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Preface

Welcome to the 2013 Conference on Empirical Methods in Natural Language Processing.

EMNLP has grown to be one of the largest and most competitive conferences in computational
linguistics. Organized by ACL SIGDAT (the Association for Computational Linguistics special interest
group for linguistic data and corpus-based approaches to natural language processing), it features papers
on all areas of interest to the SIGDAT community and aligned fields. It is being held this year as
a standalone conference at the Grand Hyatt Seattle, in the heart of downtown Seattle, USA over the
period October 18-21, 2013.

This year we introduced short papers to EMNLP for the first time, in an attempt to encourage submission
of papers reporting smaller, more focused contributions and work in progress. We also put a lot of
time and energy into “closing the loop” in the author response phase, in getting reviewers to explicitly
acknowledge author responses and update their reviews where appropriate. We sincerely hope that this
contributed towards further improvement in the quality of reviews and the decision-making process.

We received a record number of 772 valid submissions (not including co-submitted papers that were
withdrawn from the conference), made up of 539 long papers and 233 short papers. These papers
were reviewed across a total of 15 areas, of which Machine Translation (98 submissions), Semantics
(87 submissions) and NLP-related Machine Learning (76) were the largest. The submissions were
managed by 30 area chairs (two per area) and evaluated by a combined programme committee of 505
reviewers.

28% of the long paper submissions and 24% of the short paper submissions were accepted for
publication at the conference. Five long papers were shortlisted for the best paper award, based on
input from the reviewers and area chairs, and have been scheduled for presentation in a plenary session
at the end of the conference, culminating in the presentation of the best paper award.

We would like to acknowledge all the hard work of the submitting authors, without whom there would,
of course, be no conference. To the authors of accepted papers, we offer congratulations; to the
authors of rejected papers, we offer our sincere commiserations, and dearly hope that the hard work
of the programme committee provided you with valuable feedback on your research. We are eternally
indebted to our dedicated and hard-working area chairs, and to the reviewers for their attention to detail
and engagement with the author response/discussion phase, which was tremendously helpful in gauging
the relative merits of each paper and being able to send out the notifications on time.

We are very grateful to our two invited speakers: Fernando Pereira (Research Director at Google) who
will draw on his considerable experience and wisdom in presenting “Meaning in the Wild”, focusing on
machine understanding; and Andrew Ng (Co-CEO and Co-founder of Coursera) who will discuss the
challenges and opportunities associated with the delivery of Massively Open Online Courses (MOOCs)
in a talk titled “The Online Revolution: Education for Everyone”, from the perspective of a true world
leader in MOOC provision and Machine Learning/NLP research.

We would also like to thank the inimitable Priscilla Rasmussen who single-handedly looked after the
local organisation of EMNLP 2013. We also wish to acknowledge the considerable efforts of Steven
Berthard who put this volume together with peerless efficiency, Francesco Figari who took excellent
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care of the conference website, and Rich Gerber from Softconf.com, who responded to any questions
regarding START — the submission management system used for EMNLP 2013 — instantaneously
and uncomplainingly, and helped us manage the large number of submissions smoothly. Additionally,
we would like to thank Eugene Charniak, Mark Johnson and Noah Smith for serving on the best paper
award committee, and providing characteristically probing and insightful critiques of the best paper
award nominees.

Special thanks go to David Yarowsky, the general chair for the conference, who has provided us with
much valuable advice, encouragement and assistance over the past six months. We would also like
to thank the members of the SIGDAT board who advised us on various matters, and our predecessors
James Henderson and Marius Pasca for nudging us in the right direction on a number of occasions.

On behalf of all attendees at the conference, we would also like to acknowledge the generosity of
our sponsors/supports: Amazon, Google, the Allen Institute for Artificial Intelligence, Inome, IBM
Research, Microsoft Research, Nuance and John Hopkins University.

It has been an honour to serve as Programme Chairs of EMNLP 2013. We sincerely hope that you —
in equal measure — enjoy and are intellectually-stimulated by the conference, and have a pleasant stay
in beautiful Seattle.

Timothy Baldwin and Anna Korhonen
EMNLP 2013 Programme Chairs
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Peter Rebersek and Mateja Verlic

Dependency Language Models for Sentence Completion
Joseph Gubbins and Andreas Vlachos

A Walk-Based Semantically Enriched Tree Kernel Over Distributed Word Representations
Shashank Srivastava, Dirk Hovy and Eduard Hovy

Automatic Idiom Identification in Wiktionary
Grace Muzny and Luke Zettlemoyer

Elephant: Sequence Labeling for Word and Sentence Segmentation
Kilian Evang, Valerio Basile, Grzegorz Chrupata and Johan Bos

Detecting Compositionality of Multi-Word Expressions using Nearest Neighbours in Vec-
tor Space Models
Douwe Kiela and Stephen Clark

Naive Bayes Word Sense Induction
Do Kook Choe and Eugene Charniak

The VerbCorner Project: Toward an Empirically-Based Semantic Decomposition of Verbs
Joshua K. Hartshorne, Claire Bonial and Martha Palmer
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Where Not to Eat? Improving Public Policy by Predicting Hygiene Inspections Using
Online Reviews

Jun Seok Kang, Polina Kuznetsova, Michael Luca and Yejin Choi

Automatically Identifying Pseudepigraphic Texts
Moshe Koppel and Shachar Seidman

Sunday, October 20, 2013
(8:00-9:00) Breakfast
(9:15-10:30)  Second invited talk: Fernando Pereira

(10:30- Break
11:00)

(11:00-12:35) Machine Learning for NLP

11:25-11:50  Dynamic Feature Selection for Dependency Parsing
He He, Hal Daumé III and Jason Eisner

11:50-12:15  Semi-Supervised Representation Learning for Cross-Lingual Text Classification
Min Xiao and Yuhong Guo

12:15-12:35  Using Crowdsourcing to get Representations based on Regular Expressions
Anders Sggaard, Hector Martinez, Jakob Elming and Anders Johannsen

(11:00-12:35) Summarization and Generation

11:00-11:25  Overcoming the Lack of Parallel Data in Sentence Compression
Katja Filippova and Yasemin Altun

11:25-11:50  Fast Joint Compression and Summarization via Graph Cuts
Xian Qian and Yang Liu

11:50-12:15  Inducing Document Plans for Concept-to-Text Generation
Ioannis Konstas and Mirella Lapata

XXXV



Sunday, October 20, 2013 (continued)

12:15-12:35

11:00-11:25

11:25-11:50

11:50-12:15

12:15-12:35

(12:35-2:00)

2:00-2:25

2:50-3:15

3:15-3:35

Single-Document Summarization as a Tree Knapsack Problem
Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino, Norihito Yasuda and Masaaki Nagata

(11:00-12:35) Information Extraction and Social Media Analysis

A Hierarchical Entity-Based Approach to Structuralize User Generated Content in Social
Media: A Case of Yahoo! Answers

Baichuan Li, Jing Liu, Chin-Yew Lin, Irwin King and Michael R. Lyu

Semantic Parsing on Freebase from Question-Answer Pairs
Jonathan Berant, Andrew Chou, Roy Frostig and Percy Liang

Scaling Semantic Parsers with On-the-Fly Ontology Matching
Tom Kwiatkowski, Eunsol Choi, Yoav Artzi and Luke Zettlemoyer

Classifying Message Board Posts with an Extracted Lexicon of Patient Attributes
Ruihong Huang and Ellen Riloff

Lunch

(2:00-3:35) Machine Translation I1

Lexical Chain Based Cohesion Models for Document-Level Statistical Machine Transla-
tion

Deyi Xiong, Yang Ding, Min Zhang and Chew Lim Tan

A Convex Alternative to IBM Model 2
Andrei Simion, Michael Collins and Cliff Stein

Pair Language Models for Deriving Alternative Pronunciations and Spellings from Pro-

nunciation Dictionaries
Russell Beckley and Brian Roark
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2:00-2:25

2:25-2:50

2:50-3:15

3:15-3:35

2:00-2:25

2:25-2:50

2:50-3:15

(3:35-4:05)

(2:00-3:35) Semantics 11

Prior Disambiguation of Word Tensors for Constructing Sentence Vectors
Dimitri Kartsaklis and Mehrnoosh Sadrzadeh

Multi-Relational Latent Semantic Analysis
Kai-Wei Chang, Wen-tau Yih and Christopher Meek

A Study on Bootstrapping Bilingual Vector Spaces from Non-Parallel Data (and Nothing
Else)

Ivan Vuli¢ and Marie-Francine Moens

Deriving Adjectival Scales from Continuous Space Word Representations
Joo-Kyung Kim and Marie-Catherine de Marneffe

(2:00-3:35) Opinion Mining and Sentiment Analysis I

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, An-
drew Ng and Christopher Potts

Open Domain Targeted Sentiment
Margaret Mitchell, Jacqui Aguilar, Theresa Wilson and Benjamin Van Durme

Exploiting Domain Knowledge in Aspect Extraction
Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos and Riddhi-
man Ghosh

Break
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Sunday, October 20, 2013 (continued)
(4:05-5:55) Machine Translation III

4:05-4:30 Dependency-Based Decipherment for Resource-Limited Machine Translation
Qing Dou and Kevin Knight

4:30-4:55 Translating into Morphologically Rich Languages with Synthetic Phrases
Victor Chahuneau, Eva Schlinger, Noah A. Smith and Chris Dyer

4:55-5:20 Boosting Cross-Language Retrieval by Learning Bilingual Phrase Associations from Rel-
evance Rankings
Artem Sokokov, Laura Jehl, Felix Hieber and Stefan Riezler

5:20-5:55 Recurrent Continuous Translation Models
Nal Kalchbrenner and Phil Blunsom

(4:05-5:55) Information Extraction I1

4:05-4:30 Learning Biological Processes with Global Constraints
Aju Thalappillil Scaria, Jonathan Berant, Mengqiu Wang, Peter Clark, Justin Lewis, Brit-
tany Harding and Christopher D. Manning

4:30-4:55 Generating Coherent Event Schemas at Scale
Niranjan Balasubramanian, Stephen Soderland, Mausam and Oren Etzioni

5:20-5:55 Orthonormal Explicit Topic Analysis for Cross-Lingual Document Matching
John Philip McCrae, Philipp Cimiano and Roman Klinger

(4:05-5:55) NLP Applications IT

4:05-4:30 Automated Essay Scoring by Maximizing Human-Machine Agreement
Hongbo Chen and Ben He

4:55-5:20 Success with Style: Using Writing Style to Predict the Success of Novels
Vikas Ganjigunte Ashok, Song Feng and Yejin Choi

5:20-5:55 A Generative Joint, Additive, Sequential Model of Topics and Speech Acts in Patient-
Doctor Communication
Byron C. Wallace, Thomas A Trikalinos, M. Barton Laws, Ira B. Wilson and Eugene
Charniak
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(8:00-9:00)

9:00-9:25

9:25-9:50

9:50-10:15

10:15-10:35

9:00-9:25

9:25-9:50

9:50-10:15

10:15-10:35

Breakfast
(9:00-10:35) Information Extraction III

Harvesting Parallel News Streams to Generate Paraphrases of Event Relations
Congle Zhang and Daniel S. Weld

Relational Inference for Wikification
Xiao Cheng and Dan Roth

Event Schema Induction with a Probabilistic Entity-Driven Model
Nathanael Chambers

Using Soft Constraints in Joint Inference for Clinical Concept Recognition
Prateek Jindal and Dan Roth

(9:00-10:35) Opinion Mining and Sentiment Analysis II
Exploring Demographic Language Variations to Improve Multilingual Sentiment Analysis
in Social Media

Svitlana Volkova, Theresa Wilson and David Yarowsky

Opinion Mining in Newspaper Articles by Entropy-Based Word Connections
Thomas Scholz and Stefan Conrad

Collective Opinion Target Extraction in Chinese Microblogs
Xinjie Zhou, Xiaojun Wan and Jianguo Xiao

Detecting Promotional Content in Wikipedia
Shruti Bhosale, Heath Vinicombe and Raymond Mooney
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(10:35-11:00)
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11:25-11:45

11:00-11:25

11:25-11:45

(9:00-10:35) NLP for Social Media II

Learning Topics and Positions from Debatepedia
Swapna Gottipati, Minghui Qiu, Yanchuan Sim, Jing Jiang and Noah A. Smith

A Unified Model for Topics, Events and Users on Twitter
Qiming Diao and Jing Jiang

Authorship Attribution of Micro-Messages
Roy Schwartz, Oren Tsur, Ari Rappoport and Moshe Koppel

Detection of Product Comparisons - How Far Does an Out-of-the-Box Semantic Role La-
beling System Take You?

Wiltrud Kessler and Jonas Kuhn

Break

(11:00-11:45) Parsing

A Multi-Teraflop Constituency Parser using GPUs
John Canny, David Hall and Dan Klein

Fish Transporters and Miracle Homes: How Compositional Distributional Semantics can
Help NP Parsing
Angeliki Lazaridou, Eva Maria Vecchi and Marco Baroni

(11:00-11:45) Semantics I1I

Learning Distributions over Logical Forms for Referring Expression Generation
Nicholas FitzGerald, Yoav Artzi and Luke Zettlemoyer

Learning to Rank Lexical Substitutions
Gyorgy Szarvas, Robert Busa-Fekete and Eyke Hiillermeier
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SIGDAT business meeting
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Regularized Minimum Error Rate Training
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Abstract

Since many applications such as timeline sum-
maries and temporal IR involving temporal
analysis rely on document timestamps, the
task of automatic dating of documents has
been increasingly important. Instead of using
feature-based methods as conventional mod-
els, our method attempts to date documents
in a year level by exploiting relative tempo-
ral relations between documents and events,
which are very effective for dating documents.
Based on this intuition, we proposed an event-
based time label propagation model called
confidence boosting in which time label in-
formation can be propagated between docu-
ments and events on a bipartite graph. The ex-
periments show that our event-based propaga-
tion model can predict document timestamps
in high accuracy and the model combined with
a MaxEnt classifier outperforms the state-of-
the-art method for this task especially when
the size of the training set is small.

1 Introduction

Time is an important dimension of any informa-
tion space and can be useful in information re-
trieval, question-answering systems and timeline
summaries. In the applications involving tempo-
ral analysis, document timestamps are very useful.
For instance, temporal information retrieval mod-
els take into consideration the document’s creation
time for document retrieval and ranking (Kalczyn-
ski and Chou, 2005; Berberich et al., 2007) for bet-
ter dealing with time-sensitive queries; some infor-

*Corresponding author

mation retrieval applications such as Google Scholar
can list articles published during the time a user
specifies for better satisfying users’ needs. In addi-
tion, timeline summarization techniques (Hu et al.,
2011; Binh Tran et al., 2013) and some event-event
ordering models (Chambers and Jurafsky, 2008;
Yoshikawa et al., 2009) also rely on the timestamps.
Unfortunately, many documents on the web do not
have a credible timestamp, as Chambers (2012) re-
ported. Therefore, it is significant to date docu-
ments, that is to predict document creation time.

One typical method for dating document is based
on temporal language models, which were first used
for dating by de Jong et al. (2005). They learned
language models (unigram) for specific time periods
and scored articles with normalized log-likelihood
ratio scores. The other typical approach for the task
was proposed by Nathanael Chambers (2012). In
Chambers’s work, discriminative classifiers — max-
imum entropy (MaxEnt) classifiers were used by
incorporating linguistic features and temporal con-
straints for training, which outperforms the previous
temporal language models on a subset of Gigaword
Corpus (Graff et al., 2003).

However, the conventional methods have some
limitations because they predict creation time of
documents mainly based on feature-based models
without understanding content of documents, which
may lead to wrong predictions in some cases. For
instance, assume that D1 and D2 are documents
whose content is given as follows:

(D1) Sudan last year accused Eritrea of
backing an offensive by rebels in the east-
ern border region.
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(D2) Two years ago, Sudan accused Er-
itrea of backing an offensive by rebels in
the eastern border region.

Since D1 and D2 share many important features, the
previous dating methods are very likely to predict
the same timestamp for the two documents. How-
ever, it will be easy to infer that the creation time of
D1 should be one year earlier than that of D2 if we
analyze the content of the two documents.

Unlike the previous methods, this paper exploits
relative temporal relations between events and doc-
uments for dating documents on the basis of an un-
derstanding of document content.

It is known that each event in a news article has
a relative temporal relation with the document. By
analyzing the relative temporal relation, time of the
event can be known if we know the document times-
tamp; on the other hand, if the time of an event is
known, it can also be used to predict the creation
time of documents mentioning the event, which can
be best demonstrated with the above-mentioned ex-
ample of D1 and D2. In the example, “last year”
is an important cue to infer that the event mentioned
by the documents occurred in 2002 if we know the
timestamp of D1 is 2003. With the information that
the event occurred in 2002, it can also be inferred
from the temporal expression “Two years ago” that
D2 was written in 2004. In this way, the timestamp
of the labeled document (D1) is propagated to the
unlabeled document (D2) through the event both of
them mention, which is the main intuition of this pa-
per.

In fact, this intuition seems practical to date doc-
uments on the web because web data is very re-
dundant. Many documents on the web can be con-
nected via events because an event is usually men-
tioned by different documents. According to our
analysis of a collection of news articles spanning 5
years, it is found that an event is mentioned by 3.44
news articles on average; on the other hand, a doc-
ument usually refers to multiple events. Therefore,
if one knows a document timestamp, time of events
the document mentions can be obtained by analyz-
ing the relative temporal relations between the doc-
ument and the events. Likewise, if the time of an
event is known, then it can be used to predict cre-
ation time of the documents which mention it.

Based on the intuition, we proposed an event-
based time label propagation model called confi-
dence boosting in which timestamps are propagated
according to relative temporal relations between
documents and events. In this way, documents can
be dated with an understanding of content so that
this model can date document more credibly. To our
knowledge, it is the first time that the relative tempo-
ral relations between documents and events are ex-
ploited for dating documents, which is proved to be
effective by the experimental results.

2 Event-based Time Label Propogation

As mentioned above, the relative temporal relations
between documents and events are useful for dat-
ing documents. By analyzing the temporal relations,
even if there are only a small number of documents
labeled with timestamps, this information can be
propagated to documents connected with them on a
bipartite graph using breadth first traversal (BFS).

Event
nodes

Document
nodes

Figure 1: An example of BFS-based propagation

As shown in figure 1, there are two kinds of nodes
in the bipartite graph. A document node is a single
document while an event node represents an event.
The edge between a document node and an event
node means that the document mentions the event.
Also, the edge carries the information of the rela-
tive temporal relation between the document and the
event. The label propagation from node ¢ to node j
will occur if BFS condition which is defined as fol-
lows is satisfied:

€ij € E
i€ Landj ¢ L
When the timestamp of 7 is propagated to j:

Y (j) = Y (i) +6(i. )
L=_LU{j)

where E' is the set of edges of the bipartite graph,
e;; denotes the edge between node ¢ and j, L is the
set of nodes which have been already labeled with
timestamps, Y () is the year of node ¢ and d(3, j) is
the relative temporal relation between node ¢ and j.

(BFS condition)



In figure 1, the timestamp of document D1 is 2003,
which is known. This information can be propagated
to its adjacent nodes i.e. the event nodes it men-
tions according to the relative temporal relations.
Then, these event nodes propagate their timestamps
to other documents which mention them. By re-
peating this process, the timestamp of the document
can be propagated to documents which are reachable
from the initially labeled document on the bipartite
graph.

Although the BFS-based propagation process can
propagate timestamps from few labeled documents
to a large number of unlabeled ones, it has two short-
comings for this task. First, once one timestamp is
propagated incorrectly, this error will lead to more
mistakes in the following propagations. If such an
error occurred at the beginning of the propagation
process, it would lead to propagation of errors. Sec-
ond, BFS-based method cannot address conflict of
predictions during propagation, which is shown in
figure 2.

Document
nodes

Figure 2: Conflict of predictions during propagation

To address the problems of the BFS-based
method, we proposed a novel propagation model
called confidence boosting model which improves
the BFS-based model by optimizing the global con-
fidence of the bipartite graph. In the confidence
boosting model, every node in the bipartite graph
has a confidence which measures the credibility of
the predicted timestamp of the node. When the
timestamp of a node is propagated to other nodes,
its confidence will be also propagated to the tar-
get nodes with some loss. The loss of confi-
dence is called confidence decay. Formally, the
confidence decay process is described as follows:

e(j) = eli) x o (i, )
where ¢(i) denotes confidence of node ¢ and
o(i,j) is the decay factor from node i to
node j. For guaranteeing that timestamps
can be propagated on the bipartite graph cred-

ibly, we define the following condition which
is called CB (Confidence Boosting) condition:
{ @ B (CBcondition)
c(i) x o (i, j) > c(j)

In the confidence boosting model, propagation from
node ¢ to node j will occur only if CB condition is
satisfied. When timestamps are propagated on the
bipartite graph, timestamps and confidence of nodes
will be updated dynamically. A node with high con-
fidence is more active than nodes with low confi-
dence to propagate its timestamp because a node
with high confidence is more likely to satisfy the CB
condition for propagating its timestamp. Moreover,
a prediction with low confidence can be corrected by
the prediction with high confidence. Therefore, the
confidence boosting model can address both prop-
agation of errors and conflict of predictions which
cannot be tackled by the BFS-based model.

However, there are challenges for running such
propagation models in practice. First, the relative
temporal relations between documents and events
are usually unavailable. Second, events extracted
from different documents do not have any connec-
tion even if they refer to the same event. There-
fore, each event is connected with only one docu-
ment in the bipartite graph and thus cannot prop-
agate its timestamp to other documents unless we
perform event coreference resolution. Third, propa-
gations from generic events are very likely to lead to
propagation errors because generic events can hap-
pen in any year. Also, how to set the confidence and
decay factors reasonably in practice for a confidence
boosting model is worthy of investigation. All these
challenges for the propagation models and their cor-
responding solutions will be discussed in Section 3.

3 Details of Event-based Propagation
Models

In this section, details of the event-based time la-
bel propagation models including challenges and
their corresponding solutions are presented. We first
discuss the event extraction and processing involv-
ing relative temporal relation mining, event coref-
erence resolution and distinguishing specific extrac-
tions from generic ones in Section 3.1. Then, we
show the confidence boosting algorithm in detail in
Section 3.2.



3.1 Event extraction and processing

As mentioned in previous sections, events play a key
role in the propagation models. We define an event
as a Subject-Predicate-Object (SPO) triple. To ex-
tract events from raw text, an open information ex-
traction software - ReVerb (Fader et al., 2011) is
used. ReVerb is a program that automatically iden-
tifies and extracts relationships from English sen-
tences. It takes raw text as input and outputs SPO
triples which are called extractions.

However, extractions extracted by ReVerb cannot
be used directly for our propagation models for three
main reasons. First, the relative temporal relations
between documents and the extractions are unavail-
able. Second, the extractions extracted from differ-
ent documents do not have any connection even if
they refer to the same event. Third, propagations
from generic events are very likely to lead to propa-
gation errors.

For addressing the three challenges for the prop-
agation models, we first presented a rule-based
method for mining the relative temporal relations be-
tween extractions and documents in Section 3.1.1.
Then, an efficient event coreference resolution
method is introduced in Section 3.1.2. Finally, the
method for distinguishing specific extractions from
generic ones is shown in Section 3.1.3.

3.1.1 Relative temporal relation mining

We used a rule-based method to extract temporal
expressions and used Stanford parser (De Marneffe
et al., 2006) to analyze association between the tem-
poral expressions and the extractions. Specifically,
we define that an extraction is associated with a tem-
poral expression if there is an arc from the predicate
of the extraction to the temporal expression in the
dependency tree. For a certain extraction, there are
the following four cases whose instances are shown
in table 1 for handling.

Case 1: The extraction is associated with an abso-
lute temporal expressions with year mentions in the
sentence.

In this case, the time of the extraction is equal to
the year mention:

Y (ex) = YearMention

For the example in table 1, Y (ez) = 1999.

Case 2: The extraction is associated with a relative
temporal expression (not involving year) in the sen-

Case Instance
1 In 1999, South Korea exported 89,000
tons of pork to Japan.
In April, however, the BOI investments

2 showed marked improvement.
Last month, Kazini vowed to resign his
top army job.
3 Julius Erving moved with his family to
Florida three years ago.
4 The meeting focused on ways to revive

the stalled Mideast peace process.

Table 1: Instances of various temporal expressions

tence.

In this case, the time of the extraction is equal to

the creation time of the document:

Y(ex) =Y (d)
Case 3: The extraction is associated with a relative
temporal expression (involving specific year gap) in
the sentence.

In this case, the time of the extraction is computed
as follows:

Y(ex) =Y (d) £ YearGap

For the example in table 1, Y (ex) = Y (d) — 3.
Case 4: The extraction is not associated with any
temporal expression in the sentence or the other
cases.

In this case, it is difficult to recognize the rela-
tive temporal relations. However, timeliness can be
leveraged to determine the relations as a heuristic
method. It is known that timeliness is an important
feature of news so that events reported by a news ar-
ticle usually took place a couple of days or weeks
before the article was written. Therefore, we heuris-
tically consider the year of the extraction is the same
with that of its source document in this case:

Y(ex) =Y (d)

In the cases except case 1, the relative tempo-
ral relation between an extraction and the docu-
ment it comes from can be determined. To evalu-
ate the performance of the rule-based method, we
sampled 3,000 extractions from documents written
in the year of 1995-1999 of Gigaword corpus and
manually labeled these extractions with a timestamp
based on their context and their corresponding docu-
ment timestamps as golden standard. Table 2 shows



the accuracy of each case which will be used as a
part of the decay factor in the confidence boosting
model.

Case Accuracy
1 0.774(168/217)
2 0.994(844/849)
3 0.836(281/336)
4 0.861(1376/1598)
Total  0.890(2669/3000)

Table 2: Accuracy of the four cases

We define the set of these determined relative tem-
poral relations R as follows:

R = {rqcs|d = doc(ex),ex € Co U C3 U Cy}
Tdew =< d,ex,6(d,ex) >
d(d,ex) = —d(ex,d) = {0,+1,£2,+3,...}

where C), is the set of extractions in case k and
doc(ex) is the document which extraction ex comes
from. 74, s a triple describing the relative tempo-
ral relation between d and ex. For example, triple
Tder =< d,ex,—1 > means that the time of ex-
traction ex is one year before the time of document
d.

3.1.2 Event coreference resolution

Extractions from different documents have no
connections. However, there are a great number of
extractions referring to the same event. For find-
ing such coreferential event extractions efficiently,
hierarchical agglomerative clustering (HAC) is used
to cluster highly similar extractions into one cluster.
We use cosine to measure the similarity between ex-
tractions and select bag of words as features. Note
that it is less meaningful to cluster the extractions
from the same document because coreferential ex-
tractions from the same document are not helpful for
timestamp propagations. For this reason, similarity
between extractions from the same documents is set
to 0.

For HAC, selection of threshold is important. If
the threshold is set too high, only a few extractions
can be clustered despite high purity; on the contrary,
if the threshold is set too low, purity of clusters will
descend. In fact, selection of threshold is a trade-off
between the precision and recall of event corefer-
ence resolution. For selecting a suitable threshold,

extractions from documents written in 1995-1999
are used as a development set.

In practice, it is difficult for us to directly evalu-
ate the performance of the coreference resolution of
event extractions without golden standard which re-
quires much labors for manual annotations. Alterna-
tively, entropy which measures the purity of clusters
is used for evaluation because it can indirectly re-
flect the precision of coreference resolution to some
extent:

Entropy: _ZWJZP(ZL?) X 1Og2P(Z7,7)
J i

where P(i, j) is the probability of finding an extrac-
tion whose timestamp is 7 in the cluster j, n; is the
number of items in cluster j and n is the total num-
ber of extractions. Note that timestamp of an extrac-
tion is assigned based on its document timestamp
using the method proposed in Section 3.1.1.

Figure 3 shows the effect of selection of the
threshold on cluster performance. It can be found
that when the threshold reaches 0.8, the entropy
starts descending gently and is low enough. Since
we want to find as many coreferential extractions as
possible on the premise that the precision is good,
the threshold is set to 0.8. Note that extractions
which are single in one cluster will be filtered out
because they do not have any connections with any
other documents.

i i i i i
“0.6 0.65 0.7 0.75 0.8 0.85 0.9
Threshold

Figure 3: Entropy of clusters under different thresholds

3.1.3 Distinguishing specific events from
generic ones

Not all extractions extracted by ReVerb refer to
a specific event. For instance, the extraction “Ger-
many’s DAX index was down 0.2 percent” is un-
desirable for our task because it refers to a generic



event and this event may occur in any year. In other
words, it is not able to indicate a certain timestamp
and thus propagations from a generic event node are
very likely to result in propagation errors. In con-
trast, the extraction “‘some of the provinces in China
were hit by SARS” refers to a specific event which
took place in 2003. For our task, such specific event
extractions which are associated with one certain
timestamp are desirable. For the sake of distinguish-
ing such extractions from the generic ones, a Max-
Ent classifier is used to classify extractions as either
specific ones or generic ones.

Training Set Generation A training set is indis-
pensable for training a MaxEnt classifier. In order
to generate training examples, we performed HAC
discussed in Section 3.1.2 for event coreference res-
olution on extractions from all documents written
in May and June of 1995-1999 and then analyzed
each cluster. If extractions in a cluster have different
timestamps, then the extractions in this cluster will
be labeled as generic extractions (negative); other-
wise, extractions in the cluster are labeled as spe-
cific ones (positive). In this way, the training set can
be generated without manually labeling. To avoid
bias of positive and negative examples, we sampled
3,500 positive examples and 3,500 negative exam-
ples to train the model.

Feature Selection The following features were se-
lected for training:

Named Entities: People and places are often dis-
cussed during specific time periods, particularly in
news genre. Intuitively, if an extraction contains
specific named entities then this extraction is less
likely to be a generic event. If an extraction con-
tains named entities, types and uninterrupted tokens
of the named entities will be included as features.

Numeral: According to our analysis of the train-
ing set generated by the above-mentioned method,
generic extractions usually contain numerals. For
example, the extraction “15 people died in this ac-
cident” and the extraction “225 people died in this
accident” have the same tokens except numerals and
they are labeled as a generic event because they are
clustered into one group due to high similarity but
they in fact refer to different events happening in
different years. Therefore, if an extraction contains
numerals, the feature “NUM” will be included.

Bag of words: Bag of words can also be an indicator
of specific extractions and generic ones. For exam-
ple, an extraction containing ‘stock’, ‘index’, ‘fell’
and ‘exchange’ is probably a generic one.

The model obtained after training can be used to
predict whether an extraction is a specific one. We
define P(S = 1|ex) as the probability that an ex-
traction is a specific one, which can be provided by
the classifier. Extractions whose probability to be a
specific one is less than 0.05 are filtered out. For the
other extractions, this probability is used as a part of
the decay factor in the confidence boosting model,
which will be discussed in detail in Section 3.2.

3.2 Confidence boosting

After extracting and processing the event extrac-
tions, relative temporal relations between documents
and events can be constructed. This can be for-
mally represented by a bipartite graph G=(V, E).
There are two kinds of nodes on the bipartite graph:
document nodes and event nodes. Slightly dif-
ferent with the event node mentioned in Section
2, an event node in practice is a cluster of coref-
erential extractions and it can be connected with
multiple document nodes. Note that the bipar-
tite graph does not contain any isolate node. For
briefness, we define DNode as the set of docu-
ment nodes and ' Node as the set of event nodes.
The set of edges F is formally defined as follows:
E = {eij,ejili € DNode, j € ENode,r; ; € R}

where R is the set of relative temporal relations de-
fined as Section 3.1.1.

3.2.1 Confidence and decay factor

As mentioned in Section 2, the confidence of a
node measures the credibility of the predicted times-
tamp. According to the definition, we set the confi-
dence of initially labeled nodes to 1 and set confi-
dence of nodes without any timestamp to 0 in prac-
tice. When the timestamp of a node is propagated
to another node, its confidence will be propagated to
the target node with some loss, as discussed in Sec-
tion 2. The confidence loss is caused by two factors
in practice. The first one is the credibility of the rel-
ative temporal relation between two nodes and the
other one depends on whether an extraction refers to
a specific event.

Relative temporal relations between documents



and extractions we mined using the rule-based
method in Section 3.1.1 are not absolutely correct.
The credibility of the relations has an effect on the
confidence decay. Formally, we used 7 (4, j) to de-
note the credibility of the relative temporal relation
between node ¢ and node j. The credibility of a rel-
ative temporal relation in each case can be estimated
through table 2. If the credibility of the relative tem-
poral relation between ¢ and j is low, propagation
from node ¢ to j probably leads to error. Therefore,
the confidence loss should be much in this case. On
contrary, if the relation is highly credible, it will be
less likely that propagation errors occur. Therefore,
the confidence loss should be little.

In addition, whether an extraction refers to a
generic event or a specific one exerts an impact on
the confidence loss. If an extraction refers to a
generic event, then the extractions in the same clus-
ter with it probably have different timestamps. Since
our propagation model assumes that extractions in a
cluster are coreferent and thus they should have the
same timestamp, propagations from a generic event
node are very likely to result in propagation errors.
Therefore, the timestamp of a generic event node
in fact is less credible for propagations and confi-
dence of such event nodes should be low for limiting
propagations from the nodes. For this reason, prop-
agation from a document node to a generic event
node leads to much loss of confidence. We define
the probability that an event node refers to a specific
event as follows:

Z P(S

exE(C

P(S = 1lenode) = = 1lex)
where C is the set of extractions in the event node
and P(S = 1|ex) is the probability that an extrac-
tion refers to a specific event, which can be provided
by the MaxEnt classifier discussed in Section 3.1.3.

Considering the two factors for confidence loss,
we formally define the decay factor by (1).

o(s,t) = (D
(s,t) ift € DNode
7(s,t) x P(S = 1|t) otherwise

3.2.2 Confidence boosting algorithm

In confidence boosting model, the propagation
from ¢ to j will occur only if the CB condition is

Algorithm: Confidence Boosting
Input: Array Y, Array ¢, Array 6, Array o
Output: Array Y

1 Initialize Array c and Array Y
2 while Ji, j s.t. CB condition
3 Y(j) =Y (i) + (i, j)

4 c(g) = (i) x o (i, )

S end while

Figure 4: Algorithm of confidence boosting

satisfied. The confidence boosting propagation pro-
cess can be described as figure 4.

Whenever timestamps are propagated to other
nodes, the global confidence of the bipartite graph
will increase. For this reason, this propagation pro-
cess is called confidence boosting. In this model,
a node with high confidence is more active than
nodes with low confidence to propagate its times-
tamp. Moreover, a prediction with low confidence
can be corrected by the prediction with high con-
fidence. Therefore, the confidence boosting model
can alleviate the problem of propagation of errors
to some extent and handle conflict of predictions.
Thus, it can propagate timestamps more credibly
than the BFS-based model. It can also be proved
that each node on the bipartite graph must reach the
highest confidence it can reach so that the global
confidence of the bipartite graph must be optimal
when the confidence boosting propagation process
ends regardless of propagation orders, which will be
discussed in Section 3.2.3.

3.2.3 Proof of the optimality of confidence
boosting

Proof by contradiction can be used to prove that

propagation orders do not affect the optimality of the
confidence boosting model.
Proof Assume by contradiction that there is some
node that does not reach its highest confidence it can
reach when a confidence boosting process in propa-
gation order A ends:

Jug s.t. ca(vy) < ¢ (vy)

where c4(v;) is the confidence of v; when the
propagation process in order A ends and c*(v;) is
the highest confidence that v; can reach. Assume
that (vq, ve, -+ -, v4—1, v¢) is the optimal propagation



path from the propagation source node v; to the
node v; that leads to the highest confidence of vy,
which means that ¢*(vy) = ¢*(vi—1) X o(ve—1,0¢),
c*(vp—1) = *(vi—2) X 0(Vi—2,V4-1), .o, ¢*(v2) =
c*(v1) x o(v1,v2). Then according to CB condi-
tion, since ca(vi—1) X o(vi—1,v) < ca(vy) <
*(v) = *(v—1) x o(ve—1,v¢), the inequality
ca(vi—1) < ¢*(v—1) must hold. Similarly, it can be
easily inferred that ¢4 (vi—2) < ¢*(v4—2) and finally
ca(v1) < ¢*(v1). Since vy is the source node whose
timestamp is initially labeled and its confidence is 1,
the inequality c4(v1) < ¢*(v1) cannot hold. Thus,
the assumption that c4(v;) < ¢*(v¢) cannot be sat-
isfied. Therefore, it can be proved that each node
on the bipartite graph must reach the highest con-
fidence it can reach so that the global confidence of
the bipartite graph must be optimal when confidence
boosting propagation process ends no matter what
order time labels are propagated in.

4 Experiments

In this section, we evaluate the performance of our
time label propagation models and different auto-
matic document dating models on the Gigaword
dataset. We first present the experimental setting.
Then we show experimental results and perform an
analysis.

4.1 Experimental Setting

Dataset To simulate the environment of the web
where data is very redundant, we use all documents
written in April, June, July and September of 2000-
2004 of Gigaword Corpus as dataset instead of sam-
pling a subset of documents from each period. The
dataset contains 900,199 news articles.

Pre-processing Many extractions extracted by Re-
Verb are short and uninformative and do not carry
any valuable information for propagating temporal
information. Also, some extractions do not refer
to events which already happened. These extrac-
tions may affect the performance of event corefer-
ence resolution and the rule-based method proposed
in Section 3.1.1 for mining relative temporal rela-
tions. Therefore, we filter out these undesirable ex-
tractions in advance with a rule-based method. The
rules are shown in table 3. This preprocessing re-
moves large numbers of “bad” extractions which are

undesirable for our task. As a result, not only com-
putation efficiency but also precision of event coref-
erence resolution will be improved.

Rulel | If the number of tokens of the extrac-
tion is less than 5 then this extraction
will be filtered out.

If the maximum idf of terms of the ex-
traction is less than 3.0 then this ex-
traction will be filtered out.

If the tense of the extraction is not past
tense then this extraction will be fil-

tered out.

Rule2

Rule3

Ruled4 | If the extraction is the content of di-
rect quotation then this extraction will

be filtered out.

Table 3: Pre-processing Rules

I[DNode| | 550,124
|ENode| | 968,064
[E[ | 3,104,666

Table 4: Basic information of the bi-partite graph

Basic information of the document-event bipartite

graph constructed is shown in table 4.
Evaluation To evaluate the performance of the
propagation models for the task of dating on differ-
ent sizes of the training set, we used different sizes
of the labeled documents for training and consid-
ered the remaining documents as the test set. Note
that the training set is randomly sampled from the
dataset. To be more persuasive, we repeated above
experiments for five times.

However, in the time label propagation process,
not all documents can be labeled. For those doc-
uments which cannot be labeled in the process of
propagation, a MaxEnt classifier serves as a comple-
mentary approach to predict their timestamps. For
the MaxEnt classifier, unigrams and named entities
are simply selected as features and the initially la-
beled documents as well as documents labeled dur-
ing propagation process are used for training.

Baseline methods are temporal language models
proposed by de Jong et al. (2005) and the state-of-
the-art discriminative classifier with linguistic fea-
tures and temporal constraints which was proposed



Initially Labeled 1k Sk 10k 50k 100k 200k 500k
Reached Min 443980 448653 453022 484562 518603 599724 732701
Reached Max 444266 448998 454028 484996 519333 579878 732799
Reached Avg 444107 448742 453786 484622 519110 579835 732758

Prop Ratio 4441 89.7 45.4 9.7 5.2 2.9 1.5
Prop acc(BFS) 0.438 0.515 0.551 0.646 0.691 0.725 0.775
Prop acc(CB) 0.494 0.569 0.603 0.701 0.746 0.776 0.807
Table 5: Performance of Propagation
Initially Labeled 1k Sk 10k 50k 100k 200k 500k
Temporal LMs 0.277 0.323 0353 0.412 0422 0425 0.420
Maxent(Unigrams) 0.326 0.378 0.407 0.486 0.517 0.553 0.590
Maxent(Unigrams+NER) 0.331 0.383 0.418 0.506 0.549 0.590 0.665
Chambers’s 0.331 0.386 0.423 0.524 0.571 0.615 0.690
BFS+Maxent 0.459 0.508 0.533 0.595 0.626 0.658 0.707
CB+Maxent 0.486 0.535 0.559 0.624 0.655 0.685 0.726

Table 6: Overall accuracy of dating models

by Nathanael Chambers (2012). In Chambers’s joint
model, the interpolation parameter A is set to 0.35
which is considered optimal in his work.

4.2 Experimental Results

Table 5 shows the performance of propagation mod-
els where Reached denotes the number of docu-
ments labeled when the propagation process ends,
prop ratio and prop accuracy are defined as follows:

# ReachedDocN odes
# LabeledDocN odes

Prop Accuracy =
#CorrectDocNodes — # LabeledDocN odes

Prop Ratio =

# ReachedDocNodes — # Labeled DocN odes

where # LabeledDocNodes is the number of ini-
tially labeled document nodes which are documents
in the training set and # ReachedDocN odes is the
number of document nodes labeled when the propa-
gation process ends.

Note that prop ratio and accuracy in table 5 are
the mean of the prop ratio and accuracy of the five
groups of experiments. It is clear that confidence
boosting model improves the prop accuracy over
BFS-based model. When only 1,000 documents
are initially labeled with timestamps, the confidence
boosting model can propagate their timestamps to
more than 400,000 documents with an accuracy of

0.494, approximately 12.8% relative improvement
over the BFS counterpart, which proves effective-
ness of the confidence boosting model.

However, as shown in table 5, hardly can the prop-
agation process propagate timestamps to all doc-
uments. One reason is that the number of docu-
ment nodes on the bipartite graph is only 550,124,
approximately 61.1% of all documents. The other
documents may not mention events which are also
mentioned by other documents, which means they
are isolate and thus are excluded from the bipartite
graph. Also, the event coreference resolution phase
does not guarantee finding all coreferential extrac-
tions; in other words, recall of event coreference res-
olution is not 100%. The other reason is that some
documents are unreachable from the initially labeled
nodes even if they are in the bipartite graph.

The overall accuracy of different dating models
is shown in table 6. As with table 5, overall accu-
racy in table 6 is the average performance of mod-
els in the five groups of experiments. As reported
by Nathanael Chambers (2012), the discriminative
classifier performs much better than the temporal
language models on the Gigaword dataset. In the
case of 500,000 training examples, the Maxent clas-
sifier using unigram features outperforms the tem-
poral language models by 40.5% relative accuracy.
If the size of the training set is large enough, named



entities and linguistic features as well as temporal
constraints will improve the overall accuracy sig-
nificantly. However, if the size of the training set
is small, these features will not result in much im-
provement.

Compared with the previous models, the propaga-
tion models predict the document timestamps much
more accurately especially in the case where the size
of the training set is small. When the size of the
training set is 1,000, our BFS-based model and con-
fidence boosting model combined with the MaxEnt
classifier outperform Chambers’s joint model which
is considered the state-of-the-art model for the task
of automatic dating of documents by 38.7% and
46.8% relative accuracy respectively. This is be-
cause the feature-based methods are not very reli-
able especially when the size of the training set is
small. In contrast, our propagation models can pre-
dict timestamps of documents with an understand-
ing of document content, which allows our method
to date documents more credibly than the baseline
methods. Also, by comparing table 5 with table 6,
it can be found that prop accuracy is almost always
higher than overall accuracy, which also verifies that
the propagation models are more credible for dat-
ing document than the feature-based models. More-
over, data is so redundant that a great number of
documents can be connected with events they share.
Therefore, even if a small number of documents are
labeled, the labeled information can be propagated
to large numbers of articles through the connections
between documents and events according to relative
time relations. Even if the size of the training set
is large, e.g. 500,000, our propagation models still
outperform the state-of-the-art dating method. Ad-
ditionally, some event nodes on the bipartite graph
may be labeled with a timestamp during the process
of propagation as a byproduct. The temporal infor-
mation of the events would be useful for other tem-
poral analysis tasks.

5 Related Work

In addition to work of de Jong et al. (2005) and
Chambers (2012) introduced in previous sections,
there is also other research focusing on the task of
document dating. Kanhabua and Norvag (2009) im-
proved temporal language models by incorporating

10

temporal entropy and search statistics and apply-
ing two filtering techniques to the unigrams in the
model. Kumar et al. (2011) is also based on the
temporal language models, but more historically-
oriented, which models the timeline from the present
day back to the 18th century. In addition, they used
KL-divergence instead of normalized log likelihood
ratio to measure differences between a document
and a time period’s language model.

However, these methods are based on tempo-
ral language models so they also suffer from the
problem of the method of de Jong et al. (2005).
Therefore, they inevitably make wrong predictions
in some cases, just as mentioned in Section 1. Com-
pared with these methods, our event-based propaga-
tion models exploit relative temporal relations be-
tween documents and events for dating document
on a basis of an understanding of document content,
which is more reasonable and also proved to be more
effective by the experimental results.

6 Conclusion

The main contribution of this paper is exploiting
relative temporal relations between events and doc-
uments for the document dating task. Different
with the conventional work which dates documents
with feature-based methods, we proposed an event-
based time label propagation model called confi-
dence boosting in which timestamps are propagated
on a document-event bipartite graph according to
relative temporal relations between documents and
events for dating documents on a basis of an under-
standing of document content. We discussed chal-
lenges for the propagation models and gave the cor-
responding solutions in detail. The experimental re-
sults show that our event-based propagation model
can predict document timestamps in high accuracy
and the model combined with a MaxEnt classifier
outperforms the state-of-the-art method on a data-
redundant dataset.
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Abstract

In this paper we classify the temporal relations
between pairs of events on an article-wide ba-
sis. This is in contrast to much of the exist-
ing literature which focuses on just event pairs
which are found within the same or adjacent
sentences. To achieve this, we leverage on dis-
course analysis as we believe that it provides
more useful semantic information than typical
lexico-syntactic features. We propose the use
of several discourse analysis frameworks, in-
cluding 1) Rhetorical Structure Theory (RST),
2) PDTB-styled discourse relations, and 3)
topical text segmentation. We explain how
features derived from these frameworks can be
effectively used with support vector machines
(SVM) paired with convolution kernels. Ex-
periments show that our proposal is effective
in improving on the state-of-the-art signifi-
cantly by as much as 16% in terms of F', even
if we only adopt less-than-perfect automatic
discourse analyzers and parsers. Making use
of more accurate discourse analysis can fur-
ther boost gains to 35%.

1 Introduction

A good amount of research had been invested in un-
derstanding temporal relationships within text. Par-
ticular areas of interest include determining the re-
lationship between an event mention and a time ex-
pression (timex), as well as determining the relation-
ship between two event mentions. The latter, which
we refer to as event-event (E-E) temporal classifica-
tion is the focus of this work.

For a given event pair which consists of two
events el and e2 found anywhere within an article,
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we want to be able to determine if el happens be-
fore e2 (BEFORE), after €2 (AFTER), or within the
same time span as e2 (OVERLAP).

Consider this sentence!:

At least 19 people were killed and 114 people were
wounded in Tuesday’s southern Philippines airport blast, )
officials said, but reports said the death toll could climb

to 30.

Three event mentions found within the sentence are
bolded. We say that there is an OVERLAP rela-
tionship between the “killed — wounded” event pair
as these two events happened together after the air-
port blast. Similarly there is a BEFORE relationship
between both the “killed — said”, and “wounded —
said” event pairs, as the death and injuries happened
before reports from the officials.

Being able to infer these temporal relationships
allows us to build up a better understanding of the
text in question, and can aid several natural lan-
guage understanding tasks such as information ex-
traction and text summarization. For example, we
can build up a temporal characterization of an article
by constructing a temporal graph denoting the rela-
tionships between all events within an article (Ver-
hagen et al., 2009). This can then be used to help
construct an event timeline which layouts sequen-
tially event mentions in the order they take place (Do
et al., 2012). The temporal graph can also be used
in text summarization, where temporal order can be
used to improve sentence ordering and thereby the
eventual generated summary (Barzilay et al., 2002).

Given the importance and value of temporal re-
lations, the community has organized shared tasks

'From article AFP_ENG_20030304.0250 of the ACE 2005
corpus (ACE, 2005).
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to spur research efforts in this area, including the
TempEval-1, -2 and -3 evaluation workshops (Ver-
hagen et al., 2009; Verhagen et al., 2010; Uzzaman
et al., 2012). Most related work in this area have
focused primarily on the task defintitions of these
evaluation workshops. In the task definitions, E-
E temporal classification involves determining the
relationship between events found within the same
sentence, or in adjacent sentences. For brevity we
will refer to this loosely as intra-sentence E-E tem-
poral classification in the rest of this paper.

This definition however is limiting and insuffi-
cient. It was adopted as a trade-off between com-
pleteness, and the need to simplify the evaluation
process (Verhagen et al., 2009). In particular, one
deficiency is that it does not allow us to construct the
complete temporal graph we seek. As illustrated in
Figure 1, being able to perform only intra-sentence
E-E temporal classification may result in a forest of
disconnected temporal graphs. A sentence s3 sepa-
rates events C and D, as such an intra-sentence E-E
classification system will not be able to determine
the temporal relationship between them. While we
can determine the relationship between A and C' in
the figure with the use of temporal transitivity rules
(Setzer et al., 2003; Verhagen, 2005), we cannot re-
liably determine the relationship between say A and
D.

\\\\\\

Figure 1: A disconnected temporal graph of events within
an article. Horizontal lines depict sentences s1 to s4, and
the circles identify events of interest.

In this work, we seek to overcome this limitation,
and study what can enable effective article-wide E-E
temporal classification. That is, we want to be able
to determine the temporal relationship between two
events located anywhere within an article.

The main contribution of our work is going
beyond the surface lexical and syntactic features
commonly adopted by existing state-of-the-art ap-
proaches. We suggest making use of semantically
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motivated features derived from discourse analysis
instead, and show that these discourse features are
superior.

While we are just focusing on E-E temporal
classification, our work can complement other ap-
proaches such as the joint inference approach pro-
posed by Do et al. (2012) and Yoshikawa et al.
(2009) which builds on top of event-timex (E-T') and
E-E temporal classification systems. We believe that
improvements to the underlying E-T and E-E classi-
fication systems will help with global inference.

2 Related Work

Many researchers have worked on the E-E temporal
classification problem, especially as part of the Tem-
pEval series of evaluation workshops. Bethard and
Martin (2007) presented one of the earliest super-
vised machine learning systems, making use of sup-
port vector machines (SVM) with a variety of lexical
and syntactic features. Kolya et al. (2010) described
a conditional random field (CRF) based learner mak-
ing use of similar features. Other researchers includ-
ing Uzzaman and Allen (2010) and Ha et al. (2010)
made use of Markov Logic Networks (MLN). By
leveraging on the transitivity properties of temporal
relationships (Setzer et al., 2003), they found that
MLNSs are useful in inferring new temporal relation-
ships from known ones.

Recognizing that the temporal relationships be-
tween event pairs and time expressions are related,
Yoshikawa et al. (2009) proposed the use of a joint
inference model and showed that improvements in
performance are obtained. However this gain is at-
tributed to the joint inference model they had devel-
oped, making use of similar surface features.

To the best of our knowledge, the only piece
of work to have gone beyond sentence boundaries
and tackle the problem of article-wide E-E temporal
classification is by Do et al. (2012). Making use of
integer linear programming (ILP), they built a joint
inference model which is capable of classifying tem-
poral relationships between any event pair within
a given document. They also showed that event
co-reference information can be useful in determin-
ing these temporal relationships. However they did
not make use of features directed specifically at de-
termining the temporal relationships of event pairs



across different sentences. Other than event co-
reference information, they adopted the same mix
of lexico-syntactic features.

Underlying these disparate data-driven methods
for similar temporal processing tasks, the reviewed
works all adopted a similar set of surface fea-
tures including vocabulary features, part-of-speech
tags, constituent grammar parses, governing gram-
mar nodes and verb tenses, among others. We ar-
gue that these features are not sufficiently discrimi-
native of temporal relationships because they do not
explain how sentences are combined together, and
thus are unable to properly differentiate between the
different temporal classifications. Supporting our
argument is the work of Smith (2010), where she
argued that syntax cannot fully account for the un-
derlying semantics beneath surface text. D’Souza
and Ng (2013) found out as much, and showed that
adopting richer linguistic features such as lexical re-
lations from curated dictionaries (e.g. Webster and
WordNet) as well as discourse relations help tempo-
ral classification. They had shown that the Penn Dis-
course TreeBank (PDTB) style (Prasad et al., 2008)
discourse relations are useful. We expand on their
study to assess the utility of adopting additional dis-
course frameworks as alternative and complemen-
tary views.

3 Making Use of Discourse

To highlight the deficiencies of surface features, we
quote here an example from Lascarides and Asher
(1993):

[A] Max opened the door. The room was pitch dark.

[B] Max switched off the light. The room was pitch dark. )

The two lines of text A and B in Example 2 have
similar syntactic structure. Given only syntactic fea-
tures, we may be drawn to conclude that they share
similar temporal relationships. However in the first
line of text, the events temporally OVERLAP, while
in the second line they do not. Clearly, syntax alone
is not going to be useful to help us arrive at the cor-
rect temporal relations.

If existing surface features are insufficient, what is
sufficient? Given a E-E pair which crosses sentence
boundaries, how can we determine the temporal re-
lationship between them? We take our cue from the
work of Lascarides and Asher (1993). They sug-
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gested instead that discourse relations hold the key
to interpreting such temporal relationships.
Building on their observations, we believe that
discourse analysis is integral to any solution for the
problem of article-wide E-E temporal classification.
We thus seek to exploit a series of different discourse
analysis studies, including 1) the Rhetorical Struc-
ture Theory (RST) discourse framework, 2) Penn
Discourse Treebank (PDTB)-styled discourse rela-
tions based on the lexicalized Tree Adjoining Gram-
mar for Discourse (D-LTAG), and 3) topical text seg-
mentation, and validate their effectiveness for tem-
poral classification.
RST Discourse Framework. RST (Mann and
Thompson, 1988) is a well-studied discourse anal-
ysis framework. In RST, a piece of text is split into a
sequence of non-overlapping text fragments known
as elementary discourse units (EDUs). Neighboring
EDUs are related to each other by a typed relation.
Most RST relations are hypotactic, where one of the
two EDUs participating in the relationship is demar-
cated as a nucleus, and the other a satellite. The nu-
cleus holds more importance, from the point of view
of the writer, while the satellite’s purpose is to pro-
vide more information to help with the understand-
ing of the nucleus. Some RST relations are however
paratactic, where the two participating EDUs are
both marked as nuclei. A discourse tree can be com-
posed by viewing each EDU as a leaf node. Nodes
in the discourse tree are linked to one another via the
discourse relations that hold between the EDUs.
RST discourse relations capture the semantic re-
lation between two EDUs, and these often offer a
clue to the temporal relationship between events in
the two EDUs too. As an example, let us refer once
again to Example 2. Recall that in the second line of
text “switched off” happens BEFORE “dark”. The
RST discourse structure for the second line of text
is shown on the left of Figure 2. We see that the
two sentences are related via a “Result” discourse
relation. This fits our intuition that when there is
causation, there should be a BEFORE/AFTER rela-
tionship. The RST discourse relation in this case is
very useful in helping us determine the relationship
between the two events.
PDTB-styled Discourse Relations. Another widely
adopted discourse relation annotation is the PDTB
framework (Prasad et al., 2008). Unlike the RST
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Max switched off the light. The room was pitch dark.

Max switched off the light.

The room was pitch dark.

Figure 2: RST and PDTB discourse structures for the second line of text in Example 2. The structure on the left is the
RST discourse structure, while the structure on the right is for PDTB.

framework, the discourse relations in PDTB build on
the work on D-LTAG by Webber (2004), a lexicon-
grounded approach to discourse analysis. Practi-
cally, this means that instead of starting from a pre-
identified set of discourse relations, PDTB-styled
annotations are more focused on detecting possible
connectives (can be either explicit or implicit) within
the text, before identifying the text fragments which
they connect and how they are related to one another.

Applied again to the second line of text we have in
Example 2, we get a structure as shown on the right
side of Figure 2. From the figure we can see that
the two sentences are related via a “Cause” relation-
ship. Similar to what we have explained earlier for
the case of RST, the presence of a causal effect here
strongly hints to us that events in the two sentences
share a BEFORE/AFTER relationship.

At this point we want to note the differences be-
tween the use of the RST framework and PDTB-
styled discourse relations in the context of our work.
The theoretical underpinnings behind these two dis-
course analysis are very different, and we believe
that they can be complementary to each other. First,
the RST framework breaks up text within an article
linearly into non-overlapping EDUs. Relations can
only be defined between neighboring EDUs. How-
ever this constraint is not found in PDTB-styled re-
lations, where a text fragment can participate in one
discourse relation, and a subsequence of it partic-
ipate in another. PDTB relations are also not re-
stricted only to adjacent text fragments. In this as-
pect, the flexibility of the PDTB relations can com-
plement the seemingly more rigid RST framework.

Second, with PDTB-styled relations not every
sentence needs to be in a relation with another as
the PDTB framework does not aim to build a global
discourse tree that covers all sentence pairs. This is
a problem when we need to do an article-wide anal-
ysis. The RST framework does not suffer from this
limitation however as we can build up a discourse
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tree connecting all the text within a given article.
Topical Text Segmentation. A third complemen-
tary type of inter-sentential analysis is topical text
segmentation. This form of segmentation separates
a piece of text into non-overlapping segments, each
of which can span several sentences. Each segment
represents passages or topics, and provides a coarse-
grained study of the linear structure of the text (Sko-
rochod’Ko, 1972; Hearst, 1994). The transition be-
tween segments can represent possible topic shifts
which can provide useful information about tempo-
ral relationships.

Referring to Example 32, we have delimited the
different lines of text into segments with parenthe-
ses along with a subscript. Segment (1) talks about
the casualty numbers seen at a medical centre, while
Segment (2) provides background information that
informs us a bomb explosion had taken place. The
segment boundary signals to us a possible temporal
shift and can help us to infer that the bombing event
took place BEFORE the deaths and injuries had oc-
curred.

(The Davao Medical Center, a regional government hos-
pital, recorded 19 deaths with 50 wounded. Medical
evacuation workers however said the injured list was
around 114, spread out at various hospitals. )1

(A powerful bomb tore through a waiting shed at the
Davao City international airport at about 5.15 pm (0915
GMT) while another explosion hit a bus terminal at the
city.)2

3

4 Methodology

Having motivated the use of discourse analysis for
our problem, we now proceed to explain how we can
make use of them for temporal classification. The
different facets of discourse analysis that we are ex-
ploring in this work are structural in nature. RST

From article AFP_ENG_20030304.0250 of the ACE 2005
corpus.
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Figure 3: A possible RST discourse tree. The two circles
denote two events A and B which we are interested in.

and PDTB discourse relations are commonly repre-
sented as graphs, and we can also view the output
of text segmentation as a graph with individual text
segments forming vertices, and the transitions be-
tween them forming edges.

Considering this, we propose the use of support
vector machines (SVM), adopting a convolution ker-
nel (Collins and Duffy, 2001) for its kernel function
(Vapnik, 1999; Moschitti, 2006). The use of convo-
lution kernels allows us to do away with the exten-
sive feature engineering typically required to gener-
ate flat vectorized representations of features. This
process is time consuming and demands specialized
knowledge to achieve representations that are dis-
criminative, yet are sufficiently generalized. Con-
volution kernels had also previously been shown to
work well for the related problem of E-T temporal
classification (Ng and Kan, 2012), where the fea-
tures adopted are similarly structural in nature.

We now describe our use of the discourse analysis
frameworks to generate appropriate representations
for input to the convolution kernel.

RST Discourse Framework. Recall that the RST
framework provides us with a discourse tree for an
entire input article. In recent years several automatic
RST discourse parsers have been made available. In
our work, we first make use of the parser by Feng
and Hirst (2012) to obtain a discourse tree represen-
tation of our input. To represent the meaningful por-
tion of the resultant tree, we encode path information
between the two sentences of interest.

We illustrate this procedure using the example
discourse tree illustrated in Figure 3. EDUs includ-
ing EDU1 to EDUS3 form the vertices while dis-
course relations 1 and 2 between the EDUs form
the edges. For a E-E pair, { A, B}, we can obtain a
feature structure by first locating the EDUs within
which A and B are found. A is found inside £DU1
and B is found within EDU3. We trace the short-
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+ r1 “ r2 *

Figure 4: A possible PDTB-styled discourse annotation
where the circles represent events we are interested in.

est path between EDU1 and EDU3, and use this
path as the feature structure for the E-E pair, i.e.
{rl — r2}.

PDTB-styled Discourse Relations. We make use of
the automatic PDTB discourse parser from Lin et al.
(2013) to obtain the discourse relations over an input
article. Similar to how we work with the RST dis-
course framework, for a given E-FE pair, we retrieve
the relevant text fragments and use the shortest path
linking the two events as a feature structure for our
convolution kernel classifier.

An example of a possible PDTB-styled discourse
annotation is shown in Figure 4. The horizontal
lines represent different sentences in an article. The
parentheses delimit text fragments, ¢1 to ¢4, which
have been identified as arguments participating in
discourse relations, r1 to 3. For a given E-E pair
{A, B}, we use the trace of the shortest path be-
tween them i.e. {r1 — r2} as a feature structure.

We take special care to regularize the input (as,
unlike EDUs in RST, arguments to different PDTB
relations may overlap, as in 72 and 73). We model
each PDTB discourse annotation as a graph and em-
ploy Dijkstra’s shortest path algorithm. The graph
resulting from the annotation in Figure 4 is given in
Figure 5. Each text fragment ¢; maps to a vertex
n; in the graph. PDTB relations between text frag-
ments form edges between corresponding vertices.
As 72 relates 2 to both ¢3 and ¢4, two edges link
up n2 to the corresponding vertices n3 and n4 re-
spectively. By doing this, Dijkstra’s algorithm will
always allow us to find the desired shortest path.

1 r2 r3

(3
n2 n3 n4
\_/

r2

Figure 5: Graph derived from discourse annotation in
Figure 4.



Topical Text Segmentation. Taking as input a com-
plete text article, we make use of the state-of-the-art
text segmentation system from Kazantseva and Sz-
pakowicz (2011). The output of the system is a se-
ries of non-overlapping, linear text segments, which
we can number sequentially.

In Figure 6 the horizontal lines represent sen-
tences. Parentheses with subscripts mark out the
segment boundaries. We can see two segments sl
and s2 here. Given a target E-E pair { A, B} (repre-
sented as circles inside the figure), we identify the
segment number of the corresponding segment in
which each of A and B is found. We build a fea-
ture structure with the identified segment numbers,
i.e. {s1 — s2} to capture the segmentation.

(—®

)31 (

® )s2

Figure 6: A possible segmentation of three sentences into
two segments.

5 Results

We conduct a series of experiments to validate the
utility of our proposed features.

Data Set. We make use of the same data set built
by Do et al. (2012). The data set consists of 20
newswire articles which originate from the ACE
2005 corpus (ACE, 2005). Initially, the data set
consist of 324 event mentions, and a total of 375
annotated E-E pairs. We perform the same temporal
saturation step as described in Do et al. (2012), and
obtained a total of 7,994 E-E pairs®.

A breakdown of the number of instances by each
temporal classes is shown in Table 1. Unlike earlier
data sets such as that for TempEval-2 where more
than half (about 55%) of test instances belong to the

3Though we have obtained the data set from the original au-
thors, there was a discrepancy in the number of E-E pairs. The
original paper reported a total of 376 annotated E-E pairs. Be-
sides this, we also repeated the saturation steps iteratively until
no new relationship pairs are generated. We believe this to be
an enhancement as it ensures that all inferred temporal relation-
ships are generated.
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OVERLAP class, OVERLAP instances make up just
10% of the data set.

This difference is due mainly to the fact that our
data set consists not only of intra-sentence E-E pairs,
but also of article-wide E-E pairs. Figure 7 shows
the number of instances for each temporal class bro-
ken down by the number of sentences (i.e. sentence
gap) that separate the events within each E-E pair.
We see that as the sentence gap increases, the pro-
portion of OVERLAP instances decreases. The in-
tuitive explanation for this is that when event men-
tions are very far apart in an article, it becomes more
unlikely that they happen within the same time span.

Class
# E-E pairs

AFTER
3,588 (45%)

BEFORE
3,589 (45%)

OVERLAP
815 (10%)

Table 1: Number of E-E pairs in data set attributable to
each temporal class. Percentages shown in parentheses.

600

® AFTER

BEFORE ®OVERLAP

# E-E pairs

Sentence gap

Figure 7: Breakdown of number of E-E pairs for each
temporal class based on sentence gap.

Experiments. The work done in Do et al. (2012) is
highly related to our experiments, and so we have
reported the relevant results for local E-E classifi-
cation in Row 1 of Table 2 as a reference. While
largely comparable, note that a direct comparison is
not possible because 1) the number of E-E instances
we have is slightly different from what was reported,
and 2) we do not have access to the exact partitions
they have created for 5-fold cross-validation.

As such, we have implemented a baseline adopt-
ing similar surface lexico-syntactic features used in
previous work (Mani et al., 2006; Bethard and Mar-
tin, 2007; Ng and Kan, 2012; Do et al., 2012), in-
cluding 1) part-of-speech tags, 2) tenses, 3) depen-
dency parses, 4) relative position of events in article,



System Precision | Recall F,
(1) | Do2012 43.86 52.65 | 47.46
(2) | BASE 59.55 38.14 | 46.50
(3) | BASE + RST 4+ PDTB + TOPICSEG 71.89 41.99 | 53.01
(4) | BASE + RST 4+ PDTB + TOPICSEG + COREF 75.23 43.58 | 55.19
(5) | BASE + O-RST + PDTB 4+ O-TOPICSEG + O-COREF 78.35 54.24 | 64.10

Table 2: Macro-averaged results obtained from our experiments. The difference in F; scores between each successive
row is statistically significant, but a comparison is not possible between rows (1) and (2).

5) the number of sentences between the target events
and 6) VerbOcean (Chklovski and Pantel, 2004) re-
lations between events. This baseline system, and
the subsequent systems we will describe, comprises
of three separate one-vs-all classifiers for each of the
temporal classes. The result obtained by our base-
line is shown in Row 2 (i.e. BASE) in Table 2. We
note that our baseline is competitive and performs
similarly to the results obtained by Do et al. (2012).
However as we do not have the raw judgements from
Do’s system, we cannot test for statistical signifi-
cance.

We also implemented our proposed features and
show the results obtained in the remaining rows of
Table 2. In Row 3, RST denotes the RST discourse
feature, PDTB denotes the PDTB-styled discourse
features, and TOPICSEG denotes the text segmen-
tation feature. Compared to our own baseline, there
is a relative increase of 14% in Fq, which is statis-
tically significant when verified with the one-tailed
Student’s paired #-test (p < 0.01).

In addition, Do et al. (2012) have shown the value
of event co-reference. Therefore we have also in-
cluded this feature by making use of an automatic
event co-reference system by Chen et al. (2011).
The result obtained after adding this feature (de-
noted by COREF) is shown in Row 4. The relative in-
crease in F; of about 4% from Row 3 is statistically
significant (p < 0.01) and affirms that event co-
reference is a useful feature to have, together with
our proposed features. We note that our complete
system in Row 4 gives a 16% improvement in Fy,
relative to the reference system D02012 in Row 1.

To get a better idea of the performance we can ob-
tain if oracular versions of our features are available,
we also show the results obtained if hand-annotated
RST discourse structures, text segments, as well as
event co-reference information were used. Annota-
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tions for the RST discourse structures and text seg-
ments were performed by the first author (RST an-
notations were made following the annotation guide-
lines given by Carlson and Marcu (2001)). Oracular
event co-reference information was included in the
dataset that we have used.

In Row 5 the prefix O denotes oracular versions
of the features we had proposed. From the results
we see that there is a marked increase of over 15%
in F; relative to Row 4. Compared to Do’s state-of-
the-art system, there is also a relative gain of at least
35%. These oracular results further confirm the im-
portance of non-local discourse analysis for tempo-
ral processing.

6 Discussion

Ablation tests. We performed ablation tests to as-
sess the efficacy of the discourse features used in
our earlier experiments. Starting from the full sys-
tem, we dropped each discourse feature in turn to see
the effect this has on overall system performance.
Our test is performed over the same data set, again
with 5-fold cross-validation. The results in Table 3
show a statistically significant (based on the one-
tailed Student’s paired ¢-test) drop in F; in each case,
which proves that each of our proposed features is
useful and required.

From the ablation tests, we also observe that the
RST discourse feature contributes the most to over-
all system performance while the PDTB discourse
feature contributes the least. However we should not
conclude prematurely that the former is more use-
ful than the latter; as the results are obtained using
parses from automatic systems, and are not reflec-
tive of the full utility of ground truth discourse an-
notations.

Useful Relations. The ablation test results showed
us that discourse relations (in particular RST dis-
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Table 3: Ablation test results. ‘“**’ and ‘*’ denote statis-
tically significance against the full system with p < 0.01
and p < 0.05, respectively.

course relations) are the most important in our sys-
tem. We have also motivated our work earlier with
the intuition that certain relations such as the RST
“Result” and the PDTB “Cause” relations provide
very useful temporal cues. We now offer an intro-
spection into the use of these discourse relations.

Figure 8 illustrates the relative proportion of tem-
poral classes in which each RST and PDTB re-
lation appear. If the relations are randomly dis-
tributed, we should expect their distribution to fol-
low that of the temporal classes as shown in Table 1.
However we see that many of the relations do not
follow this distribution. For example, we observe
that several relations such as the RST “Condition”
and PDTB “Cause” relations are almost exclusively
found within AFTER and BEFORE event pairs only,
while the RST “Manner-means” and PDTB “Syn-
chrony” relations occur in a disproportionately large
number of OVERLAP event pairs. These relations
are likely useful in disambiguating between the dif-
ferent temporal classes.

To verify this, we examine the convolution tree
fragments that lie on the support vector of our SVM
classifier. The work of Pighin and Moschitti (2010)
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in linearizing kernel functions allows us to take a
look at these tree fragments. Applying the lineariza-
tion process leads to a different classifier from the
one we have used. The identified tree fragments are
therefore just an approximation to those actually em-
ployed by our classifier. However, this analysis still
offers an introspection as to what relations are most
influential for classification.

BEFORE
Bl  (Temporal ... (0]
B2  (Temporal (Elaboration ...
B3  (Condition (Explanation ...
B4  (Condition (Attribution ...
B5  (Elaboration (Bckgrnd ...

OVERLAP
(Manner-means ...

Table 4: Subset of top RST discourse fragments on sup-
port vectors identified by linearizing kernel function.

Table 4 shows a subset of the top RST discourse
fragments identified for the BEFORE and OVER-
LAP one-vs-all classifiers. The list is in line with
what we expect from Figure 8. The former consists
of fragments containing relations such as “Tempo-
ral” and “Condition”, while the latter has a sole frag-
ment containing “Manner-Means” .

To illustrate what these fragments may mean, we
show several example sentences from our data set
in Example 4. Sentence A consists of the tree frag-
ment B1, i.e. “(Temporal..”. Its corresponding dis-
course structure is illustrated in the top half of Fig-
ure 9. This fragment indicates to us (correctly) that
the event “wielded” happened BEFORE Milosevic
was “swept out” of power. Sentence B is made
up of tree fragment O1, i.e. “(Manner-means...”,



and its discourse structure is shown in the bottom
half of Figure 9. As with the previous example, the
fragment suggests (correctly) that there should be a
OVERLAP relationship for the “requested — said”
event pair.

[A] Milosevic and his wife wielded enormous power in
Yugoslavia for more than a decade before he was swept

out of power after a popular revolt in October 2000.

[B] The court order was requested by Jack Welch’s at- )
torney, Daniel K. Webb, who said Welch would likely be
asked about his business dealings, his health and entries
in his personal diary.

Nor&/

Milosevic ... wielded...
a decade

temporal

after a... October
2000.

before.. swept out..
power

| manner-means

The court... requested elaboration

by Jack .. Webb,

altribution/—h

who said Welch would ...
diary.

Figure 9: RST discourse structures for sentences A (top
half) and B (bottom half) in Example 4.

Segment Numbers. From the ablation test results,
text segmentation is the next most important feature
after the RST discourse feature. This is interesting
given that the defined feature structure for topical
text segmentation is not the most intuitive. By us-
ing actual segment numbers, the structure may not
generalize well for articles of different lengths for
example, as each article may have vastly different
number of segments. The transition across segments
may also not carry the same semantic significance
for different articles.

Our experiments have however shown that this
feature design is useful in improving performance.
This is likely because:

1. The default settings of the text segmentation
system we had used are such that precision is
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favoured over recall (Kazantseva and Szpakow-
icz, 2011, p. 292). As such there is just an aver-
age of between two to three identified segments
per article. This makes the feature more gener-
alizable despite making use of actual segment
numbers.

2. The style of writing in newswire articles which
we are experimenting on generally follows
common journalistic guidelines. The semantics
behind the transitions across the coarse-grained
segments that were identified are thus likely to
be of a similar nature across many different ar-
ticles.

We leave for future work an investigation into

whether more fine-grained topic segments can lead
to further performance gains. In particular, it will be
interesting to study if work on argumentative zoning
(Teufel and Kan, 2011) can be applied to newswire
articles, and whether the subsequent learnt docu-
ment structures can be used to delineate topic seg-
ments more accurately.
Error Analysis. Besides examining the features we
had used, we also want to get a better idea of the er-
rors made by our classifier. Recall that we are using
separate one-vs-all classifiers for each of the tempo-
ral classes, so each of the three classifiers generates
a column in the aggregate confusion matrix shown
in Table 5. In cases where none of the SVM clas-
sifiers return a positive confidence value, we do not
assign a temporal class (captured as column N). The
high number of event pairs which are not assigned to
any temporal class explains the lower recall scores
obtained by our system, as observed in Table 2.

Predicted
[0) B A N
O | 119 (14.7%) 114 (14.1%) 104 (12.8%) 474 (58.5%)
B 19 (0.5%) 2067 (57.9%) 554 (15.5%) 928 (26.0%)
A 16 (0.5%) 559 (15.7%) 2046 (57.3%) | 947 (26.5%)

Table 5: Confusion matrix obtained for the full system,
classifying into (O)VERLAP, (B)EFORE, (A)FTER, and
(N)o result.

Additionally, an interesting observation is the low
percentage of OVERLAP instances that our classi-
fier managed to predict correctly. About 57% of
BEFORE and AFTER instances are classified cor-



rectly, however only about 15% of OVERLAP in-
stances are correct.

Figure 10 offers more evidence to suggest that
our classifier works better for the BEFORE and AF-
TER classes than the OVERLAP class. We see that
as sentence gap increases, we achieve a fairly con-
sistent performance for both BEFORE and AFTER
instances. OVERLAP instances are concentrated
where the sentence gap is less than 7, with the best
accuracy figure coming in below 30%.

Although not definitive, this may be because our
data set consists of much fewer OVERLAP in-
stances than the other two classes. This bias may
have led to insufficient training data for accurate
OVERLAP classification. It will be useful to inves-
tigate if using a more balanced data set for training
can help overcome this problem.

Accuracy

0 5 10 15 20 25 30 35 40
Sentence Gap

Figure 10: Accuracy of the classifer for each temporal
class, plotted against the sentence gap of each E-E pair.

7 Conclusion

We believe that discourse features play an important
role in the temporal ordering of events in text. We
have proposed the use of different discourse anal-
ysis frameworks and shown that they are effective
for classifying the temporal relationships of article-
wide E-E pairs. Our proposed discourse-based fea-
tures are robust and work well even though auto-
matic discourse analysis is noisy. Experiments fur-
ther show that improvements to these underlying
discourse analysis systems will benefit system per-
formance.

In future work, we will like to explore how to
better exploit the various discourse analysis frame-
works for temporal classification. For instance, RST
relations are either hypotactic or paratactic. Marcu
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(1997) made use of this to generate automatic sum-
maries by considering EDUs which are nuclei to be
more salient. We believe it is interesting to examine
how such information can help. We are also inter-
ested to apply discourse features in the context of a
global inferencing system (Yoshikawa et al., 2009;
Do et al., 2012), as we think such analyses will also
benefit these systems as well.
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Abstract

Distant supervision is a scheme to generate
noisy training data for relation extraction by
aligning entities of a knowledge base with
text. In this work we combine the output of
a discriminative at-least-one learner with that
of a generative hierarchical topic model to re-
duce the noise in distant supervision data. The
combination significantly increases the rank-
ing quality of extracted facts and achieves
state-of-the-art extraction performance in an
end-to-end setting. A simple linear interpo-
lation of the model scores performs better
than a parameter-free scheme based on non-
dominated sorting.

1 Introduction

Relation extraction is the task of finding relational
facts in unstructured text and putting them into a
structured (tabularized) knowledge base. Training
machine learning algorithms for relation extraction
requires training data. If the set of relations is pre-
specified, the training data needs to be labeled with
those relations.

Manual annotation of training data is laborious
and costly, however, the knowledge base may al-
ready partially be filled with instances from the rela-
tions. This is utilized by a scheme known as distant
supervision (DS) (Mintz et al., 2009): text is au-
tomatically labeled by aligning (matching) pairs of
entities that are contained in a knowledge base with
their textual occurrences. Whenever such a match is
encountered, the surrounding context (sentence) is
assumed to express the relation.
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This  assumption, however, can fail.
Consider the example given in (Taka-
matsu et al, 2012): If the tuple
place_of_birth (Michael Jackson, Gary)

is contained in the knowledge base, one matching
context could be:

Michael Jackson was born in Gary ...

And another possible context:

Michael Jackson moved from Gary ...

Clearly, only the first context indeed expresses the
relation and should be labeled accordingly.

Three basic approaches have been proposed to
deal with noisy distant supervision instances: The
discriminative at-least-one approach (Riedel et al.,
2010), that requires that at least one of the matches
for a relation-entity tuple indeed expresses the
relation; The generative approach (Alfonseca et
al., 2012) that separates relation-specific distribu-
tions from noise distributions by using hierarchical
topic models; And the pattern correlation approach
(Takamatsu et al., 2012) that assumes that contexts
which match argument pairs have a high overlap in
argument pairs with other patterns expressing the re-
lation.

In this work we combine 1) a discriminative at-
least-one learner, that requires high scores for both
a dedicated noise label and the matched relation, and
2) a generative topic model that uses a feature-based
representation to separate relation-specific patterns
from background or pair-specific noise. We score
surface patterns and show that combining the two
approaches results in a better ranking quality of re-
lational facts. In an end-to-end evaluation we set a
threshold on the pattern scores and apply the pat-
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Figure 1: Hierarchical topic models. Intertext model

(left) and feature model (right).

terns in a TAC KBP-style evaluation. Although
the surface patterns are very simple (only strings of
tokens), they achieve state-of-the-art extraction re-
sults.

2 Related Work

2.1 At-Least-One Models

The original form of distant supervision (Mintz et
al., 2009) assumes all sentences containing an entity
pair to be potential patterns for the relation holding
between the entities. A variety of models relax this
assumption and only presume that at least one of the
entity pair occurrences is a textual manifestation of
the relation. The first proposed model with an at-
least-one learner is that of Riedel et al. (2010) and
Yao et al. (2010). It consists of a factor graph that
includes binary variables for contexts, and groups
contexts together for each entity pair. MultiR (Hoff-
mann et al., 2011) can be viewed as a multi-label
extension of (Riedel et al., 2010). A further exten-
sion is MIMLRE (Surdeanu et al., 2012), a jointly
trained two-stage classification model.

2.2 Hierarchical Topic Model

The hierarchical topic model (HierTopics) by Alfon-
seca et al. (2012) models the distant supervision data
by a generative model. For each corpus match of an
entity pair in the knowledge base, the corresponding
surface pattern is assumed to be typical for either the
entity pair, the relation, or neither. This principle is
then used to infer distributions over patterns of one
of the following types:

1. For every entity pair, a pair-specific distribu-
tion.
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2. For every relation, a relation-specific distribu-
tion.
3. A general background distribution.

The generative process assumes that for each ar-
gument pair in the knowledge base, all patterns
are generated by first choosing a hidden variable z
which can take on three values, B for background, R
for relation and P for pair. Corresponding vocabu-
lary distributions (¢pg, @rer, @pair) for generating the
context patterns are chosen according to the value of
z. The Dirichlet-smoothed vocabulary distributions
are shared on the respective levels. Figure 1 shows
the plate diagram of the HierTopics model.

3 Model Extensions and Combination

3.1 Generative Model

We use a feature-based extension (Roth and Klakow,
2013) of Alfonseca et al. (2012) to include bigrams
for a more fine-grained representation of the pat-
terns. For including features in the model, the model
is extended with a second layer of hidden variables.
A variable x represents a choice of B, R or P for
every pattern, i.e. there is one variable x for every
pattern. Each feature is generated conditioned on
a second variable z € {B, R, P}, i.e. there are as
many variables z for a pattern as there are features
for it. First, the hidden variable x is generated, then
all z variables are generated for the corresponding
features (see Figure 1). The values B, R or P of z
depend on the corresponding x by a transition distri-
bution:

ifz==x

psam67
P(Z, =2 X =2 =
(Z | 36) ) { otherwise

]-_psame
2 9

where features at indices 7 are mapped to the corre-
sponding pattern indices by a function j(7); Psame
is set to .99 to enforce the correspondence between
pattern and feature topics. !

3.2 Discriminative Model

As a second feature-based model, we employ a per-
ceptron model that enforces constraints on the labels
for patterns (Roth and Klakow, 2013). The model
consists of log-linear factors for the set of relations

"The hyper-parameters used for the feature-based topic
model are « = (1,1,1) and 8 = (.1,.001,.001).



Algorithm 1 At-Least-One Perceptron Training

0—0
for r € R do
for pair € kb_pairs(r) do
for s € sentences(pair) do
forr’ € R\ rdo
if P(r|s,0) < P(r'|s,0) then
0 —0+o(s,m) — ¢(s,7')
if P(NIL|s,0) < P(r'|s,0) then
0 —0+ ¢(57NIL) - ¢(S,T,)
i Ve sentences(pair) ¢ P(r]s,0) < P(NIL|s,0) then
s* = arg max, %
0 — 0+ ¢(s*,r) — Pp(s*,NIL)

R as well as a factor for the NIL label (no relation).
Probabilities for a relation r given a sentence pat-
tern s are calculated by normalizing over log-linear
factors defined as f,.(s) = exp (D, ¢i(s,7)6;), with
¢(s,r) the feature vector for sentence s and label
assignment 7, and 6, the feature weight vector.

The learner is directed by the following se-
mantics: First, for a sentence s that has a distant
supervision match for relation r, relation r should
have a higher probability than any other relation
€ R\ r. As extractions are expected to be
noisy, high probabilities for NIL are enforced
by a second constraint: NIL must have a higher
probability than any relation ' € R \ r. Third, at
least one DS sentence for an argument pair is ex-
pected to express the corresponding relation r. For
sentences s for an entity pair belonging to relation
r, this can be written as the following constraints:

Vs : P(r|s) > P(r'|s) N P(NIL|s) > P(r'|s)
ds: P(r|s) > P(NIL|s)
The violation of any of the above constraints
triggers a perceptron update. The basic algorithm is
sketched in Algorithm 1.2

3.3 Model Combination

The per-pattern probabilities P(r|pat) are calcu-
lated as in Alfonseca et al. (2012) and aggregated
over all pattern occurrences: For the topic model,
the number of times the relation-specific topic has
been sampled for a pattern is divided by n(pat), the
number of times the same pattern has been observed.
Analogously for the perceptron, the number of times
a pattern co-occurs with entity pairs for r is multi-
plied by the perceptron score and divided by n(pat).

The weight vectors are averaged over 20 iterations.
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topic model score
>
o

perceptron score

Figure 2: Score combination by non-dominated sorting:
Circles indicate patterns on the Pareto-frontier, which are
ranked highest. They are followed by the triangles, the
square indicates the lowest ranked pattern in this exam-
ple.

For the patterns of the form [ARGI1] context
[ARG2], we compute the following scores:

o Maximum Likelihood (MLE):
n(pat,r)
n(pat)

e Topic Model:
n(pat,topic(r))

n(pat)
e Perceptron:
n(pat,r) P(r|s,0)
n(pat) = P(r[s,0)+P(NIL[s,0)

¢ Interpolation:
0.5-n(pat,topic(r))
n(pat)

+ 0.5-n(pat,r)-P(r|s,0)
n(pat)-(P(r|s,0)+P(NIL|s,0))

The topic model and perceptron approaches are
based on plausible yet fundamentally different prin-
ciples of modeling noise without direct supervision.
It is therefore an interesting question how comple-
mentary the models are and how much can be gained
from a combination. As the two models do not use
direct supervision, we also avoid tuning parameters
for their combination.

We use two schemes to obtain a combined rank-
ing from the two model scores: The first is a rank-
ing based on non-dominated sorting by successively
computing the Pareto-frontier of the 2-dimensional
score vectors (Borzsony et al., 2001; Godfrey et
al., 2007). The underlying principle is that all data
points (patterns in our case) that are not dominated
by another point® build the frontier and are ranked
highest (see Figure 2), with ties broken by linear

3A data point h1 dominates a data point ho if b1 > hq in all
metrics and h1 > ho in at least one metric.



combination. Sorting by computing the Pareto-
frontier has been applied to training machine transla-
tion systems (Duh et al., 2012) to combine the trans-
lation quality metrics BLEU, RIBES and NTER,
each of which is based on different principles. In the
context of machine translation it has been found to
outperform a linear interpolation of the metrics and
to be more stable to non-smooth metrics and non-
comparable scalings. We compare non-dominated
sorting with a simple linear interpolation with uni-
form weights.

4 Evaluation

4.1 Ranking-Based Evaluation

Evaluation is done on the ranking quality according
to TAC KBP gold annotations (Ji et al., 2010) of ex-
tracted facts from all TAC KBP queries from 2009-
2011 and the TAC KBP 2009-2011 corpora. First,
candidate sentences are retrieved in which the query
entity and a second entity with the appropriate type
are contained. Candidate sentences are then used
to provide answer candidates if one of the extracted
patterns matches. The answer candidates are ranked
according to the score of the matching pattern.

The basis for pattern extraction is the noisy DS
training data of a top-3 ranked system in TAC KBP
2012 (Roth et al., 2012). The retrieval component
of this system is used to obtain sentence and an-
swer candidates (ranked according to their respec-
tive pattern scores). Evaluation results are reported
as averages over per-relation results of the standard
ranking metrics mean average precision (map), geo-
metric map (gmap), precision at 5 and at 10 (p@5,
p@10).

The maximum-likelihood estimator (MLE) base-
line scores patterns by the relative frequency they
occur with a certain relation. The hierarchical topic
(hier orig) as described in Alfonseca et al. (2012)
increases the scores under most metrics, however
the increase is only significant for p@5 and p@10.
The feature-based extension of the topic model
(hier fear) has significantly better ranking quality.
Slightly better scores are obtained by the at-least-
one perceptron learner. It is interesting to see that the
model combinations both by non-dominated sorting
perc+hier (pareto) as well as uniform interpolation
perc+hier (itpl) give a further increase in ranking
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method map gmap p@5 p@10
MLE 253 142 263 232
hier orig 270 158 353° 297"
hier feature 318" 205T" 363" 3217
perceptron 3301 2101 379" 3377
perc+hier (pareto) 340" 2201% 400" 340"
perc+hier (itpl) | 3447 2201% 426t 3531F

Table 1: Ranking quality of extracted facts. Significance
(paired t-test, p < 0.05) w.r.t. MLE(*) and hier orig(}).

Interpolated Precision/Recall
0.7 T

T
MLE —+—
AN hier orig ---*---
hier feat ---*--- |
perceptron ---@
perc+hier (itpl) —-=-—

06 . "

Precision

Recall

Figure 3: Precision at recall levels.

quality. The simpler interpolation scheme gener-
ally works best. Figure 3 shows the Precision/Recall
curves of the basic models and the linear interpola-
tion. On the P/R curve, the linear interpolation is
equal or better than the single methods on all recall
levels.

4.2 End-To-End Evaluation

We evaluate the extraction quality of the induced
perc+hier (itpl) patterns in an end-to-end setting.
We use the evaluation setting of (Surdeanu et al.,
2012) and the results obtained with their pipeline for
MIMLRE and their re-implementation of MultiR as
a point of reference.

In Surdeanu et al. (2012) evaluation is done us-
ing a subset of queries from the TAC KBP 2010 and
2011 evaluation. The source corpus is the TAC KBP
source corpus and a 2010 Wikipedia dump. Only
those answers are considered in scoring that are con-
tained in a list of possible answers from their can-
didates (reducing the number of gold answers from
1601 to 576 and thereby considerably increasing the
value of reported recall).

For evaluating our patterns, we take the same



queries for testing as Surdeanu et al. (2012). As the
document collection, we use the TAC KBP source
collection and a Wikipedia dump from 07/2009 that
was available to us. From this document collec-
tion, we use our retrieval pipeline of Roth et al.
(2012) and take those sentences that contain query
entities and slot filler candidates according to NE-
tags. We filter out all candidates that are not con-
tained in the list of candidates considered in (Sur-
deanu et al., 2012), and use the same reduced set
of 576 gold answers as the key. We tune a single
threshold parameter ¢ = .3 on held-out development
data and take all patterns with higher scores. Ta-
ble 2 shows that results obtained with the induced
patterns compare well with state-of-the-art relation
extraction systems.

method | Recall  Precision Fl1

MultiR .200 .306 242
MIMLRE 314 247 277
perc+hier (itpl) | .248 401 .307

Table 2: TAC Scores on (Surdeanu et al., 2012) queries.

4.3 Illustration: Top-Ranked Patterns

Figure 4 shows top-ranked patterns for per:title
and org:top_members_employees, the two rela-
tions with most answers in the gold annotations. For
maximum likelihood estimation the score is 1.0 if
the patterns occurs only with the relation in question
— this includes all cases where the pattern is only
found once in the corpus. While this could be cir-
cumvented by frequency thresholding, we leave the
long tail of the data as it is and let the algorithm deal
with both frequent and infrequent patterns.

One can see that while the maximum likelihood
patterns contain some reasonable relational con-
texts, they are less prototypical and more prone to
distant supervision errors. The patterns scored high
by the proposed combination generalize better, vari-
ation at the top is achieved by re-combining ele-
ments that carry relational meaning (“is an”, “vice
president”, “president director”) or are closely cor-
related to the particular relation.

5 Conclusion

We have combined two models based on distinct
principles for noise reduction in distant supervision:
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per:title, MLE

[ARGI1], a singing [ARG2]

*[ARGI] Best film : Capote ( as [ARG2]

[ARG1] Nunn ( born October 7, 1957 in Little Rock , Arkansas
) is an American jazz [ARG2]

*[ARG2] Kevin Weekes , subbing for a rarely rested [ARG1]
[ARG1] Butterfill FRICS ( born February 14, 1941, Surrey ) is
a British [ARG2]

per:title, perc+hier (itpl)

[ARG1], is a Canadian [ARG2]

[ARG1] Hilligoss is an American [ARG2]

[ARGI1], is an American film [ARG2]

[ARG1], is an American film and television [ARG2]
*[ARG]1] for Best [ARG2]

org:top_members_employees, MLE

[ARG2] remained chairman of [ARGI1]

*[ARG2] asks the ball whether he and [ARG1]

[ARG2] was chairman of the [ARGI]

*[ARG1], Joe Lieberman and [ARG2]

*[ARGI1] ’s responsibility to pin down just how the government
decided to front $ 30 billion in taxpayer dollars for the Bear
Stearns deal , *“ Chairman [ARG2]

org:top_members_employees, perc+hier (itpl)
[ARG2], Vice President of the [ARG1]
[ARG]1] Vice president [ARG2]

[ARG1] president director [ARG2]

[ARG1] vice president director [ARG2]
[ARG1] Board member [ARG2]

Figure 4: Top-scored patterns for maximum likelihood
(MLE) and the interpolation (perc+hier itpl) method. In-
exact patterns are marked by *.

a feature-based extension of a hierarchical topic
model, and an at-least-one perceptron. Interpola-
tion increases the quality of extractions and achieves
state-of-the-art extraction performance. A combina-
tion scheme based on non-dominated sorting, that
was inspired by work on combining machine trans-
lation metrics, was not as good as a simple linear
combination of scores. We think that the good re-
sults motivate research into more integrated combi-
nations of noise reduction approaches.
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Abstract

Children learn various levels of linguistic
structure concurrently, yet most existing mod-
els of language acquisition deal with only
a single level of structure, implicitly assum-
ing a sequential learning process. Developing
models that learn multiple levels simultane-
ously can provide important insights into how
these levels might interact synergistically dur-
ing learning. Here, we present a model that
jointly induces syntactic categories and mor-
phological segmentations by combining two
well-known models for the individual tasks.
We test on child-directed utterances in English
and Spanish and compare to single-task base-
lines. In the morphologically poorer language
(English), the model improves morphological
segmentation, while in the morphologically
richer language (Spanish), it leads to better
syntactic categorization. These results provide
further evidence that joint learning is useful,
but also suggest that the benefits may be dif-
ferent for typologically different languages.

1 Introduction

Models of language acquisition seek to infer lin-
guistic structure from data with minimal amounts of
prior knowledge, in order to discover which char-
acteristics of the input data are useful for learn-
ing, and thus potentially utilised by human learners.
Most previous work has focused on learning individ-
ual aspects of linguistic structure. However, children
clearly learn multiple aspects in parallel, rather than
sequentially, implying that models of language ac-
quisition should also incorporate joint learning. Joint
models investigate the interaction between different
levels of linguistic structure during learning. These
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interactions are often (but not necessarily) synergis-
tic, enabling better, more robust, learning by making
use of cues from multiple sources. Recent models
using joint learning to model language acquisition
have spanned various domains including phonology,
word segmentation, syntax and semantics (Feldman
et al., 2009; Elsner et al., 2012; Doyle and Levy,
2013; Johnson, 2008; Kwiatkowski et al., 2012).

In this paper we examine the joint learning of
syntactic categories and morphology, which are ac-
quired by children at roughly the same age (Clark,
2003b), implying possible interactions in the learn-
ing process. Both morphology and word order de-
pend on categorising words based on their morpho-
syntactic function. However, previous models of
syntactic category learning have relied principally
on surrounding context, i.e., word order constraints,
whereas models of morphology use word-internal
cues. Our joint model integrates both sources of
information, allowing the model to flexibly weigh
them according to their utility.

Languages differ in the richness of their mor-
phology and strictness of word order. These char-
acteristics appear to be (anti)correlated, with rich
morphology co-occurring with free word order and
vice versa (Blake, 2001; McFadden, 2003). The
timecourse of acquisition is also influenced by lan-
guage typology: learners of morphologically rich
languages become productive in morphology ear-
lier (Xanthos et al., 2011), suggesting that richer
morphology may be more salient for learners than
impoverished morphology. Sentence comprehension
in children also shows cross-linguistic differences
in the cues used to make sense of non-canonical
sentence structure: learners of a morphologically
rich language (Turkish) disregard word order in
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favour of morphology, whereas learners of En-
glish favour word order (Slobin, 1982; MacWhin-
ney et al., 1984). These interactions between mor-
phology and word order suggest that a joint model
will be better able to support the differences in cue
strength (rich morphology versus strict word order),
and thus be more language-general, than single-task
models.

Both syntactic category and morphology induc-
tion have been the focus of much recent work. (See
Hammarstrom and Borin (2011) for an overview
of unsupervised morphology learning, likewise
Christodoulopoulos et al. (2010) for a comparison
of part of speech/syntactic category induction sys-
tems.) However, given the tightly coupled nature of
these two tasks, there has been surprisingly little
work in joint learning of morphology and syntac-
tic categories. Systems for inducing syntactic cat-
egories often make use of morpheme-like features,
such as word-final characters (Smith and Eisner,
2005; Haghighi and Klein, 2006; Berg-Kirkpatrick
et al.,, 2010; Lee et al.,, 2010), or model words
at the character-level (Clark, 2003a; Blunsom and
Cohn, 2011), but do not include morphemes ex-
plicitly. Other systems (Dasgupta and Ng, 2007;
Christodoulopoulos et al., 2011) use morphologi-
cal segmentations learned by a separate morphology
model as features in a pipeline approach.

Models of morphology induction generally oper-
ate over a lexicon, i.e. a list of word types, rather
than token corpora (Goldsmith, 2006; Creutz and
Lagus, 2007; Kurimo et al., 2010). These models
find morphological categories on the basis of word-
internal features, without taking syntactic context
into account (which is of course not available in a
lexicon).

Lee et al. (2011) and Sirts and Alumée (2012)
present models that infer morphological segmenta-
tions and syntactic categories jointly, although Lee
et al. (2011) do not evaluate the inferred syntactic
categories. Both make use of a word-type constraint
which limits each word form to a single analysis
(i.e., all instances of ducks are assigned to a single
category and will have the same morpheme analy-
sis, ignoring the gold standard distinction between a
plural noun and third person singular verb). This can
make inference more tractable, and often increases
performance, but does not respect the ambiguity in-
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herent in natural language, both over syntactic cat-
egories and morphological analyses. The degree of
ambiguity is language dependent, so that even if a
type-constraint is perhaps relatively unproblematic
in English, it will pose problems in morphologically
richer languages. Furthermore, these two models
make use of an array of heuristics that may not allow
them to be easily generalisable across languages and
datasets (e.g., likelihood scaling (Sirts and Alumie,
2012), sequential suffix matching (Lee et al., 2011)).

In this paper, we present a joint model composed
of two well-known individual models. This allows
us to cleanly investigate the effects of joint learning
and its potential benefits over the single task models.
The simplicity of our models also allows us to avoid
modelling and inference heuristics.

Previous models have used adult-directed written
texts, which differs significantly from the type of
language available to child learners. We test our joint
model on child-directed utterances in English (a
morphologically poor language) and Spanish (with
richer morphology)'. Our results indicate that our
joint model is able to flexibly accommodate lan-
guages with differing levels of morphological rich-
ness. The joint model matches the performance of
single task models on both tasks, demonstrating that
the additional complexity is not a problem (i.e., it
does not add noise). Moreover, the joint model im-
proves performance significantly on the task corre-
sponding to the language’s weaker cue, indicating a
transfer of information from the stronger cue. The
fact that the nature of this improvement varies by
language provides evidence that joint learning can
effectively accommodate typological diversity.

2 Model

The task is to assign word tokens to part of speech
categories and simultaneously segment the tokens
into morphemes. We assume a relatively simple yet
commonly used concatenative morphology which
models a word as a stem plus (possibly null) suffix>.

'There are languages with much richer morphology than
Spanish, but none with a child-directed corpus suitably anno-
tated for evaluation.

2Fullwood and O’Donnell (2013) recently presented a
model of non-concatenative morphology that could be inte-
grated into this model; however, it does not perform well on En-
glish (and presumably other mostly concatenative languages).



Since this is an unsupervised model, the inferred cat-
egories and morphemes lack meaningful labels, but
ideally will correspond to gold standard categories
and morphemes.

2.1 Word Order

We model a sequence of words as a Hidden Markov
Model (HMM) with a non-parametric emission dis-
tribution. As usual, the latent states of the HMM rep-
resent syntactic categories. The tag sequence is gen-
erated by a trigram Dirichlet-multinomial distribu-
tion, where transition parameters T are drawn from
a symmetric Dirichlet distribution with the hyperpa-
rameter ¢f,. Each tag t; in the sequence is then drawn
from the transition distribution conditioned on the
previous two tags:

Dir(OLt)
Mult(’c(l/’,//) )

Ty ~

!/ n
=ttty =t ti,=1,T~

This model is token-based, permitting different
tokens of the same word type to have different
syntactic categories. Most recent models have in-
cluded a constraint forcing all tokens of a given
type into the same category, which improves per-
formance but often complicates inference. The
Bayesian HMM’s performance is therefore not state-
of-the-art, but is comparable to other token-based
models (Christodoulopoulos et al., 2010) and the
model is easy to extend within the Bayesian frame-
work, allowing us to compare multiple versions.

This part of the model is parametric, operat-
ing over a fixed number of tags 7, and is iden-
tical to the formulation of tag transitions in the
Bayesian HMM (Goldwater and Griffiths, 2007).
However, we replace the BHMM’s emission dis-
tribution with the morphologically-informed distri-
butions described below. As in the BHMM, the
emission distributions are conditioned on the tag,
i.e., each tag has its own morphology.

2.2 Morphology

The morphology model introduced by Goldwater
et al. (2006) generates morphological analyses for a
set of tokens. These analyses consist of a tag plus a
stem and suffix pair, which are concatenated to form
the observed words. Both stem s and suffix f are
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generated from Dirichlet-multinomials conditioned
on the tag t:

K~ Dir (o)
K~ Mult(x)
c~ Dir(a)
s|t,o ~ Mult(o;)
o~ Dir(oy)
[l 0~ Mult(¢r)

The os are hyperparameters governing the Dirich-
let distributions from which the multinomials K, G, ¢
are drawn. In turn, ¢, s, and f are drawn from these
multinomials.

The probability of a word under this model is the
sum of the probabilities of all possible analyses [ =

(t,8,1):

Po(w) =) Ro(l)= Y, PGI)P(fl)P(r) (1)

) t,s,f s.t.
sOf=w
where s & f = w denotes that the concatenation of
stem and suffix results in the word w.

On its own, this distribution over morphologi-
cal analyses makes independence assumptions that
are too strong: most word tokens of a word type
have the same analysis, but Py will re-generate
that analysis for every token. To resolve this prob-
lem, a Pitman-Yor process (PYP) is placed over the
generating distribution above. The Pitman-Yor pro-
cess has been found to be useful for representing
the power-law distributions common in natural lan-
guage (Teh, 2006; Goldwater and Griffiths, 2007;
Blunsom and Cohn, 2011).

The distribution of draws from a Pitman-Yor pro-
cess (which, in our case, determines the distribu-
tion of word tokens with each morphological anal-
ysis) is commonly described using the metaphor of
a Chinese restaurant. A series of customers (tokens
z =271...zy) enter a restaurant with an infinite num-
ber of initially empty tables. Upon entering, each
customer is seated at a table k with probability

p(zi=klzi...zi—1,a,b) = (2)
moaif | <k <K
Katl  ifk=K+1
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Figure 1: Plate diagram depicting the morphology model
(adapted from Goldwater et al. (2006)). Hyperparameters
have been omitted for clarity. The left-hand plate depicts
the base distribution Py; note that the morphological anal-
yses [ are generated deterministically as (, sk, fr). The
observed words w; are also deterministic given z; = k and
Iy, since w; = s¢ D f.

where ny is the number of customers already sitting
at table k, K is the total number of tables occupied by
the i — 1 previous customers, and 0 <a < 1land b >0
are hyperparameters of the process. The probability
of being seated at a table increases with the number
of customers already seated at that table, creating a
‘rich-get-richer’ power-law distribution of tokens to
tables; a and b control the amount of reuse of exist-
ing tables, with smaller values leading to more reuse.

Crucially, each table serves a dish generated by
the base distribution Pp—i.e., the dish is a morpho-
logical analysis /; = (t,s, f)—and all the customers
seated at the same table share the same dish, which
is generated only once (at the point when that table
is first occupied). The model can thus reuse the anal-
ysis for a particular word and avoid regenerating the
same analysis multiple times. Note that multiple ta-
bles may have identical analyses, [y = [-. Figure 1
illustrates how the full PYP morphology model gen-
erates the observed sequence of word tokens.

2.3 Combined Model

The full model (Figure 2) combines the latent tag se-
quence with the morphology model. Tag tokens are
generated conditioned on local context, not the base
distribution, as in the morphology model. Instead of
a single PYP generating morphological analyses for
all tokens, as in the Goldwater et al. (2006) model,
we have a separate PYP for each tag type, i.e., each
tag has its own restaurant with its own customers
(the tokens labeled with that tag) and its own mor-
phological analyses. The distribution of customers

33

I Wi
K;
T

Figure 2: Plate diagram depicting the joint model. Hyper-
parameters have been omitted for clarity. The L-shaped
plate contains the tokens, while the square plates contain
the morphological analyses. The ¢ are latent tags, z; is an
assignment to a morphological analysis [ = (s, fi), and
w; is the observed word. T is the number of distinct tags,
and K; the number of tables used by tag type 7.

in each of the tag-specific restaurants is still deter-
mined by Equation 2, except that all of the counts
and indices are with respect to only the tokens and
tables assigned to that tag.

Each tag-specific PYP (restaurant) also has a sep-
(1)

arate base distribution, Pot , resulting in distinct dis-
tributions over stems and suffixes for each tag. The
analyses generated by the base distributions consist
of (stem, suffix) pairs; the tag is given by the identity
of the generating PYP.

Pé’><w>=;Pé’><l=<s,f>>= fz P(s|)P(f]t)
sé&fs:tw

3)

The full joint posterior distribution of a sequence

of words, tags, and morpheme analyses is shown in

Figure 3. Note that all tag-specific morphology mod-
els share the same Pitman-Yor parameters a and b.

3 Inference

We use Gibbs sampling for inference over the three
sets of discrete variables: tags ¢, their assignments to
morphological analyses (tables) z, and the analyses
themselves [.

Each iteration of the sampler has two stages: First
the morphological analyses I are sampled, and then
each token samples a new tag and a new assignment
to an analysis/table. Because the table assignments
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Figure 3: The posterior distribution of our joint model. Because the sequence of words w is deterministic given
analyses I and assignments to analyses (tables) z, the joint posterior over all variables P(w,t,1, 2|0y, a,b, 0, 0r) is
equal to P(t,l, z|0,a,b,0,,0¢) when I, = w; for all i, and O otherwise. We give equations for the non-zero case. ns
refer to token counts, ms to table counts. We add two dummy tokens at the start, end, and between sentences to pad

the context history.

are conditioned on tags (i.e., a token must be as-
signed to a table in the correct PYP restaurant) re-
sampling the tag requires immediate resampling of
the table assignment as well.

3.1 Initialization

The tags are initialized uniformly at random. For
each token, a segmentation point is chosen uni-
formly at random (we disallow segmentations with
a null stem). If this segmentation is new within the
PYP associated with that token’s tag, a new table is
created for the token in that PYP. If it matches an ex-
isting analysis, z; is sampled from the existing tables
k plus a possible new table k.

3.2 Morphological Analyses

Each I represents the morphological analysis for the
set of tokens assigned to table k. Resampling the
segmentation point (stem and suffix identity) of the
analysis changes the segmentation of all of the word
tokens assigned to that analysis. Note that the tag is
not included in /; in the combined model, because
the tag identity is dependent on the local contexts of
all the tokens seated at the table.

Analyses are sampled from a product of Dirichlet-
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multinomial posteriors as follows:

\k \k ,

oo, My 0y
I = V= M T T 10
p(k (S7f)|7 ) m\k—l-SOCsm\k-i-FOLf (10)

where m, and m; are the number of analyses for
this tag that share a stem or suffix with /;, and m
is the total number of analyses for this tag. S and
F are the total number of stems and suffixes in the
model. I\* indicates that the current analysis i has
been removed from the distribution and the appro-
priate counts, to create the correct conditioning dis-
tribution for the Gibbs sampler.

3.3 Tags

Tags are sampled from the product of posteri-
ors of the transition and emission distributions.
The transition distribution is a standard Dirichlet-
multinomial posterior. Calculating the emission dis-
tribution probability, i.e. the marginal probability of
the word given the tag, involves summing over the
probability of all the existing tables in the given PYP
that emit the correct word, plus the probability of
a new table being created, which also includes the

probability of a new analysis from Po(t).



More precisely, tags are sampled from the follow-
ing distribution:
pti=tlw; =w,t", 2\ 1 04,a,b) (11)
o< p(t; = t]ti_1,ti—2,t", 04) X p(wlr, 2V, 1)
= p(t; =tlti_1,ti2,tV 0t
(Y pla=kt,w,z\) + p(zi = knewlt, w, 2\))

ks.t. [=w
_ Nt oti_ 1t + O
Ny oti g + TO('I
n—a Ka+b
x( ntb | mtb 7y ()
ks.t. [=w t 4

where [; = w matches tables compatible with w,
1.e., the concatenation of stem and suffix form the
word, s;, @ f;, = w. ny is the number of words as-
signed to the table k£ and K; is the total number of
tables in the PYP for tag 7. Note that all counts are
obtained after the removal of the current #; and z;,
i.e., from t\and 2\,

3.4 Table Assignments

Once a new tag has been sampled for a token, the ta-
ble assignment must be resampled conditioned on
the new tag. The assignment z; is drawn over all
compatible tables in the tag’s PYP (that is, where
Iy = w), plus a possible new table:

p(z,-:k\tl-:t,w,z\i,a,b)oc (12)
i if1<k<K
Rath p0(w)  ifk=K +1

P(gl) is calculated by summing over the probability
of all possible segmentations for a new analysis for
word w;, using Equation 3. If a new table is drawn
(k > K;) then we also sample a new analysis for that

table from P(gt).

4 Preliminary Experiments

An important argument for joint learning is that it
affords increased flexibility and robustness across a
wider range of input data. A model that relies on
word order cannot learn syntactic categories from a
morphologically complex language with free word
order; likewise a model attempting to categorise
words using morphology alone will fail on a lan-
guage without morphology. An effective joint model
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Language A
abdc fefh pomo rtut usst
cdcc bcba gghh npop npoo
cdca aaaa fefh hfeg pnon
Language B
noom.no usrs.st bbdb.ac cbab.cc cdaa.cc
rttt.uu cbab.aa mnom.oo ccda.bc onmm.om
rruu.ts npop.mm gehg.fh trrt.uu tssu.uu

Table 1: Example sentences in the synthetic languages.
Words in Category 1 are made of characters a-d, Cate-
gory 2 e-h, Category 3 m-p, Category 4 r—u. Suffixes in
Language B are separated with periods (.) for illustrative
purposes only.

will be able to make use of the different cues in both
language types in a flexible way.

In order to test the proposed model, we run two
experiments on synthetic languages, which simulate
languages in which either word order or morphology
is the sole cue. Most natural languages fall between
these extremes, but these experiments show that our
model can capture the full spectrum.

Language A is a strict word order language lack-
ing morphology. It has a vocabulary of 200 word
types, split into four different categories. The 50
word types in each category are created by com-
bining four letters, with replacement, into four-letter
words, with a different set of letters used in each cat-
egory>. Words within a category may thus share be-
ginning or ending characters, which could be posited
as stems or suffixes by the model, but since only
50 of 256 possible strings are used, there will be
no strong evidence for consistent stem and suffixes
(i.e. stems appearing with multiple suffixes and vice
versa). Each sentence in Language A consists of five
words in one of twenty possible category sequences.
In these sequences, each category is either followed
by itself or the next category (i.e. [2,2,2,3,4] is valid
but [2,4,3,1,4] is not). Word order is thus strongly
constrained by category membership.

Language B has free word order, with category
membership signalled by suffixes. Words are cre-

3We achieved the same results with a language using the
same four characters in all categories, but using different char-
acters makes the categories human-readable. The model does
not have a orthographic/phonological component and so will
not recognise the within-category similarity, other than possi-
bly positing spurious stems or suffixes.
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Figure 4: Log probability of the sampler state over 1000
iterations on Languages A and B.

ated by the concatenation of a stem and a suffix,
where the stems are the same as the words in lan-
guage A (50 stems in each of four categories). One
of six category-specific suffixes is appended to each
stem, resulting in 300 word types per category. Each
suffix is two letters long, created by combining three
possible letters (the same letters used to create the
stems), thus making mis-segmentation possible (for
instance, up to three of the suffixes could have the
same final letter). Sentences are again five words
long, but the sequence of categories is drawn at ran-
dom, resulting in uniformly random word order. See
Table 1 for example sentences in both languages.
We create a 5000 word corpus for each language,
and run our model on these corpora. Hyperparame-
ters are set to the same values in both languages®.
We run the sampler on each dataset for 1000 it-
erations with simulated annealing. In both cases,
the correct solution is found by iteration 500. Fig-
ure 4 shows that the morphology component con-
tinues to increase the log probability by increasing
the number of tokens seated at a table. Note that
the correct solution in Language A involves learn-
ing a very peaked transition distribution as well as an
even more extreme distribution over suffixes (where
only the null suffix has high probability), whereas
the same distributions in Language B are much flat-
ter. The fact that the same hyperparameter setting is

4The PYP parameters are set to a = 0.1,b = 1.0 and the

HMM transition parameter o, = 1.0; the parameters in the base
distribution are o, 0y = 0.001,04 = 0.5.
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able to correctly identify the two language extremes
indicates that the model is robust to hyperparameter
values.

These experiments demonstrate that our joint
model is able to learn correctly even when only ei-
ther morphology or word order is informative in a
language. We now turn to acquisition data from nat-
ural languages in which both morphology and word
order are useful cues but to varying degrees.

S CDS Experiments

5.1 Data

We use two corpora, Eve (Brown, 1973) and Or-
nat (Ornat, 1994), from the CHILDES database
(MacWhinney, 2000). These corpora consist of the
child-directed utterances heard by two children,
the former learning English and the latter Spanish.
These have been annotated for part of speech cate-
gories and morphemes.

The CHILDES corpora are tagged with a very rich
set of part of speech tags (74 tags), which we col-
lapse to a smaller set of tags>. The Eve corpus has
61224 tokens and is thus larger than the Spanish cor-
pus, which has 40497 tokens. However, the English
corpus has only 17 gold suffix types, while Spanish
has 83. The increased richness of Spanish morphol-
ogy also has an effect on the number of word types in
the corpus: the Spanish dataset has 3046 word types,
whereas the larger English dataset has only 1957.

Morphology is annotated using a stem-affix en-
coding which does not directly correspond to our
segmentation-based model. The word running is an-
notated as run-ING, jumping as jump-ING; the anno-
tation is thus agnostic about ortho-morphemic seg-
mentation (i.e., whether to segment as run.ning or
runn.ing), whereas the model is forced to choose
a segmentation point. Syncretic suffixes (sharing
an identical surface form) are disambiguated: sings
is annotated as sing-3S, plums as plum-PL. Con-
versely, the annotation scheme merges allomorphs
into a single suffix: infinitive verbs in Spanish,
for instance, are encoded as ending with -INF,
corresponding to -ar, -er, and -ir surface forms.

5These are 13 for English (ADJ, ADV, AUX, CONJ, DET,
INF, NOUN, NEG, OTH, PART, PREP, PRO, VERB) and 10
for Spanish, since the gold standard does not distinguish AUX,
PART or INF.



We ignore irregular/non-affixing forms annotated
with & (e.g. was, annotated as be&PAST) and
use only hyphen-separated suffixes to evaluate.
Where multiple suffixes are concatenated together
(e.g., dog-DIM-PL) we treat this as a single suffix
(-DIM-PL) for evaluation purposes.

In Spanish, many words are annotated as having
a suffix of effectively zero length, e.g. the imper-
ative gusta is annotated as gusta-2S&IMP. We re-
place these suffixes (where the stem is equal to the
word) with a null suffix, excluding them from eval-
uation, as they are impossible for a segmentation-
based model to find.

5.2 Evaluation

Tags are evaluated using VM (Rosenberg and
Hirschberg, 2007), as has become standard for this
task (Christodoulopoulos et al., 2010). VM is a mea-
sure of the normalised cross-entropy between gold
and proposed clusters; it ranges between 0 and 100,
with higher scores being better.

We also use VM to evaluate the morphological
segmentation: all tokens with a common suffix are
clustered together, and these clusters are compared
against the gold suffix clusters®. Using a clustering
metric avoids the need to evaluate against a gold seg-
mentation point (which the annotation lacks). Tag
membership is added to the non-null model suffixes,
so that a final -s suffix found in tag 2 is distinguished
from the same suffix found in tag 8 (creating suffixes
-s-T8 and -s-T2), analogous to the gold annotation
distinction between syncretic morphemes -PL and
-38.

Note that ceiling performance of our model on
Suffix VM will be below 100, since our model can-
not cluster allomorphs, which are represented by a
single abstract morpheme in the gold standard.

5.3 Baselines

We test the full model, MORTAG, against a number
of variations to investigate the advantages of jointly
modelling the two tasks.

Two variants remove the transition distributions,
and thus local syntactic context, from the model.

5We also evaluated stem morpheme clusters and found near-

ceiling performance due to the high number of null-suffix words
in both corpora.
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MORTAGNOTRANS is the full model without tran-
sitions between tag tokens; morphology PYP draws
remain conditioned on token tags. We add a Dirich-
let prior over tags (o, = 0.1) to encourage tag spar-
sity (analogous to the transition distribution in the
full model). MORCLUSTERS is the original model
of Goldwater et al. (2006), in which tags (called
clusters in the original) are drawn by Fy.

MORTAGNOSEG is a variant in which the only
available suffix is the null suffix; thus segmentations
are trivial and only tags are inferred. This model
is approximately equivalent to a simple Bayesian
HMM but with the addition of PYPs within the
emission distribution. We also evaluate against tags
found by the BHMM, with a Dirichlet-multinomial
emission distribution and no morphology.

MORTAGTRUETAGS is the full model but with all
tags fixed to their gold values. This model gives us
oracle-type results for morphology. (Due to the an-
notation scheme used in CHILDES, oracle morpho-
logical segmentations are unavailable, so we were
unable to test a model with gold morphology and in-
ferred tags.)

5.4 Experimental Procedure

Hyperparameter values for the Pitman-Yor process
were found using grid search on a development set
(Section 10 of Eve and Section 8 of Ornat; these sec-
tions are removed from the dataset we report results
on). We use the values which give the best Suffix
VM performance on the development data; however
we stress that the development results did not vary
greatly over a wide range of hyperparameter values,
and only deteriorated significantly at extreme values
of a.

There are a number of other hyperparameters in
the model which we set to fixed values. The transi-
tion hyperparameter o is set to 0.1 in all models.
We set the hyperparameters for the stem and suf-
fix distributions in the morphology base distribution
Py to 0.001 for both o, and of; oy over tags in the
MORCLUSTERS model is set to 0.5. The number of
possible stems and suffixes is given by the dataset: in
the Eve dataset there are 5339 candidate stems and
6617 candidate suffixes; in the Ornat dataset these
numbers are 8649 and 6598, respectively. The num-
ber of tags available to the model is set to the number
of gold tags in the data.



Tag VM Suffix VM
MORTAG 59.1(1.9)  41.9(10.0)
MORCLUSTERS 22.4(1.0)* 28.0(11.9)*
MORTAGNOTRANS  19.3(1.2)* 24.4(5.2)*
MORTAGNOSEG 59.4(1.7) —
BHMM 56.2(2.3)* —
MORTAGTRUETAGS — 42.5(5.2)

Tag VM Suffix VM
MORTAG 43.4(2.6) 41.4(2.5)
MORCLUSTERS 20.3(2.5)* 46.5(3.2)
MORTAGNOTRANS  14.4(1.7)* 36.4(2.0)*
MORTAGNOSEG 39.6(3.7) —
BHMM 36.4(0.7)F —
MORTAGTRUETAGS — 59.8(0.4)*

Table 2: English Eve corpus results. Standard deviations
are in parentheses; * denotes a significant difference from
the MORTAG model.

Sampling is run for 5000 iterations with anneal-
ing. Inspection of the posterior log-likelihood indi-
cates that the models converge after about 1000 it-
erations. We run inference over all models ten times
and report the average performance. Significance is
reported using the non-parametric Wilcoxon rank-
sum test with a significance level of p < 0.05.

5.5 Results: English

Results on the English Eve corpus are shown in Ta-
ble 2. We use PYP parameters a = 0.3 and b = 10,
though we found similar performance over a wide
range of values of a and b. Our results show a clear
improvement in the morphological segmentations
found by the joint model and stable tagging perfor-
mance across all models with context information.

The syntactic clusters found by models using
only morphological patterns, MORTAGNOTRANS
and MORCLUSTERS, are clearly inferior and lead to
low Tag VM results. The models with local syntac-
tic context all perform approximately equally well
in terms of finding tags. We find no improvement on
tagging performance in English when adding mor-
phology, compared to the MORTAGNOSEG base-
line in which words are not segmented. However, we
do see a small but significant improvement over the
BHMM for both of these models, due to the replace-
ment of the multinomial emission distribution in the
BHMM with the PYP.

Morphological segmentations, as measured by
Suffix VM, clearly improve with the addition of lo-
cal contexts (and the ensuing better tags): the full
model outperforms the baselines without syntactic
contexts. On this dataset, the joint MORTAG model
even matches the performance of the model us-
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Table 3: Spanish Ornat corpus results. Standard devia-
tions are in parentheses; * denotes a significant difference
from the MORTAG model.

ing oracle tags. The standard deviation over Suf-
fix VM scores is quite large for MORTAG and
MORCLUSTERS; this is due to frequent words hav-
ing two high probability segmentations (most no-
tably is, which in some runs was segmented as i.s).

5.6 Results: Spanish

For the Spanish Ornat corpus, we found slightly dif-
ferent optimal PYP hyperparameters and set a = 0.1
and b = 0.1. Results are shown in Table 3.

The Spanish results pattern in the opposite way
as English. Here we see a statistically significant
improvement in tagging performance of the full
joint model over both models without morphology
(MORTAGNOSEG and BHMM). Models without
context information again find much worse tags,
mainly because (as in English) function words are
not identifiable by suffixes.

However, the full model does not find better mor-
phological segmentations than the MORCLUSTERS
model, despite better tags (the two models’ Suffix
VM scores are not statistically significantly differ-
ent). We also see that the difference between the seg-
mentations found by the model using gold tags and
estimated tags is quite large. This is due to the ora-
cle model finding the rarer suffixes which were not
distinguished by the models with noisier tags. This
demonstrates the importance of syntactic categorisa-
tion for the morpheme induction task, and suggests
that a more sophisticated tagging model (with better
performance) may yet improve morpheme segmen-
tation performance in Spanish.



6 Conclusion

We have presented a model of joint syntactic cate-
gory and morphology induction. Operating within a
generative Bayesian framework means that combin-
ing single-task components is straightforward and
well-founded. Our model is token-based, allowing
for syntactic and morphemic ambiguity.

To our knowledge, this is the first joint model to
be tested on child-directed speech data, which is less
complex than the newswire corpora used by previ-
ous joint models. Child-directed speech may be sim-
ple enough for joint learning not to be necessary: our
results indicate the contrary, namely that joint learn-
ing is indeed helpful when learning from realistic
acquisition data.

We tested this model on two languages with dif-
ferent morphological characteristics. On English, a
language with relatively little morphology, espe-
cially in child directed speech, we found that bet-
ter categorisation of words yielded much better mor-
phology in terms of suffixes learned. Conversely, in
Spanish we saw less difference on the morphology
task between models with categories inferred solely
from morphemic patterns and models that also used
local syntactic context for categorisation. However,
in Spanish we saw an improvement in the tagging
task when morphology information was included.

This suggests that English and Spanish make dif-
ferent word-order and morphology trade-offs. In En-
glish, local context provides at least as much in-
formation as morphology in terms of determining
the correct syntactic category, but knowing a good
estimate of the correct syntactic category is use-
ful for determining a word’s morphology. In Span-
ish, a word’s morphology can more easily be deter-
mined simply by looking at frequent suffixes within
a purely morphological system. On the other hand,
word order is freer, making local syntactic context
unreliable, so taking morphological information into
account can improve tagging. These differences be-
tween languages demonstrate the benefits of joint
learning, which enables the learner to more flexibly
utilise the information available in the input data.

References

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Cote,
John DeNero, and Dan Klein. Painless unsuper-

39

vised learning with features. In Proceedings of the
North American Association for Computational
Linguistics (NAACL), 2010.

Barry J. Blake. Case. Cambridge University Press,
2001.

Phil Blunsom and Trevor Cohn. A hierarchical
Pitman-Yor process HMM for unsupervised part
of speech induction. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2011.

Roger Brown. A first language: The early stages.
Harvard University Press, Cambridge, MA, 1973.

Christos Christodoulopoulos, Sharon Goldwater,
and Mark Steedman. Two decades of unsuper-
vised POS induction: How far have we come? In
Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL),
2010.

Christos Christodoulopoulos, Sharon Goldwater,
and Mark Steedman. A Bayesian mixture model
for part-of-speech induction using multiple fea-
tures. In Proceedings of the 16th Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), 2011.

Alexander Clark. Combining distributional and
morphological information for part of speech in-
duction. In Proceedings of the 10th annual Meet-
ing of the European Association for Computa-
tional Linguistics (EACL), 2003a.

Eve V. Clark. First Language Acquisition. Cam-
bridge University Press, 2003b.

Mathias Creutz and Krista Lagus. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Transactions on Speech and
Language Processing, 4(1):1-34, 2007.

Sajib Dasgupta and Vincent Ng. Unsupervised part-
of-speech acquisition for resource-scarce lan-
guages. In Proceedings of the 12th Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2007.

Gabriel Doyle and Roger Levy. Combining multi-
ple information types in Bayesian word segmenta-
tion. In Proceedings of NAACL-HLT 2013, pages
117-126, 2013.



Micha Elsner, Sharon Goldwater, and Jacob Eisen-
stein. Bootstrapping a unified model of lexical
and phonetic acquisition. In Proceedings of the
50th Annual Meeting of the Association for Com-
putational Linguistics (ACL), 2012.

Naomi Feldman, Thomas Griffiths, and James Mor-
gan. Learning phonetic categories by learning a
lexicon. In Proceedings of the 31st Annual Con-
ference of the Cognitive Science Society (CogSci),
2009.

Michelle A. Fullwood and Timothy J. O’Donnell.
Learning non-concatenative morphology. In Pro-
ceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, 2013.

John Goldsmith. An algorithm for the unsupervised
learning of morphology. Natural Language Engi-
neering, 12(4):353-371, December 2006.

Sharon Goldwater and Thomas L. Griffiths. A
fully Bayesian approach to unsupervised part-of-
speech tagging. In Proceedings of the 45th An-
nual Meeting of the Association for Computa-
tional Linguistics (ACL), 2007.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. Interpolating between types and to-
kens by estimating power-law generators. In Ad-

vances in Neural Information Processing Systems
18, 2006.

Aria Haghighi and Dan Klein. Prototype-driven
grammar induction. In Proceedings of the 44th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2006.

Harald Hammarstrom and Lars Borin. Unsupervised

learning of morphology. Computational Linguis-
tics, 37(2):309-350, 2011.

Mark Johnson. Using Adaptor Grammars to iden-
tify synergies in the unsupervised acquisition of
linguistic structure. In Proceedings of the 46th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL), 2008.

Mikko Kurimo, Sami Virpioja, and Ville T. Turunen.
Proceedings of the MorphoChallenge 2010 work-
shop. Technical Report TKK-ICS-R37, Aalto
University School of Science and Technology, Es-
poo, Finland, 2010.

40

Tom Kwiatkowski, Sharon Goldwater, Luke Zettel-
moyer, and Mark Steedman. A probabilistic
model of syntactic and semantic acquisition from
child-directed utterances and their meanings. In
Proceedings of the 13th Conference of the Eu-
ropean Chapter of the Association for Computa-
tional Linguistics (EACL), 2012.

Yoong Keok Lee, Aria Haghighi, and Regina Barzi-
lay. Simple type-level unsupervised POS tagging.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics (ACL),
2010.

Yoong Keok Lee, Aria Haghighi, and Regina Barzi-
lay. Modeling syntactic context improves mor-
phological segmentation. In Proceedings of
Fifteenth Conference on Computational Natural
Language Learning, 2011.

Brian MacWhinney. The CHILDES Project: Tools
for Analyzing Talk. Lawrence Erlbaum Asso-
ciates, Mahwah, NJ, 2000.

Brian MacWhinney, Elizabeth Bates, and Reinhold
Kliegl. Cue validity and sentence interpretation
in English, German, and Italian. Journal of Ver-
bal Learning and Verbal Behavior, 23:127-150,
1984.

Thomas McFadden. On morphological case and
word-order freedom. In Proceedings of the An-
nual Meeting of the Berkeley Linguistics Society,
volume 29, pages 295-306, 2003.

S. Lopez Ornat. La adquisicion de la lengua espag-
nola. Siglo XXI, Madrid, 1994.

Andrew Rosenberg and Julia Hirschberg. V-
measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the
12th Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), 2007.

Kairit Sirts and Tanel Alum#e. A hierarchical
Dirichlet process model for joint part-of-speech
and morphology induction. In Proceedings of
the Conference of the North American Chapter
of the Association for Computational Linguistics
(NAACL), 2012.

Dan Slobin. Universal and particular in the acqui-
sition of language. In Eric Wanner and Lila R.
Gleitman, editors, Language acquisition: the state



of the art, pages 128—170. Cambridge University
Press, 1982.

Noah A. Smith and Jason Eisner. Contrastive esti-
mation: Training log-linear models on unlabeled
data. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics

(ACL), 2005.

Yee Whye Teh. A hierarchical Bayesian language
model based on Pitman-Yor processes. In Pro-
ceedings of the 44th Annual Meeting of the As-
sociation for Computational Linguistics (ACL),
2006.

Aris Xanthos, Sabine Laaha, Steven Gillis, Ursula
Stephany, Ayhan Aksu-Kog, Anastasia Christofi-
dou, Natalia Gagarina, Gordana Hrzica, F. Ni-
han Ketrez, Marianne Kilani-Schoch, Katharina
Korecky-Kroll, Melita Kovacevié, Klaus Laalo,
Marijan Palmovié, Barbara Pfeiler, Maria D.
Voeikova, and Wolfgang U. Dressler. On the role
of morphological richness in the early develop-
ment of noun and verb inflection. First Language,
31(4):461-479, 2011.

41



A Joint Learning Model of Word Segmentation, Lexical Acquisition,
and Phonetic Variability

Micha Elsner
melsnerO@gmail.com
Dept. of Linguistics
The Ohio State University

Naomi H. Feldman
nhfl@umd.edu
Dept. of Linguistics
University of Maryland

Abstract

We present a cognitive model of early lexi-
cal acquisition which jointly performs word
segmentation and learns an explicit model of
phonetic variation. We define the model as a
Bayesian noisy channel; we sample segmen-
tations and word forms simultaneously from
the posterior, using beam sampling to control
the size of the search space. Compared to a
pipelined approach in which segmentation is
performed first, our model is qualitatively more
similar to human learners. On data with vari-
able pronunciations, the pipelined approach
learns to treat syllables or morphemes as words.
In contrast, our joint model, like infant learners,
tends to learn multiword collocations. We also
conduct analyses of the phonetic variations that
the model learns to accept and its patterns of
word recognition errors, and relate these to de-
velopmental evidence.

1 Introduction

By the end of their first year, infants have acquired
many of the basic elements of their native language.
Their sensitivity to phonetic contrasts has become
language-specific (Werker and Tees, 1984), and they
have begun detecting words in fluent speech (Jusczyk
and Aslin, 1995; Jusczyk et al., 1999) and learn-
ing word meanings (Bergelson and Swingley, 2012).
These developmental cooccurrences lead some re-
searchers to propose that phonetic and word learning
occur jointly, each one informing the other (Swingley,
2009; Feldman et al., 2013). Previous computational
models capture some aspects of this joint learning
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problem, but typically simplify the problem consid-
erably, either by assuming an unrealistic degree of
phonetic regularity for word segmentation (Goldwa-
ter et al., 2009) or assuming pre-segmented input
for phonetic and lexical acquisition (Feldman et al.,
2009; Feldman et al., in press; Elsner et al., 2012).
This paper presents, to our knowledge, the first broad-
coverage model that learns to segment phonetically
variable input into words, while simultaneously learn-
ing an explicit model of phonetic variation that allows
it to cluster together segmented tokens with different
phonetic realizations (e.g., [ju] and [j1]) into lexical
items (/ju/).

We base our model on the Bayesian word segmen-
tation model of Goldwater et al. (2009) (henceforth
GQ]J), using a noisy-channel setup where phonetic
variation is introduced by a finite-state transducer
(Neubig et al., 2010; Elsner et al., 2012). This in-
tegrated model allows us to examine how solving
the word segmentation problem should affect infants’
strategies for learning about phonetic variability and
how phonetic learning can allow word segmentation
to proceed in ways that mimic the idealized input
used in previous models.

In particular, although the GGJ model achieves
high segmentation accuracy on phonemic (non-
variable) input and makes errors that are qualitatively
similar to human learners (tending to undersegment
the input), its accuracy drops considerably on phonet-
ically noisy data and it tends to oversegment rather
than undersegment. Here, we demonstrate that when
the model is augmented to account for phonetic vari-
ability, it is able to learn common phonetic changes
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and by doing so, its accuracy improves and its errors
return to the more human-like undersegmentation
pattern. In addition, we find small improvements
in lexicon accuracy over a pipeline model that seg-
ments first and then performs lexical-phonetic learn-
ing (Elsner et al., 2012). We analyze the model’s
phonetic and lexical representations in detail, draw-
ing comparisons to experimental results on adult and
infant speech processing. Taken together, our results
support the idea that a Bayesian model that jointly
performs word segmentation and phonetic learning
provides a plausible explanation for many aspects of
early phonetic and word learning in infants.

2 Related Work

Nearly all computational models used to explore the
problems addressed here have treated the learning
tasks in isolation. Examples include models of word
segmentation from phonemic input (Christiansen et
al., 1998; Brent, 1999; Venkataraman, 2001; Swing-
ley, 2005) or phonetic input (Fleck, 2008; Rytting,
2007; Daland and Pierrehumbert, 2011; Boruta et
al., 2011), models of phonetic clustering (Vallabha
et al., 2007; Varadarajan et al., 2008; Dupoux et al.,
2011) and phonological rule learning (Peperkamp et
al., 2006; Martin et al., 2013).

Elsner et al. (2012) present a model that is similar
to ours, using a noisy channel model implemented
with a finite-state transducer to learn about phonetic
variability while clustering distinct tokens into lexi-
cal items. However (like the earlier lexical-phonetic
learning model of Feldman et al. (2009; in press))
their model assumes known word boundaries, so
to perform both segmentation and lexical-phonetic
learning, they use a pipeline that first segments using
GGJ and then applies their model to the results.

Neubig et al. (2010) also present a transducer-
based noisy channel model that performs joint in-
ference on two out of the three tasks we consider
here; their model assumes fixed probabilities for pho-
netic changes (the noise model) and jointly infers
the word segmentation and lexical items, as in our
‘oracle’ model below (though unlike our system their
model learns from phone lattices rather than a single
transcription). They evaluate only on phone recogni-
tion, not scoring the inferred lexical items.

Recently, Borschinger et al. (2013) did present a
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Generator for possible words
r Geom a, b, ..., ju, ... want, ... juwant, ...

Probabilities for each word
(sparse)
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GG)
09 | &~ @

(8i) = .1, p(a) = .05, p(want) =
=
[o-0-

L
N O -

n utterances

Conditional probabilities
for each word after each word
p(di | want) =
p(want | want) =

.3, p(a | want) =
.0001...

Intended forms

ju want a kuki
ju want 1t

Surface forms

jo wan o kuki
ju wand 1t

Figure 1: The graphical model for our system (Eq. 1-
4). Note that the s; are not distinct observations; they
are concatenated together into a continuous sequence of
characters which constitute the observations.

joint learner for segmentation, phonetic learning, and
lexical clustering, but the model and inference are
tailored to investigate word-final /t/-deletion, rather
than aiming for a broad coverage system as we do.

3 Model

We follow several previous models of lexical acquisi-
tion in adopting a Bayesian noisy channel framework
(Eq. 1-4; Fig. 1). The model has two components:
a source distribution P(X) over utterances without
phonetic variability X, i.e., intended forms (Elsner et
al., 2012) and a channel or noise distribution 7'(S|.X)
that translates them into the observed surface forms
S. The boundaries between surface forms are then
deterministically removed so that the actual observa-
tions are just the unsegmented string of characters in
the surface forms.

G0|a0apstop ~ DP(CYo, Geom(pstop)) (D

G1|G0,041 ~ DP(OQ,G()) (2)
XilXi-1 ~Gx,_, 3)
SIX;60 ~ T(S|X;0) )

The source model is an exact copy of GGJ': to
generate the intended-form word sequences X, we

'"We use their best reported parameter values: oo =
3000, a1 = 100, pstop = .2 and for unigrams, cvg = 20.



sample a random language model from a hierarchi-
cal Dirichlet process (Teh et al., 2006) with char-
acter strings as atoms. To do so, we first draw a
unigram distribution Gy from a Dirichlet process
prior whose base distribution generates intended form
word strings by drawing each phone in turn until the
stop character is drawn (with probability ps.,). Then,
for each possible context word x, we draw a condi-
tional distribution on words following that context
G, = P(X; = ¢|X;,_1 = x) using G as a prior.
Finally, we sample word sequences z . ..z, from
the bigram model.

The channel model is a finite transducer with pa-
rameters 6 which independently rewrites single char-
acters from the intended string into characters of the
surface string. We use MAP point estimates of these
parameters; single characters (without n-gram con-
text) are used for computational efficiency. Also for
efficiency, the transducer can insert characters into
the surface string, but cannot delete characters from
the intended string. As in several previous phonolog-
ical models (Dreyer et al., 2008; Hayes and Wilson,
2008), the probabilities are learned using a feature-
based log-linear model. For features, we use all the
unigram features from Elsner et al. (2012), which
check faithfulness to voicing, place and manner of
articulation (for example, for k£ — g, active features
are faith-manner, faith-place, output-g and voiceless-
to-voiced).

Below, we present two methods for learning the
transducer parameters 6. The oracle transducer is es-
timated using the gold-standard word segmentations
and intended forms for the dataset; it represents the
best possible approximation under our model of the
actual phonetics of the dataset. We can also estimate
the transducer using the EM algorithm. We first ini-
tialize a simple transducer by putting small weights
on the faithfulness features to encourage phonologi-
cally plausible changes. With this initial model, we
begin running the sampler used to learn word segmen-
tations. After several hundred sampler iterations, we
start re-estimating the transducer by maximum likeli-
hood after each iteration. We regularize our estimates
by adding 200 pseudocounts for the rewrite x — x
during training (rather than regularizing the weights
for particular features). We also show segment only
results for a model without the transducer component
(i.e., S = X); this recovers the GGJ baseline.
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4 Inference

Inference for this model is complicated for two rea-
sons. First, the hypothesis space is extremely large.
Since we allow the input string to be probabilistically
lengthened, we cannot be sure how long it is, nor
which characters it contains. Second, our hypothe-
ses about nearby characters are highly correlated due
to lexical effects. When deciding how to interpret
[wont], if we posit that the intended vowel is /a/, the
word is likely to be /wan/ “one” and the next word
begins with /t/; if instead we posit that the vowel
is /o/, the word is probably /wont/ “want”. Thus,
inference methods that change only one character at
a time are unlikely to mix well. Since they cannot
simultaneously change the vowel and resegment the
/t/, they must pass through a low-probability inter-
mediate state to get from one state to the other, so
will tend to get stuck in a bad local minimum. A
Gibbs sampler which inserts or deletes a single seg-
ment boundary in each step (Goldwater et al., 2009)
suffers from this problem.

Mochihashi et al. (2009) describe an inference
method with higher mobility: a block sampler for
the GGJ model that samples from the posterior over
analyses of a whole utterance at once. This method
encodes the model as a large HMM, using dynamic
programming to select an analysis. We encode our
own model in the same way, constructing the HMM
and composing it with the transducer (Mohri, 2004)
to form a larger finite-state machine which is still
amenable to forward-backward sampling.

4.1 Finite-state encoding

Following Mochihashi et al. (2009) and Neubig et
al. (2010), we can write the original GGJ model
as a Hidden Semi-Markov model. States in the
HMM, written ST: [w] [C], are labeled with the
previous word w and the sequence of characters C'
which have so far been incorporated into the current
word. To produce a word boundary, we transition
from ST: [w] [C] to ST: [C'][] with probability
P(z; = Clz;—1 = w). We can also add the next
character s to the current word, transitioning from
ST: [w][C] to ST: [w] [C :s], at no cost (since
the full cost of the word is paid at its boundary, there
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Figure 2: A fragment of the composed finite-state machine
for word segmentation and character replacement for the
surface string ju. The start state [s] is followed by a word
boundary (filled circle); the next intended character is
probably j but can be d or others with lower probability.
After j can be a word boundary (forming the intended
word j), or another character such as u, o or other (not
shown) alternatives.

is no cost for the individual characters)?.

In addition to analyses using known words, we
can also encode the uniform-geometric prior over
unknown words using a finite-state machine. We
can choose to select a word from the prior by tran-
sitioning to a state ST: [ Geon] [ ] with probability
P(new word|z;—1 = w) immediately after a word
boundary. While in Geom, we can transition to a new
Geom state and produce any character with uniform
probability P(c) = (1—Pstop) l—é‘; otherwise, we can
end the word, transitioning to ST: [unk.word] [1,
with probability Pgiep.

This construction is also approximate; it ignores
the possibility that the prior will generate a known
word w, in which case our final transition ought to
beto ST: [w] [] instead of ST: [unk.word] [1. This
approximation means we do not need to add context
to the Geom state to remember the sequence of char-
acters it produced, which allows us to keep only a
single Geom state on the chart at each timestep.

When we compose this model with the channel
model, the number of states expands. Each state must
now keep track of the previous word, what intended
characters C' have been posited and what surface char-
acters S have been recognized, ST: [w] [C]1[S].

2Though not mentioned by Mochihashi et al. (2009) or Neu-
big et al. (2010), this construction is not exact, since transitions
in a Bayesian HMM are exchangeable but not independent (Beal
et al., 2001): if a word occurs twice in an utterance, its probabil-
ity is slightly higher the second time. For single utterances, this
bias is small and easy to correct for using a Metropolis-Hastings
acceptance check (Borschinger and Johnson, 2012) using the
path probability from the HMM as the proposal.
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To recognize the current word, we transition to
ST:[C11[]1[] with probability P(z; = Clx;—; =
w). To parse a new surface character s by positing
intended character x (note that x might be €), we
transition to ST: [w] [C : 2] [ S : s] with probabil-
ity T'(s|x). (As above, we pay no cost for our choice
of x, which is paid for when we recognize the word;
however, we must pay for s.) For efficiency, we do
not allow the G states to hypothesize different sur-
face and intended characters, so when we initially
propose an unknown word, it must surface as itself.?

4.2 Beam sampler

This machine has too many states to fully fill the chart
before backward sampling, so we restrict the set of
trajectories under consideration using beam sampling
(Van Gael et al., 2008) and simulated annealing.

The beam sampler is closely related to the standard
beam search technique, which uses a probability cut-
off to discard parts of the FST which are unlikely to
figure in the eventual solution. Unlike conventional
beam search, the sampler explores using stochastic
cutoffs, so that all trajectories are explored, but most
of the bad ones are explored infrequently, leading to
higher efficiency.

We design our beam sampler to restrict the set
of potential intended characters at each timestep.
In particular, given a stream of input characters
S = s1...sy, we introduce a set of auxiliary cutoff
variables U = u; ... uy. The u; variables represent
limits on the probability of the emission of surface
character s;; we exclude any hypothesized x; whose
probability of generating s;, T'(s;|x;), is less than
u;. To create a beam sampling scheme, we must de-
vise a distribution for U given a state sequence () (as
discussed above, the sequence of states encodes the
intended character sequence and the segmentation
of the surface string), P,,(U|Q) and then incorporate
the probability of U into the forward messages.

If g, is the state in () at which s; is generated, and
x; the corresponding intended character, we require
that P, < T(s;|z;); that is, the cutoffs must not
exclude any states in the sequence (). We define P,

3 Again, this approximation is corrected for by the Metropolis-
Hastings step.



as a A-mixture of two distributions:

P, (u|si, x;) = AU[0, min(.05, T (s;|x;))]+
(1 = N)T'(s;|xi)Beta(5,1le — 5)

The former distribution is quite unrestrictive, while
the latter prefers to prune away nearly all the states.
Thus, for most characters in the string, we do not
permit radical changes, while for a fraction, we do.

We follow Huggins and Wood (2013), who ex-
tended Van Gael et al. (2008) to the case of a non-
uniform P,, to define our forward message « as:

a(g;, 1) o< P(gi, 0.4, Uo..i) ®)

= Z P, (ui|si, )T (silxi)ol(gi—1,1 — 1)
qi—1

This is the standard HMM forward message, aug-
mented with the probability of u. Since P, (-|s;, x;)
is required to be less than T'(s;|x;), it will be O when-
ever T'(s;|x;) < w; this is how the u variables func-
tion as cutoffs. In practice, we use the u variables to
filter the lexical items that begin at each position %
in advance, using a simple 0/1 edit distance Markov
model which runs faster than our full model. (For ex-
ample, we can quickly check if the current U allows
want as the intended form for wolk at ¢; if not, we can
avoid constructing the prefix ST: [2;_; ] [wa] [wd]
since the continuation will fail.)

The algorithm’s speed depends on the size and
uncertainty of the inferred LM: large numbers of
plausible words mean more states to explore. When
inference starts, and the system is highly uncertain
about word boundaries, it is therefore reasonable to
limit the exploration of the character sequence. We
do so by annealing in two ways: as in Goldwater
et al. (2009), we raise P(X) (Eq. 3) to a power ¢
which increases linearly from .3. To sample from
the posterior, we would want to end with £ = 1, but
as in previous noisy-channel models (Elsner et al.,
2012; Bahl et al., 1980) we get better results when we
emphasize the LM at the expense of the channel and
soend att = 2. Meanwhile, as ¢ rises and we explore
fewer implausible lexical sequences, we can explore
the character sequence more. We begin by setting
the A interpolation parameter of P, to 0 to minimize
exploration and increase it linearly to .3 (allowing
the system to change about a third of the characters
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on each sweep). This is similar to the scheme for
altering P, in Huggins and Wood (2013).

4.3 Dataset and metrics

We use the corpus released by Elsner et al. (2012),
which contains 9790 child-directed English utter-
ances originally from the Bernstein-Ratner corpus
(Bernstein-Ratner, 1987) and later transcribed phone-
mically (Brent, 1999). This standard word segmenta-
tion dataset was modified by Elsner et al. (2012) to
include phonetic variation by assigning each token a
pronunciation independently selected from the empir-
ical distribution of pronunciations of that word type
in the closely-transcribed Buckeye Speech Corpus
(Pitt et al., 2007). Following previous work, we hold
out the last 1790 utterances as unseen test data during
development. In the results presented here, we run
the model on all 9790 utterances but score only these
1790. We average results over 5 runs of the model
with different random seeds.

We use standard metrics for segmentation and lex-
icon recovery. For segmentation, we report precision,
recall and F-score for word boundaries (bds), and for
the positions of word tokens in the surface string (srf’;
both boundaries must be correct).

For normalization of the pronunciation variation,
we follow Elsner et al. (2012) in measuring how well
the system clusters together variant pronunciations
of the same lexical item, without insisting that the
intended form the system proposes for them match
the one in our corpus. For example, if the system
correctly clusters [ju] and [jI] together but assigns
them the incorrect intended form /ji/, we can still
give credit to this cluster if it is the one that overlaps
best with the gold-standard /ju/ cluster. To compute
these scores, we find the optimal one-to-one map-
ping between our clusters of pronunciations and the
true lexical entries, then report scores for mapped to-
kens (mtk; boundaries and mapping to gold standard
cluster must be correct) and mapped types* (mix).

“Elsner et al. (2012) calls the mlx metric lexicon F, which
is possibly confusing. We map the clusters to a gold-standard
lexicon (plus potentially some words that don’t correspond to
anything in the gold standard) and compute a type-level F-score
on this lexicon.



Prec Rec F-score
Pipeline (segment, then cluster): (Elsner et al., 2012)
Bds | 70.4 93.5 80.3
Srf | 56.5 69.7 62.4
Mtk | 44.2 54.5 48.8
Mix | 48.6 43.1 45.7
Bigram model, segment only

Bds | 73.9 (-0.6:0.7) 91.0 (-0.6:0.4) 81.6 (-0.5:0.6)
Srf | 60.8 (-0.7:1.1) 70.8 (-0.8:0.9) 65.4 (-0.6:1.0)
Mtk | 41.6 (-0.6:1.2) 48.4 (-0.5:1.2) 44.8 (-0.6:1.2)
MIx | 36.6 (-0.7:0.8) 49.8 (-1.0:0.8) 42.2 (-0.9:0.8)

Unigram model, oracle transducer
Bds | 81.4 (-0.8:0.4) 72.1(-0.9:0.8) 76.4 (-0.5:0.7)
Srf | 63.6 (-1.0:1.1) 58.5(-1.2:1.2) 60.9 (-0.9:1.2)
Mtk | 46.8 (-1.0:1.1) 43.0(-1.1:1.2) 44.8 (-1.0:1.2)
MIx | 56.7 (-1.1:1.0) 47.6 (-1.4:0.8) 51.7 (-1.2:0.8)

Bigram model, oracle transducer
Bds | 76.1 (-0.6:0.6) 83.8 (-0.9:1.0) 79.8 (-0.8:0.4)
Srf | 62.2 (-0.9:1.0) 66.7 (-1.2:1.1) 64.4 (-1.1:0.8)
Mtk | 47.2 (-0.7:0.9) 50.6 (-1.0:0.8) 48.8 (-0.8:0.7)
Mix | 40.1 (-1.0:1.2) 43.7 (-0.6:0.7) 41.8 (-0.8:0.6)

Bigram model, EM transducer

Bds | 80.1 (-0.5:0.8) 83.0(-1.4:1.3) 81.5(-0.5:0.7)
Srf | 66.1 (-0.8:1.4) 67.8(-1.4:1.7) 66.9 (-0.9:1.4)
Mtk | 49.0 (-0.9:0.7) 50.3 (-1.1:1.4) 49.6 (-1.0:1.0)
Mix | 43.0(-1.0:1.4) 49.5(-1.5:1.1) 46.0(-1.0:1.3)

Table 1: Mean segmentation (bds, srf) and normalization
(mtk, mlx) scores on the test set over 5 runs. Parentheses
show min and max scores as differences from the mean.

5 Results and discussion

In the following sections, we analyze how our model
with variability compares to GGJ on noisy data. We
give quantitative scores and also show that qualitative
patterns of errors are often similar to those of human
learners and listeners.

5.1 Clean versus variable input

We begin by evaluating our model as a word seg-
mentation system. (Table 1 gives segmentation and
normalization scores for various models and base-
lines on the 1790 test utterances.) We first confirm
that our inference method is reasonable. The bigram
model without variability (“segment only”) should
have the same segmentation performance as the stan-
dard dpseg implementation of GGJ. This is the case:
dpseg has boundary F' of 80.3 and token F’ of 62.4;
we get 81.6 and 65.4. Thus, our sampler is finding
good solutions, at least for the no-variability model.

We compare segmentation scores between the

47

“segment only” system and the two bigram models
with transducers (“oracle” and “EM”’). While these
systems all achieve similar segmentation scores, they
do so in different ways. “Segment only” finds a so-
lution with boundary precision 73.9% and boundary
recall 91.0% for a total F' of 81.6%. The low pre-
cision and high recall here indicate a tendency to
oversegment; when the analysis of a given subse-
quence is unclear, the system prefers to chop it into
small chunks. The bigram models which incorporate
transducers score P: 76.1, R: 83.8 (oracle) and P:
80.1, R: 83.0 (EM), indicating that they prefer to find
longer sequences (undersegment) more.

In previous experiments on datasets without varia-
tion, GGJ also has a strong tendency to undersegment
the data (boundary P: 90.1, R: 80.3), which Gold-
water et al. argue is rational behavior for an ideal
learner seeking a parsimonious explanation for the
data. Undersegmentation occurs especially when ig-
noring lexical context (a unigram model), but to some
extent even in bigram models. Human learners also
tend to learn collocations as single words (Peters,
1983; Tomasello, 2000), and the GGJ model has been
shown to capture several other effects seen in labora-
tory segmentation tasks (Frank et al., 2010). Together,
these findings support the idea that human learners
may behave in important respects like the Bayesian
ideal learners that Goldwater et al. presented.

However, experiments on data with variation have
called these conclusions into question. In particu-
lar, GGJ has previously been shown to oversegment
rather than undersegment as the input grows noisier
(Fleck, 2008), and our results replicate this finding
(oversegmentation for the “segment only” model).
In addition, the GGJ bigram model, which achieves
much higher segmentation accuracy than the unigram
model on clean data, actually performs worse on very
noisy data (Jansen et al., 2013). Infants are known to
track statistical dependencies across words (Gémez
and Maye, 2005), so it is worrisome that these de-
pendencies hurt GGJ’s segmentation accuracy when
learning from noisy data.

Our results show that modeling phonetic variabil-
ity reverses the problematic trends described above.
Although the models with phonetic variability show
similar overall segmentation accuracy on noisy data
to the original GGJ model, the pattern of errors
changes, with less oversegmentation and more un-



dersegmentation. Thus, their qualitative performance
on variable data resembles GGJ’s on clean data, and
therefore the behavior of human learners.

5.2 Phonetic variability

We next analyze the model’s ability to normalize vari-
ations in the pronunciation of tokens, by inspecting
the mtk score. The “segment only” baseline is pre-
dictably poor, F': 44.8. The pipeline model scores
48.8, and our oracle transducer model matches this
exactly. The EM transducer scores better, £": 49.6.
Although the confidence intervals overlap slightly,
the EM system also outperforms the pipeline on the
other F'-measures; altogether, these results suggest
at least a weak learning synergy (Johnson, 2008) be-
tween segmentation and phonetic learning.

It is interesting that EM can perform better than
the oracle. However, EM is more conservative about
which sound changes it will allow, and thus tends to
avoid mistakes caused by the simplicity of the trans-
ducer model. Since the transducer works segment-
by-segment, it can apply rare contextual variations
out of context. EM benefits from not learning these
variations to begin with.

We can also compare the bigram and unigram ver-
sions of the model. The unigram model is a rea-
sonable segmenter, though not quite as good as the
bigram model, with boundary F' of 76.4 and token
F of 60.9 (compared to 79.8 and 64.4 using the bi-
gram model). However, it is not good at normalizing
variation; its mtk score is comparable to the baseline
at 44.8%>. Although bigram context is only moder-
ately effective for telling where words are, the model
seems heavily reliant on lexical context to decide
what words it is hearing.

5.3 Error analysis

To gain more insight into the differing behavior of
our model versus a pipelined system, we inspect the
intended word strings X proposed by each one in
detail. Below, we categorize the kinds of intended
word strings that the model might propose to span a
given gold-standard word token:

Correct Correctly segmented, mapped to the correct
lexical item (e.g., gold intended /ju/, surface

SElsner et al. (2012) show a similar result for a unigram
version of their pipelined system.
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EM-learned Segment only

Correct 49.88 47.61
Wrong form 17.96 23.73
Collocation 14.25 7.59
Split 8.26 15.18
One bound 7.11 15.18
Corr. colloc. 1.35 < 0.01
Other 0.75 0.22
Corr. split 0.43 0.66

Table 2: Distribution (%) of error types (see text) in a
single run on the full dataset.

segmentation [ju], intended /ju/)

Wrong form Correctly segmented, mapped to the
wrong lexical item (/ju/, surf. [ju], int. /jes/)

Colloc Missegmented as part of a sequence whose
boundaries correspond to real word boundaries
(/juewant/, surf. [juwant], int. /juwant/)

Corr. colloc As above, but proposed lexical item
maps to this word (/areju/, surf. [arjo] int.
Jju/)

Split Missegmented with a word-internal boundary
(/dogiz/, surf. [doegiz], int. /doegiz/)

Corr. split As above, but one proposed word maps
correctly (/dogi/, surf. [dogei], int. /dogiea/)

One boundary One boundary correct, the other
wrong (/juewa... /, surf. [juw], int. /juw/)

Other Not a collocation, both boundaries are wrong
(/duejuewa. ../, surf. [ujuw], int. /ujuw/)

Table 2 shows the distribution over intended word
strings proposed by the “segment only” baseline and
the EM-learned transducer. Both systems propose
a large number of correct forms, and the most com-
mon error category is “wrong form” (lexical error
without segmentation error), an error which could
potentially be repaired in a pipeline system. How-
ever, the remaining errors represent segmentation
mistakes which a pipeline could not repair. Here
the two systems behave quite differently. The EM-
learned transducer analyses 14% of real tokens as
parts of multiword collocations like “doyou”; in an-
other 1.35%, the underlying content word is even
correctly detected. The non-variable system, on the
other hand, analyses 15% of real tokens by splitting
them into pieces. Since infant learners tend to learn
collocations, this supports our analysis that the model
with variation better models human behavior.



EM ju: 805, duju: 239, juwan: 88, jr: 58, exju: 54, judu:
47, jee: 39, julak: 39, fu: 30, u: 23, zu: 18, j: 17,
jev 16, tfu: 15, aj:15, derjugo: 12, d3u: 12

GGJ ju: 498, ji: 280, jo: 165, ji: 119, duju: 106, dujr: 44,
kmju: 39, i: 32, w: 29, kmjr: 29, julak: 24, juwan:
23, j: 22, fu: 19, ju: 18, eyju: 18, 1:16, 3u: 15, dzeu:
13, je: 12, [1: 11, Qeepkju: 11

Table 3: Forms proposed with frequency > 10 for
gold-standard tokens of “you” in one sample from EM-
transducer and segment-only (GGJ) system.

To illustrate this behavior anecdotally, we present
the distribution of intended word strings spanning
tokens whose gold intended form is /ju/ ““you” (Table
3). The EM-learned solution proposes 805 tokens
of /ju/, which is the correct analysis®; the “segment
only” system instead finds varying forms like /ji/,
/jee/ etc. This is unsurprising and could be repaired
by a suitable pipelined system. However, the EM
system also proposes 239 instances of “doyou”, 88
instances of “youwant”, 54 instances of “areyou” and
several other collocations. The “segment only” sys-
tem finds some of these collocations, split into dif-
ferent versions: for instance 106 instances of /duju/
and 44 of /duji/. In a pipelined system, we could
combine these variants to find 150 instances— but
this is still 89 instances short of the 239 found when
allowing for variability. The same pattern holds for
“youlike” and “youwant”. Because the non-variable
system must learn each variant separately, it learns
only the most common instances of these long collo-
cations, and analyzes infrequent variants differently.

We also perform this analysis specifically for
words beginning with vowels. Infants show a delay
in their ability to segment these words from continu-
ous speech (Mattys and Jusczyk, 2001; Nazzi et al.,
2005; Seidl and Johnson, 2008), and Seidl and John-
son (2008) suggest a perceptual explanation— initial
vowels can be hard to hear and often exhibit variation
due to coarticulation or resyllabification. Although
our dataset does not contain coarticulation as such, it
should show this pattern of greater variation, which
we hypothesize might lead to difficulty in segmenting
and recognizing vowel-initial words.

The model’s behavior is consistent with this hy-
pothesis (Table 4). Both the “segment only” and
EM transducer models find approximately the same

SNot all the variants are merged, however. ji, je, fu etc. are
still occasionally analyzed as separate lexical items.
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Segment only ~ Vow. init Cons. init
Correct 47.5 51.7
Wrong form 18.6 15.7
Collocation 14.6 12.2
Split 6.2 10.8
Right bd. corr. 5.8 3.6
Left bd. corr. 4.6 3.8
EM transducer Vow. init Cons. init
Correct 41.5 52.1
Wrong form 20.4 17.3
Collocation 19.2 12.5
Split 5.2 9.1
Right bd. corr. 6.2 2.7
Left bd. corr. 2.7 3.1

Table 4: Most common error types (%; see text) for in-
tended forms beginning with vowels or consonants. Rare
error types are not shown. “One bound” errors are split up
by which boundary is correct.

proportion of vowel-initial tokens, and both systems
do somewhat better on consonant-initial words than
vowel-initial words. The advantage is stronger for
the transducer model, which gets only 41.5% of
vowel-initial tokens correct as opposed to 52.1% of
consonant-initial words. It proposes more colloca-
tions for vowel-initial words (19.2%) than for conso-
nants (12.5%). In cases where they do not propose a
collocation, both systems are somewhat more likely
to find the right boundary of a vowel-initial token
than the left boundary (although again this difference
is larger for the EM system); this suggests that the
problem is indeed caused by the initial segment.

5.4 Phonetic Learning

We next compare phonetic variations learned by the
model to characteristics of infant speech perception.
Infants show an asymmetry between consonants and
vowels, losing sensitivity to non-native vowel con-
trasts by eight months (Kuhl et al., 1992; Bosch
and Sebastian-Gallés, 2003) but to non-native con-
sonant contrasts only by 10-12 months (Werker and
Tees, 1984). The observed ordering is somewhat
puzzling when one considers the availability for dis-
tributional information (Maye et al., 2002), which is
much stronger for stop consonants than for vowels
(Lisker and Abramson, 1964; Peterson and Barney,
1952). Infants are also conservative in generalizing
across phonetic variability, showing a delayed abil-



ity to generalize across talkers, affects, and dialects.
They have difficulty recognizing word tokens that are
spoken by a different talker or in a different tone of
voice until 11 months (Houston and Jusczyk, 2000;
Singh et al., 2004), and the ability to adapt to unfa-
miliar dialects appears to develop even later, between
15 and 19 months (Best et al., 2009; Heugten and
Johnson, in press; White and Aslin, 2011).

Similar to infants, our model shows both a vowel-
consonant asymmetry and a reluctance to accept the
full range of adult phonetic variability. Table 5 shows
some segment-to-segment alternations learned in var-
ious transducers. The oracle learns a large amount
of variation (u surfaces as itself only 68% of the
time) involving many different segments, whereas
EM is similar to infant learners in learning a more
conservative solution with fewer alternations over-
all. Moreover, EM appears to identify patterns of
variability in vowels before consonants. It learns a
similar range of alternations for u as in the oracle,
although it treats the sound as less variable than it
actually is. It learns much less variability for con-
sonants; it picks up the alternation of d with s and
z, but predicts that 0 will surface as itself 91% of
the time when the true figure is only 69%. And it
fails to learn any meaningful alternations involving
k. These results suggest that patterns of variability in
vowels are more evident than patterns of variability
in consonants when infants are beginning to solve the
word segmentation problem.

To investigate the effect of data size on this con-
servativism, we ran the system on 1000 utterances
instead of 9790. This leads to an even more conser-
vative solution, with variations for u but none of the
others (although i and 9 still vary more than k).

5.5 Segmentation and recognition errors

A particularly interesting set of errors are those that
involve both a missegmentation and a simultaneous
misrecognition, since the joint model is prone to
such errors while the pipelined model is not. Rel-
atively little is known about infants’ misrecognitions
of words in fluent speech, although it is clear that they
find words in medial position harder (Plunkett, 2005;
Seidl and Johnson, 2006). However, adults make
missegmentation/misrecognition errors fairly often,
especially when listening to noisy audio (Butterfield
and Cutler, 1988). Such errors are more common
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System| x top 4 outputs s
u u 680 05a .04uv .04
i i 8571 030 .03& .02
Oracle | 0 0 .69 s .07 [¢].07 z .04
k k 93d .02g .02
[¢] | r 21 h .11 d .01 o .07
u u 750 081 .04 v .03
i i 901 .04¢&e .02
ffi\l/lll) 0 0 91s .03z 0.1
k k 98
[¢] | o 321 .14 n .13t .13
EM u u 821 040 04a .02
(only i i 97
1000 0 0 .95
k k .99
us) gl 210 a8t a2s a2

Table 5: Learned phonetic alternations: top 4 outputs s
with p > .001 for inputs = uw (/u/), iy (/i/), dh (/3/),
k (/k/) and [¢], the null character. Outputs from [¢] are
insertions. The oracle allows [¢] as an output (deletion)
but for computational reasons, the model does not.

when the misrecognized word belongs to a prosod-
ically rare class and when the incorrectly hypothe-
sized string contains frequent words (Cutler, 1990);
phonetically ambiguous words are also more com-
monly recognized as the more frequent of two op-
tions (Connine et al., 1993). For the indefinite article

“a” (often reduced to [9]), lexical context is the main

factor in deciding between ambiguous interpretations
(Kim et al., 2012). In rapid speech, listeners have few
phonetic cues to indicate whether it is present at all
(Dilley and Pitt, 2010). Below, we analyze various
misrecognitions made by our system (using the EM
transducer), and find some similar effects.

The easiest cases to analyze are those with no mis-
segmentation: the proposed boundaries are correct,
and the proposed lexical entry corresponds to a real
word’, but not the correct one. Most of them corre-
spond to homophones (Table 6).

Common cases with a missegmentation include if
and is, a and is, it’s and is, who, who’s and whose,
that’s and what’s, and there and there’s. In general,
these errors involve words which sometimes appear

"The one-to-one mapping can be misleading, as it may map
a large cluster to a real word on the basis of one or two tokens if
all other tokens correspond to a different word already used for
another cluster. We manually filter out a few cases like this.



Actual proposed count
Jtu/ “two” Jto/ “to” 95
/kin/ “can” /keent/ “can’t” 67
/en/ “and” /an/ “an” 61
/h1z/ “his” /1z/ “is” 57
/0a/ “the” /a/ “ah” 51
/wots/ “what’s” /wants/ “wants” 40
/wan/ “want” /won/ “won’t” 39
/yu/ “you” /yae/ “yeah” 39
/for/ “for” /for/ “four” 30
/hir/ “here” /hil/ “he’11” 28

Table 6: Top ten errors involving confusion between real,
correctly segmented words: the most common pronunci-
ation of the actual token and its orthographic form, the
same for the proposed token, and the frequency.

with a morpheme or clitic (which can easily be mis-
segmented as part of something else), words which
differ by one segment, and frequent function words
which often appear in similar contexts. These tenden-
cies match those shown by adult human listeners.

A particularly distinctive set of joint recognition
and segmentation errors are those where an entire
real token is treated as phonetic “noise”— that is, it
is segmented along with an adjacent word, and the
system clusters the whole sequence as a token of
that word. The most common examples are “that’s a”
identified as “that’s”, “have a” identified as “have”,
“sees a” identified as “sees” and other examples in-
volving “a”, a word which also frequently confuses
humans (Kim et al., 2012; Dilley and Pitt, 2010).
However, there are also instances of “who’s in” as
“who’s”, “does it” as “‘does”, and “‘can you” as “can”.

6 Conclusion

We have presented a model that jointly infers word
segmentation, lexical items, and a model of phonetic
variability; we believe this is the first model to do
so on a broad-coverage naturalistic corpus®. Our re-
sults show a small improvement in both segmentation
and normalization over a pipeline model, providing
evidence for a synergistic interaction between these
learning tasks and supporting claims of interactive
learning from the developmental literature on infants.
We also reproduced several experimental findings;
our results suggest that two vowel-consonant asym-

8Software is available from the ACL archive; updated

versions may be posted at https://bitbucket.org/
melsner/beamseg.
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metries, one from the word segmentation literature
and another from the phonetic learning literature, are
linked to the large variability in vowels found in nat-
ural corpora. The model’s correspondence with hu-
man behavioral results is by no means exact, but we
believe these kinds of predictions might help guide
future research on infant phonetic and word learning.
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Abstract

Animacy detection is a problem whose solu-
tion has been shown to be beneficial for a
number of syntactic and semantic tasks. We
present a state-of-the-art system for this task
which uses a number of simple classifiers
with heterogeneous data sources in a voting
scheme. We show how this framework can
give us direct insight into the behavior of the
system, allowing us to more easily diagnose
sources of error.

1 Introduction

Animacy detection has proven useful for a va-
riety of syntactic and semantic tasks, such as
anaphora and coreference resolution (Ordsan and
Evans, 2007; Lee et al., 2013), verb argument dis-
ambiguation (Dell’Orletta et al., 2005) and depen-
dency parsing (@vrelid and Nivre, 2007). Existing
approaches for animacy detection typically rely on
two types of information: linguistic databases, and
syntactic cues observed from the corpus. They usu-
ally combine two types of approaches: rule based
systems, and machine learning techniques. In this
paper we explore a slightly different angle: we wish
to design an animacy detector whose decisions are
interpretable and correctable, so that downstream
semantic modeling systems can revisit those deci-
sions as needed. Thus here, we avoid defining
a large number of features and then using a ma-
chine learning method such as boosted trees, since
such methods, although powerful, result in hard-to-
interpret systems. Instead, we explore combining
interpretable voting models using machine learning
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only to reweight their votes. We show that such
an approach can indeed result in a high perform-
ing system, with animacy detection accuracies in the
mid 90% range, which compares well with other re-
ported rates. Ensemble methods are well known (see
for example, Dietterich (2000)) but our focus here is
on using them for interpretability while still main-
taining accuracy.

2 Previous Work

2.1 Definitions of Animacy

Previous work uses several different definitions of
animacy. Ordsan and Evans (2007) define animacy
in the service of anaphora resolution: an NP is con-
sidered animate “if its referent can also be referred
to using one of the pronouns he, she, him, her, his,
hers, himself, herself, or a combination of such pro-
nouns (e.g. his/her )”. Although useful for the task
at hand, this has counterintuitive consequences: for
example, baby may be considered animate or inan-
imate, and ant is considered inanimate (Ibid., Fig-
ure 1). Others have argued that animacy should be
captured by a hierarchy or by categories (Aissen,
2003; Silverstein, 1986). For instance, Zaenen et
al. (2004) propose three levels of animacy (human,
other animate and inanimate), which cover ten cat-
egories of noun phrases, with categories like ORG
(organization), ANIM (animal) and MAC (intelli-
gent machines such as robots) categorised as other
animate. Bowman and Chopra (2012) report results
for animacy defined both this way and with the cat-
egories collapsed to a binary (animate, inanimate)
definition.
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2.2 Methods for Animacy Detection

Evans and Ordsan (2000) propose a rule-based sys-
tem based on the WordNet taxonomy (Fellbaum,
1998). Each synset is ascribed a binary animacy
label based on its unique beginner. A given noun
is then associated with the fraction of its animate
synsets (where all synsets are taken to be animate
or inanimate) and one minus that fraction, similarly
for a given verb. Animacy is then ascribed by ap-
plying a series of rules imposing thresholds on those
fractions, together with rules (and a gazetteer) to de-
tect names and acronyms, and a rule triggered by the
occurrence of who, or reflexives, in the NP. In later
work, Ordsan and Evans (2007) extend the algorithm
by propagating animacy labels in the WordNet graph
using a chi-squared test, and then apply a k-nearest
neighbor classifier based on four lexical features. In
their work, the only context used was the animacy of
the verb in the NP, for heads of subject NPs (e.g., the
subject of eat is typically animate). @vrelid (2009)
and Bowman and Chopra (2012) extend this idea by
using dependency relations to generate features for
their classifier, enabled by corpora created by Zae-
nen et al. (2004). In another approach, Ji and Lin
(2009) apply a simple “relative-pronoun” pattern to
the Google n-gram corpus (Brants and Franz, 2006)
to assign animacy (see the List model in Section 5
for details). Although the animacy decision is again
context-independent, such a list provides a strong
baseline and thus benefit applications like anaphora
resolution (Lee et al., 2013).

3 The Task

We adopt a definition of animacy closest to the bi-
nary version in Bowman and Chopra (2012): we
define an entity to be animate if it is alive and has
the ability to move under its own will. We adopt
this simple definition because it fits well with the
common meaning and is therefore less error prone,
both in terms of incorporation into higher level mod-
els, and for labeling (Ordsan and Evans (2007) re-
port that the labeling of animacy tuned for anaphora
proved challenging for the judges). We also ap-
ply the label to single noun tokens where possible:
the only exceptions are compound names (“Sarah
Jones”) which are treated as single units. Thus,
for example, “puppy food” is treated as two words,
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with puppy animate and food inanimate. A more
complete definition would extend this to all noun
phrases, so that puppy food as a unit would be inan-
imate, a notion we plan to revisit in future work.
Note that even this simple definition presents chal-
lenges, so that a binary label must be applied de-
pending on the predominant meaning. In “A plate
of chicken,” chicken is treated as inanimate since it
refers to food. In “Caruso (1873-1921) is consid-
ered one of the world’s best opera singers. He...,
although at the time of writing clearly Caruso was
not alive, the token is still treated as animate here
because the subsequent writing refers to a live per-
son.

4 The Data

‘We used the MC160 dataset, which is a subset of the
MCTest dataset and which is composed of 160 grade
level reading comprehension stories generated using
crowd sourcing (Richardson et al., 2013). Workers
were asked to write a short story (typically less than
300 words) with a target audience of 5 to 7 year
olds. The available vocabulary was limited to ap-
proximately 8000 words, to model the reading abil-
ity of a first or second grader. We labeled this data
for animacy using the definition given above. The
first 100 of the 160 stories were used as the training
set, and the remaining 60 were used for the test set.
These animacy labels will be made available on the
web site for MCTest (Richardson et al., 2013).

5 The Models

Since one of our key goals is interpretability we
chose to use an ensemble of simple voting models.
Each model is able to vote for the categories Ani-
mal, Person, Inanimate, or to abstain. The distinc-
tion between Animal and Person is only used when
we combine votes, where Animal and Person votes
appear as distinct inputs for the final voting combi-
nation model. Some voters do not distinguish be-
tween Person and Animal, and vote for Animate or
Inanimate. Our models are:

List: The n-gram list method from (Ji and Lin,
2009). Here, the frequencies with which the rela-
tive pronouns who, where, when, and which occur
are considered. Any noun followed most frequently
by who is classified as Animate, and any other noun



in the list is classified as Inanimate. This voter ab-
stains when the noun is not present in the list.

Anaphora Design: The WordNet-based approach
of Evans and Orasan (2000).

WordNet: A simple approach using WordNet.
This voter chooses Animal or Person if the unique
beginner of the first synset of the noun is either of
these, and Inanimate otherwise.

WordSim: This voter uses the contextual vector
space model of Yih and Qazvinian (2012) computed
using Wikipedia and LA Times data. It uses short
lists of hand-chosen signal words for the categories
Animal, Person, and Inanimate to produce a “re-
sponse” of the word to each category. This response
is equal to the maximum cosine similarity in the vec-
tor space of the query word to any signal word in the
category. The final vote goes to the category with
the highest response.

Name: We used an in-house named entity tagger.
This voter can recognize some inanimate entities
such as cities, but does not distinguish between peo-
ple and animals, and so can only vote Animate, Inan-
imate or Abstain.

Dictionaries: We use three different dictionary
sources (Simple English Wiktionary, Full English
Wiktionary, and the definitions found in Word-
Net) with a recursive dictionary crawling algorithm.
First, we fetch the first definition of the query and
use a dependency tree and simple heuristics to find
the head noun of the definition, ignoring qualifica-
tion NPs like “piece” or “member.” If this noun
belongs to a list of per-category signal words, the
voter stops and votes for that category. Otherwise,
the voter recursively runs on the found head noun.
To prevent cycling, if no prediction is made after 10
recursive lookups, the voter abstains.

Transfer: For each story, we first process each
sentence and detect instances of the patterns x
am/is/was/are/were y and y named x. In each of
these cases, we use majority vote of the remaining
voters to predict the animacy of y and transfer
its vote to x, applying this label (as a vote) to all
instances of x in the text.
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The WordSim and Dictionaries voters share lists
of signal words, which were chosen early in the ex-
perimental process using the training set. The sig-
nal words for the Animal category were animal and
mammal'. Person contains person and people. Fi-
nally, Inanimate uses thing, object, space, place,
symbol, food, structure, sound, measure, and unit.

We considered two methods for combining vot-
ers: majority voting (where the reliable Name voter
overrides the others if it does not abstain) and a lin-
ear reweighting of votes. In the reweighting method,
a feature vector is formed from the votes. Except
for WordSim, this vector is an indicator vector of
the vote — either Animal, Person, Animate (if the
voter doesn’t distinguish between animals and peo-
ple), Inanimate, or Abstain.

For Dictionaries, the vector’s non-zero compo-
nent is multiplied by the number of remaining al-
lowed recursive calls that can be performed, plus one
(so that a success on the final lookup gives a 1). For
example, if the third lookup finds a signal word and
chooses Animal, then the component corresponding
to Animal will have a value of 9.

For WordSim, instead of an indicator vector, the
responses to each category are used, or an indica-
tor for abstain if the model does not contain the
word. If the word is in the model, a second vec-
tor is appended containing the ratio of the maximum
response to the second-largest response in the com-
ponent for the maximum response category. These
per-voter feature vectors are concatenated to form a
35 dimensional vector, and a linear SVM is trained
to obtain the weights for combining the votes.

6 Results

We used the POS tagger in MSR SPLAT (Quirk et
al., 2012) to extract nouns from the stories in the
MCI160 dataset and used these as labeled examples
for the SVM. This resulted in 5,120 extracted nouns
in the 100 training stories and 3,009 in the 60 test
stories. We use five-fold cross-validation on the
training set to select the SVM parameters. 57.2%
of the training examples were inanimate, as were
58.1% of the test examples.

Table 1 gives the test accuracy of each voter. List

!"This was found to work well given typical dictionary defi-
nitions despite the fact that people are also mammals.



List | Anaphora | WNet | WSim | Dict | Name

84.6 77.1 78.8 576 | 743 | 16.0

Table 1: Accuracy of various individual voters on the test
set. Abstentions are counted as errors. Note that Transfer
depends on a secondary source for classification, and is
therefore not listed here.

Majority | SVM
N+WN+D+WS+AD+L 87.7 95.0
N+WN+WS 80.1 95.0
N+WN+D+WS+AD+L+T 87.4 95.0
N+WN+D+WS 86.4 94.8
N+WN+WS+AD+L 86.5 94.7
N+WN+D+WS+T 86.8 94.0
N+WN+D 86.1 93.7
N+WN 89.3 93.0
N+D 82.6 93.0
N+AD 87.6 89.4
N+L 85.4 88.9

Table 2: Accuracy of various combinations of voters
among Name (N), Anaphora Design (AD), List (L),
WordNet (WN), WordSim (WS), Dictionary (D), and
Transfer (T) under majority voting and SVM schemes.
Bold indicates a statistically significant difference over
the next lower bolded entry with p < 0.01, for the SVM.

comes out on top when taken alone, but we see in
later results that it is less critical when used with
other voters. Name performs poorly on its own, but
later we will see that it is a very accurate voter which
frequently abstains.

Table 2 gives the test performance of various com-
binations of voters, both under majority vote and
reweighting. Statistical significance was tested us-
ing a paired ¢-test, and bold indicates a method
was significant over the next lower bold line with
p value p < 0.01. We see a very large gain from
the SVM reweighting: 14.9 points in the case of
Name+WordNet+WordSim.

In Table 3, we show the results of ablation exper-
iments on the voters. We see that the most valuable
sources of information are WordSim and Dictionar-
ies.

Finally, in Table 4, we show a breakdown of
which voters cause the most errors, for the majority
vote system. In this table, we considered only “fi-
nal errors,” i.e. errors that the entire system makes.
Over all such errors, we counted the number of times
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Majority | SVM
WordSim 87.6 93.7
SimpleWikt (dict) 87.3 94.1
FullWikt (dict) 86.4 94.3
Dict 87.4 94.5
Name 86.6 94.7
List 86.4 94.8
WordNet (dict) 88.7 94.8
WordNet 87.5 94.9
Anaphora Design 88.6 94.9
Transfer 87.7 95.0

Table 3: Test accuracy when leaving out various voters,
using both majority vote and and reweighting. Bold indi-
cates statistical significance over the next lower bold line
with p < 0.01.

each voter chose incorrectly, giving a count of how
many times each voter contributed to a final error.
We see that the Anaphora Design system has the
largest number of errors on both train and test sets.
After this, WordNet, List, and WordNet (dict) are also
large sources of error. On the other hand, Name and
WordSim have very few errors, indicating high re-
liability. The table also gives the number of criti-
cal errors, where the voter selected the wrong cate-
gory and was a deciding vote (that is, when chang-
ing its vote would have resulted in a correct overall
classification). We see a similar pattern here, with
Anaphora Design causing the most errors and Word-
Sim and Name among the most reliable. We included
Anaphora Design even though it uses a different def-
inition of animacy, to determine if its vote was nev-
ertheless valuable.

Error tables such as these show how voting mod-
els are more interpretable and therefore correctable
compared to more complex learned models. The ta-
bles indicate the largest sources of error and sug-
gest changes that could be made to increase accu-
racy. For example, we could make significant gains
by improving WordNet, WordNet (dictionary), or
List, whereas there is relatively little reason to ad-
just WordSim or Name.

7 Conclusions

We have shown that linear combinations of voting
models can give animacy detection rates in the mid
90% range. This is well above the accuracy found



Errors Critical
Train | Test | Train | Test

Anaphora Design | 555 | 266 | 117 | 76
WordNet 480 | 228 50 45
List 435 | 195 94 45
Transfer 410 | 237 54 58
WordNet (dict) 385 | 194 84 65
SimpleWikt (dict) | 175 | 111 39 16
FullWikt (dict) 158 67 1 5

WordSim 107 89 11 19
Name 71 55 27 19

Table 4: Errors column: number of errors on train and
test where a source voted incorrectly, and was thus at
least in part responsible for an error of the overall sys-
tem. Critical column: number of errors on train and test
where a source voted incorrectly, and in addition cast a
deciding vote. Results are for majority vote.

by using the n-gram method of (Ji and Lin, 2009),
which is used as an animacy detection component
in other systems. In this sense the work presented
here improves upon the state of the art, but there are
caveats, since other workers define animacy differ-
ently and so a direct comparison with their work is
not possible. Our method has the added advantage
of interpretability, which we believe will be useful
when using it as a component in a larger system.
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Abstract

We present a unified unsupervised statistical
model for text normalization. The relation-
ship between standard and non-standard to-
kens is characterized by a log-linear model,
permitting arbitrary features. The weights
of these features are trained in a maximum-
likelihood framework, employing a novel se-
quential Monte Carlo training algorithm to
overcome the large label space, which would
be impractical for traditional dynamic pro-
gramming solutions.  This model is im-
plemented in a normalization system called
UNLOL, which achieves the best known re-
sults on two normalization datasets, outper-
forming more complex systems. We use the
output of UNLOL to automatically normalize
a large corpus of social media text, revealing a
set of coherent orthographic styles that under-
lie online language variation.

1 Introduction

Social media language can differ substantially from
other written text. Many of the attempts to character-
ize and overcome this variation have focused on nor-
malization: transforming social media language into
text that better matches standard datasets (Sproat et
al., 2001; Liu et al., 2011). Because there is lit-
tle available training data, and because social me-
dia language changes rapidly (Eisenstein, 2013b),
fully supervised training is generally not considered
appropriate for this task. However, due to the ex-
tremely high-dimensional output space — arbitrary
sequences of words across the vocabulary — it is

61

Jacob Eisenstein
School of Interactive Computing
Georgia Institute of Technology

jacobel@gatech.edu

a very challenging problem for unsupervised learn-
ing. Perhaps it is for these reasons that the most suc-
cessful systems are pipeline architectures that cob-
ble together a diverse array of techniques and re-
sources, including statistical language models, de-
pendency parsers, string edit distances, off-the-shelf
spellcheckers, and curated slang dictionaries (Liu et
al., 2011; Han and Baldwin, 2011; Han et al., 2013).

We propose a different approach, performing nor-
malization in a maximum-likelihood framework.
There are two main sources of information to be
exploited: local context, and surface similarity be-
tween the observed strings and normalization can-
didates. We treat the local context using standard
language modeling techniques; we treat string simi-
larity with a log-linear model that includes features
for both surface similarity and word-word pairs.

Because labeled examples of normalized text
are not available, this model cannot be trained
in the standard supervised fashion. Nor can we
apply dynamic programming techniques for unsu-
pervised training of locally-normalized conditional
models (Berg-Kirkpatrick et al., 2010), as their com-
plexity is quadratic in the size of label space; in
normalization, the label space is the vocabulary it-
self, with at least 10* elements. Instead, we present
a new training approach using Monte Carlo tech-
niques to compute an approximate gradient on the
feature weights. This training method may be appli-
cable in other unsupervised learning problems with
a large label space.

This model is implemented in a normalization
system called UNLOL (unsupervised normalization
in a LOg-Linear model). It is a lightweight proba-
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bilistic approach, relying only on a language model
for the target domain; it can be adapted to new
corpora text or new domains easily and quickly.
Our evaluations show that UNLOL outperforms the
state-of-the-art on standard normalization datasets.
In addition, we demonstrate the linguistic insights
that can be obtained from normalization, using
UNLOL to identify classes of orthographic transfor-
mations that form coherent linguistic styles.

2 Background

The text normalization task was introduced
by Sproat et al. (2001), and attained popularity in
the context of SMS messages (Choudhury et al.,
2007b). It has become still more salient in the era of
widespread social media, particularly Twitter. Han
and Baldwin (2011) formally define a normalization
task for Twitter, focusing on normalizations between
single tokens, and excluding multi-word tokens like
10l (laugh out loud). The normalization task has
been criticized by Eisenstein (2013b), who argues
that it strips away important social meanings. In
recent work, normalization has been shown to yield
improvements for part-of-speech tagging (Han
et al.,, 2013), parsing (Zhang et al., 2013), and
machine translation (Hassan and Menezes, 2013).
As we will show in Section 7, accurate automated
normalization can also improve our understanding
of the nature of social media language.

Supervised methods Early work on normaliza-
tion focused on labeled SMS datasets, using ap-
proaches such as noisy-channel modeling (Choud-
hury et al., 2007a) and machine translation (Aw
et al., 2006), as well as hybrid combinations of
spelling correction and speech recognition (Kobus
et al., 2008; Beaufort et al., 2010). This work
sought to balance language models (favoring words
that fit in context) with transformation models (fa-
voring words that are similar to the observed text).
Our approach can also be seen as a noisy channel
model, but unlike this prior work, no labeled data is
required.

Unsupervised methods Cook and Stevenson
(2009) manually identify several word formation
types within a noisy channel framework. They
parametrize each formation type with a small num-
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ber of scalar values, so that all legal transformations
of a given type are equally likely. The scalar pa-
rameters are then estimated using expectation max-
imization. This work stands apart from most of the
other unsupervised models, which are pipelines.
Contractor et al. (2010) use string edit distance
to identify closely-related candidate orthographic
forms and then decode the message using a language
model. Gouws et al. (2011) refine this approach
by mining an “exception dictionary” of strongly-
associated word pairs such as you/u. Like Con-
tractor et al. (2010), we apply string edit distance,
and like Gouws et al. (2011), we capture strongly
related word pairs. However, rather than applying
these properties as filtering steps in a pipeline, we
add them as features in a unified log-linear model.
Recent approaches have sought to improve accu-
racy by bringing more external resources and com-
plex architectures to bear. Han and Baldwin (2011)
begin with a set of string similarity metrics, and then
apply dependency parsing to identify contextually-
similar words. Liu et al. (2011) extract noisy train-
ing pairs from the search snippets that result from
carefully designed queries to Google, and then train
a conditional random field (Lafferty et al., 2001) to
estimate a character-based translation model. They
later extend this work by adding a model of vi-
sual priming, an off-the-shelf spell-checker, and lo-
cal context (Liu et al., 2012a). Hassan and Menezes
(2013) use a random walk framework to capture
contextual similarity, which they then interpolate
with an edit distance metric. Rather than seek-
ing additional external resources or designing more
complex metrics of context and similarity, we pro-
pose a unified statistical model, which learns feature
weights in a maximum-likelihood framework.

3 Approach

Our approach is motivated by the following criteria:

e Unsupervised. We want to be able to train
a model without labeled data. At present, la-
beled data for Twitter normalization is avail-
able only in small quantities. Moreover, as
social media language is undergoing rapid
change (Eisenstein, 2013b), labeled datasets
may become stale and increasingly ill-suited to
new spellings and words.



e Low-resource.

Other unsupervised ap-
proaches take advantage of resources such as
slang dictionaries and spell checkers (Han and
Baldwin, 2011; Liu et al., 2011). Resources
that characterize the current state of internet
language risk becoming outdated; in this paper
we investigate whether high-quality normaliza-
tion is possible without any such resources.

Featurized. The relationship between any pair
of words can be characterized in a number of
different ways, ranging from simple character-
level rules (e.g., going/goin) to larger substi-
tutions (e.g., someone/suml), and even to pat-
terns that are lexically restricted (e.g., you/u,
to/2). For these reasons, we seek a model that
permits many overlapping features to describe
candidate word pairs. These features may in-
clude simple string edit distance metrics, as
well as lexical features that memorize specific
pairs of standard and nonstandard words.

Context-driven. Learning potentially arbitrary
word-to-word transformations without supervi-
sion would be impossible without the strong
additional cue of local context. For example,
in the phrase

give me suttin to believe in,

even a reader who has never before seen the
word suttin may recognize it as a phonetic
transcription of something. The relatively high
string edit distance is overcome by the strong
contextual preference for the word something
over orthographically closer alternatives such
as button or suiting. We can apply an arbi-
trary target language model, leveraging large
amounts of unlabeled data and catering to the
desired linguistic characteristics of the normal-
ized content.

Holistic. While several prior approaches —
such as normalization dictionaries — operate at
the token level, our approach reasons over the
scope of the entire message. The necessity for
such holistic, joint inference and learning can
be seen by changing the example above to:

gimme suttin 2 beleive innnn.
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None of these tokens are standard (except 2,
which appears in a nonstandard sense here), so
without joint inference, it would not be possi-
ble to use context to help normalize suttin.
Only by jointly reasoning over the entire mes-
sage can we obtain the correct normalization.

These desiderata point towards a featurized se-
quence model, which must be trained without la-
beled examples. While there is prior work on train-
ing sequence models without supervision (Smith
and Eisner, 2005; Berg-Kirkpatrick et al., 2010),
there is an additional complication not faced by
models for tasks such as part-of-speech tagging
and named entity recognition: the potential label
space of standard words is large, on the order of
at least 10*. Naive application of Viterbi decod-
ing — which is a component of training for both
Contrastive Estimation (Smith and Eisner, 2005)
and the locally-normalized sequence labeling model
of Berg-Kirkpatrick et al. (2010) — will be stymied
by Viterbi’s quadratic complexity in the dimension
of the label space. While various pruning heuris-
tics may be applied, we instead look to Sequen-
tial Monte Carlo (SMC), a randomized algorithm
which approximates the necessary feature expecta-
tions through weighted samples.

4 Model

Given a set of source-language sentences S =
{s1,s2,...} (e.g., Tweets), our goal is to trans-
duce them into target-language sentences 1 =
{t1,t2,...} (standard English). We are given a tar-
get language model P(t), which can be estimated
from some large set of unlabeled target-language
sentences. We denote the vocabularies of source lan-
guage and target language as vg and v respectively.

We define a log-linear model that scores source
and target strings, with the form

P(s|t; 0) x exp (HTf(s,t)> . (1)

The desired conditional probability P(t|s) can be
obtained by combining this model with the target
language model, P(t|s) o« P(s|t;8)P(t). Since no
labeled data is available, the parameters 6 must be
estimated by maximizing the log-likelihood of the
source-language data. We define the log-likelihood



ly(s) for a source-language sentence s as follows:
lo(s) = = log Z P(s|t;0)P

We would like to maximize this objective by mak-
ing gradient-based updates.

log P(s

(%g

aa £:6)
=" P(tls) (f(s t) — ZP(S’!t>f(S’7t)>
t s/
= Bys[f(s,t) — Ege[f(s, t)]]

2

We are left with a difference in expected feature
counts, as is typical in log-linear models. However,
unlike the supervised case, here both terms are ex-
pectations: the outer expectation is over all target se-
quences (given the observed source sequence), and
the nested expectation is over all source sequences,
given the target sequence. As the space of possible
target sequences t grows exponentially in the length
of the source sequence, it will not be practical to
compute this expectation directly.

Dynamic programming is the typical solution for
computing feature expectations, and can be applied
to sequence models when the feature function de-
composes locally. There are two reasons this will
not work in our case. First, while the forward-
backward algorithm would enable us to compute
Eys, it would not give us the nested expectation
Et|s[ /‘t] this is the classic challenge in training
globally-normalized log-linear models without la-
beled data (Smith and Eisner, 2005). Second, both
forward-backward and the Viterbi algorithm have
time complexity that is quadratic in the dimension of
the label space, at least 10% or 10°. As we will show,
Sequential Monte Carlo (SMC) algorithms have a
number of advantages in this setting: they permit
the efficient computation of both the outer and inner
expectations, they are trivially parallelizable, and
the number of samples provides an intuitive tuning
tradeoff between accuracy and speed.

4.1 Sequential Monte Carlo approximation

Sequential Monte Carlo algorithms are a class of
sampling-based algorithms in which latent vari-
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ables are sampled sequentially (Cappe et al., 2007).
They are particularly well-suited to sequence mod-
els, though they can be applied more broadly. SMC
algorithms maintain a set of weighted hypotheses;
the weights correspond to probabilities, and in our
case, the hypotheses correspond to target language
word sequences. Specifically, we approximate the
conditional probability,

t1n|51n Zw (5tk tln
where w is the normalized weight of sample & at
word n (G)ﬁ is the unnormalized weight), and 5t;f_’ is

a delta function centered at t¥ ..

At each step, and for each hypothesis k, a new
target word is sampled from a proposal distribution,
and the weight of the hypothesis is then updated. We
maintain feature counts for each hypothesis, and ap-
proximate the expectation by taking a weighted av-
erage using the hypothesis weights. The proposal
distribution will be described in detail later.

We make a Markov assumption, so that the emis-
sion probability P(s|t) decomposes across the ele-
ments of the sentence P(s|t) = HnN P(sp|ty). This
means that the feature functions f(s, t) must decom-
pose on each (s, t,) pair. We can then rewrite (1)
as

N ex T S
P(slt:0) =] p(ngfnf’t”» )

:Zexp (QTf(S,tn)) . “4)

In addition, we assume that the target language
model P(t) can be written as an N-gram language
model, P(t) = [[, P(taltn-1,.. th—kt+1). With
these assumptions, we can view normalization as
a finite state-space model in which the target lan-
guage model defines the prior distribution of the pro-
cess and Equation 3 defines the likelihood function.
We are able to compute the the posterior probabil-
ity P(t|s) using sequential importance sampling, a
member of the SMC family.

The crucial idea in sequential importance sam-
pling is to update the hypotheses t’fn and their
weights w¥ so that they approximate the posterior
distribution at the next time step, P(t1.,+1|S1:041)-



Assuming the proposal distribution has the form
Q(t%,,|s1.n), the importance weights are given by

wk x P(tlf:n|slin)
" Q(tllc;n‘slzn)

In order to update the hypotheses recursively, we
rewrite P(t1.,]81.,) as:

&)

P(Sn‘tl:na Sl:n—l)P(tl:n‘Slzn—l)

P(tinls1m) =
( 1_n|51.n) P(Sn|51:n—1)
fP(8n|tn)P(tn|t1:n—17Sl:n—l)P(tlzn_”Sl:n_l)
P(sp|s1:m—1)

O(P(Sn|tn)P(tn|tn71)P(t1:n71|Sl:n71)>

assuming a bigram language model. We further as-
sume the proposal distribution () can be factored as:

Q(t1:n|sl:n) :Q(tn|t1:nfla Sl:n)Q(tlznfl lslznfl)

:Q(tn“nflv Sn)Q(tlznfl ‘Slznfl)-
(6)

Then the unnormalized importance weights sim-
plify to a recurrence:

P(salty) P(tylty_1) P(t7,_1s1:50-1)
Q(tn‘tn—la3n)Q<t]1€n_1yslzn—1)
L PldPEIE )
el Q(tn‘tn—lasn)

&
NS

)

(®)

Therefore, we can approximate the posterior dis-
tribution P(t,|s1.,) ~ Ziil wﬁ&ti (tn), and com-
pute the outer expectation as follows:

K N
Et\s[f(s7t)] = Zw]kif Zf(snvtﬁ) ©)
k=1 n=1

We compute the nested expectation using a non-
sequential Monte Carlo approximation, assuming
we can draw s“F ~ P(s|tF).

Eqr[f(s,t5)] =
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This gives the overall gradient computation:

Eyis[f(s,t) — By [f(s',t)]] = Z SFor ZwN
k=1%YN k=1
1 L
X Z ( Sp,t n - Z f( flk7tfb)>
(=1

(10)

where we sample t* and update w” while mov-
ing from left-to-right, and sample sw* at each n.
Note that although the sequential importance sam-
pler moves left-to-right like a filter, we use only the
final weights wy to compute the expectation. Thus,
the resulting expectation is based on the distribu-
tion P(s1.n|t1.n), so that no backwards “smooth-
ing” pass (Godsill et al., 2004) is needed to elim-
inate bias. Other applications of sequential Monte
Carlo make use of resampling (Cappe et al., 2007) to
avoid degeneration of the hypothesis weights, but we
found this to be unnecessary due to the short length
of Twitter messages.

4.2 Proposal distribution

The major computational challenge for dynamic
programming approaches to normalization is the
large label space, equal to the size of the target vo-
cabulary. It may appear that all we have gained
by applying sequential Monte Carlo is to convert
a computational problem into a statistical one: a
naive sampling approach will have little hope of
finding the small high-probability region of the high-
dimensional label space. However, sequential im-
portance sampling allows us to address this issue
through the proposal distribution, from which we
sample the candidate words t,,. Careful design of the
proposal distribution can guide sampling towards
the high-probability space. In the asymptotic limit of
an infinite number of samples, any non-pathological
proposal distribution will ultimately arrive at the de-
sired estimate, but a good proposal distribution can
greatly reduce the number of samples needed.

Doucet et al. (2001) note that the optimal pro-
posal — which minimizes the variance of the im-
portance weights conditional on t;.,,—; and s1.,, —
has the following form:

P(snlty) P(th]th )
> Plsalt)P(t]t]_y)

Q(th|sn,th_1) = (11)



Sampling from this proposal requires computing
the normalized distribution P(s,,[t¥); similarly, the
update of the hypothesis weights (Equation 8) re-
quires the calculation of () in its normalized form. In
each case, the total cost is the product of the vocabu-
lary sizes, O(#|vr|#|vs|), which is not tractable as
the vocabularies become large.

In low-dimensional settings, a convenient so-
Iution is to set the proposal distribution equal
to the transition distribution, Q(t£|s,,tk ) =
P(tE|th_\, ... t5_, ,). This choice is called the
“bootstrap filter,” and it has the advantage that the
weights w(®) are exactly identical to the product
of emission likelihoods [],, P(sn[tF). The com-
plexity of computing the hypothesis weights is thus
O(#vs|). However, because this proposal ignores
the emission likelihood, the bootstrap filter has very
little hope of finding a high-probability sample in
high-entropy contexts.

We strike a middle ground between efficiency and
accuracy, using a proposal distribution that is closely
related to the overall likelihood, yet is tractable to
sample and compute:

Qthlsn.th 1) <
P(snlth) Z(tn)P(thlty 1)
> Plsalt) Z(0)P(H]t_)

exp (GTf(sn, tn)) P(tﬁ\tk )

n—1

> €xXp (eTf(Sna t/)) P(t/|tﬁ71)

12)

Here, we simply replace the likelihood distribu-
tion in (11) by its unnormalized version.
To update the unnormalized hypothesis weights

@k, we have
cexp (07 (sn, ') P(t|tk
oF =k v exp (0" €(sn,t') P(H|ty_1) (13)

AGH)

The numerator requires summing over all ele-
ments in v and the denominator Z(t*) requires
summing over all elements in vg, for a total cost of

O(#lvr| + #lvsl)-
4.3 Decoding

Given an input source sentence s, the decoding prob-
lem is to find a target sentence t that maximizes
P(t]s) o< P(s|t)P(t) = TIY P(snltn) P(taltn_1).
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Feature name
word-word pair

Description

A set of binary features for each
source/target word pair (s, t)

string similarity A set of binary features in-
dicating whether s is one of
the top [V string similar non-
standard words of ¢, for N ¢
{5, 10, 25, 50, 100, 250, 500, 1000}

Table 1: The feature set for our log-linear model

As with learning, we cannot apply the usual dy-
namic programming algorithm (Viterbi), because
of its quadratic cost in the size of the target lan-
guage vocabulary. This must be multiplied by
the cost of computing the normalized probability
P(sy|ty), resulting in a prohibitive time complexity
of O(#vs|#lvr|*N).

We consider two approximate decoding algo-
rithms. The first is to simply apply the proposal dis-
tribution, with linear complexity in the size of the
two vocabularies. However, this decoder is not iden-
tical to P(t|s), because of the extra factor of Z(t)
in the numerator. Alternatively, we can apply the
proposal distribution for selecting target word can-
didates, then apply the Viterbi algorithm only within
these candidates. The total cost is O(#|vs|T%N),
where T is the number of target word candidates we
consider; this will asymptotically approach P(t|s)
as T' — #|vr|. Our evaluations use the more expen-
sive proposal+Viterbi decoding, but accuracy with
the more efficient proposal-based decoding is very
similar.

4.4 Features

Our system uses the feature types described in Ta-
ble 1. The word pair features are designed to cap-
ture lexical conventions, e.g. you/u. We only con-
sider word pair features that fired during training.
The string similarity features rely on the similarity
function proposed by Contractor et al. (2010), which
has proven effective for normalization in prior work.
We bin this similarity to create binary features indi-
cating whether a string s is in the top-/N most similar
strings to t; this binning yields substantial speed im-
provements without negatively impacting accuracy.



5 Implementation and data

The model and inference described in the pre-
vious section are implemented in a software
system for normalizing text on twitter, called
UNLOL: wunsupervised normalization in a LOg-
Linear model. The final system can process roughly
10,000 Tweets per hour. We now describe some im-
plementation details.

5.1 Normalization candidates

Most tokens in tweets do not require normalization.
The question of how to identify which words are
to be normalized is still an open problem. Follow-
ing Han and Baldwin (2011), we build a dictionary
of words which are permissible in the target domain,
and make no attempt to normalize source strings
that match these words. As with other comparable
approaches, we are therefore unable to normalize
strings like 111 into I’/l. Our set of “in-vocabulary”
(IV) words is based on the GNU aspell dictionary
(v0.60.6), containing 97,070 words. From this dic-
tionary, we follow Liu et al. (2012a) and remove all
the words with a count of less than 20 in the Edin-
burgh Twitter corpus (Petrovi¢ et al., 2010) — re-
sulting in a total of 52,449 target words. All sin-
gle characters except a and i are excluded, and rt
is treated as in-vocabulary. For all in-vocabulary
words, we define P(s,|t,) = d(sp,tn), taking the
value of zero when s,, # t,. This effectively pre-
vents our model from attempting to normalize these
words.

In addition to words that are in the target vocabu-
lary, there are many other strings that should not be
normalized, such as names and multiword shorten-
ings (e.g. going tolgonna).! We follow prior work
and assume that the set of normalization candidates
is known in advance during test set decoding (Han et
al., 2013). However, the unlabeled training data has
no such information. Thus, during training we at-
tempt to normalize all tokens that (1) are not in our
lexicon of IV words, and (2) are composed of letters,
numbers and the apostrophe. This set includes con-
tractions like "gonna" and "gotta", which would not
appear in the test set, but are nonetheless normalized

"Whether multiword shortenings should be normalized is ar-

guable, but they are outside the scope of current normalization
datasets (Han and Baldwin, 2011).
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during training. For each OOV token, we conduct a
pre-normalization step by reducing any repetitions
of more than two letters in the nonstandard words to
exactly two letters (e.g., cooool — cool).

5.2 Language modeling

The Kneser-Ney smoothed trigram target language
model is estimated with the SRILM toolkit Stolcke
(2002), using Tweets from the Edinburgh Twitter
corpus that contain no OOV words besides hash-
tags and username mentions (following (Han et al.,
2013)). We use this language model for both training
and decoding. We occasionally find training con-
texts in which the trigram (t,,, t,,—1,t,—2) is unob-
served in the language model data; features resulting
from such trigrams are not considered when comput-
ing the weight gradients.

5.3 Parameters

The Monte Carlo approximations require two pa-
rameters: the number of samples for sequential
Monte Carlo (K), and the number of samples for the
non-sequential sampler of the nested expectation (L,
from Equation 10). The theory of Monte Carlo ap-
proximation states that the quality of the approxima-
tion should only improve as the number of samples
increases; we obtained good results with K = 10
and L = 1, and found relatively little improvement
by increasing these values. The number of hypothe-
ses considered by the decoder is set to 7' = 10;
again, the performance should only improve with 7',
as we more closely approximate full Viterbi decod-
ing.

6 Experiments

Datasets We use two existing labeled Twitter
datasets to evaluate our approach. The first dataset
— which we call LWWL11, based on the names of
its authors Liu et al. (2011) — contains 3,802 indi-
vidual “nonstandard” words (i.e., words that are not
in the target vocabulary) and their normalized forms.
The rest of the message in which the words is appear
is not available. As this corpus does not provide lin-
guistic context, its decoding must use a unigram tar-
get language model. The second dataset — which
is called LexNorml.1 by its authors Han and Bald-
win (2011) — contains 549 complete tweets with
1,184 nonstandard tokens (558 unique word types).



Method Dataset Precision Recall F-measure
(Liu et al. 2011) 68.88 68.88 68.88
(Liu et al. 2012) LMMLI11 69.81 69.81 69.81
UNLOL 73.04  73.04 73.04
(Han and Baldwin, 2011) 7530  75.30 75.30
(Liu et al. 2012) 84.13 78.38 81.15
(Hassan et al. 2013) LexNorm L1 g5 37 564 69.93
UNLOL 82.09 82.09 82.09
UNLOL LexNorm 1.2  82.06 82.06 82.06

Table 2: Empirical results

In this corpus, we can decode with a trigram lan-
guage model.

Close analysis of LexNorml1.1 revealed some in-
consistencies in annotation (for example, y’all
and 2 are sometimes normalized to you and to,
but are left unnormalized in other cases). In ad-
dition, several annotations disagree with existing
resources on internet language and dialectal En-
glish. For example, smh is normalized to some-
how in LexNorml.1, but internetslang.com
and urbandictionary.com assert that it stands
for shake my head, and this is evident from examples
such as smh at this girl. Similarly, finna
is normalized to finally in LexNorml.1, but from
the literature on African American English (Green,
2002), it corresponds to fixing to (e.g., 1'm finna
go home). To address these issues, we have pro-
duced a new version of this dataset, which we call
LexNorm1.2 (after consulting with the creators of
LexNorm1.1). LexNorm1.2 differs from version 1.1
in the annotations for 172 of the 2140 OOV words.
We evaluate on LexNorml.1 to compare with prior
work, but we also present results on LexNorm1.2
in the hope that it will become standard in future
work on normalization in English. The dataset
is available at http://www.cc.gatech.edu/
~jeisenst/lexnorm.v1.2.tgz.

To obtain unlabeled training data, we randomly
sample 50 tweets from the Edinburgh Twitter cor-
pus Petrovi€ et al. (2010) for each OOV word. Some
OOV words appear less than 50 times in the cor-
pus, so we obtained more training tweets for them
through the Twitter search APL
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Metrics Prior work on these datasets has assumed
perfect detection of words requiring normalization,
and has focused on finding the correct normalization
for these words (Han and Baldwin, 2011; Han et al.,
2013). Recall has been defined as the proportion of
words requiring normalization which are normalized
correctly; precision is defined as the proportion of
normalizations which are correct.

Results We run our training algorithm for two it-
erations (pass the training data twice). The results
are presented in Table 2. Our system, UNLOL,
achieves the highest published F-measure on both
datasets. Performance on LexNorm1.2 is very simi-
lar to LexNorml1.1, despite the fact that roughly 8%
of the examples were relabeled.

In the normalization task that we consider, the to-
kens to be normalized are specified in advance. This
is the same task specification as in the prior work
against which we compare. At test time, our system
attempts normalizes all such tokens; every error is
thus both a false positive and false negative, so pre-
cision equals to recall for this task; this is also true
for Han and Baldwin (2011) and Liu et al. (2011).

It is possible to trade recall for precision by re-
fusing to normalize words when the system‘s confi-
dence falls below a threshold. A good setting of this
threshold can improve the F-measure, but we did not
report these results because we have no development
set for parameter tuning.

Regularization One potential concern is that the
number of non-zero feature weights will continually
increase until the memory cost becomes overwhelm-
ing. Although we did not run up against mem-
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Figure 1: Effect of L1 regularization on the F-measure and the number of features with non-zero weights

ory limitations in the experiments producing the re-
sults in Table 2, this issue can be addressed through
the application of L1 regularization, which produces
sparse weight vectors by adding a penalty of A||6]|1
to the log-likelihood. We perform online optimiza-
tion of the L1-regularized log-likelihood by apply-
ing the truncated gradient method (Langford et al.,
2009). We use an exponential decreasing learning
rate 7, = 10a*/N, where k is the iteration counter
and N is the size of training data. We set g = 1 and
a = 0.5. Experiments were run until 300,000 train-
ing instances were observed, with a final learning
rate of less than 1/32. As shown in Figure 1, a small
amount of regularization can dramatically decrease
the number of active features without harming per-
formance.

7 Analysis

We apply our normalization system to investi-
gate the orthographic processes underlying language
variation in social media. Using a dataset of 400,000
English language tweets, sampled from the month
of August in each year from 2009 to 2012, we ap-
ply UNLOL to automatically normalize each token.
We then treat these normalizations as labeled train-
ing data, and examine the Levenshtein alignment be-
tween the source and target tokens. This alignment
gives approximate character-level transduction rules
to explain each OOV token. We then examine which
rules are used by each author, constructing a matrix
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of authors and rules.?

Factorization of the author-rule matrix reveals sets
of rules that tend to be used together; we might
call these rulesets “orthographic styles.” We apply
non-negative matrix factorization (Lee and Seung,
2001), which characterizes each author by a vector
of k style loadings, and simultaneously constructs
k style dictionaries, which each put weight on dif-
ferent orthographic rules. Because the loadings are
constrained to be non-negative, the factorization can
be seen as sparsely assigning varying amounts of
each style to each author. We choose the factoriza-
tion that minimizes the Frobenius norm of the recon-
struction error, using the NIMFA software package
(http://nimfa.biolab.si/).

The resulting styles are shown in Table 3, for
k = 10; other values of k give similar overall re-
sults with more or less detail. The styles incor-
porate a number of linguistic phenomena, includ-
ing: expressive lengthening (styles 7-9; see Brody
and Diakopoulos, 2011); g- and t-dropping (style 5,
see Eisenstein 2013a) ; th-stopping (style 6); and
the dropping of several word-final vowels (styles
1-3).  Some of these styles, such as t-dropping
and th-stopping, have direct analogues in spoken
language varieties (Tagliamonte and Temple, 2005;
Green, 2002), while others, like expressive length-
ening, seem more unique to social media. The re-
lationships between these orthographic styles and
social variables such as geography and demograph-

>We tried adding these rules as features and retraining the
normalization system, but this hurt performance.



style rules

examples

1. you; o-dropping yl_ oul_u Fylx_ ol_

belb_ el olu e* =

2. e-dropping, u/o

3. a-dropping al_ *al«_ relr_ arl_r

4. g-dropping
5. t-dropping

g*_» ngn_ gl_
t¥_x stls_ t/_
hil_

6. th-stopping *t/~d th/d_ t/d

7. (kd)-lengthening i/id _/k _/d _Fk«

8. o-lengthening o_loo _*lox _/o
9. e-lengthening i e_lee _le _*Fex
10. a-adding Ja _/ma _/m _¥ax

u, yu, 2day, knw, gud, yur, wud, yuh, u’ ve, toda,
everthing, everwhere, ourself

b, r, luv, cum, hav, mayb, bn, remembr, btween,
gunna, gud

r, tht, wht, yrs, bck, strt, gurantee,
elementry, wr, rlly, wher, rdy, preciate,
neway

goin, talkin,watchin, feelin, makin
jus, bc, shh, wha, gota, wea, mus, firts, jes,
subsistutes

dat, de, skool, fone, dese, dha, shid, dhat,
dat’s
idk, fuckk, okk, backk, workk, badd, andd,

goodd, bedd, elidgible, pidgeon

so0o0, noo, doo, oohh, 1loove, thoo, helloo

mee, ive, retweet, bestie, lovee, nicee, heey,
likee, iphone, homie, ii, damnit
ima, outta, needa, shoulda,
comming, tomm, boutt, ppreciate

woulda, mm,

Table 3: Orthographic styles induced from automatically normalized Twitter text

ics must be left to future research, but they offer a
promising generalization of prior work that has fo-
cused almost exclusively on exclusively on lexical
variation (Argamon et al., 2007; Eisenstein et al.,
2010; Eisenstein et al., 2011), with a few exceptions
for character-level features (Brody and Diakopoulos,
2011; Burger et al., 2011).

Note that style 10 is largely the result of mis-
taken normalizations. The tokens ima, outta, and
needa all refer to multi-word expressions in stan-
dard English, and are thus outside the scope of the
normalization task as defined by Han et al. (2013).
UNLOL has produced incorrect single-token nor-
malizations for these terms: i/ima, out/outta, and
need/needa. But while these normalizations are
wrong, the resulting style nonetheless captures a co-
herent orthographic phenomenon.

8 Conclusion

We have presented a unified, unsupervised statistical
model for normalizing social media text, attaining
the best reported performance on the two standard
normalization datasets. The power of our approach
comes from flexible modeling of word-to-word re-
lationships through features, while exploiting con-
textual regularity to train the corresponding feature
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weights without labeled data. The primary techni-
cal challenge was overcoming the large label space
of the normalization task; we accomplish this us-
ing sequential Monte Carlo. Future work may con-
sider whether sequential Monte Carlo can offer sim-
ilar advantages in other unsupervised NLP tasks. An
additional benefit of our joint statistical approach is
that it may be combined with other downstream lan-
guage processing tasks, such as part-of-speech tag-
ging (Gimpel et al., 2011) and named entity resolu-
tion (Liu et al., 2012b).
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Abstract

Compared to the edited genres that have
played a central role in NLP research, mi-
croblog texts use a more informal register with
nonstandard lexical items, abbreviations, and
free orthographic variation. When confronted
with such input, conventional text analysis
tools often perform poorly. Normalization
— replacing orthographically or lexically id-
iosyncratic forms with more standard variants
— can improve performance. We propose a
method for learning normalization rules from
machine translations of a parallel corpus of
microblog messages. To validate the utility of
our approach, we evaluate extrinsically, show-
ing that normalizing English tweets and then
translating improves translation quality (com-
pared to translating unnormalized text) using
three standard web translation services as well
as a phrase-based translation system trained
on parallel microblog data.

1 Introduction

Microblogs such as Twitter, Sina Weibo (a popular
Chinese microblog service) and Facebook have re-
ceived increasing attention in diverse research com-
munities (Han and Baldwin, 2011; Hawn, 2009, in-
ter alia). In contrast to traditional text domains that
use carefully controlled, standardized language, mi-
croblog content is often informal, with less adher-
ence to conventions regarding punctuation, spelling,
and style, and with a higher proportion of dialect
or pronouciation-derived orthography. While this
diversity itself is an important resource for study-
ing, e.g., sociolinguistic variation (Eisenstein et al.,
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2011; Eisenstein, 2013), it poses challenges to NLP
applications developed for more formal domains. If
retaining variation due to sociolinguistic or phono-
logical factors is not crucial, text normalization can
improve performance on downstream tasks (§2).

This paper introduces a data-driven approach to
learning normalization rules by conceiving of nor-
malization as a kind of paraphrasing and taking
inspiration from the bilingual pivot approach to
paraphrase detection (Bannard and Callison-Burch,
2005) and the observation that translation is an
inherently “simplifying” process (Laviosa, 1998;
Volansky et al., 2013). Starting from a parallel cor-
pus of microblog messages consisting of English
paired with several other languages (Ling et al.,
2013), we use standard web machine translation sys-
tems to re-translate the non-English segment, pro-
ducing (English original, English MT) pairs (§3).
These are our normalization examples, with MT out-
put playing the role of normalized English. Sev-
eral techniques for identifying high-precision nor-
malization rules are proposed, and we introduce a
character-based normalization model to account for
predictable character-level processes, like repetition
and substitution (§4). We then describe our decod-
ing procedure (§5) and show that our normaliza-
tion model improve translation quality for English—
Chinese microblog translation (§6).!

2  Why Normalize?
Consider the English tweet shown in the first row of
Table 1 which contains several elements that NLP

!The datasets used in this paper are available from http:
//www.cs.cmu.edu/~1lingwang/microtopia.
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Table 1: Translations of an English microblog message
into Mandarin, using three web translation services.

Table 2: Translations of Chinese original post to English
using web-based service.

orig. | To DanielVeuleman yea iknw imma work on that
MT! | Wfiknw DanielVeulemanfF 5 T.1E,

MT? | DanielVeuleman *&iknw {8} T1E,

MT? | #|DanielVeuleman 2 fiknw immajiX /7 T §) TA1E

systems trained on edited domains may not handle
well. First, it contains several nonstandard abbre-
viations, such as, yea, iknw and imma (abbrevia-
tions of yes, I know and I am going to). Second,
there is no punctuation in the text although stan-
dard convention would dictate that it should be used.
To illustrate the effect this can have, consider now
the translations produced by Google Translate,” Mi-
crosoft Bing,? and Youdao,* shown in rows 2—4.
Even with no knowledge of Chinese, it is not hard
to see that all engines have produced poor transla-
tions: the abbreviation iknw is left translated by all
engines, and imma is variously deleted, left untrans-
lated, or transliterated into the meaningless sequence
5 (pronounced y7 md).

While normalization to a form like 7o Daniel
Veuleman: Yes, I know. I am going to work on that.
does indeed lose some information (information im-
portant for an analysis of sociolinguistic or phono-
logical variation clearly goes missing), it expresses
the propositional content of the original in a form
that is more amenable to processing by traditional
tools. Translating the normalized form with Google
Translate produces 2 F+JE /1 Veuleman: F&H7, 3
HIE - FITHEAEI TAE - , which is a substantial

improvement over all translations in Table 1.

3 Obtaining Normalization Examples

We want to treat normalization as a supervised learn-
ing problem akin to machine translation, and to do
so, we need to obtain pairs of microblog posts and
their normalized forms. While it would be possible
to ask annotators to create such a corpus, it would
be quite expensive to obtain large numbers of ex-
amples. In this section, we propose a method for
creating normalization examples without any human

http://translate.google.com/

‘http://www.bing.com/translator
*nttp://fanyi.youdao.com/
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orig. | To DanielVeuleman yea iknw imma work on that
orig. | XDanielVeulemanii, &R, FEME,
FIELEEAL TS5
MT? | Right DanielVeuleman say, yes, I know, I'm
Xiangna efforts
MT? | DanielVeuleman said, Yes, I know, I'm that hard
MT? | Said to DanielVeuleman, yes, I know, I'm to
that effort

annotation, by leveraging existing tools and data re-
sources.

The English example sentence in Table 1 was se-
lected from the ptopia parallel corpus (Ling et
al., 2013), which consists of self-translated mes-
sages from Twitter and Sina Weibo (i.e., each mes-
sage contains a translation of itself). Row 2 of
Table 2 shows the Mandarin self-translation from
the corpus. The key observation is what happens
when we automatically translate the Mandarin ver-
sion back into English. Rows 3-5 shows automatic
translations from three standard web MT engines.
While not perfect, the translations contain several
correctly normalized subphrases. We will use such
re-translations as a source of (noisy) normalization
examples. Since such self-translations are relatively
numerous on microblogs, this technique can provide
a large amount of data.

Of course, to motivate this paper, we argued that
NLP tools — like the very translation systems we
propose to use — often fail on unnormalized input.
Is this a problem? We argue that it is not for the
following two reasons.

Normalization in translation. Work in transla-
tion studies has observed that translation tends to
be a generalizing process that “smooths out” author-
and work-specific idiosyncrasies (Laviosa, 1998;
Volansky et al., 2013). Assuming this observa-
tion is robust, we expect that dialectal variant forms
found in microblogs to be normalized in translation.
Therefore, if the parallel segments in our microblog
parallel corpus did indeed originate through a trans-
lation process (rather than, e.g., being generated as
two independent utterances from a bilingual), we
may then state the following assumption about the
distribution of variant forms in a parallel segment



(e,f): if e contains nonstandard lexical variants,
then f is likely to be a normalized translation using
with fewer nonstandard lexical variants (and vice-
versa).

Uncorrelated orthographic variants. Any writ-
ten language has the potential to make creative use
of orthography: alphabetic scripts can render ap-
proximations of pronunciation variants; logographic
scripts can use homophonic substitutions. However,
the kinds of innovations used in particular languages
will be language specific (depending on details of
the phonology, lexicon, and orthography of the lan-
guage). However, for language pairs that differ sub-
stantially in these dimensions, it may not always
be possible (or at least easy) to preserve particular
kinds of nonstandard orthographic forms in trans-
lation. Consider the (relatively common) pronoun-
verb compounds like iknw and imma from our mo-
tivating example: since Chinese uses a logographic
script without spaces, there is no obvious equivalent.

3.1 Variant-Normalized Parallel Corpus

For the two reasons outlined above, we argue that
we will be able to translate back into English us-
ing MT, even when the underlying English part of
the parallel corpus has a great deal of nonstandard
content. We leverage this fact to build the normal-
ization corpus, where the original English tweet is
treated as the variant form, and the automatic trans-
lation obtained from another language is considered
a potential normalization.’

Our process is as follows. The microblog cor-
pus of Ling et al. (2013) contains sentence pairs ex-
tracted from Twitter and Sina Weibo, for multiple
language pairs. We use all corpora that include En-
glish as one of the languages in the pair. The respec-
tive non-English side is translated into English using
different translation engines. The different sets we
used and the engines we used to translate are shown
in Table 3. Thus, for each original English post o,
we obtain n paraphrases {p,}”_;, from n different
translation engines.

SWe additionally assume that the translation engines are
trained to output more standardized data, so there will be addi-
tional normalizing effect from the machine translation system.
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Table 3: Corpora Used for Paraphrasing.

Lang. Pair Source Segs. MT Engines
ZH-EN Weibo 800K Google, Bing, Youdao
ZH-EN Twitter 113K  Google, Bing, Youdao
AR-EN Twitter 114K Google, Bing
RU-EN Twitter 119K Google, Bing
KO-EN Twitter 78K Google, Bing
JA-EN Twitter 75K Google, Bing

3.2 Alignment and Filtering

Our parallel microblog corpus was crawled automat-
ically and contains many misaligned sentences. To
improve precision, we attempt to find the similar-
ity between the (unnormalized) original and each
of the normalizations using an alignment based on
the one used in METEOR (Denkowski and Lavie,
2011), which computes the best alignment between
the original tweet and each of the normalizations
but modified to permit domain-specific approximate
matches. To address lexical variants, we allow fuzzy
word matching, that is, we allow lexically similar,
such as yea and yes to be aligned (similarity is de-
termined by the Levenshtein distance). We also per-
form phrasal matchings, such as ikwn to i know. To
do so, we extend the alignment algorithm from word
to phrasal alignments. More precisely, given the
original post 0 and a candidate normalization n, we
wish to find the optimal segmentation producing a
good alignment. A segmentation s = (s1, ..., s‘s|>
is a sequence of segments that aligns as a block to a
source word. For instance, for the sentence yea iknw
imma work on that, one possible segmentation could
be s1 =yea ikwn, so =imma and s3 =work on that.

Model. We define the score of an alignment a and
segmentation s in using a model that makes semi-
Markov independence assumptions, similar to the
work in (Bansal et al., 2011), u(a,s | o,n) =

Is|

I1 [ue(si,ai | m) X ug(ai | ai1) x ug(]si)

i=1

In this model, the maximal scoring segmentation
and alignment can be found using a polynomial time
dynamic programming algorithm. Each segment
can be aligned to any word or segment in 0. The
aligned segment for s; is defined as ag. For the



score of a segment correspondence u.(s,a | n), we
assume that this can be estimated using the lexical
similarity between segments, which we define to be
1-— % where L(.a:, y) denotes the LeYen—
shtein distance between strings « and y, normalized
by the highest possible distance between those seg-
ments.

For the alignment score wu;, we assume that the
relative order of the two sequences will be mostly
monotonous. Thus, we approximate u; with the fol-
lowing density poss(ax) — pose(ag—1) ~ N(1,1),
where the pos; is the index of the first word in the
segment and pos. the one of the last word.

After finding the Viterbi alignments, we compute
the similarity measure 7 = %, used in (Resnik
and Smith, 2003), where |A| and |U| are the number
of words that were aligned and unaligned, respec-
tively. In this work, we extract the pair if 7 > 0.2.

4 Normalization Model

From the normalization corpus, we learn a nor-
malization model that generalizes the normalization
process. That is, from the data we observe that To
DanielVeuleman yea iknw imma work on that is nor-
malized to To Daniel Veuleman: yes, I know. I
am going to work on that. However, this is not
useful, since the chances of the exact sentence 7o
DanielVeuleman yea iknw imma work on that occur-
ring in the data is low. We wish to learn a process to
convert the original tweet into the normalized form.

There are two mechanisms that we use in our
model. The first (§4.1) learns word—word and
phrase—phrase mappings. That is, we wish to find
that DanielVeuleman is normalized to Daniel Veule-
man, that iknw is normalized to I know and that
imma is normalized to I am going. These mappings
are more useful, since whenever iknw occurs in the
data, we have the option to normalize it to I know.
The second (§4.2) learns character sequence map-
pings. If we look at the normalization DanielVeule-
man to Daniel Veuleman, we can see that it is only
applicable when the exact word DanielVeuleman oc-
curs. However, we wish to learn that it is uncom-
mon for the letters / and v to occur in the same word
sequentially, so that be can add missing spaces in
words that contain the /v character sequence, such as
normalizing phenomenalvoter to phenomenal voter.
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I wanna go 4 pizza 2day
I want to glo for pizza  today

Figure 1: Variant-normalized alignment with the variant
form above and the normalized form below; solid lines
show potential normalizations, while dashed lines repre-
sent identical translations.

Howeyver, there are also cases where this is not true,
for instance, in the word velvet, we do not wish to
separate the letters / and v. Thus, we shall describe
the process we use to decide when to apply these
transformations.

4.1 From Sentences To Phrases

The process to find phrases from sentences has been
throughly studied in Machine Translation. This is
generally done in two steps, Word Alignments and
Phrase Extraction.

Alignment. The first step is to find the word-level
alignments between the original post and its nor-
malization. This is a well studied problem in MT,
referred as Word Alignment (Brown et al., 1993).
Many alignment models have been proposed, such
as, the HMM-based word alignment models (Vo-
gel et al,, 1996) and the IBM models (Och and
Ney, 2003). Generally, a symmetrization step is per-
formed, where the bidirectional alignments are com-
bined heuristically. In our work, we use the fast
aligner proposed in (Dyer et al., 2013) to obtain the
word alignments. Figure 1 shows an example of an
word aligned pair of a tweet and its normalization.

Phrase Extraction. The phrasal extraction
step (Ling et al., 2010), uses the word aligned
sentences and extracts phrasal mappings between
the original tweet and its normalization, named
phrase pairs. For instance, in Figure 1, we would
like to extract the phrasal mapping from go 4 to go
for, so that we learn that the word 4 in the context of
go is normalized to the proposition for. To do this,
the most common approach is to use the template
proposed in (Och and Ney, 2004), which allows
phrase pairs to be extracted, if there is at least one
word alignment within the pair, and there are no



Table 4: Fragment of the phrase normalization model
built, for each original phrase o, we present the top-3 nor-
malized forms ranked by f(n | o).

Original (0) Normalization (n) f(n | o)
wanna want to 0.4679
wanna will 0.0274
wanna going to 0.0114
4 4 0.5641
4 for 0.01795
go4 go for 1.0000

words inside the pair that are aligned to words not
in the pair. For instance, in the example above, the
phrase pair that normalizes wanna to want to would
be extracted, but the phrase pair normalizing wanna
to want to go would not, because the word go in the
normalization is aligned to a word not in the pair.

Phrasal Features. After extracting the phrase
pairs, a model is produced with features derived
from phrase pair occurrences during extraction. This
model is equivalent to phrasal translation model in
MT, but we shall refer to it as the normalization
model. For a phrase pair (0, n), where o is the origi-
nal phrase, and n is the normalized phrase, we com-
pute the normalization relative frequency f(n | 0) =
C(n,0)
C(o)
o was normalized to n and C'(0) denotes the number
of times o was seen in the extracted phrase pairs. Ta-
ble 4 gives a fragment of the normalization model.
The columns represent the original phrase, its nor-
malization and the probability, respectively.

In Table 4, we observe that the abbreviation
wanna is normalized to want to with a relatively
high probability, but it can also be normalized to
other equivalent expressions, such as will and go-
ing to. The word 4 by itself has a low probability
to be normalized to the preposition for. This is ex-
pected, since this decision cannot be made without
context. However, we see that the phrase go 4 is
normalized to go for with a high probability, which
specifies that within the context of go, 4 is generally
used as a preposition.

, where C'(n, 0) denotes the number of times

4.2 From Phrases to Characters

While we can learn lexical variants that are in the
corpora using the phrase model, we can only address
word forms that have been observed in the corpora.
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Table 5: Fragment of the character normalization model
where examples representative of the lexical variant gen-
eration process are encoded in the model.

Original (0) Normalization (n)  f(n|o)
000 00 0.0223
000 0 0.0439
S c 0.0331
z S 0.0741
sh ch 0.019

2 to 0.014

4 for 0.0013
0 o 0.0657
ingfor ing <space>for 0.4545
gf g <space> f 0.01028

This is quite limited, since we cannot expect all the
word forms to be present, such as all the possible
orthographic errors for the word cat, such as catt,
kat and caaaat. Thus, we will build a character-
based model that learns the process lexical variants
are generated at the subword level.

Our character-based model is similar to the
phrase-based model, except that, rather than learn-
ing word-based mappings from the original tweet
and the normalization sentences, we learn character-
based mappings from the original phrases to the nor-
malizations of those phrases. Thus, we extract the
phrase pairs in the phrasal normalization model, and
use them as a training corpora. To do this, for each
phrase pair, we add a start token, <start>, and a
end token, <end>, at the beginning and ending of
the phrase pair. Afterwards, we separate all charac-
ters by space and add a space token <space> where
spaces were originally. For instance, the phrase
pair normalizing DanielVeuleman to Daniel Veule-
man would be converted to <start>danielveu
leman <end> and <start>daniel <space>v
euleman <end>.

Character-based Normalization Model - To
build the character-based model, we proceed using
the same approach as in the phrasal normalization
model. We first align characters using Word Align-
ment Models, and then we perform phrase extrac-
tion to retrieve the phrasal character segments, and
build the character-based model by collecting statis-
tics. Once again, we provide examples of entries in
the model in Table 5.



We observe that many of the normalizations dealt
with in the previous model by memorizing phrases
are captured with string transformations. For in-
stance, from phrase pairs such as tooo to foo and
sooo to so, we learn that sequences of o0’s can be
reduced to 2 or 1 o. Other examples include or-
thographic substitutions, such as 2 for to and 4
for for (as found in 2gether, 2morrow, 4ever and
4get). Moreover, orthographic errors can be gener-
ated from mistaking characters with similar phonetic
properties, such as, s to ¢, z to s and sh to ch, gener-
ating lexical variants such as reprecenting. Finally,
we learn that the number O that resembles the letter
0, can be used as a replacement, as in g00d. Finally,
we can see that the rule ingfor to ing for attempts to
find segmentation errors, such as goingfor, where a
space between going and for was omitted.

5 Normalization Decoder

In section 4, we built two models to learn the process
of normalization, the phrase-based model and the
character-based model. In this section, we describe
the decoder we used to normalize the sentences.
The advantage of the phrase-based model is that it
can make decisions for normalization based on con-
text. That is, it contains phrasal units, such as, go
4, that determine, when the word 4 should be nor-
malized to the preposition for and when to leave it
as a number. However, it cannot address words that
are unseen in the corpora. For instance, if the word
form 4ever is not seen in the training corpora, it is
not be able to normalize it, even if it has seen the
word 4get normalized to forget. On the other hand,
the character-based model learns subword normal-
izations, for instance, if we see the word nnnnno
normalized to no, we can learn that repetitions of
the letter n are generally shorted to n, which al-
lows it to generate new word forms. This model
has strong generalization potential, but the weak-
ness of the character-based model is that it fails to

®Note that this captures the context in which such transfor-
mations are likely to occur: there are not many words that con-
tain the sequence ingfor, so the probability that these should be
normalized by inserting a space is high. On the other hand, we
cannot assume that if we observe the sequence gf, we can safely
separate these with a space. This is because, there are many
words that contain this sequence, such as the abbreviation of
gf (girlfriend), dogfight, and bigfoot.
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consider the context of the normalization that the
phrase-based model uses to make normalization de-
cisions. Thus, our goal in this section is describe a
decoder that uses both models to improve the quality
of the normalizations.

5.1 Phrasal Decoder

We use Moses, an off-the-shelf phrase-based MT
system (Koehn et al., 2007), to “translate” the orig-
inal tweet its normalized form using the phrasal
model (§4.1). Aside form the normalization prob-
ability, we also use the common features used in
MT. These are the reverse normalization probabil-
ity, the lexical and reverse lexical probabilities and
the phrase penalty. We also use the MSD reorder-
ing model proposed in (Koehn et al., 2005), which
adds reordering features.” The final score of each
phrase pair is given as a sum of weighted log fea-
tures. The weights for these features are optimized
using MERT (Och, 2003). In our work, we sampled
150 tweets randomly from Twitter and normalized
them manually, and used these samples as devel-
opment data for MERT. As for the character-based
model features, we simply rank the training phrase
pairs by their relative frequency the f(n | 0), and use
the top-1000 phrase pairs as development set. Fi-
nally, a language model is required during decoding
as a prior, since it defines the type of language that
is produced by the output. We wish to normalized
to formal language, which is generally better pro-
cessed by NLP tools. Thus, for the phrase model,
we use the English NIST dataset composed of 8M
sentences in English from the news domain to build
a 5-gram Kneser-Ney smoothed language model.

5.2 Character and Phrasal Decoder

We now turn to how to apply the character-based
(84.2), together with the phrasal model. For this
model, we again use Moses, treating each charac-
ter as a “word”. The simplest way to combine both
methods is first to decode the input o sentence with
the character-based decoder, normalizing each word
independently and then normalizing the resulting
output using the phrase-based decoder, which en-
ables the phrase model to score the outputs of the
character model in context.

"Reordering helps find lexical variants that are generated by
transposing characters, such as, mabye to maybe.



@ I N /\ want meeeee Danlel Veuleman
. meet
Wanna melVeulem

Figure 2: Example output lattice of the character-based decoder, for the sentence I wanna meeeeet DanielVeuleman.

Our process is as follows. Given the input sen-
tence o, with the words o1,...,0,,, where m is
the number of words in the input, we generate for
each word o; a list of n-best normalization candi-
dates zgi, -y Zg;- We further filter the candidates
using two criteria. We start by filtering each can-
didate 27, that occurs less frequently than the orig-
inal word o;. This is motivated by our observation
that lexical variants occur far less than the respec-
tive standard form. Second, we build a corpus of
English language Twitter consisting of 70M tweets,
extract the unigram counts, and perform Brown clus-
tering (Brown et al., 1992) with £ = 3000 clusters.
Next, we calculate the cluster similarity between o;
and each surviving candidate, 27,. We filter the can-
didate if the similarity is less than 0.8. The similar-
ity between two clusters represented as bit strings,
S[c(04), c(22,)], calculated as:

2 - |lpmiz, y)} |

S@Y) =y

Y
where [pm computes the longest common prefix of
the contexts and |z| is the length of the bit string.®
If a candidate contains more than one word (because
a space was inserted), we set its count as the mini-
mum count among its words. To find the cluster for
multiple word units, we concatenate the words to-
gether, and find the cluster with the resulting word if
it exists. This is motivated by the fact that it is com-
mon for missing spaces to exist in microblog cor-
pora, generating new word forms, such as wantto,
goingfor, and given a large enough corpora as the
one we used, these errors occur frequently enough to
be placed in the correct cluster. In fact, the variants
such as wanna and tmi, occur in the same clusters as
the words wantto and toomuchinformation.
Remaining candidates are combined into a word
lattice, enabling us to perform lattice-based decod-

8Brown clusters are organized such that more words with
more similar distributions share common prefixes.
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ing with the phrasal model (Dyer et al., 2008). Fig-
ure 2, provides an example of such a lattice for the
variant sentence I wanna meeeet DanielVeuleman.

5.3 Learning Variants from Monolingual Data

Until now, we learned normalizations from pairs of
original tweets and their normalizations. We shall
now describe a process to leverage monolingual doc-
uments to learn new normalizations, since the mono-
lingual data is far easier to obtain than parallel data.
This process is similar to the work in (Han et al.,
2012), where confusion sets of contextually simi-
lar words are built initially as potential normaliza-
tion candidates. We again use the £ = 3000 Brown
clusters,” and this time consider the contents of each
cluster as a set of possible normalization variants.
For instance, we find that the cluster that includes the
word never, also includes the variant forms neverrrr,
neva and nevahhh. However, the cluster also con-
tains non-variant forms, such as gladly and glady.
Thus, we want to find that neverrrr maps to never,
while glady maps to gladly in the same cluster. Our
work differs from previous work in that, rather than
defining features manually, we use our character-
based decoder to find the mappings between lexical
variants and their normalizations.

For every word type w; in cluster c(w;)
{w1,...,wy,}, we generate a set of possible candi-
dates for each word wil, ...,wi". Then, we build
a directed acyclic graph (DAG), where every word.
We add an edge between w; and wyj, if w; can be
decoded into w; using the character model from the
previous section, and also if w; occurs less than wj;
the second condition guarantees that the graph will
be acyclic. Sample graphs are shown in Figure 3.

Afterwards, we find the number of paths between
all nodes in the graph (this can be computed effi-
ciently in O(|V| + |E|) time). Then, for each word

°The Brown clustering algorithm groups words together
based on contextual similarity.



@ glady
@ gladly

Figure 3: Example DAGs, built from the cluster contain-
ing the words never and gladly.

OR

wj, we find the w; to which it has the highest num-
ber of paths to and extract the normalization of w;
to w;. In case of a tie, we choose the word w; that
occurs more often in the monolingual corpora. This
is motivated by the fact that normalizations are tran-
sitive. Thus, even if neva cannot be decoded directly
to never, we can use nevar as an intermediate step to
find the correct normalization. This is performed for
all the clusters, and the resulting dictionary of lexi-
cal variants mapped to their standard forms is added
to the training data of the character-based model.

6 Experiments

We evaluate our normalization model intrinsically
by testing whether our normalizations more closely
resemble standardized data, and then extrinsically
by testing whether we can improve the translation
quality of in-house as well as online Machine Trans-
lation systems by normalizing the input.

6.1 Setup

We use the gold standard by Ling et al. (2013), com-
posed by 2581 English-Mandarin microblog sen-
tence pairs. From this set, we randomly select 1290
pairs for development and 1291 pairs for testing.
The normalizer model is trained on the corpora
extracted and filtered in section 3, in total, there
were 1.3M normalization pairs used during training.
The test sentences are normalized using four differ-
ent setups. The first setup leaves the input sentence
unchanged, which we call No Norm. The second
uses the phrase-based model to normalize the input
sentence, which we will denote Norm+phrase. The
third uses the character-based model to output lat-
tices, and then decodes with the phrase based model,
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which we will denote Norm+phrase+char. Finally,
we test the same model after adding the training data
extracted using monolingual documents, which we
will refer as Norm-+phrase+char+mono.

To test the normalizations themselves, we used
Google Translate to translate the Mandarin side of
the 1291 test sentence pairs back to English and use
the original English tweet. While, this is by itself
does not guarantee that the normalizations are cor-
rect, since the normalizations could be syntactically
and semantically incorrect, it will allow us to check
whether the normalizations are closer to those pro-
duced by systems trained on news data. This exper-
iment will be called Norm.

As an application and extrinsic evaluation for our
normalizer, we test if we can obtain gains on the
MT task on microblog data by using our normalizer
prior to translation. We build two MT systems us-
ing Moses. Firstly, we build a out-of-domain model
using the full 2012 NIST Chinese-English dataset
(approximately 8M sentence pairs), which is dataset
from the news domain, and we will denote this sys-
tem as Inhouse+News. Secondly, we build a in-
domain model using the 800K sentence pairs from
ptopia corpora (Ling et al., 2013). We also add
the NIST dataset to improve coverage. We call this
system Inhouse+News+Weibo. To train these sys-
tems, we use the Moses phrase-based MT system
with standard features (Koehn et al., 2003). For re-
ordering, we use the MSD reordering model (Axel-
rod et al., 2005). As the language model, we train
a 5-gram model with Kneser-ney smoothing using a
10M tweets from twitter. Finally, the weights were
tuned using MERT (Och, 2003). As for online sys-
tems, we consider the systems used to generate the
paraphrase corpora in section 3, which we will de-
note as Online A, Online B and Online C'°

The normalization and MT results are evaluated
with BLEU-4 (Papineni et al., 2002) comparing the
produced translations or normalizations with the ap-
propriate reference.

6.2 Results

Results are shown in Table 6. In terms of the normal-
izations, we observe a much better match between

10The names of the systems are hidden to not violate the pri-
vacy issues in the terms and conditions of these online systems.



Table 6: Normalization and MT Results. Rows denote different normalizations, and columns different translation
systems, except the first column (Norm), which denotes the normalization experiment. Cells display the BLEU score

of that experiment.

Moses Moses
Condition Norm | (News) (News+Weibo) Online A Online B  Online C
baseline 19.90 | 15.10 24.37 20.09 17.89 18.79
norm+phrase 21.96 | 15.69 24.29 20.50 18.13 18.93
norm+phrase+char 22.39 15.87 24.40 20.61 18.22 19.08
norm+phrase+char+mono | 22.91 | 15.94 24.46 20.78 18.37 19.21

the normalized text with the reference, than the orig-
inal tweets. In most cases, adding character-based
models improves the quality of the normalizations.

We observe that better normalizations tend to lead
to better translations. The relative improvements
are most significant, when moving from No Norm
to norm+phrase normalization. This is because,
we are normalizing words that are not seen in gen-
eral MT system’s training data, but occur frequently
in microblog data, such as wanna to want to, u to
you and im to i’m. The only exception is in the In-
house+News+Weibo system, where the normaliza-
tion deteriorates the results. This is to be expected,
since this system is trained on the same microblog
data used to learn the normalizations. However, we
can observe on norm+phrase+char that if we add
the character-based model, we can observe improve-
ments for this system as well as for all other ones.
This is because the model is actually learning nor-
malizations that are unseen in the data. Some ex-
amples of these normalization include, normalizing
lookin to looking, nutz to nuts and maimi to miami
but also separating peaceof to peace of. The fact
that these improvements are obtained for all sys-
tems is strong evidence that we are actually produc-
ing good normalizations, and not overfitting to one
of the systems that we used to generate our data.
The gains are much smaller from norm+phrase
to norm+phrase+char, since the improvements we
obtain come from normalizing less frequent words.
Finally, we can obtain another small improvement
by adding monolingual data to the character-based
model in norm+phrase+char+mono.

7 Related Work

Most of the work in microblog normalization is fo-
cused on finding the standard forms of lexical vari-
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ants (Yang and Eisenstein, 2013; Han et al., 2013;
Han et al., 2012; Kaufmann, 2010; Han and Bald-
win, 2011; Gouws et al., 2011; Aw et al., 2006). A
lexical variant is a variation of a standard word in
a different lexical form. This ranges from minor or
major spelling errors, such as jst, juxt and jus that
are lexical variants of just, to abbreviations, such as
tmi and wanna, which stand for too much informa-
tion and want to, respectively. Jargon can also be
treated as variants, for instance cday is a slang word
for birthday, in some groups.

There are many rules that govern the process lex-
ical variants are generated. Some variants are gener-
ated from orthographic errors, caused by some mis-
take from the user when writing. For instance, the
variants representin, representting, or reprecenting
can be generated by a spurious letter swap, insertion
or substitution by the user. One way to normalize
these types of errors is to attempt to insert, remove
and swap words in a lexical variant until a word in
a dictionary of standard words is found (Kaufmann,
2010). Contextual features are another way to find
lexical variants, since variants generally occur in the
same context as their standard form. This includes
orthographic errors, abbreviations and slang. How-
ever, this is generally not enough to detect lexical
variants, as many words share similar contexts, such
as already, recently and normally. Consequently,
contextual features are generally used to generate a
confusion set of possible normalizations of a lexical
variant, and then more features are used to find the
correct normalization (Han et al., 2012). One simple
approach is to compute the Levenshtein distance to
find lexical similarities between words, which would
effectively capture the mappings between represent-
ting, reprecenting and representin to representing.
However, a pronunciation model (Tang et al., 2012)



would be needed to find the mapping between g8,
2day and 4ever to great, today and forever, respec-
tively. Moreover, visual character similarity features
would be required to find the mapping between g00d
and L to good and i.

Clearly, learning this process is a challenging
task, and addressing each different case individually
would require vast amounts of resources. Further-
more, once we change the language to normalize
to another language, the types of rules that generate
lexical variants would radically change and a new set
of features would have to be engineered. We believe
that to be successful in normalizing microblogs,
the process to learn new lexical variants should be
learned from data, making as few assumptions as
possible. We learn our models without using any
type of predefined features, such as phonetic fea-
tures or lexical features. In fact, we will not assume
that most words and characters map to themselves,
as it is assumed in methods using the Levenshtein
distance (Kaufmann, 2010; Han et al., 2012; Wang
and Ng, 2013). All these mappings are learned from
our data. Furthermore, in the work above, the dictio-
naries built using these methods assume that lexical
variants are mapped to standard forms in a word-to-
word mapping. Thus, variants such as wanna, gonna
and imma are not normalizable, since they are nor-
malized to multiple words want to, going to and [
am gonna. Moreover, there are segmentation errors
that occur from missing spaces, such as sortof and
goingfor, which also map to more than one word to
sort of and going for. These cases shall also be ad-
dressed in our work.

Wang and Ng (2013) argue that microblog nor-
malization is not simply to map lexical variants into
standard forms, but that other tasks, such as punctua-
tion correction and missing word recovery should be
performed. Consider the example tweet you free?,
while there are no lexical variants in this message,
the authors consider that it is the normalizer should
recover the missing article are and normalize this
tweet to are you free?. To do this, the authors train a
series of models to detect and correct specific errors.
While effective for narrow domains, training models
to address each specific type of normalization is not
scalable over all types of normalizations that need to
be performed within the language, and the fact that a
set of new models must be implemented for another
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language limits the applicability of this work.

Another strong point of the work above is that
a decoder is presented, while the work on build-
ing dictionaries only normalize out of vocabu-
lary (OOV) words. The work on (Han et al., 2012)
trains a classifier to decide whether to normalize a
word or not, but is still preconditioned on the fact
that the word in question is OOV. Thus, lexical vari-
ants, such as, 4 and u, with the standard forms for
and you, are left untreated, since they occur in other
contexts, such as u in u s a. Inspired by the work
above, we also propose a decoder based on the exist-
ing off-the-self decoder Moses (Koehn et al., 2007).

Finally, the work in (Xu et al., 2013) obtains para-
phrases from Twitter, by finding tweets that contain
common entities, such as Obama, that occur during
the same period by matching temporal expressions.
The resulting paraphrase corpora can also be used to
train a normalizer.

8 Conclusion

We introduced a data-driven approach to microblog
normalization based on paraphrasing. We build a
corpora of tweets and their normalizations using par-
allel corpora from microblogs using MT techniques.
Then, we build two models that learn generalizations
of the normalization process, one the phrase level
and on the character level. Then, we build a de-
coder that combines both models during decoding.
Improvements on multiple MT systems support the
validity of our method.

In future work, we shall attempt to build normal-
izations for other languages. We shall also attempt
to learn an unsupervised normalization model with
only monolingual data, similar to the work for MT
in (Ravi and Knight, 2011).
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Abstract

In this paper, we address the problem of
estimating question difficulty in community
question answering services. We propose a
competition-based model for estimating ques-
tion difficulty by leveraging pairwise compar-
isons between questions and users. Our ex-
perimental results show that our model sig-
nificantly outperforms a PageRank-based ap-
proach. Most importantly, our analysis shows
that the text of question descriptions reflects
the question difficulty. This implies the pos-
sibility of predicting question difficulty from
the text of question descriptions.

1 Introduction

In recent years, community question answering (C-
QA) services such as Stackoverflow! and Yahoo!
Answers® have seen rapid growth. A great deal
of research effort has been conducted on CQA, in-
cluding: (1) question search (Xue et al., 2008; Du-
an et al., 2008; Suryanto et al., 2009; Zhou et al.,
2011; Cao et al., 2010; Zhang et al., 2012; Ji et
al., 2012); (2) answer quality estimation (Jeon et al.,
2006; Agichtein et al., 2008; Bian et al., 2009; Liu
et al., 2008); (3) user expertise estimation (Jurczyk
and Agichtein, 2007; Zhang et al., 2007; Bouguessa
et al., 2008; Pal and Konstan, 2010; Liu et al., 2011);
and (4) question routing (Zhou et al., 2009; Li and
King, 2010; Li et al., 2011).

“This work was done when Jing Liu and Quan Wang were
visiting students at Microsoft Research Asia. Quan Wang is
currently affiliated with Institute of Information Engineering,
Chinese Academy of Sciences.
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However, less attention has been paid to question
difficulty estimation in CQA. Question difficulty es-
timation can benefit many applications: (1) Experts
are usually under time constraints. We do not want
to bore experts by routing every question (including
both easy and hard ones) to them. Assigning ques-
tions to experts by matching question difficulty with
expertise level, not just question topic, will make
better use of the experts’ time and expertise (Ack-
erman and McDonald, 1996). (2) Nam et al. (2009)
found that winning the point awards offered by the
reputation system is a driving factor in user partici-
pation in CQA. Question difficulty estimation would
be helpful in designing a better incentive mechanis-
m by assigning higher point awards to more diffi-
cult questions. (3) Question difficulty estimation can
help analyze user behavior in CQA, since users may
make strategic choices when encountering questions
of different difficulty levels.

To the best of our knowledge, not much research
has been conducted on the problem of estimating
question difficulty in CQA. The most relevant work
is a PageRank-based approach proposed by Yang et
al. (2008) to estimate task difficulty in crowdsourc-
ing contest services. Their key idea is to construct
a graph of tasks: creating an edge from a task ¢; to
a task o when a user u wins task ¢1 but loses task
to, implying that task ¢o is likely to be more diffi-
cult than task ¢;. Then the standard PageRank al-
gorithm is employed on the task graph to estimate
PageRank score (i.e., difficulty score) of each task.
This approach implicitly assumes that task difficulty
is the only factor affecting the outcomes of competi-
tions (i.e. the best answer). However, the outcomes
of competitions depend on both the difficulty levels
of tasks and the expertise levels of competitors (i.e.
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other answerers).

Inspired by Liu et al. (2011), we propose a
competition-based approach which jointly models
question difficulty and user expertise level. Our ap-
proach is based on two intuitive assumptions: (1)
given a question answering thread, the difficulty s-
core of the question is higher than the expertise score
of the asker, but lower than that of the best answerer;
(2) the expertise score of the best answerer is higher
than that of the asker as well as all other answer-
ers. Given the two assumptions, we can determine
the question difficulty score and user expertise score
through pairwise comparisons between (1) a ques-
tion and an asker, (2) a question and a best answerer,
(3) a best answerer and an asker, and (4) a best an-
swerer and all other non-best answerers.

The main contributions of this paper are:

e We propose a competition-based approach to es-
timate question difficulty (Sec. 2). Our model signif-
icantly outperforms the PageRank-based approach
(Yang et al., 2008) for estimating question difficulty
on the data of Stack Overflow (Sec. 3.2).

e Additionally, we calibrate question difficulty s-
cores across two CQA services to verify the effec-
tiveness of our model (Sec. 3.3).

e Most importantly, we demonstrate that different
words or tags in the question descriptions indicate
question difficulty levels. This implies the possibil-
ity of predicting question difficulty purely from the
text of question descriptions (Sec. 3.4).

2 Competition based Question Difficulty
Estimation

CQA is a virtual community where people can ask
questions and seek opinions from others. Formally,
when an asker u, posts a question ¢, there will be
several answerers to answer her question. One an-
swer among the received ones will be selected as the
best answer by the asker u, or voted by the com-
munity. The user who provides the best answer is
called the best answerer u;, and we denote the set of
all non-best answerers as S = {uo,, -, Uo,, }. As-
suming that question difficulty scores and user ex-
pertise scores are expressed on the same scale, we
make the following two assumptions:

e The difficulty score of question g is higher than
the expertise score of asker u,, but lower than that
of the best answerer u;. This is intuitive since the
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best answer wuy correctly responds to question ¢ that
asker u,, does not know.

e The expertise score of the best answerer up is
higher than that of asker u, and all answerers in S.
This is straightforward since the best answerer uy
solves question ¢ better than asker u, and all non-
best answerers in S.

Let’s view question ¢ as a pseudo user u,. Tak-
ing a competitive viewpoint, each pairwise compar-
ison can be viewed as a two-player competition with
one winner and one loser, including (1) one compe-
tition between pseudo user u, and asker u,, (2) one
competition between pseudo user u, and the best
answerer up, (3) one competition between the best
answerer uy, and asker u,, and (4) |S| competitions
between the best answerer u; and all non-best an-
swers in S. Additionally, pseudo user u, wins the
first competition and the best answerer u;, wins all
remaining (|.S| + 2) competitions.

Hence, the problem of estimating the question d-
ifficulty score (and the user expertise score) is cast
as a problem of learning the relative skills of play-
ers from the win-loss results of the generated two-
player competitions. Formally, let Q denote the set
of all questions in one category (or topic), and R, de-
note the set of all two-player competitions generated
from question ¢ € Q, ie., Ry = {(uq < ugq), (uqg <
up), (Ua < wp), (U0 =< up), -+, (Uog < wp)ts
where j < 7 means that user ¢ beats user j in the
competition. Define

R=|]JR, (1)
qeQ
as the set of all two-player competitions. Our prob-
lem is then to learn the relative skills of players from
R. The learned skills of the pseudo question users
are question difficulty scores, and the learned skills
of all other users are their expertise scores.
TrueSkill In this paper, we follow (Liu et al.,
2011) and apply TrueSkill to learn the relative skill-
s of players from the set of generated competitions
R (Equ. 1). TrueSkill (Herbrich et al., 2007) is a
Bayesian skill rating model that is developed for es-
timating the relative skill levels of players in games.
In this paper, we present a two-player version of
TrueSkill with no-draw.
TrueSkill assumes that the practical performance
of each player in a game follows a normal distribu-



tion N(p, 0?), where 1 means the skill level of the
player and o means the uncertainty of the estimated
skill level. Basically, TrueSkill learns the skill lev-
els of players by leveraging Bayes’ theorem. Giv-
en the current estimated skill levels of two players
(priori probability) and the outcome of a new game
between them (likelihood), TrueSkill model updates
its estimation of player skill levels (posterior prob-
ability). TrueSkill updates the skill level y and the
uncertainty ¢ intuitively: (a) if the outcome of a new
competition is expected, i.e. the player with higher
skill level wins the game, it will cause small updates
in skill level o and uncertainty o; (b) if the outcome
of a new competition is unexpected, i.e. the player
with lower skill level wins the game, it will cause
large updates in skill level ;4 and uncertainty o. Ac-
cording to these intuitions, the equations to update
the skill level i and uncertainty o are as follows:
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where ¢ = fiyinner — floser and ¢© = 237 +
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Tiinner +0loser- Here, € is a parameter representing

the probability of a draw in one game, and v(¢,¢)
and w(t,e) are weighting factors for skill level p
and standard deviation o respectively. Please refer
to (Herbrich et al., 2007) for more details. In this
paper, we set the initial values of the skill level u
and the standard deviation o of each player the same
as the default values used in (Herbrich et al., 2007).

3 Experiments
3.1 Data Set

In this paper, we use Stack Overflow (SO) for our
experiments. We obtained a publicly available da-
ta set’ of SO between July 31, 2008 and August 1,
2012. SO contains questions with various topics,
such as programming, mathematics, and English. In
this paper, we use SO C++ programming (SO/CPP)

*http://blog.stackoverflow.com/category/
cc—-wiki—-dump/
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and mathematics* (SO/Math) questions for our main
experiments. Additionally, we use the data of Math
Overflow® (MO) for calibrating question difficulty
scores across communities (Sec. 3.3). The statistics
of these data sets are shown in Table 1.

SO/CPP | SO/Math | MO
# of questions | 122,012 | 51,174 27,333
# of answers 357,632 | 94,488 65,966
# of users 67,819 16,961 12,064

Table 1: The statistics of the data sets.

To evaluate the effectiveness of our proposed
model for estimating question difficulty scores, we
randomly sampled 300 question pairs from both
SO/CPP and SO/Math, and we asked experts to
compare the difficulty of every pair. We had two
graduate students majoring in computer science an-
notate the SO/CPP question pairs, and two gradu-
ate students majoring in mathematics annotate the
SO/Math question pairs. When annotating each
question pair, only the titles, descriptions, and tags
of the questions were shown, and other information
(e.g. users, answers, etc.) was excluded. Given each
pair of questions (q; and ¢o), the annotators were
asked to give one of four labels: (1) ¢; > g2, which
means that the difficulty of ¢; was higher than g¢o;
(2) g1 < g2, which means that the difficulty of ¢;
was lower than ¢o2; (3) g1 = g2, which means that
the difficulty of g; was equal to ¢2; (4) Unknown,
which means that the annotator could not make a
decision. The agreements between annotators on
both SO/CPP (kappa value = 0.741) and SO/Math
(kappa value = 0.873) were substantial. When eval-
uating models, we only kept the pairs that annotators
had given the same labels. There were 260 SO/CPP
question pairs and 280 SO/Math question pairs re-
maining.

3.2 Accuracy of Question Difficulty Estimation

We employ a standard evaluation metric for infor-
mation retrieval: accuracy (Acc), defined as follows:

A the number of correct pairwise comparisons
cc =

the total number of pairwise comparisons

We use the PageRank-based approach proposed
by Yang et al. (2008) as a baseline. As described in

‘nttp://math.stackexchange.com
Shttp://mathoverflow.net
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Figure 1: The distributions of calibrated question d-
ifficulty scores of MO and SO/Math.

Sec. 1, this is the most relevant method for our prob-
lem. Table 2 gives the accuracy of the baseline and
our Competition-based approach on SO/CPP and
SO/Math. From the results, we can see that (1) the
proposed Competition-based approach significant-
ly outperformed the PageRank-based approach on
both data sets; (2) PageRank-based approach only
achieved a similar performance as randomly guess-
ing. This is because the PageRank-based approach
only models the outcomes of competitions affected
by question difficulty. However, the outcomes of
competitions depend on both the question difficulty
levels and the expertise levels of competitors. Our
Competition-based approach considers both these
factors for modeling the competitions. The exper-
imental results demonstrate the advantage of our ap-
proach.

Acc@SO/CPP | Acc@SO/Math
PageRank 50.38% 48.93%
Competition 66.54% 71.79%

Table 2: Accuracy on SO/CPP and SO/Math.

3.3 Calibrating Question Difficulty across
CQA Services

Both MO and SO/Math are CQA services for asking
mathematics questions. However, these two services
are designed for different audiences, and they have
different types of questions. MQO’s primary goal
is asking and answering research level mathemat-
ics questions®. In contrast, SO/Math is for people
studying mathematics at any level in related field-
s’. Usually, the community members in MO are

not interested in basic mathematics questions. If

®http://mathoverflow.net/faq
"http://area51l.stackexchange.com/
proposals/3355/mathematics
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a posted question is too elementary, someone will
suggest moving it to SO/Math. Similarly, if a post-
ed question is advanced, the community members in
SO/Math will recommend moving it to MO. Hence,
it is expected that the ratio of difficult questions in
MO is higher than SO/Math. In this section, we ex-
amine whether our competition-based model can i-
dentify such differences.

We first calibrate the estimated question difficul-
ty scores across these two services on a same scale.
The key idea is to link the users who participate in
both services. In both MO and SO/Math, users can
specify their home pages. We assume that if a us-
er u1 on MO and a user uo on SO/Math have the
same home page URL, they should be linked as one
natural person in the real world. We successfully
linked 633 users. They provided 18, 196 answers in
SO/Math among which 10,993 (60.41%) were se-
lected as the best answers. In contrast, they provided
8, 044 answers in MO among which 3, 215 (39.97%)
were selected as the best answers. This shows that
these users reflect more competitive contests in MO.
After the common users are linked, we have a joint
data set of MO and SO/Math. Then, we can calibrate
the estimated question difficulty scores across the
two services by performing the competition-based
model on the joint data set. Figure 1 shows the dis-
tributions of the calibrated question difficulty scores
of MO and SO/Math on the same scale. As expect-
ed, we observed that the ratio of difficult question-
s in MO was higher than SO/Math. Additionally,
these two distributions were significantly differen-
t (Kolmogorov-Smirnov Test, p-value < 0.05). This
demonstrates that our competition-based model suc-
cessfully identified the difference between questions
on two CQA services.

3.4 Analysis on the Question Descriptions

In this section, we analyze the text of question de-
scriptions on the scale of question difficulty scores
estimated by the competition model.

Micro Level We first examine the frequency dis-
tributions of individual words over the question d-
ifficulty scores. Figure 3 shows the examples of
four words in SO/CPP. We observe that the words
"list’ and ’array’ have the lowest mean of difficul-
ty scores, compared to the words 'virfual’ and "gcc’.
This is reasonable, since ’list’ and 'array’ are related
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the scale of question difficulty scores (SO/CPP).

to basic concepts in programming language, while
'virtual’ and ’gcc’ are related to more advanced top-
ics. It can be observed that the order of the means of
the difficulty scores of these words are well aligned
to our learning process.

Macro Level We evenly split the range of ques-
tion difficulty scores into n buckets, and we grouped
the questions into the n buckets according to which
bucket their difficulty scores were in. Then, we had
n question buckets and each bucket corresponded to
a word distribution of questions. Let variable X de-
note the distance between the difficulty scores in two
question buckets (which is the difference between
the average difficulty scores of questions in the two
buckets), and variable Y denote the Jensen-Shannon
distance between word distributions in two question
buckets. We examined the correlation between vari-
able X and variable Y. The experimental results
showed that the correlation between these two vari-
ables were strongly positive. Specifically, the cor-
relation coefficient on SO/CPP was 0.8129 and on
SO/Math was 0.7412. In other words, when the dis-
tance between the difficulty scores of two buckets
become larger, the two word distributions in the two
buckets become less similar, and vice versa.

&9

We further visualized the word distribution in
each question bucket. We set n as 3, and we had
three question buckets: (1) easy questions; (2) nor-
mal questions; and (3) hard questions. Figure 3.4
plots the tag clouds of SO/Math questions in the
three buckets. The size of tags is proportional to
the frequency of tags in each bucket. We observed
that (1) the tag "homework’ and ’calculus’ become s-
maller from easy questions to hard questions; (2) the
tag ’'set-theory’ becomes larger. These observations
also reflect our learning process.

The above experimental results show that differ-
ent words or tags of question descriptions reflect the
question difficulty levels. This implies the possibil-
ity of predicting question difficulty purely from the
text of question descriptions.

4 Conclusion and Future Work

In this paper, we address the problem of estimating
question difficulty in CQA services. Our proposed
competition-based model for estimating question
difficulty significantly outperforms the PageRank-
based approach. Most importantly, our analysis
shows that the text of question descriptions reflect-
s the question difficulty. In the future, we would
like to explore predicting question difficulty from
the text of question descriptions. We also will inves-
tigate non-technical areas, where there might be no
strongly distinct notion of experts and non-experts.
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Measuring Ideological Proportions in Political Speeches
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Abstract

We seek to measure political candidates’ ideo-
logical positioning from their speeches. To ac-
complish this, we infer ideological cues from
a corpus of political writings annotated with
known ideologies. We then represent the
speeches of U.S. Presidential candidates as se-
quences of cues and lags (filler distinguished
only by its length in words). We apply a
domain-informed Bayesian HMM to infer the
proportions of ideologies each candidate uses
in each campaign. The results are validated
against a set of preregistered, domain expert-
authored hypotheses.

1 Introduction

The artful use of language is central to politics, and
the language of politicians has attracted consider-
able interest among scholars of political commu-
nication and rhetoric (Charteris-Black, 2005; Hart,
2009; Deirmeier et al., 2012; Hart et al., 2013)
and computational linguistics (Thomas et al., 2006;
Fader et al., 2007; Gerrish and Blei, 2011, in-
ter alia). In American politics, candidates for of-
fice give speeches and write books and manifestos
expounding their ideas. Every political season,
however, there are accusations of candidates “flip-
flopping” on issues, with opinion shows, late-night
comedies, and talk radio hosts replaying clips of
candidates contradicting earlier statements. Pres-
idential candidate Mitt Romney’s own aide infa-
mously proclaimed in 2012: “I think you hit a reset
button for the fall campaign [i.e., the general elec-
tion]. Everything changes. It’s almost like an Etch-
a-Sketch. You can kind of shake it up and we start
all over again.”

A more general observation, often stated but not
yet, to our knowledge, tested empirically, is that
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successful primary candidates “move to the cen-
ter” before a general election. The expectation fol-
lows directly from long-standing and widely influen-
tial theories of political competition that are collec-
tively referred to in their simplest form as the “me-
dian voter theorem” (Hotelling, 1929; Black, 1948;
Downs, 1957). Thus it is to be expected that when
a set of voters that are more ideologically concen-
trated are replaced by a set who are more widely
dispersed across the ideological spectrum, as occurs
in the transition between the United States primary
and general elections, that candidates will present
themselves as more moderate in an effort to capture
enough votes to win.

Do political candidates in fact stray ideologically
at opportune moments? More specifically, can we
measure candidates’ ideological positions from their
prose at different times? Following much work
on classifying the political ideology expressed by a
piece of text (Laver et al., 2003; Monroe and Maeda,
2004; Hillard et al., 2008), we start from the as-
sumption that a candidate’s choice of words and
phrases reflects a deliberate attempt to signal com-
mon cause with a target audience, and as a broader
strategy, to respond to political competitors. Our
central hypothesis is that, despite candidates’ in-
tentional vagueness, differences in position—among
candidates or over time—can be automatically de-
tected and described as proportions of ideologies ex-
pressed in a speech.

In this work, we operationalize ideologies in a
novel empirical way, exploiting political writings
published in explicitly ideological books and mag-
azines (§2).1 The corpus then serves as evidence for

"We consider general positions in terms of broad ideolog-
ical groups that are widely discussed in current political dis-
course (e.g., “Far Right,” “Religious Right,” “Libertarian,”’
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Figure 1: Ideology tree showing the labels for the ide-
ological corpus in §2.1 (excluding BAckGrouND) and
corresponding to states in the HMM (§3.3).

a probabilistic model that allows us to automatically
infer compact, human-interpretable lexicons of cues
strongly associated with each ideology.

These lexicons are used, in turn, to create a low-
dimensional representation of political speeches: a
speech is a sequence of cues interspersed with lags.
Lags correspond to the lengths of sequences of non-
cue words, which are treated as irrelevant to the in-
ference problem at hand. In other words, a speech is
represented as a series alternating between cues sig-
naling ideological positions and uninteresting filler.

Our main contribution is a probabilistic technique
for inferring proportions of ideologies expressed by
a candidate (§3). The inputs to the model are the
cue-lag representation of a speech and a domain-
specific topology relating ideologies to each other.
The topology tree (shown in Figure 1) encoding
the closeness of different ideologies and, by exten-
sion, the odds of transitioning between them within a
speech. Bayesian inference is used to manage uncer-
tainty about the associations between cues and ide-
ologies, probabilities of traversing each of the tree’s
edges, and other parameters.

We demonstrate the usefulness of the measure-
ment model by showing that it accurately recov-
ers pre-registered beliefs regarding narratives widely
accepted—but not yet tested empirically—about the
2008 and 2012 U.S. Presidential elections (§4).

2 First Stage: Cue Extraction

We first present a data-driven technique for automat-
ically constructing “cue lexicons” from texts labeled
with ideologies by domain experts.

etc.). Analysis of positions on specific issues is left for future
work.
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Total tokens 32,835,190
Total types 138,235
Avg. tokens per book 77,628
Avg. tokens per mag. issue 31,713
Breakdown by ideology: Documents Tokens
LEFT 0 0
FAR LEFT 112 3,334,601
CENTER-LEFT 196 7,396,264
PROGRESSIVE LEFT 138 7,257,723
RELIGIOUS LEFT 7 487,844
CENTER 5 429,480
RIGHT 97 3,282,744
FAR RIGHT 211 7,392,163
LIBERTARIAN RIGHT 88 1,703,343
CENTER-RIGHT 9 702,444
POPULIST RIGHT 5 407,054
RELIGIOUS RIGHT 6 441,530

Table 1: Ideology corpus statistics. Note that some docu-
ments are not labeled with finer-grained ideologies.

2.1 Ideological Corpus

We start with a collection of contemporary political
writings whose authors are perceived as represen-
tative of one particular ideology. Our corpus con-
sists of two types of documents: books and maga-
zines. Books are usually written by a single author,
while each magazine consists of regularly published
issues with collections of articles written by several
authors. A political science domain expert who is
a co-author of this work manually labeled each ele-
ment in a collection of 112 books and 10 magazine
titles? with one of three coarse ideologies: LEFT,
RIGHT, or CENTER. Documents that were labeled
LerT and RicuT were further broken down into
more fine-grained ideologies, shown in Fig. 1.3 Ta-
ble 1 summarizes key details about the ideological
corpus.

In addition to ideology labels, individual chapters
within the books were manually tagged with topics
that the chapter was about. For instance, in Barack
Obama’s book The Audacity of Hope, his chapter

>There are 765 magazine issues, which are published bi-
weekly to quarterly, depending on the magazine. All of a mag-
azine’s issues are labeled with the same ideology.

3We cannot claim that these texts are “pure” examples of
the ideologies they are labeled with (i.e., they may contain parts
that do not match the label). By finding relatively few terms
strongly associated with texts sharing a label, our model should
be somewhat robust to impurities, focusing on those terms that
are indicative of whatever drew the expert to identify them as
(mostly) sharing an ideology.



titled “Faith” is labeled as ReEr1c10Us. Not all
chapters have clearly defined topics, and as such,
these chapters are simply labeled M1sc. Maga-
zines are not labeled with topics because each issue
of a magazine generally touches on multiple top-
ics. There are a total of 61 topics; the full list can
be found in the supplementary materials, along with
a table summarizing key details about the corpus,
which contains 32.8 million tokens.

2.2 Cue Discovery Model

We use the ideological corpus to infer ideological
cues: terms that are strongly associated with an ide-
ology. Because our ideologies are organized hierar-
chically, we required a technique that can account
for multiple effects within a single text. We further
require that the sets of cue terms be small, so that
they can be inspected by domain experts. We there-
fore turn to the sparse additive generative (SAGE)
models introduced by Eisenstein et al. (2011).

Like other probabilistic language models, SAGE
assigns probability to a text as if it were a bag of
terms. It differs from most language models in pa-
rameterizing the distribution using a generalized lin-
ear model, so that different effects on the log-odds
of terms are additive. In our case, we define the
probability of a term w conditioned on attributes of
the text in which it occurs. These attributes include
both the ideology and its coarsened version (e.g., a
FAR RIGHT book also has the attribute RIGHT).
For simplicity, let A(d) denote the set of attributes
of document d and A = J,;A(d). The parametric
form of the distribution is given, for term w in doc-
ument d, by:

exp (773 + 2 aca(d) 77{2)
Z(A(d),m)

p(w | A(d);n) =

Each of the n weights can be a positive or negative
value influencing the probability of the word, condi-
tioned on various properties of the document. When
we stack an attribute a’s weights into a vector across
all words, we get an n® vector, understood as an ef-
fect on the term distribution. (We use 7 to refer to
the collection of all of these vectors.) The effects in
our model, described in terms of attributes, are:
e 1", the background (log) frequencies of words,
fixed to the empirical frequencies in the corpus.
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Hence the other effects can be understood as de-
viations from this background distribution.

e 7', the coarse ideology effect, which takes differ-
ent values for LEFT, RIcHT, and CENTER.

e 1)/, the fine ideology effect, which takes different
values for the fine-grained ideologies correspond-
ing to the leaves in Fig. 1.

e 7', the topic effect, taking different values for
each of the 61 manually assigned topics. We fur-
ther include one effect for each magazine series
(of which there are 10) to account for each maga-
zine’s idiosyncrasies (topical or otherwise).

e 1, a document-specific effect, which captures id-
iosyncratic usage within a single document.

Note that the effects above are not mutually exclu-

sive, although some effects never appear together

due to constraints imposed by their semantics (e.g.,

no book is labeled both LEFT and RIGHT).

When estimating the parameters of the model (the

7) vectors), we impose a sparsity-inducing ¢; prior

that forces many weights to zero. The objective is:

mgxz > logp(w [ A(d);m) = > Aalln®|s

d wéed acA

This objective function is convex but requires spe-
cial treatment due to non-differentiability when any
elements are zero; we use the OWL-QN algorithm
to solve it (Andrew and Gao, 2007). To reduce the
complexity of the hyperparameter space (the possi-
ble values of all \,) and to encourage similar levels
of sparsity across the different effect vectors, we let,
for each ideology attribute a,

Ao = A+ [V(0)] /maxyeq [V(a)

where V(a) is the set of term types appearing in
the data with attribute a (i.e., its vocabulary) , and
A is a hyperparameter we can adjust to control the
amount of sparsity in the SAGE vectors. For the
non-ideology effects, we fix A, = 10 (not tuned).

2.3 Bigram and Trigram Lexicons

After estimating parameters, we are left with sparse
1n® for each attribute. We are only interested, how-
ever, in the ideological attributes J C A. For an
ideological attribute ¢ € J, we take the terms with
positive elements of this vector to be the cues for
ideology i; call this set £ (i) and let L = (J;cq L£(i).



Because political texts use a fair amount of multi-
word jargon, we initially represented each document
as a bag of unigrams, bigrams, and trigrams, ignor-
ing the fact that these “overlap” with each other.*
While this would be inappropriate in language mod-
eling and is inconsistent with our model’s indepen-
dence assumptions among words, it is sensible since
our goal is to identify cues that are statistically asso-
ciated with attributes like ideologies.

Preliminary trials revealed that unigrams tend to
dominate in such a model, since their frequency
counts are so much higher. Further, domain ex-
perts found them harder to interpret out of context
compared to bigrams and trigrams. We therefore in-
cluded only bigrams and trigrams as terms in our cue
discovery model.

2.4 Validation

The term selection method we have described can
be understood as a form of feature selection that
reasons globally about the data and tries to con-
trol for some effects that are not of interest (topic
or document idiosyncrasies). We compared the
approach to two classic, simple methods for fea-
ture selection: ranking based on pointwise mu-
tual information (PMI) and weighted average PMI
(WAPMI) (Schneider, 2005; Cover and Thomas,
2012). Selected features were used to classify the
ideologies of held-out documents from our cor-
pus.> We evaluated these feature selection methods
within naive Bayes classification in a 5-fold cross-
validation setup. We vary A for the SAGE model
and compare the results to equal-sized sets of terms
selected by PMI and WAPMI. We consider SAGE
with and without topic effects.

Figure 2 visualizes accuracy against the num-
ber of features for each method. Bigrams and
trigrams consistently outperform unigrams (McNe-
mar’s, p < 0.05). Otherwise, there are no sig-
nificant differences in performance except WAPMI

*Generative models that produce the same evidence more
than once are sometimes called “deficient,” but model defi-
ciency does not necessarily imply that the model is ineffective.
Some of the IBM models for statistical machine translation pro-
vide a classic example (Brown et al., 1993).

5The text was tokenized and stopwords removed. Punctu-
ation, numbers, and web addresses were normalized. Tokens
appearing less than 20 times in training data, or in fewer than 5
documents were removed.
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Figure 2: Plot of average classification accuracy for
5-fold cross validation against the number of features.
Dashed lines refer to using only unigram features, while
solid lines refer to using bigram and trigram features.

with bigrams/trigrams at its highest point. SAGE
with topics is slightly (but not significantly) bet-
ter than without. We conclude that SAGE is a
competitive choice for cue discovery, noting that a
principled way of controlling for topical and doc-
ument effects—offered by SAGE but not the other
methods—may be even more relevant to our task
than classification accuracy.

2.5 Cue Lexicon

We ran SAGE on the the full ideological book cor-
pus, including topic effects, and setting A = 30, ob-
tained a set of |L| = 8,483 cue terms. The supple-
mentary materials include top cue terms associated
with various ideologies and a heatmap of similarities
among SAGE vectors.

We conducted a small, relatively informal study
in which seven subjects (including four scholars of
American politics) were asked to match brief de-
scriptions of the classes, including prominent proto-
typical individuals exemplifying each, to cue terms.
About 70% of ideologies were correctly matched
by experts, with relatively few confusions between
LerT and R1GHT. More details are given in sup-
plementary materials.

3 Second Stage: Cue-Lag Ideological
Proportions

The main contribution of this paper is a technique
for measuring ideology proportions in the prose of
political candidates. We adopt a Bayesian approach
that manages our uncertainty about the cue lexi-



con L, the tendencies of political speakers to “flip-
flop” among ideological types, and the relative “dis-
tances” among different ideologies. The representa-
tion of a candidate’s ideology as a mixture among
discrete, hierarchically related categories can be dis-
tinguished from continuous representations (“scal-
ing” or “spatial” models) often used in political sci-
ence, especially to infer positions from Congres-
sional roll-call voting patterns (Poole and Rosen-
thal, 1985; Poole and Rosenthal, 2000; Clinton
et al., 2004). Moreover, the ability to draw in-
ferences about individual policy-makers’ ideologies
from their votes on proposed legislation is severely
limited by institutional constraints on the types of
legislation that is actually subject to recorded votes.

3.1 Political Speeches Corpus

We gathered transcribed speeches given by candi-
dates of the two main parties (Democrats and Re-
publicans) during the 2008 and 2012 Presidential
election seasons. Each election season is comprised
of two stages: (i) the primary elections, where can-
didates seek the support of their respective parties to
be nominated as the party’s Presidential candidate,
and (ii) the general elections where the parties’ cho-
sen candidates travel across the states to garner sup-
port from all citizens. Each candidate’s speeches are
partitioned into epochs for each election; e.g., those
that occur before the candidate has secured enough
pledged delegates to win the party nomination are
“from the primary.” Table 2 presents a breakdown
of the candidates and speeches in our corpus.

3.2 Cue-Lag Representation

Our measurement model only considers ideological
cues; other terms are treated as filler. We therefore
transform each speech into a cue-lag representation.

The representation is a sequence of alternating
cues (elements from the ideological lexicon £) and
integer “lags” (counts of non-cue terms falling be-
tween two cues). This will allow us to capture the in-
tuition that a candidate may use longer lags between
evocations of different ideologies, while nearby cues
are likely to be from similar ideologies.

To map a speech into the cue-lag representation,
we simply match all elements of L in the speech and
replace sequences of other words by their lengths.
When a trigram cue strictly includes a bigram cue,
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Party Pri’08 | Gen’08 | Pri’12 | Gen’12
Democrats* 167 - - -
Republicans’ 50 - 49 -
Obama (D) 78 81 - 99
McCain (R) 9 159 - -
Romney (R) 8 1(13) 19 19

*Democrats in our corpus are: Joe Biden, Hillary Clinton, John
Edwards, and Bill Richardson in 2008 and Barack Obama in
both 2008 and 2012.

TRepublicans in our corpus are: Rudy Giuliani, Mike Huck-
abee, John McCain, and Fred Thompson in 2008, Michelle
Bachmann, Herman Cain, Newt Gingrich, Jon Huntsman, Rick
Perry, and Rick Santorum in 2012, and Ron Paul and Mitt Rom-
ney in both 2008 and 2012.

#For Romney, we have 13 speeches which he gave in the period
2008-2011 (between his withdrawal from the 2008 elections
and before the commencement of the 2012 elections). While
these speeches are not technically part of the regular Presiden-
tial election campaign, they can be seen as his preparation to-
wards the 2012 elections, which is particularly interesting as
Romney has been accused of having inconsistent viewpoints.

Table 2: Breakdown of number of speeches in our polit-
ical speech corpus by epoch. On average, 2,998 tokens,
and 95 cue terms are found in each speech document.

we take only the trigram. When two cues partially
overlap, we treat them as consecutive cue terms and
set the lag to 0. Figure 3 shows an example of our
cue-lag representation.

3.3 CLIP: An Ideology HMM

The model we use to infer ideologies, cue-lag ide-
ological proportions (CLIP), is a hidden Markov
model. Each state corresponds to an ideology
(Fig. 1) or BackcroUND. The emission from a state
consists of (i) a cue from L and (ii) a lag value. The
high-level generative story for a single speech with
T cue-lag pairs is as follows:
1. Parameters are drawn from conjugate priors
(details in §3.3.3).
2. Let the initial state be the BACKGROUND
state.
3. Fort € {1,2,...,T}:®
(a) Transition to state S; based on the
transition distribution, discussed in §3.3.1.
This transition is conditioned on the previ-
ous state S;_1 and the lag at timestep t —1,
denoted by L;_;.

SThe length of the sequence is assumed to be exogenous, so
that no stop state needs to be defined.



Original sentence

Just compare this President’s record with Ronald Reagan’s first term. President Reagan also faced
an economic crisis. In fact, in 1982, the unemployment rate peaked at nearly 11 percent. But in the
two years that followed, he delivered a true recovery economic growth and job creation were three
times higher than in the Obama Economy.

Cue-lag representation
. . 9
job_creation — . ..

6 2 - 3 . 5 17 T
. — ronald_reagan — presid_reagan — econom.crisi — unemploy_rate — econom._growth —

Figure 3: Example of the cue-lag representation.

(b) Emit cue term W; from the lexicon L
and lag L; based on the emission distribu-
tion, discussed in §3.3.2.
We turn next to the transitions and emissions.

3.3.1 Ideology Topology and Transition
Parameterization

CLIP assumes that each cue term uttered by a
politician is generated from a hidden state corre-
sponding to an ideology. The ideologies are orga-
nized into a tree based on their hierarchical relation-
ships; see Fig. 1. In this study, the tree is fixed ac-
cording to our domain knowledge of current Ameri-
can politics; in future work it might be enriched with
greater detail or its structure learned automatically.

The ideology tree is used in defining the transition
distribution in the HMM, but not to directly define
the topology of the HMM. Importantly, each state
may transition to any other state, but the transition
distribution is defined using the graph, so that ide-
ologies that are closer to each other will tend to be
more likely to transition to each other. To transition
between two states s; and s;, a walk must be taken
in the tree from vertex s; to vertex s;. We emphasize
that the walk corresponds to a single transition—
the speaker does not emit anything from the states
passed through along the path.

A simplified version of our transition distribution,
for exposition, is given as follows:

ptree(sj ’ Si; Ca 0)

= (H(u,v)EPath(si,Sj)(l - 4u)9u»”> Cs,

Path(s;, s;) refers to the sequence of edges in the
tree along the unique path from s; to s;. Each of
these edges (u,v) must be traversed, and the prob-
ability of doing so, conditioned on having already
reached u, is (1—(,)—i.e., not stopping in u—times
6.,,—1.€., selecting vertex v from among those that
share an edge with u. Eventually, s; is reached, and
the walk ends, incurring probability (s .
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In order to capture the intuition that a longer lag
after a cue term should increase the entropy over the
next ideology state, we introduce a restart probabil-
ity, which is conditioned on the length of the most
recent lag, ¢. The probability of restarting the walk
from the BAckGROUND state is a noisy-OR model
with parameter p. This gives the transition distribu-
tion:

p(sj | Si,E;C,O,P) = (1 - p)£+1pt7“ee(sj ‘ Si;670)
+(1-(1- P)e+1)ptree(3j | sBackerounn; €, 8)

Note that, if p = 1, there is no Markovian depen-
dency between states (i.e., there is always a restart),
so CLIP reverts to a mixture model.

This approach allows us to parameterize the full
set of |J]? transitions with O(|J|) parameters.” Since
the graph is a tree and the walks are not allowed
to backtrack, the only ambiguity in the transition
is due to the restart probability; this distinguishes
CLIP from other algorithms based on random walks
(Brin and Page, 1998; Mihalcea, 2005; Toutanova et
al., 2004; Collins-Thompson and Callan, 2005).

3.3.2 Emission Parameterization

Recall that, at time step ¢, CLIP emits a cue from
the lexicon £ and an integer-valued lag. For each
state s, we let the probability of emitting cue w
be denoted by v, ,; ¥, is a multinomial distribu-
tion over the entire lexicon £. This allows our ap-
proach to handle ambiguous cues that can associate
with more than one ideology, and also to associate a
cue with a different ideology than our cue discovery
method proposed, if the signal from the data is suffi-
ciently strong. We assume each lag to be generated
by a Poisson distribution with global parameter v.

"More precisely, there are |J| edges (since there are |J| + 1
vertices including BAcKGrROUND), each with a @-parameter in
each direction. For a vertex with degree d, however, there are
only d—1 degrees of freedom, so that there are 2|J|— (|J|+1) =
|J] — 1 degrees of freedom for 8. There are |J| {-parameters and
a single p, for a total of 2|J| degrees of freedom.



3.3.3 Inference and Learning

Above we described CLIP’s transitions and emis-
sions.  Because our interest is in measuring
proportions—and, as we will see, in comparing
those proportions across speakers and campaign
periods—we require a way to allow variation in pa-
rameters across different conditions. Specifically,
we seek to measure differences in time spent in each
ideology state. This can be captured by allowing
each speaker to have a different @ and ¢ in each stage
of the campaign. On the other hand, we expect that a
speaker draws from his ideological lexicon similarly
across different epochs—there is a single 1) shared
between different epochs.

In order to manage uncertainty about the param-
eters of CLIP, to incorporate prior beliefs based on
our ideology-specific cue lexicons {L(7)};, and to
allow sharing of statistical strength across condi-
tions, we adopt a Bayesian approach to inference.
This will allow principled exploration of the poste-
rior distribution over the proportions of interest.

We place a symmetric Dirichlet prior on the tree
walk probabilities @; its parameter is «. For the
cue emission distribution associated with ideology
i, ¥, we use an informed Dirichlet prior with two
different values, (3., for cues in £(i), and a smaller
Baer for those in £\ L(i).8

Learning proceeds by collapsed Gibbs sampling
for the hidden states and slice sampling (with vague
priors) for the hyperparameters (o, 3, p, and ¢). De-
tails of the sampler are given in the supplementary
materials. At each Gibbs step, we resample the ide-
ology state and restart indicator variable for every
cue term in every speech.

We ran our Gibbs sampler for 75,000 iterations,
discarding the first 25,000 iterations for burn-in, and
collected samples at every 10 iterations. Further, we
perform the slice sampling step at every 5,000 itera-
tions. For each candidate, we collected 5,000 poste-
rior samples which we use to infer his/her ideologi-
cal proportions.

In order to determine the amount of time a candi-
date spends in each ideology, we denote the unit of
time in terms of half the lag before and after each cue

8This implies that a term can, in the posterior distribution,
be associated with an ideology ¢ of whose L(7) it was not a
member. In fact, this occurred frequently in our runs of the
model.
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term, i.e., when a candidate draws a cue term from
ideology ¢ during timestep ¢, we say that he spends
%(Lt—l + L;) amount of time in ideology i. Aver-
aging over all the samples returned by our sampler
and normalizing it by the length of the documents in
each epoch, we obtain a candidate’s expected ideo-
logical proportions within the epoch.

4 Pre-registered Hypotheses

The traditional way to evaluate a text analysis model
in NLP is, of course, to evaluate its output against
gold-standard judgements by humans. In the case
of recent political speeches, however, we are doubt-
ful that such judgments can be made objectively at
a fine-grained level. While we are confident about
gross categorization of books and magazines in our
ideological corpus (§2.1), many of which are overtly
marked by their ideological assocations, we believe
that human estimates of ideological proportions, or
even association of particular tokens with ideologies
they may evoke, may be overly clouded by the vari-
ation in annotator ideology and domain expertise.

We therefore adopt a different method for evalua-
tion. Before running our model, we identified a set
of hypotheses, which we pre-registered as expec-
tations. These are categorized into groups based on
their strength and relevance to judging the validity of
the model. Strong hypotheses are those that consti-
tute the lowest bar for face validity; if violated, they
suggest a flaw in the model. Moderate hypotheses
are those that match the intuition of domain experts
conducting the research, or extant theory. Violations
suggest more examination is required, and may raise
the possibility that further testing might be pursued
to demonstrate the hypothesis is false. Our 13 prin-
cipal hypotheses are enumerated in Table 3.

5 Evaluation

We compare the posterior proportions inferred by

CLIP with several baselines:

e HMM: rather than §3.3.1, a fully connected, tra-
ditional transition matrix is used.

e MIX: a mixture model; at each timestep, we al-
ways restart (p = 1). This eliminates Marko-
vian dependencies between ideologies at nearby
timesteps, but still uses the ideology tree in defin-
ing the probabilities of each state through 6.



Hypotheses CLIP HMM Mix NORES

Sanity checks (strong):

S1. Republican primary candidates should tend to draw more from R1caT than [¥12/12 10/13 13/13  12/13
from LEFT.

S2. Democratic primary candidates should tend to draw more from LErT than 4/5 5/5 5/5 5/5
from RIGHT.

S3. In general elections, Democrats should draw more from the Ler T than the 4/4 4/4  3/4 0/4
Republicans and vice versa for the RIGHT.

S total 20/21 19/22 21/22  17/22

Primary hypotheses (strong):

P1. Romney, McCain and other Republicans should almost never draw from Far | 29/32 *21/31 27/32  29/32
LEF T, and extremely rarely from PROGRESSIVE.

P2. Romney should draw more heavily from the R1 g1 T than Obama in both stages 2/2 212 172 172
of the 2012 campaign.

Primary hypotheses (moderate):

P3. Romney should draw more heavily on words from the LIBERTARIAN, 2/2 22 02 2/2
POPULIST, RELIGIOUS RIGHT, and FAR RIGHT in the primary com-
pared to the general election. In the general election, Romney should draw
more heavily on CENTER, CENTER-RIGHT and LEF T vocabularies.

P4. Obama should draw more heavily on words from the PROGRESSIVE in the 0/1 o/1  0/1 1/1
2008 primary than in the 2008 general election.

P5. In the 2008 general election, Obama should draw more heavily on the 1/1 V1 11 1/1
CENTER, CENTER-LEF T, and RIGHT vocabularies than in the 2008 primary.

P6. In the 2012 general election, Obama should sample more from the LEF T than 2/2 22 02 0/2
from the R1cHT, and should sample more from the LEr T vocabularies than
Romney.

P7. McCain should draw more heavily from the FAR RI1GHT, PoPULIST, and 0/1 1/1 1/1 1/1
L1BERTARIAN in the 2008 primary than in the 2008 general election.

P8. In the general 2008, McCain should draw more heavily from the CENTER, 11 1/1 1/1 11
CENTER-RIGHT, and LEF T vocabularies than in the 2008 primary.

P9. McCain should draw more heavily from the R1 cu T than Obama in both stages 2/2 272 272 1/2
of the campaign.

P10.0Obama and other Democrats should very rarely draw from FAR RIGHT. 6/7 57 7 477

P total 45/51 37/50 40/51  41/51

Table 3: Pre-registered hypotheses used to validate the measurement model; number of statements evaluated correctly
by different models. *Some differences were not significant at p = 0.05 and are not included in the results.

e NORES, where we never restart (p = 0). This

strengthens the Markovian dependencies.
In M1x, there are no temporal effects between cue
terms, although the structure of our ideology tree
encourages the speaker to draw from coarse-grained
ideologies over fine-grained ideologies. On the other
hand, the strong Markovian dependency between
states in NORES would encourage the model to stay
local within the ideology tree. In our experiments,
we will see how that the ideology tree and the ran-
dom treatment of restarting both contribute to our
model’s inferences.

Table 3 presents a summary of which hypothe-
ses the models’ inferences are in accordance with.
CLIP is not consistently outperformed by any of the
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competing baselines.

Sanity checks (S1-3) CLIP correctly identifies
sixteen LEF T/RIGHT alignments of primary candi-
dates (S1, S2), but is unable to determine one can-
didate’s orientation; it finds Jon Huntsman to spend
roughly equal proportions of speech-time drawing
on LErT and RIGHT cue terms. Interestingly,
Huntsman, who had served as U.S. Ambassador to
China under Obama, was considered the one mod-
erate in the 2012 Republican field. MIX correctly
identifies all thirteen Republicans, while NORES
places McCain from the 2008 primaries as mostly
LeEFrT-leaning and HMM misses three of thirteen,
including Perry and Gingrich, who might be deeply



disturbed to find that they are misclassified as LEF T-
leaning. As for the Democratic primary candidates
(S82), CLIP’s one questionable finding is that John
Edwards spoke slightly more from the R1caT than
the Ler 7. For the general elections (S3), CLIP and
HMM correctly identify the relative amount of time
spent in LEFT/R1G6HT between Obama and his Re-
publican competitors. NORES had the most trou-
ble, missing all four. CLIP finds Obama spend-
ing slightly more time on the R1cuT than on the
Ler T in the 2008 general elections but nevertheless,
Obama is still found to spend more time engaging in
LeF T-speak than McCain.

Name interference When we looked at the cue
terms actually used in the speeches, we found one
systematic issue: the inclusion of candidates’ names
as cue terms. Terms mentioning John McCain are
associated with the R1cuT, so that Obama’s men-
tions of his opponent are taken as evidence for
rightward positioning; in total, mentions of McCain
contributed 4% absolute to Obama’s R1cHT ide-
ological proportion. Similarly, barack_obama and
presid_obama are LEF T cues (though senat_obama
isaR1GHT cue). In future work, we believe filtering
candidate names in the first stage will be beneficial.

Strong hypotheses P1 and P2 CLIP and the vari-
ants making use of the ideology tree were in agree-
ment on most of the strong primary hypotheses.
Most of these involved our expectation that the
Republican candidates would rarely draw on FaAR
LerT and PROGRESSIVE LEFT. Our qualitative
hypotheses were not specific about how to quantify
“rare” or “almost never.” We chose to find a result
inconsistent with a P1 hypothesis any time a Repub-
lican had proportions greater than 5% for either ide-
ology. The notable deviations for CLIP were Fred
Thompson (13% from the PROGRESSIVE LEFT
during the 2008 primary) and Mitt Romney (12%
from the PROGRESSIVE LEFT between the 2008
and 2012 elections, 13% from the FAR LerT dur-
ing the 2012 general election). This model did no
worse than other variants here and much better than
one: HMM had 10 inconsistencies out of 32 oppor-
tunities, suggesting the importance of the ideology
tree.
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Figure 4: Proportion of time spent in each ideology by
McCain, Romney, and Obama during the 2008 and 2012
Presidential election seasons.

“Etch-a-Sketch” hypotheses Hypotheses P3, P4,
P5, P7, and P8 are all concerned with differences
between the primary and general elections: success-
ful primary candidates are expected to “move to the
center.” A visualization of CLIP’s proportions for
McCain, Romney, and Obama is shown in Figure 4,
with their speeches grouped together by different
epochs. The model is in agreement with most of
these hypotheses. It did not confirm P4—OQObama
appears to CLIP to be more PROGRESSIVE in the
2008 general election than in the primary, though the
difference is small (3%) and may be within the mar-
gin of error. Likewise, in P7, the difference between
McCain drawing from FAR RIGHT, POPULIST
and LIBERTARIAN between the 2008 primary and
general elections is only 2% and highly uncertain,
with a 95% credible interval of 44-50% during the
primary (vs. 47-50% in the general election).

Fine-grained ideologies Fine-grained ideologies
are expected to account for smaller proportions, so
that making predictions about them is quite difficult.
This is especially true for primary elections, where a
broader palette of ideologies is expected to be drawn
from, but we have fewer speeches from each candi-



date. CLIP’s inconsistency with P10, for example,
comes from assigning 5.4% of Obama’s 2008 pri-
mary cues to FAR RIGHT.

CLIP’s inferences on the corpus of political
speeches can be browsed at http://www.ark.
cs.cmu.edu/CLIP. We emphasize that CLIP
and its variants are intended to quantify the ideo-
logical content candidates express in speeches, not
necessarily their beliefs (which may not be perfectly
reflected in their words), or even how they are de-
scribed by pundits and analysts (who draw on far
more information than is expressed in speeches).
CLIP’s deviations from the hypotheses are sug-
gestive of potential improvements to cue extraction
(§2), but also of incorrect hypotheses. We expect
future research to explore a richer set of linguistic
cues and attributes beyond ideology (e.g., topics and
framing on various issues). We plan to use CLIP
as a text analysis method to support substantive in-
quiry in political science, such as following trends
in expressed ideology over time.

6 Related Work

As early as the 1960s, there has been research on
modeling ideological beliefs using automated sys-
tems (Abelson and Carroll, 1965; Carbonell, 1978;
Sack, 1994). These early works model ideology at a
sophisticated level, involving the actors, actions and
goals; they require manually constructed knowledge
bases. Poole and Rosenthal (1985) used congres-
sional roll call data to demonstrate the ideological
divide in Congress, and provided a methodology for
measuring ideological positions. Gerrish and Blei
(2011; 2012) augmented the methodology with text
from congressional bills using probabilistic models
to uncover lawmakers’ positions on specific polit-
ical issues, putting them on a left-right spectrum,
while Thomas et al. (2006) made use of floor de-
bate speeches to predict votes. Likewise, taking ad-
vantage of the proliferation of text today, numer-
ous techniques have been developed to identify top-
ics and perspectives in the media (Gentzkow and
Shapiro, 2005; Lin et al., 2008; Fortuna et al., 2009;
Gentzkow and Shapiro, 2010); determine the polit-
ical leanings of a document or author (Laver et al.,
2003; Efron, 2004; Mullen and Malouf, 2006; Fader
et al., 2007); or recognize stances in debates (So-
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masundaran and Wiebe, 2009; Anand et al., 2011).
Going beyong lexical indicators, Greene and Resnik
(2009) investigated syntactic features to identify per-
spectives or implicit sentiment.

7 Conclusions

We introduced CLIP, a domain-informed, Bayesian
model of ideological proportions in political lan-
guage. We showed how ideological cues could be
discovered from a lightly labeled corpus of ideolog-
ical writings, then incorporated into CLIP. The re-
sulting inferences are largely consistent with a set
of preregistered hypotheses about candidates in the
2008 and 2012 Presidential elections.

Acknowledgments

For thoughtful feedback on this research, the authors
thank: several anonymous reviewers, Amber Boydstun,
Philip Resnik, members of the ARK group at CMU, and
participants in Princeton University’s Political Methodol-
ogy Colloquium and PolMeth XXX hosted by The Uni-
versity of Virginia. This work was supported in part by an
A*STAR fellowship to Y. Sim, NSF grants IIS-1211201
and IIS-1211277, and Google’s support of the Reading is
Believing project at CMU.

References

Robert P. Abelson and J. Douglas Carroll. 1965. Com-
puter simulation of individual belief systems. Ameri-
can Behavioral Scientist, 8(9):24-30.

Pranav Anand, Marilyn Walker, Rob Abbott, Jean E. Fox
Tree, Robeson Bowmani, and Michael Minor. 2011.
Cats rule and dogs drool!: Classifying stance in online
debate. In Proceedings of the Second Workshop on
Computational Approaches to Subjectivity and Senti-
ment Analysis.

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of [;-regularized log-linear models. In Proceed-
ings of ICML.

Duncan Black. 1948. On the rationale of group decision-
making. The Journal of Political Economy, 56(1):23—
34,

Sergey Brin and Lawrence Page. 1998. The anatomy of a
large-scale hypertextual web search engine. Computer
Networks and ISDN Systems, 30(1):107-117.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-
mation. Computational Linguistics, 19(2):263-311.



Jaime G. Carbonell. 1978. Politics: Automated ideolog-
ical reasoning. Cognitive Science, 2(1):27-51.

Jonathan Charteris-Black.  2005.  Politicians and
Rhetoric:  The Persuasive Power of Metaphor.
Palgrave-MacMillan.

Joshua Clinton, Simon Jackman, and Douglas Rivers.
2004. The statistical analysis of roll call data. Ameri-
can Political Science Review, 98(2):355-370.

Kevyn Collins-Thompson and Jamie Callan.  2005.
Query expansion using random walk models. In Pro-
ceedings of CIKM.

Thomas M. Cover and Joy A. Thomas. 2012. Elements
of Information Theory. Wiley-Interscience.

Daniel Deirmeier, Jean-Francois Godbout, Bei Yu, and
Stefan Kaufmann. 2012. Language and ideology
in congress. British Journal of Political Science,
42(1):31-55.

Anthony Downs. 1957. An Economic Theory of Democ-
racy. Harper, New York.

Miles Efron. 2004. Cultural orientation: Classifying
subjective documents by cociation analysis. In AAAI
Fall Symposium on Style and Meaning in Language,
Art, and Music.

Jacob Eisenstein, Amr Ahmed, and Eric P Xing. 2011.
Sparse additive generative models of text. In Proceed-
ings of ICML.

Anthony Fader, Dragomir R. Radev, Michael H. Crespin,
Burt L. Monroe, Kevin M. Quinn, and Michael Co-
laresi. 2007. MavenRank: Identifying influential
members of the US senate using lexical centrality. In
Proceedings of EUNLP-CoNLL.

Blaz Fortuna, Carolina Galleguillos, and Nello Cristian-
ini. 2009. Detecting the bias in media with statistical
learning methods. In Ashok N. Srivastava and Mehran
Sahami, editors, Text Mining: Classification, Cluster-
ing, and Applications, chapter 2, pages 27-50. Chap-
man & Hall/CRC.

Matthew Gentzkow and Jesse Shapiro. 2005. Media bias
and reputation. Technical report, National Bureau of
Economic Research.

Matthew Gentzkow and Jesse M. Shapiro. 2010. What
drives media slant? evidence from u.s. daily newspa-
pers. Econometrica, 78(1):35-71.

Sean M. Gerrish and David M. Blei. 2011. Predict-
ing legislative roll calls from text. In Proceedings of
ICML.

Sean M. Gerrish and David M. Blei. 2012. How they
vote: Issue-adjusted models of legislative behavior. In
Advances in NIPS 25.

Stephan Greene and Philip Resnik. 2009. More than
words: syntactic packaging and implicit sentiment. In
Proceedings of NAACL.

101

Roderick P. Hart, Jay P. Childers, and Colene J. Lind.
2013. Political Tone: How Leaders Talk and Why.
University of Chicago Press.

Roderick P. Hart. 2009. Campaign talk: Why elections
are good for us. Princeton University Press.

Dustin Hillard, Stephen Purpura, and John Wilker-
son. 2008. Computer-assisted topic classification for
mixed-methods social science research. Journal of In-
formation Technology & Politics, 4(4):31-46.

Harold Hotelling. 1929. Stability in competition. The
Economic Journal, 39(153):41-57.

Michael Laver, Kenneth Benoit, and John Garry. 2003.
Extracting policy positions from political texts using
words as data. The American Political Science Review,
97(2):311-331.

Wei-Hao Lin, Eric Xing, and Alexander Hauptmann.
2008. A joint topic and perspective model for ideo-
logical discourse. In Proceedings of ECML-PKDD.

Rada Mihalcea. 2005. Unsupervised large-vocabulary
word sense disambiguation with graph-based algo-
rithms for sequence data labeling. In Proceedings of
EMNLP.

Burt L. Monroe and Ko Maeda. 2004. Talk’s cheap:
Text-based estimation of rhetorical ideal-points. Pre-
sented at the Annual Meeting of the Society for Politi-
cal Methodology.

Tony Mullen and Robert Malouf. 2006. A preliminary
investigation into sentiment analysis of informal polit-
ical discourse. In AAAI Symposium on Computational
Approaches to Analysing Weblogs.

Keith T. Poole and Howard Rosenthal. 1985. A spatial
model for legislative roll call analysis. American Jour-
nal of Political Science, 29(2):357-384.

Keith T. Poole and Howard Rosenthal. 2000. Congress:
A Political-Economic History of Roll Call Voting. Ox-
ford University Press.

Warren Sack. 1994. Actor-role analysis: ideology, point
of view, and the news. Master’s thesis, Massachusetts
Institute of Technology, Cambridge, MA.

Karl-Michael Schneider. 2005. Weighted average point-
wise mutual information for feature selection in text
categorization. In Proceedings of PKDD.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Proceedings of
ACL.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: determining support or opposition from con-
gressional floor-debate transcripts. In Proceedings of
EMNLP.

Kristina Toutanova, Christopher D. Manning, and An-
drew Y. Ng. 2004. Learning random walk models for
inducing word dependency distributions. In Proceed-
ings of ICML.



Learning to Freestyle: Hip Hop Challenge-Response Induction via
Transduction Rule Segmentation

Dekai Wu

Abstract

We present a novel model, FREESTYLE, that
learns to improvise rhyming and fluent re-
sponses upon being challenged with a line of
hip hop lyrics, by combining both bottom-
up token based rule induction and top-down
rule segmentation strategies to learn a stochas-
tic transduction grammar that simultaneously
learns both phrasing and rhyming associations.
In this attack on the woefully under-explored
natural language genre of music lyrics, we
exploit a strictly unsupervised transduction
grammar induction approach. Our task is par-
ticularly ambitious in that no use of any a pri-
ori linguistic or phonetic information is al-
lowed, even though the domain of hip hop
lyrics is particularly noisy and unstructured.
We evaluate the performance of the learned
model against a model learned only using
the more conventional bottom-up token based
rule induction, and demonstrate the superi-
ority of our combined token based and rule
segmentation induction method toward gen-
erating higher quality improvised responses,
measured on fluency and rhyming criteria as
judged by human evaluators. To highlight
some of the inherent challenges in adapting
other algorithms to this novel task, we also
compare the quality of the responses generated
by our model to those generated by an out-of-
the-box phrase based SMT system. We tackle
the challenge of selecting appropriate training
data for our task via a dedicated rhyme scheme
detection module, which is also acquired via
unsupervised learning and report improved
quality of the generated responses. Finally,
we report results with Maghrebi French hip
hop lyrics indicating that our model performs
surprisingly well with no special adaptation to
other languages.
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1 Introduction

The genre of lyrics in music has been severely under-
studied from the perspective of computational lin-
guistics despite being a form of language that has
perhaps had the most impact across almost all human
cultures. With the motivation of spurring further re-
search in this genre, we apply stochastic transduc-
tion grammar induction algorithms to address some
of the modeling issues in song lyrics. An ideal start-
ing point for this investigation is hip hop, a genre
that emphasizes rapping, spoken or chanted rhyming
lyrics against strong beats or simple melodies. Hip
hop lyrics, in contrast to poetry and other genres of
music, present a significant number of challenges for
learning as it lacks well-defined structure in terms of
rhyme scheme, meter, or overall meaning making it
an interesting genre to bring to light some of the less
studied modeling issues.

The domain of hip hop lyrics is particularly un-
structured when compared to classical poetry, a do-
main on which statistical methods have been applied
in the past. Hip hop lyrics are unstructured in the
sense that a very high degree of variation is permit-
ted in the meter of the lyrics, and large amounts of
colloquial vocabulary and slang from the subculture
are employed. The variance in the permitted me-
ter makes it hard to make any assumptions about
the stress patterns of verses in order to identify the
rhyming words used when generating output. The
broad range of unorthodox vocabulary used in hip
hop make it difficult to use off-the-shelf NLP tools
for doing phonological and/or morphological analy-
sis. These problems are further exacerbated by dif-
ferences in intonation of the same word and lack of
robust transcription (Liberman, 2010).

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 102—112,
Seattle, Washington, USA, 18-21 October 2013. (©)2013 Association for Computational Linguistics



We argue that stochastic transduction grammars, !

given their success in the area of machine transla-
tion and efficient unsupervised learning algorithms,
are ideal for capturing the structural relationship be-
tween lyrics. Hence, our FREESTYLE system mod-
els the problem of improvising a rhyming response
given any hip hop lyric challenge as transducing
a challenge line into a rhyming response. We
use a stochastic transduction grammar induced in
a completely unsupervised fashion using a combi-
nation of token based rule induction and segment-
ing (Saers et al., 2013) as the underlying model to
fully-automatically learn a challenge-response sys-
tem and compare its performance against a simpler
token based transduction grammar model. Both our
models are completely unsupervised and use no prior
phonetic or linguistic knowledge whatsoever despite
the highly unstructured and noisy domain.

We believe that the challenge-response system
based on an interpolated combination of token based
rule induction and rule segmenting transduction
grammars will generate more fluent and rhyming re-
sponses compared to one based on token based trans-
duction grammars models. This is based on the ob-
servation that token based transduction grammars
suffer from a lack of fluency; a consequence of the
degree of expressivity they permit. Therefore, as a
principal part of our investigation we compare the
quality of responses generated using a combination
of token based rule induction and top-down rule seg-
menting transduction grammars to those generated
by pure token based transduction grammars.

We also hypothesize that in order to generate flu-
ent and rhyming responses, it is not sufficient to train
the transduction grammars on all adjacent lines of a
hip hop verse. Therefore, we propose a data selec-
tion scheme using a rhyme scheme detector acquired
through unsupervised learning to generate the train-
ing data for the challenge-response systems. The
rhyme scheme detector segments each verse of a hip
hop song into stanzas and identifies the lines in each
stanza that thyme with each other which are then
added as training instances. We demonstrate the su-
periority of our training data selection method by
comparing the quality of the responses generated by
the models trained on data selected with and without

! Also known in SMT as “synchronous grammars”.
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using the thyme scheme detector.

Unlike conventional spoken and written language,
disfluencies and backing vocals®> occur very fre-
quently in the domain of hip hop lyrics which af-
fect the performance of NLP models designed for
processing well-formed sentences. We propose two
strategies to mitigate the effect of disfluencies on our
model performance and compare their efficacy using
human evaluations. Finally, in order to illustrate the
challenges faced by other NLP algorithms, we con-
trast the performance of our model against a conven-
tional, widely used phrase-based SMT model.

A brief terminological note: “stanza” and “verse”
are frequently confused and sometimes conflated.
Worse yet, their usage for song lyrics is often con-
tradictory to that for poetry. To avoid ambiguity
we consistently follow these technical definitions for
segments in decreasing size of granularity:

verse a large unit of a song’s lyrics. A song typi-
cally contains several verses interspersed with
choruses. In the present work, we do not differ-
entiate choruses from verses. In song lyrics, a
verse is most commonly represented as a sepa-
rate paragraph.

stanza a segment within a verse which has a me-
ter and rhyme scheme. Stanzas often consist of
2, 3, or 4 lines, but stanzas of more lines are
also common. Particularly in hip hop, a single
verse often contains many stanzas with differ-
ent rhyme schemes and meters.

line asegment within a stanza consisting of a single

line. In poetry, strictly speaking this would be

called a “verse”, which however conflicts with

the conventional use of “verse” in song lyrics.

In Section 2, we discuss some of the previous
work that applies statistical NLP methods to less
conventional domains and problems. We describe
our experimental conditions in Section 3. We com-
pare the performance of token and segment based
transduction grammar models in Section 4. We com-
pare our data selection schemes and disfluency han-
dling strategies in Sections 5 and 6. Finally, in

2Particularly the repetitive chants, exclamations, and inter-
jections in hip hop “hype man” style backing vocals.



Section 7 we describe some preliminary results ob-
tained using our approach on improvising hip hop
responses in French and conclude in Section 8.

2 Related work

Although a few attempts have been made to apply
statistical NLP learning methods to unconventional
domains, FREESTYLE is among the first to tackle the
genre of hip hop lyrics (Addanki and Wu, 2013; Wu
etal.,2013a,b). Our preliminary work suggested the
need for further research to identify models that cap-
ture the correct generalizations to be able to gener-
ate fluent and rhyming responses. As a step towards
this direction, we contrast the performance of inter-
polated bottom-up token based rule induction and
top-down segmenting transduction grammar models
and token based transduction grammar models. We
briefly describe some of the past work in statistical
NLP on unconventional domains below.

Most of the past work either uses some form of
prior linguistic knowledge or enforces harsher con-
straints such as set number of words in a line, or a set
meter which are warranted by more structured do-
mains such as poetry. However, in hip hop lyrics it
is hard to make any linguistic or structural assump-
tions. For example, words such as sho, flo, holla
which frequently appear in the lyrics are not part of
any standard lexicon and hip hop does not require a
set number of syllables in a line, unlike poems. Also,
surprising and unlikely rthymes in hip hop are fre-
quently achieved via intonation and assonance, mak-
ing it hard to apply prior phonological constraints.

A phrase based SMT system was trained to “trans-
late” the first line of a Chinese couplet or duilian
into the second by Jiang and Zhou (2008). The most
suitable next line was selected by applying linguistic
constraints to the n best output of the SMT system.
However in contrast to Chinese couplets, which ad-
here to strict rules requiring, for example, an identi-
cal number of characters in each line and one-to-one
correspondence in their metrical length, the domain
of hip hop lyrics is far more unstructured and there
exists no clear constraint that would ensure fluent
and rhyming responses to hip hop challenge lyrics.
Barbieri et al. (2012) use controlled Markov pro-
cesses to semi-automatically generate lyrics that sat-
isfy the structural constraints of rthyme and meter.
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Tamil lyrics were automatically generated given a
melody using conditional random fields by A. ef al.
(2009). The lyrics were represented as a sequence
of labels using the KNM system where K, N and M
represented the long vowels, short vowels and con-
sonants respectively.

Genzel et al. (2010) used SMT in conjunction
with stress patterns and rhymes found in a pronun-
ciation dictionary to produce translations of poems.
Although many constraints were applied in translat-
ing full verses of poems, it was challenging to sat-
isfy all the constraints. Stress patterns were assigned
to words given the meter of a line in Shakespeare’s
sonnets by Greene et al. (2010), which were then
combined with a language model to generate poems.
Sonderegger (2011) attempted to infer the pronun-
ciation of words in old English by identifying the
rhyming patterns using graph theory. However, their
heuristic of clustering words with similar IPA end-
ings resulted in large clusters of false positives such
as bloom and numb. A language-independent gener-
ative model for stanzas in poetry was proposed by
Reddy and Knight (2011) via which they could dis-
cover thyme schemes in French and English poetry.

3 Experimental conditions

Before introducing our FREESTYLE models, we first
detail our experimental assumptions and the evalua-
tion scheme under which the responses generated by
different models are compared against one another.
We describe our training data as well as a phrase-
based SMT (PBSMT) contrastive baseline. We also
define the evaluation scheme used to compare the re-
sponses of different systems on criteria of fluency
and rhyming.

3.1 Training data

We used freely available user generated hip hop
lyrics on the Internet to provide training data for our
experiments. We collected approximately 52,000
English hip hop song lyrics amounting to approxi-
mately 800Mb of raw HTML content. The data was
cleaned by stripping HTML tags, metadata and nor-
malized for special characters and case differences.
The processed corpus contained 22 million tokens
with 260,000 verses and 2.7 million lines of hip hop
lyrics. As human evaluation using expert hip hop



listeners is expensive, a small subset of 85 lines was
chosen as the test set to provide challenges for com-
paring the quality of responses generated by different
systems.

3.2 Evaluation scheme

The performance of various FREESTYLE versions
was evaluated on the task of generating a improvised
fluent and rhyming response given a single line of a
hip hop verse as a challenge. The output of all the
systems on the test set was given to three indepen-
dent frequent hip hop listeners for manual evalua-
tion. They were asked to evaluate the system out-
puts according to fluency and the degree of rhyming.
They were free to choose the tune to make the lyrics
rhyme as the beats of the song were not used in the
training data. Each evaluator was asked to score the
response of each system on the criterion of fluency
and rhyming as being good, acceptable or bad.

3.3 Phrase-based SMT baseline

In order to evaluate the performance of an out-of-
the-box phrase-based SMT (PBSMT) system toward
this novel task of generating rhyming and fluent re-
sponses, a standard Moses baseline (Koehn et al.,
2007) was also trained in order to compare its per-
formance with our transduction grammar induction
model. A 4-gram language model which was trained
on the entire training corpus using SRILM (Stolcke,
2002) was used to generate responses in conjunction
with the phrase-based translation model. As no au-
tomatic quality evaluation metrics exist for hip hop
responses analogous to BLEU for SMT, the model
weights cannot be tuned in conventional ways such
as MERT (Och, 2003). Instead, a slightly higher than
typical language model weight was empirically cho-
sen using a small development set to produce fluent
outputs.

4 Interpolated segmenting model vs. token
based model

We compare the performance of transduction gram-
mars induced via interpolated token based and rule
segmenting (ISTG) versus token based transduction
grammars (TG) on the task of generating a rhyming
and fluent response to hip hop challenges. We use
the framework of stochastic transduction grammars,
specifically bracketing ITGs (inversion transduction
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grammars) (Wu, 1997), as our translation model for
“transducing” any given challenge into a rhyming
and fluent response. Our choice is motivated by
the significant amount of empirical evidence for the
representational capacity of transduction grammars
across a spectrum of natural language tasks such as
textual entailment (Wu, 2006), mining parallel sen-
tences (Wu and Fung, 2005) and machine translation
(Zens and Ney, 2003). Further, existence of effi-
cient learning algorithms (Saers et al., 2012; Saers
and Wu, 2011) that make no language specific as-
sumptions, make inversion transduction grammars a
suitable framework for our modeling needs. Exam-
ples of lexical transduction rules can be seen in Ta-
bles 3 and 5. In addition, the grammar also includes
structural transduction rules for the straight case
A — [A A] and also the inverted case 4 — <4 A>.

4.1 Token based vs. segmental ITGs

The degenerate case of ITGs are token based ITGs
wherein each translation rule contains at most one
token in input and output languages. Efficient induc-
tion algorithms with polynomial run time exist for to-
ken based ITGs and the expressivity they permit has
been empirically determined to capture most of the
word alignments that occur across natural languages.
The parameters of the token based ITGs can be es-
timated using expectation maximization through an
efficient dynamic programming algorithm in con-
junction with beam pruning (Saers and Wu, 2011).
In contrast to token based ITGs, each rule in a seg-
mental ITG grammar can contain more than one to-
ken in both input and output languages. In machine
translation applications, segmental models produce
translations that are more fluent as they can capture
lexical knowledge at a phrasal level. However, only
a handful of purely unsupervised algorithms exist
for learning segmental ITGs under matched training
and testing assumptions. Most other approaches in
SMT use a variety of ad hoc heuristics for extracting
segments from token alignments, justified purely by
short term improvements in automatic MT evalua-
tion metrics such as BLEU (Papineni et al., 2002)
which cannot be transferred to our current task. In-
stead, we use a completely unsupervised learning al-
gorithm for segmental ITGs that stays strictly within
the transduction grammar optimization framework
for both training and testing as proposed in Saers



et al. (2013).

Saers et al. (2013) induce a phrasal inversion
transduction grammar via interpolating the bottom-
up rule chunking approach proposed in Saers et al.
(2012) with a top-down rule segmenting approach
driven by a minimum description length objective
function (Solomonoff, 1959; Rissanen, 1983) that
trades off the maximum likelihood against model
size. Saers et al. (2013) report improvements in
BLEU score (Papineni ef al., 2002) on their transla-
tion task. In our current approach instead of using a
bottom-up rule chunking approach we use a simpler
token based grammar instead. Given two grammars
(G, and Gp) and an interpolation parameter « the
probability function of the interpolated grammar is
given by:

Patb (1) = apa (1) + (1 = a)py (r)

for all rules r in the union of the two rule sets, and
where pqyp is the rule probability function of the
combined grammar and p, and p are the rule prob-
ability functions of GG, and G} respectively. The
pseudocode for the top-down rule segmenting algo-
rithm is shown in 1. The algorithm uses the methods
collect biaffixes, eval dl, sort by delta and
make segmentations. These methods collect all the
biaffixes in an ITG, evaluate the difference in de-
scription length, sort candidates by these differences,
and commit to a given set of candidates, respectively.
The suitable interpolation parameter is chosen em-
pirically based on the responses generated on a small
development set.

We compare the performance of inducing a token
based ITG versus inducing a segmental ITG using in-
terpolated bottom-up token based rule induction and
top-down rule segmentation. To highlight some of
the inherent challenges in adapting other algorithms
to this novel task, we also compare the quality of the
responses generated by our model to those generated
by an off-the-shelf phrase based SMT system.

4.2 Decoding heuristics

We use our in-house ITG decoder implemented ac-
cording to the algorithm mentioned in Wu (1996)
for the generating responses to challenges by decod-
ing with the trained transduction grammars. The de-
coder uses a CKY-style parsing algorithm (Cocke,
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Algorithm 1 Iterative rule segmenting learning
driven by minimum description length.
1. > The ITG being induced
2: repeat
30 Osum < 0
bs < collect_biaffixes(®P)
bo — |]
for all b € bs do
0 «— eval dl(b, D)
if 0 < 0 then
bo «— [b9, (b, )]
10:  sort by delta(bd)
11:  for all (b,0) € bd do
12: §" — eval dl(b, ?)

R A AN

13: if 0’ < 0 then
14: ® — make_segmentations(b, D)
15: dsum < Osum + o

16: until 64y, > 0
17: return @

1969) with cube pruning (Chiang, 2007). The de-
coder builds an efficient hypergraph structure which
is then scored using the induced grammar. The
trained transduction grammar model was decoded
using the 4-gram language model and the model
weights determined as described in 3.3.

In our decoding algorithm, we restrict the reorder-
ing to only be monotonic as we want to produce out-
put that follows the same rhyming order of the chal-
lenge. Interleaved rhyming order is harder to evalu-
ate without the larger context of the song and we do
not address that problem in our current model. We
also penalize singleton rules to produce responses of
similar length as successive lines in a stanza are typ-
ically of similar length. Finally, we add a penalty to
reflexive translation rules that map the same surface
form to itself such as 4 — yo/yo. We obtain these
rules with a high probability due to the presence of
sentence pairs where both the input and output are
identical strings as many stanzas in our data contain
repeated chorus lines.

4.3 Results: Rule segmentation improves
responses

Results in Table 1 indicate that the ISTG outperforms
the TG model towards the task of generating fluent
and rhyming responses. On the criterion of fluency,



Table 1: Percentage of >good and >acceptable (i.e., either good or acceptable) responses on fluency and rhyming
criteria. PBSMT, TG and ISTG models trained using corpus generated from all adjacent lines in a verse. PBSMT+RS,
TG+RS, ISTG+RS are models trained on rhyme scheme based corpus selection strategy. Disfluency correction strategy

was used in all cases.

model Sfluency (=good) | fluency (=acceptable) | rhyming (=good) | rhyming (>acceptable)
PBSMT 3.14% 4.70% 1.57% 4.31%

TG 21.18% 54.51% 23.53% 39.21%

ISTG 26.27% 57.64% 27.45% 48.23%

PBSMT+RS | 30.59% 43.53% 1.96% 9.02%

TG+RS 34.12% 60.39% 20.00% 42.74%

ISTG+RS 30.98% 61.18% 30.98% 53.72%

Table 2: Transduction rules learned by ISTG model.

transduction grammar rule log prob.
A — long/wrong -11.6747
A — rhyme/time -11.6604
A — felt bad/couldn't see what i really had | -11.3196
A — matter what you say/leaving anyway | -11.8792
A — arhythamatic/this rhythm is sick -12.3492

the ISTG model produces a significantly higher frac-
tion of sentences rated good (26.27% vs. 21.18%)
and >acceptable (57.64% vs. 54.51%). Higher frac-
tion of responses generated by the ISTG model are
rated as good (27.45% vs. 23.53%) and >acceptable
(57.64% vs. 54.51%) compared to the TG model.
Both TG and ISTG model perform significantly bet-
ter than the PBSMT baseline. Upon inspecting the
learned rules, we noticed that the ISTG models cap-
ture thyming correspondences both at the token and
segmental levels. Table 2 shows some examples
of the transduction rules learned by ISTG grammar
trained using rhyme scheme detection.

5 Data selection via rhyme scheme
detection vs. adjacent lines

We now compare two data selection approaches
for generating the training data for transduction
grammar induction via a rhyme scheme detection
module and choosing all adjacent lines in a verse.
We also briefly describe the training of the rhyme
scheme detection module and determine the efficacy
of our data selection scheme by training the ISTG
model, TG model and the PBSMT baseline on train-
ing data generated with and without employing the
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rhyme scheme detection module. As the rule seg-
menting approach was intended to improve the flu-
ency as opposed to the rhyming nature of the re-
sponses, we only train the rule segmenting model
on the randomly chosen subset of all adjacent lines
in the verse. Further, adding adjacent lines as the
training data to the segmenting model maintains the
context of the responses generated thereby produc-
ing higher quality responses. The segmental trans-
duction grammar model was combined with the to-
ken based transduction grammar model trained on
data selected with and without using rhyme scheme
detection model.

5.1 Rhyme scheme detection

Although our approach adapts a transduction gram-
mar induction model toward the problem of generat-
ing fluent and rhyming hip hop responses, it would
be undesirable to train the model directly on all the
successive lines of the verses—as done by Jiang and
Zhou (2008)—due to variance in hip hop rhyming
patterns. For example, adding successive lines of a
stanza which follows ABAB rhyme scheme as train-
ing instances to the transduction grammar causes in-
correct thyme correspondences to be learned. The
fact that a verse (which is usually represented as
a separate paragraph) may contain multiple stanzas
of varying length and rhyme schemes worsens this
problem. Adding all possible pairs of lines in a verse
as training examples not only introduces a lot of
noise but also explodes the size of the training data
due to the large size of the verse.

We employ a rhyme scheme detection model (Ad-
danki and Wu, 2013) in order to select training in-
stances that are likely to rhyme. Lines belonging to



the same stanza and marked as rhyming according
to the rhyme scheme detection model are added to
the training corpus. We believe that this data selec-
tion scheme will improve the rhyming associations
learned during the transduction grammar induction
thereby biasing the model towards producing fluent
and rhyming output.

The rhyme scheme detection model proposes a
HMM based generative model for a verse of hip hop
lyrics similar to Reddy and Knight (2011). However,
owing to the lack of well-defined verse structure in
hip hop, a number of hidden states corresponding to
stanzas of varying length are used to automatically
obtain a soft-segmentation of the verse. Each state
in the HMM corresponds to a stanza with a particu-
lar rhyme scheme such as AA, ABAB, AAAA while
the emissions correspond to the final words in the
stanza. We restrict the maximum length of a stanza
to be four to maintain a tractable number of states
and further only use states to represent stanzas whose
rhyme schemes could not be partitioned into smaller
schemes without losing a rhyme correspondence.

The parameters of the HMM are estimated using
the EM algorithm (Devijer, 1985) using the corpus
generated by taking the final word of each line in the
hip hop lyrics. The lines from each stanza that rhyme
with each other according to the Viterbi parse using
the trained model are added as training instances for
transduction grammar induction. As the source and
target languages are identical, each selected pair gen-
erates two training instances: a challenge-response
and a response-challenge pair.

The training data for the thyme scheme detector
was obtained by extracting the end-of-line tokens
from each verse. However, upon data inspection we
noticed that shorter lines in hip hop stanzas are typi-
cally joined with a comma and represented as a sin-
gle line of text and hence all the tokens before the
commas were also added to the training corpus. We
obtained a corpus containing 4.2 million tokens cor-
responding to potential rhyming candidates compris-
ing of around 153,000 unique token types.

We evaluated the performance of our rhyme
scheme detector on the task of correctly labeling a
given verse with rhyme schemes. As our model is
completely unsupervised, we chose a random sam-
ple of 75 verses from our training data as our test set.
Two native English speakers who were frequent hip

108

hop listeners were asked to partition the verse into
stanzas and assign them with a gold standard rhyme
scheme. Precision and recall were aggregated for the
Viterbi parse of each verse against this gold standard
and f-score was calculated. The rhyme scheme de-
tection module employed in our data selection ob-
tained a precision of 35.81% and a recall of 57.25%,
giving an f-score of 44.06%.

5.2 Training data selection via rhyme scheme
detection

We obtained around 600,000 training instances upon
extracting a training corpus using rhyme scheme de-
tection module as described in Section 5.1. We
added those lines that were adjacent and labeled as
rhyming by the rhyme scheme detector as training in-
stances resulting in a training corpus of size 200,000.

5.3 Training data selection via adjacent lines

Considering all adjacent lines in a verse resulted in
a corpus with over 5 million training instances. In
order to ensure fair comparison of models trained
on data selected using rhyme scheme detection, we
randomly chose 200,000 training instances from the
generated corpus. The training corpus thus gener-
ated shared around 15% of training instances with
the corpus generated through our proposed data se-
lection scheme.

5.4 Results: Rhyme scheme detection helps

Results in Table 1 indicate that using the rhyme
scheme detector for training data selection helps
produce significantly more fluent responses com-
pared to using adjacent lines. A possible explana-
tion for this could be that adding all adjacent lines as
training instances introduces a lot of noise into the
model which hurts the fluency of the responses gen-
erated. Also, the cumulative fraction of sentences
that were labeled good or >acceptable on the crite-
rion of rhyming is larger when rhyme scheme detec-
tion was used to generate the training data (although
the TG model trained on the corpus generated us-
ing adjacent lines produces a higher percentage of
rhyming responses that were rated good). Given the
significantly higher rate of response fluency when
using rthyme scheme detection, we argue that using
rhyme scheme detector for data selection is benefi-
cial.



Table 3: English hip hop challenge-response examples.

challenge man i die to see em all thun i just don't care
TG+RS in the sky and me the in polla and the you there
TG and the ride the me the and white the i the air
pBsMT+RS Man i live to see em all i just don't care

challenge did a twelve year bid in the streets and held it down
TG+RS to the girls here kid the and to the thought the now
TG to the p's here did the a the i was the the

psmr+Rs did a year in the streets and it down

challenge oh i believe in yesterday
TG+RS can you see the day

TG now you see the way
pBsmT+RS Oh i believe in tomorrow

challenge what would i do
TG+RS just me and you
TG and you and you
pBsmT+Rs What would you do

challenge cause you ain't going home till the early morn
TG+RS and the you this alone i i gotta on

TG and i you my on the a home we

pBSMT+RS cause you and your friends aint nothing but

It is also interesting to note from Table 1 that
ISTG+RS performs better than TG+RS indicating
that transduction grammar induced via interpolating
token based grammar and rule segmenting produces
better responses than token based transduction gram-
mar on both data selection schemes. Although the
average fraction of responses rated good on fluency
are slightly lower for ISTG+RS compared to TG+RS
(34.12% vs. 30.98%), the fraction of responses rated
>acceptable are higher (61.18% vs. 57.64%). It is
important to note that the fraction of sentences rated
good and >acceptable on rhyming are much larger
for ISTG+RS model. Although the fluency of the
responses generated by PBSMT+RS drastically im-
proves compared to PBSMT it still lags behind the
TG+RS and ISTG+RS models on both fluency and
rhyming. The results in Table 1 confirm our hypoth-
esis that off-the-shelf SMT systems are not guaran-
teed to be effective on our novel task.

5.5 Challenge-response examples

Table 3 shows some of the challenges and the cor-
responding responses of PBSMT+RS, TG+RS and
TG model. While PBSMT+RS and TG+RS mod-
els generate responses reflecting a high degree of
fluency, the output of the TG contains a lot of ar-
ticles. It is interesting to note that TG+RS produces
responses comparable to PBSMT+RS despite being
a token based transduction grammar. However, PB-
SMT tends to produce responses that are too simi-
lar to the challenge. Moreover, TG models produce
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responses that indeed rhyme better (shown in bold-
face). In fact, TG tries to rhyme words not only at the
end but also in middle of the lines, as our transduc-
tion grammar model captures structural associations
more effectively than the phrase-based model.

6 Disfluency handling via disfluency
correction and filtering

In this section, we compare the effect of two dis-
fluency mitigating strategies on the quality of the re-
sponses generated by the PBSMT baseline and token
based transduction grammar model with and without
using rhyme scheme detection.

6.1 Correction vs. filtering

Error analysis of our initial runs showed a dis-
turbingly high proportion of responses generated by
our system that contained disfluencies with succes-
sive repetitions of words such as the and I. Upon in-
spection of data we noticed that the training lyrics
actually did contain such disfluencies and backing
vocal lines, amounting to 10% of our training data.
We therefore compared two alternative strategies to
tackle this problem. The first strategy involved fil-
tering out all lines from our training corpus which
contained such disfluencies. In the second strategy,
we implemented a disfluency detection and correc-
tion algorithm (for example, the the the, which fre-
quently occurred in the training corpus, was cor-
rected to simply the). The PBSMT baseline and the
TG model were trained on both the filtered and cor-
rected versions of the training corpus and the quality
of the responses were compared.

6.2 Results: Disfluency correction helps

The results in Table 4 indicate that the disfluency
correction strategy outperforms the filtering strategy
for both TG and TG+RS models. For the model
TG+RS, disfluency correction generated 34.12%
good responses in terms of fluency, while the filter-
ing strategy produced only 28.63% good responses.
Similarly for the model TG, disfluency correction
produced 21.8% of responses with good fluency and
the filtering strategy produced only 17.25%. Dis-
fluency correction strategy produces higher fraction
of responses with >acceptable fluency compared to
the filtering strategy for both TG and TG+RS mod-
els. This result is not surprising, as harshly pruning



Table 4: Effect of the disfluency correction strategies on fluency of the responses generated for the TG induction
models vs PBSMT baselines using both rhyme scheme detection and adjacent lines as the corpus selection method.

model+disfluency strat. fluency (good) | fluency (>acceptable) | rhyming (good) | rhyming (>acceptable)
PBSMT+filtering 4.3% 13.72% 3.53% 7.06%
PBSMT+correction 3.14% 4.70% 1.57% 4.31%
PBSMT+RS+filtering 31.76% 43.91% 12.15% 21.17%
PBSMT+RS+correction | 30.59% 43.53% 1.96% 9.02%

TGiltering 17.25% 46.27% 18.04% 33.33%
TG+correction 21.18% 54.51% 23.53% 39.21%
TG+RS+iltering 28.63% 56.86% 14.90% 34.51%
TG+RS+correction 34.12% 60.39% 20.00% 42.74%

the training corpus causes useful word association
information necessary for rhyming to be lost. Sur-
prisingly, for both PBSMT and PBSMT+RS models,
the disfluency correction has a negative effect on the
fluency level of the response but still falls behind TG
and TG+RS models. As disfluency correction yields
more fluent responses for TG and TG+RS models,
the results for ISTG and ISTG+RS models in Table
1 were obtained using disfluency correction strategy.

7 Maghrebi French hip hop

We have begun to apply FREESTYLE to rap in lan-
guages other than English, taking advantage of
the language independence and linguistics-light ap-
proach of our unsupervised transduction grammar
induction methods. With no special adaption our
transduction grammar based model performs sur-
prisingly well, even with significantly smaller train-
ing data size and noisier data. These results across
different languages are encouraging as they can be
used to discover truly language independence as-
sumptions. We briefly describe our initial experi-
ments on Maghrebi French hip hop lyrics below.

7.1 Dataset

We collected freely available French hip hop lyrics
of approximately 1300 songs. About 85% of the
songs were by Maghrebi French artists of Alge-
rian, Moroccan, or Tunisian cultural backgrounds,
while the remaining were by artists from the rest
of Francophonie. As the large majority of songs
are in Maghrebi French, the lyrics are sometimes
interspersed with romanized Arabic such as “De la
traversée du désert au bon couscous de Yéma” (Yéma
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means My mother). Some songs also contain Berber
phrases, for instance “a yemmi ino, a thizizwith”
(which means my son, a bee). Furthermore, some
songs also contained English phrases in the style of
gangster rap such as “T'es game over, game over... Le
son de Chicken wings”. As mentioned earlier, it is
complexity like this which dissuaded us from mak-
ing language specific assumptions in our model.

We extracted the end-of-line words and obtained
a corpus containing 120,000 tokens corresponding
to potential rhyming candidates with around 29,000
unique token types which was used as the training
data for the rhyme scheme detector module. For the
transduction grammar induction, the training data
contained about 47,000 sentence pairs selected us-
ing rhyme scheme detection.

7.2 Results

After human evaluation by native French speak-
ers and frequent hip hop listeners, our transduction
grammar based model generates about 9.2% and
14.5% of the responses that are rated good by the
human evaluators on the criterion of fluency and
rhyming respectively. About 30.2% and 38% of
the responses are rated as >acceptable. These num-
bers are encouraging given the noisy lyrics and much
smaller amount of training data. Some examples of
the challenge-response pairs and learned transduc-
tion rules in French are 