Stahlberg, Christopher Bryant and Bill Byrne

Convolutional Self-Attention Networks
Baosong Yang, Longyue Wang, Derek F. Wong, Lidia S. Chao and Zhaopeng Tu

Rethinking Complex Neural Network Architectures for Document Classification
Ashutosh Adhikari, Achyudh Ram, Raphael Tang and Jimmy Lin

[SRW] Speak Up, Fight Back! Detection of Social Media Disclosures of Sexual
Harassment

Arijit Ghosh Chowdhury, Ramit Sawhney, Puneet Mathur, Debanjan Mahata and
Rajiv Ratn Shah

Session 9C: Generation
Room: Northstar A, Chair: Fei Liu

Pre-trained language model representations for language generation
Sergey Edunov, Alexei Baevski and Michael Auli

Pragmatically Informative Text Generation
Sheng Shen, Daniel Fried, Jacob Andreas and Dan Klein

Stochastic Wasserstein Autoencoder for Probabilistic Sentence Generation
Hareesh Bahuleyan, Lili Mou, Hao Zhou and Olga Vechtomova

Benchmarking Hierarchical Script Knowledge
Yonatan Bisk, Jan Buys, Karl Pichotta and Yejin Choi
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15:30-15:45

15:45-16:00

16:00-16:15

16:15-16:30

15:30-15:45

15:45-16:00

16:00-16:15

16:15-16:30

Session 9D: Cognitive Modeling & Psycholinguistics
Room: Nicollet D, Chair: Bridget McInnes

[SRW] SNAP-BATNET: Cascading Author Profiling and Social Network Graphs for
Suicide Ideation Detection on Social Media

Rohan Mishra, Pradyumn Prakhar Sinha, Ramit Sawhney, Debanjan Mahata,
Puneet Mathur and Rajiv Ratn Shah

A large-scale study of the effects of word frequency and predictability in naturalistic
reading
Cory Shain

Augmenting word2vec with latent Dirichlet allocation within a clinical application
Akshay Budhkar and Frank Rudzicz

On the Idiosyncrasies of the Mandarin Chinese Classifier System
Shijia Liu, Hongyuan Mei, Adina Williams and Ryan Cotterell

Session 9E: Machine Learning
Room: Nicollet B+C, Chair: Byron C. Wallace

Joint Learning of Pre-Trained and Random Units for Domain Adaptation in Part-
of-Speech Tagging

Sara Meftah, Youssef Tamaazousti, Nasredine Semmar, Hassane Essafi and Fatiha
Sadat

Show Some Love to Your n-grams: A Bit of Progress and Stronger n-gram Language
Modeling Baselines
Ehsan Shareghi, Daniela Gerz, Ivan Vuli¢ and Anna Korhonen

Training Data Augmentation for Context-Sensitive Neural Lemmatizer Using Inflec-
tion Tables and Raw Text

Toms Bergmanis and Sharon Goldwater

A Structural Probe for Finding Syntax in Word Representations
John Hewitt and Christopher D. Manning
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16:30-16:45

16:45-17:03

17:03-17:21

17:21-17:39

17:39-17:57

17:57-18:15

18:15-18:30

Session 9F: Industry Session (posters)
Room: Hyatt Exhibit Hall

Short Break

Best Paper Session
Room: (Nicollet Grand Ballroom)

CNM: An Interpretable Complex-valued Network for Matching
Qiuchi Li, Benyou Wang and Massimo Melucci

CommonsenseQA: A Question Answering Challenge Targeting Commonsense
Knowledge
Alon Talmor, Jonathan Herzig, Nicholas Lourie and Jonathan Berant

Probing the Need for Visual Context in Multimodal Machine Translation
Ozan Caglayan, Pranava Madhyastha, Lucia Specia and Loic Barrault

BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing
Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova

What'’s in a Name? Reducing Bias in Bios without Access to Protected Attributes
Alexey Romanov, Maria De-Arteaga, Hanna Wallach, Jennifer Chayes, Chris-
tian Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, Anna
Rumshisky and Adam Kalai

Closing Remarks
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Entity Recognition at First Sight:
Improving NER with Eye Movement Information

Nora Hollenstein
ETH Zurich
noraho@ethz.ch

Abstract

Previous research shows that eye-tracking data
contains information about the lexical and syn-
tactic properties of text, which can be used to
improve natural language processing models.
In this work, we leverage eye movement fea-
tures from three corpora with recorded gaze
information to augment a state-of-the-art neu-
ral model for named entity recognition (NER)
with gaze embeddings. These corpora were
manually annotated with named entity labels.
Moreover, we show how gaze features, gen-
eralized on word type level, eliminate the need
for recorded eye-tracking data at test time. The
gaze-augmented models for NER using token-
level and type-level features outperform the
baselines. We present the benefits of eye-
tracking features by evaluating the NER mod-
els on both individual datasets as well as in
cross-domain settings.

1 Introduction

The field of natural language processing includes
studies of tasks of different granularity and depths
of semantics: from lower level tasks such as
tokenization and part-of-speech tagging up to
higher level tasks of information extraction such
as named entity recognition, relation extraction,
and semantic role labeling (Collobert et al., 2011).
As NLP systems become increasingly prevalent
in society, how to take advantage of information
passively collected from human readers, e.g. eye
movement signals, is becoming more interesting
to researchers. Previous research in this area has
shown promising results: Eye-tracking data has
been used to improve tasks such as part-of-speech
tagging (Barrett et al., 2016), sentiment analysis
(Mishra et al., 2017), prediction of multiword ex-
pressions (Rohanian et al., 2017), and word em-
bedding evaluation (Sggaard, 2016).

However, most of these studies focus on either
relatively lower-level tasks (e.g. part-of-speech
tagging and multiword expressions) or relatively
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global properties in the text (e.g. sentiment analy-
sis). In this paper, we test a hypothesis on a differ-
ent level: Can eye movement signals also help im-
prove higher-level semantic tasks such as extract-
ing information from text?

The answer to this question is not obvious. On
one hand, the quality improvement attributed to
eye movement signals on lower-level tasks implies
that such signals do contain linguistic information.
On the other hand, it is not clear whether these sig-
nals can also provide significant improvement for
tasks dealing with higher-level semantics. More-
over, even if eye movement patterns contain sig-
nals related to higher-level tasks, as implied by
a recent psycholinguistic study (Tokunaga et al.,
2017), noisy as these signals are, it is not straight-
forward whether they would help, if not hurt, the
quality of the models.

In this paper, we provide the first study of the
impact of gaze features to automatic named entity
recognition from text. We test the hypothesis that
eye-tracking data is beneficial for entity recogni-
tion in a state-of-the-art neural named entity tag-
ger augmented with embedding layers of gaze fea-
tures. Our contributions in the current work can be
summarized as follows:

1. First, we manually annotate three eye-
tracking corpora with named entity labels to
train a neural NER system with gaze features.
This collection of corpora facilitates future
research in related topics. The annotations
are publicly available.

2. Beyond that, we present a neural architecture
for NER, which in addition to textual infor-
mation, incorporates embedding layers to en-
code eye movement information.

3. Finally, we show how gaze features gener-
alized to word types eliminate the need for
recorded eye-tracking data at test time. This
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makes the use of eye-tracking data in NLP
applications more feasible since recorded
eye-tracking data for each token in context
is not required anymore at prediction time.
Moreover, type-aggregated features appear to
be particularly useful for cross-domain sys-
tems.

Our hypotheses are evaluated not only on the
available eye-tracking corpora, but also on an ex-
ternal benchmark dataset, for which gaze informa-
tion does not exist.

2 Related Work

The benefits of eye movement data for machine
learning have been assessed in various domains,
including NLP and computer vision. Eye-trackers
provide millisecond-accurate records on where
humans look when they are reading, and they are
becoming cheaper and more easily available by
the day (San Agustin et al., 2009; Sewell and Ko-
mogortsev, 2010). Although eye-tracking data is
still being recorded in controlled experiment en-
vironments, this will likely change in the near fu-
ture. Recent approaches have shown substantial
improvements in recording gaze data while read-
ing by using cameras of mobile devices (Gomez-
Poveda and Gaudioso, 2016; Papoutsaki et al.,
2016). Hence, eye-tracking data will probably be
more accessible and available in much larger vol-
umes in due time, which will facilitate the creation
of sizable datasets enormously.

Tokunaga et al. (2017) recently analyzed eye-
tracking signals during the annotation of named
entities to find effective features for NER. Their
work proves that humans take into account a
broad context to identify named entities, includ-
ing predicate-argument structure. This further
strengthens our intuition to use eye movement in-
formation to improve existing NER systems. And
going even a step further, it opens the possibil-
ity for real-time entity annotation based on the
reader’s eye movements.

The benefit of eye movement data is backed up
by extensive psycholinguistic studies. For exam-
ple, when humans read a text they do not focus on
every single word. The number of fixations and
the fixation duration on a word depends on a num-
ber of linguistic factors (Clifton et al., 2007; Dem-
berg and Keller, 2008). First, readers are more
likely to fixate on open-class words that are not

predictable from context (Rayner, 1998). Read-
ing patterns are a reliable indicator of syntacti-
cal categories (Barrett and Sggaard, 2015a). Sec-
ond, word frequency and word familiarity influ-
ence how long readers look at a word. The fre-
quency effect was first noted by Rayner (1977)
and has been reported in various studies since, e.g.
Just and Carpenter (1980) and Cop et al. (2017).
Moreover, although two words may have the same
frequency value, they may differ in familiarity (es-
pecially for infrequent words). Effects of word fa-
miliarity on fixation time have also been demon-
strated in a number of recent studies (Juhasz and
Rayner, 2003; Williams and Morris, 2004). Addi-
tionally, the positive effect of fixation information
in various NLP tasks has recently been shown by
Barrett et al. (2018), where an attention mecha-
nism is trained on fixation duration.

State-of-the-art NER Non-linear neural net-
works with distributed word representations as in-
put have become increasingly successful for any
sequence labeling task in NLP (Huang et al.,
2015; Chiu and Nichols, 2016; Ma and Hovy,
2016). The same applies to named entity recog-
nition: State-of-the-art systems are combinations
of neural networks such as LSTMs or CNNs and
conditional random fields (CRFs) (Strauss et al.,
2016). Lample et al. (2016) developed such a
neural architecture for NER, which we employ in
this work and enhance with eye movement fea-
tures. Their model successfully combines word-
level and character-level embeddings, which we
augment with embedding layers for eye-tracking
features.

3 Eye-tracking corpora

For our experiments, we resort to three eye-
tracking data resources: the Dundee corpus
(Kennedy et al., 2003), the GECO corpus (Cop
et al., 2017) and the ZuCo corpus (Hollenstein
et al., 2018). For the purpose of information ex-
traction, it is important that the readers process
longer fragments of text, i.e. complete sentences
instead of single words, which is the case in all
three datasets.

Table 1 shows an overview of the domain and
size of these datasets. In total, they comprise
142,441 tokens with gaze information. Table 1
also shows the differences in mean fixation times
between the datasets (i.e. fixation duration (the av-
erage duration of a single fixation on a word in



Dundee GECO ZuCo Total

4 . ol li movie reviews,
omain(s) news articles | literature Wikipedia articles -

number of sentences 2367 5424 700 8491
mean sentence length 24.75 12.65 22.12 19.84
number of words 58598 68606 15237 142441
unique word types 9131 5283 4408 13937
mean word length 4.29 3.76 4.44 4.16
fixation duration (ms) 202 214 226 214
gaze duration (ms) 237 232 265 244.7

Table 1: Descriptive statistics of the eye-tracking corpora, including domain, size and mean fixation and gaze

duration per token.

Dundee GECO ZuCo Total
all  unique | all unique | all  unique all  unique
PERSON 732 415 1870 108 657 446 3259 955
ORGANIZATION | 475 261 26 12 156 95 657 364
LOCATION 431 177 101 23 366 155 898 1646
total 1638 853 | 1997 143 | 1179 696 4814 1646
52% 7% 59% 34%

Table 2: Number and distribution of named entity annotations in all three eye-tracking corpora.

milliseconds) and gaze duration (the average du-
ration of all fixations on a word)).

Dundee Corpus The gaze data of the Dundee
corpus (Kennedy et al., 2003) was recorded with
a Dr. Bouis Oculometer Eyetracker. The English
section of this corpus comprises 58,598 tokens in
2,367 sentences. It contains eye movement infor-
mation of ten native English speakers as they read
the same 20 newspaper articles from The Indepen-
dent. The text was presented to the readers on a
screen five lines at a time. This data has been
widely used in psycholinguistic research to ana-
lyze the reading behavior of subjects while read-
ing sentences in context under relatively naturalis-
tic conditions.

GECO Corpus The Ghent Eye-Tracking Cor-
pus (Cop et al., 2017) is a more recent dataset,
which was created for the analysis of eye move-
ments of monolingual and bilingual subjects dur-
ing reading. The data was recorded with an Eye-
Link 1000 system. The text was presented one
paragraph at a time. The subjects read the entire
novel The Mysterious Affair at Styles by Agatha
Christie (1920) containing 68,606 tokens in 5,424
sentences. We use only the monolingual data
recorded from the 14 native English speakers for
this work to maintain consistency across corpora.

ZuCo Corpus The Zurich Cognitive Language
Processing Corpus (Hollenstein et al., 2018) is
a combined eye-tracking and EEG dataset. The
gaze data was also recorded with an EyeLink 1000
system. The full corpus contains 1,100 English
sentences read by 12 adult native speakers. The
sentences were presented at the same position on
the screen one at a time. For the present work,
we only use the eye movement data of the first
two reading tasks of this corpus (700 sentences,
15,237 tokens), since these tasks encouraged
natural reading. The reading material included
sentences from movie reviews from the Stanford
Sentiment Treebank (Socher et al., 2013) and the
Wikipedia dataset by Culotta et al. (2006).

For the purposes of this work, all datasets
were manually annotated with named entity
labels for three categories: PERSON, OR-
GANIZATION and LOCATION. The annota-
tions are available at https://github.com/
DS3Lab/ner—-at-first-sight.

The datasets were annotated by two NLP ex-
perts. The IOB tagging scheme was used for
the labeling. We followed the ACE Annotation
Guidelines (Linguistic Data Consortium, 2005).
All conflicts in labelling were resolved by ad-
judication between both annotators. An inter-



Basic

n fixations total number of fixations on a word w
fixation probability the probability that a word w will be fixated
mean fixation duration mean of all fixation durations for a word w
Early

first fixation duration
first pass duration

duration of the first fixation on a word w
sum of all fixation durations during the first pass

Late

total fixation duration
n re-fixations
re-read probability

sum of all fixation durations for a word w
number of times a word w is fixated (after the first fixation)
the probability that a word w will be read more than once

Context

total regression-from duration
w-2 fixation probability

w-1 fixation probability

w+ 1 fixation probability

w+2 fixation probability

w-2 fixation duration

w-1 fixation duration

w+1 fixation duration

w+2 fixation duration

combined duration of the regressions that began at word w
fixation probability of the word before the previous word
fixation probability of the previous word

fixation probability of the next word

fixation probability of the word after the next word
fixation duration of the word before the previous word
fixation duration of the previous word

fixation duration of the next word

fixation duration of the word after the next word

Table 3: Gaze features extracted from the Dundee, GECO and ZuCo corpora.

annotator reliability analysis on 10,000 tokens
(511 sentences) sampled from all three datasets
yielded an agreement of 83.5% on the entity labels
(k =0.68).

Table 2 shows the number of annotated entities
in each dataset. The distribution of entities be-
tween the corpora is highly unbalanced: Dundee
and ZuCo, the datasets containing more hetero-
geneous texts and thus, have a higher ratio of
unique entity occurrences, versus GECO, a homo-
geneous corpus consisting of a single novel, where
the named entities are very repetitive.

4 Eye-tracking features

The gaze data of all three corpora was recorded
for multiple readers by conducting experiments in
a controlled environment using specialized equip-
ment. It is important to consider that, while we
extract the same features for all corpora, there are
certainly practical aspects that differ across the
datasets. The following factors are expected to in-
fluence reading: experiment procedures; text pre-
sentation; recording hardware, software and qual-
ity; sampling rates; initial calibration and filtering,
as well as human factors such as head movements
and lack of attention. Therefore, separate normal-
ization for each dataset should better preserve the

signal within each corpus and for the same reason
the type-aggregation was computed on the normal-
ized feature values. This is especially relevant for
the type-aggregated features and the cross-corpus
experiments described below.

In order to add gaze information to the neu-
ral network, we have selected as many features
as available from those present in all three cor-
pora. Previous research shows benefits in com-
bining multiple eye-tracking features of different
stages of the human reading process (Barrett et al.,
2016; Tokunaga et al., 2017).

The features extracted follow closely on Bar-
rett et al. (2016). As described above, psycho-
linguistic research has shown how fixation dura-
tion and probability differ between word classes
and syntactic comprehension processes. Thus, the
features focus on representing these nuances as
broadly as possible, covering the complete reading
time of a word at different stages. Table 3 shows
the eye movement features incorporated into the
experiments. We split the 17 features into 4 dis-
tinct groups (analogous to Barrett et al. (2016)),
which define the different stages of the reading
process:

1. BASIC eye-tracking features capture charac-
teristics on word-level, e.g. the number of all



fixations on a word or the probability that a
word will be fixated (namely, the number of
subjects who fixated the word divided by the
total number of subjects).

2. EARLY gaze measures capture lexical access
and early syntactic processing and are based
on the first time a word is fixated.

3. LATE measures reflect the late syntactic pro-
cessing and general disambiguation. These
features are significant for words which were
fixated more than once.

4. CONTEXT features capture the gaze mea-
sures of the surrounding tokens. These
features consider the fixation probability
and duration up to two tokens to the left
and right of the current token. Additionally,
regressions starting at the current word are
also considered to be meaningful for the
syntactic processing of full sentences.

The eye movement measurements were aver-
aged over all native-speaking readers of each
dataset to obtain more robust estimates. The small
size of eye-tracking datasets often limits the po-
tential for training data-intensive algorithms and
causes overfitting in benchmark evaluation (Xu
etal., 2015). It also leads to sparse samples of gaze
measurements. Hence, given the limited num-
ber of observations available, we normalize the
data by splitting the feature values into quantiles
to avoid sparsity issues. The best results were
achieved with 24 bins. This normalization is con-
ducted separately for each corpus.

Moreover, special care had to be taken regard-
ing tokenization, since the recorded eye-tracking
data considers only whitespace separation. For ex-
ample, the string John’s would constitute a sin-
gle token for eye-tracking feature extraction, but
would be split into John and ’s for NER, with the
former token holding the label PERSON and the
latter no label at all. Our strategy to address this
issue was to assign the same values of the gaze
features of the originating token to split tokens.

4.1 Type aggregation

Barrett and Sggaard (2015b) showed that type-
level aggregation of gaze features results in larger
improvements for part-of-speech tagging. Follow-
ing their line of work, we also conducted exper-

iments with type aggregation for NER. This im-
plies that the eye-tracking feature values were av-
eraged for each word type over all occurrences in
the training data. For instance, the sum of the fea-
tures of all n occurrences of the token “island” are
averaged over the number of occurrences n. As
a result, for each corpus as well as for the ag-
gregated corpora, a lexicon of lower-cased word
types with their averaged eye-tracking feature val-
ues was compiled. Thus, as input for the network,
either the type-level aggregates for each individ-
ual corpus can be used or the values from the com-
bined lexicon, which increases the number of word
types with known gaze feature values.

The goal of type aggregation is twofold. First,
it eliminates the requirement of eye-tracking fea-
tures when applying the models at test time, since
the larger the lexicon, the more tokens in the
unseen data receive type-aggregated eye-tracking
feature values. For those tokens not in the lexi-
con, we assign a placeholder for unknown feature
values. Second, type-aggregated features can be
used on any dataset and show that improvements
can be achieved with aggregated gaze data without
requiring large quantities of recorded data.

5 Model

The experiments in this work were executed us-
ing an enhanced version of the system presented
by Lample et al. (2016). This hybrid approach
is based on bidirectional LSTMs and conditional
random fields and relies mainly on two sources of
information: character-level and word-level repre-
sentations.

For the experiments, the originally proposed
values for all parameters were maintained. Specif-
ically, the bidirectional LSTMs for character-
based embeddings are trained on the corpus at
hand with dimensions set to 25. The lookup ta-
ble tor the word embeddings was initialized with
the pre-trained GloVe vectors of 100 dimensions
(Pennington et al., 2014). The model uses a sin-
gle layer for the forward and backward LSTMs.
All models were trained with a dropout rate at 0.5.
Moreover, all digits were replaced with zeros.

The original model! was modified to include the
gaze features as additional embedding layers to
the network. The character-level representation,
i.e. the output of a bidirectional LSTM, is con-
catenated with the word-level representation from

"https://github.com/glample/tagger
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Figure 1: Main architecture of the network. Character and word embeddings concatenated with gaze features are
given to a bidirectional LSTM. [; represents the word i and its left context, r; represents the word i and its right
context. Concatenating these two vectors yields a representation of the word i in its context, c;.

a word lookup table. In the augmented model with
eye-tracking information, the embedding for each
discrete gaze feature is also concatenated to the
input. The dimension of the gaze feature embed-
dings is equal to the number of quantiles. This ar-
chitecture is shown in Figure 1. Word length and
word frequency are known to correlate and interact
with gaze features (Tomanek et al., 2010), which
is why we selected a base model that allows us to
combine the eye-tracking features with word- and
character-level information.

6 Results

Our main finding is that our models enhanced with
gaze features consistently outperform the base-
line. As our baseline, we trained and evaluated the
original models with the neural architecture and
parameters proposed by Lample et al. (2016) on
the GECO, Dundee, and ZuCo corpora and com-
pared it to the models that were enriched with eye-
tracking measures. The best improvements on F -
score over the baseline models are significant un-
der one-sided t-tests (p<<0.05).

All models were trained with 10-fold cross val-
idation (80% training set, 10% development set,
10% test set) and early stopping was performed
after 20 epochs of no improvement on the devel-
opment set to reduce training time.

First, the performance on the individual datasets
is tested, together with the performance of one
combined dataset consisting of all three corpora
(consisting of 142,441 tokens). In addition, we

evaluate the effects of the type-aggregated features
using individual type lexicons for each datasets,
and combining the three type lexicons of each cor-
pus. Finally, we experiment with cross-corpus sce-
narios to evaluate the potential of eye-tracking fea-
tures in NER for domain adaptation. Both settings
were also tested on an external corpus without
eye-tracking features, namely the CoNLL-2003
dataset (Sang and De Meulder, 2003).

6.1 Individual dataset evaluation

First, we analyzed how augmenting the named en-
tity recognition system with eye-tracking features
affects the results on the individual datasets. Ta-
ble 4 shows the improvements achieved by adding
all 17 gaze features to the neural architecture, and
training models on all three corpora, and on the
combined dataset containing all sentences from
the Dundee, GECO and ZuCo corpora. Notice-
ably, adding token-level gaze features improves
the results on all datasets individually and com-
bined, even on the GECO corpus, which yields a
high baseline due to the homogeneity of the con-
tained named entities (see Table 2).

Furthermore, Table 4 also presents the results
of the NER models making use of the type-
aggregated features instead of token-level gaze
features. There are two different experiments for
these type-level features: Using the features of the
word types occurring in the corpus only, or us-
ing the aggregated features of all word types in
the three corpora (as describe above). As can be
seen, the performance of the different gaze fea-



P R F
Dundee
baseline 79.29 78.56 78.86
with gaze 79.55 79.27 79.35
type individual | 81.05 79.37 80.17*
type combined | 80.27 79.26 79.67
Geco
baseline 96.68 97.24 96.95
with gaze 98.08 97.94 98.01*
type individual | 97.72 97.42 97.57%
type combined | 97.76 97.16 97.46*
ZuCo
baseline 84.52 81.66 82.92
with gaze 86.19 84.28 85.12%
type individual | 84.21 82.61 83.30
type combined | 83.26 83.37 83.31
All
baseline 86.92 86.58 86.72
with gaze 88.72 89.39 89.03*
type combined | 89.04 89.52 89.26*

Table 4: Precision (P), recall (R) and F;-score (F) for
all models trained on individual datasets (best results
in bold; * indicates statistically significant improve-
ments on Fi-score). With gaze are models trained on
the original eye-tracking features on token-level, type
individual are the models trained on type-aggregated
gaze features of this corpus only, while type combined
are the models trained with type-aggregated features
computed on all datasets.

ture levels varies between datasets, but both the
original token-level features as well as the indi-
vidual and combined type-level features achieve
improvements over the baselines of all datasets.

To sum up, the largest improvement with eye-
tracking features is achieved when combining all
corpora into one larger dataset, where an addi-
tional 4% is gained in F;-score by using type-
aggregated features. Evidently, a larger mixed-
domain dataset benefits from the type aggrega-
tion, while the original token-level gaze features
achieve the best results on the individual datasets.
Moreover, the additional gain when training on all
datasets is due to the higher signal-to-noise ratio of
type-aggregated features from multiple datasets.

Evaluation on CoNLL-2003 Going on step fur-
ther, we evaluate the type-aggregated gaze fea-
tures on an external corpus with no eye move-
ment information available. The CoNLL-2003
corpus (Sang and De Meulder, 2003) has been

CoNLL-2003 P R F
baseline 93.89 94.16 94.03
type combined | 94.38 94.32 94.35%

Table 5: Precision (P), recall (R) and F;-score (F) for
using type-aggregated gaze features on the CoNLL-
2003 dataset (* marks statistically significant improve-
ment).

widely used as a benchmark dataset for NER in
different shared tasks. The English part of this
corpus consists of Reuters news stories and con-
tains 302,811 tokens in 22,137 sentences. We use
this dataset as an additional corpus without gaze
information. Only the type-aggregated features
(based on the combined eye-tracking corpora) are
added to each word. Merely 76% of the tokens
in the CoNLL-2003 corpus also appear in the eye-
tracking corpora described above and thus receive
type-aggregated feature values. The rest of the to-
kens without aggregated gaze information avail-
able receive a placeholder for the unknown feature
values.

Note that to avoid overfitting we do not train
on the official train/test split of the CoNLL-2003
dataset, but perform 10-fold cross validation. Ap-
plying the same experiment setting, we train the
augmented NER model with gaze features on the
CoNLL-2003 data and compare it to a baseline
model without any eye-tracking features. We
achieve a minor, but nonetheless significant im-
provement (shown in Table 5), which strongly
supports the generalizability effect of the type-
aggregated features on unseen data.

6.2 Cross-dataset evaluation

In a second evaluation scenario, we test the poten-
tial of eye-tracking features for NER across cor-
pora. The goal is to leverage eye-tracking features
for domain adaptation. To show the robustness of
our approach across domains, we train the models
with token-level and type-level features on 100%
of corpus A and a development set of 20% of cor-
pus B and test on the remaining 80% of the corpus
B, alternating only the development and the test
set for each fold.

Table 6 shows the results of this cross-corpus
evaluation. The impact of the eye-tracking fea-
tures varies between the different combinations of
datasets. However, the inclusion of eye-tracking
features improves the results for all combinations,
except for the models trained on the ZuCo corpus



Dundee GECO ZuCo
P R F P R F P R F
baseline 7420 70.71 7240 | 7536 75.62 75.44
Dundee token 75.68 71.54 73.55*% | 78.85 74.51 77.02
type 7644 77.09 76.75% | 78.33 76.49 77.35
baseline | 58.91 3491 43.80 68.88 4249 52.38
GECO token 59.61 3562 44.53 69.18 44.22 53.81
type 5839 3599 4444 67.69 4236 52.01
baseline | 65.85 54.01 59.34 | 83.00 78.11 80.48
ZuCo token 72.62 5076  59.70 | 82.92 7535 7891
type 69.21 53.05 59.95 | 83.68 7457 78.85

Table 6: Cross-corpus results: Precision (P), recall (R) and F;-score (F) for all models trained on one dataset and
tested on another (rows = training dataset; columns = test dataset; best results in bold; * indicates statistically
significant improvements). The baseline models are trained without eye-tracking features, token models on the
original eye-tracking features, and type are the models trained with type-aggregated features computed on all

datasets.

and tested on the GECO corpus. Presumably, this
is due to the combination of the small training data
size of the ZuCo corpus and the homogeneity of
the named entities in the GECO corpus.

CoNLL-2003 P R F
baseline 72.80 56.97 63.92
type combined | 74.56 60.20 66.61*

Table 7: Precision (P), recall (R) and F;-score (F) for
using type-aggregated gaze features trained on all three
eye-tracking datasets and tested on the CoNLL-2003
dataset (* marks statistically significant improvement).

Evaluation on CoNLL-2003 Analogous to the
individual dataset evaluation, we also test the po-
tential of eye-tracking features in a cross-dataset
scenario on an external benchmark dataset. Again,
we use the CoNLL-2003 corpus for this purpose.
We train a model on the Dundee, GECO and ZuCo
corpora using type-aggregated eye-tracking fea-
tures and test this model on the ConL.L-2003 data.
Table 7 shows that compared to a baseline without
gaze features, the results improve by 3% F;-score.
These results underpin our hypothesis of the pos-
sibility of generalizing eye-tracking features on
word type level, such that no recorded gaze data
is required at test time.

7 Discussion

The models evaluated in the previous section show
that eye-tracking data contain valuable semantic
information that can be leveraged effectively by
NER systems. While the individual datasets are
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Figure 2: Results per class for the models trained on all
gaze datasets combined.

still limited in size, the largest improvement is ob-
served in the models making use of all the avail-
able data.

At a closer look, the model leveraging gaze data
yield a considerably higher increase in recall when
comparing to the baselines. In addition, a class-
wise analysis shows that the entity type benefiting
the most from the gaze features over all models
is ORGANIZATION, which is the most difficult
class to predict. Figure 2 illustrates this with the
results per class of the models trained on all three
gaze corpora jointly.

In the individual dataset evaluation setting, the
combined type-level feature aggregation from all
datasets does not yield the best results, since each
sentence in these corpora already has accurate eye-
tracking features on toke-level. Thus, it is under-



standable that in this scenario the original gaze
features and the gaze features aggregated only
on the individual datasets result in better mod-
els. However, when evaluating the NER models in
a cross-corpus scenario, the type-aggregated fea-
tures lead to significant improvements.

Type aggregation evidently reduces the fine-
grained nuances contained in eye-tracking infor-
mation and eliminates the possibility of disam-
biguation between homographic tokens. Never-
theless, this type of disambiguation is not crucial
for named entities, which mainly consist of proper
nouns and the same entities tend to appear in the
same context. Especially noteworthy is the gain
in the models tested on the CoNLL-2003 bench-
mark corpus, which shows that aggregated eye-
tracking features from other datasets can be ap-
plied to any unseen sentence and show improve-
ments, even though more than 20% of the tokens
have unknown gaze feature values. While the high
number of unknown values is certainly a limitation
of our approach, it shows at once the possibility of
not requiring original gaze features at prediction
time. Thus, the trained NER models can be ap-
plied robustly on unseen data.

8 Conclusion

We presented the first study of augmenting a NER
system with eye-tracking information. Our results
highlight the benefits of leveraging cognitive cues
such as eye movements to improve entity recogni-
tion models. The manually annotated named en-
tity labels for the three eye-tracking corpora are
freely available. We augmented a neural NER ar-
chitecture with gaze features. Experiments were
performed using a wide range of features relevant
to the human reading process and the results show
significant improvements over the baseline for all
corpora individually.

In addition, the type-aggregated gaze features
are effective in cross-domain settings, even on an
external benchmark corpus. The results of these
type-aggregated features are a step towards lever-
aging eye-tracking data for information extrac-
tion at training time, without requiring real-time
recorded eye-tracking data at prediction time.
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Abstract

Recent work has shown that LSTMs trained on
a generic language modeling objective capture
syntax-sensitive generalizations such as long-
distance number agreement. We have however
no mechanistic understanding of how they ac-
complish this remarkable feat. Some have
conjectured it depends on heuristics that do not
truly take hierarchical structure into account.
We present here a detailed study of the inner
mechanics of number tracking in LSTMs at
the single neuron level. We discover that long-
distance number information is largely man-
aged by two “number units”. Importantly, the
behaviour of these units is partially controlled
by other units independently shown to track
syntactic structure. We conclude that LSTMs
are, to some extent, implementing genuinely
syntactic processing mechanisms, paving the
way to a more general understanding of gram-
matical encoding in LSTMs.

1 Introduction

In the last years, recurrent neural networks
(RNNS), and particularly long-short-term-memory
(LSTM) architectures (Hochreiter and Schmidhu-
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ber, 1997), have been successfully applied to a
variety of NLP tasks. This has spurred interest
in whether these generic sequence-processing de-
vices are discovering genuine structural properties
of language in their training data, or whether their
success can be explained by opportunistic surface-
pattern-based heuristics.

Until now, this debate has mostly relied on
“behavioural” evidence: The LSTM had been
treated as a black box, and its capacities had
been indirectly inferred by its performance on
linguistic tasks. In this study, we took a com-
plementary approach inspired by neuroscience:
We thoroughly investigated the inner dynamics of
an LSTM language model performing a number
agreement task, striving to achieve a mechanis-
tic understanding of how it accomplishes it. We
found that the LSTM had specialized two “grand-
mother” cells (Bowers, 2009) to carry number fea-
tures from the subject to the verb across the in-
tervening material.! Interestingly, the LSTM also

'In the neuroscientific literature, “grandmother” cells are
(sets of) neurons coding for specific information, e.g., about
your grandmother, in a non-distributed manner.

Proceedings of NAACL-HLT 2019, pages 11-20
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possesses a more distributed mechanism to predict
number when subject and verb are close, with the
grandmother number cells only playing a crucial
role in more difficult long-distance cases. Cru-
cially, we independently identified a set of cells
tracking syntactic structure, and found that one
of them encodes the presence of an embedded
phrase separating the main subject-verb depen-
dency, and has strong efferent connections to the
long-distance number cells, suggesting that the
network relies on genuine syntactic information to
regulate agreement-feature percolation.

Our analysis thus provides direct evidence for
the claim that LSTMs trained on unannotated cor-
pus data, despite lacking significant linguistic pri-
ors, learn to perform structure-dependent linguis-
tic operations. In turn, this suggests that raw lin-
guistic input and generic memory mechanisms,
such as those implemented in LSTMs, may suffice
to trigger the induction of non-trivial grammatical
rules.

2 Related Work

Starting with the seminal work of Linzen et al.
(2016), a long-distance number agreement task
has emerged as a standard way to probe the syn-
tactic capabilities of neural language models. In
the number agreement task, a model is asked to
predict the verb in a sentence where the subject
and main verb are separated by one or more inter-
vening nouns (‘“‘the boy near the cars greets...”)
and evaluated based on how often it predicts the
right verb form.

Following mixed initial results by Linzen and
colleagues and Bernardy and Lappin (2017), Gu-
lordava et al. (2018) and Kuncoro et al. (2018b)
have robustly established that LSTM language
models achieve near-human performance on the
agreement task. While Gulordava and colleagues
provided some evidence that the LSTMs are re-
lying on genuine syntactic generalizations, Kun-
coro et al. (2018a) and Linzen and Leonard (2018)
suggested that the LSTM achievements can, at
least in part, be accounted by superficial heuristics
(e.g., “percolate the number of the first noun in a
sentence”). Other recent work has extended syn-
tax probing to other phenomena such as negative
polarity items and island constraints (Chowdhury
and Zamparelli, 2018; Jumelet and Hupkes, 2018;
Marvin and Linzen, 2018; Wilcox et al., 2018).

While Linzen et al. (2016) presented intrigu-
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ing qualitative data showing cells that track gram-
matical number in a network directly trained on
the agreement task, most of the following work
focused on testing the network output behaviour,
rather than on understanding how the latter fol-
lows from the inner representations of the net-
work. Another research line studied linguistic
processing in neural networks through ‘diagnos-
tic classifiers’, that is, classifiers trained to predict
a certain property from network activations (e.g.,
Gelderloos and Chrupata, 2016; Adi et al., 2017;
Alain and Bengio, 2017; Hupkes et al., 2018).
This approach may give insight into which infor-
mation is encoded by the network in different lay-
ers or at different time points, but it only provides
indirect evidence about the specific mechanics of
linguistic processing in the network.

Other studies are closer to our approach in
that they attempt to attribute function to spe-
cific network cells, often by means of visual-
ization (Karpathy et al., 2016; Li et al., 2016;
Tang et al., 2017). Radford et al. (2017), for
example, detected a “sentiment” grandmother
cell in a language-model-trained network. Ke-
mentchedjhieva and Lopez (2018) recently found
a character-level RNN to track morpheme bound-
aries in a single cell. We are however not aware
of others studies systematically characterizing the
processing of a linguistic phenomenon at the level
of RNN cell dynamics, as is the attempt in the
study hereby presented.

3 Setup

Language Model We study the pretrained
LSTM language model made available by Gu-
lordava et al. (2018). This model is composed
of a 650-dimensional embedding layer, two 650-
dimensional hidden layers, and an output layer
with vocabulary size 50,000. The model was
trained on Wikipedia data, without fine-tuning for
number agreement, and obtained perplexity close
to state of the art in the experiments of Gulordava
etal.”

Number-Agreement Tasks We complement
analysis of the naturalistic, corpus-derived
number-agreement test set of Linzen et al. (2016),
in the version made available by Gulordava et al.
(2018), with synthetically generated data-sets.

Key findings reported below were also replicated with

the same model trained with different initialization seeds and
variations with different hyper-parameters.



Simple the boy greets the guy

Adv the boy probably greets the guy

2Adv the boy most probably greets the guy

CoAdv the boy openly and deliberately greets the guy
NamePP  the boy near Pat greets the guy

NounPP the boy near the car greets the guy

NounPPAdyv the boy near the car kindly greets the guy

Table 1: NA tasks illustrated by representative singular
sentences.

Each synthetic number-agreement task (NA-task)
instantiates a fixed syntactic structure with varied
lexical material, in order to probe subject-verb
number agreement in controlled and increasingly
challenging setups.®  The different structures
are illustrated in Table 1, where all forms are in
the singular. Distinct sentences were randomly
generated by selecting words from pools of 20
subject/object nouns, 15 verbs, 10 adverbs, 5
prepositions, 10 proper nouns and 10 location
nouns. The items were selected so that their
combination would not lead to semantic anoma-
lies. For each NA-task, we generated singular
and plural versions of each sentence. We refer
to each such version as a condition. For NA-
tasks that have other nouns occurring between
subject and main verb, we also systematically
vary their number, resulting in two congruent
and two incongruent conditions. For example,
the NounPP sentence in the table illustrates the
congruent SS (singular-singular) condition and
the corresponding sentence in the incongruent
PS (plural-singular) condition is: “the boys near
the car greet the guy”. For all NA-tasks, each
condition consisted of 600 sentences

Syntactic Depth Data-Set We probed the im-
plicit syntax-parsing abilities of the model by test-
ing whether its representations predict the syn-
tactic depth of the words they process. Follow-
ing Nelson et al. (2017), this was operational-
ized as predicting the number of open syntactic
nodes at each word, given the canonical syntac-
tic parse of a sentence. We generated a data-set
of sentences with unambiguous but varied syntac-
tic structures and annotated them with the number
of open nodes at each word. For example: “Ten;
reallys ecstatics cousinsg ofy fours teachersg ares
quicklys laughing,”, where indexes show the cor-

3We exclude, for the time being, agreement across a rel-
ative clause, as it comes with the further complication of ac-
counting for the extra agreement process taking place inside
the relative clause.
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responding number of open nodes. Since syntactic
depth is naturally correlated with the position of a
word in a sentence, we used a data-point sampling
strategy to de-correlate these factors. For each
length between 2 and 25 words, we randomly gen-
erated 300 sentences. From this set, we randomly
picked examples uniformly covering all possible
position-depth combinations within the 7-12 posi-
tion and 3-8 depth ranges. The final data-set con-
tains 4,033 positions from 1,303 sentences.*

4 Experiments

To successfully perform the NA-task, the LSTM
should: (1) encode and store the grammatical
number of the subject; and (2) track the main
subject-verb syntactic dependency. The latter in-
formation is important for identifying the time
period during which subject number should be
stored, output and then updated by the network.
This section describes the ‘neural circuit’ that en-
codes and processes this information in the LSTM.

4.1 Long-Range Number Units

We first tested the performance of the LSTM on
the Linzen’s data and on the NA-tasks in Table 1.
Following Linzen et al. (2016) and later work, we
computed the likelihood that the LSTM assigns to
the main verb of each sentence given the preced-
ing context and compared it to the likelihood it as-
signs to the wrong verb inflection. Accuracy in a
given condition was measured as the proportion of
sentences in this condition for which the model as-
signed a higher likelihood to the correct verb form
than to the wrong one.

Network performance is reported in Table 2
(right column — ‘Full’). We first note that our
results on the Linzen NA-task confirm those re-
ported in Gulordava et al. (2018). For the other
NA-tasks, results show that some tasks and condi-
tions are more difficult than others. For example,
performance on the Simple (0-distance) NA-task
is better than that on the Co-Adv NA-task, which
in turn is better than that of the nounPP tasks.
Second, as expected, incongruent conditions (the
number-mismatch conditions of namePP, nounPP
and nounPPAdv) reduce network performance.

“All our data-sets are available at: https:
//github.com/FAIRNS/Number_and_syntax_
units_in_LSTM_LMs.



Ablated
NA task C 776 | 988 Full
Simple S - -
Adv S - -
2Adv S - -
CoAdv S -
namePP SS - -
nounPP SS - -
nounPP SP -
nounPPAdv SS - -
nounPPAdv SP -
Simple P - - 100
Adv P - - 99.6
2Adv P - - 99.3
CoAdv P || 792 - 99.3
namePP PS || 399 - 68.9
nounPP PS || 48.0| - 92.0
nounPP PP || 783 | - 99.0
nounPPAdv PS || 63.7| - 99.2
nounPPAdv PP - - 99.8
Linzen - 753 | - 93.9

Table 2: Ablation-experiments results: Percentage ac-
curacy in all NA-tasks. Full: non-ablated model, C:
condition, S: singular, P: plural. Pink (dark lines in
B&W printing): plural subject, Light blue: singular
subject. Performance reduction less than 10% is de-
noted by ‘- .

Third, for long-range dependencies, reliably en-
coding singular subject across an interfering noun
is more difficult than a plural subject: for both
nounPP and nounPPAdyv, PS is easier than SP. A
possible explanation for this finding is that in En-
glish the plural form is almost always more fre-
quent than the singular one, as the latter only
marks third person singular, whereas the former
is identical to the infinitive and other forms. Thus,
if the network reverts to unigram probabilities, it
will tend to prefer the plural.

Looking for Number Units Through Ablation
Number information may be stored in the network
in either a local, sparse, or a distributed way, de-
pending on the fraction of active units that carry it.
We hypothesized that if the network uses a local or
sparse coding, meaning that there’s a small set of
units that encode number information, then ablat-
ing these units would lead to a drastic decrease in
performance in the NA-tasks. To test this, we ab-
lated each unit of the network, one at a time, by
fixing its activation to zero, and tested on the NA-
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tasks.

Two units were found to have exceptional ef-
fect on network performance (Table 2, 776 and
988 columns).> Ablating them reduced network
performance by more than 10% across various
conditions, and, importantly, they were the only
units whose ablation consistently brought network
performance to around chance level in the more
difficult incongruent conditions of the namePP,
nounPP and nounPPAdyv tasks.

Moreover, the ablation effect depended on the
grammatical number of the subject: ablating
776 significantly reduced network performance
only if the subject was plural (P, PS or PP condi-
tions) and 988 only if the subject was singular (S,
SP or SS conditions). In what follows, we will
therefore refer to these units as the ‘plural’ and
‘singular’ units, respectively, or long-range (LR)
number units when referring to both. Finally, we
note that although the Linzen NA-task contained
mixed stimuli from many types of conditions, the
plural unit was found to have a substantial effect
on average on network performance. The singu-
lar unit didn’t show a similar effect in this case,
which highlights the importance of using carefully
crafted stimuli, as in the nounPP and nounPPAdv
tasks, for understanding network dynamics. Taken
together, these results suggest a highly local cod-
ing scheme of grammatical number when process-
ing long-range dependencies.

Visualizing Gate and Cell-State Dynamics To
understand the functioning of the number units,
we now look into their gate and state dynam-
ics during sentence processing. We focus on the
nounPP NA-task, which is the simplest NA-task
that includes a long-range dependency with an in-
terfering noun, in both SP and PS conditions.
Recall the standard LSTM memory update and
output rules (Hochreiter and Schmidhuber, 1997):

Ct:ftoct—1+it05t
hy = ot o tanh(CY),

(1
2

where f;,i¢,0, € (0,1) are gating scalars com-
puted by the network, and C; € (—1,1) is an up-
date candidate for cell value.

Consider now how a number unit may reliably
encode and store subject number across interfer-
ing nouns. Figure 1c exemplifies this for a singular

Units 1-650 belong to the first layer, 651-1300 to the sec-
ond. All units detected by our analyses come from the latter.
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Figure 1: (a) to (c) — Cell and gate activations during processing of sentences with a prepositional phrase between
subject and verb. Values in (a) and (b) are averaged across all condition sentences, with error bars showing standard
deviations. (d) — Efferent weights of specific units at the output layer to singular and plural verb forms.

unit, showing the desired gate and cell dynamics.
The four conditions are represented with separated
curves - pink for plural subject, light blue for sin-
gular, and dashed lines for incongruent conditions.
Gate and cell activity at time points unrelated to
solving the NA-task are masked with white, as we
do not make precise predictions for them.

The update rule of the LSTM cell has two terms
(Eq. 1).° 1In the first, f; o C;_1, the forget gate
controls whether to keep the previous cell content
(f: = 1: perfect remembering) or forget it (f; = 0:
complete forgetting). In the second, #; o Cy, the

SWe abuse notation here, using the symbols denoting
whole layers in equations (1) and (2) to denote the compo-
nents of single cells.

input gate controls whether the information cur-
rently presented to the network, as encoded by C,
should be written onto the cell (; = 1: full ac-
cess) or not (i; = 0). The singular unit can thus
use these gates to reliably store number informa-
tion across long-range dependencies. Specifically,
the unit can (enumeration follows the same or-
der as the panels in Figure 1c): (1) encode sub-
ject number via étsubject with different values for
singular and plural; (2) open the input gate only
when a singular subject is presented (iz,,, .., = 1
in light-blue curves only) and protect it from in-
terfering nouns (i; = 0,%supject < t < tyerp)s
(3) at the same time, clear the cell from previ-
ously stored information (f; = 0) and then

subject
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store subject number across the entire dependency
(ft = Litgupject <t < tyerp); (4) this will result
in stable encoding of subject number in the cell C
throughout the dependencys; (5) finally, output sub-
ject number at the right moment, when predicting
the verb form (o;,.,,—1 = 1) (Eq. 2).

Figures 1a and 1b present the actual gate and
cell dynamics of the singular and plural units.
Both units follow the general solution for reliable
number storage described above. Note that for
C’t and 4, and as a result also for C}, the plural
unit ‘mirrors’ the singular unit with respect to sub-
ject number (pink curves of PP and PS vs. Light
blue curves of SS and SP). This is in accordance
with the results of the ablation experiments, which
showed that ablating these units had an effect that
depended on the grammatical number of the sub-
ject (Table 2). This provides complementary sup-
port for the identification of these units as ‘singu-
lar’ and ‘plural’.

A single divergence between the solution de-
picted in Figure 1c and the actual dynamics of the
number units is that input gate activity is smaller,
but not zero, at the time step immediately fol-
lowing the subject. One speculative explanation
is that this might be useful to process compound
nouns. In these cases, subject number information
is stored with the second noun, whereas in the case
of simple nouns there is no ‘risk’ of encountering
an interfering noun immediately after the subject,
making the delay in closing the gate safe.

The singular and plural units had emerged at the
second layer of the network. This seems appropri-
ate since number information needs to be directly
projected to the output layer for correct verb-form
prediction. Moreover, number-unit output should
be projected differently to singular and plural verb
forms in the output layer, only increasing activ-
ity in output units representing the suitable form.
For example, for the singular unit, since singu-
lar subjects are encoded with a negative value
(Ct,.,s—1 < —11in figure la), the more negative
its efferent weights to singular verb forms in the
output layer, the higher the probabilities of these
verb forms would be. Figure 1d shows the effer-
ent weights of the LR-number units to all verbs
in our data-sets. We found that, indeed, the effer-
ent weights to the singular and plural verb forms
are segregated from each other, with weight signs
that correspond to the negative encoding of sub-
ject number used by both singular and plural units.
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Figure 2: Generalization across time of subject-number
prediction. Error bars represent standard deviations
across cross-validation splits.

Two other arbitrary units, 651 and 1300 , and the
syntax unit 1150 to be described below (Section
4.3) do not have segregated efferent weights to
verb forms, as expected.

4.2 Short-Range Number Information

Performance on the easier NA-tasks (Simple, Adv,
2Adv) was not impaired by single-unit ablations.
This suggests that number may be encoded also
elsewhere in the network, perhaps via a more dis-
tributed code. To verify this, we tested whether
subject number can be decoded from the whole
pattern of activities in the network (excluding the
two LR-number units) and whether this decoding
is stable across time (see Giulianelli et al., 2018,
for similar observations and related methods). We
expected this distributed activity to track number
in a small time window after the subject, but, un-
like the LR-number units, to be affected by incon-
gruent intervening nouns.

We trained a linear model to predict the gram-
matical number of the subject from network activ-
ity in response to the presentation of the subject,
and tested its prediction on test sets from all time
points (King and Dehaene, 2014), in incongruent
conditions only of the nounPP task. We used Area
under of Curve (AUC) to evaluate model perfor-
mance. Figure 2 shows decoding across time of
subject number from cell activity of each number
unit separately and from cell activity of the entire
network without these two units (‘Full model mi-
nus LR-units’). Results show that number infor-
mation can be efficiently decoded from other units
in the network, and that this information can be
carried for several time steps (relatively high AUC
up to the second determiner). However, the way
in which these units encode number is sensitive to
the last encountered noun, with AUC decreasing
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Figure 3: Cell activity of syntax unit 1150 while processing various syntactic structures. Values averaged across
all stimuli in an NA-task, with error bars representing standard deviations. Relative clause NA-task stimuli were

specifically generated for this visualization.

to zero around the second noun (‘cars’), whereas
test performance of the models trained on cell ac-
tivity of the LR-number units is consistently high.
This confirms that number prediction is supported
both by the LR-number units, and by distributed
activation patterns of other short-range (SR) num-
ber units. The latter, however, are not syntax-
sensitive, and simply encode the number of the last
noun encountered.

A full description of the SR-number units is be-
yond our scope. However, we note that 10 SR-
number units in the second layer of the network
were identified, which had efferent weights with
a similar segregated structure as that of the LR
units (Figure 1d). These units were indeed sen-
sitive to the last encountered noun: subject num-
ber could be decoded from single-unit cell activ-
ity during its presentation (AUC> 0.9), but ac-
tivity ‘swaps’ once an interfering noun appears
(i.e., AUC decreases to zero in a generalization-
across-time analysis). Finally, to validate the role
of SR-number units in encoding number for eas-
ier NA-tasks, we ablated both SR and LR number
units (12 in total) or SR units only (10 in total)
and evaluated network performance on these NA-
tasks. Both experiments resulted in a significant
reduction in task performance compared to 1,000
random equi-size ablations (p < 0.01 in all ‘eas-
ier’ tasks).

Intriguingly, we observed qualitatively that LR
units are almost always making the right predic-
tion, even when the network predicts the wrong
number. The wrong outcome, in such cases, might
be due to interference from the syntax-insensitive
SR units. We leave the study of LR-SR unit inter-
play to future work.
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4.3 Syntax Units

We saw how the input and forget gates of the LR-
number units control the flow of subject-number
information. It remains unclear, however, how the
dynamics of these gates are controlled by the net-
work. We hypothesized that other units in the net-
work may encode information about the syntac-
tic structure of the sentence, and thus about the
subject-verb dependency. These units could then
control and coordinate the opening and closing of
the input and forget gates of the number units.

To identify such ’syntax’ units, we tested from
which units syntactic information can be effi-
ciently decoded. We used depth of the syntac-
tic tree as a proxy for syntactic structure (Nel-
son et al., 2017) and trained an L2-regularized
regression model to predict syntactic tree-depth
from the hidden-state activity of all units. In all
experiments, we used the data presented in Sec-
tion 3 above and performed a nested 5-fold cross-
validation procedure. Word frequency, which was
added as a covariate to the model, had a negligi-
ble effect on the results. Syntactic tree-depth was
found to be efficiently decodable from network
activity (RZy . = 0.85 & 0.009; covariate-
corrected). A small subset of ‘syntax’ units had
relatively high weights in the regression model
(mean weight = 7.6 x 1074, SD=7.86 x 10~2; cut-
off for outlier weights was set to three SDs). Since
the interpretation of the regression weights may
depend on possible correlations among the fea-
tures, we also tested the causal effect of these units
on NA-task performance. Ablating the syntax
units together resulted in significant performance
reduction in NA-tasks that have an interfering
noun: Linzen NA-task: p = 0.024, nounPPAdv-
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SP: p 0.011, nounPPAdv-PS: p 0.034,
nounPP-SP: p < 0.001 and marginally significant
in nounPP-PS: p = 0.052 (compared to 1000 ran-
dom ablations of subsets of units of the same size).

To gain further insight regarding the functioning
of the syntax units, we next visualized their gate
and cell dynamics during sentence processing. We
found that cell activity of unit 1150, which also
had one of the highest weights in the regression
model, was remarkably structured. The activity
of this unit increases across the entire subject-
verb dependency and drops abruptly right after.
Figures 3a and 3b show cell activity of this unit
during the processing of stimuli from the 2Adv
and nounPP tasks. We found the same dynamics
in cases where another verb occurs between sub-
ject and main verb, as in subject relatives (Figure
3c¢), and in exceptionally long-distance dependen-
cies with two interfering nouns and verbs (Figure
3d). Taken together, these results suggest that unit
1150 consistently encodes subject-verb dependen-
cies in a syntax-sensitive manner. Other syntax
units did not show an easily interpretable dynam-
ics and had no clear interactions with the number
units in the analysis discussed next. This suggests
that they perform different syntactic, or possibly
other, functions.

4.4 Syntax-Number Units Connections

We finally look at the connections that were
learned by the LSTM between syntax unit 1150 ,
which appears to be more closely involved in
tracking subject-verb agreement, and the LR num-
ber units, as well as at the connections between the
LR-number units themselves. For each unit pair,
there are 4 connection types, one for each com-
ponent of the target cell (to the 3 gates and to the
update candidate). We focus on input and forget
gates, as they control the flow and storage of num-
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ber information.

Figures 4a and 4b show the distributions of all
afferent recurrent weights to the input and forget
gates of the LR-number units, scaled by the maxi-
mal activity h; of the pre-synaptic units during the
nounPP task (this scaling evaluates the effective in-
put to the units and did not change the conclusions
described below). We found that the weights from
the syntax unit to the forget gate of both 776 and
988 are exceptionally high in the positive direc-
tion compared to all other afferent connections
in the network (z — score 8.1,11.2, respec-
tively) and those to their input gates exception-
ally negative (z — score = —16.2,—7.2). Since
the cell activity of syntax unit 1150 is positive
across the entire subject-verb dependency (e.g.,
Figure 3d), the connectivity from the syntax unit
drives the number unit forget gates towards one
(Wi, RI150 5 0 and WY, h1150 s 0;

776,1150 988,1150 )
tsubject < t < tyerp) and their input gates towards
zero (Wi 1150070 < 0 and Wegg 1150070 <
0). Looking at the right-hand-side of Eq. (1), this
means that the first term becomes dominant and
the second vanishes, suggesting that, across the
entire dependency, the syntax unit conveys a ‘re-
member flag’ to the number units. Similarly, when
the activity of the syntax unit becomes negative at
the end of the dependency, it conveys an ‘update

’

flag’.

Last, we note that the reciprocal connectivity
between the two LR-number units is always pos-
itive, to both input and forget gates (with |z —
score| > 3 for the 776 -to-988 direction). Since
their activity is negative throughout the subject-
verb dependency (Figures 1a and 1b), this means
that they are mutually inhibiting, thus steering to-
wards an unequivocal signal about the grammati-
cal number of the subject to the output layer.



S Summary and Discussion

We provided the first detailed description of
the underlying mechanism by which an LSTM
language-model performs long-distance number
agreement. Strikingly, simply training an LSTM
on a language-model objective on raw corpus data
brought about single units carrying exceptionally
specific linguistic information. Three of these
units were found to form a highly interactive lo-
cal network, which makes up the central part of a
‘neural’ circuit performing long-distance number
agreement.

One of these units encodes and stores gram-
matical number information when the main sub-
ject of a sentence is singular, and it successfully
carries this information across long-range depen-
dencies. Another unit similarly encodes plurality.
These number units show that a highly local en-
coding of linguistic features can emerge in LSTMs
during language-model training, as was previously
suggested by theoretical studies of artificial neural
networks (e.g., Bowers, 2009) and in neuroscience
(e.g., Kutter et al., 2018).

Our analysis also identified units whose activity
correlates with syntactic complexity. These units,
as a whole, affect performance on the agreement
tasks. We further found that one of them encodes
the main subject-verb dependency across various
syntactic constructions. Moreover, the highest af-
ferent weights to the forget and input gates of
both LR-number units were from this unit. A
natural interpretation is that this unit propagates
syntax-based remember and update flags that con-
trol when the number units store and release infor-
mation.

Finally, number is also redundantly encoded in
a more distributed way, but the latter mechanism
is unable to carry information across embedded
syntactic structures. The computational burden of
tracking number information thus gave rise to two
types of units in the network, encoding similar in-
formation with distinct properties and dynamics.

The relationship we uncovered and character-
ized between syntax and number units suggests
that agreement in an LSTM language-model can-
not be entirely explained away by superficial
heuristics, and the networks have, to some extent,
learned to build and exploit structure-based syn-
tactic representations, akin to those conjectured to
support human-sentence processing.

In future work, we intend to explore how the en-
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coding pattern we found varies across network ar-
chitectures and hyperparameters, as well as across
languages and domains. We also would like to
investigate the timecourse of emergence of the
found behaviour over training time.

More generally, we hope that our study will
inspire more analyses of the inner dynamics of
LSTMs and other sequence-processing networks,
complementing the currently popular “black-box
probing” approach. Besides bringing about a
mechanistic understanding of language process-
ing in artificial models, this could inform work
on human-sentence processing. Indeed, our study
yields particular testable predictions on brain dy-
namics, given that the computational burden of
long-distance agreement remains the same for ar-
tificial and biological neural network, despite im-
plementation differences and different data sizes
required for language acquisition. We conjecture
a similar distinction between SR and LR units to
be found in the human brain, as well as an in-
teraction between syntax-processing and feature-
carrying units such as the LR units, and plan to
test these in future work.
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Abstract

Self-training is a semi-supervised learning ap-
proach for utilizing unlabeled data to create
better learners. The efficacy of self-training al-
gorithms depends on their data sampling tech-
niques. The majority of current sampling tech-
niques are based on predetermined policies
which may not effectively explore the data
space or improve model generalizability. In
this work, we tackle the above challenges by
introducing a new data sampling technique
based on spaced repetition that dynamically
samples informative and diverse unlabeled in-
stances with respect to individual learner and
instance characteristics. The proposed model
is specifically effective in the context of neu-
ral models which can suffer from overfitting
and high-variance gradients when trained with
small amount of labeled data. Our model
outperforms current semi-supervised learning
approaches developed for neural networks on
publicly-available datasets.

1 Introduction

It is often expensive or time-consuming to ob-
tain labeled data for Natural Language Processing
tasks. In addition, manually-labeled datasets may
not contain enough samples for downstream data
analysis or novelty detection (Wang and Hebert,
2016). To tackle these issues, semi-supervised
learning (Zhu, 2006; Chapelle et al., 2009) has be-
come an important topic when one has access to
small amount of labeled data and large amount of
unlabeled data.

Self-training is a type of semi-supervised learn-
ing in which a downstream learner (e.g. a clas-
sifier) is first trained with labeled data, then the
trained model is applied to unlabeled data to gen-
erate more labeled instances. A select sample of
these instances together with their pseudo (pre-
dicted) labels are added to the labeled data and the
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learner is re-trained using the new labeled dataset.
This process repeats until there is no more unla-
beled data left or no improvement is observed in
model performance on validation data (Zhu, 2006;
Zhu and Goldberg, 2009).

Conventional self-training methods often rely
on prediction confidence of their learners to sam-
ple unlabeled data. Typically the most confident
unlabeled instances are selected (HEARST, 1991;
Yarowsky, 1995; Riloff and Jones, 1999; Zhou
et al.,, 2012). This strategy often causes only
those unlabeled instances that match well with the
current model being selected during self-training,
therefore, the model may fail to best generalize
to complete sample space (Zhang and Rudnicky,
2006; Wu et al., 2018). Ideally, a self-training al-
gorithm should explore the space thoroughly for
better generalization and higher performance. Re-
cently Wu et al. (2018) developed an effective data
sampling technique for “co-training” (Blum and
Mitchell, 1998) methods which require two dis-
tinct views of data. Although effective, this model
can’t be readily applied to some text datasets due
to the two distinct view requirement.

In the context of neural networks, pretraining
is an effective semi-supervised approach in which
layers of a network are first pretrained by learning
to reconstruct their inputs, and then network pa-
rameters are optimized by supervised fine-tuning
on a target task (Hinton and Salakhutdinov, 2006;
Bengio et al., 2007; Erhan et al., 2010). While
pretraining has been effective in neural language
modeling and document classification (Dai and
Le, 2015; Miyato et al., 2016), it has an inherent
limitation: the same neural model or parts thereof
must be used in both pretraining and fine-tuning
steps. This poses a major limitation on the design
choices as some pretraining tasks may need to ex-
ploit several data types (e.g., speech and text), or
might require deeper network architectures.
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The above challenges and intuitions inspire our
work on developing a novel approach for neural
self-training. The core part of our approach is a
data sampling policy which is inspired by find-
ings in cognitive psychology about spaced repeti-
tion (Dempster, 1989; Cepeda et al., 2006; Averell
and Heathcote, 2011); the phenomenon in which
a learner (often a human) can learn efficiently
and effectively by accurately scheduling reviews
of learning materials. In contrast to previous
self-training approaches, our spaced repetition-
based data sampling policy is not predetermined,
explores the entire data space, and dynamically
selects unlabeled instances with respect to the
“strength” of a downstream learner on a target
task, and “easiness” of unlabeled instances. In ad-
dition, our model relaxes the “same model” con-
straint of pretraining-based approaches by natu-
rally decoupling pretraining and fine-tuning mod-
els through spaced repetition.

The contributions of this paper are (a): we pro-
pose an effective formulation of spaced repetition
for self-training methods; to the best of our knowl-
edge, this is the first work that investigates spaced
repetition for semi-supervised learning, (b): our
approach dynamically samples data, is not lim-
ited to predetermined sampling strategies, and nat-
urally decouples pretraining and fine-tuning mod-
els, and (c): it outperforms current state-of-the-art
baselines on large-scale datasets.

Our best model outperforms standard and
current state-of-the-art semi-supervised learning
methods by 6.5 and 4.1 points improvement in
macro-F1 on sentiment classification task, and 3.6
and 2.2 points on churn classification task. Further
analyses show that the performance gain is due to
our model’s ability in sampling diverse and infor-
mative unlabeled instances (those that are different
from training data and can improve model gener-
alizability).

2 Method

Conventional self-training methods employ the
following steps to utilize unlabeled data for semi-
supervised learning: (1) train a learner, e.g. a clas-
sifier, using labeled data, (2) iteratively select un-
labeled instances based on a data sampling tech-
nique, and add the sampled instances (together
with their predicted pseudo labels) to the labeled
data, and (3) iteratively update the learner using
the new labeled dataset.

22

Leitner Queue

Neural Network

3

® Sampling
J"m"’ Policy
Learner
T
i

Figure 1: Neural Self-training Framework: at every
self-training episode, the network uses current labeled
data to iteratively optimize its parameters against a
target task, and dynamically explores unlabeled data
space through spaced repetition (specifically Leitner
queue) to inform a data sampler that selects unlabeled
data for the next self-training episode. Dashed/Red and
solid/green arrows in Leitner queue indicate instance
movements among queues.

The core difference between self-training algo-
rithms is in the second step: data sampling pol-
icy. In this paper, we develop a new data sampling
technique based on “spaced repetition” which dy-
namically explores the data space and takes into
account instance and learner characteristics (such
as easiness of instances or learner strength on tar-
get task) to sample unlabeled data for effective
self-training.

Figure 1 illustrates our proposed neural self-
training framework. We assume the downstream
learner is a neural network that, at every self-
training episode, (a): takes current labeled and
unlabeled data as input, (b): uses labeled data to
iteratively optimize its parameters with respect to
a target task, and (c): dynamically explores unla-
beled data space through spaced repetition to in-
form a data sampler that selects unlabeled data for
the next self-training episode.

2.1 Spaced Repetition

Spaced repetition (Dempster, 1989; Cepeda et al.,
2006; Averell and Heathcote, 2011) was presented
in psychology and forms the building block of
many educational devices, including flashcards, in
which small pieces of information are repeatedly
presented to a learner on a schedule determined
by a spaced repetition algorithm. Such algorithms
show that humans and machines can better learn
by scheduling reviews of materials so that more
time is spent on difficult concepts and less time
on easier ones (Dempster, 1989; Novikoff et al.,
2012; Amiri et al., 2017).



In this paper, we focus on a specific spaced rep-
etition framework called Leitner system (Leitner,
1974). Suppose we have n queues {qo, - . . , gn—1}-
In general, Leitner system initially places all in-
stances in the first queue, go. During training, if
an instance from g¢; is correctly classified by the
learner, it will be “promoted” to ¢;+1 (solid/green
arrows in Figure 1), otherwise it will be “demoted”
to the previous queue, g;—1 (dashed/red arrows in
Figure 1). Therefore, as the learner trains through
time, higher queues will accumulate instances that
are easier for the learner, while lower queues will
accumulate harder instances.

To use Leitner system for neural self-training,
we assume our learner is a neural network, place
all unlabeled instances in the first queue of Leitner
system (line 2 in Algorithm 1), and gradually pop-
ulate them to other queues while training the net-
work. Our Leitner system uses iteration-specific
network predictions on unlabeled instances and
current pseudo labels of these instances to move
them between queues (see line 4-5 in Algo-
rithm 1); pseudo labels can be obtained through
posterior predictions generated by any trained
downstream learner (see Section 2.2). Instances
with similar class predictions and pseudo labels
will be promoted to their next queues, and those
with opposite predictions and labels will be de-
moted to lower queues. We note that, errors (e.g.
inaccurate pseudo labels or network predictions)
can inversely affect instance movements among
queues. However, our sampling technique (see be-
low) alleviates this issue because such misleading
instances, if sampled, can’t improve the general-
izability of downstream learners. Details of our
Leitner system is shown in Table 1.

2.2 Self-Training with Leitner Queues

We formulate the data sampling process as a
decision-making problem where, at every self-
training episode, the decision is to select a sub-
set of unlabeled instances for self-training using
information from Leitner queues. A simple, yet
effective, approach to utilize such information is
a greedy one in which instances of the queue
that most improves the performance of the current
model on validation data will be selected. We refer
to this queue as designated queue:

Algorithm 2 shows details of our self-training
approach. At every episode, we use current la-
beled data to train a task-specific neural net-
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Algorithm 1. Leitner system
Input:
L, U,V : labeled, unlabeled, and validation data
y : pseudo labels for U
k : number of training epochs
n : number of queues
Output:
Q: Leitner queue populated with U

Q = [qO: qi,---, qn—l]

a0 = [U], ¢; = [ fori € [1,n — 1]

for epoch = 1 to k:
model = epoch_train(L, V)
promos, demos = eval(Q,y, model)
Q@ = schedule(Q, promos, demos)

end for

return Q

AN W~

Table 1: Leitner system for neural self-training. All
unlabeled instances are initially placed in the first
queue and then populated to other queues depending
on their easiness and learner (network) performance.
epoch_train(.) uses training data to train the net-
work for a single epoch and returns a trained model,
eval(.) applies the current model on unlabeled in-
stances in all queues and, based on given pseudo labels
(treated as gold labels), returns lists of correctly and
incorrectly classified instances, promos and demos
respectively, and schedule(.) moves promos and
demos instances to their next and previous queues re-
spectively, and returns the updated queue.

work (line 2). Here, we weight the loss func-
tion using class size to deal with imbalanced data,
and weight pseudo-labeled instances (as a func-
tion of episodes) to alleviate the effect of poten-
tially wrong pseudo labels while training the net-
work. We then use the trained network to generate
pseudo labels for current unlabeled instances (line
3). These instances are then populated in Leitner
queues as described before (line 4). Given the pop-
ulated Leitner queues, the sample for current self-
training episode is then created using instances
of the designated queue, the queue that most im-
proves the performance of the current network on
validation data (lines 5-8). Instances of the desig-
nated queue will be removed from unlabeled data
and added to labeled data with their pseudo labels
treated as gold labels (lines 9-10).

We note that finding designated queues (lines
5-8 in Algorithm 2) imposes computational com-
plexity on our model. However, in practice, we
observe that designated queues are almost always
among middle or higher queues in Leitner system,
i.e. gi,Vi € [[n/2],n — 1] where n in the number
of queues. This can help accelerating the search



Algorithm 2. Neural Self-training

Input:
L, U,V : labeled, unlabeled, and validation data
K : number of self-training episodes

Output:
M:: classification model

1 for episode =1to K:

2 My, =train(L,V)

3 y = label(My, U)

4 Q = Leitner_system(L, U, V,y) \\Alg. 1
5 for ¢ in Q:

6 M, = train(L+ [q,¥[q]], V)
7 end for

8 M, qaesig = get best (Mg, ML)
9 L=L+ I:qdesigv y[qdesigH

10 U=U- Qdesig

11  end for

12 return M

Table 2: Proposed neural self-training framework.
train(.) uses current labeled data to train the net-
work and returns a trained model, 1abe1(.) generates
pseudo labels for unlabeled instances using the trained
model, Leitner_system(.) populates current un-
labeled instances in Leitner queue, and get_best(.)
compares performance of given models on validation
data and returns the best model in conjunction with the
queue that leads to the best performance, if any. In-
stances of the designated queue will be removed from
unlabeled data and added to labeled data with their
pseudo labels treated as gold labels.

process. In addition, learning a data sampling pol-
icy from movement patterns of instances among
queues may help alleviating/eliminating the need
for such an iterative search; see Section 4.4.

Finally, at test time, we apply the resulting self-
trained network to test data and use the result for
model comparison.

3 Experiments

We compare different self-training approaches in
two settings where learners (neural networks) have
low or high performance on original labeled data.
This consideration helps investigating sensitivity
of different self-training algorithms to the initial
performance of learners.

3.1 Datasets and Evaluation Metric

As datasets, we use movie reviews from IMDb and
short microblog posts from Twitter. These datasets
and their corresponding tasks are described below
and their statistics are provided in Table 3. In
terms of preprocessing, we change all texts to low-
ercase, and remove stop words, user names, and
URLSs from texts in these datasets:
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Train Val. Test Unlabeled
IMDb 5x 1K | 5 x 1K | 5 x 48K 50K
Churn || 5x 1K | 5x 1K | 5x 3K 100K

Table 3: Statistics of dataset used in experiments.

IMDb: The IMDb dataset was developed
by Maas et al. (2011)! for sentiment classifica-
tion where systems should classify the polarity of
a given movie review as positive or negative. The
dataset contains 50K labeled movie reviews. For
the purpose of our experiments, we randomly sam-
ple 1K, 1K, and 48K instances from this data (with
balanced distribution over classes) and treat them
as labeled (training), validation, and test data re-
spectively. We create five such datasets for robust-
ness against different seeding or data partitions.
This dataset also provides 50K unlabeled reviews.

Churn: This dataset contains more than 5K
tweets about three telecommunication brands and
was developed by Amiri and Daumé III (2015)?
for the task of churn prediction® where systems
should predict if a twitter post indicates user in-
tention about leaving a brand - classifying tweets
as churny or non-churny with respect to brands.
We replace all target brand names with the key-
word BRAND and other non-target brands with
BRAND-OTHER for the purpose of our experi-
ments. Similar to IMDb, we create five datasets
for experiments. We also crawl an additional
100K tweets about the target brands and treat them
as unlabeled data.

We evaluate models in terms of macro-F1 score,
i.e. the mean of F1-scores across classes.

3.2 Downstream Learner and Settings

As downstream neural networks (referred to as
base classifiers), we consider current state-of-the-
art deep averaging networks (DANs) (Shen et al.,
2018; Iyyer et al., 2015; Joulin et al., 2017; Arora
et al., 2017) for IMDDb, and a basic CNN model for
Churn dataset with parameters set from the work
presented in (Gridach et al., 2017) except for pre-
trained embeddings. In terms of DANs, we use
FastText (Joulin et al., 2017) for its high per-

"http://ai.stanford.edu/~amaas/data/
sentiment/

https://scholar.harvard.edu/hadi/
chData

3Churn is a term relevant to customer retention in mar-
keting discourse; examples of churny tweets are “my days
with BRAND are numbered,” “debating if I should stay with
BRAND,” and “leaving BRAND in two days.”



formance and simplicity. FastText is a feedfor-
ward neural network that consists of an embedding
layer that maps vocabulary indices to embeddings,
an averaging layer that averages word embeddings
of inputs, and several hidden layers (we use two
layers of size 256) followed by a prediction layer
with sigmoid activation.

We use 300-dimensional word embeddings pro-
vided by Google’s word2vec toolkit (Mikolov
et al., 2013). In Algorithm 1, we set the num-
ber of training epochs to £ = 32, and stop train-
ing when F1 performance on validation data stops
improving with patience of three continuous iter-
ations, i.e. after three continuous epochs with no
improvement, training will be stopped. In addi-
tion, we set the number of training episodes to
K = 20 and stop training when this number of
episodes is reached or there is no unlabeled data
left for sampling; the latter case is often the rea-
son for stopping in our self-training method. In
addition, we experiment with different number of
Leitner queues chosen from n = {3,5,7,9,11}.

3.3 Baselines
We consider the following baselines:

e Standard self-training: This approach it-
eratively trains a network on current la-
beled data and applies it to current unlabeled
data; it uses a prediction confidence threshold
to sample unlabeled instances (Zhu, 2006).
We set the best confidence threshold from
{.80,.85,.90,.95} using validation data.

Autoencoder self-training (Dai and Le,
2015): This approach first pretrains a net-
work using unlabeled data (through a layer-
wise training approach to optimally recon-
struct the inputs), and then fine-tunes it using
labeled data with respect to the target task.

Adversarial self-training (Miyato et al,
2016): This model utilizes pretraining as de-
scribed above, but also applies adversarial
perturbations to word embeddings for more
effective learning (perturbation is applied to
embeddings instead of word inputs because
words or their one-hot vectors do not ad-
mit infinitesimal perturbation; the network is
trained to be robust to the worst perturbation).

Knowledge Transfer self-training (Noroozi
etal., 2018): This model uses a clustering ap-
proach (e.g. k-means) to create clusters of
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IMDb | Churn
Base Classifier 73.02 65.77
SST (Standard ST) 74.43 65.77
PST (Pretraining ST) 76.36 67.27
AST (Adversarial ST) 76.09 67.70
KST (Knowledge Transfer ST) 77.11 67.06
LST (Leitner ST) 78.27% | 69.90*

Table 4: Macro-F1 performance of models across
datasets; Note that Standard ST (SST) samples only
1.4K and 0 instances from IMDb and Churn datasets
respectively; sampling more data decreases SST’s per-
formance down to 66.94 and 57.04 perhaps due to in-
effective exploring of data space. Our model achieves
its best performance on IMDb and Churn datasets with
n = 5 and n = 7 Leitner queues respectively.

unlabeled instances that have similar repre-
sentations, where representations are derived
from standard pretraining as described above.
The model then pretrains a network by learn-
ing to classify unlabeled instances to their
corresponding clusters. The resulting pre-
trained network is then fine-tuned with re-
spect to the target task using labeled data
(with slight modification at prediction layer
which makes the network suitable for target
task). We set the best number of clusters
from {10, 20,...,100} based on model per-
formance on validation data.

3.4 Model Performance

Table 4 reports Macro-F1 performance of different
models; we report average performance across five
random test sets for each task (see Section 3.1 and
Table 3). The performance of base classifiers in
supervised settings, where the networks are only
trained on original labeled datasets, is reasonably
high on IMDb (73.02) and low on Churn (65.77).
Standard ST (SST) improves performance on
IMDb but not on Churn dataset. SST achieves its
best performance (on validation data) in the first
few episodes when, on average, 1.4K and O in-
stances are sampled for IMDb and Churn datasets
respectively. Beyond that, the performance con-
siderably decreases down to 66.94 (IMDb) and
57.04 (Churn) respectively. This is perhaps due
to imbalanced class size in Churn dataset, failure
of SST to explore the data space, or classification
mistakes that reinforce each other. Several pre-
vious works also observed no improvement with
SST (Gollapalli et al., 2013; Zhu and Goldberg,
2009; Zhang and Rudnicky, 2006); but some suc-
cessful applications have been reported (Wu et al.,



2018; Zhou et al., 2012; Riloff and Jones, 1999;
Yarowsky, 1995; HEARST, 1991).

The result also show that pretraining and
adversarial-based training, PST and AST in Ta-
ble 4 respectively, improve the performance of
base classifiers by 3.34 and 3.37 points in macro-
F1 on IMDb, and by 1.5 and 1.93 points on Churn
dataset. In addition, since PST and AST show
comparable performance, we conjecture that when
original labeled data has a small size, adversarial-
based self-training do not considerably improve
pretraining. But, considerable improvement can
be achieved with larger amount of labeled data,
see (Miyato et al., 2016) for detailed comparison
on pretraining and adversarial-based training. The
results also show that knowledge transfer (KST)
outperforms PST and AST on IMDD - indicating
that good initial labels derived through clustering
information could help semi-supervised learning,
even with small amount of seed labeled data.

Table 4 also shows the result of our model,
Leitner ST (LST). The best performance of LST
is obtained using n 5 and n 7 queues
for IMDDb and Churn datasets respectively. Con-
sidering these queue lengths, our model outper-
forms base classifiers by 5.25 and 4.13 points in
Macro-F1 on IMDb and Churn datasets respec-
tively; similar to PST and AST, our model results
in a greater gain when the learner has higher ini-
tial performance. It also improves the best self-
training baseline, KST for IMDb and AST for
Churn, by 1.16 and 2.2 points in macro-F1 on
IMDb and Churn datasets respectively where both
differences are significant (average p-values based
on t-test are .004 and .015 respectively).

4 Model Introspection

We investigate several questions about our model
to shed light on its improved performance. One
partial explanation is that by differentiating in-
stances and augmenting the informative ones, we
are creating a more powerful model that better ex-
plores the space of unlabeled data. In this sec-
tion, we elaborate on the behavior of our model by
conducting finer-grained analysis at queue-level
and investigating the following questions in the
context of challenges of semi-supervised learn-
ing. Due to space limit, we mainly report results
on IMDb and discuss corresponding behaviors on
Churn dataset in the text.
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4.1 Queue-level Performance

We analyze queue level performance to under-
stand how instances of different queues contribute
in creating better models during the self-training
process. For this experiment, we train networks
using our Leitner self-training framework as nor-
mal (where, at every iteration, only instances of
the designated queue are added to training data),
and report the average macro-F1 performance of
the network—on validation data—if it is trained with
instances of each queue. Concretely, we report av-
erage macro-F1 performance of models learned at
line 6 of Algorithm 2 (see Mys in Table 2).
Figures 2(a) and 2(b) show the results on IMDb
and Churn datasets for n = 5 and n = 7 queues
respectively. Note that the last queue for Churn
dataset, gg, has never been reached by any in-
stance. This is perhaps because of the difficulty
of this task* and low initial performance of the
network on Churn dataset. g2 on IMDb and ¢4
on Churn dataset result in the best average perfor-
mance across training episodes, both queues are
close to the middle. In addition, the result show
that the highest queues (g4 for IMDDb and g5 for
Churn) are often not the best queues. This result
can justify the lower performance of Standard ST
(SST) as instances in these queues are the easiest
(and perhaps most confident ones) for the network;
we further analyze these queues in Section 4.2.°

4.2 What’s the Issue with Highest Queues?

As we discussed before, instances in the highest
queues, although easy to learn for the classifier,
are not informative and do not contribute to train-
ing an improved model; therefore, highest queues
are often not selected by our model. To understand
the reason, we try to quantify how well instances
of these queues march with training data. For this
purpose, we compute cosine similarity between
representations of training instances (see below)
and those in the highest and designated queues

*Churn prediction is a target-dependent task, largely af-
fected by negation and function words, e.g. compare “switch-
ing from” and “switching to,” and language complexity, e.g.
the tweets “hate that I may end up leaving BRAND cause they
have the best service” is a positive yet churny tweet.

Note that the performance on lower queues (e.g. q1 for
IMDb and qo for Churn) are higher than expected. This is
because, at the end of each iteration, instances of designated
(best-performing) queues—but not lower queues—are added to
training data; instances of designated queues help creating
better and more robust models which still perform well even
if instances of lower queues are added.
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(a) Queue level performance (IMDb) (b) Queue level performance (Churn) (c) Highest vs. designated queue (IMDDb)

Figure 2: (a) and (b): Average macro-F1 performance computed over individual queues using validation dataset
across training episodes (average performance of Mgs at line 6 of Algorithm 2). (a): Performance on IMDb with
optimal queue length of n = 5, and (b): performance on Churn with optimal queue length of n = 7: note that none
of unlabeled instances has made it to the last queue. (c): Comparison of highest and designated queues in terms
of instance similarity to training data; high_train indicates similarity between (representations of) instances in
the highest queue and training instances, and desig_train shows the corresponding values for instances in the
designated queue. + and — signs indicate positive and negative pseudo/gold labels for unlabeled/training instances.
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where T¢ € R™ %% and Q¢ € RP**? indicate :
q.0 q.1 q.2 q.3 q.4  q_desig
representations of training instances and those of Queue ID
a given target queue respectively (where d indi-
cates the dimension of representations, and m®
and p® indicate number of instances in training
data and target queue at episode e respectively),
and cosine (., .) computes L2-normalized dot where, at every iteration, only instances of the des-
product of its input matrices. To obtain the above  ignated queue are added to training data. Specifi-
representations for instances, we compute the out-  cally, we compute the extent of diversity that each

Figure 3: The amount of diversity that instances of each
queue introduce if added to training data (on IMDDb).

put of the last hidden layer (the layer below predic-  given queue introduces as follows:

tion layer) of the trained network at each episode. K

These. outputs can be considered as.feature repre- 1 Z 1 — cosine(T®, concat (T¢, Q%))
sentations for inputs. For finer-grained compari- K =

son, we compute similarities with respect to posi-

tive and negative classes. where, as before, T and Q€ indicate the represen-

As the results in Figure 2(c) show, instances in ~ tations of training and queue instances at episode
the highest queue match well with current train- € respectively, and concat (., .) is a function
ing data (and hence the current model), and, there- that creates a new dataset by vertically concatenat-
fore, are less informative. On the other hand, in-  ing T¢ and Q°.
stances in the designated queues show consider- Figure 3 shows the results. On IMDDb, g2 and
ably smaller similarity with training instances in  designated queues show greater diversity to train-
both positive and negative classes, and, therefore, ~ ing data compared to other queues. We note
do not match well with training data. These in-  that g carries a greater diversity than g3 and qq,
stances are more informative, and help the net-  but, as we observed in Figure 2, instances of ¢o
work to better explore the space of unlabeled data ~ do not improve performance of the model, per-
and optimize for the target task. haps due to their difficulty or wrong pseudo la-
bels. We observe similar behavior in case of Churn
dataset where g4 introduces the highest diversity.
We analyze different queues to measure the extent ~ From this analysis, we conclude that Leitner self-
of diversity that each queue introduces to train-  training enables sampling diverse sets of instances
ing data during our normal self-training process  that contributes to training an improved model.

4.3 Does Diversity Matter?
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Leitner ST
n=3[n=5[n=7[n=9]n=11
76.83 76.77 78.03 75.34 80.71
65.74 64.87 67.06 | 68.56 65.80

IMDb
Churn

Table 5: Macro-F1 performance of diverse queues
across datasets. Compare these results with those ob-
tained by designated queues in Table 4.

4.3.1 Diverse Queue

Given the above results on diversity, we investi-
gate whether greater diversity can further improve
the performance of our model. For this analysis,
we create a considerably more “diverse” queue at
every self-training episode and treat it as the desig-
nated queue. We create the diverse queue by sam-
pling instances with high prediction confidence
from all queues. In particular, at every episode, we
rank instances of each queue based on their pre-
diction confidence and create a diverse queue by
combining top r% instances of each queue, where
r indicates the rate of adding new instances and set
to r = 10%. We note that a smaller rate is better
for adding instances because it allows the model to
gradually consume unlabeled instances with high
prediction confidence.

Table 5 shows the effect of diverse queues on
the performance of our model on both IMDb and
Churn datasets. The results show that diverse
queues improve the performance of our Leitner
self-training model from 78.27 (reported in Ta-
ble 4) to 80.71 on IMDb, i.e. 2.44 points improve-
ment in macro-F1. However, the correspond-
ing performance on Churn dataset decreases from
69.90 to 68.56, i.e. 1.34 points decrease in macro-
F1. The inverse effect of diverse queues in case
of Churn dataset is because diverse queues suf-
fer from the issue of considerable class imbalance
more than designated queues. This is because
highly confident instances which accumulate in
higher queues are often negative instances in case
of Churn prediction. Although we tackle this is-
sue by weighting the loss function during training,
diverse positive instances which are different from
their training counterparts are still needed for per-
formance improvement.

4.4 Do We Need Better Sampling Policies?

We investigate the challenges associated with our
data sampling policy by conducting finer-grained
analysis on instance movement patterns among
queues. To illustrate, assume that we have a Leit-
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Figure 4: Deviation in instance movements for each
queue (in terms of average standard deviation over all
training episodes). At every episode, we keep track of
instance movements among queues and measure move-
ment variation among instances that ultimately home in
on the same queue.

ner queue of size n = 3 and the following move-
ment patterns for four individual instances that ul-
timately home in on ¢p (recall that correct predic-
tion promotes an instance to a higher queue, while
wrong prediction demotes it to a lower queue):

: always in qo

: mainly in qg

: partially in gg

: partially in go & q;.

o — 4o — qo — qo — 4o
q0 — g1 — 9o — 4o — 4o
qo — g1 —qo — q1 — qo
qo —7q1—>4q2 —>q1 —qo

Although all these instances ultimately home in
on the same queue, they may have different contri-
butions to the training of a model because there is a
considerable difference in the ability of the down-
stream network in learning their labels. There-
fore, if there is a large deviation among move-
ment patterns of instances of the same queue, bet-
ter data sampling policies could be developed, per-
haps through finer-grained queue-level sampling.

For this analyses, we keep track of instance
movements among queues and measure standard
deviation among movement patterns of instances
of the same queue at every self-training episode,
and report the average of these deviations.

Figure 4 shows the results. On both datasets,
there is considerably greater deviation in move-
ments for middle queues than lower/higher
queues. This is meaningful because Leitner sys-
tem (and other spaced repetition schedulers) are
expected to keep easy and hard instances at higher
and lower queues respectively. Since such in-
stances mainly stay at lower or higher queues,
we observe smaller deviation in their movements.
On the other hand, the corresponding values for
middle queues indicate that movements in these
queues are spread out over a larger range of



queues. From these results, we conjecture that a
data sampling policy that conducts finer-grained
analysis at queue-level (e.g. by taking into account
queue movement patterns) could create better data
samples. Verifying this hypothesis will be the sub-
ject for future work.

5 Related Work

Semi-supervised learning (Zhu, 2006; Chapelle
et al., 2009) is a type of machine learning where
one has access to a small amount of labeled data
and a large amount of unlabeled data. Self-training
is a type of semi-supervised learning to boost the
performance of downstream learners (e.g. classi-
fiers) through data sampling from unlabeled data.
Most data sampling policies rely on prediction
confidence of the downstream learner for sampling
unlabeled data (Zhu and Goldberg, 2009). Self-
training has been successfully applied to various
tasks and domains including word sense disam-
biguation (HEARST, 1991; Yarowsky, 1995), in-
formation extraction (Riloff and Jones, 1999), and
object recognition (Zhou et al., 2012).

In addition, co-training (Blum and Mitchell,
1998; Zhang and Rudnicky, 2006; Wu et al., 2018)
is another type of semi-supervised learning. It
assumes that each instance can be described us-
ing two distinct feature sets that provide differ-
ent and complementary information about the in-
stance. Ideally, the two views should be condi-
tionally independent, i.e., the two feature sets of
each instance are conditionally independent given
the class, and each view should be sufficient, i.e.,
the class of an instance can be accurately predicted
from each view alone. Co-training first learns
separate downstream learners for each view us-
ing a small set of labeled data. The most confi-
dent predictions of each learner on the unlabeled
data are then used to iteratively construct addi-
tional labeled training data. Recently Wu et al.
(2018) developed an effective model based on re-
inforcement learning (specifically, a joint formu-
lation of a Q-learning agent and two co-training
classifiers) to learn data sampling policies and uti-
lize unlabeled data space in the context of co-
training methods.

Effective semi-supervised learning algorithms
based on pretraining techniques (Hinton and
Salakhutdinov, 2006; Bengio et al., 2007; Er-
han et al., 2010) have been developed for
text classification, deep belief networks (Hinton
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and Salakhutdinov, 2006), and stacked autoen-
coders (Vincent et al., 2010; Bengio et al., 2007).
In particular, Dai and Le (2015) developed an au-
toencoder for the later supervised learning pro-
cess. Miyato et al. (2016) applied perturbations
to word embeddings and used pretraining tech-
nique and adversarial training for effective semi-
supervised learning. These models although ef-
fective have not been well studied in the context of
semi-supervised learning where models may have
low initial performance or limited amount of la-
beled data. In addition, pretraining is limited by
the same architecture requirement in both pretrain-
ing and fine-tuning steps.

In this work, we extend previous work in
self-training by developing a new and effective
data sampling policy based on spaced repeti-
tion (Dempster, 1989; Cepeda et al., 2006; Averell
and Heathcote, 2011) which addresses some of the
above challenges. In particular, our model’s data
sampling policy is not predetermined, it explores
the entire data space and dynamically selects un-
labeled instances with respect to the strength of
a learner on a target task and easiness of unla-
beled instances, and it relaxes the same model con-
straint of pretraining-based approaches by decou-
pling pretraining and fine-tuning steps.

6 Conclusion and Future Work

We propose a novel method based on spaced rep-
etition to self-train neural networks using small
amount of labeled and large amount of unlabeled
data. Our model can select high-quality unlabeled
data samples for self-training and outperforms cur-
rent state-of-the-art semi-supervised baselines on
two text classification problems. We analyze our
model from various perspectives to explain its im-
provement gain with respect to challenges of semi-
supervised learning. There are several venues for
future work including (a): finer-grained data sam-
pling at queue level, (b): extending our model to
other machine learning algorithms that employ it-
erative training, such as boosting approaches, and
(c): applying this model to areas where neural net-
works have not been investigated, e.g. due to lim-
ited availability of labeled data.
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Abstract

We investigate the extent to which the behav-
ior of neural network language models reflects
incremental representations of syntactic state.
To do so, we employ experimental method-
ologies which were originally developed in
the field of psycholinguistics to study syntac-
tic representation in the human mind. We ex-
amine neural network model behavior on sets
of artificial sentences containing a variety of
syntactically complex structures. These sen-
tences not only test whether the networks have
arepresentation of syntactic state, they also re-
veal the specific lexical cues that networks use
to update these states. We test four models:
two publicly available LSTM sequence mod-
els of English (Jozefowicz et al., 2016; Gulor-
dava et al., 2018) trained on large datasets; an
RNN Grammar (Dyer et al., 2016) trained on a
small, parsed dataset; and an LSTM trained on
the same small corpus as the RNNG. We find
evidence for basic syntactic state representa-
tions in all models, but only the models trained
on large datasets are sensitive to subtle lexical
cues signalling changes in syntactic state.

1 Introduction

It is now standard practice in NLP to derive sen-
tence representations using neural sequence mod-
els of various kinds (Elman, 1990; Sutskever et al.,
2014; Goldberg, 2017; Peters et al., 2018; De-
vlin et al., 2018). However, we do not yet have a
firm understanding of the precise content of these
representations, which poses problems for inter-
pretability, accountability, and controllability of
NLP systems. More specifically, the success of
neural sequence models has raised the question
of whether and how these networks learn robust
syntactic generalizations about natural language,
which would enable robust performance even on
data that differs from the peculiarities of the train-
ing set.

Here we build upon recent work studying neural
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language models using experimental techniques
that were originally developed in the field of psy-
cholinguistics to study language processing in
the human mind. The basic idea is to examine
language models’ behavior on targeted sentences
chosen to probe particular aspects of the learned
representations. This approach was introduced by
Linzen et al. (2016), followed more recently by
others (Bernardy and Lappin, 2017; Enguehard
et al., 2017; Gulordava et al., 2018), who used
an agreement prediction task (Bock and Miller,
1991) to study whether RNNs learn a hierarchical
morphosyntactic dependency: for example, that
The key to the cabinets. .. can grammatically con-
tinue with was but not with were. This dependency
turns out to be learnable from a language mod-
eling objective (Gulordava et al., 2018). Subse-
quent work has extended this approach to other
grammatical phenomena, with positive results for
filler—gap dependencies (Chowdhury and Zampar-
elli, 2018; Wilcox et al., 2018) and negative results
for anaphoric dependencies (Marvin and Linzen,
2018).

In this work, we consider syntactic representa-
tions of a different kind. Previous studies have fo-
cused on relationships of dependency: one word
licenses another word, which is tested by asking
whether a language model favors one (grammat-
ically licensed) form over another in a particular
context. Here we focus instead on whether neu-
ral language models show evidence for incremen-
tal syntactic state representations: whether behav-
ior of neural language models reflects the kind
of generalizations that would be captured using a
stack-based incremental parse state in a symbolic
grammar-based model. For example, during the
underlined portion of Example (1), an incremen-
tal language model should represent and maintain
the knowledge that it is currently inside a subordi-
nate clause, implying (among other things) that a
full main clause must follow.
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(D) As the doctor studied the textbook, the

nurse walked into the office.

In this work, we use a targeted evaluation ap-
proach (Marvin and Linzen, 2018) to elicit ev-
idence for syntactic state representations from
language models. That is, we examine language
model behavior on artificially constructed sen-
tences designed to expose behavior that is cru-
cially dependent on syntactic state representa-
tions. In particular, we study complex subordinate
clauses and garden path effects (based on main-
verb/reduced-relative ambiguities and NP/Z am-
biguities). We ask three general questions: (1) Is
there basic evidence for the representation of syn-
tactic state? (2) What textual cues does a neural
language model use to infer changes to syntactic
state? (3) Do the networks maintain knowledge
about syntactic state over long spans of complex
text, or do the syntactic state representations de-
grade?

Among neural language models, we study both
generic sequence models (LSTMs), which have no
explicit representation of syntactic structure, and
an RNN Grammar (RNNG) (Dyer et al., 2016),
which explicitly calculates Penn Treebank-style
context-free syntactic representations as part of
the process of assigning probabilities to words.
This comparison allows us to evaluate the ex-
tent to which explicit representation of syntactic
structure makes models more or less sensitive to
syntactic state. RNNGs have been found to out-
perform LSTMs not only in overall test-set per-
plexity (Dyer et al., 2016), but also in modeling
long-distance number agreement in Kuncoro et al.
(2018) for certain model configurations; our work
extends this comparison to a variety of syntactic
state phenomena.

2 General methods

We investigate neural language model behavior
primarily by studying the surprisal, or log inverse
probability, that a language model assigns to each
word in a sentence:

S(x;) = —log, p(xilhi—1),

where x; is the current word or character, h;_q is
the model’s hidden state before consuming x;, the
probability is calculated from the network’s soft-
max activation, and the logarithm is taken in base
2, so that surprisal is measured in bits. Surprisal
is equivalent to the pointwise contribution to the
language modeling loss function due to a word.
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In psycholinguistics, the common practice is to
study reaction times per word (for example, read-
ing time as measured by an eyetracker), as a mea-
sure of the word-by-word difficulty of online lan-
guage processing. These reading times are often
taken to reflect the extent to which humans ex-
pect certain words in context, and may be gener-
ally proportional to surprisal given the comprehen-
der’s probabilistic language model (Hale, 2001;
Levy, 2008; Smith and Levy, 2013; Futrell and
Levy, 2017). In this study, we take language model
surprisal as the analogue of human reading time,
using it to probe the neural networks’ expecta-
tions about what words will follow in certain con-
texts. There is a long tradition linking RNN per-
formance to human language processing (Elman,
1990; Christiansen and Chater, 1999; MacDonald
and Christiansen, 2002) and grammaticality judg-
ments (Lau et al., 2017), and RNN surprisals are
a strong predictor of human reading times (Frank
and Bod, 2011; Goodkind and Bicknell, 2018).
RNNGs have also been used as models of human
online language processing (Hale et al., 2018).

2.1 Experimental methodology

In each experiment presented below, we design
a set of sentences such that the word-by-word
surprisal values will show evidence for syntac-
tic state representations. The idea is that certain
words will be surprising to a language model only
if the model has a representation of a certain syn-
tactic state going into the word. We analyze word-
by-word surprisal profiles for these sentences us-
ing regression analysis. Except where otherwise
noted, all statistics are derived from linear mixed-
effects models (Baayen et al., 2008) with sum-
coded fixed-effect predictors and maximal random
slope structure (Barr et al., 2013). This method lets
us factor out by-item variation in surprisal and fo-
cus on the contrasts between conditions.

2.2 Models tested

We study the behavior of four models of English:
two LSTMs trained on large data, an an RNNG
and an LSTM trained on matched, smaller data
(the Penn Treebank). The models are summarized
in Table 1. All models are trained on a language
modeling objective.

Our first LTSM is the model presented in Joze-
fowicz et al. (2016) as “BIG LSTM+CNN Inputs”,
which we call “JRNN”, which was trained on
the One Billion Word Benchmark (Chelba et al.,
2013) with two hidden layers of 8196 units each



Model Architecture Training data Data size (tokens) | Reference

JRNN LSTM One Billion Word ~ 800 million | Jozefowicz et al. (2016)
GRNN LSTM Wikipedia ~ 90 million | Gulordava et al. (2018)
RNNG RNN Grammar | Penn Treebank ~ 1 million | Dyer et al. (2016)
TinyLSTM | LSTM Penn Treebank ~ 1 million | —

Table 1: Models tested, by architecture, training data, and training data size.

and CNN character embeddings as input. The sec-
ond large LSTM is the model described in the sup-
plementary materials of Gulordava et al. (2018),
which we call “GRNN”, trained on 90 million to-
kens of English Wikipedia with two hidden layers
of 650 hidden units each.

Our RNNG is trained on syntactically labeled
Penn Treebank data (Marcus et al.,, 1993), us-
ing 256-dimensional word embeddings for the in-
put layer and 256-dimensional hidden layers, and
dropout probability 0.3. Next-word predictions are
obtained through hierarchical softmax with 140
clusters, obtained with the greedy agglomerative
clustering algorithm of Brown et al. (1992). We
estimate word surprisals using word-synchronous
beam search (Stern et al., 2017; Hale et al., 2018):
at each word w; a beam of incremental parses is
filled, the summed forward probabilities (Stolcke,
1995) of all candidates on the beam is taken as a
lower bound on the prefix probability: Ppin(w;_;),
and the surprisal of the i-th word in the sentence
is estimated as log % Our action beam is
size 100, and our word beam is size 10. Finally,
to disentangle effects of training set from model
architecture, we use an LSTM trained on string
data from the Penn Treebank training set, which
we call TinyLSTM. For TinyLSTM we use 256-
dimensional word-embedding inputs and hidden
layers and dropout probability 0.3, just as with the
RNNG.

3 Subordinate clauses

We begin by studying subordinate clauses, a key
example of a construction requiring stack-like rep-
resentation of syntactic state. In such construc-
tions, as shown in Example (1), a subordinator
such as “as” or “when” serves as a cue that the
following clause is a subordinate clause, meaning
that it must be followed by some main (matrix)
clause. In an incremental language model, this
knowledge must be maintained and carried for-
ward while processing the words inside subordi-
nate clause. A grammar-based symbolic language
model (e.g., Stolcke, 1995; Manning and Carpen-
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ter, 2000) would maintain this knowledge by keep-
ing track of syntactic rules representing the incom-
plete subordinate clause and the upcoming main
clause in a stack data structure. Psycholinguis-
tic research has clearly demonstrated that humans
maintain representations of this kind in syntactic
processing (Staub and Clifton, 2006; Lau et al.,
2006; Levy et al., 2012). Here we ask whether the
string completion probabilities produced by neu-
ral language models show evidence of the same
knowledge.

We can detect the knowledge of syntactic state
in this case by examining whether the network li-
censes and requires a matrix clause following the
subordinate clause. These expectations can be de-
tected by examining surprisal differences between
sentences of the form in Example (2):

(2) a. As the doctor studied the textbook,
the nurse walked into the office.
[suBordinator, MATRIX]

b. *As the doctor studied the textbook.
[SUB, NO-MATRIX]

c. ?The doctor studied the textbook,
the nurse walked into the office.
[NO-SUBordinator, MATRIX]

d. The doctor studied the textbook.

[NO-SUB, NO-MATRIX]

If the network licenses a matrix clause follow-
ing the subordinate clause—and maintains knowl-
edge of that licensing relationship throughout the
clause, from the subordinator to the comma—then
this should be manifested as lower surprisal at the
matrix clause in (2-a) as compared to (2-c). We
call this the matrix licensing effect: the surprisal
of the condition [SUB, MATRIX] minus [NOSUB,
MATRIX], which will be negative if there is a li-
censing effect. If the network requires a follow-
ing matrix clause, then this will be manifested
as higher surprisal at the matrix clause for (2-b)
compared with (2-d). We call this the no-matrix
penalty effect: the surprisal of [SUB,NOMATRIX]
minus [NOSUB, NOMATRIX], which will be posi-
tive if there is a penalty.
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Figure 1: Effect of subordinator absence/presence on
surprisal of continuations. Red: no-matrix penalty ef-
fect. Blue: matrix licensing effect. In this and all other
figures, unless otherwise noted, error bars represent
95% confidence intervals of the contrasts between con-
ditions shown, computed from the standard error of the
by-item and by-condition mean surprisals after sub-
tracting out the by-item means (Masson and Loftus,
2003).

We designed 23 experimental items on the pat-
tern of (2) and calculated difference in the sum sur-
prisal of the words in the matrix clause.! Figure 3
shows the matrix licensing effect (in blue) and the
no-matrix penalty effect (in red), averaged across
items. For all models, we see a facilitative matrix
licensing effect (p < .001 for all models), small-
est in TinyLSTM. However, we only find a signif-
icant no-matrix penalty for GRNN and the RNNG
(p < .001 in both): the other models do not sig-
nificantly penalize an ungrammatical continuation
(p = .9 for JRNN; p = .5 for TinyLSTM). That
is, JRNN and TinyLSTM give no indication that
(2-b) is less probable than (2-c).

We found that all models at least partially repre-
sent the licensing relationship between a subordi-
nate and matrix clause. However, in order to fully
represent the syntactic requirements induced by a
subordinator, it seems that a model needs either
large amounts of data (as in GRNN) or explicit
representation of syntax (as in the RNNG, as op-
posed to TinyLSTM).

'Note that it would not be sufficient to look at surprisal
only at the punctuation token, because the comma could in-
dicate the beginning of a conjoined NP.
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3.1 Maintenance and degradation of
syntactic state

The foregoing results show that neural language
models use the presence of a subordinator as a
cue to the onset of a subordinate clause, and that
they maintain knowledge that they are in a sub-
ordinate clause throughout the intervening mate-
rial up to the comma. Now we probe the ability
of models to maintain this knowledge over long
spans of complex intervening material. To do so,
we use sentences on the template of (2) and add in-
tervening material modifying the NPs in the subor-
dinate clause. To both of these NPs (in subject and
object position), we add modifiers of increasing
syntactic complexity: PPs, subject-extracted rela-
tive clauses (SRCs), and object-extracted relative
clauses (ORCs), as shown in Figure 2. We study
the extent to which these modifiers weaken the
language models’ expectations about the upcom-
ing matrix clause.

As a summary measure of the strength of lan-
guage models’ expectations about an upcoming
matrix clause, we collapse the two measures of the
previous section into one: the matrix licensing in-
teraction, consisting of the difference between the
no-matrix penalty effect and the matrix licensing
effect (the two bars in Figure 1). A similar mea-
sure was used to detect filler—gap dependencies by
Wilcox et al. (2018).

Figure 3 shows the strength of the matrix li-
censing interaction given sentences with various
modifiers inserted. For the large LSTMs, GRNN
exhibits a strong interaction when the intervening
material is short and syntactically simple, and the
interaction gets progressively weaker as the inter-
vening material becomes progressively longer and
more complex (p < 0.001 for subject postmodi-
fiers and p < 0.01 object postmodifiers). The other
models show less interpretable behavior.

Our results indicate that at least some large
LSTMs, along with the RNNG, are capable of
maintaining a representation of syntactic state over
spans of complex intervening material. Quanti-
fied as a licensing interaction, this representation
of syntactic state exhibits the most clearly un-
derstandable behavior in GRNN, which shows a
graceful degradation of syntactic expectations as
the complexity of intervening material increases.
The representation is maintained most strongly in
the RNNG, except for one particular construction
(object-position SRCs).



As the doctor
N——

in a white lab coat (PP)
who was wearing a white lab coat (SRC)
who the administrator had recently hired (ORC)
(Subject interveners)

studied the

textbook
N—_——

about several recent advances in cancer therapy (PP)
that described several recent advances in cancer therapy (SRC)
that colleagues had written on cancer therapy (ORC)
(Object interveners)

Figure 2: Scheme for lengthening the subordinate clause in Section 3.1.

4 Garden path effects

The major phenomenon that has been used to
probe incremental syntactic representations in hu-
mans is garden path effects. Garden path effects
arise from local ambiguities, where a context leads
a comprehender to believe one parse is likely, but
then a disambiguating word forces her to dras-
tically revise her beliefs, resulting in high sur-
prisal/reading time at the disambiguating word. In
effect, the comprehender is “led down the garden
path” by a locally likely but ultimately incorrect
parse (Bever, 1970). Garden-pathing in LSTMs
has recently been demonstrated by van Schijndel
and Linzen (2018a,b) in the context of modeling
human reading times.

Garden path effects allow us to detect represen-
tations of syntactic state because if a person or lan-
guage model shows a garden path effect at a word,
that means that the person or model had some be-
lief about syntactic state which was disconfirmed
by that word. In psycholinguistics, these effects
have been used to study the question of what in-
formation determines people’s beliefs about likely
parses given locally ambiguous contexts: for ex-
ample, whether factors such as world knowledge
play a role (Ferreira and Clifton, 1986; Trueswell
etal., 1994).

Here we study two major kinds of local ambigu-
ities inducing garden path effects. For each ambi-
guity, we ask two main questions. First, whether
the network shows the basic garden path effect,
which would indicate that it had a syntactic state
representation that made a disambiguating word
surprising. Second, whether the network is sen-
sitive to subtle lexical cues to syntactic structure
which may modulate the size of the garden path
effect: this question allows us to determine what
information the network uses to determine the be-
ginnings and endings of certain syntactic states.

4.1 NP/Z Ambiguity

The NP/Z ambiguity refers to a local ambiguity
in sentences of the form given in Example (3).

ZFor Noun Phrase/Zero ambiguity. At first the embedded
verb appears to take an NP object, but later it turns out that it
was a zero (null) object.
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(3)a. When the dog scratched the vet with his new
assistant took off the muzzle. [TRANSITIVE,
NOCOMMA |

. When the dog scratched, the vet with his new
assistant took off the muzzle. [TRANSITIVE,
COMMA]

. When the dog struggled the vet with
his new assistant took off the muzzle.
[INTRANSITIVE, NOCOMMA ]

. When the dog struggled, the vet with
his new assistant took off the muzzle.
[INTRANSITIVE, COMMA]

When a comprehender reads the underlined
phrase “the vet with his new assistant” in (3-a),
she may at first believe that this phrase is the di-
rect object of the verb “scratched” inside the sub-
ordinate clause. However, upon reaching the verb
“took off™, she realizes that the underlined phrase
was not in fact an object of the verb “scratched”,
rather it was the subject of a new clause, and
the subordinate clause in fact ended after the
verb “scratched”. The key region of the sentence
where the garden path disambiguation happens—
called the disambiguator—is the phrase “took
off”’, marked in bold.

While a garden path should obtain in (3-a), no
such garden path should exist for (3-b), because
a comma clearly demarcates the end of the sub-
ordinate clause. Therefore a basic garden path ef-
fect would be indicated by the difference in sur-
prisal at the disambiguator for (3-a) minus (3-b).
Furthermore, if a comprehender is sensitive to the
relationship between verb argument structure and
clause boundaries, then there should be no gar-
den path in (3-c), because the verb “struggled”
is INTRANSITIVE: it cannot take an object in En-
glish, so an incremental parser should never be
misled into believing that “the vet...” is its object.
This lexical information about syntactic structure
is subtle enough that there has been controversy
about whether even humans are sensitive to it in
online processing (Staub, 2007).

4.1.1 NP/Z Garden Path Effect

We tested whether neural language models would
show the basic garden path effect and if this ef-
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Figure 3: Size of matrix clause licensing interaction (see text) given various intervening elements in the subordinate
clause. Note that the heatmaps are on different scales across models.

fect would be modulated by verb transitivity. We
constructed 32 items based of the same structure
as (3), based on materials from Staub (2007), ma-
nipulating the transitivity of the embedded verb
(“scratched” vs. “struggled”), and the presence of
a disambiguating comma at the end of the subor-
dinate clause. An NP/Z garden path effect would
show up as increased surprisal at the main verb
“took off” in the absence of a comma. If the net-
works use the transitivity of the embedded verb as
a cue to clause structure, and maintain that infor-
mation over the span of six words between the em-
bedded verb and the main verb, then there should
be a garden path effect for the transitive verb, but
not for the intransitive verb. More generally we
would expect a stronger garden path given the
transitive verb than given the intransitive verb.

Figure 4 shows the mean surprisals at the dis-
ambiguator for all four models, for both transi-
tive and intransitive embedded verbs. The over-
all per-region surprisals, averaged over words in
each region, are shown in Figure 5. We see that
a garden path effect exists in all models (though
very small in TinyLSTM): all models show sig-
nificantly higher surprisal at the main verb when
the disambiguating comma is absent (p < .001 for
all models). However, only the large LSTMs ap-
pear to be sensitive to the transitivity of the em-
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Figure 4: Average garden path effect (surprisal at dis-
ambiguator in NO-COMMA condition minus COMMA
condition) by model and embedded verb transitivity.

bedded verb, showing a smaller garden path effect
for intransitive verbs. Statistically, there is a sig-
nificant interaction of comma presence and verb
transitivity only in GRNN and JRNN (GRNN:
p < .01; JRNN: p < .001; RNNG: p = .3, TinyL-
STM: p = .3).

All models show NP/Z garden path effects, indi-
cating that they are sensitive to some cues indicat-
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Figure 5: Region-by-region surprisal values for NP/Z garden path materials. Surprisal values are averaged across
items and across words in regions. The critical region where the garden path effect is visible is the verb “took off”.

ing end-of-clause boundaries. However, only the
large LSTMs appear to use verb argument struc-
ture information as a cue to these boundaries. The
results suggest that very large amounts of data may
be necessary for current neural models to discover
such fine-grained dependencies between syntactic
properties of verbs and sentence structure.

4.1.2 Maintenance and degradation of state

We can probe the maintenance and degradation
of syntactic state information by manipulating the
length of the intervening material between the on-
set of the local ambiguity and the disambiguator
in examples such as (3). The question is whether
the networks maintain the knowledge, while pro-
cessing the intervening material, that the inter-
vening noun phrase is probably the object of the
embedded verb inside a subordinate clause, or
whether they gradually lose track of this infor-
mation. To study this question we used materials
on the pattern of (4): these materials manipulate
the length of the intervening material (underlined)
while holding constant the distance between the
subordinator (“As”) and the disambiguator (grew).

(4)a. As the author studying Babylon in ancient
times wrote the book grew. [SHORT, NO-
COMMA]

b. As the author studying Babylon in an-
cient times wrote, the book grew. [SHORT,
COMMA]
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c. As the author wrote the book describing
Babylon in ancient times grew. [LONG, NO-
COMMA]

d. As the author wrote, the book describing
Babylon in ancient times grew. [LONG,
COMMA]

If neural language models show degradation of
syntactic state, then the garden path effect (mea-
sured as the difference in surprisal between the
COMMA and NO-COMMA conditions at the disam-
biguator) will be smaller for the LONG conditions.
We tested 32 sentences of the form in (4), based
on materials from Tabor and Hutchins (2004). The
garden path effect sizes are shown in Figure 6.

We find a significant garden effect in all mod-
els in the SHORT condition (p < .001 in JRNN
and GRNN; p < .01 in the RNNG and p = .03 in
TinyLSTM). In the long condition, we find the gar-
den path effect in all models except TinyLSTM:
(p < .001 in JRNN; p < .01 in GRNN; p = .02 in
the RNNG; and p = .2 in TinyLSTM). The cru-
cial interaction between length and comma pres-
ence (indicating that syntactic state degrades) is
significant in GRNN (p < .01) and TinyLSTM
(p < .001) but not JRNN (p = .7) nor the RNNG
(p = .6). The pattern is reminiscent of the results
on degradation of state information about subor-
dinate clauses in Section 3, where GRNN and
TinyLSTM showed the clearest evidence of degra-
dation.
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Note that the pattern found here is the opposite
of the pattern of human reading times. Humans ap-
pear to show “digging-in” effects: the longer the
span of time between the introduction of a local
ambiguity and its resolution, the larger the garden
path effect (Tabor and Hutchins, 2004; Levy et al.,
2009).

4.2 Main Verb/Reduced Relative Ambiguity

Next we turn to garden path effects induced by the
classic Main Verb/Reduced Relative (MV/RR)
ambiguity, in which a word is locally ambiguous
between being the main verb of a sentence or in-
troducing a reduced relative clause (reduced RC:
a relative clause with no explicit complementizer,
headed by a passive-participle verb). That ambi-
guity can be maintained over a long stretch of ma-
terial:

(5)a. The woman brought the sandwich from
the kitchen tripped on the -carpet.
[REDUCED, AMBIGuoOus]

b. The woman who was brought the sand-
wich from the kitchen tripped on the carpet.
[UNREDUCED, AMBIG]

c. The woman given the sandwich from
the kitchen tripped on the carpet.
[REDUCED, UNAMBIGuous]

d. The woman who was given the sandwich
from the kitchen tripped on the carpet.
[UNREDUCED, UNAMBIG]

In Example (5-a), the verb “brought” is ini-
tially analyzed as a main verb phrase, but upon

39

GRNN JRNN

6.

4_
£ o]
=3
g =
£ 04
©
% RNNG tinylstm
Q 6
C
[}
°
@ 44
(0]

) i

ol [

amlbig unarlnbig am'big unar'nbig

Figure 7: Garden path effect size for MV/RR ambiguity
by model and verb-form ambiguity.

reaching the verb “tripped”—the disambiguator
in this case—the reader must re-analyze it as an
RC. The garden path should be eliminated in sen-
tences such as (5-b), the UNREDUCED condition,
where the words “who was” clarify that the verb
“brought” is part of an RC, rather than the main
verb of the sentence. Therefore we quantify the
garden path effect as the surprisal at the disam-
biguator for the REDUCED minus UNREDUCED
conditions.

There is another possible cue that the initial verb
is the head of an RC: the morphological form of
the verb. In examples such as (5-c), the the verb
“given” is unambiguously in its past-participle
form, indicating that it cannot be the main verb
of the sentence. If a language model is sensitive
to morphological cues to syntactic structure, then
it should either not show a garden path effect in
this UNAMBIGuous condition, or it should show a
reduced garden path effect.

We constructed 29 experimental items follow-
ing the template of (5). Figure 7 shows the garden
path effect sizes by model and verb-form ambigu-
ity. All networks show the basic garden path effect
(p < .001 in JRNN, GRNN, and RNNG; p < 0.01
in TinyLSTM). However, the garden path effect in
TinyLSTM is much smaller than the other mod-
els: RC reduction causes an additional .3 bits of
surprisal at the disambiguating verb, as compared
to 2.8 bits in the RNNG, 1.9 in JRNN, and 3.6
in GRNN (TinyLSTM’s garden path effect is sig-
nificantly smaller than each other model at p <
0.001).

If the network is using the morphological form



Phenomenon GRNN | JRNN | RNNG | TinyLSTM
Subordination v X v X
NP/Z Garden Path v VE4 X X
MV/RR Garden Path v v v X

Table 2: Summary of results by model and phenomenon. The first check mark indicates basic evidence of syntactic
state representation. The second check mark indicates the ability to capture more fine-grained phenomena: for
subordination, the no-matrix penalty effect; for the NP/Z garden path, the effect of verb transitivity; and for the

MV/RR garden path, the effect of verb morphology.

of the verb as a cue to syntactic structure, then it
should show the garden path effect more strongly
in the AMBIG condition than the UNAMBIG condi-
tion. The large language models and the RNNG do
show this pattern: at the critical main-clause verb,
surprisal is superadditively highest in the reduced
ambiguous condition (the dotted blue line; a posi-
tive interaction between the reduced and ambigu-
ous conditions is significant in the three models at
p < 0.001). However, TinyLSTM does not show
evidence for superadditive surprisal for the am-
biguous verbform and the reduced RC (p = .45).
The three large LSTMs and the RNNG replicate
the key human-like garden-path disambiguation
effect due to to ambiguity in verb form. But strik-
ingly, even when the participial verbform is un-
ambiguous, there is still a significant garden path
effect in all models (p < 0.01 in all models except
TinyLSTM, where p = .08). Apparently, these
networks treat an unambiguous passive-participial
verb as only a noisy cue to the presence of an RC.

5 General Discussion and Conclusion

In all models studied, we found clear evidence
of basic incremental state syntactic representation.
However, models varied in how well they fully
captured the effects of such state and the poten-
tially subtle lexical cues indicating the beginnings
and endings of such states: only the large LSTMs
could sometimes reliably infer clause boundaries
from verb argument structure (Section 4.1) and
morphological verb-form (Section 4.2), and only
GRNN and the RNNG fully captured the proper
behavior of subordinate clauses. The results are
summarized in Table 2. We suggest that repre-
sentation of course-grained syntactic structure re-
quires either syntactic supervision or large data,
while exploiting fine-grained lexical cues to struc-
ture requires large data.

More generally, we believe that the psycholin-
guistic methodology employed in this paper pro-
vides a valuable lens on the internal represen-
tations of black-box systems, and can form the
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basis for more systematic tests of the linguistic
competence of NLP systems. We make all exper-
imental items, results, and analysis scripts avail-
able online at github.com/langprocgroup/nn_
syntactic_state.
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Abstract

Electroencephalography (EEG) recordings of
brain activity taken while participants read or
listen to language are widely used within the
cognitive neuroscience and psycholinguistics
communities as a tool to study language com-
prehension. Several time-locked stereotyped
EEG responses to word-presentations — known
collectively as event-related potentials (ERPs)
— are thought to be markers for semantic or
syntactic processes that take place during com-
prehension. However, the characterization of
each individual ERP in terms of what features
of a stream of language trigger the response
remains controversial. Improving this char-
acterization would make ERPs a more use-
ful tool for studying language comprehension.
We take a step towards better understanding
the ERPs by fine-tuning a language model to
predict them. This new approach to analysis
shows for the first time that all of the ERPs
are predictable from embeddings of a stream
of language. Prior work has only found two
of the ERPs to be predictable. In addition to
this analysis, we examine which ERPs bene-
fit from sharing parameters during joint train-
ing. We find that two pairs of ERPs previously
identified in the literature as being related to
each other benefit from joint training, while
several other pairs of ERPs that benefit from
joint training are suggestive of potential rela-
tionships. Extensions of this analysis that fur-
ther examine what kinds of information in the
model embeddings relate to each ERP have the
potential to elucidate the processes involved in
human language comprehension.

1 Introduction

The cognitive processes involved in human lan-
guage comprehension are complex and only par-
tially identified. According to the dual-stream
model of speech comprehension (Hickok and
Poeppel, 2007), sound waves are first converted to
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Figure 1: The electrodes from which each event-related
potential was recorded in the data from Frank et al.
(2015) (after figure 3 in (Frank et al., 2015)). The bot-
tom portion of the figure shows a top-down schematic
of the electrode locations with the nose facing towards
the top of the page. Each ERP is the mean poten-
tial from all of the indicated electrodes during a spe-
cific time-window, creating a single scalar value per
ERP per word. Overlapping circles indicate multiple
ERPs recorded from the same electrode. The ELAN
is measured from 125-175ms after stimulus onset, the
LAN from 300-400ms, the N400O from 300ms-500ms,
the EPNP from 400-600ms, the P600 from 500-700ms,
and the PNP from 600-700ms.

phoneme-like features and further processed by a
ventral stream that maps those features onto words
and semantic structures, and a dorsal stream that
(among other things) supports audio-short term
memory. The mapping of words onto meaning
is thought to be subserved by widely distributed
regions of the brain that specialize in particular
modalities — for example visual aspects of the

Proceedings of NAACL-HLT 2019, pages 43-57
Minneapolis, Minnesota, June 2 - June 7, 2019. (©2019 Association for Computational Linguistics



word banana reside in the occipital lobe of the
brain and are activated when the word banana
is heard (Kemmerer, 2014) — and the different
representation modalities are thought to be inte-
grated into a single coherent latent representa-
tion in the anterior temporal lobe (Ralph et al.,
2010). While this part of meaning representa-
tion in human language comprehension is some-
what understood, much less is known about how
the meanings of words are integrated together to
form the meaning of sentences and discourses.
One tool researchers use to study the integration
of meaning across words is electroencephelogra-
phy (EEG), which measures the electrical activ-
ity of large numbers of neurons acting in con-
cert. EEG has the temporal resolution necessary to
study the processes involved in meaning integra-
tion, and certain stereotyped electrical responses
to word presentations, known as event-related po-
tentials (ERPs), have been identified with some of
the processes thought to contribute to comprehen-

sion.
In this work, we consider six ERP components

that have been associated in the cognitive neuro-
science and psycholinguistics literature with lan-
guage processing and which we analyze in the data
from Frank et al. (2015) (see Figure 1 for spa-
tial and temporal definitions of these ERP com-
ponents). Three of these — the N400, EPNP, and
PNP responses — are primarily considered mark-
ers for semantic processing, while the other three
— the P600, ELAN, and LAN responses — are
primarily considered markers for syntactic pro-
cessing. However, the neat division of the ERP
responses into either semantic or syntactic cate-
gories is controversial. The N400 response has
been very well studied (for an overview see (Ku-
tas and Federmeier, 2011)) and it is well estab-
lished that it is associated with semantic complex-
ity, but the features of language that trigger the
other ERP responses we consider here are poorly
understood. We propose to use a neural network
pretrained as a language model to probe what fea-
tures of language drive these ERP responses, and
in turn to probe what features of language mediate
the cognitive processes that underlie human lan-
guage comprehension, and especially the integra-
tion of meaning across words.

2 Background

While a full discussion of each ERP component
and the features of language thought to trigger
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each are beyond the scope of this document (for
reviews see e.g. Frank et al. (2015), Kemmerer
(2014), Kutas and Federmeier (2011), Kuperberg
et al. (2003), and Van Petten and Luka (2012)),
we introduce some basic features of ERP compo-
nents to help in the discussion later. ERP compo-
nents are electrical potential responses measured
with respect to a baseline that are triggered by an
event (in our case the presentation of a new word
to a participant in an experiment). The name of
each ERP component reflects whether the poten-
tial is positive or negative relative to the baseline.
The N400 is so-named because it is Negative rela-
tive to a baseline (the baseline is typically recorded
just before a word is presented at an electrode
that is not affected by the ERP response) and be-
cause it peaks in magnitude at about 400ms after
a word is presented to a participant in an exper-
iment. The P600 is Positive relative to a base-
line and peaks around 600ms after a word is pre-
sented to a participant (though its overall duration
is much longer and less specific in time than the
N400). The post-N400 positivity is so-named be-
cause it is part of a biphasic response; it is a pos-
itivity that occurs after the negativity associated
with the N400. The early post-N400 positivity
(EPNP) is also part of a biphasic response, but
the positivity has an eariler onset than the stan-
dard PNP. Finally, the LAN and ELAN are the left-
anterior negativity and early left-anterior negativ-
ity respectively. These are named for their timing,
spatial distribution on the scalp, and direction of
difference from the baseline. It is important to note
that ERP components can potentially cancel and
mask each other, and that it is difficult to precisely
localize the neural activity that causes the changes
in electrical potential at the electrodes where those
changes are measured.

3 Related Work

This work is most closely related to the paper from
which we get the ERP data: Frank et al. (2015).
In that work, the authors relate the surprisal of
a word, i.e. the (negative log) probability of the
word appearing in its context, to each of the ERP
signals we consider here. The authors do not di-
rectly train a model to predict ERPs. Instead, mod-
els of the probability distribution of each word
in context are used to compute a surprisal for
each word, which is input into a mixed effects re-
gression along with word frequency, word length,



word position in the sentence, and sentence posi-
tion in the experiment. The effect of the surprisal
is assessed using a likelihood-ratio test. In Hale
et al. (2018), the authors take an approach simi-
lar to Frank et al. (2015). The authors compare the
explanatory power of surprisal (as computed by an
LSTM or a Recurrent Neural Network Grammar
(RNNG) language model) to a measure of syntac-
tic complexity they call “distance” that counts the
number of parser actions in the RNNG language
model. The authors find that surprisal (as pre-
dicted by the RNNG) and distance are both signif-
icant factors in a mixed effects regression which
predicts the P600, while the surprisal as computed
by an LSTM is not. Unlike Frank et al. (2015) and
Hale et al. (2018), we do not use a linking func-
tion (e.g. surprisal) to relate a language model to
ERPs. We thus lose the interpretability provided
by the linking function, but we are able to pre-
dict a significant proportion of the variance for all
of the ERP components, where prior work could
not. We interpret our results through character-
ization of the ERPs in terms of how they relate
to each other and to eye-tracking data rather than
through a linking function. The authors in Wehbe
et al. (2014) also use a recurrent neural network
to predict neural activity directly. In that work the
authors predict magnetoencephalography (MEG)
activity, a close cousin to EEG, recorded while
participants read a chapter of Harry Potter and
the Sorcerers Stone (Rowling, 1999). Their ap-
proach to characterization of processing at each
MEG sensor location is to determine whether it
is best predicted by the context vector of the re-
current network (prior to the current word being
processed), the embedding of the current word, or
the probability of the current word given the con-
text. In future work we also intend to add these
types of studies to the ERP predictions.

4 Method

Data. We use two sources of data for this analy-
sis. The primary dataset we use is the ERP data
collected and computed by Frank et al. (2015),
and we also use behavioral data (eye-tracking data
and self-paced reading times) from Frank et al.
(2013) which were collected on the same set of
205 sentences. In brief, the sentences were se-
lected from sources using British English with a
criterion that they be understandable out of con-
text. We use the ERP component values as com-
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puted by Frank et al. (2015) which have been high-
pass filtered at 0.5 Hz to reduce correlation be-
tween ERP components and modulus transformed
(John and Draper, 1980) to make the distribution
of component values more normal. We do not use
the 100ms pre-trial baseline which is made avail-
able by Frank et al. (2015) and which they use as
a separate input to the mixed effects regression.
For more information about the ERP datasets and
data collection procedures we refer the reader to
the original papers. For the behavioral data, we
use self-paced reading times and four eye-tracking
measures. Self-paced reading time is considered a
signal of integration difficulty (i.e. as it becomes
more difficult to integrate the meaning of the cur-
rent word into the context, the amount of time a
reader spends on the current word increases). The
eye-tracking measures are intended to capture both
early effects (effects modulated primarily by prop-
erties of the word independent of its context, such
as word frequency and word length) and late ef-
fects (effects modulated by the context in which
the word is found, i.e. comprehension difficulty)
in word processing (Rayner and Pollatsek, 2006).
In both cases, the eye-tracking measures provide
a signal of overt visual attention, which is thought
to strongly correlate with covert perceptual atten-
tion in normal reading (Rayner, 2009). We log-
transform the self-paced reading time and the eye-
tracking measures.

Model. To predict the ERP signals in the data,
we start with a 3-layer bidirectional LSTM-based
language model encoder using the architecture
found in Merity et al. (2017) and pretrained on
the WikiText-103 dataset (Merity et al., 2016) (we
use the pretrained model from Howard and Ruder
(2018)). The pretraining objective is to minimize
the negative log-likelihood of the next word for
the forward LSTM and the previous word for the
reverse LSTM. The word-embeddings (input em-
beddings) in the encoder have 400 components,
the hidden layer outputs have 1150 components
each, and the context-embeddings output from
the encoder have 400 components. The forward-
encoder and backward-encoder are independently
fine-tuned on the baby version of the British Na-
tional Corpus (Consortium, 2005) to help with
prediction of British English (both the ERP data
and eye-tracking data use British English). During
task training the two encoders’ output embeddings
are concatenated together and fed into a causal-



convolution layer which combines each pair of
adjacent timepoints into a single pair-embedding
with 10 components. The causal-convolution (i.e.
convolution which is left padded) ensures that the
pair-embeddings are aligned so that the prediction
targets correspond to the later word in the pair.
In other words the pair can be thought of as rep-
resenting the ‘current’ and ‘previous’ words to-
gether. A ReL.U is applied to the pair-embedding
before it, along with the word length and the log
probability of the word, is fed into a linear output
layer to predict each ERP and behavioral measure
(see Figure 2). The convolution and linear layers
are initialized using the default PyTorch (Paszke
et al., 2017) initialization, i.e. the initialization
proposed in He et al. (2015). The encoder por-
tion of the model includes dropout as applied in
Merity et al. (2017), but we use different dropout
probabilities when we fit the neural and behavioral
data (the dropout probability on the input embed-
dings was 0.05, 0.4 on the input to the LSTM, 0.4
on LSTM hidden layers, 0.5 on the output of the
LSTM, and 0.5 on the recurrent weights). We did
not find dropout in the decoder to be helpful. We
use the Adam optimizer (Kingma and Ba, 2014)
with 51 = 0.95, B2 = 0.999 for training and we
use mean squared error as the loss.

Procedure. We begin our training procedure by
fine-tuning the forward- and backward-encoders
independently on the baby version of the British
National Corpus (Consortium, 2005). This cor-
pus has British English that may help in modeling
the University College London corpus, while not
overlapping with it.

After the model fine-tuning, we estimate how
well the model predicts each of the ERP signals
and eye-tracking measures by training the model
100 times with different train/test splits and de-
coder parameter initializations. We use 10% of
the data for testing and the remainder for training.
The sentences in the ERP data are split at random.
After we split the data, we compute the mean and
standard deviation of each ERP signal (and each
eye-tracking measure and the self-paced reading
time) within participant on the training data. We
use these values to standardize the training data
within participant, and then average the data from
all of the participants together. After we average,
we again compute the mean and standard devia-
tion to standardize the average. We follow a simi-
lar procedure for the test data, but we use the mean

46

O
D
O
o
Pair %
embeddings —
Concatenated
Context
embeddings
m
>
9, 3
LSTM x 3 . 8_
(1)
-
Word I I I I
embeddings & i i . .

The bread tastes like garlic

Figure 2: The model uses an encoder based on the
architecture and regularization in Merity et al. (2017)
and pretrained by Howard and Ruder (2018). Within
this architecture 2 independent 3-layer LSTM mod-
els encode a sentence. The context-embeddings out-
put from each encoder are then concatenated together
to give a single representation to each word in the
sentence. These concatenated context-embeddings are
fed into a causal-convolution, which learns a func-
tion to combine each pair of context-representations
into a pair-embedding. A rectified linear unit (ReLU)
non-linearity is applied to the pair-embedding, af-
ter which independent linear layers map the pair-
embedding along with the log-probability of a word
and the word-length to a prediction of each ERP or be-
havioral signal.

and standard deviation from the training data when
standardizing. Note that we use the log of the be-
havior measures, and the log is taken before the
data-standardization.

In the loss function (and when we evaluate
model performance) we only consider content
words. We mark as a content word any word that
is an adjective, adverb, auxiliary verb, noun, pro-
noun, proper noun, or verb (including to-be verbs).
All other words are considered function words.

During the first 20 epochs of training, only the
parameters of the decoder are modified. Follow-
ing this, we train the model for an additional 15
epochs during which the parameters of the decoder
and the final layer of the encoder (the final LSTM
layer in both the forward and backward encoder)
can be modified. We also experimented with addi-
tional training epochs and allowing all parameters
of the model to be modified, but we found that this
caused overfitting.



Comparing models trained with different loss
functions. To better understand the relationship
between ERP signals, and between ERP signals
and behavioral data, we train the model with dif-
ferent loss functions that include mean squared er-
ror terms corresponding to various combinations
of the ERP signals and behavioral data. For ex-
ample, one of the training variations includes a
mean squared error term for the P600 and a mean
squared error term for the N400 in the loss, but
does not use the other signals during training. In
this variation, for a mini-batch of size B, where
example b has 7T} content tokens and the super-
scripts p and a denote the predicted and actual val-
ues for a measure respectively, the loss function
can be written as:

B T,

Z Z(PGOOZt — P600,)?

b=1 t=1
+ (N400j , — N400j ;)

1

ST (1)

For each of the training variations, we repeat
the training procedure described above (but fine-
tuning the language model on the British National
Corpus is done only once). We use a consistent
train/test split procedure, such that the split for the
ith run of the 100 runs is the same across all train-
ing variations, but the split changes between run ¢
and run j. This enables us to use paired statistical
testing when we test for significance.

We test for whether the proportion of variance
explained (computed as 1 — % on the vali-
dation set) on each ERP and behavioral measure
is significantly different from O using the single
sample t-test controlled for false discovery rate us-
ing the Benjamini-Hochberg-Yekutieli procedure
(Benjamini and Yekutieli, 2001) with a false dis-
covery rate of 0.01.

To test whether the proportion of variance ex-
plained is different between different training vari-
ations (for example training with just the N400
signal included in the loss vs. training with both
the N400 and the LAN included in the loss), we
use a paired t-test. We then adjust for the false
discovery rate again with a rate of 0.01.

5 Results

All ERP components are predictable. In the
original study on this dataset, the investigators
found that when surprisal was used as a link-
ing function between the language model and the
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mixed effects regression, the only ERP for which
the surprisal showed a significant effect in the re-
gression was the N400 (Frank et al., 2015). In
contrast, we find that when we directly predict the
ERP signals we are able to predict a significant
proportion of the variance for all of them (see Ta-
ble 1).

Joint training benefits ERP component predic-
tion. To explore the relationship between ERP
components, we train 63 = (?) + (g) + -+ (2)
different models using all of the possible combina-
tions of which of the six ERP signals are included
in the loss function during training. For each of
the six ERP components, we look for the best per-
forming models (see Table 1). The N400 is best
predicted when the model is trained on that com-
ponent independently, but every other ERP com-
ponent prediction can be improved by including a
second ERP component in the training. Thus mul-
titask learning has a clear benefit when applied to
the ERP data and some information is shared be-
tween ERP component predictions via the model
parameters. We also note that it is not the case
that training with more ERP components is always
better, or that the signals which are most corre-
lated benefit each other most (see Appendix A).
The relationship between components clearly im-
pacts whether the prediction of one ERP compo-
nent benefits from the inclusion of others in model
training. The results suggest that 8 pairs of ERP
signals are related to each other: the LAN is paired
with the P600, EPNP, and PNP, the ELAN with
the N400, EPNP, PNP, and P600, and the EPNP is
paired with the P600. We discuss these relation-
ships in the Discussion section.

In an additional analysis, we modified our train-
ing procedure slightly to probe how jointly train-
ing on multiple ERP components compares to
training individually on each ERP component. In
this analysis we compare only training on each
ERP component individually to training on all six
ERP components together. We also train for a total
of 60 epochs (rather than the 35 epochs used else-
where). During the first 20 epochs we allow only
the parameters of the decoder to be modified. Dur-
ing the next 20 epochs, we allow the parameters of
the decoder and the final layer of the encoder (i.e.
the final recurrent layer) to be modified. During
the last 20 epochs, we allow all of the parameters
of the model to be modified. The mean squared er-
ror for each of the ERP components from this anal-



Target Additional POVE | Target Additional POVE | Target Additional POVE
ELAN 0.20 | LAN 0.30 | N400 0.26
ELAN + EPNP 0.22 | LAN +EPNP 0.31

ELAN + N400 0.22 | LAN +PNP 0.32

ELAN +PNP 022 | LAN  +P600 0.32

ELAN + P600 0.22 | LAN +PNP,N400 0.33

EPNP 0.34 | P600 0.27 | PNP 0.33
EPNP +LAN 0.35 | P600  + EPNP 0.30 | PNP +LAN 0.36
EPNP +GROUPA 036 | P600 +LAN 030 | PNP +GROUPB 0.36

Table 1: Proportion of variance explained (POVE) for each of the ERP components (mean of 100 training runs).
The second column in each cell shows which ERP components in addition to the target ERP component were
included in training. All combinations of training signals were explored. Shown is the best combination for each
ERP target as well as every combination which is (i) significantly different from training on the target component
alone, (ii) not significantly different from the best training combination, and (iii) uses no more than the number
of signals used by the best combination. The N400 is predicted best when only the N40O signal is included in
training. All values are significantly different from 0. GROUP A refers to (PNP, ELAN, LAN, P600) and GROUP

B refers to (EPNP, ELAN, LAN, P600).

ysis is shown for each epoch in Figure 3. From the
loss curves, we make a few observations. First, we
see inflection points at epochs 20 and 40, when we
allow more parameters of the model to be modi-
fied. The first inflection point indicates that allow-
ing the recurrent layer to be modified benefits the
prediction, while the second inflection point shows
that overfitting becomes more severe if we allow
all parameters of the model to be modified. We
also see from these curves that part of the benefit
of joint training is that it helps reduce overfitting —
we see less of a climb in the validation loss after
the minimum point in the joint training. Beyond
this reduction in overfitting severity, we note that
for some of the ERP components (the LAN, EPNP
and PNP components) joint training actually gives
a better overall minimum in prediction error.

Behavioral data benefits the prediction of ERP
components. We are also interested in whether
behavioral data can be used to improve ERP pre-
diction since it should signal both the amount of
overt attention required at various points in a sen-
tence as well as integration difficulty. To study
this question, we again train models using differ-
ent combinations of training signals that include
or do not include the behavioral data predictions
in the loss function (see Table 2). We see that self-
paced reading time indeed can improve predic-
tion of a target ERP component relative to train-
ing on the target ERP component alone by about
the same amount as the best combination of ERP
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components for all but the N400. Eye-tracking
data can also improve the prediction accuracy of
the ELAN, P600, and PNP components.

Insensitivity to choice of architecture. One po-
tential concern about our results is the degree to
which the relationships we see between ERP com-
ponents and between ERP components and be-
havioral data is an artefact of our rather arbitrary
choice of network architecture. We partially ad-
dress this by running the same analysis using (i)
only the forward direction of the encoder, and (ii)
only the word-embeddings (the input embeddings)
and not the context-embeddings (the output em-
beddings) of the encoder. The proportion of vari-
ance explained for each ERP component is lower
using these variants of the analysis than using the
bidirectional variant (see Appendix A), but quali-
tatively the relationships are similar. We leave fur-
ther analysis of the sensitivity of our qualitative
results to choice of architecture for future work.

6 Discussion

In this work we find that all six of the ERP com-
ponents from Frank et al. (2015) can be predicted
above chance by a model which has been pre-
trained using a language modeling objective and
then directly trained to predict the components.
This is in contrast to prior work which has success-
fully linked language models to the N40O (Frank
et al., 2015) and P600 (Hale et al., 2018) but not
the other ERP components. We also note that con-
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Figure 3: The mean squared error (MSE) for prediction of each of the ERP signals during each epoch of training
(mean of 100 training runs). The first 2 epochs have been omitted for clarity. During the first 20 epochs (lavender
background), only the decoder parameters are modified. During the next 20 epochs (light blue background), the
parameters in the final layer of the encoder are also modified. During the last 20 epochs (pink background), all of
the parameters are modified. Note that in this model architecture, information can be shared between ERP signals
even when only the decoder is modified. The figure shows the MSE when separate models are trained for each
ERP independently (a), the MSE when a single model is trained on all ERPs jointly (b), and the difference between
these two scenarios (c). The top row in each column shows the MSE on the training data while the bottom row
shows the MSE on the validation data. In the bottom row right, the dotted vertical lines indicate the epoch at which
the minimum MSE is reached in the lower of the independent or joint training. The LAN, EPNP, and PNP all
show modest benefits from joint training before overfitting sets in (the minimum value occurs in the joint training
scenario), while all ERP signals other than the N400 show reduced overfitting in joint training.

Target Additional POVE | Target Additional POVE | Target Additional POVE

ELAN 0.20 | LAN 0.30 | N400 0.26
ELAN +ERP 0.22 | LAN +ERP 0.33 | N400 +ERP 0.26
ELAN + READ 0.22 | LAN +READ 0.31 | N400 +READ 0.27
ELAN +EYE 0.22 | LAN +EYE 0.30 | N400 +EYE 0.25
EPNP 0.34 | P600 0.27 | PNP 0.33
EPNP + ERP 0.36 | P600 +ERP 0.30 | PNP + ERP 0.36
EPNP + READ 0.35 | P600 +READ 0.29 | PNP + READ 0.34
EPNP +EYE 0.34 | P600 +EYE 0.29 | PNP +EYE 0.34

Table 2: Proportion of variance explained (POVE) for each of the ERP components (mean of 100 training runs).
+ERP indicates the best combination of ERP training signals for the target ERP component, + READ indicates the
inclusion of self-paced reading times, +EYE indicates the inclusion of eye-tracking data, and bold font indicates a
significant difference from training on the target component alone.
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trary to Hale et al. (2018), we find that an LSTM
does contain information that can be used to pre-
dict EEG data, and in particular that it can pre-
dict the P600. We speculate that the analysis used
in Hale et al. (2018) did not find reliable effects
because the language models were related to the
EEG data through functions chosen a priori (the
surprisal, and the ‘distance’ metric). These func-
tions, though interpretable, might be interpretable
at the cost of losing much of the information in the
representations learned by the network.

In addition, we show through our multitask
learning analysis that information is shared be-
tween ERP components, and between ERP com-
ponents and behavioral data. Although these rela-
tionships must be viewed with caution until they
can be verified across multiple datasets and with
more variation in neural network architectures,
here we consider some potential reasons for our
findings. The broad point we wish to make is that
by better understanding which ERP components
share information with each other and with behav-
ioral data through the type of analysis we present
here (multitask learning) or other means, we can
better understand what drives each ERP compo-
nent and in turn the processes involved in human
language comprehension.

Relationship between ERPs. Our findings that
the LAN and P600 are related, and that the ELAN
and P600 are related are expected from both a the-
oretical perspective and from previous work exam-
ining the interactions of ERP components (Gunter
et al., 1997; Hagoort et al., 2003a; Hahne and
Friederici, 1999; Kutas et al., 2006; Palolahti et al.,
2005). Since the ELAN and LAN have been the-
orized by some to mark word-category (i.e. part-
of-speech) or morpho-syntactic (e.g. subject-verb
number agreement) violations (Friederici, 2011;
Hahne and Friederici, 2002; Hagoort et al., 2003b)
and the P600 is considered a marker for syntactic
effort (Coulson et al., 1998; Huettig, 2015; Kem-
merer, 2014; Kuperberg, 2007; Kuperberg et al.,
2003; Van Petten and Luka, 2012), these signals
would naturally be related to each other.

The other relationships we find are more sur-
prising. Some researchers have speculated that the
LAN and ELAN are markers for working mem-
ory demands (King and Kutas, 1995; Kutas et al.,
2006), and that indeed these might be part of sus-
tained negativities that are frequently masked by
the P600 (Kemmerer, 2014). If we take this view,
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then we would expect to find them in the pres-
ence of semantic and syntactic complexity, and
this might explain why they seem to benefit from
joint training with the other ERP component sig-
nals (and benefit prediction of other ERP signals
with which they are trained). However, it is no-
table that predictions of the LAN and ELAN do
not benefit each other in our analysis, and that the
N400 (a marker for semantic complexity) is not
benefited by the prediction of any other ERP com-
ponent. This absence is by no means definitive,
but it undermines the argument that all of these
relationships can be explained by complexity and
working memory demands alone.

The relative isolation of the N400 from other
ERP components in our analysis is interesting. If
the N400 is a marker for semantic memory re-
trieval (Kutas and Federmeier, 2011), then it might
be expected to be somewhat isolated from the
other components, which may involve syntactic
processing or later integration effects.

Alternatively, the relationships we find in our
analysis might be an artefact of the way the ERPs
are operationalized in Frank et al. (2015). Several
of the pairings we find overlap spatially and are
near to each other in time, so the ERP components
might spill over into each other. Further work is
required to disambiguate between these possibili-
ties.

Relationship between behavioral data and
ERPs. It is reassuring to see that jointly training
models to predict behavioral data along with a tar-
get ERP component benefits the prediction of the
ERP component compared to training on the tar-
get ERP component alone. The benefit to predic-
tion in this case cannot be explained as an artefact
of how the ERP components are operationalized in
the datasetes we use for analysis.

Self-paced reading times widely benefit ERP
prediction, while eye-tracking data seems to have
more limited benefit to just the ELAN, LAN, and
PNP ERP components. It’s difficult to know why
this might be the case, but perhaps it is not a co-
incidence that these three ERP components also
show up frequently in the pairs of components
that benefit from joint training. If indeed the PNP
marks semantic role irregularities (Van Petten and
Luka, 2012) and the ELAN and LAN mark work-
ing memory or look-forward or look-back oper-
ations (Kutas et al., 2006), then its possible that
eye-movements might be more related to these



types of operations than to general semantic and
syntactic complexities marked by other ERP com-
ponents. Self-paced reading might better cap-
ture these generic difficulties. This explanation is
highly speculative, and further work is required to
determine whether the relationships between the
ERP components and behavioral data are consis-
tent across datasets, and if so, what the explanation
is for these relationships.

Choice of bidirectional architecture. We em-
phasize that the neural network architecture we
chose for these analyses was motivated primar-
ily by its success on downstream NLP tasks, pub-
lic availability of pre-trained models and code,
and prior work studying how best to fine-tune the
model (Howard and Ruder, 2018; Merity et al.,
2017). We do not claim that this architecture re-
flects human processing. We experimented with
a forward-only model variant of our analysis, and
found that the bidirectional model predicts brain
activity better than the forward-only version (see
Appendix A). Although the bidirectional model
has access to ‘future’ language input, it does not
have access to future brain-activity, so the bidirec-
tional model is not ‘cheating’ when it makes pre-
dictions. There are at least three possible expla-
nations for why the bidirectional model performs
better than the forward-only model. First, it is pos-
sible that when a human reads a sentence, he or she
predicts the upcoming language input. Under this
hypothesis, a model with access to the future lan-
guage input can do a better job of predicting the
current brain activity because the future language
is reflected in that brain activity. Second, it is pos-
sible that a bidirectional model is simply able to
produce better embeddings for each word in the
input because it has more context than a forward-
only model. For example, the bidirectional model
might be (implicitly) better at anaphora resolu-
tion given more context. Under this hypothesis,
the additional context given to the model partially
compensates for its relative deficit of real-world
knowledge compared to a human. Where a hu-
man can in many cases solve the anaphora resolu-
tion problem by using background knowledge and
does not need to see the future language input, a
model benefits from additional context. Finally,
in our setup, the bidirectional model has more pa-
rameters than the forward-only model, and the ad-
ditional degrees of freedom might give the model
an advantage in predicting brain activity. Explo-
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ration of why the bidirectional model is better than
the forward-only model is an interesting question,
but it is left to future work. Additionally, as we
noted earlier, the qualitative results of our analysis
(e.g. how ERP components relate to each other)
should be viewed with caution until they are repli-
cated across multiple choices of architecture.

7 Conclusion

We have shown that ERP components can be pre-
dicted from neural networks pretrained as lan-
guage models and fine-tuned to directly predict
those components. To the best of our knowl-
edge, prior work has not successfully used statis-
tical models to predict all of these components.
Furthermore, we have shown that multitask learn-
ing benefits the prediction of ERP components
and can suggest how components relate to each
other. At present, these joint-training benefit re-
lationships are only suggestive, but if these rela-
tionships ultimately lead to insights about what
drives each ERP component, then the compo-
nents become more useful tools for studying hu-
man language comprehension. By using multitask
learning as a method of characterization, we have
found some expected relationships (LAN+P600
and ELAN+P600) and several more surprising re-
lationships. We believe that this is exactly the
kind of finding that makes multitask learning an
interesting exploratory technique in this area. Ad-
ditionally, we have shown that information can
be shared between heterogeneous types of data
(eye-tracking, self-paced reading, and ERP com-
ponents) in the domain of human language pro-
cessing prediction, and in particular between be-
havioral and neural data. Given the small datasets
associated with human language processing, using
heterogeneous data is a potentially major advan-
tage of a multitask approach. In future work, we
will further explore what information is encoded
into the model representations when neural and
behavioral data are used to train neural networks,
and how these representations differ from the rep-
resentations in a model trained on language alone.
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A Appendix

Here we present a visualization (Figure 4) of the
results presented in Table 1 of the main paper, and
a visualization (Figure 5) of a more complete set
of results from which the information in Table 2
of the main paper is drawn. We also show sup-
plemental results for variants of our primary anal-
ysis on multitask learning with eye-tracking, self-
paced reading time and ERP data. In the variants
we modify the input representation to our decoder
network to see whether the relationships between
the behavioral data and neural activity appear to
be consistent with different choices of encoder ar-
chitectures. Additional (and more varied) choices
or architectures are left to future work. The results
in Table 3 reflect using only the forward-encoder
(rather than the bi-LSTM) in the encoder network,
while the results in Table 4 reflect using only the
word embeddings (i.e. bypassing the LSTM en-
tirely). While the results are clearly worse for each
of these choices of architecture than for using a bi-
LSTM encoder, the relationships between the be-
havioral data and the ERP signals is qualitatively
similar. Finally, 5 shows the Pearson correlation
coefficient between different measures. We note
that the patterns of correlation are different than
the patterns of which measures benefit from joint
training with each other.
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Figure 4: The proportion of variance explained for prediction of each of the ERP signals (mean of 100 training
runs). The target ERP is indicated by color; each group of bars shows performance for a different target ERP. The
top bar in each group shows the proportion of variance explained when the model is trained using only the target
ERP. The bottom bar in each group shows the maximum proportion of variance explained over all combinations of
training ERPs (or in the case of the N400, the second best). Also shown in each group are any training combinations
that (i) used no more than the number of ERP signals used by the combination that achieved the maximum, and
(i1) which were not significantly different from the maximum. Bars are statistically different from each other if a
black dot on one bar is connected by a contiguous vertical line to a white dot on the other bar. The bars in the N400
group are not significantly different from each other. The N400 signal is best predicted when the model is trained
on just that signal. In every other group, there is at least one ERP that, when combined with the target ERP during
training, improves the prediction of the target ERP. The results suggest that these pairs are related: (LAN, P600),
(LAN, EPNP), (LAN, PNP), (ELAN, N400), (ELAN, EPNP), (ELAN, PNP), (ELAN, P600), (EPNP, P600).

Target Additional POVE | Target Additional POVE | Target Additional POVE

ELAN 0.20 | LAN 0.23 | N400 0.20
ELAN +ERP 0.22 | LAN +ERP 0.26 | N400 +ERP 0.20
ELAN +READ 0.22 | LAN +READ 0.25 | N400 +READ 0.20
ELAN +EYE 0.21 | LAN +EYE 0.24 | N400 +EYE 0.18
EPNP 0.28 | P600 0.24 | PNP 0.28
EPNP +ERP 0.28 | P600  +ERP 0.25 | PNP  +ERP 0.31
EPNP + READ 0.29 | P600 +READ 0.25 | PNP +READ 0.30
EPNP +EYE 029 | P600 +EYE 024 | PNP +EYE 0.29

Table 3: Proportion of variance explained for each of the ERP components when using only the forward direction
of the encoder (mean of 100 training runs). +ERP indicates the best combination of ERP training signals for the
target ERP component, + READ indicates the inclusion of self-paced reading times, +EYE indicates the inclusion
of eye-tracking data, and bold font indicates a significant difference from training on the target component alone.
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Figure 5: The proportion of variance explained for prediction of each of the ERP signals (mean of 100 training
runs). The target ERP is indicated by color; each group of bars shows performance for a different target ERP.
The top bar in each group shows the proportion of variance explained when the model is trained using only the
target ERP. Moving down, the next bar in each group, labeled ERP shows the proportion of variance explained by
the best combination of ERP signals for the target ERP. The other bars in each group moving from top to bottom
show training variations that use behavioral data with either just the target ERP, or with the best combination of
ERP signals. READ denotes self-paced reading data, and EYE denotes all four eye-tracking measures (in this
analysis we use right-bounded pass time, gaze duration, go-past time, and first-fixation duration). Pairs of bars
are significantly different from each other (paired t-test, false discovery rate j 0.01) if a black dot on one bar is
connected to a white dot on the other bar by a contiguous vertical line. Self-paced reading time benefits prediction
of all target ERP components except the N400. In the case of the ELAN, LAN, and PNP, self-paced reading time
also has marginal benefit compared to the best combination of ERP training signals. Eye-tracking data benefits
prediction of the ELAN, P600, and PNP components.
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Target Additional POVE | Target Additional POVE | Target Additional POVE

ELAN 0.15 | LAN 0.17 | N400 0.05
ELAN +ERP 0.18 | LAN +ERP 0.19 | N400 +ERP 0.05
ELAN + READ 0.18 | LAN +READ 0.19 | N400 +READ 0.08
ELAN +EYE 0.19 | LAN +EYE 0.19 | N400 +EYE 0.10
EPNP 0.18 | P600 0.10 | PNP 0.20
EPNP + ERP 0.20 | P600 +ERP 0.13 | PNP + ERP 0.23
EPNP + READ 0.20 | P600 +READ 0.13 | PNP + READ 0.22
EPNP +EYE 0.21 | P600 +EYE 0.14 | PNP + EYE 0.23

Table 4: Proportion of variance explained for each of the ERP components when using only the word embeddings
as input to the decoder and bypassing the LSTM entirely (mean of 100 training runs). +ERP indicates the best
combination of ERP training signals for the target ERP component, + READ indicates the inclusion of self-paced
reading times, +EYE indicates the inclusion of eye-tracking data, and bold font indicates a significant difference
from training on the target component alone.

Signal | ELAN EPNP LAN N400 P600 PNP FIX PASS GO RIGHT READ

ELAN 1.00 027 032 0.11 010 024 027 026 0.27 0.26 -0.04
EPNP 0.27 1.00 066 041 050 083 0.17 0.17 0.19 0.17 0.02
LAN 0.32 0.66 100 058 033 047 0.12 011 0.13 0.12 0.01
N400 0.11 041 058 1.00 047 033 -0.04 -004 -0.02 -0.03 0.11
P600 0.10 050 033 047 100 069 0.14 0.14 0.16 0.14 0.10

PNP 0.24 083 047 033 0.69 1.00 025 024 0.26 0.25 0.03
FIX 0.27 0.17 0.12 -0.04 0.14 025 1.00 1.00 1.00 1.00 0.04
PASS 0.26 0.17 0.11 -0.04 0.14 024 100 1.00 1.00 1.00 0.04
GO 0.27 0.19 0.13 -0.02 0.16 026 1.00 1.00 1.00 1.00 0.05

RIGHT | 0.26 0.17 0.12 -0.03 0.14 025 100 1.00 1.00 1.00 0.04
READ | -0.04 0.02 001 0.11 0.10 0.03 004 0.04 0.05 0.04 1.00

Table 5: Raw Pearson’s correlation coefficients (computed on content words after the standardization and
participant-averaging) between each neural and behavioral measure and each other measure. FIX indicates first-
fixation time, PASS indicates first-pass time, GO indicates go-past time, RIGHT indicates right-bounded reading
time, and READ indicates self-paced reading. Many of the measures are highly correlated, but the pattern of cor-
relations is different from the pattern of benefits that we find during joint-training. In particular we note that the
N400 is correlated with the other ERP signals, and yet we do not see benefit in prediction of the N400 when jointly
training a model to predict it and other signals.
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Abstract

We present a simple approach to improve di-
rect speech-to-text translation (ST) when the
source language is low-resource: we pre-train
the model on a high-resource automatic speech
recognition (ASR) task, and then fine-tune its
parameters for ST. We demonstrate that our
approach is effective by pre-training on 300
hours of English ASR data to improve Spanish-
English ST from 10.8 to 20.2 BLEU when
only 20 hours of Spanish-English ST train-
ing data are available. Through an ablation
study, we find that the pre-trained encoder
(acoustic model) accounts for most of the im-
provement, despite the fact that the shared lan-
guage in these tasks is the target language
text, not the source language audio. Apply-
ing this insight, we show that pre-training on
ASR helps ST even when the ASR language
differs from both source and target ST lan-
guages: pre-training on French ASR also im-
proves Spanish-English ST. Finally, we show
that the approach improves performance on a
true low-resource task: pre-training on a com-
bination of English ASR and French ASR im-
proves Mboshi-French ST, where only 4 hours
of data are available, from 3.5 to 7.1 BLEU.

1 Introduction

Speech-to-text Translation (ST) has many potential
applications for low-resource languages: for exam-
ple in language documentation, where the source
language is often unwritten or endangered (Be-
sacier et al., 2006; Martin et al., 2015; Adams et al.,
2016a,b; Anastasopoulos and Chiang, 2017); or
in crisis relief, where emergency workers might
need to respond to calls or requests in a foreign lan-
guage (Munro, 2010). Traditional ST is a pipeline
of automatic speech recognition (ASR) and ma-
chine translation (MT), and thus requires tran-
scribed source audio to train ASR and parallel text
to train MT. These resources are often unavailable
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for low-resource languages, but for our potential
applications, there may be some source language
audio paired with target language text translations.
In these scenarios, end-to-end ST is appealing.

Recently, Weiss et al. (2017) showed that end-
to-end ST can be very effective, achieving an im-
pressive BLEU score of 47.3 on Spanish-English
ST. But this result required over 150 hours of trans-
lated audio for training, still a substantial resource
requirement. By comparison, a similar system
trained on only 20 hours of data for the same
task achieved a BLEU score of 5.3 (Bansal et al.,
2018). Other low-resource systems have similarly
low accuracies (Anastasopoulos and Chiang, 2018;
Bérard et al., 2018).

To improve end-to-end ST in low-resource set-
tings, we can try to leverage other data resources.
For example, if we have transcribed audio in the
source language, we can use multi-task learning
to improve ST (Anastasopoulos and Chiang, 2018;
Weiss et al., 2017; Bérard et al., 2018). But source
language transcriptions are unlikely to be available
in our scenarios of interest.

Could we improve low-resource ST by lever-
aging data from a high-resource language? For
ASR, training a single model on multiple languages
can be effective for all of them (Toshniwal et al.,
2018b; Deng et al., 2013). For MT, transfer learn-
ing (Thrun, 1995) has been very effective: pre-
training a model for a high-resource language pair
and transferring its parameters to a low-resource
language pair when the target language is shared
(Zoph et al., 2016; Johnson et al., 2017). Inspired
by these successes, we show that low-resource ST
can leverage transcribed audio in a high-resource
target language, or even a different language al-
together, simply by pre-training a model for the
high-resource ASR task, and then transferring and
fine-tuning some or all of the model’s parameters
for low-resource ST.

Proceedings of NAACL-HLT 2019, pages 58—68
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We first test our approach using Spanish as the
source language and English as the target. After
training an ASR system on 300 hours of English,
fine-tuning on 20 hours of Spanish-English yields
a BLEU score of 20.2, compared to only 10.8 for
an ST model without ASR pre-training. Analyz-
ing this result, we discover that the main benefit
of pre-training arises from the transfer of the en-
coder parameters, which model the input acoustic
signal. In fact, this effect is so strong that we also
obtain improvements by pre-training on a language
that differs from both the source and the target:
pre-training on French and fine-tuning on Spanish-
English. We hypothesize that pre-training the en-
coder parameters, even on a different language,
allows the model to better learn about linguisti-
cally meaningful phonetic variation while normal-
izing over acoustic variability such as speaker and
channel differences. We conclude that the acoustic-
phonetic learning problem, rather than translation
itself, is one of the main difficulties in low-resource
ST. A final set of experiments confirm that ASR pre-
training also helps on another language pair where
the input is truly low-resource: Mboshi-French.

2 Method

For both ASR and ST, we use an encoder-decoder
model with attention adapted from Weiss et al.
(2017), Bérard et al. (2018) and Bansal et al. (2018),
as shown in Figure 1. We use the same model ar-
chitecture for all our models, allowing us to con-
veniently transfer parameters between them. We
also constrain the hyper-parameter search to fit a
model into a single Titan X GPU, allowing us to
maximize available compute resources.

We use a pre-trained English ASR model to ini-
tialize training of Spanish-English ST models, and
a pre-trained French ASR model to initialize train-
ing of Mboshi-French ST models. During ST train-
ing, all model parameters are updated. In these
configurations, the decoder shares the same vocab-
ulary across the ASR and ST tasks. This is practical
for settings where the target text language is high-
resource with ASR data available.

In settings where both ST languages are low-
resource, ASR data may only be available in a third
language. To test whether transfer learning will
help in this setting, we use a pre-trained French
ASR model to train Spanish-English ST models;
and English ASR for Mboshi-French models. In
these cases, the ST languages are different from the
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Figure 1: Encoder-decoder with attention model archi-
tecture for both ASR and ST. The encoder input is the
Spanish speech utterance claro, translated as clearly,
represented as BPE (subword) units.

ASR language, so we can only transfer the encoder
parameters of the ASR model, since the dimensions
of the decoder’s output softmax layer are indexed
by the vocabulary, which is not shared.! Sharing
only the speech encoder parameters is much eas-
ier, since the speech input can be preprocessed in
the same manner for all languages. This form of
transfer learning is more flexible, as there are no
constraints on the ASR language used.

3 Experimental Setup
3.1 Data sets

English ASR. We use the Switchboard Telephone
speech corpus (Godfrey and Holliman, 1993),
which consists of around 300 hours of English
speech and transcripts, split into 260k utterances.
The development set consists of 5 hours that we
removed from the training set, split into 4k utter-
ances.

French ASR. We use the French speech corpus
from the GlobalPhone collection (Schultz, 2002),
which consists of around 20 hours of high quality
read speech and transcripts, split into 9k utterances.
The development set consists of 2 hours, split into
800 utterances.

Spanish-English ST. We use the Fisher Spanish
speech corpus (Graff et al., 2010), which consists of
160 hours of telephone speech in a variety of Span-
ish dialects, split into 140K utterances. To simulate
low-resource conditions, we construct smaller train-

!'Using a shared vocabulary of characters or subwords is
an interesting direction for future work, but not explored here.



ing corpora consisting of 50, 20, 10, 5, or 2.5 hours
of data, selected at random from the full training
data. The development and test sets each consist
of around 4.5 hours of speech, split into 4K utter-
ances. We do not use the corresponding Spanish
transcripts; our target text consists of English trans-
lations that were collected through crowdsourcing
(Post et al., 2013, 2014).

Mboshi-French ST. Mboshi is a Bantu language
spoken in the Republic of Congo, with around
160,000 speakers.> We use the Mboshi-French par-
allel corpus (Godard et al., 2018), which consists
of around 4 hours of Mboshi speech, split into a
training set of 5K utterances and a development
set of 500 utterances. Since this corpus does not
include a designated test set, we randomly sam-
pled and removed 200 utterances from training to
use as a development set, and use the designated
development data as a test set.

3.2 Preprocessing

Speech. We convert raw speech input to 13-
dimensional MFCCs using Kaldi (Povey et al.,
2011).> We also perform speaker-level mean and
variance normalization.

Text. The target text of the Spanish-English data
set contains 1.5M word tokens and 17K word types.
If we model text as sequences of words, our model
cannot produce any of the unseen word types in
the test data and is penalized for this, but it can be
trained very quickly (Bansal et al., 2018). If we
instead model text as sequences of characters as
done by Weiss et al. (2017), we would have 7M
tokens and 100 types, resulting in a model that is
open-vocabulary, but very slow to train (Bansal
et al., 2018). As an effective middle ground, we
use byte pair encoding (BPE; Sennrich et al., 2016)
to segment each word into subwords, each of which
is a character or a high-frequency sequence of
characters—we use 1000 of these high-frequency
sequences. Since the set of subwords includes the
full set of characters, the model is still open vocab-
ulary; but it results in a text with only 1.9M tokens
and just over 1K types, which can be trained almost
as fast as the word-level model.

The vocabulary for BPE depends on the fre-

2etl’mologue .com/language/mdw

3In preliminary experiments, we did not find much differ-
ence between between MFCCs and more raw spectral repre-
sentations like Mel filterbank features.
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quency of character sequences, so it must be com-
puted with respect to a specific corpus. For En-
glish, we use the full 160-hour Spanish-English
ST target training text. For French, we use the
Mboshi-French ST target training text.

3.3 Model architecture for ASR and ST

Speech encoder. As shown schematically in Fig-
ure 1, MFCC feature vectors, extracted using a
window size of 25 ms and a step size of 10ms, are
fed into a stack of two CNN layers, with 128 and
512 filters with a filter width of 9 frames each. In
each CNN layer we stride with a factor of 2 along
time, apply a ReLU activation (Nair and Hinton,
2010), and apply batch normalization (Ioffe and
Szegedy, 2015). The output of the CNN layers
is fed into a three-layer bi-directional long short
term memory network (LSTM; Hochreiter and
Schmidhuber, 1997); each hidden layer has 512
dimensions.

Text decoder. At each time step, the decoder
chooses the most probable token from the output
of a softmax layer produced by a fully-connected
layer, which in turn receives the current state of
a recurrent layer computed from previous time
steps and an attention vector computed over the
input. Attention is computed using the global atten-
tional model with general score function and input-
feeding, as described in Luong et al. (2015). The
predicted token is then fed into a 128-dimensional
embedding layer followed by a three-layer LSTM
to update the recurrent state; each hidden state has
256 dimensions. While training, we use the pre-
dicted token 20% of the time as input to the next
decoder step and the training token for the remain-
ing 80% of the time (Williams and Zipser, 1989).
At test time we use beam decoding with a beam
size of 5 and length normalization (Wu et al., 2016)
with a weight of 0.6.

Training and implementation. Parameters for
the CNN and RNN layers are initialized using
the scheme from (He et al., 2015). For the
embedding and fully-connected layers, we use
Chainer’s (Tokui et al., 2015) default initialition.

We regularize using dropout (Srivastava et al.,
2014), with a ratio of 0.3 over the embedding and
LSTM layers (Gal, 2016), and a weight decay rate
of 0.0001. The parameters are optimized using
Adam (Kingma and Ba, 2015), with a starting alpha
of 0.001.



Following some preliminary experimentation on
our development set, we add Gaussian noise with
standard deviation of 0.25 to the MFCC features
during training, and drop frames with a probabil-
ity of 0.10. After 20 epochs, we corrupt the true
decoder labels by sampling a random output label
with a probability of 0.3.

Our code is implemented in Chainer (Tokui et al.,
2015) and is freely available.*

3.4 Evaluation

Metrics. We report BLEU (Papineni et al., 2002)
for all our models.’ In low-resource settings,
BLEU scores tend to be low, difficult to interpret,
and poorly correlated with model performance.
This is because BLEU requires exact four-gram
matches only, but low four-gram accuracy may ob-
scure a high unigram accuracy and inexact transla-
tions that partially capture the semantics of an utter-
ance, and these can still be very useful in situations
like language documentation and crisis response.
Therefore, we also report word-level unigram preci-
sion and recall, taking into account stem, synonym,
and paraphrase matches. To compute these scores,
we use METEOR (Lavie and Agarwal, 2007) with
default settings for English and French.® For exam-
ple, METEOR assigns “eat” a recall of 1 against
reference “eat” and a recall of 0.8 against reference
“feed”, which it considers a synonym match.

Naive baselines. We also include evaluation scores
for a naive baseline model that predicts the K most
frequent words of the training set as a bag of words
for each test utterance. We set K to be the value
at which precision/recall are most similar, which
is always between 5 and 20 words. This provides
an empirical lower bound on precision and recall,
since we would expect any usable model to out-
perform a system that does not even depend on
the input utterance. We do not compute BLEU for
these baselines, since they do not predict sequences,
only bags of words.

4 ASR results

Using the experimental setup of Section 3, we pre-
trained ASR models in English and French, and
report their word error rates (WER) on develop-

‘github.com/0xSameer/ast

SWe compute BLEU with multi-bleu.pl from the
Moses toolkit (Koehn et al., 2007).

bcs.cmu.edu/-alavie/METEOR
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en-100h
354

en-300h
27.3

fr-20h
29.6

WER

Table 1: Word Error Rate (WER, in %) for the ASR
models used as pretraining, computed on Switchboard
train-dev for English and Globalphone dev for French.

ment data in Table 1.” We denote each ASR model
by L-Nh, where L is a language code and N is the
size of the training set in hours. For example, en-
300h denotes an English ASR model trained on
300 hours of data.

Training ASR models for state-of-the-art perfor-
mance requires substantial hyper-parameter tuning
and long training times. Since our goal is simply to
see whether pre-training is useful, we stopped pre-
training our models after around 30 epochs (3 days)
to focus on transfer experiments. As a consequence,
our ASR results are far from state-of-the-art: cur-
rent end-to-end Kaldi systems obtain 16% WER
on Switchboard frain-dev, and 22.7% WER on the
French Globalphone dev set.® We believe that bet-
ter ASR pre-training may produce better ST results,
but we leave this for future work.

5 Spanish-English ST

In the following, we denote an ST model by S-7-
Nh, where S and T are source and target language
codes, and N is the size of the training set in hours.
For example, sp-en-20h denotes a Spanish-English
ST model trained using 20 hours of data. We use
the code mb for Mboshi and fr for French.

5.1 Using English ASR to improve ST

Figure 2 shows the BLEU and unigram preci-
sion/recall scores on the development set for base-
line Spanish-English ST models and those trained
after initializing with the en-300h model. Corre-
sponding results on the test set (Table 2) reveal very
similar patterns. The remainder of our analysis is
confined to the development set. The naive base-
line, which predicts the 15 most frequent English
words in the training set, achieves a precision/recall
of around 20%, setting a performance lower bound.

Low-resource: 20-50 hours of ST training data.
Our baseline ST models substantially improve over

"We computed WER with the NIST sclite script.

8These WER results taken from respective Kaldi recipes
on GitHub, and may not represent the very best results on
these data sets.
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Figure 2: (top) BLEU and (bottom) Unigram preci-
sion/recall for Spanish-English ST models computed
on Fisher dev set. base indicates no transfer learning;
+asr are models trained by fine-tuning en-300h model
parameters. naive baseline indicates the score when we
predict the 15 most frequent English words in the train-
ing set.

previous results (Bansal et al., 2018) using the same
train/test splits, primarily due to better regulariza-
tion and modeling of subwords rather than words.
Yet transfer learning still substantially improves
over these strong baselines. For sp-en-20h, transfer
learning improves dev set BLEU from 10.8 to 19.9,
precision from 41% to 51%, and recall from 38%
to 49%. For sp-en-50h, transfer learning improves
BLEU from 23.3 to 27.8, precision from 54% to
58%, and recall from 51% to 56%.

Very low-resource: 10 hours or less of ST train-
ing data. Figure 2 shows that without transfer
learning, ST models trained on less than 10 hours of
data struggle to learn, with precision/recall scores
close to or below that of the naive baseline. But
with transfer learning, we see gains in precision
and recall of between 10 and 20 points.

We also see that with transfer learning, a model
trained on only 5 hours of ST data achieves a BLEU
of 9.1, nearly as good as the 10.8 of a model trained
on 20 hours of ST data without transfer learning. In
other words, fine-tuning an English ASR model—
which is relatively easy to obtain—produces similar
results to training an ST model on four times as

N= 0 25 5 10 20 50

0 21 1.8 21 108 227
05 57 9.1 145 202 282

base
+asr

Table 2: BLEU scores for Spanish-English ST on the
Fisher test set, using N hours of training data. base: no
transfer learning. +asr: using model parameters from
English ASR (en-300h).

Spanish super caliente pero muy bonito
English super hot but very nice

20h you support it but it was very nice
20h+asr you can get alright but it’s very nice
50h super expensive but very nice
50h+asr super hot but it’s very nice

Spanish
English
20h yes i’ve been a long time what did you come here
20h+asr ﬁ and you have a long time that yﬁliie here
50h yes you are a long time that you live here
50h+asr yes and have you been here long

si y usted hace mucho tiempo que que vive aqui
yes and have you been living here a long time

Table 3: Example translations on selected sentences
from the Fisher development set, with stem-level n-
gram matches to the reference sentence underlined.
20h and 50h are Spanish-English models without pre-
training; 20h+asr and 50h+asr are pre-trained on 300
hours of English ASR.

much data, which may be difficult to obtain.

We even find that in the very low-resource setting
of just 2.5 hours of ST data, with transfer learning
the model achieves a precision/recall of around
30% and improves by more than 10 points over the
naive baseline. In very low-resource scenarios with
time constraints—such as in disaster relief—it is
possible that even this level of performance may
be useful, since it can be used to spot keywords in
speech and can be trained in just three hours.

Sample translations. Table 3 shows example
translations for models sp-en-20h and sp-en-50h
with and without transfer learning using en-300h.
Figure 3 shows the attention weights for the
last sample utterance in Table 3. For this utter-
ance, the Spanish and English text have a different
word order: mucho tiempo occurs in the middle of
the speech utterance, and its translation, long time,
is at the end of the English reference. Similarly,
vive aqui occurs at the end of the speech utterance,
while the translation, living here, is in the middle
of the English reference. The baseline sp-en-50h
model translates the words correctly but doesn’t get
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Figure 3: Attention plots for the final example in Ta-
ble 3, using 50h models with and without pre-training.
The z-axis shows the reference Spanish word positions
in the input; the y-axis shows the predicted English sub-
words. In the reference, mucho tiempo is translated to
long time, and vive aqui to living here, but their order
is reversed, and this is reflected in (b).

the English word order right. With transfer learn-
ing, the model produces a shorter but still accurate
translation in the correct word order.

5.2 Analysis

To understand the source of these improvements,
we carried out a set of ablation experiments. For
most of these experiments, we focus on Spanish-
English ST with 20 hours of training data, with and
without transfer learning.

Transfer learning with selected parameters. In
our first set of experiments, we transferred all
parameters of the en-300h model, including the
speech encoder CNN and LSTM; the text decoder
embedding, LSTM and output layer parameters;
and attention parameters. To see which set of pa-
rameters has the most impact, we train the sp-en-
20h model by transferring only selected parameters
from en-300h, and randomly initializing the rest.
The results (Figure 4) show that transferring all
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Figure 4: Fisher development set training curves
(reported using BLEU) for sp-en-20h using selected
parameters from en-300h: none (base); encoder
CNN only (+asr:cnn); encoder CNN and LSTM only
(+asr:enc); decoder only (+asr:dec); and all: encoder,
attention, and decoder (+asr:all). These scores do not
use beam search and are therefore lower than the best
scores reported in Figure 2.

parameters is most effective, and that the speech
encoder parameters account for most of the gains.
We hypothesize that the encoder learns transferable
low-level acoustic features that normalize across
variability like speaker and channel differences to
better capture meaningful phonetic differences, and
that much of this learning is language-independent.
This hypothesis is supported by other work show-
ing the benefits of cross-lingual and multilingual
training for speech technology in low-resource tar-
get languages (Carlin et al., 2011; Jansen et al.,
2010; Deng et al., 2013; Vu et al., 2012; Thomas
etal., 2012; Cui et al., 2015; Alumde et al., 2016;
Yuan et al., 2016; Renshaw et al., 2015; Hermann
and Goldwater, 2018).

By contrast, transferring only decoder param-
eters does not improve accuracy. Since decoder
parameters help when used in tandem with encoder
parameters, we suspect that the dependency in pa-
rameter training order might explain this: the trans-
ferred decoder parameters have been trained to ex-
pect particular input representations from the en-
coder, so transferring only the decoder parameters
without the encoder might not be useful.

Figure 4 also suggests that models make strong
gains early on in the training when using transfer
learning. The sp-en-20h model initialized with all
model parameters (+asr:all) from en-300h reaches
a higher BLEU score after just 5 epochs (2 hours)
of training than the model without transfer learn-
ing trained for 60 epochs/20 hours. This again can
be useful in disaster-recovery scenarios, where the
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Figure 5: Spanish-to-English BLEU scores on Fisher
dev set, with Oh (no transfer learning), 100h and 300h
of English ASR data used.

time to deploy a working system must be mini-
mized.

Amount of ASR data required. Figure 5 shows
the impact of increasing the amount of English
ASR data used on Spanish-English ST performance
for two models: sp-en-20h and sp-en-50h.

For sp-en-20h, we see that using en-100h im-
proves performance by almost 6 BLEU points. By
using more English ASR training data (en-300h)
model, the BLEU score increases by almost 9
points. However, for sp-en-50h, we only see im-
provements when using en-300h. This implies that
transfer learning is most useful when only a few
tens of hours of training data are available for ST.
As the amount of ST training data increases, the
benefits of transfer learning tail off, although it’s
possible that using even more monolingual data,
or improving the training at the ASR step, could
extend the benefits to larger ST data sets.

Impact of code-switching. We also tried using
the en-300h ASR model without any fine-tuning
to translate Spanish audio to English text. This
model achieved a BLEU score of 1.1, with a pre-
cision of 15 and recall of 21. The non-zero BLEU
score indicates that the model is matching some
4-grams in the reference. This seems to be due to
code-switching in the Fisher-Spanish speech data
set. Looking at the dev set utterances, we find
several examples where the Spanish transcriptions
match the English translations, indicating that the
speaker switched into English. For example, there
is an utterance whose Spanish transcription and
English translation are both “right yeah”, and this
English expression is indeed present in the source
audio. The English ASR model correctly trans-
lates this utterance, which is unsurprising since
the phrase “right yeah” occurs nearly 500 times in
Switchboard.
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Overall, we find that in nearly 500 of the 4,000
development set utterances (14%), the Spanish
transcription and English translations share more
than half of their tokens, indicating likely code-
switching. This suggests that transfer learning from
English ASR models might help more than from
other languages. To isolate this effect from transfer
learning of language-independent speech features,
we carried out a further experiment.

5.3 Using French ASR to improve
Spanish-English ST

In this experiment, we pre-train using French ASR
data for a Spanish-English translation task. Here,
we can only transfer the speech encoder parameters,
and there should be little if any benefit due to code-
switching.

Because our French data set (20 hours) is much
smaller than our English one (300 hours), for a fair
comparison we used a 20 hour subset of the English
data for pre-training in this experiment. For both
the English and French models, we transferred only
the encoder parameters.

Table 4 shows that both the English and French
20-hour pre-trained models improve performance
on Spanish-English ST. The English model works
slightly better, as would be predicted given our dis-
cussion of code-switching, but the French model
is also useful, improving BLEU from 10.8 to 12.5.
This result strengthens the claim that ASR pre-
training on a completely distinct third language can
help low-resource ST. Presumably benefits would
be much greater if we used a larger ASR data set,
as we did with English above.

In this experiment, the French pre-trained model
used a French BPE output vocabulary, distinct from
the English BPE vocabulary used in the ST sys-
tem. In the future it would be interesting to try
combining the French and English text to create a
combined output vocabulary, which would allow
transferring both the encoder and decoder param-
eters, and may be useful for translating names or
cognates. More generally, it would also be pos-
sible to pre-train on multiple languages simulta-
neously using a shared BPE vocabulary. There is
evidence that speech features trained on multiple
languages transfer better than those trained on the
same amount of data from a single language (Her-
mann and Goldwater, 2018), so multilingual pre-
training for ST could improve results.
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baseline

10.8
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Table 4: Fisher dev set BLEU scores for sp-en-20h.
baseline: model without transfer learning. Last two
columns: Using encoder parameters from French ASR
(+fr-20h), and English ASR (+en-20h).

model pretrain BLEU Pr. Rec.
fr-top-8w - 0 235 222
fr-top-10w - 0 206 245
en-300h - 0 02 57
fr-20h - 0 4.1 32

- 35 18.6 194

fr-20h 59 236 209

mb-fr-4h - 300h 53 235 226
en + fr 71 26.7 23.1

Table 5: Mboshi-to-French translation scores, with and
without ASR pre-training. Pr. is the precision, and
Rec. the recall score. fr-top-8w and fr-top-10w are
naive baselines that, respectively, predict the 8 or 10
most frequent training words. For en + fr, we use en-
coder parameters from en-300h and attention+decoder
parameters from fr-20h

6 Mboshi-French ST

Our final set of experiments test our transfer
method on ST for the low-resource language
Mboshi, where we have only 4 hours of ST training
data: Mboshi speech input paired with French text
output.

Table 5 shows the ST model scores for Mboshi-
French with and without using transfer learning.
The first two rows fr-top-8w, fr-top-10w, show pre-
cision and recall scores for the naive baselines
where we predict the top 8 or 10 most frequent
French words in the Mboshi-French training set.
These show that a precision/recall in the low 20s is
easy to achieve, although with no n-gram matches
(0 BLEU). The pre-trained ASR models by them-
selves (next two lines) are much worse.

The baseline model trained only on ST data actu-
ally has lower precision/recall than the naive base-
line, although its non-zero BLEU score indicates
that it is able to correctly predict some n-grams.
We see comparable precision/recall to the naive
baseline with improvements in BLEU by transfer-
ring either French ASR parameters (both encoder

65

and decoder, fr-20h) or English ASR parameters
(encoder only, en-300h).

Finally, to achieve the benefits of both the larger
training set size for the encoder and the matching
language of the decoder, we tried transferring the
encoding parameters from the en-300h model and
the decoding parameters from the fr-20h model.
This configuration (en+fr) gives us the best evalua-
tion scores on all metrics, and highlights the flexi-
bility of our framework. Nevertheless, the 4-hour
scenario is clearly a very challenging one.

7 Conclusion

This paper introduced the idea of pre-training an
end-to-end speech translation system involving a
low-resource language using ASR training data
from a higher-resource language. We showed that
large gains are possible: for example, we achieved
an improvement of 9 BLEU points for a Spanish-
English ST model with 20 hours of parallel data
and 300 hours of English ASR data. Moreover, the
pre-trained model trains faster than the baseline,
achieving higher BLEU in only a couple of hours,
while the baseline trains for more than a day.

We also showed that these methods can be
used effectively on a real low-resource language,
Mboshi, with only 4 hours of parallel data. The
very small size of the data set makes the task chal-
lenging, but by combining parameters from an
English encoder and French decoder, we outper-
formed baseline models to obtain a BLEU score of
7.1 and precision/recall of about 25%. We believe
ours is the first paper to report word-level BLEU
scores on this data set.

Our analysis indicates that, other things being
equal, transferring both encoder and decoder pa-
rameters works better than just transferring one or
the other. However, transferring the encoder pa-
rameters is where most of the benefit comes from.
Pre-training using a large ASR corpus from a mis-
matched language will therefore probably work bet-
ter than using a smaller ASR corpus that matches
the output language.

Our analysis suggests several avenues for further
exploration. On the speech side, it might be even
more effective to use multilingual training; or to
replace the MFCC input features with pre-trained
multilingual features, or features that are targeted to
low-resource multispeaker settings (Kamper et al.,
2015, 2017; Thomas et al., 2012; Cui et al., 2015;
Yuan et al., 2016; Renshaw et al., 2015). On



the language modeling side, simply transferring
decoder parameters from an ASR model did not
work; it might work better to use pre-trained de-
coder parameters from a language model, as pro-
posed by Ramachandran et al. (2017), or shallow
fusion (Giilcehre et al., 2015; Toshniwal et al.,
2018a), which interpolates a pre-trained language
model during beam search. In these methods, the
decoder parameters are independent, and can there-
fore be used on their own. We plan to explore these
strategies in future work.
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Abstract

In this paper, we deploy binary stochastic neu-
ral autoencoder networks as models of infant
language learning in two typologically unre-
lated languages (Xitsonga and English). We
show that the drive to model auditory per-
cepts leads to latent clusters that partially align
with theory-driven phonemic categories. We
further evaluate the degree to which theory-
driven phonological features are encoded in
the latent bit patterns, finding that some (e.g.
[*approximant]), are well represented by the
network in both languages, while others (e.g.
[£spread glottis]) are less so. Together, these
findings suggest that many reliable cues to
phonemic structure are immediately available
to infants from bottom-up perceptual charac-
teristics alone, but that these cues must eventu-
ally be supplemented by top-down lexical and
phonotactic information to achieve adult-like
phone discrimination. Our results also suggest
differences in degree of perceptual availabil-
ity between features, yielding testable predic-
tions as to which features might depend more
or less heavily on top-down cues during child
language acquisition.

1 Introduction

Distinctive features like [+voice] and [f=sonorant]
have been a core construct of phonological the-
ory for many decades (Trubetskoy, 1939; Jakob-
son et al., 1951; Chomsky and Halle, 1968;
Clements, 1985). They have been used in au-
tomatic speech recognition (Livescu and Glass,
2004), and psycholinguistic evidence suggests that
they are cognitively available during language ac-
quisition (Kuhl, 1980; White and Morgan, 2008).
Nonetheless, distinctive features are not directly
observed by humans; they are abstractions that
must be inferred from dense perceptual infor-
mation (sound waves) during language acquisi-
tion and comprehension, which raises questions
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about how they are learned and recognized. In
adults, phonological comprehension is aided by
top-down lexical and phonotactic (i.e. sound se-
quencing) constraints. For example, the classic
phonemic restoration effect (Warren, 1970) shows
that adults infer missing phonemes from context
with such ease that they often fail to notice when
acoustic cues to phone identity are erased. How-
ever, infants first learning their phonemic cate-
gories have not yet acquired reliable top-down lex-
ical and phonotactic models and must rely more
heavily on bottom-up perceptual information. To
a learner faced with the immense challenge of dis-
covering structure in dense perceptual input, do
theory-driven phonological features “stand out” or
are they swamped by noise? In this paper, we ad-
dress this question using an unsupervised compu-
tational acquisition model.

Previous models of phonological category in-
duction have emphasized the importance of top-
down information (information about the con-
texts in which phonemes occur) (Peperkamp et al.,
2006; Swingley, 2009; Feldman et al., 2009a,
2013a,b; Moreton and Pater, 2012a,b; Martin
et al,, 2013; Pater and Moreton, 2014; Frank
et al., 2014; Doyle et al., 2014; Doyle and Levy,
2016). But to prevent the acquisition process
from being circular, the learner cannot operate
solely on top-down information — the acoustic
signal must provide some evidence for the phone-
mic categories. We hypothesize that the same
must be true for at least some phonological fea-
tures (e.g. [*nasal], [£lateral]), but previous work
on unsupervised speech processing has inferred
phonological structure from spoken utterances us-
ing either (1) discrete transition-based architec-
tures (Varadarajan et al., 2008; Jansen and Church,
2011; Lee and Glass, 2012), which do attempt
to discover featurally-related natural classes, or
(2) continuous deep neural (Kamper et al., 2015,
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2017a; Renshaw et al., 2015) architectures, whose
internal representations are difficult to interpret.
Furthermore, these approaches do not separate the
contributions of top-down sequential information
from bottom-up acoustic properties of segments,
making it difficult to assess the relative importance
of these information sources throughout the acqui-
sition process.

By contrast, our model attends exclusively to
phone-internal acoustic patterns using a deep neu-
ral autoencoder with a discrete embedding space
composed of binary stochastic neurons (BSNs)
(Rosenblatt, 1958; Hinton, 2012; Bengio et al.,
2013; Courbariaux et al., 2016). BSNs allow us
to exploit (1) the interpretability of discrete repre-
sentations, (2) the decomposability of phone seg-
ments into phonological features, and (3) and the
power of deep neural function approximators to
relate percepts and their representations. Since ev-
ery token is labeled with a binary latent code, it is
possible to evaluate the model’s recovery not only
of phonological categories but also of phonologi-
cal features. Featural representations can encode
distributional facts about which processes apply
to which classes of sounds in ways that cross-cut
the phonological space, rather than simply group-
ing each segment with a set of similar neighbors
(LeCun et al., 2015). By focusing on the acoustic
properties of sounds themselves rather than their
sequencing in context, our model enables explo-
ration of two questions about the data available
to young learners whose training signal must pri-
marily be extracted from bottom-up perceptual in-
formation: (1) to what extent can phoneme cat-
egories emerge from a drive to model auditory
percepts, and (2) how perceptually available are
theory-driven phonological features (that is, how
easily can they be extracted directly from low-
level acoustic percepts)?

Our results show (a) that phonemic categories
emerge naturally but imperfectly from perceptual
reconstruction and (b) that theory-driven features
differ in their degree of perceptual availability. To-
gether, these findings suggest that many reliable
cues to phonemic structure are immediately avail-
able to infants from bottom-up perceptual char-
acteristics alone, but that these cues may eventu-
ally need to be supplemented by top-down lexical
and phonotactic information to achieve adult-like
phone discrimination (Feldman et al., 2013a; Pater
and Moreton, 2014). Our findings also suggest hy-
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potheses as to precisely which kinds of phonologi-
cal features are more or less perceptually available
and therefore might depend more or less heav-
ily on top-down cues for acquisition. Such dif-
ferences might suggest relative timelines at which
different features might be appropriated in support
of phonemic, phonotactic, and lexical generaliza-
tion, providing a rich set of testable hypotheses
about child language acquisition.

2 Background and Related Work

2.1 Unsupervised Speech Processing

The present paper has a strong connection to re-
cent work on unsupervised speech processing, es-
pecially the Zerospeech 2015 (Versteegh et al.,
2015) and 2017 (Dunbar et al., 2017) shared tasks.
Participating systems (Badino et al., 2015; Ren-
shaw et al., 2015; Agenbag and Niesler, 2015;
Chen et al., 2015; Baljekar et al., 2015; Résédnen
etal., 2015; Lyzinski et al., 2015; Zeghidour et al.,
2016; Heck et al., 2016; Srivastava and Shrivas-
tava, 2016; Kamper et al., 2017b; Chen et al.,
2017; Yuan et al., 2017; Heck et al., 2017; Shi-
bata et al., 2017; Ansari et al., 2017a,b) perform
unsupervised ABX discrimination and/or spoken
term discovery on the basis of unlabeled speech
alone. The design and evaluation of these and
related systems (Kamper et al., 2015, 2017a; El-
sner and Shain, 2017; Réasdnen et al., 2018) are
oriented toward word-level modeling. As such,
our focus on the perceptual availability of phono-
logical features is orthogonal to but complemen-
tary with this line of research. Since distinctive
features are important for indexing lexical con-
trasts, especially between highly confusable words
(e.g. onset voicing alone distinguishes sap and zap
in English), studying the perceptual availability
of distinctive features to an unsupervised learner
may help improve the design and analysis of low-
resource speech processing systems.

To our knowledge, the task most closely re-
lated to the current paper is unsupervised phone
discovery. Some studies in this tradition seg-
ment speech into phone-like units without cluster-
ing them (Dusan and Rabiner, 2006; Qiao et al.,
2008), while others cluster small subsets of pre-
segmented sounds (usually vowels) using para-
metric models (mixture-of-Gaussians) (Vallabha
et al., 2007; Feldman et al., 2013a; Antetomaso
et al., 2017). Further work combines these tasks
and extends the approach to cover the entire acous-



tic space (Lee and Glass, 2012). However, for
a variety of reasons, the Lee and Glass (2012)
model does not straightforwardly support evalu-
ation of the perceptual availability of phonologi-
cal features. First, they do not quantitatively eval-
vate the discovered phoneme clusters. Second,
the model incorporates phonotactics through tran-
sition probabilities, making it difficult to disentan-
gle the contributions of top-down and bottom-up
information to the learning process. Third, the
clustering model is not feature-based, but instead
consists of atomic categories, each defining a dis-
tinct generative process for acoustics. This design
is at odds with the widely held view in linguis-
tic theory that phonemes are not inscrutable atoms
of the phonological grammar, but instead labels
for bundles of features that define natural classes
(Clements, 1985). Our approach is therefore more
appropriate to the question at hand.

2.2 Distinctive Features and Phonology
Acquisition

There is a great deal of evidence that many phono-
logical contrasts are perceptually available from a
very early stage (Eimas et al., 1971; Moffitt, 1971;
Trehub, 1973; Jusczyk and Derrah, 1987; Eimas
et al., 1987). However, studies of infant phone
discrimination typically use carefully-enunciated
laboratory stimuli, which have been shown to be
substantially easier to discriminate than phones in
naturalistic utterances (Feldman et al., 2013a; An-
tetomaso et al., 2017). It is thus likely that infer-
ring phone categories from acoustic evidence is
a persistently challenging task, and studies have
found language-specific tuning of the speech per-
ception system from fetal stages (Moon et al.,
2013) through the first year (Kuhl et al., 1992;
Werker and Tees, 1984) and even all the way into
the preteen years (Hazan and Barrett, 2000).

Experiments show that these contrasts are ex-
pressed, not simply as oppositions between par-
ticular categories, but as a featural system, even
in early infancy. Evidence of featural effects has
been found in the phone discrimination patterns of
both adults (Chladkova et al., 2015) and infants
(Kuhl, 1980; Hillenbrand, 1985; White and Mor-
gan, 2008). Studies have also shown that infants
generalize new distinctions along featural dimen-
sions (Maye et al., 2008b; Cristia et al., 2011).
Given infants’ early detection and use of some fea-
tural contrasts, we hypothesize that there is strong
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evidence in the acoustic signal for these distinc-
tions, which may then bootstrap the acquisition
of phonotactic and lexical patterns (Beckman and
Edwards, 2000).

Experiments also suggest asymmetries in the
perceptual availability of features. For example, a
consonant-vowel distinction appears to be an im-
portant early foothold in phonology acquisition:
vowel/consonant discrimination emerges early in
infant speech processing (Dehaene-Lambertz and
Dehaene, 1994), language-specificity in percep-
tion follows different timecourses for consonants
(Werker and Tees, 1984) and vowels (Kuhl et al.,
1992), and vowels and consonants play dis-
tinct roles in lexical access vs. rule discovery
in children (Nazzi, 2005; Pons and Toro, 2010;
Hochmann et al., 2011). Young infants have
also been shown to be sensitive to voicing con-
trasts (Lasky et al., 1975; Aslin et al., 1981; Maye
et al., 2008b). Features that distinguish consonant-
like from vowel-like segments or voiced from un-
voiced segments may thus be highly available to
young learners. Infants struggle by comparison
with other kinds of phone discrimination tasks,
including certain stop-fricative contrasts (Polka
et al., 2001) and certain place distinctions within
nasal (Narayan et al., 2010) and sibilant (Nit-
trouer, 2001; Cristia et al., 2011) segments. Even
adults struggle with fricative place discrimination
from strictly acoustic cues (McGuire and Babel,
2012). Similar asymmetries emerge from our un-
supervised learner, as shown in Section 4.2.

Our computational acquisition model comple-
ments this experimental research in several ways.
First, its internal representations, unlike those of
human infants, are open to detailed analysis, even
when exposed to naturalistic language stimuli.
Second, we can perform cross-linguistic compar-
isons using readily available corpora without re-
quiring access to a pool of human subjects in
each language community. Third, our model pro-
vides global and graded quantification of the per-
ceptual availability of distinctive features in natu-
ral speech, permitting us to explore relationships
between features in a way that is difficult to do
through experiments on infants, which are gener-
ally constrained to same-different contrasts over a
small set of manipulations.



2.3 Cognition and the BSN Autoencoder

The reconstruction objective used here is not
merely a convenient supervision signal. There
is reason to believe that people actively model
their perceptual worlds (Mamassian et al., 2002;
Feldman, 2012; Singer et al., 2018; Yan et al.,
2018), and autoassociative structures have been
found in several brain areas (Treves and Rolls,
1991; Rolls and Treves, 1998). There is also ev-
idence that phonetic comprehension and produc-
tion can be acquired symbiotically through a sen-
sorimotor loop relating acoustic perception and
articulator movements (Houde and Jordan, 1998;
Fadiga et al., 2002; Watkins et al., 2003; Wil-
son et al., 2004; Pulvermiiller et al., 2006; Kroger
et al., 2009; Bolhuis et al., 2010; Kroger and Cao,
2015; Bekolay, 2016). Finally, evidence suggests
that working memory limitations impose compres-
sion pressures on the perceptual system that favor
sparse representations of dense acoustic percepts
(Baddeley and Hitch, 1974) and may guide infant
language acquisition (Baddeley et al., 1998; El-
sner and Shain, 2017). It is thus reasonable to sup-
pose that perceptual reconstruction — such as that
implemented by an autoencoder architecture — is
immediately available as a learning signal to in-
fants who still lack reliable guidance from phono-
tactics or the lexicon.

Our use of BSNs follows the spirit of the ear-
liest work on artificial neural networks (Rosen-
blatt, 1958). Rosenblatt’s perceptron was de-
signed to study learning and decision-making in
the brain and therefore used binary neurons to
model the discrete firing behavior of their bio-
logical counterparts. This tradition has been re-
placed in deep learning research with differen-
tiable activation functions that support supervised
learning through backpropagation of error but are
less biologically plausible. Our work takes advan-
tage of the development of effective estimators for
the gradients of discrete neurons (Williams, 1992;
Hinton, 2012; Bengio et al., 2013; Courbariaux
et al., 2016; Chung et al., 2017) to wed these two
traditions, exploiting BSNs to encode the learner’s
latent representation of auditory percepts and deep
networks to map between percepts and their latent
representations. In addition to the greater similar-
ity of BSNs to biological neurons, the use of dis-
crete featural representations is motivated by ex-
perimental evidence that human phone perception
(including that of infants) is both featural (White
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and Morgan, 2008; Chladkova et al., 2015) and
categorical (Liberman et al., 1961; Eimas et al.,
1987; Harnad, 2003; Feldman et al., 2009b).
Experiments reported here use an 8-bit binary
segment encoding. Eight bits is the the lower
bound on binary encodings that are sufficiently
expressive to capture all segmental contrasts in
any known language (Mielke, 2009). Although
theory-driven taxonomies generally contain more
than eight distinctive features, these taxonomies
are known to be highly redundant (Cherry et al.,
1953). For example, the phonological featuriza-
tion of the Xitsonga segments analyzed in our
experiments contains 26 theory-driven features
(Hayes, 2011; Hall et al., 2016), yielding up to
226 — 67108864 distinct segment categories, far
more than the number of known segment types in
Xitsonga or even the number of training instances
in our data. By entailment, any representation that
can identify all segment types in a language can
also identify all featural contrasts that discriminate
those types, regardless of how the feature space is
factored. For this reason, we consider a phono-
logical feature to be represented if it can be de-
tected by an arbitrary function of the latent bits
(Section 4.2), without assuming that the true and
discovered feature spaces will factor identically.

2.4 Supervised Acoustic Feature Learning

Our study shares an interest in phonological fea-
tures with previous work in automatic speech
recognition attempting to discover mappings be-
tween acoustics and hand-labeled featural rep-
resentations (Liu, 1996; Bitar and Espy-Wilson,
1996; Frankel and King, 2001; Kirchhoff et al.,
2002; Livescu and Glass, 2004; Mitra et al., 2011,
inter alia). While these results provide evidence
that such a mapping is indeed learnable in an ora-
cle setting, they rely on a supervision signal (direct
annotation of the target representations) to which
children do not have access. Our unsupervised
approach measures perceptual availability of fea-
tures in a more realistic learning scenario.

3 Experimental Setup
3.1 Model

The simulated learner used in this study is a deep
neural autoencoder with an 8-bit layer of BSNs
as its principle information bottleneck, depicted in
Figure 1. The model processes a given phone seg-
ment by encoding the segment’s acoustic informa-
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Figure 1: The binary stochastic neural autoencoder ar-
chitecture with encoder layers 1 . and decoder lay-
ers Dy ... q. For expository purposes, acoustics are rep-
resented as pressure waves. In reality, the system uses
frames of Mel frequency cepstral coefficients.

tion into a bit pattern and then reconstructing the
acoustic information from the encoded bit pattern.
It is thus incentivized to use the latent bits in a
systematic featural manner, encoding similar seg-
ments in similar ways.

The encoder and decoder are both deep feed-
foward residual networks (He et al., 2016).! To
enable feedforward autoencoding of sequential
data, phone segments are clipped at 50 timesteps
(500ms), providing complete coverage of over
99% of the phone segments in each corpus. Given
F'-dimensional input acoustic frames and a maxi-
mum input length of M timesteps, the weight ma-
trix of each encoder layer is € RFM*FM except
the final layer (¢ RFM>8) Given R-dimensional
reconstructed acoustic frames and a maximum
output length of IV timesteps, the weight matrix
of each decoder layer is € REVXEN except the
first layer (€ R8*EN)  Both the encoder and de-
coder contain initial and final dense transforma-
tion layers, with three residual layers in between.
Each residual layer contains two dense layers. All
internal layers use tanh activations and are batch-
normalized with a decay rate of 0.9 (loffe and
Szegedy, 2015).

Given that the capacity for speaker adaptation
— short-term accommodation of idiosyncrasies in
individuals’ productions — has been shown for

Feedforward networks are used both for computational
reasons and because they dramatically outperformed recur-
rent networks in initial experiments, especially when RNN’s
were used for decoding. We hypothesize that this is due to
the lack of direct access to the encoder timesteps, such as
that permitted by sequence to sequence models with attention
(Bahdanau et al., 2015). Attention is not viable for our goals
because it defeats the purposes of an autoencoder by allowing
the decoder to bypass the encoder’s latent representation.

73

both adults (Clarke and Garrett, 2004; Maye et al.,
2008a) and children (Kuhl, 1979; van Heugten
and Johnson, 2014), we equip the models with a
16-dimensional speaker embedding, which is con-
catenated both to the acoustic input frames and to
the latent bit vector.

Each BSN of the latent encoding is associated
with a firing probability € [0, 1] parameterized by
the encoder network. The neural activation can
be discretized either deterministically or by sam-
pling. The use of BSNs to encode segments is
a problem for gradient-based optimization since
it introduces a non-differentiable discrete deci-
sion into the network’s latent structure. We over-
come this problem by approximating missing gra-
dients using the straight-through estimator (Hin-
ton, 2012; Bengio et al., 2013; Courbariaux et al.,
2016) with slope-annealing (Chung et al., 2017).
Slope annealing multiplies the pre-activations a by
a monotonically increasing function of the training
iteration ¢, incrementally decreasing the bias of the
straight-through estimator. We use the following
annealing function:

a < a(l+0.1t)

We discretize the latent dimensions using
Bernoulli sampling during training and threshold-
ing at 0.5 during evaluation.

The models are implemented in Tensorflow
(Abadi et al., 2015) and optimized using Adam
(Kingma and Ba, 2014) for 150 training epochs
with a constant learning rate of 0.001. The source
code is available at https://github.com/
coryshain/dnnsegq.

3.2 Data

We apply our model to the Xitsonga and English
speech data from the Zerospeech 2015 shared
task. The Xitsonga data are drawn from the
NCHLT corpus (De Vries et al., 2014) and contain
2h29m07s of read speech from 24 speakers. The
English data are drawn from the Buckeye Corpus
(Pitt et al., 2005) and contain 4h59m05s of conver-
sational speech from 12 speakers. While neither
of these corpora represent child-directed speech,
they both consist of fluently produced word to-
kens in context, rather than isolated productions
as in many previous laboratory studies with infants
(Eimas et al., 1971; Werker and Tees, 1984; Kuhl
et al., 1992, inter alia). We pre-segment the audio
files using time-aligned phone transcriptions pro-



Xitsonga English
Model H C \% H C \Y
Baseline | 0.023 0.013 0.016 | 0.006 0.004 0.005
Sigmoid | 0.281 0.191 0.227 | 0.246 0.166 0.198
Sigmoid+Speaker | 0.302 0.185 0.230 | 0.205 0.180 0.192
BSN | 0.360 0.206 0.262 | 0.240 0.161 0.193
Our model (BSN+Speaker) | 0.462 0.268 0.339 | 0.270 0.180 0.216

Table 1: Phone clustering scores. Homogeneity (H), completeness (C) and V-measure (V) across the Zerospeech

2015 Xitsonga and English challenge datasets.

vided in the challenge repository. The gold seg-
ment labels are used in clustering evaluation met-
rics, but the unsupervised learner never has access
to them. Data selection criteria and annotation
procedures are are described in more detail in Ver-
steegh et al. (2015).

Prior to fitting, we apply a standard spectral pre-
processing pipeline from automatic speech recog-
nition: raw acoustic signals are converted into 13-
dimensional vectors of Mel frequency cepstral co-
efficients (MFCCs) (Mermelstein, 1976) with first
and second order deltas, yielding 39-dimensional
frames sequenced in time. Each frame covers
25ms of speech, and frames are spaced 10ms
apart. The deltas are used by the encoder but
stripped from the reconstruction targets. Fol-
lowing preceding work showing improved un-
supervised clustering when segments are given
fixed-dimensional acoustic representations, thus
abstracting away from the variable temporal dila-
tion in natural speech (Kamper et al., 2017a,b), we
resample all reconstruction targets to a length of
25 frames.

This pipeline instantiates some standard as-
sumptions about the perceptual representations
underlying human speech processing. Alterna-
tive representations — for instance, articulatory
representations (Liu, 1996; Frankel and King,
2001; Kirchhoff et al., 2002; Livescu and Glass,
2004) or other spectral transforms (Zwicker, 1961;
Makhoul, 1975; Hermansky, 1990; Hermansky
et al.,, 1991; Coifman and Wickerhauser, 1992;
Shao et al., 2009) — have been proposed as alter-
natives to MFCCs. Our results concerning percep-
tual availability are of course tied to our input rep-
resentation, since phenomena that are poorly dis-
tinguished by MFCCs have less effect on our au-
toencoder loss function. Nonetheless, MFCCs are
known to produce high-quality supervised speech
recognizers (Zheng et al., 2001; Hinton et al.,
2012), and we therefore leave optimization of the
representation of speech features to future work.
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4 Results and Discussion

4.1 Phonemic Categories Partially Emerge
from Modeling Auditory Percepts
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Figure 2: Mean activation pattern by gold segment la-
bel from the BSN model with speaker embeddings,
with darker color indexing higher average activation.

The first research question posed in the intro-
duction was to what extent theory-driven phoneme
categories emerge from a drive to model audi-
tory percepts. We explore this question by eval-
uating the degree of correspondence between the
autoencoder hidden states and the gold phone la-
bels. Table 1 reports learning outcomes using
the information theoretic measures homogeneity
(H), completeness (C), and V-measure (V) for
unsupervised cluster evaluation (Rosenberg and
Hirschberg, 2007). All three metrics range over



the interval [0, 1], with 1 indexing perfect perfor-
mance. As shown in the table, our model yields
dramatically better clustering performance than a
random baseline that uniformly draws cluster IDs
from a pool of 256 categories: we obtain 2118%
and 4500% relative V-measure improvements in
Xitsonga and English, respectively. At the same
time, clustering performance is far from perfect.
This result indicates that perceptual modeling —
an immediately-available learning signal in infant
language acquisition — both (1) drives the learner
a long way toward phoneme acquisition, and (2)
is insufficient to fully identify phone categories in
our learners. One likely explanation for the lat-
ter is evidence from cognitive science that phono-
tactic and lexical information (to which our learn-
ers do not have access) supplement perception as
the acquisition process unfolds (Feldman et al.,
2013a; Pater and Moreton, 2014).

The middle rows of Table 1 show ablation re-
sults from using non-discrete sigmoid neurons
rather than BSNs in the encoding layer (Sigmoid
vs. BSN)? and/or removing the speaker adapta-
tion feature (i.e. removing speaker embeddings).
As shown, the classification performance of our
model benefits substantially from the use of BSN
encodings with speaker adaptation, especially on
Xitsonga. Note that the reconstruction losses of
the sigmoid encoders are better than those of the
BSN encoders despite their degraded classification
performance. This is to be expected: sigmoid neu-
rons have greater representational capacity than
binary neurons, since they can encode information
through continuous gradations. They are therefore
more capable of memorizing idiosyncratic prop-
erties of the input and are less incentivized to dis-
cover generalizable latent classes. The ablation re-
sults thus suggest that speaker adaptation and cat-
egorical perception support the discovery of lin-
guistically relevant abstractions.

4.2 Distinctive Features Differ in Perceptual
Availability

The second research question posed in the intro-
duction was to what extent distinctive features
differ in perceptual availability. We explore this
question in two ways.

First, we qualitatively assess the linguistic plau-
sibility of the natural clustering in the latent

To obtain class labels from the sigmoid encoder, we
rounded the activations. Rounding was only used for eval-
uation and had no impact on the fitting procedure.
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bits. Figure 2 visualizes this clustering based
on correlations between the average of the bit
patterns across all instances of each gold phone
type for both datasets. If the unsupervised clas-
sifier ignored phonological structure altogether,
the plots would be roughly uniform in color, and
if the unsupervised classifier perfectly identified
phonemes, the plots would consist entirely of fully
light or fully dark cells, with unique bit patterns
associated with each phone type. As shown, the
reality falls in between: while the visualized clas-
sifications are far from perfect, they nonetheless
contain a great deal of structure and suggest the
presence of rough natural classes in both lan-
guages, especially of affricates, nasals, sibilants,
and approximants. Our learners also replicate
infants’ difficulty in discriminating some nasal
and fricative place features (Polka et al., 2001;
Nittrouer, 2001; Narayan et al., 2010), assigning
highly similar representations to many subtypes of
nasals and fricatives across places of articulation
(see e.g. similar mean bit patterns of /n/ vs. /y/ and
/s/ vs. /f/ in both languages).

Second, we quantitatively evaluate the degree
to which theory-driven features like [£voice] are
recoverable from the network’s latent represen-
tations. To do so, we map gold phone la-
bels into binary distinctive feature clusters from
Hayes (2011) using Phonological CorpusTools
(Hall et al., 2016). One possible form of analysis
would be to search for individual correspondences
between distinctive features and the model’s latent
dimensions. However, this is likely to underes-
timate the degree of feature learning because the
deep decoder can learn arbitrary logics on the la-
tent bit patterns, a necessary property for fitting
complex non-linear mappings from latent features
to acoustics. We instead evaluate distinctive fea-
ture discovery by fitting random forest classifiers
that predict theory-driven features using the latent
bit patterns as inputs. We can then use classifier
performance to assess the degree to which a given
distinctive feature can be recovered by a logical
statement on the network’s latent bits. The clas-
sifiers were fitted using 5-fold cross-validation in
Scikit-learn (Pedregosa et al., 2011) with 100 esti-
mators, balanced class weighting, and an entropy-
based split criterion.

Results are given in Tables 2 and 3. As shown,
(1) there are large differences in perceptual avail-
ability between features, and (2) relative avail-



Feature P R F
voice | 0.9767 0.9033 0.9386
sonorant | 0.9249 0.9085 0.9166
continuant | 0.9492 0.7936 0.8645
consonantal | 0.8314 0.8915 0.8604
approximant | 0.8998 0.8192 0.8576
syllabic | 0.8278 0.8523  0.8398
dorsal | 0.8935 0.7703 0.8273
strident | 0.6991 0.9594 0.8089
low | 0.7175 0.8978 0.7976
front | 0.6590 0.8101 0.7268
high | 0.5875 0.7882 0.6732
back | 0.5352 0.8527 0.6577
round | 0.5332 0.8551 0.6568
labial | 0.5669 0.7725 0.6539
coronal | 0.5382 0.8301 0.6530
tense | 0.5208 0.8115 0.6344
delayed release | 0.5468 0.7226  0.6225
anterior | 0.4078 0.8355 0.5481
nasal | 0.3635 0.8796 0.5144
distributed | 0.2459 0.8537 0.3819
constricted glottis | 0.1762  0.9007  0.2948
lateral | 0.1536 0.8062 0.2581
labiodental | 0.0934 0.7980 0.1672
trill | 0.0809 0.7401 0.1458
spread glottis | 0.0671 0.5856  0.1204
implosive | 0.0041 0.4041 0.0081

Table 2: Perceptual availability by feature in Xitsonga

ability of features is remarkably consistent be-
tween these unrelated languages, suggesting that
the models are tapping into generalized percep-
tual patterns. The best-learned feature in both lan-
guages is [tvoice], which is consistent with early
evidence of voicing sensitivity in infants (see Sec-
tion 2.2). Below this, the features [4sonorant],
[*continuant], [d-consonantal], [f+approximant],
and [£syllabic] are faithfully recovered in both
languages.  All of these features distinguish
prototypical consonants from prototypical vow-
els but differ in their treatment of edge cases
like nasals, liquids, and glides. Thus, sim-
ilarly to the infant subjects discussed in Sec-
tion 2.2, the model finds the consonant-vowel
contrast to be highly available. Like human
infants, our computational learner finds certain
consonantal place and manner features relatively
more difficult, although the features [+dorsal],
[*coronal], [£strident] and [fdelayed release]
are also fairly well recovered in both languages.
By contrast, both models poorly capture features
like [flateral], [Zlabiodental], [Zdistributed],
[£nasal], [£constricted glottis], [spread glottis],
and [+implosive],? suggesting that these features
are more difficult to discover bottom-up and may

3Delayed release: affricates, constricted glottis: ejectives;
spread glottis: glottal frication (e.g. aspirated stops).
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Feature P R F
voice | 0.9244 0.8567 0.8893
sonorant | 0.8544 0.8862 0.8700
approximant | 0.8005 0.8370 0.8183
continuant | 0.8577 0.7669  0.8098
consonantal | 0.8249 0.7357 0.7777
syllabic | 0.6624 0.8426 0.7417
dorsal | 0.7046 0.7114 0.7080
strident | 0.5505 0.9027 0.6839
coronal | 0.5758 0.7066 0.6345
anterior | 0.5251 0.7280 0.6101
delayed release | 0.4413 0.7374  0.5521
front | 0.4322 0.7407 0.5459
high | 0.3841 0.6931 0.4943
tense | 0.3275 0.7101 0.4483
back | 0.3128 0.7504 0.4416
nasal | 0.2796 0.7544 0.4080
labial | 0.2541 0.7077 0.3739
low | 0.2410 0.7787 0.3680
distributed | 0.2203  0.6881 0.3337
diphthong | 0.2039 0.8051 0.3254
round | 0.1665 0.7012 0.2692
lateral | 0.1484 0.8333 0.2519
labiodental | 0.0787 0.6756 0.1410
spread glottis | 0.0377 0.6683 0.0714

Table 3: Perceptual availability by feature in English

therefore be more dependent on phonotactic and
lexical constraints for acquisition.* This finding
aligns with the acquisition literature in suggesting
that there may be substantial differences in percep-
tual availability between different place and man-
ner features (see Section 2.2).

In addition to these cross-linguistic similarities,
the models also reveal important differences be-
tween Xitsonga and English. For example, the two
languages differ in the relative availability of fea-
tures that distinguish vowels vs. features that dis-
tinguish consonants. In English, vowel features
like [£front], [fhigh], and [£back] are substan-
tially less well learned than consonant features
like [+£coronal], [fanterior], and [£delayed re-
lease], while the opposite holds in Xitsonga. We
hypothesize that this is due to the fact that there
are more vowels and fewer consonants in English
than in Xitsonga: having fewer distinctions might
reduce the degree of “crowding® in the articula-
tory space, increasing perceptual contrast between
phone types (Liljencrants and Lindblom, 1972).

“Note that we are not suggesting that e.g. [-£spread glot-
tis] cannot be detected in speech. Our claim is rather that
acoustic cues to [tspread glottis] are less pronounced and/or
less reliable than cues to e.g. [=voice] and therefore perhaps
more difficult to exploit in early infancy, since our autoen-
coder model does not find them particularly useful for per-
ceptual reconstruction.



Finally, note that the cluster maps in Figure 2
and the feature recovery data in Tables 2 and 3 pro-
vide complementary perspectives on the learned
representations. For example, it may at first seem
surprising that the feature [+nasal] is recovered
relatively poorly in both languages, given that
nasals are well clustered in Figure 2. This discrep-
ancy indicates that nasal segments are represented
similarly to each other but also similarly enough to
other segments that they are not reliably differen-
tiated as a class. Conversely, the voicing feature is
well recovered in both languages despite the lack
of a visible cluster of voiced segments. This indi-
cates that voicing is reliably encoded in the latent
bits, even if the representation as a whole is domi-
nated by other kinds of information.

5 Conclusion

In this paper, we used binary stochastic neural au-
toencoders to explore the perceptual availability
of (1) theory-driven phonemic categories and (2)
theory-driven phonological features, based only
on the acoustic properties of segments. We found
that phonemic categories exert substantial influ-
ence on a learner driven to model its auditory
percepts, but that additional information — es-
pecially phonotactic and lexical (Feldman et al.,
2013a) — is likely necessary for full adult-like
phone discrimination. We also found asymmetries
in the perceptual availability of phonological fea-
tures like [1+voice] and [£nasal] and showed that
these asymmetries reflect attested patterns of in-
fant phone discrimination. Our model both repli-
cates broad trends in the child acquisition litera-
ture (successful consonant-vowel and voicing dis-
crimination, relatively less successful discrimina-
tion of various place and manner features) and
sheds new light on potential relationships between
auditory perception and language acquisition: the
overall cline of perceptual availability revealed by
the model in Tables 2 and 3 suggests a range of
testable hypotheses about the role of perception in
infant speech processing.
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A Phonological feature definitions

We adopt the phonological feature definitions pre-
sented in Hayes (2011). For full exposition of the
features and their motivations, we refer readers to
the source. However, for convenience, we provide
the following brief (and in some cases oversimpli-
fied) definitions based on Hayes (2011):

o syllabic: Vowels are [+syllabic], others are
[-syllabic]

e consonantal: Vowels and glides are
[-consonantal], others are [+consonantal]

e approximant: Vowels, liquids, and
glides are [+approximant], others are

[-approximant]
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Figure 3: Xitsonga phoneme and feature distributions.

sonorant: Vowels, liquids, glides, and nasals
are [+sonorant], others are [-sonorant]

continuant:  Stops and affricates
[-continuant], others are [+continuant]

arc

delayed release: Affricates and frica-
tives are [+delayed release], others are
[-delayed release]

trill: Trills are [+trill], others are [-trill]

front: Front vowels and fronted velars are
[+front], others are [-front]

back: Back vowels and back velars are
[+back], others are [-back]

high: High vowels and velars are [+high],
others are [-high]

low: Low vowels and pharyngeals are
[+low], others are [-low]

tense: Tense vowels are [+tense], others are
[-tense]

round: Rounded vowels and rounded labial
consonants are [+round], others are [-round]

nasal: Nasal consonants and (contrastively)
nasalized vowels are [+nasal], others are

83

[-nasal]

labial: Sounds articulated with the lips are
[+labial], others are [-labial]

coronal: Sounds articulated with the tongue
blade/tip are [+coronal], others are [-coronal]

dorsal: Sounds articulated with the tongue
body are [+dorsal], others are [-dorsal]

anterior: Coronals articulated at the alveo-
lar ridge or forward are [+anterior], others are
[-anterior]

distributed: Coronals articulated with the
tongue blade are [+distributed], others are
[-distributed]

strident: Sibilants (i.e. coronal fricatives
and affricates) are [+strident], others are
[-strident]

lateral: Sounds with lateral oral closure
(open at edges, like [1]) are [+]ateral], others
are [-lateral]

labiodental: Sounds that are articulated by
touching the lower lip to the upper teeth are
[+labiodental], others are [-labiodental]
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Figure 4: English phoneme and feature distributions.

voice: Voiced sounds are [+voice], others are
[-voice]

spread glottis: [h], [fi], and (contrastively)
aspirated consonants are [+spread glottis],
others are [-spread glottis]

constricted glottis: FEjectives and glottal
stops are [+constricted glottis], others are
[-constricted glottis]

implosive: Implosives are [+implosive], oth-
ers are [-implosive]

B Xitsonga Phoneme Featurization

To the best of our knowledge, the gold Xitsonga
phone transcriptions provided by the Zerospeech
2015 dataset use a non-standard pronunciation al-
phabet that is undocumented but isomorphic to the
NCHLT transcription convention. In order to ex-
tract distinctive features for the Xitsonga phone
labels, we hand-mapped the Zerospeech labels
onto NCHLT labels by cross-referencing the Ze-
rospeech phone sequences, the Zerospeech ortho-
graphic word sequences, and the NCHLT pronun-
ciation dictionary, searching for systematic cor-
respondences between Zerospeech and NCHLT
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transcription practices. Once the Zerospeech-to-
NCHLT mapping was obtained, we used the In-
ternational Phonetic Alphabet (IPA) phone labels
provided by NCHLT to look up distinctive fea-
tures in the Phonological CorpusTools (PCT) fea-
ture maps (Hall et al., 2016). Some IPA labels
from NCHLT were not found in the PCT database,
and for those we used the following featurization
rules:

o Consonants with palatal offglides: We used
the features associated with the non-offglide
consonant and switched on the approximant,
dorsal, high, front, and tense features.

Aspirated consonants: We used the features
associated with the non-aspirated consonant
and switched on the spread glottis feature.

Ejective consonants: We used the features
associated with the non-ejective consonant
and switched on the constricted glottis fea-
ture.

Voiceless alveolar lateral stops: We used
the features associated with voiceless alveo-
lar lateral affricates and switched off the de-



layed release feature.

Our hand-made symbol correspondences and fea-
turizations are distributed with this project’s code
repository.

C Phoneme and feature distributions

For reference, counts of phonemes and features by
corpus are plotted in Figures 3 and 4. Note that the
feature counts are generally larger because multi-
ple features can be true of any one segment.
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Abstract

Disfluencies in spontaneous speech are known
to be associated with prosodic disruptions.
However, most algorithms for disfluency de-
tection use only word transcripts. Integrating
prosodic cues has proved difficult because of
the many sources of variability affecting the
acoustic correlates. This paper introduces a
new approach to extracting acoustic-prosodic
cues using text-based distributional prediction
of acoustic cues to derive vector z-score fea-
tures (innovations). We explore both early and
late fusion techniques for integrating text and
prosody, showing gains over a high-accuracy
text-only model.

1 Introduction

Speech disfluencies are frequent events in sponta-
neous speech. The rate of disfluencies varies with
the speaker and context; one study observed dis-
fluencies once in every 20 words, affecting up to
one third of utterances (Shriberg, 1994). Disflu-
encies are important to account for, both because
of the challenge that the disrupted grammatical
flow poses for natural language processing of spo-
ken transcripts and because of the information that
they provide about the speaker.

Most work on disfluency detection builds on the
framework that annotates a disfluency in terms of a
reparandum followed by an interruption point (+),
an optional interregnum ({ }), and then the repair,
if any. A few simple examples are given below:

it’s + {uh} it’s] almost...
was it, + {I mean} , did you ]
I just + I] enjoy working...
By + ] it was attached to...

[
[ put...
[

[
Based on the similarity/differences between the
reparandum and the repair, disfluencies are often
categorized into three types: repetition (the first

example), rephrase (the next example), and restart
(the last example).
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The interruption point is associated with a dis-
ruption in the realization of a prosodic phrase,
which could involve cutting words off or elon-
gation associated with hesitation, followed by a
prosodic reset at the start of the repair. There may
also be emphasis in the repair to highlight the cor-
rection.

Researchers have been working on automatic
disfluency detection for many years (Lickley,
1994; Shriberg et al., 1997; Charniak and Johnson,
2001; Johnson and Charniak, 2004; Lease et al.,
2006; Qian and Liu, 2013; Zayats et al., 2016),
motivated in part by early work on parsing speech
that assumed reliable detection of the interruption
point (Nakatani and Hirschberg, 1994; Shriberg
and Stolcke, 1997; Liu et al., 2006). The first ef-
forts to integrate prosody with word cues for dis-
fluency detection (Baron et al., 2002; Snover et al.,
2004) found gains from using prosody, but word
cues played the primary role. In subsequent work
(Qian and Liu, 2013; Honnibal and Johnson, 2014,
Wang et al., 2017), more effective models of word
transcripts have been the main source of perfor-
mance gains. The success of recent neural network
systems raises the question of what the role is for
prosody in future work. In the next section, we
hypothesize where prosody might help and look at
the relative frequency of these cases and the per-
formance of a high accuracy disfluency detection
algorithm in these contexts.

With the premise that there is a potential for
prosody to benefit disfluency detection, we then
propose a new approach to extracting prosodic fea-
tures. A major challenge for all efforts to incor-
porate prosodic cues in spoken language under-
standing is the substantial variability in the acous-
tic correlates of prosody. For example, dura-
tion cues are expected to be useful — disfluencies
are often associated with duration lengthening re-
lated to hesitation. However, duration varies with
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phonetic context, word function, prosodic phrase
structure, speaking rate, etc. To account for some
of this variability, various feature normalization
techniques are used, but typically these account
for only limited contexts, e.g. phonetic context
for duration or speaker pitch range for fundamen-
tal frequency. In our work, we introduce a mech-
anism for normalization using the full sentence
context. We train a sequential neural prediction
model to estimate distributions of acoustic fea-
tures for each word, given the word sequence of a
sentence. Then, the actual observed acoustic fea-
ture is used to find the prediction error, normalized
by the estimated variance. We refer to the result-
ing features as innovations, which can be thought
of as a non-linear version of the innovations in
a Kalman filter. The innovations will be large
when the acoustic cues do not reflect the expected
prosodic structure, such as during hesitations, dis-
fluencies, and contrastive or emphatic stress. The
idea is to provide prosodic cues that are less re-
dundant with the textual cues. We assess the new
prosodic features in experiments on disfluency de-
tection using the Switchboard corpus, exploring
both early and late fusion techniques to integrate
innovations with text features. Our analysis shows
that prosody does help with detecting some of the
more difficult types of disfluencies.

This paper has three main contributions. First,
our analysis of a high performance disfluency de-
tection algorithm confirms hypotheses about con-
texts where text-only models have high error rates.
Second, we introduce a novel representation of
prosodic cues, i.e. the innovation vector result-
ing from predicting prosodic cues given the whole
sentence context. Analyses of the innovation
distributions show expected patterns of prosodic
cues at interruption points. Finally, we demon-
strate improved disfluency detection performance
on Switchboard by integrating prosody and text-
based features in a neural network architecture,
while comparing early and late fusion approaches.

2 How Might Prosody Help?

Disfluency detection algorithms based on text
alone rely on the fact that disfluencies often in-
volve parallel syntactic structure in the reparan-
dum and the repair, as illustrated in the previous
examples. In these cases, pattern match provides a
strong cue to the disfluency. In addition, ungram-
matical function word sequences are frequently
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Reparandum Length | % in
Type 1-2 | 3-5 | 6-8 | 8+ | type
repetition | 1894 | 419 | 12 1 46%
rephrase 794 | 585 | 66 - 28%
restart 196 14 - - 4%
nested* 149 | 262 | 158 | 118 | 13%

Table 1: Total word counts associated with reparanda
of different lengths and types of disfluencies. *Counts
for nested disfluencies exclude repetition tokens.

Reparandum Length
Type 1-2 | 3-5 | 6-8 | 84 | overall
repetition | 0.99 | 0.99 1 1 0.99
rephrase | 0.75 | 0.66 | 0.44 | - 0.70
restart 0.41 0 - - 0.39
nested” 0.79 | 0.66 | 0.62 | 0.21 | 0.62

Table 2: Percent of reparandum tokens that were cor-
rectly predicted as disfluent. *Statistics for nested dis-
fluencies exclude repetition tokens.

associated with disfluencies, and these are rela-
tively easy for a text-based model to learn. In some
cases, an interregnum word (or words) provides a
word cue to the interruption point. In the Switch-
board corpus, only 15% of interruption points are
followed by an interregnum, but it can provide a
good cue when present. Prosody mainly serves to
help identify the interruption point. Thus, for these
types of disfluencies, it makes sense that prosodic
cues would not really be needed.

Because disfluencies with a parallel syntactic
structure do represent a substantial fraction of dis-
fluencies in spontaneous speech, text-based algo-
rithms have been relatively effective. The best
models achieve F-scores of 86-91%' (Lou and
Johnson, 2017; Zayats and Ostendorf, 2018; Wang
et al., 2017, 2018). We hypothesize that many er-

'Tt is difficult to directly compare published results, be-
cause there are different approaches to tokenization that have
a non-trivial impact on performance but are not well docu-
mented in the literature. Those differences include handling
of fragment words, turn boundaries, and tokenization. For
example, some studies use fragment features explicitly, while
others omit them because speech recognition systems often
miss them. Turn boundaries that do not end with a slash unit
pose an ambiguity during speaker overlap: cross-turn ’sen-
tences’ can either be combined into a longer sentence or sep-
arated based on the turn boundary, which impacts what can
be detected. Lastly, there are differences in whether contrac-
tions and possessives are split into two tokens, and whether
conversational terms such as “you know” are combined into
a single token.



Reparandum Length
Type 1-2 3-5
content-content 0.61 (30%) | 0.58 (52%)
content-function | 0.77 (20%) | 0.66 (17%)
function-function | 0.83 (50%) | 0.80 (32%)

Table 3: Relative frequency of rephrases correctly pre-
dicted as disfluent for disfluencies that contain a con-
tent word in both the reparandum and repair (content-
content), either the reparandum or repair (content-
function) or in neither. Percentages in parentheses
show the fraction of tokens belong to each category.

rors are associated with contexts where we expect
that prosodic cues are useful, specifically the five
cases below, with examples from the development
set.

Restarts: Some disfluencies have no repair; the
speaker simply restarts the sentence with no obvi-
ous parallel phrase.

[ it would be + ] I think it’s clear...
well [the +] uh i think what changed...
Long disfluencies: These include distant pattern

match or substantial rephrasing.

[there is + for people who don’t want
to do the military service it would be
neat if there were]

[what they’re basically trying to do +
i don’t know up here in massachusetts
anyhow what they’re basically trying to
do]

Complex (nested) disfluencies: Disfluencies can
occur within other disfluencies.

[really + [[1 + 1] + we were really]...
[[to + to try to] + for two people who
don’t really have a budget to] ]...
Non-trivial rephrasing: Rephrasing does not al-
ways involve a simple “rough copy” of a repair.
[can + still has the option of]...
to keep them [in + uh quiet ]...
Fluent repetitions: Contexts with fluent repeti-
tions often include expressing a strong stance.

a long long time ago...
she has very very black and white...

In order to confirm that there is potential for
prosody to help in these contexts, we first cate-
gorize the disfluencies. To avoid hand-labeling
of categories, we distinguished disfluencies based
on surface forms (repetition, rephrase, restart) and
length of the disfluency reparandum. Word counts
for the different categories are given in Table 1.

Conditioning on the different contexts, we an-
alyze errors in the development set made by the
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high accuracy text-based disfluency detection sys-
tem that is the baseline for this study (Zayats
and Ostendorf, 2018). For this model, trained
on Switchboard, the performance is 87.4 F-score
(P=93.3, R=82.2) on the development set and 87.5
(P=93.1, R=82.5) on the test set. For each class,
we measured the disfluency detection recall (rel-
ative frequency of reparandum tokens that were
predicted correctly), as well as the percentage of
tokens associated with each class. The results
in Table 2 confirm that error rates are higher for
restarts, longer rephrasings, and complex disflu-
encies.

Rephrase disfluencies include both short lexi-
cal access errors, as well as non-trivial reword-
ings, which tend to be longer and involve content
words. Table 3 breaks down performance for dif-
ferent lengths and word class to explore this dif-
ference. We found that rephrase disfluencies that
contain content words are harder for the model to
detect, compared to rephrases with function words
only, and error increases for longer disfluencies.

Finally, the relative frequency of false positives
in fluent repetitions is 0.35. Since fluent repeti-
tions account for only 4% of all repetitions, the
impact on overall performance is small.

The ultimate goal of a disfluency detection sys-
tem is to perform well in domains other than
Switchboard. Other datasets are likely to have
different distributions of disfluencies, often with
a higher frequency of those that are hard to detect,
such as restarts and repairs (Zayats et al., 2014). In
addition, due to the differences in vocabulary, dis-
fluencies with content words are more likely to get
misdetected if there is a domain mismatch. Thus,
we hypothesize that prosody features can have a
greater impact in a domain transfer scenario.

3 Method

Integrating prosodic cues has proved difficult be-
cause of the many sources of variability affecting
the acoustic correlates, while systems that only use
text achieve high performance. In this work, we
propose a new approach that operates on differ-
ences in information found in text and prosody. In
order to calculate such differences, we introduce
innovation features, similar to the concept of in-
novations in Kalman filters. The key idea is to
predict prosodic features based on text informa-
tion, and then use the difference between the pre-
dicted and observed prosodic signal (innovations)
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Figure 1: Prosody prediction (left) and late fusion (right) models. z; is a contcatenation of token, POS and identity
features embeddings at time 4; 7;, j is a concatenation of stress and phone embeddings for phone j in token i; p; is
a vector of prosodic cues; g; and h; are hidden states of token level and phone level LSTMs, correspondingly.

as a new feature that is additionally used to predict
disfluencies.

Let a prosody cue, p; at time ¢ be an observa-
tion associated with a sentence transcript contain-
ing n word tokens, xg...x,. This observation
can be modeled as a function of the sentence con-
text H(xq ...x,) perturbed with Gaussian noise

v; ~ N (0, 02):

pi=H(xo...zy) +v; (D

v; can be viewed as a difference in information
found between text and prosody. This difference
can be measured using a z-score, which is a mea-
sure of how many standard deviations below or
above the population mean an observation is. This
framework can be viewed as a non-linear exten-
sion of a Kalman filter, where both H and 01-2 are
parametrized using a neural network. Since disflu-
encies are irregularities in spoken language, they
can be considered anomalies to fluent speech flow.
A prosody flow that is unusual for a given word
sequence, such as one that happens at interrup-
tion points, will likely have higher deviation from
the predicted distribution. This anomaly in speech
flow provides a strong signal when extracted using
innovations, which is complementary to the text
cues. In the next sections we give more details
about the neural network architecture for text en-
coding, prosodic cues and innovation features, as
well as an overview of the whole system.

3.1 Text Encoding for Prosody Prediction

We use both context around a word as well as
subword information in text encoding for prosody
prediction. Our text encoding consists of two
bidirectional LSTMs: one on the token level and
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another on the phone level. First, we use pre-
trained word embeddings (Levy and Goldberg,
2014), part-of-speech tags embeddings, and iden-
tity features (whether the word is a filled pause,
discourse marker, or incomplete) as inputs to a
word-level bidirectional LSTM. Then, for each
phone in a word we concatenate the phone embed-
ding, its stress embedding, and the hidden state of
the word-level LSTM for the corresponding token.
The resulting phone feature vector is used as input
to the second bidirectional LSTM. The last hid-
den state h; of this second LSTM for token ¢ sum-
marizes the phone, stress and context information
of that token, which we use to predict word-level
prosodic cues. We use 3 categories of stress fea-
tures in our experiments: primary, secondary and
a non-stress phone.

3.2 Prosodic Cues

Our prosodic cues include:
Pause. Given a pause before a word, r;, our pause
cues are scaled as follows:

7 = min(1,In (1 + 7)) (2)
Pause information is extracted on a word-level us-
ing Mississippi State (MsState) time alignments
(more details on data preprocessing in Section
4.1.) We use scaled real-valued pause informa-
tion. Scaling pause lengths this way, including the
threshold for pauses longer than 1 sec (which are
rare), makes the pause distribution less skewed.
Word Duration. Similar to pause information, we
extract word duration information using MsState
time alignments. We do not need to do the stan-
dard word-based duration normalization, since the
idea behind the innovation model is to normalize



prosodic features using a richer context represen-
tation.

Fundamental frequency (F0) and Energy (E).
Similar to Tran et al. (2018), we use three FO fea-
tures and three energy features. The three FO fea-
tures include normalized cross correlation func-
tion (NCCF), log-pitch weighted by probability
of voicing (POV), and the estimated delta of log
pitch. The three energy features include the log
of total energy, the log of total energy from lower
20 mel-frequency bands and the log of total en-
ergy from higher 20 mel-frequency bands. The
contour features are extracted from 25-ms frames
with 10-ms hops using Kaldi (Povey et al., 2011).
Our model is trained to predict the mean of these
features across the frames in a word.

MFCC:s. In addition to features used in Tran et al.
(2018), we also use 13 mel-frequency cepstral co-
efficients, averaged at the word level, similar to FO
and energy features as described above.

3.3 Prosody Innovation Cues

Given a word-level text encoding h;, for each to-
ken in a sentence we predict each of the k prosodic
cues ;b}k listed above. We assume that the pre-
dicted prosody cues conditioned on text have a
Gaussian distribution:

Pi"hi ~ N (pig, o7)
pije = f(Wihi +b7)
Ui2,k = softplus(W¥h; + bk)

3)

Wlk’ , bk, WQk, bé’ are learnable parameters; the ac-
tivation function

softplus(x) = log(1 + exp(z))

ensures that the variance is always positive; f is an
activation function, which is softplus for pauses
and durations, and tanh for the rest of the prosodic
cues. The objective function is a sum of the nega-
tive log-likelihood of prosodic cues ﬁik given text
encoding. Then, given the predicted p; j, Uz i

and true values of prosodic cues ﬁik, we calcu-
late z-scores for each of the cues, which should
have high absolute value for tokens with unusual
prosodic behaviour:

k pi — ik
z, = —2 4
i P 4)

The prosody prediction module is illustrated in
Figure 1a.
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These z-scores, or innovations, are used as addi-
tional features in our disfluency detection model.
We train the prosody prediction model only on
sentences that do not contain any disfluencies.
Any unusual behaviours in disfluency regions,
therefore, should have large innovation values pre-
dicted by our model.

3.4 Disfluency Detection System

Following (Zayats and Ostendorf, 2018), we use
a bidirectional LSTM-CRF model as our disflu-
ency detection framework. This framework uses a
BIO tagging approach, where we predict whether
each token is a part of a reparandum, repair or
both. Following previous studies, the overall per-
formance is measured in F-score of correctly pre-
dicted disfluencies in the reparandum. Previous
work used textual features only. Here, we eval-
uate the importance of innovation cues with two
types of multimodal fusion - early and late fusion.
In early fusion, we concatenate innovations and/or
prosody features with the rest of the textual fea-
tures used in the framework at the input to LSTM
layer. In late fusion, we create two separate mod-
els - one with only textual features and another
with innovations and/or prosody features. Then
we do a linear interpolation of the states of two
models just before feeding the result to the CRF
layer:

shared _

; auzi)rosody + (1 - a)uléext (5)

We tune the interpolation weight o and report the
best in our experiments section. We train our
model jointly, optimizing both prosodic cues pre-
diction and disfluency detection. The schematic
view of the late fusion system is presented in Fig-
ure 1b.

4 Experiments

In our experiments we evaluate the usefulness
of innovation features, and compare it to base-
lines with text-only or raw prosodic cues. For
each model configuration, we run 10 experiments
with different random seeds. This alleviates the
potential of making wrong conclusions due to
“lucky/unlucky” random seeds. We report both the
mean and best scores among the 10 runs.

4.1 Data Preprocessing

Switchboard (Godfrey et al., 1992) is a collec-
tion of telephone conversations between strangers,



Model dev test «
mean | best | mean | best

o | text 86.54 | 86.80 | 86.47 | 86.96 | —
| raw 35.00 | 37.33 | 35.78 | 37.70 | -
‘% | innovations 80.86 | 81.51 | 80.28 | 82.15 | —
.| text+raw 86.46 | 86.65 | 86.24 | 86.53 | -
= | text + innovations 86.53 | 86.77 | 86.54 | 87.00 | —
® | text + raw + innovations | 86.35 | 86.69 | 86.55 | 86.44 | -

text + raw 86.71 | 87.05 | 86.35 | 86.71 | 0.2
% text + innovations 86.98 | 87.48 | 86.68 | 87.02 | 0.5
| text + raw + innovations | 86.95 | 87.30 | 86.60 | 86.87 | 0.5

Table 4: F1 scores on disfluency detection when using a single set of features (text-only, raw prosody features or
innovation features), with early fusion and late fusion. “Raw” indicates the usage of original prosodic features
(Section 3.2), while “innovations” indicate the usage of innovation features (Section 3.3).

1 mean [ it was + it ]

but it ’s just you know leak leak leak everywhere
people should know that that ’s an option
and 1 think you do accomplish more after that

interesting thing [ about gas is when + i mean about battery powered cars is ]

Table 5: Examples of sentences where prosody innovations help. Words in red are correctly labeled when using
prosody but not with text only. The first three show fluent phrases; the last two have disfluencies that are missed

without prosody.

containing 1126 files hand-annotated with dis-
fluencies. Because human transcribers are im-
perfect, the original transcripts contained errors.
MsState researchers ran a clean-up project which
hand-corrected the transcripts and word align-
ments (Deshmukh et al., 1998). In this work, we
use the MsState version of the word alignments,
which allows us to extract more reliable prosodic
features. Since the corrected version of Switch-
board does not contain updated disfluency annota-
tions, we corrected the annotations using a semi-
automated approach: we used a text-based disflu-
ency detection algorithm to re-annotate tokens that
were corrected by MsState, while keeping the rest
of the original disfluency annotations. The result is
referred to as a silver annotation. Most of the cor-
rected tokens are repetitions and restarts. To assess
the quality of the automatic mapping of disfluen-
cies, we hand-annotated a subset (6.6k tokens, 453
sentences) of the test data and evaluated the per-
formance of the silver annotation against the gold
annotation, which has an F1 score of 90.1 (Prec
90.1, Rec 90.1). Comparing the performance esti-
mates from gold and silver annotations on this sub-
set, we find that the silver annotations give some-
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what lower F1 scores (2-3% absolute), both due to
lower precision and recall scores.

4.2 Results

Our experiments evaluate the use of innovations
with two popular multimodal fusion approaches:
early fusion and late fusion. Our baselines include
models with text-only, prosody cues only (raw),
and innovation features only as inputs. Since
innovations require both text and raw prosodic
cues, this baseline is multimodal. In addition, for
the late fusion experiments, we show the optimal
value of «, the interpolation weight from Equation
5. All experiment results are presented in Table 4.

We found that innovations are helpful in both
early and late fusion frameworks, while late fu-
sion performs better on average. The interpola-
tion weight « for the late fusion experiments is
high when innovations are used, which further in-
dicates that innovation features are useful in over-
all prediction. Interestingly, innovation features
alone perform surprisingly well. We also take a
closer look at the importance of joint training of
the disfluency detection system with prosody pre-
diction. To do this, we pretrain the prosody pre-



1 like to run [about + oh about ] [two + two and a half ] miles

the old-timers even the people who are technologists do n’t know how to operate
i do n’t know whether that ’s because they you know sort of give up hope

it must be really challenging to um try to juggle a job

Table 6: Examples of the sentences where prosody innovations hurt. Words in red are incorrectly labeled when
using prosody but not with