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Preface

Welcome to the 2013 Conference on Empirical Methods in Natural Language Processing.

EMNLP has grown to be one of the largest and most competitive conferences in computational
linguistics. Organized by ACL SIGDAT (the Association for Computational Linguistics special interest
group for linguistic data and corpus-based approaches to natural language processing), it features papers
on all areas of interest to the SIGDAT community and aligned fields. It is being held this year as
a standalone conference at the Grand Hyatt Seattle, in the heart of downtown Seattle, USA over the
period October 18–21, 2013.

This year we introduced short papers to EMNLP for the first time, in an attempt to encourage submission
of papers reporting smaller, more focused contributions and work in progress. We also put a lot of
time and energy into “closing the loop” in the author response phase, in getting reviewers to explicitly
acknowledge author responses and update their reviews where appropriate. We sincerely hope that this
contributed towards further improvement in the quality of reviews and the decision-making process.

We received a record number of 772 valid submissions (not including co-submitted papers that were
withdrawn from the conference), made up of 539 long papers and 233 short papers. These papers
were reviewed across a total of 15 areas, of which Machine Translation (98 submissions), Semantics
(87 submissions) and NLP-related Machine Learning (76) were the largest. The submissions were
managed by 30 area chairs (two per area) and evaluated by a combined programme committee of 505
reviewers.

28% of the long paper submissions and 24% of the short paper submissions were accepted for
publication at the conference. Five long papers were shortlisted for the best paper award, based on
input from the reviewers and area chairs, and have been scheduled for presentation in a plenary session
at the end of the conference, culminating in the presentation of the best paper award.

We would like to acknowledge all the hard work of the submitting authors, without whom there would,
of course, be no conference. To the authors of accepted papers, we offer congratulations; to the
authors of rejected papers, we offer our sincere commiserations, and dearly hope that the hard work
of the programme committee provided you with valuable feedback on your research. We are eternally
indebted to our dedicated and hard-working area chairs, and to the reviewers for their attention to detail
and engagement with the author response/discussion phase, which was tremendously helpful in gauging
the relative merits of each paper and being able to send out the notifications on time.

We are very grateful to our two invited speakers: Fernando Pereira (Research Director at Google) who
will draw on his considerable experience and wisdom in presenting “Meaning in the Wild”, focusing on
machine understanding; and Andrew Ng (Co-CEO and Co-founder of Coursera) who will discuss the
challenges and opportunities associated with the delivery of Massively Open Online Courses (MOOCs)
in a talk titled “The Online Revolution: Education for Everyone”, from the perspective of a true world
leader in MOOC provision and Machine Learning/NLP research.

We would also like to thank the inimitable Priscilla Rasmussen who single-handedly looked after the
local organisation of EMNLP 2013. We also wish to acknowledge the considerable efforts of Steven
Berthard who put this volume together with peerless efficiency, Francesco Figari who took excellent
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care of the conference website, and Rich Gerber from Softconf.com, who responded to any questions
regarding START — the submission management system used for EMNLP 2013 — instantaneously
and uncomplainingly, and helped us manage the large number of submissions smoothly. Additionally,
we would like to thank Eugene Charniak, Mark Johnson and Noah Smith for serving on the best paper
award committee, and providing characteristically probing and insightful critiques of the best paper
award nominees.

Special thanks go to David Yarowsky, the general chair for the conference, who has provided us with
much valuable advice, encouragement and assistance over the past six months. We would also like
to thank the members of the SIGDAT board who advised us on various matters, and our predecessors
James Henderson and Marius Pasca for nudging us in the right direction on a number of occasions.

On behalf of all attendees at the conference, we would also like to acknowledge the generosity of
our sponsors/supports: Amazon, Google, the Allen Institute for Artificial Intelligence, Inome, IBM
Research, Microsoft Research, Nuance and John Hopkins University.

It has been an honour to serve as Programme Chairs of EMNLP 2013. We sincerely hope that you —
in equal measure — enjoy and are intellectually-stimulated by the conference, and have a pleasant stay
in beautiful Seattle.

Timothy Baldwin and Anna Korhonen
EMNLP 2013 Programme Chairs
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The Answer is at your Fingertips: Improving Passage Retrieval for Web Question Answer-
ing with Search Behavior Data
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Maryam Siahbani, Baskaran Sankaran and Anoop Sarkar
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Will Y. Zou, Richard Socher, Daniel Cer and Christopher D. Manning
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Peter Reberšek and Mateja Verlic

Dependency Language Models for Sentence Completion
Joseph Gubbins and Andreas Vlachos
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Shashank Srivastava, Dirk Hovy and Eduard Hovy
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(11:00-12:35) Machine Learning for NLP

11:25–11:50 Dynamic Feature Selection for Dependency Parsing
He He, Hal Daumé III and Jason Eisner

11:50–12:15 Semi-Supervised Representation Learning for Cross-Lingual Text Classification
Min Xiao and Yuhong Guo

12:15–12:35 Using Crowdsourcing to get Representations based on Regular Expressions
Anders Søgaard, Hector Martinez, Jakob Elming and Anders Johannsen

(11:00-12:35) Summarization and Generation

11:00–11:25 Overcoming the Lack of Parallel Data in Sentence Compression
Katja Filippova and Yasemin Altun

11:25–11:50 Fast Joint Compression and Summarization via Graph Cuts
Xian Qian and Yang Liu

11:50–12:15 Inducing Document Plans for Concept-to-Text Generation
Ioannis Konstas and Mirella Lapata
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Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino, Norihito Yasuda and Masaaki Nagata

(11:00-12:35) Information Extraction and Social Media Analysis

11:00–11:25 A Hierarchical Entity-Based Approach to Structuralize User Generated Content in Social
Media: A Case of Yahoo! Answers
Baichuan Li, Jing Liu, Chin-Yew Lin, Irwin King and Michael R. Lyu

11:25–11:50 Semantic Parsing on Freebase from Question-Answer Pairs
Jonathan Berant, Andrew Chou, Roy Frostig and Percy Liang

11:50–12:15 Scaling Semantic Parsers with On-the-Fly Ontology Matching
Tom Kwiatkowski, Eunsol Choi, Yoav Artzi and Luke Zettlemoyer

12:15–12:35 Classifying Message Board Posts with an Extracted Lexicon of Patient Attributes
Ruihong Huang and Ellen Riloff

(12:35-2:00) Lunch

(2:00-3:35) Machine Translation II

2:00–2:25 Lexical Chain Based Cohesion Models for Document-Level Statistical Machine Transla-
tion
Deyi Xiong, Yang Ding, Min Zhang and Chew Lim Tan

2:50–3:15 A Convex Alternative to IBM Model 2
Andrei Simion, Michael Collins and Cliff Stein

3:15–3:35 Pair Language Models for Deriving Alternative Pronunciations and Spellings from Pro-
nunciation Dictionaries
Russell Beckley and Brian Roark
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(2:00-3:35) Semantics II

2:00–2:25 Prior Disambiguation of Word Tensors for Constructing Sentence Vectors
Dimitri Kartsaklis and Mehrnoosh Sadrzadeh

2:25–2:50 Multi-Relational Latent Semantic Analysis
Kai-Wei Chang, Wen-tau Yih and Christopher Meek

2:50–3:15 A Study on Bootstrapping Bilingual Vector Spaces from Non-Parallel Data (and Nothing
Else)
Ivan Vulić and Marie-Francine Moens

3:15–3:35 Deriving Adjectival Scales from Continuous Space Word Representations
Joo-Kyung Kim and Marie-Catherine de Marneffe

(2:00-3:35) Opinion Mining and Sentiment Analysis I

2:00–2:25 Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, An-
drew Ng and Christopher Potts

2:25–2:50 Open Domain Targeted Sentiment
Margaret Mitchell, Jacqui Aguilar, Theresa Wilson and Benjamin Van Durme

2:50–3:15 Exploiting Domain Knowledge in Aspect Extraction
Zhiyuan Chen, Arjun Mukherjee, Bing Liu, Meichun Hsu, Malu Castellanos and Riddhi-
man Ghosh

(3:35-4:05) Break
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4:05–4:30 Dependency-Based Decipherment for Resource-Limited Machine Translation
Qing Dou and Kevin Knight

4:30–4:55 Translating into Morphologically Rich Languages with Synthetic Phrases
Victor Chahuneau, Eva Schlinger, Noah A. Smith and Chris Dyer

4:55–5:20 Boosting Cross-Language Retrieval by Learning Bilingual Phrase Associations from Rel-
evance Rankings
Artem Sokokov, Laura Jehl, Felix Hieber and Stefan Riezler

5:20–5:55 Recurrent Continuous Translation Models
Nal Kalchbrenner and Phil Blunsom

(4:05-5:55) Information Extraction II

4:05–4:30 Learning Biological Processes with Global Constraints
Aju Thalappillil Scaria, Jonathan Berant, Mengqiu Wang, Peter Clark, Justin Lewis, Brit-
tany Harding and Christopher D. Manning

4:30–4:55 Generating Coherent Event Schemas at Scale
Niranjan Balasubramanian, Stephen Soderland, Mausam and Oren Etzioni

5:20–5:55 Orthonormal Explicit Topic Analysis for Cross-Lingual Document Matching
John Philip McCrae, Philipp Cimiano and Roman Klinger

(4:05-5:55) NLP Applications II

4:05–4:30 Automated Essay Scoring by Maximizing Human-Machine Agreement
Hongbo Chen and Ben He

4:55–5:20 Success with Style: Using Writing Style to Predict the Success of Novels
Vikas Ganjigunte Ashok, Song Feng and Yejin Choi

5:20–5:55 A Generative Joint, Additive, Sequential Model of Topics and Speech Acts in Patient-
Doctor Communication
Byron C. Wallace, Thomas A Trikalinos, M. Barton Laws, Ira B. Wilson and Eugene
Charniak

xxxviii



Monday, October 21, 2013

(8:00-9:00) Breakfast

(9:00-10:35) Information Extraction III

9:00–9:25 Harvesting Parallel News Streams to Generate Paraphrases of Event Relations
Congle Zhang and Daniel S. Weld

9:25–9:50 Relational Inference for Wikification
Xiao Cheng and Dan Roth

9:50–10:15 Event Schema Induction with a Probabilistic Entity-Driven Model
Nathanael Chambers

10:15–10:35 Using Soft Constraints in Joint Inference for Clinical Concept Recognition
Prateek Jindal and Dan Roth

(9:00-10:35) Opinion Mining and Sentiment Analysis II

9:00–9:25 Exploring Demographic Language Variations to Improve Multilingual Sentiment Analysis
in Social Media
Svitlana Volkova, Theresa Wilson and David Yarowsky

9:25–9:50 Opinion Mining in Newspaper Articles by Entropy-Based Word Connections
Thomas Scholz and Stefan Conrad

9:50–10:15 Collective Opinion Target Extraction in Chinese Microblogs
Xinjie Zhou, Xiaojun Wan and Jianguo Xiao

10:15–10:35 Detecting Promotional Content in Wikipedia
Shruti Bhosale, Heath Vinicombe and Raymond Mooney

xxxix



Monday, October 21, 2013 (continued)

(9:00-10:35) NLP for Social Media II

9:00–9:25 Learning Topics and Positions from Debatepedia
Swapna Gottipati, Minghui Qiu, Yanchuan Sim, Jing Jiang and Noah A. Smith

9:25–9:50 A Unified Model for Topics, Events and Users on Twitter
Qiming Diao and Jing Jiang

9:50–10:15 Authorship Attribution of Micro-Messages
Roy Schwartz, Oren Tsur, Ari Rappoport and Moshe Koppel

10:15–10:35 Detection of Product Comparisons - How Far Does an Out-of-the-Box Semantic Role La-
beling System Take You?
Wiltrud Kessler and Jonas Kuhn

(10:35–11:00) Break

(11:00-11:45) Parsing

11:00–11:25 A Multi-Teraflop Constituency Parser using GPUs
John Canny, David Hall and Dan Klein

11:25–11:45 Fish Transporters and Miracle Homes: How Compositional Distributional Semantics can
Help NP Parsing
Angeliki Lazaridou, Eva Maria Vecchi and Marco Baroni

(11:00-11:45) Semantics III

11:00–11:25 Learning Distributions over Logical Forms for Referring Expression Generation
Nicholas FitzGerald, Yoav Artzi and Luke Zettlemoyer

11:25–11:45 Learning to Rank Lexical Substitutions
György Szarvas, Róbert Busa-Fekete and Eyke Hüllermeier

xl



Monday, October 21, 2013 (continued)

(11:00-11:45) NLP Applications III

11:00–11:25 Identifying Manipulated Offerings on Review Portals
Jiwei Li, Myle Ott and Claire Cardie

11:25–11:45 Well-Argued Recommendation: Adaptive Models Based on Words in Recommender Sys-
tems
Julien Gaillard, Marc El-Beze, Eitan Altman and Emmanuel Ethis

(11:45–12:15) SIGDAT business meeting

(12:15–1:45) Lunch

(1:45–3:15) Plenary session I

1:45–2:15 Regularized Minimum Error Rate Training
Michel Galley, Chris Quirk, Colin Cherry and Kristina Toutanova

2:15–2:45 Of Words, Eyes and Brains: Correlating Image-Based Distributional Semantic Models
with Neural Representations of Concepts
Andrew J. Anderson, Elia Bruni, Ulisse Bordignon, Massimo Poesio and Marco Baroni

2:45–3:15 Easy Victories and Uphill Battles in Coreference Resolution
Greg Durrett and Dan Klein

(3:15–3:45) Break

(3:45–4:45) Plenary Session II

3:45–4:15 Breaking Out of Local Optima with Count Transforms and Model Recombination: A Study
in Grammar Induction
Valentin I. Spitkovsky, Hiyan Alshawi and Daniel Jurafsky

4:15–4:45 Cross-Lingual Discriminative Learning of Sequence Models with Posterior Regularization
Kuzman Ganchev and Dipanjan Das

(4:45–5:15) Closing session

xli





Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1–11,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Event-based Time Label Propagation for Automatic Dating of News Articles

Tao Ge Baobao Chang∗ Sujian Li Zhifang Sui
Key Laboratory of Computational Linguistics, Ministry of Education

School of Electronics Engineering and Computer Science, Peking University
No.5 Yiheyuan Road, Haidian District, Beijing, P.R.China, 100871

{getao,chbb,lisujian,szf}@pku.edu.cn

Abstract

Since many applications such as timeline sum-
maries and temporal IR involving temporal
analysis rely on document timestamps, the
task of automatic dating of documents has
been increasingly important. Instead of using
feature-based methods as conventional mod-
els, our method attempts to date documents
in a year level by exploiting relative tempo-
ral relations between documents and events,
which are very effective for dating documents.
Based on this intuition, we proposed an event-
based time label propagation model called
confidence boosting in which time label in-
formation can be propagated between docu-
ments and events on a bipartite graph. The ex-
periments show that our event-based propaga-
tion model can predict document timestamps
in high accuracy and the model combined with
a MaxEnt classifier outperforms the state-of-
the-art method for this task especially when
the size of the training set is small.

1 Introduction

Time is an important dimension of any informa-
tion space and can be useful in information re-
trieval, question-answering systems and timeline
summaries. In the applications involving tempo-
ral analysis, document timestamps are very useful.
For instance, temporal information retrieval mod-
els take into consideration the document’s creation
time for document retrieval and ranking (Kalczyn-
ski and Chou, 2005; Berberich et al., 2007) for bet-
ter dealing with time-sensitive queries; some infor-

∗Corresponding author

mation retrieval applications such as Google Scholar
can list articles published during the time a user
specifies for better satisfying users’ needs. In addi-
tion, timeline summarization techniques (Hu et al.,
2011; Binh Tran et al., 2013) and some event-event
ordering models (Chambers and Jurafsky, 2008;
Yoshikawa et al., 2009) also rely on the timestamps.
Unfortunately, many documents on the web do not
have a credible timestamp, as Chambers (2012) re-
ported. Therefore, it is significant to date docu-
ments, that is to predict document creation time.

One typical method for dating document is based
on temporal language models, which were first used
for dating by de Jong et al. (2005). They learned
language models (unigram) for specific time periods
and scored articles with normalized log-likelihood
ratio scores. The other typical approach for the task
was proposed by Nathanael Chambers (2012). In
Chambers’s work, discriminative classifiers – max-
imum entropy (MaxEnt) classifiers were used by
incorporating linguistic features and temporal con-
straints for training, which outperforms the previous
temporal language models on a subset of Gigaword
Corpus (Graff et al., 2003).

However, the conventional methods have some
limitations because they predict creation time of
documents mainly based on feature-based models
without understanding content of documents, which
may lead to wrong predictions in some cases. For
instance, assume that D1 and D2 are documents
whose content is given as follows:

(D1) Sudan last year accused Eritrea of
backing an offensive by rebels in the east-
ern border region.
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(D2) Two years ago, Sudan accused Er-
itrea of backing an offensive by rebels in
the eastern border region.

SinceD1 andD2 share many important features, the
previous dating methods are very likely to predict
the same timestamp for the two documents. How-
ever, it will be easy to infer that the creation time of
D1 should be one year earlier than that of D2 if we
analyze the content of the two documents.

Unlike the previous methods, this paper exploits
relative temporal relations between events and doc-
uments for dating documents on the basis of an un-
derstanding of document content.

It is known that each event in a news article has
a relative temporal relation with the document. By
analyzing the relative temporal relation, time of the
event can be known if we know the document times-
tamp; on the other hand, if the time of an event is
known, it can also be used to predict the creation
time of documents mentioning the event, which can
be best demonstrated with the above-mentioned ex-
ample of D1 and D2. In the example, “last year”
is an important cue to infer that the event mentioned
by the documents occurred in 2002 if we know the
timestamp of D1 is 2003. With the information that
the event occurred in 2002, it can also be inferred
from the temporal expression “Two years ago” that
D2 was written in 2004. In this way, the timestamp
of the labeled document (D1) is propagated to the
unlabeled document (D2) through the event both of
them mention, which is the main intuition of this pa-
per.

In fact, this intuition seems practical to date doc-
uments on the web because web data is very re-
dundant. Many documents on the web can be con-
nected via events because an event is usually men-
tioned by different documents. According to our
analysis of a collection of news articles spanning 5
years, it is found that an event is mentioned by 3.44
news articles on average; on the other hand, a doc-
ument usually refers to multiple events. Therefore,
if one knows a document timestamp, time of events
the document mentions can be obtained by analyz-
ing the relative temporal relations between the doc-
ument and the events. Likewise, if the time of an
event is known, then it can be used to predict cre-
ation time of the documents which mention it.

Based on the intuition, we proposed an event-
based time label propagation model called confi-
dence boosting in which timestamps are propagated
according to relative temporal relations between
documents and events. In this way, documents can
be dated with an understanding of content so that
this model can date document more credibly. To our
knowledge, it is the first time that the relative tempo-
ral relations between documents and events are ex-
ploited for dating documents, which is proved to be
effective by the experimental results.

2 Event-based Time Label Propogation

As mentioned above, the relative temporal relations
between documents and events are useful for dat-
ing documents. By analyzing the temporal relations,
even if there are only a small number of documents
labeled with timestamps, this information can be
propagated to documents connected with them on a
bipartite graph using breadth first traversal (BFS).

Figure 1: An example of BFS-based propagation

As shown in figure 1, there are two kinds of nodes
in the bipartite graph. A document node is a single
document while an event node represents an event.
The edge between a document node and an event
node means that the document mentions the event.
Also, the edge carries the information of the rela-
tive temporal relation between the document and the
event. The label propagation from node i to node j
will occur if BFS condition which is defined as fol-
lows is satisfied:{

eij ∈ E
i ∈ L and j /∈ L (BFS condition)

When the timestamp of i is propagated to j:
Y (j) = Y (i) + δ(i, j)

L = L ∪ {j}
where E is the set of edges of the bipartite graph,
eij denotes the edge between node i and j, L is the
set of nodes which have been already labeled with
timestamps, Y (i) is the year of node i and δ(i, j) is
the relative temporal relation between node i and j.
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In figure 1, the timestamp of document D1 is 2003,
which is known. This information can be propagated
to its adjacent nodes i.e. the event nodes it men-
tions according to the relative temporal relations.
Then, these event nodes propagate their timestamps
to other documents which mention them. By re-
peating this process, the timestamp of the document
can be propagated to documents which are reachable
from the initially labeled document on the bipartite
graph.

Although the BFS-based propagation process can
propagate timestamps from few labeled documents
to a large number of unlabeled ones, it has two short-
comings for this task. First, once one timestamp is
propagated incorrectly, this error will lead to more
mistakes in the following propagations. If such an
error occurred at the beginning of the propagation
process, it would lead to propagation of errors. Sec-
ond, BFS-based method cannot address conflict of
predictions during propagation, which is shown in
figure 2.

Figure 2: Conflict of predictions during propagation

To address the problems of the BFS-based
method, we proposed a novel propagation model
called confidence boosting model which improves
the BFS-based model by optimizing the global con-
fidence of the bipartite graph. In the confidence
boosting model, every node in the bipartite graph
has a confidence which measures the credibility of
the predicted timestamp of the node. When the
timestamp of a node is propagated to other nodes,
its confidence will be also propagated to the tar-
get nodes with some loss. The loss of confi-
dence is called confidence decay. Formally, the
confidence decay process is described as follows:

c(j) = c(i)× σ(i, j)
where c(i) denotes confidence of node i and
σ(i, j) is the decay factor from node i to
node j. For guaranteeing that timestamps
can be propagated on the bipartite graph cred-

ibly, we define the following condition which
is called CB (Confidence Boosting) condition:{

eij ∈ E
c(i)× σ(i, j) > c(j)

(CB condition)

In the confidence boosting model, propagation from
node i to node j will occur only if CB condition is
satisfied. When timestamps are propagated on the
bipartite graph, timestamps and confidence of nodes
will be updated dynamically. A node with high con-
fidence is more active than nodes with low confi-
dence to propagate its timestamp because a node
with high confidence is more likely to satisfy the CB
condition for propagating its timestamp. Moreover,
a prediction with low confidence can be corrected by
the prediction with high confidence. Therefore, the
confidence boosting model can address both prop-
agation of errors and conflict of predictions which
cannot be tackled by the BFS-based model.

However, there are challenges for running such
propagation models in practice. First, the relative
temporal relations between documents and events
are usually unavailable. Second, events extracted
from different documents do not have any connec-
tion even if they refer to the same event. There-
fore, each event is connected with only one docu-
ment in the bipartite graph and thus cannot prop-
agate its timestamp to other documents unless we
perform event coreference resolution. Third, propa-
gations from generic events are very likely to lead to
propagation errors because generic events can hap-
pen in any year. Also, how to set the confidence and
decay factors reasonably in practice for a confidence
boosting model is worthy of investigation. All these
challenges for the propagation models and their cor-
responding solutions will be discussed in Section 3.

3 Details of Event-based Propagation
Models

In this section, details of the event-based time la-
bel propagation models including challenges and
their corresponding solutions are presented. We first
discuss the event extraction and processing involv-
ing relative temporal relation mining, event coref-
erence resolution and distinguishing specific extrac-
tions from generic ones in Section 3.1. Then, we
show the confidence boosting algorithm in detail in
Section 3.2.
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3.1 Event extraction and processing
As mentioned in previous sections, events play a key
role in the propagation models. We define an event
as a Subject-Predicate-Object (SPO) triple. To ex-
tract events from raw text, an open information ex-
traction software - ReVerb (Fader et al., 2011) is
used. ReVerb is a program that automatically iden-
tifies and extracts relationships from English sen-
tences. It takes raw text as input and outputs SPO
triples which are called extractions.

However, extractions extracted by ReVerb cannot
be used directly for our propagation models for three
main reasons. First, the relative temporal relations
between documents and the extractions are unavail-
able. Second, the extractions extracted from differ-
ent documents do not have any connection even if
they refer to the same event. Third, propagations
from generic events are very likely to lead to propa-
gation errors.

For addressing the three challenges for the prop-
agation models, we first presented a rule-based
method for mining the relative temporal relations be-
tween extractions and documents in Section 3.1.1.
Then, an efficient event coreference resolution
method is introduced in Section 3.1.2. Finally, the
method for distinguishing specific extractions from
generic ones is shown in Section 3.1.3.

3.1.1 Relative temporal relation mining
We used a rule-based method to extract temporal

expressions and used Stanford parser (De Marneffe
et al., 2006) to analyze association between the tem-
poral expressions and the extractions. Specifically,
we define that an extraction is associated with a tem-
poral expression if there is an arc from the predicate
of the extraction to the temporal expression in the
dependency tree. For a certain extraction, there are
the following four cases whose instances are shown
in table 1 for handling.
Case 1: The extraction is associated with an abso-
lute temporal expressions with year mentions in the
sentence.

In this case, the time of the extraction is equal to
the year mention:

Y (ex) = Y earMention
For the example in table 1, Y (ex) = 1999.

Case 2: The extraction is associated with a relative
temporal expression (not involving year) in the sen-

Case Instance
1 In 1999, South Korea exported 89,000

tons of pork to Japan.

2
In April, however, the BOI investments

showed marked improvement.
Last month, Kazini vowed to resign his

top army job.
3 Julius Erving moved with his family to

Florida three years ago.
4 The meeting focused on ways to revive

the stalled Mideast peace process.

Table 1: Instances of various temporal expressions

tence.
In this case, the time of the extraction is equal to

the creation time of the document:
Y (ex) = Y (d)

Case 3: The extraction is associated with a relative
temporal expression (involving specific year gap) in
the sentence.

In this case, the time of the extraction is computed
as follows:

Y (ex) = Y (d)± Y earGap
For the example in table 1, Y (ex) = Y (d)− 3.

Case 4: The extraction is not associated with any
temporal expression in the sentence or the other
cases.

In this case, it is difficult to recognize the rela-
tive temporal relations. However, timeliness can be
leveraged to determine the relations as a heuristic
method. It is known that timeliness is an important
feature of news so that events reported by a news ar-
ticle usually took place a couple of days or weeks
before the article was written. Therefore, we heuris-
tically consider the year of the extraction is the same
with that of its source document in this case:

Y (ex) = Y (d)

In the cases except case 1, the relative tempo-
ral relation between an extraction and the docu-
ment it comes from can be determined. To evalu-
ate the performance of the rule-based method, we
sampled 3,000 extractions from documents written
in the year of 1995-1999 of Gigaword corpus and
manually labeled these extractions with a timestamp
based on their context and their corresponding docu-
ment timestamps as golden standard. Table 2 shows
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the accuracy of each case which will be used as a
part of the decay factor in the confidence boosting
model.

Case Accuracy
1 0.774(168/217)
2 0.994(844/849)
3 0.836(281/336)
4 0.861(1376/1598)

Total 0.890(2669/3000)

Table 2: Accuracy of the four cases

We define the set of these determined relative tem-
poral relations R as follows:

R = {rd,ex|d = doc(ex), ex ∈ C2 ∪ C3 ∪ C4}
rd,ex =< d, ex, δ(d, ex) >

δ(d, ex) = −δ(ex, d) = {0,±1,±2,±3, ...}
where Ck is the set of extractions in case k and
doc(ex) is the document which extraction ex comes
from. rd,ex is a triple describing the relative tempo-
ral relation between d and ex. For example, triple
rd,ex =< d, ex,−1 > means that the time of ex-
traction ex is one year before the time of document
d.

3.1.2 Event coreference resolution
Extractions from different documents have no

connections. However, there are a great number of
extractions referring to the same event. For find-
ing such coreferential event extractions efficiently,
hierarchical agglomerative clustering (HAC) is used
to cluster highly similar extractions into one cluster.
We use cosine to measure the similarity between ex-
tractions and select bag of words as features. Note
that it is less meaningful to cluster the extractions
from the same document because coreferential ex-
tractions from the same document are not helpful for
timestamp propagations. For this reason, similarity
between extractions from the same documents is set
to 0.

For HAC, selection of threshold is important. If
the threshold is set too high, only a few extractions
can be clustered despite high purity; on the contrary,
if the threshold is set too low, purity of clusters will
descend. In fact, selection of threshold is a trade-off
between the precision and recall of event corefer-
ence resolution. For selecting a suitable threshold,

extractions from documents written in 1995-1999
are used as a development set.

In practice, it is difficult for us to directly evalu-
ate the performance of the coreference resolution of
event extractions without golden standard which re-
quires much labors for manual annotations. Alterna-
tively, entropy which measures the purity of clusters
is used for evaluation because it can indirectly re-
flect the precision of coreference resolution to some
extent:

Entropy = −
∑

j

nj

n

∑
i

P (i, j)× log2 P (i, j)

where P (i, j) is the probability of finding an extrac-
tion whose timestamp is i in the cluster j, nj is the
number of items in cluster j and n is the total num-
ber of extractions. Note that timestamp of an extrac-
tion is assigned based on its document timestamp
using the method proposed in Section 3.1.1.

Figure 3 shows the effect of selection of the
threshold on cluster performance. It can be found
that when the threshold reaches 0.8, the entropy
starts descending gently and is low enough. Since
we want to find as many coreferential extractions as
possible on the premise that the precision is good,
the threshold is set to 0.8. Note that extractions
which are single in one cluster will be filtered out
because they do not have any connections with any
other documents.
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Figure 3: Entropy of clusters under different thresholds

3.1.3 Distinguishing specific events from
generic ones

Not all extractions extracted by ReVerb refer to
a specific event. For instance, the extraction “Ger-
many’s DAX index was down 0.2 percent” is un-
desirable for our task because it refers to a generic
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event and this event may occur in any year. In other
words, it is not able to indicate a certain timestamp
and thus propagations from a generic event node are
very likely to result in propagation errors. In con-
trast, the extraction “some of the provinces in China
were hit by SARS” refers to a specific event which
took place in 2003. For our task, such specific event
extractions which are associated with one certain
timestamp are desirable. For the sake of distinguish-
ing such extractions from the generic ones, a Max-
Ent classifier is used to classify extractions as either
specific ones or generic ones.

Training Set Generation A training set is indis-
pensable for training a MaxEnt classifier. In order
to generate training examples, we performed HAC
discussed in Section 3.1.2 for event coreference res-
olution on extractions from all documents written
in May and June of 1995-1999 and then analyzed
each cluster. If extractions in a cluster have different
timestamps, then the extractions in this cluster will
be labeled as generic extractions (negative); other-
wise, extractions in the cluster are labeled as spe-
cific ones (positive). In this way, the training set can
be generated without manually labeling. To avoid
bias of positive and negative examples, we sampled
3,500 positive examples and 3,500 negative exam-
ples to train the model.

Feature Selection The following features were se-
lected for training:

Named Entities: People and places are often dis-
cussed during specific time periods, particularly in
news genre. Intuitively, if an extraction contains
specific named entities then this extraction is less
likely to be a generic event. If an extraction con-
tains named entities, types and uninterrupted tokens
of the named entities will be included as features.

Numeral: According to our analysis of the train-
ing set generated by the above-mentioned method,
generic extractions usually contain numerals. For
example, the extraction “15 people died in this ac-
cident” and the extraction “225 people died in this
accident” have the same tokens except numerals and
they are labeled as a generic event because they are
clustered into one group due to high similarity but
they in fact refer to different events happening in
different years. Therefore, if an extraction contains
numerals, the feature “NUM” will be included.

Bag of words: Bag of words can also be an indicator
of specific extractions and generic ones. For exam-
ple, an extraction containing ‘stock’, ‘index’, ‘fell’
and ‘exchange’ is probably a generic one.

The model obtained after training can be used to
predict whether an extraction is a specific one. We
define P (S = 1|ex) as the probability that an ex-
traction is a specific one, which can be provided by
the classifier. Extractions whose probability to be a
specific one is less than 0.05 are filtered out. For the
other extractions, this probability is used as a part of
the decay factor in the confidence boosting model,
which will be discussed in detail in Section 3.2.

3.2 Confidence boosting

After extracting and processing the event extrac-
tions, relative temporal relations between documents
and events can be constructed. This can be for-
mally represented by a bipartite graph G=〈V,E〉.
There are two kinds of nodes on the bipartite graph:
document nodes and event nodes. Slightly dif-
ferent with the event node mentioned in Section
2, an event node in practice is a cluster of coref-
erential extractions and it can be connected with
multiple document nodes. Note that the bipar-
tite graph does not contain any isolate node. For
briefness, we define DNode as the set of docu-
ment nodes and ENode as the set of event nodes.
The set of edges E is formally defined as follows:
E = {eij , eji|i ∈ DNode, j ∈ ENode, ri,j ∈ R}

where R is the set of relative temporal relations de-
fined as Section 3.1.1.

3.2.1 Confidence and decay factor
As mentioned in Section 2, the confidence of a

node measures the credibility of the predicted times-
tamp. According to the definition, we set the confi-
dence of initially labeled nodes to 1 and set confi-
dence of nodes without any timestamp to 0 in prac-
tice. When the timestamp of a node is propagated
to another node, its confidence will be propagated to
the target node with some loss, as discussed in Sec-
tion 2. The confidence loss is caused by two factors
in practice. The first one is the credibility of the rel-
ative temporal relation between two nodes and the
other one depends on whether an extraction refers to
a specific event.

Relative temporal relations between documents
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and extractions we mined using the rule-based
method in Section 3.1.1 are not absolutely correct.
The credibility of the relations has an effect on the
confidence decay. Formally, we used π(i, j) to de-
note the credibility of the relative temporal relation
between node i and node j. The credibility of a rel-
ative temporal relation in each case can be estimated
through table 2. If the credibility of the relative tem-
poral relation between i and j is low, propagation
from node i to j probably leads to error. Therefore,
the confidence loss should be much in this case. On
contrary, if the relation is highly credible, it will be
less likely that propagation errors occur. Therefore,
the confidence loss should be little.

In addition, whether an extraction refers to a
generic event or a specific one exerts an impact on
the confidence loss. If an extraction refers to a
generic event, then the extractions in the same clus-
ter with it probably have different timestamps. Since
our propagation model assumes that extractions in a
cluster are coreferent and thus they should have the
same timestamp, propagations from a generic event
node are very likely to result in propagation errors.
Therefore, the timestamp of a generic event node
in fact is less credible for propagations and confi-
dence of such event nodes should be low for limiting
propagations from the nodes. For this reason, prop-
agation from a document node to a generic event
node leads to much loss of confidence. We define
the probability that an event node refers to a specific
event as follows:

P (S = 1|enode) =
1

|C|
∑
ex∈C

P (S = 1|ex)

where C is the set of extractions in the event node
and P (S = 1|ex) is the probability that an extrac-
tion refers to a specific event, which can be provided
by the MaxEnt classifier discussed in Section 3.1.3.

Considering the two factors for confidence loss,
we formally define the decay factor by (1).

σ(s, t) = (1){
π(s, t) if t ∈ DNode
π(s, t)× P (S = 1|t) otherwise

3.2.2 Confidence boosting algorithm
In confidence boosting model, the propagation

from i to j will occur only if the CB condition is

Figure 4: Algorithm of confidence boosting

satisfied. The confidence boosting propagation pro-
cess can be described as figure 4.

Whenever timestamps are propagated to other
nodes, the global confidence of the bipartite graph
will increase. For this reason, this propagation pro-
cess is called confidence boosting. In this model,
a node with high confidence is more active than
nodes with low confidence to propagate its times-
tamp. Moreover, a prediction with low confidence
can be corrected by the prediction with high con-
fidence. Therefore, the confidence boosting model
can alleviate the problem of propagation of errors
to some extent and handle conflict of predictions.
Thus, it can propagate timestamps more credibly
than the BFS-based model. It can also be proved
that each node on the bipartite graph must reach the
highest confidence it can reach so that the global
confidence of the bipartite graph must be optimal
when the confidence boosting propagation process
ends regardless of propagation orders, which will be
discussed in Section 3.2.3.

3.2.3 Proof of the optimality of confidence
boosting

Proof by contradiction can be used to prove that
propagation orders do not affect the optimality of the
confidence boosting model.
Proof Assume by contradiction that there is some
node that does not reach its highest confidence it can
reach when a confidence boosting process in propa-
gation order A ends:

∃vt s.t. cA(vt) < c∗(vt)

where cA(vt) is the confidence of vt when the
propagation process in order A ends and c∗(vt) is
the highest confidence that vt can reach. Assume
that (v1, v2, · · · , vt−1, vt) is the optimal propagation

7



path from the propagation source node v1 to the
node vt that leads to the highest confidence of vt,
which means that c∗(vt) = c∗(vt−1) × σ(vt−1, vt),
c∗(vt−1) = c∗(vt−2) × σ(vt−2, vt−1), ..., c∗(v2) =
c∗(v1) × σ(v1, v2). Then according to CB condi-
tion, since cA(vt−1) × σ(vt−1, vt) ≤ cA(vt) <
c∗(vt) = c∗(vt−1) × σ(vt−1, vt), the inequality
cA(vt−1) < c∗(vt−1) must hold. Similarly, it can be
easily inferred that cA(vt−2) < c∗(vt−2) and finally
cA(v1) < c∗(v1). Since v1 is the source node whose
timestamp is initially labeled and its confidence is 1,
the inequality cA(v1) < c∗(v1) cannot hold. Thus,
the assumption that cA(vt) < c∗(vt) cannot be sat-
isfied. Therefore, it can be proved that each node
on the bipartite graph must reach the highest con-
fidence it can reach so that the global confidence of
the bipartite graph must be optimal when confidence
boosting propagation process ends no matter what
order time labels are propagated in.

4 Experiments

In this section, we evaluate the performance of our
time label propagation models and different auto-
matic document dating models on the Gigaword
dataset. We first present the experimental setting.
Then we show experimental results and perform an
analysis.

4.1 Experimental Setting

Dataset To simulate the environment of the web
where data is very redundant, we use all documents
written in April, June, July and September of 2000-
2004 of Gigaword Corpus as dataset instead of sam-
pling a subset of documents from each period. The
dataset contains 900,199 news articles.
Pre-processing Many extractions extracted by Re-
Verb are short and uninformative and do not carry
any valuable information for propagating temporal
information. Also, some extractions do not refer
to events which already happened. These extrac-
tions may affect the performance of event corefer-
ence resolution and the rule-based method proposed
in Section 3.1.1 for mining relative temporal rela-
tions. Therefore, we filter out these undesirable ex-
tractions in advance with a rule-based method. The
rules are shown in table 3. This preprocessing re-
moves large numbers of “bad” extractions which are

undesirable for our task. As a result, not only com-
putation efficiency but also precision of event coref-
erence resolution will be improved.

Rule1 If the number of tokens of the extrac-
tion is less than 5 then this extraction
will be filtered out.

Rule2 If the maximum idf of terms of the ex-
traction is less than 3.0 then this ex-
traction will be filtered out.

Rule3 If the tense of the extraction is not past
tense then this extraction will be fil-
tered out.

Rule4 If the extraction is the content of di-
rect quotation then this extraction will
be filtered out.

Table 3: Pre-processing Rules

|DNode| 550,124
|ENode| 968,064
|E| 3,104,666

Table 4: Basic information of the bi-partite graph

Basic information of the document-event bipartite
graph constructed is shown in table 4.
Evaluation To evaluate the performance of the
propagation models for the task of dating on differ-
ent sizes of the training set, we used different sizes
of the labeled documents for training and consid-
ered the remaining documents as the test set. Note
that the training set is randomly sampled from the
dataset. To be more persuasive, we repeated above
experiments for five times.

However, in the time label propagation process,
not all documents can be labeled. For those doc-
uments which cannot be labeled in the process of
propagation, a MaxEnt classifier serves as a comple-
mentary approach to predict their timestamps. For
the MaxEnt classifier, unigrams and named entities
are simply selected as features and the initially la-
beled documents as well as documents labeled dur-
ing propagation process are used for training.

Baseline methods are temporal language models
proposed by de Jong et al. (2005) and the state-of-
the-art discriminative classifier with linguistic fea-
tures and temporal constraints which was proposed
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Initially Labeled 1k 5k 10k 50k 100k 200k 500k
Reached Min 443980 448653 453022 484562 518603 599724 732701
Reached Max 444266 448998 454028 484996 519333 579878 732799
Reached Avg 444107 448742 453786 484622 519110 579835 732758
Prop Ratio 444.1 89.7 45.4 9.7 5.2 2.9 1.5

Prop acc(BFS) 0.438 0.515 0.551 0.646 0.691 0.725 0.775
Prop acc(CB) 0.494 0.569 0.603 0.701 0.746 0.776 0.807

Table 5: Performance of Propagation

Initially Labeled 1k 5k 10k 50k 100k 200k 500k
Temporal LMs 0.277 0.323 0.353 0.412 0.422 0.425 0.420

Maxent(Unigrams) 0.326 0.378 0.407 0.486 0.517 0.553 0.590
Maxent(Unigrams+NER) 0.331 0.383 0.418 0.506 0.549 0.590 0.665

Chambers’s 0.331 0.386 0.423 0.524 0.571 0.615 0.690
BFS+Maxent 0.459 0.508 0.533 0.595 0.626 0.658 0.707
CB+Maxent 0.486 0.535 0.559 0.624 0.655 0.685 0.726

Table 6: Overall accuracy of dating models

by Nathanael Chambers (2012). In Chambers’s joint
model, the interpolation parameter λ is set to 0.35
which is considered optimal in his work.

4.2 Experimental Results

Table 5 shows the performance of propagation mod-
els where Reached denotes the number of docu-
ments labeled when the propagation process ends,
prop ratio and prop accuracy are defined as follows:

Prop Ratio =
#ReachedDocNodes

#LabeledDocNodes
Prop Accuracy =

#CorrectDocNodes−#LabeledDocNodes

#ReachedDocNodes−#LabeledDocNodes

where #LabeledDocNodes is the number of ini-
tially labeled document nodes which are documents
in the training set and #ReachedDocNodes is the
number of document nodes labeled when the propa-
gation process ends.

Note that prop ratio and accuracy in table 5 are
the mean of the prop ratio and accuracy of the five
groups of experiments. It is clear that confidence
boosting model improves the prop accuracy over
BFS-based model. When only 1,000 documents
are initially labeled with timestamps, the confidence
boosting model can propagate their timestamps to
more than 400,000 documents with an accuracy of

0.494, approximately 12.8% relative improvement
over the BFS counterpart, which proves effective-
ness of the confidence boosting model.

However, as shown in table 5, hardly can the prop-
agation process propagate timestamps to all doc-
uments. One reason is that the number of docu-
ment nodes on the bipartite graph is only 550,124,
approximately 61.1% of all documents. The other
documents may not mention events which are also
mentioned by other documents, which means they
are isolate and thus are excluded from the bipartite
graph. Also, the event coreference resolution phase
does not guarantee finding all coreferential extrac-
tions; in other words, recall of event coreference res-
olution is not 100%. The other reason is that some
documents are unreachable from the initially labeled
nodes even if they are in the bipartite graph.

The overall accuracy of different dating models
is shown in table 6. As with table 5, overall accu-
racy in table 6 is the average performance of mod-
els in the five groups of experiments. As reported
by Nathanael Chambers (2012), the discriminative
classifier performs much better than the temporal
language models on the Gigaword dataset. In the
case of 500,000 training examples, the Maxent clas-
sifier using unigram features outperforms the tem-
poral language models by 40.5% relative accuracy.
If the size of the training set is large enough, named
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entities and linguistic features as well as temporal
constraints will improve the overall accuracy sig-
nificantly. However, if the size of the training set
is small, these features will not result in much im-
provement.

Compared with the previous models, the propaga-
tion models predict the document timestamps much
more accurately especially in the case where the size
of the training set is small. When the size of the
training set is 1,000, our BFS-based model and con-
fidence boosting model combined with the MaxEnt
classifier outperform Chambers’s joint model which
is considered the state-of-the-art model for the task
of automatic dating of documents by 38.7% and
46.8% relative accuracy respectively. This is be-
cause the feature-based methods are not very reli-
able especially when the size of the training set is
small. In contrast, our propagation models can pre-
dict timestamps of documents with an understand-
ing of document content, which allows our method
to date documents more credibly than the baseline
methods. Also, by comparing table 5 with table 6,
it can be found that prop accuracy is almost always
higher than overall accuracy, which also verifies that
the propagation models are more credible for dat-
ing document than the feature-based models. More-
over, data is so redundant that a great number of
documents can be connected with events they share.
Therefore, even if a small number of documents are
labeled, the labeled information can be propagated
to large numbers of articles through the connections
between documents and events according to relative
time relations. Even if the size of the training set
is large, e.g. 500,000, our propagation models still
outperform the state-of-the-art dating method. Ad-
ditionally, some event nodes on the bipartite graph
may be labeled with a timestamp during the process
of propagation as a byproduct. The temporal infor-
mation of the events would be useful for other tem-
poral analysis tasks.

5 Related Work

In addition to work of de Jong et al. (2005) and
Chambers (2012) introduced in previous sections,
there is also other research focusing on the task of
document dating. Kanhabua and Norvag (2009) im-
proved temporal language models by incorporating

temporal entropy and search statistics and apply-
ing two filtering techniques to the unigrams in the
model. Kumar et al. (2011) is also based on the
temporal language models, but more historically-
oriented, which models the timeline from the present
day back to the 18th century. In addition, they used
KL-divergence instead of normalized log likelihood
ratio to measure differences between a document
and a time period’s language model.

However, these methods are based on tempo-
ral language models so they also suffer from the
problem of the method of de Jong et al. (2005).
Therefore, they inevitably make wrong predictions
in some cases, just as mentioned in Section 1. Com-
pared with these methods, our event-based propaga-
tion models exploit relative temporal relations be-
tween documents and events for dating document
on a basis of an understanding of document content,
which is more reasonable and also proved to be more
effective by the experimental results.

6 Conclusion

The main contribution of this paper is exploiting
relative temporal relations between events and doc-
uments for the document dating task. Different
with the conventional work which dates documents
with feature-based methods, we proposed an event-
based time label propagation model called confi-
dence boosting in which timestamps are propagated
on a document-event bipartite graph according to
relative temporal relations between documents and
events for dating documents on a basis of an under-
standing of document content. We discussed chal-
lenges for the propagation models and gave the cor-
responding solutions in detail. The experimental re-
sults show that our event-based propagation model
can predict document timestamps in high accuracy
and the model combined with a MaxEnt classifier
outperforms the state-of-the-art method on a data-
redundant dataset.
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Abstract

In this paper we classify the temporal relations
between pairs of events on an article-wide ba-
sis. This is in contrast to much of the exist-
ing literature which focuses on just event pairs
which are found within the same or adjacent
sentences. To achieve this, we leverage on dis-
course analysis as we believe that it provides
more useful semantic information than typical
lexico-syntactic features. We propose the use
of several discourse analysis frameworks, in-
cluding 1) Rhetorical Structure Theory (RST),
2) PDTB-styled discourse relations, and 3)
topical text segmentation. We explain how
features derived from these frameworks can be
effectively used with support vector machines
(SVM) paired with convolution kernels. Ex-
periments show that our proposal is effective
in improving on the state-of-the-art signifi-
cantly by as much as 16% in terms of F1, even
if we only adopt less-than-perfect automatic
discourse analyzers and parsers. Making use
of more accurate discourse analysis can fur-
ther boost gains to 35%.

1 Introduction

A good amount of research had been invested in un-
derstanding temporal relationships within text. Par-
ticular areas of interest include determining the re-
lationship between an event mention and a time ex-
pression (timex), as well as determining the relation-
ship between two event mentions. The latter, which
we refer to as event-event (E-E) temporal classifica-
tion is the focus of this work.

For a given event pair which consists of two
events e1 and e2 found anywhere within an article,

we want to be able to determine if e1 happens be-
fore e2 (BEFORE), after e2 (AFTER), or within the
same time span as e2 (OVERLAP).

Consider this sentence1:
At least 19 people were killed and 114 people were
wounded in Tuesday’s southern Philippines airport blast,
officials said, but reports said the death toll could climb
to 30.

(1)

Three event mentions found within the sentence are
bolded. We say that there is an OVERLAP rela-
tionship between the “killed – wounded” event pair
as these two events happened together after the air-
port blast. Similarly there is a BEFORE relationship
between both the “killed – said”, and “wounded –
said” event pairs, as the death and injuries happened
before reports from the officials.

Being able to infer these temporal relationships
allows us to build up a better understanding of the
text in question, and can aid several natural lan-
guage understanding tasks such as information ex-
traction and text summarization. For example, we
can build up a temporal characterization of an article
by constructing a temporal graph denoting the rela-
tionships between all events within an article (Ver-
hagen et al., 2009). This can then be used to help
construct an event timeline which layouts sequen-
tially event mentions in the order they take place (Do
et al., 2012). The temporal graph can also be used
in text summarization, where temporal order can be
used to improve sentence ordering and thereby the
eventual generated summary (Barzilay et al., 2002).

Given the importance and value of temporal re-
lations, the community has organized shared tasks

1From article AFP ENG 20030304.0250 of the ACE 2005
corpus (ACE, 2005).
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to spur research efforts in this area, including the
TempEval-1, -2 and -3 evaluation workshops (Ver-
hagen et al., 2009; Verhagen et al., 2010; Uzzaman
et al., 2012). Most related work in this area have
focused primarily on the task defintitions of these
evaluation workshops. In the task definitions, E-
E temporal classification involves determining the
relationship between events found within the same
sentence, or in adjacent sentences. For brevity we
will refer to this loosely as intra-sentence E-E tem-
poral classification in the rest of this paper.

This definition however is limiting and insuffi-
cient. It was adopted as a trade-off between com-
pleteness, and the need to simplify the evaluation
process (Verhagen et al., 2009). In particular, one
deficiency is that it does not allow us to construct the
complete temporal graph we seek. As illustrated in
Figure 1, being able to perform only intra-sentence
E-E temporal classification may result in a forest of
disconnected temporal graphs. A sentence s3 sepa-
rates events C and D, as such an intra-sentence E-E
classification system will not be able to determine
the temporal relationship between them. While we
can determine the relationship between A and C in
the figure with the use of temporal transitivity rules
(Setzer et al., 2003; Verhagen, 2005), we cannot re-
liably determine the relationship between say A and
D.

A

B C

D E

s1

s2

s3

s4

Figure 1: A disconnected temporal graph of events within
an article. Horizontal lines depict sentences s1 to s4, and
the circles identify events of interest.

In this work, we seek to overcome this limitation,
and study what can enable effective article-wide E-E
temporal classification. That is, we want to be able
to determine the temporal relationship between two
events located anywhere within an article.

The main contribution of our work is going
beyond the surface lexical and syntactic features
commonly adopted by existing state-of-the-art ap-
proaches. We suggest making use of semantically

motivated features derived from discourse analysis
instead, and show that these discourse features are
superior.

While we are just focusing on E-E temporal
classification, our work can complement other ap-
proaches such as the joint inference approach pro-
posed by Do et al. (2012) and Yoshikawa et al.
(2009) which builds on top of event-timex (E-T) and
E-E temporal classification systems. We believe that
improvements to the underlying E-T and E-E classi-
fication systems will help with global inference.

2 Related Work

Many researchers have worked on the E-E temporal
classification problem, especially as part of the Tem-
pEval series of evaluation workshops. Bethard and
Martin (2007) presented one of the earliest super-
vised machine learning systems, making use of sup-
port vector machines (SVM) with a variety of lexical
and syntactic features. Kolya et al. (2010) described
a conditional random field (CRF) based learner mak-
ing use of similar features. Other researchers includ-
ing Uzzaman and Allen (2010) and Ha et al. (2010)
made use of Markov Logic Networks (MLN). By
leveraging on the transitivity properties of temporal
relationships (Setzer et al., 2003), they found that
MLNs are useful in inferring new temporal relation-
ships from known ones.

Recognizing that the temporal relationships be-
tween event pairs and time expressions are related,
Yoshikawa et al. (2009) proposed the use of a joint
inference model and showed that improvements in
performance are obtained. However this gain is at-
tributed to the joint inference model they had devel-
oped, making use of similar surface features.

To the best of our knowledge, the only piece
of work to have gone beyond sentence boundaries
and tackle the problem of article-wide E-E temporal
classification is by Do et al. (2012). Making use of
integer linear programming (ILP), they built a joint
inference model which is capable of classifying tem-
poral relationships between any event pair within
a given document. They also showed that event
co-reference information can be useful in determin-
ing these temporal relationships. However they did
not make use of features directed specifically at de-
termining the temporal relationships of event pairs
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across different sentences. Other than event co-
reference information, they adopted the same mix
of lexico-syntactic features.

Underlying these disparate data-driven methods
for similar temporal processing tasks, the reviewed
works all adopted a similar set of surface fea-
tures including vocabulary features, part-of-speech
tags, constituent grammar parses, governing gram-
mar nodes and verb tenses, among others. We ar-
gue that these features are not sufficiently discrimi-
native of temporal relationships because they do not
explain how sentences are combined together, and
thus are unable to properly differentiate between the
different temporal classifications. Supporting our
argument is the work of Smith (2010), where she
argued that syntax cannot fully account for the un-
derlying semantics beneath surface text. D’Souza
and Ng (2013) found out as much, and showed that
adopting richer linguistic features such as lexical re-
lations from curated dictionaries (e.g. Webster and
WordNet) as well as discourse relations help tempo-
ral classification. They had shown that the Penn Dis-
course TreeBank (PDTB) style (Prasad et al., 2008)
discourse relations are useful. We expand on their
study to assess the utility of adopting additional dis-
course frameworks as alternative and complemen-
tary views.

3 Making Use of Discourse

To highlight the deficiencies of surface features, we
quote here an example from Lascarides and Asher
(1993):

[A] Max opened the door. The room was pitch dark.
[B] Max switched off the light. The room was pitch dark. (2)

The two lines of text A and B in Example 2 have
similar syntactic structure. Given only syntactic fea-
tures, we may be drawn to conclude that they share
similar temporal relationships. However in the first
line of text, the events temporally OVERLAP, while
in the second line they do not. Clearly, syntax alone
is not going to be useful to help us arrive at the cor-
rect temporal relations.

If existing surface features are insufficient, what is
sufficient? Given a E-E pair which crosses sentence
boundaries, how can we determine the temporal re-
lationship between them? We take our cue from the
work of Lascarides and Asher (1993). They sug-

gested instead that discourse relations hold the key
to interpreting such temporal relationships.

Building on their observations, we believe that
discourse analysis is integral to any solution for the
problem of article-wide E-E temporal classification.
We thus seek to exploit a series of different discourse
analysis studies, including 1) the Rhetorical Struc-
ture Theory (RST) discourse framework, 2) Penn
Discourse Treebank (PDTB)-styled discourse rela-
tions based on the lexicalized Tree Adjoining Gram-
mar for Discourse (D-LTAG), and 3) topical text seg-
mentation, and validate their effectiveness for tem-
poral classification.
RST Discourse Framework. RST (Mann and
Thompson, 1988) is a well-studied discourse anal-
ysis framework. In RST, a piece of text is split into a
sequence of non-overlapping text fragments known
as elementary discourse units (EDUs). Neighboring
EDUs are related to each other by a typed relation.
Most RST relations are hypotactic, where one of the
two EDUs participating in the relationship is demar-
cated as a nucleus, and the other a satellite. The nu-
cleus holds more importance, from the point of view
of the writer, while the satellite’s purpose is to pro-
vide more information to help with the understand-
ing of the nucleus. Some RST relations are however
paratactic, where the two participating EDUs are
both marked as nuclei. A discourse tree can be com-
posed by viewing each EDU as a leaf node. Nodes
in the discourse tree are linked to one another via the
discourse relations that hold between the EDUs.

RST discourse relations capture the semantic re-
lation between two EDUs, and these often offer a
clue to the temporal relationship between events in
the two EDUs too. As an example, let us refer once
again to Example 2. Recall that in the second line of
text “switched off” happens BEFORE “dark”. The
RST discourse structure for the second line of text
is shown on the left of Figure 2. We see that the
two sentences are related via a “Result” discourse
relation. This fits our intuition that when there is
causation, there should be a BEFORE/AFTER rela-
tionship. The RST discourse relation in this case is
very useful in helping us determine the relationship
between the two events.
PDTB-styled Discourse Relations. Another widely
adopted discourse relation annotation is the PDTB
framework (Prasad et al., 2008). Unlike the RST
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Max switched off the light. The room was pitch dark.

RESULT

The room was pitch dark.

CONTINGENCY :: CAUSE

arg1 arg2

Max switched off the light.

Figure 2: RST and PDTB discourse structures for the second line of text in Example 2. The structure on the left is the
RST discourse structure, while the structure on the right is for PDTB.

framework, the discourse relations in PDTB build on
the work on D-LTAG by Webber (2004), a lexicon-
grounded approach to discourse analysis. Practi-
cally, this means that instead of starting from a pre-
identified set of discourse relations, PDTB-styled
annotations are more focused on detecting possible
connectives (can be either explicit or implicit) within
the text, before identifying the text fragments which
they connect and how they are related to one another.

Applied again to the second line of text we have in
Example 2, we get a structure as shown on the right
side of Figure 2. From the figure we can see that
the two sentences are related via a “Cause” relation-
ship. Similar to what we have explained earlier for
the case of RST, the presence of a causal effect here
strongly hints to us that events in the two sentences
share a BEFORE/AFTER relationship.

At this point we want to note the differences be-
tween the use of the RST framework and PDTB-
styled discourse relations in the context of our work.
The theoretical underpinnings behind these two dis-
course analysis are very different, and we believe
that they can be complementary to each other. First,
the RST framework breaks up text within an article
linearly into non-overlapping EDUs. Relations can
only be defined between neighboring EDUs. How-
ever this constraint is not found in PDTB-styled re-
lations, where a text fragment can participate in one
discourse relation, and a subsequence of it partic-
ipate in another. PDTB relations are also not re-
stricted only to adjacent text fragments. In this as-
pect, the flexibility of the PDTB relations can com-
plement the seemingly more rigid RST framework.

Second, with PDTB-styled relations not every
sentence needs to be in a relation with another as
the PDTB framework does not aim to build a global
discourse tree that covers all sentence pairs. This is
a problem when we need to do an article-wide anal-
ysis. The RST framework does not suffer from this
limitation however as we can build up a discourse

tree connecting all the text within a given article.
Topical Text Segmentation. A third complemen-
tary type of inter-sentential analysis is topical text
segmentation. This form of segmentation separates
a piece of text into non-overlapping segments, each
of which can span several sentences. Each segment
represents passages or topics, and provides a coarse-
grained study of the linear structure of the text (Sko-
rochod’Ko, 1972; Hearst, 1994). The transition be-
tween segments can represent possible topic shifts
which can provide useful information about tempo-
ral relationships.

Referring to Example 32, we have delimited the
different lines of text into segments with parenthe-
ses along with a subscript. Segment (1) talks about
the casualty numbers seen at a medical centre, while
Segment (2) provides background information that
informs us a bomb explosion had taken place. The
segment boundary signals to us a possible temporal
shift and can help us to infer that the bombing event
took place BEFORE the deaths and injuries had oc-
curred.

(The Davao Medical Center, a regional government hos-
pital, recorded 19 deaths with 50 wounded. Medical
evacuation workers however said the injured list was
around 114, spread out at various hospitals.)1
(A powerful bomb tore through a waiting shed at the
Davao City international airport at about 5.15 pm (0915
GMT) while another explosion hit a bus terminal at the
city.)2

(3)

4 Methodology

Having motivated the use of discourse analysis for
our problem, we now proceed to explain how we can
make use of them for temporal classification. The
different facets of discourse analysis that we are ex-
ploring in this work are structural in nature. RST

2From article AFP ENG 20030304.0250 of the ACE 2005
corpus.
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EDU2 EDU3

r2

r1

EDU1A

B

Figure 3: A possible RST discourse tree. The two circles
denote two events A and B which we are interested in.

t1 t2 t3 t4

r1 r2

r3

BA

Figure 4: A possible PDTB-styled discourse annotation
where the circles represent events we are interested in.

and PDTB discourse relations are commonly repre-
sented as graphs, and we can also view the output
of text segmentation as a graph with individual text
segments forming vertices, and the transitions be-
tween them forming edges.

Considering this, we propose the use of support
vector machines (SVM), adopting a convolution ker-
nel (Collins and Duffy, 2001) for its kernel function
(Vapnik, 1999; Moschitti, 2006). The use of convo-
lution kernels allows us to do away with the exten-
sive feature engineering typically required to gener-
ate flat vectorized representations of features. This
process is time consuming and demands specialized
knowledge to achieve representations that are dis-
criminative, yet are sufficiently generalized. Con-
volution kernels had also previously been shown to
work well for the related problem of E-T temporal
classification (Ng and Kan, 2012), where the fea-
tures adopted are similarly structural in nature.

We now describe our use of the discourse analysis
frameworks to generate appropriate representations
for input to the convolution kernel.
RST Discourse Framework. Recall that the RST
framework provides us with a discourse tree for an
entire input article. In recent years several automatic
RST discourse parsers have been made available. In
our work, we first make use of the parser by Feng
and Hirst (2012) to obtain a discourse tree represen-
tation of our input. To represent the meaningful por-
tion of the resultant tree, we encode path information
between the two sentences of interest.

We illustrate this procedure using the example
discourse tree illustrated in Figure 3. EDUs includ-
ing EDU1 to EDU3 form the vertices while dis-
course relations r1 and r2 between the EDUs form
the edges. For a E-E pair, {A, B}, we can obtain a
feature structure by first locating the EDUs within
which A and B are found. A is found inside EDU1
and B is found within EDU3. We trace the short-

est path between EDU1 and EDU3, and use this
path as the feature structure for the E-E pair, i.e.
{r1 → r2}.
PDTB-styled Discourse Relations. We make use of
the automatic PDTB discourse parser from Lin et al.
(2013) to obtain the discourse relations over an input
article. Similar to how we work with the RST dis-
course framework, for a given E-E pair, we retrieve
the relevant text fragments and use the shortest path
linking the two events as a feature structure for our
convolution kernel classifier.

An example of a possible PDTB-styled discourse
annotation is shown in Figure 4. The horizontal
lines represent different sentences in an article. The
parentheses delimit text fragments, t1 to t4, which
have been identified as arguments participating in
discourse relations, r1 to r3. For a given E-E pair
{A, B}, we use the trace of the shortest path be-
tween them i.e. {r1 → r2} as a feature structure.

We take special care to regularize the input (as,
unlike EDUs in RST, arguments to different PDTB
relations may overlap, as in r2 and r3). We model
each PDTB discourse annotation as a graph and em-
ploy Dijkstra’s shortest path algorithm. The graph
resulting from the annotation in Figure 4 is given in
Figure 5. Each text fragment ti maps to a vertex
ni in the graph. PDTB relations between text frag-
ments form edges between corresponding vertices.
As r2 relates t2 to both t3 and t4, two edges link
up n2 to the corresponding vertices n3 and n4 re-
spectively. By doing this, Dijkstra’s algorithm will
always allow us to find the desired shortest path.

n1 n2 n3 n4
r1 r2 r3

r2

Figure 5: Graph derived from discourse annotation in
Figure 4.
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Topical Text Segmentation. Taking as input a com-
plete text article, we make use of the state-of-the-art
text segmentation system from Kazantseva and Sz-
pakowicz (2011). The output of the system is a se-
ries of non-overlapping, linear text segments, which
we can number sequentially.

In Figure 6 the horizontal lines represent sen-
tences. Parentheses with subscripts mark out the
segment boundaries. We can see two segments s1
and s2 here. Given a target E-E pair {A, B} (repre-
sented as circles inside the figure), we identify the
segment number of the corresponding segment in
which each of A and B is found. We build a fea-
ture structure with the identified segment numbers,
i.e. {s1 → s2} to capture the segmentation.

A

B
s1

s2

Figure 6: A possible segmentation of three sentences into
two segments.

5 Results

We conduct a series of experiments to validate the
utility of our proposed features.
Data Set. We make use of the same data set built
by Do et al. (2012). The data set consists of 20
newswire articles which originate from the ACE
2005 corpus (ACE, 2005). Initially, the data set
consist of 324 event mentions, and a total of 375
annotated E-E pairs. We perform the same temporal
saturation step as described in Do et al. (2012), and
obtained a total of 7,994 E-E pairs3.

A breakdown of the number of instances by each
temporal classes is shown in Table 1. Unlike earlier
data sets such as that for TempEval-2 where more
than half (about 55%) of test instances belong to the

3Though we have obtained the data set from the original au-
thors, there was a discrepancy in the number of E-E pairs. The
original paper reported a total of 376 annotated E-E pairs. Be-
sides this, we also repeated the saturation steps iteratively until
no new relationship pairs are generated. We believe this to be
an enhancement as it ensures that all inferred temporal relation-
ships are generated.

OVERLAP class, OVERLAP instances make up just
10% of the data set.

This difference is due mainly to the fact that our
data set consists not only of intra-sentence E-E pairs,
but also of article-wide E-E pairs. Figure 7 shows
the number of instances for each temporal class bro-
ken down by the number of sentences (i.e. sentence
gap) that separate the events within each E-E pair.
We see that as the sentence gap increases, the pro-
portion of OVERLAP instances decreases. The in-
tuitive explanation for this is that when event men-
tions are very far apart in an article, it becomes more
unlikely that they happen within the same time span.

Class AFTER BEFORE OVERLAP
# E-E pairs 3,588 (45%) 3,589 (45%) 815 (10%)

Table 1: Number of E-E pairs in data set attributable to
each temporal class. Percentages shown in parentheses.

Figure 7: Breakdown of number of E-E pairs for each
temporal class based on sentence gap.

Experiments. The work done in Do et al. (2012) is
highly related to our experiments, and so we have
reported the relevant results for local E-E classifi-
cation in Row 1 of Table 2 as a reference. While
largely comparable, note that a direct comparison is
not possible because 1) the number of E-E instances
we have is slightly different from what was reported,
and 2) we do not have access to the exact partitions
they have created for 5-fold cross-validation.

As such, we have implemented a baseline adopt-
ing similar surface lexico-syntactic features used in
previous work (Mani et al., 2006; Bethard and Mar-
tin, 2007; Ng and Kan, 2012; Do et al., 2012), in-
cluding 1) part-of-speech tags, 2) tenses, 3) depen-
dency parses, 4) relative position of events in article,
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System Precision Recall F1

(1) DO2012 43.86 52.65 47.46
(2) BASE 59.55 38.14 46.50
(3) BASE + RST + PDTB + TOPICSEG 71.89 41.99 53.01
(4) BASE + RST + PDTB + TOPICSEG + COREF 75.23 43.58 55.19
(5) BASE + O-RST + PDTB + O-TOPICSEG + O-COREF 78.35 54.24 64.10

Table 2: Macro-averaged results obtained from our experiments. The difference in F1 scores between each successive
row is statistically significant, but a comparison is not possible between rows (1) and (2).

5) the number of sentences between the target events
and 6) VerbOcean (Chklovski and Pantel, 2004) re-
lations between events. This baseline system, and
the subsequent systems we will describe, comprises
of three separate one-vs-all classifiers for each of the
temporal classes. The result obtained by our base-
line is shown in Row 2 (i.e. BASE) in Table 2. We
note that our baseline is competitive and performs
similarly to the results obtained by Do et al. (2012).
However as we do not have the raw judgements from
Do’s system, we cannot test for statistical signifi-
cance.

We also implemented our proposed features and
show the results obtained in the remaining rows of
Table 2. In Row 3, RST denotes the RST discourse
feature, PDTB denotes the PDTB-styled discourse
features, and TOPICSEG denotes the text segmen-
tation feature. Compared to our own baseline, there
is a relative increase of 14% in F1, which is statis-
tically significant when verified with the one-tailed
Student’s paired t-test (p < 0.01).

In addition, Do et al. (2012) have shown the value
of event co-reference. Therefore we have also in-
cluded this feature by making use of an automatic
event co-reference system by Chen et al. (2011).
The result obtained after adding this feature (de-
noted by COREF) is shown in Row 4. The relative in-
crease in F1 of about 4% from Row 3 is statistically
significant (p < 0.01) and affirms that event co-
reference is a useful feature to have, together with
our proposed features. We note that our complete
system in Row 4 gives a 16% improvement in F1,
relative to the reference system DO2012 in Row 1.

To get a better idea of the performance we can ob-
tain if oracular versions of our features are available,
we also show the results obtained if hand-annotated
RST discourse structures, text segments, as well as
event co-reference information were used. Annota-

tions for the RST discourse structures and text seg-
ments were performed by the first author (RST an-
notations were made following the annotation guide-
lines given by Carlson and Marcu (2001)). Oracular
event co-reference information was included in the
dataset that we have used.

In Row 5 the prefix O denotes oracular versions
of the features we had proposed. From the results
we see that there is a marked increase of over 15%
in F1 relative to Row 4. Compared to Do’s state-of-
the-art system, there is also a relative gain of at least
35%. These oracular results further confirm the im-
portance of non-local discourse analysis for tempo-
ral processing.

6 Discussion

Ablation tests. We performed ablation tests to as-
sess the efficacy of the discourse features used in
our earlier experiments. Starting from the full sys-
tem, we dropped each discourse feature in turn to see
the effect this has on overall system performance.
Our test is performed over the same data set, again
with 5-fold cross-validation. The results in Table 3
show a statistically significant (based on the one-
tailed Student’s paired t-test) drop in F1 in each case,
which proves that each of our proposed features is
useful and required.

From the ablation tests, we also observe that the
RST discourse feature contributes the most to over-
all system performance while the PDTB discourse
feature contributes the least. However we should not
conclude prematurely that the former is more use-
ful than the latter; as the results are obtained using
parses from automatic systems, and are not reflec-
tive of the full utility of ground truth discourse an-
notations.
Useful Relations. The ablation test results showed
us that discourse relations (in particular RST dis-
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Figure 8: Proportion of occurence in temporal classes for every RST and PDTB relation.

Ablated Feature Change in F1 Sig
−RST -9.03 **
−TOPICSEG -2.98 **
−COREF -2.18 **
−PDTB -1.42 *

Table 3: Ablation test results. ‘**’ and ‘*’ denote statis-
tically significance against the full system with p < 0.01
and p < 0.05, respectively.

course relations) are the most important in our sys-
tem. We have also motivated our work earlier with
the intuition that certain relations such as the RST
“Result” and the PDTB “Cause” relations provide
very useful temporal cues. We now offer an intro-
spection into the use of these discourse relations.

Figure 8 illustrates the relative proportion of tem-
poral classes in which each RST and PDTB re-
lation appear. If the relations are randomly dis-
tributed, we should expect their distribution to fol-
low that of the temporal classes as shown in Table 1.
However we see that many of the relations do not
follow this distribution. For example, we observe
that several relations such as the RST “Condition”
and PDTB “Cause” relations are almost exclusively
found within AFTER and BEFORE event pairs only,
while the RST “Manner-means” and PDTB “Syn-
chrony” relations occur in a disproportionately large
number of OVERLAP event pairs. These relations
are likely useful in disambiguating between the dif-
ferent temporal classes.

To verify this, we examine the convolution tree
fragments that lie on the support vector of our SVM
classifier. The work of Pighin and Moschitti (2010)

in linearizing kernel functions allows us to take a
look at these tree fragments. Applying the lineariza-
tion process leads to a different classifier from the
one we have used. The identified tree fragments are
therefore just an approximation to those actually em-
ployed by our classifier. However, this analysis still
offers an introspection as to what relations are most
influential for classification.

BEFORE OVERLAP
B1 (Temporal ... O1 (Manner-means ...
B2 (Temporal (Elaboration ...
B3 (Condition (Explanation ...
B4 (Condition (Attribution ...
B5 (Elaboration (Bckgrnd ...

Table 4: Subset of top RST discourse fragments on sup-
port vectors identified by linearizing kernel function.

Table 4 shows a subset of the top RST discourse
fragments identified for the BEFORE and OVER-
LAP one-vs-all classifiers. The list is in line with
what we expect from Figure 8. The former consists
of fragments containing relations such as “Tempo-
ral” and “Condition”, while the latter has a sole frag-
ment containing “Manner-Means”.

To illustrate what these fragments may mean, we
show several example sentences from our data set
in Example 4. Sentence A consists of the tree frag-
ment B1, i.e. “(Temporal...”. Its corresponding dis-
course structure is illustrated in the top half of Fig-
ure 9. This fragment indicates to us (correctly) that
the event “wielded” happened BEFORE Milosevic
was “swept out” of power. Sentence B is made
up of tree fragment O1, i.e. “(Manner-means...”,
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and its discourse structure is shown in the bottom
half of Figure 9. As with the previous example, the
fragment suggests (correctly) that there should be a
OVERLAP relationship for the “requested – said”
event pair.

[A] Milosevic and his wife wielded enormous power in
Yugoslavia for more than a decade before he was swept
out of power after a popular revolt in October 2000.

[B] The court order was requested by Jack Welch’s at-
torney, Daniel K. Webb, who said Welch would likely be
asked about his business dealings, his health and entries
in his personal diary.

(4)

Milosevic … wielded… 
a decade 

before.. swept out.. 
power

after a…  October
2000.

temporal

temporal

The court… requested

by Jack .. Webb,

elaboration

who said Welch would …
diary.

attribution

manner-means

Figure 9: RST discourse structures for sentences A (top
half) and B (bottom half) in Example 4.

Segment Numbers. From the ablation test results,
text segmentation is the next most important feature
after the RST discourse feature. This is interesting
given that the defined feature structure for topical
text segmentation is not the most intuitive. By us-
ing actual segment numbers, the structure may not
generalize well for articles of different lengths for
example, as each article may have vastly different
number of segments. The transition across segments
may also not carry the same semantic significance
for different articles.

Our experiments have however shown that this
feature design is useful in improving performance.
This is likely because:

1. The default settings of the text segmentation
system we had used are such that precision is

favoured over recall (Kazantseva and Szpakow-
icz, 2011, p. 292). As such there is just an aver-
age of between two to three identified segments
per article. This makes the feature more gener-
alizable despite making use of actual segment
numbers.

2. The style of writing in newswire articles which
we are experimenting on generally follows
common journalistic guidelines. The semantics
behind the transitions across the coarse-grained
segments that were identified are thus likely to
be of a similar nature across many different ar-
ticles.

We leave for future work an investigation into
whether more fine-grained topic segments can lead
to further performance gains. In particular, it will be
interesting to study if work on argumentative zoning
(Teufel and Kan, 2011) can be applied to newswire
articles, and whether the subsequent learnt docu-
ment structures can be used to delineate topic seg-
ments more accurately.
Error Analysis. Besides examining the features we
had used, we also want to get a better idea of the er-
rors made by our classifier. Recall that we are using
separate one-vs-all classifiers for each of the tempo-
ral classes, so each of the three classifiers generates
a column in the aggregate confusion matrix shown
in Table 5. In cases where none of the SVM clas-
sifiers return a positive confidence value, we do not
assign a temporal class (captured as column N). The
high number of event pairs which are not assigned to
any temporal class explains the lower recall scores
obtained by our system, as observed in Table 2.

Predicted
O B A N

O 119 (14.7%) 114 (14.1%) 104 (12.8%) 474 (58.5%)
B 19 (0.5%) 2067 (57.9%) 554 (15.5%) 928 (26.0%)
A 16 (0.5%) 559 (15.7%) 2046 (57.3%) 947 (26.5%)

Table 5: Confusion matrix obtained for the full system,
classifying into (O)VERLAP, (B)EFORE, (A)FTER, and
(N)o result.

Additionally, an interesting observation is the low
percentage of OVERLAP instances that our classi-
fier managed to predict correctly. About 57% of
BEFORE and AFTER instances are classified cor-
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rectly, however only about 15% of OVERLAP in-
stances are correct.

Figure 10 offers more evidence to suggest that
our classifier works better for the BEFORE and AF-
TER classes than the OVERLAP class. We see that
as sentence gap increases, we achieve a fairly con-
sistent performance for both BEFORE and AFTER
instances. OVERLAP instances are concentrated
where the sentence gap is less than 7, with the best
accuracy figure coming in below 30%.

Although not definitive, this may be because our
data set consists of much fewer OVERLAP in-
stances than the other two classes. This bias may
have led to insufficient training data for accurate
OVERLAP classification. It will be useful to inves-
tigate if using a more balanced data set for training
can help overcome this problem.

Figure 10: Accuracy of the classifer for each temporal
class, plotted against the sentence gap of each E-E pair.

7 Conclusion

We believe that discourse features play an important
role in the temporal ordering of events in text. We
have proposed the use of different discourse anal-
ysis frameworks and shown that they are effective
for classifying the temporal relationships of article-
wide E-E pairs. Our proposed discourse-based fea-
tures are robust and work well even though auto-
matic discourse analysis is noisy. Experiments fur-
ther show that improvements to these underlying
discourse analysis systems will benefit system per-
formance.

In future work, we will like to explore how to
better exploit the various discourse analysis frame-
works for temporal classification. For instance, RST
relations are either hypotactic or paratactic. Marcu

(1997) made use of this to generate automatic sum-
maries by considering EDUs which are nuclei to be
more salient. We believe it is interesting to examine
how such information can help. We are also inter-
ested to apply discourse features in the context of a
global inferencing system (Yoshikawa et al., 2009;
Do et al., 2012), as we think such analyses will also
benefit these systems as well.
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Abstract

Distant supervision is a scheme to generate
noisy training data for relation extraction by
aligning entities of a knowledge base with
text. In this work we combine the output of
a discriminative at-least-one learner with that
of a generative hierarchical topic model to re-
duce the noise in distant supervision data. The
combination significantly increases the rank-
ing quality of extracted facts and achieves
state-of-the-art extraction performance in an
end-to-end setting. A simple linear interpo-
lation of the model scores performs better
than a parameter-free scheme based on non-
dominated sorting.

1 Introduction

Relation extraction is the task of finding relational
facts in unstructured text and putting them into a
structured (tabularized) knowledge base. Training
machine learning algorithms for relation extraction
requires training data. If the set of relations is pre-
specified, the training data needs to be labeled with
those relations.

Manual annotation of training data is laborious
and costly, however, the knowledge base may al-
ready partially be filled with instances from the rela-
tions. This is utilized by a scheme known as distant
supervision (DS) (Mintz et al., 2009): text is au-
tomatically labeled by aligning (matching) pairs of
entities that are contained in a knowledge base with
their textual occurrences. Whenever such a match is
encountered, the surrounding context (sentence) is
assumed to express the relation.

This assumption, however, can fail.
Consider the example given in (Taka-
matsu et al., 2012): If the tuple
place_of_birth(Michael Jackson, Gary)

is contained in the knowledge base, one matching
context could be:

Michael Jackson was born in Gary ...
And another possible context:

Michael Jackson moved from Gary ...
Clearly, only the first context indeed expresses the
relation and should be labeled accordingly.

Three basic approaches have been proposed to
deal with noisy distant supervision instances: The
discriminative at-least-one approach (Riedel et al.,
2010), that requires that at least one of the matches
for a relation-entity tuple indeed expresses the
relation; The generative approach (Alfonseca et
al., 2012) that separates relation-specific distribu-
tions from noise distributions by using hierarchical
topic models; And the pattern correlation approach
(Takamatsu et al., 2012) that assumes that contexts
which match argument pairs have a high overlap in
argument pairs with other patterns expressing the re-
lation.

In this work we combine 1) a discriminative at-
least-one learner, that requires high scores for both
a dedicated noise label and the matched relation, and
2) a generative topic model that uses a feature-based
representation to separate relation-specific patterns
from background or pair-specific noise. We score
surface patterns and show that combining the two
approaches results in a better ranking quality of re-
lational facts. In an end-to-end evaluation we set a
threshold on the pattern scores and apply the pat-
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Figure 1: Hierarchical topic models. Intertext model
(left) and feature model (right).

terns in a TAC KBP-style evaluation. Although
the surface patterns are very simple (only strings of
tokens), they achieve state-of-the-art extraction re-
sults.

2 Related Work

2.1 At-Least-One Models

The original form of distant supervision (Mintz et
al., 2009) assumes all sentences containing an entity
pair to be potential patterns for the relation holding
between the entities. A variety of models relax this
assumption and only presume that at least one of the
entity pair occurrences is a textual manifestation of
the relation. The first proposed model with an at-
least-one learner is that of Riedel et al. (2010) and
Yao et al. (2010). It consists of a factor graph that
includes binary variables for contexts, and groups
contexts together for each entity pair. MultiR (Hoff-
mann et al., 2011) can be viewed as a multi-label
extension of (Riedel et al., 2010). A further exten-
sion is MIMLRE (Surdeanu et al., 2012), a jointly
trained two-stage classification model.

2.2 Hierarchical Topic Model

The hierarchical topic model (HierTopics) by Alfon-
seca et al. (2012) models the distant supervision data
by a generative model. For each corpus match of an
entity pair in the knowledge base, the corresponding
surface pattern is assumed to be typical for either the
entity pair, the relation, or neither. This principle is
then used to infer distributions over patterns of one
of the following types:

1. For every entity pair, a pair-specific distribu-
tion.

2. For every relation, a relation-specific distribu-
tion.

3. A general background distribution.

The generative process assumes that for each ar-
gument pair in the knowledge base, all patterns
are generated by first choosing a hidden variable z
which can take on three values,B for background,R
for relation and P for pair. Corresponding vocabu-
lary distributions (φbg, φrel, φpair) for generating the
context patterns are chosen according to the value of
z. The Dirichlet-smoothed vocabulary distributions
are shared on the respective levels. Figure 1 shows
the plate diagram of the HierTopics model.

3 Model Extensions and Combination

3.1 Generative Model
We use a feature-based extension (Roth and Klakow,
2013) of Alfonseca et al. (2012) to include bigrams
for a more fine-grained representation of the pat-
terns. For including features in the model, the model
is extended with a second layer of hidden variables.
A variable x represents a choice of B,R or P for
every pattern, i.e. there is one variable x for every
pattern. Each feature is generated conditioned on
a second variable z ∈ {B,R, P}, i.e. there are as
many variables z for a pattern as there are features
for it. First, the hidden variable x is generated, then
all z variables are generated for the corresponding
features (see Figure 1). The values B,R or P of z
depend on the corresponding x by a transition distri-
bution:

P (Zi = z|Xj(i) = x) =

{
psame, if z = x
1−psame

2 , otherwise

where features at indices i are mapped to the corre-
sponding pattern indices by a function j(i); psame
is set to .99 to enforce the correspondence between
pattern and feature topics. 1

3.2 Discriminative Model
As a second feature-based model, we employ a per-
ceptron model that enforces constraints on the labels
for patterns (Roth and Klakow, 2013). The model
consists of log-linear factors for the set of relations

1The hyper-parameters used for the feature-based topic
model are α = (1, 1, 1) and β = (.1, .001, .001).
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Algorithm 1 At-Least-One Perceptron Training
θ ← 0
for r ∈ R do

for pair ∈ kb pairs(r) do
for s ∈ sentences(pair) do

for r′ ∈ R \ r do
if P (r|s, θ) ≤ P (r′|s, θ) then
θ ← θ + φ(s, r)− φ(s, r′)

if P (NIL|s, θ) ≤ P (r′|s, θ) then
θ ← θ + φ(s,NIL)− φ(s, r′)

if ∀s∈sentences(pair) : P (r|s, θ) ≤ P (NIL|s, θ) then
s∗ = arg maxs

P (r|s,θ)
P (NIL|s,θ)

θ ← θ + φ(s∗, r)− φ(s∗, NIL)

R as well as a factor for the NIL label (no relation).
Probabilities for a relation r given a sentence pat-
tern s are calculated by normalizing over log-linear
factors defined as fr(s) = exp (

∑
i φi(s, r)θi), with

φ(s, r) the feature vector for sentence s and label
assignment r, and θr the feature weight vector.

The learner is directed by the following se-
mantics: First, for a sentence s that has a distant
supervision match for relation r, relation r should
have a higher probability than any other relation
r′ ∈ R \ r. As extractions are expected to be
noisy, high probabilities for NIL are enforced
by a second constraint: NIL must have a higher
probability than any relation r′ ∈ R \ r. Third, at
least one DS sentence for an argument pair is ex-
pected to express the corresponding relation r. For
sentences s for an entity pair belonging to relation
r, this can be written as the following constraints:
∀s,r′ : P (r|s) > P (r′|s) ∧ P (NIL|s) > P (r′|s)

∃s : P (r|s) > P (NIL|s)
The violation of any of the above constraints
triggers a perceptron update. The basic algorithm is
sketched in Algorithm 1.2

3.3 Model Combination

The per-pattern probabilities P (r|pat) are calcu-
lated as in Alfonseca et al. (2012) and aggregated
over all pattern occurrences: For the topic model,
the number of times the relation-specific topic has
been sampled for a pattern is divided by n(pat), the
number of times the same pattern has been observed.
Analogously for the perceptron, the number of times
a pattern co-occurs with entity pairs for r is multi-
plied by the perceptron score and divided by n(pat).

2The weight vectors are averaged over 20 iterations.

Figure 2: Score combination by non-dominated sorting:
Circles indicate patterns on the Pareto-frontier, which are
ranked highest. They are followed by the triangles, the
square indicates the lowest ranked pattern in this exam-
ple.

For the patterns of the form [ARG1] context
[ARG2], we compute the following scores:

• Maximum Likelihood (MLE):
n(pat,r)
n(pat)

• Topic Model:
n(pat,topic(r))

n(pat)

• Perceptron:
n(pat,r)
n(pat) ·

P (r|s,θ)
P (r|s,θ)+P (NIL|s,θ)

• Interpolation:
0.5·n(pat,topic(r))

n(pat) + 0.5·n(pat,r)·P (r|s,θ)
n(pat)·(P (r|s,θ)+P (NIL|s,θ))

The topic model and perceptron approaches are
based on plausible yet fundamentally different prin-
ciples of modeling noise without direct supervision.
It is therefore an interesting question how comple-
mentary the models are and how much can be gained
from a combination. As the two models do not use
direct supervision, we also avoid tuning parameters
for their combination.

We use two schemes to obtain a combined rank-
ing from the two model scores: The first is a rank-
ing based on non-dominated sorting by successively
computing the Pareto-frontier of the 2-dimensional
score vectors (Borzsony et al., 2001; Godfrey et
al., 2007). The underlying principle is that all data
points (patterns in our case) that are not dominated
by another point3 build the frontier and are ranked
highest (see Figure 2), with ties broken by linear

3A data point h1 dominates a data point h2 if h1 ≥ h2 in all
metrics and h1 > h2 in at least one metric.
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combination. Sorting by computing the Pareto-
frontier has been applied to training machine transla-
tion systems (Duh et al., 2012) to combine the trans-
lation quality metrics BLEU, RIBES and NTER,
each of which is based on different principles. In the
context of machine translation it has been found to
outperform a linear interpolation of the metrics and
to be more stable to non-smooth metrics and non-
comparable scalings. We compare non-dominated
sorting with a simple linear interpolation with uni-
form weights.

4 Evaluation

4.1 Ranking-Based Evaluation

Evaluation is done on the ranking quality according
to TAC KBP gold annotations (Ji et al., 2010) of ex-
tracted facts from all TAC KBP queries from 2009-
2011 and the TAC KBP 2009-2011 corpora. First,
candidate sentences are retrieved in which the query
entity and a second entity with the appropriate type
are contained. Candidate sentences are then used
to provide answer candidates if one of the extracted
patterns matches. The answer candidates are ranked
according to the score of the matching pattern.

The basis for pattern extraction is the noisy DS
training data of a top-3 ranked system in TAC KBP
2012 (Roth et al., 2012). The retrieval component
of this system is used to obtain sentence and an-
swer candidates (ranked according to their respec-
tive pattern scores). Evaluation results are reported
as averages over per-relation results of the standard
ranking metrics mean average precision (map), geo-
metric map (gmap), precision at 5 and at 10 (p@5,
p@10).

The maximum-likelihood estimator (MLE) base-
line scores patterns by the relative frequency they
occur with a certain relation. The hierarchical topic
(hier orig) as described in Alfonseca et al. (2012)
increases the scores under most metrics, however
the increase is only significant for p@5 and p@10.
The feature-based extension of the topic model
(hier feat) has significantly better ranking quality.
Slightly better scores are obtained by the at-least-
one perceptron learner. It is interesting to see that the
model combinations both by non-dominated sorting
perc+hier (pareto) as well as uniform interpolation
perc+hier (itpl) give a further increase in ranking

method map gmap p@5 p@10
MLE .253 .142 .263 .232
hier orig .270 .158 .353* .297*

hier feature .318†* .205†* .363* .321*

perceptron .330†* .210†* .379* .337*

perc+hier (pareto) .340†* .220†* .400* .340*

perc+hier (itpl) .344†* .220†* .426†* .353†*

Table 1: Ranking quality of extracted facts. Significance
(paired t-test, p < 0.05) w.r.t. MLE(*) and hier orig(†).
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Figure 3: Precision at recall levels.

quality. The simpler interpolation scheme gener-
ally works best. Figure 3 shows the Precision/Recall
curves of the basic models and the linear interpola-
tion. On the P/R curve, the linear interpolation is
equal or better than the single methods on all recall
levels.

4.2 End-To-End Evaluation
We evaluate the extraction quality of the induced
perc+hier (itpl) patterns in an end-to-end setting.
We use the evaluation setting of (Surdeanu et al.,
2012) and the results obtained with their pipeline for
MIMLRE and their re-implementation of MultiR as
a point of reference.

In Surdeanu et al. (2012) evaluation is done us-
ing a subset of queries from the TAC KBP 2010 and
2011 evaluation. The source corpus is the TAC KBP
source corpus and a 2010 Wikipedia dump. Only
those answers are considered in scoring that are con-
tained in a list of possible answers from their can-
didates (reducing the number of gold answers from
1601 to 576 and thereby considerably increasing the
value of reported recall).

For evaluating our patterns, we take the same
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queries for testing as Surdeanu et al. (2012). As the
document collection, we use the TAC KBP source
collection and a Wikipedia dump from 07/2009 that
was available to us. From this document collec-
tion, we use our retrieval pipeline of Roth et al.
(2012) and take those sentences that contain query
entities and slot filler candidates according to NE-
tags. We filter out all candidates that are not con-
tained in the list of candidates considered in (Sur-
deanu et al., 2012), and use the same reduced set
of 576 gold answers as the key. We tune a single
threshold parameter t = .3 on held-out development
data and take all patterns with higher scores. Ta-
ble 2 shows that results obtained with the induced
patterns compare well with state-of-the-art relation
extraction systems.

method Recall Precision F1
MultiR .200 .306 .242
MIMLRE .314 .247 .277
perc+hier (itpl) .248 .401 .307

Table 2: TAC Scores on (Surdeanu et al., 2012) queries.

4.3 Illustration: Top-Ranked Patterns
Figure 4 shows top-ranked patterns for per:title
and org:top members employees, the two rela-
tions with most answers in the gold annotations. For
maximum likelihood estimation the score is 1.0 if
the patterns occurs only with the relation in question
– this includes all cases where the pattern is only
found once in the corpus. While this could be cir-
cumvented by frequency thresholding, we leave the
long tail of the data as it is and let the algorithm deal
with both frequent and infrequent patterns.

One can see that while the maximum likelihood
patterns contain some reasonable relational con-
texts, they are less prototypical and more prone to
distant supervision errors. The patterns scored high
by the proposed combination generalize better, vari-
ation at the top is achieved by re-combining ele-
ments that carry relational meaning (“is an”, “vice
president”, “president director”) or are closely cor-
related to the particular relation.

5 Conclusion

We have combined two models based on distinct
principles for noise reduction in distant supervision:

per:title, MLE
[ARG1] , a singing [ARG2]
*[ARG1] Best film : Capote ( as [ARG2]
[ARG1] Nunn ( born October 7 , 1957 in Little Rock , Arkansas
) is an American jazz [ARG2]
*[ARG2] Kevin Weekes , subbing for a rarely rested [ARG1]
[ARG1] Butterfill FRICS ( born February 14 , 1941 , Surrey ) is
a British [ARG2]

per:title, perc+hier (itpl)
[ARG1] , is a Canadian [ARG2]
[ARG1] Hilligoss is an American [ARG2]
[ARG1] , is an American film [ARG2]
[ARG1] , is an American film and television [ARG2]
*[ARG1] for Best [ARG2]

org:top members employees, MLE
[ARG2] remained chairman of [ARG1]
*[ARG2] asks the ball whether he and [ARG1]
[ARG2] was chairman of the [ARG1]
*[ARG1] , Joe Lieberman and [ARG2]
*[ARG1] ’s responsibility to pin down just how the government
decided to front $ 30 billion in taxpayer dollars for the Bear
Stearns deal , “ Chairman [ARG2]

org:top members employees, perc+hier (itpl)
[ARG2] , Vice President of the [ARG1]
[ARG1] Vice president [ARG2]
[ARG1] president director [ARG2]
[ARG1] vice president director [ARG2]
[ARG1] Board member [ARG2]

Figure 4: Top-scored patterns for maximum likelihood
(MLE) and the interpolation (perc+hier itpl) method. In-
exact patterns are marked by *.

a feature-based extension of a hierarchical topic
model, and an at-least-one perceptron. Interpola-
tion increases the quality of extractions and achieves
state-of-the-art extraction performance. A combina-
tion scheme based on non-dominated sorting, that
was inspired by work on combining machine trans-
lation metrics, was not as good as a simple linear
combination of scores. We think that the good re-
sults motivate research into more integrated combi-
nations of noise reduction approaches.
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Abstract

Children learn various levels of linguistic
structure concurrently, yet most existing mod-
els of language acquisition deal with only
a single level of structure, implicitly assum-
ing a sequential learning process. Developing
models that learn multiple levels simultane-
ously can provide important insights into how
these levels might interact synergistically dur-
ing learning. Here, we present a model that
jointly induces syntactic categories and mor-
phological segmentations by combining two
well-known models for the individual tasks.
We test on child-directed utterances in English
and Spanish and compare to single-task base-
lines. In the morphologically poorer language
(English), the model improves morphological
segmentation, while in the morphologically
richer language (Spanish), it leads to better
syntactic categorization. These results provide
further evidence that joint learning is useful,
but also suggest that the benefits may be dif-
ferent for typologically different languages.

1 Introduction

Models of language acquisition seek to infer lin-
guistic structure from data with minimal amounts of
prior knowledge, in order to discover which char-
acteristics of the input data are useful for learn-
ing, and thus potentially utilised by human learners.
Most previous work has focused on learning individ-
ual aspects of linguistic structure. However, children
clearly learn multiple aspects in parallel, rather than
sequentially, implying that models of language ac-
quisition should also incorporate joint learning. Joint
models investigate the interaction between different
levels of linguistic structure during learning. These

interactions are often (but not necessarily) synergis-
tic, enabling better, more robust, learning by making
use of cues from multiple sources. Recent models
using joint learning to model language acquisition
have spanned various domains including phonology,
word segmentation, syntax and semantics (Feldman
et al., 2009; Elsner et al., 2012; Doyle and Levy,
2013; Johnson, 2008; Kwiatkowski et al., 2012).

In this paper we examine the joint learning of
syntactic categories and morphology, which are ac-
quired by children at roughly the same age (Clark,
2003b), implying possible interactions in the learn-
ing process. Both morphology and word order de-
pend on categorising words based on their morpho-
syntactic function. However, previous models of
syntactic category learning have relied principally
on surrounding context, i.e., word order constraints,
whereas models of morphology use word-internal
cues. Our joint model integrates both sources of
information, allowing the model to flexibly weigh
them according to their utility.

Languages differ in the richness of their mor-
phology and strictness of word order. These char-
acteristics appear to be (anti)correlated, with rich
morphology co-occurring with free word order and
vice versa (Blake, 2001; McFadden, 2003). The
timecourse of acquisition is also influenced by lan-
guage typology: learners of morphologically rich
languages become productive in morphology ear-
lier (Xanthos et al., 2011), suggesting that richer
morphology may be more salient for learners than
impoverished morphology. Sentence comprehension
in children also shows cross-linguistic differences
in the cues used to make sense of non-canonical
sentence structure: learners of a morphologically
rich language (Turkish) disregard word order in
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favour of morphology, whereas learners of En-
glish favour word order (Slobin, 1982; MacWhin-
ney et al., 1984). These interactions between mor-
phology and word order suggest that a joint model
will be better able to support the differences in cue
strength (rich morphology versus strict word order),
and thus be more language-general, than single-task
models.

Both syntactic category and morphology induc-
tion have been the focus of much recent work. (See
Hammarström and Borin (2011) for an overview
of unsupervised morphology learning, likewise
Christodoulopoulos et al. (2010) for a comparison
of part of speech/syntactic category induction sys-
tems.) However, given the tightly coupled nature of
these two tasks, there has been surprisingly little
work in joint learning of morphology and syntac-
tic categories. Systems for inducing syntactic cat-
egories often make use of morpheme-like features,
such as word-final characters (Smith and Eisner,
2005; Haghighi and Klein, 2006; Berg-Kirkpatrick
et al., 2010; Lee et al., 2010), or model words
at the character-level (Clark, 2003a; Blunsom and
Cohn, 2011), but do not include morphemes ex-
plicitly. Other systems (Dasgupta and Ng, 2007;
Christodoulopoulos et al., 2011) use morphologi-
cal segmentations learned by a separate morphology
model as features in a pipeline approach.

Models of morphology induction generally oper-
ate over a lexicon, i.e. a list of word types, rather
than token corpora (Goldsmith, 2006; Creutz and
Lagus, 2007; Kurimo et al., 2010). These models
find morphological categories on the basis of word-
internal features, without taking syntactic context
into account (which is of course not available in a
lexicon).

Lee et al. (2011) and Sirts and Alumäe (2012)
present models that infer morphological segmenta-
tions and syntactic categories jointly, although Lee
et al. (2011) do not evaluate the inferred syntactic
categories. Both make use of a word-type constraint
which limits each word form to a single analysis
(i.e., all instances of ducks are assigned to a single
category and will have the same morpheme analy-
sis, ignoring the gold standard distinction between a
plural noun and third person singular verb). This can
make inference more tractable, and often increases
performance, but does not respect the ambiguity in-

herent in natural language, both over syntactic cat-
egories and morphological analyses. The degree of
ambiguity is language dependent, so that even if a
type-constraint is perhaps relatively unproblematic
in English, it will pose problems in morphologically
richer languages. Furthermore, these two models
make use of an array of heuristics that may not allow
them to be easily generalisable across languages and
datasets (e.g., likelihood scaling (Sirts and Alumäe,
2012), sequential suffix matching (Lee et al., 2011)).

In this paper, we present a joint model composed
of two well-known individual models. This allows
us to cleanly investigate the effects of joint learning
and its potential benefits over the single task models.
The simplicity of our models also allows us to avoid
modelling and inference heuristics.

Previous models have used adult-directed written
texts, which differs significantly from the type of
language available to child learners. We test our joint
model on child-directed utterances in English (a
morphologically poor language) and Spanish (with
richer morphology)1. Our results indicate that our
joint model is able to flexibly accommodate lan-
guages with differing levels of morphological rich-
ness. The joint model matches the performance of
single task models on both tasks, demonstrating that
the additional complexity is not a problem (i.e., it
does not add noise). Moreover, the joint model im-
proves performance significantly on the task corre-
sponding to the language’s weaker cue, indicating a
transfer of information from the stronger cue. The
fact that the nature of this improvement varies by
language provides evidence that joint learning can
effectively accommodate typological diversity.

2 Model

The task is to assign word tokens to part of speech
categories and simultaneously segment the tokens
into morphemes. We assume a relatively simple yet
commonly used concatenative morphology which
models a word as a stem plus (possibly null) suffix2.

1There are languages with much richer morphology than
Spanish, but none with a child-directed corpus suitably anno-
tated for evaluation.

2Fullwood and O’Donnell (2013) recently presented a
model of non-concatenative morphology that could be inte-
grated into this model; however, it does not perform well on En-
glish (and presumably other mostly concatenative languages).
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Since this is an unsupervised model, the inferred cat-
egories and morphemes lack meaningful labels, but
ideally will correspond to gold standard categories
and morphemes.

2.1 Word Order
We model a sequence of words as a Hidden Markov
Model (HMM) with a non-parametric emission dis-
tribution. As usual, the latent states of the HMM rep-
resent syntactic categories. The tag sequence is gen-
erated by a trigram Dirichlet-multinomial distribu-
tion, where transition parameters τ are drawn from
a symmetric Dirichlet distribution with the hyperpa-
rameter αt . Each tag ti in the sequence is then drawn
from the transition distribution conditioned on the
previous two tags:

τ(t,t ′) ∼ Dir(αt)

ti = t|ti−1 = t ′, ti−2 = t ′′,τ∼ Mult(τ(t ′,t ′′))

This model is token-based, permitting different
tokens of the same word type to have different
syntactic categories. Most recent models have in-
cluded a constraint forcing all tokens of a given
type into the same category, which improves per-
formance but often complicates inference. The
Bayesian HMM’s performance is therefore not state-
of-the-art, but is comparable to other token-based
models (Christodoulopoulos et al., 2010) and the
model is easy to extend within the Bayesian frame-
work, allowing us to compare multiple versions.

This part of the model is parametric, operat-
ing over a fixed number of tags T , and is iden-
tical to the formulation of tag transitions in the
Bayesian HMM (Goldwater and Griffiths, 2007).
However, we replace the BHMM’s emission dis-
tribution with the morphologically-informed distri-
butions described below. As in the BHMM, the
emission distributions are conditioned on the tag,
i.e., each tag has its own morphology.

2.2 Morphology
The morphology model introduced by Goldwater
et al. (2006) generates morphological analyses for a
set of tokens. These analyses consist of a tag plus a
stem and suffix pair, which are concatenated to form
the observed words. Both stem s and suffix f are

generated from Dirichlet-multinomials conditioned
on the tag t:

κ∼ Dir(ακ)
t|κ∼ Mult(κ)

σ∼ Dir(αs)
s|t,σ∼ Mult(σt)

φ∼ Dir(α f )
f |t,φ∼ Mult(φt)

The αs are hyperparameters governing the Dirich-
let distributions from which the multinomials κ,σ,φ
are drawn. In turn, t,s, and f are drawn from these
multinomials.

The probability of a word under this model is the
sum of the probabilities of all possible analyses l =
(t,s, f ):

P0(w) = ∑
l

P0(l) = ∑
t,s, f s.t.
s⊕ f =w

P(s|t)P( f |t)P(t) (1)

where s⊕ f = w denotes that the concatenation of
stem and suffix results in the word w.

On its own, this distribution over morphologi-
cal analyses makes independence assumptions that
are too strong: most word tokens of a word type
have the same analysis, but P0 will re-generate
that analysis for every token. To resolve this prob-
lem, a Pitman-Yor process (PYP) is placed over the
generating distribution above. The Pitman-Yor pro-
cess has been found to be useful for representing
the power-law distributions common in natural lan-
guage (Teh, 2006; Goldwater and Griffiths, 2007;
Blunsom and Cohn, 2011).

The distribution of draws from a Pitman-Yor pro-
cess (which, in our case, determines the distribu-
tion of word tokens with each morphological anal-
ysis) is commonly described using the metaphor of
a Chinese restaurant. A series of customers (tokens
z = z1 . . .zN) enter a restaurant with an infinite num-
ber of initially empty tables. Upon entering, each
customer is seated at a table k with probability

p(zi = k|z1 . . .zi−1,a,b) = (2){
nk−a

i−1+b if 1≤ k ≤ K
Ka+b
i−1+b if k = K +1
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tk sk

fk lk

K

zi

wi

N

Figure 1: Plate diagram depicting the morphology model
(adapted from Goldwater et al. (2006)). Hyperparameters
have been omitted for clarity. The left-hand plate depicts
the base distribution P0; note that the morphological anal-
yses lk are generated deterministically as (tk,sk, fk). The
observed words wi are also deterministic given zi = k and
lk, since wi = sk⊕ fk.

where nk is the number of customers already sitting
at table k, K is the total number of tables occupied by
the i−1 previous customers, and 0≤ a < 1 and b≥ 0
are hyperparameters of the process. The probability
of being seated at a table increases with the number
of customers already seated at that table, creating a
‘rich-get-richer’ power-law distribution of tokens to
tables; a and b control the amount of reuse of exist-
ing tables, with smaller values leading to more reuse.

Crucially, each table serves a dish generated by
the base distribution P0—i.e., the dish is a morpho-
logical analysis lk = (t,s, f )—and all the customers
seated at the same table share the same dish, which
is generated only once (at the point when that table
is first occupied). The model can thus reuse the anal-
ysis for a particular word and avoid regenerating the
same analysis multiple times. Note that multiple ta-
bles may have identical analyses, lk = lk′ . Figure 1
illustrates how the full PYP morphology model gen-
erates the observed sequence of word tokens.

2.3 Combined Model

The full model (Figure 2) combines the latent tag se-
quence with the morphology model. Tag tokens are
generated conditioned on local context, not the base
distribution, as in the morphology model. Instead of
a single PYP generating morphological analyses for
all tokens, as in the Goldwater et al. (2006) model,
we have a separate PYP for each tag type, i.e., each
tag has its own restaurant with its own customers
(the tokens labeled with that tag) and its own mor-
phological analyses. The distribution of customers

ti−2 ti−1 ti zi

wi

sk fk

lk

N
Kt

T

Figure 2: Plate diagram depicting the joint model. Hyper-
parameters have been omitted for clarity. The L-shaped
plate contains the tokens, while the square plates contain
the morphological analyses. The t are latent tags, zi is an
assignment to a morphological analysis lk = (sk, fk), and
wi is the observed word. T is the number of distinct tags,
and Kt the number of tables used by tag type t.

in each of the tag-specific restaurants is still deter-
mined by Equation 2, except that all of the counts
and indices are with respect to only the tokens and
tables assigned to that tag.

Each tag-specific PYP (restaurant) also has a sep-
arate base distribution, P(t)

0 , resulting in distinct dis-
tributions over stems and suffixes for each tag. The
analyses generated by the base distributions consist
of (stem, suffix) pairs; the tag is given by the identity
of the generating PYP.

P(t)
0 (w) = ∑

l
P(t)

0 (l = (s, f )) = ∑
s, f s.t.
s⊕ f =w

P(s|t)P( f |t)

(3)
The full joint posterior distribution of a sequence

of words, tags, and morpheme analyses is shown in
Figure 3. Note that all tag-specific morphology mod-
els share the same Pitman-Yor parameters a and b.

3 Inference

We use Gibbs sampling for inference over the three
sets of discrete variables: tags t, their assignments to
morphological analyses (tables) z, and the analyses
themselves l.

Each iteration of the sampler has two stages: First
the morphological analyses l are sampled, and then
each token samples a new tag and a new assignment
to an analysis/table. Because the table assignments
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P(t, l,z|αt ,a,b,αs,α f ) =P(t|αt)P(l|t,αs,α f )P(z|a,b) (4)

P(t|αt) =
N

∏
i=2

P(ti|ti−1, ti−2,t1...i−1,αt) =
T

∏
t,t ′=1

Γ(T αt)
Γ(ntt ′ +T αt)

T

∏
t ′′=1

Γ(ntt ′t ′′ +αt)
Γ(αt)

(5)

P(l|t,αs,α f ) =
T

∏
t=1

Kt

∏
k=1

Pt(lk = (s, f )|l1...k−1,αs,α f ) (6)

=
T

∏
t=1

Γ(Sαs)
Γ(mt +Sαs)

Γ(Fα f )
Γ(mt +Fα f )

S

∏
s=1

Γ(mts +αs)
Γ(αs)

F

∏
f =1

Γ(mt f +α f )
Γ(α f )

(7)

P(z|a,b) =
T

∏
t=1

Nt

∏
i=1

P(zi|t,z1...i−1,a,b) (8)

=
T

∏
t=1

Γ(1+b)
Γ(nt +b)

Kt

∏
k=1

(ka+b)
Γ(nk−a)
Γ(1−a)

(9)

Figure 3: The posterior distribution of our joint model. Because the sequence of words w is deterministic given
analyses l and assignments to analyses (tables) z, the joint posterior over all variables P(w,t, l,z|αt ,a,b,αs,α f ) is
equal to P(t, l,z|αt ,a,b,αs,α f ) when lzi = wi for all i, and 0 otherwise. We give equations for the non-zero case. ns
refer to token counts, ms to table counts. We add two dummy tokens at the start, end, and between sentences to pad
the context history.

are conditioned on tags (i.e., a token must be as-
signed to a table in the correct PYP restaurant) re-
sampling the tag requires immediate resampling of
the table assignment as well.

3.1 Initialization

The tags are initialized uniformly at random. For
each token, a segmentation point is chosen uni-
formly at random (we disallow segmentations with
a null stem). If this segmentation is new within the
PYP associated with that token’s tag, a new table is
created for the token in that PYP. If it matches an ex-
isting analysis, zi is sampled from the existing tables
k plus a possible new table k′.

3.2 Morphological Analyses

Each lk represents the morphological analysis for the
set of tokens assigned to table k. Resampling the
segmentation point (stem and suffix identity) of the
analysis changes the segmentation of all of the word
tokens assigned to that analysis. Note that the tag is
not included in lk in the combined model, because
the tag identity is dependent on the local contexts of
all the tokens seated at the table.

Analyses are sampled from a product of Dirichlet-

multinomial posteriors as follows:

p(lk = (s, f )|t, l\k) =
m\ks +αs

m\k +Sαs

m\kf +α f

m\k +Fα f
(10)

where ms and m f are the number of analyses for
this tag that share a stem or suffix with lk, and m
is the total number of analyses for this tag. S and
F are the total number of stems and suffixes in the
model. l\k indicates that the current analysis lk has
been removed from the distribution and the appro-
priate counts, to create the correct conditioning dis-
tribution for the Gibbs sampler.

3.3 Tags

Tags are sampled from the product of posteri-
ors of the transition and emission distributions.
The transition distribution is a standard Dirichlet-
multinomial posterior. Calculating the emission dis-
tribution probability, i.e. the marginal probability of
the word given the tag, involves summing over the
probability of all the existing tables in the given PYP
that emit the correct word, plus the probability of
a new table being created, which also includes the
probability of a new analysis from P(t)

0 .
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More precisely, tags are sampled from the follow-
ing distribution:

p(ti = t|wi = w,t\i,z\i, l,αt ,a,b) (11)

∝ p(ti = t|ti−1, ti−2,t
\i,αt)× p(w|t,z\i, l)

= p(ti = t|ti−1, ti−2,t
\i,αt)

× ( ∑
k s.t. lk=w

p(zi = k|t,w,z\i)+ p(zi = knew|t,w,z\i))

=
nti−2ti−1t +αt

nti−2ti−1 +T αt

× ( ∑
k s.t. lk=w

nk−a
nt +b

+
Kta+b
nt +b

P(t)
0 (w))

where lk = w matches tables compatible with w,
i.e., the concatenation of stem and suffix form the
word, slk ⊕ flk = w. nk is the number of words as-
signed to the table k and Kt is the total number of
tables in the PYP for tag t. Note that all counts are
obtained after the removal of the current ti and zi,
i.e., from t\i and z\i.

3.4 Table Assignments
Once a new tag has been sampled for a token, the ta-
ble assignment must be resampled conditioned on
the new tag. The assignment zi is drawn over all
compatible tables in the tag’s PYP (that is, where
lk = w), plus a possible new table:

p(zi = k|ti = t,w,z\i,a,b) ∝ (12){
nk−a
nt+b if 1≤ k ≤ Kt
Kt a+b
nt+b P(t)

0 (w) if k = Kt +1

P(t)
0 is calculated by summing over the probability

of all possible segmentations for a new analysis for
word wi, using Equation 3. If a new table is drawn
(k > Kt) then we also sample a new analysis for that
table from P(t)

0 .

4 Preliminary Experiments

An important argument for joint learning is that it
affords increased flexibility and robustness across a
wider range of input data. A model that relies on
word order cannot learn syntactic categories from a
morphologically complex language with free word
order; likewise a model attempting to categorise
words using morphology alone will fail on a lan-
guage without morphology. An effective joint model

Language A
abdc fefh pomo rtut usst
cdcc bcba gghh npop npoo
cdca aaaa fefh hfeg pnon

Language B
noom.no usrs.st bbdb.ac cbab.cc cdaa.cc
rttt.uu cbab.aa mnom.oo ccda.bc onmm.om
rruu.ts npop.mm gehg.fh trrt.uu tssu.uu

Table 1: Example sentences in the synthetic languages.
Words in Category 1 are made of characters a-d, Cate-
gory 2 e-h, Category 3 m-p, Category 4 r-u. Suffixes in
Language B are separated with periods (.) for illustrative
purposes only.

will be able to make use of the different cues in both
language types in a flexible way.

In order to test the proposed model, we run two
experiments on synthetic languages, which simulate
languages in which either word order or morphology
is the sole cue. Most natural languages fall between
these extremes, but these experiments show that our
model can capture the full spectrum.

Language A is a strict word order language lack-
ing morphology. It has a vocabulary of 200 word
types, split into four different categories. The 50
word types in each category are created by com-
bining four letters, with replacement, into four-letter
words, with a different set of letters used in each cat-
egory3. Words within a category may thus share be-
ginning or ending characters, which could be posited
as stems or suffixes by the model, but since only
50 of 256 possible strings are used, there will be
no strong evidence for consistent stem and suffixes
(i.e. stems appearing with multiple suffixes and vice
versa). Each sentence in Language A consists of five
words in one of twenty possible category sequences.
In these sequences, each category is either followed
by itself or the next category (i.e. [2,2,2,3,4] is valid
but [2,4,3,1,4] is not). Word order is thus strongly
constrained by category membership.

Language B has free word order, with category
membership signalled by suffixes. Words are cre-

3We achieved the same results with a language using the
same four characters in all categories, but using different char-
acters makes the categories human-readable. The model does
not have a orthographic/phonological component and so will
not recognise the within-category similarity, other than possi-
bly positing spurious stems or suffixes.

35



-70000

-60000

-50000

-40000

-30000

-20000

-10000

 0

 0  200  400  600  800  1000

L
o
g
 P

ro
b
a
b
ili

ty

Iteration

LangA Total
LangA Transitions

LangA Morphology
LangB Total

LangB Transitions
LangB Morphology

Figure 4: Log probability of the sampler state over 1000
iterations on Languages A and B.

ated by the concatenation of a stem and a suffix,
where the stems are the same as the words in lan-
guage A (50 stems in each of four categories). One
of six category-specific suffixes is appended to each
stem, resulting in 300 word types per category. Each
suffix is two letters long, created by combining three
possible letters (the same letters used to create the
stems), thus making mis-segmentation possible (for
instance, up to three of the suffixes could have the
same final letter). Sentences are again five words
long, but the sequence of categories is drawn at ran-
dom, resulting in uniformly random word order. See
Table 1 for example sentences in both languages.

We create a 5000 word corpus for each language,
and run our model on these corpora. Hyperparame-
ters are set to the same values in both languages4.

We run the sampler on each dataset for 1000 it-
erations with simulated annealing. In both cases,
the correct solution is found by iteration 500. Fig-
ure 4 shows that the morphology component con-
tinues to increase the log probability by increasing
the number of tokens seated at a table. Note that
the correct solution in Language A involves learn-
ing a very peaked transition distribution as well as an
even more extreme distribution over suffixes (where
only the null suffix has high probability), whereas
the same distributions in Language B are much flat-
ter. The fact that the same hyperparameter setting is

4The PYP parameters are set to a = 0.1,b = 1.0 and the
HMM transition parameter αt = 1.0; the parameters in the base
distribution are αs,α f = 0.001,αk = 0.5.

able to correctly identify the two language extremes
indicates that the model is robust to hyperparameter
values.

These experiments demonstrate that our joint
model is able to learn correctly even when only ei-
ther morphology or word order is informative in a
language. We now turn to acquisition data from nat-
ural languages in which both morphology and word
order are useful cues but to varying degrees.

5 CDS Experiments

5.1 Data

We use two corpora, Eve (Brown, 1973) and Or-
nat (Ornat, 1994), from the CHILDES database
(MacWhinney, 2000). These corpora consist of the
child-directed utterances heard by two children,
the former learning English and the latter Spanish.
These have been annotated for part of speech cate-
gories and morphemes.

The CHILDES corpora are tagged with a very rich
set of part of speech tags (74 tags), which we col-
lapse to a smaller set of tags5. The Eve corpus has
61224 tokens and is thus larger than the Spanish cor-
pus, which has 40497 tokens. However, the English
corpus has only 17 gold suffix types, while Spanish
has 83. The increased richness of Spanish morphol-
ogy also has an effect on the number of word types in
the corpus: the Spanish dataset has 3046 word types,
whereas the larger English dataset has only 1957.

Morphology is annotated using a stem-affix en-
coding which does not directly correspond to our
segmentation-based model. The word running is an-
notated as run-ING, jumping as jump-ING; the anno-
tation is thus agnostic about ortho-morphemic seg-
mentation (i.e., whether to segment as run.ning or
runn.ing), whereas the model is forced to choose
a segmentation point. Syncretic suffixes (sharing
an identical surface form) are disambiguated: sings
is annotated as sing-3S, plums as plum-PL. Con-
versely, the annotation scheme merges allomorphs
into a single suffix: infinitive verbs in Spanish,
for instance, are encoded as ending with -INF,
corresponding to -ar, -er, and -ir surface forms.

5These are 13 for English (ADJ, ADV, AUX, CONJ, DET,
INF, NOUN, NEG, OTH, PART, PREP, PRO, VERB) and 10
for Spanish, since the gold standard does not distinguish AUX,
PART or INF.
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We ignore irregular/non-affixing forms annotated
with & (e.g. was, annotated as be&PAST) and
use only hyphen-separated suffixes to evaluate.
Where multiple suffixes are concatenated together
(e.g., dog-DIM-PL) we treat this as a single suffix
(-DIM-PL) for evaluation purposes.

In Spanish, many words are annotated as having
a suffix of effectively zero length, e.g. the imper-
ative gusta is annotated as gusta-2S&IMP. We re-
place these suffixes (where the stem is equal to the
word) with a null suffix, excluding them from eval-
uation, as they are impossible for a segmentation-
based model to find.

5.2 Evaluation

Tags are evaluated using VM (Rosenberg and
Hirschberg, 2007), as has become standard for this
task (Christodoulopoulos et al., 2010). VM is a mea-
sure of the normalised cross-entropy between gold
and proposed clusters; it ranges between 0 and 100,
with higher scores being better.

We also use VM to evaluate the morphological
segmentation: all tokens with a common suffix are
clustered together, and these clusters are compared
against the gold suffix clusters6. Using a clustering
metric avoids the need to evaluate against a gold seg-
mentation point (which the annotation lacks). Tag
membership is added to the non-null model suffixes,
so that a final -s suffix found in tag 2 is distinguished
from the same suffix found in tag 8 (creating suffixes
-s-T8 and -s-T2), analogous to the gold annotation
distinction between syncretic morphemes -PL and
-3S.

Note that ceiling performance of our model on
Suffix VM will be below 100, since our model can-
not cluster allomorphs, which are represented by a
single abstract morpheme in the gold standard.

5.3 Baselines

We test the full model, MORTAG, against a number
of variations to investigate the advantages of jointly
modelling the two tasks.

Two variants remove the transition distributions,
and thus local syntactic context, from the model.

6We also evaluated stem morpheme clusters and found near-
ceiling performance due to the high number of null-suffix words
in both corpora.

MORTAGNOTRANS is the full model without tran-
sitions between tag tokens; morphology PYP draws
remain conditioned on token tags. We add a Dirich-
let prior over tags (αt = 0.1) to encourage tag spar-
sity (analogous to the transition distribution in the
full model). MORCLUSTERS is the original model
of Goldwater et al. (2006), in which tags (called
clusters in the original) are drawn by P0.

MORTAGNOSEG is a variant in which the only
available suffix is the null suffix; thus segmentations
are trivial and only tags are inferred. This model
is approximately equivalent to a simple Bayesian
HMM but with the addition of PYPs within the
emission distribution. We also evaluate against tags
found by the BHMM, with a Dirichlet-multinomial
emission distribution and no morphology.

MORTAGTRUETAGS is the full model but with all
tags fixed to their gold values. This model gives us
oracle-type results for morphology. (Due to the an-
notation scheme used in CHILDES, oracle morpho-
logical segmentations are unavailable, so we were
unable to test a model with gold morphology and in-
ferred tags.)

5.4 Experimental Procedure
Hyperparameter values for the Pitman-Yor process
were found using grid search on a development set
(Section 10 of Eve and Section 8 of Ornat; these sec-
tions are removed from the dataset we report results
on). We use the values which give the best Suffix
VM performance on the development data; however
we stress that the development results did not vary
greatly over a wide range of hyperparameter values,
and only deteriorated significantly at extreme values
of a.

There are a number of other hyperparameters in
the model which we set to fixed values. The transi-
tion hyperparameter αt is set to 0.1 in all models.
We set the hyperparameters for the stem and suf-
fix distributions in the morphology base distribution
P0 to 0.001 for both αs and α f ; αk over tags in the
MORCLUSTERS model is set to 0.5. The number of
possible stems and suffixes is given by the dataset: in
the Eve dataset there are 5339 candidate stems and
6617 candidate suffixes; in the Ornat dataset these
numbers are 8649 and 6598, respectively. The num-
ber of tags available to the model is set to the number
of gold tags in the data.
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Tag VM Suffix VM

MORTAG 59.1(1.9) 41.9(10.0)
MORCLUSTERS 22.4(1.0)∗ 28.0(11.9)∗

MORTAGNOTRANS 19.3(1.2)∗ 24.4(5.2)∗

MORTAGNOSEG 59.4(1.7) −
BHMM 56.2(2.3)∗ −
MORTAGTRUETAGS − 42.5(5.2)

Table 2: English Eve corpus results. Standard deviations
are in parentheses; ∗ denotes a significant difference from
the MORTAG model.

Sampling is run for 5000 iterations with anneal-
ing. Inspection of the posterior log-likelihood indi-
cates that the models converge after about 1000 it-
erations. We run inference over all models ten times
and report the average performance. Significance is
reported using the non-parametric Wilcoxon rank-
sum test with a significance level of ρ < 0.05.

5.5 Results: English

Results on the English Eve corpus are shown in Ta-
ble 2. We use PYP parameters a = 0.3 and b = 10,
though we found similar performance over a wide
range of values of a and b. Our results show a clear
improvement in the morphological segmentations
found by the joint model and stable tagging perfor-
mance across all models with context information.

The syntactic clusters found by models using
only morphological patterns, MORTAGNOTRANS

and MORCLUSTERS, are clearly inferior and lead to
low Tag VM results. The models with local syntac-
tic context all perform approximately equally well
in terms of finding tags. We find no improvement on
tagging performance in English when adding mor-
phology, compared to the MORTAGNOSEG base-
line in which words are not segmented. However, we
do see a small but significant improvement over the
BHMM for both of these models, due to the replace-
ment of the multinomial emission distribution in the
BHMM with the PYP.

Morphological segmentations, as measured by
Suffix VM, clearly improve with the addition of lo-
cal contexts (and the ensuing better tags): the full
model outperforms the baselines without syntactic
contexts. On this dataset, the joint MORTAG model
even matches the performance of the model us-

Tag VM Suffix VM

MORTAG 43.4(2.6) 41.4(2.5)
MORCLUSTERS 20.3(2.5)∗ 46.5(3.2)
MORTAGNOTRANS 14.4(1.7)∗ 36.4(2.0)∗

MORTAGNOSEG 39.6(3.7)∗ −
BHMM 36.4(0.7)∗ −
MORTAGTRUETAGS − 59.8(0.4)∗

Table 3: Spanish Ornat corpus results. Standard devia-
tions are in parentheses; ∗ denotes a significant difference
from the MORTAG model.

ing oracle tags. The standard deviation over Suf-
fix VM scores is quite large for MORTAG and
MORCLUSTERS; this is due to frequent words hav-
ing two high probability segmentations (most no-
tably is, which in some runs was segmented as i.s).

5.6 Results: Spanish

For the Spanish Ornat corpus, we found slightly dif-
ferent optimal PYP hyperparameters and set a = 0.1
and b = 0.1. Results are shown in Table 3.

The Spanish results pattern in the opposite way
as English. Here we see a statistically significant
improvement in tagging performance of the full
joint model over both models without morphology
(MORTAGNOSEG and BHMM). Models without
context information again find much worse tags,
mainly because (as in English) function words are
not identifiable by suffixes.

However, the full model does not find better mor-
phological segmentations than the MORCLUSTERS

model, despite better tags (the two models’ Suffix
VM scores are not statistically significantly differ-
ent). We also see that the difference between the seg-
mentations found by the model using gold tags and
estimated tags is quite large. This is due to the ora-
cle model finding the rarer suffixes which were not
distinguished by the models with noisier tags. This
demonstrates the importance of syntactic categorisa-
tion for the morpheme induction task, and suggests
that a more sophisticated tagging model (with better
performance) may yet improve morpheme segmen-
tation performance in Spanish.
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6 Conclusion

We have presented a model of joint syntactic cate-
gory and morphology induction. Operating within a
generative Bayesian framework means that combin-
ing single-task components is straightforward and
well-founded. Our model is token-based, allowing
for syntactic and morphemic ambiguity.

To our knowledge, this is the first joint model to
be tested on child-directed speech data, which is less
complex than the newswire corpora used by previ-
ous joint models. Child-directed speech may be sim-
ple enough for joint learning not to be necessary: our
results indicate the contrary, namely that joint learn-
ing is indeed helpful when learning from realistic
acquisition data.

We tested this model on two languages with dif-
ferent morphological characteristics. On English, a
language with relatively little morphology, espe-
cially in child directed speech, we found that bet-
ter categorisation of words yielded much better mor-
phology in terms of suffixes learned. Conversely, in
Spanish we saw less difference on the morphology
task between models with categories inferred solely
from morphemic patterns and models that also used
local syntactic context for categorisation. However,
in Spanish we saw an improvement in the tagging
task when morphology information was included.

This suggests that English and Spanish make dif-
ferent word-order and morphology trade-offs. In En-
glish, local context provides at least as much in-
formation as morphology in terms of determining
the correct syntactic category, but knowing a good
estimate of the correct syntactic category is use-
ful for determining a word’s morphology. In Span-
ish, a word’s morphology can more easily be deter-
mined simply by looking at frequent suffixes within
a purely morphological system. On the other hand,
word order is freer, making local syntactic context
unreliable, so taking morphological information into
account can improve tagging. These differences be-
tween languages demonstrate the benefits of joint
learning, which enables the learner to more flexibly
utilise the information available in the input data.
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Abstract

We present a cognitive model of early lexi-
cal acquisition which jointly performs word
segmentation and learns an explicit model of
phonetic variation. We define the model as a
Bayesian noisy channel; we sample segmen-
tations and word forms simultaneously from
the posterior, using beam sampling to control
the size of the search space. Compared to a
pipelined approach in which segmentation is
performed first, our model is qualitatively more
similar to human learners. On data with vari-
able pronunciations, the pipelined approach
learns to treat syllables or morphemes as words.
In contrast, our joint model, like infant learners,
tends to learn multiword collocations. We also
conduct analyses of the phonetic variations that
the model learns to accept and its patterns of
word recognition errors, and relate these to de-
velopmental evidence.

1 Introduction

By the end of their first year, infants have acquired
many of the basic elements of their native language.
Their sensitivity to phonetic contrasts has become
language-specific (Werker and Tees, 1984), and they
have begun detecting words in fluent speech (Jusczyk
and Aslin, 1995; Jusczyk et al., 1999) and learn-
ing word meanings (Bergelson and Swingley, 2012).
These developmental cooccurrences lead some re-
searchers to propose that phonetic and word learning
occur jointly, each one informing the other (Swingley,
2009; Feldman et al., 2013). Previous computational
models capture some aspects of this joint learning

problem, but typically simplify the problem consid-
erably, either by assuming an unrealistic degree of
phonetic regularity for word segmentation (Goldwa-
ter et al., 2009) or assuming pre-segmented input
for phonetic and lexical acquisition (Feldman et al.,
2009; Feldman et al., in press; Elsner et al., 2012).
This paper presents, to our knowledge, the first broad-
coverage model that learns to segment phonetically
variable input into words, while simultaneously learn-
ing an explicit model of phonetic variation that allows
it to cluster together segmented tokens with different
phonetic realizations (e.g., [ju] and [jI]) into lexical
items (/ju/).

We base our model on the Bayesian word segmen-
tation model of Goldwater et al. (2009) (henceforth
GGJ), using a noisy-channel setup where phonetic
variation is introduced by a finite-state transducer
(Neubig et al., 2010; Elsner et al., 2012). This in-
tegrated model allows us to examine how solving
the word segmentation problem should affect infants’
strategies for learning about phonetic variability and
how phonetic learning can allow word segmentation
to proceed in ways that mimic the idealized input
used in previous models.

In particular, although the GGJ model achieves
high segmentation accuracy on phonemic (non-
variable) input and makes errors that are qualitatively
similar to human learners (tending to undersegment
the input), its accuracy drops considerably on phonet-
ically noisy data and it tends to oversegment rather
than undersegment. Here, we demonstrate that when
the model is augmented to account for phonetic vari-
ability, it is able to learn common phonetic changes
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and by doing so, its accuracy improves and its errors
return to the more human-like undersegmentation
pattern. In addition, we find small improvements
in lexicon accuracy over a pipeline model that seg-
ments first and then performs lexical-phonetic learn-
ing (Elsner et al., 2012). We analyze the model’s
phonetic and lexical representations in detail, draw-
ing comparisons to experimental results on adult and
infant speech processing. Taken together, our results
support the idea that a Bayesian model that jointly
performs word segmentation and phonetic learning
provides a plausible explanation for many aspects of
early phonetic and word learning in infants.

2 Related Work

Nearly all computational models used to explore the
problems addressed here have treated the learning
tasks in isolation. Examples include models of word
segmentation from phonemic input (Christiansen et
al., 1998; Brent, 1999; Venkataraman, 2001; Swing-
ley, 2005) or phonetic input (Fleck, 2008; Rytting,
2007; Daland and Pierrehumbert, 2011; Boruta et
al., 2011), models of phonetic clustering (Vallabha
et al., 2007; Varadarajan et al., 2008; Dupoux et al.,
2011) and phonological rule learning (Peperkamp et
al., 2006; Martin et al., 2013).

Elsner et al. (2012) present a model that is similar
to ours, using a noisy channel model implemented
with a finite-state transducer to learn about phonetic
variability while clustering distinct tokens into lexi-
cal items. However (like the earlier lexical-phonetic
learning model of Feldman et al. (2009; in press))
their model assumes known word boundaries, so
to perform both segmentation and lexical-phonetic
learning, they use a pipeline that first segments using
GGJ and then applies their model to the results.

Neubig et al. (2010) also present a transducer-
based noisy channel model that performs joint in-
ference on two out of the three tasks we consider
here; their model assumes fixed probabilities for pho-
netic changes (the noise model) and jointly infers
the word segmentation and lexical items, as in our
‘oracle’ model below (though unlike our system their
model learns from phone lattices rather than a single
transcription). They evaluate only on phone recogni-
tion, not scoring the inferred lexical items.

Recently, Börschinger et al. (2013) did present a
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Figure 1: The graphical model for our system (Eq. 1-
4). Note that the si are not distinct observations; they
are concatenated together into a continuous sequence of
characters which constitute the observations.

joint learner for segmentation, phonetic learning, and
lexical clustering, but the model and inference are
tailored to investigate word-final /t/-deletion, rather
than aiming for a broad coverage system as we do.

3 Model

We follow several previous models of lexical acquisi-
tion in adopting a Bayesian noisy channel framework
(Eq. 1-4; Fig. 1). The model has two components:
a source distribution P (X) over utterances without
phonetic variability X , i.e., intended forms (Elsner et
al., 2012) and a channel or noise distribution T (S|X)
that translates them into the observed surface forms
S. The boundaries between surface forms are then
deterministically removed so that the actual observa-
tions are just the unsegmented string of characters in
the surface forms.

G0|α0, pstop ∼ DP (α0, Geom(pstop)) (1)

Gx|G0, α1 ∼ DP (α1, G0) (2)

Xi|Xi−1 ∼ GXi−1 (3)

S|X; θ ∼ T (S|X; θ) (4)

The source model is an exact copy of GGJ1: to
generate the intended-form word sequences X , we

1We use their best reported parameter values: α0 =
3000, α1 = 100, pstop = .2 and for unigrams, α0 = 20.
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sample a random language model from a hierarchi-
cal Dirichlet process (Teh et al., 2006) with char-
acter strings as atoms. To do so, we first draw a
unigram distribution G0 from a Dirichlet process
prior whose base distribution generates intended form
word strings by drawing each phone in turn until the
stop character is drawn (with probability pstop). Then,
for each possible context word x, we draw a condi-
tional distribution on words following that context
Gx = P (Xi = •|Xi−1 = x) using G0 as a prior.
Finally, we sample word sequences x1 . . . xn from
the bigram model.

The channel model is a finite transducer with pa-
rameters θ which independently rewrites single char-
acters from the intended string into characters of the
surface string. We use MAP point estimates of these
parameters; single characters (without n-gram con-
text) are used for computational efficiency. Also for
efficiency, the transducer can insert characters into
the surface string, but cannot delete characters from
the intended string. As in several previous phonolog-
ical models (Dreyer et al., 2008; Hayes and Wilson,
2008), the probabilities are learned using a feature-
based log-linear model. For features, we use all the
unigram features from Elsner et al. (2012), which
check faithfulness to voicing, place and manner of
articulation (for example, for k → g, active features
are faith-manner, faith-place, output-g and voiceless-
to-voiced).

Below, we present two methods for learning the
transducer parameters θ. The oracle transducer is es-
timated using the gold-standard word segmentations
and intended forms for the dataset; it represents the
best possible approximation under our model of the
actual phonetics of the dataset. We can also estimate
the transducer using the EM algorithm. We first ini-
tialize a simple transducer by putting small weights
on the faithfulness features to encourage phonologi-
cally plausible changes. With this initial model, we
begin running the sampler used to learn word segmen-
tations. After several hundred sampler iterations, we
start re-estimating the transducer by maximum likeli-
hood after each iteration. We regularize our estimates
by adding 200 pseudocounts for the rewrite x → x
during training (rather than regularizing the weights
for particular features). We also show segment only
results for a model without the transducer component
(i.e., S = X); this recovers the GGJ baseline.

4 Inference

Inference for this model is complicated for two rea-
sons. First, the hypothesis space is extremely large.
Since we allow the input string to be probabilistically
lengthened, we cannot be sure how long it is, nor
which characters it contains. Second, our hypothe-
ses about nearby characters are highly correlated due
to lexical effects. When deciding how to interpret
[w@nt], if we posit that the intended vowel is /2/, the
word is likely to be /w2n/ “one” and the next word
begins with /t/ ; if instead we posit that the vowel
is /O/, the word is probably /wOnt/ “want”. Thus,
inference methods that change only one character at
a time are unlikely to mix well. Since they cannot
simultaneously change the vowel and resegment the
/t/, they must pass through a low-probability inter-
mediate state to get from one state to the other, so
will tend to get stuck in a bad local minimum. A
Gibbs sampler which inserts or deletes a single seg-
ment boundary in each step (Goldwater et al., 2009)
suffers from this problem.

Mochihashi et al. (2009) describe an inference
method with higher mobility: a block sampler for
the GGJ model that samples from the posterior over
analyses of a whole utterance at once. This method
encodes the model as a large HMM, using dynamic
programming to select an analysis. We encode our
own model in the same way, constructing the HMM
and composing it with the transducer (Mohri, 2004)
to form a larger finite-state machine which is still
amenable to forward-backward sampling.

4.1 Finite-state encoding

Following Mochihashi et al. (2009) and Neubig et
al. (2010), we can write the original GGJ model
as a Hidden Semi-Markov model. States in the
HMM, written ST:[w][C], are labeled with the
previous word w and the sequence of characters C
which have so far been incorporated into the current
word. To produce a word boundary, we transition
from ST:[w][C] to ST:[C][] with probability
P (xi = C|xi−1 = w). We can also add the next
character s to the current word, transitioning from
ST:[w][C] to ST:[w][C : s], at no cost (since
the full cost of the word is paid at its boundary, there
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Figure 2: A fragment of the composed finite-state machine
for word segmentation and character replacement for the
surface string ju. The start state [s] is followed by a word
boundary (filled circle); the next intended character is
probably j but can be d or others with lower probability.
After j can be a word boundary (forming the intended
word j), or another character such as u, @ or other (not
shown) alternatives.

is no cost for the individual characters)2.
In addition to analyses using known words, we

can also encode the uniform-geometric prior over
unknown words using a finite-state machine. We
can choose to select a word from the prior by tran-
sitioning to a state ST:[Geom][] with probability
P (new word|xi−1 = w) immediately after a word
boundary. While inGeom, we can transition to a new
Geom state and produce any character with uniform
probability P (c) = (1−Pstop)

1
|C| ; otherwise, we can

end the word, transitioning to ST:[unk .word][],
with probability Pstop.

This construction is also approximate; it ignores
the possibility that the prior will generate a known
word w, in which case our final transition ought to
be to ST:[w][] instead of ST:[unk .word][]. This
approximation means we do not need to add context
to the Geom state to remember the sequence of char-
acters it produced, which allows us to keep only a
single Geom state on the chart at each timestep.

When we compose this model with the channel
model, the number of states expands. Each state must
now keep track of the previous word, what intended
charactersC have been posited and what surface char-
acters S have been recognized, ST:[w][C][S].

2Though not mentioned by Mochihashi et al. (2009) or Neu-
big et al. (2010), this construction is not exact, since transitions
in a Bayesian HMM are exchangeable but not independent (Beal
et al., 2001): if a word occurs twice in an utterance, its probabil-
ity is slightly higher the second time. For single utterances, this
bias is small and easy to correct for using a Metropolis-Hastings
acceptance check (Börschinger and Johnson, 2012) using the
path probability from the HMM as the proposal.

To recognize the current word, we transition to
ST:[C][][] with probability P (xi = C|xi−1 =
w). To parse a new surface character s by positing
intended character x (note that x might be ε), we
transition to ST:[w][C : x][S : s] with probabil-
ity T (s|x). (As above, we pay no cost for our choice
of x, which is paid for when we recognize the word;
however, we must pay for s.) For efficiency, we do
not allow the G0 states to hypothesize different sur-
face and intended characters, so when we initially
propose an unknown word, it must surface as itself.3

4.2 Beam sampler

This machine has too many states to fully fill the chart
before backward sampling, so we restrict the set of
trajectories under consideration using beam sampling
(Van Gael et al., 2008) and simulated annealing.

The beam sampler is closely related to the standard
beam search technique, which uses a probability cut-
off to discard parts of the FST which are unlikely to
figure in the eventual solution. Unlike conventional
beam search, the sampler explores using stochastic
cutoffs, so that all trajectories are explored, but most
of the bad ones are explored infrequently, leading to
higher efficiency.

We design our beam sampler to restrict the set
of potential intended characters at each timestep.
In particular, given a stream of input characters
S = s1 . . . sn, we introduce a set of auxiliary cutoff
variables U = u1 . . . un. The ui variables represent
limits on the probability of the emission of surface
character si; we exclude any hypothesized xi whose
probability of generating si, T (si|xi), is less than
ui. To create a beam sampling scheme, we must de-
vise a distribution for U given a state sequence Q (as
discussed above, the sequence of states encodes the
intended character sequence and the segmentation
of the surface string), Pu(U |Q) and then incorporate
the probability of U into the forward messages.

If qi is the state in Q at which si is generated, and
xi the corresponding intended character, we require
that Pu < T (si|xi); that is, the cutoffs must not
exclude any states in the sequence Q. We define Pu

3Again, this approximation is corrected for by the Metropolis-
Hastings step.
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as a λ-mixture of two distributions:

Pu(u|si, xi) = λU [0,min(.05, T (si|xi))]+

(1− λ)T (si|xi)Beta(5, 1e− 5)

The former distribution is quite unrestrictive, while
the latter prefers to prune away nearly all the states.
Thus, for most characters in the string, we do not
permit radical changes, while for a fraction, we do.

We follow Huggins and Wood (2013), who ex-
tended Van Gael et al. (2008) to the case of a non-
uniform Pu, to define our forward message α as:

α(qi, i) ∝ P (qi, S0..i, U0..i) (5)

=
∑
qi−1

Pu(ui|si, xi)T (si|xi)α(qi−1, i− 1)

This is the standard HMM forward message, aug-
mented with the probability of u. Since Pu(·|si, xi)
is required to be less than T (si|xi), it will be 0 when-
ever T (si|xi) < u; this is how the u variables func-
tion as cutoffs. In practice, we use the u variables to
filter the lexical items that begin at each position i
in advance, using a simple 0/1 edit distance Markov
model which runs faster than our full model. (For ex-
ample, we can quickly check if the current U allows
want as the intended form for wOlk at i; if not, we can
avoid constructing the prefix ST:[xi−1][wa][wO]

since the continuation will fail.)
The algorithm’s speed depends on the size and

uncertainty of the inferred LM: large numbers of
plausible words mean more states to explore. When
inference starts, and the system is highly uncertain
about word boundaries, it is therefore reasonable to
limit the exploration of the character sequence. We
do so by annealing in two ways: as in Goldwater
et al. (2009), we raise P (X) (Eq. 3) to a power t
which increases linearly from .3. To sample from
the posterior, we would want to end with t = 1, but
as in previous noisy-channel models (Elsner et al.,
2012; Bahl et al., 1980) we get better results when we
emphasize the LM at the expense of the channel and
so end at t = 2. Meanwhile, as t rises and we explore
fewer implausible lexical sequences, we can explore
the character sequence more. We begin by setting
the λ interpolation parameter of Pu to 0 to minimize
exploration and increase it linearly to .3 (allowing
the system to change about a third of the characters

on each sweep). This is similar to the scheme for
altering Pu in Huggins and Wood (2013).

4.3 Dataset and metrics

We use the corpus released by Elsner et al. (2012),
which contains 9790 child-directed English utter-
ances originally from the Bernstein-Ratner corpus
(Bernstein-Ratner, 1987) and later transcribed phone-
mically (Brent, 1999). This standard word segmenta-
tion dataset was modified by Elsner et al. (2012) to
include phonetic variation by assigning each token a
pronunciation independently selected from the empir-
ical distribution of pronunciations of that word type
in the closely-transcribed Buckeye Speech Corpus
(Pitt et al., 2007). Following previous work, we hold
out the last 1790 utterances as unseen test data during
development. In the results presented here, we run
the model on all 9790 utterances but score only these
1790. We average results over 5 runs of the model
with different random seeds.

We use standard metrics for segmentation and lex-
icon recovery. For segmentation, we report precision,
recall and F-score for word boundaries (bds), and for
the positions of word tokens in the surface string (srf ;
both boundaries must be correct).

For normalization of the pronunciation variation,
we follow Elsner et al. (2012) in measuring how well
the system clusters together variant pronunciations
of the same lexical item, without insisting that the
intended form the system proposes for them match
the one in our corpus. For example, if the system
correctly clusters [ju] and [jI] together but assigns
them the incorrect intended form /jI/, we can still
give credit to this cluster if it is the one that overlaps
best with the gold-standard /ju/ cluster. To compute
these scores, we find the optimal one-to-one map-
ping between our clusters of pronunciations and the
true lexical entries, then report scores for mapped to-
kens (mtk; boundaries and mapping to gold standard
cluster must be correct) and mapped types4 (mlx).

4Elsner et al. (2012) calls the mlx metric lexicon F, which
is possibly confusing. We map the clusters to a gold-standard
lexicon (plus potentially some words that don’t correspond to
anything in the gold standard) and compute a type-level F-score
on this lexicon.
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Prec Rec F-score
Pipeline (segment, then cluster): (Elsner et al., 2012)

Bds 70.4 93.5 80.3
Srf 56.5 69.7 62.4
Mtk 44.2 54.5 48.8
Mlx 48.6 43.1 45.7

Bigram model, segment only
Bds 73.9 (-0.6:0.7) 91.0 (-0.6:0.4) 81.6 (-0.5:0.6)
Srf 60.8 (-0.7:1.1) 70.8 (-0.8:0.9) 65.4 (-0.6:1.0)
Mtk 41.6 (-0.6:1.2) 48.4 (-0.5:1.2) 44.8 (-0.6:1.2)
Mlx 36.6 (-0.7:0.8) 49.8 (-1.0:0.8) 42.2 (-0.9:0.8)

Unigram model, oracle transducer
Bds 81.4 (-0.8:0.4) 72.1 (-0.9:0.8) 76.4 (-0.5:0.7)
Srf 63.6 (-1.0:1.1) 58.5 (-1.2:1.2) 60.9 (-0.9:1.2)
Mtk 46.8 (-1.0:1.1) 43.0 (-1.1:1.2) 44.8 (-1.0:1.2)
Mlx 56.7 (-1.1:1.0) 47.6 (-1.4:0.8) 51.7 (-1.2:0.8)

Bigram model, oracle transducer
Bds 76.1 (-0.6:0.6) 83.8 (-0.9:1.0) 79.8 (-0.8:0.4)
Srf 62.2 (-0.9:1.0) 66.7 (-1.2:1.1) 64.4 (-1.1:0.8)
Mtk 47.2 (-0.7:0.9) 50.6 (-1.0:0.8) 48.8 (-0.8:0.7)
Mlx 40.1 (-1.0:1.2) 43.7 (-0.6:0.7) 41.8 (-0.8:0.6)

Bigram model, EM transducer
Bds 80.1 (-0.5:0.8) 83.0 (-1.4:1.3) 81.5 (-0.5:0.7)
Srf 66.1 (-0.8:1.4) 67.8 (-1.4:1.7) 66.9 (-0.9:1.4)
Mtk 49.0 (-0.9:0.7) 50.3 (-1.1:1.4) 49.6 (-1.0:1.0)
Mlx 43.0 (-1.0:1.4) 49.5 (-1.5:1.1) 46.0 (-1.0:1.3)

Table 1: Mean segmentation (bds, srf ) and normalization
(mtk, mlx) scores on the test set over 5 runs. Parentheses
show min and max scores as differences from the mean.

5 Results and discussion

In the following sections, we analyze how our model
with variability compares to GGJ on noisy data. We
give quantitative scores and also show that qualitative
patterns of errors are often similar to those of human
learners and listeners.

5.1 Clean versus variable input

We begin by evaluating our model as a word seg-
mentation system. (Table 1 gives segmentation and
normalization scores for various models and base-
lines on the 1790 test utterances.) We first confirm
that our inference method is reasonable. The bigram
model without variability (“segment only”) should
have the same segmentation performance as the stan-
dard dpseg implementation of GGJ. This is the case:
dpseg has boundary F of 80.3 and token F of 62.4;
we get 81.6 and 65.4. Thus, our sampler is finding
good solutions, at least for the no-variability model.

We compare segmentation scores between the

“segment only” system and the two bigram models
with transducers (“oracle” and “EM”). While these
systems all achieve similar segmentation scores, they
do so in different ways. “Segment only” finds a so-
lution with boundary precision 73.9% and boundary
recall 91.0% for a total F of 81.6%. The low pre-
cision and high recall here indicate a tendency to
oversegment; when the analysis of a given subse-
quence is unclear, the system prefers to chop it into
small chunks. The bigram models which incorporate
transducers score P : 76.1, R: 83.8 (oracle) and P :
80.1,R: 83.0 (EM), indicating that they prefer to find
longer sequences (undersegment) more.

In previous experiments on datasets without varia-
tion, GGJ also has a strong tendency to undersegment
the data (boundary P : 90.1, R: 80.3), which Gold-
water et al. argue is rational behavior for an ideal
learner seeking a parsimonious explanation for the
data. Undersegmentation occurs especially when ig-
noring lexical context (a unigram model), but to some
extent even in bigram models. Human learners also
tend to learn collocations as single words (Peters,
1983; Tomasello, 2000), and the GGJ model has been
shown to capture several other effects seen in labora-
tory segmentation tasks (Frank et al., 2010). Together,
these findings support the idea that human learners
may behave in important respects like the Bayesian
ideal learners that Goldwater et al. presented.

However, experiments on data with variation have
called these conclusions into question. In particu-
lar, GGJ has previously been shown to oversegment
rather than undersegment as the input grows noisier
(Fleck, 2008), and our results replicate this finding
(oversegmentation for the “segment only” model).
In addition, the GGJ bigram model, which achieves
much higher segmentation accuracy than the unigram
model on clean data, actually performs worse on very
noisy data (Jansen et al., 2013). Infants are known to
track statistical dependencies across words (Gómez
and Maye, 2005), so it is worrisome that these de-
pendencies hurt GGJ’s segmentation accuracy when
learning from noisy data.

Our results show that modeling phonetic variabil-
ity reverses the problematic trends described above.
Although the models with phonetic variability show
similar overall segmentation accuracy on noisy data
to the original GGJ model, the pattern of errors
changes, with less oversegmentation and more un-
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dersegmentation. Thus, their qualitative performance
on variable data resembles GGJ’s on clean data, and
therefore the behavior of human learners.

5.2 Phonetic variability
We next analyze the model’s ability to normalize vari-
ations in the pronunciation of tokens, by inspecting
the mtk score. The “segment only” baseline is pre-
dictably poor, F : 44.8. The pipeline model scores
48.8, and our oracle transducer model matches this
exactly. The EM transducer scores better, F : 49.6.
Although the confidence intervals overlap slightly,
the EM system also outperforms the pipeline on the
other F -measures; altogether, these results suggest
at least a weak learning synergy (Johnson, 2008) be-
tween segmentation and phonetic learning.

It is interesting that EM can perform better than
the oracle. However, EM is more conservative about
which sound changes it will allow, and thus tends to
avoid mistakes caused by the simplicity of the trans-
ducer model. Since the transducer works segment-
by-segment, it can apply rare contextual variations
out of context. EM benefits from not learning these
variations to begin with.

We can also compare the bigram and unigram ver-
sions of the model. The unigram model is a rea-
sonable segmenter, though not quite as good as the
bigram model, with boundary F of 76.4 and token
F of 60.9 (compared to 79.8 and 64.4 using the bi-
gram model). However, it is not good at normalizing
variation; its mtk score is comparable to the baseline
at 44.8%5. Although bigram context is only moder-
ately effective for telling where words are, the model
seems heavily reliant on lexical context to decide
what words it is hearing.

5.3 Error analysis
To gain more insight into the differing behavior of
our model versus a pipelined system, we inspect the
intended word strings X proposed by each one in
detail. Below, we categorize the kinds of intended
word strings that the model might propose to span a
given gold-standard word token:

Correct Correctly segmented, mapped to the correct
lexical item (e.g., gold intended /ju/, surface

5Elsner et al. (2012) show a similar result for a unigram
version of their pipelined system.

EM-learned Segment only
Correct 49.88 47.61
Wrong form 17.96 23.73
Collocation 14.25 7.59
Split 8.26 15.18
One bound 7.11 15.18
Corr. colloc. 1.35 < 0.01
Other 0.75 0.22
Corr. split 0.43 0.66

Table 2: Distribution (%) of error types (see text) in a
single run on the full dataset.

segmentation [ju], intended /ju/)
Wrong form Correctly segmented, mapped to the

wrong lexical item (/ju/, surf. [ju], int. /jEs/)
Colloc Missegmented as part of a sequence whose

boundaries correspond to real word boundaries
(/ju•want/, surf. [juwant], int. /juwant/)

Corr. colloc As above, but proposed lexical item
maps to this word (/ar•ju/, surf. [arj@] int.
/ju/)

Split Missegmented with a word-internal boundary
(/dOgiz/, surf. [dO•giz], int. /dO•giz/)

Corr. split As above, but one proposed word maps
correctly (/dOgi/, surf. [dOg•i], int. /dOgi•@/)

One boundary One boundary correct, the other
wrong (/ju•wa. . ./, surf. [juw], int. /juw/)

Other Not a collocation, both boundaries are wrong
(/du•ju•wa. . ./, surf. [ujuw], int. /ujuw/)

Table 2 shows the distribution over intended word
strings proposed by the “segment only” baseline and
the EM-learned transducer. Both systems propose
a large number of correct forms, and the most com-
mon error category is “wrong form” (lexical error
without segmentation error), an error which could
potentially be repaired in a pipeline system. How-
ever, the remaining errors represent segmentation
mistakes which a pipeline could not repair. Here
the two systems behave quite differently. The EM-
learned transducer analyses 14% of real tokens as
parts of multiword collocations like “doyou”; in an-
other 1.35%, the underlying content word is even
correctly detected. The non-variable system, on the
other hand, analyses 15% of real tokens by splitting
them into pieces. Since infant learners tend to learn
collocations, this supports our analysis that the model
with variation better models human behavior.
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EM ju: 805, duju: 239, juwan: 88, jI: 58, e~ju: 54, judu:
47, jæ: 39, jul2k: 39, Su: 30, u: 23, Zu: 18, j: 17,
je~: 16, tSu: 15, aj:15, Derjugo: 12, dZu: 12

GGJ ju: 498, jI: 280, j@: 165, ji: 119, duju: 106, dujI: 44,
kInju: 39, i: 32, u: 29, kInjI: 29, jul2k: 24, juwan:
23, j: 22, Su: 19, jU: 18, e~ju: 18, I:16, Zu: 15, dZ•u:
13, jE: 12, SI: 11, TæNkju: 11

Table 3: Forms proposed with frequency > 10 for
gold-standard tokens of “you” in one sample from EM-
transducer and segment-only (GGJ) system.

To illustrate this behavior anecdotally, we present
the distribution of intended word strings spanning
tokens whose gold intended form is /ju/ “you” (Table
3). The EM-learned solution proposes 805 tokens
of /ju/, which is the correct analysis6; the “segment
only” system instead finds varying forms like /jI/,
/jæ/ etc. This is unsurprising and could be repaired
by a suitable pipelined system. However, the EM
system also proposes 239 instances of “doyou”, 88
instances of “youwant”, 54 instances of “areyou” and
several other collocations. The “segment only” sys-
tem finds some of these collocations, split into dif-
ferent versions: for instance 106 instances of /duju/
and 44 of /dujI/. In a pipelined system, we could
combine these variants to find 150 instances— but
this is still 89 instances short of the 239 found when
allowing for variability. The same pattern holds for
“youlike” and “youwant”. Because the non-variable
system must learn each variant separately, it learns
only the most common instances of these long collo-
cations, and analyzes infrequent variants differently.

We also perform this analysis specifically for
words beginning with vowels. Infants show a delay
in their ability to segment these words from continu-
ous speech (Mattys and Jusczyk, 2001; Nazzi et al.,
2005; Seidl and Johnson, 2008), and Seidl and John-
son (2008) suggest a perceptual explanation— initial
vowels can be hard to hear and often exhibit variation
due to coarticulation or resyllabification. Although
our dataset does not contain coarticulation as such, it
should show this pattern of greater variation, which
we hypothesize might lead to difficulty in segmenting
and recognizing vowel-initial words.

The model’s behavior is consistent with this hy-
pothesis (Table 4). Both the “segment only” and
EM transducer models find approximately the same

6Not all the variants are merged, however. jI, jæ, Su etc. are
still occasionally analyzed as separate lexical items.

Segment only Vow. init Cons. init
Correct 47.5 51.7
Wrong form 18.6 15.7
Collocation 14.6 12.2
Split 6.2 10.8
Right bd. corr. 5.8 3.6
Left bd. corr. 4.6 3.8
EM transducer Vow. init Cons. init
Correct 41.5 52.1
Wrong form 20.4 17.3
Collocation 19.2 12.5
Split 5.2 9.1
Right bd. corr. 6.2 2.7
Left bd. corr. 2.7 3.1

Table 4: Most common error types (%; see text) for in-
tended forms beginning with vowels or consonants. Rare
error types are not shown. “One bound” errors are split up
by which boundary is correct.

proportion of vowel-initial tokens, and both systems
do somewhat better on consonant-initial words than
vowel-initial words. The advantage is stronger for
the transducer model, which gets only 41.5% of
vowel-initial tokens correct as opposed to 52.1% of
consonant-initial words. It proposes more colloca-
tions for vowel-initial words (19.2%) than for conso-
nants (12.5%). In cases where they do not propose a
collocation, both systems are somewhat more likely
to find the right boundary of a vowel-initial token
than the left boundary (although again this difference
is larger for the EM system); this suggests that the
problem is indeed caused by the initial segment.

5.4 Phonetic Learning

We next compare phonetic variations learned by the
model to characteristics of infant speech perception.
Infants show an asymmetry between consonants and
vowels, losing sensitivity to non-native vowel con-
trasts by eight months (Kuhl et al., 1992; Bosch
and Sebastián-Gallés, 2003) but to non-native con-
sonant contrasts only by 10-12 months (Werker and
Tees, 1984). The observed ordering is somewhat
puzzling when one considers the availability for dis-
tributional information (Maye et al., 2002), which is
much stronger for stop consonants than for vowels
(Lisker and Abramson, 1964; Peterson and Barney,
1952). Infants are also conservative in generalizing
across phonetic variability, showing a delayed abil-
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ity to generalize across talkers, affects, and dialects.
They have difficulty recognizing word tokens that are
spoken by a different talker or in a different tone of
voice until 11 months (Houston and Jusczyk, 2000;
Singh et al., 2004), and the ability to adapt to unfa-
miliar dialects appears to develop even later, between
15 and 19 months (Best et al., 2009; Heugten and
Johnson, in press; White and Aslin, 2011).

Similar to infants, our model shows both a vowel-
consonant asymmetry and a reluctance to accept the
full range of adult phonetic variability. Table 5 shows
some segment-to-segment alternations learned in var-
ious transducers. The oracle learns a large amount
of variation (u surfaces as itself only 68% of the
time) involving many different segments, whereas
EM is similar to infant learners in learning a more
conservative solution with fewer alternations over-
all. Moreover, EM appears to identify patterns of
variability in vowels before consonants. It learns a
similar range of alternations for u as in the oracle,
although it treats the sound as less variable than it
actually is. It learns much less variability for con-
sonants; it picks up the alternation of D with s and
z, but predicts that D will surface as itself 91% of
the time when the true figure is only 69%. And it
fails to learn any meaningful alternations involving
k. These results suggest that patterns of variability in
vowels are more evident than patterns of variability
in consonants when infants are beginning to solve the
word segmentation problem.

To investigate the effect of data size on this con-
servativism, we ran the system on 1000 utterances
instead of 9790. This leads to an even more conser-
vative solution, with variations for u but none of the
others (although i and D still vary more than k).

5.5 Segmentation and recognition errors

A particularly interesting set of errors are those that
involve both a missegmentation and a simultaneous
misrecognition, since the joint model is prone to
such errors while the pipelined model is not. Rel-
atively little is known about infants’ misrecognitions
of words in fluent speech, although it is clear that they
find words in medial position harder (Plunkett, 2005;
Seidl and Johnson, 2006). However, adults make
missegmentation/misrecognition errors fairly often,
especially when listening to noisy audio (Butterfield
and Cutler, 1988). Such errors are more common

System x top 4 outputs s

Oracle

u u .68 @ .05 a .04 U .04
i i .85 I .03 @ .03 E .02
D D .69 s .07 [φ] .07 z .04
k k .93 d .02 g .02
[φ] r .21 h .11 d .01 @ .07

EM
(full)

u u .75 @ .08 I .04 U .03
i i .90 I .04 E .02
D D .91 s .03 z 0.1
k k .98
[φ] @ .32 I .14 n .13 t .13

EM
(only
1000
utts)

u u .82 I .04 @ .04 a .02
i i .97
D D .95
k k .99
[φ] @ .21 I .18 t .12 s .12

Table 5: Learned phonetic alternations: top 4 outputs s
with p > .001 for inputs x = uw (/u/ ), iy (/i/ ), dh (/D/ ),
k (/k/) and [φ], the null character. Outputs from [φ] are
insertions. The oracle allows [φ] as an output (deletion)
but for computational reasons, the model does not.

when the misrecognized word belongs to a prosod-
ically rare class and when the incorrectly hypothe-
sized string contains frequent words (Cutler, 1990);
phonetically ambiguous words are also more com-
monly recognized as the more frequent of two op-
tions (Connine et al., 1993). For the indefinite article
“a” (often reduced to [@]), lexical context is the main
factor in deciding between ambiguous interpretations
(Kim et al., 2012). In rapid speech, listeners have few
phonetic cues to indicate whether it is present at all
(Dilley and Pitt, 2010). Below, we analyze various
misrecognitions made by our system (using the EM
transducer), and find some similar effects.

The easiest cases to analyze are those with no mis-
segmentation: the proposed boundaries are correct,
and the proposed lexical entry corresponds to a real
word7, but not the correct one. Most of them corre-
spond to homophones (Table 6).

Common cases with a missegmentation include it
and is, a and is, it’s and is, who, who’s and whose,
that’s and what’s, and there and there’s. In general,
these errors involve words which sometimes appear

7The one-to-one mapping can be misleading, as it may map
a large cluster to a real word on the basis of one or two tokens if
all other tokens correspond to a different word already used for
another cluster. We manually filter out a few cases like this.
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Actual proposed count
/tu/ “two” /t@/ “to” 95
/kin/ “can” /kænt/ “can’t” 67
/En/ “and” /æn/ “an” 61
/hIz/ “his” /Iz/ “is” 57
/D@/ “the” /@/ “ah” 51
/w@ts/ “what’s” /wants/ “wants” 40
/wan/ “want” /won/ “won’t” 39
/yu/ “you” /yæ/ “yeah” 39
/f@~/ “for” /fOr/ “four” 30
/hir/ “here” /hil/ “he’ll” 28

Table 6: Top ten errors involving confusion between real,
correctly segmented words: the most common pronunci-
ation of the actual token and its orthographic form, the
same for the proposed token, and the frequency.

with a morpheme or clitic (which can easily be mis-
segmented as part of something else), words which
differ by one segment, and frequent function words
which often appear in similar contexts. These tenden-
cies match those shown by adult human listeners.

A particularly distinctive set of joint recognition
and segmentation errors are those where an entire
real token is treated as phonetic “noise”— that is, it
is segmented along with an adjacent word, and the
system clusters the whole sequence as a token of
that word. The most common examples are “that’s a”
identified as “that’s”, “have a” identified as “have”,
“sees a” identified as “sees” and other examples in-
volving “a”, a word which also frequently confuses
humans (Kim et al., 2012; Dilley and Pitt, 2010).
However, there are also instances of “who’s in” as
“who’s”, “does it” as “does”, and “can you” as “can”.

6 Conclusion

We have presented a model that jointly infers word
segmentation, lexical items, and a model of phonetic
variability; we believe this is the first model to do
so on a broad-coverage naturalistic corpus8. Our re-
sults show a small improvement in both segmentation
and normalization over a pipeline model, providing
evidence for a synergistic interaction between these
learning tasks and supporting claims of interactive
learning from the developmental literature on infants.
We also reproduced several experimental findings;
our results suggest that two vowel-consonant asym-

8Software is available from the ACL archive; updated
versions may be posted at https://bitbucket.org/
melsner/beamseg.

metries, one from the word segmentation literature
and another from the phonetic learning literature, are
linked to the large variability in vowels found in nat-
ural corpora. The model’s correspondence with hu-
man behavioral results is by no means exact, but we
believe these kinds of predictions might help guide
future research on infant phonetic and word learning.
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Abstract

Animacy detection is a problem whose solu-
tion has been shown to be beneficial for a
number of syntactic and semantic tasks. We
present a state-of-the-art system for this task
which uses a number of simple classifiers
with heterogeneous data sources in a voting
scheme. We show how this framework can
give us direct insight into the behavior of the
system, allowing us to more easily diagnose
sources of error.

1 Introduction

Animacy detection has proven useful for a va-
riety of syntactic and semantic tasks, such as
anaphora and coreference resolution (Orǎsan and
Evans, 2007; Lee et al., 2013), verb argument dis-
ambiguation (Dell’Orletta et al., 2005) and depen-
dency parsing (Øvrelid and Nivre, 2007). Existing
approaches for animacy detection typically rely on
two types of information: linguistic databases, and
syntactic cues observed from the corpus. They usu-
ally combine two types of approaches: rule based
systems, and machine learning techniques. In this
paper we explore a slightly different angle: we wish
to design an animacy detector whose decisions are
interpretable and correctable, so that downstream
semantic modeling systems can revisit those deci-
sions as needed. Thus here, we avoid defining
a large number of features and then using a ma-
chine learning method such as boosted trees, since
such methods, although powerful, result in hard-to-
interpret systems. Instead, we explore combining
interpretable voting models using machine learning

∗ Work performed while visiting Microsoft Research.

only to reweight their votes. We show that such
an approach can indeed result in a high perform-
ing system, with animacy detection accuracies in the
mid 90% range, which compares well with other re-
ported rates. Ensemble methods are well known (see
for example, Dietterich (2000)) but our focus here is
on using them for interpretability while still main-
taining accuracy.

2 Previous Work

2.1 Definitions of Animacy

Previous work uses several different definitions of
animacy. Orǎsan and Evans (2007) define animacy
in the service of anaphora resolution: an NP is con-
sidered animate “if its referent can also be referred
to using one of the pronouns he, she, him, her, his,
hers, himself, herself, or a combination of such pro-
nouns (e.g. his/her )”. Although useful for the task
at hand, this has counterintuitive consequences: for
example, baby may be considered animate or inan-
imate, and ant is considered inanimate (Ibid., Fig-
ure 1). Others have argued that animacy should be
captured by a hierarchy or by categories (Aissen,
2003; Silverstein, 1986). For instance, Zaenen et
al. (2004) propose three levels of animacy (human,
other animate and inanimate), which cover ten cat-
egories of noun phrases, with categories like ORG
(organization), ANIM (animal) and MAC (intelli-
gent machines such as robots) categorised as other
animate. Bowman and Chopra (2012) report results
for animacy defined both this way and with the cat-
egories collapsed to a binary (animate, inanimate)
definition.
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2.2 Methods for Animacy Detection

Evans and Orǎsan (2000) propose a rule-based sys-
tem based on the WordNet taxonomy (Fellbaum,
1998). Each synset is ascribed a binary animacy
label based on its unique beginner. A given noun
is then associated with the fraction of its animate
synsets (where all synsets are taken to be animate
or inanimate) and one minus that fraction, similarly
for a given verb. Animacy is then ascribed by ap-
plying a series of rules imposing thresholds on those
fractions, together with rules (and a gazetteer) to de-
tect names and acronyms, and a rule triggered by the
occurrence of who, or reflexives, in the NP. In later
work, Orǎsan and Evans (2007) extend the algorithm
by propagating animacy labels in the WordNet graph
using a chi-squared test, and then apply a k-nearest
neighbor classifier based on four lexical features. In
their work, the only context used was the animacy of
the verb in the NP, for heads of subject NPs (e.g., the
subject of eat is typically animate). Øvrelid (2009)
and Bowman and Chopra (2012) extend this idea by
using dependency relations to generate features for
their classifier, enabled by corpora created by Zae-
nen et al. (2004). In another approach, Ji and Lin
(2009) apply a simple “relative-pronoun” pattern to
the Google n-gram corpus (Brants and Franz, 2006)
to assign animacy (see the List model in Section 5
for details). Although the animacy decision is again
context-independent, such a list provides a strong
baseline and thus benefit applications like anaphora
resolution (Lee et al., 2013).

3 The Task

We adopt a definition of animacy closest to the bi-
nary version in Bowman and Chopra (2012): we
define an entity to be animate if it is alive and has
the ability to move under its own will. We adopt
this simple definition because it fits well with the
common meaning and is therefore less error prone,
both in terms of incorporation into higher level mod-
els, and for labeling (Orǎsan and Evans (2007) re-
port that the labeling of animacy tuned for anaphora
proved challenging for the judges). We also ap-
ply the label to single noun tokens where possible:
the only exceptions are compound names (“Sarah
Jones”) which are treated as single units. Thus,
for example, “puppy food” is treated as two words,

with puppy animate and food inanimate. A more
complete definition would extend this to all noun
phrases, so that puppy food as a unit would be inan-
imate, a notion we plan to revisit in future work.
Note that even this simple definition presents chal-
lenges, so that a binary label must be applied de-
pending on the predominant meaning. In “A plate
of chicken,” chicken is treated as inanimate since it
refers to food. In “Caruso (1873-1921) is consid-
ered one of the world’s best opera singers. He...,”
although at the time of writing clearly Caruso was
not alive, the token is still treated as animate here
because the subsequent writing refers to a live per-
son.

4 The Data

We used the MC160 dataset, which is a subset of the
MCTest dataset and which is composed of 160 grade
level reading comprehension stories generated using
crowd sourcing (Richardson et al., 2013). Workers
were asked to write a short story (typically less than
300 words) with a target audience of 5 to 7 year
olds. The available vocabulary was limited to ap-
proximately 8000 words, to model the reading abil-
ity of a first or second grader. We labeled this data
for animacy using the definition given above. The
first 100 of the 160 stories were used as the training
set, and the remaining 60 were used for the test set.
These animacy labels will be made available on the
web site for MCTest (Richardson et al., 2013).

5 The Models

Since one of our key goals is interpretability we
chose to use an ensemble of simple voting models.
Each model is able to vote for the categories Ani-
mal, Person, Inanimate, or to abstain. The distinc-
tion between Animal and Person is only used when
we combine votes, where Animal and Person votes
appear as distinct inputs for the final voting combi-
nation model. Some voters do not distinguish be-
tween Person and Animal, and vote for Animate or
Inanimate. Our models are:

List: The n-gram list method from (Ji and Lin,
2009). Here, the frequencies with which the rela-
tive pronouns who, where, when, and which occur
are considered. Any noun followed most frequently
by who is classified as Animate, and any other noun

56



in the list is classified as Inanimate. This voter ab-
stains when the noun is not present in the list.

Anaphora Design: The WordNet-based approach
of Evans and Orǎsan (2000).

WordNet: A simple approach using WordNet.
This voter chooses Animal or Person if the unique
beginner of the first synset of the noun is either of
these, and Inanimate otherwise.

WordSim: This voter uses the contextual vector
space model of Yih and Qazvinian (2012) computed
using Wikipedia and LA Times data. It uses short
lists of hand-chosen signal words for the categories
Animal, Person, and Inanimate to produce a “re-
sponse” of the word to each category. This response
is equal to the maximum cosine similarity in the vec-
tor space of the query word to any signal word in the
category. The final vote goes to the category with
the highest response.

Name: We used an in-house named entity tagger.
This voter can recognize some inanimate entities
such as cities, but does not distinguish between peo-
ple and animals, and so can only vote Animate, Inan-
imate or Abstain.

Dictionaries: We use three different dictionary
sources (Simple English Wiktionary, Full English
Wiktionary, and the definitions found in Word-
Net) with a recursive dictionary crawling algorithm.
First, we fetch the first definition of the query and
use a dependency tree and simple heuristics to find
the head noun of the definition, ignoring qualifica-
tion NPs like “piece” or “member.” If this noun
belongs to a list of per-category signal words, the
voter stops and votes for that category. Otherwise,
the voter recursively runs on the found head noun.
To prevent cycling, if no prediction is made after 10
recursive lookups, the voter abstains.

Transfer: For each story, we first process each
sentence and detect instances of the patterns x
am/is/was/are/were y and y named x. In each of
these cases, we use majority vote of the remaining
voters to predict the animacy of y and transfer
its vote to x, applying this label (as a vote) to all
instances of x in the text.

The WordSim and Dictionaries voters share lists
of signal words, which were chosen early in the ex-
perimental process using the training set. The sig-
nal words for the Animal category were animal and
mammal1. Person contains person and people. Fi-
nally, Inanimate uses thing, object, space, place,
symbol, food, structure, sound, measure, and unit.

We considered two methods for combining vot-
ers: majority voting (where the reliable Name voter
overrides the others if it does not abstain) and a lin-
ear reweighting of votes. In the reweighting method,
a feature vector is formed from the votes. Except
for WordSim, this vector is an indicator vector of
the vote – either Animal, Person, Animate (if the
voter doesn’t distinguish between animals and peo-
ple), Inanimate, or Abstain.

For Dictionaries, the vector’s non-zero compo-
nent is multiplied by the number of remaining al-
lowed recursive calls that can be performed, plus one
(so that a success on the final lookup gives a 1). For
example, if the third lookup finds a signal word and
chooses Animal, then the component corresponding
to Animal will have a value of 9.

For WordSim, instead of an indicator vector, the
responses to each category are used, or an indica-
tor for abstain if the model does not contain the
word. If the word is in the model, a second vec-
tor is appended containing the ratio of the maximum
response to the second-largest response in the com-
ponent for the maximum response category. These
per-voter feature vectors are concatenated to form a
35 dimensional vector, and a linear SVM is trained
to obtain the weights for combining the votes.

6 Results

We used the POS tagger in MSR SPLAT (Quirk et
al., 2012) to extract nouns from the stories in the
MC160 dataset and used these as labeled examples
for the SVM. This resulted in 5,120 extracted nouns
in the 100 training stories and 3,009 in the 60 test
stories. We use five-fold cross-validation on the
training set to select the SVM parameters. 57.2%
of the training examples were inanimate, as were
58.1% of the test examples.

Table 1 gives the test accuracy of each voter. List

1This was found to work well given typical dictionary defi-
nitions despite the fact that people are also mammals.
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List Anaphora WNet WSim Dict Name
84.6 77.1 78.8 57.6 74.3 16.0

Table 1: Accuracy of various individual voters on the test
set. Abstentions are counted as errors. Note that Transfer
depends on a secondary source for classification, and is
therefore not listed here.

Majority SVM
N+WN+D+WS+AD+L 87.7 95.0
N+WN+WS 80.1 95.0
N+WN+D+WS+AD+L+T 87.4 95.0
N+WN+D+WS 86.4 94.8
N+WN+WS+AD+L 86.5 94.7
N+WN+D+WS+T 86.8 94.0
N+WN+D 86.1 93.7
N+WN 89.3 93.0
N+D 82.6 93.0
N+AD 87.6 89.4
N+L 85.4 88.9

Table 2: Accuracy of various combinations of voters
among Name (N), Anaphora Design (AD), List (L),
WordNet (WN), WordSim (WS), Dictionary (D), and
Transfer (T) under majority voting and SVM schemes.
Bold indicates a statistically significant difference over
the next lower bolded entry with p < 0.01, for the SVM.

comes out on top when taken alone, but we see in
later results that it is less critical when used with
other voters. Name performs poorly on its own, but
later we will see that it is a very accurate voter which
frequently abstains.

Table 2 gives the test performance of various com-
binations of voters, both under majority vote and
reweighting. Statistical significance was tested us-
ing a paired t-test, and bold indicates a method
was significant over the next lower bold line with
p value p < 0.01. We see a very large gain from
the SVM reweighting: 14.9 points in the case of
Name+WordNet+WordSim.

In Table 3, we show the results of ablation exper-
iments on the voters. We see that the most valuable
sources of information are WordSim and Dictionar-
ies.

Finally, in Table 4, we show a breakdown of
which voters cause the most errors, for the majority
vote system. In this table, we considered only “fi-
nal errors,” i.e. errors that the entire system makes.
Over all such errors, we counted the number of times

Majority SVM
WordSim 87.6 93.7
SimpleWikt (dict) 87.3 94.1
FullWikt (dict) 86.4 94.3
Dict 87.4 94.5
Name 86.6 94.7
List 86.4 94.8
WordNet (dict) 88.7 94.8
WordNet 87.5 94.9
Anaphora Design 88.6 94.9
Transfer 87.7 95.0

Table 3: Test accuracy when leaving out various voters,
using both majority vote and and reweighting. Bold indi-
cates statistical significance over the next lower bold line
with p < 0.01.

each voter chose incorrectly, giving a count of how
many times each voter contributed to a final error.
We see that the Anaphora Design system has the
largest number of errors on both train and test sets.
After this, WordNet, List, and WordNet (dict) are also
large sources of error. On the other hand, Name and
WordSim have very few errors, indicating high re-
liability. The table also gives the number of criti-
cal errors, where the voter selected the wrong cate-
gory and was a deciding vote (that is, when chang-
ing its vote would have resulted in a correct overall
classification). We see a similar pattern here, with
Anaphora Design causing the most errors and Word-
Sim and Name among the most reliable. We included
Anaphora Design even though it uses a different def-
inition of animacy, to determine if its vote was nev-
ertheless valuable.

Error tables such as these show how voting mod-
els are more interpretable and therefore correctable
compared to more complex learned models. The ta-
bles indicate the largest sources of error and sug-
gest changes that could be made to increase accu-
racy. For example, we could make significant gains
by improving WordNet, WordNet (dictionary), or
List, whereas there is relatively little reason to ad-
just WordSim or Name.

7 Conclusions

We have shown that linear combinations of voting
models can give animacy detection rates in the mid
90% range. This is well above the accuracy found
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Errors Critical
Train Test Train Test

Anaphora Design 555 266 117 76
WordNet 480 228 50 45
List 435 195 94 45
Transfer 410 237 54 58
WordNet (dict) 385 194 84 65
SimpleWikt (dict) 175 111 39 16
FullWikt (dict) 158 67 1 5
WordSim 107 89 11 19
Name 71 55 27 19

Table 4: Errors column: number of errors on train and
test where a source voted incorrectly, and was thus at
least in part responsible for an error of the overall sys-
tem. Critical column: number of errors on train and test
where a source voted incorrectly, and in addition cast a
deciding vote. Results are for majority vote.

by using the n-gram method of (Ji and Lin, 2009),
which is used as an animacy detection component
in other systems. In this sense the work presented
here improves upon the state of the art, but there are
caveats, since other workers define animacy differ-
ently and so a direct comparison with their work is
not possible. Our method has the added advantage
of interpretability, which we believe will be useful
when using it as a component in a larger system.
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Abstract

We present a unified unsupervised statistical
model for text normalization. The relation-
ship between standard and non-standard to-
kens is characterized by a log-linear model,
permitting arbitrary features. The weights
of these features are trained in a maximum-
likelihood framework, employing a novel se-
quential Monte Carlo training algorithm to
overcome the large label space, which would
be impractical for traditional dynamic pro-
gramming solutions. This model is im-
plemented in a normalization system called
UNLOL, which achieves the best known re-
sults on two normalization datasets, outper-
forming more complex systems. We use the
output of UNLOL to automatically normalize
a large corpus of social media text, revealing a
set of coherent orthographic styles that under-
lie online language variation.

1 Introduction

Social media language can differ substantially from
other written text. Many of the attempts to character-
ize and overcome this variation have focused on nor-
malization: transforming social media language into
text that better matches standard datasets (Sproat et
al., 2001; Liu et al., 2011). Because there is lit-
tle available training data, and because social me-
dia language changes rapidly (Eisenstein, 2013b),
fully supervised training is generally not considered
appropriate for this task. However, due to the ex-
tremely high-dimensional output space — arbitrary
sequences of words across the vocabulary — it is

a very challenging problem for unsupervised learn-
ing. Perhaps it is for these reasons that the most suc-
cessful systems are pipeline architectures that cob-
ble together a diverse array of techniques and re-
sources, including statistical language models, de-
pendency parsers, string edit distances, off-the-shelf
spellcheckers, and curated slang dictionaries (Liu et
al., 2011; Han and Baldwin, 2011; Han et al., 2013).

We propose a different approach, performing nor-
malization in a maximum-likelihood framework.
There are two main sources of information to be
exploited: local context, and surface similarity be-
tween the observed strings and normalization can-
didates. We treat the local context using standard
language modeling techniques; we treat string simi-
larity with a log-linear model that includes features
for both surface similarity and word-word pairs.

Because labeled examples of normalized text
are not available, this model cannot be trained
in the standard supervised fashion. Nor can we
apply dynamic programming techniques for unsu-
pervised training of locally-normalized conditional
models (Berg-Kirkpatrick et al., 2010), as their com-
plexity is quadratic in the size of label space; in
normalization, the label space is the vocabulary it-
self, with at least 104 elements. Instead, we present
a new training approach using Monte Carlo tech-
niques to compute an approximate gradient on the
feature weights. This training method may be appli-
cable in other unsupervised learning problems with
a large label space.

This model is implemented in a normalization
system called UNLOL (unsupervised normalization
in a LOg-Linear model). It is a lightweight proba-
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bilistic approach, relying only on a language model
for the target domain; it can be adapted to new
corpora text or new domains easily and quickly.
Our evaluations show that UNLOL outperforms the
state-of-the-art on standard normalization datasets.
In addition, we demonstrate the linguistic insights
that can be obtained from normalization, using
UNLOL to identify classes of orthographic transfor-
mations that form coherent linguistic styles.

2 Background

The text normalization task was introduced
by Sproat et al. (2001), and attained popularity in
the context of SMS messages (Choudhury et al.,
2007b). It has become still more salient in the era of
widespread social media, particularly Twitter. Han
and Baldwin (2011) formally define a normalization
task for Twitter, focusing on normalizations between
single tokens, and excluding multi-word tokens like
lol (laugh out loud). The normalization task has
been criticized by Eisenstein (2013b), who argues
that it strips away important social meanings. In
recent work, normalization has been shown to yield
improvements for part-of-speech tagging (Han
et al., 2013), parsing (Zhang et al., 2013), and
machine translation (Hassan and Menezes, 2013).
As we will show in Section 7, accurate automated
normalization can also improve our understanding
of the nature of social media language.

Supervised methods Early work on normaliza-
tion focused on labeled SMS datasets, using ap-
proaches such as noisy-channel modeling (Choud-
hury et al., 2007a) and machine translation (Aw
et al., 2006), as well as hybrid combinations of
spelling correction and speech recognition (Kobus
et al., 2008; Beaufort et al., 2010). This work
sought to balance language models (favoring words
that fit in context) with transformation models (fa-
voring words that are similar to the observed text).
Our approach can also be seen as a noisy channel
model, but unlike this prior work, no labeled data is
required.

Unsupervised methods Cook and Stevenson
(2009) manually identify several word formation
types within a noisy channel framework. They
parametrize each formation type with a small num-

ber of scalar values, so that all legal transformations
of a given type are equally likely. The scalar pa-
rameters are then estimated using expectation max-
imization. This work stands apart from most of the
other unsupervised models, which are pipelines.

Contractor et al. (2010) use string edit distance
to identify closely-related candidate orthographic
forms and then decode the message using a language
model. Gouws et al. (2011) refine this approach
by mining an “exception dictionary” of strongly-
associated word pairs such as you/u. Like Con-
tractor et al. (2010), we apply string edit distance,
and like Gouws et al. (2011), we capture strongly
related word pairs. However, rather than applying
these properties as filtering steps in a pipeline, we
add them as features in a unified log-linear model.

Recent approaches have sought to improve accu-
racy by bringing more external resources and com-
plex architectures to bear. Han and Baldwin (2011)
begin with a set of string similarity metrics, and then
apply dependency parsing to identify contextually-
similar words. Liu et al. (2011) extract noisy train-
ing pairs from the search snippets that result from
carefully designed queries to Google, and then train
a conditional random field (Lafferty et al., 2001) to
estimate a character-based translation model. They
later extend this work by adding a model of vi-
sual priming, an off-the-shelf spell-checker, and lo-
cal context (Liu et al., 2012a). Hassan and Menezes
(2013) use a random walk framework to capture
contextual similarity, which they then interpolate
with an edit distance metric. Rather than seek-
ing additional external resources or designing more
complex metrics of context and similarity, we pro-
pose a unified statistical model, which learns feature
weights in a maximum-likelihood framework.

3 Approach

Our approach is motivated by the following criteria:

• Unsupervised. We want to be able to train
a model without labeled data. At present, la-
beled data for Twitter normalization is avail-
able only in small quantities. Moreover, as
social media language is undergoing rapid
change (Eisenstein, 2013b), labeled datasets
may become stale and increasingly ill-suited to
new spellings and words.
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• Low-resource. Other unsupervised ap-
proaches take advantage of resources such as
slang dictionaries and spell checkers (Han and
Baldwin, 2011; Liu et al., 2011). Resources
that characterize the current state of internet
language risk becoming outdated; in this paper
we investigate whether high-quality normaliza-
tion is possible without any such resources.

• Featurized. The relationship between any pair
of words can be characterized in a number of
different ways, ranging from simple character-
level rules (e.g., going/goin) to larger substi-
tutions (e.g., someone/sum1), and even to pat-
terns that are lexically restricted (e.g., you/u,
to/2). For these reasons, we seek a model that
permits many overlapping features to describe
candidate word pairs. These features may in-
clude simple string edit distance metrics, as
well as lexical features that memorize specific
pairs of standard and nonstandard words.

• Context-driven. Learning potentially arbitrary
word-to-word transformations without supervi-
sion would be impossible without the strong
additional cue of local context. For example,
in the phrase

give me suttin to believe in,

even a reader who has never before seen the
word suttin may recognize it as a phonetic
transcription of something. The relatively high
string edit distance is overcome by the strong
contextual preference for the word something
over orthographically closer alternatives such
as button or suiting. We can apply an arbi-
trary target language model, leveraging large
amounts of unlabeled data and catering to the
desired linguistic characteristics of the normal-
ized content.

• Holistic. While several prior approaches —
such as normalization dictionaries — operate at
the token level, our approach reasons over the
scope of the entire message. The necessity for
such holistic, joint inference and learning can
be seen by changing the example above to:

gimme suttin 2 beleive innnn.

None of these tokens are standard (except 2,
which appears in a nonstandard sense here), so
without joint inference, it would not be possi-
ble to use context to help normalize suttin.
Only by jointly reasoning over the entire mes-
sage can we obtain the correct normalization.

These desiderata point towards a featurized se-
quence model, which must be trained without la-
beled examples. While there is prior work on train-
ing sequence models without supervision (Smith
and Eisner, 2005; Berg-Kirkpatrick et al., 2010),
there is an additional complication not faced by
models for tasks such as part-of-speech tagging
and named entity recognition: the potential label
space of standard words is large, on the order of
at least 104. Naive application of Viterbi decod-
ing — which is a component of training for both
Contrastive Estimation (Smith and Eisner, 2005)
and the locally-normalized sequence labeling model
of Berg-Kirkpatrick et al. (2010) — will be stymied
by Viterbi’s quadratic complexity in the dimension
of the label space. While various pruning heuris-
tics may be applied, we instead look to Sequen-
tial Monte Carlo (SMC), a randomized algorithm
which approximates the necessary feature expecta-
tions through weighted samples.

4 Model

Given a set of source-language sentences S =
{s1, s2, . . .} (e.g., Tweets), our goal is to trans-
duce them into target-language sentences T =
{t1, t2, . . .} (standard English). We are given a tar-
get language model P (t), which can be estimated
from some large set of unlabeled target-language
sentences. We denote the vocabularies of source lan-
guage and target language as νS and νT respectively.

We define a log-linear model that scores source
and target strings, with the form

P (s|t; θ) ∝ exp
(
θTf(s, t)

)
. (1)

The desired conditional probability P (t|s) can be
obtained by combining this model with the target
language model, P (t|s) ∝ P (s|t; θ)P (t). Since no
labeled data is available, the parameters θ must be
estimated by maximizing the log-likelihood of the
source-language data. We define the log-likelihood
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`θ(s) for a source-language sentence s as follows:

`θ(s) = logP (s) = log
∑
t

P (s|t; θ)P (t)

We would like to maximize this objective by mak-
ing gradient-based updates.

∂`θ(s)

∂θ
=

1

P (s)

∑
t

P (t)
∂

∂θ
P (s|t; θ)

=
∑
t

P (t|s)

(
f(s, t)−

∑
s′

P (s′|t)f(s′, t)

)
= Et|s[f(s, t)− Es′|t[f(s

′, t)]]

(2)

We are left with a difference in expected feature
counts, as is typical in log-linear models. However,
unlike the supervised case, here both terms are ex-
pectations: the outer expectation is over all target se-
quences (given the observed source sequence), and
the nested expectation is over all source sequences,
given the target sequence. As the space of possible
target sequences t grows exponentially in the length
of the source sequence, it will not be practical to
compute this expectation directly.

Dynamic programming is the typical solution for
computing feature expectations, and can be applied
to sequence models when the feature function de-
composes locally. There are two reasons this will
not work in our case. First, while the forward-
backward algorithm would enable us to compute
Et|s, it would not give us the nested expectation
Et|s[Es′|t]; this is the classic challenge in training
globally-normalized log-linear models without la-
beled data (Smith and Eisner, 2005). Second, both
forward-backward and the Viterbi algorithm have
time complexity that is quadratic in the dimension of
the label space, at least 104 or 105. As we will show,
Sequential Monte Carlo (SMC) algorithms have a
number of advantages in this setting: they permit
the efficient computation of both the outer and inner
expectations, they are trivially parallelizable, and
the number of samples provides an intuitive tuning
tradeoff between accuracy and speed.

4.1 Sequential Monte Carlo approximation
Sequential Monte Carlo algorithms are a class of
sampling-based algorithms in which latent vari-

ables are sampled sequentially (Cappe et al., 2007).
They are particularly well-suited to sequence mod-
els, though they can be applied more broadly. SMC
algorithms maintain a set of weighted hypotheses;
the weights correspond to probabilities, and in our
case, the hypotheses correspond to target language
word sequences. Specifically, we approximate the
conditional probability,

P (t1:n|s1:n) ≈
K∑
k=1

ωknδtk
1:n

(t1:n),

where ωkn is the normalized weight of sample k at
word n (ω̃kn is the unnormalized weight), and δtk

1:n
is

a delta function centered at tk1:n.
At each step, and for each hypothesis k, a new

target word is sampled from a proposal distribution,
and the weight of the hypothesis is then updated. We
maintain feature counts for each hypothesis, and ap-
proximate the expectation by taking a weighted av-
erage using the hypothesis weights. The proposal
distribution will be described in detail later.

We make a Markov assumption, so that the emis-
sion probability P (s|t) decomposes across the ele-
ments of the sentence P (s|t) =

∏N
n P (sn|tn). This

means that the feature functions f(s, t) must decom-
pose on each 〈sn, tn〉 pair. We can then rewrite (1)
as

P (s|t; θ) =
N∏
n

exp
(
θTf(sn, tn)

)
Z(tn)

(3)

Z(tn) =
∑
s

exp
(
θTf(s, tn)

)
. (4)

In addition, we assume that the target language
model P (t) can be written as an N-gram language
model, P (t) =

∏
n P (tn|tn−1, . . . tn−k+1). With

these assumptions, we can view normalization as
a finite state-space model in which the target lan-
guage model defines the prior distribution of the pro-
cess and Equation 3 defines the likelihood function.
We are able to compute the the posterior probabil-
ity P (t|s) using sequential importance sampling, a
member of the SMC family.

The crucial idea in sequential importance sam-
pling is to update the hypotheses tk1:n and their
weights ωkn so that they approximate the posterior
distribution at the next time step, P (t1:n+1|s1:n+1).
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Assuming the proposal distribution has the form
Q(tk1:n|s1:n), the importance weights are given by

ωkn ∝
P (tk1:n|s1:n)

Q(tk1:n|s1:n)
(5)

In order to update the hypotheses recursively, we
rewrite P (t1:n|s1:n) as:

P (t1:n|s1:n) =
P (sn|t1:n, s1:n−1)P (t1:n|s1:n−1)

P (sn|s1:n−1)

=
P (sn|tn)P (tn|t1:n−1, s1:n−1)P (t1:n−1|s1:n−1)

P (sn|s1:n−1)

∝P (sn|tn)P (tn|tn−1)P (t1:n−1|s1:n−1),

assuming a bigram language model. We further as-
sume the proposal distribution Q can be factored as:

Q(t1:n|s1:n) =Q(tn|t1:n−1, s1:n)Q(t1:n−1|s1:n−1)

=Q(tn|tn−1, sn)Q(t1:n−1|s1:n−1).
(6)

Then the unnormalized importance weights sim-
plify to a recurrence:

ω̃kn =
P (sn|tkn)P (tkn|tkn−1)P (tk1:n−1|s1:n−1)

Q(tn|tn−1, sn)Q(tk1:n−1|s1:n−1)
(7)

=ωkn−1

P (sn|tkn)P (tkn|tkn−1)

Q(tn|tn−1, sn)
(8)

Therefore, we can approximate the posterior dis-
tribution P (tn|s1:n) ≈

∑K
k=1 ω

k
nδtkn(tn), and com-

pute the outer expectation as follows:

Et|s[f(s, t)] =

K∑
k=1

ωkN

N∑
n=1

f(sn, t
k
n) (9)

We compute the nested expectation using a non-
sequential Monte Carlo approximation, assuming
we can draw s`,k ∼ P (s|tkn).

Es|tk [f(s, tk)] =
1

L

N∑
n=1

L∑
`=1

f(s`,kn , tkn)

This gives the overall gradient computation:

Et|s[f(s, t)− Es′|t[f(s
′, t)]] =

1∑K
k=1 ω̃

k
N

K∑
k=1

ω̃k
N

×
N∑

n=1

(
f(sn, t

k
n)− 1

L

L∑
`=1

f(s`,k
n , tkn)

)
(10)

where we sample tkn and update ωkn while mov-
ing from left-to-right, and sample s`,kn at each n.
Note that although the sequential importance sam-
pler moves left-to-right like a filter, we use only the
final weights ωN to compute the expectation. Thus,
the resulting expectation is based on the distribu-
tion P (s1:N |t1:N ), so that no backwards “smooth-
ing” pass (Godsill et al., 2004) is needed to elim-
inate bias. Other applications of sequential Monte
Carlo make use of resampling (Cappe et al., 2007) to
avoid degeneration of the hypothesis weights, but we
found this to be unnecessary due to the short length
of Twitter messages.

4.2 Proposal distribution
The major computational challenge for dynamic
programming approaches to normalization is the
large label space, equal to the size of the target vo-
cabulary. It may appear that all we have gained
by applying sequential Monte Carlo is to convert
a computational problem into a statistical one: a
naive sampling approach will have little hope of
finding the small high-probability region of the high-
dimensional label space. However, sequential im-
portance sampling allows us to address this issue
through the proposal distribution, from which we
sample the candidate words tn. Careful design of the
proposal distribution can guide sampling towards
the high-probability space. In the asymptotic limit of
an infinite number of samples, any non-pathological
proposal distribution will ultimately arrive at the de-
sired estimate, but a good proposal distribution can
greatly reduce the number of samples needed.

Doucet et al. (2001) note that the optimal pro-
posal — which minimizes the variance of the im-
portance weights conditional on t1:n−1 and s1:n —
has the following form:

Q(tkn|sn, tkn−1) =
P (sn|tkn)P (tkn|tkn−1)∑
t′ P (sn|t′)P (t′|tkn−1)

(11)
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Sampling from this proposal requires computing
the normalized distribution P (sn|tkn); similarly, the
update of the hypothesis weights (Equation 8) re-
quires the calculation ofQ in its normalized form. In
each case, the total cost is the product of the vocabu-
lary sizes, O(#|νT |#|νS |), which is not tractable as
the vocabularies become large.

In low-dimensional settings, a convenient so-
lution is to set the proposal distribution equal
to the transition distribution, Q(tkn|sn, tkn−1) =
P (tkn|tkn−1, . . . , t

k
n−k+1). This choice is called the

“bootstrap filter,” and it has the advantage that the
weights ω(k) are exactly identical to the product
of emission likelihoods

∏
n P (sn|tkn). The com-

plexity of computing the hypothesis weights is thus
O(#|νS |). However, because this proposal ignores
the emission likelihood, the bootstrap filter has very
little hope of finding a high-probability sample in
high-entropy contexts.

We strike a middle ground between efficiency and
accuracy, using a proposal distribution that is closely
related to the overall likelihood, yet is tractable to
sample and compute:

Q(tkn|sn, tkn−1)
def
=

P (sn|tkn)Z(tkn)P (tkn|tkn−1)∑
t′ P (sn|t′)Z(t′)P (t′|tkn−1)

=
exp

(
θTf(sn, tn)

)
P (tkn|tkn−1)∑

t′ exp
(
θTf(sn, t′)

)
P (t′|tkn−1)

(12)

Here, we simply replace the likelihood distribu-
tion in (11) by its unnormalized version.

To update the unnormalized hypothesis weights
ω̃kn, we have

ω̃kn =ωkn−1

∑
t′ exp

(
θTf(sn, t

′)
)
P (t′|tkn−1)

Z(tkn)
(13)

The numerator requires summing over all ele-
ments in νT and the denominator Z(tkn) requires
summing over all elements in νS , for a total cost of
O(#|νT |+ #|νS |).

4.3 Decoding

Given an input source sentence s, the decoding prob-
lem is to find a target sentence t that maximizes
P (t|s) ∝ P (s|t)P (t) =

∏N
n P (sn|tn)P (tn|tn−1).

Feature name Description
word-word pair A set of binary features for each

source/target word pair 〈s, t〉
string similarity A set of binary features in-

dicating whether s is one of
the top N string similar non-
standard words of t, for N ∈
{5, 10, 25, 50, 100, 250, 500, 1000}

Table 1: The feature set for our log-linear model

As with learning, we cannot apply the usual dy-
namic programming algorithm (Viterbi), because
of its quadratic cost in the size of the target lan-
guage vocabulary. This must be multiplied by
the cost of computing the normalized probability
P (sn|tn), resulting in a prohibitive time complexity
of O(#|νS |#|νT |2N).

We consider two approximate decoding algo-
rithms. The first is to simply apply the proposal dis-
tribution, with linear complexity in the size of the
two vocabularies. However, this decoder is not iden-
tical to P (t|s), because of the extra factor of Z(t)
in the numerator. Alternatively, we can apply the
proposal distribution for selecting target word can-
didates, then apply the Viterbi algorithm only within
these candidates. The total cost is O(#|νS |T 2N),
where T is the number of target word candidates we
consider; this will asymptotically approach P (t|s)
as T → #|νT |. Our evaluations use the more expen-
sive proposal+Viterbi decoding, but accuracy with
the more efficient proposal-based decoding is very
similar.

4.4 Features

Our system uses the feature types described in Ta-
ble 1. The word pair features are designed to cap-
ture lexical conventions, e.g. you/u. We only con-
sider word pair features that fired during training.
The string similarity features rely on the similarity
function proposed by Contractor et al. (2010), which
has proven effective for normalization in prior work.
We bin this similarity to create binary features indi-
cating whether a string s is in the top-N most similar
strings to t; this binning yields substantial speed im-
provements without negatively impacting accuracy.
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5 Implementation and data

The model and inference described in the pre-
vious section are implemented in a software
system for normalizing text on twitter, called
UNLOL: unsupervised normalization in a LOg-
Linear model. The final system can process roughly
10,000 Tweets per hour. We now describe some im-
plementation details.

5.1 Normalization candidates

Most tokens in tweets do not require normalization.
The question of how to identify which words are
to be normalized is still an open problem. Follow-
ing Han and Baldwin (2011), we build a dictionary
of words which are permissible in the target domain,
and make no attempt to normalize source strings
that match these words. As with other comparable
approaches, we are therefore unable to normalize
strings like ill into I’ll. Our set of “in-vocabulary”
(IV) words is based on the GNU aspell dictionary
(v0.60.6), containing 97,070 words. From this dic-
tionary, we follow Liu et al. (2012a) and remove all
the words with a count of less than 20 in the Edin-
burgh Twitter corpus (Petrović et al., 2010) — re-
sulting in a total of 52,449 target words. All sin-
gle characters except a and i are excluded, and rt
is treated as in-vocabulary. For all in-vocabulary
words, we define P (sn|tn) = δ(sn, tn), taking the
value of zero when sn 6= tn. This effectively pre-
vents our model from attempting to normalize these
words.

In addition to words that are in the target vocabu-
lary, there are many other strings that should not be
normalized, such as names and multiword shorten-
ings (e.g. going to/gonna).1 We follow prior work
and assume that the set of normalization candidates
is known in advance during test set decoding (Han et
al., 2013). However, the unlabeled training data has
no such information. Thus, during training we at-
tempt to normalize all tokens that (1) are not in our
lexicon of IV words, and (2) are composed of letters,
numbers and the apostrophe. This set includes con-
tractions like "gonna" and "gotta", which would not
appear in the test set, but are nonetheless normalized

1Whether multiword shortenings should be normalized is ar-
guable, but they are outside the scope of current normalization
datasets (Han and Baldwin, 2011).

during training. For each OOV token, we conduct a
pre-normalization step by reducing any repetitions
of more than two letters in the nonstandard words to
exactly two letters (e.g., cooool→ cool).

5.2 Language modeling
The Kneser-Ney smoothed trigram target language
model is estimated with the SRILM toolkit Stolcke
(2002), using Tweets from the Edinburgh Twitter
corpus that contain no OOV words besides hash-
tags and username mentions (following (Han et al.,
2013)). We use this language model for both training
and decoding. We occasionally find training con-
texts in which the trigram 〈tn, tn−1, tn−2〉 is unob-
served in the language model data; features resulting
from such trigrams are not considered when comput-
ing the weight gradients.

5.3 Parameters
The Monte Carlo approximations require two pa-
rameters: the number of samples for sequential
Monte Carlo (K), and the number of samples for the
non-sequential sampler of the nested expectation (L,
from Equation 10). The theory of Monte Carlo ap-
proximation states that the quality of the approxima-
tion should only improve as the number of samples
increases; we obtained good results with K = 10
and L = 1, and found relatively little improvement
by increasing these values. The number of hypothe-
ses considered by the decoder is set to T = 10;
again, the performance should only improve with T ,
as we more closely approximate full Viterbi decod-
ing.

6 Experiments

Datasets We use two existing labeled Twitter
datasets to evaluate our approach. The first dataset
— which we call LWWL11, based on the names of
its authors Liu et al. (2011) — contains 3,802 indi-
vidual “nonstandard” words (i.e., words that are not
in the target vocabulary) and their normalized forms.
The rest of the message in which the words is appear
is not available. As this corpus does not provide lin-
guistic context, its decoding must use a unigram tar-
get language model. The second dataset — which
is called LexNorm1.1 by its authors Han and Bald-
win (2011) — contains 549 complete tweets with
1,184 nonstandard tokens (558 unique word types).
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Method Dataset Precision Recall F-measure
(Liu et al. 2011)

LMML11
68.88 68.88 68.88

(Liu et al. 2012) 69.81 69.81 69.81
UNLOL 73.04 73.04 73.04

(Han and Baldwin, 2011)

LexNorm 1.1

75.30 75.30 75.30
(Liu et al. 2012) 84.13 78.38 81.15
(Hassan et al. 2013) 85.37 56.4 69.93
UNLOL 82.09 82.09 82.09

UNLOL LexNorm 1.2 82.06 82.06 82.06

Table 2: Empirical results

In this corpus, we can decode with a trigram lan-
guage model.

Close analysis of LexNorm1.1 revealed some in-
consistencies in annotation (for example, y’all
and 2 are sometimes normalized to you and to,
but are left unnormalized in other cases). In ad-
dition, several annotations disagree with existing
resources on internet language and dialectal En-
glish. For example, smh is normalized to some-
how in LexNorm1.1, but internetslang.com
and urbandictionary.com assert that it stands
for shake my head, and this is evident from examples
such as smh at this girl. Similarly, finna
is normalized to finally in LexNorm1.1, but from
the literature on African American English (Green,
2002), it corresponds to fixing to (e.g., i’m finna
go home). To address these issues, we have pro-
duced a new version of this dataset, which we call
LexNorm1.2 (after consulting with the creators of
LexNorm1.1). LexNorm1.2 differs from version 1.1
in the annotations for 172 of the 2140 OOV words.
We evaluate on LexNorm1.1 to compare with prior
work, but we also present results on LexNorm1.2
in the hope that it will become standard in future
work on normalization in English. The dataset
is available at http://www.cc.gatech.edu/
~jeisenst/lexnorm.v1.2.tgz.

To obtain unlabeled training data, we randomly
sample 50 tweets from the Edinburgh Twitter cor-
pus Petrović et al. (2010) for each OOV word. Some
OOV words appear less than 50 times in the cor-
pus, so we obtained more training tweets for them
through the Twitter search API.

Metrics Prior work on these datasets has assumed
perfect detection of words requiring normalization,
and has focused on finding the correct normalization
for these words (Han and Baldwin, 2011; Han et al.,
2013). Recall has been defined as the proportion of
words requiring normalization which are normalized
correctly; precision is defined as the proportion of
normalizations which are correct.

Results We run our training algorithm for two it-
erations (pass the training data twice). The results
are presented in Table 2. Our system, UNLOL,
achieves the highest published F-measure on both
datasets. Performance on LexNorm1.2 is very simi-
lar to LexNorm1.1, despite the fact that roughly 8%
of the examples were relabeled.

In the normalization task that we consider, the to-
kens to be normalized are specified in advance. This
is the same task specification as in the prior work
against which we compare. At test time, our system
attempts normalizes all such tokens; every error is
thus both a false positive and false negative, so pre-
cision equals to recall for this task; this is also true
for Han and Baldwin (2011) and Liu et al. (2011).

It is possible to trade recall for precision by re-
fusing to normalize words when the system‘s confi-
dence falls below a threshold. A good setting of this
threshold can improve the F-measure, but we did not
report these results because we have no development
set for parameter tuning.

Regularization One potential concern is that the
number of non-zero feature weights will continually
increase until the memory cost becomes overwhelm-
ing. Although we did not run up against mem-
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Figure 1: Effect of L1 regularization on the F-measure and the number of features with non-zero weights

ory limitations in the experiments producing the re-
sults in Table 2, this issue can be addressed through
the application of L1 regularization, which produces
sparse weight vectors by adding a penalty of λ||θ||1
to the log-likelihood. We perform online optimiza-
tion of the L1-regularized log-likelihood by apply-
ing the truncated gradient method (Langford et al.,
2009). We use an exponential decreasing learning
rate ηk = η0α

k/N , where k is the iteration counter
andN is the size of training data. We set η0 = 1 and
α = 0.5. Experiments were run until 300,000 train-
ing instances were observed, with a final learning
rate of less than 1/32. As shown in Figure 1, a small
amount of regularization can dramatically decrease
the number of active features without harming per-
formance.

7 Analysis

We apply our normalization system to investi-
gate the orthographic processes underlying language
variation in social media. Using a dataset of 400,000
English language tweets, sampled from the month
of August in each year from 2009 to 2012, we ap-
ply UNLOL to automatically normalize each token.
We then treat these normalizations as labeled train-
ing data, and examine the Levenshtein alignment be-
tween the source and target tokens. This alignment
gives approximate character-level transduction rules
to explain each OOV token. We then examine which
rules are used by each author, constructing a matrix

of authors and rules.2

Factorization of the author-rule matrix reveals sets
of rules that tend to be used together; we might
call these rulesets “orthographic styles.” We apply
non-negative matrix factorization (Lee and Seung,
2001), which characterizes each author by a vector
of k style loadings, and simultaneously constructs
k style dictionaries, which each put weight on dif-
ferent orthographic rules. Because the loadings are
constrained to be non-negative, the factorization can
be seen as sparsely assigning varying amounts of
each style to each author. We choose the factoriza-
tion that minimizes the Frobenius norm of the recon-
struction error, using the NIMFA software package
(http://nimfa.biolab.si/).

The resulting styles are shown in Table 3, for
k = 10; other values of k give similar overall re-
sults with more or less detail. The styles incor-
porate a number of linguistic phenomena, includ-
ing: expressive lengthening (styles 7-9; see Brody
and Diakopoulos, 2011); g- and t-dropping (style 5,
see Eisenstein 2013a) ; th-stopping (style 6); and
the dropping of several word-final vowels (styles
1-3). Some of these styles, such as t-dropping
and th-stopping, have direct analogues in spoken
language varieties (Tagliamonte and Temple, 2005;
Green, 2002), while others, like expressive length-
ening, seem more unique to social media. The re-
lationships between these orthographic styles and
social variables such as geography and demograph-

2We tried adding these rules as features and retraining the
normalization system, but this hurt performance.
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style rules examples
1. you; o-dropping y/_ ou/_u *y/*_ o/_ u, yu, 2day, knw, gud, yur, wud, yuh, u’ve, toda,

everthing, everwhere, ourself
2. e-dropping, u/o be/b_ e/_ o/u e*/_* b, r, luv, cum, hav, mayb, bn, remembr, btween,

gunna, gud
3. a-dropping a/_ *a/*_ re/r_ ar/_r r, tht, wht, yrs, bck, strt, gurantee,

elementry, wr, rlly, wher, rdy, preciate,
neway

4. g-dropping g*/_* ng/n_ g/_ goin, talkin, watchin, feelin, makin
5. t-dropping t*/_* st/s_ t/_ jus, bc, shh, wha, gota, wea, mus, firts, jes,

subsistutes
6. th-stopping h/_ *t/*d th/d_ t/d dat, de, skool, fone, dese, dha, shid, dhat,

dat’s
7. (kd)-lengthening i_/id _/k _/d _*/k* idk, fuckk, okk, backk, workk, badd, andd,

goodd, bedd, elidgible, pidgeon
8. o-lengthening o_/oo _*/o* _/o soo, noo, doo, oohh, loove, thoo, helloo
9. e-lengthening _/i e_/ee _/e _*/e* mee, ive, retweet, bestie, lovee, nicee, heey,

likee, iphone, homie, ii, damnit
10. a-adding _/a __/ma _/m _*/a* ima, outta, needa, shoulda, woulda, mm,

comming, tomm, boutt, ppreciate

Table 3: Orthographic styles induced from automatically normalized Twitter text

ics must be left to future research, but they offer a
promising generalization of prior work that has fo-
cused almost exclusively on exclusively on lexical
variation (Argamon et al., 2007; Eisenstein et al.,
2010; Eisenstein et al., 2011), with a few exceptions
for character-level features (Brody and Diakopoulos,
2011; Burger et al., 2011).

Note that style 10 is largely the result of mis-
taken normalizations. The tokens ima, outta, and
needa all refer to multi-word expressions in stan-
dard English, and are thus outside the scope of the
normalization task as defined by Han et al. (2013).
UNLOL has produced incorrect single-token nor-
malizations for these terms: i/ima, out/outta, and
need/needa. But while these normalizations are
wrong, the resulting style nonetheless captures a co-
herent orthographic phenomenon.

8 Conclusion

We have presented a unified, unsupervised statistical
model for normalizing social media text, attaining
the best reported performance on the two standard
normalization datasets. The power of our approach
comes from flexible modeling of word-to-word re-
lationships through features, while exploiting con-
textual regularity to train the corresponding feature

weights without labeled data. The primary techni-
cal challenge was overcoming the large label space
of the normalization task; we accomplish this us-
ing sequential Monte Carlo. Future work may con-
sider whether sequential Monte Carlo can offer sim-
ilar advantages in other unsupervised NLP tasks. An
additional benefit of our joint statistical approach is
that it may be combined with other downstream lan-
guage processing tasks, such as part-of-speech tag-
ging (Gimpel et al., 2011) and named entity resolu-
tion (Liu et al., 2012b).
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Abstract

Compared to the edited genres that have
played a central role in NLP research, mi-
croblog texts use a more informal register with
nonstandard lexical items, abbreviations, and
free orthographic variation. When confronted
with such input, conventional text analysis
tools often perform poorly. Normalization
— replacing orthographically or lexically id-
iosyncratic forms with more standard variants
— can improve performance. We propose a
method for learning normalization rules from
machine translations of a parallel corpus of
microblog messages. To validate the utility of
our approach, we evaluate extrinsically, show-
ing that normalizing English tweets and then
translating improves translation quality (com-
pared to translating unnormalized text) using
three standard web translation services as well
as a phrase-based translation system trained
on parallel microblog data.

1 Introduction

Microblogs such as Twitter, Sina Weibo (a popular
Chinese microblog service) and Facebook have re-
ceived increasing attention in diverse research com-
munities (Han and Baldwin, 2011; Hawn, 2009, in-
ter alia). In contrast to traditional text domains that
use carefully controlled, standardized language, mi-
croblog content is often informal, with less adher-
ence to conventions regarding punctuation, spelling,
and style, and with a higher proportion of dialect
or pronouciation-derived orthography. While this
diversity itself is an important resource for study-
ing, e.g., sociolinguistic variation (Eisenstein et al.,

2011; Eisenstein, 2013), it poses challenges to NLP
applications developed for more formal domains. If
retaining variation due to sociolinguistic or phono-
logical factors is not crucial, text normalization can
improve performance on downstream tasks (§2).

This paper introduces a data-driven approach to
learning normalization rules by conceiving of nor-
malization as a kind of paraphrasing and taking
inspiration from the bilingual pivot approach to
paraphrase detection (Bannard and Callison-Burch,
2005) and the observation that translation is an
inherently “simplifying” process (Laviosa, 1998;
Volansky et al., 2013). Starting from a parallel cor-
pus of microblog messages consisting of English
paired with several other languages (Ling et al.,
2013), we use standard web machine translation sys-
tems to re-translate the non-English segment, pro-
ducing 〈English original,English MT〉 pairs (§3).
These are our normalization examples, with MT out-
put playing the role of normalized English. Sev-
eral techniques for identifying high-precision nor-
malization rules are proposed, and we introduce a
character-based normalization model to account for
predictable character-level processes, like repetition
and substitution (§4). We then describe our decod-
ing procedure (§5) and show that our normaliza-
tion model improve translation quality for English–
Chinese microblog translation (§6).1

2 Why Normalize?

Consider the English tweet shown in the first row of
Table 1 which contains several elements that NLP

1The datasets used in this paper are available from http:
//www.cs.cmu.edu/˜lingwang/microtopia.
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Table 1: Translations of an English microblog message
into Mandarin, using three web translation services.

orig. To DanielVeuleman yea iknw imma work on that
MT1 啊iknw DanielVeuleman伊马工作，
MT2 DanielVeuleman是iknw凋谢关于工作，
MT3 到DanielVeuleman是的iknw imma这方面的工作

systems trained on edited domains may not handle
well. First, it contains several nonstandard abbre-
viations, such as, yea, iknw and imma (abbrevia-
tions of yes, I know and I am going to). Second,
there is no punctuation in the text although stan-
dard convention would dictate that it should be used.
To illustrate the effect this can have, consider now
the translations produced by Google Translate,2 Mi-
crosoft Bing,3 and Youdao,4 shown in rows 2–4.
Even with no knowledge of Chinese, it is not hard
to see that all engines have produced poor transla-
tions: the abbreviation iknw is left translated by all
engines, and imma is variously deleted, left untrans-
lated, or transliterated into the meaningless sequence
伊马 (pronounced yı̄ mǎ).

While normalization to a form like To Daniel
Veuleman: Yes, I know. I am going to work on that.
does indeed lose some information (information im-
portant for an analysis of sociolinguistic or phono-
logical variation clearly goes missing), it expresses
the propositional content of the original in a form
that is more amenable to processing by traditional
tools. Translating the normalized form with Google
Translate produces要丹尼尔Veuleman：是的，我
知道。我打算在那工作。, which is a substantial
improvement over all translations in Table 1.

3 Obtaining Normalization Examples

We want to treat normalization as a supervised learn-
ing problem akin to machine translation, and to do
so, we need to obtain pairs of microblog posts and
their normalized forms. While it would be possible
to ask annotators to create such a corpus, it would
be quite expensive to obtain large numbers of ex-
amples. In this section, we propose a method for
creating normalization examples without any human

2http://translate.google.com/
3http://www.bing.com/translator
4http://fanyi.youdao.com/

Table 2: Translations of Chinese original post to English
using web-based service.

orig. To DanielVeuleman yea iknw imma work on that
orig. 对DanielVeuleman说，是的，我知道，

我正在向那方面努力

MT1 Right DanielVeuleman say, yes, I know, I’m
Xiangna efforts

MT2 DanielVeuleman said, Yes, I know, I’m that hard
MT3 Said to DanielVeuleman, yes, I know, I’m to

that effort

annotation, by leveraging existing tools and data re-
sources.

The English example sentence in Table 1 was se-
lected from the µtopia parallel corpus (Ling et
al., 2013), which consists of self-translated mes-
sages from Twitter and Sina Weibo (i.e., each mes-
sage contains a translation of itself). Row 2 of
Table 2 shows the Mandarin self-translation from
the corpus. The key observation is what happens
when we automatically translate the Mandarin ver-
sion back into English. Rows 3–5 shows automatic
translations from three standard web MT engines.
While not perfect, the translations contain several
correctly normalized subphrases. We will use such
re-translations as a source of (noisy) normalization
examples. Since such self-translations are relatively
numerous on microblogs, this technique can provide
a large amount of data.

Of course, to motivate this paper, we argued that
NLP tools — like the very translation systems we
propose to use — often fail on unnormalized input.
Is this a problem? We argue that it is not for the
following two reasons.

Normalization in translation. Work in transla-
tion studies has observed that translation tends to
be a generalizing process that “smooths out” author-
and work-specific idiosyncrasies (Laviosa, 1998;
Volansky et al., 2013). Assuming this observa-
tion is robust, we expect that dialectal variant forms
found in microblogs to be normalized in translation.
Therefore, if the parallel segments in our microblog
parallel corpus did indeed originate through a trans-
lation process (rather than, e.g., being generated as
two independent utterances from a bilingual), we
may then state the following assumption about the
distribution of variant forms in a parallel segment
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〈e, f〉: if e contains nonstandard lexical variants,
then f is likely to be a normalized translation using
with fewer nonstandard lexical variants (and vice-
versa).

Uncorrelated orthographic variants. Any writ-
ten language has the potential to make creative use
of orthography: alphabetic scripts can render ap-
proximations of pronunciation variants; logographic
scripts can use homophonic substitutions. However,
the kinds of innovations used in particular languages
will be language specific (depending on details of
the phonology, lexicon, and orthography of the lan-
guage). However, for language pairs that differ sub-
stantially in these dimensions, it may not always
be possible (or at least easy) to preserve particular
kinds of nonstandard orthographic forms in trans-
lation. Consider the (relatively common) pronoun-
verb compounds like iknw and imma from our mo-
tivating example: since Chinese uses a logographic
script without spaces, there is no obvious equivalent.

3.1 Variant–Normalized Parallel Corpus

For the two reasons outlined above, we argue that
we will be able to translate back into English us-
ing MT, even when the underlying English part of
the parallel corpus has a great deal of nonstandard
content. We leverage this fact to build the normal-
ization corpus, where the original English tweet is
treated as the variant form, and the automatic trans-
lation obtained from another language is considered
a potential normalization.5

Our process is as follows. The microblog cor-
pus of Ling et al. (2013) contains sentence pairs ex-
tracted from Twitter and Sina Weibo, for multiple
language pairs. We use all corpora that include En-
glish as one of the languages in the pair. The respec-
tive non-English side is translated into English using
different translation engines. The different sets we
used and the engines we used to translate are shown
in Table 3. Thus, for each original English post o,
we obtain n paraphrases {pi}ni=1, from n different
translation engines.

5We additionally assume that the translation engines are
trained to output more standardized data, so there will be addi-
tional normalizing effect from the machine translation system.

Table 3: Corpora Used for Paraphrasing.

Lang. Pair Source Segs. MT Engines
ZH-EN Weibo 800K Google, Bing, Youdao
ZH-EN Twitter 113K Google, Bing, Youdao
AR-EN Twitter 114K Google, Bing
RU-EN Twitter 119K Google, Bing
KO-EN Twitter 78K Google, Bing
JA-EN Twitter 75K Google, Bing

3.2 Alignment and Filtering
Our parallel microblog corpus was crawled automat-
ically and contains many misaligned sentences. To
improve precision, we attempt to find the similar-
ity between the (unnormalized) original and each
of the normalizations using an alignment based on
the one used in METEOR (Denkowski and Lavie,
2011), which computes the best alignment between
the original tweet and each of the normalizations
but modified to permit domain-specific approximate
matches. To address lexical variants, we allow fuzzy
word matching, that is, we allow lexically similar,
such as yea and yes to be aligned (similarity is de-
termined by the Levenshtein distance). We also per-
form phrasal matchings, such as ikwn to i know. To
do so, we extend the alignment algorithm from word
to phrasal alignments. More precisely, given the
original post o and a candidate normalization n, we
wish to find the optimal segmentation producing a
good alignment. A segmentation s = 〈s1, . . . , s|s|〉
is a sequence of segments that aligns as a block to a
source word. For instance, for the sentence yea iknw
imma work on that, one possible segmentation could
be s1 =yea ikwn, s2 =imma and s3 =work on that.

Model. We define the score of an alignment a and
segmentation s in using a model that makes semi-
Markov independence assumptions, similar to the
work in (Bansal et al., 2011), u(a, s | o,n) =

|s|∏
i=1

[
ue(si, ai | n)× ut(ai | ai−1)× u`(|si|)

]
In this model, the maximal scoring segmentation
and alignment can be found using a polynomial time
dynamic programming algorithm. Each segment
can be aligned to any word or segment in o. The
aligned segment for sk is defined as ak. For the

75



score of a segment correspondence ue(s, a | n), we
assume that this can be estimated using the lexical
similarity between segments, which we define to be
1− L(sk,ak)

max{|sk|,|ak|} , where L(x, y) denotes the Leven-
shtein distance between strings x and y, normalized
by the highest possible distance between those seg-
ments.

For the alignment score ut, we assume that the
relative order of the two sequences will be mostly
monotonous. Thus, we approximate ut with the fol-
lowing density poss(ak) − pose(ak−1) ∼ N (1, 1),
where the poss is the index of the first word in the
segment and pose the one of the last word.

After finding the Viterbi alignments, we compute
the similarity measure τ = |A|

|A|+|U | , used in (Resnik
and Smith, 2003), where |A| and |U | are the number
of words that were aligned and unaligned, respec-
tively. In this work, we extract the pair if τ > 0.2.

4 Normalization Model

From the normalization corpus, we learn a nor-
malization model that generalizes the normalization
process. That is, from the data we observe that To
DanielVeuleman yea iknw imma work on that is nor-
malized to To Daniel Veuleman: yes, I know. I
am going to work on that. However, this is not
useful, since the chances of the exact sentence To
DanielVeuleman yea iknw imma work on that occur-
ring in the data is low. We wish to learn a process to
convert the original tweet into the normalized form.

There are two mechanisms that we use in our
model. The first (§4.1) learns word–word and
phrase–phrase mappings. That is, we wish to find
that DanielVeuleman is normalized to Daniel Veule-
man, that iknw is normalized to I know and that
imma is normalized to I am going. These mappings
are more useful, since whenever iknw occurs in the
data, we have the option to normalize it to I know.
The second (§4.2) learns character sequence map-
pings. If we look at the normalization DanielVeule-
man to Daniel Veuleman, we can see that it is only
applicable when the exact word DanielVeuleman oc-
curs. However, we wish to learn that it is uncom-
mon for the letters l and v to occur in the same word
sequentially, so that be can add missing spaces in
words that contain the lv character sequence, such as
normalizing phenomenalvoter to phenomenal voter.

I wanna go 4 pizza 2day

I want go for pizza todayto

Figure 1: Variant–normalized alignment with the variant
form above and the normalized form below; solid lines
show potential normalizations, while dashed lines repre-
sent identical translations.

However, there are also cases where this is not true,
for instance, in the word velvet, we do not wish to
separate the letters l and v. Thus, we shall describe
the process we use to decide when to apply these
transformations.

4.1 From Sentences To Phrases

The process to find phrases from sentences has been
throughly studied in Machine Translation. This is
generally done in two steps, Word Alignments and
Phrase Extraction.

Alignment. The first step is to find the word-level
alignments between the original post and its nor-
malization. This is a well studied problem in MT,
referred as Word Alignment (Brown et al., 1993).
Many alignment models have been proposed, such
as, the HMM-based word alignment models (Vo-
gel et al., 1996) and the IBM models (Och and
Ney, 2003). Generally, a symmetrization step is per-
formed, where the bidirectional alignments are com-
bined heuristically. In our work, we use the fast
aligner proposed in (Dyer et al., 2013) to obtain the
word alignments. Figure 1 shows an example of an
word aligned pair of a tweet and its normalization.

Phrase Extraction. The phrasal extraction
step (Ling et al., 2010), uses the word aligned
sentences and extracts phrasal mappings between
the original tweet and its normalization, named
phrase pairs. For instance, in Figure 1, we would
like to extract the phrasal mapping from go 4 to go
for, so that we learn that the word 4 in the context of
go is normalized to the proposition for. To do this,
the most common approach is to use the template
proposed in (Och and Ney, 2004), which allows
phrase pairs to be extracted, if there is at least one
word alignment within the pair, and there are no
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Table 4: Fragment of the phrase normalization model
built, for each original phrase o, we present the top-3 nor-
malized forms ranked by f(n | o).

Original (o) Normalization (n) f(n | o)
wanna want to 0.4679
wanna will 0.0274
wanna going to 0.0114
4 4 0.5641
4 for 0.01795
go 4 go for 1.0000

words inside the pair that are aligned to words not
in the pair. For instance, in the example above, the
phrase pair that normalizes wanna to want to would
be extracted, but the phrase pair normalizing wanna
to want to go would not, because the word go in the
normalization is aligned to a word not in the pair.

Phrasal Features. After extracting the phrase
pairs, a model is produced with features derived
from phrase pair occurrences during extraction. This
model is equivalent to phrasal translation model in
MT, but we shall refer to it as the normalization
model. For a phrase pair 〈o,n〉, where o is the origi-
nal phrase, and n is the normalized phrase, we com-
pute the normalization relative frequency f(n | o) =
C(n,o)
C(o) , where C(n, o) denotes the number of times

o was normalized to n and C(o) denotes the number
of times o was seen in the extracted phrase pairs. Ta-
ble 4 gives a fragment of the normalization model.
The columns represent the original phrase, its nor-
malization and the probability, respectively.

In Table 4, we observe that the abbreviation
wanna is normalized to want to with a relatively
high probability, but it can also be normalized to
other equivalent expressions, such as will and go-
ing to. The word 4 by itself has a low probability
to be normalized to the preposition for. This is ex-
pected, since this decision cannot be made without
context. However, we see that the phrase go 4 is
normalized to go for with a high probability, which
specifies that within the context of go, 4 is generally
used as a preposition.

4.2 From Phrases to Characters

While we can learn lexical variants that are in the
corpora using the phrase model, we can only address
word forms that have been observed in the corpora.

Table 5: Fragment of the character normalization model
where examples representative of the lexical variant gen-
eration process are encoded in the model.

Original (o) Normalization (n) f(n | o)
o o o o o 0.0223
o o o o 0.0439
s c 0.0331
z s 0.0741
s h c h 0.019
2 t o 0.014
4 f o r 0.0013
0 o 0.0657
i n g f o r i n g <space> f o r 0.4545
g f g <space> f 0.01028

This is quite limited, since we cannot expect all the
word forms to be present, such as all the possible
orthographic errors for the word cat, such as catt,
kat and caaaat. Thus, we will build a character-
based model that learns the process lexical variants
are generated at the subword level.

Our character-based model is similar to the
phrase-based model, except that, rather than learn-
ing word-based mappings from the original tweet
and the normalization sentences, we learn character-
based mappings from the original phrases to the nor-
malizations of those phrases. Thus, we extract the
phrase pairs in the phrasal normalization model, and
use them as a training corpora. To do this, for each
phrase pair, we add a start token, <start>, and a
end token, <end>, at the beginning and ending of
the phrase pair. Afterwards, we separate all charac-
ters by space and add a space token <space> where
spaces were originally. For instance, the phrase
pair normalizing DanielVeuleman to Daniel Veule-
man would be converted to <start> d a n i e l v e u
l e m a n <end> and <start> d a n i e l <space> v
e u l e m a n <end>.

Character-based Normalization Model - To
build the character-based model, we proceed using
the same approach as in the phrasal normalization
model. We first align characters using Word Align-
ment Models, and then we perform phrase extrac-
tion to retrieve the phrasal character segments, and
build the character-based model by collecting statis-
tics. Once again, we provide examples of entries in
the model in Table 5.
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We observe that many of the normalizations dealt
with in the previous model by memorizing phrases
are captured with string transformations. For in-
stance, from phrase pairs such as tooo to too and
sooo to so, we learn that sequences of o’s can be
reduced to 2 or 1 o. Other examples include or-
thographic substitutions, such as 2 for to and 4
for for (as found in 2gether, 2morrow, 4ever and
4get). Moreover, orthographic errors can be gener-
ated from mistaking characters with similar phonetic
properties, such as, s to c, z to s and sh to ch, gener-
ating lexical variants such as reprecenting. Finally,
we learn that the number 0 that resembles the letter
o, can be used as a replacement, as in g00d. Finally,
we can see that the rule ingfor to ing for attempts to
find segmentation errors, such as goingfor, where a
space between going and for was omitted.6

5 Normalization Decoder

In section 4, we built two models to learn the process
of normalization, the phrase-based model and the
character-based model. In this section, we describe
the decoder we used to normalize the sentences.

The advantage of the phrase-based model is that it
can make decisions for normalization based on con-
text. That is, it contains phrasal units, such as, go
4, that determine, when the word 4 should be nor-
malized to the preposition for and when to leave it
as a number. However, it cannot address words that
are unseen in the corpora. For instance, if the word
form 4ever is not seen in the training corpora, it is
not be able to normalize it, even if it has seen the
word 4get normalized to forget. On the other hand,
the character-based model learns subword normal-
izations, for instance, if we see the word nnnnno
normalized to no, we can learn that repetitions of
the letter n are generally shorted to n, which al-
lows it to generate new word forms. This model
has strong generalization potential, but the weak-
ness of the character-based model is that it fails to

6Note that this captures the context in which such transfor-
mations are likely to occur: there are not many words that con-
tain the sequence ingfor, so the probability that these should be
normalized by inserting a space is high. On the other hand, we
cannot assume that if we observe the sequence gf, we can safely
separate these with a space. This is because, there are many
words that contain this sequence, such as the abbreviation of
gf (girlfriend), dogfight, and bigfoot.

consider the context of the normalization that the
phrase-based model uses to make normalization de-
cisions. Thus, our goal in this section is describe a
decoder that uses both models to improve the quality
of the normalizations.

5.1 Phrasal Decoder
We use Moses, an off-the-shelf phrase-based MT
system (Koehn et al., 2007), to “translate” the orig-
inal tweet its normalized form using the phrasal
model (§4.1). Aside form the normalization prob-
ability, we also use the common features used in
MT. These are the reverse normalization probabil-
ity, the lexical and reverse lexical probabilities and
the phrase penalty. We also use the MSD reorder-
ing model proposed in (Koehn et al., 2005), which
adds reordering features.7 The final score of each
phrase pair is given as a sum of weighted log fea-
tures. The weights for these features are optimized
using MERT (Och, 2003). In our work, we sampled
150 tweets randomly from Twitter and normalized
them manually, and used these samples as devel-
opment data for MERT. As for the character-based
model features, we simply rank the training phrase
pairs by their relative frequency the f(n | o), and use
the top-1000 phrase pairs as development set. Fi-
nally, a language model is required during decoding
as a prior, since it defines the type of language that
is produced by the output. We wish to normalized
to formal language, which is generally better pro-
cessed by NLP tools. Thus, for the phrase model,
we use the English NIST dataset composed of 8M
sentences in English from the news domain to build
a 5-gram Kneser-Ney smoothed language model.

5.2 Character and Phrasal Decoder
We now turn to how to apply the character-based
(§4.2), together with the phrasal model. For this
model, we again use Moses, treating each charac-
ter as a “word”. The simplest way to combine both
methods is first to decode the input o sentence with
the character-based decoder, normalizing each word
independently and then normalizing the resulting
output using the phrase-based decoder, which en-
ables the phrase model to score the outputs of the
character model in context.

7Reordering helps find lexical variants that are generated by
transposing characters, such as, mabye to maybe.
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wanna

want to meeeeet
meet

met

DanielVeuleman

Daniel Veuleman

Figure 2: Example output lattice of the character-based decoder, for the sentence I wanna meeeeet DanielVeuleman.

Our process is as follows. Given the input sen-
tence o, with the words o1, . . . , om, where m is
the number of words in the input, we generate for
each word oi a list of n-best normalization candi-
dates z1

oi
, . . . , zn

oi
. We further filter the candidates

using two criteria. We start by filtering each can-
didate zj

oi that occurs less frequently than the orig-
inal word oi. This is motivated by our observation
that lexical variants occur far less than the respec-
tive standard form. Second, we build a corpus of
English language Twitter consisting of 70M tweets,
extract the unigram counts, and perform Brown clus-
tering (Brown et al., 1992) with k = 3000 clusters.
Next, we calculate the cluster similarity between oi

and each surviving candidate, zj
oi . We filter the can-

didate if the similarity is less than 0.8. The similar-
ity between two clusters represented as bit strings,
S[c(oi), c(z

j
oi)], calculated as:

S(x, y) =
2 · |lpm{x, y)}|
|x|+ |y|

,

where lpm computes the longest common prefix of
the contexts and |x| is the length of the bit string.8

If a candidate contains more than one word (because
a space was inserted), we set its count as the mini-
mum count among its words. To find the cluster for
multiple word units, we concatenate the words to-
gether, and find the cluster with the resulting word if
it exists. This is motivated by the fact that it is com-
mon for missing spaces to exist in microblog cor-
pora, generating new word forms, such as wantto,
goingfor, and given a large enough corpora as the
one we used, these errors occur frequently enough to
be placed in the correct cluster. In fact, the variants
such as wanna and tmi, occur in the same clusters as
the words wantto and toomuchinformation.

Remaining candidates are combined into a word
lattice, enabling us to perform lattice-based decod-

8Brown clusters are organized such that more words with
more similar distributions share common prefixes.

ing with the phrasal model (Dyer et al., 2008). Fig-
ure 2, provides an example of such a lattice for the
variant sentence I wanna meeeet DanielVeuleman.

5.3 Learning Variants from Monolingual Data

Until now, we learned normalizations from pairs of
original tweets and their normalizations. We shall
now describe a process to leverage monolingual doc-
uments to learn new normalizations, since the mono-
lingual data is far easier to obtain than parallel data.
This process is similar to the work in (Han et al.,
2012), where confusion sets of contextually simi-
lar words are built initially as potential normaliza-
tion candidates. We again use the k = 3000 Brown
clusters,9 and this time consider the contents of each
cluster as a set of possible normalization variants.
For instance, we find that the cluster that includes the
word never, also includes the variant forms neverrrr,
neva and nevahhh. However, the cluster also con-
tains non-variant forms, such as gladly and glady.
Thus, we want to find that neverrrr maps to never,
while glady maps to gladly in the same cluster. Our
work differs from previous work in that, rather than
defining features manually, we use our character-
based decoder to find the mappings between lexical
variants and their normalizations.

For every word type wi in cluster c(wi) =
{w1, . . . , wn}, we generate a set of possible candi-
dates for each word w1

i , . . . , w
m
i . Then, we build

a directed acyclic graph (DAG), where every word.
We add an edge between wi and wj , if wi can be
decoded into wj using the character model from the
previous section, and also if wi occurs less than wj ;
the second condition guarantees that the graph will
be acyclic. Sample graphs are shown in Figure 3.

Afterwards, we find the number of paths between
all nodes in the graph (this can be computed effi-
ciently in O(|V | + |E|) time). Then, for each word

9The Brown clustering algorithm groups words together
based on contextual similarity.
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neverr

neva neve

nevar

never

glady

gladly

cladly

Figure 3: Example DAGs, built from the cluster contain-
ing the words never and gladly.

wi, we find the wj to which it has the highest num-
ber of paths to and extract the normalization of wi

to wj . In case of a tie, we choose the word wj that
occurs more often in the monolingual corpora. This
is motivated by the fact that normalizations are tran-
sitive. Thus, even if neva cannot be decoded directly
to never, we can use nevar as an intermediate step to
find the correct normalization. This is performed for
all the clusters, and the resulting dictionary of lexi-
cal variants mapped to their standard forms is added
to the training data of the character-based model.

6 Experiments

We evaluate our normalization model intrinsically
by testing whether our normalizations more closely
resemble standardized data, and then extrinsically
by testing whether we can improve the translation
quality of in-house as well as online Machine Trans-
lation systems by normalizing the input.

6.1 Setup

We use the gold standard by Ling et al. (2013), com-
posed by 2581 English-Mandarin microblog sen-
tence pairs. From this set, we randomly select 1290
pairs for development and 1291 pairs for testing.

The normalizer model is trained on the corpora
extracted and filtered in section 3, in total, there
were 1.3M normalization pairs used during training.
The test sentences are normalized using four differ-
ent setups. The first setup leaves the input sentence
unchanged, which we call No Norm. The second
uses the phrase-based model to normalize the input
sentence, which we will denote Norm+phrase. The
third uses the character-based model to output lat-
tices, and then decodes with the phrase based model,

which we will denote Norm+phrase+char. Finally,
we test the same model after adding the training data
extracted using monolingual documents, which we
will refer as Norm+phrase+char+mono.

To test the normalizations themselves, we used
Google Translate to translate the Mandarin side of
the 1291 test sentence pairs back to English and use
the original English tweet. While, this is by itself
does not guarantee that the normalizations are cor-
rect, since the normalizations could be syntactically
and semantically incorrect, it will allow us to check
whether the normalizations are closer to those pro-
duced by systems trained on news data. This exper-
iment will be called Norm.

As an application and extrinsic evaluation for our
normalizer, we test if we can obtain gains on the
MT task on microblog data by using our normalizer
prior to translation. We build two MT systems us-
ing Moses. Firstly, we build a out-of-domain model
using the full 2012 NIST Chinese-English dataset
(approximately 8M sentence pairs), which is dataset
from the news domain, and we will denote this sys-
tem as Inhouse+News. Secondly, we build a in-
domain model using the 800K sentence pairs from
µtopia corpora (Ling et al., 2013). We also add
the NIST dataset to improve coverage. We call this
system Inhouse+News+Weibo. To train these sys-
tems, we use the Moses phrase-based MT system
with standard features (Koehn et al., 2003). For re-
ordering, we use the MSD reordering model (Axel-
rod et al., 2005). As the language model, we train
a 5-gram model with Kneser-ney smoothing using a
10M tweets from twitter. Finally, the weights were
tuned using MERT (Och, 2003). As for online sys-
tems, we consider the systems used to generate the
paraphrase corpora in section 3, which we will de-
note as Online A, Online B and Online C10

The normalization and MT results are evaluated
with BLEU-4 (Papineni et al., 2002) comparing the
produced translations or normalizations with the ap-
propriate reference.

6.2 Results

Results are shown in Table 6. In terms of the normal-
izations, we observe a much better match between

10The names of the systems are hidden to not violate the pri-
vacy issues in the terms and conditions of these online systems.
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Table 6: Normalization and MT Results. Rows denote different normalizations, and columns different translation
systems, except the first column (Norm), which denotes the normalization experiment. Cells display the BLEU score
of that experiment.

Moses Moses
Condition Norm (News) (News+Weibo) Online A Online B Online C
baseline 19.90 15.10 24.37 20.09 17.89 18.79
norm+phrase 21.96 15.69 24.29 20.50 18.13 18.93
norm+phrase+char 22.39 15.87 24.40 20.61 18.22 19.08
norm+phrase+char+mono 22.91 15.94 24.46 20.78 18.37 19.21

the normalized text with the reference, than the orig-
inal tweets. In most cases, adding character-based
models improves the quality of the normalizations.

We observe that better normalizations tend to lead
to better translations. The relative improvements
are most significant, when moving from No Norm
to norm+phrase normalization. This is because,
we are normalizing words that are not seen in gen-
eral MT system’s training data, but occur frequently
in microblog data, such as wanna to want to, u to
you and im to i’m. The only exception is in the In-
house+News+Weibo system, where the normaliza-
tion deteriorates the results. This is to be expected,
since this system is trained on the same microblog
data used to learn the normalizations. However, we
can observe on norm+phrase+char that if we add
the character-based model, we can observe improve-
ments for this system as well as for all other ones.
This is because the model is actually learning nor-
malizations that are unseen in the data. Some ex-
amples of these normalization include, normalizing
lookin to looking, nutz to nuts and maimi to miami
but also separating peaceof to peace of. The fact
that these improvements are obtained for all sys-
tems is strong evidence that we are actually produc-
ing good normalizations, and not overfitting to one
of the systems that we used to generate our data.
The gains are much smaller from norm+phrase
to norm+phrase+char, since the improvements we
obtain come from normalizing less frequent words.
Finally, we can obtain another small improvement
by adding monolingual data to the character-based
model in norm+phrase+char+mono.

7 Related Work

Most of the work in microblog normalization is fo-
cused on finding the standard forms of lexical vari-

ants (Yang and Eisenstein, 2013; Han et al., 2013;
Han et al., 2012; Kaufmann, 2010; Han and Bald-
win, 2011; Gouws et al., 2011; Aw et al., 2006). A
lexical variant is a variation of a standard word in
a different lexical form. This ranges from minor or
major spelling errors, such as jst, juxt and jus that
are lexical variants of just, to abbreviations, such as
tmi and wanna, which stand for too much informa-
tion and want to, respectively. Jargon can also be
treated as variants, for instance cday is a slang word
for birthday, in some groups.

There are many rules that govern the process lex-
ical variants are generated. Some variants are gener-
ated from orthographic errors, caused by some mis-
take from the user when writing. For instance, the
variants representin, representting, or reprecenting
can be generated by a spurious letter swap, insertion
or substitution by the user. One way to normalize
these types of errors is to attempt to insert, remove
and swap words in a lexical variant until a word in
a dictionary of standard words is found (Kaufmann,
2010). Contextual features are another way to find
lexical variants, since variants generally occur in the
same context as their standard form. This includes
orthographic errors, abbreviations and slang. How-
ever, this is generally not enough to detect lexical
variants, as many words share similar contexts, such
as already, recently and normally. Consequently,
contextual features are generally used to generate a
confusion set of possible normalizations of a lexical
variant, and then more features are used to find the
correct normalization (Han et al., 2012). One simple
approach is to compute the Levenshtein distance to
find lexical similarities between words, which would
effectively capture the mappings between represent-
ting, reprecenting and representin to representing.
However, a pronunciation model (Tang et al., 2012)
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would be needed to find the mapping between g8,
2day and 4ever to great, today and forever, respec-
tively. Moreover, visual character similarity features
would be required to find the mapping between g00d
andι to good and i.

Clearly, learning this process is a challenging
task, and addressing each different case individually
would require vast amounts of resources. Further-
more, once we change the language to normalize
to another language, the types of rules that generate
lexical variants would radically change and a new set
of features would have to be engineered. We believe
that to be successful in normalizing microblogs,
the process to learn new lexical variants should be
learned from data, making as few assumptions as
possible. We learn our models without using any
type of predefined features, such as phonetic fea-
tures or lexical features. In fact, we will not assume
that most words and characters map to themselves,
as it is assumed in methods using the Levenshtein
distance (Kaufmann, 2010; Han et al., 2012; Wang
and Ng, 2013). All these mappings are learned from
our data. Furthermore, in the work above, the dictio-
naries built using these methods assume that lexical
variants are mapped to standard forms in a word-to-
word mapping. Thus, variants such as wanna, gonna
and imma are not normalizable, since they are nor-
malized to multiple words want to, going to and I
am gonna. Moreover, there are segmentation errors
that occur from missing spaces, such as sortof and
goingfor, which also map to more than one word to
sort of and going for. These cases shall also be ad-
dressed in our work.

Wang and Ng (2013) argue that microblog nor-
malization is not simply to map lexical variants into
standard forms, but that other tasks, such as punctua-
tion correction and missing word recovery should be
performed. Consider the example tweet you free?,
while there are no lexical variants in this message,
the authors consider that it is the normalizer should
recover the missing article are and normalize this
tweet to are you free?. To do this, the authors train a
series of models to detect and correct specific errors.
While effective for narrow domains, training models
to address each specific type of normalization is not
scalable over all types of normalizations that need to
be performed within the language, and the fact that a
set of new models must be implemented for another

language limits the applicability of this work.
Another strong point of the work above is that

a decoder is presented, while the work on build-
ing dictionaries only normalize out of vocabu-
lary (OOV) words. The work on (Han et al., 2012)
trains a classifier to decide whether to normalize a
word or not, but is still preconditioned on the fact
that the word in question is OOV. Thus, lexical vari-
ants, such as, 4 and u, with the standard forms for
and you, are left untreated, since they occur in other
contexts, such as u in u s a. Inspired by the work
above, we also propose a decoder based on the exist-
ing off-the-self decoder Moses (Koehn et al., 2007).

Finally, the work in (Xu et al., 2013) obtains para-
phrases from Twitter, by finding tweets that contain
common entities, such as Obama, that occur during
the same period by matching temporal expressions.
The resulting paraphrase corpora can also be used to
train a normalizer.

8 Conclusion

We introduced a data-driven approach to microblog
normalization based on paraphrasing. We build a
corpora of tweets and their normalizations using par-
allel corpora from microblogs using MT techniques.
Then, we build two models that learn generalizations
of the normalization process, one the phrase level
and on the character level. Then, we build a de-
coder that combines both models during decoding.
Improvements on multiple MT systems support the
validity of our method.

In future work, we shall attempt to build normal-
izations for other languages. We shall also attempt
to learn an unsupervised normalization model with
only monolingual data, similar to the work for MT
in (Ravi and Knight, 2011).
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Abstract

In this paper, we address the problem of
estimating question difficulty in community
question answering services. We propose a
competition-based model for estimating ques-
tion difficulty by leveraging pairwise compar-
isons between questions and users. Our ex-
perimental results show that our model sig-
nificantly outperforms a PageRank-based ap-
proach. Most importantly, our analysis shows
that the text of question descriptions reflects
the question difficulty. This implies the pos-
sibility of predicting question difficulty from
the text of question descriptions.

1 Introduction

In recent years, community question answering (C-
QA) services such as Stackoverflow1 and Yahoo!
Answers2 have seen rapid growth. A great deal
of research effort has been conducted on CQA, in-
cluding: (1) question search (Xue et al., 2008; Du-
an et al., 2008; Suryanto et al., 2009; Zhou et al.,
2011; Cao et al., 2010; Zhang et al., 2012; Ji et
al., 2012); (2) answer quality estimation (Jeon et al.,
2006; Agichtein et al., 2008; Bian et al., 2009; Liu
et al., 2008); (3) user expertise estimation (Jurczyk
and Agichtein, 2007; Zhang et al., 2007; Bouguessa
et al., 2008; Pal and Konstan, 2010; Liu et al., 2011);
and (4) question routing (Zhou et al., 2009; Li and
King, 2010; Li et al., 2011).

∗This work was done when Jing Liu and Quan Wang were
visiting students at Microsoft Research Asia. Quan Wang is
currently affiliated with Institute of Information Engineering,
Chinese Academy of Sciences.

1http://stackoverflow.com
2http://answers.yahoo.com

However, less attention has been paid to question
difficulty estimation in CQA. Question difficulty es-
timation can benefit many applications: (1) Experts
are usually under time constraints. We do not want
to bore experts by routing every question (including
both easy and hard ones) to them. Assigning ques-
tions to experts by matching question difficulty with
expertise level, not just question topic, will make
better use of the experts’ time and expertise (Ack-
erman and McDonald, 1996). (2) Nam et al. (2009)
found that winning the point awards offered by the
reputation system is a driving factor in user partici-
pation in CQA. Question difficulty estimation would
be helpful in designing a better incentive mechanis-
m by assigning higher point awards to more diffi-
cult questions. (3) Question difficulty estimation can
help analyze user behavior in CQA, since users may
make strategic choices when encountering questions
of different difficulty levels.

To the best of our knowledge, not much research
has been conducted on the problem of estimating
question difficulty in CQA. The most relevant work
is a PageRank-based approach proposed by Yang et
al. (2008) to estimate task difficulty in crowdsourc-
ing contest services. Their key idea is to construct
a graph of tasks: creating an edge from a task t1 to
a task t2 when a user u wins task t1 but loses task
t2, implying that task t2 is likely to be more diffi-
cult than task t1. Then the standard PageRank al-
gorithm is employed on the task graph to estimate
PageRank score (i.e., difficulty score) of each task.
This approach implicitly assumes that task difficulty
is the only factor affecting the outcomes of competi-
tions (i.e. the best answer). However, the outcomes
of competitions depend on both the difficulty levels
of tasks and the expertise levels of competitors (i.e.
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other answerers).
Inspired by Liu et al. (2011), we propose a

competition-based approach which jointly models
question difficulty and user expertise level. Our ap-
proach is based on two intuitive assumptions: (1)
given a question answering thread, the difficulty s-
core of the question is higher than the expertise score
of the asker, but lower than that of the best answerer;
(2) the expertise score of the best answerer is higher
than that of the asker as well as all other answer-
ers. Given the two assumptions, we can determine
the question difficulty score and user expertise score
through pairwise comparisons between (1) a ques-
tion and an asker, (2) a question and a best answerer,
(3) a best answerer and an asker, and (4) a best an-
swerer and all other non-best answerers.

The main contributions of this paper are:
•We propose a competition-based approach to es-

timate question difficulty (Sec. 2). Our model signif-
icantly outperforms the PageRank-based approach
(Yang et al., 2008) for estimating question difficulty
on the data of Stack Overflow (Sec. 3.2).
•Additionally, we calibrate question difficulty s-

cores across two CQA services to verify the effec-
tiveness of our model (Sec. 3.3).
•Most importantly, we demonstrate that different

words or tags in the question descriptions indicate
question difficulty levels. This implies the possibil-
ity of predicting question difficulty purely from the
text of question descriptions (Sec. 3.4).

2 Competition based Question Difficulty
Estimation

CQA is a virtual community where people can ask
questions and seek opinions from others. Formally,
when an asker ua posts a question q, there will be
several answerers to answer her question. One an-
swer among the received ones will be selected as the
best answer by the asker ua or voted by the com-
munity. The user who provides the best answer is
called the best answerer ub, and we denote the set of
all non-best answerers as S = {uo1 , · · · , uoM}. As-
suming that question difficulty scores and user ex-
pertise scores are expressed on the same scale, we
make the following two assumptions:
•The difficulty score of question q is higher than

the expertise score of asker ua, but lower than that
of the best answerer ub. This is intuitive since the

best answer ub correctly responds to question q that
asker ua does not know.
•The expertise score of the best answerer ub is

higher than that of asker ua and all answerers in S.
This is straightforward since the best answerer ub

solves question q better than asker ua and all non-
best answerers in S.

Let’s view question q as a pseudo user uq. Tak-
ing a competitive viewpoint, each pairwise compar-
ison can be viewed as a two-player competition with
one winner and one loser, including (1) one compe-
tition between pseudo user uq and asker ua, (2) one
competition between pseudo user uq and the best
answerer ub, (3) one competition between the best
answerer ub and asker ua, and (4) |S| competitions
between the best answerer ub and all non-best an-
swers in S. Additionally, pseudo user uq wins the
first competition and the best answerer ub wins all
remaining (|S| + 2) competitions.

Hence, the problem of estimating the question d-
ifficulty score (and the user expertise score) is cast
as a problem of learning the relative skills of play-
ers from the win-loss results of the generated two-
player competitions. Formally, let Q denote the set
of all questions in one category (or topic), and Rq de-
note the set of all two-player competitions generated
from question q ∈ Q, i.e., Rq = {(ua ≺ uq), (uq ≺
ub), (ua ≺ ub), (uo1 ≺ ub), · · · , (uo|S| ≺ ub)},
where j ≺ i means that user i beats user j in the
competition. Define

R =
∪
q∈Q

Rq (1)

as the set of all two-player competitions. Our prob-
lem is then to learn the relative skills of players from
R. The learned skills of the pseudo question users
are question difficulty scores, and the learned skills
of all other users are their expertise scores.
TrueSkill In this paper, we follow (Liu et al.,
2011) and apply TrueSkill to learn the relative skill-
s of players from the set of generated competitions
R (Equ. 1). TrueSkill (Herbrich et al., 2007) is a
Bayesian skill rating model that is developed for es-
timating the relative skill levels of players in games.
In this paper, we present a two-player version of
TrueSkill with no-draw.

TrueSkill assumes that the practical performance
of each player in a game follows a normal distribu-
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tion N(µ, σ2), where µ means the skill level of the
player and σ means the uncertainty of the estimated
skill level. Basically, TrueSkill learns the skill lev-
els of players by leveraging Bayes’ theorem. Giv-
en the current estimated skill levels of two players
(priori probability) and the outcome of a new game
between them (likelihood), TrueSkill model updates
its estimation of player skill levels (posterior prob-
ability). TrueSkill updates the skill level µ and the
uncertainty σ intuitively: (a) if the outcome of a new
competition is expected, i.e. the player with higher
skill level wins the game, it will cause small updates
in skill level µ and uncertainty σ; (b) if the outcome
of a new competition is unexpected, i.e. the player
with lower skill level wins the game, it will cause
large updates in skill level µ and uncertainty σ. Ac-
cording to these intuitions, the equations to update
the skill level µ and uncertainty σ are as follows:

µwinner = µwinner +
σ2

winner

c
· v

(
t

c
,
ε

c

)
, (2)

µloser = µloser −
σ2

loser

c
· v

(
t

c
,
ε

c

)
, (3)

σ2
winner = σ2

winner ·
[
1 − σ2

winner

c2
· w

(
t

c
,
ε

c

)]
,

(4)

σ2
loser = σ2

loser ·
[
1 −

σ2
loser

c2
· w

(
t

c
,
ε

c

)]
, (5)

where t = µwinner − µloser and c2 = 2β2 +
σ2

winner +σ2
loser. Here, ε is a parameter representing

the probability of a draw in one game, and v(t, ε)
and w(t, ε) are weighting factors for skill level µ
and standard deviation σ respectively. Please refer
to (Herbrich et al., 2007) for more details. In this
paper, we set the initial values of the skill level µ
and the standard deviation σ of each player the same
as the default values used in (Herbrich et al., 2007).

3 Experiments
3.1 Data Set
In this paper, we use Stack Overflow (SO) for our
experiments. We obtained a publicly available da-
ta set3 of SO between July 31, 2008 and August 1,
2012. SO contains questions with various topics,
such as programming, mathematics, and English. In
this paper, we use SO C++ programming (SO/CPP)

3http://blog.stackoverflow.com/category/
cc-wiki-dump/

and mathematics4 (SO/Math) questions for our main
experiments. Additionally, we use the data of Math
Overflow5 (MO) for calibrating question difficulty
scores across communities (Sec. 3.3). The statistics
of these data sets are shown in Table 1.

SO/CPP SO/Math MO
# of questions 122, 012 51, 174 27, 333
# of answers 357, 632 94, 488 65, 966
# of users 67, 819 16, 961 12, 064

Table 1: The statistics of the data sets.

To evaluate the effectiveness of our proposed
model for estimating question difficulty scores, we
randomly sampled 300 question pairs from both
SO/CPP and SO/Math, and we asked experts to
compare the difficulty of every pair. We had two
graduate students majoring in computer science an-
notate the SO/CPP question pairs, and two gradu-
ate students majoring in mathematics annotate the
SO/Math question pairs. When annotating each
question pair, only the titles, descriptions, and tags
of the questions were shown, and other information
(e.g. users, answers, etc.) was excluded. Given each
pair of questions (q1 and q2), the annotators were
asked to give one of four labels: (1) q1 ≻ q2, which
means that the difficulty of q1 was higher than q2;
(2) q1 ≺ q2, which means that the difficulty of q1

was lower than q2; (3) q1 = q2, which means that
the difficulty of q1 was equal to q2; (4) Unknown,
which means that the annotator could not make a
decision. The agreements between annotators on
both SO/CPP (kappa value = 0.741) and SO/Math
(kappa value = 0.873) were substantial. When eval-
uating models, we only kept the pairs that annotators
had given the same labels. There were 260 SO/CPP
question pairs and 280 SO/Math question pairs re-
maining.

3.2 Accuracy of Question Difficulty Estimation
We employ a standard evaluation metric for infor-
mation retrieval: accuracy (Acc), defined as follows:

Acc =
the number of correct pairwise comparisons
the total number of pairwise comparisons

.

We use the PageRank-based approach proposed
by Yang et al. (2008) as a baseline. As described in

4http://math.stackexchange.com
5http://mathoverflow.net

87



�

����

����

����

����

����

����

���	

���


����

� 	

�
�

�
�

�
�

�
�

�
	

�
�

�
�

�
�

�
�

�
	

	
�

	
�



�

�
�

�
	

�


�
��
�
��
�
��
��
�
�
�
��
��
�
��
��
�
��
�
�

�

�
��
��
��
�
�
�
��
��
�
��
��
��
��
��
�

����������������������������������

 !

"!# ��


Figure 1: The distributions of calibrated question d-
ifficulty scores of MO and SO/Math.

Sec. 1, this is the most relevant method for our prob-
lem. Table 2 gives the accuracy of the baseline and
our Competition-based approach on SO/CPP and
SO/Math. From the results, we can see that (1) the
proposed Competition-based approach significant-
ly outperformed the PageRank-based approach on
both data sets; (2) PageRank-based approach only
achieved a similar performance as randomly guess-
ing. This is because the PageRank-based approach
only models the outcomes of competitions affected
by question difficulty. However, the outcomes of
competitions depend on both the question difficulty
levels and the expertise levels of competitors. Our
Competition-based approach considers both these
factors for modeling the competitions. The exper-
imental results demonstrate the advantage of our ap-
proach.

Acc@SO/CPP Acc@SO/Math
PageRank 50.38% 48.93%
Competition 66.54% 71.79%

Table 2: Accuracy on SO/CPP and SO/Math.

3.3 Calibrating Question Difficulty across
CQA Services

Both MO and SO/Math are CQA services for asking
mathematics questions. However, these two services
are designed for different audiences, and they have
different types of questions. MO’s primary goal
is asking and answering research level mathemat-
ics questions6. In contrast, SO/Math is for people
studying mathematics at any level in related field-
s7. Usually, the community members in MO are
not interested in basic mathematics questions. If

6http://mathoverflow.net/faq
7http://area51.stackexchange.com/

proposals/3355/mathematics

a posted question is too elementary, someone will
suggest moving it to SO/Math. Similarly, if a post-
ed question is advanced, the community members in
SO/Math will recommend moving it to MO. Hence,
it is expected that the ratio of difficult questions in
MO is higher than SO/Math. In this section, we ex-
amine whether our competition-based model can i-
dentify such differences.

We first calibrate the estimated question difficul-
ty scores across these two services on a same scale.
The key idea is to link the users who participate in
both services. In both MO and SO/Math, users can
specify their home pages. We assume that if a us-
er u1 on MO and a user u2 on SO/Math have the
same home page URL, they should be linked as one
natural person in the real world. We successfully
linked 633 users. They provided 18, 196 answers in
SO/Math among which 10, 993 (60.41%) were se-
lected as the best answers. In contrast, they provided
8, 044 answers in MO among which 3, 215 (39.97%)
were selected as the best answers. This shows that
these users reflect more competitive contests in MO.
After the common users are linked, we have a joint
data set of MO and SO/Math. Then, we can calibrate
the estimated question difficulty scores across the
two services by performing the competition-based
model on the joint data set. Figure 1 shows the dis-
tributions of the calibrated question difficulty scores
of MO and SO/Math on the same scale. As expect-
ed, we observed that the ratio of difficult question-
s in MO was higher than SO/Math. Additionally,
these two distributions were significantly differen-
t (Kolmogorov-Smirnov Test, p-value < 0.05). This
demonstrates that our competition-based model suc-
cessfully identified the difference between questions
on two CQA services.

3.4 Analysis on the Question Descriptions
In this section, we analyze the text of question de-
scriptions on the scale of question difficulty scores
estimated by the competition model.

Micro Level We first examine the frequency dis-
tributions of individual words over the question d-
ifficulty scores. Figure 3 shows the examples of
four words in SO/CPP. We observe that the words
’list’ and ’array’ have the lowest mean of difficul-
ty scores, compared to the words ’virtual’ and ’gcc’.
This is reasonable, since ’list’ and ’array’ are related
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(a) Easy questions (b) Normal questions (c) Hard questions

Figure 2: Tag clouds on SO/Math questions with different difficulty levels
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Figure 3: The frequency distributions of words on
the scale of question difficulty scores (SO/CPP).

to basic concepts in programming language, while
’virtual’ and ’gcc’ are related to more advanced top-
ics. It can be observed that the order of the means of
the difficulty scores of these words are well aligned
to our learning process.

Macro Level We evenly split the range of ques-
tion difficulty scores into n buckets, and we grouped
the questions into the n buckets according to which
bucket their difficulty scores were in. Then, we had
n question buckets and each bucket corresponded to
a word distribution of questions. Let variable X de-
note the distance between the difficulty scores in two
question buckets (which is the difference between
the average difficulty scores of questions in the two
buckets), and variable Y denote the Jensen-Shannon
distance between word distributions in two question
buckets. We examined the correlation between vari-
able X and variable Y . The experimental results
showed that the correlation between these two vari-
ables were strongly positive. Specifically, the cor-
relation coefficient on SO/CPP was 0.8129 and on
SO/Math was 0.7412. In other words, when the dis-
tance between the difficulty scores of two buckets
become larger, the two word distributions in the two
buckets become less similar, and vice versa.

We further visualized the word distribution in
each question bucket. We set n as 3, and we had
three question buckets: (1) easy questions; (2) nor-
mal questions; and (3) hard questions. Figure 3.4
plots the tag clouds of SO/Math questions in the
three buckets. The size of tags is proportional to
the frequency of tags in each bucket. We observed
that (1) the tag ’homework’ and ’calculus’ become s-
maller from easy questions to hard questions; (2) the
tag ’set-theory’ becomes larger. These observations
also reflect our learning process.

The above experimental results show that differ-
ent words or tags of question descriptions reflect the
question difficulty levels. This implies the possibil-
ity of predicting question difficulty purely from the
text of question descriptions.

4 Conclusion and Future Work
In this paper, we address the problem of estimating
question difficulty in CQA services. Our proposed
competition-based model for estimating question
difficulty significantly outperforms the PageRank-
based approach. Most importantly, our analysis
shows that the text of question descriptions reflect-
s the question difficulty. In the future, we would
like to explore predicting question difficulty from
the text of question descriptions. We also will inves-
tigate non-technical areas, where there might be no
strongly distinct notion of experts and non-experts.
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Abstract
We seek to measure political candidates’ ideo-
logical positioning from their speeches. To ac-
complish this, we infer ideological cues from
a corpus of political writings annotated with
known ideologies. We then represent the
speeches of U.S. Presidential candidates as se-
quences of cues and lags (filler distinguished
only by its length in words). We apply a
domain-informed Bayesian HMM to infer the
proportions of ideologies each candidate uses
in each campaign. The results are validated
against a set of preregistered, domain expert-
authored hypotheses.

1 Introduction

The artful use of language is central to politics, and
the language of politicians has attracted consider-
able interest among scholars of political commu-
nication and rhetoric (Charteris-Black, 2005; Hart,
2009; Deirmeier et al., 2012; Hart et al., 2013)
and computational linguistics (Thomas et al., 2006;
Fader et al., 2007; Gerrish and Blei, 2011, in-
ter alia). In American politics, candidates for of-
fice give speeches and write books and manifestos
expounding their ideas. Every political season,
however, there are accusations of candidates “flip-
flopping” on issues, with opinion shows, late-night
comedies, and talk radio hosts replaying clips of
candidates contradicting earlier statements. Pres-
idential candidate Mitt Romney’s own aide infa-
mously proclaimed in 2012: “I think you hit a reset
button for the fall campaign [i.e., the general elec-
tion]. Everything changes. It’s almost like an Etch-
a-Sketch. You can kind of shake it up and we start
all over again.”

A more general observation, often stated but not
yet, to our knowledge, tested empirically, is that

successful primary candidates “move to the cen-
ter” before a general election. The expectation fol-
lows directly from long-standing and widely influen-
tial theories of political competition that are collec-
tively referred to in their simplest form as the “me-
dian voter theorem” (Hotelling, 1929; Black, 1948;
Downs, 1957). Thus it is to be expected that when
a set of voters that are more ideologically concen-
trated are replaced by a set who are more widely
dispersed across the ideological spectrum, as occurs
in the transition between the United States primary
and general elections, that candidates will present
themselves as more moderate in an effort to capture
enough votes to win.

Do political candidates in fact stray ideologically
at opportune moments? More specifically, can we
measure candidates’ ideological positions from their
prose at different times? Following much work
on classifying the political ideology expressed by a
piece of text (Laver et al., 2003; Monroe and Maeda,
2004; Hillard et al., 2008), we start from the as-
sumption that a candidate’s choice of words and
phrases reflects a deliberate attempt to signal com-
mon cause with a target audience, and as a broader
strategy, to respond to political competitors. Our
central hypothesis is that, despite candidates’ in-
tentional vagueness, differences in position—among
candidates or over time—can be automatically de-
tected and described as proportions of ideologies ex-
pressed in a speech.

In this work, we operationalize ideologies in a
novel empirical way, exploiting political writings
published in explicitly ideological books and mag-
azines (§2).1 The corpus then serves as evidence for

1We consider general positions in terms of broad ideolog-
ical groups that are widely discussed in current political dis-
course (e.g., “Far Right,” “Religious Right,” “Libertarian,”’
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Figure 1: Ideology tree showing the labels for the ide-
ological corpus in §2.1 (excluding BACKGROUND) and
corresponding to states in the HMM (§3.3).

a probabilistic model that allows us to automatically
infer compact, human-interpretable lexicons of cues
strongly associated with each ideology.

These lexicons are used, in turn, to create a low-
dimensional representation of political speeches: a
speech is a sequence of cues interspersed with lags.
Lags correspond to the lengths of sequences of non-
cue words, which are treated as irrelevant to the in-
ference problem at hand. In other words, a speech is
represented as a series alternating between cues sig-
naling ideological positions and uninteresting filler.

Our main contribution is a probabilistic technique
for inferring proportions of ideologies expressed by
a candidate (§3). The inputs to the model are the
cue-lag representation of a speech and a domain-
specific topology relating ideologies to each other.
The topology tree (shown in Figure 1) encoding
the closeness of different ideologies and, by exten-
sion, the odds of transitioning between them within a
speech. Bayesian inference is used to manage uncer-
tainty about the associations between cues and ide-
ologies, probabilities of traversing each of the tree’s
edges, and other parameters.

We demonstrate the usefulness of the measure-
ment model by showing that it accurately recov-
ers pre-registered beliefs regarding narratives widely
accepted—but not yet tested empirically—about the
2008 and 2012 U.S. Presidential elections (§4).

2 First Stage: Cue Extraction

We first present a data-driven technique for automat-
ically constructing “cue lexicons” from texts labeled
with ideologies by domain experts.

etc.). Analysis of positions on specific issues is left for future
work.

Total tokens 32,835,190
Total types 138,235
Avg. tokens per book 77,628
Avg. tokens per mag. issue 31,713
Breakdown by ideology: Documents Tokens
LEFT 0 0
FAR LEFT 112 3,334,601
CENTER-LEFT 196 7,396,264
PROGRESSIVE LEFT 138 7,257,723
RELIGIOUS LEFT 7 487,844
CENTER 5 429,480
RIGHT 97 3,282,744
FAR RIGHT 211 7,392,163
LIBERTARIAN RIGHT 88 1,703,343
CENTER-RIGHT 9 702,444
POPULIST RIGHT 5 407,054
RELIGIOUS RIGHT 6 441,530

Table 1: Ideology corpus statistics. Note that some docu-
ments are not labeled with finer-grained ideologies.

2.1 Ideological Corpus

We start with a collection of contemporary political
writings whose authors are perceived as represen-
tative of one particular ideology. Our corpus con-
sists of two types of documents: books and maga-
zines. Books are usually written by a single author,
while each magazine consists of regularly published
issues with collections of articles written by several
authors. A political science domain expert who is
a co-author of this work manually labeled each ele-
ment in a collection of 112 books and 10 magazine
titles2 with one of three coarse ideologies: LEFT,
RIGHT, or CENTER. Documents that were labeled
LEFT and RIGHT were further broken down into
more fine-grained ideologies, shown in Fig. 1.3 Ta-
ble 1 summarizes key details about the ideological
corpus.

In addition to ideology labels, individual chapters
within the books were manually tagged with topics
that the chapter was about. For instance, in Barack
Obama’s book The Audacity of Hope, his chapter

2There are 765 magazine issues, which are published bi-
weekly to quarterly, depending on the magazine. All of a mag-
azine’s issues are labeled with the same ideology.

3We cannot claim that these texts are “pure” examples of
the ideologies they are labeled with (i.e., they may contain parts
that do not match the label). By finding relatively few terms
strongly associated with texts sharing a label, our model should
be somewhat robust to impurities, focusing on those terms that
are indicative of whatever drew the expert to identify them as
(mostly) sharing an ideology.
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titled “Faith” is labeled as RELIGIOUS. Not all
chapters have clearly defined topics, and as such,
these chapters are simply labeled MISC. Maga-
zines are not labeled with topics because each issue
of a magazine generally touches on multiple top-
ics. There are a total of 61 topics; the full list can
be found in the supplementary materials, along with
a table summarizing key details about the corpus,
which contains 32.8 million tokens.

2.2 Cue Discovery Model
We use the ideological corpus to infer ideological
cues: terms that are strongly associated with an ide-
ology. Because our ideologies are organized hierar-
chically, we required a technique that can account
for multiple effects within a single text. We further
require that the sets of cue terms be small, so that
they can be inspected by domain experts. We there-
fore turn to the sparse additive generative (SAGE)
models introduced by Eisenstein et al. (2011).

Like other probabilistic language models, SAGE
assigns probability to a text as if it were a bag of
terms. It differs from most language models in pa-
rameterizing the distribution using a generalized lin-
ear model, so that different effects on the log-odds
of terms are additive. In our case, we define the
probability of a term w conditioned on attributes of
the text in which it occurs. These attributes include
both the ideology and its coarsened version (e.g., a
FAR RIGHT book also has the attribute RIGHT).
For simplicity, let A(d) denote the set of attributes
of document d and A =

⋃
d A(d). The parametric

form of the distribution is given, for term w in doc-
ument d, by:

p(w | A(d);η) =
exp

(
η0

w +
∑

a∈A(d) η
a
w

)
Z(A(d),η)

Each of the η weights can be a positive or negative
value influencing the probability of the word, condi-
tioned on various properties of the document. When
we stack an attribute a’s weights into a vector across
all words, we get an ηa vector, understood as an ef-
fect on the term distribution. (We use η to refer to
the collection of all of these vectors.) The effects in
our model, described in terms of attributes, are:
• η0, the background (log) frequencies of words,

fixed to the empirical frequencies in the corpus.

Hence the other effects can be understood as de-
viations from this background distribution.
• ηic , the coarse ideology effect, which takes differ-

ent values for LEFT, RIGHT, and CENTER.
• ηif , the fine ideology effect, which takes different

values for the fine-grained ideologies correspond-
ing to the leaves in Fig. 1.
• ηt, the topic effect, taking different values for

each of the 61 manually assigned topics. We fur-
ther include one effect for each magazine series
(of which there are 10) to account for each maga-
zine’s idiosyncrasies (topical or otherwise).
• ηd, a document-specific effect, which captures id-

iosyncratic usage within a single document.
Note that the effects above are not mutually exclu-
sive, although some effects never appear together
due to constraints imposed by their semantics (e.g.,
no book is labeled both LEFT and RIGHT).

When estimating the parameters of the model (the
η vectors), we impose a sparsity-inducing `1 prior
that forces many weights to zero. The objective is:

max
η

∑
d

∑
w∈d

log p(w | A(d);η)−
∑
a∈A

λa‖ηa‖1

This objective function is convex but requires spe-
cial treatment due to non-differentiability when any
elements are zero; we use the OWL-QN algorithm
to solve it (Andrew and Gao, 2007). To reduce the
complexity of the hyperparameter space (the possi-
ble values of all λa) and to encourage similar levels
of sparsity across the different effect vectors, we let,
for each ideology attribute a,

λa = λ · |V(a)| /maxa′∈A |V(a′)|

where V(a) is the set of term types appearing in
the data with attribute a (i.e., its vocabulary) , and
λ is a hyperparameter we can adjust to control the
amount of sparsity in the SAGE vectors. For the
non-ideology effects, we fix λa = 10 (not tuned).

2.3 Bigram and Trigram Lexicons
After estimating parameters, we are left with sparse
ηa for each attribute. We are only interested, how-
ever, in the ideological attributes I ⊂ A. For an
ideological attribute i ∈ I, we take the terms with
positive elements of this vector to be the cues for
ideology i; call this set L(i) and let L =

⋃
i∈I L(i).
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Because political texts use a fair amount of multi-
word jargon, we initially represented each document
as a bag of unigrams, bigrams, and trigrams, ignor-
ing the fact that these “overlap” with each other.4

While this would be inappropriate in language mod-
eling and is inconsistent with our model’s indepen-
dence assumptions among words, it is sensible since
our goal is to identify cues that are statistically asso-
ciated with attributes like ideologies.

Preliminary trials revealed that unigrams tend to
dominate in such a model, since their frequency
counts are so much higher. Further, domain ex-
perts found them harder to interpret out of context
compared to bigrams and trigrams. We therefore in-
cluded only bigrams and trigrams as terms in our cue
discovery model.

2.4 Validation

The term selection method we have described can
be understood as a form of feature selection that
reasons globally about the data and tries to con-
trol for some effects that are not of interest (topic
or document idiosyncrasies). We compared the
approach to two classic, simple methods for fea-
ture selection: ranking based on pointwise mu-
tual information (PMI) and weighted average PMI
(WAPMI) (Schneider, 2005; Cover and Thomas,
2012). Selected features were used to classify the
ideologies of held-out documents from our cor-
pus.5 We evaluated these feature selection methods
within naı̈ve Bayes classification in a 5-fold cross-
validation setup. We vary λ for the SAGE model
and compare the results to equal-sized sets of terms
selected by PMI and WAPMI. We consider SAGE
with and without topic effects.

Figure 2 visualizes accuracy against the num-
ber of features for each method. Bigrams and
trigrams consistently outperform unigrams (McNe-
mar’s, p < 0.05). Otherwise, there are no sig-
nificant differences in performance except WAPMI

4Generative models that produce the same evidence more
than once are sometimes called “deficient,” but model defi-
ciency does not necessarily imply that the model is ineffective.
Some of the IBM models for statistical machine translation pro-
vide a classic example (Brown et al., 1993).

5The text was tokenized and stopwords removed. Punctu-
ation, numbers, and web addresses were normalized. Tokens
appearing less than 20 times in training data, or in fewer than 5
documents were removed.
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Figure 2: Plot of average classification accuracy for
5-fold cross validation against the number of features.
Dashed lines refer to using only unigram features, while
solid lines refer to using bigram and trigram features.

with bigrams/trigrams at its highest point. SAGE
with topics is slightly (but not significantly) bet-
ter than without. We conclude that SAGE is a
competitive choice for cue discovery, noting that a
principled way of controlling for topical and doc-
ument effects—offered by SAGE but not the other
methods—may be even more relevant to our task
than classification accuracy.

2.5 Cue Lexicon

We ran SAGE on the the full ideological book cor-
pus, including topic effects, and setting λ = 30, ob-
tained a set of |L| = 8, 483 cue terms. The supple-
mentary materials include top cue terms associated
with various ideologies and a heatmap of similarities
among SAGE vectors.

We conducted a small, relatively informal study
in which seven subjects (including four scholars of
American politics) were asked to match brief de-
scriptions of the classes, including prominent proto-
typical individuals exemplifying each, to cue terms.
About 70% of ideologies were correctly matched
by experts, with relatively few confusions between
LEFT and RIGHT. More details are given in sup-
plementary materials.

3 Second Stage: Cue-Lag Ideological
Proportions

The main contribution of this paper is a technique
for measuring ideology proportions in the prose of
political candidates. We adopt a Bayesian approach
that manages our uncertainty about the cue lexi-
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con L, the tendencies of political speakers to “flip-
flop” among ideological types, and the relative “dis-
tances” among different ideologies. The representa-
tion of a candidate’s ideology as a mixture among
discrete, hierarchically related categories can be dis-
tinguished from continuous representations (“scal-
ing” or “spatial” models) often used in political sci-
ence, especially to infer positions from Congres-
sional roll-call voting patterns (Poole and Rosen-
thal, 1985; Poole and Rosenthal, 2000; Clinton
et al., 2004). Moreover, the ability to draw in-
ferences about individual policy-makers’ ideologies
from their votes on proposed legislation is severely
limited by institutional constraints on the types of
legislation that is actually subject to recorded votes.

3.1 Political Speeches Corpus

We gathered transcribed speeches given by candi-
dates of the two main parties (Democrats and Re-
publicans) during the 2008 and 2012 Presidential
election seasons. Each election season is comprised
of two stages: (i) the primary elections, where can-
didates seek the support of their respective parties to
be nominated as the party’s Presidential candidate,
and (ii) the general elections where the parties’ cho-
sen candidates travel across the states to garner sup-
port from all citizens. Each candidate’s speeches are
partitioned into epochs for each election; e.g., those
that occur before the candidate has secured enough
pledged delegates to win the party nomination are
“from the primary.” Table 2 presents a breakdown
of the candidates and speeches in our corpus.

3.2 Cue-Lag Representation

Our measurement model only considers ideological
cues; other terms are treated as filler. We therefore
transform each speech into a cue-lag representation.

The representation is a sequence of alternating
cues (elements from the ideological lexicon L) and
integer “lags” (counts of non-cue terms falling be-
tween two cues). This will allow us to capture the in-
tuition that a candidate may use longer lags between
evocations of different ideologies, while nearby cues
are likely to be from similar ideologies.

To map a speech into the cue-lag representation,
we simply match all elements of L in the speech and
replace sequences of other words by their lengths.
When a trigram cue strictly includes a bigram cue,

Party Pri’08 Gen’08 Pri’12 Gen’12
Democrats∗ 167 - - -
Republicans† 50 - 49 -
Obama (D) 78 81 - 99
McCain (R) 9 159 - -
Romney (R) 8 ‡(13) 19 19
∗Democrats in our corpus are: Joe Biden, Hillary Clinton, John
Edwards, and Bill Richardson in 2008 and Barack Obama in
both 2008 and 2012.
†Republicans in our corpus are: Rudy Giuliani, Mike Huck-
abee, John McCain, and Fred Thompson in 2008, Michelle
Bachmann, Herman Cain, Newt Gingrich, Jon Huntsman, Rick
Perry, and Rick Santorum in 2012, and Ron Paul and Mitt Rom-
ney in both 2008 and 2012.
‡For Romney, we have 13 speeches which he gave in the period
2008-2011 (between his withdrawal from the 2008 elections
and before the commencement of the 2012 elections). While
these speeches are not technically part of the regular Presiden-
tial election campaign, they can be seen as his preparation to-
wards the 2012 elections, which is particularly interesting as
Romney has been accused of having inconsistent viewpoints.

Table 2: Breakdown of number of speeches in our polit-
ical speech corpus by epoch. On average, 2,998 tokens,
and 95 cue terms are found in each speech document.

we take only the trigram. When two cues partially
overlap, we treat them as consecutive cue terms and
set the lag to 0. Figure 3 shows an example of our
cue-lag representation.

3.3 CLIP: An Ideology HMM

The model we use to infer ideologies, cue-lag ide-
ological proportions (CLIP), is a hidden Markov
model. Each state corresponds to an ideology
(Fig. 1) or BACKGROUND. The emission from a state
consists of (i) a cue from L and (ii) a lag value. The
high-level generative story for a single speech with
T cue-lag pairs is as follows:

1. Parameters are drawn from conjugate priors
(details in §3.3.3).
2. Let the initial state be the BACKGROUND
state.
3. For t ∈ {1, 2, . . . , T}:6

(a) Transition to state St based on the
transition distribution, discussed in §3.3.1.
This transition is conditioned on the previ-
ous state St−1 and the lag at timestep t−1,
denoted by Lt−1.

6The length of the sequence is assumed to be exogenous, so
that no stop state needs to be defined.
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Original sentence Just compare this President’s record with Ronald Reagan’s first term. President Reagan also faced
an economic crisis. In fact, in 1982, the unemployment rate peaked at nearly 11 percent. But in the
two years that followed, he delivered a true recovery economic growth and job creation were three
times higher than in the Obama Economy.

Cue-lag representation . . .
6−→ ronald reagan 2−→ presid reagan 3−→ econom crisi 5−→ unemploy rate 17−→ econom growth 1−→

job creation 9−→ . . .

Figure 3: Example of the cue-lag representation.

(b) Emit cue term Wt from the lexicon L

and lag Lt based on the emission distribu-
tion, discussed in §3.3.2.

We turn next to the transitions and emissions.

3.3.1 Ideology Topology and Transition
Parameterization

CLIP assumes that each cue term uttered by a
politician is generated from a hidden state corre-
sponding to an ideology. The ideologies are orga-
nized into a tree based on their hierarchical relation-
ships; see Fig. 1. In this study, the tree is fixed ac-
cording to our domain knowledge of current Ameri-
can politics; in future work it might be enriched with
greater detail or its structure learned automatically.

The ideology tree is used in defining the transition
distribution in the HMM, but not to directly define
the topology of the HMM. Importantly, each state
may transition to any other state, but the transition
distribution is defined using the graph, so that ide-
ologies that are closer to each other will tend to be
more likely to transition to each other. To transition
between two states si and sj , a walk must be taken
in the tree from vertex si to vertex sj . We emphasize
that the walk corresponds to a single transition—
the speaker does not emit anything from the states
passed through along the path.

A simplified version of our transition distribution,
for exposition, is given as follows:

ptree(sj | si; ζ,θ)

=
(∏
〈u,v〉∈Path(si,sj)

(1− ζu)θu,v

)
ζsj

Path(si, sj) refers to the sequence of edges in the
tree along the unique path from si to sj . Each of
these edges 〈u, v〉 must be traversed, and the prob-
ability of doing so, conditioned on having already
reached u, is (1−ζu)—i.e., not stopping in u—times
θu,v—i.e., selecting vertex v from among those that
share an edge with u. Eventually, sj is reached, and
the walk ends, incurring probability ζsj .

In order to capture the intuition that a longer lag
after a cue term should increase the entropy over the
next ideology state, we introduce a restart probabil-
ity, which is conditioned on the length of the most
recent lag, `. The probability of restarting the walk
from the BACKGROUND state is a noisy-OR model
with parameter ρ. This gives the transition distribu-
tion:

p(sj | si, `; ζ,θ, ρ) = (1− ρ)`+1ptree(sj | si; ζ,θ)

+ (1− (1− ρ)`+1)ptree(sj | sBACKGROUND ; ζ,θ)

Note that, if ρ = 1, there is no Markovian depen-
dency between states (i.e., there is always a restart),
so CLIP reverts to a mixture model.

This approach allows us to parameterize the full
set of |I|2 transitions with O(|I|) parameters.7 Since
the graph is a tree and the walks are not allowed
to backtrack, the only ambiguity in the transition
is due to the restart probability; this distinguishes
CLIP from other algorithms based on random walks
(Brin and Page, 1998; Mihalcea, 2005; Toutanova et
al., 2004; Collins-Thompson and Callan, 2005).

3.3.2 Emission Parameterization
Recall that, at time step t, CLIP emits a cue from

the lexicon L and an integer-valued lag. For each
state s, we let the probability of emitting cue w
be denoted by ψs,w; ψs is a multinomial distribu-
tion over the entire lexicon L. This allows our ap-
proach to handle ambiguous cues that can associate
with more than one ideology, and also to associate a
cue with a different ideology than our cue discovery
method proposed, if the signal from the data is suffi-
ciently strong. We assume each lag to be generated
by a Poisson distribution with global parameter ν.

7More precisely, there are |I| edges (since there are |I| + 1
vertices including BACKGROUND), each with a θ-parameter in
each direction. For a vertex with degree d, however, there are
only d−1 degrees of freedom, so that there are 2|I|−(|I|+1) =
|I|−1 degrees of freedom for θ. There are |I| ζ-parameters and
a single ρ, for a total of 2|I| degrees of freedom.
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3.3.3 Inference and Learning
Above we described CLIP’s transitions and emis-

sions. Because our interest is in measuring
proportions—and, as we will see, in comparing
those proportions across speakers and campaign
periods—we require a way to allow variation in pa-
rameters across different conditions. Specifically,
we seek to measure differences in time spent in each
ideology state. This can be captured by allowing
each speaker to have a different θ and ζ in each stage
of the campaign. On the other hand, we expect that a
speaker draws from his ideological lexicon similarly
across different epochs—there is a single ψ shared
between different epochs.

In order to manage uncertainty about the param-
eters of CLIP, to incorporate prior beliefs based on
our ideology-specific cue lexicons {L(i)}i, and to
allow sharing of statistical strength across condi-
tions, we adopt a Bayesian approach to inference.
This will allow principled exploration of the poste-
rior distribution over the proportions of interest.

We place a symmetric Dirichlet prior on the tree
walk probabilities θ; its parameter is α. For the
cue emission distribution associated with ideology
i, ψsi

, we use an informed Dirichlet prior with two
different values, βcue for cues in L(i), and a smaller
βdef for those in L \ L(i).8

Learning proceeds by collapsed Gibbs sampling
for the hidden states and slice sampling (with vague
priors) for the hyperparameters (α, β, ρ, and ζ). De-
tails of the sampler are given in the supplementary
materials. At each Gibbs step, we resample the ide-
ology state and restart indicator variable for every
cue term in every speech.

We ran our Gibbs sampler for 75,000 iterations,
discarding the first 25,000 iterations for burn-in, and
collected samples at every 10 iterations. Further, we
perform the slice sampling step at every 5,000 itera-
tions. For each candidate, we collected 5,000 poste-
rior samples which we use to infer his/her ideologi-
cal proportions.

In order to determine the amount of time a candi-
date spends in each ideology, we denote the unit of
time in terms of half the lag before and after each cue

8This implies that a term can, in the posterior distribution,
be associated with an ideology i of whose L(i) it was not a
member. In fact, this occurred frequently in our runs of the
model.

term, i.e., when a candidate draws a cue term from
ideology i during timestep t, we say that he spends
1
2(Lt−1 + Lt) amount of time in ideology i. Aver-
aging over all the samples returned by our sampler
and normalizing it by the length of the documents in
each epoch, we obtain a candidate’s expected ideo-
logical proportions within the epoch.

4 Pre-registered Hypotheses

The traditional way to evaluate a text analysis model
in NLP is, of course, to evaluate its output against
gold-standard judgements by humans. In the case
of recent political speeches, however, we are doubt-
ful that such judgments can be made objectively at
a fine-grained level. While we are confident about
gross categorization of books and magazines in our
ideological corpus (§2.1), many of which are overtly
marked by their ideological assocations, we believe
that human estimates of ideological proportions, or
even association of particular tokens with ideologies
they may evoke, may be overly clouded by the vari-
ation in annotator ideology and domain expertise.

We therefore adopt a different method for evalua-
tion. Before running our model, we identified a set
of hypotheses, which we pre-registered as expec-
tations. These are categorized into groups based on
their strength and relevance to judging the validity of
the model. Strong hypotheses are those that consti-
tute the lowest bar for face validity; if violated, they
suggest a flaw in the model. Moderate hypotheses
are those that match the intuition of domain experts
conducting the research, or extant theory. Violations
suggest more examination is required, and may raise
the possibility that further testing might be pursued
to demonstrate the hypothesis is false. Our 13 prin-
cipal hypotheses are enumerated in Table 3.

5 Evaluation

We compare the posterior proportions inferred by
CLIP with several baselines:
• HMM: rather than §3.3.1, a fully connected, tra-

ditional transition matrix is used.
• MIX: a mixture model; at each timestep, we al-

ways restart (ρ = 1). This eliminates Marko-
vian dependencies between ideologies at nearby
timesteps, but still uses the ideology tree in defin-
ing the probabilities of each state through θ.
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Hypotheses CLIP HMM MIX NORES

Sanity checks (strong):
S1. Republican primary candidates should tend to draw more from RIGHT than

from LEFT.
*12/12 10/13 13/13 12/13

S2. Democratic primary candidates should tend to draw more from LEFT than
from RIGHT.

4/5 5/5 5/5 5/5

S3. In general elections, Democrats should draw more from the LEFT than the
Republicans and vice versa for the RIGHT.

4/4 4/4 3/4 0/4

S total 20/21 19/22 21/22 17/22
Primary hypotheses (strong):
P1. Romney, McCain and other Republicans should almost never draw from FAR

LEFT, and extremely rarely from PROGRESSIVE.
29/32 *21/31 27/32 29/32

P2. Romney should draw more heavily from the RIGHT than Obama in both stages
of the 2012 campaign.

2/2 2/2 1/2 1/2

Primary hypotheses (moderate):
P3. Romney should draw more heavily on words from the LIBERTARIAN,

POPULIST, RELIGIOUS RIGHT, and FAR RIGHT in the primary com-
pared to the general election. In the general election, Romney should draw
more heavily on CENTER, CENTER-RIGHT and LEFT vocabularies.

2/2 2/2 0/2 2/2

P4. Obama should draw more heavily on words from the PROGRESSIVE in the
2008 primary than in the 2008 general election.

0/1 0/1 0/1 1/1

P5. In the 2008 general election, Obama should draw more heavily on the
CENTER, CENTER-LEFT, and RIGHT vocabularies than in the 2008 primary.

1/1 1/1 1/1 1/1

P6. In the 2012 general election, Obama should sample more from the LEFT than
from the RIGHT, and should sample more from the LEFT vocabularies than
Romney.

2/2 2/2 0/2 0/2

P7. McCain should draw more heavily from the FAR RIGHT, POPULIST, and
LIBERTARIAN in the 2008 primary than in the 2008 general election.

0/1 1/1 1/1 1/1

P8. In the general 2008, McCain should draw more heavily from the CENTER,
CENTER-RIGHT, and LEFT vocabularies than in the 2008 primary.

1/1 1/1 1/1 1/1

P9. McCain should draw more heavily from the RIGHT than Obama in both stages
of the campaign.

2/2 2/2 2/2 1/2

P10.Obama and other Democrats should very rarely draw from FAR RIGHT. 6/7 5/7 7/7 4/7
P total 45/51 37/50 40/51 41/51

Table 3: Pre-registered hypotheses used to validate the measurement model; number of statements evaluated correctly
by different models. *Some differences were not significant at p = 0.05 and are not included in the results.

• NORES, where we never restart (ρ = 0). This
strengthens the Markovian dependencies.

In MIX, there are no temporal effects between cue
terms, although the structure of our ideology tree
encourages the speaker to draw from coarse-grained
ideologies over fine-grained ideologies. On the other
hand, the strong Markovian dependency between
states in NORES would encourage the model to stay
local within the ideology tree. In our experiments,
we will see how that the ideology tree and the ran-
dom treatment of restarting both contribute to our
model’s inferences.

Table 3 presents a summary of which hypothe-
ses the models’ inferences are in accordance with.
CLIP is not consistently outperformed by any of the

competing baselines.

Sanity checks (S1–3) CLIP correctly identifies
sixteen LEFT/RIGHT alignments of primary candi-
dates (S1, S2), but is unable to determine one can-
didate’s orientation; it finds Jon Huntsman to spend
roughly equal proportions of speech-time drawing
on LEFT and RIGHT cue terms. Interestingly,
Huntsman, who had served as U.S. Ambassador to
China under Obama, was considered the one mod-
erate in the 2012 Republican field. MIX correctly
identifies all thirteen Republicans, while NORES

places McCain from the 2008 primaries as mostly
LEFT-leaning and HMM misses three of thirteen,
including Perry and Gingrich, who might be deeply
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disturbed to find that they are misclassified as LEFT-
leaning. As for the Democratic primary candidates
(S2), CLIP’s one questionable finding is that John
Edwards spoke slightly more from the RIGHT than
the LEFT. For the general elections (S3), CLIP and
HMM correctly identify the relative amount of time
spent in LEFT/RIGHT between Obama and his Re-
publican competitors. NORES had the most trou-
ble, missing all four. CLIP finds Obama spend-
ing slightly more time on the RIGHT than on the
LEFT in the 2008 general elections but nevertheless,
Obama is still found to spend more time engaging in
LEFT-speak than McCain.

Name interference When we looked at the cue
terms actually used in the speeches, we found one
systematic issue: the inclusion of candidates’ names
as cue terms. Terms mentioning John McCain are
associated with the RIGHT, so that Obama’s men-
tions of his opponent are taken as evidence for
rightward positioning; in total, mentions of McCain
contributed 4% absolute to Obama’s RIGHT ide-
ological proportion. Similarly, barack obama and
presid obama are LEFT cues (though senat obama
is a RIGHT cue). In future work, we believe filtering
candidate names in the first stage will be beneficial.

Strong hypotheses P1 and P2 CLIP and the vari-
ants making use of the ideology tree were in agree-
ment on most of the strong primary hypotheses.
Most of these involved our expectation that the
Republican candidates would rarely draw on FAR
LEFT and PROGRESSIVE LEFT. Our qualitative
hypotheses were not specific about how to quantify
“rare” or “almost never.” We chose to find a result
inconsistent with a P1 hypothesis any time a Repub-
lican had proportions greater than 5% for either ide-
ology. The notable deviations for CLIP were Fred
Thompson (13% from the PROGRESSIVE LEFT
during the 2008 primary) and Mitt Romney (12%
from the PROGRESSIVE LEFT between the 2008
and 2012 elections, 13% from the FAR LEFT dur-
ing the 2012 general election). This model did no
worse than other variants here and much better than
one: HMM had 10 inconsistencies out of 32 oppor-
tunities, suggesting the importance of the ideology
tree.
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Figure 4: Proportion of time spent in each ideology by
McCain, Romney, and Obama during the 2008 and 2012
Presidential election seasons.

“Etch-a-Sketch” hypotheses Hypotheses P3, P4,
P5, P7, and P8 are all concerned with differences
between the primary and general elections: success-
ful primary candidates are expected to “move to the
center.” A visualization of CLIP’s proportions for
McCain, Romney, and Obama is shown in Figure 4,
with their speeches grouped together by different
epochs. The model is in agreement with most of
these hypotheses. It did not confirm P4—Obama
appears to CLIP to be more PROGRESSIVE in the
2008 general election than in the primary, though the
difference is small (3%) and may be within the mar-
gin of error. Likewise, in P7, the difference between
McCain drawing from FAR RIGHT, POPULIST
and LIBERTARIAN between the 2008 primary and
general elections is only 2% and highly uncertain,
with a 95% credible interval of 44–50% during the
primary (vs. 47–50% in the general election).

Fine-grained ideologies Fine-grained ideologies
are expected to account for smaller proportions, so
that making predictions about them is quite difficult.
This is especially true for primary elections, where a
broader palette of ideologies is expected to be drawn
from, but we have fewer speeches from each candi-

99



date. CLIP’s inconsistency with P10, for example,
comes from assigning 5.4% of Obama’s 2008 pri-
mary cues to FAR RIGHT.

CLIP’s inferences on the corpus of political
speeches can be browsed at http://www.ark.
cs.cmu.edu/CLIP. We emphasize that CLIP
and its variants are intended to quantify the ideo-
logical content candidates express in speeches, not
necessarily their beliefs (which may not be perfectly
reflected in their words), or even how they are de-
scribed by pundits and analysts (who draw on far
more information than is expressed in speeches).
CLIP’s deviations from the hypotheses are sug-
gestive of potential improvements to cue extraction
(§2), but also of incorrect hypotheses. We expect
future research to explore a richer set of linguistic
cues and attributes beyond ideology (e.g., topics and
framing on various issues). We plan to use CLIP
as a text analysis method to support substantive in-
quiry in political science, such as following trends
in expressed ideology over time.

6 Related Work

As early as the 1960s, there has been research on
modeling ideological beliefs using automated sys-
tems (Abelson and Carroll, 1965; Carbonell, 1978;
Sack, 1994). These early works model ideology at a
sophisticated level, involving the actors, actions and
goals; they require manually constructed knowledge
bases. Poole and Rosenthal (1985) used congres-
sional roll call data to demonstrate the ideological
divide in Congress, and provided a methodology for
measuring ideological positions. Gerrish and Blei
(2011; 2012) augmented the methodology with text
from congressional bills using probabilistic models
to uncover lawmakers’ positions on specific polit-
ical issues, putting them on a left-right spectrum,
while Thomas et al. (2006) made use of floor de-
bate speeches to predict votes. Likewise, taking ad-
vantage of the proliferation of text today, numer-
ous techniques have been developed to identify top-
ics and perspectives in the media (Gentzkow and
Shapiro, 2005; Lin et al., 2008; Fortuna et al., 2009;
Gentzkow and Shapiro, 2010); determine the polit-
ical leanings of a document or author (Laver et al.,
2003; Efron, 2004; Mullen and Malouf, 2006; Fader
et al., 2007); or recognize stances in debates (So-

masundaran and Wiebe, 2009; Anand et al., 2011).
Going beyong lexical indicators, Greene and Resnik
(2009) investigated syntactic features to identify per-
spectives or implicit sentiment.

7 Conclusions

We introduced CLIP, a domain-informed, Bayesian
model of ideological proportions in political lan-
guage. We showed how ideological cues could be
discovered from a lightly labeled corpus of ideolog-
ical writings, then incorporated into CLIP. The re-
sulting inferences are largely consistent with a set
of preregistered hypotheses about candidates in the
2008 and 2012 Presidential elections.
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Abstract

We present a novel model, Freestyle, that
learns to improvise rhyming and fluent re-
sponses upon being challenged with a line of
hip hop lyrics, by combining both bottom-
up token based rule induction and top-down
rule segmentation strategies to learn a stochas-
tic transduction grammar that simultaneously
learns both phrasing and rhyming associations.
In this attack on the woefully under-explored
natural language genre of music lyrics, we
exploit a strictly unsupervised transduction
grammar induction approach. Our task is par-
ticularly ambitious in that no use of any a pri-
ori linguistic or phonetic information is al-
lowed, even though the domain of hip hop
lyrics is particularly noisy and unstructured.
We evaluate the performance of the learned
model against a model learned only using
the more conventional bottom-up token based
rule induction, and demonstrate the superi-
ority of our combined token based and rule
segmentation induction method toward gen-
erating higher quality improvised responses,
measured on fluency and rhyming criteria as
judged by human evaluators. To highlight
some of the inherent challenges in adapting
other algorithms to this novel task, we also
compare the quality of the responses generated
by our model to those generated by an out-of-
the-box phrase based SMT system. We tackle
the challenge of selecting appropriate training
data for our task via a dedicated rhyme scheme
detection module, which is also acquired via
unsupervised learning and report improved
quality of the generated responses. Finally,
we report results with Maghrebi French hip
hop lyrics indicating that our model performs
surprisingly well with no special adaptation to
other languages.

1 Introduction

The genre of lyrics in music has been severely under-
studied from the perspective of computational lin-
guistics despite being a form of language that has
perhaps had the most impact across almost all human
cultures. With the motivation of spurring further re-
search in this genre, we apply stochastic transduc-
tion grammar induction algorithms to address some
of the modeling issues in song lyrics. An ideal start-
ing point for this investigation is hip hop, a genre
that emphasizes rapping, spoken or chanted rhyming
lyrics against strong beats or simple melodies. Hip
hop lyrics, in contrast to poetry and other genres of
music, present a significant number of challenges for
learning as it lacks well-defined structure in terms of
rhyme scheme, meter, or overall meaning making it
an interesting genre to bring to light some of the less
studied modeling issues.
The domain of hip hop lyrics is particularly un-

structured when compared to classical poetry, a do-
main on which statistical methods have been applied
in the past. Hip hop lyrics are unstructured in the
sense that a very high degree of variation is permit-
ted in the meter of the lyrics, and large amounts of
colloquial vocabulary and slang from the subculture
are employed. The variance in the permitted me-
ter makes it hard to make any assumptions about
the stress patterns of verses in order to identify the
rhyming words used when generating output. The
broad range of unorthodox vocabulary used in hip
hop make it difficult to use off-the-shelf NLP tools
for doing phonological and/or morphological analy-
sis. These problems are further exacerbated by dif-
ferences in intonation of the same word and lack of
robust transcription (Liberman, 2010).
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We argue that stochastic transduction grammars,1
given their success in the area of machine transla-
tion and efficient unsupervised learning algorithms,
are ideal for capturing the structural relationship be-
tween lyrics. Hence, our Freestyle system mod-
els the problem of improvising a rhyming response
given any hip hop lyric challenge as transducing
a challenge line into a rhyming response. We
use a stochastic transduction grammar induced in
a completely unsupervised fashion using a combi-
nation of token based rule induction and segment-
ing (Saers et al., 2013) as the underlying model to
fully-automatically learn a challenge-response sys-
tem and compare its performance against a simpler
token based transduction grammar model. Both our
models are completely unsupervised and use no prior
phonetic or linguistic knowledge whatsoever despite
the highly unstructured and noisy domain.
We believe that the challenge-response system

based on an interpolated combination of token based
rule induction and rule segmenting transduction
grammars will generate more fluent and rhyming re-
sponses compared to one based on token based trans-
duction grammars models. This is based on the ob-
servation that token based transduction grammars
suffer from a lack of fluency; a consequence of the
degree of expressivity they permit. Therefore, as a
principal part of our investigation we compare the
quality of responses generated using a combination
of token based rule induction and top-down rule seg-
menting transduction grammars to those generated
by pure token based transduction grammars.
We also hypothesize that in order to generate flu-

ent and rhyming responses, it is not sufficient to train
the transduction grammars on all adjacent lines of a
hip hop verse. Therefore, we propose a data selec-
tion scheme using a rhyme scheme detector acquired
through unsupervised learning to generate the train-
ing data for the challenge-response systems. The
rhyme scheme detector segments each verse of a hip
hop song into stanzas and identifies the lines in each
stanza that rhyme with each other which are then
added as training instances. We demonstrate the su-
periority of our training data selection method by
comparing the quality of the responses generated by
the models trained on data selected with and without

1Also known in SMT as “synchronous grammars”.

using the rhyme scheme detector.
Unlike conventional spoken and written language,

disfluencies and backing vocals2 occur very fre-
quently in the domain of hip hop lyrics which af-
fect the performance of NLP models designed for
processing well-formed sentences. We propose two
strategies to mitigate the effect of disfluencies on our
model performance and compare their efficacy using
human evaluations. Finally, in order to illustrate the
challenges faced by other NLP algorithms, we con-
trast the performance of our model against a conven-
tional, widely used phrase-based SMT model.
A brief terminological note: “stanza” and “verse”

are frequently confused and sometimes conflated.
Worse yet, their usage for song lyrics is often con-
tradictory to that for poetry. To avoid ambiguity
we consistently follow these technical definitions for
segments in decreasing size of granularity:

verse a large unit of a song’s lyrics. A song typi-
cally contains several verses interspersed with
choruses. In the present work, we do not differ-
entiate choruses from verses. In song lyrics, a
verse is most commonly represented as a sepa-
rate paragraph.

stanza a segment within a verse which has a me-
ter and rhyme scheme. Stanzas often consist of
2, 3, or 4 lines, but stanzas of more lines are
also common. Particularly in hip hop, a single
verse often contains many stanzas with differ-
ent rhyme schemes and meters.

line a segment within a stanza consisting of a single
line. In poetry, strictly speaking this would be
called a “verse”, which however conflicts with
the conventional use of “verse” in song lyrics.

In Section 2, we discuss some of the previous
work that applies statistical NLP methods to less
conventional domains and problems. We describe
our experimental conditions in Section 3. We com-
pare the performance of token and segment based
transduction grammar models in Section 4. We com-
pare our data selection schemes and disfluency han-
dling strategies in Sections 5 and 6. Finally, in

2Particularly the repetitive chants, exclamations, and inter-
jections in hip hop “hype man” style backing vocals.
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Section 7 we describe some preliminary results ob-
tained using our approach on improvising hip hop
responses in French and conclude in Section 8.

2 Related work

Although a few attempts have been made to apply
statistical NLP learning methods to unconventional
domains, Freestyle is among the first to tackle the
genre of hip hop lyrics (Addanki and Wu, 2013; Wu
et al., 2013a,b). Our preliminary work suggested the
need for further research to identify models that cap-
ture the correct generalizations to be able to gener-
ate fluent and rhyming responses. As a step towards
this direction, we contrast the performance of inter-
polated bottom-up token based rule induction and
top-down segmenting transduction grammar models
and token based transduction grammar models. We
briefly describe some of the past work in statistical
NLP on unconventional domains below.
Most of the past work either uses some form of

prior linguistic knowledge or enforces harsher con-
straints such as set number of words in a line, or a set
meter which are warranted by more structured do-
mains such as poetry. However, in hip hop lyrics it
is hard to make any linguistic or structural assump-
tions. For example, words such as sho, flo, holla
which frequently appear in the lyrics are not part of
any standard lexicon and hip hop does not require a
set number of syllables in a line, unlike poems. Also,
surprising and unlikely rhymes in hip hop are fre-
quently achieved via intonation and assonance, mak-
ing it hard to apply prior phonological constraints.
A phrase based SMT systemwas trained to “trans-

late” the first line of a Chinese couplet or duilian
into the second by Jiang and Zhou (2008). The most
suitable next line was selected by applying linguistic
constraints to the n best output of the SMT system.
However in contrast to Chinese couplets, which ad-
here to strict rules requiring, for example, an identi-
cal number of characters in each line and one-to-one
correspondence in their metrical length, the domain
of hip hop lyrics is far more unstructured and there
exists no clear constraint that would ensure fluent
and rhyming responses to hip hop challenge lyrics.
Barbieri et al. (2012) use controlled Markov pro-
cesses to semi-automatically generate lyrics that sat-
isfy the structural constraints of rhyme and meter.

Tamil lyrics were automatically generated given a
melody using conditional random fields by A. et al.
(2009). The lyrics were represented as a sequence
of labels using the KNM system where K, N and M
represented the long vowels, short vowels and con-
sonants respectively.
Genzel et al. (2010) used SMT in conjunction

with stress patterns and rhymes found in a pronun-
ciation dictionary to produce translations of poems.
Although many constraints were applied in translat-
ing full verses of poems, it was challenging to sat-
isfy all the constraints. Stress patterns were assigned
to words given the meter of a line in Shakespeare’s
sonnets by Greene et al. (2010), which were then
combined with a language model to generate poems.
Sonderegger (2011) attempted to infer the pronun-
ciation of words in old English by identifying the
rhyming patterns using graph theory. However, their
heuristic of clustering words with similar IPA end-
ings resulted in large clusters of false positives such
as bloom and numb. A language-independent gener-
ative model for stanzas in poetry was proposed by
Reddy and Knight (2011) via which they could dis-
cover rhyme schemes in French and English poetry.

3 Experimental conditions

Before introducing our Freestyle models, we first
detail our experimental assumptions and the evalua-
tion scheme under which the responses generated by
different models are compared against one another.
We describe our training data as well as a phrase-
based SMT (PBSMT) contrastive baseline. We also
define the evaluation scheme used to compare the re-
sponses of different systems on criteria of fluency
and rhyming.

3.1 Training data

We used freely available user generated hip hop
lyrics on the Internet to provide training data for our
experiments. We collected approximately 52,000
English hip hop song lyrics amounting to approxi-
mately 800Mb of raw HTML content. The data was
cleaned by stripping HTML tags, metadata and nor-
malized for special characters and case differences.
The processed corpus contained 22 million tokens
with 260,000 verses and 2.7 million lines of hip hop
lyrics. As human evaluation using expert hip hop
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listeners is expensive, a small subset of 85 lines was
chosen as the test set to provide challenges for com-
paring the quality of responses generated by different
systems.

3.2 Evaluation scheme
The performance of various Freestyle versions
was evaluated on the task of generating a improvised
fluent and rhyming response given a single line of a
hip hop verse as a challenge. The output of all the
systems on the test set was given to three indepen-
dent frequent hip hop listeners for manual evalua-
tion. They were asked to evaluate the system out-
puts according to fluency and the degree of rhyming.
They were free to choose the tune to make the lyrics
rhyme as the beats of the song were not used in the
training data. Each evaluator was asked to score the
response of each system on the criterion of fluency
and rhyming as being good, acceptable or bad.

3.3 Phrase-based SMT baseline
In order to evaluate the performance of an out-of-
the-box phrase-based SMT (PBSMT) system toward
this novel task of generating rhyming and fluent re-
sponses, a standard Moses baseline (Koehn et al.,
2007) was also trained in order to compare its per-
formance with our transduction grammar induction
model. A 4-gram language model which was trained
on the entire training corpus using SRILM (Stolcke,
2002) was used to generate responses in conjunction
with the phrase-based translation model. As no au-
tomatic quality evaluation metrics exist for hip hop
responses analogous to BLEU for SMT, the model
weights cannot be tuned in conventional ways such
asMERT (Och, 2003). Instead, a slightly higher than
typical language model weight was empirically cho-
sen using a small development set to produce fluent
outputs.

4 Interpolated segmenting model vs. token
based model

We compare the performance of transduction gram-
mars induced via interpolated token based and rule
segmenting (ISTG) versus token based transduction
grammars (TG) on the task of generating a rhyming
and fluent response to hip hop challenges. We use
the framework of stochastic transduction grammars,
specifically bracketing ITGs (inversion transduction

grammars) (Wu, 1997), as our translation model for
“transducing” any given challenge into a rhyming
and fluent response. Our choice is motivated by
the significant amount of empirical evidence for the
representational capacity of transduction grammars
across a spectrum of natural language tasks such as
textual entailment (Wu, 2006), mining parallel sen-
tences (Wu and Fung, 2005) and machine translation
(Zens and Ney, 2003). Further, existence of effi-
cient learning algorithms (Saers et al., 2012; Saers
and Wu, 2011) that make no language specific as-
sumptions, make inversion transduction grammars a
suitable framework for our modeling needs. Exam-
ples of lexical transduction rules can be seen in Ta-
bles 3 and 5. In addition, the grammar also includes
structural transduction rules for the straight case
A→ [A A] and also the inverted case A→ <A A>.

4.1 Token based vs. segmental ITGs
The degenerate case of ITGs are token based ITGs
wherein each translation rule contains at most one
token in input and output languages. Efficient induc-
tion algorithmswith polynomial run time exist for to-
ken based ITGs and the expressivity they permit has
been empirically determined to capture most of the
word alignments that occur across natural languages.
The parameters of the token based ITGs can be es-
timated using expectation maximization through an
efficient dynamic programming algorithm in con-
junction with beam pruning (Saers and Wu, 2011).
In contrast to token based ITGs, each rule in a seg-

mental ITG grammar can contain more than one to-
ken in both input and output languages. In machine
translation applications, segmental models produce
translations that are more fluent as they can capture
lexical knowledge at a phrasal level. However, only
a handful of purely unsupervised algorithms exist
for learning segmental ITGs under matched training
and testing assumptions. Most other approaches in
SMT use a variety of ad hoc heuristics for extracting
segments from token alignments, justified purely by
short term improvements in automatic MT evalua-
tion metrics such as BLEU (Papineni et al., 2002)
which cannot be transferred to our current task. In-
stead, we use a completely unsupervised learning al-
gorithm for segmental ITGs that stays strictly within
the transduction grammar optimization framework
for both training and testing as proposed in Saers
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et al. (2013).
Saers et al. (2013) induce a phrasal inversion

transduction grammar via interpolating the bottom-
up rule chunking approach proposed in Saers et al.
(2012) with a top-down rule segmenting approach
driven by a minimum description length objective
function (Solomonoff, 1959; Rissanen, 1983) that
trades off the maximum likelihood against model
size. Saers et al. (2013) report improvements in
BLEU score (Papineni et al., 2002) on their transla-
tion task. In our current approach instead of using a
bottom-up rule chunking approach we use a simpler
token based grammar instead. Given two grammars
(Ga and Gb) and an interpolation parameter α the
probability function of the interpolated grammar is
given by:

pa+b (r) = αpa (r) + (1− α)pb (r)

for all rules r in the union of the two rule sets, and
where pa+b is the rule probability function of the
combined grammar and pa and pb are the rule prob-
ability functions of Ga and Gb respectively. The
pseudocode for the top-down rule segmenting algo-
rithm is shown in 1. The algorithm uses the methods
collect_biaffixes, eval_dl, sort_by_delta and
make_segmentations. These methods collect all the
biaffixes in an ITG, evaluate the difference in de-
scription length, sort candidates by these differences,
and commit to a given set of candidates, respectively.
The suitable interpolation parameter is chosen em-
pirically based on the responses generated on a small
development set.
We compare the performance of inducing a token

based ITG versus inducing a segmental ITG using in-
terpolated bottom-up token based rule induction and
top-down rule segmentation. To highlight some of
the inherent challenges in adapting other algorithms
to this novel task, we also compare the quality of the
responses generated by our model to those generated
by an off-the-shelf phrase based SMT system.

4.2 Decoding heuristics

We use our in-house ITG decoder implemented ac-
cording to the algorithm mentioned in Wu (1996)
for the generating responses to challenges by decod-
ing with the trained transduction grammars. The de-
coder uses a CKY-style parsing algorithm (Cocke,

Algorithm 1 Iterative rule segmenting learning
driven by minimum description length.
1: Φ ▷ The ITG being induced
2: repeat
3: δsum ← 0
4: bs← collect_biaffixes(Φ)
5: bδ ← []
6: for all b ∈ bs do
7: δ ← eval_dl(b, Φ)
8: if δ < 0 then
9: bδ ← [bδ, ⟨b, δ⟩]
10: sort_by_delta(bδ)
11: for all ⟨b, δ⟩ ∈ bδ do
12: δ′ ← eval_dl(b, Φ)
13: if δ′ < 0 then
14: Φ← make_segmentations(b, Φ)
15: δsum ← δsum + δ′

16: until δsum ≥ 0
17: return Φ

1969) with cube pruning (Chiang, 2007). The de-
coder builds an efficient hypergraph structure which
is then scored using the induced grammar. The
trained transduction grammar model was decoded
using the 4-gram language model and the model
weights determined as described in 3.3.
In our decoding algorithm, we restrict the reorder-

ing to only be monotonic as we want to produce out-
put that follows the same rhyming order of the chal-
lenge. Interleaved rhyming order is harder to evalu-
ate without the larger context of the song and we do
not address that problem in our current model. We
also penalize singleton rules to produce responses of
similar length as successive lines in a stanza are typ-
ically of similar length. Finally, we add a penalty to
reflexive translation rules that map the same surface
form to itself such as A → yo/yo. We obtain these
rules with a high probability due to the presence of
sentence pairs where both the input and output are
identical strings as many stanzas in our data contain
repeated chorus lines.

4.3 Results: Rule segmentation improves
responses

Results in Table 1 indicate that the ISTG outperforms
the TG model towards the task of generating fluent
and rhyming responses. On the criterion of fluency,
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Table 1: Percentage of ≥good and ≥acceptable (i.e., either good or acceptable) responses on fluency and rhyming
criteria. PBSMT, TG and ISTG models trained using corpus generated from all adjacent lines in a verse. PBSMT+RS,
TG+RS, ISTG+RS are models trained on rhyme scheme based corpus selection strategy. Disfluency correction strategy
was used in all cases.

model fluency (≥good) fluency (≥acceptable) rhyming (≥good) rhyming (≥acceptable)
PBSMT 3.14% 4.70% 1.57% 4.31%
TG 21.18% 54.51% 23.53% 39.21%
ISTG 26.27% 57.64% 27.45% 48.23%
PBSMT+RS 30.59% 43.53% 1.96% 9.02%
TG+RS 34.12% 60.39% 20.00% 42.74%
ISTG+RS 30.98% 61.18% 30.98% 53.72%

Table 2: Transduction rules learned by ISTG model.
transduction grammar rule log prob.
A→ long/wrong -11.6747
A→ rhyme/time -11.6604
A→ felt bad/couldn't see what i really had -11.3196
A→ matter what you say/leaving anyway -11.8792
A→ arhythamatic/this rhythm is sick -12.3492

the ISTGmodel produces a significantly higher frac-
tion of sentences rated good (26.27% vs. 21.18%)
and ≥acceptable (57.64% vs. 54.51%). Higher frac-
tion of responses generated by the ISTG model are
rated as good (27.45% vs. 23.53%) and ≥acceptable
(57.64% vs. 54.51%) compared to the TG model.
Both TG and ISTG model perform significantly bet-
ter than the PBSMT baseline. Upon inspecting the
learned rules, we noticed that the ISTG models cap-
ture rhyming correspondences both at the token and
segmental levels. Table 2 shows some examples
of the transduction rules learned by ISTG grammar
trained using rhyme scheme detection.

5 Data selection via rhyme scheme
detection vs. adjacent lines

We now compare two data selection approaches
for generating the training data for transduction
grammar induction via a rhyme scheme detection
module and choosing all adjacent lines in a verse.
We also briefly describe the training of the rhyme
scheme detection module and determine the efficacy
of our data selection scheme by training the ISTG
model, TG model and the PBSMT baseline on train-
ing data generated with and without employing the

rhyme scheme detection module. As the rule seg-
menting approach was intended to improve the flu-
ency as opposed to the rhyming nature of the re-
sponses, we only train the rule segmenting model
on the randomly chosen subset of all adjacent lines
in the verse. Further, adding adjacent lines as the
training data to the segmenting model maintains the
context of the responses generated thereby produc-
ing higher quality responses. The segmental trans-
duction grammar model was combined with the to-
ken based transduction grammar model trained on
data selected with and without using rhyme scheme
detection model.

5.1 Rhyme scheme detection

Although our approach adapts a transduction gram-
mar induction model toward the problem of generat-
ing fluent and rhyming hip hop responses, it would
be undesirable to train the model directly on all the
successive lines of the verses—as done by Jiang and
Zhou (2008)—due to variance in hip hop rhyming
patterns. For example, adding successive lines of a
stanza which follows ABAB rhyme scheme as train-
ing instances to the transduction grammar causes in-
correct rhyme correspondences to be learned. The
fact that a verse (which is usually represented as
a separate paragraph) may contain multiple stanzas
of varying length and rhyme schemes worsens this
problem. Adding all possible pairs of lines in a verse
as training examples not only introduces a lot of
noise but also explodes the size of the training data
due to the large size of the verse.
We employ a rhyme scheme detection model (Ad-

danki and Wu, 2013) in order to select training in-
stances that are likely to rhyme. Lines belonging to

107



the same stanza and marked as rhyming according
to the rhyme scheme detection model are added to
the training corpus. We believe that this data selec-
tion scheme will improve the rhyming associations
learned during the transduction grammar induction
thereby biasing the model towards producing fluent
and rhyming output.
The rhyme scheme detection model proposes a

HMM based generative model for a verse of hip hop
lyrics similar to Reddy and Knight (2011). However,
owing to the lack of well-defined verse structure in
hip hop, a number of hidden states corresponding to
stanzas of varying length are used to automatically
obtain a soft-segmentation of the verse. Each state
in the HMM corresponds to a stanza with a particu-
lar rhyme scheme such asAA,ABAB,AAAAwhile
the emissions correspond to the final words in the
stanza. We restrict the maximum length of a stanza
to be four to maintain a tractable number of states
and further only use states to represent stanzas whose
rhyme schemes could not be partitioned into smaller
schemes without losing a rhyme correspondence.
The parameters of the HMM are estimated using

the EM algorithm (Devijer, 1985) using the corpus
generated by taking the final word of each line in the
hip hop lyrics. The lines from each stanza that rhyme
with each other according to the Viterbi parse using
the trained model are added as training instances for
transduction grammar induction. As the source and
target languages are identical, each selected pair gen-
erates two training instances: a challenge-response
and a response-challenge pair.
The training data for the rhyme scheme detector

was obtained by extracting the end-of-line tokens
from each verse. However, upon data inspection we
noticed that shorter lines in hip hop stanzas are typi-
cally joined with a comma and represented as a sin-
gle line of text and hence all the tokens before the
commas were also added to the training corpus. We
obtained a corpus containing 4.2 million tokens cor-
responding to potential rhyming candidates compris-
ing of around 153,000 unique token types.
We evaluated the performance of our rhyme

scheme detector on the task of correctly labeling a
given verse with rhyme schemes. As our model is
completely unsupervised, we chose a random sam-
ple of 75 verses from our training data as our test set.
Two native English speakers who were frequent hip

hop listeners were asked to partition the verse into
stanzas and assign them with a gold standard rhyme
scheme. Precision and recall were aggregated for the
Viterbi parse of each verse against this gold standard
and f-score was calculated. The rhyme scheme de-
tection module employed in our data selection ob-
tained a precision of 35.81% and a recall of 57.25%,
giving an f-score of 44.06%.

5.2 Training data selection via rhyme scheme
detection

We obtained around 600,000 training instances upon
extracting a training corpus using rhyme scheme de-
tection module as described in Section 5.1. We
added those lines that were adjacent and labeled as
rhyming by the rhyme scheme detector as training in-
stances resulting in a training corpus of size 200,000.

5.3 Training data selection via adjacent lines
Considering all adjacent lines in a verse resulted in
a corpus with over 5 million training instances. In
order to ensure fair comparison of models trained
on data selected using rhyme scheme detection, we
randomly chose 200,000 training instances from the
generated corpus. The training corpus thus gener-
ated shared around 15% of training instances with
the corpus generated through our proposed data se-
lection scheme.

5.4 Results: Rhyme scheme detection helps
Results in Table 1 indicate that using the rhyme
scheme detector for training data selection helps
produce significantly more fluent responses com-
pared to using adjacent lines. A possible explana-
tion for this could be that adding all adjacent lines as
training instances introduces a lot of noise into the
model which hurts the fluency of the responses gen-
erated. Also, the cumulative fraction of sentences
that were labeled good or ≥acceptable on the crite-
rion of rhyming is larger when rhyme scheme detec-
tion was used to generate the training data (although
the TG model trained on the corpus generated us-
ing adjacent lines produces a higher percentage of
rhyming responses that were rated good). Given the
significantly higher rate of response fluency when
using rhyme scheme detection, we argue that using
rhyme scheme detector for data selection is benefi-
cial.
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Table 3: English hip hop challenge-response examples.
challenge man i die to see em all thun i just don't care
tg+rs in the sky and me the in polla and the you there
tg and the ride the me the and white the i the air
pbsmt+rs man i live to see em all i just don't care
challenge did a twelve year bid in the streets and held it down
tg+rs to the girls here kid the and to the thought the now
tg to the p's here did the a the i was the the
pbsmt+rs did a year in the streets and it down
challenge oh i believe in yesterday
tg+rs can you see the day
tg now you see the way
pbsmt+rs oh i believe in tomorrow
challenge what would i do
tg+rs just me and you
tg and you and you
pbsmt+rs what would you do
challenge cause you ain't going home till the early morn
tg+rs and the you this alone i i gotta on
tg and i you my on the a home we
pbsmt+rs cause you and your friends aint nothing but

It is also interesting to note from Table 1 that
ISTG+RS performs better than TG+RS indicating
that transduction grammar induced via interpolating
token based grammar and rule segmenting produces
better responses than token based transduction gram-
mar on both data selection schemes. Although the
average fraction of responses rated good on fluency
are slightly lower for ISTG+RS compared to TG+RS
(34.12% vs. 30.98%), the fraction of responses rated
≥acceptable are higher (61.18% vs. 57.64%). It is
important to note that the fraction of sentences rated
good and ≥acceptable on rhyming are much larger
for ISTG+RS model. Although the fluency of the
responses generated by PBSMT+RS drastically im-
proves compared to PBSMT it still lags behind the
TG+RS and ISTG+RS models on both fluency and
rhyming. The results in Table 1 confirm our hypoth-
esis that off-the-shelf SMT systems are not guaran-
teed to be effective on our novel task.

5.5 Challenge-response examples
Table 3 shows some of the challenges and the cor-
responding responses of PBSMT+RS, TG+RS and
TG model. While PBSMT+RS and TG+RS mod-
els generate responses reflecting a high degree of
fluency, the output of the TG contains a lot of ar-
ticles. It is interesting to note that TG+RS produces
responses comparable to PBSMT+RS despite being
a token based transduction grammar. However, PB-
SMT tends to produce responses that are too simi-
lar to the challenge. Moreover, TG models produce

responses that indeed rhyme better (shown in bold-
face). In fact, TG tries to rhymewords not only at the
end but also in middle of the lines, as our transduc-
tion grammar model captures structural associations
more effectively than the phrase-based model.

6 Disfluency handling via disfluency
correction and filtering

In this section, we compare the effect of two dis-
fluency mitigating strategies on the quality of the re-
sponses generated by the PBSMT baseline and token
based transduction grammar model with and without
using rhyme scheme detection.

6.1 Correction vs. filtering
Error analysis of our initial runs showed a dis-
turbingly high proportion of responses generated by
our system that contained disfluencies with succes-
sive repetitions of words such as the and I. Upon in-
spection of data we noticed that the training lyrics
actually did contain such disfluencies and backing
vocal lines, amounting to 10% of our training data.
We therefore compared two alternative strategies to
tackle this problem. The first strategy involved fil-
tering out all lines from our training corpus which
contained such disfluencies. In the second strategy,
we implemented a disfluency detection and correc-
tion algorithm (for example, the the the, which fre-
quently occurred in the training corpus, was cor-
rected to simply the). The PBSMT baseline and the
TG model were trained on both the filtered and cor-
rected versions of the training corpus and the quality
of the responses were compared.

6.2 Results: Disfluency correction helps
The results in Table 4 indicate that the disfluency

correction strategy outperforms the filtering strategy
for both TG and TG+RS models. For the model
TG+RS, disfluency correction generated 34.12%
good responses in terms of fluency, while the filter-
ing strategy produced only 28.63% good responses.
Similarly for the model TG, disfluency correction
produced 21.8% of responses with good fluency and
the filtering strategy produced only 17.25%. Dis-
fluency correction strategy produces higher fraction
of responses with ≥acceptable fluency compared to
the filtering strategy for both TG and TG+RS mod-
els. This result is not surprising, as harshly pruning
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Table 4: Effect of the disfluency correction strategies on fluency of the responses generated for the TG induction
models vs PBSMT baselines using both rhyme scheme detection and adjacent lines as the corpus selection method.
model+disfluency strat. fluency (good) fluency (≥acceptable) rhyming (good) rhyming (≥acceptable)
PBSMT+filtering 4.3% 13.72% 3.53% 7.06%
PBSMT+correction 3.14% 4.70% 1.57% 4.31%
PBSMT+RS+filtering 31.76% 43.91% 12.15% 21.17%
PBSMT+RS+correction 30.59% 43.53% 1.96% 9.02%
TG+filtering 17.25% 46.27% 18.04% 33.33%
TG+correction 21.18% 54.51% 23.53% 39.21%
TG+RS+filtering 28.63% 56.86% 14.90% 34.51%
TG+RS+correction 34.12% 60.39% 20.00% 42.74%

the training corpus causes useful word association
information necessary for rhyming to be lost. Sur-
prisingly, for both PBSMT and PBSMT+RSmodels,
the disfluency correction has a negative effect on the
fluency level of the response but still falls behind TG
and TG+RS models. As disfluency correction yields
more fluent responses for TG and TG+RS models,
the results for ISTG and ISTG+RS models in Table
1 were obtained using disfluency correction strategy.

7 Maghrebi French hip hop

We have begun to apply Freestyle to rap in lan-
guages other than English, taking advantage of
the language independence and linguistics-light ap-
proach of our unsupervised transduction grammar
induction methods. With no special adaption our
transduction grammar based model performs sur-
prisingly well, even with significantly smaller train-
ing data size and noisier data. These results across
different languages are encouraging as they can be
used to discover truly language independence as-
sumptions. We briefly describe our initial experi-
ments on Maghrebi French hip hop lyrics below.

7.1 Dataset

We collected freely available French hip hop lyrics
of approximately 1300 songs. About 85% of the
songs were by Maghrebi French artists of Alge-
rian, Moroccan, or Tunisian cultural backgrounds,
while the remaining were by artists from the rest
of Francophonie. As the large majority of songs
are in Maghrebi French, the lyrics are sometimes
interspersed with romanized Arabic such as “De la
traversée du désert au bon couscous de Yéma” (Yéma

meansMy mother). Some songs also contain Berber
phrases, for instance “a yemmi ino, a thizizwith”
(which means my son, a bee). Furthermore, some
songs also contained English phrases in the style of
gangster rap such as “T'es game over, game over... Le
son de Chicken wings”. As mentioned earlier, it is
complexity like this which dissuaded us from mak-
ing language specific assumptions in our model.
We extracted the end-of-line words and obtained

a corpus containing 120,000 tokens corresponding
to potential rhyming candidates with around 29,000
unique token types which was used as the training
data for the rhyme scheme detector module. For the
transduction grammar induction, the training data
contained about 47,000 sentence pairs selected us-
ing rhyme scheme detection.

7.2 Results
After human evaluation by native French speak-
ers and frequent hip hop listeners, our transduction
grammar based model generates about 9.2% and
14.5% of the responses that are rated good by the
human evaluators on the criterion of fluency and
rhyming respectively. About 30.2% and 38% of
the responses are rated as ≥acceptable. These num-
bers are encouraging given the noisy lyrics andmuch
smaller amount of training data. Some examples of
the challenge-response pairs and learned transduc-
tion rules in French are shown in Tables 5 and 6.
From Table 5, we can see that responses gener-

ated by the system rhyme with the challenges. The
first response is fluent and not only perfectly rhymes
with the challenge but also semantically valid. In the
second example, the model realizes a less common
AABA rhyme scheme through the response. The re-
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Table 5: French hip hop challenge-response examples.
challenge Si je me trompe
response faut que je raconte
challenge Un jour je suis un livre
response et ce que je de vivre
challenge Pacha mama ils ne voient pas ta souffrance
response Combat ni leur de voulait de la décadence
challenge la palestine n'etait pas une terre sans peuple.
response le darfour d'autre de la guerre on est
challenge Une banlieue qui meut
response les yeux et

Table 6: Transduction rules for Maghrebi French hip hop.
transduction grammar rule log prob.
A→ terre/la guerre -9.4837
A→ haine/peine -9.77056
A→ mal/pays natal -10.6877
A→ je frissonne/mi corazon -11.0931
A→ gratteurs/rappeurs -11.7306

sponse in the third example, exhibits strong rhyming
with the challenge and both the challenge and the
response contain words like souffrance, combat and
décadence which are related. Similarly in the fourth
example, the challenge and response also contain se-
mantically related tokens which also rhyme. These
examples illustrate that our transduction grammar
formalism coupled with our rhyme scheme detection
module does capture the necessary correspondences
between lines of hip hop lyrics without assuming any
language specific resources.

8 Conclusion

We presented a new machine learning approach for
improvising hip hop responses to challenge lyrics
by inducing stochastic transduction grammars, and
demonstrated that inducing the transduction rules by
interpolating bottom-up token based rule induction
and rule segmentation strategies outperforms a token
based baseline. We compared the performance of
our Freestylemodel against a widely used off-the-
shelf phrase-based SMT model, showing that PB-
SMT falls short in tackling the noisy and highly un-
structured domain of hip hop lyrics. We showed that
the quality of responses improves when the training
data for the transduction grammar induction is se-
lected using a rhyme scheme detector. Several do-
main related oddities such as disfluencies and back-
ing vocals have been identified and some strategies
for alleviating their effects have been compared. We

also reported results on Maghrebi French hip hop
lyrics which indicate that our model works surpris-
ingly well with no special adaptation for languages
other than English. In the future, we plan to inves-
tigate alternative training data selection techniques,
disfluency handling strategies, search heuristics, and
novel transduction grammar induction models.
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Abstract

When reviewing scientific literature, it would

be useful to have automatic tools that iden-

tify the most influential scientific articles as

well as how ideas propagate between articles.

In this context, this paper introduces topical

influence, a quantitative measure of the ex-

tent to which an article tends to spread its

topics to the articles that cite it. Given the

text of the articles and their citation graph, we

show how to learn a probabilistic model to re-

cover both the degree of topical influence of

each article and the influence relationships be-

tween articles. Experimental results on cor-

pora from two well-known computer science

conferences are used to illustrate and validate

the proposed approach.

1 Introduction

Scientific articles are not created equal. Some ar-

ticles generate entire disciplines or sub-disciplines

of research, or revolutionize how we think about

a problem, while others contribute relatively little.

When we are first introduced to a new area of scien-

tific study, it would be useful to automatically find

the most important articles, and the relationships of

influence between articles. Understanding the im-

pact of scientific work is also crucial for hiring deci-

sions, allocation of funding, university rankings and

other tasks that involve the assessment of scientific

merit. If scientific works stand on the shoulders of

giants, we would like to be able to find the giants.

The importance of a scientific work has previ-

ously been measured chiefly through metrics derived

from citation counts, such as impact factors. How-

ever, citation counts are not the whole story. Many

citations are made in passing, are relevant to only

one section of an article, or make no impact on a

work but are referenced out of “politeness, policy

or piety” (Ziman, 1968). In reality, scientific impact

has many dimensions. Some articles are important

because they describe scientific discoveries that alter

our understanding of the world, while some develop

essential tools and techniques which facilitate future

research. Other articles are influential because they

introduce the seeds of new ideas, which in turn in-

spire many other articles.

In this work we introduce topical influence, a

quantitative metric for measuring the latter type of

scientific influence, defined in the context of an un-

supervised generative model for scientific corpora.

The model posits that articles “coerce” the articles

that cite them into having similar topical content to

them. Thus, articles with higher topical influence

have a larger effect on the topics of the articles that

cite them. We model this influence mechanism via

a regression on the parameters of the Dirichlet prior

over topics in an LDA-style topic model. We show

how the models can be used to recover meaningful

influence scores, both for articles and for specific ci-

tations. By looking not just at the citation graph but

also taking into account the content of the articles,

topical influence can provide a better picture of sci-

entific impact than simple citation counts.

2 Background

Bibliometrics, the quantitative study of scientific lit-

erature, has a long history. One example of a widely-

used bibliometric measure of interest is the impact

factor of a publication venue for a given year, de-

fined to be the average number of times articles from

113



that venue, published in the previous two years, were

cited in that year. However, the quality of articles

in a given publication venue can vary wildly, and it

is difficult to compare impact factors between dif-

ferent disciplines of study. The number of cita-

tions an article receives is an indication of impor-

tance, but this is confounded by the unknown func-

tion of each citation. Measures of importance such

as PageRank (Brin and Page, 1998) can be derived

recursively from the citation graph. Such graph-

based measures do not in general make use of the

textual content of the articles, although it is possible

to apply them to graphs where the edges between ar-

ticles are determined based on the similarity of their

content instead of the citation graph (Lin, 2008).

A variety of methods have previously been pro-

posed for analyzing text and citation links together,

such as modeling connections between words and

citations Cohn and Hofmann (2001), classifying ci-

tation function (Teufel et al., 2006), and jointly

modeling citation links and document content

(Chang and Blei, 2009). However, these methods do

not directly measure article importance or influence

relationships between articles given their citations.

More closely related to the present work,

Dietz et al. (2007) proposed the citation influence

model (CIM). Building on the latent Dirichlet al-

location (LDA) framework, CIM assumes that each

word is drawn by first selecting either (a) the distri-

bution over topics of a cited article (with probability

proportional to the influence weight of that article

on the present article) or (b) a novel topic distribu-

tion, and drawing a topic from the selected distribu-

tion, then finally drawing the word from the chosen

topic.1 In their approach, every word is assigned an

extra latent variable, namely the cited article whose

topic distribution the topic was drawn from. For the

model proposed in this paper, we do not need to in-

troduce these additional latent variables, which leads

to a simpler latent representation and fewer variables

to sample during inference. Dietz et al. (2007) also

assume that the citation graph is bipartite, consist-

ing of one set of citing articles and one set of cited

articles—in contrast, our proposed models can han-

dle arbitrary citation graphs in the form of directed

1A somewhat similar model was also proposed by

He et al. (2009)

acyclic graphs (DAGs). While both the CIM and our

approach can identify the influence of specific cita-

tions between articles, our model can also infer how

influential each article is overall, and provides a flex-

ible modeling framework which can handle different

assumptions about influence.

Another related method is due to

Shaparenko and Joachims (2009), who propose

a mixture modeling approach for the detection of

novel text content. Nallapati et al. (2011) intro-

duced TopicFlow, a PLSA-based model for the flow

of topics in a document network. In their model,

citing articles “vote” on each cited article’s topic

distribution in retrospect, via a network flow model.

Since this voting occurs in time-reversed order, it

does not describe an influence mechanism and is

not a generative model that can simulate or predict

new documents.

Finally, the document influence model of

Gerrish and Blei (2010) can be viewed as orthogo-

nal to this work, in that it models the impact of doc-

uments on topics over time (specifically, how topics

change over time) rather than how articles influence

the specific articles that cite them.

3 Topical Influence Regression

Scientific research is seldom performed in a vacuum.

New research builds on the research that came be-

fore it. Although there are many aspects by which

the importance of a scientific article can be judged,

in this work we are interested in the extent to which a

given article has or will have subsequent articles that

build upon it or are otherwise inspired by its ideas.

We begin by defining topical influence, a quantita-

tive measure for this type of influence.

3.1 Topical Influence

It is not immediately obvious how one might quan-

tify such a notion of “idea-based” influence. How-

ever, the mechanism used in the scientific commu-

nity for giving credit to prior work is citation. The

presence of a citation from article b to article a there-

fore indicates that article b may have been influenced

by the ideas in article a, to some unknown extent.

We hypothesize that the extent of this influence man-

ifests itself in the language of b. Using latent Dirich-

let allocation (LDA) topics as a concrete proxy for
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the vague notion of “ideas”, we define the topical

influence of a to be the extent to which article a

coerces the documents which cite it to have simi-

lar topic distributions to it. Topical influence will be

made precise in the context of a generative model for

scientific corpora, conditioned on the citation graph,

called topical influence regression (TIR).

The proposed model extends the LDA framework

of Blei et al. (2003). In LDA, each word w
(d)
i of

each document d is assigned to one of K latent top-

ics, z
(d)
i . Each topic Φ(k) is a discrete distribution

over words. Document d has a distribution over top-

ics θ(d), which can be viewed as a “location in topic

space” summarizing its thematic content. The θ(d)’s

have a Dirichlet prior distribution with parameters

α = [α1, α2, . . . , αK ]⊺. Although the αk’s are often

set to be equal, representing a relatively uninforma-

tive prior over the θ’s, a unique α(d) for each doc-

ument can also be used to encode prior information

such as the effect of other variables on the topics

of that document (Mimno and McCallum, 2008). In

our case, we want to model the influence that a docu-

ment has on the topic distributions of the documents

that cite it. A natural way to encode such influence,

then, is to allow documents to affect the value of α(d)

for each document d that cites them.

Accordingly, we model each article d as having

a latent, non-negative “topical influence” value l(d).

Let n(d) be number of words in article d, n
(d)
k

be the

number of words assigned to topic k, and let C(d) be

the set of articles that d cites. We model α(d) as

α(d) =
∑

c∈C(d)

l(c)z̄(c) + α , (1)

where z̄(c) = 1
n(c) [n

(c)
1 , . . . , n

(c)
K ]⊺ is the normalized

histogram of topic counts for document c, and α is

a constant for smoothing. Since the z̄(c)’s sum to

one, the topical influence l(c) of article c can be in-

terpreted as the number of words of precision that

it adds to the prior of the topic distributions of each

document that cites it. As we increase l(c), the arti-

cles that cite c become more likely to have similar

topic proportions to it. Thus, l(c) encodes the degree

to which article c influences the topics of each of the

articles that cite it.

From another perspective, marginalizing out θ(d),

we can view the topic counts (in the standard LDA

z
(d)
i

w
(d)
i

n(d)

θ(d) α(d)

l(d)

Articles that a cites

z
(a)
iw

(a)
i

n(d)

θ(a) α(a)

l(a)Article a

z
(d)
iw

(d)
i

n(d)

θ(d) α(d)

l(d)

Articles that cite a

β

K
Φ

(k)

Articles that d cites

Articles that cite d

λ

Figure 1: The graphical model for the portion of the TIR

model connected to article a (the links from the z’s and

l’s to the α(d)’s are deterministic).

model) for document d as being drawn from a Polya

urn scheme with α
(d)
k (possibly fractional) balls of

each color k ∈ {1, . . . ,K} initially in the urn. For

each word, a ball is drawn randomly from the urn

and the topic assignment is determined according to

its color k. The ball is replaced in the urn, along

with a new ball of color k. In our model, for each

article c cited by article d we place l(c) balls, with

colors distributed according to z̄(c), into article d’s

urn initially. Thus, article d’s topic assignments are

more likely to be similar to those of the more influ-

ential articles that it cites. The total number of balls

that d added to other articles’ urns,

T (d) ,
∑

b:d∈C(b)

l(d) = l(d)
∣

∣

∣
{b : d ∈ C(b)}

∣

∣

∣
(2)

measures the total impact (in a topical sense) of the

article. We refer to this as total topical influence.

3.2 Generative Model for Topical Influence

Regression

The full assumed generative process for articles in

this model begins with a directed acyclic citation

graph G = {V,E}. Intuitively, citation graphs are

typically DAGs because articles can normally only

cite articles that precede them in time. We assume

that G is a DAG so that influence relationships are
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consistent with some temporal ordering of the arti-

cles, and so that the resulting model is a Bayesian

network. Here, each vertex vi corresponds to an ar-

ticle di, edge e = (v1, v2) ∈ E IFF d1 is cited by d2,

and vertices (articles) are numbered in a topological

ordering with respect to G. Such an ordering ex-

ists because G is a DAG. We model each article d’s

word vector w(d) as being generated in topological

sequence, similarly to LDA but with its prior over

topic distribution being Dirichlet(α(d)), as given by

Equation 1. Note that each α(d) is a function of the

topics of the documents that it cites, parameterized

by their topical influence values. We therefore call

this model topical influence regression (TIR).

The TIR model provides us with topical influ-

ence scores for each article, but it does not tell us

about topical influence relationships between spe-

cific pairs of cited and citing articles. To model such

relationships, we can consider a hierarchical exten-

sion to TIR, with edge-wise topical influences l(c,d)

for each edge (c, d) of the citation graph, l(c,d) ∼
TruncGaussian(l(c), σ, l(c,d) ≥ 0). In this case,

α(d) =
∑

c∈C(d)

l(c,d)z̄(c) + α . (3)

This hierarchical setup allows us to continue to infer

article-level topical influences, and provides a mech-

anism for sharing statistical strength between influ-

ences associated with one cited article. We shall re-

fer to the model with influences on just the nodes (ar-

ticles) as TIR, and the hierarchical extension with in-

fluences on the edges as TIRE. The graphical model

for TIR is given in Figure 1, and the generative pro-

cess is detailed in the following pseudocode:

• For each topic k

• Sample the topic Φ(k) ∼ Dirichlet(β)

• For each document d, in topological order

• Sample an influence weight,

l(d) ∼ Exponential(λ)
• If using the TIRE model

• For each cited document c ∈ C(d)

• Draw edge influence weight,

l(c,d) ∼
TruncGauss(l(c), σ, l(c,d) ≥ 0)

• Assign a prior over topics via

α(d) =
∑

c∈C(d) l(c)z̄(c) + α (TIR), or

α(d) =
∑

c∈C(d) l(c,d)z̄(c) + α (TIRE)

• Sample a distribution over topics,

θ(d) ∼ Dirichlet(α(d))
• For each word i in document d

• Sample a topic

z
(d)
i ∼ Discrete(θ(d))

• Sample a word

w
(d)
i ∼ Discrete(Φ(z

(d)
i

))

3.3 Relationship to Dirichlet-Multinomial

Regression

The TIR model can be viewed as an adaption of the

Dirichlet-multinomial regression (DMR) framework

of Mimno and McCallum (2008) to model topical

influence. DMR also endows each document with its

own unique α(d), but with α
(d)
k = exp(x(d)⊺λk) be-

ing a function of the observed feature vector x(d) pa-

rameterized by regression coefficients λ. The DMR

model can also be applied to text corpora with ci-

tation information, by setting the feature vectors to

be binary indicators of the presence of a citation to

each article. TIR differs in that the functional form

of the regression is parameterized in a way that di-

rectly models influence, and also differs in that the

regression takes advantage of the content of the cited

articles via their topic assignments.

Because an article’s prior over topic distributions

depends on the topic assignments of the articles

that it cites, TIR induces a network of dependencies

between the topic assignments of the documents.

Specifically, if we collapse out Θ, the dependencies

between the z’s of each document form a Bayesian

network whose graph is the citation graph. In con-

trast, DMR treats the documents as conditionally in-

dependent given their citations, and does not exploit

their content in the regression.

To illustrate this, Figure 2 shows an example ci-

tation graph and the resulting Bayesian network. In

the figure, an edge in (a) from c to d corresponds

to a citation of c by d. Conditioned on the topics,

the dependence relationships between z nodes in (b)

follow the same structure as the citation graph.

4 Inference

We perform inference using a Markov chain

Monte Carlo technique. We use a col-

lapsed Gibbs sampling approach analogous to

Griffiths and Steyvers (2004), integrating out Θ and
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Figure 2: (a) An example citation network. (b) Graphical

model for TIR on the example network, collapsing out

Θ but retaining topics Φ. Influence variables and hyper-

parameters not shown for simplicity.

Φ. The update equation for the topic assignments is

Pr(z
(d)
i = k|z−(d,i), . . .)

∝ (n
(d)−(d,i)
k + α

(d)
k )

n
(w

(d)
i

)−(d,i)
k + β

w
(d)
i

n
−(d,i)
k

+
∑

w βw
×

∏

d′:d∈C(d′)

Polya(z(d
′)|α(d′) : z

(d)
i = k, z−(d,i), l)

(4)

where the nk’s are the counts of the occurrences

of topic k over all of the entries determined by the

superscript. The −(d, i) superscript indicates ex-

cluding the current assignment for z
(d)
i . The up-

date equation is similar to the update equations of

Griffiths and Steyvers, but with a different α for

each document d, and with multiplicative weights

for each document that cites it. These weights

Polya(z(d)|α(d)) are the likelihood for a multivariate

Polya (a.k.a. Dirichlet-multinomial) distribution,

Polya(z(d)|α(d)) =

Γ(
∑

k α
(d)
k )

Γ(n(d) +
∑

k α
(d)
k

)

∏

k

Γ(n
(d)
k + α

(d)
k )

Γ(α
(d)
k

)
.

In the case of TIR, in the collapsed model the full

conditional posterior for the topical influence values

l is Pr(l|z, λ) ∝ Pr(z|l)Pr(l|λ). Here, Pr(z|l) =
∏D

d=1 Polya(z(d)|lC
(d)
, zC

(d)
). The topical influence

values l can be sampled using Metropolis-Hastings

updates, or slice sampling. An alternative is to per-

form stochastic EM, optimizing the likelihood or

the posterior probability of l, interleaved within the

Gibbs sampler, as in Mimno and McCallum (2008)

and Wallach (2006). In experiments on synthetic

data we found that maximum likelihood updates on

l, obtained via gradient ascent, resulted in the lowest

L1 error from the true l, so we use this strategy for

the experimental results in this paper. The deriva-

tive of the log-likelihood with respect to the topical

influence l(a) of article a is

dPr(z|l)

dl(a)
=

∑

d:a∈C(d)

(

Ψ(
∑

k

∑

c∈C(d)

l
(c)

z̄
(c)
k

+Kα)

−Ψ(
∑

k

∑

c∈C(d)

l
(c)

z̄
(c)
k

+Kα+ n
(d))

)

+
∑

d:a∈C(d)

K
∑

k=1

z̄
(a)
k

(

Ψ(
∑

c∈C(d)

l
(c)

z̄
(c)
k

+ α+ n
(d)
k

)

−Ψ(
∑

c∈C(d)

l
(c)

z̄
(c)
k

+ α)
)

,

where Ψ(.) is the digamma function. For TIRE,

the likelihood decomposes across documents and we

can optimize the incoming edge weights for each

document separately. We have

dPr(z(d)|l)

dl(a,d)
=Ψ(

∑

k

∑

c∈C(d)

l(c,d)z̄
(c)
k

+Kα)

−Ψ(
∑

k

∑

c∈C(d)

l(c,d)z̄
(c)
k +Kα+ n(d))

+
K
∑

k=1

z̄
(a)
k

(

Ψ(
∑

c∈C(d)

l(c,d)z̄
(c)
k

+ α+ n
(d)
k

)

−Ψ(
∑

c∈C(d)

l(c,d)z̄
(c)
k

+ α)
)

.
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We optimize the node-level l’s in TIRE

via the least squares estimate (LSE),

l̂(a) = 1
|{d:a∈C(d)}|

∑

d:a∈C(d) l(a,d). Although

the LSE for the mean of a truncated Gaussian is

biased, it is widely used as it is more robust than the

MLE (A’Hearn, 2004).

5 Experimental Analysis

In this section we experimentally investigate the

properties of TIR and TIRE. We consider two sci-

entific corpora: a collection of 3286 of articles

from the Association for Computational Linguis-

tics (ACL) conference2 (Radev et al., 2009) pub-

lished between 1987 and 2011, and a corpus of ar-

ticles from the Neural Information Processing Sys-

tems (NIPS) conference3 containing 1740 articles

from 1987 to 1999. The corpora both contained

a small number (53, and 14, respectively) of cita-

tion graph loops due to insider knowledge of simul-

taneous publications. Some loops were removed

by manual deletion of “insider knowledge” edges,

and others were removed by deleting edges in the

loop uniformly at random. For computational ef-

ficiency, we performed approximate Gibbs updates

where we drop the multiplicative Polya likelihood

terms in Equation 4. This corresponds to only trans-

mitting influence information downward in the cita-

tion DAG, but not transmitting “reverse influence”

information upwards. Preliminary experiments on

synthetic data indicated that this did not significantly

impact the ability of the model to recover the topical

influence weights. As one might expect, LDA is al-

ready capable of inferring topic distributions which

are good enough to perform the regression on, with-

out fully exploiting the additional feedback from the

regression. This algorithm has a similar running

time to the standard collapsed Gibbs sampler for

LDA, as the regression step is not a bottleneck.

In all experiments, we set the hyper-parameters

to α = 0.1, β = 0.1 and the σ parameter for the

truncated Gaussian in TIRE to be 1. We interleaved

regression steps every 10 Gibbs iterations. For ex-

ploratory data analysis experiments the models were

2
http://clair.eecs.umich.edu/aan/

3http://www.arbylon.net/resources.html,

published by Gregor Heinrich and based on an earlier collection

due to Sam Roweis.
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Figure 3: Topical influence per edge versus number of

times cited by the citing article (NIPS). Several articles

had zero in-text citations due to author or dataset errors.

trained for 500 burn-in iterations, and the samples

from the final iterations were used for the analysis.

5.1 Model Validation using Metadata

It is not immediately obvious how to best validate an

unsupervised model of citation influence. Ground

truth is not well-defined and human evaluation re-

quires extensive knowledge of the individual papers

in the corpora. With this in mind, we explore how

topical influence scores relate to document meta-

data, which serves as a proxy for ground truth.

In many cases, if article c is repeatedly cited in the

text of article d it may indicate that d builds heavily

on c. We would therefore expect to see an associa-

tion between repeated citations and edge-wise topi-

cal influence l(c,d). For each of the 106 papers in the

NIPS corpus with at least three distinct references,

we counted the number of repeated citations for the

most influential and least influential references ac-

cording to the TIRE model (Figure 3). Overall, the

“most influential” references were cited 171 times in

the text of their citing articles, while the “least influ-

ential” references were cited 128 times. Of the 45

articles where the counts were not tied, the most in-

fluential references had the higher citation counts 33

times. A sign test rejects the null hypothesis that the

median difference in citation counts between least

and most influential references is zero at α = 0.05,

with p-value ≈ 5× 10−4.
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Self-citations, where at least one author is in com-

mon between cited and citing articles, are also infor-

mative (Figure 4). Authors often build upon their

own work, so we would expect self-citations to have

higher edge-wise topical influence on average. For

ACL the mean topical influence for a self citation

edge is 2.80 and for a non-self citation is 1.40. For

NIPS the means are 5.05 (self) and 3.15 (non-self).

A two-sample t-test finds these differences are both

significant at α = 0.05.

5.2 Prediction Experiments

We also used a document prediction task to explore

whether the posited latent structure is predictively

useful. We selected roughly 10% of the articles in

each corpus (170 and 330 documents for NIPS and

ACL, respectively) for testing, chosen among the ar-

ticles that made at least one citation. We held out

a randomly selected set of 50% of their words and

evaluated the log probability of the held out partial

documents under each model. This is equivalent

to evaluating on a set of new documents with the

same set of references as the held out set. Evaluation

was performed using annealed importance sampling

(Neal, 2001), as in Wallach et al. (2009) except we

used multiple samples per likelihood computation.

The TIR models were compared to LDA and

an “additive” version of DMR with link function

α
(d)
k = x(d)⊺λk + α, where the λs were con-

strained to be positive and given an exponential

prior with mean one. For DMR, binary feature vec-

tors encoded the presence or absence of each pos-

sible citation. For each algorithm, we burned in

for 250 iterations, then executed 1000 iterations,

optimizing topical influence weights/DMR param-

eters every 10th iteration. Held-out log proba-

bility scores were computed by performing AIS

with every 100th sample, and averaging the re-

sults to estimate the posterior predictive probability

Pr(held out article|training set, citations, model).

It was found that all of the regression methods had

superior predictive performance to LDA on these

corpora, demonstrating that topical influence has

predictive value (Table 1). Although DMR per-

formed slightly better than TIR predictively, TIR

was competitive despite the fact that it has a factor of

K less regression parameters. Note that DMR does

not provide an interpretable notion of influence.

5.3 Exploring Topical Influence

In this section we explore the inferred topical influ-

ence scores l(d), total topical influence scores T (d)

and edgewise topical influence scores l(c,d) (recall

their definitions in Equations 1, 2 and 3, respec-

tively). Table 2 shows the most influential articles in

the ACL corpus, according to citation counts, top-

ical influence and total topical influence (the latter

two inferred with the TIR model). The most fre-

quently cited paper within the ACL corpus, written

by Papineni et al., introduces BLEU, a technique for

evaluating machine translation (MT) systems.4 This

paper is of great importance to the computational

linguistics community because the method that it

introduces is widely used to validate MT systems.

However, the BLEU article has a relatively low top-

ical influence value of 0.58, consistent with the fact

that most of the papers that cite it use the technique

as part of their methodology but do not build upon

its ideas. We emphasize that topical influence mea-

sures a specific dimension of scientific importance,

namely the tendency of an article to influence the

ideas (as mediated by the topics) of citing articles;

papers with low topical influence such as the BLEU

article may be important for other reasons.

Ranking papers by their influence weights l(d)

(Table 2, middle) has the opposite difficulty to rank-

ing by citation counts — the papers with the highest

topical influence were typically cited only once, by

the same authors. This makes sense, given what the

model is designed to do. The lone citing papers were

certainly topically influenced by these articles.

A more useful metric, however, is the total top-

ical influence T (d) (the bottom sub-table in Table

2). This is the total number of words of prior con-

centration, summed over all of its citers, that the

article has contributed, and is a measure of the to-

tal corpus-wide topical influence of the paper. This

metric ranks the BLEU paper at 5th place, down

from 1st place by citation count. The ACL paper

with the highest total topical influence, by David

Chiang, won the ACL best paper award in 2005.

The behavior of the different metrics is echoed

in the NIPS corpus (Table 3). The most

cited paper, “Handwritten Digit Recognition,” by

4Citations within the corpora are of course only a small frac-

tion of the total set of citations for many of these papers.
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Figure 4: Topical influence for self and non-self citation edges. Left: ACL. Right: NIPS.

ACL NIPS

Wins Losses Average Wins Losses Average

Improvement Improvement

TIR 297 33 65.7 150 20 38.2

TIRE 276 54 63.0 148 22 38.7

DMR 302 28 79.1 157 13 48.4

Table 1: Wins, losses and average improvement for log probabilities of held-out articles, versus LDA. Each “Win”

corresponds to the model assigning a higher log probability score for the test portion of a held-out document than LDA

assigned to that document.

Le Cun et al. (1990), is an early successful applica-

tion of neural networks. The paper does not in-

troduce novel models or algorithms, but rather, in

the authors’ words, “show[s] that large back propa-

gation (BP) networks can be applied to real image

recognition problems.” Thus, although it is has an

important role as a landmark neural network success

story, it does not score highly in terms of topical in-

fluence. This paper is ranked 13th according to total

topical influence, with a score of 1.6. The top two-

ranked papers according to total topical influence,

on Gaussian Process Regression and POMDPs re-

spectively, were both seminal papers that spawned

large bodies of related work. An interesting case is

the third-ranked paper in the NIPS corpus, by Wang

et al., on the theory of early stopping. It is only ref-

erenced three times, but has a very high topical in-

fluence of 19.3 words. All three citing papers are

also on the theory of early stopping, and one of the

papers, by Wang and Venkatesh, directly extends a

theoretical result of this paper. Although it is easy

to see why this paper scores highly on topical in-

fluence, in this case the metric has perhaps over-

stated its importance. A limitation of topical influ-

ence is that it can potentially give more credit than

is due when an article is cited by a small number of

topically similar papers, due to overfitting. This is

likely to be an issue for any topic-based approach

for modeling scientific influence. However, topics

help to absorb lexical ambiguity and author-specific

idiosyncracies, mitigating the problem relative to

word-based approaches.

Using the TIRE model, we can also look at in-

fluence relationships between pairs of articles. Ta-

bles 4 and 5 show the most and least topically influ-

ential references, and the most and least influenced

citing papers, for three example articles from ACL

and NIPS, respectively. The model correctly assigns

higher influence scores along the edges to and from

relevant documents. For the ACL papers, the BLEU

algorithm’s article is inferred to have zero topical in-

fluence on Chiang’s paper, consistent with its role
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Top 5 Articles by Citation Count

140 BLEU: a Method for Automatic Evaluation of Machine Translation. K. Papineni, S. Roukos, T. Ward, W. Zhu.

105 Minimum Error Rate Training in Statistical Machine Translation. F. Och.

64 A Hierarchical Phrase-Based Model for Statistical Machine Translation. D. Chiang.

64 Accurate Unlexicalized Parsing. D. Klein, C. Manning.

59 Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. D. Yarowsky.

Top 5 articles by Topical Influence

11.38 Refining Event Extraction through Cross-document Inference. H. Ji, R. Grishman.

11.37 Bayesian Learning of Non-compositional Phrases with Synchronous Parsing. H. Zhang, C. Quirk, R. Moore, D. Gildea.

10.48 A Plan Recognition Model for Clarification Subdialogues. D. Litman, J. Allen.

10.38 PCFGs with Syntactic and Prosodic Indicators of Speech Repairs. J. Hale et al.

10.30 Referring as Requesting, P. Cohen

Top 5 Articles by Total Topical Influence

111.46 (1.74 × 64) A Hierarchical Phrase-Based Model for Statistical Machine Translation. D. Chiang.

101.12 (6.74 × 15) Maximum Entropy Based Phrase Reordering Model for Statistical Machine Translation. D. Xiong, Q. Liu, S. Lin.

98.56 (5.80 × 17) A Logical Semantics for Feature Structures. R. Kasper, W. Rounds.

85.15 (2.18 × 39) Discriminative Training and Maximum Entropy Models for Statistical Machine Translation. F. Och, H. Ney

81.82 (0.58 × 140) BLEU: a Method for Automatic Evaluation of Machine Translation, K. Papineni, S. Roukos, T. Ward, and W. Zhu.

Table 2: Most influential articles in the ACL Conference corpus, according to citation counts (top), topical influence

l(d) inferred by TIR (middle), and total topical influence T (d) inferred by TIR (bottom). For total topical influence,

the breakdown of T (d) = l(d)× citation count is shown in parentheses.

Top 5 Articles by Citation Count

26 Handwritten Digit Recognition with a Back-Propagation Network. Y. Le Cun, et al.

19 Optimal Brain Damage. Y. Le Cun, J. Denker, S. Solla.

17 A New Learning Algorithm for Blind Signal Separation. S. Amari, A. Cichocki, H. Yang.

17 Efficient Pattern Recognition Using a New Transformation Distance. P. Simard, Y. Le Cun, J. Denker.

14 The Cascade-Correlation Learning Architecture. S. Fahlman, C. Lebiere.

Top 5 articles by Topical Influence

29.7 Synchronization and Grammatical Inference in an Oscillating Elman Net. B. Baird, T. Troyer, F. Eeckman.

26.3 Learning the Solution to the Aperture Problem for Pattern Motion with a Hebb Rule. M. Sereno.

25.9 ALVINN: An Autonomous Land Vehicle in a Neural Network. D. Pomerleau.

25.1 Some Estimates of Necessary Number of Connections and Hidden Units for Feed-Forward Networks. A. Kowalczyk.

24.7 Complex- Cell Responses Derived from Center-Surround Inputs: The Surprising Power of Intradendritic Computation.

B. Mel, D. Ruderman, K. Archie.

Top 5 Articles by Total Topical Influence

84.7 (10.6 × 8) Gaussian Processes for Regression. C. Williams, C. Rasmussen.

63.9 (7.1 × 9) Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems. T. Jaakkola, S. Singh, M. Jordan.

57.9 (19.3 × 3) Optimal Stopping and Effective Machine Complexity in Learning. C. Wang, S. Venkatesh, J. Judd.

54.7 (10.9 × 5) Links Between Markov Models and Multilayer Perceptrons. H. Bourlard, C. Wellekens.

51.2 (3.7 × 14) The Cascade-Correlation Learning Architecture. S. Fahlman, C. Lebiere.

Table 3: Most influential articles in the NIPS corpus, according to citation counts (top), topical influence l(d) inferred

by TIR (middle), and total topical influence T (d) inferred by TIR (bottom).

A Hierarchical Phrase-Based Model for Statistical Machine Translation. D. Chiang.

Most influential reference 1.48 Discriminative Training and Maximum Entropy Models for Statistical Machine Translation. F. Och and H. Ney.

Least influential reference 0.00 BLEU: a Method for Automatic Evaluation of Machine Translation. K. Papineni, S. Roukos, T. Ward, W. Zhu.

Most influenced citer 2.54 Toward Smaller, Faster, and Better Hierarchical Phrase-based SMT. M. Yang, J. Zheng.

Least influenced citer 0.60 An Optimal-time Binarization Algorithm for Linear Context-Free Rewriting Systems with Fan-out Two.

C. Gmez-Rodrguez, G. Satta.

Unsupervised Word Sense Disambiguation Rivaling Supervised Methods. D. Yarowsky.

Most influential reference 2.52 Subject-dependent Co-occurrence and Word Sense Disambiguation. J. Guthrie, L. Guthrie, Y. Wilks, H. Aidinejad.

Least influential reference 0.53 Word-sense Disambiguation using Statistical Methods. P. Brown, S. Della Pietra, V. Della Pietra, R. Mercer.

Most influenced citer 1.81 Discriminating Image Senses by Clustering with Multimodal Features. N. Loeff, C. Alm, D. Forsyth.

Least influenced citer 0.00 Semi-supervised Convex Training for Dependency Parsing. Q. Wang, D. Schuurmans, D. Lin.

Accurate Unlexicalized Parsing. D. Klein, C. Manning.

Most influential reference 3.87 Parsing with Treebank Grammars: Empirical Bounds, Theoretical Models, and the Structure of the Penn Treebank.

D. Klein and C. Manning.

Least influential reference 0.81 Efficient Parsing for Bilexical Context-Free Grammars and Head Automaton Grammars. J. Eisner, G. Satta.

Most influenced citer 1.67 Evaluating the Accuracy of an Unlexicalized Statistical Parser on the PARC DepBank. T. Briscoe, J. Carroll.

Least influenced citer 0.00 Finding Contradictions in Text. M. de Marneffe, A. Rafferty, C. Manning.

Table 4: Least and most influential references and citers, and the influence weights along these edges, inferred by the

TIRE model for three example ACL articles.
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Feudal Reinforcement Learning. P. Dayan, G. Hinton

Most influential reference 5.47 Memory-based Reinforcement Learning: Efficient Computation with Prioritized Sweeping. A. Moore, C. Atkeson.

Least influential reference 0.00 A Delay-Line Based Motion Detection Chip. T. Horiuchi, J. Lazzaro, A. Moore, C. Koch.

Most influenced citer 3.36 The Parti-Game Algorithm for Variable Resolution Reinforcement Learning in Multidimensional State-Spaces. A. Moore.

Least influenced citer 1.71 Multi-time Models for Temporally Abstract Planning. D. Precup, R. Sutton.

Optimal Brain Damage. Y. Le Cun, J. Denker , S. Solla.

Most influential reference 2.82 Comparing Biases for Minimal Network Construction with Back-Propagation. S. Hanson, L. Pratt.

Least influential reference 0.15 Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment. M. Mozer, P. Smolensky.

Most influenced citer 3.08 Structural Risk Minimization for Character Recognition. I. Guyon, V. Vapnik, B. Boser, L. Bottou, S. Solla.

Least influenced citer 0.64 Structural and Behavioral Evolution of Recurrent Networks. G. Saunders, P. Angeline, J. Pollack.

An Input Output HMM Architecture. Y. Bengio, P. Frasconi.

Most influential reference 5.29 Credit Assignment through Time: Alternatives to Backpropagation. Y. Bengio, P. Frasconi.

Least influential reference 0.00 Induction of Multiscale Temporal Structure. M. Mozer

Most influenced citer 2.66 Learning Fine Motion by Markov Mixtures of Experts. M. Meila, M. Jordan.

Least influenced citer 1.47 Recursive Estimation of Dynamic Modular RBF Networks. V. Kadirkamanathan, M. Kadirkamanathan.

Table 5: Least and most influential references and citers, and the influence weights along these edges, inferred by the

TIRE model for three example NIPS articles.

in the paper as an evaluation technique. The paper

most topically influenced by Chiang’s paper, written

by Yang and Zheng, aims to improve upon the ideas

in that paper. In the NIPS corpus, the article by Ben-

gio and Frasconi, on recurrent neural network archi-

tectures, extends previous work by the same authors,

which is correctly assigned the highest topical influ-

ence. A particularly interesting case is the paper by

Dayan and Hinton, which is heavily influenced by

a paper by Moore, and in turn strongly influences

a later paper by Moore, thus illustrating the inter-

play of scientific influence between authors along

the citation graph. These three papers were on re-

inforcement learning, while the lowest scoring ref-

erence and citer were on other subjects.

6 Conclusions / Discussion

This paper introduced the notion of topical influ-

ence, a quantitative measure of scientific impact

which arises from a latent variable model called top-

ical influence regression. The model builds upon the

ideas of Dirichlet-multinomial regression to encode

influence relationships between articles along the ci-

tation graph. By training TIR, we can recover topi-

cal influence scores that give us insight into the im-

pact of scientific articles. The model was applied to

two scientific corpora, demonstrating the utility of

the method both quantitatively and qualitatively.

In future work, the proposed framework could

readily be extended to model other aspects of sci-

entific influence, such as the effects of authors and

journals on topical influence, and to exploit the con-

text in which citations occur. From an exploratory

analysis perspective, it would be instructive to com-

pare topical influence trajectories over time for dif-

ferent papers. This could be further facilitated by ex-

plicitly modeling the dynamics of each article’s top-

ical influence score. The TIR framework could po-

tentially also be applicable to other application do-

mains such as modeling how interpersonal influence

affects the spread of memes via social media.

To complement TIR, it would be useful to also

have systems for identifying articles which are im-

portant for alternative reasons, such as providing

methodological tools and/or demonstrating impor-

tant facts. Ultimately a suite of such tools could feed

into a system such as Google Scholar or Citeseer.

We envision that this line of work will also be useful

for building visualization tools to help researchers

explore scientific corpora.
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Abstract

We introduce a novel method to jointly parse
and detect disfluencies in spoken utterances.
Our model can use arbitrary features for pars-
ing sentences and adapt itself with out-of-
domain data. We show that our method, based
on transition-based parsing, performs at a high
level of accuracy for both the parsing and
disfluency detection tasks. Additionally, our
method is the fastest for the joint task, running
in linear time.

1 Introduction

Detecting disfluencies in spontaneous speech has
been widely studied by researchers in different com-
munities including natural language processing (e.g.
Qian and Liu (2013)), speech processing (e.g. Wang
et al. (2013)) and psycholinguistics (e.g. Finlayson
and Corley (2012)). While the percentage of spo-
ken words which are disfluent is typically not more
than ten percent (Bortfeld et al., 2001), this addi-
tional “noise” makes it much harder for spoken lan-
guage systems to predict the correct structure of the
sentence.

Disfluencies can be filled pauses (e.g. “uh”, “um”,
“huh”), discourse markers (e.g. “you know”, “I
mean”) or edited words which are repeated or cor-
rected by the speaker. For example, in the follow-
ing sentence, an edited phrase or reparandum inter-
val (“to Boston”) occurs with its repair (“to Den-
ver”), a filled pause (“uh”) and discourse marker (“I

∗ The first author worked on this project while he was a
research intern in CoreNL research group, NLU lab, Nuance
Communications, Sunnyvale, CA.

mean”).1

I want a flight to Boston︸ ︷︷ ︸
Reparandum

Interregnum︷ ︸︸ ︷
uh︸︷︷︸
FP

I mean︸ ︷︷ ︸
DM

to Denver︸ ︷︷ ︸
Repair

Filled pauses and discourse markers are to some
extent a fixed and closed set. The main challenge
in finding disfluencies is the case where the edited
phrase is neither a rough copy of its repair or has any
repair phrase (i.e. discarded edited phrase). Hence,
in previous work, researchers report their method
performance on detecting edited phrases (reparan-
dum) (Johnson and Charniak, 2004).

In contrast to most previous work which focuses
solely on either detection or on parsing, we intro-
duce a novel framework for jointly parsing sentences
with disfluencies. To our knowledge, our work is
the first model that is based on joint dependency and
disfluency detection. We show that our model is ro-
bust enough to detect disfluencies with high accu-
racy, while still maintaining a high level of depen-
dency parsing accuracy that approaches the upper
bound. Additionally, our model outperforms prior
work on joint parsing and disfluency detection on
the disfluency detection task, and improves upon this
prior work by running in linear time complexity.

The remainder of this paper is as follows. In §2,
we overview some the previous work on disfluency
detection. §3 describes our model. Experiments are
described in §4 and Conclusions are made in §5.

1In the literature, edited words are also known as “reparan-
dum”, and the fillers are known as “interregnum”. Filled pauses
are also called “Interjections”.
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2 Related Work

Disfluency detection approaches can be divided into
two different groups: text-first and speech first
(Nakatani and Hirschberg, 1993). In the first ap-
proach, all prosodic and acoustic cues are ignored
while in the second approach both grammatical and
acoustic features are considered. For this paper, we
focus on developing a text-first approach but our
model is easily flexible with speech-first features be-
cause there is no restriction on the number and types
of features in our model.

Among text-first approaches, the work is split
between developing systems which focus specifi-
cally on disfluency detection and those which couple
disfluency detection with parsing. For the former,
Charniak and Johnson (2001) employ a linear clas-
sifier to predict the edited phrases in Switchboard
corpus (Godfrey et al., 1992). Johnson and Char-
niak (2004) use a TAG-based noisy channel model
to detect disfluencies while parsing with getting n-
best parses from each sentence and re-ranking with
a language model. The original TAG parser is not
used for parsing itself and it is used just to find
rough copies in the sentence. Their method achieves
promising results on detecting edited words but at
the expense of speed (the parser has a complexity of
O(N5). Kahn et al. (2005) use the same TAG model
and add semi-automatically extracted prosodic fea-
tures. Zwarts and Johnson (2011) improve the per-
formance of TAG model by adding external lan-
guage modeling information from data sets such as
Gigaword in addition to using minimal expected F-
loss in n-best re-ranking.

Georgila (2009) uses integer linear programming
combined with CRF for learning disfluencies. That
work shows that ILP can learn local and global con-
straints to improve the performance significantly.
Qian and Liu (2013) achieve the best performance
on the Switchboard corpus (Godfrey et al., 1992)
without any additional data. They use three steps for
detecting disfluencies using weighted Max-Margin
Markov (M3) network: detecting fillers, detecting
edited words, and refining errors in previous steps.

Some text-first approaches treat parsing and dis-
fluency detection jointly, though the models differ
in the type of parse formalism employed. Lease and
Johnson (2006) use a PCFG-based parser to parse

sentences along with finding edited phrases. Miller
and Schuler (2008) use a right-corner transform of
binary branching structures on bracketed sentences
but their results are much worse than (Johnson and
Charniak, 2004). To date, none of the prior joint ap-
proaches have used a dependency formalism.

3 Joint Parsing Model

We model the problem using a deterministic
transition-based parser (Nivre, 2008). These parsers
have the advantage of being very accurate while be-
ing able to parse a sentence in linear time. An ad-
ditional advantage is that they can use as many non-
local and local features as needed.

Arc-Eager Algorithm We use the arc-eager algo-
rithm (Nivre, 2004) which is a bottom-up parsing
strategy that is used in greedy and k-beam transition-
based parsers. One advantage of this strategy is that
the words can get a head from their left side, before
getting right dependents. This is particularly bene-
ficial for our task, since we know that reparanda are
similar to their repairs. Hence, a reparandum may
get its head but whenever the parser faces a repair, it
removes the reparandum from the sentence and con-
tinues its actions.

The actions in an arc-eager parsing algorithm are:
• Left-arc (LA): The first word in the buffer be-

comes the head of the top word in the stack.
The top word is popped after this action.
• Right-arc (RA): The top word in the stack be-

comes the head of the first word in the buffer.
• Reduce (R): The top word in the stack is

popped.
• Shift (SH): The first word in the buffer goes to

the top of the stack.

Joint Parsing and Disfluency Detection We first
extend the arc-eager algorithm by augmenting the
action space with three new actions:
• Reparandum (Rp[i:j]): treat a phrase (words i

to j) outside the look-ahead buffer as a reparan-
dum. Remove them from the sentence and clear
their dependencies.
• Discourse Marker (Prn[i]): treat a phrase in

the look-ahead buffer (first i words) as a dis-
course marker and remove them from the sen-
tence.
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Stack Buffer Act.
flight to Boston uh I mean ... RA
flight to Boston uh I mean to ... RA
flight to Boston uh I mean to Denver Intj[1]
flight to Boston I mean to Denver Prn[1]
flight to Boston to Denver RP[2:3]
flight to Denver RA
flight to Denver RA
flight to Denver R
flight to R
flight R

Figure 1: A sample transition sequence for the sentence
“flight to Boston uh I mean to Denver”. In the third col-
umn, only the underlined parse actions are learned by the
parser (second classifier). The first classifier uses all in-
stances for training (learns fluent words with “regular”
label).

• Interjection (Intj[i]): treat a phrase in the
look-ahead buffer (first i words) as a filled
pause and remove them from the sentence.2

Our model has two classifiers. The first classi-
fier decides between four possible actions and pos-
sible candidates in the current configuration of the
sentence. These actions are the three new ones
from above and a new action Regular (Reg): which
means do one of the original arc-eager parser ac-
tions.

At each configuration, there might be several can-
didates for being a prn, intj or reparandum, and
one regular candidate. The candidates for being
a reparandum are a set of words outside the look-
ahead buffer and the candidates for being an intj or
prn are a set of words beginning from the head of
the look-ahead buffer. If the parser decides regular
as the correct action, the second classifier predicts
the best parsing transition, based on arc-eager pars-
ing (Nivre, 2004).

For example, in the 4th state in Figure 1, there are
multiple candidates for the first classifier: regular,
“I” as prn[1] or intj[1], “I mean” as prn[2] or intj[2],
“I mean to” as prn[3] or intj[3], “I mean to Denver”
as prn[4] or intj[4], “Boston” as rp[3:3], “to Boston”
as rp[2:3], and “flight to Boston” as rp[1:3].

2In the bracketed version of Switchboard corpus, reparan-
dum is tagged with EDITED and discourse markers and paused
fillers are tagged as PRN and INTJ respectively.

Training A transition-based parser action (our
second-level classifier) is sensitive to the words in
the buffer and stack. The problem is that we do not
have gold dependencies for edited words in our data.
Therefore, we need a parser to remove reparandum
words from the buffer and push them into the stack.
Since our parser cannot be trained on disfluent sen-
tences from scratch, the first step is to train it on
clean treebank data.

In the second step, we adapt parser weights by
training it on disfluent sentences. Our assumption
is that we do not know the correct dependencies be-
tween disfluent words and other words in the sen-
tence. At each configuration, the parser updates it-
self with new instances by traversing all configura-
tions in the sentences. In this case, if at the head of
the buffer there is an intj or prn tag, the parser allows
them to be removed from the buffer. If a reparan-
dum word is not completely outside the buffer (the
first two states in Figure 1), the parser decides be-
tween the four regular arc-eager actions (i.e. left-
arc, right-arc, shift, and reduce). If the last word
pushed into the stack is a reparandum and the first
word in the buffer is a regular word, the parser re-
moves all reparanda at the same level (in the case of
nested edited words), removes their dependencies to
other words and push their dependents into the stack.
Otherwise, the parser performs the oracle action and
adds that action as its new instance.3

With an adapted parser which is our second-level
classifier, we can train our first-level classifier. The
same procedure repeats, except that instances for
disfluency detection are used for updating param-
eter weights for the first classifier for deciding the
actions. In Figure 1, only the oracle actions (under-
lined) are added to the instances for updating parser
weights but all first-level actions are learned by the
first level classifier.

4 Experiments and Evaluation

For our experiments, we use the Switchboard corpus
(Godfrey et al., 1992) with the same train/dev/test
split as Johnson and Charniak (2004). As in that

3The reason that we use a parser instead of expanding all
possible transitions for an edited word is that, the number of reg-
ular actions will increase and the other actions become sparser
than natural.
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work, incomplete words and punctuations are re-
moved from data (except that we do not remove in-
complete words that are not disfluent4) and all words
are turned into lower-case. The main difference with
previous work is that we use Switchboard mrg files
for training and testing our model (since they con-
tain parse trees) instead of the more commonly used
Swithboard dps text files. Mrg files are a subset of
dps files with about more than half of their size.
Unfortunately, the disfluencies marked in the dps
files are not exactly the same as those marked in
the corresponding mrg files. Hence, our result is not
completely comparable to previous work except for
(Kahn et al., 2005; Lease and Johnson, 2006; Miller
and Schuler, 2008).

We use Tsurgeon (Levy and Andrew, 2006) for
extracting sentences from mrg files and use the
Penn2Malt tool5 to convert them to dependencies.
Afterwards, we provide dependency trees with dis-
fluent words being the dependent of nothing.

Learning For the first classifier, we use averaged
structured Perceptron (AP) (Collins, 2002) with a
minor modification. Since the first classifier data is
heavily biased towards the “regular label”, we mod-
ify the weight updates in the original algorithm to 2
(original is 1) for the cases where a “reparandum”
is wrongly recognized as another label. We call
the modified version “weighted averaged Perceptron
(WAP)”. We see that this simple modification im-
proves the model accuracy.6 For the second classi-
fier (parser), we use the original averaged structured
Perceptron algorithm. We report results on both AP
and WAP versions of the parser.

Features Since for every state in the parser config-
uration, there are many candidates for being disflu-
ent; we use local features as well as global features
for the first classifier. Global features are mostly
useful for discriminating between the four actions
and local features are mostly useful for choosing a
phrase as a candidate for being a disfluent phrase.
The features are described in Figure 2. For the sec-
ond classifier, we use the same features as (Zhang
and Nivre, 2011, Table 1) except that we train our

4E.g. I want t- go to school.
5http://stp.lingfil.uu.se/˜nivre/

research/Penn2Malt.html
6This is similar to WM3N in (Qian and Liu, 2013).

Global Features
First n words inside/outside buffer (n=1:4)
First n POS i/o buffer (n=1:6)
Are n words i/o buffer equal? (n=1:4)
Are n POS i/o buffer equal? (n=1:4)
n last FG transitions (n=1:5)
n last transitions (n=1:5)
n last FG transitions + first POS in the buffer (n=1:5)
n last transitions + first POS in the buffer (n=1:5)
(n+m)-gram of m/n POS i/o buffer (n,m=1:4)
Refined (n+m)-gram of m/n POS i/o buffer (n,m=1:4)
Are n first words of i/o buffer equal? (n=1:4)
Are n first POS of i/o buffer equal? (n=1:4)
Number of common words i/o buffer words (n=1:6)
Local Features
First n words of the candidate phrase (n=1:4)
First n POS of the candidate phrase (n=1:6)
Distance between the candidate and first word in the buffer

Figure 2: Features used for learning the first classifier.
Refined n-gram is the n-gram without considering words
that are recognized as disfluent. Fine-grained (FG) tran-
sitions are enriched with parse actions (e.g. “regular:left-
arc”).

parser in a similar manner as the MaltParser (Nivre
et al., 2007) without k-beam training.

Parser Evaluation We evaluate our parser with
both unlabeled attachment accuracy of correct words
and precision and recall of finding the dependencies
of correct words.7 The second classifier is trained
with 3 iterations in the first step and 3 iterations in
the second step. We use the attachment accuracy
of the parse tree of the correct sentences (without
disfluencies) as the upper-bound attachment score
and parsed tree of the disfluent sentences (without
disfluency detection) as our lower-bound attachment
score. As we can see in Table 1, WAP does a slightly
better job parsing sentences. The upper-bound pars-
ing accuracy shows that we do not lose too much in-
formation while jointly detecting disfluencies. Our
parser is not comparable to (Johnson and Charniak,
2004) and (Miller and Schuler, 2008), since we use
dependency relations for evaluation instead of con-
stituencies.

Disfluency Detection Evaluation We evaluate
our model on detecting edited words in the sentences

7The parser is actually trained to do labeled attachment and
labeled accuracy is about 1-1.5% lower than UAS.
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UAS LB UB Pr. Rec. F2
AP 88.6 70.7 90.2 86.8 88.0 87.4
WAP 88.1 70.7 90.2 87.2 88.0 87.6

Table 1: Parsing results. UB = upperbound (parsing clean
sentences), LB = lowerbound (parsing disfluent sentences
without disfluency correction). UAS is unlabeled attach-
ment score (accuracy), Pr. is precision, Rec. is recall and
F1 is f-score.

Pr. Rec. F1
AP 92.9 71.6 80.9

WAP 85.1 77.9 81.4
KL (2005) – – 78.2
LJ (2006) – – 62.4
MS (2008) – – 30.6

QL (2013) – Default – – 81.7
QL (2013) – Optimized – – 82.1

Table 2: Disfluency results. Pr. is precision, Rec. is recall
and F1 is f-score. KL = (Kahn et al., 2005), LJ = (Lease
and Johnson, 2006), MS = (Miller and Schuler, 2008) and
QL = (Qian and Liu, 2013).

(words with “EDITED” tag in mrg files). As we
see in Table 2, WAP works better than the original
method. As mentioned before, the numbers are not
completely comparable to others except for (Kahn
et al., 2005; Lease and Johnson, 2006; Miller and
Schuler, 2008) which we outperform. For the sake
of comparing to the state of the art, the best result
for this task (Qian and Liu, 2013) is replicated from
their available software8 on the portion of dps files
that have corresponding mrg files. For a fairer com-
parison, we also optimized the number of training
iterations of (Qian and Liu, 2013) for the mrg set
based on dev data (10 iterations instead of 30 iter-
ations). As shown in the results, our model accu-
racy is slightly less than the state-of-the-art (which
focuses solely on the disfluency detection task and
does no parsing), but we believe that the perfor-
mance can be improved through better features and
by changing the model. Another characteristic of
our model is that it operates at a very high precision,
though at the expense of some recall.

8We use the second version of the code: http://code.
google.com/p/disfluency-detection/. Results
from the first version are 81.4 and 82.1 for the default and opti-
mized settings.

5 Conclusion

In this paper, we have developed a fast, yet accurate,
joint dependency parsing and disfluency detection
model. Such a parser is useful for spoken dialogue
systems which typically encounter disfluent speech
and require accurate syntactic structures. The model
is completely flexible with adding other features (ei-
ther text or speech features).

There are still many ways of improving this
framework such as using k-beam training and decod-
ing, using prosodic and acoustic features, using out
of domain data for improving the language and pars-
ing models, and merging the two classifiers into one
through better feature engineering. It is worth noting
that we put the dummy root word in the first position
of the sentence. Ballesteros and Nivre (2013) show
that parser accuracy can improve by changing that
position for English.

One of the main challenges in this problem is
that most of the training instances are not disflu-
ent and thus the sample space is very sparse. As
seen in the experiments, we can get further improve-
ments by modifying the weight updates in the Per-
ceptron learner. In future work, we will explore
different learning algorithms which can help us ad-
dress the sparsity problem and improve the model
accuracy. Another challenge is related to the parser
speed, since the number of candidates and features
are much greater than the number used in classical
dependency parsers.
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Abstract

We present a novel vector space model for se-
mantic co-compositionality. Inspired by Gen-
erative Lexicon Theory (Pustejovsky, 1995),
our goal is a compositional model where
both predicate and argument are allowed to
modify each others’ meaning representations
while generating the overall semantics. This
readily addresses some major challenges with
current vector space models, notably the pol-
ysemy issue and the use of one represen-
tation per word type. We implement co-
compositionality using prototype projections
on predicates/arguments and show that this
is effective in adapting their word represen-
tations. We further cast the model as a
neural network and propose an unsupervised
algorithm to jointly train word representations
with co-compositionality. The model achieves
the best result to date (ρ = 0.47) on the
semantic similarity task of transitive verbs
(Grefenstette and Sadrzadeh, 2011).

1 Introduction

Vector space models of words have been very
successful in capturing the semantic and syntactic
characteristics of individual lexical items (Turney
and Pantel, 2010). Much research has addressed
the question of how to construct individual word
representations, for example distributional models
(Mitchell and Lapata, 2010) and neural models
(Collobert and Weston, 2008). These word repre-
sentations are used in various natural language pro-
cessing (NLP) tasks such as part-of-speech tagging,
chunking, named entity recognition, and semantic
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Figure 1: Here, we capture the semantics of run in run
company by projecting the original word representation
of run to the prototype space of company (and vice versa).

role labeling (Turian et al., 2010; Collobert et al.,
2011).

Recently, modeling of semantic compositionality
(Frege, 1892) in vector space has emerged as another
important line of research (Mitchell and Lapata,
2008; Mitchell and Lapata, 2010; Baroni and Zam-
parelli, 2010; Socher et al., 2012; Grefenstette and
Sadrzadeh, 2011; Van de Cruys et al., 2013). The
goal is to formulate how individual word represen-
tations ought to be combined to achieve phrasal or
sentential semantics.

The main questions for semantic compositionality
that we are concerned with are: (1) how can poly-
semy be handled by a single vector representation
per word type, learned by either a distributional or
neural model, and (2) how does composition resolve
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these ambiguities. To this end, we are inspired by
the idea of type coercion and co-compositionality
in Generative Lexicon Theory (Pustejovsky, 1995).
Co-compositionality advocates that instead of a
predicate-argument view of composition, both pred-
icate and argument influence/coerce each other to
generate the overall meaning. For example, consider
a polysemous word like run:

• (a) He runs the company.

• (b) He runs the marathon.

Run may have several senses, but the prototypical
verbs that select for company differ from those
that select for marathon, and thus the ambiguity
at the word level is resolved at the sentence level.
The same is true for the other direction, where the
predicate also coerces meaning to the argument to
fit expectation.

We believe that models for semantic com-
position ought to incorporate elements of co-
compositionality. We propose such a model here,
using what we call prototype projections. For each
predicate, we transform its vector representation by
projecting it into a latent space that is prototypical
of its argument. This projection is performed anal-
ogously for each argument as well, and the final
meaning is computed by composition of these trans-
formed vectors (Figure 1). In addition, the model is
cast as a neural network where word representations
could be re-trained or fine-tuned.1

Our contributions are two-fold:

1. We propose a novel model for semantic co-
compositionality. This model, based on
prototype projections, is easy to implement
and achieves state-of-the-art performance in
the sentence similarity dataset developed by
Grefenstette and Sadrzadeh (2011).

2. Our results empirically confirm that existing
word representations (eg., SDS and NLM in
Section 2) are sufficiently effective at capturing

1While we are inspired by co-compositionality, it is impor-
tant to note that our model does not implement qualia structure
and other important components of Generative Lexicon Theory.
We operate within the vector space model of distributional
semantics, so these ideas are implemented with matrix algebra,
which is a natural fit with neural networks.

polysemy, as long as we have the proper mech-
anism to tease out the proper sense during com-
position. We further propose an unsupervised
neural network training algorithm that jointly
fine-tunes the word representations within the
co-composition model, resulting in even better
performance on the sentence similarity task.

We would like to emphasize the second contribu-
tion especially. Semantics research is divided in two
strands, one focusing on learning word represen-
tations without consideration for compositionality,
and the other focusing on compositional semantics
using the representations only as an input. But issues
are actually related from the linguistics perspective,
and even more so if we adopt a Generative Lexicon
perspective. Our neural network model bridges
these two strands of research by modeling co-
compositionality and learning word representations
simultaneously. We note that methods using context
effects have been explored by Erk and Padó (2008;
2009) and Thater et al. (2010; 2011), but to the
best of our knowledge, ours is the first model to
perform co-compositionality and learning of word
representations jointly.

In the following, we first provide background to
the word representations employed here (Section 2).
We describe the model for co-compositionality in
Section 3 and the corresponding neural network in
Section 4. Evaluation and experiments are presented
in Sections 5 and 6. Finally, we end with related
work (Section 7) and conclusions (Section 8).

2 Word Vector Representations

2.1 Simple Distributional Semantic space
(SDS) word vectors

Word meaning is often represented in a high di-
mensional space, where each element corresponds to
some contextual element in which the word is found.
Mitchell and Lapata (2010) present a co-occurrence-
based semantic space called Simple Distributional
Semantic space (SDS). Their SDS model uses a con-
text window of five words on either side of the target
word and 2,000 vector components, representing the
most frequent context words (excluding a list of stop
words). These components vi(t) were set to the
ratio of the probability of the context word given the
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target word to the probability of the context word
overall:

vi(t) =
p(ci|t)
p(ci)

=
freqci,t × freqtotal

freqt × freqci

(1)

where freqci,t, freqtotal, freqt and freqci are the
frequencies of the context word ci with the target
word t, the total count of all word tokens, the
frequency of the target word t, and the frequency
of the context word ci, respectively.

2.2 Neural Language Model (NLM) word
embeddings

Another popular way to learn word representations
is based on the Neural Language Model (NLM)
(Bengio et al., 2003). In comparison with SDS,
NLM tend to be low-dimensional (e.g. 50 dimen-
sions) but employ dense features. These dense
feature vectors are usually called word embeddings,
and it has been shown that such vectors can cap-
ture interesting linear relationships, such as king −
man + woman ≈ queen (Mikolov et al., 2013).
In this work, we adopt the model by Collobert
and Weston (2008). The idea is to construct a
neural network based on word sequences, where
one outputs high scores for n-grams that occur in a
large unlabeled corpus and low scores for nonsense
n-grams where one word is replaced by a random
word. This word representation with NLM has been
used to good effect, for example in (Turian et al.,
2010; Collobert et al., 2011; Huang et al., 2012)
where induced word representations are used with
sophisticated features to improve performance in
various NLP tasks.

Specifically, we first represent the word sequence
as a vector x = [d(w1);d(w2); . . . ;d(wm)], where
wi is ith word in the sequence, m is the win-
dow size, d(w) is the vector representation of
word w (an n-dimensional column vector) and
[d(w1);d(w2); . . . ;d(wm)] is the concatenation of
word vectors as an input of neural network. Second,
we compute the score of the sequence,

score(x) = sT(tanh(Wx + b)) (2)

where W ∈ Rh×(mn) and s ∈ Rh are the first
and second layer weights of the neural network,
and b ∈ Rh is the bias unit of hidden layer. The

superscript T represents transposition, and tanh is
applied element-wise. We also create a corrupted
sequence xc = [d(w1);d(w2); . . . ;d(wm

′)] where
wm

′ is chosen randomly from the vocabulary. We
compute the score of this implicit negative sequence
xc with the same neural network, score(xc) =
sT(tanh(Wxc + b)). Finally, we get the cost
function of this training algorithm as follow.

J = max(0, 1− score(x) + score(xc)) (3)

In order to minimize this cost function, we optimize
the parameters θ = (s,W,b,x) via backpropagation
with stochastic gradient descent (SGD).

3 The Model

3.1 Prototype Projection

Generative Lexicon Theory (Pustejovsky, 1995)
makes a distinction between accidental polysemy
(homonyms, e.g. bank as financial institution vs.
as river side) and logical polysemy (e.g. figure and
ground meanings of door). Our model handles both
cases using the concept of projection to latent proto-
type space. The fundamental idea is that for each
word w and a syntactic/semantic (binary) relation
R (such as verb-object relation), w has a set of
prototype words with which it frequently occurs in
relation R. For example, if w is a word company,
and R is the object-verb relation, prototype words
should include start, build, and buy (Figure 1).
For each word-relation pair, we pre-compute the
latent semantic subspace spanned by these prototype
words.

Later, when we encounter a phrase expressing a
relation R between two words w1 and w2, each word
is first projected onto a latent subspace determined
by the other word and relation R. The projection
operation shifts the meaning of individual words in
accordance with context, and through this operation
we realize coercion/co-composition. And finally, the
meaning of the phrase is computed from the two
projected points in the semantic space.

Let us describe how to compute the latent sub-
space associated with a word w0 and a relation R.
First, we collect from a corpus a set of prototype
words that occur frequently in relation R with target
word w0. So for example in Figure 1, if w0 =
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verb object landmark similarity(verb, landmark) similarity(projected verb, landmark)
run company operate 0.40 0.70

meet criterion satisfy 0.49 0.71
spell name write 0.04 0.50

Table 1: Examples of verb-object pairs. Original verb and landmark verb similarity, prototype projected verb and
landmark verb similarity, as measure by cosine using Collobert and Weston’s word embeddings. Meet has a abstract
meaning itself, but after prototype projection with matrix constructed by word vectors of W (VerbOf, criterion), meet
is more close to meaning of satisfy.

company, and R = VerbOf is the object-verb
relation,

W (VerbOf, company) = {start, build, . . . , buy}.

Now let W (R, w0) = {w1, w2, · · · , wm} be
the m prototype words we collected, and let d(w)
denote the n-dimensional (column) vector represen-
tation of word w (either by SDS or NLM representa-
tion). We make an m×n matrix C(R,w0) by stacking
the prototype word vectors, i.e.,

C(R,w0) = [d(w1),d(w2), · · · ,d(wm)]T (4)

and then apply Singular Value Decomposition
(SVD) to extract the latent space from this matrix:

C(R,w0) ≈ UkΣkV
T
k . (5)
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Figure 2: Graphical representation of SVD in our model.

Figure 2 shows the graphical representation of
this matrix factorization. In NLP tasks, SVD is
often applied to a term-document matrix, but in our
model, we apply SVD to the matrix consisting of
word vectors.

Intuitively, ΣkV
T
k represents the latent sub-

space formed by prototypical words W (R, w0) =
{w1, w2, · · · , wm}. We call this matrix the proto-
type space of word w0 with respect to relation R.

Note that the matrix of orthogonal projection
onto this prototype space is given by P(R,w0) =
(ΣkV

T
k)T(ΣkV

T
k). Hence, when we observe a rela-

tion R(w0, w), the projected representation of word
w in this context is computed by prpj(R,w0)(w)
defined as follows:

prpj(R,w0)(w) = P(R,w0)d(w). (6)

Table 1 shows several examples of how meanings
change after prototype projection using word em-
beddings of Collobert and Weston (2008).2

3.2 Co-Compositionality

In order to model co-compositionality, we apply
prototype projection to both the verb and the object.
In particular, suppose verb is wv and object is wo,
C(VerbOf,wo) is used to project wv and C(ObjOf,wv)

is used to project wo. The vector that represents
the overall meaning of verb-object with prototype
projection is computed by:

cocomp(wv, wo) =

f(prpj(VerbOf,wo)(wv),prpj(ObjOf,wv)(wo)) (7)

Function f can be a compositional computation like
simple addition or element-wise multiplication of
two vectors. This is graphically shown in Figure 1.

4 Unsupervised Learning of
Co-Compositionality

In this section, we propose a new neural language
model that learns word representations while jointly
accounting for compositional semantics. One cen-
tral assumption of our work (and many other works
in compositional semantics) is that a single vector

2ronan.collobert.com/senna/
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Figure 3: Compositional Neural Language Model (C-
NLM).

per word type sufficiently represents the multiple
meanings and usage patterns of a word.3 That
means that for a polysemous word, its word vector
actually represents an aggregation of the distinctly
different contexts it occurs in. We will show that
such an assumption is quite reasonable under our
model, since the prototype projections successfully
tease out the proper semantics from these aggregate
representations.

However, it is natural to wonder whether one
can do better if one incorporates the compositional
model into the training of the word representations
in the first place. To do so, we formulate a nov-
el model called Compositional Neural Language
Model (Section 4.1). This model is a combination
of an unsupervised training algorithm with basic
compositionality (addition/multiplications). Then,
we extend this model with the projection idea in
section 3.2 to formulate a Co-Compositional Neural
Language Model (Section 4.2).

4.1 Compositional Neural Language Model
(C-NLM)

Compositional Neural Language Model (C-NLM)
is a combination of a word representation learning
method and compositional rule. In contrast to other
compositional models based on machine learning,
our model has no complex parameters for model-
ing composition. Composition is modeled using
straightforward vector addition/multiplications; in-
stead, what is learned is the word representation.

Figure 3 shows the C-NLM. The learning al-
gorithm is unsupervised, and works by artificially

3There are works on multiple representations, e.g.,
(Reisinger and Mooney, 2010); we focus on single represen-
tation here.
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Figure 4: Co-Compositional Neural Language Model
(CoC-NLM) is C-NLM with prototype projection.

generating negative examples in a fashion analogous
to the NLM learning algorithm of (Collobert and
Weston, 2008) and contrastive estimation (Smith
and Eisner, 2005). First, given some initial word
representations and raw sentences, we compute the
compositional vector with function f (in this sec-
tion, we will assume that we will be using the
addition operator). Second, in order to obtain the
score of compositional vector, we compute the dot
product with vector s ∈ Rn (n is the dimension of
the word vector space): verb vector v = d(wv) and
object vector o = d(wo).

score(v,o) = sTf(v,o) = sT(v + o) (8)

We also create a corrupted pair by substituting a ran-
dom verb wverb

′. The cost function J = max(0, 1−
score(v,o) + score(vc,o)), where vc is the word
vector of wverb

′, encourages that the score of correct
pair is higher than the score of the corrupt pair. Let
z = v + o, our model parameters are θ = (s, z,v).
The optimization is divided into two steps:

1. Optimize s and z via SGD.

2. Let znew be the updated z via step 1. The new
verb vector vnew trained within additive composi-
tionality is just vnew = znew − o. Note that if we
also want to optimize o, we may want to also corrupt
the object and run SGD in step 2 as well.

4.2 Co-Compositional Neural Language Model
(CoC-NLM)

We now add prototype projection into C-NLM,
making our final model: Co-Compositional Neural
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Language Model (CoC-NLM). We define the score
function as dot product of s and additional vector of
prototype projected vectors (Figure 4). Let Pobj =
P(VerbOf,wo) and Pverb = P(ObjOf,wv),

score(v,o) = sT(Pobjv + Pverbo). (9)

Let x = Pobjv, y = Pverbo and z = x + y.
Our model parameters are θ = (s, z,v). The
optimization algorithm of CoC-NLM is divided into
three steps like C-NLM. First, we optimize s and
z. Second, the projected verb vector is updated
as xnew = znew − y. Finally we optimize v to
minimize the Euclidean distance between xnew and
Pobjv, where λ is a regularization hyper-parameter:

J(v) =
1

2
||xnew −Pobjv||2 +

λ

2
vTv (10)

5 Evaluation

5.1 Dataset

In order to evaluate the performance of our new
co-compositional model with prototype projection
and word representation learning algorithm, we
make use of the disambiguation task of transitive
sentences developed by Grefenstette and Sadrzadeh
(2011). This is an extension of the two words
phrase similarity task defined in Mitchell and Lapata
(2008), and constructed according to similar guide-
lines. The dataset consists of similarity judgments
between a landmark verb and a triple consisting of
a transitive target verb, subject and object extracted
from the BNC corpus. Human judges give scores
between 1 to 7, with higher scores implying higher
semantic similarity. For example, Table 2 shows
some examples from the data: we see that the verb
meet with subject system and object criterion is
judged similar to the landmark verb satisfy but not
visit. The dataset contains a total of 2500 similarity
judgements, provided by 25 participants.4 The
task is to have the model produce a score for each
pair of landmark verb and verb-subject-object triple.
Models are evaluated by computing the Spearman’s
ρ correlation between its similarity scores and that
of the human judgments.

4http://www.cs.ox.ac.uk/
people/edward.grefenstette/

verb subj obj landmark sim
meet system criterion satisfy 6
meet system criterion visit 1
write student name spell 7
write student paper spell 2

Table 2: Examples from the disambiguation task de-
veloped by Grefenstette and Sadrzadeh (2011). Human
judges give scores between 1 to 7, with higher scores
implying higher semantic similarity. Verb meet with
subject system and object criterion is judged similar to
the landmark verb satisfy but not visit.

5.2 Baselines

We compare our model against multiple baselines
for semantic compositionality:

1. Mitchell and Lapata’s (2008) additive and
element-wise multiplicative model as simplest
baselines.

2. Grefenstette and Sadrzadeh’s (2011) model
based on the abstract categorical framework
(Coecke et al., 2010). This model computes
the outer product of the subject and object
vector, the outer product of the verb vector
with itself, and then the element-wise product
of both results.

3. Erk and Padó’s (2008) model, which adapts the
word vectors based on context and is the most
similar in terms of motivation to ours.

4. Van de Cruy et al. (2013) multi-way interaction
model based on matrix factorization. This
achieves the best result for this task to date.

A detailed explanation of these models will be
provided in Section 7. For the underlying word rep-
resentations, we experiment with sparse 2000-dim
SDS and dense 50-dim NLM. These are provided
by Blacoe and Lapata (2012)5 and trained on the
British National Corpus (BNC). We are interested
in knowing how sensitive each model is to the
underlying word representation. In general, this is
a challenging task: the upper-bound of ρ = 0.62 is
the inter-annotator agreement.

5http://homepages.inf.ed.ac.uk/
s1066731/index.php?page=resources
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5.3 Implementation details
In terms of implementation detail, our model and our
re-implementation of Erk and Pado’s model make
use of the ukWaC corpus (Baroni et al., 2009).6 This
corpus is a two billion word corpus automatically
harvested from the web and parsed by the Malt-
Parser (Nivre et al., 2006). We use ukWaC corpus
to collect W (VerbOf, wo) and W (ObjOf, wv) for
prototype projections. We also extract about 5000
verb-object pairs that relevant for testdata from this
corpus to train our neural network learning algorith-
m. In our co-compositional model, the contribution
ratio of SVD is set to 80% (i.e. automatically
fixing k in SVD to include 80% of the top singular
values). We set the number of prototype vectors
to be m = 20, where W (VerbOf, wo) is filtered
with high frequency words and W (ObjOf, wv) is
filtered with both high frequency and high similarity
words. In our model, we output the scores for SVO
triple sentence dataset as (subject=ws, verb=wv,
object=wo, f = Addition/Multiplication):

cocomp(ws, wv, wo) =

f(d(ws), cocomp(wv, wo)) (11)

6 Results and Discussion

6.1 Main Results: The Correlation
Table 3 shows the correlation scores of various
models. Our observations are as follows:

1. The best reported result for this task (Van de
Cruys et al., 2013) is ρ = 0.37. Our
model (with NLM as word representation and
f=Addition as operator) achieves ρ = 0.44,
outperforming it by a large margin. To the best
of our knowledge, this is now state-of-the-art
result for this task.

2. Our model is not very sensitive to the underly-
ing word representation. With f=Addition, we
have ρ = 0.41 for SDS vs ρ = 0.44 for NLM.
With f=Multiply, we have ρ = 0.37 for SDS
vs. ρ = 0.35 for NLM. This implies that the
prototype projection is robust to the underlying
word representation, which is a desired charac-
teristic of compositional models.

6http://wacky.sslmit.unibo.it/
doku.php?id=corpora

Model ρ

Grefenstette and Sadrzadeh (2011) 　 0.21
Add (SDS) 　 0.31
Add (NLM) 　 0.31
Multiply (SDS) 　 0.35
Multiply (NLM) 　 0.30
Van de Cruys et al. (2013) 0.37
Erk and Padó (SDS) 0.39
Erk and Padó (NLM) 0.03
Co-Comp with f=Add (SDS) 0.41
Co-Comp with f=Add (NLM) 　 0.44
Co-Comp with f=Multiply (SDS) 0.37
Co-Comp with f=Multiply (NLM) 0.35
Upper bound 　 0.62

Table 3: Results of the different compositionality models
on the similarity task. The number of prototype words
m = 20 in all our models. Our model (f=Addition and
NLM) achieves the new state-of-the-art performance for
this task (ρ = 0.44).

3. The contextual model of Erk and Padó (SDS)
also performed relatively well (ρ = 0.39),
in fact outperforming the Van de Cruy et al.
(2013) result as well. This means that the
general idea of adapting word representations
based on context is a very powerful one. How-
ever, Erk and Padó’s model using the NLM rep-
resentation is extremely poor (ρ = 0.03). The
reason is that it uses a product operation under-
the-hood to adapt the vectors, which inherently
assumes a sparse representation. In this sense,
our projection approach is more robust.

The state-of-the-art result for our model in Table
3 does not yet make use of the training algorithm
described in Section 4. It is simply implementing
the co-compositionality idea using prototype projec-
tions (Section 3.2). Next in Section 6.2 we will show
additional gains using unsupervised learning.

6.2 Improvements from unsupervised learning
In this experiment, we examine how much gain is
possible by re-training the word representation of
verbs using the unsupervised algorithm described
in Section 4. We focus on the additive model
of Compositional NLM, both basic and prototype
projection. The initial word representation is from
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model original representation re-trained
C-NLM 0.31 0.38
CoC-NLM 0.44 　 0.47

Table 4: Results of re-training the word representation
for C-NLM and CoC-NLM. Learning rate α = 0.01,
regularization λ = 10−4 and iteration = 20. One iteration
is one run through the dataset of 5000 verb-object pairs
which we made from the ukWaC corpus.

NLM. Table 4 shows the gains in correlation score.
This result shows that our learning model suc-

cessfully captures good representation within co-
compositionality of additive model. In contrast to
other previous compositional models, our model
does not require estimating a large number of pa-
rameters for computation of compositional vectors
and word representation itself is more suitable for
it. Furthermore, learning is very fast, taking about
10 minutes for C-NLM on a standard machine with
Intel Core i7 2.93Ghz CPU and 8GB of RAM.

6.3 The number of prototype words
The number of prototype words (m in Figure 1) we
use to generate the prototype space is one hyper-
parameter that our model has. Here, we analyze the
effect of the choice of m. Figure 5 shows the rela-
tion of m and the performance of co-compositional
model with prototype projections using either SDS
or NLM representations. In general, both NLM
and SDS show relatively smooth and flat curves
across m, indicating the relative robustness of the
approach. Nevertheless, results do degrade for large
m, due to increase in noise from non-prototype
words. Further, it does appear that NLM has a slow-
er drop in correlation with increasing m compared
with SDS. This suggests that NLM is more robust,
which is possibly attributable to the dense and low-
dimensional distributed features.

6.4 Variations in model configuration
We have presented a compositional model of the
form d(ws) + cocomp(wv, wo), where prototype
projections are performed on both wv and wo and
ws is composed as is without projection. In general,
we have the freedom to choose what to project
and what not to project under this co-compositional
framework. Here in Table 5 we show the results of

Figure 5: The relation between the number of prototype
words and correlation of SDS or NLM. In general, NLM
has higher correlation than SDS and is more robust across
the m.

Subj Verb Obj NLM ρ SDS ρ

prpj prpj prpj 0.39 0.37
+ prpj prpj 0.44 0.41

prpj prpj 0.45 0.41
+ prpj + 0.43 0.38

prpj + 0.43 0.38
+ + + 0.31 0.31

Table 5: Variants of the full co-compositional model,
based on how subject, verb, and object vector repre-
sentations are included. prpj indicates that prototype
projection is used. + indicates that the vector is added
without projection first. Blank indicates that the vector is
not used in the final compositional score.

these variants, using f =Addition and SDS/NLM
representations without re-training. We note that
our positive results mainly come from the verb
projections. Subject information actually does not
help. We believe this best configuration is task-
dependent; in this test collection, the subjects appear
to have little contribution to the landmark verb.

7 Related work

In recent years, several sophisticated vector space
models have been proposed for computing compo-
sitional semantics. Mitchell and Lapata (2010), Erk
(2012) and Baroni et al. (2013) are recommended
survey papers.
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One of the first approaches is the vector ad-
dition/multiplication idea of Mitchell and Lapata
(2008). The appeal of this kind of simple approach
is its intuitive geometric interpretation and its ro-
bustness to various datasets. However, it may not
be sufficiently expressive to represent the various
factors involved in compositional semantics, such
as syntax and context. To this end, Baroni and
Zamparelli (2010) present a compositional model
for adjectives and nouns. In their model, an adjective
is a matrix operator that modifies the noun vector
into an adjective-noun vector. Zanzotto et al. (2010)
and Guevara (2010) also proposed linear transfor-
mation models for composition and address the issue
of estimating large matrices with least squares or
regression techniques. Socher et al. (2012) extend
this linear transformation approach with the more
powerful model of Matrix-Vector Recursive Neural
Networks (MV-RNN). Each node in a parse tree is
assigned both a vector and a matrix. The vector
captures the actual meaning of the word itself, while
the matrix is modeled as a operator that modify the
meaning of neighboring words and phrases. This
model captures semantic change phenomenon like
not bad is similar to good due to a composition
of the bad vector with a meaning-flipping not ma-
trix. But this MV-RNN also need to optimize all
matrices of words from initial value (identity plus
a small amount of Gaussian noise) with supervised
dataset like movie reviews. Our prototype projection
model is similar to these models as a matrix-vector
operation, except that the matrix is not learned and
computed from prototype words. In future work,
we can imagine integrating the two models, using
these prototype projection matrices as initial values
for MV-RNN training (Socher et al., 2012).

Another approach is exemplified by Coecke et
al. (2010). In their mathematical framework u-
nifying categorical logic and vector space models,
the sentence vector is modeled as a function of the
Kronecker product of its word vectors. Grefenstette
and Sadrzadeh (2011) implement this based on un-
supervised learning of matrices for relational words
and apply them to the vectors of their arguments.
Their idea is that words with relational types, such as
verbs, adjectives, and adverbs are matrices that act
as a filter on their arguments. They also developed
a new semantic similarity task based on transitive

Composition Operator Parameter
Add: w1u + w2v w1, w2 ∈ R
Multiply: uw1 ⊙ vw2 w1, w2 ∈ R
FullAdd: W1u + W2v W1, W2 ∈ Rn×n

LexFunc: Auv Au ∈ Rn×n

FullLex: σ([W1Auv,W2Avu])

　

Au, Av ∈ Rn×n

W1, W2 ∈ Rn×n

Ours (Add): P(R,v)u + P(R,u)v SVD’s (m, k)
Ours (Mult): P(R,v)u⊙ P(R,u)v SVD’s (m, k)

Table 6: Comparison of composition operators that com-
bine two word vector representations, u, v ∈ Rn and
their learning parameters. Our model only needs two
hyper-parameters: the number of prototype words m and
dimensional reduction k in SVD

verbs, which is the dataset we used here. The pre-
vious state-of-the-art result for this task comes from
the model of Van de Cruys et al. (2013). They model
compositionality as a multi-way interaction between
latent factors, which are automatically constructed
from corpus data via matrix factorization.

Comprehensive evaluation of various existing
models are reported in (Blacoe and Lapata, 2012; D-
inu et al., 2013). Blacoe and Lapata (2012) highlight
the importance of jointly examining word represen-
tations and compositionality operators. However,
two out of three composition methods they evaluate
are parameter-free, so that they can side-step the
issue of parameter estimation. Dinu et al. (2013) de-
scribe the relation between word vector and compo-
sitionality in more detail with free parameters. Table
6 summarizes some ways to compose the meaning
of two word vectors (u, v), following (Dinu et al.,
2013). These range from simple operators (e.g. Add
and Multiply) to expressive models with many free
parameters (e.g. LexFunc, FullLex). Many of these
models need to optimize n × n parameters, which
may be large. On the other hand, our model only
needs two hyper-parameters: the number of proto-
type words m and dimensional reduction k in SVD
(Table 6). Furthermore, our model performance with
neural language model word embeddings is robust to
variations in m.

Most closely related to our work is the work by
Erk and Padó (2008; 2009) and Thater et al. (2010;
2011), which falls under the research theme of
computing word meaning in context. Both methods
are characterized by the use of selectional prefer-
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ence information for subjects, verbs, and objects in
context; our prototype word vectors are essentially
equivalent to this idea. The main difference is in
how we modify the target word representation v
using this information: whereas we project v onto
a latent subspace formed by collection of prototype
vectors, Erk and Padó (2008; 2009) and Thater
et al. (2010; 2011) use the prototype vectors to
directly modify the elements of v, i.e. by element-
wise product with the centroid prototype vector.
Intuitively, both our method and theirs essentially
delete part of a word vector representation to adapt
the meaning in context. We believe the projection
is more robust to the underlying word representation
(and this is shown in the results for SDS vs. NLM
representations), but we note that we may be able
to borrow some of more sophisticated ways to find
prototype vectors from Erk and Padó (2008; 2009)
and Thater et al. (2010; 2011).

8 Conclusion and Future Work

We began this work by asking how it is possible to
handle polysemy issues in compositional semantics,
especially when adopting distributional semantics
methods that construct only one representation per
word type. After all, the different senses of the
same word are all conflated into a single vector
representation. We found our inspiration in Gen-
erative Lexicon Theory (Pustejovsky, 1995), where
ambiguity is resolved due to co-compositionality of
the words in the sentence, i.e., the meaning of an
ambiguous verb is generated by the properties the
object it takes, and vice versa. We implement this
idea in a novel neural network model using proto-
type projections. The advantages of this model is
that it is robust to the underlying word representation
used and that it enables an effective joint learning
of word representations. The model achieves the
current state-of-the-art performance (ρ = 0.47)
on the semantic similarity task of transitive verbs
(Grefenstette and Sadrzadeh, 2011).

Directions for future research include:

• Experiments on other semantics tasks, such
as paraphrase detection, word sense induction,
and word meaning in context.

• Extension to more holistic sentence-level com-

position using a matrix-vector recursive frame-
work like (Socher et al., 2012).

• Explore further the potential synergy between
Distributional Semantics and the Generative
Lexicon.
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Abstract

In this study, we use compositional distribu-
tional semantic methods to investigate restric-
tions in adjective ordering. Specifically, we
focus on properties distinguishing Adjective-
Adjective-Noun phrases in which there is flex-
ibility in the adjective ordering from those
bound to a rigid order. We explore a number
of measures extracted from the distributional
representation of AAN phrases which may in-
dicate a word order restriction. We find that
we are able to distinguish the relevant classes
and the correct order based primarily on the
degree of modification of the adjectives. Our
results offer fresh insight into the semantic
properties that determine adjective ordering,
building a bridge between syntax and distri-
butional semantics.

1 Introduction

A prominent approach for representing the meaning
of a word in Natural Language Processing (NLP) is
to treat it as a numerical vector that codes the pat-
tern of co-occurrence of that word with other ex-
pressions in a large corpus of language (Sahlgren,
2006; Turney and Pantel, 2010). This approach to
semantics (sometimes called distributional seman-
tics) scales well to large lexicons and does not re-
quire words to be manually disambiguated (Schütze,
1997). Until recently, however, this method had
been almost exclusively limited to the level of sin-
gle content words (nouns, adjectives, verbs), and had
not directly addressed the problem of composition-
ality (Frege, 1892; Montague, 1970; Partee, 2004),

the crucial property of natural language which al-
lows speakers to derive the meaning of a complex
linguistic constituent from the meaning of its imme-
diate syntactic subconstituents.

Several recent proposals have strived to ex-
tend distributional semantics with a component that
also generates vectors for complex linguistic con-
stituents, using compositional operations in the vec-
tor space (Baroni and Zamparelli, 2010; Guevara,
2010; Mitchell and Lapata, 2010; Grefenstette and
Sadrzadeh, 2011; Socher et al., 2012). All of
these approaches construct distributional represen-
tations for novel phrases starting from the corpus-
derived vectors for their lexical constituents and
exploiting the geometric quality of the representa-
tion. Such methods are able to capture complex se-
mantic information of adjective-noun (AN) phrases,
such as characterizing modification (Boleda et al.,
2012; Boleda et al., 2013), and can detect seman-
tic deviance in novel phrases (Vecchi et al., 2011).
Furthermore, these methods are naturally recursive:
they can derive a representation not only for, e.g.,
red car, but also for new red car, fast new red car,
etc. This aspect is appealing since trying to extract
meaningful representations for all recursive phrases
directly from a corpus will result in a problem of
sparsity, since most large phrases will never occur in
any finite sample.

Once we start seriously looking into recursive
modification, however, the issue of modifier order-
ing restrictions naturally arises. Such restrictions
have often been discussed in the theoretical linguis-
tic literature (Sproat and Shih, 1990; Crisma, 1991;
Scott, 2002), and have become one of the key in-
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gredients of the ‘cartographic’ approach to syntax
(Cinque, 2002). In this paradigm, the ordering is
derived by assigning semantically different classes
of modifiers to the specifiers of distinct functional
projections, whose sequence is hard-wired. While
it is accepted that in different languages movement
can lead to a principled rearrangement of the linear
order of the modifiers (Cinque, 2010; Steddy and
Samek-Lodovici, 2011), one key assumption of the
cartographic literature is that exactly one intonation-
ally unmarked order for stacked adjectives should
be possible in languages like English. The possi-
bility of alternative orders, when discussed at all,
is attributed to the presence of idioms (high Amer-
ican building, but American high officer), to asyn-
detic conjunctive meanings (e.g. new creative idea
parsed as [new & creative] idea, rather than [new
[creative idea]]), or to semantic category ambiguity
for any adjective which appears in different orders
(see Cinque (2004) for discussion).

In this study, we show that the existence of both
rigid and flexible order cases is robustly attested at
least for adjectival modification, and that flexible or-
dering is unlikely to reduce to idioms, coordination
or ambiguity. Moreover, we show that at least for
some recursively constructed adjective-adjective-
noun phrases (AANs) we can extract meaning-
ful representations from the corpus, approximating
them reasonably well by means of compositional
distributional semantic models, and that the seman-
tic information contained in these models character-
izes which AA will have rigid order (as with rapid
social change vs. *social rapid change), or flexible
order (e.g. total estimated population vs. estimated
total population). In the former case, we find that
the same distributional semantic cues discriminate
between correct and wrong orders.

To achieve these goals, we consider various
properties of the distributional representation of
AANs (both corpus-extracted and compositionally-
derived), and explore their correlation with restric-
tions in adjective ordering. We conclude that mea-
sures that quantify the degree to which the modifiers
have an impact on the distributional meaning of the
AAN can be good predictors of ordering restrictions
in AANs.

2 Materials and methods

2.1 Semantic space
Our initial step was to construct a semantic space for
our experiments, consisting of a matrix where each
row represents the meaning of an adjective, noun,
AN or AAN as a distributional vector, each column
a semantic dimension of meaning. We first introduce
the source corpus, then the vocabulary of words and
phrases that we represent in the space, and finally the
procedure adopted to build the vectors representing
the vocabulary items from corpus statistics, and ob-
tain the semantic space matrix. We work here with a
traditional, window-based semantic space, since our
focus is on the effect of different composition meth-
ods given a common semantic space. In addition,
Blacoe and Lapata (2012) found that a vanilla space
of this sort performed best in their composition ex-
periments, when compared to a syntax-aware space
and to neural language model vectors such as those
used for composition by Socher et al. (2011).

Source corpus We use as our source corpus the
concatenation of the Web-derived ukWaC corpus, a
mid-2009 dump of the English Wikipedia and the
British National Corpus1. The corpus has been tok-
enized, POS-tagged and lemmatized with the Tree-
Tagger (Schmid, 1995), and it contains about 2.8 bil-
lion tokens. We extract all statistics at the lemma
level, meaning that we consider only the canonical
form of each word ignoring inflectional information,
such as pluralization and verb inflection.

Semantic space vocabulary The words/phrases
in the semantic space must of course include the
items that we need for our experiments (adjectives,
nouns, ANs and AANs used for model training, as
input to composition and for evaluation). Therefore,
we first populate our semantic space with a core vo-
cabulary containing the 8K most frequent nouns and
the 4K most frequent adjectives from the corpus.

The ANs included in the semantic space are com-
posed of adjectives with very high frequency in the
corpus so that they are generally able to combine
with many classes of nouns. They are composed
of the 700 most frequent adjectives and 4K most
frequent nouns in the corpus, which were manually

1http://wacky.sslmit.unibo.it, http://en.
wikipedia.org, http://www.natcorp.ox.ac.uk
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controlled for problematic cases – excluding adjec-
tives such as above, less, or very, and nouns such
as cant, mph, or yours – often due to tagging errors.
We generated the set of ANs by crossing the filtered
663 adjectives and 3,910 nouns. We include those
ANs that occur at least 100 times in the corpus in
our vocabulary, which amounted to a total of 128K
ANs.

Finally, we created a set of AAN phrases com-
posed of the adjectives and nouns used to gener-
ate the ANs. Additional preprocessing of the gen-
erated AxAyNs includes: (i) control that both AxN
and AyN are attested in the corpus; (ii) discard any
AxAyN in which AxN or AyN are among the top
200 most frequent ANs in the source corpus (as in
this case, order will be affected by the fact that such
phrases are almost certainly highly lexicalized); and
(iii) discard AANs seen as part of a conjunction in
the source corpus (i.e., where the two adjectives ap-
pear separated by comma, and, or or; this addresses
the objection that a flexible order AAN might be a
hidden A(&)A conjunction: we would expect that
such a conjunction should also appear overtly else-
where). The set of AANs thus generated is then di-
vided into two types of adjective ordering:

1. Flexible Order (FO): phrases where both or-
ders, AxAyN and AyAxN, are attested (f>10
in both orders).

2. Rigid Order (RO): phrases with one order,
AxAyN, attested (20<f<200)2 and AyAxN
unattested.

All AANs that did not meet either condition were
excluded from our semantic space vocabulary. The
preserved set resulted in 1,438 AANs: 621 flexible
order and 817 rigid order. Note that there are almost
as many flexible as rigid order cases; this speaks
against the idea that free order is a marginal phe-
nomenon, due to occasional ambiguities that reas-
sign the adjective to a different semantic class. The
existence of freely ordered stacked adjectives is a ro-
bust phenomenon, which needs to be addressed.

2The upper threshold was included as an additional filter
against potential multiword expressions. Of course, the bound-
ary between phrases that are at least partially compositional and
those that are fully lexicalized is not sharp, and we leave it to
further work to explore the interplay between the semantic fac-
tors we study here and patterns of lexicalization.

Model ρ M&L
CORP 0.41 0.43
W.ADD 0.41 0.44
F.ADD 0.40 –
MULT 0.33 0.46
LFM 0.40 –

Table 1: Correlation scores (Spearman’s ρ, all signif-
icant at p<0.001) between cosines of corpus-extracted
or model-generated AN vectors and phrase similarity rat-
ings collected in Mitchell and Lapata (2010), as well as
best reported results from Mitchell & Lapata (M&L).

Semantic vector construction For each of
the items in our vocabulary, we first build 10K-
dimensional vectors by recording the item’s
sentence-internal co-occurrence with the top 10K
most frequent content lemmas (nouns, adjectives,
verbs or adverbs) in the corpus. We built a rank
of these co-occurrence counts, and excluded as
stop words from the dimensions any element of
any POS whose rank was from 0 to 300. The raw
co-occurrence counts were then transformed into
(positive) Pointwise Mutual Information (pPMI)
scores (Church and Hanks, 1990). Next, we reduce
the full co-occurrence matrix to 300 dimensions
applying the Non-negative Matrix Factorization
(NMF) operation (Lin, 2007). We did not tune the
semantic vector construction parameters, since we
found them to work best in a number of independent
earlier experiments.

Corpus-extracted vectors (corp) were computed
for the ANs and for the flexible order and attested
rigid order AANs, and then mapped onto the 300-
dimension NMF-reduced semantic space. As a san-
ity check, the first row of Table 1 reports the corre-
lation between the AN phrase similarity ratings col-
lected in Mitchell and Lapata (2010) and the cosines
of corpus-extracted vectors in our space, for the
same ANs. For the AAN vectors, which are sparser,
we used human judgements to build a reliable sub-
set to serve as our gold standard, as detailed in Sec-
tion 2.4.

2.2 Composition models

We focus on four composition functions proposed
in recent literature with high performance in a num-
ber of semantic tasks. We first consider meth-
ods proposed by Mitchell and Lapata (2010) in
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which the model-generated vectors are simply ob-
tained through component-wise operations on the
constituent vectors. Given input vectors ~u and ~v, the
multiplicative model (MULT) computes a composed
vector by component-wise multiplication (�) of the
constituent vectors, where the i-th component of the
composed vector is given by pi = uivi.3 Given an
AxAyN phrase, this model extends naturally to the
recursive setting of this experiment, as seen in Equa-
tion (1).

~p = ~ax � ~ay � ~n (1)

This composition method is order-insensitive, the
formula above corresponding to the representation
of both AxAyN and AyAxN.

In the weighted additive model (W.ADD), we ob-
tain the composed vector as a weighted sum of the
two component vectors: ~p = α~u+ β~v, where α and
β are scalars. Again, we can easily apply this func-
tion recursively, as in Equation (2).

~p = α~ax + β(α~ay + β~n) = α~ax + αβ~ay + β2~n
(2)

We also consider the full extension of the addi-
tive model (F.ADD), presented in Guevara (2010)
and Zanzotto et al. (2010), such that the component
vectors are pre-multiplied by weight matrices before
being added: ~p = W1~u + W2~v. Similarly to the
W.ADD model, Equation (3) describes how we apply
this function recursively.

~p = W1~ax + W2(W1~ay + W2~n) (3)

= W1~ax + W2W1~ay + W2
2~n

Finally, we consider the lexical function model
(LFM), first introduced in Baroni and Zamparelli
(2010), in which attributive adjectives are treated as
functions from noun meanings to noun meanings.
This is a standard approach in Montague semantics
(Thomason, 1974), except noun meanings here are
distributional vectors, not denotations, and adjec-
tives are (linear) functions learned from a large cor-
pus. In this model, predicted vectors are generated

3We conjecture that the different performance of our multi-
plicative model and M&L’s (cf. Table 1) is due to the fact that
we use log-transformed pPMI scores, making their multiplica-
tive model more akin to our additive approach.

by multiplying a function matrix U with a compo-
nent vector: ~p = U~v. Given a weight matrix, A, for
each adjective in the phrase, we apply the functions
in sequence recursively as shown in Equation (4).

~p = Ax(Ay~n) (4)

Composition model estimation Parameters for
W.ADD, F.ADD and LFM were estimated following
the strategy proposed by Guevara (2010) and Ba-
roni and Zamparelli (2010), recently extended to all
composition models by Dinu et al. (2013b). Specif-
ically, we learn parameter values that optimize the
mapping from the noun to the AN as seen in ex-
amples of corpus-extracted N-AN vector pairs, us-
ing least-squares methods. All parameter estima-
tions and phrase compositions were implemented
using the DISSECT toolkit4 (Dinu et al., 2013a),
with a training set of 74,767 corpus-extracted N-
AN vector pairs, ranging from 100 to over 1K items
across the 663 adjectives. Importantly, while below
we report experimental results on capturing various
properties of recursive AAN constructions, no AAN
was seen during training, which was based entirely
on mapping from N to AN. Table 1 reports the re-
sults attained by our model implementations on the
Mitchell and Lapata AN similarity data set.

2.3 Measures of adjective ordering

Our general goal is to determine which
linguistically-motivated factors distinguish the
two types of adjective ordering. We hypothesize
that in cases of flexible order, the two adjectives
will have a similarly strong effect on the noun, thus
transforming the meaning of the noun equivalently
in the direction of both adjectives and component
ANs. For example, in the phrase creative new idea,
the idea is both new and creative, so we would
expect a similar impact of modification by both
adjectives.

On the other hand, we predict that in rigid order
cases, one adjective, the one closer to the noun, will
dominate the meaning of the phrase, distorting the
meaning of the noun by a significant amount. For
example, the phrase different architectural style in-
tuitively describes an architectural style that is dif-

4http://clic.cimec.unitn.it/composes/
toolkit
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ferent, rather than a style that is to the same extent
architectural and different.

We consider a number of measures that could cap-
ture our intuitions and quantify this difference, ex-
ploring the distance relationship between the AAN
vectors and each of the AAN subparts. First, we
examine how the similarity of an AAN to its com-
ponent adjectives affects the ordering, using the co-
sine between the AxAyN vector and each of the
component A vectors as an expression of similarity
(we abbreviate this as cosAx and cosAy for the first
and second adjective, respectively).5 Our hypothe-
sis predicts that flexible order AANs should remain
similarly close to both component As, while rigid
order AANs should remain systematically closer to
their Ay than to their Ax.

Next, we consider the similarity between the
AxAyN vector and its component N vector (cosN ).
This measure is aimed at verifying if the degree to
which the meaning of the head noun is distorted
could be a property that distinguishes the two types
of adjective ordering. Again, vectors for flexible or-
der AANs should remain closer to their component
nouns in the semantic space, while rigid order AANs
should distort the meaning of the head noun more
notably.

We also inspect how the similarity of the AAN
to its component AN vectors affects the type of ad-
jective ordering (cosAxN and cosAyN ). Consid-
ering the examples above, we predict that the flex-
ible order AAN creative new idea will share many
properties with both creative idea and new idea, as
represented in our semantic space, while rigid or-
der AANs, like different architectural style, should
remain quite similar to the AyN, i.e., architectural
style, and relatively distant from the AxN, i.e., dif-
ferent style.

Finally, we consider a measure that does not ex-
ploit distributional semantic representations, namely
the difference in PMI between AxN and AyN
(∆PMI). Based on our hypothesis described for the
other measures, we expect the association in the cor-
pus of AyN to be much greater than AxN for rigid
order AANs, resulting in a large negative ∆PMI val-
ues. While flexible order AANs should have similar

5In the case of LFM, we compare the similarity of the AAN
with the AN centroids for each adjective, since the model does
not make use of A vectors (Baroni and Zamparelli, 2010).

association strengths for both AxN and AyN, thus
we expect ∆PMI to be closer to 0 than for rigid or-
der AANs.

2.4 Gold standard

To our knowledge, this is the first study to use
distributional representations of recursive modifi-
cation; therefore we must first determine if the
composed AAN vector representations are seman-
tically coherent objects. Thus, for vector analysis,
a gold standard of 320 corpus-extracted AAN vec-
tors were selected and their quality was established
by inspecting their nearest neighbors. In order to
create the gold standard, we ran a crowdsourcing
experiment on CrowdFlower6 (Callison-Burch and
Dredze, 2010; Munro et al., 2010), as follows.

First, we gathered a randomly selected set of 600
corpus-extracted AANs, containing 300 flexible or-
der and 300 attested rigid order AANs. We then
extracted the top 3 nearest neighbors to the corpus-
extracted AAN vectors as represented in the seman-
tic space7. Each AAN was then presented with each
of the nearest neighbors, and participants were asked
to judge “how strongly related are the two phrases?”
on a scale of 1-7. The rationale was that if we
obtained a good distributional representation of the
AAN, its nearest neighbors should be closely related
words and phrases. Each pair was judged 10 times,
and we calculated a relatedness score for the AAN
by taking the average of the 30 judgments (10 for
each of the three neighbors).

The final set for the gold standard contains the 320
AANs (152 flexible order and 168 attested rigid or-
der) which had a relatedness score over the median-
split (3.9). Table 2 shows examples of gold stan-
dard AANs and their nearest neighbors. As these
example indicate, the gold standard AANs reside in
semantic neighborhoods that are populated by in-
tuitively strongly related expressions, which makes
them a sensible target for the compositional models
to approximate.

We also find that the neighbors for the AANs rep-
resent an interesting variety of types of semantic

6http://www.crowdflower.com
7The top 3 neighbors included adjectives, nouns, ANs and

AANs. The preference for ANs and AANs, as seen in Table 2,
is likely a result of the dominance of those elements in the se-
mantic space (c.f. Section 2.1).
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medieval old town contemp. political issue
fascinating town cultural topic
impressive cathedral contemporary debate
medieval street contemporary politics
rural poor people British naval power
poor rural people naval war
rural infrastructure British navy
rural people naval power
friendly helpful staff last live performance
near hotel final gig
helpful staff live dvd
quick service live release
creative new idea rapid social change
innovative effort social conflict
creative design social transition
dynamic part cultural consequence
national daily newspaper new regional government
national newspaper regional government
major newspaper local reform
daily newspaper regional council
daily national newspaper fresh organic vegetable
national daily newspaper organic vegetable
well-known journalist organic fruit
weekly column organic product

Table 2: Examples of the nearest neighbors of the gold
standard, both flexible order (left column) and rigid order
(right column) AANs.

similarity. For example, the nearest neighbors to the
corpus-extracted vectors for medieval old town and
rapid social change include phrases which describe
quite complex associations, cf. Table 2. In addition,
we find that the nearest neighbors for flexible order
AAN vectors are not necessarily the same for both
adjective orders, as seen in the difference in neigh-
bors of national daily newspaper and daily national
newspaper. We can expect that the change in or-
der, when acceptable and frequent, does not neces-
sarily yield synonymous phrases, and that corpus-
extracted vector representations capture subtle dif-
ferences in meaning.

3 Results

3.1 Quality of model-generated AAN vectors

Our nearest neighbor analysis suggests that the
corpus-extracted AAN vectors in the gold standard
are meaningful, semantically coherent objects. We
can thus assess the quality of AANs recursively gen-
erated by composition models by how closely they

Gold FO RO
W.ADD 0.565 0.572 0.558
F.ADD 0.618 0.622 0.614
MULT 0.424 0.468 0.384
LFM 0.655 0.675 0.637

Table 3: Mean cosine similarities between the corpus-
extracted and model-generated gold AAN vectors. All
pairwise differences between models are significant ac-
cording to Bonferroni-corrected paired t-tests (p<0.001).
For MULT and LFM, the difference between mean flexible
order (FO) and rigid order (RO) cosines is also signifi-
cant.

approximate these vectors. We find that the perfor-
mances of most composition models in approximat-
ing the vectors for the gold AANs is quite satisfac-
tory (cf. Table 3). To put this evaluation into per-
spective, note that 99% of the simulated distribu-
tion of pairwise cosines of corpus-extracted AANs
is below the mean cosine of the worst-performing
model (MULT), that is, a cosine of 0.424 is very sig-
nificantly above what is expected by chance for two
random corpus-extracted AAN vectors. Also, ob-
serve that the two more parameter-rich models are
better than W.ADD, and that LFM also significantly
outperforms F.ADD.

Further, the results show that the models are able
to approximate flexible order AAN vectors better
than rigid order AANs, significantly so for LFM and
MULT. This result is quite interesting because it sug-
gests that flexible order AANs express a more lit-
eral (or intersective) modification by both adjectives,
which is what we would expect to be better captured
by compositional models. Clearly, a more complex
modification process is occurring in the case of rigid
order AANs, as we predicted to be the case.

3.2 Distinguishing flexible vs. rigid order

In the results reported below, we test how both our
baseline ∆PMI measure and the distance from the
AAN and its component parts changes depending on
the type of adjective ordering to which the AAN be-
longs. From this point forward, we only use gold
standard items, where we are sure of the quality of
the corpus-extracted vectors. The first block of Ta-
ble 4 reports the t-normalized difference between
flexible order and rigid order mean cosines for the
corpus-extracted vectors.
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Measure t sig.

CORP

cosAx 2.478
cosAy -4.348 * RO>FO
cosN 4.656 * FO>RO
cosAxN 5.913 * FO>RO
cosAyN 1.970

W.ADD

cosAx 4.805 * FO>RO
cosAy -1.109
cosN 1.140
cosAxN 1.059
cosAyN 0.584

F.ADD

cosAx 2.050
cosAy -1.451
cosN 4.493 * FO>RO
cosAxN -0.445
cosAyN 2.300

MULT

cosAx 3.830 * FO>RO
cosAy -0.503
cosN 5.090 * FO>RO
cosAxN 4.435 * FO>RO
cosAyN 3.900 * FO>RO

LFM

cosAx -1.649
cosAy -1.272
cosN 5.539 * FO>RO
cosAxN 3.336 * FO>RO
cosAyN 4.215 * FO>RO

∆PMI 8.701 * FO>RO

Table 4: Flexible vs. Rigid Order AANs. t-normalized
differences between flexible order (FO) and rigid order
(FO) mean cosines (or mean ∆PMI values) for corpus-
extracted and model-generated vectors. For significant
differences (p<0.05 after Bonferroni correction), the last
column reports whether mean cosine (or ∆PMI) is larger
for flexible order (FO) or rigid order (RO) class.

These results show, in accordance with our con-
siderations in Section 2.3 above: (i) flexible or-
der AxAyNs are closer to AxN and the component
N than rigid order AxAyNs, and (ii) rigid order
AxAyNs are closer to their Ay (flexible order AANs
are also closer to Ax but the effect does not reach
significance).8 The results imply that the degree of
modification of the Ay on the noun is a significant
indicator of the type of ordering present.

8As an aside, the fact that mean cosines are significantly
larger for the flexible order class in two cases but for the rigid or-
der class in another addresses the concern, raised by a reviewer,
that the words and phrases in one of the two classes might sys-
tematically inhabit denser regions of the space than those of the
other class, thus distorting results based on comparing mean
cosines.

In particular, rigid order AxAyNs are heavily
modified by Ay, distorting the meaning of the head
noun in the direction of the closest adjective quite
drastically, and only undergoing a slight modifica-
tion when the Ax is added. In other words, in rigid
order phrases, for example rapid social change, the
AyN expresses a single concept (probably a “kind”,
in the terminology of formal semantics), strongly re-
lated to social, social change, which is then mod-
ified by the Ax. Thus, the change is not both so-
cial and rapid, rather, the social change is rapid. On
the other hand, flexible order AANs maintain the se-
mantic value of the head noun while being modi-
fied only slightly by both adjectives, almost equiv-
alently. For example, in the phrase friendly help-
ful staff, one is saying that the staff is both friendly
and helpful. Most importantly, the corpus-extracted
distributional representations are able to model this
phenomenon inherently and can significantly distin-
guish the two adjective orders.

The results of the composition models (cf. Ta-
ble 4) show that for all models at least some prop-
erties do distinguish flexible and rigid order AANs,
although only MULT and LFM capture the two prop-
erties that show the largest effect for the corpus-
extracted vectors, namely the asymmetry in similar-
ity to the noun and the AxN (flexible order AANs
being more similar to both).

It is worth remarking that MULT approximated the
patterns observed in the corpus vectors quite well,
despite producing order-insensitive representations
of recursive structures. For flexible order AANs, or-
der is indeed only slightly affecting the meaning, so
it stands to reason that MULT has no problems mod-
eling this class. For rigid order AANs, where we
consider here the attested-order only, evidently the
order-insensitive MULT representation is sufficient
to capture their relations to their constituents.

Finally, we see that the ∆PMI measure is the best
at distinguishing between the two classes of AAN
ordering. This confirms our hypothesis that a lot has
to do with how integrated Ay and N are. While it
is somewhat disappointing that ∆PMI outperforms
all distributional semantic cues, note that this mea-
sure conflates semantic and lexical factors, as the
high PMI of AyN in at least some rigid order AANs
might be also a cue of the fact that the latter bigram
is a lexicalized phrase (as discussed in footnote 2, it
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is unlikely that our filtering strategies sifted out all
multiword expressions). Moreover, ∆PMI does not
produce a semantic representation of the phrase (see
how composed distributional vectors approximate of
high quality AAN vectors in Table 3). Finally, this
measure will not scale up to cases where the ANs
are not attested, whereas measures based on compo-
sition only need corpus-harvested representations of
adjectives and nouns.

3.3 Properties of the correct adjective order
Having shown that flexible order and rigid order
AANs are significantly distinguished by various
properties, we proceed now to test whether those
same properties also allow us to distinguish between
correct (corpus-attested) and wrong (unattested) ad-
jective ordering in rigid AANs (recall that we are
working with cases where the attested-order occurs
more than 20 times in the corpus, and both adjec-
tives modify the nouns at least 10 times, so we are
confident that there is a true asymmetry).

We expect that the fundamental property that dis-
tinguishes the orders is again found in the degree
of modification of both component adjectives. We
predict that the single concept created by the AyN
in attested-order rigid AANs, such as legal status
in formal legal status, is an effect of the modifica-
tion strength of the Ay on the head noun, and when
seen in the incorrect ordering, i.e., ?legal formal sta-
tus, the strong modification of legal will still domi-
nate the meaning of the AAN. Composition models
should be able to capture this effect based on the dis-
tance from both the component adjectives and ANs.

Clearly, we cannot run these analyses on corpus-
extracted vectors since the unattested order, by def-
inition, is not seen in our corpus, and therefore we
cannot collect co-occurrence statistics for the AAN
phrase. Thus, we test our measures of adjective or-
dering on the model-generated AAN vectors, for all
gold rigid order AANs in both orders.

We also consider the ∆PMI measure which was
so effective in distinguishing flexible vs. rigid or-
der AANs. We expect that the greater association
with AyN for attested-order AANs will again lead
to large, negative differences in PMI scores, while
the expectation that unattested-order AANs will be
highly associated with their AxN will correspond to
large, positive differences in PMI.

Measure t sig.

W.ADD

cosAx -7.840 * U>A
cosAy 7.924 * A>U
cosN 2.394
cosAxN -5.462 * U>A
cosAyN 3.627 * A>U

F.ADD

cosAx -8.418 * U>A
cosAy 6.534 * A>U
cosN -1.927
cosAxN -3.583 * U>A
cosAyN -2.185

MULT

cosAx -5.100 * U>A
cosAy 5.100 * A>U
cosN 0.000
cosAxN -0.598
cosAyN 0.598

LFM

cosAx -7.498 * U>A
cosAy 7.227 * A>U
cosN -2.172
cosAxN -5.792 * U>A
cosAyN 0.774

∆PMI -11.448 * U>A

Table 5: Attested- vs. unattested-order rigid order
AANs. t-normalized mean paired cosine (or ∆PMI) dif-
ferences between attested (A) and unattested (U) AANs
with their components. For significant differences (paired
t-test p<0.05 after Bonferroni correction), last column
reports whether cosines (or ∆PMI) are on average larger
for A or U.

Across all composition models, we find that the
distance between the model-generated AAN and its
component adjectives, Ax and Ay, are significant in-
dicators of attested vs. unattested adjective ordering
(cf. Table 5). Specifically, we find that rigid order
AANs in the correct order are closest to their Ay,
while we can detect the unattested order when the
rigid order AAN is closer to its Ax. This finding
is quite interesting, since it shows that the order in
which the composition functions are applied does
not alter the fact that the modification of one ad-
jective in rigid order AANs (the Ay in the case of
attested-order rigid order AANs) is much stronger
than the other. Unlike the measures that differenti-
ated flexible and rigid order AANs, here we see that
the distance from the component N is not an indi-
cator of the correct adjective ordering (trivially so
for MULT, where attested and unattested AANs are
identical).

Next, we find that for W.ADD, F.ADD and LFM,
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the distance from the component AxN is a strong
indicator of attested- vs. unattested-order rigid order
AANs. Specifically, attested-order AANs are further
from their AxN than unattested-order AANs. This
finding is in line with our predictions and follows
the findings of the impact of the distance from the
component adjectives.

∆PMI, as seen in the ability to distinguish flexi-
ble vs. rigid order AANs, is the strongest indicator
of correct vs wrong adjective ordering. This mea-
sure confirms that the association of one adjective
(the Ay in attested-order AANs) with the head noun
is indeed the most significant factor distinguishing
these two classes. However, as we mentioned be-
fore, this measure has its limitations and is likely not
to be entirely sufficient for future steps in modeling
recursive modification.

4 Conclusion

While AN constructions have been extensively stud-
ied within the framework of compositional distri-
butional semantics (Baroni and Zamparelli, 2010;
Boleda et al., 2012; Boleda et al., 2013; Guevara,
2010; Mitchell and Lapata, 2010; Turney, 2012;
Vecchi et al., 2011), for the first time, we extended
the investigation to recursively built AAN phrases.

First, we showed that composition functions ap-
plied recursively can approximate corpus-extracted
AAN vectors that we know to be of high semantic
quality.

Next, we looked at some properties of the same
high-quality corpus-extracted AAN vectors, finding
that the distinction between “flexible” AANs, where
the adjective order can be flipped, and “rigid” ones,
where the order is fixed, is reflected in distributional
cues. These results all derive from the intuition that
the most embedded adjective in a rigid AAN has a
very strong effect on the distributional semantic rep-
resentation of the AAN. Most compositional models
were able to capture at least some of the same cues
that emerged in the analysis of the corpus-extracted
vectors.

Finally, similar cues were also shown to distin-
guish (compositional) representations of rigid AANs
in the “correct” (corpus-attested) and “wrong”
(unattested) orders, again pointing to the degree to
which the (attested-order) closest adjective affects

the overall AAN meaning as an important factor.
Comparing the composition functions, we find

that the linguistically motivated LFM approach has
the most consistent performance across all our tests.
This model significantly outperformed all others in
approximating high-quality corpus-extracted AAN
vectors, it provided the closest approximation to the
corpus-observed patterns when distinguishing flexi-
ble and rigid AANs, and it was one of the models
with the strongest cues distinguishing attested and
unattested orders of rigid AANs.

From an applied point of view, a natural next step
would be to use the cues we proposed as features to
train a classifier to predict the preferred order of ad-
jectives, to be tested also in cases where neither or-
der is found in the corpus, so direct corpus evidence
cannot help. For a full account of adjectival order-
ing, non-semantic factors should also be taken into
account. As shown by the effectiveness in our ex-
periments of PMI, which is a classic measure used
to harvest idioms and other multiword expressions
(Church and Hanks, 1990), ordering is affected by
arbitrary lexicalization patterns. Metrical effects are
also likely to play a role, like they do in the well-
studied case of “binomials” such as salt and pep-
per (Benor and Levy, 2006; Copestake and Herbe-
lot, 2011). In a pilot study, we found that indeed
word length (roughly quantified by number of let-
ters) is a significant factor in predicting adjective
ordering (the shorter adjective being more likely to
occur first), but its effect is not nearly as strong as
that of the semantic measures we considered here.
In our future work, we would like to develop an or-
der model that exploits semantic, metrical and lexi-
calization features jointly for maximal classification
accuracy.

Adjectival ordering information could be useful
in parsing: in English, it could tell whether an
AANN sequence should be parsed as A[[AN]N]
or A[A[NN]]; in languages with pre- and post-
N adjectives, like Italian or Spanish, it could tell
whether ANA sequences should be parsed as A[NA]
or [AN]A. The ability to detect ordering restric-
tions could also help Natural Language Generation
tasks (Malouf, 2000), especially for the generation
of unattested combinations of As and Ns.

From a theoretical point of view, we would like to
extend our analysis to adjective coordination (what’s
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the difference between new and creative idea and
new creative idea?). Additionally, we could go more
granular, looking at whether compositional models
can help us to understand why certain classes of ad-
jectives are more likely to precede or follow others
(why is size more likely to take scope over color,
so that big red car sounds more natural than red big
car?) or studying the behaviour of specific adjectives
(can our approach capture the fact that strong alco-
holic drink is preferable to alcoholic strong drink
because strong pertains to the alcoholic properties
of the drink?).

In the meantime, we hope that the results we re-
ported here provide convincing evidence of the use-
fulness of compositional distributional semantics in
tackling topics, such as recursive adjectival modifi-
cation, that have been of traditional interest to theo-
retical linguists from a new perspective.

Acknowledgments

We would like to thank the anonymous reviewers,
Fabio Massimo Zanzotto, Yao-Zhong Zhang and the
members of the COMPOSES team. This research
was supported by the ERC 2011 Starting Indepen-
dent Research Grant n. 283554 (COMPOSES).

References

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of EMNLP, pages 1183–1193, Boston,
MA.

Sarah Bunin Benor and Roger Levy. 2006. The chicken
or the egg? A probabilistic analysis of english binomi-
als. Language, pages 233–278.

William Blacoe and Mirella Lapata. 2012. A comparison
of vector-based representations for semantic composi-
tion. In Proceedings of the 2012 Joint Conference on
EMNLP and CoNLL, pages 546–556, Jeju Island, Ko-
rea.

Gemma Boleda, Eva Maria Vecchi, Miquel Cornudella,
and Louise McNally. 2012. First-order vs. higher-
order modification in distributional semantics. In Pro-
ceedings of the 2012 Joint Conference on EMNLP and
CoNLL, pages 1223–1233, Jeju Island, Korea.

Gemma Boleda, Marco Baroni, Louise McNally, and
Nghia Pham. 2013. Intensionality was only alleged:
On adjective-noun composition in distributional se-

mantics. In Proceedings of IWCS, pages 35–46, Pots-
dam, Germany.

Chris Callison-Burch and Mark Dredze. 2010. Creating
speech and language data with amazon’s mechanical
turk. In Proceedings of the NAACL HLT 2010 Work-
shop on Creating Speech and Language Data with
Amazon’s Mechanical Turk, pages 1–12, Los Angeles,
CA.

Kenneth Church and Peter Hanks. 1990. Word asso-
ciation norms, mutual information, and lexicography.
Computational Linguistics, 16(1):22–29.

Guglielmo Cinque, editor. 2002. Functional Structure in
DP and IP - The Carthography of Syntactic Structures,
volume 1. Oxford University Press.

Guglielmo Cinque. 2004. Issues in adverbial syntax.
Lingua, 114:683–710.

Guglielmo Cinque. 2010. The syntax of adjectives: a
comparative study. MIT Press.
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Abstract

Domain adaptation has been popularly stud-
ied on exploiting labeled information from a
source domain to learn a prediction model in
a target domain. In this paper, we develop a
novel representation learning approach to ad-
dress domain adaptation for text classification
with automatically induced discriminative la-
tent features, which are generalizable across
domains while informative to the prediction
task. Specifically, we propose a hierarchical
multinomial Naive Bayes model with latent
variables to conduct supervised word cluster-
ing on labeled documents from both source
and target domains, and then use the produced
cluster distribution of each word as its la-
tent feature representation for domain adapta-
tion. We train this latent graphical model us-
ing a simple expectation-maximization (EM)
algorithm. We empirically evaluate the pro-
posed method with both cross-domain doc-
ument categorization tasks on Reuters-21578
dataset and cross-domain sentiment classifica-
tion tasks on Amazon product review dataset.
The experimental results demonstrate that our
proposed approach achieves superior perfor-
mance compared with alternative methods.

1 Introduction

Supervised prediction models typically require a
large amount of labeled data for training. However,
manually collecting data annotations is expensive in
many real-world applications such as document cat-
egorization or sentiment classification. Recently, do-
main adaptation has been proposed to exploit exist-
ing labeled data in a related source domain to assist

the prediction model training in the target domain
(Ben-David et al., 2006; Blitzer et al., 2006; Daumé
III, 2007; Blitzer et al., 2011; Chen et al., 2012). As
an effective tool to reduce annotation effort, domain
adaptation has achieved success in various cross-
domain natural language processing (NLP) systems
such as document categorization (Dai et al., 2007),
sentiment classification (Blitzer et al., 2007; Chen
et al., 2012; Mejova and Srinivasan, 2012; Chen
et al., 2011), email spam detection (Jiang and Zhai,
2007), and a number of other NLP tasks (Blitzer
et al., 2011; Dauḿe III, 2007).

One primary challenge of domain adaptation lies
in the distribution divergence of the two domains
in the original feature representation space. For ex-
ample, documents aboutbooksmay contain very
different high-frequency words and discriminative
words from documents aboutkitchen. A good cross-
domain featurerepresentationthus has been viewed
as critical for bridging the domain divergence gap
and facilitating domain adaptation in the NLP area
(Ben-David et al., 2006, 2010). Many domain adap-
tation works have been proposed to learn new
cross-domain feature representations (Blitzer et al.,
2006, 2011). Though demonstrated good perfor-
mance on certain problems, these works mostly in-
duce new feature representations in an unsupervised
way, without taking the valuable label information
into account.

In this work, we present a novel supervised rep-
resentation learning approach to discover a latent
representation of words which is not only general-
izable across domains but also informative to the
classification task. Specifically, we propose a hier-
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archical multinomial Naive Bayes model with la-
tent word cluster variables to perform supervised
word clustering on labeled documents from both do-
mains. Our model directly models the relationships
between the observed document label variables and
the latent word cluster variables. The induced clus-
ter representation of each word thus will be infor-
mative for the classification labels, and hence dis-
criminative for the target classification task. We train
this directed graphical model using an expectation-
maximization (EM) algorithm, which maximizes the
log-likelihood of the observations of labeled docu-
ments. The induced cluster distribution of each word
can then be used as its generalizable representa-
tion to construct new cluster-based representation of
each document. For domain adaptation, we train a
supervised learning system with labeled data from
both domains in the new representation space and
apply it to categorize test documents in the target do-
main. In order to evaluate the proposed technique,
we conduct extensive experiments on the Reuters-
21578 dataset for cross-domain document catego-
rization and on Amazon product review dataset for
cross-domain sentiment classification. The experi-
mental results show the proposed approach can pro-
duce more effective representations than the com-
parison domain adaptation methods.

2 Related Work

Domain adaptation has recently been popularly
studied in natural language processing and a variety
of domain adaptation approaches have been devel-
oped, including instance weighting adaptation meth-
ods and feature representation learning methods.

Instance weighting adaptation methods improve
the transferability of a prediction model by training
an instance weighted learning system. Much work in
this category has been developed to address differ-
ent weighting schemas (Sugiyama et al., 2007; Wan
et al., 2011). Jiang and Zhai (2007) applied instance
weighting algorithms to tackle cross-domain NLP
tasks and proposed to remove misleading source
training data and assign less weights to labeled data
from the source domain than labeled data from the
target domain. Dai et al. (2007) proposed to increase
the weights of mistakenly predicted instances from
the target domain and decrease the weights of incor-

rectly predicted instances from the source domain
during an iterative training process.

Representation learning methods bridge do-
main divergence either by differentiating domain-
invariant features from domain-specific features
(Dauḿe III, 2007; Dauḿe III et al., 2010; Blitzer
et al., 2011; Finkel and Manning, 2009) or seeking
generalizable latent features across domains (Blitzer
et al., 2006, 2007; Prettenhofer and Stein, 2010).
Dauḿe III (2007); Dauḿe III et al. (2010) proposed
a simple heuristic feature replication method to rep-
resent common, source specific and target specific
features. Finkel and Manning (2009) proposed a for-
mer version of it based on the use of a hierarchi-
cal Bayesian prior. Blitzer et al. (2011) proposed
a coupled subspace learning method, which learns
two projectors, one for each domain, to project the
original features into domain-sharing and domain-
specific features. Blitzer et al. (2006) proposed a
structural correspondence learning (SCL) method to
model the correlation between pivot features and
non-pivot features. It uses the correlation to in-
duce latent domain-invariant features as augment-
ing features for supervised learning. Extensions of
this work include improving pivot feature selection
(Blitzer et al., 2007; Prettenhofer and Stein, 2010),
and improving the correlation modeling between
pivot and non-pivot features (Tan, 2009).

The proposed approach in this paper belongs to
representation learning methods. However, unlike
the unsupervised representation learning methods
reviewed above, our proposed approach learns gen-
eralizable feature representations of words by ex-
ploiting data labels from the two domains.

3 Learning Latent Word Representations
using Supervised Word Clustering

In this paper, we address domain adaptation for
text classification. Given a source domainDS with
plenty of labeled documents, and a target domain
DT with a very few labeled documents, the task is
to learn a classifier from the labeled documents in
both domains, and use it to classify the unlabeled
documents in the target domain. The documents in
the two domains share the same universal vocabu-
lary V = {w1, w2, · · · , wn}, but the word distri-
butions in the two domains are typically different.
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Therefore, training the classification model directly
from the original word feature spaceV may not gen-
eralize well in the target domain.

We propose to address this problem by first learn-
ing a supervised mapping functionφ : V −→ Z
from the labeled documents in both domains, which
maps the input word features in the large vocabu-
lary setV into a low dimensional latent feature space
Z. By filtering out unimportant details and noises,
we expect the low dimensional mapping can cap-
ture the intrinsic structure of the input data that is
discriminative for the classification task and gener-
alizable across domains. In particular, we learn such
a mapping function by conducting supervised word
clustering on the labeled documents using a hierar-
chical multinomial Naive Bayes model. Below, we
will first introduce this supervised word clustering
model and then use the mapping function produced
to transform documents in different domains into the
same low-dimensional space for training cross do-
main text classification systems.

3.1 Supervised Word Clustering

Given all labeled documents from the source and
target domains,D = {(wt, yt)}

T
t=1

, where thet-th
labeled document is expressed as a bag of words,
wt = {wt1, wt2, · · · , wtNt

}, and its label value is
yt ∈ Y for Y = {1, · · · ,K}, we propose to per-
form supervised word clustering by modeling the
document-label pair distribution using a hierarchical
multinomial Naive Bayes model given in Figure 1,
which has a middle layer of latent cluster variables.

In this plate model, the variableYt denotes the
observed class label for thet-th document, and all
the label variables,{Yt}Tt=1

, share the same multi-
nomial distributionθY across documents. The la-
tent variableCt,i denotes the cluster membership
of the word Wt,i, and all the cluster variables,
{Ct,i}

T,Nt

t=1,i=1
, share the same set of conditional dis-

tributions{θC|y}
K
y=1

across documents and words.
The variableWt,i denotes thei-th observed word
in the t-th document, and all the word variables,
{Wt,i}

T,Nt

t=1,i=1
, share the same set of conditional dis-

tributions{θW |c}
m
c=1

. Here we assume the number
of word clusters ism. For simplicity, we do not show
the distribution parameter variables in the Figure.

Following theMarkov propertyof directed graph-

Figure 1: Supervised word clustering model.

ical models, we can see that given the cluster vari-
able values, the document label variables will be
completely independent of the word variables. By
learning this latent directed graphical model, we
thus expect the important classification information
expressed in the input observation words can be
effectively summarized into the latent cluster vari-
ables. This latent model is much simpler than the
supervised topic models (Blei and McAuliffe, 2007),
but we will show later that it can suitably produce a
generalizable feature mapping function for domain
adaptation.

To train the latent graphical model in Fig-
ure 1 on labeled documentsD, we use a standard
expectation-maximization (EM) algorithm (Demp-
ster et al., 1977) to maximize the marginal log-
likelihood of the observations:

LL(D;θ) =
∑

t

logP (yt,wt|θ) (1)

The EM algorithm is an iterative procedure. In each
iteration, it takes an alternative E-step and M-step
to maximize the lower bound of the marginal log-
likelihood function. In our experiments, we start
from a random initialization of the model parame-
ters and the latent variable values, and then perform
iterative EM updates until converge to a local opti-
mal solution.

3.2 Induced Word Representation

After training the supervised clustering model using
EM algorithm, a set of local optimal model parame-
tersθ∗ will be returned, which define a joint distri-
bution over the three groups of variables in the di-
rected graphical model. Next we define a supervised
latent feature mapping functionφ from this trained
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model to map each wordw in the vocabularyV into
a conditional distribution vector over the word clus-
ter variable, such as

φ(w)=[P (c=1|w,θ∗), · · · , P (c=m|w,θ∗)]. (2)

The conditional distributions involved in this map-
ping function can be computed as

P (c|w,θ∗)=

∑
y∈YP (w|c,θ∗)P (c|y,θ∗)P (y|θ∗)

P (w)
(3)

whereP (w|c,θ∗) = θ
∗
w|c P (c|y,θ∗) = θ

∗
c|y and

P (y|θ∗) = θ
∗
y can be determined from the model

parameters directly, andp(w) can be computed as
the empirical frequency of wordw among all the
other words in all the training documents.

We then define a transformation matrixΠ ∈
R
n×m based on the mapping functionφ defined in

Eq. (2), such thatΠi: = φ(wi) wherewi is thei-th
word in the vocabularyV . That is, each row ofΠ
is the induced representation vector for one word.Π
can be viewed as a soft word clustering matrix, and
Πi,j denotes the probability of wordwi belongs to
the j-th cluster. Given the original document-word
frequency matrixXtr ∈ R

T×n for the labeled train-
ing documents from the two domains, we can con-
struct its representationsZtr ∈ R

T×m in the pre-
dictive latent clustering space by performing the fol-
lowing transformation:

Ztr = XtrΠ. (4)

Similarly, we can construct the new representation
matrixZts for the test dataXts in the target domain.
We then train a classification model on the labeled
dataZtr and apply it to classify the test dataZts.

4 Experiments

We evaluate the proposed approach with experi-
ments on cross domain document categorization of
Reuters data and cross domain sentiment classifi-
cation of Amazon product reviews, comparing to a
number of baseline and existing domain adaptation
methods. In this section, we report the experimental
setting and results on these two data sets.

4.1 Approaches

We compared our proposed supervised word cluster-
ing approach (SWC) with the following five compar-
ison methods for domain adaptation:

(1) BOW: This is a bag-of-word baseline method,
which trains a SVM classifier with labeled data
from both domains using the original bag-of-
word features.

(2) PLSA: This is an unsupervised word clustering
method, which first applies the probabilistic la-
tent semantic analysis (PLSA) (Hofmann, 1999)
to obtain word clusterings with both labeled and
unlabeled data from the two domains and then
uses the soft word clusterings as augmenting
features to train SVM classifiers.

(3) FDLDA: This is an alternative supervised word
clustering method we built by training the
Fast-Discriminative Latent Dirichlet Allocation
model (Shan et al., 2009) with all labeled data
from the two domains. After training the model,
we used the learned topic distributionp(z) and
the conditional word distributionsp(w|z) to
compute the conditional distribution over topics
p(z|w) for each word as the soft clustering of the
word. We then used the soft word clusterings as
augmenting features to train SVM classifiers.

(4) SCL: This is the structural correspondence
learning based domain adaptation method
(Blitzer et al., 2006). It first induces generaliz-
able features with all data from both domains
by modeling the correlations between pivot fea-
tures and non-pivot features, and then uses the
produced generalizable features as augmenting
features to train SVM classifiers.

(5) CPSP: This is coupled subspace learning based
domain adaptation method (Blitzer et al., 2011).
It first learns two domain projectors using all
data from the two domains by approximating
multi-view dimensionality reduction, and then
projects the labeled data to low dimensional la-
tent feature space to train SVM Classifiers.

We used the LIBSVM package (Chang and Lin,
2011) with its default parameter setting to train lin-
ear SVM classifiers as the base classification model
for all comparison methods.
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Table 1: Average results (accuracy±standard deviation) for three cross-domain document categorization tasks on
Reuters-21578 dataset.

Task BOW PLSA FDLDA SCL CPSP SWC
Orgs vs People 76.07±0.39 76.50±0.10 76.95±0.23 78.71±0.20 77.58±0.21 81.27±0.23
Orgs vs Places 73.88±0.58 74.68±0.20 74.87±0.29 76.71±0.23 75.76±0.28 78.33±0.64

People vs Places61.80±0.44 63.36±0.40 63.46±0.40 64.65±0.40 62.73±0.53 67.48±0.20

4.2 Experiments on Reuters Data Set

We used the popularly studied Reuters-21578
dataset (Dai et al., 2007), which contains three cross-
domain document categorization tasks,Orgs vs Peo-
ple, Orgs vs Places, People vs Places. The source
and target domains of each task contain documents
sampled from different non-overlapping subcate-
gories. From example, the task ofOrgs vs People
assigns a document into one of the two top cate-
gories (Orgs, People), and the source domain doc-
uments and the target domain documents are sam-
pled from different subcategories ofOrgs andPeo-
ple. There are 1237 source documents and 1208 tar-
get documents for the task ofOrgs vs People, 1016
source documents and 1043 target documents for the
task ofOrgs vs Places, and 1077 source documents
and 1077 target documents for the task ofPeople vs
Places. For each task, we built a unigram vocabulary
based on all the documents from the two domains
and represented each document as a feature vector
containing term frequency values.

4.2.1 Experimental Results for Cross-Domain
Document Categorization

For each of the three cross-domain document cat-
egorization tasks on Reuters-21578 dataset, we used
all the source documents as labeled training data
while randomly selecting 100 target documents as
labeled training data and setting the rest as unla-
beled test data. For the BOW baseline method, we
used the term-frequency features. The other five ap-
proaches are based on representation learning, and
we selected the dimension size of the representation
learning, i.e., the cluster number in our proposed ap-
proach, from{5, 10, 20, 50, 100} according to the
average classification results over 3 runs on the task
of Orgs vs People. The dimension sizes of the in-
duced representations for the five approaches,PLSA,

FDLDA, SCL, CPSPandSWCare20, 20, 100, 100
and20 respectively.

We then repeated each experiment 10 times on
each task with different random selections of the 100
labeled target documents to compare the six compar-
ison approaches. The average classification results
in terms of accuracy and standard deviations are re-
ported in Table 1. We can see that by simply combin-
ing labeled documents from the two domains with-
out adaptation, theBOW method performs poorly
across the three tasks. ThePLSA method outper-
forms theBOWmethod over all the three tasks with
small improvements. The supervised word cluster-
ing methodFDLDA, though performing slightly bet-
ter than the unsupervised clustering methodPLSA,
produces poor performance comparing to the pro-
posedSWC method. One possible reason is that
theFDLDA model is not specialized for supervised
word clustering, and it uses a logistic regression
model to predict the labels from the word topics,
while the final soft word clustering is computed from
the learned distributionp(z) and p(w|z). That is,
in the FDLDA model the labels only influence the
word clusterings indirectly and hence its influence
can be much smaller than the influence of labels as
direct parent variables of the word cluster variables
in the SWCmodel. The two domain adaptation ap-
proaches,SCLandCPSP, both produce significant
improvements overBOW, PLSAandFDLDA on the
two tasks ofOrgs vs Peopleand Orgs vs Places,
while the CPSPmethod produces slightly inferior
performance thanPLSAandFDLDA on the task of
People vs Places. The proposed methodSWCon
the other hand consistently and significantly outper-
forms all the other comparison methods across all
the three tasks.

We also studied the sensitivity of the proposed
approach with respect to the number of clusters,
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Figure 2: Sensitivity analysis of the proposed approach
w.r.t. the number of clusters for the three cross-domain
document categorization tasks on Reuters-21578 dataset.

i.e., the dimension size of the learned representa-
tion. We experimented with a set of different val-
uesm ∈ {5, 10, 20, 50, 100} as the number of clus-
ters. For eachm value, we used the same experimen-
tal setting as above and repeated the experiments 10
times to obtain the average comparison results. The
classification accuracy results on the three tasks are
reported in Figure 2. We can see that the proposed
method is not very sensitive to the number of clus-
ters, across the set of increasing values we consid-
ered, and its performance becomes very stable after
the cluster number reaches 20.

4.2.2 Document Categorization Accuracy vs
Label Complexity in Target Domain

We next conducted experiments to compare the
six approaches by varying the amount of the labeled
data from the target domain. We tested a set of dif-
ferent values,s ∈ {100, 200, 300, 400, 500}, as the
number of labeled documents from the target do-
main. For each differents value, we repeated the ex-
periments 10 times by randomly selectings labeled
documents from the target domain using the same
experimental setting as before. The comparison re-
sults across the set ofs values are plotted in Fig-
ure 3. We can see that in general the performance of
each method improves with the increase of the num-
ber of labeled documents from the target domain.
The proposed methodSWCand the domain adapta-
tion methodSCLclearly outperform the other four
methods. Moreover, the proposed methodSWCnot

only maintains consistent and significant advantages
over all other methods across the range of differ-
ent s values, its performance with 300 labeled tar-
get instances is even superior to the other methods
with 500 labeled target instances. All these results
suggest the proposed approach is very effective for
adapting data across domains.

4.3 Experiments on Amazon Product Reviews

We conducted cross-domain sentiment classification
on the widely used Amazon product reviews (Blitzer
et al., 2007), which contains review documents dis-
tributed in four categories:Books(B), DVD(D), Elec-
tronics(E) and Kitchen(K). Each category contains
1000 positive and 1000 negative reviews. We con-
structed 12 cross-domain sentiment classification
tasks, one for each source-target domain pair,B2D,
B2E, B2K, D2B, D2E, D2K, E2B, E2D, E2K, K2B,
K2D, K2E. For example, the taskB2D means that
we use theBooksreviews as the source domain and
theDVD reviews as the target domain. For each pair
of domains, we built a vocabulary with both uni-
gram and bigram features extracted from all the doc-
uments of the two domains, and then represented
each review document as a feature vector with term
frequency values.

4.3.1 Experimental Results for Cross-Domain
Sentiment Classification

For each of the twelve cross-domain sentiment
classification tasks on Amazon product reviews, we
used all the source reviews as labeled data and ran-
domly selected 100 target reviews as labeled data
while treating the rest as unlabeled test data. For the
baseline methodBOW, we used binary indicator val-
ues as features, which has been shown to work better
than the term-frequency features for sentiment clas-
sification tasks (Pang et al., 2002; Na et al., 2004).
For all the other representation learning based meth-
ods, we selected the dimension size of learned repre-
sentation according to the average results over 3 runs
on theB2D task. The dimension sizes selected for
the methodsPLSA, FDLDA, SCL, CPSP, andSWC
are 10, 50, 50, 100 and 10, respectively.1

150 and 100 are also the suggested values for SCL (Blitzer
et al., 2007) and CPSP (Blitzer et al., 2011) respectively on this
cross-domain sentiment classification dataset.
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Figure 3: Average classification results for three cross-domain document categorization tasks on Reuters-21578 dataset
by varying the amount of labeled training data from the target domain.

Table 2: Average results (accuracy±standard deviation) for twelve cross-domain sentiment classification tasks on
Amazon product reviews.

Task BOW PLSA FDLDA SCL CPSP SWC
B2D 76.58±0.14 76.01±0.10 75.95±0.16 80.17±0.16 77.53±0.14 81.66±0.23
B2K 75.48±0.34 74.68±0.20 74.87±0.15 78.13±0.21 76.38±0.15 82.26±0.20
B2E 72.92±0.37 73.36±0.19 73.46±0.21 74.79±0.19 73.31±0.17 77.04±0.64
D2B 74.10±0.29 74.04±0.20 74.08±0.18 78.73±0.23 77.07±0.15 79.95±0.25
D2K 75.19±0.33 75.37±0.31 75.44±0.31 76.98±0.19 76.77±0.10 82.13±0.20
D2E 73.01±0.34 74.21±0.30 74.09±0.31 75.69±0.25 73.83±0.21 76.98±0.54
E2B 67.58±0.24 68.48±0.15 68.44±0.17 70.21±0.16 70.47±0.16 72.11±0.46
E2D 70.15±0.27 70.16±0.23 70.06±0.22 72.83±0.25 71.76±0.20 73.81±0.59
E2K 82.23±0.12 82.24±0.18 82.26±0.19 84.69±0.11 81.31±0.14 85.33±0.16
K2B 70.67±0.18 72.18±0.21 72.18±0.16 73.91±0.21 72.18±0.19 75.78±0.55
K2D 71.51±0.26 72.00±0.18 72.05±0.19 74.82±0.26 72.59±0.18 76.88±0.49
K2E 80.81±0.12 80.39±0.18 80.46±0.18 82.96±0.11 80.81±0.14 84.78±0.19

We then repeated each experiment 10 times based
on different random selections of 100 labeled re-
views from the target domain to compare the six
methods on the twelve tasks. The average classifica-
tion results are reported in Table 2. We can see that
the PLSAandFDLDA methods do not show much
advantage over the baseline methodBOW. CPSP
performs better thanPLSAand BOW on many of
the twelve tasks, but with small advantages, while
SCLoutperformsCPSPon most tasks. The proposed
methodSWChowever demonstrates a clear advan-
tage over all the other methods and produces the best
results on all the twelve tasks.

We also conducted sensitivity analysis over the

proposed approach regarding the number of clus-
ters on the twelve cross-domain sentiment classifi-
cation tasks, by testing a set of cluster number val-
uesm = {5, 10, 20, 50, 100}. The average results
are plotted in Figure 5. Similar as before, we can
see the proposed approach has stable performance
across the set of different cluster numbers. More-
over, these results also clearly show that domain
adaptation is not a symmetric process, as we can see
it is easier to conduct domain adaptation from the
source domainBooksto the target domainKitchen
(with an accuracy around 82%), but it is more diffi-
cult to make domain adaptation from the source do-
mainKitchento the target domainBooks(with an ac-
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Figure 4: Average results (accuracy±standard deviation) for the 12 cross-domain sentiment classification tasks on
Amazon product reviews with different numbers of labeled training data from the target domain.
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Figure 5: Sensitivity analysis of the proposed approach wrtthe number of clusters for the twelve cross-domain senti-
ment classification tasks. Each figure shows experimental results for three tasks with the same source domain.

curacy around 75%). It also shows that the degree of
relatedness of the two domains is an important factor
for the effectiveness of knowledge adaptation. For
example, one can see that it is much easier to con-
duct domain adaptation fromKitchento Electronics
(with an accuracy around 84%) than fromKitchento
Books(with an accuracy around 75%), asKitchenis
more closely related toElectronicsthanBooks.

4.3.2 Sentiment Classification Accuracy vs
Label Complexity in Target Domain

Similar as before, we tested the proposed ap-
proach using a set of different valuess ∈
{100, 200, 300, 400, 500} as the number of labeled
reviews from the target domain. For each givens

value, we conducted the comparison experiments us-
ing the same setting above. The average results are
reported in Figure 4. We can see that the perfor-
mance of each approach in general improves with
the increase of the number of labeled reviews from
the target domain. The proposed approach maintains
a clear advantage over all the other methods on all
the twelve tasks across different label complexities.
All those empirical results demonstrate the effec-
tiveness of the proposed approach for cross-domain
sentiment classification.

4.3.3 Illustration of the Word Clusters

Finally, we would also like to demonstrate the
hard word clusters produced by the proposed su-
pervised word clustering method. We assign a word
into the cluster it most likely belongs to according
to its soft clustering representation, such asc∗ =
argmaxc P (c|w,θ∗). Table 3 presents the top repre-

sentative words (i.e., the most frequent words) of the
10 word clusters produced on the task ofB2K. We
can see that the first three clusters (C1, C2, and C3)
contain words withpositive sentiment polarity in
different degrees. The two clusters (C4 and C5) con-
tain words used to express the degree of opinions.
The next four clusters (C6, C7, C8, and C9) contain
content words related toBooksor Kitchen. The last
cluster (C10) contains words ofnegativesentiment
polarity. These results demonstrate that the proposed
supervised word clustering can produce task mean-
ingful word clusters and hence label-informative la-
tent features, which justifies its effectiveness.

5 Conclusion

In this paper, we proposed a novel supervised rep-
resentation learning method to tackle domain adap-
tation by inducing predictive latent features based
on supervised word clustering. With the soft word
clustering produced, we can transform all docu-
ments from the two domains into a unified low-
dimensional feature space for effective training of
cross-domain NLP prediction system. We conducted
extensive experiments on cross-domain document
categorization tasks on Reuters-21578 dataset and
cross-domain sentiment classification tasks on Ama-
zon product reviews. Our empirical results demon-
strated the efficacy of the proposed approach.
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H. Dauḿe III, A. Kumar, and A. Saha. Co-
regularization based semi-supervised domain
adaptation. InAdvances in Neural Information
Processing Systems (NIPS), 2010.

A. Dempster, N. Laird, and D. Rubin. Maximum
likelihood from incomplete data via the em algo-
rithm. Journal of the royal statistical society, 39
(1):1–38, 1977.

J. Finkel and C. Manning. Hierarchical bayesian
domain adaptation. InProc. of the Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL), 2009.

T. Hofmann. Probabilistic latent semantic analysis.
In Proc. of the Conference on Uncertainty in Ar-
tificial Intelligence (UAI), 1999.

J. Jiang and C. Zhai. Instance weighting for domain
adaptation in nlp. InProc. of the Annual Meeting
of the Association for Computational Linguistics
(ACL), 2007.

Y. Mejova and P. Srinivasan. Crossing media
streams with sentiment: Domain adaptation in

161



blogs, reviews and twitter. InProc. of the Inter-
national AAAI Conference on Weblogs and Social
Media (ICWSM), 2012.

J. Na, H. Sui, C. Khoo, S. Chan, and Y. Zhou. Effec-
tiveness of simple linguistic processing in auto-
matic sentiment classification of product reviews.
In Proc. of the Conf. of the Inter. Society for
Knowledge Organization, 2004.

B. Pang, L. Lee, and S. Vaithyanathan. Thumbs
up?: sentiment classification using machine learn-
ing techniques. InProc. of the Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), 2002.

P. Prettenhofer and B. Stein. Cross-language
text classification using structural correspondence
learning. InProc. of the Annual Meeting of the
Association for Comput. Linguistics (ACL), 2010.

H. Shan, A. Banerjee, and N. Oza. Discriminative
mixed-membership models. InProc. of the IEEE
Inter. Conference on Data Mining (ICDM), 2009.

M. Sugiyama, S. Nakajima, H. Kashima, P. von
Bünau, and M. Kawanabe. Direct importance es-
timation with model selection and its application
to covariate shift adaptation. InAdvances in Neu-
ral Information Processing Systems (NIPS), 2007.

S. Tan. Improving scl model for sentiment-transfer
learning. InProc. of the Conference of the North
American Chapter of the Association for Compu-
tational Linguistics (NAACL), 2009.

C. Wan, R. Pan, and J. Li. Bi-weighting domain
adaptation for cross-language text classification.
In Proc. of the International Joint Conference on
Artificial Intelligence (IJCAI), 2011.

162



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 163–169,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Appropriately Incorporating Statistical Significance in PMI

Om P. Damani and Shweta Ghonge
IIT Bombay

India
{damani,shwetaghonge}@cse.iitb.ac.in

Abstract
Two recent measures incorporate the notion of
statistical significance in basic PMI formula-
tion. In some tasks, we find that the new mea-
sures perform worse than the PMI. Our anal-
ysis shows that while the basic ideas in incor-
porating statistical significance in PMI are rea-
sonable, they have been applied slightly inap-
propriately. By fixing this, we get new mea-
sures that improve performance over not just
PMI but on other popular co-occurrence mea-
sures as well. In fact, the revised measures
perform reasonably well compared with more
resource intensive non co-occurrence based
methods also.

1 Introduction

The notion of word association is used in many lan-
guage processing and information retrieval appli-
cations and it is important to have low-cost, high-
quality association measures. Lexical co-occurrence
based word association measures are popular be-
cause they are computationally efficient and they can
be applied to any language easily. One of the most
popular co-occurrence measure is Pointwise Mutual
Information (PMI) (Church and Hanks, 1989).

One of the limitations of PMI is that it only works
with relative probabilities and ignores the absolute
amount of evidence. To overcome this, recently two
new measures have been proposed that incorporate
the notion of statistical significance in basic PMI
formulation. In (Washtell and Markert, 2009), sta-
tistical significance is introduced in PMIsig by mul-
tiplying PMI value with the square root of the ev-
idence. In contrast, in (Damani, 2013), cPMId is

introduced by bounding the probability of observing
a given deviation between a given word pair’s co-
occurrence count and its expected value under a null
model where with each word a global unigram gen-
eration probability is associated. In Table 1, we give
the definitions of PMI, PMIsig, and cPMId.

While these new measures perform better than
PMI on some of the tasks, on many other tasks,
we find that the new measures perform worse than
the PMI. In Table 3, we show how these measures
perform compared to PMI on four different tasks.
We find that PMIsig degrades performance in three
out of these four tasks while cPMId degrades per-
formance in two out of these four tasks. The ex-
perimental details and discussion are given in Sec-
tion 4.2.

Our analysis shows that while the basic ideas in
incorporating statistical significance are reasonable,
they have been applied slightly inappropriately. By
fixing this, we get new measures that improve per-
formance over not just PMI, but also on other pop-
ular co-occurrence measures on most of these tasks.
In fact, the revised measures perform reasonably
well compared with more resource intensive non co-
occurrence based methods also.

2 Adapting PMI for Statistical Significance

In (Washtell and Markert, 2009), it is assumed that
the statistical significance of a word pair association
is proportional to the square root of the evidence.
The question of what constitutes the evidence is an-
swered by taking the lesser of the frequencies of the
two words in the word pair, since at most that many
pairings are possible. Hence the PMI value is multi-
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Method Formula Revised Formula
PMI (Church and
Hanks, 1989)

log f(x,y)
f(x)∗f(y)/W

PMIsig (Washtell
and Markert, 2009)

log f(x,y)
f(x)∗f(y)/W

∗
√

min(f(x),f(y)) PMIs: log f(x,y)
f(x)∗f(y)/W

∗
√

max(f(x),f(y))

cPMId (Damani,
2013)

log d(x,y)

d(x)*d(y)/D+
√

d(x)∗
√

ln δ
(−2.0)

sPMId: log d(x,y)

max(d(x),d(y))*min(d(x),d(y))/D+
√

max(d(x),d(y))∗
√

ln δ
(−2.0)

Terminology:
W Total number of words in the corpus D Total number of documents in the corpus
f(x), f(y) unigram frequencies of x, y respectively in the corpus d(x), d(y) Total number of documents in the corpus containing

at least one occurrence of x and y respectively
f(x, y) Span-constrained (x, y) word pair frequency in the corpus d(x, y) Total number of documents in the corpus having at-least

one span-constrained occurrence of the word pair (x, y)
δ a parameter varying between 0 and 1

Table 1: Definitions of PMI and its statistically significant adaptations. The sub-parts in bold represent the changes
between the original formulas and the revised formulas. The product max(d(x), d(y)) ∗min(d(x), d(y)) in sPMId
formula can be simplified to f(x) ∗ f(y), however, we left it this way to emphasize the transformation from cPMId.

plied by
√
min(f(x), f(y)) to get PMIsig.

In (Damani, 2013), statistical significance is
introduced by bounding the probability of observing
a given number of word-pair occurrences in the
corpus, just by chance, under a null model of inde-
pendent unigram occurrences. For this computation,
one needs to decide what constitutes a random trial
when looking for a word-pair occurrence. Is it the
occurrence of the first word (say x) in the pair, or
the second (say y). In (Damani, 2013), occurrences
of x are arbitrarily chosen to represent the sites of
the random trial. Using Hoeffdings Inequality:

P [f(x, y) ≥ f(x) ∗ f(y)/W + f(x) ∗ t]
≤ exp(−2 ∗ f(x) ∗ t2)

By setting t =
√

ln δ/(−2 ∗ f(x)), we get δ as an
upper bound on probability of observing more than
f(x)∗f(y)/W +f(x)∗ t bigram occurrences in the
corpus, just by chance. Based on this Corpus Level
Significant PMI(cPMI) is defined as:

cPMI(x, y) = log
f(x, y)

f(x) ∗ f(y)/W + f(x) ∗ t

= log
f(x, y)

f(x) ∗ f(y)/W +
√
f(x) ∗

√
ln δ/(−2)

In (Damani, 2013), several variants of cPMI are in-
troduced that incorporate different notions of sta-
tistical significance. Of these Corpus Level Signif-
icant PMI based on Document count(cPMId - de-
fined in Table 1) is found to be the best performing,
and hence we consider this variant only in this work.

2.1 Choice of Random Trial

While considering statistical significance, one has
to decide what constitutes a random trial. When
looking for a word-pair (x, y)’s occurrences, y can
potentially occur near each occurrence of x, or x
can potentially occur near each occurrence of y.
Which of these two set of occurrences should be
considered the sites of random trial. We believe
that the occurrences of the more frequent of x and y
should be considered, since near each of these occur-
rences the other word could have occurred. Hence
f(x) and f(y) in cPMI definition should be re-
placed with max(f(x), f(y)) and min(f(x), f(y))
respectively. Similarly, d(x) and d(y) in cPMId for-
mula should be replaced with max(d(x), d(y)) and
min(d(x), d(y)) respectively to give a new measure
Significant PMI based on Document count(sPMId).

Using the same logic,
√
min(f(x), f(y))

in PMIsig formula should be replaced with√
max(f(x), f(y)) to give the formula for a new

measure PMI-significant(PMIs). The definitions of
sPMId and PMIs are also given in Table 1.

3 Related Work

There are three main types of word association mea-
sures: Knowledge based, Distributional Similarity
based, and Lexical Co-occurrence based.

Based on Firth’s You shall know a word by the
company it keeps (Firth, 1957), distributional sim-
ilarity based measures characterize a word by the
distribution of other words around it and compare
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Method Formula

ChiSquare (χ2)
∑

i,j
(f(i,j)−Ef(i,j))2

Ef(i,j)

Dice (Dice, 1945) f(x,y)
f(x)+f(y)

GoogleDistance (L.Cilibrasi and Vitany, 2007) max(log d(x),log d(y))−log d(x,y)
log D−min(log d(x),log d(y))

Jaccard (Jaccard, 1912) f(x,y)
f(x)+f(y)−f(x,y)

LLR (Dunning, 1993)
∑

x′ ∈ {x,¬x}
y′ ∈ {y,¬y}

f(x′, y′)log f(x′,y′)
f(x′)f(y′)

nPMI (Bouma, 2009)
log

f(x,y)
f(x)∗f(y)/W

log 1
f(x,y)/W

Ochiai (Janson and Vegelius, 1981) f(x,y)√
f(x)f(y)

PMI2 (Daille, 1994) log
f(x,y)

f(x)∗f(y)/W
1

f(x,y)/W

= log f(x,y)2

f(x)∗f(y)

Simpson (Simpson, 1943) f(x,y)
min(f(x),f(y))

SCI (Washtell and Markert, 2009) f(x,y)

f(x)
√

f(y)

T-test f(x,y)−Ef(x,y)√
f(x,y)(1− f(x,y)W )

Table 2: Definition of other co-occurrence measures being compared in this work. The terminology used here is same
as that in Table 1, except that E in front of a variable name means the expected value of that variable.

Task Semantic Sentence Synonym
Relatedness Similarity Selection

Dataset WordSim Li ESL TOEFL
Metric Spearman Rank

Correlation
Pearson Cor-
relation

Fraction
Correct

Fraction
Correct

PMI 0.68 0.69 0.62 0.59
PMIsig 0.67 0.85 0.58 0.56
cPMId 0.72 0.67 0.56 0.59
PMIs 0.66 0.85 0.66 0.61
sPMId 0.72 0.75 0.70 0.61
ChiSquare (χ2) 0.62 0.80 0.62 0.58
Dice 0.58 0.76 0.56 0.57
GoogleDistance 0.53 0.75 0.09 0.19
Jaccard 0.58 0.76 0.56 0.57
LLR 0.50 0.18 0.18 0.27
nPMI 0.72 0.35 0.54 0.54
Ochiai/ PMI2 0.62 0.77 0.62 0.60
SCI 0.65 0.85 0.62 0.60
Simpson 0.59 0.78 0.58 0.57
TTest 0.44 0.63 0.44 0.52
Semantic Net (Li et al., 2006) 0.82
ESA (Gabrilovich and Markovitch, 2007) 0.74

(reimplemented in (Yeh et al., 2009)) 0.71
Distributional Similarity (on web corpus) (Agirre et
al., 2009))

0.65

Context Window based Distributional Similar-
ity (Agirre et al., 2009))

0.60

Latent Semantic Analysis (on web corpus) (Finkel-
stein et al., 2002)

0.56

WordNet::Similarity (Recchia and Jones, 2009) 0.70 0.87
PMI-IR3 (using context) (Turney, 2001) 0.73

Table 3: 5-fold cross-validation results for different co-occurrence measures. The results for the best, and second best
co-occurrence measures for each data-set is shown in bold and underline respectively. Except GoogleDistance and
LLR, all results for all co-occurrence measures are statistically significant at p = .05. For each task, the best known
result for different non co-occurrence based methods is also shown.
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two words for distributional similarity (Agirre et
al., 2009; Wandmacher et al., 2008; Bollegala et
al., 2007; Chen et al., 2006). They are also used
for modeling the meaning of a phrase or a sen-
tence (Grefenstette and Sadrzadeh, 2011; Wartena,
2013; Mitchell, 2011; G. Dinu and Baroni, 2013;
Kartsaklis et al., 2013).

Knowledge-based measures use knowledge-
sources like thesauri, semantic networks, or
taxonomies (Milne and Witten, 2008; Hughes
and Ramage, 2007; Gabrilovich and Markovitch,
2007; Yeh et al., 2009; Strube and Ponzetto, 2006;
Finkelstein et al., 2002; Liberman and Markovitch,
2009).

Co-occurrence based measures (Pecina and
Schlesinger, 2006) simply rely on unigram and bi-
gram frequencies of the words in a pair. In this work,
our focus is on the co-occurrence based measures,
since they are resource-light and can easily be used
for resource-scarce languages.

3.1 Co-occurrence Measures being Compared
Co-occurrence based measures of association be-
tween two entities are used in several domains like
ecology, psychology, medicine, language process-
ing, etc. To compare the performance of our newly
introduced measures with other co-occurrence mea-
sures, we have selected a number of popu-
lar co-occurrence measures like ChiSquare (χ2),
Dice (Dice, 1945), GoogleDistance (L.Cilibrasi and
Vitany, 2007), Jaccard (Jaccard, 1912), LLR (Dun-
ning, 1993), Simpson (Simpson, 1943), and T-test
from these domains.

In addition to these popular measures, we
also experiment with other known variations of
PMI like nPMI (Bouma, 2009), PMI2 (Daille,
1994), Ochiai (Janson and Vegelius, 1981), and
SCI (Washtell and Markert, 2009). Since PMI2 is
a monotonic transformation of Ochiai, we present
their results together. In Table 2, we present the def-
initions of these measures. While the motivation
given for SCI in (Washtell and Markert, 2009) is
slightly different, in light of the discussion in Sec-
tion 2.1, we can assume that SCI is PMI adapted for
statistical significance (multiplied by

√
f(y)), where

the site of random trial is taken to be the occurrences
of the second word y, instead of the less frequent
word, as in the case of PMIsig.

When counting co-occurrences, we only con-
sider the non-overlapping span-constrained occur-
rences. The span of a word-pair’s occurrence is the
direction-independent distance between the occur-
rences of the members of the pair. We consider only
those co-occurrences where span is less than a given
threshold. Therefore, span threshold is a parameter
for all the co-occurrence measures being considered.

4 Performance Evaluation

Having introduced the revised measures PMIs and
sPMId, we need to evaluate the performance of these
measures compared to PMI and the original mea-
sures introducing significance. In addition, we also
wish to compare the performance of these measures
with other co-occurrence measures. To compare the
performance of these measures with more resource
heavy non co-occurrence based measures, we have
chosen those tasks and datasets on which published
results exist for distributional similarity and knowl-
edge based word association measures.

4.1 Task Details

We evaluate these measures on three tasks: Sen-
tence Similarity(65 sentence-pairs from (Li et al.,
2006)), Synonym Selection(50 questions ESL (Tur-
ney, 2001) and 80 questions TOEFL (Landauer and
Dutnais, 1997) datasets), and, Semantic Related-
ness(353 words Wordsim (Finkelstein et al., 2002)
dataset).

For each of these tasks, gold standard human
judgment results exist. For sentence similarity, fol-
lowing (Li et al., 2006), we evaluate a measure by
the Pearsons correlation between the ranking pro-
duced by the measure and the human ranking. For
synonym selection, we compute the percentage of
correct answers, since there is a unique answer for
each challenge word in the datasets. Semantic relat-
edness has been evaluated by Spearman’s rank cor-
relation with human judgment instead of Pearsons
correlation in literature and we follow the same prac-
tice to make results comparable.

For sentence similarity detection, the algorithm
used by us (Li et al., 2006) assumes that the asso-
ciation scores are between 0 and 1. Hence we nor-
malize the value produced by each measure using
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Challenge
x

Option y
(correct)

Option z
(incorrect)

f(x) f(y) f(z) f(x, y) f(x, z) PMIsig

(x, y)
PMIsig

(x, z)
PMIs
(x, y)

PMIs
(x, z)

brass metal plastic 15923 125088 24985 228 75 14 24 40 30
twist intertwine curl 11407 153 2047 1 9 7 17 61 41
saucer dish frisbee 2091 12453 1186 5 1 9 14 21 18
mass lump element 90398 1595 43321 14 189 4 10 29 15
applause approval friends 1998 19673 11689 8 6 9 11 29 28
confession statement plea 7687 47299 5232 76 12 18 22 45 26
swing sway bounce 33580 2994 4462 13 17 7 8 24 21
sheet leaf book 20470 20979 586581 20 194 7 2 7 12

Table 4: Details of ESL word-pairs, correctness of whose answers changes between PMIsig and PMIs. Except for the
gray-row, for all other questions, incorrect answers becomes correct on using PMIs instead of PMIsig , and vice-versa
for the gray-row. The association values have been suitably scaled for readability. To save space, of the four choices,
options not selected by either of the methods have been omitted. These results are for a 10 word span.

max-min normalization:

v′ =
v −min

max−min

where max and min are computed over all associa-
tion scores for the entire task for a given measure.

4.2 Experimental Results

We use a 1.24 Gigawords Wikipedia corpus for get-
ting co-occurrence statistics. Since co-occurrence
methods have span-threshold as a parameter, we fol-
low the standard methodology of five-fold cross val-
idation. Note that, in addition to span-threshold, cP-
MId and sPMId have an additional parameter δ.

In Table 3, we present the performance of all the
co-occurrence measures considered on all the tasks.
Note that, except GoogleDistance and LLR, all re-
sults for all co-occurrence measures are statistically
significant at p = .05. For completeness of compari-
son, we also include the best known results from lit-
erature for different non co-occurrence based word
association measures on these tasks.

4.3 Performance Analysis and Conclusions

We find that on average, PMIsig and cPMId, the re-
cently introduced measures that incorporate signif-
icance in PMI, do not perform better than PMI on
the given datasets. Both of them perform worse
than PMI on three out of four datasets. By ap-
propriately incorporating significance, we get new
measures PMIs and sPMId that perform better than
PMI(also PMIsig and cPMId respectively) on most
datasets. PMIs improves performance over PMI on
three out of four datasets, while sPMId improves
performance on all four datasets.

The performance improvement of PMIs over
PMIsig and of sPMId over cPMId, is not random.
For example, on the ESL dataset, while the percent-
age of correct answers increases from 58 to 66 from
PMIsig to PMIs, it is not the case that on moving
from PMIsig to PMIs, several correct answers be-
come incorrect and an even larger number of in-
correct answers become correct. As shown in Ta-
ble 4, only one correct answers become incorrect
while seven incorrect answers get corrected. The
same trend holds for most parameters values, and
for moving from cPMId to sPMId. This substanti-
ates the claim that the improvement is not random,
but due to the appropriate incorporation of signifi-
cance, as discussed in Section 2.1.

PMIs and sPMId perform better than not just
PMI, but they perform better than all popular co-
occurrence measures on most of these tasks. When
compared with any other co-occurrence measure,
on three out of four datasets each, both PMIs and
sPMId perform better than that measure. In fact,
PMIs and sPMId perform reasonably well compared
with more resource intensive non co-occurrence
based methods as well. Note that different non co-
occurrence based measures perform well on differ-
ent tasks. We are comparing the performance of a
single measure (say sPMId or PMIs) against the best
measure for each task.
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Abstract

In this paper we present a minimally-
supervised approach to the multi-domain ac-
quisition of wide-coverage glossaries. We start
from a small number of hypernymy rela-
tion seeds and bootstrap glossaries from the
Web for dozens of domains using Probabilis-
tic Topic Models. Our experiments show that
we are able to extract high-precision glos-
saries comprising thousands of terms and def-
initions.

1 Introduction

Dictionaries, thesauri and glossaries are useful
sources of information for students, scholars and ev-
eryday readers, who use them to look up words of
which they either do not know, or have forgotten,
the meaning. With the advent of the Web an increas-
ing number of dictionaries and technical glossaries
has been made available online, thereby speeding
up the definition search process. However, finding
definitions is not always immediate, especially if the
target term pertains to a specialized domain. Indeed,
not even well-known services such as Google Define
are able to provide definitions for scientific or tech-
nical terms such as taxonomy learning or distant su-
pervision in AI or figure-four leglock and suspended
surfboard in wrestling.

Domain-specific knowledge of a definitional na-
ture is not only useful for humans, it is also use-
ful for machines (Hovy et al., 2013). Examples
include Natural Language Processing tasks such as
Question Answering (Cui et al., 2007), Word Sense
Disambiguation (Duan and Yates, 2010; Faralli and

Navigli, 2012) and ontology learning (Velardi et al.,
2013). Unfortunately, most of the Web dictionar-
ies and glossaries available online comprise just a
few hundred definitions, and they therefore provide
only a partial view of a domain. This is also the
case with manually compiled glossaries created by
means of collaborative efforts, such as Wikipedia.1

The coverage issue is addressed by online aggrega-
tion services such as Google Define, which bring to-
gether definitions from several online dictionaries.
However, these services do not classify textual def-
initions by domain: they just present the collected
definitions for all the possible meanings of a given
term.

In order to automatically obtain large domain
glossaries, in recent years computational approaches
have been developed which extract textual defi-
nitions from corpora (Navigli and Velardi, 2010;
Reiplinger et al., 2012) or the Web (Velardi et al.,
2008; Fujii and Ishikawa, 2000). The methods in-
volving corpora start from a given set of terms (pos-
sibly automatically extracted from a domain cor-
pus) and then harvest textual definitions for these
terms from the input corpus using a supervised sys-
tem. Web-based methods, instead, extract text snip-
pets from Web pages which match pre-defined lex-
ical patterns, such as “X is a Y”, along the lines
of Hearst (1992). These approaches typically per-
form with high precision and low recall, because
they fall short of detecting the high variability of the
syntactic structure of textual definitions. To address
the low-recall issue, recurring cue terms occurring

1See http://en.wikipedia.org/wiki/Portal:
Contents/Glossaries
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within dictionary and encyclopedic resources can be
automatically extracted and incorporated into lexical
patterns (Saggion, 2004). However, this approach is
term-specific and does not scale to arbitrary termi-
nologies and domains.

The goal of the new approach outlined in this pa-
per is to enable the automatic harvesting of large-
scale, full-fledged domain glossaries for dozens of
domains, an outcome which should be very use-
ful for both human activities and automatic tasks.
We present ProToDoG (Probabilistic Topics for
multi-Domain Glossaries), a framework for growing
multi-domain glossaries which has three main nov-
elties:

i) minimal human supervision: a small set of
hypernymy relation seeds for each domain is
used to bootstrap the multi-domain acquisition
process;

ii) jointness: our approach harvests terms and
glosses at the same time;

iii) probabilistic topic models are leveraged for
a simultaneous, high-precision multi-domain
classification of the extracted definitions, with
substantial performance improvements over
our previous work on glossary bootstrapping,
i.e., GlossBoot (De Benedictis et al., 2013).

ProToDog is able to harvest definitions from the
Web and thus drop the requirement of large corpora
for each domain. Moreover, apart from the need to
select a few seeds, it avoids the use of training data
or manually defined sets of lexical patterns. It is thus
applicable to virtually any language of interest.

2 ProToDoG

Given a set of domains D = {d1, ..., dn}, for each
domain d ∈ D ProToDoG harvests a domain glos-
sary Gd containing pairs of the kind (t, g) where t
is a domain term and g is its textual definition, i.e.,
gloss. We show the pseudocode of ProToDoG in Al-
gorithm 1.

Step 1. Initial seed selection: Algorithm 1 takes
as input a set of domains D and, for each domain
d ∈ D, a small set of hypernymy relation seeds
Sd = {(t1, h1), . . . , (t|Sd|, h|Sd|)}, where the seed

Algorithm 1 ProToDoG
Input: the set of domains D,

a set Sd of hypernymy seeds for each domain
d ∈ D

Output: a multi-domain glossary G
1: k ← 1
2: repeat
3: for each domain d ∈ D do
4: Gk

d ← ∅
5: for each seed (tj , hj) ∈ Sd do
6: pages← webSearch(tj , hj , “glossary”)
7: Gk

d ← Gk
d ∪ extractGlossary(pages)

8: end for
9: end for

10: create a topic model using glossaries from previ-
ous iterations

11: infer topic assignments for iteration-k glosses
12: filter out non-domain glosses for each domain
13: for each d ∈ D do
14: Sd ← seedSelectionForNextIteration(Gk

d)
15: end for
16: k ← k + 1
17: until k > max
18: for each domain d ∈ D do
19: recover filtered glosses into Gmax+1

d

20: Gd ←
⋃

j=1,...,max+1G
j
d

21: end for
22: return G = {(Gd, d) : d ∈ D}

pair (tj , hj) contains a term tj and its generalization
hj (e.g., (linux, operating system)). This is the only
human input to the entire glossary acquisition pro-
cess. The selection of the input seeds plays a key
role in the bootstrapping process, in that the pattern
and gloss extraction process will be driven by them.
The chosen hypernymy relations thus have to be as
topical and representative as possible for the domain
of interest (e.g., (compiler, computer program) is an
appropriate pair for computer science, while (byte,
unit of measurement) is not, as it might cause the
extraction of out-of-domain glossaries of units and
measures).

The algorithm first sets the iteration counter k to
1 (line 1) and starts the first iteration of the glos-
sary bootstrapping process (lines 2-17), each involv-
ing steps 2-4, described below. After each iteration
k, for each domain d we keep track of the set of
glosses Gk

d acquired during that iteration. After the
last iteration, we perform step (5) of gloss recovery
(lines 18-21).
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Step 2. Web search and glossary extraction (lines
3-9): For each domain d, we first initialize the do-
main glossary for iteration k: Gk

d := ∅ (line 4).
Then, for each seed pair (tj , hj) ∈ Sd, we submit
the following query to a Web search engine: “tj”
“hj” glossary and collect the top-ranking results
for each query (line 6).2 Each resulting page is a
candidate glossary for the domain d.

We then call the extractGlossary function (line
7) which extracts terms and glosses from the re-
trieved pages as follows. From each candidate page,
we harvest all the text snippets s starting with tj and
ending with hj (e.g., “linux</b> – an<i>operating
system”), i.e., s = tj . . . hj . For each such text snip-
pet s, we extract the following pattern instance:

pL tj pM glosss(tj) pR,

where:

• pM is the longest sequence of HTML tags and
non-alphanumeric characters between tj and
the glossary definition (e.g., “</b> –” between
“linux” and “an” in the above example);

• glosss(tj) is the gloss of tj obtained by mov-
ing to the right of pM until we reach a non-
formatting tag element (e.g., <span>, <p>,
<div>), while ignoring formatting elements
such as <b>, <i> and <a> which are typi-
cally included within a definition sentence;

• pL and pR are the longest sequences of HTML
tags on the left of tj and the right of glosss(tj),
respectively.

For instance, given the HTML snippet
“. . .<p><b>linux</b> – an <i>operating
system</i> developed by Linus Torvalds</p>. . . ”
we extract the following pattern instance: pL =
“<p><b>”, tj = “linux”, pM = “</b> –”,
glosss(tj) = “an <i>operating system</i>
developed by Linus Torvalds”, pR =“</p>”.

Then we generalize the above pattern instance by
replacing tj and glosss(tj) with *, obtaining:

pL ∗ pM ∗ pR,

For the above example, we obtain the following
pattern:

2We use the Google Ajax API, which returns the 64 top-
ranking search results.

<p><b> * </b> – * </p>.

We add the first sentence of the retrieved gloss
glosss(tj) to our glossary Gk

d, i.e., Gk
d := Gk

d ∪
{(tj , first(glosss(tj)))}, where first(g) returns
the first sentence of gloss g. Finally, we look for ad-
ditional pairs of terms/glosses in the Web page con-
taining the snippet s by matching the page against
the generalized pattern pL ∗ pM ∗ pR, and adding
them to Gk

d.
As a result of step (2), for each domain d ∈ D

we obtain a glossary Gk
d for the terms discovered at

iteration k.

Step 3. Topic modeling and gloss filtering (lines
10-12): Unfortunately, not all (term, gloss) pairs
in a glossaryGk

d will pertain to the domain d. For in-
stance, we might end up retrieving interdisciplinary
or even unrelated glossaries. In order to address this
fuzziness, we model domains with a Probabilistic
Topic Model (PTM) (Blei et al., 2003; Steyvers and
Griffiths, 2007). PTMs model a given text document
as a mixture of topics. In our case topics are do-
mains and we, first, create a topic model from the
domain glossaries acquired before the current iter-
ation k, then, second, use the topic model to esti-
mate the domain assignment of each new pair (term,
gloss) in our glossaries Gk

d, i.e., obtained at iteration
k, third, filter out non-domain glosses.

Creating the topic model (line 10): For a given
iteration k and domain d, we first define the ter-
minology accumulated up until iteration k − 1 for
that domain as the set T 1,k−1

d :=
⋃k−1

j=1 T
j
d , where

T j
d is the set of terms acquired at iteration j, i.e.,
T j

d := {t : ∃(t, g) ∈ Gj
d}.3 Then we define:

• W :=
⋃

d∈D T
1,k−1
d as the entire terminology

acquired up until iteration k−1 for all domains,
i.e., the full set of terms independently of their
domain;

• M :=
⋃

d∈D

⋃k−1
j=1 G

j
d as the multi-domain

glossary acquired up until iteration k − 1, i.e.,
the full set of pairs (term, gloss) independently
of their domain;4

3For the first iteration, i.e., when k = 1, we define T 1,0
d :=

{t : ∃(t, g) ∈ G1
d}, i.e., we use the terminology resulting from

step (2) of the first iteration.
4For k = 1, M :=

⋃
d∈D

G1
d.
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• Two count matrices, i.e., the word-domain ma-
trix CWD and the gloss-domain matrix CMD,
such that: CWD

w,d counts the number of times
w ∈W is assigned to domain d ∈ D, i.e., it oc-
curs in the glosses of domain d; CMD

(t,g),d counts
the number of words in g assigned to domain d.

At this point, as shown by Steyvers and Grif-
fiths (2007), we can estimate the probability φ(d)

w for
word w, and the probability θ(t,g)

d for a term/gloss
pair (t, g), of belonging to domain d:

φ(d)
w =

CWD
w,d + β∑|W |

w′=1 C
WD
w′,d + |W |β

; (1)

θ
(t,g)
d =

CMD
(t,g),d + α∑|D|

d′=1 C
MD
(t,g),d′ + |D|α

(2)

where α and β are smoothing factors.5 The two
above probabilities represent the core of our topic
model of the domain knowledge acquired up until
iteration k − 1.

Probabilistic modeling of iteration-k glosses (line
11): We now utilize the above topic model to es-
timate the probabilities in Formulas 1 and 2 for the
newly acquired glosses at iteration k. To this end we
define M ′ :=

⋃
d∈D G

k
d as the union of the (term,

gloss) pairs at iteration k and W ′ :=
⋃

d∈D T
k
d

⋂
W

as the union of terms acquired at iteration k, but also
occurring in W (i.e., the entire terminology up un-
til iteration k − 1). Then we apply Gibbs sampling
(Blei et al., 2003; Phan et al., 2008) to estimate the
probability of each pair (t, g) ∈ M ′ of pertaining to
a domain d by computing:

θ
′(t,g)
d =

RM ′D
(t,g),d + α∑|D|

d′=1R
M ′D
(t,g),d′ + |D|α

(3)

where the gloss-domain matrixRM ′D is initially de-
fined by counting random domain assignments for
each word w′ in the bag of words of each (term,
gloss) pair ∈ M ′. Next, the domain assignment
counts in RM ′D are iteratively updated using Gibbs
sampling.6

5As experienced by Steyvers and Griffiths (2007), the values
of α = 50/|D| and β = 0.01 work well with many different
text collections.

6For the PTM part of ProToDoG we used the JGibbLDA

Filtering out non-domain glosses (line 12): Now,
for each domain d ∈ D, for each pair (t, g) ∈ Gk

d we
have a probability θ

′(t,g)
d of belonging to d. We mark

(t, g) as a non-domain item if θ
′(t,g)
d < δ, where δ is

a confidence threshold, or if θ
′(t,g)
d is not maximum

among all domains in D. Non-domain pairs are re-
moved from Gk

d and stored into a set Ad for possible
recovery after the last iteration (see step (5)).

Step 4. Seed selection for next iteration (lines
13-15): For each domain d ∈ D, we now select
the new set of hypernymy relation seeds to be used
to start the next iteration. First, for each newly-
acquired term/gloss pair (t, g) ∈ Gk

d, we automat-
ically extract a candidate hypernym h from the tex-
tual gloss g. To do this we use a simple heuristic
which just selects the first content term in the gloss.7

Then we sort all the glosses in Gk
d by the number of

seed terms found in each gloss. In the case of ties
(i.e., glosses with the same number of seed terms),
we further sort the glosses by θ

′(t,g)
d . Finally we se-

lect the (term, hypernym) pairs corresponding to the
|Sd| top-ranking glosses as the new set of seeds for
the next iteration.

Next, we increment k (line 16 of Algorithm 1)
and if the maximum number of iterations is reached
we jump to step (5). Otherwise, we go back to step
(2) of our glossary bootstrapping algorithm with the
new set of seeds Sd.

Step 5. Gloss recovery (line 19): After all iter-
ations, the entire multi-domain terminology W (cf.
step (3)) may contain several new terms which were
not present when a given gloss g was filtered out.
So, thanks to the last-iteration topic model, the gloss
g might come back into play because its words are
now important cues for a domain. To reassess the
domain pertinence of (term, gloss) pairs in Ad for
each d, we just reapply the entire step (3) by setting
Gmax+1

d := Ad for each d ∈ D. As a result, we

library, a Java Implementation of Latent Dirichlet Allocation
(LDA) using Gibbs Sampling for Parameter Estimation and In-
ference, available at: http://jgibblda.sourceforge.
net/

7While more complex strategies could be devised, e.g.,
lattice-based hypernym extraction (Navigli and Velardi, 2010),
we found that this heuristic works well because, even when it is
not a hypernym, the first term acts as a cue word for the defined
term.
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obtain an updated glossary Gmax+1
d which contains

all the recovered glosses.

Final output: For each domain d ∈ D the final
output of ProToDoG is a domain glossary Gd :=⋃

j=1,...,max+1G
j
d. Finally the algorithm aggregates

all glossaries Gd into a multi-domain glossary G
(line 22).

3 Experimental Setup

3.1 Domains

For our experiments we selected 30 different do-
mains ranging from Arts to Warfare, mostly follow-
ing the domain classification of Wikipedia featured
articles (full list at http://lcl.uniroma1.
it/protodog). The set includes several techni-
cal domains, such as Chemistry, Geology, Meteorol-
ogy, Mathematics, some of which are highly inter-
disciplinary. For instance, the Environment domain
covers terms from fields such as Chemistry, Biology,
Law, Politics, etc.

3.2 Gold Standard

Since our evaluations required considerable human
effort, in what follows we calculated all perfor-
mances on a random set of 10 domains, shown in the
top row of Table 1. For each of these 10 domains we
selected well-reputed glossaries on the Web as gold
standards, including the Reuters glossary of finance,
the Utah computing glossary and many others (full
list at the above URL). We show the size of our 10
gold-standard datasets in Table 1.

3.3 Evaluation measures

We evaluated the quality of both terms and glosses,
as jointly extracted by ProToDoG.

3.3.1 Terms
For each domain we calculated coverage, extra-

coverage and precision of the acquired terms T .
Coverage is the ratio of extracted terms in T also
contained in the gold standard T̂ over the size of T̂ .
Extra-coverage is calculated as the ratio of the ad-
ditional extracted terms in T \ T̂ over the number of
gold standard terms T̂ . Finally, precision is the ra-
tio of extracted terms in T deemed to be within the

domain. To calculate precision we randomly sam-
pled 5% of the retrieved terms and asked two human
annotators to manually tag their domain pertinence
(with adjudication in case of disagreement; κ = .62,
indicating substantial agreement). Note that by ran-
domly sampling on the entire set T we calculate the
precision of both terms in T ∩ T̂ , i.e., in the gold
standard, and terms in T \ T̂ , i.e., not in the gold
standard, but which are not necessarily outside the
domain.

3.3.2 Glosses
We calculated the precision of the extracted

glosses as the ratio of glosses which were both well-
formed textual definitions and specific to the tar-
get domain. Precision was determined on a random
sample of 5% of the acquired glosses for each do-
main. The annotation was made by two annotators,
with κ = .675, indicating substantial agreement.
The annotators were provided with specific guide-
lines available on the ProToDoG Web site (see URL
above).

3.4 Comparison
We compared ProToDog against:

• BoW: a bag-of-words variant in which step
(3) is replaced by a simple bag-of-words scor-
ing approach which assigns a score to each
term/gloss pair (t, g) ∈ Gk

d as follows:

score(g) =
|Bag(g) ∩ T 1,k−1

d |
|Bag(g)|

. (4)

where Bag(g) contains all content words in
g. At iteration k, we filter out those glosses
whose score(g) < σ, where σ is a thresh-
old tuned in the same manner as δ (see Sec-
tion 3.5). This approach essentially implements
GlossBoot, our previous work on domain glos-
sary bootstrapping (De Benedictis et al., 2013).

• Wikipedia: since Wikipedia is the largest
collaborative resource, covering hundreds
of fields of knowledge, we devised a simple
heuristic for producing multi-domain glos-
saries from Wikipedia, so as to compare their
performance against our gold standards. For
each target domain we manually selected one
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Figure 1: Harmonic mean of precision and coverage for
Botany and Fashion (tuning domains) over 20 iterations
(|Sd|=5, δ=0.03).

or more Wikipedia categories representing
the domain (for instance, Category:Arts
for Arts, Category:Business for Fi-
nance, etc.). Then, for each domain d,
we picked out all the Wikipedia pages
tagged either with the categories selected
for d or their direct subcategories (e.g.,
Category:Creative works) or sub-
subcategories (e.g., Category:Genres).
From each page we extracted a (page title,
gloss) pair, where the gloss was obtained by
extracting the first sentence of the Wikipedia
page, as done, e.g., in BabelNet (Navigli and
Ponzetto, 2012). Since subcategories might
have more parents and might thus belong to
multiple domains, we discarded pages assigned
to more than 2 domains.

3.5 Parameter tuning
In order to choose the optimal values of the parame-
ters of ProToDoG (number |Sd| of seeds per domain,
number max of iterations, and filtering threshold δ)
and BoW (σ threshold) we selected two extra do-
mains, i.e., Botany and Fashion, not used in our
tests, together with the corresponding gold standard
Web glossaries.

As regards the number of seeds, we defined an
initial pool of 10 seeds for each of the two tun-
ing domains and studied the average performance
of 5 random sets of x seeds (from the initial pool),
when x = 1, 3, 5, 7, 9. As regards the number of

iterations, we explored all values between 1 and
20. Finally, for the filtering thresholds δ and σ
for ProToDoG PTM and its BoW variant, we tried
values of δ ∈ {0, 0.03, 0.06, . . . , 0.6} and σ ∈
{0, 0.05, 0.1, . . . , 1.0}, respectively.

Given the high number of possible parameter
value configurations, we first explored the entire
search space automatically by calculating the cov-
erage of ProToDoG PTM (and BoW) with each con-
figuration against our tuning gold standards. Then
we identified as optimal candidates those “fron-
tier” configurations for which, when moving from
a lower-coverage configuration, coverage reached a
maximum. We then calculated the precision of each
optimal candidate configuration by manually vali-
dating a 3% random sample of the resulting glos-
saries for the two tuning domains. The optimal con-
figuration for ProToDoG was |Sd| = 5, max = 5,
δ = 0.03, while for BoW was σ = 0.1.

In Figure 1 we show the performance trend over
iterations for our two tuning domains when |Sd| = 5
and δ = 0.03. Performance is calculated as the
harmonic mean of precision and coverage of the ac-
quired glossary after each iteration, from 1 to 20. We
can see that after 5 iterations performance decreases
for Botany (a highly interdisciplinary domain) due
to lower precision, while it remains stable for Fash-
ion due to the lack of newly-acquired glosses.

3.6 Seed Selection

For each domain d we manually selected five seed
hypernymy relations as the seed sets Sd input to Al-
gorithm 1 (see Section 3.5). The seeds were selected
by the authors on the basis of just two conditions: i)
the seeds should cover different aspects of the do-
main and, indeed, should identify the domain im-
plicitly; ii) at least 10,000 results should be returned
by the search engine when querying it with the seeds
plus the glossary keyword (see line 6 of Algo-
rithm 1). The seed selection was not fine-tuned (i.e.,
it was not adjusted to improve performance), so it
might well be that better seeds would provide better
results (see (Kozareva and Hovy, 2010a)). However,
such a study is beyond the scope of this paper.
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Gold t/g 394 1777 164 421 713 946 180 218 315 146
PTM t 4253 7370 2493 3412 3009 1526 1836 1647 3847 1696

g 7386 9795 3841 4186 3552 2175 4141 2729 5197 2938
BoW t 4012 7639 1174 3127 3644 1827 1773 1166 4471 1990

g 5923 8999 1414 3662 4334 2601 4024 1249 6956 3425
Wiki t,g 107.1k 48.4k 8137 32.0k 23.6k 5698 13.5k 84.1k 33.8k 267.5k

Table 1: Size of the gold standard and the automatically-acquired glossaries for 10 of the 30 selected domains (t:
number of terms, g: number of glosses).

4 Results and Discussion

4.1 Terms

The size of the extracted terminologies for the 10 do-
mains after five iterations is reported in Table 1 (the
output for all 30 domains is available at the above
URL, cf. Section 3.1). ProToDoG PTM and its BoW
variant extract thousands of terms and glosses for
each domain, whereas the number of glosses ob-
tained from Wikipedia (cf. Section 3.4) varies de-
pending upon the domain, from thousands to hun-
dreds of thousands. Note that there is no overlap
between the glossaries extracted by ProToDoG and
the set of Wikipedia articles, since the latter are not
organized as glossaries.

In Table 2 we show the percentage results in
terms of precision (P), coverage (C), and extra-
coverage (X, see Section 3.3 for definitions) for
ProToDoG PTM and its BoW variant and for the
Wikipedia glossary. With the exception of the
Food domain, ProToDoG achieves the best pre-
cision. The Wikipedia glossary has fluctuating
precision values, ranging between 25% and 90%,
due to the heterogeneous nature of subcategories.
ProToDog achieves the best coverage of gold stan-
dard terms on 6 of the 10 domains, with the BoW
variant obtaining slightly higher coverage on 3 do-
mains and +10% on the Food domain. The cov-
erage of Wikipedia glossaries, instead, with the
sole exception of Sport, is much lower, despite the
use of (sub)subcategories (cf. Section 3.4). Both
ProToDoG PTM and BoW achieve very high extra-
coverage percentages, meaning that they are able to

go substantially beyond our domain gold standards,
but it is the Wikipedia glossary which achieves the
highest extra-coverage values. To get a better in-
sight into the quality of extra-coverage we calcu-
lated the percentage of named entities (i.e., encyclo-
pedic) among the terms extracted by each of the dif-
ferent approaches. Comparing results across the (E)
columns of Table 2 it can be seen that high percent-
ages of the terms extracted by Wikipedia are named
entities, which is in marked contrast to the 0%-1%
extracted by ProToDog. This is as should be ex-
pected for an encyclopedia, whose coverage focuses
on people, places, brands, etc. rather than concepts.

To summarize, ProToDoG PTM outperforms both
BoW and Wikipedia in terms of precision, while
at the same time achieving both competitive cov-
erage and extra-coverage. The Wikipedia glossary
suffers from fluctuating precision values across do-
mains and overly encyclopedic coverage of terms.

4.2 Glosses

We show the results of gloss evaluation in Table 2
(last two columns) for ProToDoG PTM and BoW
(we do not report the precision values for Wikipedia,
as they are slightly lower than those obtained for
terms). Precision ranges between 89% and 99%
for ProToDoG PTM and between 82% and 97%
for BoW. We observe that these results are strongly
correlated with the precision of the extracted terms
(cf. Table 2), because the retrieved glosses of do-
main terms are usually in-domain too, and follow a
definitional style since they come from glossaries.
Note, however, that the gloss precision could also be
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terms glosses
PTM BoW Wiki PTM BoW

P C X E P C X E P C X E P P
Art 92 26 1053 1 86 25 992 0 81 19 23.4k 67 93 87
Business 95 41 374 0 90 43 387 0 37 15 2692 31 96 91
Chemistry 99 77 1410 0 95 73 643 0 49 18 12.9k 3 98 96
Computing 95 43 767 0 93 40 702 0 81 30 7506 36 96 94
Environment 91 29 393 0 84 28 482 0 25 9 3302 12 89 82
Food 91 21 1404 0 97 31 1621 0 81 9 3997 25 92 95
Law 98 89 931 0 95 87 897 0 35 34 7406 16 99 97
Music 94 98 660 0 93 84 453 0 90 50 37.1k 84 96 95
Physics 97 43 1178 0 91 46 1373 0 68 25 10.6k 10 95 89
Sport 98 22 1139 1 96 23 1339 1 87 44 178.2k 83 97 96

Table 2: Precision (P), coverage (C), extra-coverage (X), encyclopedic (E) percentages after 5 iterations.
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Google Define 76 80 93 86 88 91 96 96 98 84
ProToDoG 27 41 81 40 37 19 85 98 47 27

Table 3: Number of domain glosses (from a random sam-
ple of 100 gold standard terms per domain) retrieved us-
ing Google Define and ProToDoG.

higher than term precision, thanks to many pertinent
glosses being extracted for the same term (cf. Table
1).

In Table 4 we show an excerpt of the multi-
domain glossary extracted by ProToDoG for the Art,
Business and Sport domains.

5 Comparative Evaluation

5.1 Comparison with Google Define

We performed a comparison with Google Define,8

a state-of-the-art definition search service. This
service inputs a term query and outputs a list of
glosses. First, we randomly sampled 100 terms
from our gold standard for each domain. Next, for
each domain, we manually calculated the fraction
of terms for which at least one in-domain defini-
tion was provided by Google Define and ProToDoG.

8Accessible from Google search with the define: key-
word.

Table 3 shows the coverage results. In this exper-
iment, Google Define outperforms our system on
9 of the 10 analyzed domains. However, we note
that when searching for domain-specific knowledge
only, Google Define: i) needs to know the domain
term to be defined in advance, while ProToDoG
jointly acquires domain terms and glosses starting
from just a few seeds; ii) does not discriminate be-
tween glosses pertaining to the target domain and
glosses pertaining to other fields or senses, whereas
ProToDog extracts terms and glosses specific to each
domain of interest.

5.2 Comparison with TaxoLearn

We also compared ProToDoG with the output of
a state-of-the-art taxonomy learning framework,
called TaxoLearn (Navigli et al., 2011). We did
this because i) TaxoLearn extracts terms and glosses
from domain corpora in order to create a domain tax-
onomy; ii) it is one of the few systems which extracts
both terms and glosses from specialized corpora; iii)
the extracted glossaries are available online.9 There-
fore we compared the performance of ProToDoG on
two domains for which glossaries were extracted by
TaxoLearn, i.e. AI and Finance. The glossaries were
harvested from large collections of scholarly arti-
cles. For ProToDoG we selected 10 seeds to cover
all the fields of AI, while for the financial domain
we selected the same 5 seeds used in the Business

9http://ontolearn.org and http://lcl.
uniroma1.it/taxolearn
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Art
rock art includes pictographs (designs painted on stone surfaces) and petroglyphs (designs

pecked or incised on stone surfaces).
impressionism Late 19th-century French school dedicated to defining transitory visual impressions

painted directly from nature, with light and color of primary importance.
point Regarding paper, a unit of thickness equating 1/1000 inch.

Business
hyperinflation Extremely rapid or out of control inflation.
interbank rate The rate of interest charged by a bank on a loan to another bank.
points Amount of discount on a mortgage loan stated as a percentage; one point equals one

percent of the face amount of the loan; a discount of one point raises the net yield on
the loan by one-eighth of one percent.

Sport
gross score The actual number of strokes taken by a player for hole or round before the player’s

handicap is deducted.
obstructing preventing the opponent from going around a player by standing in the path of move-

ment.
points a team statistic indicating its degree of success, calculated as follows: 2 points for a

win (3 in the 1994 World Cup), 1 point for a tie, 0 points for a loss.

Table 4: An excerpt of the resulting multi-domain glossary obtained with ProToDoG.

domain of our experiments above (cf. Section 3).
We show the number of extracted terms and

glosses for ProToDoG and TaxoLearn in Table 5.
We also show the precision values calculated on a
random sample of 5% of terms and glosses. As can
be clearly seen, on both domains ProToDoG extracts
a number of terms and glosses which is an order
of magnitude greater than those obtained by Tax-
oLearn, while at the same time obtaining consider-
ably higher precision.

6 Related Work

Current approaches to automatic glossary acquisi-
tion suffer from two main issues: i) the poor avail-
ability of large domain-specific corpora from which
terms and glosses are extracted at different times;
ii) the focus on individual domains. ProToDog ad-
dresses both issues by providing a joint multi-
domain approach to term and glossary extraction.

Among the approaches which extract unre-
stricted textual definitions from open text, Fujii and
Ishikawa (2000) determine the definitional nature of
text fragments by using an n-gram model, whereas
Klavans and Muresan (2001) apply pattern match-
ing techniques at the lexical level guided by cue

phrases such as “is called” and “is defined as”.
More recently, a domain-independent supervised ap-
proach, named Word-Class Lattices (WCLs), was
presented which learns lattice-based definition clas-
sifiers applied to candidate sentences containing the
input terms (Navigli and Velardi, 2010). To avoid
the burden of manually creating a training dataset,
definitional patterns can be extracted automatically.
Faralli and Navigli (2013) utilized Wikipedia as
a huge source of definitions and simple, yet ef-
fective heuristics to automatically annotate them.
Reiplinger et al. (2012) experimented with two dif-
ferent approaches for the acquisition of lexical-
syntactic patterns. The first approach bootstraps pat-
terns from a domain corpus and then manually re-
fines the acquired patterns. The second approach, in-
stead, automatically acquires definitional sentences
by using a more sophisticated syntactic and seman-
tic processing. The results show high precision
in both cases. However, all the above approaches
need large domain corpora, the poor availability of
which hampers the creation of wide-coverage glos-
saries for several domains. To avoid the need to
use a large corpus, domain terminologies can be ob-
tained by using Doubly-Anchored Patterns (DAPs)
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AI Finance
# terms P # glosses P # terms P # glosses P

ProToDoG 4983 83% 5326 84% 7370 95% 9795 96%
TaxoLearn 427 77% 834 79% 2348 86% 1064 88%

Table 5: Number and precision of terms and glosses extracted by ProToDoG and TaxoLearn in the Artificial Intelli-
gence (AI) and Finance domains.

which, given a (term, hypernym) pair, extract from
the Web sentences matching manually-defined pat-
terns like “<hypernym> such as <term>, and *”
(Kozareva and Hovy, 2010b). This term extrac-
tion process is further extended by harvesting new
hypernyms using the corresponding inverse pat-
terns (called DAP−1) like “* such as <term1>, and
<term2>”. Similarly to ProToDoG, this approach
drops the requirement of a domain corpus and starts
from a small number of (term, hypernym) seeds.
However, while DAPs have proven useful in the in-
duction of domain taxonomies (Kozareva and Hovy,
2010b), they cannot be applied to the glossary learn-
ing task because the extracted sentences are not for-
mal definitions. In contrast, ProToDoG performs
the novel task of multi-domain glossary acquisition
from the Web by bootstrapping the extraction pro-
cess with a few (term, hypernym) seeds. Bootstrap-
ping techniques (Brin, 1998; Agichtein and Gra-
vano, 2000; Paşca et al., 2006) have been success-
fully applied to several tasks, including learning se-
mantic relations (Pantel and Pennacchiotti, 2006),
extracting surface text patterns for open-domain
question answering (Ravichandran and Hovy, 2002),
semantic tagging (Huang and Riloff, 2010) and un-
supervised Word Sense Disambiguation (Yarowsky,
1995). ProToDoG synergistically integrates boot-
strapping with probabilistic topic models so as to
keep the glossary acquisition process within the tar-
get domains as much as possible.

7 Conclusions

In this paper we have presented ProToDoG, a new,
minimally-supervised approach to multi-domain
glossary acquisition. Starting from a small set of hy-
pernymy seeds which identify each domain of inter-
est, we apply a bootstrapping approach which itera-
tively obtains generalized patterns from Web glos-
saries and then applies them to the extraction of

term/gloss pairs. To our knowledge, ProToDoG is
the first approach to large-scale probabilistic glos-
sary learning which jointly acquires thousands of
terms and glosses for dozens of domains with mini-
mal supervision.

At the core of ProToDoG lies our glossary boot-
strapping approach, thanks to which we can drop
the requirements of existing techniques such as the
ready availability of domain corpora, which often do
not contain enough definitions (cf. Table 5), and the
manual definition of lexical patterns, which typically
extract sentence snippets instead of formal glosses.

ProToDoG will be made available to the re-
search community. Beyond the immediate usabil-
ity of the output glossaries (we show an excerpt
in Table 4), we also wish to show the benefit
of ProToDoG in gloss-driven approaches to taxon-
omy learning (Navigli et al., 2011; Velardi et al.,
2013) and Word Sense Disambiguation (Duan and
Yates, 2010; Faralli and Navigli, 2012). The 30-
domain glossaries and gold standards created for
our experiments are available from http://lcl.
uniroma1.it/protodog.

We remark that the terminologies covered with
ProToDoG are not only precise, but are also one
order of magnitude greater than those covered in
individual online glossaries. As future work, we
plan to study the ability of ProToDoG to acquire
domain glossaries at different levels of specificity
(i.e., domains vs. subdomains). Finally, we will
adapt ProToDoG to other languages, by translating
the glossary keyword used in step (2), along the
lines of (De Benedictis et al., 2013).
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Abstract

The creation of a pronunciation lexicon re-
mains the most inefficient process in develop-
ing an Automatic Speech Recognizer (ASR).
In this paper, we propose an unsupervised
alternative – requiring no language-specific
knowledge – to the conventional manual ap-
proach for creating pronunciation dictionar-
ies. We present a hierarchical Bayesian model,
which jointly discovers the phonetic inven-
tory and the Letter-to-Sound (L2S) mapping
rules in a language using only transcribed
data. When tested on a corpus of spontaneous
queries, the results demonstrate the superior-
ity of the proposed joint learning scheme over
its sequential counterpart, in which the la-
tent phonetic inventory and L2S mappings are
learned separately. Furthermore, the recogniz-
ers built with the automatically induced lexi-
con consistently outperform grapheme-based
recognizers and even approach the perfor-
mance of recognition systems trained using
conventional supervised procedures.

1 Introduction

Modern automatic speech recognizers require a few
essential ingredients such as a signal representation
of the speech signal, a search component, and typ-
ically a set of stochastic models that capture 1) the
acoustic realizations of the basic sounds of a lan-
guage, for example, phonemes, 2) the realization of
words in terms of these sounds, and 3) how words
are combined in spoken language. When creating
a speech recognizer for a new language the usual
requirements are: first, a large speech corpus with
word-level annotations; second, a pronunciation dic-
tionary that essentially defines a phonetic inventory

for the language as well as word-level pronuncia-
tions, and third, optional additional text data that
can be used to train the language model. Given
these data and some decision about the signal rep-
resentation, e.g., centi-second Mel-Frequency Cep-
stral Coefficients (MFCCs) (Davis and Mermelstein,
1980) with various derivatives, as well as the nature
of the acoustic and language model such as 3-state
HMMs and n-grams, iterative training methods can
be used to effectively learn the model parameters for
the acoustic and language models. Although the de-
tails of the components have changed through the
years, this basic ASR formulation was well estab-
lished by the late 1980’s, and has not really changed
much since then.

One of the interesting aspects of this formulation
is the inherent dependence on the dictionary, which
defines both the phonetic inventory of a language,
and the pronunciations of all the words in the vo-
cabulary. The dictionary is arguably the cornerstone
of a speech recognizer as it provides the essential
transduction from sounds to words. Unfortunately,
the dependency on this resource is a significant im-
pediment to the creation of speech recognizers for
new languages, since they are typically created by
experts, whereas annotated corpora can be relatively
more easily created by native speakers of a language.

The existence of an expert-derived dictionary in
the midst of stochastic speech recognition models is
somewhat ironic, and it is natural to ask why it con-
tinues to receive special status after all these years.
Why can we not learn the inventory of sounds of a
language and associated word pronunciations auto-
matically, much as we learn our acoustic model pa-
rameters? If successful, we would move one step
forward towards breaking the language barrier that
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limits us from having speech recognizers for all lan-
guages of the world, instead of the less than 2% that
currently exist.

In this paper, we investigate the problem of infer-
ring a pronunciation lexicon from an annotated cor-
pus without exploiting any language-specific knowl-
edge. We formulate our approach as a hierarchi-
cal Bayesian model, which jointly discovers the
acoustic inventory and the latent encoding scheme
between the letters and the sounds of a language.
We evaluate the quality of the induced lexicon and
acoustic model through a series of speech recogni-
tion experiments on a conversational weather query
corpus (Zue et al., 2000). The results demonstrate
that our model consistently generates close perfor-
mance to recognizers that are trained with expert-
defined phonetic inventory and lexicon. Compared
to grapheme-based recognizers, our model is capa-
ble of improving the Word Error Rates (WERs) by
at least 15.3%. Finally, the joint learning framework
proposed in this paper is proven to be much more
effective than modeling the acoustic units and the
letter-to-sound mappings separately, as shown in a
45% WER deduction our model achieves compared
to a sequential approach.

2 Related Work

Various algorithms for learning sub-word based pro-
nunciations were proposed in (Lee et al., 1988;
Fukada et al., 1996; Bacchiani and Ostendorf, 1999;
Paliwal, 1990). In these previous approaches, spo-
ken samples of a word are gathered, and usually
only one single pronunciation for the word is de-
rived based on the acoustic evidence observed in the
spoken samples. The major difference between our
work and these previous works is that our model
learns word pronunciations in the context of letter
sequences. More specifically, our model learns letter
pronunciations first and then concatenates the pro-
nunciation of each letter in a word to form the word
pronunciation. The advantage of our approach is
that pronunciation knowledge learned for a particu-
lar letter in some arbitrary word can subsequently be
used to help learn the letter’s pronunciation in other
words. This property allows our model to potentially
learn better pronunciations for less frequent words.

The more recent work by Garcia and Gish (2006)

and Siu et al. (2013) has made extensive use
of self-organizing units for keyword spotting and
other tasks for languages with limited linguistic
resources. Others who have more recently ex-
plored the unsupervised space include (Varadarajan
et al., 2008; Jansen and Church, 2011; Lee and
Glass, 2012). The latter work introduced a non-
parametric Bayesian inference procedure for auto-
matically learning acoustic units that is most similar
to our current work except that our model also infers
word pronunciations simultaneously.

The concept of creating a speech recognizer for
a language with only orthographically annotated
speech data has also been explored previously by
means of graphemes. This approach has been shown
to be effective for alphabetic languages with rela-
tively straightforward grapheme to phoneme trans-
formations and does not require any unsupervised
learning of units or pronunciations (Killer et al.,
2003; Stüker and Schultz, 2004). As we explain in
later sections, grapheme-based systems can actually
be regarded as a special case of our model; therefore,
we expect our model to have greater flexibilities for
capturing pronunciation rules of graphemes.

3 Model

The goal of our model is to induce a word pronunci-
ation lexicon from spoken utterances and their cor-
responding word transcriptions. No other language-
specific knowledge is assumed to be available, in-
cluding the phonetic inventory of the language. To
achieve the goal, our model needs to solve the fol-
lowing two tasks:

• Discover the phonetic inventory.

• Reveal the latent mapping between the letters
and the discovered phonetic units.

We propose a hierarchical Bayesian model for
jointly discovering the two latent structures from
an annotated speech corpus. Before presenting our
model, we first describe the key latent and observed
variables of the problem.

Letter (lmi ) We use lmi to denote the ith let-
ter observed in the word transcription of the
mth training sample. To be sure, a train-
ing sample involves a speech utterance and its
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corresponding text transcription. The letter se-
quence composed of lmi and its context, namely
lmi−κ, · · · , lmi−1, l

m
i , l

m
i+1, · · · , lmi+κ, is denoted as ~lmi,κ.

Although lmi is referred to as a letter in this paper,
it can represent any character observed in the text
data, including space and symbols indicating sen-
tence boundaries. The set of unique characters ob-
served in the data set is denoted as G. For notation
simplicity, we use Lκ to denote the set of letter se-
quences of length 2κ + 1 that appear in the dataset
and use ~lκ to denote the elements in Lκ. Finally,
P(~lκ) is used to represent the parent of ~lκ, which is
a substring of ~lκ with the first and the last characters
truncated.

Number of Mapped Acoustic Units (nmi ) Each
letter lmi in the transcriptions is assumed to be
mapped to a certain number of phonetic units. For
example, the letter x in the word fox is mapped to
2 phonetic units /k/ and /s/, while the letter e in the
word lake is mapped to 0 phonetic units. We denote
this number as nmi and limit its value to be 0, 1 or 2
in our model. The value of nmi is always unobserved
and needs to be inferred by the our model.

Identity of the Acoustic Unit (cmi,p) For each pho-
netic unit that lmi maps to, we use cmi,p, for 1 ≤ p ≤
nmi , to denote the identity of the phonetic unit. Note
that the phonetic inventory that describes the data
set is unknown to our model, and the identities of
the phonetic units are associated with the acoustic
units discovered automatically by our model.

Speech Feature xmt The observed speech data in
our problem are converted to a series of 25 ms 13-
dimensional MFCCs (Davis and Mermelstein, 1980)
and their first- and second-order time derivatives at
a 10 ms analysis rate. We use xmt ∈ R39 to denote
the tth feature frame of the mth utterance.

3.1 Generative Process
We present the generative process for a single train-
ing sample (i.e., a speech utterance and its corre-
sponding text transcription); to keep notation sim-
ple, we discard the index variable m in this section.

For each li in the transcription, the model gener-
ates ni, given ~li,κ, from the 3-dimensional categori-
cal distribution φ~li,κ(ni). Note that for every unique
~li,κ letter sequence, there is an associated φ~li,κ(ni)

lj 

  1≤  p ≤ ni 

α0 

ci, p 

θ0 

K

θc 

di,p  

η 

1 ≤ i ≤ Lm 

ni 

xt 

1 ≤ m ≤ M 

πl2,n,p 

γ β 

πl,n,p 

G ×{(n,p) | 
0 ≤ n ≤ 2, 1 ≤ p ≤ n} 

πl1,n,p 

G ×G 

G ×G 

α1 

α2 

i-2 ≤ j ≤ i+2 

Figure 1: The graphical representation of the pro-
posed hierarchical Bayesian model. The shaded cir-
cle denotes the observed text and speech data, and
the squares denote the hyperparameters of the priors
in our model. See Sec. 3 for a detailed explanation
of the generative process of our model.

distribution, which captures the fact that the number
of phonetic units a letter maps to may depend on its
context. In our model, we impose a Dirichlet distri-
bution prior Dir(η) on φ~li,κ(ni).

If ni = 0, li is not mapped to any acoustic units
and the generative process stops for li; otherwise,
for 1 ≤ p ≤ ni, the model generates ci,p from:

ci,p ∼ π~li,κ,ni,p (1)

where π~li,κ,ni,p is a K-dimensional categorical dis-
tribution, whose outcomes correspond to the pho-
netic units discovered by the model from the given
speech data. Eq. 1 shows that for each combination
of~li,κ, ni and p, there is an unique categorical distri-
bution. An important property of these categorical
distributions is that they are coupled together such
that their outcomes point to a consistent set of pho-
netic units. In order to enforce the coupling, we con-
struct π~li,κ,ni,p through a hierarchical process.

β ∼ Dir(γ) (2)

π~li,κ,ni,p ∼ Dir(ακβ) for κ = 0 (3)

π~li,κ,ni,p ∼ Dir(ακπ~li,κ−1,ni,p
) for κ ≥ 1 (4)
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To interpret Eq. 2 to Eq. 4, we envision that
the observed speech data are generated by a K-
component mixture model, of which the components
correspond to the phonetic units in the language. As
a result, β in Eq. 2 can be viewed as the mixture
weight over the components, which indicates how
likely we are to observe each acoustic unit in the
data overall. By adopting this point of view, we
can also regard the mapping between li and the pho-
netic units as a mixture model, and πli,ni,p

1 repre-
sents how probable li is mapped to each phonetic
unit given ni and p. We apply a Dirichlet distribu-
tion prior parametrized by α0β to πli,ni,p as shown
in Eq. 3. With this parameterization, the mean of
πli,ni,p is the global mixture weight β, and α0 con-
trols how similar πli,ni,p is to the mean. More specif-
ically, for large α0 � K, the Dirichlet distribution
is highly peaked around the mean; on the contrary,
for α0 � K, the mean lies in a valley. The parame-
ters of a Dirichlet distribution can also be viewed as
pseudo-counts for each category. Eq. 4 shows that
the prior for π~li,κ,ni,p is seeded by pseudo-counts
that are proportional to the mapping weights over
the phonetic units of li in a shorter context. In other
words, the mapping distribution of li in a shorter
context can be thought of as a back-off distribution
of li’s mapping weights in a longer context.

Each component of the K-dimensional mixture
model is linked to a 3-state Hidden Markov Model
(HMM). These K HMMs are used to model the
phonetic units in the language (Jelinek, 1976). The
emission probability of each HMM state is modeled
by a diagonal Gaussian Mixture Model (GMM). We
use θc to represent the set of parameters that define
the cth HMM, which includes the state transition
probability and the GMM parameters of each state
emission distribution. The conjugate prior of θc is
denoted as H(θ0)

2.
Finally, to finish the generative process, for each

ci,p we use the corresponding HMM θci,p to gen-
erate the observed speech data xt, and the genera-
tive process of the HMM determines the duration,

1An abbreviation of π~li,0,ni,p
2H(θ0) includes a Dirichlet prior for the transition probabil-

ity of each state, and a Dirichlet prior for each mixture weight
of the three GMMs, and a normal-Gamma distribution for the
mean and precision of each Gaussian mixture in the 3-state
HMM.

di,p, of the speech segment. The complete genera-
tive model, with κ set to 2, is depicted in Fig. 1; M
is the total number of transcribed utterances in the
corpus, and Lm is the number of letters in utterance
m. The shaded circles denote the observed data, and
the squares denote the hyperparameters of the priors
used in our model. Lastly, the unshaded circles de-
note the latent variables of our model, for which we
derive inference algorithms in the next section.

4 Inference

We employ Gibbs sampling (Gelman et al., 2004) to
approximate the posterior distribution of the latent
variables in our model. In the following sections, we
first present a message-passing algorithm for block-
sampling ni and ci,p, and then describe how we
leverage acoustic cues to accelerate the computa-
tion of the message-passing algorithm. Note that the
block-sampling algorithm for ni and ci,p can be par-
allelized across utterances. Finally, we briefly dis-
cuss the inference procedures for φ~lκ , π~lκ,n,p, β, θc.

4.1 Block-sampling ni and ci,p

To understand the message-passing algorithm in this
study, it is helpful to think of our model as a sim-
plified Hidden Semi-Markov Model (HSMM), in
which the letters represent the states and the speech
features are the observations. However, unlike in
a regular HSMM, where the state sequence is hid-
den, in our case, the state sequence is fixed to be the
given letter sequence. With this point of view, we
can modify the message-passing algorithms of Mur-
phy (2002) and Johnson and Willsky (2013) to com-
pute the posterior information required for block-
sampling ni and ci,p.

Let L(xt) be a function that returns the index
of the letter from which xt is generated; also, let
Ft = 1 be a tag indicating that a new phone segment
starts at t+ 1. Given the constraint that 0 ≤ ni ≤ 2,
for 0 ≤ i ≤ Lm and 0 ≤ t ≤ Tm, the backwards
messages Bt(i) and B∗t (i) for the mth training sam-
ple can be defined and computed as in Eq. 5 and
Eq. 7. Note that for clarity we discard the index vari-
able m in the derivation of the algorithm.
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Bt(i) , p(xt+1:T |L(xt) = i, Ft = 1)

=

min{L,i+1+U}∑
j=i+1

B∗t (j)

j−1∏
k=i+1

p(nk = 0|~li,κ)

=

min{L,i+1+U}∑
j=i+1

B∗t (j)

j−1∏
k=i+1

φ~li,κ(0) (5)

B∗t (i) , p(xt+1:T |L(xt+1) = i, Ft = 1)

=
T−t∑
d=1

p(xt+1:t+d|~li,κ)Bt+d(i) (6)

=
T−t∑
d=1

{
K∑

ci,1=1

φ~li,κ(1)π~li,κ,1,1(ci,1)p(xt+1:t+d|θci,1)

+
d−1∑
v=1

K∑
ci,1

K∑
ci,2

φ~li,κ(2)π~li,κ,2,1(ci,1)π~li,κ,2,2(ci,2)

× p(xt+1:t+v|θci,1)p(xt+v+1:t+d|θci,2)}Bt+d(i)
(7)

We use xt1:t2 to denote the segment consisting of
xt1 , · · · , xt2 . Our inference algorithm only allows
up to U letters to emit 0 acoustic units in a row. The
value of U is set to 2 for our experiments. Bt(i)
represents the total probability of all possible align-
ments between xt+1:T and li+1:L. B∗t (i) contains
the probability of all the alignments between xt+1:T

and li+1:L that map xt+1 to li particularly. This
alignment constraint between xt+1 and li is explic-
itly shown in the first term of Eq. 6, which represents
how likely the speech segment xt+1:t+d is generated
by li given li’s context. This likelihood is simply
the marginal probability of p(xt+1:t+d, ni, ci,p|~li,κ)
with ni and ci,p integrated out, which can be ex-
panded and computed as shown in the last three rows
of Eq. 7. The index v specifies where the phone
boundary is between the two acoustic units that li
is aligned with when ni = 2. Eq. 8 to Eq. 10 are
the boundary conditions of the message passing al-
gorithm. B0(0) carries the total probably of all pos-
sible alignments between l1:L and x1:T . Eq. 9 spec-
ifies that at most U letters at the end of an sentence
can be left unaligned with any speech features, while
Eq. 10 indicates that all of the speech features in an
utterance must be assigned to a letter.

Algorithm 1 Block-sample ni and ci,p from Bt(i)
and B∗t (i)

1: i← 0
2: t← 0
3: while i < L ∧ t < T do
4: nexti ← SampleFromBt(i)
5: if nexti > i+ 1 then
6: for k = i+ 1 to k = nexti − 1 do
7: nk ← 0
8: end for
9: end if

10: d, ni, 〈ci,p〉, v ← SampleFromB∗t (nexti)
11: t← t+ d
12: i← nexti
13: end while

B0(0) =

min{L,U+1}∑
j=1

B∗0(j)

j−1∏
k=1

φ~li,κ(0) (8)

BT (i) ,


1 if i = L∏L
j=i+1 φ~li,κ(0) if L− U ≤ i < L

0 if i < L− U
(9)

Bt(L) ,

{
1 if t = T

0 otherwise
(10)

Given Bt(i) and B∗t (i), ni and ci,p for each letter
in the utterance can be sampled using Alg. 1. The
SampleFromBt(i) function in line 4 returns a ran-
dom sample from the relative probability distribu-
tion composed by entries of the summation in Eq. 5.
Line 5 to line 9 check whether li (and maybe li+1)
is mapped to zero phonetic units. nexti points to
the letter that needs to be aligned with 1 or 2 phone
segments starting from xt. The number of phonetic
units that lnexti maps to and the identities of the
units are sampled in SampleFromB∗t (i). This sub-
routine generates a tuple of d, ni, 〈ci,p〉 as well as
v (if ni = 2) from all the entries of the summation
shown in Eq. 73.

3We use 〈ci,p〉 to denote that 〈ci,p〉may consist of two num-
bers, ci,1 and ci,2, when ni = 2.
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4.2 Heuristic Phone Boundary Elimination

The variables d and v in Eq. 7 enumerate through
every frame index in a sentence, treating each fea-
ture frame as a potential boundary between acous-
tic units. However, it is possible to exploit acoustic
cues to avoid checking feature frames that are un-
likely to be phonetic boundaries. We follow the pre-
segmentation method described in Glass (2003) to
skip roughly 80% of the feature frames and greatly
speed up the computation of B∗t (i).

Another heuristic applied to our algorithm to re-
duce the search space for d and v is based on the
observation that the average duration of phonetic
units is usually no longer than 300 ms. Therefore,
when computing B∗t (i), we only consider speech
segments that are shorter than 300 ms to avoid align-
ing letters to speech segments that are too long to be
phonetic units.

4.3 Sampling φ~lκ , π~lκ,ni,p, β and θc
Sampling φ~lκ To compute the posterior distribu-

tion of φ~lκ , we count how many times ~lκ is mapped
to 0, 1 and 2 phonetic units from nmi . More specifi-
cally, we define N~lκ(j) for 0 ≤ j ≤ 2 as follows:

N~lκ(j) =
M∑
m=1

Lm∑
i=1

δ(nmi , j)δ(
~lmi,κ,

~lκ)

where we use δ(·) to denote the discrete Kronecker
delta. With N~lκ , we can simply sample a new value
for φ~lκ from the following distribution:

φ~lκ ∼ Dir(η +N~lκ)

Sampling π~lκ,n,p and β The posterior distribu-
tions of π~lκ,n,p and β are constructed recursively due
to the hierarchical structure imposed on π~lκ,n,p and
β. We start with gathering counts for updating the
π variables at the lowest level, i.e., π~l2,n,p given that
κ is set to 2 in our model implementation, and then
sample pseudo-counts for the π variables at higher
hierarchies as well as β. With the pseudo-counts, a
new β can be generated, which allows π~lκ,n,p to be
re-sampled sequentially.

More specifically, we define C~l2,n,p(k) to be the

number of times that ~l2 is mapped to n units and
the unit in position p is the kth phonetic unit. This

value can be counted from the current values of cmi,p
as follows.

C~l2,n,p(k) =

M∑
m=1

Lm∑
i=1

δ(~li,2,~l2)δ(n
m
i , n)δ(cmi,p, k)

To derive the posterior distribution of π~l1,n,p an-
alytically, we need to sample pseudo-counts C~l1,n,p,
which is defined as follows.

C~l1,n,p(k) =
∑
~l2∈U~l1

C~l2,n,p(k)∑
i=1

I[νi <
α2π~l1,n,p(k)

i+ α2π~l1,n,p(k)
]

(11)
We use U~l1 = {~l2|P(~l2) = ~l1} to denote the set of

~l2 whose parent is~l1 and νi to represent random vari-
ables sampled from a uniform distribution between
0 and 1. Eq. 11 can be applied recursively to com-
pute C~l0,n,p(k) and C ,n,p(k), the pseudo-counts that
are applied to the conjugate priors of π~l0,n,p and β.
With the pseudo-count variables computed, new val-
ues for β and π~lκ,n,p can be sampled sequentially as
shown in Eq. 12 to Eq. 14.

β ∼ Dir(γ + C ,n,p) (12)

π~lκ,n,p ∼ Dir(ακβ + C~lκ,n,p) for κ = 0 (13)

π~lκ,n,p ∼ Dir(ακπ~lκ−1,n,p
+ C~lκ,n,p) for κ ≥ 1

(14)

5 Experimental Setup

To test the effectiveness of our model for joint learn-
ing phonetic units and word pronunciations from an
annotated speech corpus, we construct speech rec-
ognizers out of the training results of our model.
The performance of the recognizers is evaluated and
compared against three baselines: first, a grapheme-
based speech recognizer; second, a recognizer built
by using an expert-crafted lexicon, which is referred
to as an expert lexicon in the rest of the paper for
simplicity; and third, a recognizer built by discover-
ing the phonetic units and L2S pronunciation rules
sequentially without using a lexicon. In this section,
we provide a detailed description of the experimen-
tal setup.

187



η γ α0 α1 α2 θ0 κ K
〈0.1〉3 〈10〉100 1 0.1 0.2 * 2 100

Table 1: The values of the hyperparameters of our
model. We use 〈a〉D to denote aD-dimensional vec-
tor with all entries being a. *We follow the proce-
dure reported in (Lee and Glass, 2012) to set up the
HMM prior θ0.

5.1 Dataset

All the speech recognition experiments reported in
this paper are performed on a weather query dataset,
which consists of narrow-band, conversational tele-
phone speech (Zue et al., 2000). We follow the ex-
perimental setup of McGraw et al. (2013) and split
the corpus into a training set of 87,351 utterances, a
dev set of 1,179 utterances and a test set of 3,497 ut-
terances. A subset of 10,000 utterances is randomly
selected from the training set. We use this subset of
data for training our model to demonstrate that our
model is able to discover the phonetic composition
and the pronunciation rules of a language even from
just a few hours of data.

5.2 Building a Recognizer from Our Model

The values of the hyperparameters of our model are
listed in Table 1. We run the inference procedure de-
scribed in Sec. 4 for 10,000 times on the randomly
selected 10,000 utterances. The samples of φ~lκ and
π~lκn,p from the last iteration are used to decode nmi
and cmi,p for each sentence in the entire training set by
following the block-sampling algorithm described
in Sec. 4.1. Since cmi,p is the phonetic mapping of
lmi , by concatenating the phonetic mapping of ev-
ery letter in a word, we can obtain a pronunciation
of the word represented in the labels of discovered
phonetic units. For example, assume that word w
appears in sentence m and consists of l3l4l5 (the
sentence index m is ignored for simplicity). Also,
assume that after decoding, n3 = 1, n4 = 2 and
n5 = 1. A pronunciation ofw is then encoded by the
sequence of phonetic labels c3,1c4,1c4,2c5,1. By re-
peating this process for each word in every sentence
for the training set, a list of word pronunciations can
be compiled and used as a stochastic lexicon to build
a speech recognizer.

In theory, the HMMs inferred by our model can be

directly used as the acoustic model of a monophone
speech recognizer. However, if we regard the ci,p
labels of each utterance as the phone transcription
of the sentence, then a new acoustic model can be
easily re-trained on the entire data set. More conve-
niently, the phone boundaries corresponding to the
ci,p labels are the by-products of the block-sampling
algorithm, which are indicated by the values of d and
v in line 10 of Alg. 1 and can be easily saved during
the sampling procedure. Since these data are readily
available, we re-build a context-independent model
on the entire data set. In this new acoustic model,
a 3-state HMM is used to model each phonetic unit,
and the emission probability of each state is modeled
by a 32-mixture GMM.

Finally, a trigram language model is built by using
the word transcriptions in the full training set. This
language model is utilized in all speech recogni-
tion experiments reported in this paper. Finite State
Transducers (FSTs) are used to build all the recog-
nizers used in this study. With the language model,
the lexicon and the context-independent acoustic
model constructed by the methods described in this
section, we can build a speech recognizer from
the learning output of the proposed model without
the need of a pre-defined phone inventory and any
expert-crafted lexicons.

5.2.1 Pronunciation Mixture Model Retraining
McGraw et al. (2013) presented the Pronuncia-

tion Mixture Model (PMM) for composing stochas-
tic lexicons that outperform pronunciation dictionar-
ies created by experts. Although the PMM frame-
work was designed to incorporate and augment ex-
pert lexicons, we found that it can be adapted to pol-
ish the pronunciation list generated by our model.

In particular, the training procedure for PMMs in-
cludes three steps. First, train a L2S model from
a manually specified expert-pronunciation lexicon;
second, generate a list of pronunciations for each
word in the dataset using the L2S model; and finally,
use an acoustic model to re-weight the pronuncia-
tions based on the acoustic scores of the spoken ex-
amples of each word.

To adapt this procedure for our purposes, we sim-
ply plug in the word pronunciations and the acous-
tic model generated by our model. Once we ob-
tain the re-weighted lexicon, we re-generate forced
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phone alignments and retrain the acoustic model,
which can be utilized to repeat the PMM lexicon re-
weighting procedure. For our experiments, we it-
erate through this model refining process until the
recognition performance converges.

5.2.2 Triphone Model
Conventionally, to train a context-dependent

acoustic model, a list of questions based on the
linguistic properties of phonetic units is required
for growing decision tree classifiers (Young et al.,
1994). However, such language-specific knowledge
is not available for our training framework; there-
fore, our strategy is to compile a question list that
treats each phonetic unit as a unique linguistic class.
In other words, our approach to training a context-
dependent acoustic model for the automatically dis-
covered units is to let the decision trees grow fully
based on acoustic evidence.

5.3 Baselines

We compare the recognizers trained by following
the procedures described in Sec. 5.2 against three
baselines. The first baseline is a grapheme-based
speech recognizer. We follow the procedure de-
scribed in Killer et al. (2003) and train a 3-state
HMM for each grapheme, which we refer to as the
monophone grapheme model. Furthermore, we cre-
ate a singleton question set (Killer et al., 2003), in
which each grapheme is listed as a question, to train
a triphone grapheme model. Note that to enforce
better initial alignments between the graphemes and
the speech data, we use a pre-trained acoustic model
to identify the non-speech segments at the beginning
and the end of each utterance before starting training
the monophone grapheme model.

Our model jointly discovers the phonetic inven-
tory and the L2S mapping rules from a set of tran-
scribed data. An alternative of our approach is to
learn the two latent structures sequentially. We fol-
low the training procedure of Lee and Glass (2012)
to learn a set of acoustic models from the speech
data and use these acoustic models to generate a
phone transcription for each utterance. The phone
transcriptions along with the corresponding word
transcriptions are fed as inputs to the L2S model
proposed in Bisani and Ney (2008). A stochastic
lexicon can be learned by applying the L2S model

unit(%) Monophone
Our model 17.0
Oracle 13.8
Grapheme 32.7
Sequential model 31.4

Table 2: Word error rates generated by the four
monophone recognizers described in Sec. 5.2 and
Sec. 5.3 on the weather query corpus.

and the discovered acoustic models to PMM. This
two-stage approach for training a speech recognizer
without an expert lexicon is referred to as the se-
quential model in this paper.

Finally, we compare our system against a rec-
ognizer trained from an oracle recognition system.
We build the oracle recognizer on the same weather
query corpus by following the procedure presented
in McGraw et al. (2013). This oracle recognizer is
then applied to generate forced-aligned phone tran-
scriptions for the training utterances, from which
we can build both monophone and triphone acous-
tic models. The expert-crafted lexicon used in the
oracle recognizer is also used in this baseline. Note
that for training the triphone model, we compose a
singleton question list (Killer et al., 2003) that has
every expert-defined phonetic unit as a question. We
use this singleton question list instead of a more so-
phisticated one to ensure that this baseline and our
system differ only in the acoustic model and the lex-
icon used to generate the initial phone transcriptions.
We call this baseline the oracle baseline.

6 Results and Analysis

6.1 Monophone Systems
Table 2 shows the WERs produced by the four
monophone recognizers described in Sec. 5.2 and
Sec. 5.3. It can be seen that our model outper-
forms the grapheme and the sequential model base-
lines significantly while approaching the perfor-
mance of the supervised oracle baseline. The im-
provement over the sequential baseline demonstrates
the strength of the proposed joint learning frame-
work. More specifically, unlike the sequential base-
line, in which the acoustic units are discovered in-
dependently from the text data, our model is able to
exploit the L2S mapping constraints provided by the
word transcriptions to cluster speech segments.
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By comparing our model to the grapheme base-
line, we can see the advantage of modeling the
pronunciations of a letter using a mixture model,
especially for a language like English which has
many pronunciation irregularities. However, even
for languages with straightforward pronunciation
rules, the concept of modeling letter pronunciations
using mixture models still applies. The main dif-
ference is that the mixture weights for letters of
languages with simple pronunciation rules will be
sparser and spikier. In other words, in theory, our
model should always perform comparable to, if not
better than, grapheme recognizers.

Last but not least, the recognizer trained with the
automatically induced lexicon performs similarly to
the recognizer initialized by an oracle recognition
system, which demonstrates the effectiveness of the
proposed model for discovering the phonetic inven-
tory and a pronunciation lexicon from an annotated
corpus. In the next section, we provide some in-
sights into the quality of the learned lexicon and
into what could have caused the performance gap
between our model and the conventionally trained
recognizer.

6.2 Pronunciation Entropy

The major difference between the recognizer that is
trained by using our model and the recognizer that
is seeded by an oracle recognition system is that
the former uses an automatically discovered lexicon,
while the latter exploits an expert-defined pronun-
ciation dictionary. In order to quantify, as well as
to gain insights into, the difference between these
two lexicons, we define the average pronunciation
entropy, Ĥ , of a lexicon as follows.

Ĥ ≡ −1

|V |
∑
w∈V

∑
b∈B(w)

p(b) log p(b) (15)

where V denotes the vocabulary of a lexicon, B(w)
represents the set of pronunciations of a word w
and p(b) stands for the weight of a certain pronun-
ciation b. Intuitively, we can regard Ĥ as an in-
dicator of how much pronunciation variation that
each word in a lexicon has on average. Table 3
shows that the Ĥ values of the lexicon induced by
our model and the expert-defined lexicon as well as

Our model PMM iterations
(Discovered lexicon) 0 1 2

Ĥ (bit) 4.58 3.47 3.03
WER (%) 17.0 16.6 15.9

Oracle PMM iterations
(Expert lexicon) 0 1 2

Ĥ (bit) 0.69 0.90 0.92
WER (%) 13.8 12.8 12.4

Table 3: The upper-half of the table shows the aver-
age pronunciation entropies, Ĥ , of the lexicons in-
duced by our model and refined by PMM as well
as the WERs of the monophone recognizers built
with the corresponding lexicons for the weather
query corpus. The definition of Ĥ can be found in
Sec. 6.2. The first row of the lower-half of the ta-
ble lists the average pronunciation entropies, Ĥ , of
the expert-defined lexicon and the lexicons gener-
ated and weighted by the L2P-PMM framework de-
scribed in McGraw et al. (2013). The second row of
the lower-half of the table shows the WERs of the
recognizers that are trained with the expert-lexicon
and its PMM-refined versions.

their respective PMM-refined versions4. In Table 3,
we can see that the automatically-discovered lexi-
con and its PMM-reweighted versions have much
higher Ĥ values than their expert-defined counter-
parts. These higher Ĥ values imply that the lexicon
induced by our model contains more pronunciation
variation than the expert-defined lexicon. Therefore,
the lattices constructed during the decoding process
for our recognizer tend to be larger than those con-
structed for the oracle baseline, which explains the
performance gap between the two systems in Table 2
and Table 3.

As shown in Table 3, even though the lexicon
induced by our model is noisier than the expert-
defined dictionary, the PMM retraining framework
consistently refines the induced lexicon and im-
proves the performance of the recognizers5. To the
best of our knowledge, we are the first to apply
PMM to lexicons that are created by a fully unsu-

4We build the PMM-refined version of the expert-defined
lexicon by following the L2P-PMM framework described
in McGraw et al. (2013).

5The recognition results all converge in 2 ∼ 3 PMM retrain-
ing iterations.
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pronunciations
pronunciation probabilities

Our model 1 PMM 2 PMM
93 56 87 39 19 0.125 - -
93 56 61 87 73 99 0.125 - -
11 56 61 87 73 99 0.125 0.400 0.419
93 20 75 87 17 27 52 0.125 0.125 0.124
55 93 56 61 87 73 84 19 0.125 0.220 0.210
93 26 61 87 49 0.125 0.128 0.140
63 83 86 87 73 53 19 0.125 - -
93 26 61 87 61 0.125 0.127 0.107

Table 4: Pronunciation lists of the word Burma pro-
duced by our model and refined by PMM after 1 and
2 iterations.

pervised method. Therefore, in this paper, we pro-
vide further analysis on how PMM helps enhance
the performance of our model.

We compare the pronunciation lists for the word
Burma generated by our model and refined itera-
tively by PMM in Table 4. The first column of Ta-
ble 4 shows all the pronunciations of Burma dis-
covered by our model, to which our model assigns
equal probabilities to create a stochastic list6. As
demonstrated in the third and the fourth columns of
Table 4, the PMM framework is able to iteratively
re-distribute the pronunciation weights and filter out
less-likely pronunciations, which effectively reduces
both the size and the entropy of the stochastic lexi-
con generated by our model. The benefits of using
the PMM to refine the induced lexicon are twofold.
First, the search space constructed during the recog-
nition decoding process with the refined lexicon is
more constrained, which is the main reason why the
PMM is capable of improving the performance of
the monophone recognizer that is trained with the
output of our model. Secondly, and more impor-
tantly, the refined lexicon can greatly reduce the size
of the FST built for the triphone recognizer of our
model. These two observations illustrate why the
PMM framework can be an useful tool for enhancing
the lexicon discovered automatically by our model.

6.3 Triphone Systems

The best monophone systems of the grapheme base-
line, the oracle baseline and our model are used to

6It is also possible to assign probabilities proportional to the
decoding scores of the word tokens.

Unit(%) Triphone
Our model 13.4
Oracle 10.0
Grapheme 15.7

Table 5: Word error rates of the triphone recogniz-
ers. The triphone recognizers are all built by us-
ing the phone transcriptions generated by their best
monohpone system. For the oracle initialized base-
line and for our model, the PMM-refined lexicons
are used to build the triphone recognizers.

generate forced-aligned phone transcriptions, which
are used to train the triphone models described in
Sec. 5.2.2 and Sec. 5.3. Table 5 shows the WERs
of the triphone recognition systems. Note that if a
more conventional question list, for example, a list
that contains rules to classify phones into different
broad classes, is used to build the oracle triphone
system, the WER can be reduced to 6.5%. However,
as mentioned earlier, in order to gain insights into
the quality of the induced lexicon and the discovered
phonetic set, we compare our model against an ora-
cle triphone system that is built by using a singleton
question set.

By comparing Table 2 and Table 5, we can see
that the grapheme triphone improves by a large mar-
gin compared to its monophone counterpart, which
is consistent with the results reported in (Killer et
al., 2003). However, even though the grapheme
baseline achieves a great performance gain with
context-dependent acoustic models, the recognizer
trained using the lexicon learned by our model and
subsequently refined by PMM still outperforms the
grapheme baseline. The consistently better perfor-
mance our model achieves over the grapheme base-
line demonstrates the strength of modeling the pro-
nunciation of each letter with a mixture model that
is presented in this paper.

Last but not least, by comparing Table 2 and
Table 5, it can be seen that the relative perfor-
mance gain achieved by our model is similar to
that obtained by the oracle baseline. Both Table 2
and Table 5 show that even without exploiting any
language-specific knowledge during training, our
recognizer is able to perform comparably with the
recognizer trained using an expert lexicon. The abil-
ity of our model to obtain such similar performance
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further supports the effectiveness of the joint learn-
ing framework proposed in this paper for discover-
ing the phonetic inventory and the word pronuncia-
tions from simply an annotated speech corpus.

7 Conclusion

We present a hierarchical Bayesian model for si-
multaneously discovering acoustic units and learn-
ing word pronunciations from transcribed spoken ut-
terances. Both monophone and triphone recogniz-
ers can be built on the discovered acoustic units and
the inferred lexicon. The recognizers trained with
the proposed unsupervised method consistently out-
performs grapheme-based recognizers and approach
the performance of recognizers trained with expert-
defined lexicons. In the future, we plan to apply this
technology to develop ASRs for more languages.
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Abstract 

We present MCTest, a freely available set of 

stories and associated questions intended for 

research on the machine comprehension of 

text. Previous work on machine comprehen-

sion (e.g., semantic modeling) has made great 

strides, but primarily focuses either on lim-

ited-domain datasets, or on solving a more re-

stricted goal (e.g., open-domain relation 

extraction). In contrast, MCTest requires ma-

chines to answer multiple-choice reading 

comprehension questions about fictional sto-

ries, directly tackling the high-level goal of 

open-domain machine comprehension. Read-

ing comprehension can test advanced abilities 

such as causal reasoning and understanding 

the world, yet, by being multiple-choice, still 

provide a clear metric. By being fictional, the 

answer typically can be found only in the sto-

ry itself. The stories and questions are also 

carefully limited to those a young child would 

understand, reducing the world knowledge 

that is required for the task. We present the 

scalable crowd-sourcing methods that allow 

us to cheaply construct a dataset of 500 stories 

and 2000 questions. By screening workers 

(with grammar tests) and stories (with grad-

ing), we have ensured that the data is the same 

quality as another set that we manually edited, 

but at one tenth the editing cost. By being 

open-domain, yet carefully restricted, we hope 

MCTest will serve to encourage research and 

provide a clear metric for advancement on the 

machine comprehension of text. 

1 Reading Comprehension 

A major goal for NLP is for machines to be able to 

understand text as well as people. Several research 

disciplines are focused on this problem: for exam-

ple, information extraction, relation extraction, 

semantic role labeling, and recognizing textual en-

tailment. Yet these techniques are necessarily 

evaluated individually, rather than by how much 

they advance us towards the end goal. On the other 

hand, the goal of semantic parsing is the machine 

comprehension of text (MCT), yet its evaluation 

requires adherence to a specific knowledge repre-

sentation, and it is currently unclear what the best 

representation is, for open-domain text. 

We believe that it is useful to directly tackle the 

top-level task of MCT. For this, we need a way to 

measure progress. One common method for evalu-

ating someone’s understanding of text is by giving 

them a multiple-choice reading comprehension 

test. This has the advantage that it is objectively 

gradable (vs. essays) yet may test a range of abili-

ties such as causal or counterfactual reasoning, 

inference among relations, or just basic under-

standing of the world in which the passage is set. 

Therefore, we propose a multiple-choice reading 

comprehension task as a way to evaluate progress 

on MCT. We have built a reading comprehension 

dataset containing 500 fictional stories, with 4 mul-

tiple choice questions per story. It was built using 

methods which can easily scale to at least 5000 

stories, since the stories were created, and the cura-

tion was done, using crowd sourcing almost entire-

ly, at a total of $4.00 per story. We plan to perio-

dically update the dataset to ensure that methods 

are not overfitting to the existing data. The dataset 

is open-domain, yet restricted to concepts and 

words that a 7 year old is expected to understand. 

This task is still beyond the capability of today’s 

computers and algorithms. 
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By restricting the concept space, we gain the dif-

ficulty of being an open-domain problem, without 

the full complexity of the real world (for example, 

there will be no need for the machine to understand 

politics, technology, or to have any domain specif-

ic expertise). The multiple choice task avoids am-

biguities (such as when the task is to find a 

sentence that best matches a question, as in some 

early reading comprehension tasks: see Section 2), 

and also avoids the need for additional grading, 

such as is needed in some TREC tasks. The stories 

were chosen to be fictional to focus work on find-

ing the answer in the story itself, rather than in 

knowledge repositories such as Wikipedia; the goal 

is to build technology that actually understands 

stories and paragraphs on a deep level (as opposed 

to using information retrieval methods and the re-

dundancy of the web to find the answers). 

We chose to use crowd sourcing, as opposed to, 

for example, contracting teachers or paying for 

existing standardized tests, for three reasons, 

namely: (1) scalability, both for the sizes of da-

tasets we can provide, and also for the ease of reg-

ularly refreshing the data; (2) for the variety in 

story-telling that having many different authors 

brings; and (3) for the free availability that can on-

ly result from providing non-copyrighted data. The 

content is freely available at http://research.micro-

soft.com/mct, and we plan to use that site to track 

published results and provide other resources, such 

as labels of various kinds. 

2 Previous Work  

The research goal of mapping text to meaning rep-

resentations in order to solve particular tasks has a 

long history. DARPA introduced the Airline Trav-

el Information System (ATIS) in the early 90’s: 

there the task was to slot-fill flight-related infor-

mation by modeling the intent of spoken language 

(see Tur et al., 2010, for a review). This data con-

tinues to be a used in the semantic modeling com-

munity (see, for example, Zettlemoyer and Collins, 

2009). The Geoquery database contains 880 geo-

graphical facts about the US and has played a simi-

lar role for written (as opposed to spoken) natural 

language queries against a database (Zelle and 

Mooney, 1996) and it also continues to spur re-

search (see for example Goldwasser et al., 2011), 

as does the similar Jobs database, which provides 

mappings of 640 sentences to a listing of jobs 

(Tang and Mooney, 2001). More recently, Zweig 

and Burges (2012) provided a set of 1040 sentenc-

es that comprise an SAT-style multiple choice sen-

tence completion task.  

The idea of using story-based reading compre-

hension questions to evaluate methods for machine 

reading itself goes back over a decade, when 

Hirschmann et al. (1999) showed that a bag of 

words approach, together with some heuristic lin-

guistic modeling, could achieve 40% accuracy for 

the task of picking the sentence that best matches 

the query for “who / what / when / where / why” 

questions, on a small reading comprehension da-

taset from Remedia. This dataset spurred several 

research efforts, for example using reinforcement 

learning (Grois and Wilkins, 2005), named entity 

resolution (Harabagiu et al., 2003) and mapping 

questions and answers to logical form (Wellner et 

al., 2006). Work on story understanding itself goes 

back much further, to 1972, when Charniak pro-

posed using a background model to answer ques-

tions about children’s stories. Similarly, the TREC 

(and TAC) Question Answering tracks (e.g., Voor-

hees and Tice, 1999) aim to evaluate systems on 

their ability to answer factual questions such as 

“Where is the Taj Mahal”. The QA4MRE task also 

aims to evaluate machine reading systems through 

question answering (e.g., Clark et al., 2012). Earli-

er work has also aimed at controlling the scope by 

limiting the text to children’s stories: Breck et al. 

(2001) collected 75 stories from the Canadian 

Broadcasting Corporation’s web site for children, 

and generated 650 questions for them manually, 

where each question was answered by a sentence 

in the text. Leidner et al. (2003) both enriched the 

CBC4kids data by adding several layers of annota-

tion (such as semantic and POS tags), and meas-

ured QA performance as a function of question 

difficulty. For a further compendium of resources 

related to the story comprehension task, see  

Mueller (2010). 

The task proposed here differs from the above 

work in several ways. Most importantly, the data 

collection is scalable: if the dataset proves suffi-

ciently useful to others, it would be straightforward 

to gather an order of magnitude more. Even the 

dataset size presented here is an order of magni-

tude larger than the Remedia or the CBC4kids data 

and many times larger than QA4MRE. Second, the 

multiple choice task presents less ambiguity (and is 

consequently easier to collect data for) than the 
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task of finding the most appropriate sentence, and 

may be automatically evaluated. Further, our sto-

ries are fictional, which means that the information 

to answer the question is contained only in the sto-

ry itself (as opposed to being able to directly lever-

age knowledge repositories such as Wikipedia). 

This design was chosen to focus the task on the 

machine understanding of short passages, rather 

than the ability to match against an existing 

knowledge base. In addition, while in the 

CBC4kids data each answer was a sentence from 

the story, here we required that approximately half 

of the questions require at least two sentences from 

the text to answer; being able to control complexity 

in this way is a further benefit of using multiple 

choice answers. Finally, as explained in Section 1, 

the use of free-form input makes the problem open 

domain (as opposed to the ATIS, Geoquery and 

Jobs data), leading to the hope that solutions to the 

task presented here will be easier to apply to novel, 

unrelated tasks. 

3 Generating the Stories and Questions 

Our aim was to generate a corpus of fictional story 

sets1 that could be scaled with as little expert input 

as possible. Thus, we designed the process to be 

gated by cost, and keeping the costs low was a 

high priority. Crowd-sourcing seemed particularly 

appropriate, given the nature of the task, so we 

opted to use Amazon Mechanical Turk2 (AMT). 

With over 500,000 workers3, it provides the work 

force required to both achieve scalability and, 

equally importantly, to provide diversity in the sto-

ries and types of questions. We restricted our task 

to AMT workers (workers) residing in the United 

States. The average worker is 36 years old, more 

educated than the United States population in gen-

eral (Paolacci et al., 2010), and the majority of 

workers are female. 

3.1 The Story and Questions 

Workers were instructed to write a short (150-300 

words) fictional story, and to write as if for a child 

in grade school. The choice of 150-300 was made 

to keep the task an appropriate size for workers 

while still allowing for complex stories and ques-

tions. The workers were free to write about any 

topic they desired (as long as it was appropriate for 

a young child), and so there is a wide range, in-

cluding vacations, animals, school, cars, eating, 

gardening, fairy tales, spaceships, and cowboys. 

                                                      
1 We use the term “story set” to denote the fictional story 

together with its multiple choice questions, hypothetical an-

swers, and correct answer labels. 
2 http://www.mturk.com 
3 https://requester.mturk.com/tour 

James the Turtle was always getting in trouble. 

Sometimes he'd reach into the freezer and empty out 

all the food. Other times he'd sled on the deck and get 

a splinter. His aunt Jane tried as hard as she could to 

keep him out of trouble, but he was sneaky and got 

into lots of trouble behind her back. 

One day, James thought he would go into town and 

see what kind of trouble he could get into. He went to 

the grocery store and pulled all the pudding off the 

shelves and ate two jars. Then he walked to the fast 

food restaurant and ordered 15 bags of fries. He did-

n't pay, and instead headed home. 

His aunt was waiting for him in his room. She told 

James that she loved him, but he would have to start 

acting like a well-behaved turtle. 

After about a month, and after getting into lots of 

trouble, James finally made up his mind to be a better 

turtle. 

 

1) What is the name of the trouble making turtle? 

A) Fries 

B) Pudding 

C) James 

D) Jane 

 

2) What did James pull off of the shelves in the gro-

cery store? 

A) pudding 

B) fries 

C) food 

D) splinters 

 

3) Where did James go after he went to the grocery 

store? 

A) his deck 

B) his freezer 

C) a fast food restaurant 

D) his room 

 

4) What did James do after he ordered the fries? 

A) went to the grocery store 

B) went home without paying 

C) ate them 

D) made up his mind to be a better turtle 

 
Figure 1. Sample Story and Questions (chosen random-

ly from MC500 train set). 
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Workers were also asked to provide four reading 

comprehension questions pertaining to their story 

and, for each, four multiple-choice answers. Com-

ing up with incorrect alternatives (distractors) is a 

difficult task (see, e.g., Agarwal, 2011) but work-

ers were requested to provide “reasonable” incor-

rect answers that at least include words from the 

story so that their solution is not trivial. For exam-

ple, for the question “What is the name of the 

dog?”, if only one of the four answers occurs in the 

story, then that answer must be the correct one.  

Finally, workers were asked to design their 

questions and answers such that at least two of the 

four questions required multiple sentences from the 

story to answer them. That is, for those questions it 

should not be possible to find the answer in any 

individual sentence. The motivation for this was to 

ensure that the task could not be fully solved using 

lexical techniques, such as word matching, alone. 

Whilst it is still possible that a sophisticated lexical 

analysis could completely solve the task, requiring 

that answers be constructed from at least two dif-

ferent sentences in the story makes this much less 

likely; our hope is that the solution will instead 

require some inference and some form of limited 

reasoning. This hope rests in part upon the obser-

vation that standardized reading comprehension 

tests, whose goal after all is to test comprehension, 

generally avoid questions that can be answered by 

reading a single sentence. 

3.2 Automatic Validation 

Besides verifying that the story and all of the ques-

tions and answers were provided, we performed 

the following automatic validation before allowing 

the worker to complete the task: 

Limited vocabulary: The lowercase words in the 

story, questions, and answers were stemmed and 

checked against a vocabulary list of approximately 

8000 words that a 7-year old is likely to know 

(Kuperman et al., 2012). Any words not on the list 

were highlighted in red as the worker typed, and 

the task could not be submitted unless all of the 

words satisfied this vocabulary criterion. To allow 

the use of arbitrary proper nouns, capitalized words 

were not checked against the vocabulary list. 

Multiple-sentence questions: As described earli-

er, we required that at least two of the questions 

need multiple sentences to answer. Workers were 

simply asked to mark whether a question needs one 

or multiple sentences and we required that at least 

two are marked as multiple.  

3.3 The Workers 

Workers were required to reside in the United 

States and to have completed 100 HITs with an 

over 95% approval rate4. The median worker took 

22 minutes to complete the task. We paid workers 

$2.50 per story set and allowed each to do a maxi-

mum of 8 tasks (5 in MC500). We did not experi-

ment with paying less, but this rate amounts to 

$6.82/hour, which is approximately the rate paid 

by other writing tasks on AMT at the time, though 

is also significantly higher than the median wage 

of $1.38 found in 2010 (Horton and Chilton, 

2010). Workers could optionally leave feedback on 

the task, which was overwhelmingly positive – the 

most frequent non-stopword in the comments was 

“fun” and the most frequent phrase was “thank 

you”. The only negative comments (in <1% of 

submissions) were when the worker felt that a par-

ticular word should have been on the allowed vo-

cabulary list. Given the positive feedback, it may 

be possible to pay less if we collect more data in 

the future. We did not enforce story length con-

straints, but some workers interpreted our sugges-

tion that the story be 150-300 words as a hard 

constraint, and some asked to be able to write a 

longer story.  

The MCTest corpus contains two sets of stories, 

named MC160 and MC500, and containing 160 

and 500 stories respectively. MC160 was gathered 

first, then some improvements were made before 

gathering MC500. We give details on the differ-

ences between these two sets below. 

3.4 MC160: Manually Curated for Quality 

In addition to the details described above, MC160 

workers were given a target elementary grade 

school level (1-4) and a sample story matching that 

grade level5. The intent was to produce a set of 

stories and questions that varied in difficulty so 

that research work can progress grade-by-grade if 

needed. However, we found little difference be-

tween grades in the corpus.. 

After gathering the stories, we manually curated 

the MC160 corpus by reading each story set and 

                                                      
4 The latter two are the default AMT requirements. 
5 From http://www.englishforeveryone.org/. 
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correcting errors. The most common mistakes were 

grammatical, though occasionally questions and/or 

answers needed to be fixed. 66% of the stories 

have at least one correction. We provide both the 

curated and original corpuses in order to allow re-

search on reading comprehension in the presence 

of grammar, spelling, and other mistakes. 

3.5 MC500: Adding a Grammar Test 

Though the construction of MC160 was successful, 

it requires a costly curation process which will not 

scale to larger data sets (although the curation was 

useful, both for improving the design of MC500, 

and for assessing the effectiveness of automated 

curation techniques). To more fully automate the 

process, we added two more stages: (1) A grammar 

test that automatically pre-screens workers for 

writing ability, and (2) a second Mechanical Turk 

task whereby new workers take the reading com-

prehension tests and rate their quality. We will dis-

cuss stage (2) in the next section. 

The grammar test consisted of 20 sentences, half 

of which had one grammatical error (see Figure 2). 

The incorrect sentences were written using com-

mon errors such as you’re vs. your, using ‘s to in-

dicate plurality, incorrect use of tense, it’s vs. its, 

less vs. fewer, I vs. me, etc. Workers were required 

to indicate for each sentence whether it was 

grammatically correct or not, and had to pass with 

at least 80% accuracy in order to qualify for the 

task. The 80% threshold was chosen to trade off 

worker quality with the rate at which the tasks 

would be completed; initial experiments using a 

threshold of 90% indicated that collecting 500 sto-

ries would take many weeks instead of days. Note 

that each worker is allowed to write at most 5 

stores, so we required at least 100 workers to pass 

the qualification test. 

To validate the use of the qualification test, we 

gathered 30 stories requiring the test (qual) and 30 

stories without. We selected a random set of 20 

stories (10 from each), hid their origin, and then 

graded the overall quality of the story and ques-

tions from 1-5, meaning do not attempt to fix, bad 

but rescuable, has non-minor problems, has only 

minor problems, and has no problems, respective-

ly. Results are shown in Table 1. The difference is 

statistically significant (p<0.05, using the two-

tailed t-test). The qual stories were also more di-

verse, with fewer of them about animals (the most 

common topic). 

Additional Modifications: Based on our experi-

ence curating MC160, we also made the following 

modifications to the task. In order to eliminate triv-

ially-answerable questions, we required that each 

answer be unique, and that either the correct an-

swer did not appear in the story or, if it did appear, 

that at least two of the incorrect answers also ap-

peared in the story. This is to prevent questions 

that are trivially answered by checking which an-

swer appears in the story. The condition on wheth-

er the correct answer appears is to allow questions 

such as “How many candies did Susan eat?”, 

where the total may never appear in the story, even 

though the information needed to derive it does. 

An answer is considered to appear in the story if at 

least half (rounded down) of its non-stopword 

1. We went to visit the Smith’s at their house. 

2. I altered their suits for them. 

3. You're car is very old. 

4. Jim likes to run, hike, and going kayaking. 

5. He should of come to work on time. 

6. I think its best to wash lots of apples. 

7. Are people who write "ping" thinking of subma-

rines? 

8. Smoke filled the room, making it hard to breathe. 

9. Alert yet aloof - that's you. 

10. They wanted they're money back. 

11. Hawks and eagles like to fly high in the sky. 

12. Don't let her wear them down. 

13. The cat particularly liked the greasy plate. 

14. The company is less successful because we have 

less employees. 

15. The hamster belongs to Sam and I. 

16. No one landed on the air strip today. 

17. He was very effected by her tears. 

18. You are a tired piece of toast, metaphorically 

speaking. 

19. Anne plays bass and sings. 

20. Him and me met at the park. 

Figure 2. Grammar test for qualifying workers. 

 Quality 

(1-5) 

About 

animals 

No Grammar Test 3.2 73% 

Grammar Test 4.3  30% 

Table 1. Pre-screening workers using a grammar test 

improves both quality and diversity of stories. Both 

differences are significant using the two-tailed t-test 

(p<0.05 for quality and p<0.01 for animals).  
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terms appear in the story (ignoring word endings). 

This check is done automatically and must be satis-

fied before the worker is able to complete the task. 

Workers could also bypass the check if they felt it 

was incorrect, by adding a special term to their 

answer. 

We were also concerned that the sample story 

might bias the workers when writing the story set, 

particularly when designing questions that require 

multiple sentences to answer. So, we removed the 

sample story and grade level from the task. 

Finally, in order to encourage more diversity of 

stories, we added creativity terms, a set of 15 

nouns chosen at random from the allowed vocabu-

lary set. Workers were asked to “please consider” 

using one or more of the terms in their story, but 

use of the words was strictly optional. On average, 

workers used 3.9 of the creativity terms in their 

stories.  

4 Rating the Stories and Questions 

In this section we discuss the crowd-sourced rating 

of story sets. We wished to ensure story set quality 

despite the fact that MC500 was only minimally 

manually curated (see below). Pre-qualifying 

workers with a grammar test was one step of this 

process. The second step was to have additional 

workers on Mechanical Turk both evaluate each 

story and take its corresponding test. Each story 

was evaluated in this way by 10 workers, each of 

whom provided scores for each of age-

appropriateness (yes/maybe/no), grammaticality 

(few/some/many errors), and story clarity (excel-

lent/reasonable/poor). When answering the four 

reading comprehension questions, workers could 

also mark a question as “unclear”. Each story set 

was rated by 10 workers who were each paid $0.15 

per set. 

Since we know the purportedly correct answer, 

we can estimate worker quality by measuring what 

fraction of questions that worker got right. Work-

ers with less than 80% accuracy (ignoring those 

questions marked as unclear) were removed from 

the set. This constituted just 4.1% of the raters and 

4.2% of the judgments (see Figure 3). Only one 

rater appeared to be an intentional spammer, an-

swering 1056 questions with only 29% accuracy. 

The others primarily judged only one story. Only 

one worker fell between, answering 336 questions 

with just 75% accuracy. 

For the remaining workers (those who achieved 

at least 80% accuracy), we measured median story 

appropriateness, grammar, and clarity. For each 

category, stories for which less than half of the 

ratings were the best possible (e.g., excellent story 

clarity) were inspected and optionally removed 

from the data set. This required inspecting 40 

(<10%) of the stories, only 2 of which were 

deemed poor enough to be removed (both of which 

had over half of the ratings all the way at the bot-

tom end of the scale, indicating we could potential-

ly have inspected many fewer stories with the same 

results). We also inspected questions for which at 

least 5 workers answered incorrectly, or answered 

“unclear”. In total, 29 questions (<2%) were in-

spected. 5 were fixed by changing the question, 8 

by changing the answers, 2 by changing both, 6 by 

changing the story, and 8 were left unmodified. 

Note that while not fully automated, this process 

of inspecting stories and repairing questions took 

one person one day, so is still scalable to at least an 

order of magnitude more stories. 

5 Dataset Analysis 

In Table 2, we present results demonstrating the 

value of the grammar test and curation process. As 

expected, manually curating MC160 resulted in 

increased grammar quality and percent of ques-

tions answered correctly by raters. The goal of 

MC500 was to find a more scalable method to 

achieve the same quality as the curated MC160. As 

Table 2 shows, the grammar test improved story 

grammar quality from 1.70 to 1.77 (both uncurat-

ed). The rating and one-day curation process in-

 
Figure 3. Just 4.1% of raters had an accuracy below 

80% (constituting 4.2% of the judgments).   
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Set AgeAp Clarity Grammar Correct 

160  1.88 1.63 1.70 95.3 

500 1.92 1.65 1.77 95.3 

500 curated 1.94 1.71 1.79 96.9 

160 curated 1.91 1.67 1.84
ǂ
 97.7 

Table 2. Average age appropriateness, story clarity, 

grammar quality (0-2, with 2 being best), and percent of 

questions answered correctly by raters, for the original 

and curated versions of the data. Bold indicates statisti-

cal significance vs. the original version of the same set, 

using the two-sample t-test with unequal variance. The ǂ 

indicates the only statistical difference between 500 

curated and 160 curated. 

Baseline Algorithms 
Require: Passage P, set of passage words PW, ith word in 

passage Pi, set of words in question Q, set of words in 

hypothesized answers A1..4, and set of stop words U,  

Define:  ( )  ∑  (    )    

Define:   ( )     (  
 

 ( )
). 

 

Algorithm 1 Sliding Window 

for i = 1 to 4 do 

        

 
       

     | |
∑ {
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     | |

 

end for 

return        
 

Algorithm 2 Distance Based 

for i = 1 to 4 do 
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     ((     )   )    
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| |  
    
          

  (   ),  

where   (   ) is the minimum number of 

words between an occurrence of q and an 

occurrence of a in P, plus one. 

 end if 

end for 

return       
 

Algorithm SW 

Return               
 

Algorithm SW+D 

Return                     
 

Figure 4. The two lexical-based algorithms used for the 

baselines.   

 

creases this to 1.79, whereas a fully manual cura-

tion results in a score of 1.84. Curation also im-

proved the percent of questions answered correctly 

for both MC160 and MC500, but, unlike with 

grammar, there is no significant difference be-

tween the two curated sets. Indeed, the only statis-

tically significant difference between the two is in 

grammar. So, the MC500 grammar test and cura-

tion process is a very scalable method for collect-

ing stories of nearly the quality of the costly 

manual curation of MC160.  

We also computed correlations between these 

measures of quality and various factors such as 

story length and time spent writing the story. On 

MC500, there is a mild correlation between a 

worker’s grammar test score and the judged 

grammar quality of that worker’s story (correlation 

of 0.24). Interestingly, this relation disappeared 

once MC500 was curated, likely due to repairing 

the stories with the worst grammar. On MC160, 

there is a mild correlation between the clarity and 

the number of words in the question and answer 

(0.20 and 0.18). All other correlations were below 

0.15. These factors could be integrated into an es-

timate for age-appropriateness, clarity, and gram-

mar, potentially reducing the need for raters. 

Table 3 provides statistics on each corpus. 

MC160 and MC500 are similar in average number 

of words per story, question, and answer, as well as 

the median writing time. The most commonly used 

nouns in MC500 are: day, friend, time, home, 

house, mother, dog, mom, school, dad, cat, tree, 

and boy. The stories vary widely in theme. The 

first 10 stories of the randomly-ordered MC500 set 

are about: travelling to Miami to visit friends, wak-

ing up and saying hello to pets, a bully on a 

schoolyard, visiting a farm, collecting insects at 

Grandpa’s house, planning a friend’s birthday par-

ty, selecting clothes for a school dance, keeping 

animals from eating your ice cream, animals order-

ing food, and adventures of a boy and his dog. 

Corpus Stories Median 

writing 

time 

Average Words Per: 

Story Question Answer 

MC160 160 26 min 204 8.0 3.4 

MC500 500 20 min 212 7.7 3.4 

Table 3. Corpus statistics for MC160 and MC500.  
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We randomly divided MC160 and MC500 into 

train, development, and test sets of 70, 30, and 60 

stories and 300, 50, and 150 stories, respectively. 

6 Baseline System and Results 

We wrote two baseline systems, both using only 

simple lexical features. The first system used a 

sliding window, matching a bag of words con-

structed from the question and hypothesized an-

swer to the text. Since this ignored long range 

dependencies, we added a second, word-distance 

based algorithm. The distance-based score was 

simply subtracted from the window-based score to 

arrive at the final score (we tried scaling the dis-

tance score before subtraction but this did not im-

prove results on the MC160 train set). The 

algorithms are summarized in Figure 4. A coin flip 

is used to break ties. The use of inverse word 

counts was inspired by TF-IDF. 

Results for MC160 and MC500 are shown in 

Table 4 and Table 5. The MC160 train and devel-

opment sets were used for tuning. The baseline 

algorithm was authored without seeing any portion 

of MC500, so both the MC160 test set and all of 

MC500 were used for testing (although we never-

theless report results on the train/test split). Note 

that adding the distance based algorithm improved 

accuracy by approximately 10% absolute on 

MC160 and approximately 6% on MC500. Over-

all, error rates on MC500 are higher than on 

MC160, which agrees with human performance 

(see Table 2), suggesting that MC500’s questions 

are more difficult. 

7 Recognizing Textual Entailment Results 

We also tried using a “recognizing textual entail-

ment” (RTE) system to answer MCTest questions. 

The goal of RTE (Dagan et al., 2005) is to deter-

mine whether a given statement can be inferred 

from a particular text. We can cast MCTest as an 

RTE task by converting each question-answer pair 

into a statement, and then selecting the answer 

whose statement has the highest likelihood of be-

ing entailed by the story. For example, in the sam-

ple story given in Figure 1, the second question can 

be converted into four statements (one for each 

answer), and the RTE system should select the 

statement “James pulled pudding off of the shelves 

in the grocery store” as the most likely one. 

For converting question-answer pairs to state-

ments, we used the rules employed in a web-based 

question answering system (Cucerzan and 

Agichtein, 2005). For RTE, we used BIUTEE 

(Stern and Dagan, 2011), which performs better 

than the median system in the past four RTE com-

petitions. We ran BIUTEE both in its default con-

figuration, as well as with its optional additional 

data sources (FrameNet, ReVerb, DIRT, and others 

as found on the BIUTEE home page). The default 

configuration performed better so we present its 

results here. The results in Table 6 show that the 

RTE method performed worse than the baseline. 

MC160 Train and Dev:  

400 Q’s 

Test:  

240 Q’s 

SW SW+D SW SW+D 

Single 59.46 68.11 64.29 75.89 

Multi 59.53 67.44 48.44 57.81 

All 59.50 67.75 55.83 66.25 

Table 4. Percent correct for the multiple choice ques-

tions for MC160. SW: sliding window algorithm. 

SW+D: combined results with sliding window and 

distance based algorithms. Single/Multi: questions 

marked by worker as requiring a single/multiple sen-

tence(s) to answer. All differences between SW and 

SW+D are significant (p<0.01 using the two-tailed 

paired t-test). 

 
MC500 

 

Train and Dev: 

1400 Q’s 

Test:  

600 Q’s 

All 

SW SW+D SW SW+D SW+D 

Single 55.13 61.77 51.10 57.35 60.44 

Multi 49.80 55.28 51.83 56.10 55.53 

All 52.21 58.21 51.50 56.67 57.75 

Table 5. Percent correct for the multiple choice ques-

tions for MC500, notation as above. All differences 

between SW and SW+D are significant (p<0.01, test-

ed as above). 

 

 MC160 Test MC500 Test 

Baseline (SW+D) 66.25 56.67 

RTE 59.79
ǂ
 53.52 

Combined 67.60 60.83
ǂ
 

Table 6. Percent correct for MC160 and MC500 test 

sets. The ǂ indicates statistical significance vs. baseline 

(p<0.01 using the two-tailed paired t-test). MC160 

combined vs. baseline has p-value 0.063. 
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We also combined the baseline and RTE system 

by training BIUTEE on the train set and using the 

development set to optimize a linear combination 

of BIUTEE with the baseline; the combined sys-

tem outperforms either component system on 

MC500. 

It is possible that with some tuning, an RTE sys-

tem will outperform our baseline system.  Never-

theless, these RTE results, and the performance of 

the baseline system, both suggest that the reading 

comprehension task described here will not be triv-

ially solved by off-the-shelf techniques. 

8 Making Data and Results an Ongoing 

Resource 

Our goal in constructing this data is to encourage 

research and innovation in the machine compre-

hension of text. Thus, we have made both MC160 

and MC500 freely available for download at 

http://research.microsoft.com/mct. To our knowl-

edge, these are the largest copyright-free reading 

comprehension data sets publicly available. To 

further encourage research on these data, we will 

be continually updating the webpage with the best-

known published results to date, along with point-

ers to those publications. 

One of the difficulties in making progress on a 

particular task is implementing previous work in 

order to apply improvements to it. To mitigate this 

difficulty, we are encouraging researchers who use 

the data to (optionally) provide per-answer scores 

from their system. Doing so has three benefits: (a) 

a new system can be measured in the context of the 

errors made by the previous systems, allowing 

each research effort to incrementally add useful 

functionality without needing to also re-implement 

the current state-of-the-art; (b) it allows system 

performance to be measured using paired statistical 

testing, which will substantially increase the ability 

to determine whether small improvements are sig-

nificant; and (c) it enables researchers to perform 

error analysis on any of the existing systems, sim-

plifying the process of identifying and tackling 

common sources of error. We will also periodically 

ensemble the known systems using standard ma-

chine learning techniques and make those results 

available as well (unless the existing state-of-the-

art already does such ensembling). 

The released data contains the stories and ques-

tions, as well as the results from workers who rated 

the stories and took the tests. The latter may be 

used, for example, to measure machine perfor-

mance vs. human performance on a per-question 

basis (i.e., does your algorithm make similar mis-

takes to humans?), or vs. the judged clarity of each 

story. The ratings, as well as whether a question 

needs multiple sentences to answer, should typical-

ly only be used in evaluation, since such infor-

mation is not generally available for most text. We 

will also provide an anonymized author id for each 

story, which could allow additional research such 

as using other works by the same author when un-

derstanding a story, or research on authorship at-

tribution (e.g., Stamatatos, 2009). 

9 Future Work 

We plan to use this dataset to evaluate approaches 

for machine comprehension, but are making it 

available now so that others may do the same. If 

MCTest is used we will collect more story sets and 

will continue to refine the collection process. One 

interesting research direction is ensuring that the 

questions are difficult enough to challenge state-of-

the-art techniques as they develop. One idea for 

this is to apply existing techniques automatically 

during story set creation to see whether a question 

is too easily answered by a machine. By requiring 

authors to create difficult questions, each data set 

will be made more and more difficult (but still an-

swerable by humans) as the state-of-the-art meth-

ods advance. We will also experiment with timing 

the raters as they answer questions to see if we can 

find those that are too easy for people to answer. 

Removing such questions may increase the diffi-

culty for machines as well. Additionally, any di-

vergence between how easily a person answers a 

question vs. how easily a machine does may point 

toward new techniques for improving machine 

comprehension; we plan to conduct research in this 

direction as well as make any such data available 

for others. 

10 Conclusion 

We present the MCTest dataset in the hope that it 

will help spur research into the machine compre-

hension of text. The metric (the accuracy on the 

question sets) is clearly defined, and on that metric, 

lexical baseline algorithms only attain approxi-

mately 58% correct on test data (the MC500 set) as 
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opposed to the 100% correct that the majority of 

crowd-sourced judges attain. A key component of 

MCTest is the scalable design: we have shown that 

data whose quality approaches that of expertly cu-

rated data can be generated using crowd sourcing 

coupled with expert correction of worker-identified 

errors. Should MCTest prove useful to the com-

munity, we will continue to gather data, both to 

increase the corpus size, and to keep the test sets 

fresh. The data is available at http://research.micro-

soft.com/mct and any submitted results will be 

posted there too. Because submissions will be re-

quested to include the score for each test item, re-

searchers will easily be able to compare their 

systems with those of others, and investigation of 

ensembles comprised of components from several 

different teams will be straightforward. MCTest 

also contains supplementary material that re-

searchers may find useful, such as worker accura-

cies on a grammar test and crowd-sourced 

measures of the quality of their stories. 
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Abstract

This paper proposes a novel noise-aware char-
acter alignment method for bootstrapping sta-
tistical machine transliteration from automat-
ically extracted phrase pairs. The model is
an extension of a Bayesian many-to-many
alignment method for distinguishing non-
transliteration (noise) parts in phrase pairs. It
worked effectively in the experiments of boot-
strapping Japanese-to-English statistical ma-
chine transliteration in patent domain using
patent bilingual corpora.

1 Introduction

Transliteration is used for providing translations for
source language words that have no appropriate
counterparts in target language, such as some tech-
nical terms and named entities. Statistical machine
transliteration (Knight and Graehl, 1998) is a tech-
nology to solve it in a statistical manner. Bilin-
gual dictionaries can be used to train its model, but
many of their entries are actually translation but not
transliteration. Such non-transliteration pairs hurt
the transliteration model and should be eliminated
beforehand.

Sajjad et al. (2012) proposed a method to iden-
tify such non-transliteration pairs, and applied it
successfully to noisy word pairs obtained from au-
tomatic word alignment on bilingual corpora. It
enables the statistical machine transliteration to be
bootstrapped from bilingual corpora. This approach
is beneficial because it does not require carefully-
developed bilingual transliteration dictionaries and
it can learn domain-specific transliteration patterns

from bilingual corpora in the target domain. How-
ever, their transliteration mining approach is sample-
wise; that is, it makes a decision whether a bilingual
phrase pair is transliteration or not. Suppose that
a compound word in a language A is transliterated
into two words in another language B. Their corre-
spondence may not be fully identified by automatic
word alignment and a wrong alignment between the
compound word in A and only one component word
in B is found. The sample-wise mining cannot make
a correct decision of partial transliteration on the
aligned candidate, and may introduces noise to the
statistical transliteration model.

This paper proposes a novel transliteration mining
method for such partial transliterations. The method
uses a noise-aware character alignment model that
distinguish non-transliteration (noise) parts from
transliteration (signal) parts. The model is an ex-
tension of a Bayesian alignment model (Finch and
Sumita, 2010) and can be trained by a sampling al-
gorithm extended for a constraint on noise. Our
experiments of Japanese-to-English transliteration
achieved 16% relative error reduction in transliter-
ation accuracy from the sample-wise method. The
main contribution of this paper is two-fold:

• we formulate alignment over string pairs with
partial noise and present a solution with a
noise-aware alignment model;

• we proved its effectiveness by experiments
with frequent unknown words in actual
Japanese-to-English patent translation data.
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2 Bayesian many-to-many alignment

We briefly review a Bayesian many-to-many charac-
ter alignment proposed by Finch and Sumita (2010)
on which our model is based. The model is based
on a generative process of bilingual substring pairs
⟨s̄, t̄⟩ by the following Dirichlet process (DP):

G|α,G0 ∼ DP(α, G0)

⟨s̄, t̄⟩|G ∼ G,

where G is a probability distribution over substring
pairs according to a DP prior with base measure G0

and hyperparameter α. G0 is modeled as a joint
spelling model as follows:

G0 (⟨s̄, t̄⟩) =
λ
|s̄|
s

|s̄|!
e−λsv−|s̄|

s × λ
|t̄|
t

|̄t|!
e−λtv

−|t̄|
t . (1)

This is a simple joint probability of the spelling
models, in which each alphabet appears based on
a uniform distribution over the vocabulary (of size
vs and vt) and each string length follows a Poisson
distribution (with the average length λs and λt).

The model handles infinite number of substring
pairs according to the Chinese Restaurant Process
(CRP). The probability of a substring pair ⟨s̄k, t̄k⟩
is based on the counts of all other substring pairs as
follows:

p
(
⟨s̄k, t̄k⟩| {⟨s̄, t̄⟩}−k

)
=

N (⟨s̄k, t̄k⟩) + αG0 (⟨s̄k, t̄k⟩)∑
i N (⟨s̄i, t̄i⟩) + α

. (2)

Here {⟨s̄, t̄⟩}−k means a set of substring pairs ex-
cluding ⟨s̄k, t̄k⟩, and N (⟨s̄k, t̄k⟩) is the number of
⟨s̄k, t̄k⟩ in the current sample space. This align-
ment model is suitable for representing very sparse
distribution over arbitrary substring pairs, thanks to
reasonable CRP-based smoothing for unseen pairs
based on the spelling model.

3 Proposed method

We propose an extended many-to-many alignment
model that can handle partial noise. We extend the
model in the previous section by introducing a noise
symbol and state-based probability calculation.

キ ー

k e y 

(a) no noise

ハ エ

f l y 

noise�

noise�

(b) noise

ギ ブ

g i v 

ア ッ プ

noise�e 

(c) partial noise: English
side should be “give up”

キ ー

k e y 

ギ ブ

g i v 

ア ッ プ

noise�e 

r e c 

カ バ ーnoise�

o v e r 

(d) partial noise: Japanese side
should be “リカバー”

Figure 1: Three types of noise in transliteration data.
Solid lines are correct many-to-many alignment links.

3.1 Partial noise in transliteration data
Figure 1 shows transliteration examples with “no
noise,” “noise,” and “partial noise.” Solid lines in the
figure show correct many-to-many alignment links.
The examples (a) and (b) can be distinguished ef-
fectively by Sajjad et al. (2012). We aim to do align-
ment as in the examples (c) and (d) by distinguishing
its non-transliteration (noise) part, which cannot be
handled by the existing methods.

3.2 Noise-aware alignment model
We introduce a noise symbol to handle partial noise
in the many-to-many alignment model. Htun et al.
(2012) extended the many-to-many alignment for
the sample-wise transliteration mining, but its noise
model only handles the sample-wise noise and can-
not distinguish partial noise. We model partial noise
in the CRP-based joint substring model.

Partial noise in transliteration data typically ap-
pears in compound words as mentioned earlier, be-
cause their counterparts consisting of two or more
words may not be fully covered in automatically ex-
tracted words and phrases as shown in Figure 1(c).
Another type of partial noise is derived from mor-
phological differences due to inflection, which usu-
ally appear in the sub-word level as prefixes and suf-
fixes as shown in Figure 1(d). According to this
intuition, we assume that partial noise appears in
the beginning and/or end of transliteration data (in
case of sample-wise noise, we assume the noise is in
the beginning). This assumption derives a constraint
between signal and noise parts that helps to avoid
a welter of transliteration and non-transliteration
parts. It also has a shortcoming that it is generally
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エ ッ

t h e 

チ ン グ

sp 

マ ス クsp 

e t c h i n g sp m a s k s 

noise� noise� noise�

Figure 2: Example of many-to-many alignment with par-
tial noise in the beginning and end. “noise” stands for the
noise symbol and “sp” stands for a white space.

not appropriate for noise in the middle, but handling
arbitrary number of noise parts increases computa-
tional complexity and sparseness. We rely on this
simple assumption in this paper and consider a more
complex mid-noise problem as future work.

Figure 2 shows a partial noise example in both
the beginning and end. This example is actually
correct translation but includes noise in a sense of
transliteration; an article “the” is wrongly included
in the phrase pair (no articles are used in Japanese)
and a plural noun “masks” is transliterated into
“マスク”(mask). These non-transliteration parts are
aligned to noise symbols in the proposed model. The
noise symbols are treated as zero-length substrings
in the model, same as other substrings.

3.3 Constrained Gibbs sampling

Finch and Sumita (2010) used a blocked Gibbs sam-
pling algorithm with forward-filtering backward-
sampling (FFBS) (Mochihashi et al., 2009). We ex-
tend their algorithm for our noise-aware model us-
ing a state-based calculation over the three states:
non-transliteration part in the beginning (noiseB),
transliteration part (signal), non-transliteration part
in the end (noiseE).

Figure 3 illustrates our FFBS steps. At first in
the forward filtering, we begin with transition to
noiseB and signal. The calculation of forward
probabilities itself is almost the same as Finch and
Sumita (2010) except for state transition constraints:
from noiseB to signal, from signal to noiseE. The
backward-sampling traverses a path by probability-
based sampling with true posteriors, starting from
the choice of the ending state among noiseB (means
full noise), signal, and noiseE. This algorithm in-
creases the computational cost by three times to con-
sider three different states, compared to that of Finch
and Sumita (2010).

noiseB

signal

noiseE

noiseB

signal

noiseE

s

s

s
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t
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t

t

(a) Forward filtering

noiseB

signal

noiseE

noiseB

signal

noiseE

s

s

s

s

s

s

t

t

t

t

t

t

(b) Backward sampling

Figure 3: State-based FFBS for the proposed model.

4 Experiments

We conducted experiments comparing the pro-
posed method with the conventional sample-wise
method for the use in bootstrapping statistical
machine transliteration using Japanese-to-English
patent translation dataset (Goto et al., 2013).

4.1 Training data setup

First, we trained a phrase table on the 3.2M paral-
lel sentences by a standard training procedure using
Moses, with Japanese tokenization using MeCab1.
We obtained 591,840 phrase table entries whose
Japanese side was written in katakana (Japanese
phonogram) only2. Then, we iteratively ran the
method of Sajjad et al. (2012) on these entries and
eliminate non-transliteration pairs, until the num-
ber of pairs converged. Finally we obtain 104,563
katakana-English pairs after 10 iterations; they were
our baseline training set mined by sample-wise
method. We used Sajjad et al.’s method as pre-
processing for filtering sample-wise noise while the
proposed method could also do that, because the
proposed method took much more training time for
all phrase table entries.

4.2 Transliteration experiments

The transliteration experiment used a translation-
based implementation with Moses, using a

1http://code.google.com/p/mecab/
2This katakana-based filtering is a language dependent

heuristic for choosing potential transliteration candidate, be-
cause transliterations in Japanese are usually written in
katakana.
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character-based 7-gram language model trained on
300M English patent sentences. We compared three
transliteration models below.

The test set was top-1000 unknown (in the
Japanese-to-English translation model) katakana
words appeared in 400M Japanese patent sentences.
They covered 15.5% of all unknown katakana words
and 8.8% of all unknown words (excluding num-
bers); that is, more than a half of unknown words
were katakana words.

4.2.1 Sample-wise method (BASELINE)
We used the baseline training set to train sta-

tistical machine transliteration model for our base-
line. The training procedure was based on Moses:
MGIZA++ word alignment, grow-diag-final-and
alignment symmetrization and phrase extraction
with the maximum phrase length of 7.

4.2.2 Proposed method (PROPOSED)
We applied the proposed method to the baseline

training set with 30 sampling iterations and elimi-
nated partial noise. The transliteration model was
trained in the same manner as BASELINE after elim-
inating noise.

The hyperparameters, α, λs, and λt, were op-
timized using a held-out set of 2,000 katakana-
English pairs that were randomly chosen from a
general-domain bilingual dictionary. The hyperpa-
rameter optimization was based on F-score values
on the held-out set with varying α among 0.01, 0.02,
0.05, 0.1, 1.0, and λs among 1, 2, 3, 5.

Table 1 compares the statistics on the training sets
of BASELINE and PROPOSED. Note that we ap-
plied the proposed method to BASELINE data (the
sample-wise method was already applied until con-
vergence). The proposed method eliminated only
two transliteration candidates in sample-wise but
also eliminated 5,714 (0.64%) katakana and 55,737
(4.1%) English characters3.

4.2.3 Proposed method using aligned joint
substrings as phrases (PROPOSED-JOINT)

The many-to-many character alignment actually
induces substring pairs, which can be used as

3The reason of larger number of partial noise in English side
would be a syntactic difference as shown in Figure 2 and the
katakana-based filtering heuristics.

Table 1: Statistics of the training sets.
Method #pairs #Ja chars. #En chars.
BASELINE 104,563 899,080 1,372,993
PROPOSED 104,561 893,366 1,317,256

phrases in statistical machine transliteration and
improved transliteration performance (Finch and
Sumita, 2010). We extracted them by: 1) generate
many-to-many word alignment, in which all possi-
ble word alignment links in many-to-many corre-
spondences (e.g., 0-0 0-1 0-2 1-0 1-1 1-2 for ⟨コ ン,
c o m⟩), 2) run phrase extraction and scoring same as
a standard Moses training. This procedure extracts
longer phrases satisfying the many-to-many align-
ment constraints than the simple use of extracted
joint substring pairs as phrases.

4.3 Results

Table 2 shows the results. We used three evalua-
tion metrics: ACC, F-score, and BLEUc. ACC is
a sample-wise accuracy and F-score is a character-
wise F-measure-like score (Li et al., 2010). BLEUc

is BLEU (Papineni et al., 2002) in the character level
with n=4.

PROPOSED achieved 63% in ACC (16% rela-
tive error reduction from BASELINE), and 94.6% in
F-score (25% relative error reduction from BASE-
LINE). These improvements clearly showed an ad-
vantage of the proposed method over the sample-
wise mining. BLEUc showed a similar improve-
ments. Recall that BASELINE and PROPOSED had
a small difference in their training data, actually
0.64% (katakana) and 4.1% (English) in the num-
ber of characters. The results suggest that the partial
noise can hurt transliteration models.

PROPOSED-JOINT showed similar performance
as PROPOSED with a slight drop in BLEUc, al-
though many-to-many substring alignment was ex-
pected to improve transliteration as reported by
Finch and Sumita (2010). The difference may be
due to the difference in coverage of the phrase
tables; PROPOSED-JOINT retained relatively long
substrings by the many-to-many alignment con-
straints in contrast to the less-constrained grow-
diag-final-and alignments in PROPOSED. Since the
training data in our bootstrapping experiments con-
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Table 2: Japanese-to-English transliteration results for
top-1000 unknown katakana words. ACC and F-score
stand for the ones used in NEWS workshop, BLEUc is
character-wise BLEU.

Method ACC F-score BLEUc

BASELINE 0.56 0.929 0.864
PROPOSED 0.63 0.946 0.897
PROPOSED-JOINT 0.63 0.943 0.888

tained many similar phrases unlike dictionary-based
data in Finch and Sumita (2010), the phrase table of
PROPOSED-JOINT may have a small coverage due
to long and sparse substring pairs with large prob-
abilities even if the many-to-many alignment was
good. This sparseness problem is beyond the scope
of this paper and worth further study.

4.4 Alignment Examples

Figure 4 shows examples of the alignment results in
the training data. As expected, partial noise both in
Japanese and English was identified correctly in (a),
(b), and (c). There were some alignment errors in the
signal part in (b), in which characters in boundary
positions were aligned incorrectly to adjacent sub-
strings. These alignment errors did not directly de-
grade the partial noise identification but may cause
a negative effect on overall alignment performance
in the sampling-based optimization. (d) is a nega-
tive example in which partial noise was incorrectly
aligned. (c) and (d) have similar partial noise in their
English word endings, but it could not be identified
in (d). One possible reason for that is the sparse-
ness problem mentioned above, as shown in erro-
neous long character alignments in (d).

5 Conclusion

This paper proposed a noise-aware many-to-many
alignment model that can distinguish partial noise in
transliteration pairs for bootstrapping statistical ma-
chine transliteration model from automatically ex-
tracted phrase pairs. The model and training al-
gorithm are straightforward extension of those by
Finch and Sumita (2010). The proposed method
was proved to be effective in Japanese-to-English
transliteration experiments in patent domain.

Future work will investigate the proposed method

ア ー

a n sp 

ク sp タ

a r c sp t a n g e n t 

ン ジ ェ ン トnoise� noise�

(a) Correctly aligned

イ オ 

d o p 

ン ド ー 

i n g sp e n e r g y 

ピ ン グ エ ネ ル ギ ー φ 

noise� noise�

(b) Some alignment errors in transliteration part

フ ォ 

f o r 

ー ム 

m e d 

noise�

(c) Correctly aligned

カ ス 

c u s 

タ マ イ 

t o m i z e d 

ズ noise�

(d) Errors in partial noise

Figure 4: Examples of noise-aware many-to-many align-
ment in the training data. ϕ stands for a zero-length sub-
string. Dashed lines show incorrect alignments, and bold
grey lines mean their corrections.

in other domains and language pairs. The partial
noise would appear in other language pairs, typ-
ically between agglutinative and non-agglutinative
languages. It is also worth extending the approach
into word alignment in statistical machine transla-
tion.

Acknowledgments

We would like to thank anonymous reviewers for
their valuable comments and suggestions.

References
Andrew Finch and Eiichiro Sumita. 2010. A Bayesian

Model of Bilingual Segmentation for Transliteration.
In Proceedings of the seventh International Workshop
on Spoken Language Translation (IWSLT), pages 259–
266.

Isao Goto, Ka Po Chow, Bin Lu, Eiichiro Sumita, and
Benjamin K. Tsou. 2013. Overview of the Patent Ma-
chine Translation Task at the NTCIR-10 Workshop. In
The 10th NTCIR Conference, June.

Ohnmar Htun, Andrew Finch, Eiichiro Sumita, and
Yoshiki Mikami. 2012. Improving Transliteration
Mining by Integrating Expert Knowledge with Statis-
tical Approaches. International Journal of Computer
Applications, 58(17):12–22, November.

Kevin Knight and Jonathan Graehl. 1998. Machine
transliteration. Computational Linguistics, 24(4):599–
612.

208



Haizhou Li, A Kumaran, Min Zhang, and Vladimir Per-
vouchine. 2010. Whitepaper of NEWS 2010 Shared
Task on Transliteration Generation. In Proceedings
of the 2010 Named Entities Workshop, pages 12–20,
Uppsala, Sweden, July. Association for Computational
Linguistics.

Daichi Mochihashi, Takeshi Yamada, and Naonori Ueda.
2009. Bayesian Unsupervised Word Segmentation
with Nested Pitman-Yor Language Modeling. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP, pages 100–108, Suntec, Singapore, August.
Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic Eval-
uation of Machine Translation. In Proceedings of 40th
Annual Meeting of the Association for Computational
Linguistics, pages 311–318, Philadelphia, Pennsylva-
nia, USA, July. Association for Computational Lin-
guistics.

Hassan Sajjad, Alexander Fraser, and Helmut Schmid.
2012. A statistical model for unsupervised and semi-
supervised transliteration mining. In Proceedings of
the 50th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages
469–477, Jeju Island, Korea, July. Association for
Computational Linguistics.

209



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 210–221,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Optimal Beam Search for Machine Translation

Alexander M. Rush Yin-Wen Chang
MIT CSAIL,

Cambridge, MA 02139, USA
{srush, yinwen}@csail.mit.edu

Michael Collins
Department of Computer Science,

Columbia University,
New York, NY 10027, USA

mcollins@cs.columbia.edu

Abstract

Beam search is a fast and empirically effective
method for translation decoding, but it lacks
formal guarantees about search error. We de-
velop a new decoding algorithm that combines
the speed of beam search with the optimal cer-
tificate property of Lagrangian relaxation, and
apply it to phrase- and syntax-based transla-
tion decoding. The new method is efficient,
utilizes standard MT algorithms, and returns
an exact solution on the majority of transla-
tion examples in our test data. The algorithm
is 3.5 times faster than an optimized incremen-
tal constraint-based decoder for phrase-based
translation and 4 times faster for syntax-based
translation.

1 Introduction

Beam search (Koehn et al., 2003) and cube prun-
ing (Chiang, 2007) have become the de facto decod-
ing algorithms for phrase- and syntax-based trans-
lation. The algorithms are central to large-scale
machine translation systems due to their efficiency
and tendency to produce high-quality translations
(Koehn, 2004; Koehn et al., 2007; Dyer et al., 2010).
However despite practical effectiveness, neither al-
gorithm provides any bound on possible decoding
error.

In this work we present a variant of beam search
decoding for phrase- and syntax-based translation.
The motivation is to exploit the effectiveness and ef-
ficiency of beam search, but still maintain formal
guarantees. The algorithm has the following bene-
fits:

• In theory, it can provide a certificate of optimal-
ity; in practice, we show that it produces opti-
mal hypotheses, with certificates of optimality,
on the vast majority of examples.

• It utilizes well-studied algorithms and extends
off-the-shelf beam search decoders.

• Empirically it is very fast, results show that it is
3.5 times faster than an optimized incremental
constraint-based solver.

While our focus is on fast decoding for machine
translation, the algorithm we present can be applied
to a variety of dynamic programming-based decod-
ing problems. The method only relies on having a
constrained beam search algorithm and a fast uncon-
strained search algorithm. Similar algorithms exist
for many NLP tasks.

We begin in Section 2 by describing constrained
hypergraph search and showing how it generalizes
translation decoding. Section 3 introduces a variant
of beam search that is, in theory, able to produce
a certificate of optimality. Section 4 shows how to
improve the effectiveness of beam search by using
weights derived from Lagrangian relaxation. Sec-
tion 5 puts everything together to derive a fast beam
search algorithm that is often optimal in practice.

Experiments compare the new algorithm with
several variants of beam search, cube pruning, A∗

search, and relaxation-based decoders on two trans-
lation tasks. The optimal beam search algorithm is
able to find exact solutions with certificates of opti-
mality on 99% of translation examples, significantly
more than other baselines. Additionally the optimal
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beam search algorithm is much faster than other ex-
act methods.

2 Background

The focus of this work is decoding for statistical ma-
chine translation. Given a source sentence, the goal
is to find the target sentence that maximizes a com-
bination of translation model and language model
scores. In order to analyze this decoding problem,
we first abstract away from the specifics of transla-
tion into a general form, known as a hypergraph. In
this section, we describe the hypergraph formalism
and its relation to machine translation.

2.1 Notation

Throughout the paper, scalars and vectors are writ-
ten in lowercase, matrices are written in uppercase,
and sets are written in script-case, e.g. X . All vec-
tors are assumed to be column vectors. The function
δ(j) yields an indicator vector with δ(j)j = 1 and
δ(j)i = 0 for all i 6= j.

2.2 Hypergraphs and Search

A directed hypergraph is a pair (V, E) where V =
{1 . . . |V|} is a set of vertices, and E is a set of di-
rected hyperedges. Each hyperedge e ∈ E is a tuple〈
〈v2, . . . , v|v|〉, v1

〉
where vi ∈ V for i ∈ {1 . . . |v|}.

The head of the hyperedge is h(e) = v1. The tail
of the hyperedge is the ordered sequence t(e) =
〈v2, . . . , v|v|〉. The size of the tail |t(e)| may vary
across different hyperedges, but |t(e)| ≥ 1 for all
edges and is bounded by a constant. A directed
graph is a directed hypergraph with |t(e)| = 1 for
all edges e ∈ E .

Each vertex v ∈ V is either a non-terminal or a
terminal in the hypergraph. The set of non-terminals
is N = {v ∈ V : h(e) = v for some e ∈ E}. Con-
versely, the set of terminals is defined as T = V\N .

All directed hypergraphs used in this work are
acyclic: informally this implies that no hyperpath (as
defined below) contains the same vertex more than
once (see Martin et al. (1990) for a full definition).
Acyclicity implies a partial topological ordering of
the vertices. We also assume there is a distinguished
root vertex 1 where for all e ∈ E , 1 6∈ t(e).

Next we define a hyperpath as x ∈ {0, 1}|E| where
x(e) = 1 if hyperedge e is used in the hyperpath,

procedure BESTPATHSCORE(θ, τ )
π[v]← 0 for all v ∈ T
for e ∈ E in topological order do
〈〈v2, . . . , v|v|〉, v1〉 ← e

s← θ(e) +

|v|∑
i=2

π[vi]

if s > π[v1] then π[v1]← s

return π[1] + τ

Figure 1: Dynamic programming algorithm for uncon-
strained hypergraph search. Note that this version only
returns the highest score: maxx∈X θ

>x+ τ . The optimal
hyperpath can be found by including back-pointers.

x(e) = 0 otherwise. The set of valid hyperpaths is
defined as

X =


x :

∑
e∈E:h(e)=1

x(e) = 1,

∑
e:h(e)=v

x(e) =
∑

e:v∈t(e)

x(e) ∀ v ∈ N \ {1}


The first problem we consider is unconstrained hy-

pergraph search. Let θ ∈ R|E| be the weight vector
for the hypergraph and let τ ∈ R be a weight offset.1

The unconstrained search problem is to find

max
x∈X

∑
e∈E

θ(e)x(e) + τ = max
x∈X

θ>x+ τ

This maximization can be computed for any
weights and directed acyclic hypergraph in time
O(|E|) using dynamic programming. Figure 1
shows this algorithm which is simply a version of
the CKY algorithm.

Next consider a variant of this problem: con-
strained hypergraph search. Constraints will be nec-
essary for both phrase- and syntax-based decoding.
In phrase-based models, the constraints will ensure
that each source word is translated exactly once. In
syntax-based models, the constraints will be used to
intersect a translation forest with a language model.

In the constrained hypergraph problem, hyper-
paths must fulfill additional linear hyperedge con-
straints. Define the set of constrained hyperpaths as

X ′ = {x ∈ X : Ax = b}
1The purpose of the offset will be clear in later sections. For

this section, the value of τ can be taken as 0.
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where we have a constraint matrix A ∈ R|b|×|E|
and vector b ∈ R|b| encoding |b| constraints.
The optimal constrained hyperpath is x∗ =
arg maxx∈X ′ θ>x+ τ .

Note that the constrained hypergraph search prob-
lem may be NP-Hard. Crucially this is true even
when the corresponding unconstrained search prob-
lem is solvable in polynomial time. For instance,
phrase-based decoding is known to be NP-Hard
(Knight, 1999), but we will see that it can be ex-
pressed as a polynomial-sized hypergraph with con-
straints.

Example: Phrase-Based Machine Translation
Consider translating a source sentencew1 . . . w|w| to
a target sentence in a language with vocabulary Σ. A
simple phrase-based translation model consists of a
tuple (P, ω, σ) with

• P; a set of pairs (q, r) where q1 . . . q|q| is a se-
quence of source-language words and r1 . . . r|r|
is a sequence of target-language words drawn
from the target vocabulary Σ.

• ω : R|P|; parameters for the translation model
mapping each pair in P to a real-valued score.

• σ : R|Σ×Σ|; parameters of the language model
mapping a bigram of target-language words to
a real-valued score.

The translation decoding problem is to find the
best derivation for a given source sentence. A
derivation consists of a sequence of phrases p =
p1 . . . pn. Define a phrase as a tuple (q, r, j, k)
consisting of a span in the source sentence q =
wj . . . wk and a sequence of target words r1 . . . r|r|,
with (q, r) ∈ P . We say the source words wj . . . wk
are translated to r.

The score of a derivation, f(p), is the sum of the
translation score of each phrase plus the language
model score of the target sentence

f(p) =
n∑
i=1

ω(q(pi), r(pi)) +

|u|+1∑
i=0

σ(ui−1, ui)

where u is the sequence of words in Σ formed
by concatenating the phrases r(p1) . . . r(pn), with
boundary cases u0 = <s> and u|u|+1 = </s>.

Crucially for a derivation to be valid it must sat-
isfy an additional condition: it must translate every
source word exactly once. The decoding problem
for phrase-based translation is to find the highest-
scoring derivation satisfying this property.

We can represent this decoding problem as a con-
strained hypergraph using the construction of Chang
and Collins (2011). The hypergraph weights en-
code the translation and language model scores, and
its structure ensures that the count of source words
translated is |w|, i.e. the length of the source sen-
tence. Each vertex will remember the preceding
target-language word and the count of source words
translated so far.

The hypergraph, which for this problem is also a
directed graph, takes the following form.

• Vertices v ∈ V are labeled (c, u) where c ∈
{1 . . . |w|} is the count of source words trans-
lated and u ∈ Σ is the last target-language word
produced by a partial hypothesis at this vertex.
Additionally there is an initial terminal vertex
labeled (0,<s>).

• There is a hyperedge e ∈ E with head (c′, u′)
and tail 〈(c, u)〉 if there is a valid corresponding
phrase (q, r, j, k) such that c′ = c + |q| and
u′ = r|r|, i.e. c′ is the count of words translated
and u′ is the last word of target phrase r. We
call this phrase p(e).

The weight of this hyperedge, θ(e), is the trans-
lation model score of the pair plus its language
model score

θ(e) = ω(q, r)+

 |r|∑
i=2

σ(ri−1, ri)

+σ(u, r1)

• To handle the end boundary, there are hyper-
edges with head 1 and tail 〈(|w|, u)〉 for all
u ∈ Σ. The weight of these edges is the cost of
the stop bigram following u, i.e. σ(u,</s>).

While any valid derivation corresponds to a hy-
perpath in this graph, a hyperpath may not corre-
spond to a valid derivation. For instance, a hyper-
path may translate some source words more than
once or not at all.
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Figure 2: Hypergraph for translating the sentence w = les1 pauvres2 sont3 demunis4 with set of pairs P =
{(les, the), (pauvres, poor), (sont demunis, don’t have any money)}. Hyperedges are color-coded
by source words translated: orange for les1, green for pauvres2, and red for sont3 demunis4. The dotted lines
show an invalid hyperpath x that has signature Ax = 〈0, 0, 2, 2〉 6= 〈1, 1, 1, 1〉 .

We handle this problem by adding additional con-
straints. For all source words i ∈ {1 . . . |w|}, define
ρ as the set of hyperedges that translate wi

ρ(i) = {e ∈ E : j(p(e)) ≤ i ≤ k(p(e))}

Next define |w| constraints enforcing that each word
in the source sentence is translated exactly once∑

e∈ρ(i)

x(e) = 1 ∀ i ∈ {1 . . . |w|}

These linear constraints can be represented with
a matrix A ∈ {0, 1}|w|×|E| where the rows corre-
spond to source indices and the columns correspond
to edges. We call the product Ax the signature,
where in this case (Ax)i is the number of times word
i has been translated. The full set of constrained hy-
perpaths is X ′ = {x ∈ X : Ax = 1 }, and the best
derivation under this phrase-based translation model
has score maxx∈X ′ θ>x+ τ .

Figure 2.2 shows an example hypergraph
with constraints for translating the sentence les
pauvres sont demunis into English using
a simple set of phrases. Even in this small exam-
ple, many of the possible hyperpaths violate the
constraints and correspond to invalid derivations.

Example: Syntax-Based Machine Translation
Syntax-based machine translation with a language
model can also be expressed as a constrained hyper-
graph problem. For the sake of space, we omit the
definition. See Rush and Collins (2011) for an in-
depth description of the constraint matrix used for
syntax-based translation.

3 A Variant of Beam Search

This section describes a variant of the beam
search algorithm for finding the highest-scoring con-
strained hyperpath. The algorithm uses three main
techniques: (1) dynamic programming with ad-
ditional signature information to satisfy the con-
straints, (2) beam pruning where some, possibly op-
timal, hypotheses are discarded, and (3) branch-and-
bound-style application of upper and lower bounds
to discard provably non-optimal hypotheses.

Any solution returned by the algorithm will be a
valid constrained hyperpath and a member of X ′.
Additionally the algorithm returns a certificate flag
opt that, if true, indicates that no beam pruning
was used, implying the solution returned is opti-
mal. Generally it will be hard to produce a certificate
even by reducing the amount of beam pruning; how-
ever in the next section we will introduce a method
based on Lagrangian relaxation to tighten the upper
bounds. These bounds will help eliminate most so-
lutions before they trigger pruning.

3.1 Algorithm

Figure 3 shows the complete beam search algorithm.
At its core it is a dynamic programming algorithm
filling in the chart π. The beam search chart indexes
hypotheses by vertex v ∈ V as well as a signature
sig ∈ R|b| where |b| is the number of constraints. A
new hypothesis is constructed from each hyperedge
and all possible signatures of tail nodes. We define
the function SIGS to take the tail of an edge and re-
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turn the set of possible signature combinations

SIGS(v2, . . . v|v|) =

|v|∏
i=2

{sig : π[vi, sig] 6= −∞}

where the product is the Cartesian product over sets.
Line 8 loops over this entire set.2 For hypothesis x,
the algorithm ensures that its signature sig is equal
to Ax. This property is updated on line 9.

The signature provides proof that a hypothesis is
still valid. Let the function CHECK(sig) return true
if the hypothesis can still fulfill the constraints. For
example, in phrase-based decoding, we will define
CHECK(sig) = (sig ≤ 1); this ensures that each
word has been translated 0 or 1 times. This check is
applied on line 11.

Unfortunately maintaining all signatures is inef-
ficient. For example we will see that in phrase-
based decoding the signature is a bit-string recording
which source words have been translated; the num-
ber of possible bit-strings is exponential in the length
of the sentence. The algorithm includes two meth-
ods for removing hypotheses, bounding and prun-
ing.

Bounding allows us to discard provably non-
optimal solutions. The algorithm takes as arguments
a lower bound on the optimal score lb ≤ θ>x∗ + τ ,
and computes upper bounds on the outside score
for all vertices v: ubs[v], i.e. an overestimate of
the score for completing the hyperpath from v. If
a hypothesis has score s, it can only be optimal if
s+ ubs[v] ≥ lb. This bound check is performed on
line 11.

Pruning removes weak partial solutions based on
problem-specific checks. The algorithm invokes the
black-box function, PRUNE, on line 13, passing it
a pruning parameter β and a vertex-signature pair.
The parameter β controls a threshold for pruning.
For instance for phrase-based translation, it specifies
a hard-limit on the number of hypotheses to retain.
The function returns true if it prunes from the chart.
Note that pruning may remove optimal hypotheses,
so we set the certificate flag opt to false if the chart
is modified.

2For simplicity we write this loop over the entire set. In
practice it is important to use data structures to optimize look-
up. See Tillmann (2006) and Huang and Chiang (2005).

1: procedure BEAMSEARCH(θ, τ, lb, β)
2: ubs← OUTSIDE(θ, τ)
3: opt← true
4: π[v, sig]← −∞ for all v ∈ V, sig ∈ R|b|
5: π[v, 0]← 0 for all v ∈ T
6: for e ∈ E in topological order do
7: 〈〈v2, . . . , v|v|〉, v1〉 ← e

8: for sig(2) . . . sig(|v|) ∈ SIGS(v2, . . . , v|v|) do

9: sig ← Aδ(e) +

|v|∑
i=2

sig(i)

10: s← θ(e) +

|v|∑
i=2

π[vi, sig
(i)]

11: if

 s > π[v1, sig] ∧
CHECK(sig) ∧
s+ ubs[v1] ≥ lb

 then

12: π[v1, sig]← s
13: if PRUNE(π, v1, sig, β) then opt← false
14: lb′ ← π[1, c] + τ
15: return lb′, opt

Input:


(V, E , θ, τ) hypergraph with weights
(A, b) matrix and vector for constraints
lb ∈ R lower bound
β a pruning parameter

Output:
[

lb′ resulting lower bound score
opt certificate of optimality

Figure 3: A variant of the beam search algorithm. Uses
dynamic programming to produce a lower bound on the
optimal constrained solution and, possibly, a certificate of
optimality. Function OUTSIDE computes upper bounds
on outside scores. Function SIGS enumerates all possi-
ble tail signatures. Function CHECK identifies signatures
that do not violate constraints. Bounds lb and ubs are
used to remove provably non-optimal solutions. Func-
tion PRUNE, taking parameter β, returns true if it prunes
hypotheses from π that could be optimal.

This variant on beam search satisfies the follow-
ing two properties (recall x∗ is the optimal con-
strained solution)

Property 3.1 (Primal Feasibility). The returned
score lb′ lower bounds the optimal constrained
score, that is lb′ ≤ θ>x∗ + τ .

Property 3.2 (Dual Certificate). If beam search re-
turns with opt = true, then the returned score is
optimal, i.e. lb′ = θ>x∗ + τ .

An immediate consequence of Property 3.1 is that
the output of beam search, lb′, can be used as the in-
put lb for future runs of the algorithm. Furthermore,
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procedure PRUNE(π, v, sig, β)
C ← {(v′, sig′) : ||sig′||1 = ||sig||1,

π[v′, sig′] 6= −∞}
D ← C \mBEST(β, C, π)
π[v′, sig′]← −∞ for all v′, sig′ ∈ D
if D = ∅ then return true
else return false

Input:
[

(v, sig) the last hypothesis added to the chart
β ∈ Z # of hypotheses to retain

Output: true, if π is modified

Figure 4: Pruning function for phrase-based translation.
Set C contains all hypotheses with ||sig||1 source words
translated. The function prunes all but the top-β scoring
hypotheses in this set.

if we loosen the amount of beam pruning by adjust-
ing the pruning parameter β we can produce tighter
lower bounds and discard more hypotheses. We can
then iteratively apply this idea with a sequence of
parameters β1 . . . βK producing lower bounds lb(1)

through lb(K). We return to this idea in Section 5.

Example: Phrase-based Beam Search. Recall
that the constraints for phrase-based translation con-
sist of a binary matrix A ∈ {0, 1}|w|×|E| and vec-
tor b = 1. The value sigi is therefore the num-
ber of times source word i has been translated in
the hypothesis. We define the predicate CHECK as
CHECK(sig) = (sig ≤ 1) in order to remove hy-
potheses that already translate a source word more
than once, and are therefore invalid. For this reason,
phrase-based signatures are called bit-strings.

A common beam pruning strategy is to group
together items into a set C and retain a (possibly
complete) subset. An example phrase-based beam
pruner is given in Figure 4. It groups together
hypotheses based on ||sigi||1, i.e. the number of
source words translated, and applies a hard pruning
filter that retains only the β highest-scoring items
(v, sig) ∈ C based on π[v, sig].

3.2 Computing Upper Bounds
Define the setO(v, x) to contain all outside edges of
vertex v in hyperpath x (informally, hyperedges that
do not have v as an ancestor). For all v ∈ V , we set
the upper bounds, ubs, to be the best unconstrained
outside score

ubs[v] = max
x∈X :v∈x

∑
e∈O(v,x)

θ(e) + τ

This upper bound can be efficiently computed for
all vertices using the standard outside dynamic pro-
gramming algorithm. We will refer to this algorithm
as OUTSIDE(θ, τ ).

Unfortunately, as we will see, these upper bounds
are often quite loose. The issue is that unconstrained
outside paths are able to violate the constraints with-
out being penalized, and therefore greatly overesti-
mate the score.

4 Finding Tighter Bounds with
Lagrangian Relaxation

Beam search produces a certificate only if beam
pruning is never used. In the case of phrase-based
translation, the certificate is dependent on all groups
C having β or less hypotheses. The only way to en-
sure this is to bound out enough hypotheses to avoid
pruning. The effectiveness of the bounding inequal-
ity, s + ubs[v] < lb, in removing hypotheses is di-
rectly dependent on the tightness of the bounds.

In this section we propose using Lagrangian re-
laxation to improve these bounds. We first give a
brief overview of the method and then apply it to
computing bounds. Our experiments show that this
approach is very effective at finding certificates.

4.1 Algorithm
In Lagrangian relaxation, instead of solving the con-
strained search problem, we relax the constraints
and solve an unconstrained hypergraph problem
with modified weights. Recall the constrained hy-
pergraph problem: max

x∈X :Ax=b
θ>x + τ . The La-

grangian dual of this optimization problem is

L(λ) = max
x∈X

θ>x+ τ − λ>(Ax− b)

=

(
max
x∈X

(θ −A>λ)>x

)
+ τ + λ>b

= max
x∈X

θ′>x+ τ ′

where λ ∈ R|b| is a vector of dual variables and
define θ′ = θ − A>λ and τ ′ = τ + λ>b. This
maximization is over X , so for any value of λ, L(λ)
can be calculated as BestPathScore(θ′, τ ′).

Note that for all valid constrained hyperpaths x ∈
X ′ the termAx−b equals 0, which implies that these
hyperpaths have the same score under the modified
weights as under the original weights, θ>x + τ =
θ′>x+τ ′. This leads to the following two properties,
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procedure LRROUND(αk, λ)
x← arg max

x∈X
θ>x+ τ − λ>(Ax− b)

λ′ ← λ− αk(Ax− b)
opt← Ax = b
ub← θ>x+ τ
return λ′,ub, opt

procedure LAGRANGIANRELAXATION(α)
λ(0) ← 0
for k in 1 . . .K do
λ(k),ub, opt← LRROUND(αk, λ

(k−1))
if opt then return λ(k),ub, opt

return λ(K),ub, opt

Input: α1 . . . αK sequence of subgradient rates

Output:

 λ final dual vector
ub upper bound on optimal constrained solution
opt certificate of optimality

Figure 5: Lagrangian relaxation algorithm. The algo-
rithm repeatedly calls LRROUND to compute the subgra-
dient, update the dual vector, and check for a certificate.

where x ∈ X is the hyperpath computed within the
max,

Property 4.1 (Dual Feasibility). The valueL(λ) up-
per bounds the optimal solution, that is L(λ) ≥
θ>x∗ + τ

Property 4.2 (Primal Certificate). If the hyperpath
x is a member of X ′, i.e. Ax = b, then L(λ) =
θ>x∗ + τ .

Property 4.1 states that L(λ) always produces
some upper bound; however, to help beam search,
we want as tight a bound as possible: minλ L(λ).

The Lagrangian relaxation algorithm, shown in
Figure 5, uses subgradient descent to find this min-
imum. The subgradient of L(λ) is Ax − b where
x is the argmax of the modified objective x =
arg maxx∈X θ

′>x + τ ′. Subgradient descent itera-
tively solves unconstrained hypergraph search prob-
lems to compute these subgradients and updates λ.
See Rush and Collins (2012) for an extensive discus-
sion of this style of optimization in natural language
processing.

Example: Phrase-based Relaxation. For phrase-
based translation, we expand out the Lagrangian to

L(λ) = max
x∈X

θ>x+ τ − λ>(Ax− b) =

max
x∈X

∑
e∈E

θ(e)− k(p(e))∑
i=j(p(e))

λi

x(e) + τ +

|s|∑
i=1

λi

The weight of each edge θ(e) is modified by the
dual variables λi for each source word translated by
the edge, i.e. if (q, r, j, k) = p(e), then the score
is modified by

∑k
i=j λi. A solution under these

weights may use source words multiple times or not
at all. However if the solution uses each source word
exactly once (Ax = 1), then we have a certificate
and the solution is optimal.

4.2 Utilizing Upper Bounds in Beam Search

For many problems, it may not be possible to satisfy
Property 4.2 by running the subgradient algorithm
alone. Yet even for these problems, applying sub-
gradient descent will produce an improved estimate
of the upper bound, minλ L(λ).

To utilize these improved bounds, we simply re-
place the weights in beam search and the outside al-
gorithm with the modified weights from Lagrangian
relaxation, θ′ and τ ′. Since the result of beam search
must be a valid constrained hyperpath x ∈ X ′, and
for all x ∈ X ′, θ>x + τ = θ′>x + τ ′, this sub-
stitution does not alter the necessary properties of
the algorithm; i.e. if the algorithm returns with opt
equal to true, then the solution is optimal.

Additionally the computation of upper bounds
now becomes

ubs[v] = max
x∈X :v∈x

∑
e∈O(v,x)

θ′(e) + τ ′

These outside paths may still violate constraints, but
the modified weights now include penalty terms to
discourage common violations.

5 Optimal Beam Search

The optimality of the beam search algorithm is de-
pendent on the tightness of the upper and lower
bounds. We can produce better lower bounds by
varying the pruning parameter β; we can produce
better upper bounds by running Lagrangian relax-
ation. In this section we combine these two ideas
and present a complete optimal beam search algo-
rithm.

Our general strategy will be to use Lagrangian
relaxation to compute modified weights and to use
beam search over these modified weights to attempt
to find an optimal solution. One simple method for
doing this, shown at the top of Figure 6, is to run
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in stages. The algorithm first runs Lagrangian relax-
ation to compute the best λ vector. The algorithm
then iteratively runs beam search using the parame-
ter sequence βk. These parameters allow the algo-
rithm to loosen the amount of beam pruning. For
example in phrase based pruning, we would raise
the number of hypotheses stored per group until no
beam pruning occurs.

A clear disadvantage of the staged approach is
that it needs to wait until Lagrangian relaxation is
completed before even running beam search. Of-
ten beam search will be able to quickly find an opti-
mal solution even with good but non-optimal λ. In
other cases, beam search may still improve the lower
bound lb.

This motivates the alternating algorithm OPT-
BEAM shown Figure 6. In each round, the algo-
rithm alternates between computing subgradients to
tighten ubs and running beam search to maximize
lb. In early rounds we set β for aggressive beam
pruning, and as the upper bounds get tighter, we
loosen pruning to try to get a certificate. If at any
point either a primal or dual certificate is found, the
algorithm returns the optimal solution.

6 Related Work

Approximate methods based on beam search and
cube-pruning have been widely studied for phrase-
based (Koehn et al., 2003; Tillmann and Ney, 2003;
Tillmann, 2006) and syntax-based translation mod-
els (Chiang, 2007; Huang and Chiang, 2007; Watan-
abe et al., 2006; Huang and Mi, 2010).

There is a line of work proposing exact algorithms
for machine translation decoding. Exact decoders
are often slow in practice, but help quantify the er-
rors made by other methods. Exact algorithms pro-
posed for IBM model 4 include ILP (Germann et al.,
2001), cutting plane (Riedel and Clarke, 2009), and
multi-pass A* search (Och et al., 2001). Zaslavskiy
et al. (2009) formulate phrase-based decoding as a
traveling salesman problem (TSP) and use a TSP
decoder. Exact decoding algorithms based on finite
state transducers (FST) (Iglesias et al., 2009) have
been studied on phrase-based models with limited
reordering (Kumar and Byrne, 2005). Exact decod-
ing based on FST is also feasible for certain hier-
archical grammars (de Gispert et al., 2010). Chang

procedure OPTBEAMSTAGED(α, β)
λ,ub, opt←LAGRANGIANRELAXATION(α)
if opt then return ub

θ′ ← θ −A>λ
τ ′ ← τ + λ>b
lb(0) ← −∞
for k in 1 . . .K do
lb(k), opt← BEAMSEARCH(θ′, τ ′, lb(k−1), βk)

if opt then return lb(k)

return maxk∈{1...K} lb(k)

procedure OPTBEAM(α, β)
λ(0) ← 0
lb(0) ← −∞
for k in 1 . . .K do
λ(k),ub(k), opt← LRROUND(αk, λ

(k−1))

if opt then return ub(k)

θ′ ← θ −A>λ(k)

τ ′ ← τ + λ(k)>b
lb(k), opt← BEAMSEARCH(θ′, τ ′, lb(k−1), βk)

if opt then return lb(k)

return maxk∈{1...K} lb(k)

Input:
[
α1 . . . αK sequence of subgradient rates
β1 . . . βK sequence of pruning parameters

Output: optimal constrained score or lower bound

Figure 6: Two versions of optimal beam search: staged
and alternating. Staged runs Lagrangian relaxation to
find the optimal λ, uses λ to compute upper bounds, and
then repeatedly runs beam search with pruning sequence
β1 . . . βk. Alternating switches between running a round
of Lagrangian relaxation and a round of beam search with
the updated λ. If either produces a certificate it returns the
result.

and Collins (2011) and Rush and Collins (2011) de-
velop Lagrangian relaxation-based approaches for
exact machine translation.

Apart from translation decoding, this paper is
closely related to work on column generation for
NLP. Riedel et al. (2012) and Belanger et al. (2012)
relate column generation to beam search and pro-
duce exact solutions for parsing and tagging prob-
lems. The latter work also gives conditions for when
beam search-style decoding is optimal.

7 Results

To evaluate the effectiveness of optimal beam search
for translation decoding, we implemented decoders
for phrase- and syntax-based models. In this sec-
tion we compare the speed and optimality of these
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decoders to several baseline methods.

7.1 Setup and Implementation

For phrase-based translation we used a German-to-
English data set taken from Europarl (Koehn, 2005).
We tested on 1,824 sentences of length at most 50
words. For experiments the phrase-based systems
uses a trigram language model and includes standard
distortion penalties. Additionally the unconstrained
hypergraph includes further derivation information
similar to the graph described in Chang and Collins
(2011).

For syntax-based translation we used a Chinese-
to-English data set. The model and hypergraphs
come from the work of Huang and Mi (2010). We
tested on 691 sentences from the newswire portion
of the 2008 NIST MT evaluation test set. For ex-
periments, the syntax-based model uses a trigram
language model. The translation model is tree-to-
string syntax-based model with a standard context-
free translation forest. The constraint matrix A
is based on the constraints described by Rush and
Collins (2011).

Our decoders use a two-pass architecture. The
first pass sets up the hypergraph in memory, and the
second pass runs search. When possible the base-
lines share optimized construction and search code.

The performance of optimal beam search is de-
pendent on the sequences α and β. For the step-
size α we used a variant of Polyak’s rule (Polyak,
1987; Boyd and Mutapcic, 2007), substituting the
unknown optimal score for the last computed lower
bound: αk ← ub(k)−lb(k)

||Ax(k)−b||22
. We adjust the order of

the pruning parameter β based on a function µ of
the current gap: βk ← 10µ(ub(k)−lb(k)).

Previous work on these data sets has shown that
exact algorithms do not result in a significant in-
crease in translation accuracy. We focus on the effi-
ciency and model score of the algorithms.

7.2 Baseline Methods

The experiments compare optimal beam search
(OPTBEAM) to several different decoding meth-
ods. For both systems we compare to: BEAM, the
beam search decoder from Figure 3 using the orig-
inal weights θ and τ , and β ∈ {100, 1000}; LR-
TIGHT, Lagrangian relaxation followed by incre-

Figure 7: Two graphs from phrase-based decoding.
Graph (a) shows the duality gap distribution for 1,824
sentences after 0, 5, and 10 rounds of LR. Graph (b)
shows the % of certificates found for sentences with dif-
fering gap sizes and beam search parameters β. Duality
gap is defined as, ub - (θ>x∗ + τ ).

mental tightening constraints, which is a reimple-
mentation of Chang and Collins (2011) and Rush
and Collins (2011).

For phrase-based translation we compare with:
MOSES-GC, the standard Moses beam search de-
coder with β ∈ {100, 1000} (Koehn et al., 2007);
MOSES, a version of Moses without gap constraints
more similar to BEAM (see Chang and Collins
(2011)); ASTAR, an implementation of A∗ search
using original outside scores, i.e. OUTSIDE(θ, τ),
and capped at 20,000,000 queue pops.

For syntax-based translation we compare with:
ILP, a general-purpose integer linear program-
ming solver (Gurobi Optimization, 2013) and
CUBEPRUNING, an approximate decoding method
similar to beam search (Chiang, 2007), tested with
β ∈ {100, 1000}.

7.3 Experiments

Table 1 shows the main results. For phrase-based
translation, OPTBEAM decodes the optimal trans-
lation with certificate in 99% of sentences with an
average time of 17.27 seconds per sentence. This
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11-20 (558) 21-30 (566) 31-40 (347) 41-50 (168) all (1824)
Phrase-Based time cert exact time cert exact time cert exact time cert exact time cert exact
BEAM (100) 2.33 19.5 38.0 8.37 1.6 7.2 24.12 0.3 1.4 71.35 0.0 0.0 14.50 15.3 23.2
BEAM (1000) 2.33 37.8 66.3 8.42 3.4 18.9 21.60 0.6 3.2 53.99 0.6 1.2 12.44 22.6 36.9
BEAM (100000) 3.34 83.9 96.2 18.53 22.4 60.4 46.65 2.0 18.1 83.53 1.2 6.5 23.39 43.2 62.4
MOSES (100) 0.18 0.0 81.0 0.36 0.0 45.6 0.53 0.0 14.1 0.74 0.0 6.0 0.34 0.0 52.3
MOSES (1000) 2.29 0.0 97.8 4.39 0.0 78.8 6.52 0.0 43.5 9.00 0.0 19.6 4.20 0.0 74.6
ASTAR (cap) 11.11 99.3 99.3 91.39 53.9 53.9 122.67 7.8 7.8 139.61 1.2 1.2 67.99 58.8 58.8
LR-TIGHT 4.20 100.0 100.0 23.25 100.0 100.0 88.16 99.7 99.7 377.9 97.0 97.0 60.11 99.7 99.7
OPTBEAM 2.85 100.0 100.0 10.33 100.0 100.0 28.29 100.0 100.0 84.34 97.0 97.0 17.27 99.7 99.7
ChangCollins 10.90 100.0 100.0 57.20 100.0 100.0 203.4 99.7 99.7 679.9 97.0 97.0 120.9 99.7 99.7
MOSES-GC (100) 0.14 0.0 89.4 0.27 0.0 84.1 0.41 0.0 75.8 0.58 0.0 78.6 0.26 0.0 84.9
MOSES-GC (1000) 1.33 0.0 89.4 2.62 0.0 84.3 4.15 0.0 75.8 6.19 0.0 79.2 2.61 0.0 85.0

11-20 (192) 21-30 (159) 31-40 (136) 41-100 (123) all (691)
Syntax-Based time cert exact time cert exact time cert exact time cert exact time cert exact
BEAM (100) 0.40 4.7 75.9 0.40 0.0 66.0 0.75 0.0 43.4 1.66 0.0 25.8 0.68 5.72 58.7
BEAM (1000) 0.78 16.9 79.4 2.65 0.6 67.1 6.20 0.0 47.5 15.5 0.0 36.4 4.16 12.5 65.5
CUBE (100) 0.08 0.0 77.6 0.16 0.0 66.7 0.23 0.0 43.9 0.41 0.0 26.3 0.19 0.0 59.0
CUBE (1000) 1.76 0.0 91.7 4.06 0.0 95.0 5.71 0.0 82.9 10.69 0.0 60.9 4.66 0.0 85.0
LR-TIGHT 0.37 100.0 100.0 1.76 100.0 100.0 4.79 100.0 100.0 30.85 94.5 94.5 7.25 99.0 99.0
OPTBEAM 0.23 100.0 100.0 0.50 100.0 100.0 1.42 100.0 100.0 7.14 93.6 93.6 1.75 98.8 98.8
ILP 9.15 100.0 100.0 32.35 100.0 100.0 49.6 100.0 100.0 108.6 100.0 100.0 40.1 100.0 100.0

Table 1: Experimental results for translation experiments. Column time is the mean time per sentence in seconds,
cert is the percentage of sentences solved with a certificate of optimality, exact is the percentage of sentences solved
exactly, i.e. θ>x+ τ = θ>x∗ + τ . Results are grouped by sentence length (group 1-10 is omitted for space).

is seven times faster than the decoder of Chang and
Collins (2011) and 3.5 times faster then our reim-
plementation, LR-TIGHT. ASTAR performs poorly,
taking lots of time on difficult sentences. BEAM runs
quickly, but rarely finds an exact solution. MOSES

without gap constraints is also fast, but less exact
than OPTBEAM and unable to produce certificates.

For syntax-based translation. OPTBEAM finds a
certificate on 98.8% of solutions with an average
time of 1.75 seconds per sentence, and is four times
faster than LR-TIGHT. CUBE (100) is an order
of magnitude faster, but is rarely exact on longer
sentences. CUBE (1000) finds more exact solu-
tions, but is comparable in speed to optimal beam
search. BEAM performs better than in the phrase-
based model, but is not much faster than OPTBEAM.

Figure 7.2 shows the relationship between beam
search optimality and duality gap. Graph (a) shows
how a handful of LR rounds can significantly tighten
the upper bound score of many sentences. Graph (b)
shows how beam search is more likely to find opti-
mal solutions with tighter bounds. BEAM effectively
uses 0 rounds of LR, which may explain why it finds
so few optimal solutions compared to OPTBEAM.

Table 2 breaks down the time spent in each part
of the algorithm. For both methods, beam search has
the most time variance and uses more time on longer
sentences. For phrase-based sentences, Lagrangian
relaxation is fast, and hypergraph construction dom-

≥ 30 all
mean median mean median

Hypergraph 56.6% 69.8% 59.6% 69.6%
PB Lag. Relaxation 10.0% 5.5% 9.4% 7.6%

Beam Search 33.4% 24.6% 30.9% 22.8%
Hypergraph 0.5% 1.6% 0.8% 2.4%

SB Lag. Relaxation 15.0% 35.2% 17.3% 41.4%
Beam Search 84.4% 63.1% 81.9 % 56.1%

Table 2: Distribution of time within optimal beam search,
including: hypergraph construction, Lagrangian relax-
ation, and beam search. Mean is the percentage of total
time. Median is the distribution over the median values
for each row.

inates. If not for this cost, OPTBEAM might be com-
parable in speed to MOSES (1000).

8 Conclusion

In this work we develop an optimal variant of beam
search and apply it to machine translation decod-
ing. The algorithm uses beam search to produce
constrained solutions and bounds from Lagrangian
relaxation to eliminate non-optimal solutions. Re-
sults show that this method can efficiently find exact
solutions for two important styles of machine trans-
lation.
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Abstract

Ngram language models tend to increase in
size with inflating the corpus size, and con-
sume considerable resources. In this pa-
per, we propose an efficient method for im-
plementing ngram models based on double-
array structures. First, we propose a method
for representing backwards suffix trees using
double-array structures and demonstrate its ef-
ficiency. Next, we propose two optimization
methods for improving the efficiency of data
representation in the double-array structures.
Embedding probabilities into unused spaces
in double-array structures reduces the model
size. Moreover, tuning the word IDs in the
language model makes the model smaller and
faster. We also show that our method can be
used for building large language models using
the division method. Lastly, we show that our
method outperforms methods based on recent
related works from the viewpoints of model
size and query speed when both optimization
methods are used.

1 Introduction

Ngram language models (F. Jelinek, 1990) are
widely used as probabilistic models of sentence in
natural language processing. The wide use of the
Internet has entailed a dramatic increase in size of
the available corpora, which can be harnessed to ob-
tain a significant improvement in model quality. In
particular, Brants et al. (2007) have shown that the
performance of statistical machine translation sys-
tems is monotonically improved with the increas-
ing size of training corpora for the language model.

However, models using larger corpora also consume
more resources. In recent years, many methods for
improving the efficiency of language models have
been proposed to tackle this problem (Pauls and
Klein, 2011; Kenneth Heafield, 2011). Such meth-
ods not only reduce the required memory size but
also raise query speed.

In this paper, we propose the double-array lan-
guage model (DALM) which uses double-array
structures (Aoe, 1989). Double-array structures
are widely used in text processing, especially for
Japanese. They are known to provide a compact
representation of tries (Fredkin, 1960) and fast tran-
sitions between trie nodes. The ability to store and
manipulate tries efficiently is expected to increase
the performance of language models (i.e., improving
query speed and reducing the model size in terms of
memory) because tries are one of the most common
representations of data structures in language mod-
els. We use double-array structures to implement
a language model since we can utilize their speed
and compactness when querying the model about an
ngram.

In order to utilize of double-array structures as
language models, we modify them to be able to
store probabilities and backoff weights. We also
propose two optimization methods: embedding
and ordering. These methods reduce model size
and increase query speed. Embedding is an ef-
ficient method for storing ngram probabilities and
backoff weights, whereby we find vacant spaces in
the double-array language model structure and pop-
ulate them with language model information, such
as probabilities and backoff weights. Ordering is
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a method for compacting the double-array structure.
DALM uses word IDs for all words of the ngram,
and ordering assigns a word ID to each word
to reduce the model size. These two optimization
methods can be used simultaneously and are also ex-
pected to work well.

In our experiments, we use a language model
based on corpora of the NTCIR patent retrieval
task (Atsushi Fujii et al., 2007; Atsushi Fujii et al.,
2005; Atsushi Fujii et al., 2004; Makoto Iwayama et
al., 2003). The model size is 31 GB in the ARPA
file format. We conducted experiments focusing on
query speed and model size. The results indicate
that when the abovementioned optimization meth-
ods are used together, DALM outperforms state-of-
the-art methods on those points.

2 Related Work

2.1 Tries and Backwards Suffix Trees

Tries (Fredkin, 1960) are one of the most widely
used tree structures in ngram language models since
they can reduce memory requirements by sharing
common prefix. Moreover, since the query speed
for tries depends only on the number of input words,
the query speed remains constant even if the ngram
model increases in size.

Backwards suffix trees (Bell et al., 1990; Stolcke,
2002; Germann et al., 2009) are among the most
efficient representations of tries for language mod-
els. They contain ngrams in reverse order of history
words.

Figure 1 shows an example of a backwards suf-
fix tree representation. In this paper, we denote an
ngram: by the form w1, w2, · · · , wn as wn

1 . In this
example, word lists (represented as rectangular ta-
bles) contain target words (here, wn) of ngrams, and
circled words in the tree denote history words (here,
wn−1

1 ) associated with target words. The history
words “I eat,” “you eat”, and “do you eat” are stored
in reverse order. Querying this trie about an ngram is
simple: just trace history words in reverse and then
find the target word in a list. For example, consider
querying about the trigram “I eat fish”. First, simply
trace the history in the trie in reverse order (“eat”→
“I”); then, find “fish” in list <1>. Similarly, query-
ing a backwards suffix tree about unknown ngrams
is also efficient, because the backwards suffix tree

Figure 1: Example of a backwards suffix tree. There
are two branch types in a backwards suffix tree: history
words and target words. History words are shown in cir-
cles and target words are stored in word lists.

representation is highly suitable for the backoff cal-
culation. For example, in querying about the 4gram
“do you eat soup”, we first trace “eat”→ “you”→
“do” in a manner similar to above. However, search-
ing for the word “soup” in list <3> fails because
list <3> does not contain the word “soup”. In this
case, we return to the node “you” to search the list
<2>, where we find “soup”. This means that the tri-
gram “you eat soup” is contained in the tree while
the 4gram “do you eat soup” is not. This behavior
can be efficiently used for backoff calculation.

SRILM (Stolcke, 2002) is a widely used language
model toolkit. It utilizes backwards suffix trees for
its data structures. In SRILM, tries are implemented
as 64-bit pointer links, which wastes a lot of mem-
ory. On the other hand, the access speed for ngram
probabilities is relatively high.

2.2 Efficient Language Models

In recent years, several methods have been proposed
for storing language models efficiently in memory.

Talbot and Osborne (2007) have proposed an effi-
cient method based on bloom filters. This method
modifies bloom filters to store count information
about training sets. In prior work, bloom filters
have been used for checking whether certain data
are contained in a set. To store the count informa-
tion, pairs from <ngram,1> to <ngram,count> are
all added to the set for each ngram. To query this
language model about the probability of an ngram,
probabilities are calculated during querying by us-
ing these counts. Talbot and Brants (2008) have pro-
posed a method based on perfect hash functions and
bloomier filters. This method uses perfect hash func-
tions to store ngrams and encode values (for exam-
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ple, probabilities or counts of ngrams in the training
corpus) to a large array. Guthrie and Hepple (2010)
have proposed a language model called ShefLM that
uses minimal perfect hash functions (Belazzougui et
al., 2009), which can store ngrams without vacant
spaces. Furthermore, values are compressed by sim-
ple dense coding (Fredriksson and Nikitin, 2007).
ShefLM achieves a high compression ratio when
it stores counts of ngrams in the training corpus.
However, when this method stores probabilities of
ngrams, the advantage of using compression is lim-
ited because floating-point numbers are difficult to
compress. Generally, compression is performed by
combining the same values but, two floating-point
numbers are rarely the same, especially in the case
of probability values1. These methods implement
lossy language models, meaning that, we can re-
duce the model size at the expense of model qual-
ity. These methods also reduce the model perfor-
mance (perplexity).

Pauls and Klein (2011) have proposed Berke-
leyLM which is based on an implicit encoding struc-
ture, where ngrams are separated according to their
order, and are sorted by word ID. The sorted ngrams
are linked to each other like a trie structure. Berke-
leyLM provides rather efficient methods. Variable-
length coding and block compression are used if
small model size is more important than query
speed. In addition, Heafield (2011) has proposed
an efficient language model toolkit called KenLM
that has been recently used in machine translation
systems, for which large language models are of-
ten needed. KenLM has two different main structure
types: trie and probing. The trie structure is
compact but relatively slower to query, whereas the
probing structure is relatively larger but faster to
query.

In this paper, we propose a language model struc-
ture based on double-array structures. As we de-
scribe in Section 3, double-array structures can be
used as fast and compact representations of tries.
We propose several techniques for maximizing the
performance of double-array structures from the per-
spective of query speed and model size.

1In our experience, it is considerably easier to compress
backoff weights than to compress probabilities, although both
are represented with floating-point numbers. We use this knowl-
edge in our methods.

3 Double-Array

3.1 Double-Array Structure
In DALM, we use a double-array structure (Aoe,
1989) to represent the trie of a language model.
Double-array structures are trie representations con-
sisting of two parallel arrays: BASE and CHECK .
They are not only fast to query, but also provide a
compact way to store tries. In the structure, nodes in
the trie are represented by slots with the same index
in both arrays. Before proposing several efficient
language model representation techniques in Section
4, we introduce double-array themselves. In addi-
tion, the construction algorithms for double-arrays
are described in Section 3.2 and Section 3.3.

The most naive implementation of a trie will have
a two-dimensional array NEXT . Let WORDID (w)
be a function that returns a word ID as a
number corresponding to its argument word w;
then NEXT [n][WORDID (w)] (that presents the
WORDID(w)-th slot of the nth row in the NEXT
array) stores the node number which can be transit
from the node number n by the word w, and we can
traverse the trie efficiently and easily to serialize the
array in memory. This idea is simple but wastes the
most of the used memory because almost all of the
slots are unused and this results in occupying mem-
ory space. The double-array structures solve this
problem by taking advantage of the sparseness of the
NEXT array. The two-dimensional array NEXT
is merged into a one-dimensional array BASE by
shifting the entries of each row of the NEXT array
and combining the set of resulting arrays. We can
store this result in much less memory than the se-
rialization of the naive implementation above. Ad-
ditionally, a CHECK array is introduced to check
whether the transition is valid or not because we can-
not distinguish which node the information in a par-
ticular slot comes from. Using a CHECK array, we
can avoid transition errors and move safely to the
child node of any chosen node.

As a definition, a node link from a node ns with
a word w to the next node nnext in the trie is defined
as follows:

next ← BASE [s] + WORDID (w)

if CHECK [next ] == s

where s denotes the index of the slot in the double-
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Figure 2: A trie and a corresponding double-array struc-
ture. Node ns is represented by the slots BASE [s] and
CHECK [s]. A link from a node ns with a word w is
indicated by CHECK [next] == s.

array structure which represents ns. The trie tran-
sition from a node ns with a word w is applied ac-
cording to the following steps:

Step 1 Calculating the “next” destination and

Step 2 Checking whether the transition is correct.

Step 2 specifically means the following:

1. If CHECK [next ] == s, then we can “move”
to the node nnext ;

2. otherwise, we can detect that the transition
from the node ns with the word w is not con-
tained in the trie.

Figure 2 shows an example of a transition from a
parent node ns with a word w.

Next, we describe how the existence of an ngram
history can be determined (Aoe, 1989). We can it-
erate over the nodes by the transitions shown above
and may find the node representing an ngram his-
tory. But we should check that it is valid because
nodes except for leaf nodes possiblly represent a
fragment of some total ngram history. We can use
endmarker symbols to determine whether an ngram
history is in the trie. We add nodes meaning the end-
marker symbol after the last node of each ngram his-
tory. When querying about wn−1

1 , we transit repeat-
edly; in other words, we set s = 0 and start by ap-
plying Step 1 and 2 repeatedly for each word. When
we reach the node wn−1, we continue searching for
an endmarker symbol. If the symbol is found, we
know that the ngram history wn−1

1 is in the trie.
The double-array structure consumes 8 bytes per

node because the BASE and CHECK arrays are
4 byte array variables. Therefore, the structure can

Figure 3: Greedy insertion of trie elements. The children
of a node are collectively inserted into the double-array
when the BASE value of the node is fixed.

store nodes compactly in case of a high filling rate.
Moreover, node transitions are very fast because
they require only one addition and one comparison
per transition. We use a double-array structure in
DALM, which can maximize its potential.

3.2 Greedy Construction

Greedy algorithms are widely used for construct-
ing static double-array structures2. The construction
steps are as follows:

1. Define the root node of a trie to correspond to
index 0 of the double-array structure and

2. Find the BASE value greedily (i.e., in order
1, 2, 3, · · ·) for all nodes which have fixed their
indices in the double-array structure.

In practice, once the BASE value of a node is fixed,
the positions of its children are fixed at the same
time, and we can find the BASE values for each
child recursively.

Figure 3 shows an example of such construc-
tion. In this example, three nodes (“I”, “you” and
“they”) are inserted at the same time. This is be-
cause the above three node positions are fixed by
the BASE value of the node “eat”. To insert nodes

2We were unable to find an original source for this tech-
nique. However, this method is commonly used in double-array
implementations.
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“I”, “you” and “they”, the following three slots must
be empty (i.e., the slots must not be used by other
nodes.):

• BASE [s] + WORDID(“I”)

• BASE [s] + WORDID(“you”)

• BASE [s] + WORDID(“they”)

where s is the index of the node “eat”. At the con-
struction step, we need to find BASE [s] which sat-
isfies the above conditions.

3.3 Efficient Construction Algorithm

The construction time for a double-array structure
poses the greatest challenge. We use a more effi-
cient method (Nakamura and Mochizuki, 2006) in-
stead of the naive method for constructing a double-
array structure because the naive method requires a
long time. We call the method “empty doubly-linked
list”. This algorithm is one of the most efficient con-
struction methods devised to date. Figure 4 shows
an example of an empty doubly-linked list. We can
efficiently define the BASE value of each node by
using the CHECK array to store the next empty slot.
In this example, in searching the BASE value of a
node, the first child node can be set to position 1,
and if that fails, we can successively try positions
3, 4, 6, 8, · · · by tracing the list instead of searching
all BASE values 0, 1, 2, 3, 4, 5, · · ·.

As analyzed by Nakamura and Mochizuki(2006),
the computational cost of a node insertion is less
than in the naive method. The original naive method
requires O(NM) time for a node insertion, where
M is a number of unique word types and N is a
number of nodes of the trie; the algorithm using an
empty double-linked list requires O(UM), where U
is the number of unused slots.

As described in Section 5, we divide the trie into
several smaller tries and apply the efficient method
for constructing our largest models. This is because
it is not feasible to wait several weeks for the large
language model structure to be built. The dividing
method is currently the only method allowing us to
build them.

Figure 4: Empty doubly-linked list. Unused CHECK
slots are used to indicate the next unused slots, and un-
used BASE slots are used to indicate previous unused
slots. Thus, the BASE and CHECK arrays are used as a
doubly-linked list which can reduce the number of inef-
fective trials.

4 Proposed Methods

4.1 DALM

In this section, we present the application of the
double-array structure to backwards suffix trees. As
this is the most basic structure based on double-array
structures, we refer to it as the simple structure
and improve its performance as described in the fol-
lowing sections.

To represent a backwards suffix tree as a double-
array structure, we should modify the tree because it
has two types of branches (target words and history
nodes), which must be distinguished in the double-
array structure. Instead, we should distinguish the
branch type which indicates whether the node is a
target word or a history word. We use the endmarker
symbol (<#>) for branch discrimination. In prior
work, the endmarker symbol has been used to indi-
cate whether an ngram is in the trie. However, there
is no need to distinguish whether the node of the tree
is included in the language model because all nodes
of a backwards suffix tree which represents ngrams
surely exist in the model. We use the endmarker
symbol to indicate nodes which are end-of-history
words. Therefore, target words of ngrams are chil-
dren of the endmarker symbols that they follow.

By using the endmarker symbol, target words can
be treated the same as ordinary nodes because all tar-
get words are positioned after <#>. Figure 5 shows
an example of such construction. We can clearly dis-
tinguish target words and history words in the back-
wards suffix tree.

Querying in the tree is rather simple. For exam-
ple, consider the case of a query trigram “I eat fish”
in the trie of Figure 5. We can trace this trigram in
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Figure 5: An example of converting a backwards suffix
tree. We introduce endmarker symbols to distinguish the
two branch types. We can treat the tree as an ordinary trie
that can be represented by a double-array structure while
retaining the advantages of the tree structure.

the same way as the original backwards suffix tree.
First, we trace “eat”→ “I”, then trace that to the end-
marker symbol <#> and finally find the word “fish”.

Next, we describe the procedure for storing prob-
abilities and backoff weights. We prepare a VALUE
array to store the probabilities and backoff weights
of ngrams. Figure 6 shows the simple DALM
structure. The backwards suffix tree stores a back-
off weight for each node and a probability for each
target word. In simple DALM, each value is
stored for the respective position of the correspond-
ing node.

4.2 Embedding

Embedding is a method for reducing model size.
In the simple DALM structure, there are many va-
cant spaces in the BASE and CHECK arrays. We
use these vacant spaces to store backoff weights and
probabilities. Figure 7 shows vacant spaces in the
simple DALM structure.

First, the BASE array slots of target word nodes
are unused because target words are always in leaf
positions in the backwards suffix tree and do not
have any children nodes. In the example of Figure 7,
BASE [9] is not used, and therefore can be used for
storing a probability value. This method can reduce
the model size because all probabilities are stored
into the BASE array. As a result, the VALUE array

Figure 6: The simple DALM data structure. The
BASE and CHECK arrays are used in the same way
as in a double-array structure. To return probabilities and
backoff weights, a VALUE array is introduced.

Figure 7: Unused slots in the simple DALM structure
used for other types of information, such as probabilities.

contains only backoff weights.
Next, the CHECK array slots of endmarker sym-

bols are also vacant. We do not need to check for
endmarker symbol transition because the endmarker
symbol <#> is seen for all nodes except target word
nodes. This means that all endmarker symbol tran-
sitions are ensured to be correct and the CHECK
array slots of endmarker symbols do not need to be
used. We use this space to store backoff weights.

In order to avoid false positives, we cannot store
backoff weights directly. Instead, we store the po-
sitions of the backoff weights in the VALUE array
as negative numbers. When a query for an unknown
ngram encounters an endmarker symbol node, the
value of the CHECK array is never matched be-
cause the corresponding value stored there is neg-
ative. The same values in the VALUE array can be
unified to reduce the memory requirements. Figure
8 illustrates an example of the embeddingmethod.

227



Figure 8: Implementation of the embedding method.
We use vacant spaces in the VALUE array to store the
probabilities and indices of backoff weights. The in-
dices of backoff weights are taken with a negative sign
to avoid false positives. Backoff weights are stored in the
VALUE array, and the same values in the VALUE array
can be unified.

4.3 Ordering

Ordering is a method for shortening the double-
array structure and increasing the query speed. In
ordering, word IDs are assigned in order of un-
igram probability. This is done at a preprocessing
stage, before the DALM is built.

Before explaining the reasons why this method
is effective, we present an interpretation of double-
array construction in Figure 9 which corresponds to
the case presented in Figure 3. In the previous
section, we pointed out that the insertion problem
is equivalent to the problem of finding the BASE
value of the parent node. Here, we expand this fur-
ther into the idea that finding the BASE value is
equivalent to the problem of finding the shift length
of an insertion array. We can create an insertion
array which is an array of flag bits set to 1 at the po-
sitions of word IDs of children nodes’ words. More-
over, we prepare a used array which is also a flag
bit array denoting whether the original slots in the
double-array structure are occupied. In this situ-
ation, finding the shift length is equivalent to the
problem of finding the BASE value of the slot for
the node “eat”, and the combined used array denotes
the size of the double-array structure after insertion.

Figure 10 shows an intuitive example illustrating
the efficiency of the ordering method. When
word IDs are assigned in order of unigram proba-
bility, 1s in the insertion array are gathered toward

Figure 9: Interpretation of a double-array construction.
The insertion problem for the double-array structure is
interpreted as a finding problem of a shift length of the
insertion array. We can measure the size of the double-
array structure in the used array.

the beginning of the array. This means that 1s in
the insertion array form clusters, which makes in-
sertion easier than for unordered insertion arrays.
This shortens the shift lengths for each insertion ar-
ray: a shorter double-array structure results.

5 Experiment

5.1 Experimental Setup

To compare the performance of DALM with other
methods, we conduct experiments on two ngram
models built from small and large training corpora.
Table 1 shows the specifications of the model.

Training data are extracted from the Publication
of unexamined Japanese patent applications, which
is distributed with the NTCIR 3,4,5,6 patent retrieval
task (Atsushi Fujii et al., 2007; Atsushi Fujii et al.,
2005; Atsushi Fujii et al., 2004; Makoto Iwayama
et al., 2003). We used data for the period from
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Figure 10: An example of word ID ordering effi-
ciency. Word IDs in the insertion array are packed to
the front in advance. Therefore, shift lengths for ordered
arrays are often shorter than unordered ones. The result-
ing size of the double-array structure is expected to be
smaller than that of an unordered array.

Table 1: Corpus and model specifications.

Model
Corpus Unique Ngram

Size Type Type
(words) (words) (1-5gram)

100 Mwords 100 M 195 K 31 M
5 Gwords 5 G 2,140 K 936 M

Test set 100 M 198 K -

1,993 to 2,002 and extracted paragraphs containing
“background” and “example”. This method is simi-
lar to the NTCIR 7 Patent Translation Task(Fujii et
al., 2008). The small and large training data sets
contained 100 Mwords and 5 Gwords, respectively.
Furthermore, we sampled another 100 Mwords as
a test set to measure the access speed for extract-
ing ngram probabilities. We used an Intel R⃝ Xeon R⃝

X5675 (3.07 GHz) 24-core server with 142 GB of
RAM.

Our experiments were performed from the view-
points of speed and model size. We executed each
program twice, and the results of the second run
were taken as the final performance.

Figure 11: Comparison between tuned and non-tuned
double-array structures.

Table 2: Comparison between tuned and non-tuned
double-array structures.

Method
Size Speed

(MB) (queries/s)

Simple 1,152 1,065,536
Embedding 782 1,004,555
Ordering 726 1,083,703
Both 498 1,057,607

5.2 Optimization Methods

We compared the performance of the DALMs
proposed here, namely simple, embedding,
ordering and both, where both indicates that
the language model uses both embedding and
ordering. We conducted experiments examin-
ing how these methods affect the size of the double-
array structures and the query speeds. We used the
100 Mwords model in the comparison because it
was difficult to build a DALM using the 5 Gwords
model.

The results are shown in Figure 11 and Table 2.
While both ordering and embedding decreased
the model size, the query speed was increased by the
former and decreased by the latter. Both was the
smallest and most balanced method.

5.3 Divided Double-Array Structure

Building a double-array structure requires a long
time, which can sometimes be impractical. In fact,
as mentioned above, waiting on construction of the
double-array structure of the 5 Gwords model is in-
feasible.
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Figure 12: Comparison between divided and original
double-array structures.

As described in Section 3.3, the efficient algo-
rithm requires O(UM) time to insert one node and
the insertion is iterated N (the total number of inser-
tions) times. If we assume that the number of unused
slots at the ith insertion, Ui, is proportional to i, or
that Ui = c × i where c is a proportionality con-
stant, we can calculate the building time as follows:∑N

i=1 UiM = O
(
MN2

)
.

To shorten the build time, we divided the original
trie into several parts. Building parts of the origi-
nal trie is possible because N is reduced. Moreover,
these double-array structures can be built in parallel.
Note that query results for both original and divided
tries are completely equivalent because divided tries
hold all the ngram statistics of the original trie. This
method is similar to that used in randomized lan-
guage models (Talbot and Brants, 2008).

We compared the differences between the meth-
ods using the original and divided double-array
structures. In the comparison, we also used the 100
Mwords model with the both optimization method
described in the previous section (Figure 12 and Ta-
ble 3).

Although dividing the trie increased the size of
the DALM slightly, the model size was still smaller
than that without optimization. Query speed in-
creased as the number of parts was increased. We
attributed this to the divided DALM consisting of
several double-array structures, each smaller than
the undivided structure which results in an increase.
Figure 12 shows that there is a trade-off relation be-
tween model size and query speed.

Below, we use the 5 Gwords model in our exper-
iments. In our environment, building a 5 Gwords

Table 3: Comparison between divided and original
double-array structures.

Number of parts
Size Speed
(MB) (queries/s)

1 498 1,057,607

2 502 1,105,358
4 510 1,087,619
8 540 1,098,594

double-array structure required about 4 days when
the double-array structures were divided into 8 parts,
even though we used the more efficient algorithm
described in Section 3.3. The time required for
building the model when the original structure was
divided into less than 8 parts was too long. Thus,
a more efficient building algorithm is essential for
advancing this research further.

5.4 Comparison with Other Methods
Using the 100 Mwords and 5 Gwords mod-
els, we compared DALM with other meth-
ods (KenLM (Kenneth Heafield, 2011) and
SRILM (Stolcke, 2002)). In this experiment, we
used the both method (which is mentioned above)
for DALM and divided the original trie into 8 parts
and built double-array structures.

The results are shown in Figure 13 and Table 4;
the group on the left shows the results for the 100
Mwords model and the group on the right shows the
results for the 5 Gwords model.

The experimental results clearly indicate that
DALM is the fastest of all the compared methods
and that the model size is nearly the same or slightly
smaller than that of KenLM (Probing). Whereas
KenLM (Trie) is the smallest model, it is slower
than DALM.

The differences between the 5 Gwords versions
of DALM and KenLM (Probing) are smaller in
comparison with the 100 Mwords models. This is
because hash-based language models have an ad-
vantage when storing higher-order ngrams. Large
language models have more 5grams, which leads to
shorter backoff times. On the other hand, trie-based
language models have to trace higher-order ngrams
for every query, which requires more time.

Finally, we discuss practical situations. We con-

230



Table 4: Comparison between DALM and other methods.

100 Mwords Model 5 Gwords Model

LM
Size Speed Size Speed

(MB) (queries/s) (MB) (queries/s)

SRILM 1,194 894,138 31,747 729,447
KenLM (Probing) 665 1,002,489 18,685 913,208

KenLM (Trie) 340 804,513 9,606 635,300
DALM (8 parts) 540 1,098,594 15,345 953,186

Figure 13: Comparison between DALM and other lan-
guage model systems.

ducted this study’s experiments using test set text
written by humans. In some applications such as
statistical machine translations, language model sys-
tems should compute probabilities of many unnatu-
ral ngrams which will be unknown. This may affect
query speed because querying unknown and unnat-
ural ngrams generate many backoffs. They may re-
sults in trie-based LM being slightly faster, because
traversing the trie can stop immediately when it de-
tects that a queried ngram history is not contained in
the trie. On the other hand, hash-based LM such as
KenLM probing would repeat queries until finding
truncated ngram histories in the trie.

6 Conclusion

We proposed a method for implementing language
models based on double-array structures. We call
this method DALM. Moreover, we proposed two
methods for optimizing DALM: embedding and
ordering. Embedding is a method whereby
empty spaces in arrays are used to store ngram prob-
abilities and backoff weights, and ordering is a
method for numbering word IDs; these methods re-

duce model size and increase query speed. These
two optimization methods work well independently,
but even better performance can be achieved if they
are combined.

We also used a division method to build the model
structure in several parts in order to speed up the
construction of double-array structures. Although
this procedure results in a slight increase in model
size, the divided double-array structures mostly re-
tained the compactness and speed of the original
structure. The time required for building double-
array structures is the bottleneck of DALM as it is
sometimes too long to be practical, even though the
model structure itself achieves high performance. In
future work, we will develop a faster algorithm for
building double-array structures.

While DALM has outperformed state-of-the-art
language model implementations methods in our ex-
periments, we should continue to consider ways to
optimize the method for higher-order ngrams.
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Abstract
Language models can be formalized as log-
linear regression models where the input fea-
tures represent previously observed contexts
up to a certain length m. The complexity
of existing algorithms to learn the parameters
by maximum likelihood scale linearly in nd,
where n is the length of the training corpus
and d is the number of observed features. We
present a model that grows logarithmically
in d, making it possible to efficiently leverage
longer contexts. We account for the sequen-
tial structure of natural language using tree-
structured penalized objectives to avoid over-
fitting and achieve better generalization.

1 Introduction

Language models are crucial parts of advanced nat-
ural language processing pipelines, such as speech
recognition (Burget et al., 2007), machine trans-
lation (Chang and Collins, 2011), or information
retrieval (Vargas et al., 2012). When a sequence
of symbols is observed, a language model pre-
dicts the probability of occurrence of the next sym-
bol in the sequence. Models based on so-called
back-off smoothing have shown good predictive
power (Goodman, 2001). In particular, Kneser-Ney
(KN) and its variants (Kneser and Ney, 1995) are
still achieving state-of-the-art results for more than a
decade after they were originally proposed. Smooth-
ing methods are in fact clever heuristics that require
tuning parameters in an ad-hoc fashion. Hence,
more principled ways of learning language mod-
els have been proposed based on maximum en-
tropy (Chen and Rosenfeld, 2000) or conditional

random fields (Roark et al., 2004), or by adopting
a Bayesian approach (Wood et al., 2009).

In this paper, we focus on penalized maxi-
mum likelihood estimation in log-linear models.
In contrast to language models based on unstruc-
tured norms such as `2 (quadratic penalties) or
`1 (absolute discounting), we use tree-structured
norms (Zhao et al., 2009; Jenatton et al., 2011).
Structured penalties have been successfully applied
to various NLP tasks, including chunking and named
entity recognition (Martins et al., 2011), but not lan-
guage modelling. Such penalties are particularly
well-suited to this problem as they mimic the nested
nature of word contexts. However, existing optimiz-
ing techniques are not scalable for large contexts m.

In this work, we show that structured tree norms
provide an efficient framework for language mod-
elling. For a special case of these tree norms, we
obtain an memory-efficient learning algorithm for
log-linear language models. Furthermore, we aslo
give the first efficient learning algorithm for struc-
tured `∞ tree norms with a complexity nearly lin-
ear in the number of training samples. This leads to
a memory-efficient and time-efficient learning algo-
rithm for generalized linear language models.

The paper is organized as follows. The model
and other preliminary material is introduced in Sec-
tion 2. In Section 3, we review unstructured penal-
ties that were proposed earlier. Next, we propose
structured penalties and compare their memory and
time requirements. We summarize the characteris-
tics of the proposed algorithms in Section 5 and ex-
perimentally validate our findings in Section 6.
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(a) Trie-structured vector.
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(b) Tree-structured vector.
w = [ 3 4 6 6 4 5 7 7 ]>.
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(c) `T2 -proximal Π`T2
(w, 0.8) =

[ 2.8 3.5 4.8 4.3 2.3 3 5.6 4.9 ]>.

3

4

5.2 [2]

3.2 4.2

5.4 [2]

(d) `T∞-proximal Π`T∞
(w, 0.8) =

[ 3 4 5.2 5.2 3.2 4.2 5.4 5.4 ]>.

Figure 1: Example of uncollapsed (trie) and corresponding collapsed (tree) structured vectors and proximal
operators applied to them. Weight values are written inside the node. Subfigure (a) shows the complete
trie S and Subfigure (b) shows the corresponding collapsed tree T . The number in the brackets shows the
number of nodes collapsed. Subfigure (c) shows vector after proximal projection for `T2 -norm (which cannot
be collapsed), and Subfigure (d) that of `T∞-norm proximal projection which can be collapsed.

2 Log-linear language models

Multinomial logistic regression and Poisson regres-
sion are examples of log-linear models (McCullagh
and Nelder, 1989), where the likelihood belongs
to an exponential family and the predictor is lin-
ear. The application of log-linear models to lan-
guage modelling was proposed more than a decade
ago (Della Pietra et al., 1997) and it was shown to
be competitive with state-of-the-art language mod-
elling such as Knesser-Ney smoothing (Chen and
Rosenfeld, 2000).

2.1 Model definition
Let V be a set of words or more generally a set of
symbols, which we call vocabulary. Further, let xy
be a sequence of n+1 symbols of V , where x ∈ V n

and y ∈ V . We model the probability that symbol y
succeeds x as

P (y = v|x) =
ew
>
v φm(x)∑

u∈V e
w>u φm(x)

, (1)

where W = {wv}v∈V is the set of parameters, and
φm(x) is the vector of features extracted from x, the
sequence preceding y. We will describe the features
shortly.

Let x1:i denote the subsequence of x starting at
the first position up to the ith position and yi the next
symbol in the sequence. Parameters are estimated by
minimizing the penalized log-loss:

W ∗ ∈ argmin
W∈K

f(W ) + λΩ(W ), (2)

where f(W ) := −
∑n

i=1 ln p(yi|x1:i;W ) and K is
a convex set representing the constraints applied on
the parameters. Overfitting is avoided by adjust-
ing the regularization parameter λ, e.g., by cross-
validation.

2.2 Suffix tree encoding
Suffix trees provide an efficient way to store and
manipulate discrete sequences and can be con-
structed in linear time when the vocabulary is
fixed (Giegerich and Kurtz, 1997). Recent examples
include language models based on a variable-length
Markovian assumption (Kennington et al., 2012)
and the sequence memoizer (Wood et al., 2011). The
suffix tree data structure encodes all the unique suf-
fixes observed in a sequence up to a maximum given
length. It exploits the fact that the set of observed
contexts is a small subset of all possible contexts.
When a series of suffixes of increasing lengths are
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Algorithm 1 W ∗ := argmin {f(X,Y ;W )+
λΩ(W )} Stochastic optimization algorithm (Hu et
al., 2009)
1 Input: λ regularization parameter , L Lipschitz constant of
∇f , µ coefficient of strong-convexity of f + λΩ, X design
matrix, Y label set

2 Initialize: W = Z = 0, τ = δ = 1, ρ = L+ µ
3 repeat until maximum iterations
4 #estimate point for gradient update

W = (1− τ)W + τZ
5 #use mini-batch {Xϑ, Yϑ} for update

W = ParamUpdate(Xϑ, Yϑ, W , λ, ρ)
6 #weighted combination of estimates

Z = 1
ρτ+µ

(
(1− µ)Z + (µ− ρ)W + ρW

)
7 #update constants

ρ = L+ µ/δ, τ =

√
4δ+δ2−δ

2
, δ = (1− τ)δ

Procedure: W := ParamUpdate(Xϑ, Yϑ, W , λ, ρ)
1 W ′ = W − 1

ρ
∇f(Xϑ, Yϑ,W ) #gradient step

2 W = [W ]+ #projection to non-negative orthant
3 W = ΠΩ(w, κ) #proximal step

always observed in the same context, the successive
suffixes are collapsed into a single node. The un-
collapsed version of the suffix tree T is called a suf-
fix trie, which we denote S. A suffix trie also has
a tree structure, but it potentially has much larger
number of nodes. An example of a suffix trie S and
the associated suffix tree T are shown in Figures 1(a)
and 1(b) respectively. We use |S| to denote the num-
ber of nodes in the trie S and |T | for the number of
nodes in the tree T .

Suffix tree encoding is particularly helpful in ap-
plications where the resulting hierarchical structures
are thin and tall with numerous non-branching paths.
In the case of text, it has been observed that the num-
ber of nodes in the tree grows slower than that of
the trie with the length of the sequence (Wood et
al., 2011; Kennington et al., 2012). This is a signif-
icant gain in the memory requirements and, as we
will show in Section 4, can also lead to important
computational gains when this structure is exploited.

The feature vector φm(x) encodes suffixes (or
contexts) of increasing length up to a maximum
length m. Hence, the model defined in (1) is simi-
lar tom-gram language models. Naively, the feature
vector φm(x) corresponds to one path of length m
starting at the root of the suffix trie S. The entries
in W correspond to weights for each suffix. We thus
have a trie structure S on W (see Figure 1(a)) con-

straining the number of free parameters. In other
words, there is one weight parameter per node in the
trie S and the matrix of parameters W is of size |S|.

In this work, however, we consider models where
the number of parameters is equal to the size of the
suffix tree T , which has much fewer nodes than S.
This is achieved by ensuring that all parameters cor-
responding to suffixes at a node share the same pa-
rameter value (see Figure 1(b)). These parameters
correspond to paths in the suffix trie that do not
branch i.e. sequence of words that always appear to-
gether in the same order.

2.3 Proximal gradient algorithm

The objective function (2) involves a smooth convex
loss f and a possibly non-smooth penalty Ω. Sub-
gradient descent methods for non-smooth Ω could
be used, but they are unfortunately very slow to con-
verge. Instead, we choose proximal methods (Nes-
terov, 2007), which have fast convergence rates
and can deal with a large number of penalties Ω,
see (Bach et al., 2012).

Proximal methods iteratively update the current
estimate by making a generalized gradient update at
each iteration. Formally, they are based on a lin-
earization of the smooth function f around a param-
eter estimate W , adding a quadratic penalty term
to keep the updated estimate in the neighborhood
of W . At iteration t, the update of the parameter W
is given by

W t+1 = argmin
W∈K

{
f(W ) + (W −W )>∇f(W )

+Ω(W ) +
L

2
‖W −W‖22

}
, (3)

where L > 0 is an upper-bound on the Lipschitz
constant of the gradient ∇f . The matrix W could
either be the current estimate W t or its weighted
combination with the previous estimate for accel-
erated convergence depending on the specific algo-
rithm used (Beck and Teboulle, 2009). Equation (3)
can be rewritten to be solved in two independent
steps: a gradient update from the smooth part fol-
lowed by a projection depending only on the non-
smooth penalty:

W ′ = W − 1

L
∇f(W ), (4)
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W t+1 = argmin
W∈K

1

2

∥∥W −W ′∥∥2

2
+
λΩ(W )

L
. (5)

Update (5) is called the proximal operator of W ′

with parameter λ
L that we denote ΠΩ

(
W ′, λL

)
. Ef-

ficiently computing the proximal step is crucial to
maintain the fast convergence rate of these methods.

2.4 Stochastic proximal gradient algorithm

In language modelling applications, the number of
training samples n is typically in the range of 105

or larger. Stochastic version of the proximal meth-
ods (Hu et al., 2009) have been known to be well
adapted when n is large. At every update, the
stochastic algorithm estimates the gradient on a
mini-batch, that is, a subset of the samples. The size
of the mini-batches controls the trade-off between
the variance in the estimate of gradient and the time
required for compute it. In our experiments we use
mini-batches of size 400. The training algorithm is
summarized in Algorithm 1. The acceleration is ob-
tained by making the gradient update at a specific
weighted combination of the current and the previ-
ous estimates of the parameters. The weighting is
shown in step 6 of the Algorithm 1.

2.5 Positivity constraints

Without constraining the parameters, the memory
required by a model scales linearly with the vocabu-
lary size |V |. Any symbol in V observed in a given
context is a positive example, while any symbols
in V that does not appear in this context is a neg-
ative example. When adopting a log-linear language
model, the negative examples are associated with a
small negative gradient step in (4), so that the solu-
tion is not sparse accross multiple categories in gen-
eral. By constraining the parameters to be positive
(i.e., the set of feasible solutions K is the positive
orthant), the projection step 2 in Algorithm 1 can be
done with the same complexity, while maintaining
sparse parameters accross multiple categories. More
precisely, the weights for the category k associated
to a given context x, is always zeros if the category k
never occured after context x. A significant gain in
memory (nearly |V |-fold for large context lengths)
was obtained without loss of accuracy in our exper-
iments.

3 Unstructured penalties

Standard choices for the penalty function Ω(W ) in-
clude the `1-norm and the squared `2-norm. The
former typically leads to a solution that is sparse
and easily interpretable, while the latter leads to a
non-sparse, generally more stable one. In partic-
ular, the squared `2 and `1 penalties were used in
the context of log-linear language models (Chen and
Rosenfeld, 2000; Goodman, 2004), reporting perfor-
mances competitive with bi-gram and tri-gram inter-
polated Kneser-Ney smoothing.

3.1 Proximal step on the suffix trie
For squared `2 penalties, the proximal step
Π`22

(wt, κ2 ) is the element-wise rescaling operation:

w
(t+1)
i ← w

(t)
i (1 + κ)−1 (6)

For `1 penalties, the proximal step Π`1(wt, κ)] is the
soft-thresholding operator:

w
(t+1)
i ← max(0, w

(t)
i − κ). (7)

These projections have linear complexity in the
number of features.

3.2 Proximal step on the suffix tree
When feature values are identical, the corresponding
proximal (and gradient) steps are identical. This can
be seen from the proximal steps (7) and (6), which
apply to single weight entries. This property can be
used to group together parameters for which the fea-
ture values are equal. Hence, we can collapse suc-
cessive nodes that always have the same values in a
suffix trie (as in Figure 1(b)), that is to say we can
directly work on the suffix tree. This leads to a prox-
imal step with complexity that scales linearly with
the number of symbols seen in the corpus (Ukkonen,
1995) and logarithmically with context length.

4 Structured penalties

The `1 and squared `2 penalties do not account for
the sequential dependencies in the data, treating suf-
fixes of different lengths equally. This is inappro-
priate considering that longer suffixes are typically
observed less frequently than shorter ones. More-
over, the fact that suffixes might be nested is disre-
garded. Hence, we propose to use the tree-structured
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Algorithm 2 w := Π`T2
(w, κ) Proximal projection

step for `T2 on grouping G.
1 Input: T suffix tree, w trie-structured vector, κ threshold
2 Initialize: {γi} = 0, {ηi} = 1
3 η = UpwardPass(η, γ, κ, w)
4 w = DownwardPass(η, w)

Procedure: η := UpwardPass(η, γ, κ, w)
1 for x ∈ DepthFirstSuffixTraversal(T, PostOrder)
2 γx = w2

x +
∑
h∈children(x) γh

3 ηx = [1− κ/√γx]+
4 γx = η2

xγx

Procedure: w := DownwardPass(η, w)
1 for x ∈ DepthFirstSuffixTraversal(T, PreOrder)
2 wx = ηxwx
3 for h ∈ children(x)
4 ηh = ηxηh
a DepthFirstSuffixTraversal(T,Order) returns observed suf-

fixes from the suffix tree T by depth-first traversal in the order
prescribed by Order.

b wx is the weights corresponding to the suffix x from the
weight vector w and children(x) returns all the immediate
children to suffix x in the tree.

norms (Zhao et al., 2009; Jenatton et al., 2011),
which are based on the suffix trie or tree, where sub-
trees correspond to contexts of increasing lengths.
As will be shown in the experiments, this prevents
the model to overfit unlike the `1- or squared `2-
norm.

4.1 Definition of tree-structured `Tp norms

Definition 1. Let x be a training sequence. Group
g(w, j) is the subvector of w associated with the
subtree rooted at the node j of the suffix trie S(x).

Definition 2. Let G denote the ordered set of nodes
of the tree T (x) such that for r < s, g(w, r) ∩
g(w, s) = ∅ or g(w, r) ⊂ g(w, s). The tree-
structured `p-norm is defined as follows:

`Tp (w) =
∑
j∈G
‖g(w, j)‖p . (8)

We specifically consider the cases p = 2,∞ for
which efficient optimization algorithms are avail-
able. The `Tp -norms can be viewed as a group
sparsity-inducing norms, where the groups are or-
ganized in a tree. This means that when the weight
associated with a parent in the tree is driven to zero,
the weights associated to all its descendants should
also be driven to zero.

Algorithm 3 w := Π`T∞
(w, κ) Proximal projection

step for `T∞ on grouping G.
Input: T suffix tree, w=[v c] tree-structured vector v with
corresponding number of suffixes collapsed at each node in
c, κ threshold

1 for x ∈ DepthFirstNodeTraversal(T, PostOrder)
2 g(v, x) := π`T∞( g(v, x), cxκ )

Procedure: q := π`∞(q, κ)
Input: q = [v c], qi = [vi ci], i = 1, · · · , |q|
Initialize: U = {}, L = {}, I = {1, · · · , |q|}

1 while I 6= ∅
2 pick random ρ ∈ I #choose pivot
3 U = {j|vj ≥ vρ} #larger than vρ
4 L = {j|vj < vρ} #smaller than vρ
5 δS =

∑
i∈U vi · ci, δC =

∑
i∈U ci

6 if (S + δS)− (C + δC)ρ < κ
7 S := (S + δS), C := (C + δC), I := L
8 else I := U\{ρ}
9 r = S−κ

C
, vi := vi −max(0, vi − r) #take residuals

a DepthFirstNodeTraversal(T,Order) returns nodes x from the
suffix tree T by depth-first traversal in the order prescribed
by Order.

For structured `Tp -norm, the proximal step
amounts to residuals of recursive projections on the
`q-ball in the order defined by G (Jenatton et al.,
2011), where `q-norm is the dual norm of `p-norm1.
In the case `T2 -norm this comes to a series of pro-
jections on the `2-ball. For `T∞-norm it is instead
projections on the `1-ball. The order of projections
defined by G is generated by an upward pass of the
suffix trie. At each node through the upward pass,
the subtree below is projected on the dual norm ball
of size κ, the parameter of proximal step. We detail
the projections on the norm ball below.

4.2 Projections on `q-ball for q = 1, 2

Each of the above projections on the dual norm ball
takes one of the following forms depending on the
choice of the norm. Projection of vector w on the
`2-ball is equivalent to thresholding the magnitude
of w by κ units while retaining its direction:

w ← [||w||2 − κ]+
w

||w||2
. (9)

This can be performed in time linear in size of w,
O(|w|). Projection of a non-negative vectorw on the
`1-ball is more involved and requires thresholding

1`p-norm and `q-norm are dual to each other if 1
p

+ 1
q

= 1.
`2-norm is self-dual while the dual of `∞-norm is the `1-norm.
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by a value such that the entries in the resulting vector
add up to κ, otherwise w remains the same:

w ← [w − τ ]+ s.t. ||w||1 = κ or τ = 0. (10)

τ = 0 is the case where w lies inside the `1-ball
of size κ with ||w||1 < κ, leaving w intact. In the
other case, the threshold τ is to be computed such
that after thresholding, the resulting vector has an
`1-norm of κ. The simplest way to achieve this is
to sort by descending order the entries w = sort(w)
and pick the k largest values such that the (k + 1)th

largest entry is smaller than τ :

k∑
i=1

wi − τ = κ and τ > wk+1. (11)

We refer to wk as the pivot and are only interested in
entries larger than the pivot. Given a sorted vector,
it requires looking up to exactly k entries, however,
sorting itself take O(|w| log |w|).

4.3 Proximal step
Naively employing the projection on the `2-ball de-
scribed above leads to an O(d2) algorithm for `T2
proximal step. This could be improved to a linear al-
gorithm by aggregating all necessary scaling factors
while making an upward pass of the trie S and ap-
plying them in a single downward pass as described
in (Jenatton et al., 2011). In Algorithm 2, we detail
this procedure for trie-structured vectors.

The complexity of `T∞-norm proximal step de-
pends directly on that of the pivot finding algorithm
used within its `1-projection method. Naively sort-
ing vectors to find the pivot leads to an O(d2 log d)
algorithm. Pivot finding can be improved by ran-
domly choosing candidates for the pivot and the
best known algorithm due to (Bruckner, 1984) has
amortized linear time complexity in the size of the
vector. This leaves us with O(d2) complexity for
`T∞-norm proximal step. (Duchi et al., 2008) pro-
poses a method that scales linearly with the num-
ber of non-zero entries in the gradient update (s)
but logarithmically in d. But recursive calls to
`1-projection over subtrees will fail the sparsity
assumption (with s ≈ d) making proximal step
quadratic. Procedure for Π`T∞

on trie-structured vec-
tors using randomized pivoting method is described
in Algorithm 3.

We next explain how the number of `1-projections
can be reduced by switching to the tree T instead of
trie S which is possible due to the good properties of
`T∞-norm. Then we present a pivot finding method
that is logarithmic in the feature size for our appli-
cation.

4.4 `T∞-norm with suffix trees

We consider the case where all parameters are ini-
tialized with the same value for the optimization pro-
cedure, typically with zeros. The condition that the
parameters at any given node continue to share the
same value requires that both the gradient update (4)
and proximal step (5) have this property. We mod-
ify the tree structure to ensure that after gradient up-
dates parameters at a given node continue to share a
single value. Nodes that do not share a value after
gradient update are split into multiple nodes where
each node has a single value. We formally define
this property as follows:

Definition 3. A constant value non-branching path
is a set of nodes P ∈ P(T,w) of a tree structure T
w.r.t. vector w if P has |P | nodes with |P |−1 edges
between them and each node has at most one child
and all nodes i, j ∈ P have the same value in vector
w as wi = wj .

The nodes of Figure 1(b) correspond to constant
value non-branching paths when the values for all
parameters at each of the nodes are the same. Next
we show that this tree structure is retained after
proximal steps of `T∞-norm.

Proposition 1. Constant value non-branching paths
P(T,w) of T structured vector w are preserved un-
der the proximal projection step Π`T∞

(w, κ).

Figure 1(d) illustrates this idea showing `T∞ pro-
jection applied on the collapsed tree. This makes it
memory efficient but the time required for the prox-
imal step remains the same since we must project
each subtree of S on the `1-ball. The sequence of
projections at nodes of S in a non-branching path
can be rewritten into a single projection step using
the following technique bringing the number of pro-
jections from |S| to |T |.
Proposition 2. Successive projection steps for sub-
trees with root in a constant value non-branching
path P = {g1, · · · , g|P |} ∈ P(T,w) for Π`T∞

(w, κ)
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is πg|P | ◦· · ·◦πg1(w, κ) applied in bottom-up order
defined by G. The composition of projections can be
rewritten into a single projection step with κ scaled
by the number of projections |P | as,

πg|P |(w, κ|P |) ≡ πg|P | ◦ · · · ◦ πg1(w, κ).

The above propositions show that `T∞-norm can be
used with the suffix tree with fewer projection steps.
We now propose a method to further improve each
of these projection steps.

4.5 Fast proximal step for `T∞-norm

Let k be the cardinality of the set of values larger
than the pivot in a vector to compute the thresh-
old for `1-projection as referred in (11). This value
varies from one application to another, but for lan-
guage applications, our experiments on 100K en-
glish words (APNews dataset) showed that k is gen-
erally small: its value is on average 2.5, and its
maximum is around 10 and 20, depending on the
regularization level. We propose using a max-heap
data structure (Cormen et al., 1990) to fetch the k-
largest values necessary to compute the threshold.
Given the heap of the entries the cost of finding the
pivot is O(k log(d)) if the pivot is the kth largest en-
try and there are d features. This operation is per-
formed d times for `T∞-norm as we traverse the tree
bottom-up. The heap itself is built on the fly dur-
ing this upward pass. At each subtree, the heap is
built by merging those of their children in constant
time by using Fibonacci heaps. This leaves us with a
O(dk log(d)) complexity for the proximal step. This
procedure is detailed in Algorithm 4.

5 Summary of the algorithms

Table 1 summarizes the characteristics of the algo-
rithms associated to the different penalties:

1. The unstructured norms `p do not take into
account the varying sparsity level with con-
text length. For p=1, this leads to a sparse
solution and for p=2, we obtain the classical
quadratic penalty. The suffix tree representa-
tion leads to an efficient memory usage. Fur-
thermore, to make the training algorithm time
efficient, the parameters corresponding to con-
texts which always occur in the same larger

Algorithm 4 w := Π`T∞
(w, κ) Proximal projection

step for `T∞ on grouping G using heap data structure.
Input: T suffix tree, w=[v c] tree-structured vector v with
corresponding number of suffixes collapsed at each node in
c, κ threshold
InitializeH = {}# empty set of heaps

1 for x ∈ DepthFirstNodeTraversal(T, PostOrder)
g(v, x) := π`T∞(w, x, cxκ,H )

Procedure: q := π`∞(w, x, κ,H )
1 Hx = NewHeap(vx, cx, vx)
2 for j ∈ children(x) # merge with child heaps

τx = τx + τj # update `1-norm
Hx = Merge(Hx,Hj),H = H\Hj

3 H = H ∪Hx, S = 0, C = 0, J = {}
4 ifHx(τ) < κ, setHx = 0 return
5 for j ∈ OrderedIterator(Hx) # get max values

if vj >
S+(vj·cj)−κ

C+cj

S = S + (vj ·cj), C = C + cj , J = J ∪ {j}
else break

6 r = S−κ
C
, δ = 0 # compute threshold

7 for j ∈ J # apply threshold
ν = min(vj , r), δ = δ + (vj − ν)
Hj(v) = ν

8 Hx(τ) = Hj(τ)− δ # update `1-norm

a. Heap structure on vector w holds three values (v, c, τ) at
each node. v, c being value and its count, τ is the `1-norm of
the sub-vector below. Tuples are ordered by decreasing value
of v and Hj refers to heap with values in sub-tree rooted at
j. Merge operation merges the heaps passed. OrderedIterator
returns values from the heap in decreasing order of v.

context are grouped. We will illustrate in the
experiments that these penalties do not lead to
good predictive performances.

2. The `T2 -norm nicely groups features by subtrees
which concurs with the sequential structure of
sequences. This leads to a powerful algorithm
in terms of generalization. But it can only be
applied on the uncollapsed tree since there is
no closure property of the constant value non-
branching path for its proximal step making it
less amenable for larger tree depths.

3. The `T∞-norm groups features like the `T2 -norm
while additionally encouraging numerous fea-
ture groups to share a single value, leading to
a substantial reduction in memory usage. The
generalization properties of this algorithm is as
good as the generalization obtained with the `T2
penalty, if not better. However, it has the con-
stant value non-branching path property, which
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Penalty good generalization memory efficient time efficient
unstructured `1 and `22 no yes O(|T |) yes O(|T |)

struct.
`T2 yes no O(|S|) no O(|S|)

`T∞ rand. pivot yes yes O(|T |) no O(|T |2)
`T∞ heap yes yes O(|T |) yes O(|T | log |T |)

Table 1: Properties of the algorithms proposed in this paper. Generalization properties are as compared by
their performance with increasing context length. Memory efficiency is measured by the number of free
parameters of W in the optimization. Note that the suffix tree is much smaller than the trie (uncollapsed
tree): |T | << |S|. Time complexities reported are that of one proximal projection step.
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(c) Model complexity for structured
penalties.

Figure 2: (a) compares average perplexity (lower is better) of different methods from 2-gram through 12-
gram on four different 100K-20K train-test splits. (b) plot compares the same with appropriate feature
weighting. (c) compares model complexity for weighted structured penalties w`T2 and w`T∞ measure by
then number of parameters.

means that the proximal step can be applied di-
rectly to the suffix tree. There is thus also a
significant gain of performances.

6 Experiments

In this section, we demonstrate empirically the prop-
erties of the algorithms summarized in Table 1. We
consider four distinct subsets of the Associated Press
News (AP-news) text corpus with train-test sizes of
100K-20K for our experiments. The corpus was
preprocessed as described in (Bengio et al., 2003)
by replacing proper nouns, numbers and rare words
with special symbols “〈proper noun〉”, “#n” and
“〈unknown〉” respectively. Punctuation marks are
retained which are treated like other normal words.
Vocabulary size for each of the training subsets was
around 8,500 words. The model was reset at the start
of each sentence, meaning that a word in any given
sentence does not depend on any word in the previ-
ous sentence. The regularization parameter λ is cho-

sen for each model by cross-validation on a smaller
subset of data. Models are fitted to training sequence
of 30K words for different values of λ and validated
against a sequence of 10K words to choose λ.

We quantitatively evaluate the proposed model
using perplexity, which is computed as follows:

P ({xi, yi},W ) = 10

{
−1
nV

∑n
i=1 I(yi∈V ) log p(yi|x1:i;W )

}
,

where nV =
∑

i I(yi ∈ V ). Performance is mea-
sured for varying depth of the suffix trie with dif-
ferent penalties. Interpolated Kneser-Ney results
were computed using the openly available SRILM
toolkit (Stolcke, 2002).

Figure 2(a) shows perplexity values averaged over
four data subsets as a function of the language model
order. It can be observed that performance of un-
structured `1 and squared `2 penalties improve until
a relatively low order and then degrade, while `T2
penalty does not show such degradation, indicating
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Figure 3: Comparison of different methods for performing `T∞ proximal projection. The rand-pivot
is the random pivoting method of (Bruckner, 1984) and rand-pivot-col is the same applied with the
nodes collapsed. The k-best heap is the method described in Algorithm 4.

that taking the tree-structure into account is benefi-
cial. Moreover, the log-linear language model with
`T2 penalty performs similar to interpolated Kneser-
Ney. The `T∞-norm outperforms all other models
at order 5, but taking the structure into account
does not prevent a degradation of the performance
at higher orders, unlike `T2 . This means that a single
regularization for all model orders is still inappro-
priate.

To investigate this further, we adjust the penal-
ties by choosing an exponential decrease of weights
varying as αm for a feature at depth m in the suffix
tree. Parameter α was tuned on a smaller validation
set. The best performing values for these weighted
models w`22, w`1, w`T2 and w`T∞ are 0.5, 0.7, 1.1
and 0.85 respectively. The weighting scheme fur-
ther appropriates the regularization at various levels
to suit the problem’s structure. Perplexity plots for
weighted models are shown in Figure 2(b). While
w`1 improves at larger depths, it fails to compare
to others showing that the problem does not admit
sparse solutions. Weighted `22 improves consider-
ably and performs comparably to the unweighted
tree-structured norms. However, the introduction of
weighted features prevents us from using the suf-
fix tree representation, making these models inef-
ficient in terms of memory. Weighted `T∞ is cor-
rected for overfitting at larger depths and w`T2 gains
more than others. Optimal values for α are frac-
tional for all norms except w`T2 -norm showing that
the unweighted model `T2 -norm was over-penalizing
features at larger depths, while that of others were

under-penalizing them. Interestingly, perplexity im-
proves up to about 9-grams with w`T2 penalty for
the data set we considered, indicating that there is
more to gain from longer dependencies in natural
language sentences than what is currently believed.

Figure 2(c) compares model complexity mea-
sured by the number of parameters for weighted
models using structured penalties. The `T2 penalty
is applied on trie-structured vectors, which grows
roughly at a linear rate with increasing model order.
This is similar to Kneser-Ney. However, the number
of parameters for the w`T∞ penalty grows logarith-
mically with the model order. This is due to the fact
that it operates on the suffix tree-structured vectors
instead of the suffix trie-structured vectors. These
results are valid for, both, weighted and unweighted
penalties.

Next, we compare the average time taken per iter-
ation for different implementations of the `T∞ prox-
imal step. Figure 3(a) shows this time against in-
creasing depth of the language model order for ran-
dom pivoting method with and without the collaps-
ing of parameters at different constant value non-
branching paths. The trend in this plot resembles
that of the number of parameters in Figure 2(c). This
shows that the complexity of the full proximal step
is sublinear when accounting for the suffix tree data
structure. Figure 3(b) plots time per iteration ran-
dom pivoting and k-best heap against the varying
size of training sequence. The two algorithms are
operating directly on the suffix tree. It can be ob-
served that the heap-based method are superior with
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increasing size of training data.

7 Conclusion

In this paper, we proposed several log-linear lan-
guage models. We showed that with an efficient
data structure and structurally appropriate convex
regularization schemes, they were able to outper-
form standard Kneser-Ney smoothing. We also de-
veloped a proximal projection algorithm for the tree-
structured `T∞-norm suitable for large trees.

Further, we showed that these models can be
trained online, that they accurately learn the m-gram
weights and that they are able to better take advan-
tage of long contexts. The time required to run the
optimization is still a concern. It takes 7583 min-
utes on a standard desktop computer for one pass of
the of the complete AP-news dataset with 13 mil-
lion words which is little more than time reported
for (Mnih and Hinton, 2007). The most time con-
suming part is computing the normalization factor
for the log-loss. A hierarchical model in the flavour
of (Mnih and Hinton, 2008) should lead to signifi-
cant improvements to this end. Currently, the com-
putational bottleneck is due to the normalization fac-
tor in (1) as it appears in every gradient step com-
putation. Significant savings would be obtained by
computing it as described in (Wu and Khundanpur,
2000).
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Abstract

Current automatic machine translation sys-
tems are not able to generate error-free trans-
lations and human intervention is often re-
quired to correct their output. Alternatively,
an interactive framework that integrates the
human knowledge into the translation pro-
cess has been presented in previous works.
Here, we describe a new interactive ma-
chine translation approach that is able to work
with phrase-based and hierarchical translation
models, and integrates error-correction all in
a unified statistical framework. In our experi-
ments, our approach outperforms previous in-
teractive translation systems, and achieves es-
timated effort reductions of as much as 48%
relative over a traditional post-edition system.

1 Introduction

Research in the field of machine translation (MT)
aims to develop computer systems which are able
to translate between languages automatically, with-
out human intervention. However, the quality of
the translations produced by any automatic MT sys-
tem still remain below than that of human transla-
tion. Typical solutions to reach human-level quality
require a subsequent manual post-editing process.
Such decoupled post-edition solution is rather inef-
ficient and tedious for the human translator. More-
over, it prevents the MT system from taking advan-
tage of the knowledge of the human translator and,
reciprocal, the human translator cannot take advan-
tage of the adapting ability of MT technology.

An alternative way to take advantage of the exist-
ing MT technology is to use them in collaboration
with human translators within a computer-assisted

translation (CAT) or interactive framework (Isabelle
and Church, 1998). The TransType and TransType2
projects (Foster et al., 1998; Langlais and Lapalme,
2002; Barrachina et al., 2009) entailed an interesting
focus shift in CAT technology by aiming interaction
directly at the production of the target text. These
research projects proposed to embed an MT system
within an interactive translation environment. This
way, the human translator can ensure a high-quality
output while the MT system ensures a significant
gain of productivity. Particularly interesting is the
interactive machine translation (IMT) approach pro-
posed in (Barrachina et al., 2009). In this scenario,
a statistical MT (SMT) system uses the source sen-
tence and a previously validated part (prefix1) of its
translation to propose a suitable continuation. Then
the user finds and corrects the next system error,
thereby providing a longer prefix which the system
uses to suggests a new, hopefully better continua-
tion. The reported results showed that IMT can save
a significant amount of human effort.

Barrachina et al,. (2009) provide a thorough de-
scription of the IMT approach and describe algo-
rithms for its practical implementation. Neverthe-
less, we identify two basic problems for which we
think there is room for improvement. The first prob-
lem arises when the system cannot generate the pre-
fix validated by the user. To solve this problem,
the authors simply provide an ad-hoc heuristic error-
correction technique. The second problem is how
the system deals with word reordering. Particularly,
the models used by the system were either mono-

1We use the terms prefix and suffix to denote any sub-string
at the beginning and end respectively of a string of characters
(including spaces and punctuation). These terms do not imply
any morphological significance as they usually do in linguistics.
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tonic by nature or non-monotonic but heuristically
defined (not estimated from training data).

We work on the foundations of Barrachina et
al., (2009) and provide formal solutions to these
two challenges. On the one hand, we adopt the
statistical formalization of the IMT framework de-
scribed in (Ortiz-Martı́nez, 2011), which includes
a stochastic error-correction model in its formaliza-
tion to address prefix coverage problems. Moreover,
we refine this formalization proposing an alternative
error-correction formalization for the IMT frame-
work (Section 2). Additionally, we also propose a
specific error-correction model based on a statisti-
cal interpretation of the Levenshtein distance (Lev-
enshtein, 1966). These formalizations provide a
unified statistical framework for the IMT model in
comparison to the ad-hoc heuristic error-correction
methods previously used.

In order to address the problem of properly deal
with reordering in IMT, we introduce the use of hi-
erarchical MT models (Chiang, 2005; Zollmann and
Venugopal, 2006). These methods provide a natural
approach to handle long range dependencies and al-
low the incorporation of reordering information into
a consistent statistical framework. Here, we also de-
scribe how state-of-the-art hierarchical MT models
can be extended to handle IMT (Sections 3 and 4).

We evaluate the proposed IMT approach on two
different translation task. The comparative results
against the IMT approach described by Barrachina
et al., (2009) and a conventional post-edition ap-
proach show that our IMT formalization for hier-
archical SMT models indeed outperform other ap-
proaches (Sections 5 and 6). Moreover, it leads to
large reductions in the human effort required to gen-
erate error-free translations.

2 Statistical Framework

2.1 Statistical Machine Translation

Assuming that we are given a sentence s in a source
language, the translation problem can be stated as
finding its translation t in a target language of max-
imum probability (Brown et al., 1993):

t̂ = arg max
t

Pr(t | s) (1)

= arg max
t

Pr(t) · Pr(s | t) (2)

source (s): Para ver la lista de recursos
desired translation (t̂): To view a listing of resources

IT-0 p
ts To view the resources list

IT-1
p To view
k a
ts list of resources

IT-2
p To view a list
k list i
ts list i ng resources

IT-3
p To view a listing
k o
ts o f resources

END p To view a listing of resources

Figure 1: IMT session to translate a Spanish sentence into
English. The desired translation is the translation the hu-
man user wants to obtain. At IT-0, the system suggests
a translation (ts). At IT-1, the user moves the mouse to
accept the first eight characters “To view ” and presses the
a key (k), then the system suggests completing the sen-

tence with “list of resources” (a new ts). Iterations 2 and
3 are similar. In the final iteration, the user accepts the
current translation.

The terms in the latter equation are the lan-
guage model probability Pr(t) that represents the
well-formedness of t (n-gram models are usu-
ally adopted), and the (inverted) translation model
Pr(s | t) that represents the relationship between the
source sentence and its translation.

In practice all of these models (and possibly oth-
ers) are often combined into a log-linear model for
Pr(t | s) (Och and Ney, 2002):

t̂ = arg max
t

{
N∑

n=1

λn · log(fn(t, s))

}
(3)

where fn(t, s) can be any model that represents an
important feature for the translation, N is the num-
ber of models (or features), and λn are the weights
of the log-linear combination.

2.2 Statistical Interactive Machine Translation
Unfortunately, current MT technology is still far
from perfect. This implies that, in order to achieve
good translations, manual post-editing is needed.
An alternative to this decoupled approach (first
MT, then manual correction) is given by the IMT
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paradigm (Barrachina et al., 2009). Under this
paradigm, translation is considered as an iterative
left-to-right process where the human and the com-
puter collaborate to generate the final translation.

Figure 1 shows an example of the IMT approach.
There, a source Spanish sentence s =”Para ver la
lista de recursos” is to be translated into a target En-
glish sentence t̂. Initially, with no user feedback, the
system suggests a complete translation ts =”To view
the resources list”. From this translation, the user
marks a prefix p =”To view” as correct and begins
to type the rest of the target sentence. Depending on
the system or the user’s preferences, the user might
type the full next word, or only some letters of it (in
our example, the user types the single next charac-
ter “a”). Then, the MT system suggests a new suffix
ts =“list of resources” that completes the validated
prefix and the input the user has just typed (p =”To
view a”). The interaction continues with a new pre-
fix validation followed, if necessary, by new input
from the user, and so on, until the user considers the
translation to be complete and satisfactory.

The crucial step of the process is the production
of the suffix. Again decision theory tells us to max-
imize the probability of the suffix given the avail-
able information. Formally, the best suffix of a given
length will be:

t̂s = arg max
ts

Pr(ts | s,p) (4)

which can be straightforwardly rewritten as:

t̂s = arg max
ts

Pr(p, ts | s) (5)

= arg max
ts

Pr(p, ts) · Pr(s | p, ts) (6)

Note that, since p ts = t, this equation is very
similar to Equation (2). The main difference is that
now the search process is restricted to those target
sentences t that contains p as prefix. This implies
that we can use the same MT models (including
the log-linear approach) if the search procedures are
adequately modified (Och et al., 2003). Finally, it
should be noted that the statistical models are usu-
ally defined at word level, while the IMT process
described in this section works at character level. To
deal with this problem, during the search process it
is necessary to verify the compatibility between t
and p at character level.

2.3 IMT with Stochastic Error-Correction
A common problem in IMT arises when the user sets
a prefix which cannot be explained by the statistical
models. To solve this problem, IMT systems typi-
cally include ad-hoc error-correction techniques to
guarantee that the suffixes can be generated (Bar-
rachina et al., 2009). As an alternative to this heuris-
tic approach, Ortiz-Martı́nez (2011) proposed a for-
malization of the IMT framework that does include
stochastic error-correction models in its statistical
formalization. The starting point of this alternative
IMT formalization accounts for the problem of find-
ing the translation t that, at the same time, better
explains the source sentence s and the prefix given
by the user p:

t̂ = arg max
t

Pr(t | s,p) (7)

= arg max
t

Pr(t) · Pr(s,p | t) (8)

The following naı̈ve Bayes’ assumption is now
made: the source sentence s and the user prefix p are
statistically independent variables given the transla-
tion t, obtaining:

t̂ = arg max
t

Pr(t) · Pr(s | t) · Pr(p | t) (9)

where Pr(t) can be approximated with a language
model, Pr(s | t) can be approximated with a trans-
lation model, and Pr(p | t) can be approximated
by an error correction model that measures the com-
patibility between the user-defined prefix p and the
hypothesized translation t.

Note that the translation result, t̂, given by Equa-
tion (9) may not contain p as prefix because every
translation is compatible with p with a certain prob-
ability. Thus, despite being close, Equation (9) is not
equivalent to the IMT formalization in Equation (6).

To solve this problem, we define an alignment,
a, between the user-defined prefix p and the hy-
pothesized translation t, so that the unaligned words
of t, in an appropriate order, constitute the suffix
searched in IMT. This allows us to rewrite the error
correction probability as follows:

Pr(p | t) =
∑
a

Pr(p,a | t) (10)

To simplify things, we assume that p is mono-
tonically aligned to t, leaving the potential word-
reordering to the language and translation models.
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Under this assumption, a determines an alignment
for t, such that t = tpts, where tp is fully-aligned to
p and ts remains unaligned. Taking all these things
into consideration, and following a maximum ap-
proximation, we finally arrive to the expression:

(t̂, â) = arg max
t,a

Pr(t)·Pr(s | t)·Pr(p,a | t) (11)

where the suffix required in IMT is obtained as the
portion of t̂ that is not aligned with the user prefix.

In practice, we combine the models in Equa-
tion (11) in a log-linear fashion as it is typically done
in SMT (see Equation (3)).

2.4 Alternative Formalization for IMT with
Stochastic Error-Correction

Alternatively to Equation (11), we can operate from
Equation (9) and reach a different formalization for
IMT with error-correction. We can re-write the first
and last terms of Equation (9) as:

Pr(t) · Pr(p | t) = Pr(p) · Pr(t | p) (12)

As in the previous section, we introduce an align-
ment variable, a, between t and p, giving:

Pr(t | p) =
∑
a

Pr(t,a | p) (13)

=
∑
a

Pr(a | p) · Pr(t | p,a) (14)

If we consider monotonic alignments, a defines
again an alignment between a prefix of the system
translation (tp) and the user prefix, producing the
suffix required in IMT (ts) as the unaligned part.
Thus, we can re-write Pr(t | p,a) as:

Pr(t | p,a) = Pr(tp, ts | p,a) (15)

≈ Pr(tp | p,a) · Pr(ts | p,a) (16)

where Equation (16) has been obtained following a
naı̈ve Bayes’ decomposition.

Combining equations (12), (14), and (16) into
Equation (9), and following a maximum approxima-
tion for the summation of the alignment variable a,
we arrive to the following expression:

(t̂, â) = arg max
t,a

Pr(s |t)·Pr(tp |p,a)·Pr(ts |p,a) (17)

where Pr(p) and Pr(a|p) have been dropped down
because the former does not participate in the maxi-
mization and the latter is assumed uniform.

The terms in this equation can be interpreted sim-
ilarly as those in Equation (9): Pr(s | t) is the trans-
lation model, Pr(tp | p,a) is the error-correction
probability that measures the compatibility between
the prefix tp of the hypothesized translation and the
user-defined prefix p, and Pr(ts | p,a) is the lan-
guage model for the corresponding suffix ts condi-
tioned by the user-defined prefix. Again, in the ex-
periments we combine the different models in a log-
linear fashion.

The main difference between the two alternative
IMT formalization (Equations (11) and (17)) is that
in the latter the suffix to be returned is conditioned
by the user-validated prefix p. Thus, in the fol-
lowing we will refer to Equation (11) as indepen-
dent suffix formalization while we will denote Equa-
tion (17) by conditioned suffix formalization.

3 Statistical Models

We now present the statistical models used to esti-
mate the probability distributions described in the
previous section. Section 3.1 describes the error-
correction model, while Section 3.2 describes the
models for the conditional translation probability.

3.1 Statistical Error-Correction Model

Following the vast majority of IMT systems de-
scribed in the literature, we implement an error-
correction model based on the concept of edit dis-
tance (Levenshtein, 1966). Typically, IMT systems
use non-probabilistic error correction models. The
first stochastic error correction model for IMT was
proposed in (Ortiz-Martı́nez, 2011) and it is based
on probabilistic finite state machines. Here, we pro-
pose a simpler approach which can be seen as a
particular case of the previous one. Specifically,
the proposed approach models the edit distance as a
Bernoulli process where each character of the candi-
date string has a probability pe of being erroneous.
Under this interpretation, the number of characters
that need to be edited E in a sentence of length n
is a random variable that follows a binomial distri-
bution, E ∼ B(n, pe), with parameters n and pe.
The probability of performing exactly k edits in a
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sentence of n characters is given by the following
probability mass function:

f(k;n, pe) =
n!

k!(n− k)!
pk

e(1− pe)
n−k (18)

Note that this error-correction model penalizes
equally all edit operations. Alternatively, we can
model the distance with a multinomial distribution
and assign different probabilities to different types
of edit operations. Nevertheless, we adhere to the
binomial approximation due to its simplicity.

Finally, we compute the error-correction proba-
bility between two strings from the total number of
edits required to transform the candidate translation
into the reference translation. Specifically, we define
the error-correction distribution in Equation (11) as:

Pr(p,a | t) ≈ |p|!
k!(|p| − k)!

pk
e(1− pe)

|p|−k (19)

where k = Lev(p, ta) is the character-level Lev-
enshtein distance between the user defined prefix p
and the prefix ta of the hypothesized translation t
defined by alignment a. The error-correction prob-
ability Pr(tp | p,a) in Equation (17) is computed
analogously.

The probability of edition pe is the single free pa-
rameter of this formulation. We will use a separate
development corpus to find an adequate value for it.

3.2 Statistical Machine Translation Models

Next sections briefly describe the statistical transla-
tion models used to estimate the conditional proba-
bility distribution Pr(s | t). A detailed description
of each model can be found in the provided citations.

3.2.1 Phrase-Based Translation Models

Phrase-based translation models (Koehn et al.,
2003) are an instance of the noisy-channel approach
in Equation (2). The translation of a source sentence
s is obtained through a generative process composed
of three steps: first, the s is divided into K segments
(phrases), next, each source phrase, s̃, is translated
into a target phrase t̃, and finally the target phrases
are reordered to compose the final translation.

The usual phrase-based implementation of the
translation probability takes a log-linear form:

Pr(s | t) ≈ λ1 · |t|+ λ2 ·K+

K∑
k=1

[
λ3 · log(P (s̃k | t̃k)) + λ4 · d(j)

]
(20)

where P (s̃ | t̃) is the translation probability between
source phrase s̃ and target phrase t̃, and d(j) is a
function (distortion model) that returns the score of
translating the k-th source phrase given that it is sep-
arated j words from the (k−1)-th phrase. Weights λ1

and λ2 play a special role since they are used to con-
trol the number of words and the number of phrases
of the target sentence to be generated, respectively.

3.2.2 Hierarchical Translation Models
Phrase-based models have shown a very strong

performance when translating between languages
that have similar word orders. However, they are not
able to adequately capture the complex relationships
that exist between the word orders of languages of
different families such as English and Chinese. Hi-
erarchical translation models provide a solution to
this challenge by allowing gaps in the phrases (Chi-
ang, 2005):

yu X1 you X2→ have X2 with X1

where subscripts denote placeholders for sub-
phrases. Since these rules generalize over possi-
ble phrases, they act as discontinuous phrase pairs
and may also act as phrase-reordering rules. Hence,
they are not only considerably more powerful than
conventional phrase pairs, but they also integrate re-
ordering information into a consistent framework.

These hierarchical phrase pairs are formalized as
rewrite rules of a synchronous context-free grammar
(CFG) (Aho and Ullman, 1969):

X →< γ,α,∼> (21)

where X is a non-terminal, γ and α are both strings
of terminals (words) and non-terminals , and ∼ is
a one-to-one correspondence between non-terminal
occurrences in γ and α. Given the example above,
γ ≡“yu X1 you X2”, α ≡“have X2 with X1”, and∼
is indicated by the subscript numbers.

Additionally, two glue rules are also defined:

S →<S1X2 , S1X2> S →<X1 , X1>
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These give the model the option to build only par-
tial translations using hierarchical phrases, and then
combine them serially as in a phrase-based model.

The typical implementation of the hierarchical
translation model also takes the form of a log-linear
model. Let sδ and tδ be the source and target strings
generated by a derivation δ of the grammar. Then,
the conditional translation probability is given by:

Pr(sδ | tδ) ≈ λ1 · |tδ|+ λ2 · |δ|+ λ3 ·#g(δ)+∑
r∈δ

[λ4 · w(r)] (22)

where |δ| denotes the total number of rules used
in δ, #g(δ) returns the number of applications of
the glue rules, r ∈ δ are the rules in δ, and w(r)
is the weight of rule r. Weights λ1 and λ2 have
a similar interpretation as for phrase-based models,
they respectively give some control over the total
number of words and rules that conform the trans-
lation. Additionally, λ3 controls the model’s prefer-
ence for hierarchical phrases over serial combination
of phrases. Note that no distortion model is included
in the previous equation. Here, reordering is defined
at rule level by the one-to-one non-terminal corre-
spondence. In other words, reordering is a property
inherent to each rule and it is the individual score of
each rule what defines, at each step of the derivation,
the importance of reordering.

It should be noted that the IMT formalizations
presented in Section 2 can be applied to other hier-
archical or syntax-based SMT models such as those
described in (Zollmann and Venugopal, 2006; Shen
et al., 2010).

4 Search

In offline MT, the generation of the best trans-
lation for a given source sentence is carried out
by incrementally generating the target sentence2.
This process fits nicely into a dynamic program-
ming (DP) (Bellman, 1957) framework, as hypothe-
ses which are indistinguishable by the models can
be recombined. Since the DP search space grows
exponentially with the size of the input, standard DP
search is prohibitive, and search algorithms usually
resort to a beam-search heuristic (Jelinek, 1997).

2Phrase-based systems follow a left-to-right generation or-
der while hierarchical systems rely on a CYK-like order.

6

1

5

I saw a man with a telescope

2 3

4

I saw a man with a telescope
I saw with a telescope a man

Figure 2: Example of a hypergraph encoding two differ-
ent translations (one solid and one dotted) for the Spanish
sentence “Vi a un hombre con un telescopio”.

Due to the demanding temporal constraints inher-
ent to any interactive environment, performing a full
search each time the user validates a new prefix is
unfeasible. The usual approach is to rely on a certain
representation of the search space that includes the
most probable translations of the source sentence.
The computational cost of this approach is much
lower, as the whole search for the translation must
be carried out only once, and the generated represen-
tation can be reused for further completion requests.

Next, we introduce hypergraphs, the formalism
chosen to represent the search space of both phrase-
based and hierarchical systems (Section 4.1). Then,
we describe the algorithms implemented to search
for suffix completions in them (Section 4.2).

4.1 Hypergraphs

A hypergraph is a generalization of the concept
of graph where the edges (now called hyperedges)
may connect several nodes (hypernodes) at the same
time. Formally, a hypergraph is a weighted acyclic
graph represented by a pair < V, E >, where V is a
set of hypernodes and E is a set of hyperedges. Each
hyperedge e ∈ E connects a head hypernode and a
set of tail hypernodes. The number of tail nodes is
called the arity of the hyperedge and the arity of a
hypergraph is the maximum arity of its hyperedges.

We can use hypergraphs to represent the deriva-
tions for a given CFG. Each hypernode represents
a partial translation generated during the decoding
process. Each ingoing hyperedge represents the rule
with which the corresponding non-terminal was sub-
stituted. Moreover, hypergraphs can represent a
whole set of possible translations. An example is
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shown in Figure 2. Two alternative translations are
constructed from the leave nodes (1, 2 and 3) up to
the root node (6) of the hypergraph. Additionally,
hypernodes and hyperedges may be shared among
different derivations if they represent the same in-
formation. Thus, we can achieve a compact repre-
sentation of the translation space that allows us to
derive efficient search algorithms.

Note that word-graphs (Ueffing et al., 2002),
which are used to represent the search space for
phrase-based models, are a special case of hyper-
graphs in which the maximum arity is one. Thus,
hypergraphs allow us to represent both phrase-based
and hierarchical systems in a unified framework.

4.2 Suffix Search on Hypergraphs
Now, we describe a unified search process to obtain
the suffix ts that completes a prefix p given by the
user according to the two IMT formulations (Equa-
tion (11) and Equation (17)) described in Section 2.

Given an hypergraph, certain hypernodes define a
possible solution to the maximization defined in the
two IMT formulations. Specifically, only those hy-
pernodes that generate a prefix of a potential trans-
lation are to be taken into account3. The prob-
ability of the solution defined by each hypernode
has two components, namely the probability of the
SMT model (given by the language and translation
models) and the probability of the error-correction
model. On the one hand, the SMT model probabil-
ity is given by the translation of maximum probabil-
ity through the hypernode. On the other hand, the
error-correction probability is computed between p
and the partial translation of maximum probability
actually covered by the hypernode. Among all the
solutions defined by the hypernodes, we finally se-
lect that of maximum probability.

Once the best-scoring hypernode is identified, the
rest of the translation not covered by it is returned as
the suffix completion required in IMT.

5 Experimental Framework

The models and search procedure introduced in the
previous sections were assessed through a series of

3For example, in Figure 2 the hypernodes that generate pre-
fixes are those labeled with numbers 1 (“I saw”), 4 (“I saw with
a telescope) and 6 (“I saw a man with a telescope” and “I saw
with a telescope a man”).

EU (Es/En)
Train Development Test

Sentences 214K 400 800
Token 5.9M / 5.2M 12K / 10K 23K / 20K
Vocabulary 97K / 84K 3K / 3K 5K / 4K

TED (Zh/En)
Train Development Test

Sentences 107K 934 1664
Token 2M / 2M 22K / 20K 33K / 32K
Vocabulary 42K / 52K 4K / 3K 4K / 4K

Table 1: Main figures of the processed EU and TED cor-
pora. K and M stand for thousands and millions of ele-
ments respectively.

IMT experiments with different corpora. These cor-
pora, the experimental methodology, and the evalu-
ation measures are presented in this section.

5.1 EU and TED corpora

We tested the proposed methods in two different
translation tasks each one involving a different lan-
guage pair: Spanish-to-English (Es–En) for the EU
(Bulletin of the European Union) task, and Chinese-
to-English (Zh–En) for the TED (TED4 talks) task.

The EU corpora were extracted from the Bul-
letin of the European Union, which exists in all of-
ficial languages of the European Union and is pub-
licly available on the Internet. Particularly, the cho-
sen Es–En corpus was part of the evaluation of the
TransType2 project (Barrachina et al., 2009). The
TED talks is a collection of recordings of public
speeches covering a variety of topics, and for which
high quality transcriptions and translations into sev-
eral languages are available. The Zh–En corpus
used in the experiments was part of the MT track
in the 2011 evaluation campaign of the workshop on
spoken language translation (Federico et al., 2011).
Specifically, we used the dev2010 partition for de-
velopment and the test2010 partition for test.

We process the Spanish and English parts of the
EU corpus to separate words and punctuation marks
keeping sentences truecase. Regarding the TED cor-
pus, we tokenized and lowercased the English part
(Chinese has no case information), and split Chi-
nese sentences into words with the Stanford word

4www.ted.com

250



segmenter (Tseng et al., 2005). Table 1 shows the
main figures of the processed EU and TED corpora.

5.2 Model Estimation and User Simulation

We used the standard configuration of the Moses
toolkit (Koehn et al., 2007) to estimate one phrase-
based and one hierarchical model for each cor-
pus; log-linear weights were optimized by minimum
error-rate training (Och, 2003) with the development
partitions. Then, the optimized models were used to
generate the word-graphs and hypergraphs with the
translations of the development and test partitions.

A direct evaluation of the proposed IMT proce-
dures involving human users would have been slow
and expensive. Thus, following previous works in
the literature (Barrachina et al., 2009; González-
Rubio et al., 2010), we used the references in the
corpora to simulate the translations that a human
user would want to obtain. Each time the system
suggested a new translation, it was compared to
the reference and the longest common prefix (LCP)
was obtained. Then, the first non-matching charac-
ter was replaced by the corresponding character in
the reference and a new system suggestion was pro-
duced. This process is iterated until a full match with
the reference was obtained.

Finally, we used this user simulation to optimize
the value for the probability of edition pe in the
error-correction model (Section 3.1), and for the log-
linear weights in the proposed IMT formulations. In
this case, these values were chosen so that they min-
imize the estimated user effort required to interac-
tively translate the development partitions.

5.3 Evaluation Measures

Different measures have been adopted to evaluate
the proposed IMT approach. On the one hand, dif-
ferent IMT systems can be compared according to
the effort needed by a human user to generate the de-
sired translations. This effort is usually estimated as
the number of actions performed by the user while
interacting with the system. In the user simulation
described above these actions are: looking for the
next error and moving the mouse pointer to that po-
sition (LCP computation), and correcting errors with
some key strokes. Hence, we implement the follow-
ing IMT effort measure (Barrachina et al., 2009):

Key-stroke and mouse-action ratio (KSMR):
number of key strokes plus mouse movements per-
formed by the user, divided by the total number of
characters in the reference.

On the other hand, we also want to compare the
proposed IMT approach against a conventional CAT
approach without interactivity, such as a decoupled
post-edition system. For such systems, character-
level user effort is usually measured by the Charac-
ter Error Rate (CER). However, it is clear that CER
is at a disadvantage due to the auto-completion ap-
proach of IMT. To perform a fairer comparison be-
tween post-edition and IMT, we implement a post-
editing system with autocompletion. Here, when
the user enters a character to correct some incor-
rect word, the system automatically completes the
word with the most probable word in the task vo-
cabulary. To evaluate the effort of a user using such
a system, we implement the following measure pro-
posed in (Romero et al., 2010):

Post-editing key stroke ratio (PKSR): using
a post-edition system with word-autocompleting,
number of user key strokes divided by the total num-
ber of reference characters.

The counterpart of PKSR in an IMT scenario
is (Barrachina et al., 2009):

Key-stroke ratio (KSR): number of key strokes,
divided by the number of reference characters.

PKSR and KSR are fairly comparable and the rel-
ative difference between them gives us a good es-
timate of the reduction in human effort that can be
achieved by using IMT instead of a conventional
post-edition system.

We also evaluate the quality of the automatic
translations generated by the MT models with the
widespread BLEU score (Papineni et al., 2002).

Finally, we provide both confidence intervals for
the results and statistical significance of the ob-
served differences in performance. Confidence in-
tervals were computed by pair-wise re-sampling as
in (Zhang and Vogel, 2004) while statistical signifi-
cance was computed using the Tukey’s HSD (honest
significance difference) test (Hsu, 1996).
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EU TED
WG HG WG HG

1-best BLEU [%] 45.0 45.1 11.0 11.2
1000-best Avg. BLEU [%] 43.6 44.2 10.2 11.0

Table 2: BLEU score of the word-graphs (WG) and hy-
pergraphs (HG) used to implement the IMT procedures.

IMT EU TED
Setup PB HT PB HT

ISF 27.4±.5∗ 26.5±.5∗ 53.0±.4∗ 52.3±.4∗

CSF 26.6±.5∗ 25.1±.5F 52.2±.4∗ 50.8±.4F

Table 3: IMT results (KSMR [%]) for the EU and
TED tasks using the independent suffix formalization
(ISF) and the conditioned suffix formalization (CSF). PB
stands for phrase-based model and HT stands for hierar-
chical translation model. For each task, the best result
is displayed boldface, an asterisk ∗ denotes a statistically
significant better result (99% confidence) with respect to
ISF with PB, and a star F denotes a statistically signifi-
cant difference with respect to all the other systems.

6 Results

We start by reporting conventional MT quality re-
sults to test if the generated word-graphs and hyper-
graphs encode translations of similar quality. Ta-
ble 2 displays the quality (BLEU (Papineni et al.,
2002)) of the automatic translations generated for
the test partitions. The lower 1-best BLEU results
obtained for TED show that this is a much more dif-
ficult task than EU. Additionally, the similar aver-
age BLEU results obtained for the 1000-best transla-
tions indicate that word-graphs and hypergraphs en-
code translations of similar quality. Thus, the IMT
systems that use these word-graphs and hypergraphs
can be compared in a fair way.

Then, we evaluated different setups of the pro-
posed IMT approach. Table 3 displays the IMT re-
sults obtained for the EU and TED tasks. We report
KSMR (as a percentage) for the independent suffix
formalization (ISF) and the conditioned suffix for-
malization (CSF) using both phase-based (PB) and
hierarchical (HT) translation models. The KSMR
result of ISF using a phrase-based model can be con-
sidered our baseline since this setup is comparable
to that used in (Barrachina et al., 2009). Results for
HT consistently outperformed the corresponding re-
sults for PB. Similarly, results for CSF were con-

EU TED
PE IMT PE IMT

PKSR [%] KSR [%] PKSR [%] KSR [%]

27.1 14.1 (48%) 40.8 29.7 (27.2%)

Table 4: Estimation of the effort required to translate
the test partition of the EU and TED tasks using post-
editing with word-completion (PE) and IMT under the
independent suffix formalization (IMT). We used hierar-
chical MT in both approaches. In parenthesis we display
the estimated effort reduction of IMT with respect to PE.

sistently better than those for ISF. More specifically,
no statistically significant difference were found be-
tween ISF with HT and CSF with PB but both sta-
tistically outperformed the baseline (ISF with PB).
Finally, CSF with HT statistically outperformed the
other three configurations reducing KSMR by ∼2.2
points with respect to the baseline. We hypothe-
size that the better results of HT can be explained
by its more efficient representation of word reorder-
ing. Regarding the CSF, its better results are due to
the better suffixes that can be obtained by taking into
account the actual prefix validated by the user.

Finally, we compared the estimated human effort
required to translate the test partitions of the EU and
TED corpora with the best IMT configuration (inde-
pendent suffix formalization with hierarchical trans-
lation model) and a conventional post-editing (PE)
CAT system with word-completion. That is, when
the user corrects a character, the PE system auto-
matically proposes a different word that begins with
the given word prefix but, obviously, the rest of the
sentence is not changed. According to the results,
the estimated human effort to generate the error-free
translations was significantly reduced with respect
to using the conventional PE approach. IMT can
save about 48% of the overall eastimated effort for
the EU task and about 27% for the TED task.

7 Summary and Future Work

We have proposed a new IMT approach that uses hi-
erarchical SMT models as its underlying translation
technology. This approach is based on a statistical
formalization previously described in the literature
that includes stochastic error correction. Addition-
ally, we have proposed a refined formalization that
improves the quality of the IMT suffixes by taking
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into account the prefix validated by the user. More-
over, since word-graphs constitute a particular case
of hypergraphs, we are able to manage both phrase-
based and hierarchical translation models in a uni-
fied IMT framework.

Simulated results on two different translation
tasks showed that hierarchical translation models
outperform phrase-based models in our IMT frame-
work. Additionally, the proposed alternative IMT
formalization also allows to improve the results of
the IMT formalization previously described in the
literature. Finally, the proposed IMT system with
hierarchical SMT models largely reduces the esti-
mated user effort required to generate correct trans-
lations in comparison to that of a conventional post-
edition system. We look forward to corroborating
these result in test with human translators.

There are many ways to build on the work de-
scribed here. In the near future, we plan to explore
the following research directions:

• Alternative IMT scenarios where the user is not
bounded to correct translation errors in a left-
to-right fashion. In such scenarios, the user will
be allowed to correct errors at any position in
the translation while the IMT system will be
required to derive translations compatible with
these isolated corrections.

• Adaptive translation engines that take advan-
tage of the user’s corrections to improve its sta-
tistical models. As the translator works and
corrects the proposed translations, the transla-
tion engine will be able to make better predic-
tions. One of the first works on this topic was
proposed in (Nepveu et al., 2004). More re-
cently, Ortiz-Martı́nez et al. (2010) described a
set of techniques to obtain an incrementally up-
dateable IMT system, solving technical prob-
lems encountered in previous works.

• More sophisticated measures to estimate the
human effort. Specifically, measures that esti-
mate the cognitive load involve in reading, un-
derstanding and detecting an error in a trans-
lation (Foster et al., 2002), in contrast KSMR
simply considers a constant cost. This will lead
to a more accurate estimation of the improve-
ments that may be expected by a human user.
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Abstract

Traditional synchronous grammar induction
estimates parameters by maximizing likeli-
hood, which only has a loose relation to trans-
lation quality. Alternatively, we propose a
max-margin estimation approach to discrim-
inatively inducing synchronous grammars for
machine translation, which directly optimizes
translation quality measured by BLEU. In
the max-margin estimation of parameters, we
only need to calculate Viterbi translations.
This further facilitates the incorporation of
various non-local features that are defined on
the target side. We test the effectiveness of our
max-margin estimation framework on a com-
petitive hierarchical phrase-based system. Ex-
periments show that our max-margin method
significantly outperforms the traditional two-
step pipeline for synchronous rule extraction
by 1.3 BLEU points and is also better than pre-
vious max-likelihood estimation method.

1 Introduction

Synchronous grammar induction, which refers to
the process of learning translation rules from bilin-
gual corpus, still remains an open problem in sta-
tistical machine translation (SMT). Although state-
of-the-art SMT systems model the translation pro-
cess based on synchronous grammars (including
bilingual phrases), most of them still learn trans-
lation rules via a pipeline with word-based heuris-
tics (Koehn et al., 2003). This pipeline first builds
word alignments using heuristic combination strate-
gies, then heuristically extracts rules that are consis-
tent with word alignments. Such heuristic pipeline

∗Corresponding author

is not elegant theoretically. It brings an undesirable
gap that separates modeling and learning in an SMT
system.

Therefore, researchers have proposed alternative
approaches to learning synchronous grammars di-
rectly from sentence pairs without word alignments,
via generative models (Marcu and Wong, 2002;
Cherry and Lin, 2007; Zhang et al., 2008; DeNero
et al., 2008; Blunsom et al., 2009; Cohn and Blun-
som, 2009; Neubig et al., 2011; Levenberg et al.,
2012) or discriminative models (Xiao et al., 2012).
Theoretically, these approaches describe how sen-
tence pairs are generated by applying sequences of
synchronous rules in an elegant way. However, they
learn synchronous grammars by maximizing likeli-
hood,1 which only has a loose relation to transla-
tion quality (He and Deng, 2012). Moreover, gen-
erative models are normally hard to be extended to
incorporate useful features, and the discriminative
synchronous grammar induction model proposed by
Xiao et al. (2012) only incorporates local features
defined on parse trees of the source language. Non-
local features, which encode information from parse
trees of the target language, have never been ex-
ploited before due to the computational complexity
of normalization in max-likelihood estimation.

Consequently, we would like to learn syn-
chronous grammars in a discriminative way that can
directly maximize the end-to-end translation quality
measured by BLEU (Papineni et al., 2002), and is
also able to incorporate non-local features from tar-
get parse trees.

We thus propose a max-margin estimation method

1More precisely, the discriminative model by Xiao et al.
(2012) maximizes conditional likelihood.
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to discriminatively induce synchronous grammar di-
rectly from sentence pairs without word alignments.
We try to maximize the margin between a reference
translation and a candidate translation with transla-
tion errors that are measured by BLEU. The more
serious the translation errors, the larger the margin.
In this way, our max-margin method is able to learn
synchronous grammars according to their translation
performance. We further incorporate various non-
local features defined on target parse trees. We ef-
ficiently calculate the non-local feature values of a
translation over its exponential derivation space us-
ing the inside-outside algorithm. Because our max-
margin estimation optimizes feature weights only by
the feature values of Viterbi and reference transla-
tions, we are able to efficiently perform optimization
even with non-local features.

We apply the proposed max-margin estimation
method to learn synchronous grammars for a hi-
erarchical phrase-based translation system (Chiang,
2007) which typically produces state-of-the-art per-
formance. With non-local features defined on tar-
get parse trees, our max-margin method significantly
outperforms the baseline that uses synchronous
rules learned from the traditional pipeline by 1.3
BLEU points on large-scale Chinese-English bilin-
gual training data.

The remainder of this paper is organized as fol-
lows. Section 2 presents the discriminative syn-
chronous grammar induction model with the non-
local features. In Section 3, we elaborate our max-
margin estimation method which is able to directly
optimize BLEU, and discuss how we induce gram-
mar rules. Local and non-local features are de-
scribed in Section 4. Finally, in Section 5, we verify
the effectiveness of our method through experiments
by comparing it against both the traditional pipeline
and max-likelihood estimation method.

2 Discriminative Model with Non-local
Features

Let S denotes the set of all strings in a source lan-
guage. Given a source sentence s ∈ S , T (s) denotes
all candidate translations in the target language that
can be generated by a synchronous grammar G. A
translation t ∈ T (s) is generated by a sequence of
translation steps (r1, ..., rn), where we apply a syn-
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bushi yu shalong juxing huitan

r1: ⟨ yu shalong⇒ with Sharon ⟩
r2: ⟨ X juxing huitan⇒ held a talk X ⟩
r3: ⟨ bushi X ⇒ Bush X ⟩

Figure 1: A derivation of a sentence pair represented by
a synchronous tree. The above and below part are the
parses in the source language side and the target language
side respectively. Left subscript of a node X denotes the
source span, while right subscript denotes the target span.
A dashed line denotes an alignment from a source span
to a target span. The annotation for a dashed line cor-
responds to the rewriting rule used in the corresponding
step of the derivation.

chronous rule r ∈ G in one step. We refer to such
a sequence of translation steps as a derivation (See
Figure 1) and denote it as d ∈ D(s), where D(s)
represents the derivation space of a source sentence.
Given an input source sentence s, we output a pair
⟨t,d⟩ in SMT. Thus, we study the triple ⟨s, t,d⟩ in
SMT.

In our discriminative model, we calculate the
value of a triple ⟨s, t,d⟩ according to the following
scoring function:

f(s, t,d) = θT Φ(s, t,d) (1)

where θ ∈ Θ is a feature weight vector, and Φ is the
feature function.

There are exponential outputs in SMT. Therefore
it is necessary to factorize the feature function in or-
der to perform efficient calculation over the SMT
output space using dynamic programming. We de-
compose the feature function of a triple ⟨s, t,d⟩ into
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Figure 2: Example features for the derivation in Figure 1.
Shaded nodes denote information encoded in the feature.

a sum of values of each synchronous rule in the
derivation d.

Φ(s, t,d) =
∑
r∈d

ϕ(r, s)︸ ︷︷ ︸
local

+
∑
r∈d

ϕ(r, s, t)︸ ︷︷ ︸
non-local

(2)

Our feature functions include both local and non-
local features. A feature is a local feature if and
only if it can be factored among the translation steps
in a derivation. In other words, the value of a lo-
cal feature for ⟨s, t,d⟩ can be calculated as a sum of
local scores in each translation step, and the calcula-
tion of each local score only requires to look at the
rule used in corresponding step and the input sen-
tence. Otherwise, the feature is a non-local feature.
Our discriminative model allows to incorporate non-
local features that are defined on target translations.

For example, a rule feature in Figure 2(a), which
indicates the application of a specific rule in a
derivation, is a local feature. A source span bound-
ary feature in Figure 2(b) that is defined on the
source parse tree is also a local feature. However,
a target span boundary feature in Figure 2(c), which
assesses the target parse structure, is a non-local fea-
ture. According to Figure 1, the span is parsed in
step r2, but it also depends on the translation bound-
ary word “held” generated in previous step r1. We
will describe the details of both local and non-local
features that we use in Section 4.

Non-local features enable us to model the target
parse structure in a derivation. However, it is com-
putationally expensive to calculate the expected val-
ues of non-local features over D(s), as non-local
features require to record states of target boundary

s, S, S s is a sentence in a source language;
S means source training sentences;
S denotes all the possible sentences;

t, T, T symbols for the target language that
similar to s, S, S;

d, D derivation and derivation space;
D(s) space of derivations for

a source sentence;
D(s, t) space of derivations for

a source sentence with its translation;
H(s) hypergraph that represents D(s);
H(s, t) hypergraph that represents D(s, t);

Table 1: Notations in this paper. We give an abstract of
related notations for clarity.

words and result in an extremely large number of
states during dynamic programming. Fortunately,
when integrating out derivations over the derivation
space D(s, t) of a source sentence and its transla-
tion, we can efficiently calculate the non-local fea-
tures. Because all derivations in D(s, t) share the
same translation, there is no need to maintain states
for target boundary words. We will discuss this com-
putational problem in details in Section 3.3. In the
proposed max-margin estimation described in next
section, we only need to integrate out derivation
for a Viterbi translation and a reference translation
when updating feature weights. Therefore, the de-
fined non-local features allow us to not only explore
useful knowledge on the target parse trees, but also
compute them efficiently over D(s, t) during max-
margin estimation.

3 Max-Margin Estimation

In this section, we describe how we use a parallel
training corpus {S,T} = {(s(i), t(i))}Ni=1 to esti-
mate feature weights θ, which contain parameters of
the induced synchronous grammars and the defined
non-local features.

We choose the parameters that maximize the
translation quality measured by BLEU using the
max-margin estimation (Taskar et al., 2004). Mar-
gin refers to the difference of the model score be-
tween a reference translation t(i) and a candidate
translation t. We hope that the worse the transla-
tion quality of t, the larger the margin between t
and t(i). In this way, we penalize larger translation
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errors more severely than smaller ones. This intu-
ition is expressed by the following equation.

min
1

2
∥θ∥2 (3)

s.t. f(s(i), t(i))− f(s(i), t) ≥ cost(t(i), t)

∀t ∈ T (s(i))

Here, f(s, t) is the feature function of a translation,
and cost function cost(t(i), t) measures the trans-
lation errors of a candidate translation t comparing
with a reference translation t(i). We define the cost
function via the widely-used translation evaluation
metric BLEU. We use the smoothed sentence level
BLEU-4 (Lin and Och, 2004) here:

cost(t(i), t) = 1− BLEU-4(t(i), t) (4)

In Section 3.1, we will discuss how we use the
scoring function f(s, t,d) to calculate f(s, t). Then
in Section 3.2, we recast the equation (3) as an un-
constrained empirical loss minimization problem,
and describe the learning algorithm for optimizing
θ and inducing G. Finally, we give the details of
inference for the learning algorithm in Section 3.3.

3.1 Integrate Out Derivation by Averaging
Although we only model the triple ⟨s, t,d⟩ in the
equation (1), it’s necessary to calculate the scoring
function f(s, t) of a translation by integrating out
the variable of derivation as derivation is not ob-
served in the training data.

We use an averaging computation over all possi-
ble derivations of a translation D(s, t). We call this
an average derivation based estimation:

f(s, t) =
1

|D(s, t)|
∑

d∈D(s,t)

f(s, t,d) (5)

The “average derivation” can be considered as the
geometric central point in the space D(s, t).

Another possible way to deal with the latent
derivation is max-derivation, which uses the max-
operator over D(s, t). The max derivation method
sets f(s, t) as maxd∈D(s,t) f(s, t,d). It is often
adopted in traditional SMT systems. Nevertheless,
we instead use average-derivation for two reasons.2

2Imagine that H(s, t) in the Algorithm 1 is replaced by a
maximum derivation inH(s, t).

First, as a translation has an exponential number of
derivations, finding the max derivation of a refer-
ence translation for learning is nontrivial (Chiang et
al., 2009). Second, the max derivation estimation
will result in a low rule coverage, as rules in a max
derivation only covers a small fraction of rules in
the D(s, t). Because rule coverage is important in
synchronous grammar induction, we would like to
explore the entire derivation space using the average
operator.

3.2 Learning Algorithm

We reformulate the equation (3) as an unconstrained
empirical loss minimization problem as follows:

min
λ

2
∥θ∥2 +

1

N

N∑
n=1

L(s(i), t(i), θ) (6)

Where λ denotes the regularization strength for
L2-norm. The loss function of a sentence pair
L(s(i), t(i), θ) is a convex hinge loss function de-
noted by:

max{0,−f(s(i), t(i)) (7)

+ max
t∈T (s(i))

(
f(s(i), t) + cost(t(i), t)

)
}

According to the second max-operator in the
hinge loss function, the optimization towards BLEU

is expressed by cost-augmented inference. Cost-
augmented inference finds a translation that has a
maximum model score augmented with cost.

t̂ = max
t∈T (s(i))

(
f(s(i), t) + cost(t(i), t)

)
(8)

We applied the Pegasos algorithm for the op-
timization of equation (6) (Shalev-Shwartz et al.,
2007). This is an online algorithm, which alternates
between stochastic gradient descent steps and pro-
jection steps. When the loss function is non-zero, it
updates weights according to the sub-gradient of the
hinge loss function. Using the average scoring func-
tion in the equation (5), the sub-gradient of hinge
loss function for a sentence pair is the difference of
average feature values between a Viterbi translation
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Algorithm 1 UPDATE(s, t, θ,G) ◃ One step in online algorithm. s, t are short for s(i), t(i) here
1: H(s, t)← BIPARSE(s, t, θ) ◃ Build hypergraph of reference translation
2: G←G +H(s, t) ◃ Discover rules fromH(s, t)

3: t̂, d̂← arg max⟨t′,d′⟩∈D(s) f(s, t′,d′) + cost(t, t′) ◃ Find Viterbi translation
4: H(s, t̂)← BIPARSE(s, t̂, θ) ◃ Build hypergraph of Viterbi translation
5: if f(s, t) < f(s, t̂) + cost(t, t̂) then
6: θ ← (1− ηλ)θ + η × ∂L

∂θ (H(s, t),H(s, t̂)) ◃ Update θ by gradient ∂L
∂θ and learning rate η

7: θ ← min {1, 1/
√

λ
∥θ∥ } × θ ◃ Projection by scaling

8: return G, θ

and a reference translation.

∂L

∂θ
=

1

|D(s(i), t(i))|
∑

d∈D(s(i),t(i))

Φ(s(i), t(i),d)

− 1

|D(s(i), t̂)|

∑
d∈D(s(i),t̂)

Φ(s(i), t̂,d) (9)

Algorithm 1 shows the procedure of one step in
the online optimization algorithm. The procedure
discovers rules and updates weights in an online
fashion. In the procedure, we first biparse the sen-
tence pair to construct a synchronous hypergraph of
a reference translation (line 1). In the biparsing al-
gorithm, synchronous rules for constructing hyper-
edges are not required to be in G, but can be any
rules that follow the form defined in Chiang (2007).
Thus, the biparsing algorithm can discover new rules
that are not in G. Then we collect the translation
rules discovered in the hypergraph of the reference
translation (line 2), which are rules indicated by hy-
peredges in the hypergraph. We then calculate the
Viterbi translation according to the scoring function
and cost function (see Section 3.3) (line 3), and build
the synchronous hypergraph for the Viterbi transla-
tion (line 4). Finally, we update weights according to
the Pegasos algorithm (line 5). The sub-gradient is
calculated based on the hypergraph of Viterbi trans-
lation and reference translation.

In practice, in order to process the data in a paral-
lel manner, we use a larger step size of 1000 for the
learning algorithm. In each step of our online opti-
mization algorithm, we first biparse 1000 reference
sentence pairs in parallel. Then, we collect grammar
rules from the generated reference hypergraphs. Af-
ter that, we compute the gradients of 1000 sentence
pairs in parallel, by calculating feature weights over
reference hypergraphs and Viterbi hypergraphs. Fi-

nally, we update the feature weights using the sum
of these gradients.

3.3 Inference

There are two parts that need to be calculated in
the learning algorithm: finding a cost-augmented
Viterbi translation according to the scoring func-
tion and cost function (Equation 8), and constructing
synchronous hypergraphs for the Viterbi and refer-
ence translation so as to discover rules and calculate
average feature values in Equation (9). Following
the traditional decoding procedure, we resort to the
cube-pruning based algorithm for approximation.

To find the Viterbi translation, we run the tra-
ditional translation decoding algorithm (Chiang,
2007) to get the best derivation. Then we use
the translation yielded by the best derivation as the
Viterbi translation. In order to obtain the BLEU

score in the cost function, we need to calculate the
ngram precision. It is calculated in a way similar to
the calculation of the ngram language model. The
computation of BLEU-4 requires to record 3 bound-
ary words in both the left and right side during dy-
namic programming. Therefore, even when we use
a language model whose order is less than 4, we still
expands the states to record 3 boundary words so as
to calculate the cost measured by BLEU.

We build synchronous hypergraphs using the
cube-pruning based biparsing algorithm (Xiao et al.,
2012). Algorithm 2 shows the procedure. Using
a chart, the biparsing algorithm constructs k-best
alignments for every source word (lines 1-5) and k-
best hyperedges for every source span (lines 6-13)
from the bottom up. Thus, a synchronous hyper-
graph is generated during the construction of the
chart. More specifically, for a source span, it first
creates cubes L for all source parses γ that are in-
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Algorithm 2 BIPARSE(s, t, θ) ◃ (Xiao et al., 2012)
� Create k-best alignments for each source word

1: for i← 1, .., |s| do
2: for j ← 1, .., |t| do
3: Lj ← {ε, tj} ◃ si aligns to tj or not
4: L← ⟨L1, ..., L|t|⟩
5: chart[s, i]← KBEST(L,⊗,θ)

� Create k-best hyperedges for each source span
6: H← ∅
7: for h← 1, .., |s| do ◃ h is the size of span
8: for all i, j s.t. j − i = h do
9: L← ∅

10: for γ inferable from chart do
11: L← L + ⟨chart[γ1], ..., chart[γ|γ|]⟩
12: chart[X, i, j]← KBEST(L,⊗,θ)
13: H←H + chart[X, i, j] ◃ save hyperedges
14: returnH

ferable from the chart (lines 9-11). Here γi is a par-
tial source parse that covers either a single source
word or a span of source words. Then it uses the
cube pruning algorithm to keep the top k derivations
among all partial derivations that share the same
source span [i, j] (line 12). Notably, this biparsing
algorithm does not require specific translation rules
as input. Instead, it is able to discover new syn-
chronous grammar rules when constructing a syn-
chronous hypergraph: extracting each hyperedge in
the hypergraph as a synchronous rule.

Based on the biparsing algorithm, we are able to
construct the reference hypergraph H(s(i), t(i)) and
Viterbi hypergraph H(s(i), t̂). By the reference hy-
pergraph, we collect new synchronous translation
rules and record them in the grammar G. We also
calculate the average feature values of hypergraphs
using the inside-outside algorithm (Li et al., 2009),
so as to compute the gradients.

4 Features

One advantage of the discriminative method is that
it enables us to incorporate arbitrary features. As
shown in Section 2, our model incorporates both lo-
cal and non-local features.

4.1 Local Features
Rule features We associate each rule with an indi-
cator feature. Each indicator feature counts the num-
ber of times that a rule appears in a derivation. In

this way, we are able to learn a weight for every rule
according to the entire structure of sentence.

Word association features Lexicalized features
are widely used in traditional SMT systems. Here
we adopt two lexical weights called noisy-or fea-
tures (Zens and Ney, 2004). The noisy-or feature
is estimated by word translation probabilities output
by GIZA++. We set the initial weight of these two
lexical scores with equivalent positive values. The
lexical weights enable our system to score and rank
the hyperedges at the beginning. Although word
alignment features are used, we do not constrain the
derivation space of a sentence pair by prefixed word
alignment, and do not require any heuristic align-
ment combination strategy.

Length feature We integrate the length of target
translation that is used in traditional SMT system as
our feature.

Source span boundary features We use this kind
of feature to assess the source parse tree in a deriva-
tion. Previous work (Xiong et al., 2010) has shown
the importance of phrase boundary features for
translation. Actually, this kind of feature is a good
cue for deciding the boundary where a rule is to be
learnt. Following Taskar et al. (2004), for a bispan
[i, j, k, l] in a derivation, we define the feature tem-
plates that indicates the boundaries of a span by its
beginning and end words: {B : si+1; E : sj ; BE :
si+1, sj}.

Source span orientation features Orientation
features are only used for those spans that are swap-
ping. In Figure 1, the translation of source span [1, 3]
is swapping with that of span [4, 5] by r2, thus ori-
entation feature for span [1, 3] is activated. We also
define three feature templates for a swapping span
similar to the boundary features: {B : si+1; E :
sj ;BE : si+1, sj}. In practice, we add a prefix to
the orientation features so as to distinguish these fea-
tures from the boundary features.

4.2 Non-local Features
Target span boundary features We also want to
assess the target tree structure in a derivation. We
define these features in a way similar to source span
boundary features. For a bispan [i, j, k, l] in a deriva-
tion, we define the feature templates that indicates

260



System Grammar Size MT03 MT04 MT05 Avg.

Moses 302.5M 34.26 36.56 32.69 34.50
Baseline 77.8M 33.83 35.81 33.23 34.29

Max-margin
59.4M

34.62 37.14 34.00 35.25
+Sparse feature 35.48 37.31 34.07 35.62

Table 2: Experiment results. Baseline is an in-house implementation of hierarchical phrase based system. Moses
denotes the implementation of hierarchical phrased-model in Moses (Koehn et al., 2007). +Sparsefeature means
that those sparse features used in the grammar induction are also used during decoding. The improvement of max-
margin over Baseline is statistically significant (p < 0.01).

target span boundary as: {B : tk+1; E : tl; BE :
tk+1, tl}.

Target span orientation features Similar target
orientation features are used for a swapping span
[i, j, k, l] with feature templates {B : tk+1; E :
tl; BE : tk+1, tl}.

Relative position features Following Blunsom
and Cohn (Blunsom and Cohn, 2006), we integrate
features indicating the closeness to the alignment
matrix diagonal. For an aligned word pair with
source position i and target position j, the value of
this feature is | i

|s| −
j
|t| |. As this feature depends

on the length of the target sentence, it is a non-local
feature.

Language model We also incorporate an ngram
language model which is an important component
in SMT. For efficiency, we use a 3-gram language
model trained on the target side of our training data
during the induction of synchronous grammars.

5 Experiment

In this section, we present our experiments on the
NIST Chinese-to-English translation tasks. We first
compare our max-margin based method with the tra-
ditional pipeline on a large bitext which contains
1.1 million sentences. We then present a detailed
comparison on a smaller dataset, in order to analyze
the effectiveness of max-margin estimation compar-
ing with the max likelihood estimation (Xiao et al.,
2012), and also the effectiveness of the non-local
features that are defined on the target side.

5.1 Setup
The baseline system is the hierarchical phrase based
system (Chiang, 2007). We used a bilingual corpus

that contains 1.1M sentences (44.6 million words)
of up to length 40 from the LDC data.3 Our 5-gram
language model was trained by SRILM toolkit (Stol-
cke, 2002). The monolingual training data includes
the Xinhua section of the English Gigaword corpus
and the English side of the entire LDC data (432 mil-
lion words).

We used the NIST 2002 (MT02) as our develop-
ment set, and the NIST 2003-2005 (MT03-05) as the
test set. Case-insensitive NIST BLEU-4 (Papineni
et al., 2002) is used to measure translation perfor-
mance, and also the cost function in the max-margin
estimation. Statistical significance in BLEU differ-
ences was tested by paired bootstrap re-sampling
(Koehn, 2004). We used minimum error rate train-
ing (MERT) (Och, 2003) to optimize feature weights
for the traditional log-linear model.

We used the same decoder as the baseline system
in all estimation methods. Without special explana-
tion, we used the same features as those in the tra-
ditional pipeline: forward and backward translation
probabilities, forward and backward lexical weights,
count of extracted rules, count of glue rules, length
of translation, and language model. For the lexical
weights we used the noisy-or in all configurations
including the baseline system. For the discrimina-
tive grammar induction, rule translation probabili-
ties were calculated using the expectations of rules
in the synchronous hypergraphs of sentence pairs.

As our max-margin synchronous grammar induc-
tion is trained on the entire bitext, it is necessary to
load all the rules into the memory during training.
To control the size of rule table, we used Viterbi-

3Including LDC2002E18, LDC2003E07, LDC2003E14,
LDC2004T07, LDC2005T06 and Hansards portion of
LDC2004T08.
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System Feature Function MT03 MT04 MT05 Avg.

Baseline — 31.76 33.08 31.06 31.96

Max-likelihood local 32.84 34.54 31.61 33.00

Max-margin
local 32.97 34.92 31.99 33.29

local,non-local 33.27 34.83 32.32 33.47

Table 3: Comparison of Max-margin and Max-likelihood estimation on a smaller corpus. For max-margin method, we
present two results according to the usages of non-local features. The max-margin with non-local features significantly
outperforms the Baseline (p < 0.01) and also the max-likelihood estimation (p < 0.05).

pruning (Huang, 2008) when collecting rules as
shown in line 2 of optimization procedure in Section
3.2. Furthermore, we aggressively discarded those
large rules (The number of source symbols or the
number of target symbols are more than two) that
occur only in one sentence. Whenever the learning
algorithm processes 50K sentences, we performed
this discarding operation for large rules.

5.2 Result on Large Dataset
Table 2 shows the translation results. Our method
induces 59.4 million synchronous rules, which are
76.3% of the grammar size of baseline. Note that
Moses allows the boundary words of a phrase to be
unaligned, while our baseline constraints the initial
phrase to be tightly consistent with word alignment.
Therefore, Moses extract a much larger rule table
than that of our baseline.

With fewer translation rules, our method obtains
an average improvement of +0.96 BLEU points on
the three test sets over the Baseline. As the differ-
ence between the baseline and our max-margin syn-
chronous grammar induction model only lies in the
grammar, this result clearly denotes that our learnt
grammar does outperform the grammar extracted by
the traditional two-step pipeline.

We also incorporate the sparse features during de-
coding in a way similar to Xiao et al. (2012) and
Dyer et al. (2011). In order to optimize these sparse
features with the dense features by MERT, we group
features of the same type into one coarse “summary
feature”, and get three such features including: rule,
phrase-boundary and phrase orientation features. In
this way, we rescale the weights of the three “sum-
mary features” with the 8 dense features by MERT.
We achieve a further improvement of +0.37 BLEU

points. Therefore, our training algorithm is able to

learn the useful information encoded by the sparse
features for translation.

5.3 Comparison of Estimation Objective and
Non-Local Feature

We want to investigate whether the max-margin esti-
mation is able to outperform the max-likelihood es-
timation method (Xiao et al., 2012). Therefore we
carried out experiments to compare them directly.
As the max-margin method is able to use non-local
features, we compare two settings of features for the
max-margin method. One uses only local features,
the other uses both local and non-local features. Be-
cause the training procedure need to run on the entire
corpus, which is time consuming, we therefore use
a smaller corpus containing 50K sentences from the
entire bitext for comparison.

Table 3 shows the results. When using only local
features, the max-margin method consistently out-
performs the max-likelihood method in all three test
sets. This clearly shows the advantage of learning
grammars by optimizing BLEU over likelihood.

When incorporating the non-local features into
the max-margin method, we achieve further im-
provement against the max-margin method with-
out non-local features. With non-local features,
our max-margin estimation method outperforms the
baseline by 1.5 BLEU points, and is better than
the max-likelihood estimation by 0.5 BLEU points.
Based on these results, we believe that non-local fea-
tures, which encode information from target parse
structures, are helpful for grammar induction. This
further confirms the advance of the max-margin es-
timation, as it provides us a convenient way to use
non-local features.
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6 Related Work

As the synchronous grammar is the key compo-
nent in SMT systems, researchers have proposed
various methods to improve the quality of gram-
mars. In addition to the generative and discrimina-
tive models introduced in Section 1, researchers also
have made efforts on word alignment and grammar
weight rescoring.

The first line is to modify word alignment by ex-
ploring information of syntactic structures (May and
Knight, 2007; DeNero and Klein, 2010; Pauls et
al., 2010; Burkett et al., 2010; Riesa et al., 2011).
Such syntactic information is combined with word
alignment via a discriminative framework. These
methods prefer word alignments that are consistent
with syntactic structure alignments. However, la-
beled word alignment data are required in order to
learn the discriminative model.

Yet another line is to rescore the weights of trans-
lation rules. This line of work tries to improve the
relative frequency estimation used in the traditional
pipeline. They rescore the weights or probabilities
of extracted rules. The rescoring is done by using
the similar latent log-linear model as ours (Blun-
som et al., 2008; Kääriäinen, 2009; He and Deng,
2012), or incorporating various features using la-
beled word aligned bilingual data (Huang and Xi-
ang, 2010). However, in rescoring, translation rules
are still extracted by the heuristic two-step pipeline.
Therefore these previous work still suffers from the
inelegance problem of the traditional pipeline.

Our work also relates to the discriminative train-
ing (Och, 2003; Watanabe et al., 2007; Chiang et al.,
2009; Xiao et al., 2011; Gimpel and Smith, 2012)
that has been widely used in SMT systems. Notably,
these discriminative training methods are not used to
learn grammar. Instead, they assume that grammar
are extracted by the traditional two-step pipeline.

7 Conclusion

In this paper we have presented a max-margin esti-
mation for discriminative synchronous grammar in-
duction. By associating the margin with the transla-
tion quality, we directly learn translation rules that
optimize the translation performance measured by
BLEU. Max-margin estimation also provides us a
convenient way to incorporate non-local features.

Experiment results validate the effectiveness of opti-
mizing parameters by BLEU, and the importance of
incorporating non-local features defined on the tar-
get language. These results confirm the advantage of
our max-margin estimation framework as it can both
optimize BLEU and incorporate non-local features.

Feature engineering is very important for discrim-
inative models. Researchers have proposed various
types of features for machine translation, which are
often estimated from word alignments. We would
like to investigate whether further improvement can
be achieved by incorporating such features, espe-
cially the context model (Shen et al., 2009) in the
future. Because our proposed model is quite general,
we are also interested in applying this method to
induce linguistically motivated synchronous gram-
mars for syntax-based SMT.
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Abstract
Coreference resolution metrics quantify errors
but do not analyze them. Here, we consider
an automated method of categorizing errors in
the output of a coreference system into intu-
itive underlying error types. Using this tool,
we first compare the error distributions across
a large set of systems, then analyze common
errors across the top ten systems, empirically
characterizing the major unsolved challenges
of the coreference resolution task.

1 Introduction

Metrics produce measurements that concisely sum-
marize performance on the full range of error types,
and for coreference resolution there has been ex-
tensive work on developing effective metrics (Luo,
2005; Recasens and Hovy, 2011). However, it is also
valuable to tease apart the errors to understand their
relative importance.

Previous investigations of coreference errors have
focused on quantifying the importance of subtasks
such as named entity recognition and anaphoricity
detection, typically by measuring accuracy improve-
ments when partial gold annotations are provided
(Stoyanov et al., 2009; Pradhan et al., 2011; Prad-
han et al., 2012). For coreference resolution the
drawback of this approach is that decisions are often
interdependent, and so even partial gold information
is extremely informative. Also, previous work only
considered errors by counting links, which does not
capture certain errors in a natural way, e.g. when
a system incorrectly divides a large entity into two
parts, each with multiple mentions. Recent work has
considered some of these issues, but only with small
scale manual analysis (Holen, 2013).

We present a new tool that automatically classifies
errors in the standard output of any coreference res-
olution system. Our approach is to identify changes
that convert the system output into the gold annota-
tions, and map the steps in the conversion onto lin-
guistically intuitive error types. Since our tool uses
only system output, we are able to classify errors
made by systems of any architecture, including both
systems that use link-based inference and systems
that use global inference methods.

Using our tool we perform two studies to un-
derstand similarities and differences between sys-
tems. First, we compare the error distributions on
coreference resolution of all of the systems from the
CoNLL 2011 shared task plus several publicly avail-
able systems. This comparison adds to the analy-
sis from the shared task by illustrating the substan-
tial variation in the types of errors different systems
make. Second, we investigate the aggregate behav-
ior of ten state-of-the-art systems, providing a de-
tailed characterization of each error type. This in-
vestigation identifies key outstanding challenges and
presents the impact that solving each of them would
have in terms of changes in the standard coreference
resolution metrics.

We find that the best systems are not best across
all error types, that a large proportion of span errors
are due to superficial parse differences, and that the
biggest performance loss is on missed entities that
contain a small number of mentions.

This work presents a comprehensive investiga-
tion of common errors in coreference resolution,
identifying particular issues worth focusing on in
future research. Our analysis tool is available at
code.google.com/p/berkeley-coreference-analyser/.
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2 Background

Most coreference work focuses on accuracy im-
provements, as measured by metrics such as MUC
(Vilain et al., 1995), B3 (Bagga and Baldwin, 1998),
CEAF (Luo, 2005), and BLANC (Recasens and
Hovy, 2011). The only common forms of further
analysis are results for anaphoricity detection and
scores for each mention type (nominal, pronoun,
proper). Two exceptions are: the detailed analysis of
the Reconcile system by Stoyanov et al. (2009), and
the multi-system comparisons in the CoNLL shared
task reports (Pradhan et al., 2011, 2012).

A common approach to performance analysis is to
calculate scores for nominals, pronouns and proper
names separately, but this is a very coarse division
(Ng and Cardie, 2002; Haghighi and Klein, 2009).
More fine consideration of some subtasks does oc-
cur, for example, anaphoricity detection, which has
been recognized as a key challenge in coreference
resolution for decades and regularly has separate re-
sults reported (Paice and Husk, 1987; Sobha et al.,
2011; Yuan et al., 2012; Björkelund and Farkas,
2012; Zhekova et al., 2012). Some work has also
included anecdotal discussion of specific error types
or manual classification of a small set of errors, but
these approaches do not effectively quantify the rel-
ative impact of different errors (Chen and Ng, 2012;
Martschat et al., 2012; Haghighi and Klein, 2009).
In a recent paper, Holen (2013) presented a detailed
manual analysis that considered a more comprehen-
sive set of error types, but their focus was on explor-
ing the shortcomings of current metrics, rather than
understanding the behavior of current systems.

The detailed investigation presented by Stoyanov
et al. (2009) is the closest to the work we present
here. First, they measured accuracy improvements
when their system was given gold annotations for
three subtasks of coreference resolution: mention
detection, named entity recognition, and anaphoric-
ity detection. To isolate other types of errors they de-
fined resolution classes, based on both the type of a
mention, and properties of possible antecedents (for
example, nominals that have a possible antecedent
that is an exact string match). For each resolution
class they measured performance while giving the
system gold annotations for all other classes. While
this approach is effective at characterizing variations

President Clinton1 is questioning the legitimacy
of George W. Bush’s election victory. Speaking
last night to Democratic supporters in Chicago,
he said Bush won the election only because Re-
publicans stopped the vote-counting in Florida,
and Mr. Clinton1 praised Al Gore’s campaign
manager, Bill Daley, for the way he handled the
election. “I2 want to thank Bill Daley for his ex-
emplary service as Secretary of Commerce. He
was brilliant. I2 think he did a brilliant job in
leading Vice President Gore to victory myself2.”

Figure 1: Two coreference errors. Mentions are under-
lined and subscripts indicate entities. One error is a men-
tion missing from the system output, he. The other is the
division of references to Bill Clinton into two entities.

between the nine classes they defined, it misses the
cascade effect of errors that only occur when all
mentions are being resolved at once.

The only multi-system comparisons are the
CoNLL task reports (Pradhan et al., 2011, 2012),
which explored the impact of mention detection and
anaphoricity detection through subtasks with differ-
ent types of gold annotation. With a large set of sys-
tems, and well controlled experimental conditions,
the tasks provided a great snapshot of progress in the
field, which we aim to supplement by characterizing
the major outstanding sources of error.

This work adds to previous investigations by pro-
viding a comprehensive and detailed analysis of er-
rors. Our tool can automatically analyze any sys-
tem’s output, giving a reliable estimate of the rela-
tive importance of different error types.

3 Error Classification

When inspecting the output of coreference resolu-
tion systems, several types of errors become imme-
diately apparent: entities that have been divided into
pieces, spurious entities, non-referential pronouns
that have been assigned antecedents, and so on. Our
goal in this work is to automatically assign intuitive
labels like these to errors in system output.

A simple approach, refining results by measur-
ing the accuracy of subsets of the mentions, can be
misleading. For example, in Figure 1, we can in-
tuitively see two pronoun related mistakes: a miss-
ing mention (he), and a divided entity where the two
pieces are the blue pronouns (I2, I2, myself2) and the
red proper names (President Clinton1, Mr. Clinton1).
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Simply counting the number of incorrect pronoun
links would miss the distinction between the two
types of mistakes present.

One question in designing an error analysis tool
like ours is whether to operate on just system output,
or to also consider intermediate system decisions.
We focused on using system output because other
methods cannot uniformly apply to the full range of
coreference resolution decoding methods, from link
based methods to global inference methods.

Our overall approach is to transform the sys-
tem output into the gold annotations, then map
the changes made in the conversion process to er-
rors. The transformation process is presented in Sec-
tion 3.1 and Figure 2, and the mapping process is
described in Section 3.2 and Figure 3.

3.1 Transformations

The first part of our error classification process de-
termines the changes needed to transform the system
output into the gold annotations. This five stage pro-
cess is described below, and an abstract example is
presented in Figure 2.

1. Alter Span transforms an incorrect system
mention into a gold mention that has the same
head token. In Figure 2 this stage is demon-
strated by a mention in the leftmost entity,
which has its span altered, indicated by the
change from an X to a light blue circle.

2. Split breaks the system entities into pieces,
each containing mentions from a single gold
entity. In Figure 2 there are three changes in
this stage: the leftmost entity is split into a red
piece and a light blue piece, the middle entity
is split into a dark red piece and an X, and the
rightmost entity is split into singletons.

3. Remove deletes every mention that is not
present in the gold annotations. In Figure 2 this
means the four singleton X’s are removed.

4. Introduce creates a singleton entity for each
mention that is missing from the system output.
In Figure 2 this stage involves the introduction
of a light blue mention and two white mentions.

5. Merge combines entities to form the final,
completely correct, set of entities. In Figure 2
the two red entities are merged, the singleton

Mentions

Spurious mention

Entity

1. Alter Span

2. Split

3. Remove

4. Introduce

5. Merge

X
X X

XX

X X
XX

X X

X
X

Gold entities indicated using common shading

XKey

System
Output

Gold
Entities

Figure 2: Abstract example of the transformation process
that converts system output (at the top) to gold annota-
tions (at the bottom).

blue entity is merged with the rest of the blue
entity, and the two white mentions are merged.
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Operation(s) Error System Gold
i) Alter Span Span error Gorbachev Soviet leader Gorbachev

ii) Multiple Introduces Missing Entity - the pills
and Merges - the tranquilizing pills

iii) Multiple Splits Extra Entity human rights -
and Removes Human Rights -

Introduce
and Merge

the Arab region the Arab region
iv) Missing Mention the region the region

- it

Split and
Remove

her story her story
v) Extra Mention this this

it -

vi) Merge Divided Entity

Iraq1 Iraq1

this nation2 this nation1

the nation2 the nation1

its1 its1

vii) Split Conflated Entities

Mohammed Rashid1 Mohammed Rashid1

the Rashid case1 the Rashid case2

Rashid1 Rashid1

the case1 the case2

Figure 3: Examples of the error types. In examples (i) - (iv) and (vi) the system output contains a single entity. When
multiple entities are involved, they are marked with subscripts. Mentions are in the order in which they appear in the
text. All examples are from system output on the dev set of the CoNLL task.

One subtle point in the split stage is how to record
an entity being split into several pieces. This could
either be a single operation, one entity being split
into N pieces, or N −1 operations, each involving a
single piece being split off from the rest of the entity.
We use the second approach, as it fits more naturally
with the error mapping we describe in the follow-
ing section. Similarly, for the merge operation, we
record N entities being merged as N−1 operations.

3.2 Mapping

The operations in Section 3.1 are mapped onto seven
error types. In some cases, a single change maps
onto a single error, while in others a single error rep-
resents several closely related operations from adja-
cent stages in the error correction process. The map-
ping is described below and in Figure 3.

1. Span Error. Each Alter Span operation is
mapped to a Span Error, e.g. in Figure 3(i), the
system mention Gorbachev is replaced by the
annotated mention Soviet leader Gorbachev.

2. Missing Entity. A set of Introduce and Merge
operations that forms an entirely new entity,
e.g. the white entity in Figure 2, and the pills
in Figure 3(ii). This error is still assigned if

the new entity includes pronouns that were al-
ready present in the system output. The rea-
soning for this is that most pronouns in the cor-
pus are coreferent, so including just the pro-
nouns from an entity is not meaningfully dif-
ferent from missing the entity entirely.

3. Extra Entity. A set of Split and Remove oper-
ations that completely remove an entity, e.g. the
rightmost entity in Figure 2, and Figure 3(iii).
As for the Missing Entity error type, this error
is still assigned if the original entity contained
pronouns that were valid.

4. Missing Mention. An Introduce and a Merge
that apply to the same mention, e.g. it in Fig-
ure 3(iv), and the blue mention in Figure 2.

5. Extra Mention. A Split and a Remove that ap-
ply to the same mention, e.g. it in Figure 3(v),
and the X in the red entity in Figure 2.

6. Divided Entity. Each remaining Merge oper-
ation is mapped to a Divided Entity error, e.g.
Figure 3(vi), and the red entity in Figure 2.

7. Conflated Entities. Each remaining Split op-
eration is mapped to a Conflated Entity error,
e.g. Figure 3(vii), and the blue and red entities
in Figure 2.
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4 Methodology

Our tool processes the CoNLL task output, with no
other information required. During development,
and when choosing examples for this paper, we
used the development set of the CoNLL shared task
(Hovy et al., 2006; Pradhan et al., 2007; Pradhan et
al., 2011). The results we present in the rest of the
paper are all for the test set. Using the development
set would have been misleading, as the entrants in
the shared task used it to tune their systems.

4.1 Systems

We analyzed all of the 2011 CoNLL task systems, as
well as several publicly available systems. For the
shared task systems we used the output data from
the task itself, provided by the organizers. For the
publicly available systems we used the default con-
figurations. Finally, we included another run of the
Stanford system, with their OntoNotes-tuned param-
eters (STANFORD-T).

The publicly available systems we used are:
BERKELEY (Durrett and Klein, 2013), IMS
(Björkelund and Farkas, 2012), STANFORD (Lee
et al., 2013), RECONCILE (Stoyanov et al., 2010),
BART (Versley et al., 2008), UIUC (Bengtson and
Roth, 2008), and CHERRYPICKER (Rahman and
Ng, 2009). The systems from the shared task are
listed in Table 1 and in the references.

5 Broad System Comparison

Table 1 presents the frequency of errors for each sys-
tem and F-Scores for standard metrics1 on the test
set of the 2011 CoNLL shared task. Each bar is
filled in proportion to the number of errors the sys-
tem made, with a full bar corresponding to the num-
ber of errors listed in the bottom row.

The metrics provide an effective overall rank-
ing, as the systems with high scores generally make
fewer errors. However, the metrics do not convey
the significant variation in the types of errors sys-
tems make. For example, YANG and CHARTON are
assigned almost the same scores, but YANG makes
more than twice as many Extra Mention errors.

1CEAF and BLANC are not included as the most recent ver-
sion of the CoNLL scorer (v5) is incorrect, and there are no
standard implementations available.

The most frequent error across all systems is Di-
vided Entity. Unlike parsing errors (Kummerfeld et
al., 2012), improvements are not monotonic, with
better systems often making more errors of one type
when decreasing the frequency of another type.

One outlier is the Irwin et al. (2011) system,
which makes very few mistakes in five categories,
but many in the last two. This reflects a high pre-
cision, low recall approach, where clusters are only
formed when there is high confidence.

The third section of Table 1 shows results for sys-
tems that were run with gold noun phrase span in-
formation. This reduces all errors slightly, though
most noticeably Extra Mention, Missing Mention,
and Span Error. On inspection of the remaining
Span Errors we found that many are due to incon-
sistencies regarding the inclusion of the possessive.

The final section of the table shows results for sys-
tems that were provided with the set of mentions that
are coreferent. In this setting, three of the error types
are not present, but there are still Missing Mentions
and Missing Entities because systems do not always
choose an antecedent, leaving a mention as a single-
ton, which is then ignored.

While this broad comparison gives a complete
view of the range of errors present, it is still a coarse
representation. In the next section, we characterize
the common errors on a finer level by breaking down
each error type by a range of properties.

6 Common Errors

To investigate the aggregate state of the art, in this
section we consider results averaged over the top
ten systems: CAI, CHANG, IMS, NUGUES, SAN-
TOS, SAPENA, SONG, STANFORD-T, STOYANOV,
URYUPINA-OPEN.2 These systems represent a broad
range of approaches, all of which are effective.

In each section below, we focus on one or two
error types, characterizing the mistakes by a range
of properties. We then consider a few questions that
apply across multiple error types.

6.1 Span Errors
To characterize the Span Errors, we considered the
text that is in the gold mention, but not the system

2For systems that occur multiple times in Table 1, we only
use the best instance. The BERKELEY system was not included
as it had not been published at submission time.

269



Metric F-Scores Span Conflated Extra Extra Divided Missing Missing
System Mention MUC B3 Error Entities Mention Entity Entity Mention Entity

PUBLICLY AVAILABLE SYSTEMS

BERKELEY 75.57 66.43 66.17
IMS 72.96 64.71 64.73
STANFORD-T 71.21 61.40 63.06
STANFORD 58.56 48.37 56.42
RECONCILE 46.45 49.40 54.90
BART 56.61 46.00 52.56
UIUC 50.60 45.21 52.88
CHERRYPICKER 41.10 40.71 51.39

CONLL, PREDICTED MENTIONS

LEE-OPEN 70.94 61.03 62.96
LEE 70.70 59.56 61.88
SAPENA 43.20 59.54 61.28
SONG 67.26 59.95 60.08
CHANG 64.86 57.13 61.75
CAI-OPEN 67.45 57.86 60.89
NUGUES 68.96 58.61 59.75
URYUPINA-OPEN 68.39 57.63 58.74
SANTOS 65.45 56.65 59.48
STOYANOV 67.78 58.43 57.35
HAO 64.30 54.46 55.82
YANG 63.93 52.31 55.85
CHARTON 64.36 52.49 55.61
KLENNER-OPEN 62.28 49.86 55.62
SOBHA 64.83 50.48 54.85
ZHOU 62.31 48.96 53.42
KOBDANI 61.03 48.62 53.00
ZHANG 61.13 47.88 52.76
XINXIN 61.92 46.62 51.50
KUMMERFELD 62.72 42.70 50.05
IRWIN-OPEN 35.27 27.21 44.29
ZHEKOVA 48.29 24.08 41.42
IRWIN 26.67 19.98 42.73

CONLL, GOLD NP SPANS

LEE-OPEN 75.39 65.39 65.88
LEE 75.16 63.90 64.70
NUGUES 72.42 62.12 61.67
CHANG 67.91 59.77 62.97
SANTOS 67.80 59.52 61.35
STOYANOV 70.29 61.53 59.07
SONG 66.68 55.48 58.04
KOBDANI 66.08 53.94 55.82
ZHANG 64.89 51.64 54.77
ZHEKOVA 62.67 35.22 45.80

CONLL, GOLD MENTIONS

LEE-OPEN 90.93 81.56 75.95
CHANG 99.97 82.52 73.68
Most Errors 2410 3849 2744 5290 4789 2026 3237

Table 1: Counts for each error type on the test set of the 2011 CoNLL task. Bars indicate the number of errors, with
white as zero and fully filled as the number in the Most Errors row. -OPEN indicates a system using external resources.
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Type Missing Extra
NP 65.8 45.0
POS 12.4 96.9
, 71.2 22.4
SBAR 55.9 1.9
PP 46.2 10.3
DT 17.0 35.9
Total 271.1 224.6

Table 2: Counts of Span Errors grouped by the label over
the extra/missing part of the mention.

mention (missing text), and vice versa (extra text).
We then found nodes in the gold parse that cov-
ered just this extra/missing text, e.g. in Figure 3(i)
we would consider the node over Soviet leader. In
Table 2 we show the most frequent parse nodes.

Some of these differences are superficial, such as
the possessive and the punctuation. Others, such as
the missing PP and SBAR cases, may be due to parse
errors. Of the system mentions involved in span er-
rors, 27.0% do not correspond to a node in the gold
parse. The frequency of punctuation errors could
also be parse related, because punctuation is not con-
sidered in the standard parser evaluation.

Overall it seems that span errors can best be dealt
with by improving parsing, though it is not possi-
ble to completely eliminate these errors because of
inconsistent annotations.

6.2 Extra Mention and Missing Mention

We consider Extra and Missing Mentions together
as they mirror each other, forming a precision-recall
tradeoff, where a high precision system will have
fewer Extra Mentions and more Missing Mentions,
and a high recall system will have the opposite.

Table 3 divides these errors by the type of men-
tion involved and presents some of the most fre-
quent Extra Mentions and Missing Mentions. For
the corpus statistics we count as mentions all NP
spans in the gold parse plus any word tagged with
PRP, WP, WDT, or WRB (following the definition
of gold mention boundaries for the CoNLL tasks).

The mentions it and you are the most common
errors, matching observations from several of the
papers cited in Section 2. However, there is a sur-
prising imbalance between Extra and Missing cases,
e.g. it accounts for a third of the extra errors, but
only 12% of the Missing errors. This imbalance may

Av. Errors Corpus Stats
Mention Extra Missing Count % Coref.
Proper Name 281.6 297.7 6915 59.0
Nominal 484.2 516.5 33328 15.9
Pronoun 390.7 323.3 9926 69.7
it 130.4 38.9 1211 57.1
you 85.2 55.9 1028 44.9
we 39.6 19.6 691 64.7
us 23.2 3.2 242 23.6
that 13.8 13.4 2010 11.5
they 9.6 39.5 738 94.3
their 8.6 21.5 410 95.1
Total 1156.5 1137.5 50169 32.5

Table 3: Counts of Missing and Extra Mention errors by
mention type, and the most common mentions.

Proper Name Nominal
Extra Missing Extra Missing

Text match 145.2 163.6 171.2 96.1
Head match 56.8 70.7 149.6 166.0
Other 79.6 63.4 163.4 254.4
NER Matches 143.4 174.4 23.0 32.0
NER Differs 6.6 6.1 2.4 0.0
NER Unknown 131.6 117.2 458.8 484.5
Total 281.6 297.7 484.2 516.5

Table 4: Counts of Extra and Missing Mentions, grouped
by properties of the mention and the entity it is in.

be the result of systems being tuned to the metrics,
which seem to penalize Missing Mentions more than
Extra Mentions (shown in Section 6.7).

In Table 4 we consider the Extra Mention er-
rors and Missing Mention errors involving proper
names and nominals. The top section counts errors
in which the mention involved in the error has an
exact string match with a mention in the cluster, or
whether it has just a head match. The second sec-
tion of the table considers the named entity anno-
tations in OntoNotes, counting how often the men-
tion’s type matches the type of the cluster.

In all cases shown in the table it appears that sys-
tems are striking a balance between these two types
of errors. One exception may be the use of exact
string matching for nominals, which seems to be bi-
ased towards Extra Mentions.

For these two error types, our observations agree
with previous work: the most common specific error
is the identification of pleonastic pronouns, named
entity types are of limited use, and head matching is
already being used about as effectively as it can be.
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Composition Av. Errors
Name Nom Pro Extra Missing
0 1 1 70.7 271.6
1 0 1 13.2 28.1
1 1 0 26.6 86.2
2 0 0 61.3 89.3
0 2 0 512.0 347.9
0 0 2 110.9 13.6
3+ 0 0 14.7 14.4
0 3+ 0 154.8 65.9
0 0 3+ 91.0 18.1
Other 51.8 216.4
Total 1107.0 1151.5

Table 5: Counts of Extra and Missing Entity errors,
grouped by the composition of the entity (Names, Nomi-
nals, Pronouns).

Match Type Extra Missing
Proper Name 51.4 42.2

Exact Nominal 338.3 49.5
Pronoun 141.9 10.3

Head Proper Name 14.4 27.3
Nominal 234.7 129.0
Proper Name 10.2 34.2

None Nominal 92.8 235.3
Pronoun 60.0 21.4

Table 6: Counts of Extra and Missing Entity errors
grouped by properties of the mentions in the entity.

6.3 Extra Entities and Missing Entities

In this section, we consider the errors that involve an
entire entity that was either missing from the system
output or does not exist in the annotations.

Table 5 counts these errors based on the compo-
sition of the entity. There are several noticeable dif-
ferences between the two error types, e.g. for entities
containing one nominal and one pronoun (row 0 1 1)
there are far more Missing errors than Extra errors,
while entities containing two pronouns (row 0 0 2)
have the opposite trend.

It is clear that entities consisting of a single type
of mention are the primary source of these errors,
accounting for 85.3% of the Extra Entity errors,
and 47.7% of Missing Entity errors. Table 6 shows
counts for these cases divided into three groups:
when all mentions are identical, when all mentions
have the same head, and the rest.

Nominals are the most frequent type in Table 6,
and have the greatest variation across the three sec-

Mention Extra Missing
that 6.9 99.7
it 47.7 47.8
this 0.9 36.2
they 3.8 29.1
their 2.1 23.5
them 0.9 13.8
Any pronoun 83.9 299.7

Table 7: Counts of common Missing and Extra Entity
errors where the entity has just two mentions: a pronoun
and either a nominal or a proper name.

tions of the table. For the Extra column, Exact match
cases are a major challenge, accounting for over half
of the nominal errors. These errors include cases
like the example below, where two mentions are not
considered coreferent because they are generic:

everybody tends to mistake the part for the whole.
Here, mistaking the part for the whole is ...

For missing entities we see the opposite trend,
with Exact match cases accounting for less than 12%
of nominal errors. Instead, cases with no match are
the greatest challenge, such as this example, which
requires semantic knowledge to correctly resolve:

The charges related to her sale of ImClone stock.
She sold the share a day before ...

The other common case in Table 5 is an entity
containing a pronoun and a nominal. In Table 7 we
present the most frequent pronouns for this case and
the similar case involving a pronoun and a name.

One way of interpreting these errors is from
the perspective of the pronoun, which is either
incorrectly coreferent (Extra), or incorrectly non-
coreferent (Missing). From this perspective, these
errors are similar in nature to those described by Ta-
ble 3. However, the distribution of errors is quite dif-
ferent, with it being balanced here where previously
it skewed heavily towards extra mentions, while that
was balanced in Table 3 but is skewed towards being
part of Missing Entities here.

Extra Entity errors and Missing Entity errors are
particularly challenging because they are dominated
by entities that are either just nominals, or a nominal
and a pronoun, and for these cases the string match-
ing features are often misleading. This implies that
reducing Extra Entity and Missing Entity errors will
require the use of discourse, context, and semantics.
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Incorrect Part Rest of Entity Av. Errors
Na No Pr Na No Pr Conflated Divided
- - 1+ - - 1+ 312.7 69.9
- - 1+ - 1+ 1+ 238.5 179.8
- - 1+ - 1+ - 189.6 549.3
- 1+ - - 1+ - 181.5 156.5
- - 1+ 1+ 1+ 1+ 143.6 181.5
- - 1+ 1+ - 1+ 109.7 150.5
- - 1+ 1+ - - 60.0 136.5

Other 454.8 657.7
Total 1690.4 2081.7

Table 8: Counts of Conflated and Divided entities errors
grouped by the Name / Nominal / Pronoun composition
of the parts involved.

6.4 Conflated Entities and Divided Entities

Table 8 breaks down the Conflated Entities errors
and Divided Entity errors by the composition of the
part being split/merged and the rest of the entity in-
volved. Each 1+ indicates that at least one mention
of that type is present (Name / Nominal / Pronoun).

Clearly pronouns being placed incorrectly is the
biggest issue here, with almost all of the common
errors involving a part with just pronouns. It is also
clear that not having proper names in the rest of
the entity presents a challenge. One particularly no-
ticeable issue involves entities composed entirely of
pronouns, which are often created by systems con-
flating the pronouns of two entities together.

Table 8 aggregates errors by the presence of dif-
ferent types of mentions. Aggregating instead by the
exact composition of the incorrect part being con-
flated or divided we found that instances with a part
containing a single pronoun account for 38.9% of
conflated cases and 35.8% of divided cases.

Finally, it is worth noting that in many cases a part
is both conflated with the wrong entity, and divided
from its true entity. Only 12.6% of Conflated Entity
errors led to a complete gold entity with no other er-
rors, and only 21.3% of Divided Entity errors came
from parts that were not involved in another error.

Conflated Entities and Divided Entities are domi-
nated by pronoun link errors: cases where a pronoun
was placed in the wrong entity. Finding finer charac-
terizations of these errors is difficult, as almost any
division produces sparse counts, reflecting the long
tail of mistakes that make up these two error types.

Gold System Decision Count

Cataphoric

Same referent 10.6
Different referent 13.4
Not cataphoric 208.2
Not present 42.8

Not cataphoric Cataphoric 46.2
Not present Cataphoric 186.8

Table 9: Occurrence of mistakes involving cataphora.

6.5 Cataphora

Cataphora (when an anaphor precedes its an-
tecedent) is a pronoun-specific problem that does
not fit easily in the common left-to-right coreference
resolution approach. In the CoNLL test set, 2.8% of
the pronouns are cataphoric. In Table 9 we show
how well systems handle this challenge by counting
mentions based on whether they are cataphoric in
the annotations, are cataphoric in the system output,
and whether the antecedents match.

Systems handle cataphora poorly, missing almost
all of the true instances, and introducing a large
number of extra cases. However, this issue is a fairly
small part of the task, with limited metric impact.

6.6 Entity Properties

Gender, number, person, and named entity type are
properties commonly used in coreference resolution
systems. In some cases, two mentions with differ-
ent properties are placed in the same entity. Some
of these cases are correct, such as variation in per-
son between mentions inside and outside of quotes.
However, many of these cases are errors. In Table 11
we present the percentage of entities that contain
mentions with properties of more than one type. For
named entity types we considered the annotations in
OntoNotes; for the other properties we derive them
from the pronouns in each cluster.

For all of the properties, there are many entities
that we could not assign a value to, either because
no named entity information was available, or be-
cause no pronouns with an unambiguous value for
the property were present. For named entity infor-
mation, OntoNotes only has annotations for 68% of
gold entities, suggesting that named entity taggers
are of limited usefulness, matching observations on
the MUC and ACE corpora (Stoyanov et al., 2009).

The results in the ‘Gold’ column of Table 11 in-
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Mentions MUC B3

Error type P R F P R F P R F
Span Error 2.8 2.8 2.7 2.8 2.8 2.8 1.0 2.0 1.6
Conflated Entities 1.7 0.0 0.8 9.9 0.0 4.5 15.9 0.0 6.2
Extra Mention 5.5 0.0 2.6 6.4 0.0 3.0 5.3 0.0 2.2
Extra Entity 15.3 0.0 7.0 11.4 0.0 5.2 6.1 0.0 2.4
Divided Entity 1.8 6.8 4.3 5.7 16.8 10.9 -10.0 21.6 4.5
Missing Mention 1.8 7.0 4.4 3.2 9.2 6.1 -1.3 7.3 3.4
Missing Entity 3.8 16.2 9.8 5.3 13.7 9.3 1.7 11.4 7.0

Table 10: Average accuracy improvement if all errors of a particular type are corrected. Each row in the lower section
is calculated independently, relative to the change after the span errors have been corrected. Some values are negative
because the merge operations involved in fixing the errors are applying to clusters that contain mentions from more
than one gold entity.

Property System Gold
Named Entity 1.7% 0.7%
Gender 0.8% 0.1%
Number 2.1% 0.8%
Person 6.4% 5.1%

Table 11: Percentage of entities that contain mentions
with properties that disagree.

dicate possible errors in the annotations, e.g. in the
0.7% of entities with a mixture of named entity types
there may be mistakes in the coreference annota-
tions, or mistakes in the named entity annotations.3

However, even after taking into consideration cases
where the mixture is valid and cases of annotation
errors, current systems are placing mentions with
different properties in the same clusters.

6.7 Impact of Errors on Metric Scores

Table 10 shows the performance impact of correct-
ing errors of each type. The Span Error row gives
improvements over the original scores, while all
other rows are relative to the scores after Span Er-
rors are corrected.4 By fixing each of the other error
types in isolation, we can get a sense of the gain if
just that error type is addressed. However, it also
means some mentions are incorrectly placed in the
same cluster, causing some negative scores.

Interaction between the error types and the way
the metrics are defined means that the deltas do not

3This kind of cross-annotation analysis may be a useful way
of detecting annotation errors.

4This difference was necessary as the later errors make
changes relative to the state of the entities after the Span Errors
are corrected, e.g. in Figure 2 a blue and red entity is split that
previously contained an X instead of one of the blue mentions.

add up to the overall average gap in performance, but
it is still clear that every error type has a noticeable
impact. Missing Entity errors have the most sub-
stantial impact, which reflects the precision oriented
nature of many coreference resolution systems.

7 Conclusion

While the improvement of metrics and the organiza-
tion of shared tasks have been crucial for progress
in coreference resolution, there is much insight to be
gained by performing a close analysis of errors.

We have presented a new means of automatically
classifying coreference errors that provides an ex-
haustive view of error types. Using our tool we have
analyzed the output of a large set of coreference res-
olution systems and investigated the common chal-
lenges across state-of-the-art systems.

We find that there is considerable variability in
the distribution of errors, and the best systems are
not best across all error types. No single source
of errors stands out as the most substantial chal-
lenge today. However, it is worth noting that
while confidence measures can be used to reduce
precision-related errors, no system has been able to
effectively address the recall-related errors, such as
Missed Entities. Our analysis tool is available at
code.google.com/p/berkeley-coreference-analyser/.
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Abstract
Coreference resolution plays a critical role
in discourse analysis. This paper focuses
on exploiting zero pronouns to improve Chi-
nese coreference resolution. In particular, a
simplified semantic role labeling framework
is proposed to identify clauses and to detect
zero pronouns effectively, and two effective
methods (refining syntactic parser and refining
learning example generation) are employed to
exploit zero pronouns for Chinese coreference
resolution. Evaluation on the CoNLL-2012
shared task data set shows that zero pronouns
can significantly improve Chinese coreference
resolution.

1 Introduction

As one of the most important tasks in discourse
analysis, coreference resolution aims to link a given
mention (i.e., entity or event) to its co-referring ex-
pression in a text and has been a focus of research in
natural language processing (NLP) for decades.

Over the last decade, various machine learning
techniques have been applied to coreference reso-
lution and have performed reasonably well (Soon
et al., 2001; Ng and Cardie, 2002; Fernandes et al.,
2012). Current techniques rely primarily on surface
level features such as string match, syntactic features
such as apposition, and shallow semantic features
such as number, gender, semantic class, etc.

Despite similarities between Chinese and English,
there are differences that have a significant impact
on coreference resolution. In this paper, we focus
on exploiting one of the key characteristics of Chi-
nese text, zero pronouns (ZPs), to improve Chinese

coreference resolution. In particular, a simplified se-
mantic role labeling (SRL) framework is proposed
to identify Chinese clauses and to detect zero pro-
nouns effectively, and two effective methods are em-
ployed to exploit zero pronouns for Chinese corefer-
ence resolution. Experimental results show the ef-
fectiveness of our approach in improving the perfor-
mance of Chinese coreference resolution. Our work
is novel in that it is the first work that incorporates
the use of zero pronouns to significantly improve
Chinese coreference resolution

The rest of this paper is organized as follows.
Section 2 describes our baseline Chinese corefer-
ence resolution system. Section 3 motivates how
the detection of zero pronouns can improve Chinese
coreference resolution, using an illustrating exam-
ple. Section 4 presents our approach to detect zero
pronouns. Section 5 proposes two methods to ex-
ploit zero pronouns to improve Chinese coreference
resolution, based on a corpus study and preliminary
experiments. Section 6 briefly outlines the related
work. Finally, we conclude our work in Section 7.

2 Chinese Coreference Resolution

According to Webber (1978), coreference resolu-
tion can be decomposed into two complementary
subtasks: (1) anaphoricity determination: decid-
ing whether a given noun phrase (NP) is anaphoric
or not; and (2) anaphora resolution: linking to-
gether multiple mentions of a given entity in the
world. Our Chinese coreference resolution system
also contains these two components. Using the train-
ing data set of CoNLL-2012 shared task, we first
train an anaphoricity classifier to determine whether
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a mention is anaphoric or not, and then employ
an independently-trained coreference resolution sys-
tem to resolve those mentions which are classi-
fied as anaphoric. The lack of gender and number
makes both anaphoricity determination and corefer-
ence resolution in Chinese more difficult.

2.1 Anaphoricity Determination

Since only the mentions that take part in coreference
chains are annotated in the CoNLL-2012 shared
task data set, we first generate a high-recall, low-
precision mention extraction module to extract as
many mentions as possible. The mention extrac-
tion module relies mainly on syntactic parse trees.
We extract all NP nodes, QP (quantifier phrase, i.e.,
complex amount/measure phrase) nodes, and all ter-
minals with part-of-speech tags PN (pronoun) and
NR (proper noun) in parse trees to form a mention
candidate set. Then, we employ some rules to re-
move unlikely mentions, e.g., those which contain
(1) measure words such as ‘一年/one year’ and
‘一顿/one time’; (2) named entities whose cat-
egories are PERCENT, MONEY, QUANTITY, and
CARDINAL; (3) interrogative pronouns such as‘
什么/what’ and‘哪儿/where’.

After pruning, we employ a learning-based
method to train an independent classifier to deter-
mine whether the remaining mentions are anaphoric.
Table 1 lists all the features employed in our
anaphoricity determination system.

2.2 Coreference Resolution

Our Chinese coreference resolution system adopts
the same learning-based model and the same set of
12 features as Soon et al. (2001). Considering the
special characteristics of conversation and web texts
(i.e., a large proportion of personal pronouns and the
organization of a text into several parts1) and prepar-
ing for dealing with zero pronouns, we add some
features shown in Table 2.2

1A text in the CoNLL-2012 data set is broken down into
different “parts”.

2AN denotes anaphor, CA denotes antecedent candidate, IP
denotes a simple clause, and CP denotes a clause headed by a
complementizer. For the feature ANPronounRanking, the rel-
ative ranking of a given pronoun is based on its semantic role
and surface position, and we assign the highest rank to zero pro-
nouns, similar to Kong et al. (2009).

R P F
GS 76.32 87.14 81.37
Auto 64.87 78.42 71.00

Table 3: Performance of anaphoricity determination on
the CoNLL-2012 test set

R P F

AM

Mention Detection 65.26 67.20 66.22
MUC 51.64 61.82 56.27
BCUBED 73.40 80.38 76.73
CEAF 53.16 45.66 49.13
Average 60.71

GMB

Mention Detection 82.01 69.58 75.29
MUC 76.21 66.18 70.84
BCUBED 76.15 86.59 81.04
CEAF 59.75 50.52 54.75
Average 68.88

GM

Mention Detection 79.80 100.00 88.77
MUC 80.86 85.48 83.11
BCUBED 73.66 91.94 81.79
CEAF 67.54 64.87 66.18
Average 77.02

Table 4: Performance of our Chinese coreference resolu-
tion system on the CoNLL-2012 test set

2.3 Results and Analysis

All experiments in this section are conducted on the
CoNLL-2012 shared task data set. The SVM-light
toolkit (Joachims, 1999) with radial basis kernel
and default learning parameters is employed in both
anaphoricity determination and coreference resolu-
tion.

Table 3 reports the performance of anaphoricity
determination on the CoNLL-2012 test set using
gold-standard parse trees (GS) and automatic parse
trees (Auto). All performance figures in this paper
are given in percentages. The results show that using
both gold parse trees and automatic parse trees, our
anaphoricity determination system achieves higher
precision than recall. In comparison with using gold
parse trees, precision decreases by about 9% and re-
call 11% on automatic parse trees.

Table 4 reports the performance of our Chinese
coreference resolution system on the CoNLL-2012
test set under three different experimental settings:
with automatic mentions (AM), with gold mention
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Feature Description
NPType Type of the current mention (pronoun, demonstrative, proper NP).
NPNumber Number of the current mention (singular, plural).
NPGender Gender of the current mention (male, female).
IsHeadWord Whether the current mention is the same as its headword.
StrMatch Whether there is a string match between the current mention and another phrase in the

previous context.
AliasMatch Whether the current mention is a name alias or abbreviation of another phrase in the

previous context.
Appositive Whether the current mention and another phrase in the previous context are in an

appositive relation.
NestIn Whether another NP is nested in the current mention.
NestOut Whether the current mention is nested in another NP.
FirstNP Whether the current mention is the first NP of the sentence.
FrontDistance The number of words between the current mention and the nearest previous clause.
BackDistance The number of words between the current mention and the nearest following clause.
WordSense Whether the current mention and another phrase in the previous context have the same

word sense. Word sense annotation is provided in the CoNLL-2012 data set, based on
the IMS software (Zhong and Ng, 2010).

Table 1: Features employed in our anaphoricity determination system

Feature Description
AN/CAPronounType Whether the anaphor or the antecedent candidate is a zero pronoun, first per-

son, second person, third person, neutral pronoun, or others. In our corefer-
ence resolution system, a zero pronoun is viewed as a kind of special pro-
noun.

AN/CAGrammaticalRole Whether the anaphor or the antecedent candidate is a subject, object, or oth-
ers.

AN/CAOwnerClauseType Whether the anaphor or the antecedent candidate is in a matrix clause, an
independent clause, a subordinate clause, or none of the above.

AN/CARootPath Whether the path of nodes from the anaphor (or the antecedent candidate) to
the root of the parse tree contains NP, IP, CP, or VP.

ANPronounRanking Whether the anaphor is a pronoun and is ranked highest among the pronouns
(including zero pronouns) of the sentence.

AN/CAClosestNP Whether the antecedent candidate is the closest preceding NP of the anaphor.
AN/CAPartDistance This feature captures the distance (in parts) between the antecedent candidate

and the anaphor. If they are in the same part, the value is 0; if they are one
part apart, the value is 1; and so on.

AN/CASameSpeaker Whether the antecedent candidate and the anaphor appear in sentences spo-
ken by the same person.

Table 2: Additional features employed in our Chinese coreference resolution system
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boundaries (GMB), and with gold mentions (GM).
From the results, we find that:

• Using automatic mentions, our system achieves
56.27, 76.73, and 49.13 in F-measure on MUC,
BCUBED, and CEAF evaluation metrics, re-
spectively.

• Using gold mention boundaries improves the
performance of our system by 14.57, 4.31, and
5.62 in F-measure, due to large gains in both
recall and precision. We also find that using
gold mention boundaries can boost the recall
of mention detection. As described above, our
anaphoricity determination model relies mainly
on the parser. Using gold mention boundaries
can improve the parser performance. Thus
our coreference resolution system can benefit
much from using gold mention boundaries (es-
pecially the recall).

• Employing gold mentions further boosts our
system significantly. In comparison with using
gold mention boundaries, the performance im-
provement is attributed more to an increase in
precision.

In comparison with the three best systems of
CoNLL-2012 in the Chinese closed track (shown in
Table 5), considering average F-measure, we find
that using automatic mentions, our system is only
inferior to that of Chen and Ng (2012); using gold
mention boundaries, our system achieves the best
performance; and using gold mentions, our system is
only a little worse than that of Chen and Ng (2012).

3 Motivation

In order to analyze the impact of zero pronouns on
Chinese coreference resolution, we first use the re-
leased OntoNotes v5.0 data (i.e., the training and de-
velopment portions of the CoNLL-2012 shared task)
in a corpus study.

Statistics show that anaphoric zero pronouns ac-
count for 10.7% of the mentions in coreference
chains in the training data, while in the develop-
ment data, the proportion is 11.3%. The experi-
mental results of our Chinese coreference resolution
system (i.e., the baseline) show that using both gold
mention boundaries and gold mentions significantly

improves system performance, especially for recall,
largely due to improved parser performance. We
then analyze the impact of zero pronouns on Chi-
nese syntactic parsing. As a preliminary exploration,
we integrate Chinese zero pronouns into the Berke-
ley parser (Petrov et al., 2006), experimenting with
gold-standard or automatically determined zero pro-
nouns kept or stripped off (using gold-standard word
segmentation provided in the CoNLL-2012 data).
The results indicate that given gold-standard zero
pronouns, parsing performance improves by 1.8%
in F-measure. Using automatically determined zero
pronouns by our zero pronoun detector to be intro-
duced in Section 4, parsing performance also im-
proves by 1.4% in F-measure.

In order to illustrate the impact of zero pronouns
on parsing performance, consider the following ex-
ample:3

Example (1):

将来我们有一一一个个个重重重建建建计计计划划划。

#分公园成七个区域，#带来多一些的
景点。

...

这这这个个个计计计划划划我们现在是等到政府的批准
我们就可以再进行，预算是#明年可以
动工了。

(In future, we have a reconstruction
plan.

Divide the park into seven regions, and
bring some more attractions.

. . .

Now we wait for approval of the gov-
ernment before implementing this plan
again. It is expected that work can start
next year.)

Without considering zero pronouns, the parse tree
of the second sentence output by the Berkeley parser
is shown in Figure 1.

Prior to parsing, using our zero pronoun detector
to be introduced in Section 4, the presence of zero
pronouns (denoted by #) can be detected. Figure 2

3In this paper, zero pronouns are denoted by “#” and men-
tions in the same coreference chain are shown in bold for all
examples.
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MD MUC BCUBED CEAF Avg

AM
(Chen and Ng, 2012) 71.64 62.21 73.55 50.97 62.24
(Yuan et al., 2012) 68.15 60.33 72.90 48.83 60.69
(Björkelund and Farkas, 2012) 66.37 58.61 73.10 48.19 59.97
Our baseline system (without ZPs) 66.22 56.27 76.73 49.13 60.71
Our refined system (with auto ZPs) 70.33 59.58 78.15 51.47 63.07

GMB
(Chen and Ng, 2012) 80.45 71.43 77.04 57.17 68.55
(Yuan et al., 2012) 74.02 66.44 75.02 51.81 64.42
(Björkelund and Farkas, 2012) 71.02 63.56 74.52 50.20 62.76
Our baseline system (without ZPs) 75.29 70.84 81.04 54.75 68.88
Our refined system (with auto ZPs) 75.77 72.62 81.45 58.04 70.70

GM
(Chen and Ng, 2012) 91.73 83.77 81.15 68.38 77.77
(Yuan et al., 2012) 89.95 82.79 79.79 65.58 76.05
(Björkelund and Farkas, 2012) 83.47 76.85 76.30 56.61 69.92
Our baseline system (without ZPs) 88.77 83.11 81.79 66.18 77.02
Our refined system (with auto ZPs) 91.49 83.46 82.43 65.88 77.26

Table 5: Performance (F-measure) of the three best Chinese coreference resolution systems on the CoNLL-2012 test
set

shows the new parse tree, which includes the de-
tected zero pronouns, output by the Berkeley parser
on the same sentence. Comparing these two parse
trees, we can see that the detected zero pronouns
contribute to better division of clauses and improved
parsing performance, which in turn leads to im-
proved Chinese coreference resolution.

Detecting the presence of zero pronouns also
helps to improve local salience modeling, leading to
improved Chinese coreference resolution. Long sen-
tences containing multiple clauses occur more fre-
quently in Chinese compared to English. Further-
more, a coreference chain can span many sentences.
Zero pronouns can occur not only within one sen-
tence (e.g., the first and second zero pronouns of Ex-
ample (1)), but can also be scattered across multiple
sentences (e.g., the first and third zero pronouns of
Example (1)). The subjects in the second sentence
of Example (1) are omitted.4 Detection of zero pro-
nouns improves local salience modeling, and leads
to the correct identification of all the noun phrases
of the coreference chain in Example (1).

4 Zero Pronoun Detection

Empty elements are those nodes in a parse tree that
do not have corresponding surface words or phrases.
Although empty elements exist in many languages

4In Chinese, pro-dropped subjects account for more than
36% of subjects in sentences (Kim, 2000).

and serve different purposes, they are particularly
important for some languages, such as Chinese,
where subjects and objects are frequently dropped to
keep a discourse concise. Among empty elements,
type *pro*, namely zero pronoun, is either used for
dropped subjects or objects, which can be recovered
from the context (anaphoric), or it is of little interest
for the reader or listener to know (non-anaphoric). In
the Chinese Treebank, type *pro* constitutes about
20% (Yang and Xue, 2010), and more than 85% of
them are anaphoric (Kong and Zhou, 2010). Thus,
zero pronouns are very important in bridging the in-
formation gap in a Chinese text. In this section, we
will introduce our zero pronoun detector.

In Chinese, a zero pronoun always occurs just be-
fore a predicate phrase node (e.g., VP). In particular,
if the predicate phrase node occurs in a coordinate
structure or is modified by an adverbial node, we
only need to consider its parent. A simplified seman-
tic role labeling (SRL) framework (only including
predicate recognition, argument pruning, and argu-
ment identification) is adopted to identify the pred-
icate phrase subtree (Xue, 2008), i.e., the minimal
subtree governed by a predicate and all its argu-
ments.

We carry out zero pronoun detection for every
predicate phrase subtree in an iterative manner from
a parse tree, i.e., determining whether there is a
zero pronoun before the given predicate phrase sub-
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Figure 1: The parse tree without considering zero pronouns

tree. Viewing the position before the given predi-
cate phrase subtree as a zero pronoun candidate, we
can perform zero pronoun detection using a machine
learning approach.

During training, if a zero pronoun candidate has
a counterpart in the same position in the annotated
training corpus (either anaphoric or non-anaphoric),
a positive example is generated. Otherwise, a nega-
tive example is generated. During testing, each zero
pronoun candidate is presented to the zero pronoun
detector to determine whether it is a zero pronoun.

The features that are employed to detect zero pro-
nouns mainly model the context of the clause itself,
the left and right siblings, and the path of the clause
to the root node. Table 6 lists the features in detail.

4.1 Results and Analysis

We evaluate our zero pronoun detector using gold
parse trees and automatic parse trees produced by
the Berkeley parser. The SVM-light toolkit with ra-
dial basis kernel and default learning parameters is
employed as our learning algorithm.

Table 7 lists the results. From the results, we

R P F
GS 89.32 87.29 88.29
Auto 74.19 77.79 75.95

Table 7: Performance of zero pronoun detection on the
test set using gold and automatic parse trees

find that the performance of our zero pronoun detec-
tor drops about 12% in F-measure when using au-
tomatic parse trees, compared to using gold parse
trees. That is, the performance of zero pronoun de-
tection also depends on the performance of the syn-
tactic parser.

5 Exploiting Zero Pronouns to Improve
Chinese Coreference Resolution

In this section, we will propose two methods, refin-
ing the syntactic parser and refining learning exam-
ple generation, to exploit zero pronouns to improve
Chinese coreference resolution.
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Figure 2: The parse tree with the detected zero pronouns

5.1 Refining the Syntactic Parser
Similar to our preliminary experiments, we retrain
the Berkeley parser with explicit, automatically de-
tected zero pronouns in the training set and parse
the test set with explicit, automatically detected
zero pronouns using the retrained model. In both
anaphoricity determination and coreference resolu-
tion, the output results of the retrained parser are
employed to generate all features.

5.2 Refining Learning Example Generation
In order to model the salience of all entities, we re-
gard all zero pronouns as a special kind of NPs when
generating the learning examples. Considering the
modest performance of our anaphoricity determina-
tion module, we do not determine the anaphoricity
of zero pronouns. Instead, in the coreference res-
olution stage, all zero pronouns will be considered
during learning example generation (including both
training and test example generation).

For example, consider a coreference chain A1-
A2-Z0-A3-A4 containing one zero pronoun found
in an annotated training document. A1, A2, A3,
and A4 are traditional entity mentions, and Z0 is a

zero pronoun. During training, pairs of mentions in
the chain that are immediately adjacent (i.e., A1-A2,
A2-Z0, Z0-A3, and A3-A4) are used to generate the
positive training examples. Among them, two ex-
amples (i.e., A2-Z0 and Z0-A3) are associated with
a zero pronoun, which can act as both an anaphor
and an antecedent. For each positive pair, e.g., Z0-
A3, we find any noun phrase and zero pronoun oc-
curring between the anaphor A3 and the antecedent
Z0, and pair each of them with A3 to form a nega-
tive example. Similarly, test examples can be gen-
erated except that only the preceding mentions and
zero pronouns in the current and previous two sen-
tences will be paired with an anaphor.

Incorporating zero pronouns models salience of
all entities more accurately. The ratio of positive to
negative examples is also less skewed as a result of
considering zero pronouns – the ratio changes from
1:7.9 to 1:6.8 after considering zero pronouns.

5.3 Reprocessing

Although in the OntoNotes corpus, dropped subjects
and objects (i.e., zero pronouns) are considered dur-
ing coreference resolution for Chinese, they are not
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Feature Description
ClauseClass Whether the given clause is a terminal clause or non-terminal clause.
LeftSibling Whether the given clause has a sibling immediately to its left.
LeftSiblingNP Whether the left siblings of the given clause contain an NP.
RightSibling Whether the given clause has a sibling immediately to its right.
RightSiblingVP Whether the right siblings of the given clause contain a VP.
ParentIP/VP Whether the syntactic category of the immediate parent of the given clause is an

IP or VP.
RootPath Whether the path from the given clause to the root of the parse tree contains

an NP or VP or CP. This feature models how the given clause is syntactically
connected to the sentence as a whole, reflecting its function within the sentence.

ClauseType The given clause is an independent clause, a subordinate clause, or others.
Has-Arg0/Arg1 Whether the given clause has an agent or patient argument.

Table 6: Features employed to detect zero pronouns

used in the CoNLL-2012 shared task (i.e., in the
gold evaluation keys, all the links formed by zero
pronouns are removed).

As described in Subsection 5.2, during training
and testing, all links associated with zero pronouns
will be considered in our coreference resolution sys-
tem. That is, we do not distinguish zero pronoun res-
olution from traditional coreference resolution, and
only view zero pronouns as special pronouns. After
generating all the links, zero pronouns are included
in coreference chains. For every coreference chain,
all zero pronouns will be removed before evaluation.

5.4 Experimental Results and Analysis
For fair comparison, all our experiments in this sub-
section have been conducted using the same experi-
mental settings as our baseline system. When com-
pared to our baseline system, all improvements are
statistically significant (p < 0.005).

Table 8 lists the coreference resolution perfor-
mance incorporating automatically detected zero
pronouns. The results show that:

• Using automatically detected zero pronouns
achieves better performance under all experi-
mental settings. In particular, using automatic
mentions, performance improves by 3.31%,
1.42%, and 2.34% in F-measure on the MUC,
BCUBED, and CEAF evaluation metric, re-
spectively. Using gold mention boundaries, au-
tomatic zero pronouns contribute 1.82% in av-
erage F-measure. Using gold mentions, the

R P F

AM

Mention Detection 71.09 69.58 70.33
MUC 55.06 64.91 59.58
BCUBED 76.04 80.38 78.15
CEAF 53.98 49.19 51.47
Average 63.07

GMB

Mention Detection 82.44 70.10 75.77
MUC 75.58 69.89 72.62
BCUBED 76.35 87.27 81.45
CEAF 65.17 52.31 58.04
Average 70.70

GM

Mention Detection 84.31 100.00 91.49
MUC 80.83 86.27 83.46
BCUBED 74.18 92.74 82.43
CEAF 69.91 62.29 65.88
Average 77.26

Table 8: Performance of our Chinese coreference resolu-
tion system incorporating zero pronouns
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contribution of zero pronouns is only 0.24% in
average F-measure. This is because employing
either gold mention boundaries or gold men-
tions improves parsing performance.

• Our system incorporating zero pronouns out-
performs the three best systems in the CoNLL-
2012 shared task when using automatic men-
tions or gold mention boundaries. Using gold
mentions, our average F-measure is slightly
lower than that of Chen and Ng (2012).5

Table 9 presents the contribution of our two meth-
ods of exploiting zero pronouns and the impact of
gold-standard zero pronouns. We conclude that:

• Both the refined parser and refined example
generation improve performance. While the
refined parser improves the recall of mention
detection and coreference resolution, refined
example generation contributes more to preci-
sion. Combining these two methods further im-
proves coreference resolution.

• There is a performance gap of 6.01%, 4.08%,
and 3.19% in F-measure on the MUC,
BCUBED, and CEAF evaluation metric, re-
spectively, between the coreference resolution
system with gold-standard zero pronouns and
without zero pronouns. This suggests the use-
fulness of zero pronoun detection in Chinese
coreference resolution.

• Our proposed methods incorporating automatic
zero pronouns reduce the performance gap by
about half. This shows the effectiveness of our
proposed methods.

5.5 Discussion
Although the evaluation of the CoNLL-2012 shared
task does not consider zero pronouns, we also eval-
uate the performance of zero pronoun resolution on
the development data set (i.e., extracting all the re-
solved coreference links containing zero pronouns,
acting as anaphor or antecedent, to conduct the eval-
uation independently). The results show that, for
the correct anaphoric zero pronouns, the precision

5Statistical significance testing cannot be conducted since
their output files are not released.

of our system is 94.76%. So viewing zero pronouns
as a special kind of NP, zero pronouns can bridge
salience and contribute to coreference resolution. In
Example (1), the zero pronouns occurring in the sec-
ond sentence help to bridge the coreferential relation
between the mention “这这这个个个计计计划划划/this plan” in the
last sentence and the mention “一一一个个个重重重建建建计计计划划划/a re-
construction plan” in the first sentence.

6 Related Work

In the last decade, both manual rule-based ap-
proaches (Lee et al., 2011) and statistical ap-
proaches (Soon et al., 2001; Ng and Cardie, 2002;
Fernandes et al., 2012) have been proposed for
coreference resolution. Besides frequently used syn-
tactic and semantic features, more linguistic features
are exploited in recent work (Ponzetto and Strube,
2006; Ng, 2007; Versley, 2007). There is less re-
search on Chinese coreference resolution compared
to English.

Although zero pronouns are prevalent in Chinese,
there is relatively little work on this topic. For Chi-
nese zero pronoun resolution, representative work
includes Converse (2006), Zhao and Ng (2007), and
Kong and Zhou (2010).

For the use of zero pronouns, Chung and Gildea
(2010) applied some extracted patterns to recover
two types of empty elements (*PRO* and *pro*).
Although the performance is still not satisfactory
(e.g., 63.0 and 44.0 in F-measure for *PRO* and
*pro* respectively), it nevertheless improves ma-
chine translation performance by 0.96 in BLEU
score.

7 Conclusion

In this paper, we focus on exploiting one of the key
characteristics of Chinese text, zero pronouns, to im-
prove Chinese coreference resolution. In particu-
lar, a simplified semantic role labeling framework
is proposed to detect zero pronouns effectively, and
two effective methods are employed to incorporate
zero pronouns into Chinese coreference resolution.
Experiments on the CoNLL-2012 shared task show
the effectiveness of our proposed approach. To the
best of our knowledge, this is the first attempt at in-
corporating zero pronouns into Chinese coreference
resolution.
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MD MUC BCUBED CEAF Avg
R P F R P F R P F R P F

Baseline 65.26 67.20 66.22 51.64 61.82 56.27 73.40 80.38 76.73 53.16 45.66 49.13 60.71
+RP 72.01 66.24 69.00 55.02 61.47 58.07 77.83 78.97 78.40 50.40 49.81 50.10 62.19
+REG 65.92 70.02 67.91 49.98 66.27 56.98 73.64 83.45 78.24 51.12 47.44 49.21 61.48
+AZPs 71.09 69.58 70.33 55.06 64.91 59.58 76.04 80.38 78.15 53.98 49.19 51.47 63.07
+GZPs 72.18 70.59 71.38 58.61 66.45 62.28 78.79 82.94 80.81 54.12 50.63 52.32 65.14

Table 9: Contributions of the two methods of incorporating zero pronouns and the impact of gold zero pronouns
(RP: refining parser using auto zero pronouns, REG: refining example generation using auto zero pronouns, AZPs:
combining both RP and REG using auto zero pronouns, and GZPs: combining both RP and REG using gold zero
pronouns)
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Abstract

Many errors in coreference resolution come
from semantic mismatches due to inadequate
world knowledge. Errors in named-entity
linking (NEL), on the other hand, are of-
ten caused by superficial modeling of entity
context. This paper demonstrates that these
two tasks are complementary. We introduce
NECO, a new model for named entity linking
and coreference resolution, which solves both
problems jointly, reducing the errors made on
each. NECO extends the Stanford determinis-
tic coreference system by automatically link-
ing mentions to Wikipedia and introducing
new NEL-informed mention-merging sieves.
Linking improves mention-detection and en-
ables new semantic attributes to be incorpo-
rated from Freebase, while coreference pro-
vides better context modeling by propagat-
ing named-entity links within mention clus-
ters. Experiments show consistent improve-
ments across a number of datasets and ex-
perimental conditions, including over 11% re-
duction in MUC coreference error and nearly
21% reduction in F1 NEL error on ACE 2004
newswire data.

1 Introduction

Coreference resolution and named-entity linking are
closely related problems, but have been largely stud-
ied in isolation. This paper demonstrates that they
are complementary by introducing a simple joint
model that improves performance on both tasks.

Coreference resolution is the task of determining
when two textual mentions name the same individ-

[Michael Eisner]1 and [Donald Tsang]2 announced the
grand opening of [[Hong Kong]3 Disneyland]4 yester-
day. [Eisner]1 thanked [the President]2 and welcomed
[fans]5 to [the park]4.

Figure 1: A text passage illustrating interactions between
coreference resolution and NEL.

ual. The biggest challenge in coreference resolu-
tion — accounting for 42% of errors in the state-
of-the-art Stanford system — is the inability to rea-
son effectively about background semantic knowl-
edge (Lee et al., 2013). For example, consider the
sentence in Figure 1. “President” refers to “Donald
Tsang” and “the park” refers to “Hong Kong Dis-
neyland,” but automated algorithms typically lack
the background knowledge to draw such inferences.
Incorporating knowledge is challenging, and many
efforts to do so have actually hurt performance,
e.g. (Lee et al., 2011; Durrett and Klein, 2013).

Named-entity linking (NEL) is the task of match-
ing textual mentions to corresponding entities in a
knowledge base, such as Wikipedia or Freebase.
Such links provide rich sources of semantic knowl-
edge about entity attributes — Freebase includes
president as Tsang’s title and Disneyland as hav-
ing the attribute park. But NEL is itself a chal-
lenging problem, and finding the correct link re-
quires disambiguating based on the mention string
and often non-local contextual features. For exam-
ple, “Michael Eisner” is relatively unambiguous but
the isolated mention “Eisner” is more challenging.
However, these mentions could be clustered with
a coreference model, allowing for improved NEL
through link propagation from the easier mentions.
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We present NECO, a new algorithm for jointly solv-
ing named entity linking and coreference resolu-
tion. Our work is related to that of Ratinov and
Roth (2012), which also uses knowledge derived
from an NEL system to improve coreference. How-
ever, NECO is the first joint model we know of, is
purely deterministic with no learning phase, does
automatic mention detection, and improves perfor-
mance on both tasks.

NECO extends the Stanford’s sieve-based model,
in which a high recall mention detection phase is
followed by a sequence of cluster merging opera-
tions ordered by decreasing precision (Raghunathan
et al., 2010; Lee et al., 2013). At each step, it
merges two clusters only if all available information
about their respective entities is consistent. We use
NEL to increase recall during the mention detection
phase and introduce two new cluster-merging sieves,
which compare the Freebase attributes of entities.
NECO also improves NEL by initially favoring high
precision linking results and then propagating links
and attributes as clusters are formed.

In summary we make the following contributions:

• We introduce NECO, a novel, joint approach
to solving coreference and NEL, demonstrating
that these tasks are complementary by achiev-
ing joint error reduction.

• We present experiments showing improved per-
formance at coreference resolution, given both
gold and automatic mention detection: e.g.,
6.2 point improvement in MUC recall on ACE
2004 newswire text and 3.1 point improvement
in MUC precision the CoNLL 2011 test set.

• NECO also leads to better performance at
named-entity linking, given both gold and au-
tomatic linking, improving F1 from 61.7% to
69.2% on a newly labeled test set.1

2 Background

We make use of existing models for coreference res-
olution and named entity linking.

1Our corpus and the source code for NECO can be down-
loaded from https://www.cs.washington.edu/
research-projects/nlp/neco.

2.1 Coreference Resolution

Coreference resolution is the the task of identifying
all text spans (called mentions) that refer to the same
entity, forming mention clusters.

Stanford’s Sieve Model is a state-of-the-art coref-
erence resolver comprising a pipeline of “sieves”
that merge coreferent mentions according to deter-
ministic rules. Mentions are automatically predicted
by selecting all noun phrases (NP), pronouns, and
named entities. Each sieve either merges a cluster
to its single best antecedent from a list of previous
clusters, or declines to merge.

Higher precision sieves are applied earlier in the
pipeline according to the following order, looking at
different aspects of the text, including: (1) speaker
identification, (2-3) exact and relaxed string matches
between mentions, (4) precise constructs, including
appositives, acronyms and demonyms, (5-9) differ-
ent notions of strict and relaxed head matches be-
tween mentions, and finally (10) a number of syn-
tactic and distance cues for pronoun resolution.

2.2 Named Entity Linking

Named-entity linking (NEL) is the task of identi-
fying mentions in a text and linking them to the
entity they name in a knowledge base, usually
Wikipedia. NECO uses two existing NEL sys-
tems: GLOW (Ratinov et al., 2011) and Wikipedi-
aMiner (Milne and Witten, 2008).

WikipediaMiner links mentions based on a notion
of semantic similarity to Wikipedia pages, consider-
ing all substrings up to a fixed length. Since there
are often many possible links, it disambiguates by
choosing the entity whose Wikipedia page is most
semantically related to the nearby context of the
mention. The semantic scoring function includes n-
gram statistics and also counts shared links to other
unambiguous mentions in the text.

GLOW finds mentions by selecting all the NPs
and named entities in the text. Linking is framed
as an integer linear programming optimization prob-
lem that takes into account using similar local con-
straints but also includes global constraints such as
entity link co-occurrence.

Both systems return confidence values. To main-
tain high precision, NECO uses an ensemble of
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• Let Exemplar(c) be a representative mention of the cluster c, computed as defined below
• Let cj be an antecedent cluster of ci if cj has a mention which is before the first mention of ci

• Let l(m) be a Wikipedia page linked to mention m or ∅ if there is no link
• Let l(c) be a Wikipedia page linked to mention Exemplar(c) or ∅ if there is no link

1. Initialize Linked Mentions:
(a) Let MNEL = {mi | i = 1 . . . p} be the NEL output mentions, mi, each with a link l(mi)
(b) Let MCR = {mi | i = 1 . . . q} be the mentions mi from coreference mention detection
(c) Let M ←MCR ∪MNEL (Sec. 3.1)
(d) Update entity links for all m ∈M and prune M (Sec. 3.2)
(e) Extract attributes from Wikipedia and Freebase for all m ∈M (Sec. 3.3)
(f) Let C ←M be singleton mention clusters where Exemplar(ci) = mi, l(ci) = l(mi)

2. Merge Clusters: For every sieve S (including NEL sieves, Sec. 3.6) and cluster ci ∈ C
(a) For every cluster cj , j = [i− 1 . . . 1] (traverse the preceding clusters in reverse order)

i. NEL constraints: Prevent merge if l(ci) 6= l(cj) (Sec. 3.4)
ii. If all rules of sieve S are satisfied for clusters ci and cj

A. ck ← Merge(ci, cj), including entity link and attribute updates (Sec. 3.5)
B. C ← C ∪ {ck} \ {ci, cj}

3. Output: Coreference clusters C and linked Wikipedia pages l(ci)∀ci ∈ C

Figure 2: NECO: A joint algorithm for named-entity linking and coreference resolution.

GLOW and WikipediaMiner, selecting only high
confidence links.

3 Joint Coreference and Linking

We introduce a joint model for coreference resolu-
tion and NEL. Building on the Stanford sieve ar-
chitecture, our algorithm incrementally constructs
clusters of mentions using deterministic coreference
rules under NEL constraints.

Figure 2 presents the complete algorithm. The in-
put to NECO is a document and the output is a set C
of coreference clusters, with links l(c) to Wikipedia
pages for a subset of the clusters c ∈ C. Step 1
detects mentions, merging the outputs of the base
systems (Sec. 3.1). Step 2 repeatedly merges coref-
erence clusters, while ensuring that NEL constraints
(Sec. 3.4) are satisfied. It uses the original Stan-
ford sieves and also two new NEL-informed sieves
(Sec. 3.6). NEL links are propagated to new clusters
as they are formed (Sec. 3.5).

3.1 Mention Detection

In Steps 1(a-c) in Fig. 2, NECO combines mentions
from the base coreference and NEL systems.

Let MCR be the set of mentions returned by us-
ing Stanford’s rule-based mention detection algo-
rithm (Lee et al., 2013). Let MNEL be the set of
mentions output by the two NEL systems. NECO

creates an initial set of mentions, M , by taking the

union of all the mentions in MNEL and MCR. In
practice, taking the union increases diversity in the
mention pool. For example, it is often the case that
MNEL will include sub-phrases such as “Suharto”
when they are part of a larger mention “ex-dictator
Suharto” that is detected in MCR.

3.2 Mention Entity Links and Pruning

Step 1(d) in Fig. 2 assigns Wikipedia links to a sub-
set of the detected mentions.

For mentions m output by the base NEL sys-
tems, we assign an exact link l(m) if the entire
mention span is linked. Mentions m′ that differ
from an exact linked mention m by only a pre- or
post-fix stop word are similarly assigned exact links
l(m′) = l(m). For example, the mention “the pres-
ident” will be assigned the same link as “president”
but “The governor of Alaska Sarah Palin” would not
be assigned an exact link to Sarah Palin.

For mentions m′ that do not receive an exact link,
we assign a head link h(m′) if the head word2 m has
been linked, by setting h(m′) = l(m). For instance,
the head link for the mention “President Clinton”
(with “Clinton” as head word) will be the Wikipedia
title of Bill Clinton. We use head links for the
Relaxed NEL sieve (Sec. 3.6).

Next, we define L(m) to be the set con-

2A head word is assigned to every mention with the Stanford
parser head finding rules (Klein and Manning, 2003).
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country president city area
company state region location
place agency power unit
body market park province
manager organization owner trial
site prosecutor attorney county
senator stadium network building
attraction government department person
origin plant airport kingdom
capital operation author period
nominee candidate film venue

Figure 3: The most commonly used fine-grained at-
tributes from Freebase and Wikipedia (out of over 500
total attributes).

taining l(m) and l(m′) for all sub-phrases m′

of m. We add the sub-phrase links only
if their confidence is higher than the confi-
dence for l(m). For instance, assuming ap-
propriate confidence values, L(m) would in-
clude the pages for {List of governors of
Alaska, Alaska, Sarah Palin} given the
mention “The governor of Alaska Sarah Palin.” We
will use L(m) for NEL constraints and filtering
(Sec. 3.4).

After updating the entity links for all mentions,
NECO prunes spurious mentions that begin or
end with a stop word where the remaining sub-
expression of the mention exists in M . It also re-
moves time expressions and numbers from M if they
are not included in MNEL.

3.3 Mention Attributes

Step 1(e) in Fig. 2 also assigns attributes for a
mention m linked to Wikipedia page l(m), at both
coarse and fine-grained levels, based on information
from the Freebase entry corresponding to exact link
l(m) or head link h(m).

The coarse attributes include gender, type, and
NER classes such as PERSON, LOCATION, and OR-
GANIZATION. These attributes are part of the orig-
inal Stanford coreference system and are used to
avoid merging conflicting clusters. We use the Free-
base values for these attributes when available. For
instance, if the linked entity contains the Freebase
type location or organization, we include the coarse
type to LOCATION or ORGANIZATION respectively.
In order to account for both links to specific peo-

ple (Barack Obama) and generic links to positions
held by people (President), we include the type PER-
SON if the linked entity has any of the Freebase types
person, job title, or government office or title. If no
coarse Freebase types are available for an attribute,
we default to predicted NER classes.

We add fine-grained attributes from Freebase and
Wikipedia by importing additional type information.
We use all of the Freebase notable types, a set of
hundreds of commonly used Freebase types, rang-
ing from us president to tropical cyclone and syn-
thpop album. We also include all of the Wikipedia
categories, on average six per entity. For example,
the mention “Indonesia” is assigned fine-grained at-
tributes such as book subject, military power, and
olympic participating country. Since many of these
fine-grained attributes are extremely specific, we use
the last word of each attribute to define an addi-
tional fine-grained attribute (see Fig. 3). These fine-
grained attributes are used in the Relaxed NEL sieve
(Sec. 3.6).

3.4 NEL Constraints
While applying sieves to merge clusters in Figure 2
Step 2(a), NECO uses NEL constraints to eliminate
some otherwise acceptable merges.

We avoid merging inconsistent clusters that link
to different entities. Clusters ci and cj are incon-
sistent if both are linked (i.e., both clusters have
non-null entity assignments) and l(ci) 6= l(cj) or
h(ci) 6= h(cj). Also, in order to consider an an-
tecedent cluster c as a merge candidate, we require a
pair of entities in the set of linked entities L(c) to be
related to one another in Freebase. Two entities are
related in Freebase if they both appear in a relation;
for example, Bill Clinton and Arkansas are
related because Bill Clinton has a “governor-of” re-
lation with Arkansas.

3.5 Merging Clusters and Update Entity Links
When two clusters ci and cj are merged to form a
new cluster ck, the entity link information L(ck),
l(ck), and h(ck) must be updated (Step 2 of Fig. 2).
We set L(ck) to the union of the linked entities found
in l(ci) and l(cj) and merge coarse attributes at this
point.

In order to set the exact and head entity links
l(ck) and h(ck), we use the exemplar mention

292



Exemplar(ck) that denotes the most representative
mention of the cluster. Exemplar(c) is selected
according to a set of rules in the Stanford system,
based on textual position and mention type (proper
noun vs. common). We augment this function by
considering information from exact and head en-
tity links as well. Mentions appearing earlier in
text, proper mentions, and mentions that have ex-
act or head named-entity links are preferred to those
which do not. Given exemplars, we set l(ck) =
l(Exemplar(ck)) and h(ck) = h(Exemplar(ck)).

3.6 NEL Sieves

Finally, we introduce two new sieves that use NEL
information at the beginning and end of the Stan-
ford sieves pipeline in the merging stage (Step 2 of
Fig. 2).

Exact NEL sieve The Exact NEL sieve merges
two clusters ci and cj if both are linked and their
links match, l(ci) = l(cj). For example, all men-
tions that have been linked to Barack Obama will
become members of the same coreference cluster.
Because the Exact NEL sieve has high precision, we
place it at the very beginning of the pipeline.

Relaxed NEL sieve The Relaxed NEL sieve uses
fine-grained attributes of the linked mentions to
merge proper nouns with common nouns when they
share attributes. For example, this sieve is able to
merge the proper mention “Disneyland” with the
“the mysterious park”, because park is one of the
fine-grained attributes assigned to Disneyland.

More formally, let mi = Exemplar(ci) and
mj = Exemplar(cj). For every common noun
mention mi, we merge ci with an antecedent clus-
ter cj if (1) mj is a linked proper noun, (2) if mi or
the title of its linked Wikipedia page is in the list of
fine-grained attributes of mj , or (3) if h(mj) is re-
lated to the head link h(mi) according to Freebase
as defined above.

Because this sieve has low precision, we only
allow merges between mentions that have a maxi-
mum distance of three sentences between one an-
other. We add the Relaxed NEL sieve near the end
of the pipeline, just before pronoun resolution.

4 Experimental Setup

Core Components and Baselines The Stanford
sieve-based coreference system (Lee et al., 2013),
the GLOW NEL system (Ratinov et al., 2011), and
WikipediaMiner (Milne and Witten, 2008) provide
core functionality for our joint model, and are also
the state-of-the-art baselines against which we mea-
sure performance.

Parameter Settings Based on performance on the
development set, we set the GLOW’s confidence pa-
rameter to 1.0 and WikipediaMiner’s to 0.4 to assure
high-precision NEL. We also optimized for the set of
fine-grained attributes to import from Wikipedia and
Freebase, and the best way to incorporate the NEL
constraints into the sieve architecture.

Datasets We report results on the following
three datasets: ACE-NWIRE, CONLL,
and ACE-NWIRE-NEL. ACE-NWIRE, the
newswire subset of the ACE 2004 corpus (NIST,
2004), includes 128 documents. The CONLL
coreference dataset includes text from five different
domains: broadcast conversation (BC), broadcast
news (BN), magazine (MZ), newswire (NW), and
web data (WB) (Pradhan et al., 2011). The broadcast
conversation and broadcast news domains consist of
transcripts, whereas magazine and newswire contain
more standard written text. The development data
includes 303 documents and the test data includes
322 documents.

We created ACE-NWIRE-NEL by taking a
subset of ACE-NWIRE and annotating with
gold-standard entity links. We segment and link all
the expressions in text that refer to Wikipedia pages,
allowing for nested linking. For instance, both the
phrase “Hong Kong Disneyland,” and the sub-phrase
“Hong Kong” are linked. This dataset includes 12
documents and 350 linked entities.

Metrics We evaluate our system using MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998),
and pairwise scores. MUC is a link-based met-
ric which measures how many clusters need to be
merged to cover the gold clusters and favors larger
clusters; B3 computes the proportion of intersec-
tion between predicted and gold clusters for every
mention and favors singletons (Recasens and Hovy,
2010). We computed the scores using the Stanford
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Method MUC B3 Pairwise
P R F1 P R F1 P R F1

Stanford Sieves 39.9 46.2 42.8 67.9 71.8 69.8 44.2 29.7 35.6
NECO 46.8 52.5 49.5 70.4 72.6 71.5 51.5 34.6 41.4

No NEL Mentions 46.1 48.3 47.2 71.4 70.0 70.9 49.7 30.9 38.1
No Mention Pruning 43.6 45.6 44.6 70.5 69.9 70.2 46.2 29.4 35.9
No Attributes 45.9 47.4 46.6 71.8 69.7 70.7 48.6 27.0 34.7
No Constraints 42.3 49.3 45.5 68.3 72.3 70.2 44.2 28.6 34.7

Table 1: Coreference results on ACE-NWIRE with predicted mentions and automatic linking.

coreference software for ACE2004 and using the
CoNLL scorer for the CoNLL 2011 dataset.

5 Experimental Results

We first look at NECO’s performance at coreference
resolution and then evaluate its ability at NEL.

5.1 Coref. Results with Predicted Mentions
Overall System Performance on ACE Data Ta-
ble 1 shows NECO’s performance at coreference
resolution on ACE- compared to the Stanford
sieve implementation (Lee et al., 2013). The table
shows that NECO has both significantly improved
precision and recall compared to the Stanford base-
line, across all metrics. We generally observe larger
gains in MUC due to better mention detection and
the Relaxed NEL Sieve.

Contribution of System Components Table 1
also details the performance of four variants of our
system that ablate various components and features.
Specifically, we consider the following cases:

• No NEL Mentions: We discard additional
mentions, MNEL, provided by NEL (Sec. 3.1).
This increases B3 precision at the expense of
recall. Inspection shows that some of the errors
introduced by MNEL are actually due to cor-
rectly linked entities that were not annotated as
mentions in the dataset, but also some improp-
erly linked mentions.

• No Mention Pruning: We disable the initial
step of updating mention boundaries and re-
moving spurious mentions (Sec. 3.2). As ex-
pected, removing this step drops precision and
recall significantly, even compared to the No
NEL Mentions variant.

• No Attributes: Ablating coarse and fine-
grained attributes (Sec. 3.3) drops F1 and re-
call measures across all metrics. To under-
stand this effect, note that NECO uses at-
tributes in two different settings. Updating
coarse attributes tends to increase precision be-
cause it prevents dangerous merges, such as
merging “Staples” with the mention “it” in
a situation when “Staples” refers to the per-
son entity Todd Staples. Fine-grained at-
tributes also help with recall, when merging
a specific name of an entity with a mention
that uses a more general term; for instance,
“Hong Kong Disneyland” can be merged with
“the mysterious park” because “park” is a fine-
grained attribute for Disneyland. However,
when fine-grained attributes are used, precision
sometimes drops (e.g., when “president” might
merge with “Bush” when it should really merge
with “Clinton”).

• No NEL Constraints: Removing these con-
straints (Sec. 3.4) drops precision dramatically
leading to drop in F1. In the case of incor-
rect linking, however, NEL constraints can af-
fect recall. For instance, NEL constraints might
prevent merging “Staples” with “Todd Staples”
if the former were linked to the company and
the latter to the politician.

Overall System Performance on CoNLL Data
We also compare our full system (with added NEL
sieves, constraints, and mention pruning3) with the
Stanford sieve coreference system on CoNLL data

3Due to CoNLL annotation guidelines, a named entity is
added to the mention list if it is not inside a larger mention with
an exact named entity link.
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MUC B3

Category: Method P R F1 P R F1
BC: NECO 62.1 64.7 63.4 69.8 57.8 63.2
BC: Stanford Sieves 60.9 65.0 62.9 69.2 58.0 63.1
BN: NECO 69.3 59.4 64.0 78.8 60.8 68.6
BN: Stanford Sieves 68.0 58.9 63.1 79.0 60.2 68.3
MZ: NECO 67.6 62.9 65.2 78.4 61.1 68.7
MZ: Stanford Sieves 66.0 63.4 64.9 77.9 61.5 68.7
NW: NECO 62.0 54.5 58.0 74.9 57.4 65.0
NW: Stanford Sieves 60.0 54.2 56.9 75.3 57.0 64.9

Table 3: Coreference results on the individual categories of CoNLL 2011 development data. (BC=broadcast conver-
sation, BN=broadcast news, MZ=magazine, NW=newswire)

MUC B3

Method P R F1 P R F1
Development Data

NECO 64.1+ 59.4 61.7+ 74.7 58.7 65.7
Stanford 62.7 59.0 60.8 74.8 58.3 65.6
NECO* 56.4+ 50.0 53.0+ 72.6 51.6 60.3
Stanford* 53.5 50.0 51.6 71.8 51.3 59.9

Test Data
NECO 61.2+ 58.4 59.8+ 72.2 56.4 63.3
Stanford 59.2 58.8 59.0 71.3 56.1 62.8
NECO* 55.1+ 51.7 53.3+ 70.0 50.8 58.8
Stanford* 52.0 52.3+ 52.1 68.9 50.8 58.5

Table 2: Coreference results on CoNLL 2011 develop-
ment and test data, using predicted mentions. Rows de-
noted with * indicate runs using the fully automated Stan-
ford CoreNLP pipeline rather than the predicted annota-
tions provided with the CoNLL data. Given the relatively
close results, we ran the Mann-Whitney U test for this
table; values with the + superscript are significant with
p < 0.05.

(Table 2). We ran NECO and the baseline in two set-
tings: in the first, we use the standard predicted an-
notations (for POS, parses, NER, and speaker tags)
provided with the CoNLL data, and in the second,
we use the automated Stanford CoreNLP pipeline
to predict this information. On both the develop-
ment and test sets, we gain about 1 point in MUC
F1 as well as a smaller improvement in B3. Closer
inspection indicates that our system increases pre-
cision primarily due to mention pruning and NEL
constraints. Due to the differences in mention anno-
tation guidelines between ACE and CoNLL, perfor-
mance on ACE benefits more from improved men-
tion detection from NEL. Moreover, the ACE cor-

pus is all newswire text, which contains more enti-
ties that can benefit from linking. CoNLL, on the
other hand, contains a wider variety of texts, some
of which do not mention many named entities in
Wikipedia.

To examine the performance of our system on the
different domains covered by the CoNLL data, we
also test our system on each domain separately (Ta-
ble 3). We found NEL provided the biggest im-
provement for the news domains, broadcast news
(BN) and newswire (NW). These domains espe-
cially benefit from the improved mention detection
and pruning provided by NEL, and strong linking
benefitted both precision and recall in these do-
mains. We found that the magazine (MZ) section
of the corpus benefited the least from NEL, as there
were relatively few entities that our NEL systems
were able to connect to Wikipedia.

5.2 Coreference Results with Gold Linking

Some of the errors introduced in our system are due
to incorrect or incomplete links discovered by the
automatic linking system. To assess the effect of
NEL performance on NECO, we tested on a por-
tion of ACE-NWIRE dataset for which we hand-
labeled correct links for the gold and predicted men-
tions. “NECO + Gold NEL” denotes a version of our
system which uses gold links instead of those pre-
dicted by NEL. As shown in Table 4, gold linking
significantly improves the performance of our sys-
tem across all measures. This suggests that further
work to improve automatic NEL may have substan-
tial reward.

Gold linking improves precision for two main rea-
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Method MUC B3 Pairwise
P R F1 P R F1 P R F1

Gold Mentions
NECO + Gold NEL 85.8 75.5 80.3 91.4 81.2 86.0 89.1 68.0 77.1
NECO 84.6 74.0 78.9 90.5 80.4 85.2 83.9 66.0 73.9
Stanford Sieves 84.5 72.2 77.8 89.9 77.7 83.4 89.9 57.3 68.1

Predicted Mentions
NECO + Gold NEL 56.4 58.8 57.5 78.2 78.3 78.3 68.0 54.3 60.4
NECO 51.3 53.5 52.4 76.5 76.4 76.5 61.2 45.6 52.2
Stanford Sieves 43.9 46.4 45.1 74.4 74.2 74.3 51.3 36.1 42.4

Table 4: Coreference results on ACE-NWIRE-NEL with gold and predicted mentions and gold or automatic linking.

Method MUC B3 Pairwise
P R F1 P R F1 P R F1

NECO 85.0 76.6 80.6 87.6 76.4 81.6 79.3 56.1 65.8
Stanford Sieves 84.6 75.1 79.6 87.3 74.1 80.2 79.4 50.1 61.4
Haghighi and Klein (2009) 77.0 75.9 76.5 79.4 74.5 76.9 66.9 49.2 56.7
Poon and Domingos (2008) 71.3 70.5 70.9 - - - 62.6 38.9 48.0
Finkel and Manning (2008) 78.7 58.5 67.1 86.8 65.2 74.5 76.1 44.2 55.9

Table 5: Coreference results on ACE-NWIRE with gold mentions and automatic linking.

sons. First, it reduces the coreference errors caused
by incorrect NEL links. For instance, gold link-
ing replaces the erroneous link generated by our
NEL systems for “Nasser al-Kidwa” to the correct
Wikipedia entity. As another example, two men-
tions of “Rutgers” will not be merged if one links
to the university and the other links to their football
team. Second, gold linking leads to better mention
detection and better linked mentions. For instance,
under gold linking, the whole mention, “The gover-
nor of Alaska, Sarah Palin,” is linked to the politi-
cian, while automatic linking systems only link the
substring containing her name, “Sarah Palin.” Still,
gold NEL cannot compensate for all coreference er-
rors in cases of generic or unlinked entities.

5.3 Coreference Results with Gold Mentions

Many of the previous papers evaluate coreference
resolution assuming gold mentions so we also run
under that condition (Table 5) using ACE-
NWIRE data. As the table shows, with gold mentions
our system outperforms Haghighi and Klein (2009),
Poon and Domingos (2008), Finkel and Man-
ning (2008) and the Stanford sieve algorithm across
all metrics. Our method shows a relatively smaller

gain in precision, because this condition adds no
benefit to our technique of using NEL information
for pruning mentions.

5.4 Improving Named Entity Linking

While our previous experiments show that named-
entity linking can improve coreference resolution,
we now address the question of whether coreference
techniques can help NEL. We compare NECO with
a baseline ensemble4 composed of GLOW (Ratinov
et al., 2011) and WikipediaMiner (Milne and Witten,
2008) on our ACE-NWIRE-NEL dataset (Table
6). Our system gains about 8% in absolute recall
and 5% in absolute precision. For instance, our sys-
tem correctly adds links from “Bullock” to the en-
tity Sandra Bullock because coreference reso-
lution merges two mentions. In another example, it
correctly links “company” to Nokia. Overall, there
is a 21% relative reduction in F1 error.

4We take the union of all the links returned by GLOW and
WikipediaMiner, but if they link a mention to two different en-
tities, we use only the output of WikipediaMiner.
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Method F1 Precision Recall
NECO 70.6 72.0 69.2
Baseline NEL 64.4 67.4 61.7

Table 6: NEL performance of our system and the ensem-
ble baseline linker on ACE-NWIRE-NEL.

5.5 Error Analysis

We analyzed 90 precision and recall errors and
present our findings in Table 7. Spurious mentions
accounted for the majority of non-semantic errors.
Despite the improvements that come from NEL, a
large portion of coreference errors can still be at-
tributed to incomplete semantic information, includ-
ing precision errors caused by incorrect linking. For
instance, the mention “Disney” sometimes refers to
the company, and other times refers to the amuse-
ment park; however, the NEL systems we used had
difficulty disambiguating these cases, and NECO of-
ten incorrectly merges such mentions. Overly gen-
eral fine-grained attributes caused precision errors in
cases where many proper noun mentions were po-
tential antecedents for a common noun. Although
attributes such as country are useful for resolving a
generic “country” mention, this information is insuf-
ficient when two distinct mentions such as “China”
and “Russia” both have the country attribute.

However, many recall errors are also caused by
the lack of fine-grained attributes. Finding the ideal
set of fine-grained attributes remains an open prob-
lem.

6 Related Work

Coreference resolution has a fifty year history which
defies brief summarization; see Ng (2010) for a
recent survey. Section 2.1 described the Stanford
multi-pass sieve algorithm, which is the foundation
for NECO.

Earlier coreference resolution systems used shal-
low semantics and pioneered knowledge extraction
from online encyclopedias (Ponzetto and Strube,
2006; Daumé III and Marcu, 2005; Ng, 2007). Some
recent work shows improvement in coreference res-
olution by incorporating semantic information from
Web-scale structured knowledge bases. Haghighi
and Klein (2009) use a rule-based system to extract
fine-grained attributes for mentions by analyzing

precise constructs (e.g., appositives) in Wikipedia
articles. Subsequently, Haghighi and Klein (2010)
used a generative approach to learn entity types from
an initial list of unambiguous mention types. Bansal
and Klein (2012) use statistical analysis of Web n-
gram features including lexical relations.

Rahman and Ng (2011) use YAGO to extract type
relations for all mentions. These methods incor-
porate knowledge about all possible meanings of a
mention. If a mention has multiple meanings, ex-
traneous information might be associated with it.
Zheng et al. (2013) use a ranked list of candidate en-
tities for each mention and maintain the ranked list
when mentions are merged. Unlike previous work,
our method relies on NEL systems to disambiguate
possible meanings of a mention and capture high-
precision semantic knowledge from Wikipedia cate-
gories and Freebase notable types.

Ratinov and Roth (2012) investigated using NEL
to improve coreference resolution, but did not con-
sider a joint approach. They extracted attributes
from Wikipedia categories and used them as fea-
tures in a learned mention-pair model, but did not
do mention detection. Unfortunately, it is difficult
to compare directly to the results of both systems,
since they reported results on portions of ACE and
CoNLL datasets using gold mentions. However,
our approach provides independent evidence for the
benefit of NEL, and joint modeling in particular,
since it outperforms the state-of-the-art Stanford
sieve system (winner of the CoNLL 2011 shared
task (Pradhan et al., 2011)) and other recent com-
parable approaches on benchmark datasets.

Our work also builds on a long trajectory of
work in named entity resolution stemming from
SemTag (Dill et al., 2003). Section 2.2 discussed
GLOW and WikipediaMiner (Ratinov et al., 2011;
Milne and Witten, 2008). Kulkarni et al. (2009)
present an elegant collective disambiguation model,
but do not exploit the syntactic nuances gleaned by
within-document coreference resolution. Hachey et
al. (2013) provide an insightful summary and evalu-
ation of different approaches to NEL.

7 Conclusions

Observing that existing coreference resolution and
named-entity linking have complementary strengths
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Error Type Percentage Example
Extra mentions 31.1 The other thing Paula really important is that they talk a lot about the

fact ...
Pronoun 27.7 However , [all 3 women gymnasts , taking part in the internationals for

the first time], performed well , because they had strong events and their
movements had difficulty .

Contextual
semantic

16.6 [The Chinese side] hopes that each party concerned continues to make
constructive efforts to ...Considering the requirements of the Korean side
, ... the Chinese government decided to ...

NEL semantic 13.3 The most important thing about Disney is that it is a global brand. ... The
subway to Disney has already been constructed.

Attributes 11.1 The Hong Kong government turned over to Disney Corporation [200
hectares of land ...]. ... this area has become a prohibited zone in Hong
Kong.

Table 7: Examples of different error categories and the relative frequency of each. For every example, the mention to
be resolved is underlined, and the correct antecedent is italicized. For precision errors, the wrongly merged mention
is bolded. For recall errors, the missed mention is surrounded by [brackets].

and weaknesses, we present a joint approach. We
introduce NECO, a novel algorithm which solves
the problems jointly, demonstrating improved per-
formance on both tasks.

We envision several ways to improve the joint
model. While the current implementation of NECO

only introduces NEL once, we could also integrate
predictions with different levels of confidence into
different sieves. It would be interesting to more
tightly integrate the NEL system so it operates on
clusters rather than individual mentions — after
each sieve merges an unlinked cluster, the algorithm
would retry NEL with the new context information.
NECO uses a relatively modest number of Freebase
attributes. While using more semantic knowledge
holds the promise of increased recall, the challenge
is maintaining precision. Finally, we would also like
to explore the extent to which a joint probabilistic
model (e.g., (Durrett and Klein, 2013)) might be
used to learn how to best make this tradeoff.
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Abstract

Interpreting anaphoric shell nouns
(ASNs) such as this issue and this fact
is essential to understanding virtually
any substantial natural language text.
One obstacle in developing methods
for automatically interpreting ASNs is
the lack of annotated data. We tackle
this challenge by exploiting cataphoric
shell nouns (CSNs) whose construction
makes them particularly easy to interpret
(e.g., the fact that X). We propose an ap-
proach that uses automatically extracted
antecedents of CSNs as training data to
interpret ASNs. We achieve precisions
in the range of 0.35 (baseline = 0.21) to
0.72 (baseline = 0.44), depending upon
the shell noun.

1 Introduction

Anaphors such as this fact and this issue encapsulate
complex abstract entities such as propositions, facts,
and events. An example is shown below.

(1) Here is another bit of advice: Environmental
Defense, a national advocacy group, notes that
“Mowing the lawn with a gas mower produces
as much pollution in half an hour as driving a
car 172 miles.” This fact may help to explain
the recent surge in the sales of the good old-
fashioned push mowers or the battery-powered
mowers.

Here, the anaphor this fact is interpreted with the
help of the clausal antecedent marked in bold. The
antecedent here is complex because it involves a

number of entities and events (e.g., mowing the
lawn, a gas mower) and relationships between them,
and is abstract because the antecedent itself is not a
purely physical entity.

The distinguishing property of these anaphors is
that they contain semantically rich abstract nouns
(e.g., fact in (1)) which characterize and label their
corresponding antecedents. Linguists and philoso-
phers have studied such abstract nouns for decades
(Vendler, 1968; Halliday and Hasan, 1976; Francis,
1986; Ivanic, 1991; Asher, 1993). Our work is in-
spired by one such study, namely that of Schmid
(2000). Following Schmid, we refer to these abstract
nouns as shell nouns, as they serve as conceptual
shells for complex chunks of information. Accord-
ingly, we refer to the anaphoric occurrences of shell
nouns (e.g., this fact in (1)) as anaphoric shell nouns
(ASNs).

An important reason for studying ASNs is their
ubiquity in all kinds of text. Schmid (2000) ob-
served that shell nouns such as fact, idea, point, and
problem were among the 100 most frequently oc-
curring nouns in a corpus of 225 million words of
British English. Moreover, ASNs can play several
roles in organizing a discourse such as encapsulation
of complex information, cohesion, and topic bound-
ary marking. So correct interpretation of ASNs can
be an important step for correct interpretation of a
discourse, and in a number of NLP applications such
as text summarization, information extraction, and
non-factoid question answering.

Despite their importance, ASNs have not received
much attention in Computational Linguistics, and
research in this field remains in its earliest stages. At
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present, the major obstacle is that there is very little
annotated data available that could be used to train a
supervised machine learning system for robustly in-
terpreting these anaphors, and manual annotation is
an expensive and time-consuming task.

We tackle this challenge by exploiting a category
of examples, as shown in (2), whose construction is
particularly easy to interpret.

(2) Congress has focused almost solely on the fact
that special education is expensive – and that
it takes away money from regular education.

Here, in contrast with (1), the fact is not anaphoric
in the traditional sense, but is an easy case of a
forward-looking anaphor — a cataphor. While the
resolution process of this fact in (1) is quite chal-
lenging as it requires the use of semantics and world
knowledge, it is fairly easy to interpret the fact in
(2) based on the syntactic structure alone. We refer
to these easy-to-interpret cataphoric occurrences of
shell nouns as cataphoric shell nouns (CSNs). The
interpretation of both ASNs and CSNs will be re-
ferred to as antecedent.1 The antecedent of the fact
in (2) is given in the post-nominal that clause. We
use the term shell concept to refer to the general no-
tion of a shell noun, i.e., the semantic type of the
antecedent. For example, the notion of an issue is an
important problem which requires a solution.

In this work, we propose an approach to interpret
ASNs that exploits unlabelled but easy-to-interpret
CSN examples to extract characteristic features as-
sociated with the antecedent of different shell con-
cepts. We evaluate our approach using crowdsourc-
ing. Our results show that these unlabelled CSN ex-
amples provide useful linguistic properties that help
in interpreting ASNs.

2 Related work

The resolution of anaphors to non-nominal an-
tecedents has been well analyzed taking discourse
structure and semantic types into account (Web-
ber, 1991; Passonneau, 1989; Asher, 1993). Most
work in machine anaphora resolution, however,
is restricted to anaphora that involve nominal an-
tecedents only (Poesio et al., 2011).

1Sadly, the more-logical term for the interpretation of a
CSN, succedent, does not actually exist.

There are some notable exceptions which have
tackled the challenge of interpreting non-nominal
antecedents (Eckert and Strube, 2000; Strube and
Müller, 2003; Byron, 2004; Müller, 2008). These
approaches are limited as they either rely heavily
on domain-specific syntactic and semantic annota-
tion or prepossessing, or mark only verbal proxies
for non-nominal antecedents.

Recently, Kolhatkar and Hirst (2012) presented
a machine-learning based resolution system for this
issue anaphora, identifying full syntactic phrases as
antecedents. Although they achieved promising re-
sults, their approach was limited in two respects.
First, it focused on only one type of shell noun
anaphora (issue anaphora). Second, their training
data was restricted to MEDLINE abstracts in which
this issue is used in a rather systematic way. Further-
more, their work is based on manually labelled ASN
antecedents, whereas we use automatically identi-
fied CSN antecedents, which we interpret as explic-
itly expressed antecedents in comparison to the more
implicitly expressed ASN antecedents.

Using explicitly expressed structure in the text
to identify implicit structure is not new. The same
idea has been applied before in computational lin-
guistics. Marcu and Echihabi (2002) identified im-
plicit discourse relations using explicit ones. Mark-
ert and Nissim (2005) used Hearst’s (1992) explicit
patterns to learn lexical semantic relations for NP-
coreference and other-anaphora resolution from the
web. Although our work focuses on a different topic,
the methodology is in the same vein.

3 Hypothesis of this work

The hypothesis of this work is that CSN antecedents
and ASN antecedents share some linguistic proper-
ties and hence linguistic knowledge encoded in CSN
antecedents will help in interpreting ASNs. Accord-
ingly, we examine which features present in CSN
antecedents are relevant in interpreting ASNs.

The motivation and intuition behind this hypoth-
esis is as follows. The antecedents of both ASNs
and CSNs represent the corresponding shell con-
cept. So are there any characteristic features asso-
ciated with this shell concept? Do speakers of En-
glish follow certain patterns of syntactic shape or
words, for instance, when they state facts, decisions,
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Figure 1: Overview of our approach

or issues? There is an abundance of data for CSN
antecedents and if we are able to capture particu-
lar linguistic characteristic features associated with
a shell concept using this data, we can use this in-
formation to interpret ASNs. For instance, exam-
ple (2) demonstrates characteristic properties of an-
tecedents of the shell noun fact including that (a)
they are propositions and are generally expressed
with clauses or sentences rather than noun phrases,
and (b) they are generally expressed in the present
tense. Observe that these properties also hold for
the antecedent of this fact in example (1).

We test our hypothesis by building machine learn-
ing models that are trained on automatically ex-
tracted CSN antecedents and then applying these
models to recover ASN antecedents. Figure 1 shows
an overview of our methodology.

4 Background

Formal definition Shell-nounhood is a functional
notion; it is defined by the use of an abstract noun
rather than the inherent properties of the noun itself
(Schmid, 2000). An abstract noun is a shell noun
when the speaker decides to use it as a shell noun.

Shell noun categorization Schmid (2000) gives
a list of 670 English nouns which are frequently
used as shell nouns. He divides them into six
broad semantic classes: factual, linguistic, mental,
modal, eventive, and circumstantial. Table 1 shows
this classification, along with example shell nouns
for each category. For this work, we selected six
frequently occurring shell nouns covering four of
Schmid’s six classes: fact and reason from factual,
issue and decision from mental, question from lin-
guistic, and possibility from modal. These shell
nouns tend to have antecedents that lie within a sin-
gle sentence. We excluded eventive and circumstan-

Class Description Examples

factual states of affairs fact, reason
linguistic linguistic acts question
mental ideas issue, decision
modal judgements possibility
eventive events act, reaction
circumstantial situations situation, way

Table 1: Schmid’s classification of shell nouns. The
nouns given in the Example column tend to occur fre-
quently with the respective class. The shell nouns used in
this work are shown in boldface.

Pattern Example

N-to Several people at the group said the deci-
sion to write the letters was not controver-
sial internally.

N-be-to The principal reason is to create a repre-
sentative government rather than to select
the most talented person.

N-that Mr. Shoval left open the possibility that
Israel would move into other West Bank
cities.

N-be-that The simple and reassuring fact is that a
future generation of leaders is seeking new
challenges during challenging times.

N-wh There is now some question whether the
country was ever really in a recession.

N-be-wh Of course, the central, and probably in-
soluble, issue is whether animal testing is
cruel.

Table 2: Easy-to-interpret CSN patterns given by Schmid
(2000). In the Example column, the patterns are marked
in boldface and the antecedents are marked in italics.

tial classes because the shell nouns in these classes
tend to have rather unclear and long antecedents.2

Shell noun patterns Schmid (2000) also provides
a number of lexico-grammatical patterns for shell
nouns. In Section 1, we noted two such patterns:
this-N (this fact in example (1)) and N-that (fact that
in example (2)). We also noted that CSNs with pat-
tern N-that are fairly easy to interpret compared to
the ASN pattern this-N. Table 2 shows some other
easy-to-interpret CSN patterns given by Schmid.
Generally, for all these patterns, the antecedent is

2These observations are based on an exploratory pilot anno-
tation we carried out on sample data of 150 ASN instances.
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quite easy to extract with a few predefined rules.

Shell antecedent properties Antecedents of
CSNs and ASNs share some properties while they
are distinguished by others. The distinguishing
property is that CSNs, by their construction, have
their antecedents in the same sentence, as shown
in example (2). On the other hand, ASNs can
have long-distance as well as short-distance an-
tecedents.3 The common properties are as follows.
First, antecedents of both ASNs and CSNs represent
the corresponding shell concept, e.g., the notion
of a fact or an issue. Second, in both cases, the
antecedents are complex abstract entities, which
involve a number of entities and relationships
between them. Finally, in both cases, there is no
one-to-one correspondence between the syntactic
type of an antecedent and semantic type of its
referent (Webber, 1991). For instance, a semantic
type such as fact can be expressed with different
syntactic shapes such as a clause, a verb phrase, or
a complex sentence. Conversely, a syntactic shape,
such as a clause, can function as several semantic
types, including fact, proposition, and event.

5 Training phase

As shown in Figure 1, the goal of the training phase
is to build training data from CSNs and their an-
tecedents and train models which can be used for
resolving ASNs.

5.1 The CSN corpus

We automatically constructed a corpus, a subset of
the New York times (NYT) corpus4, which contains
211,722 sentences following CSN patterns from Ta-
ble 2. We considered part-of-speech information5

while looking for the patterns. For instance, in-
stead of the pattern N-that, we actually looked for
{shell noun NN that IN}.

3In our annotated sample data, we observed ASN an-
tecedents as close as the same sentence and as far as 7 sentences
away from the anaphor.

4http://www.ldc.upenn.edu/Catalog/

catalogEntry.jsp?catalogId=LDC2008T19
5http://nlp.stanford.edu/software/tagger.

shtml

5.2 Antecedent extractor for CSNs

The goal of the antecedent extractor is to create auto-
matically labelled CSN antecedent data. Recall that
antecedents of CSNs can be extracted using simple
predefined rules that are based on the syntactic struc-
ture alone. For instance, the antecedent extraction
rule for example (2) would be: if the example fol-
lows the pattern fact-that, extract the post-nominal
that clause as the antecedent. To come up with a list
of such extraction rules, we systematically analyzed
a sample of examples (about 20 examples) of each
pattern for each shell noun. Table 3 summarizes the
resulting antecedent extraction rules.

The actual antecedent extraction works as fol-
lows. First, we parsed the examples from the CSN
corpus using the Stanford parser.6 Then for each ex-
ample, we applied rules from Table 3 depending on
the shell noun and the pattern it follows to extract
an appropriate syntactic constituent as the CSN an-
tecedent. For instance, for the noun fact following
the N-that pattern, as in example (2), we first looked
for the NP constituent containing the shell noun fact,
and then extracted the sentential constituent follow-
ing the NP constituent as the CSN antecedent. Al-
though, in most of the cases, the antecedent is given
in the post-nominal wh, that, or infinitive clauses,
sometimes it is not present in the immediately fol-
lowing clause but is given only as a predicate, as
shown in (3).

(3) The primary reason that the archdiocese cannot
pay teachers more is that its students cannot af-
ford higher tuition.

In such cases, we looked for the pattern (VP (VB
be verb) X) in the right sibling of the NP contain-
ing the pattern shell noun-that and extracted X as
the CSN antecedent.

Two contradictory goals need to be achieved
while extracting antecedents of CSNs. The first re-
quires only considering CSNs with high-confidence
patterns, whereas the second requires considering as
many patterns as possible to allow a wide variety of
antecedent examples with different linguistic prop-
erties (e.g., syntactic shape). Our antecedent extrac-
tor tries to find a balance between the two goals.

6http://nlp.stanford.edu/software/lex-parser.

shtml
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fact reason issue decision question possibility

N-to – – – inf clause predicate inf clause
N-be-to – inf clause inf clause inf clause inf /wh clause inf clause
N-that that clause predicate predicate – predicate that clause
N-be-that that clause that clause that clause that clause that clause that clause
N-wh – predicate wh clause wh clause wh clause –
N-be-wh wh clause wh clause wh clause wh clause wh clause wh clause

Table 3: Content extraction patterns for CSNs. Patterns in boldface are the prominent patterns for the respective shell
noun. inf clause = infinitive clause. Discarded patterns are denoted by –.

To address the first goal, we filter examples fol-
lowing noisy patterns, i.e., the patterns that do not
unambiguously encode antecedents of that CSN. For
instance, the pattern N-to is a highly preferred pat-
tern for decision, as shown in (4). The antecedent
extraction rule here is relatively simple: if the exam-
ple follows the pattern decision-to, extract the post-
nominal infinitive clause as the correct antecedent.

(4) President Jacques Chirac’s arrogant decision to
defy the world and go ahead with two nuclear
bomb tests in Polynesia deserves contempt.

But the same pattern is noisy for reason. In (5), for
example, the actual reason is not given anywhere in
the sentence. So we discard the examples following
the pattern N-to for reason.

(5) Investors have had reason to worry about stocks.

We also discard examples with negative determiners,
as in (6), because in such cases, the extraction rules
do not precisely give the antecedent of the given
CSN.

(6) He was careful to repeat anew that he had made
no decision to go to war.

For the N-wh pattern, we exclude certain wh
words for certain nouns. For example, we exclude
the wh word which for question as the Penn Tree-
bank tagset7 does not distinguish between which as a
relative pronoun and as a question. We are interested
in the latter but not the former. Other discarded wh
words include which and when for fact; all wh words
except when and why for reason, all wh words except
how and whether for issue; which, whom, when, and
why for decision; which and when for question; and
all wh words for possibility.

7The Stanford tagger we employ uses the Penn Treebank
tagset (Marcus et al., 1993).

To address the second goal of allowing a wide
variety of antecedent examples, we try to include
as many patterns as possible for each shell noun,
as shown in Table 3. For instance, the patterns
question-to and question-be-to will have infinitive
clauses as antecedents (marked as VP or S+VP
by the parser), whereas for the examples follow-
ing patterns question-wh and question-be-wh the
antecedent will be in the wh clauses (marked as
SBAR). For the pattern question-that, the antecedent
will be in the predicate (similar to example (3)),
which can be a prepositional phrase, a noun phrase
or a clause.

5.3 Models for CSN antecedents
The antecedent extractor gives labels for each in-
stance in the CSN corpus. Using this labelled data,
we train machine learning ranking models for dif-
ferent shell concepts that capture the characteristic
features associated with that shell concept. The fol-
lowing sections describe each step of our ranking
models in detail.

5.3.1 Candidate extraction
The first step is to extract the set of eligible an-

tecedent candidates C = {C1,C2, ...,Ck} for the CSN
instance ai. To train a machine learning model we
need positive and negative examples. We already
have positive examples for antecedent candidates —
the true antecedents given by the antecedent extrac-
tor. But we also need negative examples of an-
tecedent candidates. By their construction, CSNs
have their antecedents in the same sentence. So
we extract all syntactic constituents of this sentence,
given by the Stanford parser. All the syntactic con-
stituents, except the true antecedent, are considered
as negative examples. With this candidate extraction
method, we end up with many more negative exam-
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ples than positive examples, but that is exactly what
we expect with ASN antecedent candidates, i.e., the
test data on which we will be applying our models.

5.3.2 Features
Although our problem is similar to anaphora res-

olution, we cannot make use of the usual anaphora
or coreference resolution features such as agreement
or string matching (Soon et al., 2001) because of the
nature of ASN and CSN antecedents. We came up
with a set of features based on the properties that
were common in both ASN and CSN antecedents,
according to our judgement.

Syntactic type of the candidate (S) We observed
that each shell noun prefers specific CSN patterns
and each pattern involves a particular syntactic type.
For instance, decision prefers the pattern N-to and
consequently realizes as its antecedents more verb
phrases than, for example, noun phrases. We employ
two versions of syntactic type: fine-grained syntac-
tic type given by the Stanford parser (e.g., NP-TMP,
RRC) and coarse-grained syntactic type (e.g., NP,
VP, S, PP) in which we consider ten basic syntactic
categories and map all fine-grained syntactic types
to these categories.

Context features (C) Context features allow our
models to learn about the contextual clues that signal
the antecedent. This class contains two features: (a)
coarse-grained syntactic type of left and right sib-
lings of the candidate, and (b) part-of-speech tag of
the preceding and following words of the candidate.

Embedding level features (E) These features
(Müller, 2008) encode the embedding level of the
candidate within its sentence. We consider two em-
bedding level features: top embedding level and im-
mediate embedding level. Top embedding level is
the level of embedding of the given candidate with
respect to its top clause (the root node), and immedi-
ate embedding level is the level of embedding with
respect to its immediate clause (the closest ancestor
of type S or SBAR). The intuition behind this fea-
ture is that if the candidate is deep in the parse tree,
it is possibly not salient enough to be an antecedent.
As we consider all syntactic constituents as poten-
tial candidates, there are many that clearly cannot be
antecedents. This feature will allow us to get rid of

this noise.

Subordinating conjunctions (SC) As we can see
in Table 2, subordinating conjunctions are common
with CSN and ASN antecedents. Vendler (1968)
points out that the shell noun fact prefers a that-
clause, and question and issue prefer a wh-question
clause. We observed that the pattern because X is
common with reason. The subordinating conjunc-
tion feature encodes these preferences for different
shell nouns. The feature checks whether the candi-
date follows the pattern SBAR → (IN sconj) (S ...),
where sconj is a subordinating conjunction.

Verb features (V) A prominent property of CSN
and ASN antecedents is that they tend to contain
verbs. All examples from Table 2, for example, con-
tain verbs. Moreover, certain shell nouns have tense
and aspect preferences. For instance, for shell noun
fact, lexical verbs in past and present tenses predom-
inate (Schmid, 2000), whereas modal forms are ex-
tremely common for possibility. We use three verb
features that capture this idea: (a) presence of verbs
in general, (b) whether the main verb is finite or non-
finite, and (c) presence of modals.

Length features (L) The intuition behind these
features is that CSN and ASN antecedents tend to be
long, especially for nouns such as fact. We consider
two length features: (a) length of the candidate in
words, and (b) relative length of the candidate with
respect to the sentence containing the antecedent.

Lexical features (LX) Our extractor gives us a
large number of antecedent examples for each shell
noun. A natural question is whether certain words
tend to occur more frequently in the antecedent than
non-antecedent parts of the sentence. To deal with
this question, we extracted all antecedent unigrams
(i.e., unigrams occurring in antecedent part of the
sentence) and non-antecedent unigrams (i.e., uni-
grams occurring in non-antecedent parts of the sen-
tence) for each shell noun. Then for all antecedent
unigrams for a particular shell noun, we computed
term goodness in terms of information gain (Yang
and Pedersen, 1997) and considered the first 50
highly ranked unigrams as the lexical features for
that noun. Note that, in contrast with the other fea-
tures, these lexical features are tailored for each shell
noun and are extracted a priori.
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5.3.3 Candidate ranking models
Now that we have the set of candidate antecedents

and a set of features, we are ready to train CSN an-
tecedent models. We follow the candidate-ranking
models proposed by Denis and Baldridge (2008) be-
cause they allow us to evaluate how good an an-
tecedent candidate is relative to all other candidates.

For every shell noun, we gather automatically ex-
tracted antecedent data given by the extractor for all
instances of that shell noun. Then for each instance
in this data, we extract the set C as explained in
Section 5.3.1. For each candidate Ci ∈ C, we ex-
tract a feature vector to create a corresponding set of
feature vectors, C f = {C f 1,C f 2, ...,C f k}. For every
CSN ai and a set of feature vectors corresponding
to its eligible candidates C f = {C f 1,C f 2, ...,C f k},
we create training examples (ai,C f i,rank),∀C f i ∈
C f . The rank is 1 if Ci is same as the true an-
tecedent, i.e., the automatically extracted antecedent
for that CSN, otherwise the rank is 2. We use the
svm rank learn call of SVMrank (Joachims, 2002)
for training the candidate-ranking models.

6 Testing phase

In this phase, we use the learned candidate ranking
models to identify the antecedents of ASNs.

6.1 The ASN corpus

We started with about 450 instances for each of the
six selected shell nouns (2,700 total instances), con-
taining the pattern {this shell noun}. The instances
were extracted from the NYT. Each instance con-
tains three paragraphs from the corresponding NYT
article: the paragraph containing the ASN and two
preceding paragraphs as context. After automati-
cally removing duplicates and ASNs with a non-
abstract sense (e.g., this issue with a publication-
related sense), we were left with 2,323 instances.

6.2 Antecedent identification

Candidate extraction The search space of ASN
antecedents is quite large for two reasons: ASNs
tend to have long-distance as well as short-distance
antecedents, and there is no clear restriction on the
syntactic type of the antecedents. In the ASN cor-
pus, each sentence on average had 49.5 distinct syn-
tactic constituents given by the Stanford parser. If

we consider n preceding sentences, the sentence
containing the anaphor, and one following sentence8

as sources for antecedents, then the average num-
ber of antecedent candidates will be 49.5× (n + 2).
This is large compared to the search space of ordi-
nary nominal anaphora. In our previous work (Kol-
hatkar et al., 2013), we have developed methods that
identify the sentence containing the antecedent of
the ASN before identifying the precise antecedent.
In brief, given a set of a fixed number of sentences
around the sentence containing an ASN, these meth-
ods reliably identify the sentence containing the an-
tecedent. In this paper, we treat these methods as a
black box.

Given the sentence containing the antecedent,
we extract all syntactic constituents given by the
Stanford parser from that sentence as potential an-
tecedent candidates as for the training phase. In
the training phase, the antecedent is always con-
tained in the set of syntactic constituents given by
the Stanford parser because the extractor obtains the
appropriate antecedent using the syntactic informa-
tion. But in the testing phase, we cannot guarantee
that the true antecedent occurs in the extracted syn-
tactic constituents due to the parser’s errors. So for
robust candidate extraction, we extract all distinct
constituents from the 30-best parses instead of only
considering the best parse, which increases the aver-
age number of candidates from 49.5 to 55.2.

Feature extraction and candidate ranking
Given the antecedent candidates, feature extraction
and candidate ranking are essentially the same as
for the training phase, except of course we do not
know the true antecedent. Once we have the feature
vectors for each antecedent candidate, the appro-
priate trained model, i.e., the model trained for the
corresponding shell noun, is invoked and the can-
didates are ranked using the svm rank classify

call of SVMrank.

7 Evaluation

We evaluate the ranked candidates of ASN instances
using crowdsourcing.

8The ASN corpus contains a few cataphoric examples that
do not follow the standard patterns of the CSNs shown in Table
2, but actually refer to an antecedent in the following sentence
(e.g., Mr. Dukakis put this question to him: X).
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Interface We chose to use CrowdFlower9 as our
crowdsourcing interface because of its integrated
quality-control mechanism. For instance, it throws
gold questions randomly at the workers and the
workers who do not answer them correctly are not
allowed to continue.

We presented to the crowd evaluators the ASN
instances from the ASN corpus. Recall that each
ASN instance is made up of the paragraph contain-
ing the ASN and two preceding paragraphs as con-
text. We displayed the first 10 highly-ranked candi-
dates (ordered randomly) given by our testing phase
and asked the evaluators to choose the best answer
that represents the ASN antecedent. We encouraged
the evaluators to select None when they did not agree
with any of the displayed answers. We also asked
them how satisfied they were with the displayed an-
swers. We provided them with three options: unsat-
isfied, satisfied, and partially satisfied.

Our job contained 2,323 evaluation units. We
asked for 8 judgements per instance and paid 6
cents per evaluation unit. As we were interested
in the verdict of native speakers of English, we
limited the allowed demographic region to English-
speaking countries.

Results Among the 2,323 ASN instances, 96% of
them were labelled as satisfied, 3% as partially satis-
fied and 1% as unsatisfied. Only 2% of the instances
were labelled as None. As expected, evaluators were
unsatisfied or partially satisfied with the options of
these instances. These results suggest that our res-
olution models trained on automatically extracted
antecedents of CSNs bring the relevant candidates
of ASN antecedents to the top, i.e., within first 10
highly-ranked candidates. This itself is a positive re-
sult given the large search space of ASN antecedent
candidates (more than 55 candidates on average).

Among the evaluation units, more than half of the
evaluators agreed on an answer for 1,810 units. We
used these instances for further analysis.

To examine which CSN antecedent features are
relevant in identifying ASN antecedents, we carried
out ablation experiments with all feature class com-
binations. We compared the rankings given by our
ranker to the crowd’s answer using precision at n

9http://crowdflower.com/

(P@n).10 More specifically, we count the number of
instances where the crowd’s answers occur within
our ranker’s first n choices. P@n then is this count
divided by the total number of instances. Note that
P@1 is equivalent to the standard precision.

We compared our results against two baselines:
preceding sentence and chance. The preceding sen-
tence baseline chooses the previous sentence as the
correct antecedent. The chance baseline chooses a
candidate from a uniform random distribution over
the set of 10 top-ranked candidates.

The results are shown in Table 4. Although dif-
ferent feature combinations gave the best results for
different shell nouns, the features that occur fre-
quently in many best-performing combinations were
embedding level (E), lexical (LX), and subordinat-
ing conjunction (SC) features. The SC features were
particularly effective for issue and question, where
we expected patterns such as whether X.

Surprisingly, the syntactic type features (S) did
not show up very often in the best-performing fea-
ture combinations, suggesting that the ASN an-
tecedents had a greater variety of syntactic types
than what was available in our CSN training data.

The context features (C) did not appear in any of
the best-performing feature combinations. In fact,
they resulted in a sharp decline in the precision. For
instance, for question, adding the context features
to the best-performing combination {E,SC,V,L,LX}
resulted in a drop of 16 percentage points. This
result was not surprising because although the an-
tecedents of ASNs and CSNs share similar proper-
ties such as common words, we know that their con-
text is generally different.

We did not observe specific features associated
with Schmid’s semantic categories. An exception
was the E features which were particularly effective
for the factual nouns fact and reason: the results
with them alone gave high precision (0.68 for fact
and 0.72 for reason). That said, the E features were
present in most of the best-performing combinations
even for the shell nouns in other semantic categories.

10CrowdFlower gives us a unique answer for each instance,
which we take to be the crowd’s answer. During annotation, ev-
ery annotator is presented with a few gold questions randomly
and each annotator is assigned a trust score based on her per-
formance on these gold questions. The unique answer for an
instance is the answer with the highest sum of trusts.
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fact (43,000 train and 472 test instances)

Features P@1 P@2 P@3 P@4

{E,L,LX} .70∗ .85 .91 .94
{E,V,L,LX} .68∗ .86 .92 .95
{E,SC,L,LX} .66∗ .83 .92 .95
PSbaseline .40 – – –

reason (4,520 train and 443 test instances)

Features P@1 P@2 P@3 P@4

{E,V,L} .72∗ .86 .90 .93
{E,V} .72∗ .85 .90 .92
{E,SC,LX} .69∗ .84 .90 .94
PSbaseline .44 – – –

issue (3,000 train and 303 test instances)

Features P@1 P@2 P@3 P@4

{SC,L} .47∗ .59 .71 .78
{SC,L,LX} .46∗ .60 .70 .81
{S,E,SC,L,LX}.40∗ .61 .72 .81
PSbaseline .30 – – –

decision (42,332 train and 390 test instances)

Features P@1 P@2 P@3 P@4

{E,LX} .35∗ .53 .67 .76
{E,SC,LX} .30∗ .48 .65 .75
{E,SC,V,L,LX}.27 .44 .57 .69
PSbaseline .21 – – –

question (9,336 train and 440 test instances)

Features P@1 P@2 P@3 P@4

{E,SC,V,L,LX} .70∗ .82 .87 .90
{E,SC,LX} .68∗ .83 .88 .91
{E,SC,V,LX} .69∗ .80 .87 .91
PSbaseline .25 – – –

possibility (11,735 train and 278 test instances)

Features P@1 P@2 P@3 P@4

{SC,L,LX} .56∗ .75 .87 .92
{E,SC} .56∗ .76 .87 .91
{E,L,LX} .54∗ .76 .86 .91
PSbaseline .34 – – –

Table 4: Evaluation of our ranker for antecedents of six ASNs. For each noun we show the three best-performing
feature combinations. P@n is the precision at rank n (P@1 = standard precision). Boldface indicates the best in the
column. PSbaseline = preceding sentence baseline. The P@1 results significantly higher than PSbaseline are marked
with ∗(two-sample χ2 test: p < 0.05). The chance baseline results were 0.1, 0.2, 0.3, and 0.4 for P@1, P@2, P@3,
and P@4, respectively.

The only previous work with which our results
could be compared is that of Kolhatkar and Hirst
(2012). The work reports precision in the range
of 0.41 to 0.61 in resolving this issue anaphora in
the Medline domain. In our case, for this issue in-
stances from the NYT corpus, we achieved precision
in the range of 0.40 to 0.47. Furthermore, we ap-
plied our models to resolve this issue instances from
Kolhatkar and Hirst’s (2012) work.11 Even with
models trained on automatically labelled CSN an-
tecedents, we achieved similar results to Kolhatkar
and Hirst’s results: P@1 of 0.45, P@2 of 0.59, P@3
of 0.65, and P@4 of 0.67. These results show the
domain robustness of our methods with respect to
the shell noun issue. Recall that Kolhatkar and Hirst
(2012) looked at only very specific cases of this is-
sue and used manually annotated data (Section 2),
as opposed to the automatically extracted CSN an-
tecedent data we use.

11We thank an anonymous reviewer for suggesting this to us.

8 Discussion and conclusion

The goal of this paper was to examine to what ex-
tent CSNs help in interpreting ASNs. Based on the
evaluators’ satisfaction level and very few None re-
sponses, we conclude that our models trained on
CSN antecedents were able to bring the relevant
ASN antecedent candidates into the top 10 candi-
dates.

When we applied the models trained on CSN an-
tecedents to interpret ASNs, we achieved precision
in the range of 0.35 to 0.72. The precision results as
high as 0.72 for reason and 0.70 for fact and ques-
tion support our hypothesis that the linguistic knowl-
edge provided by CSN antecedents helps in identify-
ing the antecedents of ASNs. We observed different
behaviour for different nouns. The mental nouns is-
sue and decision in general were harder to interpret
than other shell nouns. The models trained on CSNs
achieved precisions of 0.35 for decision and 0.47 for
issue. So there is still much room for improvement.
That said, for the same nouns, the antecedents were
in the first four ranks about 76% to 81% of the times,
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suggesting that in future research, our models can be
used as base models to reduce the large search space
of ASN antecedent candidates.

We observed a wide range of performance for dif-
ferent shell nouns. One reason is that the size of the
training data was different for different shell nouns.
After excluding the noisy examples (Section 5.2),
there were about 43,000 training examples for fact,
but only about 3,000 for issue. In addition, a par-
ticular shell concept itself can be difficult, e.g., the
very idea of what counts as an issue is more fuzzy
than what counts as a fact.

One limitation of our approach is that it only
learns the properties that are present in CSN an-
tecedents. However, ASN antecedents have addi-
tional properties which are not always captured by
CSN antecedents. For instance, for the shell noun
decision, most of the training examples were infini-
tive phrases of the form to X. But antecedents of the
ASN decision were mostly court decisions and were
expressed with full sentences.

Moreover, although the models trained on CSN
antecedents are able to encode characteristic fea-
tures associated with the general shell concept, they
are unable to distinguish between two competing
candidates both containing the characteristic fea-
tures of that shell concept. For instance, our ap-
proach will not be able to handle the constructed ex-
amples in (7).

(7) The teacher erased the solutions before John had
time to copy them out, as he had momentarily
been distracted by a band playing outside.

a) This fact infuriated him, as the teacher al-
ways erased the board quickly and John sus-
pected it was just to punish anyone who was
lost in thought, even for a moment.

b) This fact infuriated the teacher, who had al-
ready told John several times to focus on
class work.

Here, both propositions possess properties of the
shell concept fact. Understanding the context of the
anaphor itself is crucial in correctly identifying the
fact in each case, which cannot be learnt from CSN
antecedents due to their specific context patterns.

A number of extensions are planned for this work.
First, we plan to use both kinds of data, CSN and
ASN antecedent data, which will give us a basis

for developing a better performing ASN resolver.
We also plan to incorporate contextual features (e.g.,
right-frontier rule (Webber, 1991) and context rank-
ing (Eckert and Strube, 2000)). Finally, we will ex-
amine whether a model trained for one shell noun
can be generalized to other shell nouns from the
same semantic category.
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Abstract

Nowadays supervised sequence labeling
models can reach competitive performance
on the task of Chinese word segmenta-
tion. However, the ability of these mod-
els is restricted by the availability of an-
notated data and the design of features.
We propose a scalable semi-supervised fea-
ture engineering approach. In contrast
to previous works using pre-defined task-
specific features with fixed values, we dy-
namically extract representations of label
distributions from both an in-domain cor-
pus and an out-of-domain corpus. We
update the representation values with a
semi-supervised approach. Experiments
on the benchmark datasets show that our
approach achieve good results and reach
an f-score of 0.961. The feature engineer-
ing approach proposed here is a general
iterative semi-supervised method and not
limited to the word segmentation task.

1 Introduction
Chinese is a language without natural word

delimiters. Therefore, Chinese Word Segmen-
tation (CWS) is an essential task required by
further language processing. Previous research
shows that sequence labeling models trained on
labeled data can reach competitive accuracy on
the CWS task, and supervised models are more
accurate than unsupervised models (Xue, 2003;
Low et al., 2005). However, the resource of man-
ually labeled training corpora is limited. There-
fore, semi-supervised learning has become one

∗Corresponding author

of the most natural forms of training for CWS.
Traditional semi-supervised methods focus on
adding new unlabeled instances to the training
set by a given criterion. The possible mislabeled
instances, which are introduced from the auto-
matically labeled raw data, can hurt the per-
formance and not easy to exclude by setting a
sound selecting criterion.

In this paper, we propose a simple and scal-
able semi-supervised strategy that works by pro-
viding semi-supervision at the level of represen-
tation. Previous works mainly assume that con-
text features are helpful to decide the potential
label of a character. However, when some of the
context features do not appear in the training
corpus, this assumption may fail. An example is
shown in table 1. Although the context of “水”
and “篮” is totally different, they share a homo-
geneous structure as “verb-noun”. Therefore. A
much better way is to map the context informa-
tion to a kind of representation. More precisely,
the mapping should let the similar contexts map
to similar representations, while let the distinct
contexts map to distinct representations.

吃水果 打篮球

Label B B
Character 吃 水 果 打 篮 球

Context C-1= 吃 C-1= 打
Features C0= 水 C0= 篮

C1= 果 C1= 球

Table 1: Example of the context of “水” in “吃水
果 (Eat fruits)” and the context of “篮” in “打篮球
(Play basketball)”

We use the label distribution information that

311



is extracted from the unlabeled corpus as this
representation to enhance the supervised model.
We add “pseudo-labels” by tagging the unla-
beled data with the trained model on the train-
ing corpus. These “pseudo-labels” are not accu-
rate enough. Therefore, we use the label distri-
bution, which is much more accurate.

To accurately calculate the precise label dis-
tribution, we use a framework similar to the co-
training algorithm to adjust the feature values
iteratively. Generally speaking, unlabeled data
can be classified as in-domain data and out-of-
domain data. In previous works these two kinds
of unlabeled data are used separately for differ-
ent purposes. In-domain data is mainly used to
solve the problem of data sparseness (Sun and
Xu, 2011). On the other hand, out-of domain
data is used for domain adaptation (Chang and
Han, 2010). In our work, we use in-domain and
out-of-domain data together to adjust the labels
of the unlabeled corpus.

We evaluate the performance of CWS on the
benchmark dataset of Peking University in the
second International Chinese Word Segmenta-
tion Bakeoff. Experiment results show that our
approach yields improvements compared with
the state-of-art systems. Even when the la-
beled data is insufficient, our methods can still
work better than traditional methods. Com-
pared to the baseline CWS model, which has
already achieved an f-score above 0.95, we fur-
ther reduce the error rate by 15%.

Our method is not limited to word segmen-
tation. It is also applicable to other problems
which can be solved by sequence labeling mod-
els. We also applied our method to the Chi-
nese Named Entity Recognition task, and also
achieved better results compared to traditional
methods.

The main contributions of our work are as fol-
lows:

• We proposed a general method to utilize
the label distribution given text contexts as
representations in a semi-supervised frame-
work. We let the co-training process ad-
just the representation values from label
distribution instead of using manually pre-

defined feature templates.

• Compared with previous work, our method
achieved a new state-of-art accuracy on the
CWS task as well as on the NER task.

The remaining part of this paper is organized
as follows. Section 2 describes the details of the
problem and our algorithm. Section 3 describes
the experiment and presents the results. Section
4 reviews the related work. Section 5 concludes
this paper.

2 System Architecture
2.1 Sequence Labeling

Nowadays the character-based sequence label-
ing approach is widely used for the Chinese word
segmentation problem. It was first proposed in
Xue (2003), which assigns each character a label
to indicate its position in the word. The most
prevalent tag set is the BMES tag set, which
uses 4 tags to carry word boundary information.
This tag set uses B, M, E and S to represent the
Beginning, the Middle, the End of a word and
a Single character forming a word respectively.
We use this tag set in our method. An example
of the “BMES” representation is shown in table
2.

Character: 我 爱 北 京 天 安 门

Tag: S S B E B M E

Table 2: An example for the “BMES” representa-
tion. The sentence is “我爱北京天安门” (I love Bei-
jing Tian-an-men square), which consists of 4 Chi-
nese words: “我” (I), “爱” (love), “北京” (Beijing),
and “天安门” (Tian-an-men square).

2.2 Unlabeled Data
Unlabeled data can be divided into in-domain

data and out-of-domain data. In previous works,
these two kinds of unlabeled data are used sep-
arately for different purposes. In-domain data
only solves the problem of data sparseness (Sun
and Xu, 2011). Out-of domain data is used
only for domain adaptation (Chang and Han,
2010). These two functionalities are not contra-
dictory but complementary. Our study shows
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that by correctly designing features and algo-
rithms, both in-domain unlabeled data and out-
of-domain unlabeled data can work together to
help enhancing the segmentation model. In our
algorithm, the dynamic features learned from
one corpus can be adjusted incrementally with
the dynamic features learned from the other cor-
pus.

As for the out-of-domain data, it will be even
better if the corpus is not limited to a specific
domain. We choose a Chinese encyclopedia cor-
pus which meets exactly this requirement. We
use the corpus to learn a large set of informative
features. In our experiment, two different views
of features on unlabeled data are considered:

Static Statistical Features (SSFs): These
features capture statistical information of char-
acters and character n-grams from the unlabeled
corpus. The values of these features are fixed
during the training process once the unlabeled
corpus is given.

Dynamic Statistical Features (DSFs):
These features capture label distribution infor-
mation from the unlabeled corpus given fixed
text contexts. As the training process proceeds,
the value of these features will change, since the
trained tagger at each training iteration may as-
sign different labels to the unlabeled data.

2.3 Framework
Suppose we have labeled data L, two unla-

beled corpora Ua and Ub (one is an in-domain
corpus and the other is an out-of-domain cor-
pus). Our algorithm is shown in Table 3.

During each iteration, we tag the unlabeled
corpus Ua using Tb to get pseudo-labels. Then
we extract features from the pseudo-labels. We
use the label distribution information as dy-
namic features. We add these features to the
training data to train a new tagger Ta. To adjust
the feature values, we extract features from one
corpus and then apply the statistics to the other
corpus. This is similar to the principle of co-
training (Yarowsky, 1995; Blum and Mitchell,
1998; Dasgupta et al., 2002). The difference is
that there are not different views of features, but
different kinds of unlabeled data. Detailed de-
scription of features is given in the next section.

Algorithm
Init:
Using baseline features only:
Train an initial tagger T0 based on L ()
Label Ua and Ub individually using T0

BEGIN LOOP:
Generate DSFs from tagged Ua

Augment L with DSFs to get La

Generate DSFs from tagged Ub

Augment L with DSFs to get Lb

Using baseline features, SSFs and DSFs:
Train new tagger Ta using La

Train new tagger Tb using Lb

Label Ua using Tb

Label Ub using Ta

LOOP until performance does not improve
RETURN the tagger which is trained with
in-domain features.

Table 3: Algorithm description

2.4 Features
2.4.1 Baseline Features

Our baseline feature templates include the
features described in previous works (Sun and
Xu, 2011; Sun et al., 2012). These features are
widely used in the CWS task. To be convenient,
for a character ci with context . . . ci−1cici+1 . . .,
its baseline features are listed below:

• Character uni-grams: ck (i− 3 < k < i+3)

• Character bi-grams: ckck+1 (i − 3 < k <
i + 2)

• Whether ck and ck+1 are identical (i − 2 <
k < i + 2)

• Whether ck and ck+2 are identical (i − 4 <
k < i + 2)

The last two feature templates are designed to
detect character reduplication, which is a mor-
phological phenomenon in Chinese language.
An example is “十全十美” (Perfect), which is
a Chinese idiom with structure “ABAC”.
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2.4.2 Static statistical features

Statistical features are statistics that distilled
from the large unlabeled corpus. They are
proved useful in the Chinese word segmenta-
tion task. We define Static Statistical Features
(SSFs) as features whose value do not change
during the training process. The SSFs in our
approach includes Mutual information, Punctu-
ation information and Accessor variety. Previ-
ous works have already explored the functions
of the three static statistics in the Chinese word
segmentation task, e.g. Feng et al. (2004); Sun
and Xu (2011). We mainly follow their defini-
tions while considering more details and giving
some modification.

Mutual information
Mutual information (MI) is a quantity that

measures the mutual dependence of two random
variables. Previous works showed that larger MI
of two strings claims higher probability that the
two strings should be combined. Therefore, MI
can show the tendency of two strings forming
one word. However, previous works mainly fo-
cused on the balanced case, i.e., the MI of strings
with the same length. In our study we find that,
in Chinese, there remains large amount of imbal-
anced cases, like a string with length 1 followed
by a string with length 2, and vice versa. We
further considered the MI of these string pairs
to capture more information.

Punctuation information
Punctuations can provide implicit labels for

the characters before and after them. The char-
acter after punctuations must be the first char-
acter of a word. The character before punctua-
tions must be the last character of a word. When
a string appears frequently after punctuations,
it tends to be the beginning of a word. The situ-
ation is similar when a string appears frequently
preceding punctuations. Besides, the probabil-
ity of a string appears in the corpus also affects
this tendency. Considering all these factors,
we propose “punctuation rate” (PR) to capture
this information. For a string with length len
and probability p in the corpus, we define the
left punctuation rate LPRlen as the number of
times the string appears after punctuations, di-

vided by p. Similarly, the right punctuation
rate RPRlen is defines as the number of times
it appears preceding punctuations divided by its
probability p. The length of string we consider
is from 1 to 4.

Accessor variety
Accessor variety (AV) is also known as letter

successor variety (LSV) (Harris, 1955; Hafer and
Weiss, 1974). If a string appears after or pre-
ceding many different characters, this may pro-
vide some information of the string itself. Pre-
vious work of Feng et al. (2004), Sun and Xu
(2011) used AV to represent this statistic. Sim-
ilar to punctuation rate, we also consider both
left AV and right AV. For a string s with length
l, we define the left accessor variety (LAV) as
the types of distinct characters preceding s in
the corpus, and the right accessor variety (RAV)
as the types of distinct characters after s in the
corpus. The length of string we consider is also
from 1 to 4.

2.4.3 Dynamic statistical features
The unlabeled corpus lacks precise labels. We

can use the trained tagger to give the unla-
beled data “pseudo-labels”. These labels can-
not guarantee an acceptable precision. How-
ever, the label distribution will not be largely
affected by small mistakes. Using the label dis-
tribution information is more accurate than us-
ing the pseudo-labels directly.

Based on this assumption, we propose “dy-
namic statistical features” (DSFs). The DSFs
are intended to capture label distribution infor-
mation given a text context. The word “Dy-
namic” is in accordance with the fact that these
feature values will change during the training
process.

We give a formal description of DSFs. Sup-
pose there are K labels in our task. For example,
K = 4 if we take BMES labeling method. We
define the whole character sequence with length
n as X = (x1, x2 · · ·xj · · ·xn). Given a text con-
text Ci, where i is current character position,
the DSFs can be represented as a list,

DSF (Ci) = (DSF (Ci)1, · · · , DSF (Ci)K)
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Each element in the list represents the proba-
bility of the corresponding label in the distribu-
tion.

For convenience, we further define function
‘count(condition)’ as the total number of times
a ‘condition’ is true in the unlabeled corpus.
For example, count (current=‘a’) represents the
times the current character equals ‘a’, which is
exactly the number of times character ‘a’ ap-
pears in the unlabeled corpus.

According to different types of text context
Ci, we can divide DSFs into 3 types:

1.Basic DSF
For Basic DSF of Ci, we define D(Ci):

D(Ci) = (D(Ci)1, . . . , D(Ci)K)

We define Basic DSF with current character po-
sition i, text context Ci and label l (the lth di-
mension in the list) as:

D(Ci)l = P (y = l|Ci = xi)

=
count(Ci = xi ∧ y = l)

count(Ci = xi)

In this equation, the numerator counts the num-
ber of times current character is xi with label l.
The denominator counts the number of times
current character is xi.

We use the term “Basic” because this kind of
DSFs only considers the character of position i
as its context. The text context refers to the cur-
rent character itself. This feature captures the
label distribution information given the charac-
ter itself.

2.BigramDSF
Basic DSF is simple and very easy to imple-

ment. The weakness is that it is less power-
ful to describe word-building features. Although
characters convey context information, charac-
ters themselves in Chinese is sometimes mean-
ingless. Character bi-grams can carry more con-
text information than uni-grams. We modify
Basic DSFs to bi-gram level and propose Bigram
DSFs.

For Bigram DSF of Ci, we define B(Ci):

B(Ci) = (B(Ci)1, . . . , B(Ci)K)

We define Bigram DSF with current character
position i, text context Ci and label l (the lth
dimension in the list) as:

B(Ci)l = P (y = l|Ci = xi−jxi−j+1)

=
count(Ci = xi−jxi−j+1 ∧ y = l)

count(Ci = xi−jxi−j+1)

j can take value 0 and 1.
In this equation, the numerator counts the

number of times current context is xi−jxi−j+1

with label l. The denominator counts the num-
ber of times current context is xi−jxi−j+1.

3.WindowDSF
Considering Basic DSF and Bigram DSF only

might cause the over-fitting problem, therefore
we introduce another kind of DSF. We call it
Window DSF, which considers the surrounding
context of a character and omits the character
itself.

For Window DSF, we define W (Ci):

W (Ci) = (W (Ci)1, . . . , W (Ci)K)

We define Window DSF with current character
position i, text context Ci and label l (the lth
dimension in the list) as:

W (Ci)l = P (y = l|Ci = xi−1xi+1)

=
count(Ci = xi−1xi+1 ∧ y = l)

count(Ci = xi−1xi+1)

In this equation, the numerator counts the
number of times current context is xi−1xi+1

with label l. The denominator counts the num-
ber of times current context is xi−1xi+1.

2.4.4 Discrete features VS. Continuous
features

The statistical features may be expressed as
real values. A more natural way is to use dis-
crete values to incorporate them into the se-
quence labeling models . Previous works like
Sun and Xu (2011) solve this problem by set-
ting thresholds and converting the real value
into boolean values. We use a different method
to solve this, which does not need to consider
tuning thresholds. In our method, we process
static and dynamic statistical features using dif-
ferent strategies.
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For static statistical value:
For mutual information, we round the real

value to their nearest integer. For punctuation
rate and accessor variety, as the values tend to
be large, we first get the log value of the feature
and then use the nearest integer as the corre-
sponding discrete value.

For dynamic statistical value:
Dynamic statistical features are distributions

of a label. The values of DSFs are all percentage
values. We can solve this by multiply the proba-
bility by an integer N and then take the integer
part as the final feature value. We set the value
of N by cross-validation..

2.5 Conditional Random Fields
Our algorithm is not necessarily limited to

a specific baseline tagger. For simplicity and
reliability, we use a simple Conditional Ran-
dom Field (CRF) tagger, although other se-
quence labeling models like Semi-Markov CRF
Gao et al. (2007) and Latent-variable CRF Sun
et al. (2009) may provide better results than
a single CRF. Detailed definition of CRF can
be found in Lafferty et al. (2001); McCallum
(2002); Pinto et al. (2003).

3 Experiment

3.1 Data and metrics
We used the benchmark datasets provided by

the second International Chinese Word Segmen-
tation Bakeoff1 to test our approach. We chose
the Peking University (PKU) data in our exper-
iment. Although the benchmark provides an-
other three data sets, two of them are data of
traditional Chinese, which is quite different from
simplified Chinese. Another is the data from Mi-
crosoft Research (MSR). We experimented on
this data and got 97.45% in f-score compared
to the state-of-art 97.4% reported in Sun et al.
(2012). However, this corpus is much larger
than the PKU corpus. Using the labeled data
alone can get a relatively good tagger and the
unlabeled data contributes little to the perfor-
mance. For simplicity and efficiency, our further

1http://www.sighan.org/bakeoff2005/

experiments are all conducted on the PKU data.
Details of the PKU data are listed in table 4.

We also used two un-segmented corpora as
unlabeled data. The first one is Chinese Giga-
word2 corpus. It is a comprehensive archive of
newswire data. The second one is articles from
Baike3 of baidu.com. It is a Chinese encyclope-
dia similar to Wikipedia but contains more Chi-
nese items and their descriptions. In the exper-
iment we used about 5 million characters from
each corpus for efficiency. Details of unlabeled
data can be found in table 5.

In our experiment, we did not use any ex-
tra resources such as common surnames, part-
of-speech or other dictionaries.

F-score is used as the accuracy measure. We
define precision P as the percentage of words
in the output that are segmented correctly. We
define recall R as the percentage of the words
in reference that are correctly segmented. Then
F-score is as follows:

F =
2 × P ×R

P + R

The recall of out-of-vocabulary is also taken into
consideration, which measures the ability of the
model to correctly segment out of vocabulary
words.

3.2 Main Results
Table 6 summarizes the segmentation results

on test data with different feature combinations.
We performed incremental evaluation. In this
table, we first present the results of the tagger
only using baseline features. Then we show the
results of adding SSF and DSF individually. In
the end we compare the results of combining
SSF and DSF with baseline features.

Because the baseline features is strong to
reach a relative good result, it is not easy to
largely enhance the performance. Neverthe-
less, there are significant increases in f-score and
OOV-Recall when adding these features. From
table 6 we can see that by adding SSF and DSF
individually, the F-score is improved by +1.1%

2http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2003T09

3http://baike.baidu.com/
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Identical words Total word Identical Character Total character
5.5 × 104 1.1 × 106 5 × 103 1.8 × 106

Table 4: Details of the PKU data

Corpus Character used
Gigaword 5000193
Baike 5000147

Table 5: Details of the unlabeled data.

P R F OOV
Baseline 0.950 0.943 0.946 0.676
+SSF 0.961 0.953 0.957 0.728
+DSF 0.958 0.953 0.955 0.678
+SSF+DSF 0.965 0.958 0.961 0.731

Table 6: Segmentation results on test data with
different feature combinations. The symbol “+”
means this feature configuration contains features set
containing the baseline features and all features after

‘+’. The size of unlabeled data is fixed as 5 million
characters.

and +0.9%. The OOV-Recall is also improved,
especially after adding SSFs. When considering
SSF and DSF together, the f-score is improved
by +1.5% while the OOV-Recall is improved by
+5.5%.

To compare the contribution of unlabeled
data, we conduct experiments of using differ-
ent sizes of unlabeled data. Note that the SSFs
are still calculated using all the unlabeled data.
However, each iteration in the algorithm uses
unlabeled data with different sizes.

Table 7 shows the results when changing the
size of unlabeled data. We experimented on
three different sizes: 0.5 million, 1 million and 5
million characters.

P R F OOV
DSF(0.5M) 0.962 0.954 0.958 0.727
DSF(1M) 0.963 0.955 0.959 0.728
DSF(5M) 0.965 0.958 0.961 0.731

Table 7: Comparison of results when changing the
size of unlabeled data. (0.5 million, 1 million and 5
million characters).

We further experimented on unlabeled corpus

with larger size (up to 100 million characters).
However the performance did not change signif-
icantly. Besides, because the number of features
in our method is very large, using too large un-
labeled corpus is intractable in real applications
due to the limitation of memory.

Our method can keep working well even when
the labeled data are insufficient. Table 8 shows
the comparison of f-scores when changing the
size of labeled data. We compared the results
of using all labeled data with 3 different situa-
tions: using 1/10, 1/2 and 1/4 of all the labeled
data. In fact, the best system on the Second In-
ternational Chinese Word Segmentation bakeoff
reached 0.95 in f-score by using all labeled data.
From table 8 we can see that our algorithm only
needs 1/4 of all labeled data to achieve the same
f-score.

Baseline +SSF+DSF Improve
1/10 0.934 0.943 +0.96%
1/4 0.946 0.951 +0.53%
1/2 0.952 0.956 +0.42%
All 0.957 0.961 +0.42%

Table 8: Comparison of f-scores when changing the
size of labeled data. (1/10, 1/4, 1/2 and all labeled
data. The size of unlabeled data is fixed as 5 million
characters.)

We also explored how the performance
changes as iteration increases. Figure 1 shows
the change of F-score during the first 10 itera-
tions. From figure 1 we find that f-score has a
fast improvement in the first few iterations, and
then stables at a fixed point. Besides, as the size
of labeled data increases, it converges faster.

Using an in-domain corpus and an out-of-
domain corpus is better than use one corpus
alone. We compared our approach with the
method which uses only one unlabeled corpus.
To use only one corpus, we modify our algorithm
to extract DSFs from the Chinese Giga word
corpus and apply the learned features to itself.
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Figure 1: Learning curve of using different size of
labeled data

Table 9 shows the result. We can see that our
method outperforms by +0.2% in f-score and
+0.7% in OOV-Recall.

Finally, we compared our method with the
state-of-art systems reported in the previous pa-
pers. Table 10 listed the results. Best05 repre-
sents the best system reported on the Second In-
ternational Chinese Word Segmentation Bake-
off. CRF + Rule system represents a combina-
tion of CRF model and rule based model pre-
sented in Zhang et al. (2006). Other three sys-
tems all represent the methods using their cor-
responding model in the corresponding papers.
Note that these state-of-art systems are either
using complicated models with semi-Markov re-
laxations or latent variables, or modifying mod-
els to fit special conditions. Our system uses a
single CRF model. As we can see in table 10,
our method achieved higher F-scores than the
previous best systems.

3.3 Results on NER task
Our method is not limited to the CWS prob-

lem. It is applicable to all sequence labeling
problems. We applied our method on the Chi-
nese NER task. We used the MSR corpus of
the sixth SIGHAN Workshop on Chinese Lan-
guage Processing. It is the only NER corpus
using simplified Chinese in that workshop. We
compared our method with the pure sequence la-
beling approach in He and Wang (2008). We re-
implemented their method to eliminate the dif-
ference of various CRFs implementations. Ex-
periment results are shown in table 11. We can
see that our methods works better, especially

when handling the out-of-vocabulary named en-
tities;

4 Related work

Recent studies show that character sequence
labeling is an effective method of Chinese word
segmentation for machine learning (Xue, 2003;
Low et al., 2005; Zhao et al., 2006a,b). These su-
pervised methods show good results. Unsuper-
vised word segmentation (Maosong et al., 1998;
Peng and Schuurmans, 2001; Feng et al., 2004;
Goldwater et al., 2006; Jin and Tanaka-Ishii,
2006) takes advantage of the huge amount of raw
text to solve Chinese word segmentation prob-
lems. These methods need no annotated corpus,
and most of them use statistics to help model
the problem. However, they usually are less ac-
curate than supervised ones.

Currently “feature-engineering” methods
have been successfully applied into NLP ap-
plications. Miller et al. (2004) applied this
method to named entity recognition. Koo et al.
(2008) applied this method to dependency pars-
ing. Turian et al. (2010) applied this method to
both named entity recognition and text chunk-
ing. These papers shared the same concept of
word clustering. However, we cannot simply
equal Chinese character to English word because
characters in Chinese carry much less informa-
tion than words in English and the clustering
results is less meaningful.

Features extracted from large unlabeled cor-
pus in previous works mainly focus on statisti-
cal information of characters. Feng et al. (2004)
used the accessor variety criterion to extract
word types. Li and Sun (2009) used punctua-
tion information in Chinese word segmentation
by introducing extra labels ’L’ and ’R’. Chang
and Han (2010), Sun and Xu (2011) used rich
statistical information as discrete features in
a sequence labeling framework. All these ap-
proaches can be viewed as using static statistics
features in a supervised approach. Our method
is different from theirs. For the static statistics
features in our approach, we not only consider
richer string pairs with the different lengths, but
also consider term frequency when processing
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P R F OOV
Using one corpus 0.963 0.955 0.959 0.724
Our method 0.965 0.958 0.961 0.731

Table 9: Comparison of our approach with using only the Gigaword corpus

Method P R F-score
Best05 (Chen et al. (2005)) 0.953 0.946 0.950
CRF + rule-system (Zhang et al. (2006)) 0.947 0.955 0.951
Semi-perceptron (Zhang and Clark (2007)) N/A N/A 0.945
Latent-variable CRF (Sun et al. (2009)) 0.956 0.948 0.952
ADF-CRF (Sun et al. (2012)) 0.958 0.949 0.954
Our method 0.965 0.958 0.961

Table 10: Comparison of our approach with the state-of-art systems

P R F OOV
Traditional 0.925 0.872 0.898 0.712
Our method 0.916 0.887 0.902 0.737

Table 11: Comparison of our approach with tradi-
tional NER systems

punctuation features.
There are previous works using features ex-

tracted from label distribution of unlabeled cor-
pus in NLP tasks. Schapire et al. (2002) use a
set of features annotated with majority labels
to boost a logistic regression model. We are
different from their approach because there is
no pseudo-example labeling process in our ap-
proach. Qi et al. (2009) investigated on large
set of distribution features and used these fea-
tures in a self-training way. They applied the
method on three tasks: named entity recogni-
tion, POS tagging and gene name recognition
and got relatively good results. Our approach is
different from theirs. Although we all consider
label distribution, the way we use features are
different. Besides, our approach uses two unla-
beled corpora which can mutually enhancing to
get better result.

5 Conclusion and Perspectives
In this paper, we presented a semi-supervised

method for Chinese word segmentation. Two
kinds of new features are used for the itera-
tive modeling: static statistical features and dy-

namic statistical features. The dynamic statis-
tical features use label distribution information
for text contexts, and can be adjusted automat-
ically during the co-training process. Experi-
mental results show that the new features can
improve the performance on the Chinese word
segmentation task. We further conducted exper-
iments to show that the performance is largely
improved, especially when the labeled data is
insufficient.

The proposed iterative semi-supervised
method is not limited to the Chinese word
segmentation task. It can be easily extended
to any sequence labeling task. For example, it
works well on the NER task as well. As our
future work, we plan to apply our method to
other natural language processing tasks, such
as text chunking.
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Abstract

Training higher-order conditional random
fields is prohibitive for huge tag sets. We
present an approximated conditional random
field using coarse-to-fine decoding and early
updating. We show that our implementation
yields fast and accurate morphological taggers
across six languages with different morpho-
logical properties and that across languages
higher-order models give significant improve-
ments over 1st-order models.

1 Introduction

Conditional Random Fields (CRFs) (Lafferty et al.,
2001) are arguably one of the best performing se-
quence prediction models for many Natural Lan-
guage Processing (NLP) tasks. During CRF train-
ing forward-backward computations, a form of dy-
namic programming, dominate the asymptotic run-
time. The training and also decoding times thus
depend polynomially on the size of the tagset and
exponentially on the order of the CRF. This prob-
ably explains why CRFs, despite their outstanding
accuracy, normally only are applied to tasks with
small tagsets such as Named Entity Recognition and
Chunking; if they are applied to tasks with bigger
tagsets – e.g., to part-of-speech (POS) tagging for
English – then they generally are used as 1st-order
models.

In this paper, we demonstrate that fast and accu-
rate CRF training and tagging is possible for large
tagsets of even thousands of tags by approximat-
ing the CRF objective function using coarse-to-fine
decoding (Charniak and Johnson, 2005; Rush and

Petrov, 2012). Our pruned CRF (PCRF) model has
much smaller runtime than higher-order CRF mod-
els and may thus lead to an even broader application
of CRFs across NLP tagging tasks.

We use POS tagging and combined POS and
morphological (POS+MORPH) tagging to demon-
strate the properties and benefits of our approach.
POS+MORPH disambiguation is an important pre-
processing step for syntactic parsing. It is
usually tackled by applying sequence prediction.
POS+MORPH tagging is also a good example of a
task where CRFs are rarely applied as the tagsets are
often so big that even 1st-order dynamic program-
ming is too expensive. A workaround is to restrict
the possible tag candidates per position by using ei-
ther morphological analyzers (MAs), dictionaries or
heuristics (Hajič, 2000). In this paper, however we
show that when using pruning (i.e., PCRFs), CRFs
can be trained in reasonable time, which makes hard
constraints unnecessary.

In this paper, we run successful experiments on
six languages with different morphological prop-
erties; we interpret this as evidence that our ap-
proach is a general solution to the problem of
POS+MORPH tagging. The tagsets in our experi-
ments range from small sizes of 12 to large sizes of
up to 1811. We will see that even for the smallest
tagset, PCRFs need only 40% of the training time of
standard CRFs. For the bigger tagset sizes we can
reduce training times from several days to several
hours. We will also show that training higher-order
PCRF models takes only several minutes longer than
training 1st-order models and – depending on the
language – may lead to substantial accuracy im-
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Language Sentences Tokens POS MORPH POS+MORPH OOV
Tags Tags Tags Rate

ar (Arabic) 15,760 614,050 38 516 516 4.58%
cs (Czech) 38,727 652,544 12 1,811 1,811 8.58%
en (English) 38,219 912,344 45 45 3.34%
es (Spanish) 14,329 427,442 12 264 303 6.47%
de (German) 40,472 719,530 54 255 681 7.64%
hu (Hungarian) 61,034 1,116,722 57 1,028 1,071 10.71%

Table 1: Training set statistics. Out-Of-Vocabulary (OOV) rate is regarding the development sets.

provements. For example in German POS+MORPH
tagging, a 1st-order model (trained in 32 minutes)
achieves an accuracy of 88.96 while a 3rd-order
model (trained in 35 minutes) achieves an accuracy
of 90.60.

The remainder of the paper is structured as fol-
lows: Section 2 describes our CRF implementa-
tion1 and the feature set used. Section 3 sum-
marizes related work on tagging with CRFs, effi-
cient CRF tagging and coarse-to-fine decoding. Sec-
tion 4 describes experiments on POS tagging and
POS+MORPH tagging and Section 5 summarizes
the main contributions of the paper.

2 Methodology

2.1 Standard CRF Training

In a standard CRF we model our sentences using a
globally normalized log-linear model. The proba-
bility of a tag sequence ~y given a sentence ~x is then
given as:

p(~y|~x) =
exp

∑
t,i λi · φi(~y, ~x, t)

Z(~λ, ~x)

Z(~λ, ~x) =
∑

~y

exp
∑
t,i

λi · φi(~y, ~x, t)

Where t and i are token and feature indexes, φi is
a feature function, λi is a feature weight and Z is a
normalization constant. During training the feature
weights λ are set to maximize the conditional log-
likelihood of the training data D:

1Our java implementation MarMoT is available at
https://code.google.com/p/cistern/

llD(~λ) =
∑

(~x,~y)∈D

log p(~y|~x,~λ)

In order to use numerical optimization we have to
calculate the gradient of the log-likelihood, which is
a vector of partial derivatives ∂llD(~λ)/∂λi. For a
training sentence ~x, ~y and a token index t the deriva-
tive wrt feature i is given by:

φi(~y, ~x, t)−
∑
~y′

φi(~y
′, ~x, t) p(~y′|~x,~λ)

This is the difference between the empirical fea-
ture count in the training data and the estimated
count in the current model ~λ. For a 1st-order model,
we can replace the expensive sum over all possible
tag sequences ~y′ by a sum over all pairs of tags:

φi(yt, yt+1, ~x, t)−
∑
y,y′

φi(y, y
′, ~x, t) p(y, y′|~x,~λ)

The probability of a tag pair p(y, y′|~x,~λ) can then
be calculated efficiently using the forward-backward
algorithm. If we further reduce the complexity of the
model to a 0-order model, we obtain simple maxi-
mum entropy model updates:

φi(yt, ~x, t)−
∑

y

φi(y, ~x, t) p(y|~x,~λ)

2.2 Pruned CRF Training
As we discussed in the introduction, we want to de-
code sentences by applying a variant of coarse-to-
fine tagging. Naively, to later tag with nth-order
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accuracy we would train a series of n CRFs of in-
creasing order. We would then use the CRF of order
n − 1 to restrict the input of the CRF of order n.
In this paper we approximate this approach, but do
so while training only one integrated model. This
way we can save both memory (by sharing feature
weights between different models) and training time
(by saving lower-order updates).

The main idea of our approach is to create increas-
ingly complex lattices and to filter candidate states
at every step to prevent a polynomial increase in lat-
tice size. The first step is to create a 0-order lat-
tice, which as discussed above, is identical to a se-
ries of independent local maximum entropy models
p(y|~x, t). The models base their prediction on the
current word xt and the immediate lexical context.
We then calculate the posterior probabilities and re-
move states y with p(y|~x, t) < τ0 from the lattice,
where τ0 is a parameter. The resulting reduced lat-
tice is similar to what we would obtain using candi-
date selection based on an MA.

We can now create a first order lattice by adding
transitions to the pruned lattice and pruning with
threshold τ1. The only difference to 0-order prun-
ing is that we now have to run forward-backward
to calculate the probabilities p(y|~x, t). Note that in
theory we could also apply the pruning to transition
probabilities of the form p(y, y′|~x, t); however, this
does not seem to yield more accurate models and is
less efficient than state pruning.

For higher-order lattices we merge pairs of states
into new states, add transitions and prune with
threshold τi.

We train the model using l1-regularized Stochas-
tic Gradient Descent (SGD) (Tsuruoka et al., 2009).
We would like to create a cascade of increasingly
complex lattices and update the weight vector with
the gradient of the last lattice. The updates, how-
ever, are undefined if the gold sequence is pruned
from the lattice. A solution would be to simply rein-
sert the gold sequence, but this yields poor results
as the model never learns to keep the gold sequence
in the lower-order lattices. As an alternative we per-
form the gradient update with the highest lattice still
containing the gold sequence. This approach is sim-
ilar to “early updating” (Collins and Roark, 2004)
in perceptron learning, where during beam search
an update with the highest scoring partial hypothe-

1: function GETSUMLATTICE(sentence, ~τ )
2: gold-tags← getTags(sentence)
3: candidates← getAllCandidates(sentence)
4: lattice← ZeroOrderLattice(candidates)
5: for i = 1→ n do
6: candidates← lattice. prune(τi−1)
7: if gold-tags 6∈ candidates then
8: return lattice
9: end if

10: if i > 1 then
11: candidates← mergeStates(candidates)
12: end if
13: candidates← addTransitions(candidates)
14: lattice← SequenceLattice(candidates, i)
15: end for
16: return lattice
17: end function

Figure 1: Lattice generation during training

sis is performed whenever the gold candidate falls
out of the beam. Intuitively, we are trying to opti-
mize an nth-order CRF objective function, but ap-
ply small lower-order corrections to the weight vec-
tor when necessary to keep the gold candidate in the
lattice. Figure 1 illustrates the lattice generation pro-
cess. The lattice generation during decoding is iden-
tical, except that we always return a lattice of the
highest order n.

The savings in training time of this integrated ap-
proach are large; e.g., training a maximum entropy
model over a tagset of roughly 1800 tags and more
than half a million instances is slow as we have to
apply 1800 weight vector updates for every token
in the training set and every SGD iteration. In the
integrated model we only have to apply 1800 up-
dates when we lose the gold sequence during fil-
tering. Thus, in our implementation training a 0-
order model for Czech takes roughly twice as long
as training a 1st-order model.

2.3 Threshold Estimation

Our approach would not work if we were to set the
parameters τi to fixed predetermined values; e.g.,
the τi depend on the size of the tagset and should
be adapted during training as we start the training
with a uniform model that becomes more specific.
We therefore set the τi by specifying µi, the average
number of tags per position that should remain in
the lattice after pruning. This also guarantees sta-
ble lattice sizes and thus stable training times. We
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achieve stable average number of tags per position
by setting the τi dynamically during training: we
measure the real average number of candidates per
position µ̂i and apply corrections after processing a
certain fraction of the sentences of the training set.
The updates are of the form:

τi =

{
+0.1 · τi if µ̂i < µi

−0.1 · τi if µ̂i > µi

Figure 2 shows an example training run for Ger-
man with µ0 = 4. Here the 0-order lattice reduces
the number of tags per position from 681 to 4 losing
roughly 15% of the gold sequences of the develop-
ment set, which means that for 85% of the sentences
the correct candidate is still in the lattice. This cor-
responds to more than 99% of the tokens. We can
also see that after two iterations only a very small
number of 0-order updates have to be performed.

2.4 Tag Decomposition

As we discussed before for the very large
POS+MORPH tagsets, most of the decoding time is
spent on the 0-order level. To decrease the number
of tag candidates in the 0-order model, we decode in
two steps by separating the fully specified tag into a
coarse-grained part-of-speech (POS) tag and a fine-
grained MORPH tag containing the morphological
features. We then first build a lattice over POS can-
didates and apply our pruning strategy. In a second
step we expand the remaining POS tags into all the
combinations with MORPH tags that were seen in
the training set. We thus build a sequence of lattices
of both increasing order and increasing tag complex-
ity.

2.5 Feature Set

We use the features of Ratnaparkhi (1996) and Man-
ning (2011): the current, preceding and succeed-
ing words as unigrams and bigrams and for rare
words prefixes and suffixes up to length 10, and
the occurrence of capital characters, digits and spe-
cial characters. We define a rare word as a word
with training set frequency ≤ 10. We concate-
nate every feature with the POS and MORPH tag
and every morphological feature. E.g., for the word
“der”, the POS tag art (article) and the MORPH
tag gen|sg|fem (genitive, singular, feminine) we
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Figure 2: Example training run of a pruned 1st-order
model on German showing the fraction of pruned gold se-
quences (= sentences) during training for training (train)
and development sets (dev).

get the following features for the current word tem-
plate: der+art, der+gen|sg|fem, der+gen,
der+sg and der+fem.

We also use an additional binary feature, which
indicates whether the current word has been seen
with the current tag or – if the word is rare – whether
the tag is in a set of open tag classes. The open tag
classes are estimated by 10-fold cross validation on
the training set: We first use the folds to estimate
how often a tag is seen with an unknown word. We
then consider tags with a relative frequency ≥ 10−4

as open tag classes. While this is a heuristic, it is
safer to use a “soft” heuristic as a feature in the lat-
tice than a hard constraint.

For some experiments we also use the output of a
morphological analyzer (MA). In that case we sim-
ply use every analysis of the MA as a simple nom-
inal feature. This approach is attractive because it
does not require the output of the MA and the an-
notation of the treebank to be identical; in fact, it
can even be used if treebank annotation and MA use
completely different features.

Because the weight vector dimensionality is high
for large tagsets and productive languages, we use a
hash kernel (Shi et al., 2009) to keep the dimension-
ality constant.

3 Related Work

Smith et al. (2005) use CRFs for POS+MORPH tag-
ging, but use a morphological analyzer for candidate
selection. They report training times of several days
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and that they had to use simplified models for Czech.
Several methods have been proposed to reduce

CRF training times. Stochastic gradient descent can
be applied to reduce the training time by a factor of 5
(Tsuruoka et al., 2009) and without drastic losses in
accuracy. Lavergne et al. (2010) make use of feature
sparsity to significantly speed up training for mod-
erate tagset sizes (< 100) and huge feature spaces.
It is unclear if their approach would also work for
huge tag sets (> 1000).

Coarse-to-fine decoding has been successfully ap-
plied to CYK parsing where full dynamic program-
ming is often intractable when big grammars are
used (Charniak and Johnson, 2005). Weiss and
Taskar (2010) develop cascades of models of in-
creasing complexity in a framework based on per-
ceptron learning and an explicit trade-off between
accuracy and efficiency.

Kaji et al. (2010) propose a modified Viterbi algo-
rithm that is still optimal but depending on task and
especially for big tag sets might be several orders of
magnitude faster. While their algorithm can be used
to produce fast decoders, there is no such modifica-
tion for the forward-backward algorithm used during
CRF training.

4 Experiments

We run POS+MORPH tagging experiments on Ara-
bic (ar), Czech (cs), Spanish (es), German (de) and
Hungarian (hu). The following table shows the type-
token (T/T) ratio, the average number of tags of ev-
ery word form that occurs more than once in the
training set (A) and the number of tags of the most
ambiguous word form (Â):

T/T A Â

ar 0.06 2.06 17
cs 0.13 1.64 23
es 0.09 1.14 9
de 0.11 2.15 44
hu 0.11 1.11 10

Arabic is a Semitic language with nonconcate-
native morphology. An additional difficulty is that
vowels are often not written in Arabic script. This
introduces a high number of ambiguities; on the
other hand it reduces the type-token ratio, which
generally makes learning easier. In this paper, we
work with the transliteration of Arabic provided in

the Penn Arabic Treebank. Czech is a highly inflect-
ing Slavic language with a large number of morpho-
logical features. Spanish is a Romance language.
Based on the statistics above we can see that it has
few POS+MORPH ambiguities. It is also the lan-
guage with the smallest tagset and the only language
in our setup that – with a few exceptions – does not
mark case. German is a Germanic language and –
based on the statistics above – the language with
the most ambiguous morphology. The reason is that
it only has a small number of inflectional suffixes.
The total number of nominal inflectional suffixes for
example is five. A good example for a highly am-
biguous suffix is “en”, which is a marker for infini-
tive verb forms, for the 1st and 3rd person plural and
for the polite 2nd person singular. Additionally, it
marks plural nouns of all cases and singular nouns
in genitive, dative and accusative case.

Hungarian is a Finno-Ugric language with an ag-
glutinative morphology; this results in a high type-
token ratio, but also the lowest level of word form
ambiguity among the selected languages.

POS tagging experiments are run on all the lan-
guages above and also on English.

4.1 Resources
For Arabic we use the Penn Arabic Tree-
bank (Maamouri et al., 2004), parts 1–3 in
their latest versions (LDC2010T08, LDC2010T13,
LDC2011T09). As training set we use parts 1 and 2
and part 3 up to section ANN20020815.0083. All
consecutive sections up to ANN20021015.0096
are used as development set and the remainder as
test set. We use the unvocalized and pretokenized
transliterations as input. For Czech and Spanish,
we use the CoNLL 2009 data sets (Hajič et al.,
2009); for German, the TIGER treebank (Brants et
al., 2002) with the split from Fraser et al. (2013);
for Hungarian, the Szeged treebank (Csendes et al.,
2005) with the split from Farkas et al. (2012). For
English we use the Penn Treebank (Marcus et al.,
1993) with the split from Toutanova et al. (2003).

We also compute the possible POS+MORPH tags
for every word using MAs. For Arabic we use the
AraMorph reimplementation of Buckwalter (2002),
for Czech the “free” morphology (Hajič, 2001), for
Spanish Freeling (Padró and Stanilovsky, 2012), for
German DMOR (Schiller, 1995) and for Hungarian
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Magyarlanc 2.0 (Zsibrita et al., 2013).

4.2 Setup

To compare the training and decoding times we run
all experiments on the same test machine, which fea-
tures two Hexa-Core Intel Xeon X5680 CPUs with
3,33 GHz and 6 cores each and 144 GB of mem-
ory. The baseline tagger and our PCRF implemen-
tation are run single threaded.2 The taggers are im-
plemented in different programming languages and
with different degrees of optimization; still, the run
times are indicative of comparative performance to
be expected in practice.

Our Java implementation is always run with 10
SGD iterations and a regularization parameter of
0.1, which for German was the optimal value out of
{0, 0.01, 0.1, 1.0}. We follow Tsuruoka et al. (2009)
in our implementation of SGD and shuffle the train-
ing set between epochs. All numbers shown are av-
erages over 5 independent runs. Where not noted
otherwise, we use µ0 = 4, µ1 = 2 and µ2 = 1.5.
We found that higher values do not consistently in-
crease performance on the development set, but re-
sult in much higher training times.

4.3 POS Experiments

In a first experiment we evaluate the speed and ac-
curacy of CRFs and PCRFs on the POS tagsets.
As shown in Table 1 the tagset sizes range from
12 for Czech and Spanish to 54 and 57 for Ger-
man and Hungarian, with Arabic (38) and English
(45) in between. The results of our experiments are
given in Table 2. For the 1st-order models, we ob-
serve speed-ups in training time from 2.3 to 31 at no
loss in accuracy. For all languages, training pruned
higher-order models is faster than training unpruned
1st-order models and yields more accurate models.
Accuracy improvements range from 0.08 for Hun-
garian to 0.25 for German. We can conclude that
for small and medium tagset sizes PCRFs give sub-
stantial improvements in both training and decod-
ing speed3 and thus allow for higher-order tagging,

2Our tagger might actually use more than one core because
the Java garbage collection is run in parallel.

3Decoding speeds are provided in an appendix submitted
separately.

which for all languages leads to significant4 accu-
racy improvements.

4.4 POS+MORPH Oracle Experiments

Ideally, for the full POS+MORPH tagset we would
also compare our results to an unpruned CRF, but
our implementation turned out to be too slow to do
the required number of experiments. For German,
the model processed ≈ 0.1 sentences per second
during training; so running 10 SGD iterations on
the 40,472 sentences would take more than a month.
We therefore compare our model against models that
perform oracle pruning, which means we perform
standard pruning, but always keep the gold candi-
date in the lattice. The oracle pruning is applied dur-
ing training and testing on the development set. The
oracle model performance is thus an upper bound for
the performance of an unpruned CRF.

The most interesting pruning step happens at the
0-order level when we reduce from hundreds of can-
didates to just a couple. Table 3 shows the results for
1st-order CRFs.

We can roughly group the five languages into
three groups: for Spanish and Hungarian the dam-
age is negligible, for Arabic we see a small decrease
of 0.07 and only for Czech and German we observe
considerable differences of 0.14 and 0.37. Surpris-
ingly, doubling the number of candidates per posi-
tion does not lead to significant improvements.

We can conclude that except for Czech and Ger-
man losses due to pruning are insignificant.

4.5 POS+MORPH Higher-Order Experiments

One argument for PCRFs is that while they might
be less accurate than standard CRFs they allow to
train higher-order models, which in turn might be
more accurate than their standard lower-order coun-
terparts. In this section, we investigate how big the
improvements of higher-order models are. The re-
sults are given in the following table:

n ar cs es de hu
1 90.90 92.45 97.95 88.96 96.47
2 91.86* 93.06* 98.01 90.27* 96.57*
3 91.88* 92.97* 97.87 90.60* 96.50

4Throughout the paper we establish significance by running
approximate randomization tests on sentences (Yeh, 2000).
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ar cs es de hu en
n TT ACC TT ACC TT ACC TT ACC TT ACC TT ACC

CRF 1 106 96.21 10 98.95 7 98.51 234 97.69 374 97.63 154 97.05
PCRF 1 5 96.21 4 98.96 3 98.52 7 97.70 12 97.64 5 97.07
PCRF 2 6 96.43* 5 99.01* 3 98.65* 9 97.91* 13 97.71* 6 97.21*
PCRF 3 6 96.43* 6 99.03* 4 98.66* 9 97.94* 14 97.69 6 97.19*

Table 2: POS tagging experiments with pruned and unpruned CRFs with different orders n. For every language the
training time in minutes (TT) and the POS accuracy (ACC) are given. * indicates models significantly better than CRF
(first line).

ar cs es de hu
1 Oracle µ0 = 4 90.97 92.59 97.91 89.33 96.48
2 Model µ0 = 4 90.90 92.45* 97.95 88.96* 96.47
3 Model µ0 = 8 90.89 92.48* 97.94 88.94* 96.47

Table 3: Accuracies for models with and without oracle pruning. * indicates models significantly worse than the oracle
model.

We see that 2nd-order models give improvements for
all languages. For Spanish and Hungarian we see
minor improvements ≤ 0.1.

For Czech we see a moderate improvement of
0.61 and for Arabic and German we observe sub-
stantial improvements of 0.96 and 1.31. An analysis
on the development set revealed that for all three lan-
guages, case is the morphological feature that bene-
fits most from higher-order models. A possible ex-
planation is that case has a high correlation with syn-
tactic relations and is thus affected by long-distance
dependencies.

German is the only language where fourgram
models give an additional improvement over trigram
models. The reason seem to be sentences with long-
range dependencies, e.g., “Die Rebellen haben kein
Lösegeld verlangt” (The rebels have not demanded
any ransom); “verlangt” (demanded) is a past partic-
ple that is separated from the auxilary verb “haben”
(have). The 2nd-order model does not consider
enough context and misclassifies “verlangt” as a fi-
nite verb form, while the 3rd-order model tags it cor-
rectly.

We can also conclude that the improvements for
higher-order models are always higher than the loss
we estimated in the oracle experiments. More pre-
cisely we see that if a language has a low number of
word form ambiguities (e.g., Hungarian) we observe
a small loss during 0-order pruning but we also have
to expect less of an improvement when increasing

the order of the model. For languages with a high
number of word form ambiguities (e.g., German) we
must anticipate some loss during 0-order pruning,
but we also see substantial benefits for higher-order
models.

Surprisingly, we found that higher-order PCRF
models can also avoid the pruning errors of lower-
order models. Here is an example from the German
data. The word “Januar” (January) is ambiguous: in
the training set, it occurs 108 times as dative, 9 times
as accusative and only 5 times as nominative. The
development set contains 48 nominative instances of
“Januar” in datelines at the end of news articles, e.g.,
“TEL AVIV, 3. Januar”. For these 48 occurrences,
(i) the oracle model in Table 3 selects the correct
case nominative, (ii) the 1st-order PCRF model se-
lects the incorrect case accusative, and (iii) the 2nd-
and 3rd-order models select – unlike the 1st-order
model – the correct case nominative. Our interpreta-
tion is that the correct nominative reading is pruned
from the 0-order lattice. However, the higher-order
models can put less weight on 0-order features as
they have access to more context to disambiguate the
sequence. The lower weights of order-0 result in a
more uniform posterior distribution and the nomina-
tive reading is not pruned from the lattice.

4.6 Experiments with Morph. Analyzers

In this section we compare the improvements of
higher-order models when used with MAs. The re-
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ar cs es de hu en
TT ACC TT ACC TT ACC TT ACC TT ACC TT ACC

SVMTool 178 96.39 935 98.94 64 98.42 899 97.29 2653 97.42 253 97.09
Morfette 9 95.91 6 99.00 3 98.43 16 97.28 30 97.53 17 96.85
CRFSuite 4 96.20 2 99.02 2 98.40 8 97.57 15 97.48 8 96.80
Stanford 29 95.98 8 99.08 7 98.53 51 97.70 40 97.53 65 97.24
PCRF 1 5 96.21* 4 98.96* 3 98.52 7 97.70 12 97.64* 5 97.07*
PCRF 2 6 96.43 5 99.01* 3 98.65* 9 97.91* 13 97.71* 6 97.21
PCRF 3 6 96.43 6 99.03 4 98.66* 9 97.94* 14 97.69* 6 97.19

Table 4: Development results for POS tagging. Given are training times in minutes (TT) and accuracies (ACC).
Best baseline results are underlined and the overall best results bold. * indicates a significant difference (positive or
negative) between the best baseline and a PCRF model.

ar cs es de hu en
SVMTool 96.19 98.82 98.44 96.44 97.32 97.12
Morfette 95.55 98.91 98.41 96.68 97.28 96.89
CRFSuite 95.97 98.91 98.40 96.82 97.32 96.94
Stanford 95.75 98.99 98.50 97.09 97.32 97.28
PCRF 1 96.03* 98.83* 98.46 97.11 97.44* 97.09*
PCRF 2 96.11 98.88* 98.66* 97.36* 97.50* 97.23
PCRF 3 96.14 98.87* 98.66* 97.44* 97.49* 97.19*

Table 5: Test results for POS tagging. Best baseline results are underlined and the overall best results bold. * indicates
a significant difference between the best baseline and a PCRF model.

ar cs es de hu
TT ACC TT ACC TT ACC TT ACC TT ACC

SVMTool 454 89.91 2454 89.91 64 97.63 1649 85.98 3697 95.61
RFTagger 4 89.09 3 90.38 1 97.44 5 87.10 10 95.06
Morfette 132 89.97 539 90.37 63 97.71 286 85.90 540 95.99
CRFSuite 309 89.33 9274 91.10 69 97.53 1295 87.78 5467 95.95
PCRF 1 22 90.90* 301 92.45* 25 97.95* 32 88.96* 230 96.47*
PCRF 2 26 91.86* 318 93.06* 32 98.01* 37 90.27* 242 96.57*
PCRF 3 26 91.88* 318 92.97* 35 97.87* 37 90.60* 241 96.50*

Table 6: Development results for POS+MORPH tagging. Given are training times in minutes (TT) and accuracies
(ACC). Best baseline results are underlined and the overall best results bold. * indicates a significant difference
between the best baseline and a PCRF model.

ar cs es de hu
SVMTool 89.58 89.62 97.56 83.42 95.57
RFTagger 88.76 90.43 97.35 84.28 94.99
Morfette 89.62 90.01 97.58 83.48 95.79
CRFSuite 89.05 90.97 97.60 85.68 95.82
PCRF 1 90.32* 92.31* 97.82* 86.92* 96.22*
PCRF 2 91.29* 92.94* 97.93* 88.48* 96.34*
PCRF 3 91.22* 92.99* 97.82* 88.58* 96.29*

Table 7: Test results for POS+MORPH tagging. Best baseline results are underlined and the overall best results bold.
* indicates a significant difference between the best baseline and a PCRF model.
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sults are given in the following table:
n ar cs es de hu
1 90.90− 92.45− 97.95− 88.96− 96.47−

2 91.86+ 93.06 98.01− 90.27+ 96.57−

3 91.88+ 92.97− 97.87− 90.60+ 96.50−

MA 1 91.22 93.21 98.27 89.82 97.28
MA 2 92.16+ 93.87+ 98.37+ 91.31+ 97.51+

MA 3 92.14+ 93.88+ 98.28 91.65+ 97.48+

Plus and minus indicate models that are signif-
icantly better or worse than MA1. We can see
that the improvements due to higher-order models
are orthogonal to the improvements due to MAs
for all languages. This was to be expected as
MAs provide additional lexical knowledge while
higher-order models provide additional information
about the context. For Arabic and German the
improvements of higher-order models are bigger
than the improvements due to MAs.

4.7 Comparison with Baselines
We use the following baselines: SVMTool
(Giménez and Màrquez, 2004), an SVM-based dis-
criminative tagger; RFTagger (Schmid and Laws,
2008), an n-gram Hidden Markov Model (HMM)
tagger developed for POS+MORPH tagging; Mor-
fette (Chrupała et al., 2008), an averaged percep-
tron with beam search decoder; CRFSuite (Okazaki,
2007), a fast CRF implementation; and the Stanford
Tagger (Toutanova et al., 2003), a bidirectional Max-
imum Entropy Markov Model. For POS+MORPH
tagging, all baselines are trained on the concatena-
tion of POS tag and MORPH tag. We run SVM-
Tool with the standard feature set and the optimal
c-values ∈ {0.1, 1, 10}. Morfette is run with the de-
fault options. For CRFSuite we use l2-regularized
SGD training. We use the optimal regularization pa-
rameter ∈ {0.01, 0.1, 1.0} and stop after 30 itera-
tions where we reach a relative improvement in reg-
ularized likelihood of at most 0.01 for all languages.
The feature set is identical to our model except for
some restrictions: we only use concatenations with
the full tag and we do not use the binary feature that
indicates whether a word-tag combination has been
observed. We also had to restrict the combinations
of tag and features to those observed in the training
set5. Otherwise the memory requirements would ex-
ceed the memory of our test machine (144 GB) for
Czech and Hungarian. The Stanford Tagger is used

5We set the CRFSuite option possible states = 0

as a bidirectional 2nd-order model and trained us-
ing OWL-BFGS. For Arabic, German and English
we use the language specific feature sets and for the
other languages the English feature set.

Development set results for POS tagging are
shown in Table 4. We can observe that Morfette,
CRFSuite and the PCRF models for different orders
have training times in the same order of magnitude.
For Arabic, Czech and English, the PCRF accuracy
is comparable to the best baseline models. For the
other languages we see improvements of 0.13 for
Spanish, 0.18 for Hungarian and 0.24 for German.
Evaluation on the test set confirms these results, see
Table 5.6

The POS+MORPH tagging development set re-
sults are presented in Table 6. Morfette is the fastest
discriminative baseline tagger. In comparison with
Morfette the speed up for 3rd-order PCRFs lies be-
tween 1.7 for Czech and 5 for Arabic. Morfette
gives the best baseline results for Arabic, Spanish
and Hungarian and CRFSuite for Czech and Ger-
man. The accuracy improvements of the best PCRF
models over the best baseline models range from
0.27 for Spanish over 0.58 for Hungarian, 1.91 for
Arabic, 1.96 for Czech to 2.82 for German. The test
set experiments in Table 7 confirm these results.

5 Conclusion

We presented the pruned CRF (PCRF) model for
very large tagsets. The model is based on coarse-to-
fine decoding and stochastic gradient descent train-
ing with early updating. We showed that for mod-
erate tagset sizes of ≈ 50, the model gives signif-
icant speed-ups over a standard CRF with negligi-
ble losses in accuracy. Furthermore, we showed that
training and tagging for approximated trigram and
fourgram models is still faster than standard 1st-
order tagging, but yields significant improvements
in accuracy.

In oracle experiments with POS+MORPH tagsets
we demonstrated that the losses due to our approx-
imation depend on the word level ambiguity of the
respective language and are moderate (≤ 0.14) ex-
cept for German where we observed a loss of 0.37.

6Giménez and Màrquez (2004) report an accuracy of 97.16
instead of 97.12 for SVMTool for English and Manning (2011)
an accuracy of 97.29 instead of 97.28 for the Stanford tagger.
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We also showed that higher order tagging – which
is prohibitive for standard CRF implementations –
yields significant improvements over unpruned 1st-
order models. Analogous to the oracle experiments
we observed big improvements for languages with a
high level of POS+MORPH ambiguity such as Ger-
man and smaller improvements for languages with
less ambiguity such as Hungarian and Spanish.
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Abstract

Morphology and syntax interact considerably
in many languages and language processing
should pay attention to these interdependen-
cies. We analyze the effect of syntactic fea-
tures when used in automatic morphology pre-
diction on four typologically different lan-
guages. We show that predicting morphology
for languages with highly ambiguous word
forms profits from taking the syntactic context
of words into account and results in state-of-
the-art models.

1 Introduction

In this paper, we investigate the interplay between
syntax and morphology with respect to the task of
assigning morphological descriptions (or tags) to
each token of a sentence. Specifically, we examine
the effect of syntactic information when it is inte-
grated into the feature model of a morphological tag-
ger. We test the effect of syntactic features on four
languages – Czech, German, Hungarian, and Span-
ish – and find that syntactic features improve our tag-
ger considerably for Czech and German, but not for
Hungarian and Spanish. Our analysis of construc-
tions that show morpho-syntactic agreement sug-
gests that syntactic features are important if the lan-
guage shows frequent word form syncretisms1 that
can be disambiguated by the syntactic context.

The meaning of a sentence is structurally encoded

1Syncretism describes the situation where a word form is
ambiguous between several different morphological descrip-
tions within its inflection paradigm.

by morphological and syntactic means.2 Different
languages, however, use them to a different extent.
Languages like English encode grammatical infor-
mation (like the subject vs object status of an argu-
ment) via word order, whereas languages like Czech
or Hungarian use different word forms. Automatic
analysis of languages with rich morphology needs
to pay attention to the interaction between morphol-
ogy and syntax in order to arrive at suitable com-
putational models. Linguistic theory (e. g., Bresnan
(2001), Melčuk (2009)) suggests many interactions
between morphology and syntax. For example, lan-
guages with a case system use different forms of the
same word to mark different syntactic (or seman-
tic) relations (Blake, 2001). In many languages, two
words that participate in a syntactic relation show
covariance in some or all of their morphological fea-
tures (so-called agreement, Corbett (2006)).3

Automatic annotation of morphology assigns
morphological descriptions (e. g., nominative-
singular-masculine) to word forms. It is usually
modeled as a sequence model, often in combination
with part-of-speech tagging and lemmatization
(Collins, 2002; Hajič, 2004; Smith et al., 2005;
Chrupała et al., 2008, and others). Sequence models
achieve high accuracy and coverage but since they
only use linear context they only approximate some
of the underlying hierarchical relationships. As
an example for these hierarchical relationships,

2And also by prosodic means, which we will not discuss
since text-based tools rarely have access to this information.

3For example, in English, the subject of a sentence and the
finite verb agree with respect to their number and person fea-
ture.
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die wirtschaftlich am weitesten entwickelten , modernen und zum Teil katholisch geprägten Regionen
nom/acc.pl.fem nom/acc.pl.fem

the economic - most developed , modern and to part catholic influenced regions

NK

MO

PM MO

NK

CJ
CD

MO
NK MO

CJ

’the regions that are economically most developed, modern, and partly catholic’

Figure 1: Example of a German noun phrase. First and last word agree in number, gender, and case value.

Figure 1 shows a German noun phrase taken from
the German TiGer corpus (Brants et al., 2002).
The two bold-faced words are the determiner and
the head noun of the phrase, and they agree in
their gender, number, and case values. The word
Regionen (regions) is four-way ambiguous for its
case value, which is reduced to a two-way ambi-
guity between nominative and accusative by the
determiner. Further disambiguation would require
information about the syntactic role of the noun
phrase in a sentence. There are 11 tokens between
these two words, which would require a context
window of at least 13 to capture the agreement
relation within a sequence model. Syntactically,
however, as indicated by the dependency tree,
the determiner and the head are linked directly.
The interdependency between morphology and
syntax in the example thus manifests itself in the
morphological disambiguation of a highly syncretic
word form because of its government or agreement
relation to its respective syntactic head/dependents.

Of course, the sequence model is most of the
time a reasonable approximation, because the ma-
jority of noun phrases in the TiGer corpus are not
as long as the example in Figure 1.4 Furthermore,
not all languages show this kind of relationship be-
tween morphological forms and syntactic relation as
demonstrated for German. But taking advantage of
the morphosyntactic dependencies in a language can
give us better models that may even be capable of
handling the more difficult or rare cases. We there-
fore advocate that models for predicting morphology
should be designed with the typological characteris-
tics of a language and its morphosyntactic properties
in mind, and should, where appropriate, integrate

4We find 57,551 noun phrases with less than three tokens
between determiner and noun and 4,670 with three or more.

syntactic information in order to better model the
morphosyntactic interdependencies of the language.

In the remainder of the paper, we show empiri-
cally that taking syntactic information into account
produces state-of-the-art models for languages with
a high interdependency between morphology and
syntax. We use a simple setup, where we combine
a morphological tagger and a dependency parser in
a bootstrapping architecture in order to analyze the
effect of syntactic information on the performance
of the morphological tagger (Section 2). Using syn-
tactic features in morphology prediction requires a
syntactically annotated corpus for training a statisti-
cal parser, which may not be available for languages
with few resources. We show in Section 3 that only
very little syntactically annotated data is required to
achieve the improvements. We furthermore expect
that the improved morphological information also
improves parsing performance and present a prelim-
inary experiment in Section 4.

2 Experiments

In this section, we present a series of experiments
that investigate the effect of syntactic information on
the prediction of morphological features. We start
by describing our data sets and the system that we
used for the experiments.

2.1 Languages and Data Sets

We test our hypotheses on four different languages:
Czech, German, Hungarian, and Spanish.

Spanish, a Romance language, and German, a
Germanic language, constitute inflecting languages
that show verbal and nominal morphology, but not
as sophisticated as Czech and Hungarian. As we
will see in the experiments, it is relatively easy to
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predict the morphological information annotated in
the Spanish data set.

Czech and Hungarian represent languages with
very rich morphological systems both in verbal and
nominal morphological paradigms. They differ sig-
nificantly in the way in which morphological infor-
mation is encoded in word forms. Czech, a Slavic
language, is an inflecting language, where one suf-
fix may signal several different morphological cate-
gories simultaneously (e. g., number, gender, case).
In contrast, Hungarian, a Finno-Ugric language, is
of the agglutinating type, where each morphological
category is marked by its own morpheme.

Both German and Czech show various form syn-
cretisms in their inflection paradigms. Form syn-
cretisms emerge when the same word form is am-
biguous between several different morphological de-
scriptions, and they are a major challenge to auto-
matic morphological analysis. Spanish shows syn-
cretism in the verbal inflection paradigms. In Hun-
garian, form syncretisms are much less frequent.
The case paradigm of Hungarian only shows one
form syncretism between dative and genitive case
(out of about 18 case suffixes).

All languages show agreement between subject
and verb, and within the noun phrase. The word or-
der in Czech and Hungarian is very variable whereas
it is more restrictive in Spanish and German.

As our data, we use the CoNLL 2009 Shared
Task data sets (Hajič et al., 2009) for Czech and
Spanish. For German, we use the dependency
conversion of the TiGer treebank by Seeker and
Kuhn (2012), splitting it into 40k/5k/5k sentences
for training/development/test. For Hungarian, we
use the Szeged Dependency Treebank (Vincze et al.,
2010), with the split of Farkas et al. (2012).

2.2 System Description

To test our hypotheses, we implemented a tagger
that assigns full morphological descriptions to each
token in a sentence. The system was inspired by the
morphological tagger included in mate-tools.5 Like
the tagger provided with mate-tools, it is a classifier
that tags each token using the surrounding tokens in

5A collection of language independent, data-driven analysis
tools for lemmatization, pos-tagging, morphological analysis,
and dependency parsing: http://code.google.com/p/mate-tools

its feature model. Models are trained using passive-
aggressive online training (Crammer et al., 2003).
The system makes two passes over each sentence:
The first pass provides predicted tags that are used
as features during the second pass. We also adopted
the idea of a tag filter, which deterministically as-
signs tags for words that always occur with the same
tag in the training data.

For all matters of syntactic annotation in this pa-
per, we use the graph-based dependency parser by
Bohnet (2010), also included in mate-tools. All data
sets are annotated with gold syntactic information,
which is used to train the parsing models.

For our experiments, we use a bootstrapping ap-
proach: the parser uses the output of the morphology
in its feature set, and the morphological tagger we
want to analyze uses the output of the parser as syn-
tactic features. Since it is best to keep the training
setting as similar as possible to the test setting, we
use 10-fold jackknifing to annotate our training data
with predicted morphology or syntax respectively.

Jackknifing differs from cross-validation only in
its purpose. Cross-validation is used for evaluating
data, jackknifing is used to annotate data. The data
set is split into n parts, and n-1 parts are used to train
a model for annotating the nth part. This is then
rotated n times such that each part is annotated by
the automatic tool without training it on its own test
data. Jackknifing is important for creating a realis-
tic training scenario that provides automatic prepro-
cessing. For annotating development and test sets,
models are trained on the jackknifed training set.

2.3 The Effects of Syntactic Features
In the first experiment, we use the system described
in Section 2.2 to predict morphological information
on all four languages. We start with describing the
general setup and the feature set, and continue with
a discussion of the results.

The experimental setup is as follows: the German
and Spanish data sets are annotated with lemma and
part-of-speech information using 10-fold jackknif-
ing. The annotation is done with mate-tools’ lem-
matizer and pos-tagger. For Czech and Hungarian,
we keep the annotation provided with the data sets.

Note that our experimental setup does not include
lemmas or part-of-speech tags as part of the predic-
tion of the morphology but annotates them in a pre-

335



processing step. It is not necessary to separate part-
of-speech and lemma from the prediction of mor-
phology and, in fact, many systems perform these
steps simultaneously (e. g. Spoustová et al. (2009)).
Doing morphology prediction as a separate step al-
lows us to use lemma and part-of-speech informa-
tion in the feature set.6

static features
form form1b form2b
form3b form1a lemma2a
pos1b pos2b pos1a
form+pos pos+s1 pos+s2
pos+s3 pos+s4 lemma+p2
lemma+p3 pos+number form+form1b
pos+pos1a pos+pos1b+pos2b s1+s1 1b
s1+s1 1a s2+s2 1a last-verb-lemma
last-verb-pos next-verb-lemma next-verb-pos

dynamic features
tag1b+tag2b tag2b+tag3b tag1a
tag1a+tag1b tag1a+tag2a tag2a+tag3a
pos1b+case1b last-verb-tag next-verb-tag
pos1b+case1b+pos2b+case2b

Hungarian only features
pos+uppercase

Czech only features
pos+p2

Spanish only features
s5 p1 p4
p5 s2 1a s3 1a
s4 1a

Table 1: Baseline feature set. form means word form,
lemma is lemma, pos is part-of-speech, s1/p1 stand for
suffix and prefix of length 1 (characters), tag is the mor-
phological tag predicted by the system, 1b/1a means 1
token before/after the current token, and + marks feature
conjunctions. number marks if the form contains a digit.

After preprocessing the data, our baseline system
is trained using the feature set shown in Table 1. The
baseline system does not make use of any syntactic
information but predicts morphological information
based solely on tokens and their linear context. The
features are divided into static features, which can be
computed on the input, and dynamic features, which
are computed also on previous output of the system
(cf. two passes in Section 2.2).

6Lemma and part-of-speech prediction may also profit from
syntactic information, see e.g. Prins (2004) or Bohnet and Nivre
(2012).

The feature sets in Table 1 were developed specif-
ically for our experiments and are the result of an
automatic forward/backward feature selection pro-
cess. The purpose of the feature selection was to ar-
rive at a baseline system that performs well without
any syntactic information. With such an optimized
baseline system, we can measure the contribution of
syntactic features more reliably.

The last-verb/next-verb and pos+case features are
variants of the features proposed in Votrubec (2006).
They extract information about the first verb within
the last 10/the next 30 tokens in the sentence. The
case feature extracts the case value from previously
assigned morphological tags. Note that the verb
features are approximating syntactic information by
making the assumption that the closest verbs are
likely to be syntactic heads for many words.

static features
h lemma h s2 h s3 pos+h pos s1+h s1
h dir h dir+h pos
ld s1 ld s2 ld p1 ld p4

dynamic features
h tag ld tag

Table 2: Syntactic features. h and ld mark features from
the head and the left-most daughter, dir is a binary fea-
ture marking the direction of the head with respect to the
current token.

After training the baseline models, we use them to
annotate the whole data set with morphological in-
formation (using 10-fold jackknifing for the training
portions). We then use 10-fold jackknifing again to
annotate the data sets with the dependency parser.

At this point, all our data sets are annotated with
predicted morphology from our baseline system and
with syntactic information from the parser, which
uses the morphological information from our base-
line system in its feature set. We can now retrain our
morphological tagger using features that are derived
from the dependency trees provided by the parser.
Note that this is not a stacking architecture, since
the second system does not use the predicted mor-
phology output from the baseline system. The loop
simply ensures that we get the best possible syntac-
tic features.

We extract two kinds of syntactic features: fea-
tures of the syntactic head of the current token, and
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dev set test set
all oov all oov

Czech
morfette 90.37 68.66 90.01 67.25
our baseline 92.51 73.12 92.29 72.58
pred syntax *93.18 74.04 *92.82 73.11
gold syntax *93.64 75.20 *93.30 74.96

German
morfette 86.78 66.37 84.58 61.05
our baseline 90.92 72.52 89.11 69.67
pred syntax *92.07 75.06 *90.10 71.18
gold syntax *92.70 *76.29 *90.87 *73.20

Hungarian
morfette *96.19 *85.82 95.99 *85.43
our baseline 96.08 84.49 95.94 83.76
pred syntax 96.18 84.70 96.11 83.85
gold syntax *96.46 85.30 *96.35 84.50

Spanish
morfette 97.83 89.67 97.76 91.00
our baseline 97.83 89.05 97.59 90.88
pred syntax 97.84 89.08 97.67 90.91
gold syntax 98.11 90.34 97.88 91.61

Table 3: The effect of syntactic features when predicting
morphological information. * mark statistically signifi-
cantly better models compared to our baseline (sentence-
based t-test with α = 0.05).

features of the left-most daughter of the current to-
ken. We also experimented with other types, e. g.
the right-most daughter, but these features did not
improve the model. This is likely due to the way
these languages encode morphological information
and may be different for other languages. From the
head and the left-most daughter, we construct fea-
tures about form, lemma, affixes, and tags. Table 2
lists the syntactic features that we use in the model.

With the syntactic features available due to the
parsing step, we train new models with the full sys-
tem. For each language, we run four experiments.
The first two are baseline experiments, where we
use the off-the-shelf morphological tagger morfette
(Chrupała et al., 2008) and our own baseline sys-
tem, both of which do not use any syntactic features.
In the third experiment, we evaluate our full system
using the syntactic features provided by the depen-
dency parser. As an oracle experiment, we also re-
port results on the full system when using the gold
standard syntax from the treebank. Table 3 presents
all results in terms of accuracy on all tokens (all)

dev set test set
all oov all oov

Czech
featurama 94.75 84.12 94.78 84.23
our baseline 93.80 80.47 93.57 80.53
pred syntax *94.40 81.51 *94.24 81.61
gold syntax *94.80 82.45 *94.64 82.80

German
RFTagger 90.63 72.11 89.04 70.80
our baseline 92.59 80.73 91.48 78.83
pred syntax *93.70 82.71 *92.51 80.20
gold syntax *94.28 *84.12 *93.32 *82.35

Hungarian

our baseline 97.27 92.61 97.03 91.28
pred syntax 97.38 92.39 97.19 91.50
gold syntax *97.63 92.79 *97.45 91.92

Spanish

our baseline 98.23 92.46 98.02 93.15
pred syntax 98.24 92.30 98.07 93.03
gold syntax 98.40 92.82 *98.22 93.64

Table 4: The effect of syntactic features when predicting
morphology using lexicons. * mark statistically signifi-
cantly better models compared to our baseline (sentence-
based t-test with α = 0.05).

and out-of-vocabulary tokens only (oov). Out-of-
vocabulary tokens do not occur in the training data.

We find trends along several axes: Generally, the
syntactic features work well for Czech and Ger-
man, whereas for Hungarian and Spanish, they do
not yield any significant improvement. The im-
provements for German and Czech are between 0.5
(Czech) and 1.0 (German) percentage points abso-
lute in token accuracy, and between 0.2 (Czech test
set) and 2.5 (German dev set) percentage points ab-
solute in accuracy of unknown words. There are no
obvious differences between the development and
the test set in any of the languages.

Compared to the morfette baseline, we find our
systems to be either superior or equal to morfette in
terms of token accuracy. Regarding accuracy on un-
known words, morfette outperforms our systems for
Hungarian, but is outperformed on Czech and Ger-
man. For Spanish, all systems yield similar results.

Looking at the oracle experiment, we see that for
all languages, the system can learn something from
syntax. For Czech and German, this is clearly the
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case, for Hungarian and Spanish, the differences are
small but visible. There are pronounced differences
between the predicted and the gold syntax experi-
ments in Czech and German. Clearly, the parser
makes mistakes that propagate through to the pre-
diction of the morphology.

2.4 Syntax vs Lexicon
The current state-of-the-art in predicting morpho-
logical features makes use of morphological lexi-
cons (e.g. Hajič (2000), Hakkani-Tür et al. (2002),
Hajič (2004)). Lexicons define the possible morpho-
logical descriptions of a word and a statistical model
selects the most probable one among them. In the
following experiment, we test whether the contribu-
tion of syntactic features is similar or different to the
contribution of morphological lexicons.

Lexicons encode important knowledge that is dif-
ficult to pick up in a purely statistical system, e. g.
the gender of nouns, which often cannot be deduced
from the word form (Corbett, 1991).7

We extend our system from the previous experi-
ment to include information from a morphological
dictionaries. For Czech, we use the morphologi-
cal analyzer distributed with the Prague Dependency
Treebank 2 (Hajič et al., 2006). For German, we
use DMor (Schiller, 1994). For Hungarian, we use
(Trón et al., 2006), and for Spanish, we use the mor-
phological analyzer included in Freeling (Carreras et
al., 2004). The output of the analyzers is given to the
system as features that simply record the presence of
a particular morphological analysis for the current
word. The system can thus use the output of any
tool regardless of its annotation scheme, especially
if the annotation scheme of the treebank is different
from the one of the morphological analyzer.

Table 4 presents the results of experiments where
we add the output of the morphological analyzers
to our system. Again, we run experiments with and
without syntactic features. For Czech, we also show
results from featurama8 with the feature set devel-
oped by Votrubec (2006). For German, we show re-
sults for RFTagger (Schmid and Laws, 2008).

As expected, the information from the morpho-
logical lexicon improves the overall performance

7Lexicons are also often used to speed up processing con-
siderably by restricting the search space of the statistical model.

8http://sourceforge.net/projects/featurama/

considerably compared to the results in Table 3, es-
pecially on unknown tokens. This shows that even
with the considerable amounts of training data avail-
able nowadays, rule-based morphological analyzers
are important resources for morphological descrip-
tion (cf. Hajič (2000)). The contribution of syn-
tactic features in German and Czech is almost the
same as in the previous experiment, indicating that
the syntactic features contribute information that is
orthogonal to that of the morphological lexicon. The
lexicon provides lexical knowledge about a word
form, while the syntactic features provide the syn-
tactic context that is needed in German and Czech
to decide on the right morphological tag.

2.5 Language Differences

From the previous experiments, we conclude that
syntactic features help in the prediction of morphol-
ogy for Czech and German, but not for Hungarian
and Spanish. To further investigate the difference
between Czech and German on the one hand, and
Hungarian and Spanish on the other, we take a closer
look at the output of the tagger.

We find an interesting difference between the
two pairs of languages, namely the performance
with respect to agreement. Agreement is a phe-
nomenon where morphology and syntax strongly in-
teract. Morphological features co-vary between two
items in the sentence, but the relation between these
items can occur at various linguistic levels (Corbett,
2006). If the syntactic information helps with pre-
dicting morphological information, we expect this
to be particularly helpful with getting agreement
right. All languages show agreement to some ex-
tent. Specifically, all languages show agreement in
number (and person) between the subject and the
verb of a clause. Czech, German, and Spanish show
agreement in number, gender, and case (not Span-
ish) within a noun phrase. Hungarian shows case
agreement within the noun phrase only rarely, e.g.
for attributively used demonstrative pronouns.

In order to test the effect on agreement, we mea-
sure the accuracy on tokens that are in an agreement
relation with their syntactic head. We counted sub-
ject verb agreement as well as agreement with re-
spect to number, gender, and case (where applicable)
between a noun and its dependent adjective and de-
terminer. Table 5 displays the counts from the devel-
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opment sets of each language. We compare the base-
line system that does not use any syntactic informa-
tion with the output of the morphological tagger that
uses the gold syntax. We use the gold syntax rather
than the predicted one in order to eliminate any in-
fluence from parsing errors. As can be seen from the
results, the level of agreement relations in Czech and
German improves when using syntactic information,
whereas in Spanish and Hungarian, only very tiny
changes occur.

agreement baseline gold syntax
Czech

sbj-verb 3199/4044 = 79.10 3264/4044 = 80.71
NP case 8719/9132 = 95.48 8821/9132 = 96.59
NP num 8933/9132 = 97.82 9016/9132 = 98.73
NP gen 8493/9132 = 93.00 8768/9132 = 96.01

German
sbj-verb 4412/4696 = 93.95 4562/4696 = 97.15
NP case 13340/13951 = 95.62 13510/13951 = 96.84
NP num 13631/13951 = 97.71 13788/13951 = 98.83
NP gen 13253/13951 = 95.00 13528/13951 = 96.97

Hungarian
sbj-verb 8653/10219 = 84.68 8655/10219 = 84.70
NP case 402/891 = 45.12 412/891 = 46.24

Spanish
sbj-verb 1930/2004 = 96.31 1932/2004 = 96.41
NP num 8810/8849 = 99.56 8816/8849 = 99.63
NP gen 8810/8849 = 99.56 8821/8849 = 99.68

Table 5: Agreement counts in morphological annotation
compared between the baseline system and the oracle
system using gold syntax.

For Czech and German, these results sugguest
that syntactic information helps with agreement. We
believe that the reasons why it does not help for
Hungarian and Spanish are the following: for Span-
ish, we see that also the baseline model achieves
very high accuracies (cf. Table 3) and also high rates
of correct agreement. It seems that for Spanish, syn-
tactic context is simply not necessary to make the
correct prediction. For Hungarian, the reason lies
within the inflectional paradigms of the language,
which do not show any form syncretism, mean-
ing that word forms in Hungarian are usually not
ambiguous within one morphological category (e.g.
case). Making a morphological tag prediction, how-
ever, is difficult only if the word form itself is am-
biguous between several morphological tags. In this
case, using the agreement relation between the word
and its syntactic head can help the system making

the proper prediction. This is the situation that we
find in Czech and German, where form syncretism
is pervasive in the inflectional paradigms.

2.6 Syntactic Features in Czech
In Section 2.4 we compared the performance of our
system on Czech to another system, featurama (see
Table 4). Featurama outperforms our baseline sys-
tem by a percentage point in token accuracy (and
even more for unknown tokens). Syntactic informa-
tion closes that gap to a large extent but only using
gold syntax gets our system on a par with featurama.

The question then arises whether the syntactic
features actually contribute something new to the
task, or whether the same effect could also be
achieved with linear context features alone as in fea-
turama. In order to test this we run an additional
experiment, where we add some of the syntax fea-
tures to the feature set of featurama. Specifically,
we add the static features from Table 2 that do not
use lemma or part-of-speech information. Due to the
way featurama works, we cannot use features from
the morphological tags (the dynamic features).

The results in Table 6 show that also featurama
profits from syntactic features, which corroborates
the findings from the previous experiments. We also
note again that better syntax would improve results
even more.

dev set test set
all oov all oov

featurama 94.75 84.12 94.78 84.23
pred syntax 95.18 84.65 95.09 84.52
gold syntax *95.39 84.62 *95.34 85.03

Table 6: Syntactic features for featurama (Czech). * mark
statistically significantly better models compared to feat-
urama (sentence-based t-test with α = 0.05).

3 How Much Syntax is Needed?

Syntactic features require syntactically annotated
corpora. Without a treebank to train the parser, the
morphology cannot profit from syntactic features.9

This may be problematic for languages for which
there is no treebank, because creating a treebank is
expensive. Fortunately, it turns out that very small
amounts of syntactically annotated data are enough

9Which is of course only a problem for statistical parsers.
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Figure 2: Dependency between amount of training data for syntactic parser and quality of morphological prediction.

to provide a parsing quality that is sufficient for the
morphological tagger.

In order to test what amount of training data is
needed, we train several parsing models on increas-
ing amounts of syntactically annotated data. For ex-
ample, the first experiment uses the first 1,000 sen-
tences of the treebank. We perform 5-fold jackknif-
ing with the parser on these sentences to annotate
them with syntax. Then we train one parsing model
on these 1,000 sentences and use it to annotate the
rest of the training data as well as the development
and the test set. This gives us the full data set an-
notated with syntax that was learned from the first
1,000 sentences of the treebank. The morphologi-
cal tagger is then trained on the full training set and
applied to development and test set.

Figure 2 shows the dependency between the
amount of training data given to the parser and the
quality of the morphological tagger using syntac-
tic features provided by this parser. The left-most
point corresponds to a model that does not use syn-
tactic information. For both languages, German
and Czech, we find that already 1,000 sentences are
enough training data for the parser to provide useful
syntactic information to the morphological tagger.
After 5,000 sentences, both curves flatten out and
stay on the same level. We conclude that using syn-
tactic features for morphological prediction is viable
even if there is only small amounts of syntactic data
available to train the parser.

As a related experiment, we also test if we can get
the same effect with a very simple and thus much
faster parser. We use the brute-force algorithm de-
scribed in Covington (2001), which selects for each

token in the sentence another token as the head. It
does not have any tree requirements, so it is not even
guaranteed to yield a cycle-free tree structure. In Ta-
ble 7, we compare the simple parser with the mate-
parser, both trained on the first 5,000 sentences of
the treebank. Evaluation is done in terms of labeled
(LAS) and unlabeled attachment score (UAS).10

dev set test set
LAS UAS LAS UAS

Czech
simple parser (5k) 71.57 78.96 69.09 77.23
full parser (5k) 76.77 84.38 74.70 83.00

German
simple parser (5k) 83.06 85.23 78.56 81.18
full parser (5k) 87.56 90.08 83.69 86.58

Table 7: Simple parser vs full parser – syntactic quality.
Trained on first 5,000 sentences of the training set.

As expected, the simple parser performs much
worse in terms of syntactic quality. Table 8 shows
the performance of the morphological tagger when
using the output of both parsers as syntactic fea-
tures. For Czech, both parsers seem to supply sim-
ilar information to the morphological tagger, while
for German, using the full parser is clearly better.
In both cases, the morphological tagger outperforms
the models that do not use syntactic information (cf.
Table 3). The performance on unknown words is
however much worse for both languages. We con-
clude that even with a simple parser and little train-
ing data, the morphology can make use of syntactic
information to some extent.

10LAS: correct edges with correct labels
all edges , UAS: correct edges

all edges
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dev set test set
all oov all oov

Czech
no syntax 92.51 73.12 92.29 72.58
simple syntax 92.96 73.45 92.53 72.66
full syntax 93.08 73.64 92.69 73.39

German
no syntax 90.92 72.52 89.11 69.67
simple syntax 91.52 73.34 89.66 70.52
full syntax 91.92 83.46 89.91 80.50

Table 8: Simple parser vs full parser – morphological
quality. The parsing models were trained on the first
5,000 sentences of the training data, the morphological
tagger was trained on the full training set.

4 Does Better Morphology lead to Better
Parses?

In the previous sections, we show that syntactic in-
formation improves a model for predicting morphol-
ogy for Czech and German, where syntax and mor-
phology interact considerably. A natural question
then is whether the improvement also occurs in the
other direction, namely whether the improved mor-
phology also leads to better parsing models.

In the previous experiments, we run a 10-fold
jackknifing process to annotate the training data with
morphological information using no syntactic fea-
tures and afterwards use jackknifing with the parser
to annotate syntax. The syntax is subsequently used
as features for our predicted-syntax experiments.
We can apply the same process once more with the
morphology prediction in order to annotate the train-
ing data with morphological information that is pre-
dicted using the syntactic features. A parser trained
on this data will then use the improved morphology
as features. If the improved morphology has an im-
pact on the parser, the quality of the second parsing
model should then be superior to the first parsing
model, which uses the morphology predicted with-
out syntactic information. Note that for the follow-
ing experiments, neither morphology model uses the
morphological lexicon.

Table 9 presents the evaluation of the two pars-
ing models (one using morphology without syntactic
features, the other one using the improved morphol-
ogy). The results show no improvement in parsing
performance when using the improved morphology.
Looking closer at the output, we find differences be-

dev set test set
LAS UAS LAS UAS

Czech
baseline morph 81.73 88.45 81.02 87.77
morph w/ syntax 81.63 88.37 80.83 87.61

German
baseline morph 91.16 92.97 88.06 90.24
morph w/ syntax 91.20 92.97 88.15 90.34

Table 9: Impact of the improved morphology on the qual-
ity of the dependency parser for Czech and German.

tween the two parsing models with respect to gram-
matical functions that are morphologically marked.
For example, in German, performance on subjects
and accusative objects improves while performance
for dative objects and genitives decreases. This sug-
gests different strengths in the two parsing models.
However, the question how to make use of the im-
proved morphology in parsing clearly needs more
research in the future. A promising avenue may be
the approach by Hohensee and Bender (2012).

5 Related Work

Morphological taggers have been developed for
many languages. The most common approach is the
combination of a morphological lexicon with a sta-
tistical disambiguation model (Hakkani-Tür et al.,
2002; Hajič, 2004; Smith et al., 2005; Spoustová
et al., 2009; Zsibrita et al., 2013).

Our work has been inspired by Versley et al.
(2010), who annotate a treebank with morphologi-
cal information after the syntax had been annotated
already. The system used a finite-state morphology
to propose a set of candidate tags for each word,
which is then further restricted using hand-crafted
rules over the already available syntax tree.

Lee et al. (2011) pursue the idea of jointly predict-
ing syntax and morphology, out of the motivation
that joint models should model the problem more
faithfully. They demonstrate that both sides can use
information from each other. However, their model
is computationally quite demanding and its overall
performance falls far behind the standard pipeline
approach where both tasks are done in sequence.

The problem of modeling the interaction between
morphology and syntax has recently attracted some
attention in the SPMRL workshops (Tsarfaty et al.,

341



2010). Modeling morphosyntactic relations explic-
itly has been shown to improve statistical parsing
models (Tsarfaty and Sima’an, 2010; Goldberg and
Elhadad, 2010; Seeker and Kuhn, 2013), but the co-
dependency between morphology and syntax makes
it a difficult problem, and linguistic intuition is often
contradicted by the empirical findings. For example,
Marton et al. (2013) show that case information is
the most helpful morphological feature for parsing
Arabic, but only if it is given as gold information,
whereas using case information from an automatic
system may even harm the performance.

Morphologically rich languages pose different
challenges for automatic systems. In this paper, we
work with European languages, where the problem
of predicting morphology can be reduced to a tag-
ging problem. In languages like Arabic, Hebrew,
or Turkish, widespread ambiguity in segmentation
of single words into meaningful morphemes adds an
additional complexity. Given a good segmentation
tool that takes care of this, our approach is appli-
cable to these languages as well. For Hebrew, this
problem has also been addressed by jointly mod-
eling segmentation, morphological prediction, and
syntax (Cohen and Smith, 2007; Goldberg and Tsar-
faty, 2008; Goldberg and Elhadad, 2013).

6 Conclusion

In this paper, we have demonstrated that using syn-
tactic information for predicting morphological in-
formation is helpful if the language shows form syn-
cretism in combination with morphosyntactic phe-
nomena like agreement. A model that uses syntactic
information is superior to a sequence model because
it leverages the syntactic dependencies that may hold
between morphologically dependent words as sug-
gested by linguistic theory. We also showed that
only small amounts of training data for a statistical
parser would be needed to improve the morphologi-
cal tagger. Making use of the improved morphology
in the dependency parser is not straight-forward and
requires more investigation in the future.

Modeling the interaction between morphology
and syntax is important for building successful pars-
ing pipelines for languages with free word order and
rich morphology. Moreover, our experiments show
that paying attention to the individual properties of a

language can help us explain and predict the behav-
ior of automatic tools. Thus, the term ”morpholog-
ically rich language” should be viewed as a broad
term that covers many different languages, whose
differences among each other may be as important as
the difference with languages with a less rich mor-
phology.
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Abstract

This paper contributes an approach for
expressing non-concatenative morphological
phenomena, such as stem derivation in
Semitic languages, in terms of a mildly
context-sensitive grammar formalism. This
offers a convenient level of modelling ab-
straction while remaining computationally
tractable. The nonparametric Bayesian frame-
work of adaptor grammars is extended to this
richer grammar formalism to propose a prob-
abilistic model that can learn word segmenta-
tion and morpheme lexicons, including ones
with discontiguous strings as elements, from
unannotated data. Our experiments on He-
brew and three variants of Arabic data find
that the additional expressiveness to capture
roots and templates as atomic units improves
the quality of concatenative segmentation and
stem identification. We obtain 74% accuracy
in identifying triliteral Hebrew roots, while
performing morphological segmentation with
an F1-score of 78.1.

1 Introduction

Unsupervised learning of morphology is the task
of acquiring, from unannotated data, the intra-word
building blocks of a language and the rules by which
they combine to form words. This task is of interest
both as a gateway for studying language acquisition
in humans and as a way of producing morphological
analyses that are of practical use in a variety of nat-
ural language processing tasks, including machine
translation, parsing and information retrieval.

A particularly interesting version of the morphol-
ogy learning problem comes from languages that
use templatic morphology, such as Arabic, He-
brew and Amharic. These Semitic languages de-
rive verb and noun stems by interspersing abstract

root morphemes into templatic structures in a non-
concatenative way. For example, the Arabic root
k·t·b can combine with the template (i-a) to derive
the noun stem kitab (book). Established morpho-
logical analysers typically ignore this process and
simply view the derived stems as elementary units
(Buckwalter, 2002), or their account of it coincides
with a requirement for extensive linguistic knowl-
edge and hand-crafting of rules (Finkel and Stump,
2002; Schneider, 2010; Altantawy et al., 2010). The
former approach is bound to suffer from vocabu-
lary coverage issues, while the latter clearly does
not transfer easily across languages. The practical
appeal of unsupervised learning of templatic mor-
phology is that it can overcome these shortcomings.

Unsupervised learning of concatenative morphol-
ogy has received extensive attention, partly driven
by the MorphoChallenge (Kurimo et al., 2010) in re-
cent years, but that is not the case for root-templatic
morphology (Hammarström and Borin, 2011).

In this paper we present a model-based method
that learns concatenative and root-templatic mor-
phology in a unified framework. We build on two
disparate strands of work from the literature: Firstly,
we apply simple Range Concatenating Grammars
(SRCGs) (Boullier, 2000) to parse contiguous and
discontiguous morphemes from an input string.
These grammars are mildly-context sensitive (Joshi,
1985), a superset of context-free grammars that
retains polynomial parsing time-complexity. Sec-
ondly, we generalise the nonparametric Bayesian
learning framework of adaptor grammars (Johnson
et al., 2007) to SRCGs.1 This should also be rel-

1Our formulation is in terms of SRCGs, which are equiv-
alent in power to linear context-free rewrite systems (Vijay-
Shanker et al., 1987) and multiple context-free grammars (Seki
et al., 1991), all of which are weaker than (non-simple) range
concatenating grammars (Boullier, 2000).
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evant to other applications of probabilistic SRCGs,
e.g. in parsing (Maier, 2010), translation (Kaesham-
mer, 2013) and genetics (Kato et al., 2006).

In addition to unannotated data, our method re-
quires as input a minimal set of high-level grammar
rules that encode basic intuitions of the morphology.
This is where there would be room to become very
language specific. Our aim, however, is not to obtain
a best-published result in a particular language, but
rather to create a method that is applicable across
a variety of morphological processes. The specific
rules used in our empirical evaluation on Arabic and
Hebrew therefore contain hardly any explicit lin-
guistic knowledge about the languages and are ap-
plicable across the family of Semitic languages.

2 A powerful grammar for morphology

Concatenative morphology lends itself well to an
analysis in terms of finite-state transducers (FSTs)
(Koskenniemi, 1984). With some additional effort,
FSTs can also encode non-concatenative morphol-
ogy (Kiraz, 2000; Beesley and Karttunen, 2003;
Cohen-Sygal and Wintner, 2006; Gasser, 2009). De-
spite this seeming adequacy of regular languages to
describe morphology, we see two main shortcom-
ings that motivate moving further up the Chom-
sky hierarchy of formal languages: first is the is-
sue of learning. We are not aware of successful at-
tempts at inducing FST-based morphological analy-
sers in an unsupervised way, and believe the chal-
lenge lies in the fact that FSTs do not offer a conve-
nient way of expressing prior linguistic intuitions to
guide the learning process. Secondly, an FST com-
posed of multiple machines might capture morpho-
logical processes well and excel at analysis, but in-
terpretability of its internal operations are limited.

These shortcomings are overcome for concate-
native morphology by context-free adaptor gram-
mars, which allowed diverse segmentation models
to be formulated and investigated within a single
framework (Johnson et al., 2007; Johnson, 2008;
Sirts and Goldwater, 2013). In principle, that cov-
ers a wide range of phenomena (typical example
language in parentheses): affixal inflection (Czech)
and derivation (English), agglutinative derivation
(Turkish, Finnish), compounding (German). Our
agenda here is to extend that approach to include
non-concatenative processes such as root-templatic

derivation (Arabic), infixation (Tagalog) and cir-
cumfixation (Indonesian). In this pursuit, an ab-
straction that permits discontiguous constituents is
a highly useful modelling tool, but requires looking
beyond context-free grammars.

An idealised generative grammar that would cap-
ture all the aforementioned phenomena could look
like this:

Word→ (Pre∗ Stem Suf∗)+ (1)
e.g. English un+accept+able

Stem |Pre |Suf→ Morph (2)
Stem→ intercal (Root,Template) (3)
e.g. Arabic derivation k·t·b + i·a⇒ kitab (book)

Stem→ infix (Stem, Infix) (4)
e.g. Tagalog sulat (write)⇒ sumulat (wrote)

Stem→ circfix (Stem,Circumfix) (5)
e.g. Indonesian percaya (to trust)

⇒ kepercayaan (belief)

where the symbols (excluding Word and Stem) im-
plicitly expand to the relevant terminal strings. The
bold-faced “functions” combine the potentially dis-
contiguous yields of the argument symbols into sin-
gle contiguous strings, e.g. infix(s·ulat, um) pro-
duces stem sumulat.

Taken by themselves, the first two rules are sim-
ply a CFG that describes word formation as the
concatenation of stems and affixes, a formulation
that matches the underlying grammar of Morfessor
(Creutz and Lagus, 2007), a well-studied unsuper-
vised model.

The key aim of our extension is that we want the
grammar to capture a discontiguous string like k·t·b
as a single constituent in a parse tree. This leads to
well-understood problems in probabilistic grammars
(e.g. what is this rule’s probability?), but also corre-
sponds to the linguistic consideration that k·t·b is a
proper morpheme of the language (Prunet, 2006).

3 Simple range concatenating grammars

In this section we define SRCGs formally and
illustrate how they can be used to model non-
concatenative morphology. SRCGs define lan-
guages that are recognisable in polynomial time, yet
can capture discontiguous elements of a string un-
der a single category (Boullier, 2000). An SRCG-
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rule operates on vectors of ranges in contrast to the
way a CFG-rule operates on single ranges (spans).
In other words, a non-terminal symbol in an SRCG
(CFG) derivation can dominate a subset (substring)
of terminals in an input string.

3.1 Formalism

An SRCG G is a tuple (N,T, V, P, S), with
finite sets of non-terminals (N ), termi-
nals (T ) and variables (V ), with a start sym-
bol S ∈ N . A rewrite rule p ∈ P of rank
r = ρ(p) ≥ 0 has the form A(α1, . . . , αψ(A)) →
B1(β1,1, . . . , β1,ψ(B1)) . . . Br(βr,1, . . . , βr,ψ(Br)),
where each α, β ∈ (T ∪ V )∗, and ψ(A) is the
number of arguments a non-terminal A has, called
its arity. By definition, the start symbol has arity 1.
Any variable v ∈ V appearing in a given rule
must be used exactly once on each side of the
rule. Terminating rules are written with ε as the
right-hand side and thus have rank 0.

A range is a pair of integers (i, j) denoting the
substring wi+1 . . . wj of a string w = w1 . . . wn.
A non-terminal becomes instantiated when its vari-
ables are bound to ranges through substitution. Vari-
ables within an argument imply concatenation and
therefore have to bind to adjacent ranges.

An instantiated non-terminal A′ is said to de-
rive ε if the consecutive application of a sequence
of instantiated rules rewrite it as ε. A string w is
within the language defined by a particular SRCG
iff the start symbol S, instantiated with the exhaus-
tive range (0, wn), derives ε.

An important distinction with regard to CFGs is
that, due to the instantiation mechanism, the order-
ing of non-terminals on the right-hand side of an
SRCG rule is irrelevant, i.e. A(ab) → B(a)C(b)
and A(ab) → C(b)B(a) are the same rule.2 Con-
sequently, the isomorphisms of any given SRCG
derivation tree all encode the same string, which is
uniquely defined through the instantiation process.

3.2 Application to morphological analysis

A fragment of the idealised grammar schema from
the previous section (§2) can be rephrased as an
SRCG by writing the rules in the newly introduced

2Certain ordering restrictions over the variables within an
argument need to hold for an SRCG to indeed be a simple RCG
(Boullier, 2000).

Word(wakitabi)

Suf(i)

i

Stm(kitab)

Template(i,a)Root(k,t,b)

Pre(wa)

aw k i t a b

Figure 1: Example derivation for wakitabi (and my
book) using the SRCG fragment from §3.2. CFGs
cannot capture such crossing branches.

notation, and supplying a definition of the intercal
function as simply another rule of the grammar, with
instantiation for w = kitab shown below:

Word(abc)→ Pre(a) Stem(b) Suf(c)
Stem(abcde)→ Root(a, c, e) Template(b, d),

Stem(〈0..1〉, 〈1..2〉, 〈2..3〉, 〈3..4〉, 〈4..5〉)
→ Root(〈0..1〉, 〈2..3〉, 〈4..5〉)

Template(〈1..2〉, 〈3..4〉)

Given an appropriate set of grammar rules (as we
present in §5), we can parse an input string to ob-
tain a tree as shown in Figure 1. The overlapping
branches of the tree demonstrate that this grammar
captures something a CFG could not. From the parse
tree one can read off the word’s root morpheme and
the template used.

Although SRCGs specify mildly context-sensitive
grammars, each step in a derivation is context-free –
a node’s expansion does not depend on other parts
of the tree. This property implies that a recogni-
tion/parsing algorithm can have a worst-case time
complexity that is polynomial in the input length n,
O(n(ρ+1)ψ) for arity ψ and rank ρ, which reduces
to O(n3ψ) for a binarised grammar. To capture the
maximal case of a root with k − 1 characters and
k discontiguous templatic characters forming a stem
would require a grammar that has arity ψ = k. For
Arabic, which has up to quadriliteral roots (k = 5),
the time complexity would be O(n15).3 This is a
daunting proposition for parsing, but we are careful

3The trade-off between arity and rank with respect to pars-
ing complexity has been characterised (Gildea, 2010), and the
appropriate refactoring may bring down the complexity for our
grammars too.
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to set up our application of SRCGs in such a way
that this is not too big an obstacle:

Firstly, our grammars are defined over the char-
acters that make up a word, and not over words that
make up a sentence. As such, the input length n
would tend to be shorter than when parsing full sen-
tences from a corpus.

Secondly, we do type-based morphological analy-
sis, a view supported by evidence from Goldwater et
al. (2006), so each unique word in a dataset is only
ever parsed once with a given grammar. The set of
word types attested in the data sources of interest
here is fairly limited, typically in the tens of thou-
sands. For these reasons, our parsing and inference
tasks turn out to be tractable despite the high time
complexity.

4 Learning

4.1 Probabilistic SRCG

The probabilistic extension of SRCGs is similar to
the probabilistic extension of CFGs, and has been
used in other guises (Kato et al., 2006; Maier, 2010).
Each rule r ∈ P has an associated probability θr
such that

∑
r∈PA

θr = 1. A random string in
the language of the grammar can then be obtained
through a generative procedure that begins with the
start symbol S and iteratively expands it until deriv-
ing ε: At each step for some current symbol A, a
rewrite rule r is sampled randomly from PA in ac-
cordance with the distribution over rules and used
to expand A. This procedure terminates when no
further expansions are possible. Of course, expan-
sions need to respect the range concatenating and or-
dering constraints imposed by the variables in rules.
The expansions imply a chain of variable bindings
going down the tree, and instantiation happens only
when rewriting into εs but then propagates back up
the tree.

The probability P (w, t) of the resulting tree t and
terminal string w is the product

∏
r θr over the se-

quence of rewrite rules used. This generative proce-
dure is a conceptual device; in practice, one would
care about parsing some input string under this prob-
abilistic grammar.

4.2 PYSRCAG

A central property of the generative procedure un-
derlying probabilistic SRCGs is the fact that each

expansion happens independently, both of the other
expansions in the tree under construction and of any
other trees. To some extent, this flies in the face of
the reality of estimating a grammar from text, where
one would expect certain sub-trees to be used repeat-
edly across different input strings.

Adaptor grammars weaken this independence as-
sumption by allowing whole subtrees to be reused
during expansion. Informally, they act as a cache of
tree fragments whose tendency to be reused during
expansion is governed by the choice of adaptor func-
tion. Following earlier applications of adaptor gram-
mars (Johnson et al., 2007; Huang et al., 2011), we
employ the Pitman-Yor process (Pitman, 1995; Pit-
man and Yor, 1997) as adaptor function.

A Pitman-Yor Simple Range Concatenat-
ing Adaptor Grammar (PYSRCAG) is a tuple
G = (GS ,M,a, b,α), where GS is a probabilistic
SRCG as defined before and M ⊆ N is a set
of adapted non-terminals. The vectors a and b,
indexed by the elements of M , are the discount
and concentration parameters for each adapted non-
terminal, with a ∈ [0, 1], b ≥ 0. α are parameters to
Dirichlet priors on the rule probabilities θ.

PYSRCAG defines a generative process over a set
of trees T . Unadapted non-terminals A′ ∈ N \M
are expanded as before (§4.1). For each adapted
non-terminal A ∈ M , a cache CA is maintained
for storing the terminating tree fragments expanded
from A earlier in the process, and we denote the
fragment corresponding to the i-th expansion of A
as zi. In other words, the sequence of indices zi
is the assignment of a sequence of expansions of
A to particular tree fragments. Given a cache CA
that has n previously generated trees comprising
m unique trees each used n1, . . . , nm times (where
n =

∑
k nk), the tree fragment for the next expan-

sion of A, zn+1, is sampled conditional on the pre-
vious assignments z< according to

zn+1|z< ∼

{
nk−a
n+b if zn+1 = k ∈ [1,m]
ma+b
n+b if zn+1 = m+ 1,

where a and b are those elements of a and b cor-
responding to A. The first case denotes the situa-
tion where a previously cached tree is reused for this
n + 1-th expansion of A; to be clear, this expands
A with a fully terminating tree fragment, meaning
that none of the nodes descending from A in the
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tree being generated are subject to further expan-
sion. The second case by-passes the cache and ex-
pandsA according to the rules PA and rule probabil-
ities θA of the underlying SRCG GS . Other caches
CB(B ∈ M) may come into play during those
expansions of the descendants of A; thus a PYS-
RCAG can define a hierarchical stochastic process.
Both cases eventually result in a terminating tree-
fragment for A, which is then added to the cache,
updating the counts n, nzn+1 and potentially m.

The adaptation does not affect the string language
of GS , but it maps the distribution over trees to one
that is distributed according to the PYP.

The invariance of SRCGs trees under isomor-
phism would make the probabilistic model deficient,
but we side-step this issue by requiring that grammar
rules are specified in a canonical way that ensures
a one-to-one correspondence between the order of
nodes in a tree and of terminals in the yield.

4.3 Inference under PYSRCAG

The inference procedure under our model is very
similar to that of CFG PY-adaptor grammars, so we
restate the central aspects here but refer the reader
to the original article by Johnson et al. (2007) for
further details. First, one may integrate out the
adaptors to obtain a single distribution over the set
of trees generated from a particular non-terminal.
Thus, the joint probability of a particular sequence z
for the adapted non-terminal A with cached counts
(n1, . . . , nm) is

PY (z|a, b) =

∏m
k=1 (a(k − 1) + b)

∏nk−1
j=1 (j − a)∏n−1

i=0 (i+ b)
.

(6)
Taking all the adapted non-terminals into account,
the joint probability of a set of full trees T under the
grammar G is

P (T |a, b,α) =
∏
A∈M

B(αA + fA)

B(αA)
PY (z(T )|a, b),

(7)
where fA is a vector of the usage counts of rules
r ∈ PA across T , and B is the Euler beta function.

The posterior distribution over a set of strings
w is obtained by marginalising (7) over all trees
that have w as their yields. This is intractable to
compute directly, so instead we use MCMC tech-
niques to obtain samples from that posterior using a

component-wise Metropolis-Hastings sampler. The
sampler works by visiting each string w in turn and
drawing a new tree for it under a proposal grammar
GQ and randomly accepting that as the new analysis
for w according to the Metropolis-Hastings accept-
reject probability. As proposal grammar, we use the
analogous approximation of our G as Johnson et al.
used for PCFGs, namely by taking a static snapshot
GQ of the adaptor grammar where additional rules
rewrite adapted non-terminals as the terminal strings
of their cached trees. Drawing a sample from the
proposal distribution is then a matter of drawing a
random tree from the parse chart of w under GQ.

Lastly, the adaptor hyperparameters a and b
are modelled by placing flat Beta(1, 1) and vague
Gamma(10, 0.1) priors on them, respectively, and
inferring their values using slice sampling (Johnson
and Goldwater, 2009).

5 Modelling root-templatic morphology

We start with a CFG-based adaptor grammar4 that
models words as a stem and any number of prefixes
and suffixes:

Word→ Pre∗ Stem Suf∗ (8)

Pre | Stem | Suf→ Char+ (9)

This fragment can be seen as building on the stem-
and-affix adaptor grammar presented in (Johnson et
al., 2007) for morphological analysis of English, of
which a later version also covers multiple affixes
(Sirts and Goldwater, 2013). In the particular case of
Arabic, multiple affixes are required to handle the at-
tachment of particles and proclitics onto base words.

To extend this to complex stems consisting of a
root with three radicals we have rules like the fol-
lowing:

Stem(abcdefg)→ R3(b, d, e) T4(a, c, e, g) (10)
Stem(abcdef)→ R3(a, c, e) T3(b, d, f) (11)

Stem(abcde)→ R3(a, c, e) T2(b, d) (12)
Stem(abcd)→ R3(a, c, d) T1(b) (13)

Stem(abc)→ R3(a, b, c) (14)
4Adapted non-terminals are indicated by underlining and

we use the following abbreviations: X → Y+ means one
or more instances of Y and encodes the rules X → Ys and
Ys → Ys Y | Y. Similarly, X → Y∗ Z allows zero or more
instances of Y and encodes the rules X → Z and X → Y+ Z.
Further relabelling is added as necessary to avoid cycles among
adapted non-terminals.
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The actual rules include certain permutations of
these, e.g. rule (13) has a variant R3(a, b, d)T1(c).
In unvocalised text, the standard written form of
Modern Standard Arabic (MSA), it may happen that
the stem and the root of a word form are one and the
same. So while rule (14) may look trivial, it ensures
that in such cases the radicals are still captured as de-
scendants of the non-terminal category R3, thereby
making their appearance in the cache.

A discontiguous non-terminal An is rewritten
through recursion on its arity down to 1, i.e.
An(v1, . . . , vn)→ Al(v1, . . . , vn−1) Char(vn) with
base case A1(v) → Char(v), where Char rewrites
all individual terminals as ε, vi are variables and
l = n−1.5 Note that although we provide the model
with two sets of discontiguous non-terminals R and
T, we do not specify their mapping onto the actual
terminal strings; no subdivision of the alphabet into
vowels and consonants is hard-wired.

6 Experiments

We evaluate our model on standard Arabic, Quranic
Arabic and Hebrew in terms of segmentation quality
and lexicon induction ability. These languages share
various properties, including morphology and lexi-
cal cognates, but are sufficiently different so as to
require manual intervention when transferring rule-
based morphological analysers across languages. A
key question in this evaluation is therefore whether
an appropriate instantiation of our model success-
fully generalises across related languages.

6.1 Data sets

Our models are unsupervised and therefore learn
from raw text, but their evaluation requires anno-
tated data as a gold-standard and these were derived6

as follows:

Arabic (MSA) We created the dataset BW by syn-
thesising 50k morphotactically correct word types
from the morpheme lexicons and consistency rules
supplied with the Buckwalter Arabic Morphological

5Including the arity as part of the non-terminal symbol
names forms part of our convention here to ensure that the
grammar contains no cycles, a situation which would compli-
cate inference under PYSRCAG.

6Our data preprocessing scripts are obtainable from
http://github.com/bothameister/pysrcag-data.

Types Stems Roots m/w c/w

BW 48428 24197 4717 2.3 6.4
BW

′
48428 30891 4707 2.3 10.7

QU
′

18808 12021 1270 1.9 9.9
HEB 5231 3164 492 2.1 6.7

Table 1: Corpus statistics, including average number
of morphemes (m/w) and characters (c/w) per word,
and total surface-realised roots of length 3 or 4.

Analyser (BAMA).7 This allowed control over the
word shapes, which is important to focus the evalu-
ation, while yielding reliable segmentation and root
annotations. BW has no vocalisation; we denote the
corresponding vocalised dataset as BW

′
.

Quranic Arabic We extracted the roughly 18k
word types from a morphologically analysed version
of the Quran (Dukes and Habash, 2010). As an ad-
ditional challenge, we left all given diacritics intact
for this dataset, QU

′
.

Hebrew We leveraged the Hebrew CHILDES
database as an annotated resource (Albert et al.,
2013) and were able to extract 5k word types that
feature at least one affix to use as dataset HEB. The
corrected versions of words marked as non-standard
child language were used, diacritics were dropped,
and we conflated stressed and unstressed vowels to
overcome inconsistencies in the source data.

6.2 Models

We consider two classes of models. The first
is the strictly context-free adaptor grammar for
morphemes as sequences of characters using
rules (8)-(9), which we denote as Concat and
MConcat, where the latter allows multiple pre-
fixes/suffixes in a word. These serve as baselines for
the second class in which non-concatenative rules
are added. MTpl and Tpl denote the canonical ver-

7We used version 2.0, LDC2004L02, and sampled word
types having a single stem and at most one prefix, suffix or both,
according to the following random procedure: Sample a shape
(stem: 0.1, pre+stem: 0.25 stem+suf: 0.25, pre+stem+suf: 0.4).
Sample uniformly at random (with replacement) a stem from
the BAMA stem lexicon, and affix(es) from the ones consis-
tent with the chosen stem. The BAMA lexicons contain affixes
and their legitimate concatenations, so some of the generated
words would permit a linguistic segmentation into multiple pre-
fixes/suffixes. Nonetheless, we take as gold-standard segmenta-
tion precisely the items used by our procedure.
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sions with stems as shown in the set of rules above,
and we experiment with a variant Tpl3Ch that al-
lows the non-terminal T1 to be rewritten as up to
three Char symbols, since the data indicate there are
cases where multiple characters intervene between
the radicals of a root.

These models exclude rule (10), which we include
only in the variant Tpl+T4. Lastly, TplR4 is the ex-
tension of Tpl+T4 to include a stem-forming rule
that uses R4.

As external baseline model we used Morfessor
(Creutz and Lagus, 2007), which performs decently
in morphological segmentation of a variety of lan-
guages, but only handles concatenation.

6.3 Method

The MCMC samplers converged within a few hun-
dred iterations and we collected 100 posterior sam-
ples after 900 iterations of burn-in. Collected sam-
ples, each of which is a set of parse trees of the input
word types, are used in two ways:

First, by averaging over the samples we can es-
timate the joint probability of a word type w and a
parse tree t under the adaptor grammar, conditional
on the data and the model’s hyperparameters. We
take the most probable parse of each word type and
evaluate the implied segmentation against the gold
standard segmentation. Likewise, we evaluate the
implied lexicon of stems, affixes and roots against
the corresponding reference sets. It should be em-
phasised that using this maximally probable analy-
sis is aimed at simplifying the evaluation set-up; one
could also extract multiple analyses of a word since
the model defines a distribution over them.

The second method abstracts away from individ-
ual word-types and instead averages over the union
of all samples to obtain an estimate of the probabil-
ity of a string s being generated by a certain category
(non-terminal) of the grammar. In this way we can
obtain a lexicon of the morphemes in each category,
ranked by their probability under the model.

6.4 Inducing Morpheme Lexicons

The quality of each induced lexicon is measured
with standard set-based precision and recall with re-
spect to the corresponding gold lexicon. The results
are summarised by balanced F-scores in Table 2.

The main result is that all our models capable of

forming complex stems obtain a marked improve-
ment in F-scores over the baseline concatenative
adaptor grammar, and the margin of improvement
grows along with the expressivity of the complex-
stem models tested. This applies across prefix, stem
and suffix categories and across our datasets, with
the exception of QU

′
, which we elaborate on in §6.5.

Stem lexicons of Arabic were learnt with rel-
atively constant precision (∼70%), but modelling
complex stems broadened the coverage by about
3000 stems over the concatenative model (against a
reference set of 24k stems). On vocalised Arabic,
the improvements for stems are along both dimen-
sions. In contrast, affix lexicons for both BW and
BW

′
are noisy and the models all generate greedily

to obtain near perfect recall but low precision.
On our Hebrew data, which comprises only 5k

words, the gains in lexicon quality from modelling
complex stems tend to be larger than on Arabic. This
is consistent with our intuition that an appropriate,
richer Bayesian prior helps overcome data sparsity.

Extracting a lexicon of roots is rendered challeng-
ing by the unsupervised nature of the model as the
labelling of grammar symbols is ultimately arbitrary.
Our simple approach was to regard a character tuple
parsed under category R3 as a root. This had mixed
success, as demonstrated by the outlier scores in Ta-
ble 2. In the one case where it was obvious that T3
had been been co-opted for the role, we report the
F-score obtained on the union of R3 and T3 strings.

Soft decisions The preceding set-based evaluation
imposes hard decisions about category membership.
But adaptor grammars are probabilistic by definition
and should thus also be evaluated in terms of prob-
abilistic ability. One method is to turn the model
predictions into a binary classifier of strings us-
ing Receiver-Operator-Characteristic (ROC) theory.
We plot the true positive rate versus the false pos-
itive rate for each prediction lexicon Lτ containing
strings that have probability greater than τ under the
model (for a grammar category of interest). A per-
fect classifier would rank all true positives (e.g. stem
strings) above false positives (e.g. non-stem strings),
corresponding to a curve in the upper left corner of
the ROC plot. A random guesser would trace a di-
agonal line. The area under the curves (AUC) is
the probability that the classifier would discriminate
correctly.
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Vocalised Arabic (BW
′
) Unvocalised Arabic (BW) Hebrew (HEB)

Pre Stem Suf R3 Pre Stem Suf R3 Pre Stem Suf R3

Concat 15.0 20.2 25.4 - 32.8 44.1 40.3 - 18.7 20.9 29.2 -
Tpl 24.7 39.4 35.2 †42.4 45.9 54.7 47.9 62.7 35.1 59.6 52.9 34.8
Tpl3Ch 28.4 36.0 36.5 5.2 50.3 55.1 48.5 62.4 38.6 61.5 56.6 7.1
Tpl+T4 29.0 44.8 41.0 3.9 46.2 54.2 47.7 62.3 32.5 59.6 53.0 36.4
TplR4 37.8 60.3 47.0 5.2 53.0 57.7 51.9 62.4 38.0 62.4 55.2 34.7

Table 2: Morpheme lexicon induction quality. F1-scores for lexicons induced from the most probable parse
of each different dataset under each models. †42.4 was obtained by taking the union of R3 and T3 items to
match the way the model used them (see §6.4).

BW
′

BW QU
′

HEB

Morfessor 55.57 40.04 44.34 24.20
Concat 47.36 64.22 19.64 60.05

Tpl 60.42 71.91 22.53 77.26
Tpl3Ch 60.52 72.20 25.72 77.41
Tpl+T4 64.49 71.59 24.81 77.14
TplR4 74.54 73.66 - 78.14

Table 3: Segmentation quality in SBF1. The QU
′

results are for the corresponding M* models .

Our models with complex stem formation im-
prove over the baseline on the AUC metric too. We
include the ROC plots for Hebrew stem and root in-
duction in Figure 2, along with the roots the model
was most confident about (Table 4).

6.5 Morphological Analysis per Word Type

In this section we turn to the analyses our models
assign to each word type. Two aspects of interest are
the segmentation into sequential morphemes and the
identification of the root.

Our intercalating adaptor grammars consistently
obtain large gains in segmentation accuracy over the
baseline concatenative model, across all our datasets
(Table 3). We measure segmentation quality as seg-
ment border F1-score (SBF) (Sirts and Goldwater,
2013), which is the F-score over word-internal seg-
mentation points of the predicted analysis with re-
spect to the gold segmentation.

Of the two MSA datasets, the vocalised version
BW

′
presents a more difficult segmentation task as

its words are on average longer and feature 31k
unique contiguous morphemes, compared to the 24k
in BW for the same number of words. It should thus
benefit more from additional model expressivity, as

is reflected in the increase of 10 SBF when adding
the TplR4 rule to the other triliteral ones.

The best triliteral root identification accuracy (on
a per-word basis) was found for HEB (74%) and BW
(67%).8,9 Refer to Figure 3 for example analyses.

An interesting aspect of these results is that tem-
platic rules may aid segmentation quality without
necessarily giving perfect root identification. Mod-
elling stem substructure allows any regularities that
give rise to a higher data likelihood to be picked up.

The low performance on the Quran demands fur-
ther explanation. All our adaptor grammars severely
oversegmented this data, although the mistakes were
not uniformly distributed. Most of the performance
loss is on the 79% of words that have 1-2 mor-
phemes. On the remaining words (having 3-5 mor-
phemes), our models recover and approach the Mor-
fessor baseline (MConcat: 32.7 , MTpl3Ch: 38.6).

Preliminary experiments on BW had indicated
that adaptation of (single) affix categories is crucial
for good performance. Our multi-affixing models
used on QU

′
lacked a further level of adaptation for

composite affixes, which we suspect as a contribut-
ing factor to the lower performance on that dataset.
This remains to be confirmed in future experiments,
but would be consistent with other observations on
the role of hierarchical adaptation in adaptor gram-
mars (Sirts and Goldwater, 2013). The trend that
intercalated rules improve segmentation (compared
to the concatenative grammar) remains consistent

8When excluding cases where root equals stem, root identi-
fication on BW is 55%. Those cases are still not trivial, since
words without roots also exist.

9By way of comparison, Rodrigues and Ćavar (2007)
presented an unsupervised statistics-based root identification
method that obtained precision ranging between 50-75%, the
higher requiring vocalised words.
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(b) Triliteral roots

Figure 2: ROC curves for predicting the stem and root lexicons for the HEB dataset. The area under each
curve (AUC), as computed with the trapezium rule, is given in parentheses.

across datasets, despite the lower absolute perfor-
mance on QU

′
.

The performance of the Morfessor baseline was
quite mixed. Contrary to our expectations, it per-
forms best on the “harder” BW

′
, worst on the ar-

guably simpler HEB and struggled less than the
adaptor grammars on QU

′
.

One factor here is that it learns according to
a grammar with multiple consecutive affixes and
stems, whereas all our experiments (except on QU

′
)

presupposed single affixes. This biases the evalua-
tion slightly in our favour, but works in Morfessor’s
favour on the QU

′
data which is annotated with mul-

tiple affixes.

7 Related work

The distinctive feature of our morphological model
is that it jointly addresses root identification and
morpheme segmentation, and our results demon-
strate the mutual benefit of this.

In contrast, earlier unsupervised approaches tend
to focus on these tasks in isolation.

In unsupervised Arabic segmentation, the para-
metric Bayesian model of (Lee et al., 2011) achieves
F1-scores in the high eighties by incorporating sen-
tential context and inferred syntactic categories,
both of which our model forgoes, although theirs has
no account of discontiguous root morphemes.

Root Example instances

1. spr X G šap̌ař.ti te.šap̌ř ye.šap̌ř.u
B sipur.im hixštap̌xař t

2. lbs X G ľab̌aŠ.t li.ľb̌oŠ ti.ľb̌eŠ.i
B le hax ľb̌iŠ ti tx ľab̌Š.i

3. ptx X G p̌aťax̌.ti ti.p̌ťex̌.i
B li.p̌ťoax̌ nixp̌ťax̌.at

5. !al × B ya.!al.u m̌ax!̌aľ.a !̌ačľxan it

Table 4: Top Hebrew roots hypothesised by Tpl+T4.
Numbers indicate position when ranked by model
probability. (G)ood and (B)ad instances from
the corpus are given with morpheme boundaries
marked: true positive (.), false negative ( ) and false
positive (x). Hypothesised root characters are bold-
faced, while accent (ˇ) marks gold root characters.

Previous approaches to Arabic root identifica-
tion that sought to use little supervision typically
constrain the search space of candidate characters
within a word, leveraging pre-existing dictionar-
ies (Darwish, 2002; Boudlal et al., 2009) or rule
constraints (Elghamry, 2005; Rodrigues and Ćavar,
2007; Daya et al., 2008).

In contrast to these approaches, our model re-
quires no dictionary, and while our grammar rules
effect some constraints on what could be a root, they
are specified in a convenient and flexible manner that
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Figure 3: Parse trees produced for words in the two standard Arabic datasets that were incorrectly segmented
by the baseline grammar. The templatic grammars correctly identified the triliteral and quadriliteral roots,
also fixing the segmentation of (a). In (b), the templatic grammar improved over the baseline by finding
the correct prefix but falsely posited a suffix. Unimportant subtrees are elided for space, while the yields of
discontiguous constituents are indicated next to their symbols, with dots marking gaps. Crossing branches
are not drawn but should be inferrable. Root characters are bold-faced in the reference analysis X. The non-
terminal X2 in (a) is part of a number of implementation-specific helper rules that ensure the appropriate
handling of partly contiguous roots.

makes experimentation with other phenomena easy.
Recent work by Fullwood and O’Donnell (2013)

goes some way toward jointly dealing with non-
concatenative and concatenative morphology in the
unsupervised setting, but their focus is limited to in-
flected stems and does not handle multiple consecu-
tive affixes. They analyse the Arabic verb stem (e.g.
kataba “he wrote”) into a templatic bit-string denot-
ing root and non-root characters (e.g. r-r-r-) along
with a root morpheme (e.g. ktb) and a so-called
residue morpheme (e.g. aaa). Their nonparamet-
ric Bayesian model induces lexicons of these en-
tities and achieves very high performance on tem-
plates. The explicit formulation of templates allevi-
ates the labelling ambiguity that hampered our eval-
uation (§6.4), but we believe their method of anal-
ysis can be simulated in our framework using the
appropriate SRCG-rules.

Learning root-templatic morphology is loosely re-
lated to morphological paradigm induction (Clark,
2001; Dreyer and Eisner, 2011; Durrett and DeN-
ero, 2013). Our models do not represent templatic
paradigms explicitly, but it is interesting to note that
preliminary experiments with German indicate that
our adaptor grammars pick up on the past participle
forming circumfix in ab+ge+spiel+t (played back).

8 Conclusion and Outlook

We presented a new approach to modelling non-
concatenative phenomena in morphology using sim-

ple range concatenating grammars and extended
adaptor grammars to this formalism. Our experi-
ments show that this richer model improves morpho-
logical segmentation and morpheme lexicon induc-
tion on different languages in the Semitic family.

Various avenues for future work present them-
selves. Firstly, the lightly-supervised, meta-
grammar approach to adaptor grammars (Sirts and
Goldwater, 2013) can be extended to this more
powerful formalism to lessen the burden of defin-
ing the “right” grammar rules by hand, and possi-
bly boost performance. Secondly, the discontigu-
ous constituents learnt with our framework can be
used as features in other downstream applications.
Especially in low-resource languages, the ability to
model non-concatenative phenomena (e.g. circum-
fixing, ablaut, etc.) can play an important role in re-
ducing data sparsity for tasks like word alignment
and language modelling. Finally, the PYSRCAG
presents another way of learning SRCGs in general,
which can thus be employed in other applications of
SRCGs, including syntactic parsing and translation.

Acknowledgements

We thank the anonymous reviewers for their valu-
able comments. Our PYSRCAG implementation
leveraged the adaptor grammar code released by
Mark Johnson, whom we thank, along with the in-
dividuals who contributed to the public data sources
that enabled the empirical elements of this paper.

354



References

Aviad Albert, Brian MacWhinney, Bracha Nir, and Shuly
Wintner. 2013. The Hebrew CHILDES corpus: tran-
scription and morphological analysis. Language Re-
sources and Evaluation, pages 1–33.

Mohamed Altantawy, Nizar Habash, Owen Rambow, and
Ibrahim Saleh. 2010. Morphological Analysis and
Generation of Arabic Nouns: A Morphemic Func-
tional Approach. In Proceedings of LREC, pages 851–
858.

Kenneth R Beesley and Lauri Karttunen. 2003. Fi-
nite state morphology, volume 18. CSLI publications
Stanford.

Abderrahim Boudlal, Rachid Belahbib, Abdelhak
Lakhouaja, Azzeddine Mazroui, Abdelouafi Meziane,
and Mohamed Bebah. 2009. A Markovian approach
for Arabic Root Extraction. The International Arab
Journal of Information Technology, 8(1):91–98.

Pierre Boullier. 2000. A cubic time extension of context-
free grammars. Grammars, 3(2-3):111–131.

Tim Buckwalter. 2002. Arabic Morphological Ana-
lyzer. Technical report, Linguistic Data Consortium,
Philedelphia.

Alexander Clark. 2001. Learning Morphology with Pair
Hidden Markov Models. In Proceedings of the ACL
Student Workshop, pages 55–60.

Yael Cohen-Sygal and Shuly Wintner. 2006. Finite-
state registered automata for non-concatenative mor-
phology. Computational Linguistics, 32(1):49–82.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphology
learning. ACM Transactions on Speech and Language
Processing, 4(1):1–34.

Kareem Darwish. 2002. Building a shallow Arabic
morphological analyzer in one day. In Proceedings
of the ACL Workshop on Computational Approaches
to Semitic Languages, pages 47–54. Association for
Computational Linguistics.

Ezra Daya, Dan Roth, and Shuly Wintner. 2008.
Identifying Semitic Roots: Machine Learning with
Linguistic Constraints. Computational Linguistics,
34(3):429–448.

Markus Dreyer and Jason Eisner. 2011. Discovering
Morphological Paradigms from Plain Text Using a
Dirichlet Process Mixture Model. In Proceedings of
EMNLP, pages 616–627, Edinburgh, Scotland.

Kais Dukes and Nizar Habash. 2010. Morphological An-
notation of Quranic Arabic. In Proceedings of LREC.

Greg Durrett and John DeNero. 2013. Supervised Learn-
ing of Complete Morphological Paradigms. In Pro-
ceedings of NAACL-HLT, pages 1185–1195, Atlanta,
Georgia, June. Association for Computational Lin-
guistics.

Khaled Elghamry. 2005. A Constraint-based Algorithm
for the Identification of Arabic Roots. In Proceed-
ings of the Midwest Computational Linguistics Collo-
quium. Indiana University. Bloomington, IN.

Raphael Finkel and Gregory Stump. 2002. Generating
Hebrew verb morphology by default inheritance hier-
archies. In Proceedings of the ACL Workshop on Com-
putational Approaches to Semitic Languages. Associ-
ation for Computational Linguistics.

Michelle A. Fullwood and Timothy J. O’Donnell. 2013.
Learning non-concatenative morphology. In Proceed-
ings of the Workshop on Cognitive Modeling and Com-
putational Linguistics, pages 21–27, Sofia, Bulgaria.
Association for Computational Linguistics.

Michael Gasser. 2009. Semitic morphological analysis
and generation using finite state transducers with fea-
ture structures. In Proceedings of EACL, pages 309–
317. Association for Computational Linguistics.

Daniel Gildea. 2010. Optimal Parsing Strategies for Lin-
ear Context-Free Rewriting Systems. In Proceedings
of NAACL, pages 769–776. Association for Computa-
tional Linguistics.

Sharon Goldwater, Thomas L. Griffiths, and Mark John-
son. 2006. Interpolating Between Types and Tokens
by Estimating Power-Law Generators. In Advances in
Neural Information Processing Systems, Volume 18.

Harald Hammarström and Lars Borin. 2011. Unsuper-
vised Learning of Morphology. Computational Lin-
guistics, 37(2):309–350.

Yun Huang, Min Zhang, and Chew Lim Tan. 2011.
Nonparametric Bayesian Machine Transliteration with
Synchronous Adaptor Grammars. In Proceedings of
ACL (Short papers), pages 534–539.

Mark Johnson and Sharon Goldwater. 2009. Improving
nonparameteric Bayesian inference: Experiments on
unsupervised word segmentation with adaptor gram-
mars. In Proceedings of NAACL-HLT, pages 317–325.
Association for Computational Linguistics.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Adaptor Grammars: A Framework for
Specifying Compositional Nonparametric Bayesian
Models. In Advances in Neural Information Process-
ing Systems, volume 19, page 641. MIT.

Mark Johnson. 2008. Unsupervised word segmentation
for Sesotho using Adaptor Grammars. In Proceedings
of ACL Special Interest Group on Computational Mor-
phology and Phonology (SigMorPhon), pages 20–27.
Association for Computational Linguistics.

Aravind K. Joshi. 1985. Tree adjoining grammars: How
much context-sensitivity is required to provide reason-
able structural descriptions? In D.R. Dowty, L. Kart-
tunen, and A.M. Zwicky, editors, Natural Language
Parsing, chapter 6, pages 206–250. Cambridge Uni-
versity Press.

355



Miriam Kaeshammer. 2013. Synchronous Linear
Context-Free Rewriting Systems for Machine Trans-
lation. In Proceedings of the Workshop on Syntax, Se-
mantics and Structure in Statistical Translation, pages
68–77, Atlanta, Georgia. Association for Computa-
tional Linguistics.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2006.
Stochastic Multiple Context-Free Grammar for RNA
Pseudoknot Modeling. In Proceedings of the Inter-
national Workshop on Tree Adjoining Grammar and
Related Formalisms, pages 57–64.

George Anton Kiraz. 2000. Multitiered Nonlinear Mor-
phology Using Multitape Finite Automata: A Case
Study on Syriac and Arabic. Computational Linguis-
tics, 26(1):77–105, March.

Kimmo Koskenniemi. 1984. A general computational
model for word-form recognition and production. In
Proceedings of the 10th international conference on
Computational Linguistics, pages 178–181. Associa-
tion for Computational Linguistics.

Mikko Kurimo, Sami Virpioja, Ville T. Turunen,
Graeme W. Blackwood, and William Byrne. 2010.
Overview and Results of Morpho Challenge 2009. In
Multilingual Information Access Evaluation I. Text Re-
trieval Experiments, volume 6241 of Lecture Notes in
Computer Science, pages 578–597. Springer Berlin /
Heidelberg.

Yoong Keok Lee, Aria Haghighi, and Regina Barzilay.
2011. Modeling syntactic context improves morpho-
logical segmentation. In Proceedings of CoNLL.

Wolfgang Maier. 2010. Direct Parsing of Discon-
tinuous Constituents in German. In Proceedings of
the NAACL-HLT Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 58–66. Asso-
ciation for Computational Linguistics.

Jim Pitman and Marc Yor. 1997. The Two-Parameter
Poisson-Dirichlet Distribution Derived from a Stable
Subordinator. The Annals of Probability, 25(2):855–
900.

Jim Pitman. 1995. Exchangeable and partially exchange-
able random partitions. Probability Theory and Re-
lated Fields, 102:145–158.

Jean-François Prunet. 2006. External Evidence and the
Semitic Root. Morphology, 16(1):41–67.
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Abstract

This paper describes a method that predicts
which trades players execute during a win-
lose game. Our method uses data collected
from chat negotiations of the game The Set-
tlers of Catan and exploits the conversation
to construct dynamically a partial model of
each player’s preferences. This in turn yields
equilibrium trading moves via principles from
game theory. We compare our method against
four baselines and show that tracking how
preferences evolve through the dialogue and
reasoning about equilibrium moves are both
crucial to success.

1 Introduction

Rational agents act so as to maximise their expected
utilities—an optimal trade off between what they
prefer and what they believe they can achieve (Sav-
age, 1954). Solving a game problem involves find-
ing equilibrium strategies: an optimal action for
each player that maximises his expected utility, as-
suming that the other players perform their speci-
fied action (Shoham and Leyton-Brown, 2009). Cal-
culating equilibria thus requires knowledge of the
other players’ preferences but almost all bargaining
games occur under the handicap of imperfect infor-
mation about this (Osborne and Rubinstein, 1994).
Players therefore try to extract their opponents’ pref-
erences from what they say, likewise revealing their
own preferences in their own utterances. These
elicited preferences guide an agent’s decisions, like
choosing to make such and such a bargain with such
and such a person. Tracking preferences through

dialogue is thus crucial for analyzing the agents’
strategic reasoning in real game scenarios.

In this paper, we design a model that maps what
people say in a win-lose game into a prediction of
exactly which players, if any, trade with each other,
and exactly what resources they exchange. We use
both statistics and logic: we use a corpus of nego-
tiation dialogues to learn classifiers that map each
utterance to its speech act and to other acts perti-
nent to bargaining; and we develop a symbolic al-
gorithm that, from the classifiers’ output, dynami-
cally constructs a model of each player’s preferences
as the conversation proceeds (for instance, the pref-
erence to receive a certain resource, or to accept a
certain trade). This preference model uses CP-nets
(Boutilier et al., 2004), a representation of prefer-
ences for which algorithms for computing equilib-
rium strategies exist. We adapt those algorithms to
predict the trades executed in the game.

The algorithm for construcing CP-nets uses only
the output of our classifiers, which in turn rely en-
tirely on shallow features in the raw text and robust
parsers. Together they provide an end to end model,
from raw text to a prediction of which trade, if any,
occurred. We evaluate the various components of
this (pipeline) algorithm separately, as well as the
end to end model.

Our study exploits a corpus of negotiation dia-
logues from an online version of the win lose game
The Settlers of Catan. Sections 2 and 3 describe
the corpus and its annotation. Section 4 introduces
our method for constructing the agents’ preferences
from the dialogues. We use this in Section 5 to pre-
dict whether a trade is executed as a result of the
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players’ negotiations, and if so we predict who took
part in the trade, and what they exchanged. Our
method shows promising results, beating baselines
that don’t adequately track or reason about prefer-
ences. We compare our model to related work in
Section 6 and point to future work in Section 7.

2 The game

The Settlers of Catan (www.catan.com) is a win-
lose game that involves negotiations over restricted
resources. Each player (three or more) acquires re-
sources (of 5 types: ore, wood, wheat, clay, sheep),
which they use in different combinations to build
roads, settlements and cities, which in turn earns
them points towards winning. The first player to
10 points wins. Players acquire resources in sev-
eral ways, in particular through agreed trades with
other players. Some methods (e.g., robbing) are hid-
den from view, so players lack complete information
about their opponents’ resources.

Our corpus contains conversations of humans
playing an online version of Settlers (Afantenos et
al., 2012). Players must converse in a chat inter-
face to carry out trades. Each game contains several
dozen self-contained bargaining dialogues. Our ex-
periments use 10 Settlers games, consisting of more
than 2000 individual dialogue turns (see Section 3).

Table 1 is a sample dialogue from the corpus. The
sentences in the corpus have a relatively simple syn-
tax, though many also exhibit long distance depen-
dencies. However, these conversations are pragmat-
ically complex. They exhibit complex anaphoric de-
pendences (e.g., utterance ID 4 in Table 1). Other
pragmatic inferences, which are dependent on rea-
soning about intentions, speech acts and discourse
structure, are also ubiquitous. For example, the
question Have you got any ore? implies an offer for
the speaker to receive ore in exchange for something
from someone unspecified, and its response I’ve got
wheat not only implies a willingness to exchange
wheat for something, but as a response to the ques-
tion it also implies a refusal to give any ore.

More generally, a dialogue turn in our corpus can
express an offer, a counteroffer, an acceptance or re-
jection of an offer, or a commentary on the above
or on moves in the game. All except the last pro-
vide clues about preferences: e.g., which players

a speaker wants to execute a trade with; or what
resources to exchange. For instance, the utterance
Anybody have any sheep for wheat? conveys sev-
eral preferences. First, it conveys the speaker’s pref-
erence to trade with someone unspecified. Other
informative but underspecified preferences include:
the speaker’s preference to acquire some sheep over
alternatives; and in a context where she receives
sheep, a preference to give away some of her wheat
over the alternatives. Crucially, it does not convey
a preference to give away wheat in a context where
she receives nothing or something other than sheep.

In line with a non-cooperative bargaining game,
the preferences and offers that a speaker reveals are
less specific than an executable trade requires, where
the trading partners and the type of resources offered
and received must all be defined. Such general dia-
logue moves are essentially information seeking—
evidence that humans playing Settlers have imper-
fect information about their opponents’ preferences.
In fact, many offers to trade result in no trade be-
ing agreed to and executed. While observed negoti-
ation failure would be puzzling in a bargaining game
with perfect information (Osborne and Rubinstein,
1994), it occurs relatively frequently in Settlers.

3 Annotation

We have a multi-layered dialogue annotation
scheme that includes: (1) a pre-annotation that seg-
ments the dialogue into turns which are further seg-
mented into Elementary Discourse Units (EDUs)
with the author of each turn automatically given;
(2) a characterization of each EDU in terms of ba-
sic speech acts (assertion, question, request) as well
as dialogue acts that are specific to bargaining (of-
fers, counteroffers, etc.); and (3) associated infor-
mation about the givable and/or receivable resources
that EDUs express.

Two annotators received training on 77 dialogues,
totaling 699 EDUs. They then both annotated the
remaining dialogues independently (2741 EDUs and
511 dialogues in total). Kappas for inter-annotator
agreement are given below.

3.1 Dialogue act annotation (Kappa=0.79)

Each turn logs what a player enters in the chat win-
dow and also aspects of the game state at the time:
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ID Dialogue Act Text Speaker Addressee Resource
1 Offer i need clay, any1 have? Rainbow All Receivable (clay, ?)
2 Refusal Nope, sorry inca Rainbow
3 Refusal Not at the moment, unfortunately. ariachiba Rainbow
4 Refusal need mine sorry Kittles Rainbow Not givable (Anaphoric, ?)

Anaphora Link:(mine , clay )
5 Offer no one has ore to giv? Rainbow All Receivable (ore, ?)
6 Accept oh yeah me Kittles Rainbow
7 Counteroffer ore for wheat again? Kittles Rainbow Givable (ore, ?) Receivable (wheat, ?)
8 Accept ya Rainbow Kittles
9 Accept ok Kittles Rainbow

Table 1: Example of an annotated negotiation dialogue.

his resources, the state of the game board and a time
stamp. The pre-annotation divides each turn into
EDUs. The annotators then have to specify the dia-
logue act of each EDU: Offer, Counteroffer, Accept
or Refusal (of an offer addressed to the emitter), and
Other. Other labels units that either comment on
strategic moves in the game or are not directly perti-
nent to bargaining. Annotators also specify the ad-
dressee of the EDU and its surface type: Question,
Request or Assertion.

3.2 Resource type annotation (Kappa=0.80)

Annotators also specify for each EDU and its dia-
logue act an associated feature structure, which cap-
tures (partial) information that the EDU expresses
about the type and quantity of resources that are of
the following four attributes: Givable, Not Givable,
Receivable or Not Receivable. These attributes can
take Boolean combinations of resources as values
via two operators AND and OR, that respectively
stand for conjunction (the agent expresses two pref-
erences and he prefers to achieve one of them if he
cannot have both, such as I need clay and wood) and
disjunction (free choice) of preferences (e.g., I can
give you clay or wood). We allow attributes to have
unknown values: the annotation tool inserts a ? in
these cases. We also insist that the annotators re-
solve anaphoric dependencies when specifying val-
ues to attributes, as shown in EDU (4) in Table 1.

4 Dialogue act and resource prediction

Predicting the executed trades from the dialogues
starts with three sub-tasks: automatically identify-
ing each EDU’s dialogue act; detecting the EDU’s
resources; and specifying the attributes of those re-
sources (i.e., Givable, Receivable, etc.).

4.1 Identifying dialogue acts

As is well established, one EDU’s dialogue act
depends on previous dialogue acts (Stolcke et al.,
2000). In our corpus, Accept or Reject frequently
follow Offer and Counteroffer. Since labeling is se-
quential, we use Conditional Random Fields (CRFs)
to learn dialogue acts. CRFs have been shown to
yield better results in dialogue act classification on
online chat than HMM-SVN and Naive Bayes (Kim
et al., 2012).

We use three types of features: lexical, syntactic
and semantic. And we exploit them as unigrams and
bigrams: unigrams associate the value of the feature
with the current output class (level 0); bigrams take
account of the value of the feature associated with
a combination of the current output class and pre-
vious output class (level -1). 6 features were used
exclusively as unigrams: the EDU’s position in the
dialogue, its first and last words, its subject lemma,
a boolean feature to indicate if the current speaker is
the one that initiates the dialogue and the position of
the speaker’s first turn in the dialogue.

We have 15 unigram and bigram features (at lev-
els 0 and -1), as well as templates that combine
feature values for the two levels. These include
14 boolean features that indicate if the EDU con-
tains: bargaining verbs (e.g. trade, offer), refer-
ences to another player (e.g. you), resource tokens
as encoded in a task dedicated lexicon (e.g. wheat,
clay), quantifiers (e.g. one, none), anaphoric pro-
nouns, occurrences of “for” prepositional phrases
(e.g. wheat for clay), acceptance words (e.g. OK),
negation words, emoticons, opinion words (from
(Benamara et al., 2011)), words of politeness, ex-
clamation marks, questions, and finally whether the
EDU’s speaker has talked previously in the dialogue.
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The last feature gives the EDU speaker lemma. In
addition, 3 unigram and bigram booleans indicate
whether the current EDU contains the most frequent
tokens, couple of tokens and syntactic patterns in our
corpus. Finally, we use 2 composed bigram features
that encode whether the EDU contains an accep-
tance or refusal word, given that the previous EDU
is a question.

To assign sequential tags of dialogue acts within
a negotiation dialogue, we use the CRF++ tool
(crfpp.googlecode.com). Our data consists of
2741 EDUs in 511 dialogues. Each EDU is asso-
ciated with a dialogue act resulting in 410 Offer,
197 Counteroffer, 179 Accept, 398 Refusal and 1557
Other. We use 10-fold cross-validation to evalu-
ate our model, computing precision, recall and F-
score for each class and global accuracy from the
total number of true positives, false positives, false
negatives and true negatives obtained by summing
over all fold decisions. The results (in percent) are
given in Table 2 (MaF is the average of F-scores
of all the classes). Our model significantly out-
performs the frequency-based baseline (MaF=14.5;
Accuracy=56.8), with the best F-score achieved for
Other. The least good results are for the two least
frequent classes in our data. In addition to the fre-
quency problem, the lower score for Counteroffer is
mainly due to the model confusing it with Offer. Er-
rors in the Accept class were often due to misspelling
or to chat style conversation; e.g., kk, yup.

Dialogue act Precision Recall F-score
Other 87.4 93.1 90.1
Offer 80.0 81.0 80.5

Counterof. 64.8 53.3 58.5
Accept 65.1 53.1 58.5
Refusal 81.7 73.9 77.6

Macro-averaged F-score (MaF) 73.0
Accuracy 83.0

Table 2: Results for dialogue act classification.

4.2 Finding resource text spans

Since the resource vocabulary in The Settlers of
Catan is a closed set composed of words denoting
specific resources (e.g., clay, wood) and their syn-
onyms (brick), we use a simple rule to detect them:
a noun phrase (NP) is a resource text span if and

only if it contains a lemma from our resource lexi-
con. A closed set resource vocabulary is common to
many different types of negotiation dialogues. We
used the Stanford parser (Klein and Manning, 2003)
to obtain the NPs: there are 4361 NPs, where (by the
gold standard annotations) 21% are resources and
79% are not. We obtain an F-score of 96.9% and ac-
curacy of 97.9%, clearly beating both the frequency
and random baselines for this task.

4.3 Recognizing the type of resources

Recall that each resource within an EDU can be the
value of four types of attributes: Givable, Receiv-
able, Not Givable or Not Receivable (cf. Section
3.2). We predict these attributes using CRFs with the
following features. 8 features are used as unigram at
the current and the previous EDU level: the speaker,
the EDU’s subject, the dialogue act, and (if present)
the lemma of a bargaining verb, and 4 boolean fea-
tures indicate if the EDU contains an opinion word,
a reference to another speaker, if the resource comes
after a “for” and if it contains a refusal word. These
features also serve as bigrams at the current EDU
level. Additionally, we have a set of unigram and
bigram boolean features that indicate if the current
EDU contains the most frequent verbs in the corpus.
And finally, we use a feature that encodes the com-
bination subject/bargaining verb in the current EDU.

We used CRF++ to implement our classifier. Our
corpus data consists of 1077 Resources, split into
510 Receivable, 432 Givable, 116 Not Givable and
19 Not Receivable. We use again 10-fold cross-
validation to evaluate our model and compute the
results by summing over all fold decisions. We
present them (in percent) in Table 3. They beat
the frequency-based baseline (MaF=16.1; Accu-
racy=47.4), although performance on the Not Re-
ceivable class is poor probably due to its low fre-
quency in the data.

Ambiguities make this task challenging. For in-
stance, anyone wheat for clay? can mean that the
speaker wants to receive wheat and give clay or the
opposite, and resolving which meaning is intended
involves reasoning not only with the previous and/or
the following EDU, but also sometimes EDUs with
long distance attachments, which are not supported
by our classifier and require a full discourse parser.
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Res. type Precision Recall F-score
Receivable 66.8 71.4 69.0

Givable 62.6 59.7 61.1
Not Giv. 88.1 89.7 88.9
Not Rec. 0 0 0
Macro-averaged F-score (MaF) 54.8

Accuracy 67.4

Table 3: Results for resource type classification.

5 Predicting Players’ Strategic Actions

We aim to capture the evolution of commitments to
certain preferences as the dialogue proceeds so as
to predict the agents’ bargaining behavior. In other
words, we wish to predict which of the 61 possi-
ble trade actions is executed at the end of each dia-
logue. The possible trades vary over which partner
the player whose turn it is trades with (3 options in a
4 player game), the resources exchanged (assuming
each partner gives one type of resource and receives
another type yields 5×4 = 20 possibilities), or there
is no trade; i.e., (3 × 20) + 1 = 61 possible actions
in the hypothesis space (we predict the types of re-
sources that are exchanged, but not their quantity).

We predict the executed action by identifying the
equilibrium trade entailed by the model of the play-
ers’ preferences, which in turn we construct dynam-
ically from the output of the classifiers in Section 4.
We use the attributes of resources in the EDUs (Giv-
able, etc.) to identify the preference that a speaker
conveys in the EDU, and we use the dialogue acts
(Offer, Accept, etc.) to update a model of the pref-
erences expressed so far in the dialogue with this
new preference (see Section 5.2). Our model of
preferences consists of a set of partial CP-nets, one
for each player (see Section 5.1 for details). The
resulting CP-nets are then used to infer the exe-
cuted trading action (if any) automatically, via well-
understood principles from game theory for identi-
fying rational behavior (Bonzon, 2007).

5.1 CP-Nets

Following Cadilhac et al. (2011), we use CP-nets
(Boutilier et al., 2004) to model preferences and
their dependencies. CP-nets are compatible with the
kind of partial information about preferences that ut-
terances reveal, and inference with CP-nets is com-

putationally efficient.
Just as Bayesian nets are a graphical model that

exploits probabilistic conditional independence to
provide a compact representation of a joint probabil-
ity distribution (Pearl, 1988), CP-nets are a graphi-
cal model that exploits conditional preferential in-
dependence to provide a compact representation of
the preference order over all outcomes. The CP-
net structures the decision maker’s preferences un-
der a ceteris paribus assumption: outcomes are com-
pared, other things being equal.

More formally, let V be a finite set of variables
whose combination of values determine all out-
comes O. Then a preference relation � over O is
a reflexive and transitive binary relation with strict
preference � defined as: o � o′ and o′ 6� o. Indif-
ference, written o ∼ o′, means o � o′ and o′ � o.
Definition 1 defines conditional preference indepen-
dence and Definition 2 defines CP-nets: the graphi-
cal component G of a CP-net specifies for each vari-
able X ∈ V its parent variables Pa(X) that affect
the agent’s preferences over the values of X , such
thatX is conditionally preferentially independent of
V \ ({X} ∪ Pa(X)) given Pa(X).

Definition 1 Let V be a set of variables, each vari-
able Xi with a domain D(Xi). Let {X,Y, Z} be
a partition of V . X is conditionally preferentially
independent of Y givenZ if and only if ∀z ∈ D(Z),
∀x1, x2 ∈ D(X) and ∀y1, y2 ∈ D(Y ), x1y1z �
x2y1z iff x1y2z � x2y2z.

Definition 2 NV = 〈G, T 〉 is a CP-net on variables
V , where G is a directed graph over V , and T is a
set of Conditional Preference Tables (CPTs). That
is, T = {CPT(Xj): Xj ∈ V }, where CPT(Xj)
specifies for each combination p of values of the par-
ent variables Pa(Xj) either p : xj � xj , p : xj �
xj or p : xj ∼ xj where the ¯̄ symbol sets the vari-
able to false.

We discuss below how a CP-net predicts rational
action, but first we describe how CP-nets are con-
structed from the dialogues. In the Settlers cor-
pus, preferences involve a quadruplet (o, a, <r,q>)
where: o is the preference owner, a is the ad-
dressee, r is the resource and q is its quantity. So
each variable in the CP-nets we construct is such a
quadruplet, and for each variable the possibles val-
ues are Givable (Giv), Not Givable (Giv), Receiv-
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able (Rcv) and Not Receivable (Rcv).
For example, the utterance Anyone want to give

me a wheat for a clay? expresses two prefer-
ences: one for receiving wheat, represented by the
variable Pw = (A,All,<wheat,1>); and given this
preference, another for giving clay, represented by
Pc = (A,All,<clay,1>) (where A is the name of the
speaker). The corresponding CP-Net is Figure 1.

Pw

Pc

CPT(Pw) = Rcv � Rcv

CPT(Pc) = Rcv Pw : Giv � Giv

Figure 1: An example CP-net

5.2 Modeling players’ preferences
As stated above, we first automatically acquire a CP-
net from each EDU by using the EDU’s dialogue act
and the attributes (Givable, etc.) of its resources.
We then apply the rules presented in (Cadilhac et al.,
2011) to dynamically construct a preference model
of the dialogue overall: this uses an equivalence
between their coherence relations and our dialogue
acts. Our CP-nets reasoning model handles uncer-
tain information and noise because it use as input
only the outputs of the statistical models described
in Section 4, and these prior models handle uncer-
tain information and noise. The symbolic rules for
constructing CP-nets have complete coverage over
any possible combination of classes that are output
by the statistical models, and so they are robust. We
give our rules below where πi stands for EDU ID i.

Offers. Because an Offer may specify or refine an
existing preference or offer, we must model how the
preferences expressed in an EDU that’s an Offer up-
dates the prior declared preferences. So, while our
annotations treat Offer as a property of EDUs, we
treat them here as binary relations: Offer(π1, π2),
where the second term, π2, is the actual EDU whose
dialogue act is Offer and π1 is the set of EDUs oc-
curring between π2 and the last EDU uttered by
the same speaker. Offers then have a similar effect
on the CP-net as the coherence relation Elaboration
presented in (Cadilhac et al., 2011). That is, to auto-
matically update the CP-net constructed so far with
a current EDU that’s an Offer, the two step rule for
Offer(π1, π2) is:

1. to update the speaker’s CP-net according to the
preferences expressed in π1, and

2. if π2 expresses preferences, to enrich the CP-
net with these new preferences so that each
variable in π2 depends on each variable in π1.

Counteroffers. They specify or modify the terms
of a previous Offer or Counteroffer. Their purpose
is to give new information to refine the negotiation.
Like Offers they must also receive a contextually de-
pendent interpretation. The rule is quite similar to
that for Offer; however, Counteroffer can modify or
correct elements in a previously introduced offer. So
for Counteroffer(π1, π2), the rule is :

1. to partially update the speaker’s CP-net accord-
ing to the preferences expressed in π1 which do
not have the same resource type (Givable, Re-
ceivable) than the ones in π2.

2. same as step 2 Offer rule.

Accepts and Refusals. As they are answers to
Offers and Counteroffers, they behave like question
answer pairs (QAPs) presented in (Cadilhac et al.,
2011). Because we are not doing full discourse pars-
ing, we once again approximate its effects by mak-
ing Accepts and Refusals respond to the set of EDUs
between the current EDU and the speaker’s last turn.

Accepts are positive responses to Offers or Coun-
teroffers and are de facto similar to QAP(π1, π2)
where π2 is Yes. Thus, the rule is, as for Offer, to
update and enrich the CP-net.

Refusals are instead negative responses and be-
have like QAP(π1, π2) where π2 is No. For
Refusal(π1, π2), there is no update of the prefer-
ences expressed in π1. Instead, we enrich the CP-net
with the Non Givable and Non Receivable informa-
tion obtained from the negation of the preferences
expressed in the previous Offer or Counteroffer. We
then enrich the CP-net based on any new preferences
expressed in π2. If there is a conflict between the
value of a variable to be updated and the current
value in the CP-net, we apply the Correction rule:
all occurrences of the old value are replaced by the
new value in π2.

Other. This category pertains to content that does
not directly relate to trading in the game, and so we
choose to ignore resources expressed in the EDUs
with this dialogue act.

At the end of the negotiation dialogue, to predict
exactly what trade is executed (if any), the method
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checks if there are complete and reciprocal prefer-
ences expressed in the CP-nets that respectively rep-
resent the declared preferences of two agents A and
B. This is done in two steps. First, we use the logic
of CP-nets to determine each agent’s best outcome
bestOA and bestOB from their respective CP-nets
(we’ll discuss how shortly). Secondly, we compare
these best outcomes: if they correspond to the same
trade, we predict that this trade was executed; if
not, we predict no trade is executed. Specifically,
bestOA (resp. bestOB) corresponds to a prefer-
ence for receiving a resource r1 from an agent B
(or from all the agents indifferently) and for giving
a resource r2 to this (or these) agent(s). We predict
that A gives B r2 and B gives A r1 if and only if:
bestOA = Rcv(A, B, r1) ∧ Giv(A, B, r2) and
bestOB = Rcv(B, A, r2) ∧Giv(B, A, r1).

The first step—computing each agent’s best out-
come from his CP-net—can be found in linear time
using the forward sweep algorithm (Boutilier et al.,
2004): sweep through the CP-net’s graph from top to
bottom, instantiating each variable with its preferred
value, given the values that are (already) assigned to
its parents. This algorithm is sound with respect to
the semantics of CP-nets.

Example. We apply this method for constructing
CP-nets and determining the executed trade to the
negotiation dialogue presented in Table 1.
π1 The EDU is an Offer, so Rainbow’s CP-net is

updated according to π1’s content.
CPT(R,All,<clay,?>) = Rcv � Rcv
π2 It’s a Refusal, so we update inca’s CP-net with

the negation of the preferences expressed in Rain-
bow’s offer.
CPT(I,R,<clay,?>) = Giv � Giv

π3 Idem for ariachiba.
CPT(A,R,<clay,?>) = Giv � Giv

π4 Idem for Kittles where the preferences ex-
pressed in this EDU are redundant with the negation
of the preferences in Rainbow’s offer.
CPT(K,R,<clay,?>) = Giv � Giv
π5 It’s an Offer, so Rainbow’s CP-net is first up-

dated according to previous EDUs (π2 to π4 until his
last speaking), then according to the content of π5.
CPT(R,All,<clay,?>) = Rcv � Rcv (inactive)
CPT(R,I,<clay,?>) = Rcv � Rcv
CPT(R,A,<clay,?>) = Rcv � Rcv

CPT(R,K,<clay,?>) = Rcv � Rcv
CPT(R,All,<ore,?>) = Rcv(R,I,<clay,?>) ∧ Rcv(R,A,
<clay,?>) ∧ Rcv(R,K,<clay,?>): Rcv � Rcv
The introduction of the preference to receive ore
conflicts with the prior one for receiving clay. So
the method adds to the associated CPT the label “in-
active” to indicate that this is older and should be
ignored if the preference about ore is satisfied.

π6 The EDU is an Accept, so Kittles’s CP-net is
updated according to previous EDUs (only π5).1

CPT(K,R,<ore,?>) = Giv(K,R,<clay,?>): Giv � Giv
π7 The EDU is a Counteroffer. Since she is the

last speaker, her CP-net gets updated only according
to the content of the current EDU, to obtain:
CPT(K,R,<ore,?>) = Giv(K,R,<clay,?>): Giv � Giv
CPT(K,R,<wheat,?>) = Giv(K,R,<clay,?>) ∧
Giv(K,R, <ore,?>) : Rcv � Rcv

π8 The EDU is an Accept, so Rainbow’s CP-net
is updated according to previous EDUs (π6 and π7):
CPT(R,K,<ore,?>) = Rcv(R,I,<clay,?>) ∧ Rcv(R,A,
<clay,?>) ∧ Rcv(R,K,<clay,?>) : Rcv � Rcv
CPT(R,K,<wheat,?>) =Rcv(R,I,<clay,?>) ∧Rcv(R,A,
<clay,?>) ∧ Rcv(R,K,<clay,?>) ∧ Rcv(R,K,<ore,?>) :
Giv � Giv

π9 It’s an Accept with nothing new to update.
At the end of the dialogue, these agents’ CP-nets

(correctly) predict that Kittles gave ore to Rainbow
in exchange for wheat.

5.3 Evaluation and results

We compare our model against four baselines. Since
none of these baselines support reasoning about
equilibrium moves, they all rely on the presence of
an Accept act to predict there was a trade, and its
absence to predict there wasn’t. The baselines dif-
fer, however, in how they identify the trading part-
ners and resources in an executed trade. The first
baseline predicts a trade according to the first Of-
fer and the last person to Accept, and if the Offer
doesn’t specify one of the resources then it is chosen
randomly (similar random choices complete all par-
tial predictions in all the models we consider here):
e.g., for Table 1 this would predict that Kittles gave
clay to Rainbow (which is incorrect) in exchange for

1Due to lack of space, in the following CP-nets, we do not
copy the inactive CPTs and CPTs about Not Givable or Not Re-
ceivable resources.
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something that’s chosen randomly (which will prob-
ably be incorrect). The second baseline uses the
last Offer and the last person to Accept: e.g., for
Table 1 this predicts that Kittles gave ore to Rain-
bow (correct) for something random (probably in-
correct). The third baseline uses the last Offer or
Counteroffer, whichever is latest, and the last per-
son to Accept: e.g., for Table 1 this correctly pre-
dicts that Kittles gave ore to Rainbow in exchange
for wheat. And the fourth baseline, uses default
unification between the prior Offers or Counterof-
fers and the current one to resolve any of the cur-
rent offer’s elided parts and to replace specific val-
ues in prior offers with conflicting specific values in
the current offer (Ehlen and Johnston, 2013). One
then takes the executed trade to be the result of this
unification process at the point where the last Accept
occurs. This makes the same predictions as the third
baseline for Table 1, but outperforms it in the corpus
example (1) by predicting the correct and complete
trade (i.e., Rainbow gave Kittles sheep for wheat,
rather than for something random):

(1) Rainbow: i need clay ore or wheat
Kittles: i got wheat
Rainbow: i cn giv sheep
Kittles: ok

We performed the evaluation on the data pre-
sented in Sections 3 and 4: 254 dialogues in total
since we ignore dialogues that contain only Others.
90 of these dialogues end with a trade being exe-
cuted and 2 of them end with 2 trades. A random
baseline would give 1.6% accuracy (given the 61
possible trading actions) and a frequency baseline
(always choose no trade) gives 64.1% accuracy.

Table 4 presents the accuracy figures for all the
models when calculated from the gold standard la-
bels rather than the classifiers’ predicted labels from
Section 4, so that we can compare the models in
isolation of the classifiers’ errors. McNemar’s test
shows that our model significantly outperforms all
the baselines (p < 0.05). A predicted trade counts as
correct only if it specifies the right participants and
the correct type of resources offered and received
(we ignore their quantity). True Positives (TP) are
thus examples where the model correctly predicts
not only that a trade happened, but also the correct
partners and resources; Wrong Positives (WP), on

the other hand, constitute a correct prediction that
there was a trade but errors on the partners and/or
resources involved (so WPs undermine accuracy).
True Negatives (TN) are examples where the model
correctly predicts there was no trade (so TPs and
TNs contribute to accuracy). False Positives (FP)
and False Negatives (FN) are respectively incorrect
predictions that there was a trade, or that there was
no trade.

While Table 4 does not reflect this, the first three
baselines tend to predict incomplete information
about the trade even when what they do predict is
correct: that is, they predict the correct addressee
and the owner but resort to random choice for a re-
source that’s missing from the Offer or Counterof-
fer that predicts which trade occurred. For the first
baseline 34 examples are like this; for the second
and third baselines it’s 32. In contrast, this prob-
lem occurs only once with the fourth baseline, and
all the trades predicted by our method are complete,
making random choice unnecessary. Moreover, the
first three baselines often make incorrect predictions
about the addressee or resources exchanged because
in contrast to our model and the fourth baseline, they
don’t track how potential trades evolve through a se-
quence of offers and counteroffers.

Even though the fourth baseline, which uses de-
fault unification to track the content of the current
offer, is smart and gives good results, it has statis-
tically significant lower accuracy than our model.
One major problem with the fourth baseline is that,
in contrast to our model, it does not track each
player’s attitude towards the current offer. Instead,
like all our baselines, it relies on the presence of an
Accept act to predict that there’s a trade.2 But sev-
eral corpus examples are like (2), in which a trade
is executed but there’s no Accept act, thus yielding a
False Negative (FN) for all four baselines:

(2) Joel: anyone have sheep or wheat
Cardlinger: neither :(
Joel: will give clay or ore
Euan: not just now
Jon: got a wheat for a clay
(Joel gives clay to Jon and receives wheat)

2We tried a baseline that doesn’t rely on the presence of an
Accept act, but rather predicts a trade whenever default unifica-
tion yields a complete offer. It performed worse than the fourth
baseline.
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So overall, our analysis shows that using CP-nets
significantly outperforms all baselines that don’t
model how preferences evolve in the dialogue, and
error analysis yields evidence that our model outper-
forms the fourth baseline because our model sup-
ports reasoning about player preferences, rational
behavior and equilibrium strategies.

1st baseline: first Offer/last Accept
TP FP FN TN WP Accuracy
24 14 30 150 38 68.0

2nd baseline: last Offer/last Accept
TP FP FN TN WP Accuracy
29 6 32 158 31 73.0

3rd baseline: last (Counter)Offer/last Accept
TP FP FN TN WP Accuracy
39 4 23 160 30 77.7

4th baseline: default unification
TP FP FN TN WP Accuracy
64 4 23 160 5 87.5

Our method
TP FP FN TN WP Accuracy
75 4 15 160 2 91.8

Table 4: Results for trade prediction. TP, FP, FN, TN
and WP are the True and False Positives, False and True
Negatives and Wrong Positives.

Table 5 presents the results for the end to end
evaluation, where trade predictions are made from
the classifiers’ output from Section 4 rather than the
gold standard labels. As expected, performance de-
creases due to the classifiers’ errors, mainly on the
type of resources (Givable, etc.). But our method
still significantly outperforms all the baselines with
an accuracy of 73.4% when the baselines obtain val-
ues between 60.9% and 68.4%.

4th baseline: default unification
TP FP FN TN WP Accuracy
23 12 37 152 32 68.4

Our method
TP FP FN TN WP Accuracy
34 10 43 154 15 73.4

Table 5: Results for the end to end trade prediction.

6 Related Work

6.1 Dialogue act modeling

Most work on dialogue act modeling focuses on spo-
ken dialogue (Stolcke et al., 2000; Fernández et al.,
2005; Keizer et al., 2002). But live chats introduce
specific complications (Kim et al., 2012): ill-formed
data, abbreviations and acronyms, emotional indi-
cators and entanglement (especially for multi-party
chat). Among related work in this emerging field,
Joty et al. (2011) use unsupervised learning to model
dialogue acts in Twitter, Ivanovic (2008) and Kim et
al. (2010) analyze one-to-one online chat in a cus-
tomer service domain, and Wu et al. (2002) and Kim
et al. (2012) predict dialogue acts in a multi-party
setting. We used a similar classifier to predict dia-
logue acts as the one reported in (Kim et al., 2012)
and evaluation yields similar results.

This paper proposes an approach to dialogue act
identification in online chat that aims to predict
strategic actions like bargaining. Compared to (Sid-
ner, 1994) and DAMSL (Core and Allen, 1997), our
domain level annotation is much more detailed: we
not only predict moves like Accept but also features
like the Givable and Receivable resources. Our gen-
eral speech act typology of EDUs lacks intentional
descriptions of speech acts, however. This reflects
a conscious choice to specify the semantics of each
act purely by the public commitments made to offer
or to receive goods.

6.2 Preference extraction

While preference extraction from non-linguistic ac-
tions is well studied (Chen and Pu, 2004; Fürnkranz
and Hüllermeier, 2011), their extraction from spon-
taneous conversation has received little attention. To
our knowledge, the only existing work is (Asher
et al., 2010; Cadilhac et al., 2011; Cadilhac et al.,
2012) which we build on. Cadilhac et al. (2011)
compute CP-nets from coherence relations, found in
the annotation of the Verbmobil corpus (Baldridge
and Lascarides, 2005). Here we adapt their algo-
rithm from coherence relations to unary dialogue
acts. Further, while they assume that preferences are
given, here we apply versions of the NLP techniques
from Cadilhac et al (2012) to estimate the prefer-
ences of EDUs automatically. And we go further
than any of these works by using the elicited pref-

365



erences to infer the domain-level actions that result
from information exchanged in the conversation.

In this respect, our work relates to models for
grounding language, where semantic parsing tech-
niques are used to automatically map linguistic in-
structions to domain-level actions (Artzi and Zettle-
moyer, 2013; Kim and Mooney, 2013). Our do-
main of application is more challenging, however:
to our knowledge, this is the first attempt to map
non-cooperative dialogues into predictions about
domain-level actions. We can tackle these strategic
scenarios because we exploit a logic of preferences
as part of our model, yielding inferences about ratio-
nal action even when agents’ preferences conflict.

Compared to previous work, our task is new. Our
aim is not to predict what dialogue act to perform
next, but what non verbal action should be per-
formed, mapping dialogue acts to non verbal ac-
tions. The difference between our work and other
work on grounding is that we are grounding non-
cooperative dialogue rather than instructions in a co-
operative setting. There is no prior work of which
we’re aware that maps a non-cooperative dialogue
into a prediction about which joint non-verbal ac-
tion the agents will do as a result of what they’ve
learned about their opponent through conversation.
Furthermore, both the CP-net and the fourth base-
line, whose accuracy is quite high (making it a hard
baseline to beat), use the dialogue history as they in-
crementally build up the preference model.

6.3 Predicting strategic actions
Modeling player behavior in real-time strategy
games is a growing research area in AI. These mod-
els can be used to identify common strategic states,
discover new strategies as they emerge or predict
an opponents future actions and so help players to
optimize their choices. For example, Schadd et
al. (2007) develop a hierarchical opponent model in
the game Spring, Dereszynski et al. (2011) reason
about strategic behavior in StarCraft using hidden
Markov models and Amato and Shani (2010) use re-
inforcement learning to acquire a policy for switch-
ing among high-level strategies in Civilization IV.

In comparison, we propose a novel approach for
predicting strategic action based on the symbolically
formalized preferences that each agent commits to in
spontaneous conversation. Our approach thus deals

with imperfect information by exploiting the agents’
declared preferences. By predicting what bargain (if
any) will take place, we are able to verify the cor-
rectness of our preference descriptions. Our task is
a subtask of learning a strategy over an entire game
space, but our approach yields good predictive re-
sults on relatively little data—an advantage of ex-
ploiting CP-nets and the symbolic rules that guide
their evolution from observable evidence.

7 Conclusion

We have proposed a linguistic approach to strategy
prediction in spontaneous conversation, exploiting
dialogue acts to build a partial model of the agents’
declared preferences. Our method tracks how pref-
erences evolve during the dialogue, which we use to
infer their bargaining behavior, i.e. what resources,
if any, are exchanged, and by whom.

We based our study on a corpus collected using an
online version of The Settlers of Catan. Negotiations
in this game mirror complex real life negotiations
and provide a fruitful arena to study strategic con-
versation. Evaluation shows that our approach pro-
vides more accurate and complete information about
trades than baselines that don’t track how an offer
evolves through the dialogue, and we also argued
that game-theoretic reasoning about rational behav-
ior has advantages over relying on the presence or
absence of an Accept act to make predictions.

Our approach, however, does not exploit dis-
course structure, which is needed to properly handle
long distance dependencies of offers on prior mate-
rial. We will exploit this in future work to improve
our results. We also plan to investigate other aspects
of strategic reasoning on a larger dataset.

We have proposed a method that relies on a typol-
ogy of dialogue acts that is domain sensitive. How-
ever, in other work we have shown how to adapt
our algorithms to several domains (Cadilhac et al.,
2012). In future work, we plan to link our prefer-
ence extraction algorithms to an automatically ac-
quired discourse structure for a given text. This will
provide a domain independent means for extracting
preferences from dialogue.
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Abstract

Human engagement in narrative is partially
driven by reasoning about discourse relations
between narrative events, and the expectations
about what is likely to happen next that results
from such reasoning. Researchers in NLP
have tackled modeling such expectations from
a range of perspectives, including treating it as
the inference of the CONTINGENT discourse
relation, or as a type of common-sense causal
reasoning. Our approach is to model likeli-
hood between events by drawing on several of
these lines of previous work. We implement
and evaluate different unsupervised methods
for learning event pairs that are likely to be
CONTINGENT on one another. We refine event
pairs that we learn from a corpus of film scene
descriptions utilizing web search counts, and
evaluate our results by collecting human judg-
ments of contingency. Our results indicate that
the use of web search counts increases the av-
erage accuracy of our best method to 85.64%
over a baseline of 50%, as compared to an av-
erage accuracy of 75.15% without web search.

1 Introduction

Human engagement in narrative is partially driven
by reasoning about discourse relations between nar-
rative events, and the expectations about what is
likely to happen next that results from such reason-
ing (Gerrig, 1993; Graesser et al., 1994; Lehnert,
1981; Goyal et al., 2010). Thus discourse relations
are one of the primary means to structure narrative
in genres as diverse as weblogs, search queries, sto-
ries, film scripts and news articles (Chambers and
Jurafsky, 2009; Manshadi et al., 2008; Gordon and

Swanson, 2009; Gordon et al., 2011; Beamer and
Girju, 2009; Riaz and Girju, 2010; Do et al., 2011).

DOUGLAS QUAIL and his wife KRISTEN, are
asleep in bed.
Gradually the room lights brighten. the clock chimes
and begins speaking in a soft, feminine voice.
They don’t budge. Shortly, the clock chimes again.
Quail’s wife stirs. Maddeningly, the clock chimes a
third time.
CLOCK (continuing)Tick, tock –.
Quail reaches out and shuts the clock off. Then he sits
up in bed.
He swings his legs out from under the covers and sits
on the edge of the bed. He puts on his glasses and sits,
lost in thought.
He is a good-looking but conventional man in his early
thirties. He seems rather in awe of his wife, who is
attractive and rather off-hand towards him.
Kirsten pulls on her robe, lights a cigarette, sits fishing
for her slippers.

Figure 1: Opening Scene from Total Recall

Recent work in NLP has tackled the inference of
relations between events from a broad range of per-
spectives: (1) as inference of a discourse relations
(e.g. the Penn Discourse Treebank (PDTB) CON-
TINGENT relation and its specializations); (2) as a
type of common sense reasoning; (3) as part of text
understanding to support question-answering; and
(4) as way of learning script-like or plot-like knowl-
edge structures. All these lines of work aim to model
narrative understanding, i.e. to enable systems to in-
fer which events are likely to have happened even
though they have not been mentioned in the text
(Schank et al., 1977), and which events are likely
to happen in the future. Such knowledge has prac-
tical applications in commonsense reasoning, infor-
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mation retrieval, question answering, narrative un-
derstanding and inferring discourse relations.

We model this likelihood between events by
drawing on the PTDB’s general definition of the
CONTINGENT relation, which encapsulates relations
elsewhere called CAUSE, CONDITION and ENABLE-
MENT (Prasad et al., 2008a; Lin et al., 2010; Pitler et
al., 2009; Louis et al., 2010). Our aim in this paper
is to implement and evaluate a range of different un-
supervised methods for learning event pairs that are
likely to be CONTINGENT on one another.

We first utilize a corpus of scene descriptions
from films because they are guaranteed to have an
explicit narrative structure. Moreover, screenplay
scene descriptions tend to be told in temporal or-
der (Beamer and Girju, 2009; Gordon and Swan-
son, 2009), which makes them a good resource for
learning about contingencies between events. In
addition, scenes in film represent many typical se-
quences from real life, while providing a rich source
of event clusters related to battles, love and mys-
tery. We carry out separate experiments for the ac-
tion movie genre and the romance movie genre. For
example, in the scene from Total Recall, from the
action movie genre (See Fig. 1), we might learn that
the event of sits up is CONTINGENT on the event
of clock chimes. The subset of the corpus we
use comprises 123,869 total unique event pairs.

We produce initial scalar estimates of poten-
tial CONTINGENCY between events using four
previously defined measures of distributional co-
occurrence. We then refine these estimates through
web searches that explicitly model the patterns of
narrative event sequences that were previously ob-
served to be likely within a particular genre. There
are several advantages of this method: (1) events in
the same genre tend to be more similar than events
across genres, so less data is needed to estimate
co-occurrence; (2) film scenes are typically nar-
rated via simple tenses in the correct temporal order,
which allows the ordering of events to contribute to
the estimation of the CONTINGENCY relation; (3)
The web counts focus on validating event pairs al-
ready deemed to be likely to be CONTINGENT in
the smaller, more controlled, film scene corpus. To
test our method, we conduct perceptual experiments
with human subjects on Mechanical Turk by asking
them to select which of two pairs of events are the
most likely. For example, given the scene from To-
tal Recall in Fig. 1, Mechanical Turkers are asked

to select whether the sequential event pair clock
chimes, sits up is more likely than clock
chimes followed by a randomly selected event
from the action film genre. Our experimental data
and annotations are available at http://nlds.
soe.ucsc.edu/data/EventPairs.

Sec. 2 describes our experimental method in de-
tail. Sec. 3 describes how we set up our evaluation
experiments and the results. We show that none of
the methods from previous work perform better on
our data than 75.15% average accuracy as measured
by human perceptions of CONTINGENCY. But after
web search refinement, we achieve an average accu-
racy of 85.64%. We delay a more detailed compari-
son to previous work to Sec. 4 where we summarize
our results and compare previous work to our own.

2 Experimental Method

Our method uses a combination of estimating
the likelihood of a CONTINGENT relation between
events in a corpus of film scenes (Walker et al.,
2012b), with estimates then revised through web
search. Our experiments are based on two sub-
sets of 862 film screen plays collected from the
IMSDb website using its ontology of film genres
(Walker et al., 2012b): a set of action movies of 115
screenplays totalling 748 MB, and a set of romance
movies of 71 screenplays totalling 390 MB. Fig. 1
provided an example scene from the action movie
genre from the IMSDb corpus.

We assume that the relation we are aiming to learn
is the PDTB CONTINGENT relation, which is de-
fined as a relation that exists when one of the sit-
uations described in the text spans that are identi-
fied as the two arguments of the relation, i.e. Arg1
and Arg2, causally influences the other (Prasad et
al., 2008b). As Girju notes, it is notoriously dif-
ficult to define causality without making the defi-
nition circular, but we follow Beamer and Girju’s
work in assuming that if events A, B are causally
related then B should occur less frequently when it
is not preceded by A and that B→A should be much
less frequent than A→ B. We assume that both the
CAUSE and CONDITION subtypes of the CONTIN-
GENCY relation will result in pairs of events that are
likely to occur together and in a particular order. In
particular we assume that the subtypes of the PDTB
taxonomy of Contingency.Cause.Reason and Con-
tingency.Cause.Result are the most likely to occur
together as noted in previous work. Other related
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work has made use of discourse connectives or dis-
course taggers (implicit discourse relations) to pro-
vide additional evidence of CONTINGENCY (Do et
al., 2011; Gordon et al., 2011; Chiarcos, 2012; Pitler
et al., 2009; Lin et al., 2010), but we do not because
the results have been mixed. In particular these dis-
course taggers are trained on The Wall Street Journal
(WSJ) and are unlikely to work well on our data.

We define an event as a verb lemma with its sub-
ject and object. Two events are considered equal if
they have the same verb. We do not believe word
ambiguities to be a primary concern, and previous
work also defines events to be the same if they have
the same surface verb, in some cases with a restric-
tion that the dependency relations should also be
the same (Chambers and Jurafsky, 2008; Chambers
and Jurafsky, 2009; Do et al., 2011; Riaz and Girju,
2010; Manshadi et al., 2008). Word sense ambigu-
ities are also reduced in specific genres (Action and
Romance) of film scenes.

Our method for estimating the likelihood of a
CONTINGENT relations between events consists of
four steps:

1. TEXT PROCESSING: We use Stanford
CoreNLP to annotate the corpus docu-
ment by document and store the annotated text
in XML format (Sec. 2.1);

2. COMPUTE EVENT REPRESENTATIONS: We
form intermediate artifacts such as events, pro-
tagonists and event pairs from the annotated
documents. Each event has its arguments (sub-
ject and object). We calculate the frequency of
the event across the relevant genre (Sec. 2.2);

3. CALCULATE CONTINGENCY MEASURES: We
define 4 different measures of contingency and
calculate each one separately using the results
from Steps 1 and 2 above. We call each re-
sult a PREDICTED CONTINGENT EVENT PAIR
(PCEP). All measures return scalar values that
we use to rank the PCEPs (Sec. 2.3);

4. WEB SEARCH REFINEMENT: We select the top
100 event pairs calculated by each contingency
measure, and construct a RANDOM EVENT
PAIR (REP) for each PCEP that preserves the
first element of the PCEP, and replaces the sec-
ond element with another event selected ran-
domly from within the same genre. We then

define web search patterns for both PCEP and
REPs and compare the counts (Sec. 2.4).

2.1 Text Processing
We first separate our screen plays into two sets of
documents, one for the action genre and one for the
romance genre. Because we are interested in the
event descriptions that are part of the scene descrip-
tions, we excise the dialog from each screen play.
Then using the Stanford CoreNLP pipeline, we an-
notate the film scene files. Annotations include tok-
enization, lemmatization, named entity recognition,
parsing and coreference resolution.

We extract the events by keeping all tokens whose
POS tags begin with VB. We then use the depen-
dency parse to find the subject and object of each
verb (if any), considering only nsubj, agent,
dobj, iobj, nsubjpass. We keep the orig-
inal tokens of the subject and the object for further
processing.

2.2 Compute Event Representations
Given the results of Step 1 we start by generalizing
the subject and object stored with each event by sub-
stituting tokens with named entities if there are any
named entities tagged. Otherwise we generalize the
subjects and the objects using their lemmas. For ex-
ample, person UNLOCK door, as illustrated in
Table 1.

We then integrate all the subjects and objects
across all film scene files, keeping a record of the
frequency of each subject and object. For example,
[person (115), organization (14),
door (3)] UNLOCK [door (127),
person (5), bars (2)]. The most frequent
subject and object are selected as representative ar-
guments for the event. We then count the frequency
of each event across all the film scene files.

Within each film scene file, we count adjacent
events as potential CONTINGENT event pairs. Two
event pairs are defined as equal if they have the same
verbs in the same order. We also count the frequency
of each event pair.

2.3 Calculate Contingency Measures
We calculate four different measures of CONTIN-
GENCY based on previous work using the results
of Steps 1 and 2 (Sec. 2.1 and Sec. 2.2). These
measures are pointwise mutual information, causal
potential, bigram probability and protagonist-based
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causal potential as described in detail below. We
calculate each measure separately by genre for the
action and romance genres of the film corpus.

Pointwise Mutual Information. The majority of
related work uses pointwise mutual information
(PMI) in some form or another (Chambers and Ju-
rafsky, 2008; Chambers and Jurafsky, 2009; Riaz
and Girju, 2010; Do et al., 2011). Given a set of
events (a verb and its collected set of subjects and
objects), we calculate the PMI using the standard
definition:

pmi(e1, e2) = log
P (e1, e2)

P (e1)P (e2)
(1)

in which e1 and e2 are two events. P (e1) is the
probability that event e1 occur in the corpus:

P (e1) =
count(e1)∑
x count(ex)

(2)

where count(e1) is the count of how many times
event e1 occurs in the corpus, and

∑
x count(ex) is

the count of all the events in the corpus. The nu-
merator is the probability that the two events occur
together in the corpus:

P (e1, e2) =
count(e1, e2)∑

x

∑
y count(ex, ey)

(3)

in which count(e1, e2) is the number of times the
two events e1 and e2 occur together in the corpus
regardless of their order. Only adjacent events in
each document are paired up. PMI is a symmetric
measurement for the relationship between two
events. The order of the events does not matter.

Causal Potential. Beamer and Girju proposed a
measure called Causal Potential (CP) based on pre-
vious work in philosophy and logic, along with an
annotation test for causality. An annotator decid-
ing whether event A causes event B asks herself the
following questions, where answering yes to both
means the two events are causally related:

• Does event A occur before (or simultaneously)
with event B?

• Keeping constant as many other states of affairs
of the world in the given text context as possi-
ble, does modifying event A entail predictably
modifying event B?

As Beamer & Girju note, this annotation test is
objective, and it is simple to execute mentally. It
only assumes that the average person knows a lot
about how things work in the world and can reliably
answer these questions. CP is then defined below,
where the arrow notation means ordered bigrams,
i.e. event e1 occurs before event e2:

φ(e1, e2) = pmi(e1, e2) + log
P (e1 → e2)

P (e2 → e1)
(4)

where pmi(e1, e2) = log
P (e1, e2)

P (e1)P (e2)

The causal potential consists of two terms: the
first is pair-wise mutual information (PMI) and
the second is relative ordering of bigrams. PMI
measures how often events occur as a pair; whereas
relative ordering counts how often event order
occurs in the bigram. If there is no ordering of
events, the relative ordering is zero. We smooth
unseen event pairs by setting their frequency equal
to 1 to avoid zero probabilities. For CP as with PMI,
we restrict these calculations to adjacent events.
Column CP of Table 1 below provides sample
values for the CP measure.

Probabilistic Language Models. Our third method
models event sequences using statistical language
models (Manshadi et al., 2008). A language model
estimates the probability of a sequence of words us-
ing a sample corpus. To identify contingent event
sequences, we apply a bigram model which esti-
mates the probability of observing the sequence of
two words w1 and w2 as follows:

P (w1, w2) ∼= P (w2|w1) =
count(w1, w2)

count(w1)
(5)

Here, the words are events. Each verb is a single
event and each film scene is treated as a sequence of
verbs. For example, consider the following sentence
from Total Recall:

Quail and Kirsten sit at a small table,
eating breakfast.

This sentence is represented as the sequence of its
two verbs: sit, eat. We estimate the probability
of verb bigrams using Equation 5 and hypothesize
that the verb sequences with higher probability are
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Row # Causal Potential Pair CP PCEP Search pat-
tern

NumHits Random Pair REP Search pat-
tern

NumHits

1 person KNOW person -
person MEAN what

2.18 he knows * means 415M person KNOW person -
person PEDDLE papers

he knows * ped-
dles

2

2 person COME - person
REST head

2.12 he comes * rests 158M person COME - person
GLANCE window

he comes *
glances

41

3 person SLAM person -
person SHUT door

2.11 he slams * shuts 11 person SLAM person -
person CHUCKLE

he slams * chuck-
les

0

4 person UNLOCK door -
person ENTER room

2.11 he unlocks * en-
ters

80 person UNLOCK door -
person ACT shot

he unlocks * acts 0

5 person SLOW person -
person STOP person

2.10 he slows * stops 697K person SLOW person -
eyes RIVET eyes

he slows * rivets 0

6 person LOOK window -
person WONDER thing

2.06 he looks * won-
ders

342M person LOOK window -
person EDGE hardness

he looks * edges 98

7 person TAKE person -
person LOOK window

2.01 he takes * looks 163M person TAKE person -
person CATCH person

he takes * catches 311M

8 person MANAGE smile -
person GET person

2.01 he manages * gets 80M person MANAGE smile
- person APPROACH
person

he manages * ap-
proaches

16

9 person DIVE escape -
person SWIM way

2.00 he dives * swims 1.5M person DIVE escape -
gun JAM person

he dives * jams 6

10 person STAGGER person
- person DROP person

2.00 he staggers *
drops

33 person STAGGER per-
son - plain WHEEL per-
son

he staggers *
wheels

1

11 person SHOOT person -
person FALL feet

1.99 he shoots * falls 55.7M person SHOOT person -
person PREVENT per-
son

he shoots * pre-
vents

6

12 person SQUEEZE person
- person SHUT door

1.87 he squeezes *
shuts

5 person SQUEEZE per-
son - person MARK per-
son

he squeezes *
marks

1

13 person SEE person - per-
son GO

1.87 he sees * goes 184M person SEE person - im-
age QUIVER hips

he sees * quivers 2

Table 1: Sample web search patterns and values used in web search refinement algorithm from action genre

more likely to be contingent. We apply a threshold
of 20 for count(w1, w2) to avoid infrequent and
uncommon bigrams.

Protagonist-based Models. We also used a method
of generating event pairs based not only on the con-
secutive events in text but on their protagonist. This
is based on the assumption that the agent, or protag-
onist, will tend to perform actions that further her
own goals, and are thus causally related. We called
this method protagonist-based because all events
were partitioned into multiple sets where each set of
events has one protagonist. This method is roughly
based on previous work using chains of discourse
entities to induce narrative schemas (Chambers and
Jurafsky, 2009).

Events that share one protagonist were extracted
from text according to co-referring mentions pro-
vided by the Stanford CoreNLP toolkit.1 A man-
ual examination of coreference results on a sample
of movie scripts suggests that the accuracy is only
around 60%: most of the time the same entity (in its

1http://nlp.stanford.edu/software/corenlp.shtml

nominal and pronominal forms) was not recognized
and was assigned as a new entity.

We preserve the order of events based on their tex-
tual order assuming as above that film scripts tend
to preserve temporal order. An ordered event pair
is generated if both events share a protagonist. We
further filter event pairs by eliminating those whose
frequency is less than 5 to filter insignificant and rare
event pairs. This also tends to catch errors generated
by the Stanford parser.

CP was then calculated accordingly to Equa-
tion 4. To calculate the PMI part of CP, we combine
the frequencies of event pairs in both orders.

2.4 Web Search Refinement

The final step of our method is WEB SEARCH RE-
FINEMENT. Our hypothesis is that using the film
corpus within a particular genre to do the initial esti-
mates of contingency takes advantage of genre prop-
erties such as similar events and narration of scenes
in chronological order. However the film corpus is
necessarily small, and we can augment the evidence
for a particular contingent relation by defining spe-
cific narrative sequence patterns and collecting web
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counts.
Recall that PCEP stands for predicted contin-

gent event pair and that REP stands for random
event pair. We first select the top 100 event pairs
calculated by each CONTINGENCY measure, and
construct a RANDOM EVENT PAIR (REP) for each
PCEP that preserves the first element of the PCEP,
and replaces the second element with another event
selected randomly from within the same genre. We
then define web search patterns for both PCEP and
REPs and compare the counts. PCEPs should be fre-
quent in web search and REPs should be infrequent.

Our web refinement procedure is:

• For each event pair, PCEPs and REPs, create a
Google search pattern as illustrated by Table 1,
and described in more detail below.

• Search for the exact match in Google gen-
eral web search using incognito browsing and
record the estimated count of results returned;

• Remove all the PCEP/REP pairs with PCEP
Google search count less than 100: highly con-
tingent events should be frequent in a general
web search;

• Remove all PCEP/REP pairs with REP Google
search count greater than 100: events that are
not contingent on one another should not be
frequent in a general web search.

The motivation for this step is to provide addi-
tional evidence for or against the contingency of a
pair of events. Table 1 shows a selection of the top
100 PCEPs learned using the Causal potential (CP)
Metric, the web search patterns that are automati-
cally derived from the PCEPs (Column 4), the REPs
that were constructed for each PCEP (Column 6),
the web search patterns that were automatically de-
rived from the REPs (Column 7). Column 5 shows
the results of web search hits for the PCEP patterns
and Column 8 shows the results of web search hits
for the REP patterns. These hit counts were then
used in refining our estimates of CONTINGENCY for
the learned patterns as described above.

Note that the web search patterns do not aim to
find every possible match of the targeted CONTIN-
GENT relation that could possibly occur. Instead,
they are generalizations of the instances of PCEPs
that we found in the films corpus that are targeted at

finding hits that are the most likely to occur in nar-
rative sequences. Narrative sequences are most re-
liably signalled by use of the historical present tense,
e.g. as instantiated in the search patterns He knows
in Row 1 and He comes in Row 2 of Table 1 (Swan-
son and Gordon, 2012; Beamer and Girju, 2009;
Labov and Waletzky, 1997). In addition, we use
the “*” operator in Google Search to limit search
to pairs of events reported in the historical present
tense, that are “near” one another, and in a particular
sequence. We don’t care whether the events are in
the same utterance or in sequential utterances, thus
for the second verb (event) we do not include a sub-
ject pronoun he. These search patterns are not in-
tended to match the original instances in the film
corpus and in general they are unlikely to match
those instances.

For example, consider the search patterns and
results shown in Row 1 of Table 1. The
PCEP is (person KNOW person, person
MEAN what). The REP is (person KNOW
person, person PEDDLE papers). Our
prediction is that the REP should be much less likely
in web search counts and the results validate that
predication. A paired t-test over the 100 top PCEP
pairs for the CP measure comparing the hit counts
for the PCEP pairs vs. the REP pairs was highly
significant (p < .00001). However, consider Row
7. Even though in general the PCEP pairs are more
likely (as measured by the paired t-test compar-
ing web search counts for PCEPs vs REPs), there
are cases where the REP is highly likely as shown
by the REP (person take person, person
CATCH person) in Row 7. Alternatively there are
cases where the web search counts provide evidence
against one of the PCEPs. Consider Rows 3, 4, 10
and 12. In all of these cases the web counts NumHits
for the PCEP number in the tens.

After the web search refinement, we retain the
PCEP/REP pairs with initially high PCEP estimates,
for which we found good evidence for contingency
and for randomness, e.g. Row 1 and 2 in Table 1.
We use 100 as a threshold because most of the time
the estimate result count from Google is either a
very large number (millions) or a very small num-
ber (tens), as illustrated by the NumHits columns in
Table 1.

We experimented with different types of patterns
with a development set of PCEPs before we settled
on the search pattern template shown in Table 1. We
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decided to use third person rather than first person
patterns, because first person patterns are only one
type of narrative (Swanson and Gordon, 2012). We
also decided to utilize event patterns without typical
objects, such as head in person REST head in
Row 2 of Table 1. We do not have any evidence that
this is the optimal search pattern template because
we did not systematically try other types of search
patterns.

3 Evaluation and Results

While other work uses a range of methods for evalu-
ating accuracy, to our knowledge our work is the first
to use human judgments from Mechanical Turk to
evaluate the accuracy of the learned PCEPs. We first
describe the evaluation setup in Sec. 3.1 and then re-
port the results in Sec. 3.2

3.1 Mechanical Turk Contingent Pair
Evaluations

We used three different types of HITs (Human Intel-
ligence Tasks) on Mechanical Turk for our evalua-
tion. Two of the HITS are in Fig. 2 and Fig. 3. The
differences in the different types of HITS involve:
(1) whether the arguments of events were given in
the HIT, as in Fig. 2 and (2): whether the Turkers
were told that the order of the events mattered, as
in Fig. 3. We initially thought that providing the
arguments to the events as shown in Fig. 2 would
help Turkers to reason about which event was more
likely. We tested this hypothesis only in the action
genre for the Causal Potential Measure. For CP, Bi-
gram and Protag the order of events always matters.
For the PMI task, the order of the events doesn’t
matter because PMI is a symmetric measure. Fig. 2
illustrates the instructions that were given with the
HIT when the event order doesn’t matter. In all the
other cases, the instructions that were given with the
HIT are those in Fig. 3 where the Turkers are in-
structed to pay attention to the order of the events.

For all types of HITS, for all measures of CON-
TINGENCY, we set up the task as a choice over
two alternatives, where for each predicted contin-
gent pair (PCEP), we generate a random event pair
(REP), with the first event the same and the second
one randomly chosen from all the events in the same
film genre. The REPs are constructed the same way
as we construct REPs for web search refinement,
as illustrated by Table 1. This is illustrated in both
Fig. 2 and Fig. 3. For all types of HITS, we ask 15

Turkers from a pre-qualified group to select which
pair (the PCEP or the REP) is more likely to oc-
cur together. Thus, the framing of these Mechani-
cal Turk tasks only assumes that the average person
knows how the world works; we do not ask them to
explicitly reason about causality as other work does
(Beamer and Girju, 2009; Gordon et al., 2011; Do et
al., 2011).

For each measure of CONTINGENCY, we take 100
event pairs with highest PCEP scores, and put them
in 5 HITs with twenty items per HIT. Previous work
has shown that for many common NLP tasks, 7
Turkers’ average score can match expert annotations
(Snow et al., 2008). However, we use 15 Turkers
because we had no gold-standard data and because
we were not sure how difficult the task is. It is
clearly subjective. To calculate the accuracy of each
method, we computed the average correlation coef-
ficient between each pair of raters and eliminate the
5 lowest scoring workers. We then used the percep-
tions of the 10 remaining workers to calculate accu-
racy as # of correct answers / total # of answers.

In general, deciding when a MTurk worker is un-
reliable when the data is subjective is a difficult
problem. In the future we plan to test other solu-
tions to measuring annotator reliability as proposed
in related work (Callison-Burch, 2009; Snow et al.,
2008; Karger et al., 2011; Dawid and Skene, 1979;
Welinder et al., 2010; Liu et al., 2012).

3.2 Results
We report our results in terms of overall accuracy.
Because the Mechanical Turk task is a choose-
one question rather than a binary classification,
Precision = Recall in our experimental results:

True Positive = Number of Correct Answers
True Negative = Number of Correct Answers
False Positive = Number of Incorrect Answers
False Positive = Number of Incorrect Answers

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negative

The accuracies of all the methods are shown in
Table 2. The results of using event arguments
(person KNOW person) in the Mechanical Turk
evaluation task (i.e. Fig. 2) is given in Rows 1 and
2 of Table 2. The accuracies for Rows 1 and 2 are
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Figure 2: Mechanical Turk HIT with event arguments provided. This HIT also illustrates instructions where Turkers
are told that the order of the events does not matter.

Row
#

Contingency Estimation Method Action
Acc%

Romance
Acc%

Average
Acc%

1 CP with event arguments 69.30 NA 69.30
2 CP with event arguments + Web search 77.57 NA 77.57
3 CP no args 75.20 75.10 75.15
4 CP no args +Web Search 87.67 83.61 85.64
5 PMI no args 68.70 79.60 74.15
6 PMI no args +Web Search 72.11 88.52 80.32
7 Bigram no args 67.10 66.50 66.80
8 Bigram no args +Web Search 72.40 70.14 71.27
9 Protag CP no args 65.40 68.20 66.80
10 Protag CP no args +Web Search 76.59 64.10 70.35

Table 2: Evaluation results for the top 100 event pairs using all methods.

considerably lower than when the PCEPs are tested
without arguments. Comparing Rows 1 and 2 with
Rows 3 and 4 suggests that even if the arguments
provide extra information that help to ground the
type of event, in some cases these constraints on
events may mislead the Turkers or make the eval-
uation task more difficult. There is an over 10% in-
crease in CP + Web search accuracy for the task that

omits the event arguments (i.e. Fig. 3 as can be seen
by comparing Row 2 with Row 4. Thus omitting the
arguments of events in evaluations actually appears
to allow Turkers to make better judgments.

In addition, Table 2 shows clearly that for ev-
ery single method, accuracy is improved by refin-
ing the initial estimates of contingency using the
narrative-based web search patterns. Web search in-
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Figure 3: Mechanical Turk HIT for evaluation with no event arguments provided. This HIT also illustrates instructions
where Turkers are told that the order of the events does matter.

creases the accuracy of almost all evaluation tasks,
with increases ranging from 3.45% to 12.5% when
averaged over both film genres (Column 5 Average
Acc%). The best performing method for the Ac-
tion genre is CP+Web Search at 87.67%, while the
best performing method for the Romance genre is
PMI+Web search at 88.52%. However PMI+Web
Search does not beat CP+Web Search on average
over both genres we tested, even though the Me-
chanical Turk HIT for CP specifies that the order of
the events matters: a more stringent criterion. Also
overall the CP+WebSearch method achieves a very
high 85.64% average accuracy.

It is also interesting to note the variation across
the different methods. For example, while it is
well known that PMI typically requires very large
corpora to make good estimates, the PMI method
without web search refinement has an initially high
accuracy of 79.60% for the romance genre, while
only achieving 68.70% for action. Perhaps this dif-
ference arises because the romance genre is more
highly causal, or because situations are more struc-
tured in romance, providing better estimates with a
small corpus. However even in this case of romance
with PMI, adding web search refinement provides
an almost 10% increase in absolute accuracy to the
highest accuracy of any combination, i.e. 88.52%.
There is also an interesting case of Protag CP for

the romance genre where web search refinement ac-
tually decreases accuracy by 4.1%. In future work
we plan to examine more genres from the film cor-
pus and also examine the role of corpus size in more
detail.

4 Discussion and Future Work

We induced event pairs using several methods from
previous work with similar aims but widely different
problem formulations and evaluation methods. We
used a verb-rich film scene corpus where events are
normally narrated in temporal order. We used Me-
chanical Turk to evaluate the learned pairs of CON-
TINGENT events using human perceptions. In the
first stage drawing on previous measures of distribu-
tional co-occurrence, we achieved an overall average
accuracy of around 70%, over a 50% baseline. We
then implemented a novel method of defining narra-
tive sequence patterns using the Google Search API,
and used web counts to further refine our estimates
of the contingency of the learned event pairs. This
increased the overall average accuracy to around
77%, which is 27% above the baseline. Our results
indicate that the use of web search counts increases
the average accuracy of our Causal Potential-based
method to 85.64% as compared to an average accu-
racy of 75.15% without web search. To our knowl-
edge this is the highest accuracy achieved in tasks of
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this kind to date.
Previous work on recognition of the PDTB CON-

TINGENT relation has used both supervised and un-
supervised learning, and evaluation typically mea-
sures precision and recall against a PDTB annotated
corpus (Do et al., 2011; Pitler et al., 2009; Zhou et
al., 2010; Chiarcos, 2012; Louis et al., 2010). We
use an unsupervised approach and measure accuracy
using human perceptions. Other work by Girju and
her students defined a measure called causal poten-
tial and then used film screen plays to learn a knowl-
edge base of causal pairs of events. They evaluate
the pairs by asking two trained human annotators to
label whether occurrences of those pairs in their cor-
pus are causally related (Beamer and Girju, 2009;
Riaz and Girju, 2010). We also make use of their
causal potential measure. Work on commonsense
causal reasoning aims to learn causal relations be-
ween pairs of events using a range of methods ap-
plied to a large corpus of weblog narratives (Gordon
et al., 2011; Gordon and Swanson, 2009; Manshadi
et al., 2008). One form of evaluation aimed to pre-
dict the last event in a sequence (Manshadi et al.,
2008), while more recent work uses the learned pairs
to improve performance on the COPA SEMEVAL
task (Gordon et al., 2011).

Related work on SCRIPT LEARNING induces
likely sequences of temporally ordered events in
news, rather than CONTINGENCY or CAUSALITY
(Chambers and Jurafsky, 2008; Chambers and Ju-
rafsky, 2009). Chambers & Jurafsky also evaluate
against a corpus of existing documents, by leaving
one event out of a document (news story), and then
testing the system’s ability to predict the missing
event. To our knowledge, our method is the first
to augment distributional semantics measures from
a corpus with web search data. We are also the first
to evaluate the learned event pairs with a human per-
ceptual evaluation with native speakers.

We hypothesize that there are several advantages
to our method: (1) events in the same genre tend to
be more similar than events across genres, so less
data is needed to estimate co-occurrence; (2) film
scenes are typically narrated via simple tenses in the
correct temporal order, which allows the ordering
of events to contribute to estimates of the CONTIN-
GENCY relation; (3) The web counts focus on vali-
dating event pairs already deemed to be likely to be
CONTINGENT in the smaller, more controlled, film
scence corpus.

Our work capitalizes on event sequences narrated
in temporal order as a cue to causality. We expect
this approach to generalize to other domains where
these properties hold, such as fables, personal stories
and news articles. We do not expect this technique
to generalize without further refinements to genres
frequently told out of temporal order or when events
are not mentioned consecutively in the text, for ex-
ample in certain types of fiction.

In future work we want to explore in more de-
tail the differences in performance of the different
contingency measures. For example, previous work
would suggest that the the higher the measure is, the
more likely the two events are to be contingent on
one another. To date, while we have only tested the
top 100, we have not found that the bottom set of
20 are less accurate than the top set of 20. This
could be due to corpus size, or the measures them-
selves, or noise from parser accuracy etc. As shown
in Table 2, web search refinement is able to eliminate
most noise in event pairs, but we would still aim to
achieve a better understanding of the circumstances
which lead particular methods to work better.

In future work we also want to explore ways of in-
ducing larger event structures than event pairs, such
as the causal chains, scripts, or narrative schemas of
previous work.
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Abstract

This paper addresses the task of predicting the
correct French translations of third-person sub-
ject pronouns in English discourse, a problem
that is relevant as a prerequisite for machine
translation and that requires anaphora resolu-
tion. We present an approach based on neu-
ral networks that models anaphoric links as
latent variables and show that its performance
is competitive with that of a system with sep-
arate anaphora resolution while not requiring
any coreference-annotated training data. This
demonstrates that the information contained in
parallel bitexts can successfully be used to ac-
quire knowledge about pronominal anaphora
in an unsupervised way.

1 Motivation

When texts are translated from one language into
another, the translation reconstructs the meaning or
function of the source text with the means of the
target language. Generally, this has the effect that
the entities occurring in the translation and their mu-
tual relations will display similar patterns as the enti-
ties in the source text. In particular, coreference pat-
terns tend to be very similar in translations of a text,
and this fact has been exploited with good results to
project coreference annotations from one language
into another by using word alignments (Postolache
et al., 2006; Rahman and Ng, 2012).

On the other hand, what is true in general need
not be true for all types of linguistic elements. For
instance, a substantial percentage of the English third-
person subject pronouns he, she, it and they does
not get realised as pronouns in French translations
(Hardmeier, 2012). Moreover, it has been recognised

by various authors in the statistical machine transla-
tion (SMT) community (Le Nagard and Koehn, 2010;
Hardmeier and Federico, 2010; Guillou, 2012) that
pronoun translation is a difficult problem because,
even when a pronoun does get translated as a pro-
noun, it may require choosing the correct word form
based on agreement features that are not easily pre-
dictable from the source text.

The work presented in this paper investigates
the problem of cross-lingual pronoun prediction for
English-French. Given an English pronoun and its
discourse context as well as a French translation of
the same discourse and word alignments between
the two languages, we attempt to predict the French
word aligned to the English pronoun. As far as we
know, this task has not been addressed in the litera-
ture before. In our opinion, it is interesting for several
reasons. By studying pronoun prediction as a task in
its own right, we hope to contribute towards a better
understanding of pronoun translation with a long-
term view to improving the performance of SMT
systems. Moreover, we believe that this task can lead
to interesting insights about anaphora resolution in a
multi-lingual context. In particular, we show in this
paper that the pronoun prediction task makes it possi-
ble to model the resolution of pronominal anaphora
as a latent variable and opens up a way to solve a
task relying on anaphora resolution without using
any data annotated for anaphora. This is what we
consider the main contribution of our present work.

We start by modelling cross-lingual pronoun pre-
diction as an independent machine learning task after
doing anaphora resolution in the source language
(English) using the BART software (Broscheit et
al., 2010). We show that it is difficult to achieve
satisfactory performance with standard maximum-
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The latest version released in March is equipped with ... It is sold at ...

La dernière version lancée en mars est dotée de ... • est vendue ...

Figure 1: Task setup

entropy classifiers especially for low-frequency pro-
nouns such as the French feminine plural pronoun
elles. We propose a neural network classifier that
achieves better precision and recall and manages to
make reasonable predictions for all pronoun cate-
gories in many cases.

We then go on to extend our neural network archi-
tecture to include anaphoric links as latent variables.
We demonstrate that our classifier, now with its own
source language anaphora resolver, can be trained
successfully with backpropagation. In this setup, we
no longer use the machine learning component in-
cluded in the external coreference resolution system
(BART) to predict anaphoric links. Anaphora reso-
lution is done by our neural network classifier and
requires only some quantity of word-aligned parallel
data for training, completely obviating the need for a
coreference-annotated training set.

2 Task Setup

The overall setup of the classification task we address
in this paper is shown in Figure 1. We are given an
English discourse containing a pronoun along with
its French translation and word alignments between
the two languages, which in our case were computed
automatically using a standard SMT pipeline with
GIZA++ (Och and Ney, 2003). We focus on the four
English third-person subject pronouns he, she, it and
they. The output of the classifier is a multinomial
distribution over six classes: the four French subject
pronouns il, elle, ils and elles, corresponding to mas-
culine and feminine singular and plural, respectively;
the impersonal pronoun ce/c’, which occurs in some
very frequent constructions such as c’est (it is); and
a sixth class OTHER, which indicates that none of
these pronouns was used. In general, a pronoun may
be aligned to multiple words; in this case, a training
example is counted as a positive example for a class
if the target word occurs among the words aligned
to the pronoun, irrespective of the presence of other

0 0 0 1 0version
0 1 0 0 0la

0 0 1 0 0elle

0 .5 0 .5 0

0 0 1 0 0
0 .05 .9 .05 0

p1 = .9

p2 = .1

word candidate training ex.

Figure 2: Antecedent feature aggregation

aligned tokens.
This task setup resembles the problem that an

SMT system would have to solve to make informed
choices when translating pronouns, an aspect of trans-
lation neglected by most existing SMT systems. An
important difference between the SMT setup and our
own classifiers is that we use context from human-
made translations for prediction. This potentially
makes the task both easier and more difficult; easier,
because the context can be relied on to be correctly
translated, and more difficult, because human transla-
tors frequently create less literal translations than an
SMT system would. Integrating pronoun prediction
into the translation process would require significant
changes to the standard SMT decoding setup in order
to take long-range dependencies in the target lan-
guage into account, which is why we do not address
this issue in our current work.

In all the experiments presented in this paper, we
used features from two different sources:

– Anaphora context features describe the source
language pronoun and its immediate context
consisting of three words to its left and three
words to its right. They are encoded as vec-
tors whose dimensionality is equal to the source
vocabulary size with a single non-zero compo-
nent indicating the word referred to (one-hot
vectors).

– Antecedent features describe an antecedent can-
didate. Antecedent candidates are represented
by the target language words aligned to the syn-
tactic head of the source language markable
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TED News
ce 16.3 % 6.4 %
elle 7.1 % 10.1 %
elles 3.0 % 3.9 %
il 17.1 % 26.5 %
ils 15.6 % 15.1 %
OTHER 40.9 % 38.0 %

Table 1: Distribution of classes in the training data

noun phrase as identified by the Collins head
finder (Collins, 1999).

The different handling of anaphora context features
and antecedent features is due to the fact that we al-
ways consider a constant number of context words
on the source side, whereas the number of word
vectors to be considered depends on the number of
antecedent candidates and on the number of target
words aligned to each antecedent.

The encoding of the antecedent features is illus-
trated in Figure 2 for a training example with two
antecedent candidates translated to elle and la ver-
sion, respectively. The target words are represented
as one-hot vectors with the dimensionality of the tar-
get language vocabulary. These vectors are then av-
eraged to yield a single vector per antecedent candi-
date. Finally, the vectors of all candidates for a given
training example are weighted by the probabilities
assigned to them by the anaphora resolver (p1 and
p2) and summed to yield a single vector per training
example.

3 Data Sets and External Tools

We run experiments with two different test sets. The
TED data set consists of around 2.6 million tokens of
lecture subtitles released in the WIT3 corpus (Cet-
tolo et al., 2012). The WIT3 training data yields
71,052 examples, which were randomly partitioned
into a training set of 63,228 examples and a test set
of 7,824 examples. The official WIT3 development
and test sets were not used in our experiments. The
news-commentary data set is version 6 of the parallel
news-commentary corpus released as a part of the
WMT 2011 training data1. It contains around 2.8 mil-
lion tokens of news text and yields 31,017 data points,

1http://www.statmt.org/wmt11/translation-task.
html (3 July 2013).

which were randomly split into 27,900 training exam-
ples and 3,117 test instances. The distribution of the
classes in the two training sets is shown in Table 1.
One thing to note is the dominance of the OTHER

class, which pools together such different phenom-
ena as translations with other pronouns not in our list
(e. g., celui-ci) and translations with full noun phrases
instead of pronouns. Splitting this group into more
meaningful subcategories is not straightforward and
must be left to future work.

The feature setup of all our classifiers requires
the detection of potential antecedents and the extrac-
tion of features pairing anaphoric pronouns with an-
tecedent candidates. Some of our experiments also
rely on an external anaphora resolution component.
We use the open-source anaphora resolver BART to
generate this information. BART (Broscheit et al.,
2010) is an anaphora resolution toolkit consisting of
a markable detection and feature extraction pipeline
based on a variety of standard natural language pro-
cessing (NLP) tools and a machine learning com-
ponent to predict coreference links including both
pronominal anaphora and noun-noun coreference. In
our experiments, we always use BART’s markable
detection and feature extraction machinery. Mark-
able detection is based on the identification of noun
phrases in constituency parses generated with the
Stanford parser (Klein and Manning, 2003). The set
of features extracted by BART is an extension of the
widely used mention-pair anaphora resolution feature
set by Soon et al. (2001) (see below, Section 6).

In the experiments of the next two sections, we
also use BART to predict anaphoric links for pro-
nouns. The model used with BART is a maximum
entropy ranker trained on the ACE02-npaper corpus
(LDC2003T11). In order to obtain a probability dis-
tribution over antecedent candidates rather than one-
best predictions or coreference sets, we modified the
ranking component with which BART resolves pro-
nouns to normalise and output the scores assigned
by the ranker to all candidates instead of picking the
highest-scoring candidate.

4 Baseline Classifiers

In order to create a simple, but reasonable baseline
for our task, we trained a maximum entropy (ME)
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TED
(Accuracy: 0.685)

P R F
ce 0.593 0.728 0.654
elle 0.798 0.523 0.632
elles 0.812 0.164 0.273
il 0.764 0.550 0.639
ils 0.632 0.949 0.759
OTHER 0.724 0.692 0.708

News commentary
(Accuracy: 0.576)

P R F
ce 0.508 0.294 0.373
elle 0.530 0.312 0.393
elles 0.538 0.062 0.111
il 0.600 0.666 0.631
ils 0.593 0.769 0.670
OTHER 0.564 0.609 0.586

Table 2: Maximum entropy classifier results

TED
(Accuracy: 0.700)

P R F
ce 0.634 0.747 0.686
elle 0.756 0.617 0.679
elles 0.679 0.319 0.434
il 0.719 0.591 0.649
ils 0.663 0.940 0.778
OTHER 0.743 0.678 0.709

News commentary
(Accuracy: 0.576)

P R F
ce 0.477 0.344 0.400
elle 0.498 0.401 0.444
elles 0.565 0.116 0.193
il 0.655 0.626 0.640
ils 0.570 0.834 0.677
OTHER 0.567 0.573 0.570

Table 3: Neural network classifier with anaphoras resolved by BART

classifier with the MegaM software package2 using
the features described in the previous section and the
anaphora links found by BART. Results are shown
in Table 2. The baseline results show an overall
higher accuracy for the TED data than for the news-
commentary data. While the precision is above 50 %
in all categories and considerably higher in some,
recall varies widely.

The pronoun elles is particularly interesting. This
is the feminine plural of the personal pronoun, and
it usually corresponds to the English pronoun they,
which is not marked for gender. In French, elles is a
marked choice which is only used if the antecedent
exclusively refers to females or feminine-gendered
objects. The presence of a single item with mascu-
line grammatical gender in the antecedent will trigger
the use of the masculine plural pronoun ils instead.
This distinction cannot be predicted from the English
source pronoun or its context; making correct pre-
dictions requires knowledge about the antecedent of
the pronoun. Moreover, elles is a low-frequency pro-
noun. There are only 1,909 occurrences of this pro-

2http://www.umiacs.umd.edu/~hal/megam/ (20 June
2013).

noun in the TED training data, and 1,077 in the news-
commentary training set. Because of these special
properties of the feminine plural class, we argue that
the performance of a classifier on elles is a good indi-
cator of how well it can represent relevant knowledge
about pronominal anaphora as opposed to overfitting
to source contexts or acting on prior assumptions
about class frequencies.

In accordance with the general linguistic prefer-
ence for ils, the classifier tends to predict ils much
more often than elles when encountering an English
plural pronoun. This is reflected in the fact that elles
has much lower recall than ils. Clearly, the classifier
achieves a good part of its accuracy by making ma-
jority choices without exploiting deeper knowledge
about the antecedents of pronouns.

An additional experiment with a subset of 27,900
training examples from the TED data confirms that
the difference between TED and news commentaries
is not just an effect of training data size, but that TED
data is genuinely easier to predict than news com-
mentaries. In the reduced data TED condition, the
classifier achieves an accuracy of 0.673. Precision
and recall of all classifiers are much closer to the
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Figure 3: Neural network for pronoun prediction

large-data TED condition than to the news commen-
tary experiments, except for elles, where we obtain
an F-score of 0.072 (P 0.818, R 0.038), indicating
that small training data size is a serious problem for
this low-frequency class.

5 Neural Network Classifier

In the previous section, we saw that a simple multi-
class maximum entropy classifier, while making cor-
rect predictions for much of the data set, has a signifi-
cant bias towards making majority class decisions, re-
lying more on prior assumptions about the frequency
distribution of the classes than on antecedent features
when handling examples of less frequent classes. In
order to create a system that can be trained to rely
more explicitly on antecedent information, we cre-
ated a neural network classifier for our task. The intro-
duction of a hidden layer should enable the classifier
to learn abstract concepts such as gender and number
that are useful across multiple output categories, so
that the performance of sparsely represented classes
can benefit from the training examples of the more
frequent classes.

The overall structure of the network is shown in
Figure 3. As inputs, the network takes the same fea-
tures that were available to the baseline ME classifier,
based on the source pronoun (P) with three words
of context to its left (L1 to L3) and three words to
its right (R1 to R3) as well as the words aligned to
the syntactic head words of all possible antecedent
candidates as found by BART (A). All words are

encoded as one-hot vectors whose dimensionality is
equal to the vocabulary size. If multiple words are
aligned to the syntactic head of an antecedent candi-
date, their word vectors are averaged with uniform
weights. The resulting vectors for each antecedent
are then averaged with weights defined by the pos-
terior distribution of the anaphora resolver in BART
(p1 to p3).

The network has two hidden layers. The first layer
(E) maps the input word vectors to a low-dimensional
representation. In this layer, the embedding weights
for all the source language vectors (the pronoun
and its 6 context words) are tied, so if two words
are the same, they are mapped to the same lower-
dimensional embedding irrespective of their position
relative to the pronoun. The embedding of the an-
tecedent word vectors is independent, as these word
vectors represent target language words. The entire
embedding layer is then mapped to another hidden
layer (H), which is in turn connected to a softmax out-
put layer (S) with 6 outputs representing the classes
ce, elle, elles, il, ils and OTHER. The non-linearity of
both hidden layers is the logistic sigmoid function,
f (x) = 1/(1+ e−x).

In all experiments reported in this paper, the dimen-
sionality of the source and target language word em-
beddings is 20, resulting in a total embedding layer
size of 160, and the size of the last hidden layer is
equal to 50. These sizes are fairly small. In experi-
ments with larger layer sizes, we were able to obtain
similar, but no better results.
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The neural network is trained with mini-batch
stochastic gradient descent with backpropagated gra-
dients using the RMSPROP algorithm with cross-
entropy as the objective function.3 In contrast to
standard gradient descent, RMSPROP normalises the
magnitude of the gradient components by dividing
them by a root-mean-square moving average. We
found this led to faster convergence. Other features
of our training algorithm include the use of momen-
tum to even out gradient oscillations, adaptive learn-
ing rates for each weight as well as adaptation of
the global learning rate as a function of current train-
ing progress. The network is regularised with an `2
weight penalty. Good settings of the initial learning
rate and the weight cost parameter (both around 0.001
in most experiments) were found by manual experi-
mentation. Generally, we train our networks for 300
epochs, compute the validation error on a held-out
set of some 10 % of the training data after each epoch
and use the model that achieved the lowest validation
error for testing.

Since the source context features are very infor-
mative and it is comparatively more difficult to learn
from the antecedents, the network sometimes had a
tendency to overfit to the source features and disre-
gard antecedent information. We found that this prob-
lem can be solved effectively by presenting a part of
the training without any source features, forcing the
network to learn from the information contained in
the antecedents. In all experiments in this paper, we
zero out all source features (input layers P, L1 to L3
and R1 to R3) with a probability of 50 % in each
training example. At test time, no information is ze-
roed out.

Classification results with this network are shown
in Table 3. We note that the accuracy has increased
slightly for the TED test set and remains exactly the
same for the news commentary corpus. However, a
closer look on the results for individual classes re-
veals that the neural network makes better predictions
for almost all classes. In terms of F-score, the only
class that becomes slightly worse is the OTHER class
for the news commentary corpus because of lower
recall, indicating that the neural network classifier is
less biased towards using the uninformative OTHER

3Our training procedure is greatly inspired by a series of on-
line lectures held by Geoffrey Hinton in 2012 (https://www.
coursera.org/course/neuralnets, 10 September 2013).

category. Recall for elle and elles increases consider-
ably, but especially for elles it is still quite low. The
increase in recall comes with some loss in precision,
but the net effect on F-score is clearly positive.

6 Latent Anaphora Resolution

Considering Figure 1 again, we note that the bilin-
gual setting of our classification task adds some in-
formation not available to the monolingual anaphora
resolver that can be helpful when determining the
correct antecedent for a given pronoun. Knowing the
gender of the translation of a pronoun limits the set
of possible antecedents to those whose translation is
morphologically compatible with the target language
pronoun. We can exploit this fact to learn how to
resolve anaphoric pronouns without requiring data
with manually annotated anaphoric links.

To achieve this, we extend our neural network with
a component to predict the probability of each an-
tecedent candidate to be the correct antecedent (Fig-
ure 4). The extended network is identical to the previ-
ous version except for the upper left part dealing with
anaphoric link features. The only difference between
the two networks is the fact that anaphora resolution
is now performed by a part of our neural network
itself instead of being done by an external module
and provided to the classifier as an input.

In this setup, we still use some parts of the BART
toolkit to extract markables and compute features.
However, we do not make use of the machine learn-
ing component in BART that makes the actual pre-
dictions. Since this is the only component trained on
coreference-annotated data in a typical BART con-
figuration, no coreference annotations are used any-
where in our system even though we continue to rely
on the external anaphora resolver for preprocessing
to avoid implementing our own markable and feature
extractors and to make comparison easier.

For each candidate markable identified by BART’s
preprocessing pipeline, the anaphora resolution
model receives as input a link feature vector (T) de-
scribing relevant aspects of the antecedent candidate-
anaphora pair. This feature vector is generated by the
feature extraction machinery in BART and includes
a standard feature set for coreference resolution par-
tially based on work by Soon et al. (2001). We use
the following feature extractors in BART, each of
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Figure 4: Neural network with latent anaphora resolution

which can generate multiple features:

– Anaphora mention type
– Gender match
– Number match
– String match
– Alias feature (Soon et al., 2001)
– Appositive position feature (Soon et al., 2001)
– Semantic class (Soon et al., 2001)
– Semantic class match
– Binary distance feature
– Antecedent is first mention in sentence

Our baseline set of features was borrowed whole-
sale from a working coreference system and includes
some features that are not relevant to the task at hand,
e. g., features indicating that the anaphora is a pro-
noun, is not a named entity, etc. After removing all
features that assume constant values in the training
set when resolving antecedents for the set of pro-
nouns we consider, we are left with a basic set of 37
anaphoric link features that are fed as inputs to our
network. These features are exactly the same as those
available to the anaphora resolution classifier in the
BART system used in the previous section.

Each training example for our network can have
an arbitrary number of antecedent candidates, each of
which is described by an antecedent word vector (A)
and by an anaphoric link vector (T). The anaphoric
link features are first mapped to a regular hidden layer
with logistic sigmoid units (U). The activations of the
hidden units are then mapped to a single value, which

functions as an element in a softmax layer over all an-
tecedent candidates (V). This softmax layer assigns
a probability to each antecedent candidate, which we
then use to compute a weighted average over the an-
tecedent word vector, replacing the probabilities pi

in Figures 2 and 3.
At training time, the network’s anaphora resolu-

tion component is trained in exactly the same way as
the rest of the network. The error signal from the em-
bedding layer is backpropagated both to the weight
matrix defining the antecedent word embedding and
to the anaphora resolution subnetwork. Note that the
number of weights in the network is the same for
all training examples even though the number of an-
tecedent candidates varies because all weights related
to antecedent word features and anaphoric link fea-
tures are shared between all antecedent candidates.

One slightly uncommon feature of our neural net-
work is that it contains an internal softmax layer to
generate normalised probabilities over all possible
antecedent candidates. Moreover, weights are shared
between all antecedent candidates, so the inputs of
our internal softmax layer share dependencies on
the same weight variables. When computing deriva-
tives with backpropagation, these shared dependen-
cies must be taken into account. In particular, the
outputs yi of the antecedent resolution layer are the re-
sult of a softmax applied to functions of some shared
variables q:

yi =
exp fi(q)

∑k exp fk(q)
(1)
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The derivatives of any yi with respect to q, which
can be any of the weights in the anaphora resolution
subnetwork, have dependencies on the derivatives of
the other softmax inputs with respect to q:

∂yi

∂q
= yi

(
∂ fi(q)

∂q
−∑

k
yk

∂ fk(q)

∂q

)
(2)

This makes the implementation of backpropagation
for this part of the network somewhat more compli-
cated, but in the case of our networks, it has no major
impact on training time.

Experimental results for this network are shown
in Table 4. Compared with Table 3, we note that the
overall accuracy is only very slightly lower for TED,
and for the news commentaries it is actually better.
When it comes to F-scores, the performance for elles
improves by a small amount, while the effect on the
other classes is a bit more mixed. Even where it gets
worse, the differences are not dramatic considering
that we eliminated a very knowledge-rich resource
from the training process. This demonstrates that it
is possible, in our classification task, to obtain good
results without using any data manually annotated for
anaphora and to rely entirely on unsupervised latent
anaphora resolution.

7 Further Improvements

The results presented in the preceding section repre-
sent a clear improvement over the ME classifiers in
Table 2, even though the overall accuracy increased
only slightly. Not only does our neural network clas-
sifier achieve better results on the classification task
at hand without requiring an anaphora resolution clas-
sifier trained on manually annotated data, but it per-
forms clearly better for the feminine categories that
reflect minority choices requiring knowledge about
the antecedents. Nevertheless, the performance is still
not entirely satisfactory.

By subjecting the output of our classifier on a de-
velopment set to a manual error analysis, we found
that a fairly large number of errors belong to two error
types: On the one hand, the preprocessing pipeline
used to identify antecedent candidates does not al-
ways include the correct antecedent in the set pre-
sented to the neural network. Whenever this occurs,
it is obvious that the classifier cannot possibly find

the correct antecedent. Out of 76 examples of the cat-
egory elles that had been mistakenly predicted as ils,
we found that 43 suffered from this problem. In other
classes, the problem seems to be somewhat less com-
mon, but it still exists. On the other hand, in many
cases (23 out of 76 for the category mentioned be-
fore) the anaphora resolution subnetwork does iden-
tify an antecedent manually recognised to belong to
the right gender/number group, but still predicts an in-
correct pronoun. This may indicate that the network
has difficulties learning a correct gender/number rep-
resentation for all words in the vocabulary.

7.1 Relaxing Markable Extraction

The pipeline we use to extract potential antecedent
candidates is borrowed from the BART anaphora
resolution toolkit. BART uses a syntactic parser to
identify noun phrases as markables. When extract-
ing antecedent candidates for coreference prediction,
it starts by considering a window consisting of the
sentence in which the anaphoric pronoun is located
and the two immediately preceding sentences. Mark-
ables in this window are checked for morphological
compatibility in terms of gender and number with the
anaphoric pronoun, and only compatible markables
are extracted as antecedent candidates. If no compat-
ible markables are found in the initial window, the
window is successively enlarged one sentence at a
time until at least one suitable markable is found.

Our error analysis shows that this procedure
misses some relevant markables both because the ini-
tial two-sentence extraction window is too small and
because the morphological compatibility check incor-
rectly filters away some markables that should have
been considered as candidates. By contrast, the ex-
traction procedure does extract quite a number of first
and second person noun phrases (I, we, you and their
oblique forms) in the TED talks which are extremely
unlikely to be the antecedent of a later occurrence of
he, she, it or they. As a first step, we therefore adjust
the extraction criteria to our task by increasing the
initial extraction window to five sentences, exclud-
ing first and second person markables and removing
the morphological compatibility requirement. The
compatibility check is still used to control expansion
of the extraction window, but it is no longer applied
to filter the extracted markables. This increases the
accuracy to 0.701 for TED and 0.602 for the news
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TED
(Accuracy: 0.696)

P R F
ce 0.618 0.722 0.666
elle 0.754 0.548 0.635
elles 0.737 0.340 0.465
il 0.718 0.629 0.670
ils 0.652 0.916 0.761
OTHER 0.741 0.682 0.711

News commentary
(Accuracy: 0.597)

P R F
ce 0.419 0.368 0.392
elle 0.547 0.460 0.500
elles 0.539 0.135 0.215
il 0.623 0.719 0.667
ils 0.596 0.783 0.677
OTHER 0.614 0.544 0.577

Table 4: Neural network classifier with latent anaphora resolution

TED
(Accuracy: 0.713)

P R F
ce 0.611 0.723 0.662
elle 0.749 0.596 0.664
elles 0.602 0.616 0.609
il 0.733 0.638 0.682
ils 0.710 0.884 0.788
OTHER 0.760 0.704 0.731

News commentary
(Accuracy: 0.626)

P R F
ce 0.492 0.324 0.391
elle 0.526 0.439 0.478
elles 0.547 0.558 0.552
il 0.599 0.757 0.669
ils 0.671 0.878 0.761
OTHER 0.681 0.526 0.594

Table 5: Final classifier results

commentaries, while the performance for elles im-
proves to F-scores of 0.531 (TED; P 0.690, R 0.432)
and 0.304 (News commentaries; P 0.444, R 0.231),
respectively. Note that these and all the following re-
sults are not directly comparable to the ME baseline
results in Table 2, since they include modifications
and improvements to the training data extraction pro-
cedure that might possibly lead to benefits in the ME
setting as well.

7.2 Adding Lexicon Knowledge
In order to make it easier for the classifier to iden-
tify the gender and number properties of infrequent
words, we extend the word vectors with features indi-
cating possible morphological features for each word.
In early experiments with ME classifiers, we found
that our attempts to do proper gender and number
tagging in French text did not improve classification
performance noticeably, presumably because the an-
notation was too noisy. In more recent experiments,
we just add features indicating all possible morpho-
logical interpretations of each word, rather than try-
ing to disambiguate them. To do this, we look up
the morphological annotations of the French words
in the Lefff dictionary (Sagot et al., 2006) and intro-

duce a set of new binary features to indicate whether
a particular reading of a word occurs in that dictio-
nary. These features are then added to the one-hot
representation of the antecedent words. Doing so im-
proves the classifier accuracy to 0.711 (TED) and
0.604 (News commentaries), while the F-scores for
elles reach 0.589 (TED; P 0.649, R 0.539) and 0.500
(News commentaries; P 0.545, R 0.462), respectively.

7.3 More Anaphoric Link Features
Even though the modified antecedent candidate ex-
traction with its larger context window and without
the morphological filter results in better performance
on both test sets, additional error analysis reveals
that the classifiers has greater problems identifying
the correct markable in this setting. One reason for
this may be that the baseline anaphoric link feature
set described above (Section 6) only includes two
very rough binary distance features which indicate
whether or not the anaphora and the antecedent can-
didate occur in the same or in immediately adjacent
sentences. With the larger context window, this may
be too unspecific. In our final experiment, we there-
fore enable some additional features which are avail-
able in BART, but disabled in the baseline system:
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– Distance in number of markables
– Distance in number of sentences
– Sentence distance, log-transformed
– Distance in number of words
– Part of speech of head word

Most of these encode the distance between the
anaphora and the antecedent candidate in more pre-
cise ways. Complete results for this final system are
presented in Table 5.

Including these additional features leads to another
slight increase in accuracy for both corpora, with sim-
ilar or increased classifier F-scores for most classes
except elle in the news commentary condition. In par-
ticular, we should like to point out the performance
of our benchmark classifier for elles, which suffered
from extremely low recall in the first classifiers and
approaches the performance of the other classes, with
nearly balanced precision and recall, in this final sys-
tem. Since elles is a low-frequency class and cannot
be reliably predicted using source context alone, we
interpret this as evidence that our final neural network
classifier has incorporated some relevant knowledge
about pronominal anaphora that the baseline ME clas-
sifier and earlier versions of our network have no ac-
cess to. This is particularly remarkable because no
data manually annotated for coreference was used for
training.

8 Related work

Even though it was recognised years ago that the
information contained in parallel corpora may pro-
vide valuable information for the improvement of
anaphora resolution systems, there have not been
many attempts to cash in on this insight. Mitkov and
Barbu (2003) exploit parallel data in English and
French to improve pronominal anaphora resolution
by combining anaphora resolvers for the individual
languages with handwritten rules to resolve conflicts
between the output of the language-specific resolvers.
Veselovská et al. (2012) apply a similar strategy to
English-Czech data to resolve different uses of the
pronoun it. Other work has used word alignments to
project coreference annotations from one language
to another with a view to training anaphora resolvers
in the target language (Postolache et al., 2006; de
Souza and Orăsan, 2011). Rahman and Ng (2012)
instead use machine translation to translate their test

data into a language for which they have an anaphora
resolver and then project the annotations back to the
original language. Completely unsupervised mono-
lingual anaphora resolution has been approached us-
ing, e. g., Markov logic (Poon and Domingos, 2008)
and the Expectation-Maximisation algorithm (Cherry
and Bergsma, 2005; Charniak and Elsner, 2009). To
the best of our knowledge, the direct application of
machine learning techniques to parallel data in a task
related to anaphora resolution is novel in our work.

Neural networks and deep learning techniques
have recently gained some popularity in natural lan-
guage processing. They have been applied to tasks
such as language modelling (Bengio et al., 2003;
Schwenk, 2007), translation modelling in statistical
machine translation (Le et al., 2012), but also part-of-
speech tagging, chunking, named entity recognition
and semantic role labelling (Collobert et al., 2011).
In tasks related to anaphora resolution, standard feed-
forward neural networks have been tested as a clas-
sifier in an anaphora resolution system (Stuckardt,
2007), but the network design presented in our work
is novel.

9 Conclusion

In this paper, we have introduced cross-lingual pro-
noun prediction as an independent natural language
processing task. Even though it is not an end-to-end
task, pronoun prediction is interesting for several rea-
sons. It is related to the problem of pronoun transla-
tion in SMT, a currently unsolved problem that has
been addressed in a number of recent research publi-
cations (Le Nagard and Koehn, 2010; Hardmeier and
Federico, 2010; Guillou, 2012) without reaching a
major breakthrough. In this work, we have shown that
pronoun prediction can be effectively modelled in a
neural network architecture with relatively simple
features. More importantly, we have demonstrated
that the task can be exploited to train a classifier with
a latent representation of anaphoric links. With paral-
lel text as its only supervision this classifier achieves
a level of performance that is similar to, if not bet-
ter than, that of a classifier using a regular anaphora
resolution system trained with manually annotated
data.
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Abstract

In situated dialogue, humans and agents have
mismatched capabilities of perceiving the
shared environment. Their representations
of the shared world are misaligned. Thus
referring expression generation (REG) will
need to take this discrepancy into consider-
ation. To address this issue, we developed
a hypergraph-based approach to account for
group-based spatial relations and uncertain-
ties in perceiving the environment. Our em-
pirical results have shown that this approach
outperforms a previous graph-based approach
with an absolute gain of 9%. However, while
these graph-based approaches perform effec-
tively when the agent has perfect knowledge
or perception of the environment (e.g., 84%),
they perform rather poorly when the agent has
imperfect perception of the environment (e.g.,
45%). This big performance gap calls for new
solutions to REG that can mediate a shared
perceptual basis in situated dialogue.

1 Introduction

Situated human robot dialogue has received increas-
ing attention in recent years. In situated dialogue,
robots/artificial agents and their human partners are
co-present in a shared physical world. Robots need
to automatically perceive and make inference of the
shared environment. Due to its limited perceptual
and reasoning capabilities, the robot’s representation
of the shared world is often incomplete, error-prone,
and significantly mismatched from that of its human
partner’s. Although physically co-present, a joint
perceptual basis between the human and the robot
cannot be established (Clark and Brennan, 1991).

Thus, referential communication between the hu-
man and the robot becomes difficult.

How this mismatched perceptual basis affects ref-
erential communication in situated dialogue was in-
vestigated in our previous work (Liu et al., 2012).
In that work, the main focus is on reference resolu-
tion: given referential descriptions from human part-
ners, how to identify referents in the environment
even though the robot only has imperfect percep-
tion of the environment. Since robots need to col-
laborate with human partners to establish a joint per-
ceptual basis, referring expression generation (REG)
becomes an equally important problem in situated
dialogue. Robots have much lower perceptual capa-
bilities of the environment than humans. How can
a robot effectively generate referential descriptions
about the environment so that its human partner can
understand which objects are being referred to?

There has been a tremendous amount of work
on referring expression generation in the last two
decades (Dale, 1995; Krahmer and Deemter, 2012).
However, most existing REG algorithms were devel-
oped and evaluated under the assumption that agents
and humans have access to the same kind of domain
information. For example, many experimental se-
tups (Gatt et al., 2007; Viethen and Dale, 2008;
Golland et al., 2010; Striegnitz et al., 2012) were
developed based on a visual world for which the in-
ternal representation is assumed to be known and
can be represented symbolically. However, this as-
sumption no longer holds in situated dialogue with
robots. There are two important distinctions in situ-
ated dialogue. First, the perfect knowledge of the en-
vironment is not available to the agent ahead of time.
The agent needs to automatically make inferences to
connect recognized lower-level visual features with
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symbolic labels or descriptors. Both recognition and
inference are error-prone and full of uncertainties.
Second, in situated dialogue the agent and the hu-
man have mismatched representations of the envi-
ronment. The agent needs to take this difference into
consideration to identify the most reliable features
for REG. Given these two distinctions, it is not clear
whether state-of-the-art REG approaches are appli-
cable under mismatched perceptual basis in situated
dialogue.

To address this issue, this paper revisits the prob-
lem of REG in the context of mismatched percep-
tual basis. We extended a well known graph-based
approach (Krahmer et al., 2003) that has shown
to be effective in previous work (Gatt and Belz,
2008; Gatt et al., 2009). We incorporated uncer-
tainties in perception into cost functions. We fur-
ther extended regular graph representation into hy-
pergraph representation to account for group-based
spatial relations that are important for visual descrip-
tions (Dhande, 2003; Tenbrink and Moratz, 2003;
Funakoshi et al., 2006; Liu et al., 2012). Our em-
pirical results demonstrate that both enhancements
lead to about a 9% absolute performance gain com-
pared to the original approach. However, while
our approache performs effectively when the agent
has perfect knowledge or perception of the environ-
ment (e.g., 84%), it performs poorly under the mis-
matched perceptual basis (e.g., 45%). This perfor-
mance gap calls for new solutions for REG that are
capable of mediating mismatched perceptual basis.

In the following sections, we first describe our
hypergraph-based representations and illustrate how
uncertainties from automated perception can be in-
corporated. We then describe an empirical study us-
ing Amazon Mechanical Turks for evaluating gener-
ated referring expressions. Finally we present evalu-
ation results and discuss potential future directions.

2 Related Work

Since the Full Brevity algorithm (Dale, 1989), many
approaches have been developed and evaluated for
REG (Dale, 1995; Krahmer and Deemter, 2012),
such as the incremental algorithm (Dale, 1995),
the locative algorithm (Kelleher and Kruijff, 2006),
and graph-based approaches (Krahmer et al., 2003;
Croitoru and Van Deemter, 2007). Most of these ap-

proaches assume the agent has access to a complete
symbolic representation of the domain. While these
approaches work well for many applications involv-
ing user interfaces, the question is whether they can
be extended to the situation where the agent has in-
complete or incorrect knowledge and needs to make
inference about the domain or the world.

Recently, there has been increasing interest in
REG for visual objects (Roy, 2002; Golland et al.,
2010; Mitchell et al., 2013). Some work (Golland
et al., 2010) uses visual scenes that are generated by
computer graphics and thus the internal representa-
tion of the scene is known. Some other work focuses
on the connection between lower-level visual fea-
tures and symbolic descriptors for REG (Roy, 2002;
Mitchell et al., 2013). However, most work assumes
no vision recognition errors. It is well established
that automated recognition of visual scenes is ex-
tremely challenging. This process is error-prone
and full of uncertainties. It is not clear whether
the existing approaches can be extended to the sit-
uation where the agent has imperfect perception of
the shared environment.

An earlier work by Horacek (Horacek, 2005)
has looked into the problem of mismatched knowl-
edge between conversation partners for REG. The
approach is a direct extension of the incremental al-
gorithm (Dale, 1995). However, this work only pro-
vides a proof of concept example to illustrate the
idea. No empirical evaluation was given.

All these previous works have motivated our
present investigation. We are interested in REG un-
der mismatched perceptual basis between conversa-
tion partners, where the agent has imperfect percep-
tion and knowledge of the shared environment. In
particular, we took a well-studied graph-based ap-
proach (Krahmer et al., 2003) and extended it to in-
corporate group spatial relations and uncertainties
associated with automated perception of the envi-
ronment. The reason we chose a graph-based ap-
proach is that graph representations are widely used
in the fields of computer vision (CV) and pattern
recognition to represent spatially rich scenes. Never-
theless, the findings from this investigation provide
insight to other approaches.
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(a) an original scene (b) the corresponding impoverished
scene

Figure 1: An original scene and its impoverished scene processed by CV algorithm

3 Hypergraph-based REG

Towards mediating a shared perceptual basis in sit-
uated dialogue, our previous work (Liu et al., 2012)
has conducted experiments to study referential com-
munication between partners with mismatched per-
ceptual capabilities. We simulated mismatched ca-
pabilities by making an original scene (Figure 1(a))
available to a director (simulating higher perceptual
calibre) and a corresponding impoverished scene
(Figure 1(b)) available to a matcher (simulating low-
ered perceptual calibre). The impoverished scene
is created by re-rendering automated recognition re-
sults of the original scene by a CV algorithm. An
example of the original scene and an impoverished
scene is shown in Figure 1. Using this setup, the di-
rector and the matcher were instructed to collaborate
with each other on some naming games. Through
these games, they collected data on how partners
with mismatched perceptual capabilities collaborate
to ground their referential communication.

The setup in (Liu et al., 2012) is intended to sim-
ulate situated dialogue between a human (like the
director) and a robot (like the matcher). The robot
has a significantly lowered ability in perception and
reasoning. The robot’s internal representation of the
shared world will be much like the impoverished
scene which contains many recognition errors. The
data from (Liu et al., 2012; Liu et al., 2013) shows
that different strategies were used by conversation
partners to produce referential descriptions. Besides
directly describing attributes or binary relations with
a relatum, they often use group-based descriptions

(e.g., a cluster of four objects on the right). This is
mainly due to the fact that some objects are simply
not recognizable to the matcher. Binary spatial rela-
tionships sometimes are difficult to describe the tar-
get object, so the matcher must resort to group infor-
mation to distinguish the target object from the rest
of the objects. For example, suppose the matcher
needs to describe the target object 5 in Figure 1(b),
he/she may have to start by indicating the group of
three objects at the bottom and then specify the re-
lationship (i.e., top) of the target object within this
group.

The importance of group descriptions has been
shown not only here, but also in previous works
on REG (Funakoshi et al., 2004; Funakoshi et al.,
2006; Weijers, 2011). While the original graph-
based approach can effectively represent attributes
and binary relations between objects (Krahmer et al.,
2003), it is insufficient to capture within-group or
between-group relations. Therefore, to address the
low perceptual capabilities of artificial agents, we in-
troduce hypergraphs to represent the shared environ-
ment. Our approach has two unique characteristics
compared to previous graph-based approaches: (1)
A hypergraph representation is more general than
a regular graph. Besides attributes and binary re-
lations, it can also represent group-based relations.
(2) Unlike previous work, here the generation of hy-
pergraphs are completely driven by automated per-
ception of the environment. This is done by incor-
porating uncertainties in perception and reasoning
into cost functions associated with graphs. Next we
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give a detailed account on hypergraph representa-
tion, cost functions incorporating uncertainties, and
the search algorithm for REG.

3.1 Hypergraph Representation
A directed hypergraph G (Gallo et al., 1993) is a
tuple of the form: G = 〈X, A〉, in which

X = {xm}
A = {ai = (ti, hi) | ti ⊆ X, hi ⊆ X}

Similar to regular graphs, a hypergraph consists
of a set of nodes X and a set of arcs A. However,
different from regular graphs, each arc in A is con-
sidered as a hyperarc in the sense that it can capture
relations between any two subsets of nodes: a tail
(ti) and a head (hi). Therefore, a hypergraph is a
generalization of a regular graph. It becomes a reg-
ular graph if the cardinalities of both the tail and the
head are restricted to one for all hyperarcs. While
regular graphs are commonly used to represent bi-
nary relations between two nodes, hypergraphs pro-
vide a more general representation for n-ary rela-
tions among multiple nodes.

We use hypergraphs to represent the agent’s per-
ceived physical environment (also called scene hy-
pergraphs). More specifically, each perceived ob-
ject is represented by a node in the graph. Each per-
ceived visual attribute of an object (e.g., color, size,
type information) or a group of objects (e.g., num-
ber of objects in the group, location) is captured by
a self-looping hyperarc. Hyperarcs are also used to
capture the spatial relations between any two subsets
of nodes, whether it is a relation between two ob-
jects, or between two groups of objects, or between
one or more objects within a group of objects.

For example, Figure 2 shows a hypergraph cre-
ated for part of the impoverished scene shown in
Figure 1(b) (i.e., the upper right corner including
objects 7, 8, 9, 11, and 13). One important char-
acteristic is that, because the graph is created based
on an automated vision recognition system, the val-
ues of an attribute or a relation in the hypergraph
are numeric (except for the type attribute). For ex-
ample, the value of the color attribute is the RGB
distribution extracted from the corresponding visual
object, the value of the size attribute is the width and
height of the bounding box and the value of the lo-
cation attribute is a function of spatial coordinates.

These numerical features will be further converted to
symbolic labels with certain confidence scores (de-
scribed later in Section 3.3.2).

3.2 Hypergraph Pruning
The perceived visual scene can be represented as a
complete hypergraph, in which any pair of two sub-
sets of nodes are connected by a hyperarc. However,
such a complete hypergraph is not only inefficient
but also unnecessary. Instead of keeping all possible
n-ary relations (i.e., hyperarcs), we only retain those
relations that are likely used by humans to produce
referring expressions, based on two heuristics.

The first heuristic is based on perceptual prin-
ciples, also called the Gestalt Laws of perception
(Sternberg, 2003), which describe how people group
visually similar objects into entities or groups. Two
well known principles of perceptual grouping are
proximity and similarity (Wertheimer, 1938): ob-
jects that lie close together are often perceived as
groups; objects of similar shape, size or color are
more likely to form groups than objects differing
along these dimensions. Based on these two prin-
ciples, previous works have developed different al-
gorithms for perceptual grouping (Thrisson, 1994;
Gatt, 2006). In our investigation, we adopted Gatt’s
algorithm (Gatt, 2006), which has shown to be more
accurate for spatial grouping. Given the results
from spatial grouping, we only retain hyperarcs that
represent spatial relations between two objects, be-
tween two perceived groups, between one object and
a perceived group, or between one object and the
group it belongs to.

The second heuristic is based on the observation
that, given a certain orientation, people tend to use a
relatum that is closer to the referent than more dis-
tant relata. In other words, it is less likely to refer to
an object relative to a distant relatum when there is
a closer relatum. For example, when referring to the
stapler (object 9 in Figure 1(a) ), it is more likely to
use “the stapler above the battery” than “the stapler
above the cellphone”. Based on this observation, we
prune the hypergraphs by only retaining hyperarcs
between an object and their closest relata for each
possible orientation.

Figure 2 shows the resulting hypergraph for rep-
resenting a subset of objects (7, 8, 9, 11, and 13) in
Figure 1(a).
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Figure 2: An example of hypergraph representing the per-
ceived scene (a partial scene only including object 7, 8,
9, 11, 13 for Figure 1(a)).

3.3 Symbolic Descriptors for Attributes

As mentioned earlier, the values of attributes of ob-
jects and their relations are numerical in nature. In
order for the agent to generate natural language de-
scriptions, the first step is to assign symbolic labels
or descriptors to those attributes and relations. Next
we describe how we use a lexicon with grounded se-
mantics in this process.

3.3.1 Lexicon with Grounded Semantics

Grounded semantics provides a bridge to connect
symbolic labels or words with lower level visual fea-
tures (Harnad, 1990). Previous work has developed
various approaches for grounded semantics mainly
for the reference resolution task, i.e., identifying vi-
sual objects in the environment given language de-
scriptions (Dhande, 2003; Gorniak and Roy, 2004;
Tenbrink and Moratz, 2003; Siebert and Schlangen,
2008; Liu et al., 2012). For the referring expression
generation task here, we also need a lexicon with
grounded semantics.

In our lexicon, the semantics of each category
of words is defined by a set of semantic grounding
functions that are parameterized on visual features.
For example, for the color category it is defined as a
multivariate Gaussian distribution based on the RGB
distribution. Specific words such as green, red, or

blue have different means and co-variances as the
following:

color : red = fr(~vcolor) = N(~vcolor | µ1,
∑

1)
color : green = fg(~vcolor) = N(~vcolor | µ2,

∑
2)

color : blue = fb(~vcolor) = N(~vcolor | µ3,
∑

3)

The above functions define how likely a set of rec-
ognized visual features (i.e., ~vcolor) describing the
color dimensions (i.e., RGB distribution) is to match
the color terms red, green, and blue.

For the spatial relation terms such as above, be-
low, left, right, the semantic grounding functions
take both vertical and horizontal coordinates of two
objects, as follows 1:

spatialRel : above(a, b) = fabove(~valoc, ~vbloc)

=

{
1− |xa−xb|

400 if ya < yb;
0 otherwise.

Using the above convention, we have defined se-
mantic grounding functions for size category words
(e.g., small and big) and absolute position words
(e.g., top, below, left, and right). In addition, we use
object recognition models (Zhang and Lu, 2002) to
define class type category words such as apple and
orange used in our domain.

3.3.2 Attribute Descriptors and Cost Functions
Given the lexicon with grounded semantics as de-

scribed above, the numerical attributes captured in
the scene hypergraph can be converted to symbolic
descriptors. For each attribute (e.g., color) or re-
lation, the corresponding visual feature vector (i.e.,
~vcolor) is plugged into the semantic grounding func-
tions for the corresponding category of words. The
word that best describes the attribute is chosen as the
descriptor for that attribute. For example, given an
RGB color distribution ~vcolor, we can find the color
descriptor as follows:

color : w∗ = arg max
red,green,blue

fw(~vcolor),

For each attribute or relation, we can find a best
descriptor in this manner. In addition, we also ob-
tain a numerical value (returned from the semantic

1The size of the overall scene is 800x800.
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grounding functions) that measures how well this
descriptor describes the corresponding visual fea-
tures. Intuitively, one would choose a descriptor that
closely matches the visual features. Based on this
intuition, we define the cost for each attribute A as
the following:

cost(A) = 1− fw∗( ~vA)

where w∗ is the best descriptor for the attribute.
Given an attribute, the better the descriptor

matches the extracted visual features, the lower the
cost of the corresponding hyperarc.

3.4 Graph Matching for REG
Now the hypergraph representing the perceived en-
vironment has symbolic descriptors for its attributes
and relations together with corresponding costs.
Given this representation, REG can be formulated as
a graph matching algorithm similar to that described
in (Krahmer et al., 2003). We use the same Branch
and Bound algorithm described in (Krahmer et al.,
2003). In this approach, a hypothesis hypergraph
(starting with one node representing the target ob-
ject) is gradually expanded by adding in a least cost
hyperarc from the scene hypergraph. At each ex-
pansion, the hypothesis graph is matched against the
scene hypergraph to decide whether it matches any
nodes other than the target node in the scene hyper-
graph. The expansion stops if the hypothesis graph
does not cover any other nodes except for the target
node. At this point, the hypothesis graph captures all
the content (e.g., attributes and relations) required to
uniquely describe the target object. We then apply
a set of simple generation templates to generate the
surface form of referring expressions based on the
hypothesis graph.

4 Empirical Evaluations

4.1 Evaluation Setup
To evaluate the performance of this hypergraph-
based approach to REG, we conducted a compara-
tive study using crowd-sourcing. More specifically,
we created 48 different scenes similar to that in Fig-
ure 1(a). Each scene has 13 objects on average and
there are 621 objects in total. For each of these
scenes, we applied a CV algorithm (Zhang and Lu,
2002) and generated scene hypergraphs as described

in Section 3.1. We then use different generation
strategies (varied in terms of graph representations
and cost functions, to be explained in Section 4.2) to
automatically generate referring expressions to refer
to each object.

To evaluate the quality of these generated refer-
ring expressions, we applied Amazon Mechanical
Turk to solicit feedback from the crowd 2. Through
an interface, we displayed an original scene and gen-
erated referring expressions (from different genera-
tion strategies) in a random order. We asked each
turk to select the object in the scene that he/she be-
lieved was the one referred to by the shown refer-
ring expression (i.e., reference identification task).
Each referring expression received three votes from
the crowd. In total, 217 turks participated in our ex-
periment.

4.2 Generation Strategies

We applied a set of different strategies to generate
referring expressions for each object. The variations
lie in two dimensions: (1) different graph repre-
sentations: using a hypergraph to represent the per-
ceived scene as described in Section 3.1 versus us-
ing a regular graph as introduced in (Krahmer et al.,
2003); and (2) different cost functions for attributes
and relations: cost functions that have been used in
previous works (Theune et al., 2007; Krahmer et al.,
2008) and cost functions that incorporate uncertain-
ties of perception as described in Section 3.3.2.

Cost functions play an important role in graph-
based approaches (Krahmer et al., 2003). Previous
works have examined different types of cost func-
tions (Theune et al., 2007; Krahmer et al., 2008;
Theune et al., 2011). We adopted some commonly
used cost functions from previous work together
with the cost functions defined here. In particular,
we experimented with the following different cost
functions:
Simple Cost: The costs for all hyperarcs are set to
1. With this cost function, the graph-based algorithm
resembles the Full Brevity algorithm of Dale (Dale,

2To control the quality of crowdsourcing, we recruited par-
ticipants based on the following criteria: Participants’ locations
are limited to the United States. Approval rate for each partic-
ipant’s previous work is greater than or equal to 95%, and the
number of each participant’s previous approved work is greater
than or equal to 1000.
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1992) in that a shortest distinguishing description is
preferred.
Absolute Preferred: The costs for hyperarcs rep-
resenting absolute attributes (e.g., type, color, and
position) are set to 1. The costs for relative at-
tributes (e.g., size) and relations are set to 2. This
cost function mimics human’s preference for abso-
lute attributes over relative ones (Dale, 1995).
Relative Preferred: The costs for hyperarcs repre-
senting absolute attributes are set to 2 and for rela-
tive attributes and relations are set to 1. This cost
function has been applied previously to emphasize
the importance of spatial relations in REG (Viethen
and Dale, 2008).
Uncertainty Based: The costs for all hyperarcs are
defined by incorporating uncertainties from percep-
tion as described in Section 3.3.2.
Uncertainty Relative Preferred: To emphasize the
importance of spatial relations as demonstrated in
situated interaction (Tenbrink and Moratz, 2003;
Kelleher and Kruijff, 2006), the costs for hyperarcs
representing relative attributes and relations are di-
vided by 3. This cost function will allow the algo-
rithm to prefer spatial relations through the reduced
cost.

Note that we only tested a few (not all) com-
monly used cost functions proposed by previous
work (Krahmer et al., 2003; Theune et al., 2007;
Krahmer et al., 2008; Theune et al., 2011). For ex-
ample, we did not include the stochastic cost func-
tion which is defined based on the frequencies of at-
tribute selection from the training data (Krahmer et
al., 2003). On the one hand, we did not have a large
set of human descriptions of the impoverished scene
to learn the stochastic cost. On the other hand, it
is not clear whether human strategies of describing
the impoverished scene should be used to represent
optimal strategies for the robot. Nevertheless, the
above different cost functions will allow us to eval-
uate whether incorporating perceptual uncertainties
will make a difference in the REG performance.

4.3 Evaluation Results
As mentioned earlier, each generated referring ex-
pression received three independent votes regarding
its referent from the crowd. The referent with the
most votes is taken as the predicted referent and is
used for evaluation. If all three votes are differ-

Cost Function Regular Graph Hypergraph
Simple Costs 33.2% 33.3%

Absolute Preferred 30.1% 30.3%
Relative Preferred 31.1% 35.4%
Uncertainty Based 35.7% 37.5%

Uncertainty Rel. Prefer. 36.7% 45.2%

Table 1: Results with different cost functions

ent, then by default, it is deemed that the referent
is not correctly identified for that expression. We
use the accuracy of the referential identification task
(i.e., the percentage of generated referring expres-
sions where the referents are correctly identified) as
the metric to evaluate different generation strategies
illustrated in Section 4.2.

4.3.1 The Role of Cost Functions

Table 1 shows the results based on different cost
functions and different graph representations. There
are several observations.

First, when the agent does not have perfect knowl-
edge of the environment and has to automatically
infer the environment as in our setting here, cost
functions based on uncertainties of perception lead
to better results. This occurs for both regular graphs
and hypergraphs. This result is not surprising and
indicates that cost functions should be tied to the
agent’s ability to perceive and infer the environment.
The uncertainty based cost functions allow the agent
to prefer reliable attributes or relations.

Second, consistent with previous work (Viethen
and Dale, 2008), we observed the importance of spa-
tial relations. Especially when the perceived world
is full of uncertainties, spatial relations tend to be
more reliable. In particular, as shown in Table 1,
using hypergraphs enables generating group-based
relations and results in significantly better perfor-
mance (45.2%) compared to regular graphs (36.7%)
(p = 0.002).

Note that our current cost function only includes
uncertainties of the agent’s own perception in a sim-
plistic form. When humans and agents have mis-
matched perceptual basis, the human’s model of
comprehension and tolerance of inaccurate descrip-
tion could play a role in REG. Incorporating human
models in the cost function will require in-depth em-
pirical studies and we will leave that to our future
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work.

4.3.2 The Role of Imperfect Perception
To further understand the role of hypergraphs in

mediating mismatched perceptions between humans
and agents, we created a perfect scene regular graph
and a perfect scene hypergraph (representing the
agent’s perfect knowledge of the environment) for
each of the 48 scenes used in the experiments. In
each of these scene graphs, the attribute and rela-
tion descriptors are manually provided. We fur-
ther applied the Absolute Preferred cost function
(which has shown competitive performance in previ-
ous work) to generate referring expressions for each
object. Again, each referring expression received
three votes from the crowd.

Table 2 shows the results comparing two con-
ditions: (1) REs generated (by the Absolute Pre-
ferred cost function) based on the perfect graphs
which represent the agent’s perfect knowledge and
perception of the environment; and (2) REs gener-
ated based on automatically created graphs (by the
Uncertainty Relative Preferred cost function) which
represent the agent’s imperfect knowledge of the
environment as a result of automated recognition
and inference. The result shows that given perfect
knowledge of the environment, hypergraphs only
perform marginally better than the regular graphs
(p = 0.07). Given imperfect knowledge of the envi-
ronment, hypergraphs significantly outperforms the
regular graphs by taking advantage of spatial group-
ing information (p = 0.002). It is worthwhile to
mention that currently we use spatial proximity to
identify groups. However, the hypergraph based ap-
proach is not restricted to spatial grouping. In the-
ory, it can represent any type of group based on dif-
ferent similarity criteria.

Furthermore, our result shows that the graph-
based approaches perform quite competitively under
the condition of perfect knowledge and perception.
Although evaluated on different data sets, this result
is consistent with results from previous work (Gatt
and Belz, 2008; Gatt et al., 2009). However, what is
more interesting here is that while graph-based ap-
proaches perform well when the agent has perfect
knowledge of the environment, as its human part-
ner, these approaches literally fall apart with close
to 40% performance degradation when applied to

Environment Regular Graph Hypergraph
Pefect Perception 80.4% 84.2%

Imperfect Perception 36.7% 45.2%

Table 2: Results of comparing perfect perception and im-
perfect perception of the shared world.

the situation where the agent’s representation of the
shared world is problematic and full of mistakes.

These results indicate that REG for automati-
cally perceived scenes can be extremely challeng-
ing. Many errors result from automated perception
and reasoning that will affect the internal representa-
tion of the world and thus the generated REs. In our
experiments here, we applied a very basic CV algo-
rithm which resulted in rather poor performance in
our data: overall, 60.3% of objects in the original
scene are mis-recognized, and 10.5% of objects are
mis-segmented. We think this poor CV performance
represents a more challenging problem.

Some errors such as recognition errors can be by-
passed using our current approach based on hyper-
graphs. For example, in Figure 1 target object 9 (a
stapler) and 13 (a key) are mis-recognized as a cup
and a pen. Using our hypergraph-based approach,
for the target object 9, instead of generating “a small
cup” (as in the case of using regular graphs), “a gray
object on the top within a cluster of four objects”
is generated. For the target object 13, instead of “a
pen” as generated by regular graphs, “a small object
on the right within a cluster of 4” is generated. Even
with recognition errors, these group-based descrip-
tions will allow the listener to identify target objects
in their representation correctly. Nevertheless, many
processing errors cannot be handled by our current
approach. For example, an object can be mistak-
enly segmented into multiple parts or several objects
can be mistakenly grouped into one object. In addi-
tion, our current semantic grounding functions are
simple. Sometimes they do not provide correct de-
scriptors for the extracted visual features. More so-
phisticated functions that better reflect human’s vi-
sual perception (Regier, 1996; Mojsilovic, 2005;
Mitchell et al., 2011) should be pursued in the fu-
ture.
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Minimum Effort Extra Effort
Pefect Perception 84.2% 88.1%

Imperfect Perception 45.2% 51.5%

Table 3: Results of comparing minimum effort and extra
effort using hypergraphs

4.3.3 The Role of Extra Effort
While REG systems have a tendency to produce

minimal descriptions, recent psycholinguistic stud-
ies have shown that speakers do not necessarily fol-
low the Grice’s maxim of quantity, and they tend
to provide redundant properties in their descrip-
tions (Jordan and Walker, 2000; Belke and Meyer,
2002; Arts et al., 2011). With this in mind, we
conducted a very simple evaluation on the role of
extra effort. Once a set of descriptors are selected
based on the minimum cost, one additional descrip-
tor (with the least cost among the remaining at-
tributes or relations) is added to the referential de-
scription. We once again solicited the crowd feed-
back to this set of expressions generated by extra
effort. Each expression again received three votes
from the crowd.

Table 3 shows the results by comparing minimum
effort with extra effort when using hypergraphs to
generate REs. As indicated here, extra effort (by
adding one additional descriptor) leads to more com-
prehensible REs with 3.9% improvement under per-
fect perception and 6.3% improvement under imper-
fect perception (both are significant, p < 0.05). The
improvement is larger under imperfect perception.
This seems to indicate that exploring extra effort in
REG could help mediate mismatched perceptions in
situated dialogue. However, more understanding on
how to engage in such extra effort will be required
in the future.

5 Conclusion

In situated dialogue, humans and agents have mis-
matched perceptions of the shared environment. To
facilitate successful referential communication be-
tween a human and an agent, the agent needs to take
such discrepancies into consideration and generate
referential descriptions that can be understood by
its human partner. With this in mind, we re-visited
the problem of referring expression generation in the

context of mismatched perceptions between humans
and agents. In particular, we applied and extended
the state of the art graph-based approach (Krahmer
et al., 2003) in this new setting. Our empirical re-
sults have shown that, to address the agent’s limited
perceptual capability, REG algorithms will need to
take into account the uncertainties in perception and
reasoning. Group-based information appears more
reliable and thus should be modeled by an approach
that deals with automated perception of spatially
rich scenes.

While graph-based approaches have shown effec-
tive for the situation where the agent has complete
knowledge of the environment, as its human part-
ner, these approaches are often inadequate when hu-
mans and agents have mismatched representations
of the shared world. Our empirical results here call
for new solutions to address the mismatched per-
ceptual basis. Previous work indicated that referen-
tial communication is a collaborative process (Clark
and Wilkes-Gibbs, 1986; Heeman and Hirst, 1995).
Conversation partners make extra effort to collab-
orate with each other. For the situation with mis-
matched perceptual basis, a potential solution thus
should go beyond the objective of generating a mini-
mum description, and towards a collaborative model
which incorporates immediate feedback from the
conversation partner (Edmonds, 1994).
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Abstract

This paper introduces a method for extract-
ing fine-grained class labels (“countries with
double taxation agreements with india”) from
Web search queries. The class labels are more
numerous and more diverse than those pro-
duced by current extraction methods. Also
extracted are representative sets of instances
(singapore, united kingdom) for the class la-
bels.

1 Introduction

Motivation : As more semantic constraints are
added, concepts likecompaniesbecome more spe-
cific, e.g.,companiesthat are in thesoftwarebusi-
ness, and have beenstarted in a garage. The
sets of instances associated with the classes become
smaller; the class labels used to concisely describe
the meaning of more specific concepts tend to be-
come longer. In fact, fine-grained class labels such
as“software companies started in a garage”are of-
ten complex noun phrases, since they must somehow
summarize multiple semantic constraints. Although
Web users are interested in both coarse (e.g.,“com-
panies”) and fine-grained (e.g.,“software compa-
nies started in a garage”) class labels, virtually all
class labels acquired from text by previous extrac-
tion methods (Etzioni et al., 2005; Van Durme and
Paşca, 2008; Kozareva and Hovy, 2010; Snow et
al., 2006) exhibit little syntactic diversity. Indeed,
instances and class labels that are relatively com-
plex nouns are known to be difficult to detect and
pick out precisely from surrounding text (Downey
et al., 2007). This and other challenges associated

with large-scale extraction from Web text (Etzioni
et al., 2011) cause the extracted class labels to usu-
ally follow a rigid modifiers-plus-nouns format. The
format covers nouns (“companies”) possibly pre-
ceded by one or many modifiers (“software com-
panies”, “computer security software companies”).
Examples of actual extractions include“european
cities” (Etzioni et al., 2005),“strong acids” (Pan-
tel and Pennacchiotti, 2006),“prestigious private
schools” (Van Durme and Paşca, 2008),“aquatic
birds” (Kozareva and Hovy, 2010).

As an alternative to extracting class labels from
text, some methods simply import them from
human-curated resources, for example from the set
of categories encoded in Wikipedia (Remy, 2002).
As a result, class labels potentially exhibit higher
syntactic diversity. The modifiers-plus-nouns for-
mat (“computer security software companies”) is
usually still the norm. But other formats are possi-
ble: “software companies based in london”, “soft-
ware companies of the united kingdom”. Vocab-
ulary coverage gaps remain a problem, with many
relevant class labels (“software companies of texas”
“software companies started in a garage”, “soft-
ware companies that give sap training”) still miss-
ing. There is a need for methods that more ag-
gressively identify fine-grained class labels, beyond
those extracted by previous methods or encoded in
existing, manually-created resources. Such class la-
bels increase coverage, for example in scenarios that
enrich Web search results with instances available
for the class labels specified in the queries.

Contributions : The contributions of this paper are
twofold. First, it proposes a weakly-supervised
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method to assemble a large vocabulary of class la-
bels from queries. The class labels include fine-
grained class labels (“countries with double taxa-
tion agreements with india”, “no front license plate
states”) that are difficult to extract from text by
previous methods for open-domain information ex-
traction. Second, the method acquires representa-
tive instances (singapore, united kingdom; arizona,
new mexico) that belong to fine-grained class labels
(“countries with double taxation agreements with
india” , “no front license plate states”). Both class
labels and their instances are extracted from Web
search queries.

2 Extraction from Queries

2.1 Extraction of Class Labels

Overview: Given a set of arbitrary Web search
queries as input, our method produces a vocabulary
of fine-grained class labels. For this purpose, it: a)
selects an initial vocabulary of class labels, as a sub-
set of input queries that are likely to correspond to
search requests for classes; b) expands the vocabu-
lary, by generating a large, noisy set of other pos-
sible class labels, through replacements of ngrams
within initial class labels with their similar phrases;
c) restricts the generated class labels to those that
match the syntactic structure of class labels within
the initial vocabulary; and d) further restricts the
generated class labels to those that appear within the
larger set of arbitrary Web search queries.
Initial Vocabulary of Class Labels: Out of a set
of arbitrary search queries available as input, the
queries in the format“list of ..” are selected as the
initial vocabulary of class labels. The prefix“list
of” is discarded from each query. Thus, the query
“list of software companies that use linux”gives the
class label“software companies that use linux”.
Generation via Phrase Similarities: As a prerequi-
site to generating class labels, distributionally simi-
lar phrases (Lin and Pantel, 2002; Lin and Wu, 2009;
Pantel et al., 2009) and their scores are collected in
advance. A phrase is represented as a vector of its
contextual features. A feature is a word, collected
from windows of three words centered around the
occurrences of the phrase in sentences across Web
documents (Lin and Wu, 2009). In the contextual
vector of a phrase, the weight of a feature is the
pointwise-mutual information (Lin and Wu, 2009)

between the phraseP and the featureF . The dis-
tributional similarity score between two phrases is
the cosine similarity between the contextual vectors
of the two phrases. The lists of most distribution-
ally similar phrases of a phraseP are thus compiled
offline, by ranking the similar phrases ofP in de-
creasing order of their similarity score relative toP .

Each class label from the initial vocabulary is ex-
panded into a set of generated, candidate class la-
bels. To this effect, every ngramP within a given
class label is replaced with each of the distribution-
ally similar phrases, if any, available for the ngram.
As shown later in the experimental section, the ex-
pansion can increase the vocabulary by a factor of
100.
Approximate Syntactic Filtering : The set of gen-
erated class labels is noisy. The set is filtered, by
retaining only class labels whose syntactic structure
matches the syntactic structure of some class label(s)
from the initial vocabulary. The syntactic structure
is loosely approximated at surface rather than syn-
tactic level. A generated class label is retained, if
its sequence of part of speech tags matches the se-
quence of part of speech tags of one of the class la-
bels from the initial vocabulary. As an additional
constraint, the sequence must contain one tag cor-
responding to a common noun in plural form, i.e.,
NNS. Otherwise, the class label is discarded.
Query Filtering : Generated class labels that pass
previous filters are further restricted. They are inter-
sected with the set of arbitrary Web search queries
available as input. Generated class labels that are
not full queries are discarded.

2.2 Extraction of Instances

Overview: Our method mines instances of fine-
grained class labels from queries. In a nutshell, it
identifies queries containing two types of informa-
tion simultaneously. First, the queries contain an in-
stance (marvin gaye) of the more general class labels
(“musicians”) from which the fine-grained class la-
bels (“musicians who have been shot”) can be ob-
tained. Second, the queries contain the constraints
added by the fine-grained class labels (“... shot” ) on
top of the more general class labels.
Instances of General Class Labels: Follow-
ing (Ponzetto and Strube, 2007), the Wikipedia cate-
gory network is refined into a hierarchy that discards
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non-IsA (thematic) edges, and retains only IsA (sub-
sumption) edges from the network (Ponzetto and
Strube, 2007). Instances, i.e., titles of Wikipedia
articles, are propagated upwards to all their ances-
tor categories. The class label“musicians” would
be mapped intomadonna, marvin gaye, jon bon jovi
etc. The mappings from each ancestor category, to
all its descendant instances in the Wikipedia hierar-
chy, represent our mappings from more general class
labels to instances.
Decomposition of Fine-Grained Class Labels: A
fine-grained class label (e.g.,“musicians who have
been shot”) is effectively decomposed into pairs of
two pieces of information. The first piece is a more
general class label (“musicians”), if any occurs in
it. The second piece is a bag of words, collected
from the remainder of the fine-grained class label
after discarding stop words. Note that the standard
set of stop words is augmented with auxiliary verbs
(e.g., does, has, is, would), determiners, conjunc-
tions, prepositions, and question wh-words (Radev
et al., 2005) (e.g.,where, how). In the first piece
of each pair, the general class label is then replaced
with each of its instances. This produces multiple
pairs of a candidate instance and a bag of words, for
each fine-grained class label. As an illustration, the
class labels“musicians who have been shot”and
“automobiles with remote start”are decomposed
into pairs like<madonna, {shot}>, <marvin gaye,
{shot}>; and <buick lacrosse, {remote, start}>,
<nissan versa, {remote, start}>, respectively.
Matching of Candidate Instances: A decomposed
class label is retained, if there are matching queries
that contain the candidate instance, the bag of words,
and optionally stop words. Otherwise, the decom-
posed class label is discarded. The word matching is
performed after word stemming (Porter, 1980). The
aggregated frequency of the matching queries is as-
signed as the score of the candidate instance for the
fine-grained class label:

Score(I, C) =
∑

Q

(Freq(Q)|Match(Q,< I,C >)) (1)

For example, the score of the candidate instance
marvin gayefor the class label“musicians who have
been shot”, is the sum of the frequencies of the
matching queries“marvin gaye is shot”, “when was
marvin gaye shot”, “why marvin gaye was shot”
etc. Similarly, the score ofbuick lacrossefor “au-

tomobiles with remote start”is given by the aggre-
gated frequencies of the queries“buick lacrosse re-
mote start”, “how to remote start buick lacrosse”,
“remote start for buick lacrosse”. Candidate in-
stances of a class label are ranked in decreasing or-
der of their scores.

3 Experimental Setting

Web Textual Data: The experiments rely on a sam-
ple of 1 billion queries in English submitted by users
of a Web search engine. Each query is accompa-
nied by its frequency of occurrence. Also available
is a sample of around 200 million Web documents
in English.
Phrase Similarities: Web documents are used in
the experiments only to construct a phrase similar-
ity repository following (Lin and Wu, 2009; Pantel
et al., 2009). The repository contains ranked lists
of the top 1000 phrases, computed to be the most
distributionally similar to each of around 16 million
phrases.
Text Pre-Processing: The TnT tagger (Brants,
2000) assigns part of speech tags to words in class
labels.
Instances: To collect mappings from Wikipedia cat-
egories (as more general class labels) to titles of de-
scendant Wikipedia articles (as instances), a snap-
shot of Wikipedia articles was intersected with the
Wikipedia category hierarchy from (Ponzetto and
Strube, 2007). The mappings connect a total of
1,535,083 instances to a total of 108,756 class la-
bels.

4 Evaluation of Class Labels

4.1 Evaluation Procedure

Experimental Runs: Human-compiled information
available within Wikipedia serves as the source of
data for two baseline runs. The set of all categories,
listed in Wikipedia for any of its articles, corre-
sponds to the set of class labels “acquired” in run
Rwc. Categories used for internal Wikipedia book-
keeping (Ponzetto and Strube, 2007) are discarded.
Their names contain one of the wordsarticle(s), cat-
egory(ies), indices, pages, redirects, stubs, or tem-
plates. Similarly, the titles of Wikipedia articles with
the prefix“List of ..” (e.g.,“List of automobile man-
ufacturers of Germany”) form the set of class labels
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“acquired” in run Rwl. The prefix“List of” is dis-
carded.

For completeness, a third baseline run, Rdc, cor-
responds to class labels extracted from Web docu-
ments. The class labels are noun phrasesC that fill
extraction patterns equivalent to“C such as I”. The
patterns are matched to document sentences. The
boundaries of the class labelsC are approximated
from part of speech tags of sentence words (Van
Durme and Paşca, 2008). The patterns were pro-
posed in (Hearst, 1992). They were employed
widely in subsequent methods (Etzioni et al., 2005;
Kozareva et al., 2008; Wu et al., 2012), which ex-
tract class labels precisely from the set of class la-
bels C produced by the extraction patterns. Even
methods using queries as a textual data source still
extract class labels from documents using the same
extraction patterns (Paşca, 2010). Therefore, from
the point of view of evaluating class labels, run Rdc

is a valid representative of previous extraction meth-
ods, including (Etzioni et al., 2005; Kozareva et al.,
2008; Van Durme and Paşca, 2008; Paşca, 2010; Wu
et al., 2012).

Besides the baseline runs, three experimental runs
are considered. In run Rql, the queries starting with
the prefix“list of” form the set of class labels. The
prefix “list of” is discarded from each query. In run
Rqg, the class labels are generated via phrase sim-
ilarities, starting from Rql as an initial set of class
labels. Run Rqa represents an ablation experiment.
It is created from Rqg, by limiting the expansion of
a given class label via distributional similarities to
only one, rather than multiple, phrases within the
class label. Note that, by design, none of the class
labels that appear in Rql also appear in runs Rqa or
Rqg. Therefore, the intersection between Rql, on one
hand, and Rqa and Rqg, on the other hand, is the
empty set.

All data, including the class labels extracted in all
experimental runs, is converted to lower case.

4.2 Relative Coverage of Class Labels

Coverage Over Entire Sets: Table 1 illustrates the
overall coverage of the various experimental runs.
The table takes all class labels into account, relative
to the Wikipedia-based runs as reference sets: Rwc

(Wikipedia categories), in the upper part of the table;
and Rwl (Wikipedia List-Of categories), in the lower

Counts Cvg

A B |A| |B| |A∩B| |A∩B|
|A|

vs. Wikipedia categories:
Rwc Rdc 295,587 2,884,39015,011 0.051

Rql 295,587 1,649,26121,979 0.074
Rqa 295,587 33,073,74133,502 0.113
Rqg 295,587134,235,15143,935 0.148

Rql∪Rqg 295,587135,884,41265,914 0.222
vs. Wikipedia categories that are queries:
Rwc∩Q Rdc 126,318 2,884,39014,840 0.117

Rql 126,318 1,649,26121,979 0.173
Rqa 126,318 33,073,74133,502 0.265
Rqg 126,318134,235,15143,935 0.347

Rql∪Rqg 126,318135,884,41265,914 0.521
vs. Wikipedia List-Of categories:

Rwl Rdc 134,840 2,884,390 8,099 0.060
Rql 134,840 1,649,26126,446 0.196
Rqa 134,840 33,073,74116,204 0.120
Rqg 134,840134,235,15120,021 0.148

Rql∪Rqg 134,840135,884,41246,467 0.344
vs. Wikipedia List-Of categories that are queries:
Rwl∩Q Rdc 47,442 2,884,390 7,985 0.168

Rql 47,442 1,649,26124,821 0.523
Rqa 47,442 33,073,74116,204 0.341
Rqg 47,442134,235,15120,021 0.422

Rql∪Rqg 47,442135,884,41244,842 0.945

Table 1: Coverage of class labels extracted by various
experimental runs, relative to class labels available in
Wikipedia before and after intersecting them with a large
set of arbitrary queries (A = reference set, relative to
which coverage is computed; B = measured set, for which
coverage is computed relative to the reference set;|A| =
size of set A; Q = set of input queries)

part of the table. Note that the number of class labels
extracted by the individual run shown in the second
column (B) is shown in the fourth column (|B|). In
particular, there are around 1.6 million unique“list
of ..” queries, from which class labels are collected
in run Rql.

During the computation of coverage, the refer-
ence set, and the set for which coverage is being
computed, are intersected. Intersection relies on
strict string matching. All words, including punc-
tuation, must match exactly in order for a class la-
bel to be part of the intersection. The reference
sets are intersected with the set of all Web search
queries Q used in the experiments. Coverage is com-
puted both before and after intersection. Less than
half (126,318 of 295,587) of the class labels, for

406



the reference set Rwc; and about a third (47,442 of
134,840) for Rwl; appear in the set Q of all queries.

Three conclusions can be drawn from the re-
sults. First, query-based runs vastly outperform
Wikipedia-based runs in terms of absolute coverage.
Run Rql contains around 5 and 12 times more class
labels, than Rwc and Rwl respectively. On top of
that, generating class labels via phrase similarities
further increases the class label count by about 20
times for Rqa, and 80 times for Rqg. Second, query-
based runs Rqa and Rqg surpass the document-based
run Rdc. Third, higher class label counts translate
into higher relative coverage. In the upper part of
the table, run Rwl contains 3.9% (relative to Rwc)
and 7.1% (relative to Rwc∩Q) of the reference set.
But the relative coverage doubles for Rql at 7.4%
(relative to Rwc) and 17.3% (relative to Rwc∩Q).
Coverage again doubles for Rqg at 14.8% (relative
to Rwc) and 34.7% (relative to Rwc∩Q). The union
of query-based initial and generated class labels is
Rql∪Rqg. The union contains about a quarter (i.e.,
22.2%) or half (52.1%) of the reference set Rwc, de-
pending on whether the reference set is intersected
with the set of all queries or not. In the lower part of
the table, more than 90% of the queries in the refer-
ence set Rwl that are also queries are found among
the class labels collectively extracted in the query-
based runs. Note that, since Rql is disjoint from Rqa
and Rqg, none of the class labels already in Rql can
be “re-discovered” (generated) again in Rqa or Rqg.
Therefore, by experimental design, relative coverage
scores of Rql may be relatively difficult to surpass by
Rqa or Rqg taken individually.

Diversity: Class labels restricted to those that have
the format“.. that/which/who ..” are relatively more
specific, e.g.,“grocery stores that double coupons in
omaha”, “airlines which fly from santa barbara”,
“writers who were doctors”. The most frequent
head phrases of such restricted class labels offer an
idea about how diverse the class labels are. The
counts of class labels for the most frequent head
phrases are in the order of 10’s in the case of Rwl vs.
10,000’s for Rqg. In comparison, none of the class
labels of run Rdc have this format. The lack of such
class labels in run Rdc, and their smaller proportion
in run Rwl vs. Rqg, suggest that class labels extracted
by the proposed method exhibit higher lexical and
syntactic diversity than previous methods do.

Tag (Value): Examples of Class Labels

correct (1.0): angioplastyspecialists in kolkata, good
things pancho villa did, eating disordersinpatient units
in the uk nhs specialist services
questionable (0.5): picture framers adelaide cbd, side
effects bicalutamide, different eating disorders, private
hospitals treat kidney stonesuk
incorrect (0.0): al hirschfieldtheatre hours, value of
berkshire hathawayshares, remove spaces in cobol,
dogs with loss of appetite, 1999 majorcaopen

Table 2: Correctness tags manually assigned to class la-
bels containing one of the (underlined) target phrases, ex-
tracted by various runs

4.3 Precision of Class Labels

Evaluation Metric : Class labels being evaluated are
manually assigned a correctness tag. A class label is
deemedcorrect, if it is grammatically well-formed
and describes a relevant concept that embodies some
(unspecified) set of instances that share similar prop-
erties; questionable, if it is relevant but not well-
formed; orincorrect. A questionableclass label is
not well-formed because it lacks necessary linking
particles (e.g., the prepositionsof or for in “side ef-
fects bicalutamide”), or contains undesirable mod-
ifiers (“different eating disorders”). Examples of
correct and incorrect class labels are“angioplasty
specialists in kolkata”and “al hirschfield theatre
hours” respectively.

To compute the precision score, the correctness
tags are converted to numeric values, as shown in
Table 2: correct to 1; questionableto 0.5; andin-
correct to 0. Precision over a list of class labels is
measured as the sum of the correctness values of the
class labels in the list, divided by the size of the list.
Precision Relative to Target Phrases: The preci-
sion of the class labels in each run is determined sim-
ilarly to how relative coverage was computed ear-
lier. More precisely, the precision is computed over
the class labels whose names contain each phrase
from the set of 75 target phrases from (Alfonseca
et al., 2010). For each phrase, and for each run,
a random sample of at most 50 of the class labels
that match the phrase is selected for evaluation. The
samples taken for each run, corresponding to the
same phrase, are combined into a merged list. This
produces one merged list for each phrase, for a total
of 75 merged lists. The precision score over a target
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phrase is the precision score over its sample of class
labels.

The last two columns of Table 3 capture the pre-
cision scores for the class labels. The scores are
computed in two ways: averaged over the (variable)
subsets of target phrases for which some matching
class label(s) exist, in the last but one column, e.g.,
over 19 of the 75 target phrases for Rwc; and aver-
aged over the entire set of 75 target phrases, in the
last column. The former does not penalize a run
for not being able to extract any class labels con-
taining a particular target phrase, whereas the latter
does penalize. Naturally, precision scores over the
entire set of target phrases decrease when coverage
is lower, for runs Rwc, Rwl and, to a lesser extent,
Rdc and Rql. But even after ignoring target phrases
with no matching class labels, precision scores in
the last but one column in Table 3 reveal important
properties of the experimental runs. First, between
the two Wikipedia-based runs, Rwl has perfect class
labels, whereas as many as 1 in 4 class labels of
run Rwc are marked as incorrect during the evalu-
ation. Second, the class labels collected from“list
of ..” queries in run Rql correspond to relevant, well-
formed concepts in 80% of the cases. Third, the gen-
eration of class labels via phrase similarities (Rqg)
greatly increases coverage as shown earlier. The in-
crease comes at the expense of lowering precision
from 80% to 72%. However, the phrases from ini-
tial queries that are expanded via distributional sim-
ilarities can be limited from multiple to only one, by
switching from Rqg to Rqa. This gives higher preci-
sion for Rqa than for Rqg.

As a complement to Table 3, the graphs in Fig-
ure 1 offer a more detailed view into the precision
of class labels. The figure covers a Wikipedia-based
run (Rwc) and two query-based runs (Rql, Rqg). The
graphs show the precision scores, over each of the
75 target phrases. Among target phrases for which
some matching class labels exist in the respective
run, the target phrases with the lowest precision
scores arerobotics (score of 0.15) andkarlsruhe
(0.33), for Rwc; carotid arteriesandkidney stones,
both with a score of 0.00 because their matching
class labels are all incorrect, for Rdc; african pop-
ulationandchester arthur, both with a score of 0.00
because their matching class labels are all incorrect,
for Rql; andarlene martel(0.00) andright to vote

Run Target Phrases Precision of Class Labels
Over Target Phrases

All Matched Cvg Over Matched Over All

Rwc 75 19 0.253 0.756 0.191
Rwl 75 15 0.200 1.000 0.200
Rdc 75 35 0.467 0.834 0.389
Rql 75 48 0.640 0.800 0.512
Rqa 75 70 0.933 0.868 0.810
Rqg 75 73 0.973 0.724 0.705

Table 3: Precision of class labels that match (i.e., whose
names contain) each target phrase, computed as an av-
erage over (variable) subsets of target phrases for which
some matching class label(s) exist, and as an average over
the entire set of 75 target phrases
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Figure 1: Precision scores for runs Rwc, Rql, Rdc and
Rqg, over class labels that match (i.e., contain) each of
the 75 target phrases

(0.25), for Rqg.
Precision over Samples of Class Labels: The pre-
cision is separately computed over a random sample
of 400 class labels per experimental run. The sam-
ples are selected from the set of all class labels ex-
tracted by the respective run. The precision scores
are: 0.759 for Rwc; 1.000 for Rwl; 0.806 for Rdc;
0.811 for Rql; 0.856 for Rqa; and 0.711 for Rqg. The
scores are in line with scores computed earlier over
the target phrases, in the fourth column of Table 3.
Discussion: As noted in (Ponzetto and Strube,
2007), Wikipedia organizes its articles and cate-
gories into a category network that mixes IsA (sub-
sumption) edges with non-IsA (thematic) edges.
Whenever an edge in Wikipedia is not IsA, the par-
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Longest Class Labels

Rwl: [japanese army and navy members in military or
politic services in proper japan korea manchuria occu-
pied china and nearest areas in previous times and pa-
cific war epoch(1930-40s), mental disorders as defined
by the diagnostic and statistical manual of mental dis-
orders and the international statistical classification of
diseases and related health problems,..]
Rqg: [differences between transformational lead-
ership and transactional leadership, things to do in
llanfairpwllgwyngyllgogerychwyrndrobwllllantysilio-
gogogoch, philosophical differences between thomas
jefferson and alexander hamilton, musculoskeletal
manifestations of human immunodeficiency virus
infection,..]

Table 4: Longest class labels extracted by runs Rwl and
Rqg

ent category may not be a relevant concept that de-
scribes some set of instances that share similar prop-
erties. Such categories are not good class labels,
and therefore are marked as incorrect. Examples in-
clude the class labels“austrian contemporary art”,
“1999 majorca open”and“u.s. route 30”, listed in
Wikipedia as categories of the instancesvienna bien-
nale, 1999 majorca openandsquirrel hill tunnelre-
spectively. This affects the precision scores for Rwc

in Table 3. It also affects the coverage values rela-
tive to Rwc in Table 1. Ideally, high-precision exper-
imental runs would not extract any incorrect class la-
bels that happen to appear in Rwc, for example“aus-
trian contemporary art”. But the coverage relative
to Rwc would artificially penalize such runs, for not
extracting the incorrect class labels from Rwc.

As a proxy for estimating class label complexity,
Table 4 shows the longest class labels derived from
Wikipedia (Rwl) vs. generated from queries (Rqg).

Class labels derived from Web search queries may
be semantically overlapping. Examples are“writers
who killed themselves”vs. “writers who committed
suicide”. The overlap is desirable, since different
Web users may request the same information via dif-
ferent queries. The same phenomenon has been ob-
served in other information extraction tasks. It also
affects manually-created resources like Wikipedia.
The continuous manual refinements to Wikipedia
content still cannot prevent the occurrence of du-
plicate class labels among Wikipedia List-Of cate-
gories. The duplicates are present in run Rwl. Exam-

Target Class Labels

007 movie actors, .308 weapons, actors with obsessive
compulsive disorder, antibiotics for multiple sclerosis,
astronauts in space station, automobiles with remote
start, beatles songs of love, beetles that bite, compa-
nies with sustainable competitive advantage, countries
with double taxation agreements with india, criminals
who have been executed, daft punk live albums, dal-
las medical companies, direct democracy states, elec-
tronic companies in electronic city bangalore, expen-
sive brands of shoes, eye diseases in cats, f1 car com-
panies, fwd sports cars, garden landscaping maga-
zines, heliskiing resorts, hell in a cell wrestlers, hol-
idays celebrated in sydney, ibf weight classes, ibiza
2011 djs, immunology scientists, jewelry manufactur-
ing companies, kanye west songs on youtube, kingston
upon thames supermarkets, latin military ranks, lud-
hiana newspapers, maastricht treaty countries, mu-
sicians who have been shot, no front license plate
states, non-profit organizations in nashville tennessee,
organic chocolate companies, plants which are used in
homeopathy, programming languages for server side
programming, qatar chemical companies, qld private
schools, real estate companies in virginia beach vir-
ginia, respiratory infection antibiotics, serial killers
with antisocial personality disorder, singers with curly
hair, telecommunications companies in the philip-
pines, trains from la to san diego, visual basic database
management systems, warmblood colors, washington
university basketball players, world heritage sites in
northern ireland

Table 5: Set of 50 class labels, used in the evaluation of
extracted instances

ples are“formula one drivers that never qualified for
a race” vs. “formula one drivers who never quali-
fied for a race”; or “goaltenders who have scored
a goal in a nhl game”vs. “goaltenders who have
scored a goal in an nhl game”. Some of the lexi-
cal differences among class labels are due to unde-
sirable misspellings. Again, similar problems occa-
sionally affect existing Wikipedia categories:“no-
bel laureates who endorse barack obama”vs. “no-
bel laureates who endorse barrack obama”.

5 Evaluation of Instances

5.1 Evaluation Procedure

Target Set of Class Labels: The target set for evalu-
ation is shown in Table 5. Initially, a random sample
of 100 class labels is selected from all class labels in
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Tag (Value): Examples of Instances

correct (1.0): countries with double taxation agree-
ments with india: thailand; hell in a cell wrestlers:
brock lesnar; ibiza 2011 djs: dimitri from paris; he-
liskiing resorts: valle nevado
questionable (0.5): 007 movie actors: david niven;
kanye west songs on youtube: the good life; holidays
celebrated in sydney: waitangi day
incorrect (0.0): electronic companies in electronic
city bangalore: bank of baroda; garden landscaping
magazines: marquis; immunology scientists: rosalind
franklin

Table 6: Correctness tags manually assigned to instances
extracted from queries for various class labels

run Rqg. Class labels deemed incorrect, as well as
class labels for which no instances are extracted, are
manually removed from the sample. Out of the re-
maining class labels, a smaller random sample of 50
of the remaining class labels is retained, for the pur-
pose of evaluating the quality of instances extracted
for various class labels.
Evaluation Metric : The evaluation computes the
precision of the ranked list of instances extracted for
each target class label. To remove any undesirable
bias towards higher-ranked instances, the ranked list
is sorted alphabetically, then each instance is as-
signed one of the correctness tags from Table 6.
Instances are deemed questionable, if they would
be correct for a rather obscure interpretation of the
class label. For example,david nivenis an actor in
one of the spoofs rather than main releases of the
007 movie. Instances that would be correct if a few
words were dropped or added are also deemed ques-
tionable:the good lifeis not one of the“kanye west
songs on youtube”butgood lifeis.

To compute the precision score over a ranked list
of instances, the correctness tags are converted to
numeric values. Precision at some rank N in the list
is measured as the sum of the correctness values of
the instances extracted up to rank N, divided by the
number of instances extracted up to rank N.

5.2 Precision of Instances

Precision: Precision scores in Table 7 vary across
target class labels. For some class labels, the ex-
tracted instances are noisy enough that scores are
below 0.50 at ranks 10 and higher. This is the case
for “electronic companies in electronic city banga-

Target Class Label Precision of Instances
@1 @5 @10 @50

007 movie actors 1.00 1.00 0.85 0.85
actors with obsessive compul-
sive disorder

0.00 0.60 0.70 0.70

antibiotics for multiple sclerosis0.50 0.60 0.55 0.58
astronauts in space station 1.00 0.70 0.85 0.83
automobiles with remote start 1.00 1.00 0.75 0.75
beatles songs of love 0.00 0.50 0.65 0.52
beetles that bite 1.00 0.80 0.50 0.56
companies with sustainable
competitive advantage

1.00 1.00 0.80 0.88

countries with double taxation
agreements with india

1.00 1.00 1.00 0.90

criminals who have been exe-
cuted

1.00 1.00 0.90 0.82

daft punk live albums 0.50 0.40 0.35 0.35
dallas medical companies 0.00 0.70 0.65 0.54
direct democracy states 1.00 1.00 0.90 0.86
electronic companies in elec-
tronic city bangalore

1.00 0.40 0.40 0.42

expensive brands of shoes 1.00 1.00 0.90 0.92
eye diseases in cats 0.50 0.50 0.35 0.35
f1 car companies 1.00 1.00 0.80 0.30
fwd sports cars 1.00 1.00 1.00 1.00
garden landscaping magazines0.00 0.10 0.15 0.06
heliskiing resorts 1.00 1.00 1.00 1.00
hell in a cell wrestlers 1.00 1.00 1.00 0.92
holidays celebrated in sydney 1.00 0.70 0.75 0.75
... ... ... ... ...

Average over 50 class labels 0.80 0.80 0.76 0.71

Table 7: Precision at various ranks in the ranked lists of
instances extracted from queries, for various target class
labels and as an average over the entire set of 50 target
class labels

lore” and “daft punk live albums”, and especially
for “garden landscaping magazines”which has the
worst precision. On the other hand, instances ex-
tracted for“companies with sustainable competitive
advantage”or “criminals who have been executed”
have high precision across all ranks. As an aver-
age over all target class labels, precision is 0.76 at
rank 10, and 0.71 at rank 50. Although there is room
for improvement, we find these accuracy levels to be
encouragingly good, especially at rank 50. As a re-
minder, instances are extracted from noisy queries,
and for class labels as fine-grained as those acquired
and used in our experiments. Some of the extracted
ranked lists of instances are shown in Table 8.
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Target Class LabelExtracted Instances

countries with
double taxation
agreements with
india

[singapore, malaysia, mauritius,
kenya, australia, united king-
dom, cyprus, turkey, thailand, ger-
many,..]

direct democracy
states

[california, oregon, nevada, wis-
consin, louisiana, arizona, ver-
mont, alaska, illinois, michigan,..]

fwd sports cars [scion tc, ford probe, honda pre-
lude, nissan 200sx, lotus elan, mit-
subishi fto, dodge srt-4, mitsubishi
gto, volvo c30, toyota celica,..]

garden landscap-
ing magazines

[front, contemporary, gallery,
edge, view, chelsea, wallpaper,
expo, wizard, sunset,..]

holidays cele-
brated in sydney

[halloween, australia day, anzac
day, independence day, waitangi
day, melbourne cup, hogmanay,
rotuma day, solstice, yule,..]

Table 8: Ranked lists of instances extracted for a sample
of class labels

In additional experiments, the same evaluation
procedure is applied to output from two previous ex-
traction methods. The first method starts by inter-
nally generating a small set of seed instances for a
class label given as input (Wang and Cohen, 2009).
A set expansion module then expands the seed set
into a longer, ranked list of instances. The instances
are extracted from unstructured and semi-structured
text within Web documents. The documents are ac-
cessed via the search interface of a general-purpose
Web search engine (cf. (Wang and Cohen, 2009)
for more details). The second method extracts in-
stances of class labels using the extraction patterns
proposed in (Hearst, 1992). As such, it is similar
to (Kozareva et al., 2008; Van Durme and Paşca,
2008; Wu et al., 2012). The method corresponds
to the run Rdc described earlier, where the rela-
tive ranking of instances and class labels uses the
co-occurrence of instances and class labels within
queries (Paşca, 2010). For the purpose of the eval-
uation, when no instances are available for a target
class label, the class label is generalized into iter-
atively shorter phrases containing fewer modifiers,
until some instances are available for the shorter
phrase. For example, target class labels likeactors
with obsessive compulsive disorder, beatles songs of
love, garden landscaping magazinesdo not have any

instances extracted by the second method. There-
fore, the instances evaluated for the second method
for these target class labels are collected from the
instances of the more generalactors, beatles songs,
landscaping magazines. Without the generalization,
the target class label would receive no credit dur-
ing the evaluation, and the two previous methods
would have lower precision scores. Over the 50 tar-
get class labels, the precision of the two methods is
0.11 and 0.27 at rank 5; 0.06 and 0.25 at rank 10;
0.05 and 0.22 at rank 20; and 0.05 and 0.20 at rank
50. The results confirm that, as explained earlier,
previous methods for open-domain information ex-
traction have limited ability to extract instances of
fine-grained class labels.
Discussion: Earlier errors in the acquisition of the
class label affect the usefulness of any instances that
may be subsequently extracted for them. The ex-
periments require candidate instances to appear in
Wikipedia. This may improve precision, at the ex-
pense of not extracting instances that are not yet in
Wikipedia (Lin et al., 2012).

6 Related Work

Previous methods for extracting classes of instances
from text acquire sets of instances that are each
either unlabeled (Pennacchiotti and Pantel, 2009;
Jain and Pennacchiotti, 2010; Shi et al., 2010),
or associated with a class label (Banko et al.,
2007; Wang and Cohen, 2009). The sets of in-
stances and/or class labels may be organized as
flat sets or hierarchically, relative to inferred hier-
archies (Kozareva and Hovy, 2010) or existing hier-
archies such as WordNet (Snow et al., 2006; Davi-
dov and Rappoport, 2009) or the category network
within Wikipedia (Wu and Weld, 2008; Ponzetto
and Navigli, 2009). Semi-structured text from Web
documents is a complementary resource to unstruc-
tured text, for the purpose of extracting relations in
general (Cafarella et al., 2008), and classes and in-
stances in particular (Talukdar et al., 2008; Dalvi et
al., 2012).

With previous methods, the vocabulary of class
labels potentially produced for any instance is con-
fined to a closed set provided manually as in-
put (Wang and Cohen, 2009; Carlson et al., 2010).
The closed set is often derived from resources like
Wikipedia (Talukdar and Pereira, 2010; Lin et al.,
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2012; Hoffart et al., 2013) or Freebase (Pantel et
al., 2012). Alternatively, the vocabulary is not a
closed set, but instead is acquired along with the
instances (Pantel and Pennacchiotti, 2006; Snow
et al., 2006; Banko et al., 2007; Van Durme and
Paşca, 2008; Kozareva and Hovy, 2010). In the lat-
ter case, the extracted class labels take the form of
head nouns preceded by modifiers. Examples are
“cities” , “european cities” (Etzioni et al., 2005);
“artists” , “strong acids” (Pantel and Pennacchiotti,
2006); “outdoor activities”, “prestigious private
schools” (Van Durme and Paşca, 2008);“methate-
rians” , “aquatic birds” (Kozareva and Hovy, 2010).
In contrast, the class labels extracted in our method
exhibit greater syntactic diversity and are finer-
grained. In addition, they are not constrained to a
particular set of categories available in resources like
Wikipedia.

Fine-grained class labels roughly correspond to
queries submitted in typed search (Demartini et al.,
2009) or entity search (Balog et al., 2010) or list-
seeking questions (“name the circuit judges in the
cayman islands that are british”). But our focus is
on generating, rather than answering such queries
or, more generally, attempting to deeply understand
their semantics (Li, 2010). Phrase similarities can
be derived with any methods, using documents (Lin
and Wu, 2009) or search queries (Jain and Pennac-
chiotti, 2010).

Whether Web search queries are a useful textual
data source for open-domain information extraction
has been investigated in several tasks. Examples are
collecting unlabeled sets of similar instances (Jain
and Pennacchiotti, 2010), ranking of class labels
already extracted from text (Paşca, 2010), extract-
ing attributes of instances (Alfonseca et al., 2010)
and identifying the occurrences in queries of in-
stances of several types, where the types are de-
fined in a manually-created resource (Pantel et al.,
2012). Comparatively, we show that queries are use-
ful in identifying possible class labels, not only re-
ranking them; and even in populating the class labels
with relevant, albeit small, sets of corresponding in-
stances.

As automatically-extracted class labels become
finer-grained, they more clearly illustrate a phe-
nomenon that received little attention. Namely, class
labels of an instance, on one hand, and relations link-

ing the instance with other instances and classes, on
the other hand, are not mutually exclusive pieces
of knowledge. Their extraction does not necessar-
ily require different, dedicated techniques. Quite
the opposite, class labels serve in text as nothing
more than convenient lexical representations, or lex-
ical shorthands, of relations linking instances with
other instances. The class labels“no front license
plate states”and“states with no front license plate
requirement”are applicable toarizona. If so, it is
becausearizonais astate, and states require the in-
stallation of license plateson vehicles, and the re-
quirement does not apply to thefront of vehicles
in the case ofarizona. The connection between
class labels and relations has been judiciously ex-
ploited in (Nastase and Strube, 2008). In that study,
relations encoded implicitly within Wikipedia cat-
egories are transformed into explicit relations. As
an example, the explicit relation thatdeconstruct-
ing harry is directed by woody allenis obtained
from the fact thatdeconstructing harryis listed un-
der“movies directed by woody allen”in Wikipedia.
Ours is the first approach to examine the potential
for extracting relations from search queries, where
relations are compactly and loosely folded into the
respective class labels. A variety of methods address
the more general task of acquisition of open-domain
relations from documents, e.g., (Zhu et al., 2009;
Carlson et al., 2010; Fader et al., 2011; Lao et al.,
2011).

7 Conclusion

The approach introduced in this paper exploits
knowledge loosely encoded within Web search
queries. It acquires a vocabulary of class labels that
are finer grained than in previous literature. The
class labels have precision comparable to that of
class labels derived from human-created knowledge
repositories. Furthermore, representative instances
are extracted from queries for the fine-grained class
labels, at encouraging levels of accuracy. Current
work explores the use of noisy syntactic features to
increase the accuracy of extracted class labels; the
extraction of instances from evidence in multiple,
rather than single queries; the expansion of extracted
instances into larger sets; and the conversion of fine-
grained class labels into relations among classes.
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E. Alfonseca, M. Paşca, and E. Robledo-Arnuncio. 2010.
Acquisition of instance attributes via labeled and re-
lated instances. InProceedings of the 33rd Interna-
tional Conference on Research and Development in In-
formation Retrieval (SIGIR-10), pages 58–65, Geneva,
Switzerland.

K. Balog, M. Bron, and M. de Rijke. 2010. Category-
based query modeling for entity search. InProceed-
ings of the 32nd European Conference on Information
Retrieval (ECIR-10), pages 319–331, Milton Keynes,
United Kingdom.

M. Banko, Michael J Cafarella, S. Soderland, M. Broad-
head, and O. Etzioni. 2007. Open information ex-
traction from the Web. InProceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-07), pages 2670–2676, Hyderabad, India.

T. Brants. 2000. TnT - a statistical part of speech tagger.
In Proceedings of the 6th Conference on Applied Natu-
ral Language Processing (ANLP-00), pages 224–231,
Seattle, Washington.

M. Cafarella, A. Halevy, D. Wang, E. Wu, and Y. Zhang.
2008. WebTables: Exploring the power of tables on
the Web. InProceedings of the 34th Conference on
Very Large Data Bases (VLDB-08), pages 538–549,
Auckland, New Zealand.

A. Carlson, J. Betteridge, R. Wang, E. Hruschka, and
T. Mitchell. 2010. Coupled semi-supervised learn-
ing for information extraction. InProceedings of the
3rd ACM Conference on Web Search and Data Mining
(WSDM-10), pages 101–110, New York.

B. Dalvi, W. Cohen, and J. Callan. 2012. Websets: Ex-
tracting sets of entities from the Web using unsuper-
vised information extraction. InProceedings of the
5th ACM Conference on Web Search and Data Mining
(WSDM-12), pages 243–252, Seattle, Washington.

D. Davidov and A. Rappoport. 2009. Enhancement
of lexical concepts using cross-lingual Web mining.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing (EMNLP-
09), pages 852–861, Singapore.

G. Demartini, T. Iofciu, and A. de Vries. 2009. Overview
of the INEX 2009 Entity Ranking track. InINitiative
for the Evaluation of XML Retrieval Workshop, pages
254–264, Brisbane, Australia.

D. Downey, M. Broadhead, and O. Etzioni. 2007. Locat-
ing complex named entities in Web text. InProceed-
ings of the 20th International Joint Conference on Ar-
tificial Intelligence (IJCAI-07), pages 2733–2739, Hy-
derabad, India.

O. Etzioni, M. Cafarella, D. Downey, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates.
2005. Unsupervised named-entity extraction from the

Web: an experimental study.Artificial Intelligence,
165(1):91–134.

O. Etzioni, A. Fader, J. Christensen, S. Soderland, and
Mausam. 2011. Open information extraction: The
second generation. InProceedings of the 22nd In-
ternational Joint Conference on Artificial Intelligence
(IJCAI-11), pages 3–10, Barcelona, Spain.

A. Fader, S. Soderland, and O. Etzioni. 2011. Identifying
relations for open information extraction. InProceed-
ings of the 2011 Conference on Empirical Methods
in Natural Language Processing (EMNLP-11), pages
1535–1545, Edinburgh, Scotland.

M. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. InProceedings of the 14th In-
ternational Conference on Computational Linguistics
(COLING-92), pages 539–545, Nantes, France.

J. Hoffart, F. Suchanek, K. Berberich, and G. Weikum.
2013. YAGO2: a spatially and temporally enhanced
knowledge base from Wikipedia.Artificial Intelli-
gence, 194:28–61.

A. Jain and M. Pennacchiotti. 2010. Open entity ex-
traction from Web search query logs. InProceed-
ings of the 23rd International Conference on Com-
putational Linguistics (COLING-10), pages 510–518,
Beijing, China.

Z. Kozareva and E. Hovy. 2010. A semi-supervised
method to learn and construct taxonomies using the
web. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing
(EMNLP-10), pages 1110–1118, Cambridge, Mas-
sachusetts.

Z. Kozareva, E. Riloff, and E. Hovy. 2008. Semantic
class learning from the Web with hyponym pattern
linkage graphs. InProceedings of the 46th Annual
Meeting of the Association for Computational Linguis-
tics (ACL-08), pages 1048–1056, Columbus, Ohio.

N. Lao, T. Mitchell, and W. Cohen. 2011. Random walk
inference and learning in a large scale knowledge base.
In Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing (EMNLP-
11), pages 529–539, Edinburgh, Scotland.

X. Li. 2010. Understanding the semantic struc-
ture of noun phrase queries. InProceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics (ACL-10), pages 1337–1345, Up-
psala, Sweden.

D. Lin and P. Pantel. 2002. Concept discovery from text.
In Proceedings of the 19th International Conference
on Computational linguistics (COLING-02), pages 1–
7, Taipei, Taiwan.

D. Lin and X. Wu. 2009. Phrase clustering for discrim-
inative learning. InProceedings of the 47th Annual
Meeting of the Association for Computational Linguis-
tics (ACL-IJCNLP-09), pages 1030–1038, Singapore.

413



T. Lin, Mausam, and O. Etzioni. 2012. No noun phrase
left behind: Detecting and typing unlinkable enti-
ties. In Proceedings of the Joint Conference on Em-
pirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL-12), pages 893–903, Jeju Island, Korea.

V. Nastase and M. Strube. 2008. Decoding Wikipedia
categories for knowledge acquisition. InProceedings
of the 23rd National Conference on Artificial Intelli-
gence (AAAI-08), pages 1219–1224, Chicago, Illinois.
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R. Bhagat, and F. Pereira. 2008. Weakly-supervised
acquisition of labeled class instances using graph ran-
dom walks. InProceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing
(EMNLP-08), pages 582–590, Honolulu, Hawaii.
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Abstract

In this paper we present an unsupervised ap-
proach to relational information extraction.
Our model partitions tuples representing an
observed syntactic relationship between two
named entities (e.g., “X was born in Y”
and “X is from Y”) into clusters correspond-
ing to underlying semantic relation types
(e.g., BornIn, Located). Our approach incor-
porates general domain knowledge which we
encode as First Order Logic rules and auto-
matically combine with a topic model devel-
oped specifically for the relation extraction
task. Evaluation results on the ACE 2007
English Relation Detection and Categoriza-
tion (RDC) task show that our model outper-
forms competitive unsupervised approaches
by a wide margin and is able to produce clus-
ters shaped by both the data and the rules.

1 Introduction

Information extraction (IE) is becoming increas-
ingly useful as a form of shallow semantic analy-
sis. Learning relational facts from text is one of the
core tasks of IE and has applications in a variety
of fields including summarization, question answer-
ing, and information retrieval. Previous work (Sur-
deanu and Ciaramita, 2007; Culotta and Sorensen,
2004; Zhou et al., 2007) has traditionally relied on
extensive human involvement (e.g., hand-annotated
training instances, manual pattern extraction rules,
hand-picked seeds). Standard supervised techniques
can yield high performance when large amounts
of hand-labeled data are available for a fixed in-
ventory of relation types (e.g., Employment, Lo-
cated), however, extraction systems do not easily

generalize beyond their training domains and often
must be re-engineered for each application. Un-
supervised approaches offer a promising alternative
which could lead to significant resource savings and
more portable extraction systems.

It therefore comes as no surprise that latent topic
analysis methods have been used for a variety of
IE tasks. Yao et al. (2011), for example, propose
a series of topic models which perform relation
discovery by clustering tuples representing an ob-
served syntactic relationship between two named en-
tities (e.g., “X was born in Y” and “X is from Y”).
The clusters correspond to semantic relations whose
number or type is not known in advance. Their mod-
els depart from standard Latent Dirichlet Allocation
(Blei et al., 2003) in that a document consists of re-
lation tuples rather than individual words; moreover,
tuples have features each of which is generated in-
dependently from a hidden relation (e.g., the words
corresponding to the first and second entities, the
type and order of the named entities). Since these
features are local, they cannot capture more global
constraints pertaining to the relation extraction task.
Such constraints may take the form of restrictions
on which tuples should be clustered together or
not. For instance, different types of named entities
may be indicative of different relations (ORG-LOC
entities often express a Location relation whereas
PER-PER entities express Business or Family rela-
tions) and thus tuples bearing these entities should
not be grouped together. Another example are tuples
with identical or similar features which intuitively
should be clustered together.

In this paper, we propose an unsupervised ap-
proach to relation extraction which does not re-
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quire any relation-specific training data and allows
to incorporate global constraints general express-
ing domain knowledge. We encode domain knowl-
edge as First Order Logic (FOL) rules and automati-
cally integrate them with a topic model to produce
clusters shaped by the data and the constraints at
hand. Specifically, we extend the Fold-all (First-
Order Logic latent Dirichlet Allocation) framework
(Andrzejewski et al., 2011) to the relation extraction
task, explain how to incorporate meaningful con-
straints, and develop a scalable inference technique.
In the presence of multiple candidate relation de-
compositions for a given corpus, domain knowledge
can steer the model towards relations which are best
aligned with user and task modeling goals. We also
argue that a general mechanism for encoding addi-
tional modeling assumptions and side information
can lessen the need for “custom” relation extraction
model variants. Experimental results on the ACE-
2007 Relation Detection and Categorization (RDC)
dataset show that our model outperforms competi-
tive unsupervised approaches by a wide margin and
is able to uncover meaningful relations with only
two general rule types.

Our contributions in this work are three-fold: a
new model that modifies the Fold-all framework and
extends it to the relation extraction task; a new for-
malization of the logic rules applicable to topic mod-
els defined over a rich set of features; and a proposal
for mining the logic rules automatically from a cor-
pus contrary to Andrzejewski et al. (2011) who em-
ploy manually crafted seeds.

2 Related Work

A variety of learning paradigms have been applied
to relation extraction. As mentioned earlier, super-
vised methods have been shown to perform well in
this task. The reliance on manual annotation, which
is expensive to produce and thus limited in quantity,
has provided the impetus for semi-supervised and
purely unsupervised approaches. Semi-supervised
methods use a small number of seed instances or
patterns (per relation) to launch an iterative train-
ing process (Riloff and Jones, 1999; Agichtein and
Gravano, 2000; Bunescu and Mooney, 2007; Pan-
tel and Pennacchiotti, 2006). The seeds are used
to extract a new set of patterns from a large cor-
pus, which are then used to extract more instances,

and so on. Unsupervised relation extraction meth-
ods are not limited to a predefined set of target
relations, but discover all types of relations found
in the text. The relations represent clusters over
strings of words (Banko et al., 2007; Hasegawa et
al., 2004), syntactic patterns between entities (Yao
et al., 2011; Shinyama and Sekine, 2006), or logical
expressions (Poon and Domingos, 2009). Another
learning paradigm is distant supervision which does
not require labeled data but instead access to a rela-
tional database such as Freebase (Mintz et al., 2009).
The idea is to take entities that appear in some rela-
tion in the database, find the sentences that express
the relation in an unlabeled corpus, and use them to
train a relation classifier.

Our own work adds an additional approach into
the mix. We use a topic model to infer an arbi-
trary number of relations between named entities.
Although we do not have access to relation-specific
information (either as a relational database or manu-
ally annotated data), we impose task-specific con-
straints which inject domain knowledge into the
learning algorithm. We thus alleviate known prob-
lems with the interpretability of the clusters obtained
from topic models and are able to guide our model
towards reasonable relations. Andrzejewski et al.
(2011) show how to integrate First-Order Logic with
vanilla LDA. We extend their formulation to relation
tuples rather than individual words. Our model gen-
erates a corpus of entity tuples which are in turn rep-
resented by features and uses automatically acquired
FOL rules. The idea of integrating topic modeling
with FOL builds on research in probabilistic logic
modeling such as Markov Logic Networks (Richard-
son and Domingos, 2006). Schoenmackers et al.
(2010) learn Horn clauses from web-scale text with
aim of finding answers to a user’s query. Our work
is complementary to theirs. We could make use of
their rules to discover more accurate relations.

The general goal of assisting the learner in re-
covering the “correct” clustering by supplying ad-
ditional domain knowledge is not new. Gondek and
Hofmann (2004) supply a known clustering they do
not want the learner to return, whereas Wagstaff
et al. (2001) use pairwise labels for items indicat-
ing whether they belong in the same cluster. These
methods combine domain knowledge with statistical
learning in order to improve performance with re-
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spect to the true target clustering. Although, the tar-
get labels are not available in our case, we are able to
show that the inclusion of domain knowledge yields
clustering improvements.

3 Learning Setting

Our relation extraction task broadly adheres to the
ACE specification guidelines. Our aim is to detect
and characterize the semantic relations between
two named entities. The input to our model is a
corpus of documents, where each document is a
bag of relation tuples which can be obtained from
the output of any dependency parser. Each tuple
represents a syntactic relationship between two
named entity (NE) mentions, and consists of three
components: the dependency path between the
two mentions, the source NE, and the target NE. A
dependency path is the concatenation of dependency
edges and nodes along a path in the dependency
tree. For example, the sentence “George Bush
traveled to France on Thursday for a summit.”
would yield the tuple [SOURCE:George Bush(PER),
PATH:→nsubj→traveled→prep→to→pobj→,
DES:France(LOC)]. The tuple here expresses the
relation Located, however our model does not
observe any relation labels during training. The
model assigns tuples to clusters, corresponding to
an underlying relation type. Each tuple instance can
be then labeled with an identifier corresponding to
the cluster (aka relation) it has been assigned to.

4 Modeling Framework

Our model builds on the work of Yao et al. (2011)
who develop a series of generative probabilistic
models for relation extraction. Specifically, we ex-
tend their relational LDA model by interfacing it
with FOL-rules. In the following, we first describe
their approach in more detail and then present our
extensions and modifications.

4.1 Relational LDA

Relational LDA is an extension to LDA with a sim-
ilar generative story. LDA models each document
as a mixture of topics, which are in turn character-
ized as distributions over words. In relational LDA,
each document is a mixture of relations over tuples
representing syntactic relations between two named
entities. The relation tuples are in turn generated a

by set of features drawn independently from the un-
derlying relation distribution.

More technically, a multinomial distribution over
relations θdi

is drawn from a Dirichlet prior
(θ ∼ Dir(α)) at the document level. Relation tuples
are generated from a multinomial distribution θdi

(zi|θdi
∼ Mult(θdi

)) and are represented with k fea-
tures. Each feature is drawn (independently) from
a multinomial distribution selected by the relation
assigned to tuple i (fik|zi, φzi ∼ Mult(φzi)). Rela-
tions are drawn from a Dirichlet prior (φ ∼ Dir(β)).
In other words, each tuple in a document is assigned
a hidden relation (z = z1...zN ); each relation is
represented by a multinomial distribution over fea-
tures φr (Dirichlet prior β). φr is a vector with F
dimensions each corresponding to a feature. Fi-
nally, documents (j = 1...D) are associated with a
multinomial distribution θj over relations (Dirichlet
prior α). θj is a vector with R dimensions, one for
each relation.

Figure 1 represents relational LDA model as a an
undirected graphical model or factor graph (Bishop,
2006), ignoring for the moment the factor which
connects the d, z, f1...k and o variables. Directed
graphical models can be converted into undirected
ones by adding edges between co-parents (Koller
and Friedman, 2009). Each clique in the graph de-
fines a potential function which replaces the condi-
tional probabilities in the directed graph. Each max-
imal clique is associated with a special factor node
(the black squares) and clique members are con-
nected to that factor. The probability of any specific
configuration is calculated by multiplying the poten-
tial functions and normalizing them. We adopt the
factor graph representation as is it convenient for in-
troducing logic rules into the model. The joint prob-
ability of the model given the priors and the docu-
ments (P (p, z, φ, θ|α, β,d)) is equivalent to:

R∏
r

p(φr|β)
D∏
j

p(θj |α)
N∏
i

θdi
(zi)

∏
k∈pi

φzi(fk) (1)

where θdi
(zi) is the zi-th element in the vector θdi

and φzi(fk) is fk-th feature in the φzi vector. Vari-
able pi is the i-th tuple containing k features. The
parameters of the latent variables (e.g., φ, θ) are
typically estimated using an approximate inference
algorithm such as Gibbs Sampling (Griffiths and
Steyvers, 2004).

417



Figure 1: Relational LDA as a factor graph. Filled
circles represent observed variables, empty circles are
associated with latent variables or model hyperparame-
ters, and plates indicate repeating structures. The black
squares are the factor nodes and are associated with the
potential functions corresponding to conditional indepen-
dence among the variables. The model observes D doc-
uments (d) consisting of N tuples (p), each represented
by a set of features f1,f2 . . . fk. z represents the relation
type assignment to a tuple, θ is the relation type propor-
tion for a given document, and φ the relation type dis-
tribution over the features. The logic factor (indicated
with the arrow) connects the KB with the relational LDA
model. Variable o is an observed variable which contains
the side information expressed in FOL.

As shown in Figure 1, the observed variables are
represented by filled circles. In our case, our model
sees the corpus (p, d), where d is the variable rep-
resenting the document and the tuples (p) are repre-
sented by a set of features f1,f2 . . . fk in the graph.
Empty circles are associated with latent variables to
be estimated: z represents the relation type assign-
ment to the tuple, θ is the relation type proportion
for the given document, and φ is the relation type
distribution over the features.

The features representing the tuples tap onto se-
mantic information expressed by different surface
forms and are an important part of the model. We
use a subset of the features proposed in Yao et al.
(2011) which we briefly describe below:

SOURCE This feature corresponds to the first en-
tity mention of the tuple. In the sentence George
Bush traveled to France on Thursday for a summit.,
the value of this feature would be George Bush .

Value Predicate Description
zi = r Z(i, r) Latent relation type
fk = v F(k, v) feature of relation tuple
pi = i P(i, fk) tuple i contains feature fk
di = j D(i, j) observed document

Table 1: Logical variables for Relational LDA. The vari-
able i ranges over tuples in the corpus (i = [1 . . . N ]),
and k over features in the corpus (k = [1 . . . F ]).

DEST The feature corresponds to the second entity
mention and its value would be France in the previ-
ous example.

NEPAIR The feature indicates the type and order
of two entity mentions in the tuple. This would
be PER-ORG in our example.

PATH This feature refers to the dependency
path between two entity mentions. In our
sentence, the value of the feature would be
PATH:→nsubj→traveled→prep→to→pobj→.

TRIGGER Finally, trigger features are content
words occurring in the dependency path. The path
PATH:→nsubj→traveled→prep→to→pobj→ con-
tains only one trigger word, namely traveled. The
intuition behind this feature is that paths sharing the
same set of trigger words should be grouped in the
same cluster.

4.2 First Order Logic and Relational LDA
We next couple relational LDA with global con-
straints, which we express using FOL rules. We
begin by representing relational LDA as a Markov
Logic Network (Richardson and Domingos, 2006).
We define a logical predicate for each model vari-
able. For example, assigned relation variable
(Z(i, r)) is true if zi = r and false otherwise. Table 1
shows the mapping of model variables onto logical
predicates. Logical rules are encoded in the form of
a weighted FOL knowledge base (KB) which is then
converted into Conjunctive Normal form:

KB = {(λ1, ψ1), ..., (λL, ψL)} (2)

The KB consists of L pairs, where each ψl rep-
resents a FOL rule and λl ≥ 0 its weight. Rules
are soft preferences rather than hard constraints;
the weights represent the importance of ψl and are
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set manually by the domain expert. The KB is
tied to the probabilistic model via its groundings
in the corpus. For each FOL rule ψl, let G(ψl) be
the set of groundings, each mapping the free vari-
ables in ψl to a specific value. For example, in the
rule ∀i, j, p : F(i, Obama) ∧ F(j,WhiteHouse) ∧
P(p, i) ∧ P(p, j) ⇒ Z(p, r)1, G consists of all the
rules where the free variables i, j and p are instanti-
ated. At grounding time, we parse the corpus search-
ing for the tuples that satisfy the logic rules and store
the indices of the tuples that ground the rule. The
stored indices are used to set ψl to a specific value.
For the (Obama, White House) example above, G
consists of F propositional rules for each observed
feature, where i ∈ [1 . . . F ]. For each grounding
(g ∈ G(ψl)) we define an indicator function:

1g(z,p,d,o) =


1, if g is true under

z and p,d,o

0, otherwise
(3)

where z are relation assignments to tuples, p is the
set of features in tuples, d are documents, and o
the side information encoded in FOL. Contrary to
Andrzejewski et al. (2011), we need to ground the
rules while taking into account if the feature speci-
fied in the rule is expressed by any tuple or the spe-
cific given tuple, since we are assigning relations to
tuples, and not directly to words.

Next, we define a Markov Random Field (MRF)
which combines relational LDA with the FOL
knowledge base. The MRF is defined over latent
relation tuple assignments z, relation feature multi-
nomials φ, and relation document multinomials θ
(the feature set, document, and external informa-
tion o are observed). Under this model the con-
ditional probability P (z, φ, θ|α, β,p,d,o,KB) is
proportional to:

exp

 L∑
l

∑
g∈G(ψl)

λl1g(z,p,d,o)

×
R∏
r

p(φr|β)
D∏
j

p(θj |α)
N∏
i

θdi
(zi)

∏
k∈pi

φzi(fk)

(4)

The first term in Equation (4) corresponds to the
logic factor in Figure 1 that groups variables d, z,

1This rule translates as “every tuple containing Obama and
White House as features should be in relation cluster r”.

f1, f2, . . . fk and o. The remaining terms in Equa-
tion (4) refer to relational LDA. The goal of the
model is to estimate the most likely θ and φ for the
given observed state. As z can not be marginalized
out, we proceed with MAP estimation of (z, φ, θ),
maximizing the log of the probability as in Andrze-
jewski et al. (2011):

arg max
z,φ,θ

L∑
l

∑
g∈G(ψl)

λl1g(z,p,d,o)+

R∑
r

log p(φr|β)+

N∑
i

log θdi
(zi)

∏
k∈pi

φzi(fk)

(5)

Once the parameters of the model are estimated
(see Section 4.3 for details), we use the φ proba-
bility distribution to assign a relation to a new test
tuple. We select the relation that maximizes the
probability arg maxr

∏k
i P (fi|φr) where f1 . . . fk

are features representing the tuple and r the relation
index.

4.3 Inference
Exact inference is intractable for both relational
LDA and MLN models. In order to infer the most
likely multinomial parameters φ and θ, we applied
the Alternating Optimization with Mirror Descent
algorithm introduced in Andrzejewski et al. (2011).
The algorithm alternates between optimizing the
multinomial parameters (φ, θ), whilst holding the re-
lation assignments (z) fixed, and vice-versa. At each
iteration, the algorithm first finds the optimal (φ, θ)
for a fixed z as the MAP estimate of the Dirichlet
posterior:

φr(f) ∝ nrf + β − 1 (6)

θj(r) ∝ njr + α− 1 (7)

where nrf is the number of times feature f is
assigned to relation r in relation assignments z,
and njr is the number of times relation r is assigned
to document j. Next, z is optimized while keeping φ
and θ fixed. This step is divided into two parts. The
algorithm first deals with all zi which appear only in
trivial groundings, i.e., groundings whose indicator
functions 1g are not affected by the latent relation
assignment z. As zi only appears in the last term of
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Equation (5), the algorithm needs only optimize the
following term:

zi = arg max
r=1...R

θdi
(r)

∏
k∈pi

φzi(fk) (8)

The second part deals with the remaining zi that ap-
pear in non-trivial groundings in the first term of
Equation (5). We follow Andrzejewski et al. (2011)
in relaxing (5) into a continuous optimization prob-
lem and refer the reader to their paper for a more
in depth treatment. Suffice it to say that once the
binary variables zir ∈ {0, 1} are relaxed to contin-
uous values zir ∈ [0, 1], it is possible to introduce
the relational LDA term in the equation and com-
pute the gradient using the Entropic Mirror Descent
Algorithm (Beck and Teboulle, 2003):

arg max
z∈[0,1]|KB|

L∑
l

∑
g∈G(ψl)

λl1g(z)+

∑
i,r

zir log θdi
(r)

∏
k∈pi

φzi(fk)

s.t zir ≥ 0 ,
∑
i,r

zir = 1

(9)

In every iteration the approximation algorithm
randomly samples a term from the objective func-
tion (Equation (9)). The sampled term can be
a particular ground rule g or the relational LDA
term (

∑
r zir log θdi

(r)
∏
k∈pi

φzi(fk)) for some
uniformly sampled index i. The sampling of the
terms is weighted according to the rule weight (λl)
and the grounded value (G(ψl)) in the case of logic
rules, and the size of corpus in tuples (|zKB|) for re-
lational LDA. Once we choose term f and take the
gradient, we can apply the Entropic Mirror Descent
update:

zir ←
zir exp(ηOzirf)∑
r′ zir′ exp(ηOzir′f)

(10)

Finally, zi is recovered by rounding to arg maxr zir.
The main advantage of this approach is that it re-
quires only a means to sample groundings g for each
ruleψl, and can avoid fully grounding the FOL rules.

4.4 Logic Rules
Our model assigns relations to tuples rather than top-
ics to words. Since our tuples are described in terms

of features our logic rules must reflect this too. For
our experiments we defined two very general types
of rules described below.

Must-link Tuple The motivation behind this rule
is that tuples which share features probably express
the same underlying relation. The rule must spec-
ify which feature has to be shared for the tuples
to be clustered together. For example, the rule be-
low states that tuples containing the dependency
path PATH:→appos→president→prep→of→pobj→
should go in the same cluster:

∀i, j, k : F(i, PATH:is the president of ) ∧ P(j, fi)
∧P(k, fi)⇒ ¬Z(j, t) ∨ Z(k, r)

Cannot-link Tuple We also define rules prohibit-
ing tuples to be clustered together because they do
not share any features. For example, tuples with
ORG-LOC entities, probably express a Location re-
lation and should not be clustered together with
PER-PER tuples, which in all likelihood express a
different relationship (e.g., Family). The rule below
expresses this constraint:

∀i, j, k, l : F(i, NEPAIR:PER-PER)
∧F(j, NEPAIR:ORG-LOC)

∧P(k, fi) ∧ P(l, fj)⇒ ¬Z(k, r) ∨ ¬Z(l, r)

The specification of the first order logic rules is
an integral part of the model. The rules express
knowledge about the task at hand, the domain in-
volved, and the way the relation extraction problem
is modeled (i.e., tuples expressed as features). So
far, we have abstractly formulated the rules without
explaining how they are specifically instantiated in
our model. We could write them down by hand after
inspecting some data or through consultation with a
domain expert. Instead, we obtain logic rules au-
tomatically from a corpus following the procedure
described in Section 5.

5 Experimental Setup

Data We trained our model on the New York
Times (years 2000–2007) corpus created by Yao et
al. (2011). The corpus contains approximately 2M
entity tuples. The latter were extracted from
428K documents. After post-processing (tokeniza-
tion, sentence-splitting, and part-of-speech tagging),
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Must-link Tuple
F(i, NEPAIR:PER-PER, TRIGGER:wife) ∧ P(j, fi) ∧ P(k, fi)⇒ ¬Z(j, t) ∨ Z(k, r)
F(i, NEPAIR:PER-LOC, TRIGGER:die) ∧ P(j, fi) ∧ P(k, fi)⇒ ¬Z(j, t) ∨ Z(k, r)
F(i, PATH:←nsubj←die→prep→in→pobj→) ∧ P(j, fi) ∧ P(k, fi)⇒ ¬Z(j, t) ∨ Z(k, r)
F(i, SOURCE:Kobe, DEST:Lakers) ∧ P(j, fi) ∧ P(k, fi)⇒ ¬Z(j, t) ∨ Z(k, r)

Cannot-link Tuple
F(i, NEPAIR:ORG-LOC) ∧ F(j, NEPAIR:PER-PER) ∧ P(k, fi) ∧ P(l, fj)⇒ ¬Z(k, r) ∨ ¬Z(l, r)
F(i, NEPAIR:LOC-LOC) ∧ F(j, TRIGGER:president) ∧ P(k, fi) ∧ P(l, fj)⇒ ¬Z(k, r) ∨ ¬Z(l, r)
F(i, NEPAIR:PER-LOC) ∧ F(j, TRIGER:member) ∧ P(k, fi) ∧ P(l, fj)⇒ ¬Z(k, r) ∨ ¬Z(l, r)
F(i, NEPAIR:PER-PER) ∧ F(j, TRIGER:sell) ∧ P(k, fi) ∧ P(l, fj)⇒ ¬Z(k, r) ∨ ¬Z(l, r)

Table 2: Examples of automatically extracted Must-link and Cannot-link tuple rules.

named entities were automatically recognized and
labeled with PER, ORG, LOC, and MISC (Finkel
et al., 2005). Dependency paths for each pair of
named entity mentions were extracted from the out-
put of the MaltParser (Nivre et al., 2004). In our
experiments, we discarded tuples with paths longer
than 10 edges (Lin and Pantel, 2001). We evalu-
ated our model on the test partition of the ACE 2007
(English) RDC dataset which is labeled with gold
standard entity mentions and their relations. There
are six general relation types and 18 subtypes. We
used 25% of the ACE training partition as a devel-
opment set for parameter tuning.

Logic Rule Extraction We automatically ex-
tracted logic rules from the New York Times
(NYT) corpus as follows. The intuition behind
Must-link rules is that tuples with common features
should cluster together. Although we do not know
which features would yield the best rules, we
naively assume that good features are frequently
co-occurring features. Using the log-likelihood
ratio (Dunning, 1993), we first discarded low
confidence feature co-occurrences (p < 0.05). Two
features co-occur if they are both found within
the same sentence. We then sorted the remaining
co-occurrences by their frequency and retained the
N -best ones. We only considered unigram and
bigram features since higher-order ones tend to
be sparse. An example of a bigram feature would
be (PATH:←nsubj←grow→prep→in→pobj→,
DEST:Chicago).

The main intuition behind Cannot-link rules is
that tuples without any common features should
not cluster together. So, if two features never

co-occur, they probably express different relations.
For every unigram and bigram feature in the re-
spective N -best list, we find the features it does
not co-occur with in the NYT corpus. For ex-
ample, NEPAIR:PER–LOC does not co-occur with
DEST:Yankees and the bigram DEST:United Na-
tions, NEPAIR:PER–ORG does not co-occur with
SOURCE:Mr. Bush, NEPAIR:PER–LOC. Cannot-
link rules are then based on such non-co-occurring
feature pairs.

We optimized N empirically on the development
set. We experimented with values ranging from 20
to 500. We obtained 20 Must-link rules for coarse-
grained relations and 400 rules for their subtypes.
We extracted 1,814 Cannot-link rules for general re-
lations (N = 50) and 34,522 rules for subtypes
(N = 400). The number of features involved in the
Must-link rules was 25 for coarse-grained relations
and 422 for fine-grained relations. For Cannot-link
rules, 62 features were involved in coarse-grained
relations and 422 in fine-grained relations.

Examples of the rules we extracted are shown in
Table 2. The first rule in the upper half of the ta-
ble states that tuples must cluster together if their
source and target entities are PER and contain the
trigger word wife in their dependency path. The sec-
ond rule is similar, the source entity here is PER,
the target LOC and the trigger word is die. Ac-
cording to the third rule, tuples featuring the path
PATH:←nsubj←die→prep→in→pobj→ should be
in the same cluster. The fourth rule forces tuples
whose source entity is Kobe and target entity is Lak-
ers to cluster together. The second half of the table
illustrates Cannot-link tuple rules. The first rule pre-
vents tuples with ORG-LOC entities to cluster to-

421



gether with PER-PER tuples. The second rule states
that we cannot link LOC-LOC tuples with those
whose trigger word is president, and so on.

Parameter Tuning Our framework has several
parameters that must be adjusted for an optimal clus-
tering solution. These include the hyperparame-
ters α and β as well as the number of clusters. In
addition, we have to assign a weight to each FOL
rule grounding. An exhaustive search on the hy-
perparameters and rule weights is not possible. We
therefore followed a step-wise approximation proce-
dure. First, we find the best α and β values, whilst
varying the number of clusters. Once we have the
best hyperparameters for each clustering, we set the
weights for the FOL rules. We varied the number
of relations from 5 to 50. We experimented with α
values in the range of [0.05 − 0.5] and β values in
the range of [0.05 − 0.5]. These values were opti-
mized separately for coarse- and fine-grained rela-
tions. Table 3 shows the optimal number of clusters
for different model variants and relation types.

The FOL weights can also make a difference in
the final output; the bigger the weight the more
times the rule will be sampled in the Mirror Descent
algorithm. We experimented with two weighting
schemes: (a) we gave a weight of 1 or 0.5 to each
rule grounding and (b) we scaled the weights so as
to make their contribution comparable to relational
LDA. We obtained best results on the development
set with the former scheme.

Baselines We compared our FOL relational LDA
model against standard LDA (Blei et al., 2003) and
relational LDA without the FOL component. In the
case of standard LDA, we estimated topics (rela-
tions) over words, and used the context of the en-
tity mentions pairs as a bag of words feature to se-
lect the most likely cluster at test time. Parameters
for LDA and relational LDA were optimized follow-
ing the same parameter tuning procedure described
above.

We also compared our model against the unsuper-
vised method introduced in Hasegawa et al. (2004).
Their key idea is to cluster pairs of co-occurring
named entities according to the similarity of their
surrounding contexts. Following their approach, we
measured context similarity using the vector space
model and the cosine metric and grouped NE pairs
into clusters using a complete linkage hierarchical

clustering algorithm. We adopted the same parame-
ter values as detailed in their paper (e.g., cosine sim-
ilarity threshold, length of context vectors). At test
time, instances were assigned to the relation cluster
most similar to them (according to the cosine mea-
sure).

Evaluation We evaluated the clusters obtained by
our model and the comparison systems using the Fs-
core measure introduced in the SemEval 2007 task
(Agirre and Soroa, 2007); it is the harmonic mean
of precision and recall defined as the number of cor-
rect members of a cluster divided by the number of
items in the cluster and the number of items in the
gold-standard class, respectively.

6 Results

Our results are summarized in Table 3 which reports
Fscore for (Hasegawa et al., 2004), LDA, relational
LDA (RelLDA), and our model with the FOL com-
ponent. To assess the impact of the rules on the
clustering, we conducted several rule ablation stud-
ies. We thus present results with a model that in-
cludes both Must-link and Cannot-link tuple rules
(CLT+MLT), and models that include either Must-
link (MLT) or Cannot-link (CLT) rules but not both.
We show the performance of these models with the
entire feature set (see (ALL) in the table) and with a
subset consisting solely of NE pair related features
(see (NEPAIR) in the table). We report results against
coarse- and fine-grained relations (6 and 18 relation
types in ACE, respectively). The table shows the
optimal number of relation clusters (in parentheses)
per model and relation type.

We also wanted to examine the quality of the logic
rules. Recall that we learn these heuristically from
the NYT corpus. We thus trained an additional vari-
ant of our model with rules extracted from the ACE
training set (75%) which contains relation annota-
tions. The extraction procedure was similar to the
unsupervised case, save that the relation types were
known and thus informative features could be mined
more reliably. For Must-link rules, we extracted un-
igram and bigram feature frequencies for each re-
lation type and applied TF-IDF weighting in order
to discover the most discriminative ones. We cre-
ated logic rules for the 10 best feature combinations
in each relation type. Regarding Cannot-link rules,
we enumerated the features (unigrams and bigrams)
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Model Subtype Type
HASEGAWA 26.1 (12) 34.7 (12)
LDA 23.4 (10) 29.0 (5)
RelLDA 30.4 (40) 38.6 (5)
U-MLT (ALL) 36.6 (10) 48.0 (5)
U-CLT (ALL) 30.5 (5) 39.3 (5)
U-CLT+MLT (ALL) 29.8 (5) 42.0 (5)
U-MLT (NEPAIR) 36.5 (10) 47.2 (5)
U-CLT (NEPAIR) 28.8 (50) 40.5 (5)
U-CLT+MLT (NEPAIR) 30.9 (10) 41.5 (5)
S-MLT (ALL) 37.0 (10) 47.0 (5)
S-CLT (ALL) 31.4 (50) 40.9 (5)
S-CLT+MLT (ALL) 32.3 (10) 42.5 (5)
S-MLT (NEPAIR) 37.0 (10) 47.6 (10)
S-CLT (NEPAIR) 31.4 (10) 40.1 (5)
S-CLT+MLT (NEPAIR) 37.1 (10) 46.0 (5)

Table 3: Model performance on the ACE 2007 test set
using Fscore. Results are shown for six main relation
types and their subtypes (18 in total). (ALL) models con-
tain rules extracted from the entire feature set. For (NE-
PAIR) models, rules were extracted from NEPAIR-related
features only. Prefix U- denotes models that use unsu-
pervised rules; prefix S- highlights models using super-
vised rules. The optimal number of relations per model
is shown in parentheses.

that did not co-occur in any relation type and applied
TF-IDF weighting. Again, we created rules for the
10 most discriminative features. We defined rules
over the entire feature set (466 Must-link and 26,074
Cannot-link rules) and a subset containing only NE
pairs. In Table 3, prefixes S- and U- indicate model
variants with supervised and unsupervised rules, re-
spectively.

Our results show that standard LDA is not suit-
able for relation extraction. The obtained clusters
are not informative enough to induce semantic re-
lations, whereas RelLDA yields substantially bet-
ter Fscores. This is not entirely surprising, given
that RelLDA is a relation extraction specific model.
Hasegawa et al.’s (2004) model lies somewhere in
the middle between LDA and RelLDA. The com-
bination of RelLDA with automatically extracted
FOL rules improves over RelLDA across the board
(see the U- models in Table 3). MLT rules deliver
the largest improvement for both coarse and fine-
grained relation types. In general, CLT models per-
form worse as well as models using both types of
rules (MLT+CLT). The inferior performance of the

rule combination may be due to the fact that MLT
and CLT rules contain conflicting information and
to a certain extent cancel each other out. The use
of many rules might also negatively impact infer-
ence, i.e., discriminative rules are sampled less and
cannot influence the model towards a better solu-
tion. Restricting the number of features and rules
to named entity pairs only incurs a negligible drop
in performance. This is good news for scaling pur-
poses, since a small number of rules can greatly
speed-up inference. Interestingly, model variants
which use supervised FOL rules (see the prefix S-
in Table 3) perform on par with unsupervised mod-
els. Again, MLT rules perform best in the super-
vised case, whereas CLT rules marginally improve
over RelLDA.

We assessed whether differences in performance
are statistically significant (p < 0.05) using boot-
strap resampling (Noreen, 1989). All models across
all relation types are significantly better than LDA
and Hasegawa et al. (2004). FOL-based models per-
form significantly better than RelLDA, with the ex-
ception of all CLT models and U-CLT+MLT (ALL).
MLT models are significantly better than any other
rule-based model, except those that only use NE-
PAIR features. We also measured whether differ-
ent models agree on their topic assignments using
Cohen’s Kappa.2 RelLDA agrees least with MLT
models and most with CLT models (i.e., κ = 0.50
for U-MLT (ALL) and κ = 0.65 for U-CLT (ALL)).
This suggests that the CLT rules do not affect the
output of RelLDA as much as MLT ones. Examples
of relation clusters discovered by the U-MLT (ALL)
model are shown in Table 4.

A last note on parameter selection. Our experi-
ments explored the parameter space extensively in
order to examine any interactions between the in-
duced relations and the logic rules. For most model
variants inferring subtype relations, the preferred
number of clusters is 10. For coarse-grained rela-
tions, the optimal number of clusters is five. Over-
all, we found that the quality of the output is highly
correlated with the quality of the logic rules and that
a few good rules are more important than the opti-
mal number of clusters. We consider these findings
robust enough to apply across domains and datasets.

2For all comparison models the number of relation clusters
was set to 10.
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SOURCE PATH DEST

Republican president of Senate
Senate director of Yankees
House professor at Republican
Bush chairman of Congress
Democrat spokesman for House
Mr. Bush executive of Mets
Democrats director at U. of California
Republican analyst at United Nations

E
m

pl
oy

m
en

t

SOURCE PATH DEST

Yankees defeat World Series
Mets win Olympic
United States beat World Cup
Giants play Yankees
Jets win Super Bowl
Nets lose Olympics
Knicks sign Mets
Rangers victory over Giants

Sp
or

ts

Table 4: Clusters discovered by the U-MLT (ALL) model
indicating employment- and sports-type relations. For the
sake of readability, we do not display the syntactic depen-
dencies between words in a path.

7 Conclusions

In this paper we presented a new model for unsu-
pervised relation extraction which operates over tu-
ples representing a syntactic relationship between
two named entities. Our model clusters such tuples
into underlying semantic relations (e.g., Located,
Family) by incorporating general domain knowledge
which we encode as First Order Logic rules. Specif-
ically, we combine a topic model developed for the
relation extraction task with domain relevant rules,
and present an algorithm for estimating the param-
eters of this model. Evaluation results on the ACE
2007 (English) RDC task show that our model out-
performs competitive unsupervised approaches by a
wide margin and is able to produce clusters shaped
by both the data and the rules.

In the future, we would like to explore additional
types of rules such as seed rules, which would as-
sign tuples complying with the “seed” information
to distinct relations. Aside from devising new rule
types, an obvious next step would be to explore dif-
ferent ways of extracting the rule set based on differ-
ent criteria (e.g., the most general versus most spe-
cific rules). Also note that in the current framework
rule weights are set manually by the domain expert.

An appealing direction would be to learn these auto-
matically e.g., via a procedure that optimizes some
clustering objective. Finally, it should be interesting
to use some form of distant supervision (Mintz et al.,
2009) either as a means of obtaining useful rules or
to discard potentially noisy or uninformative rules.
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Abstract

Entity disambiguation works by linking am-
biguous mentions in text to their correspond-
ing real-world entities in knowledge base. Re-
cent collective disambiguation methods en-
force coherence among contextual decisions
at the cost of non-trivial inference processes.
We propose a fast collective disambiguation
approach based on stacking. First, we train a
local predictor g0 with learning to rank as base
learner, to generate initial ranking list of can-
didates. Second, top k candidates of related
instances are searched for constructing expres-
sive global coherence features. A global pre-
dictor g1 is trained in the augmented feature
space and stacking is employed to tackle the
train/test mismatch problem. The proposed
method is fast and easy to implement. Exper-
iments show its effectiveness over various al-
gorithms on several public datasets. By learn-
ing a rich semantic relatedness measure be-
tween entity categories and context document,
performance is further improved.

1 Introduction

When extracting knowledge from natural language
text into a machine readable format, ambiguous
names must be resolved in order to tell which real-
world entity the name refers to. The task of linking
names to knowledge base is known as entity linking
or disambiguation (Ji et al., 2011). The resulting text
is populated with semantic rich links to knowledge
base like Wikipedia, and ready for various down-
stream NLP applications.

∗Corresponding author

Previous researches have proposed several kinds
of effective approaches for this problem. Learning
to rank (L2R) approaches use hand-crafted features
f(d, e) to describe the similarity or dissimilarity be-
tween contextual document d and entity definition
e. L2R approaches are very flexible and expres-
sive. Features like name matching, context similar-
ity (Li et al., 2009; Zheng et al., 2010; Lehmann et
al., 2010) and category context correlation (Bunescu
and Pasca, 2006) can be incorporated with ease.
Nevertheless, decisions are made independently and
inconsistent results are found from time to time.

Collective approaches utilize dependencies be-
tween different decisions and resolve all ambiguous
mentions within the same context simultaneously
(Han et al., 2011; Hoffart et al., 2011; Kulkarni
et al., 2009; Ratinov et al., 2011). Collective ap-
proaches can improve performance when local ev-
idence is not confident enough. They often utilize
semantic relations across different mentions, and is
why they are called global approaches, while L2R
methods fall into local approaches (Ratinov et al.,
2011). However, collective inference processes are
often expensive and involve an exponential search
space.

We propose a collective entity linking method
based on stacking. Stacked generalization (Wolpert,
1992) is a powerful meta learning algorithm that
uses two levels of learners. The predictions of the
first learner are taken as augmented features for the
second learner. The nice property of stacking is that
it does not restrict the form of the base learner. In
this paper, our base learner, an L2R ranker, is first
employed to generate a ranking list of candidates.
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At the next level, we search for semantic coherent
entities from the top k candidates of neighboring
mentions. The second learner is trained on the aug-
mented feature space to enforce semantic coherence.
Stacking is employed to handle train/test mismatch
problem. Compared with existing collective meth-
ods, the inference process of our method is much
faster because of the simple form of its base learner.

Wikipedians annotate each entity with categories
which provide another source of valuable seman-
tic information. (Bunescu and Pasca, 2006) pro-
pose to generalize beyond context-entity correla-
tion s(d, e) with word-category correlation s(w, c).
However, this method works at word level, and does
not scale well to large number of categories. We
explore a representation learning technique to learn
the category-context association in latent semantic
space, which scales much better to large knowledge
base.

Our contributions are as follows: (1) We pro-
pose a fast and accurate stacking-based collective
entity linking method, which combines the benefits
of both coherence modeling of collective approaches
and expressivity of L2R methods. We show an
effective usage of ranking list as global features,
which is a key improvement for the global predictor.
(2) To overcome problems of scalability and shal-
low word-level comparison, we learn the category-
context correlation with recent advances of repre-
sentation learning, and show that this extra seman-
tic information indeed helps improve entity linking
performance.

2 Related Work

Most popular entity linking systems use the L2R
framework (Bunescu and Pasca, 2006; Li et al.,
2009; Zheng et al., 2010; Lehmann et al., 2010).
Its discriminative nature gives the model enough
flexibility and expressivity. It can include any fea-
tures that describe the similarity or dissimilarity of
context d and candidate entity e. They often per-
form well even on small training set, with carefully-
designed features. This category falls into the local
approach as the decision processes for each mention
are made independently (Ratinov et al., 2011).

(Cucerzan, 2007) first suggests to optimize an ob-
jective function that is similar to the collective ap-

proach. However, the author adopts an approxi-
mation method because of the large search space
(which is O(nm) for a document with m mentions,
each with n candidates). Various other methods
like integer linear programming (Kulkarni et al.,
2009), personalized PageRank (Han et al., 2011) and
greedy graph cutting (Hoffart et al., 2011) have been
explored in literature. Our method without stacking
resembles the method of (Ratinov et al., 2011) in
that they use the predictions of a local ranker to gen-
erate features for global ranker. The differences are
that we use stacking to train the local ranker to han-
dle the train/test mismatch problem and top k candi-
dates to generate features for the global ranker.

Stacked generalization (Wolpert, 1992) is a meta
learning algorithm that uses multiple learners out-
puts to augment the feature space of subsequent
learners. It utilizes a cross-validation strategy to ad-
dress the train set / testset label mismatch problem.
Various applications of stacking in NLP have been
proposed, such as collective document classification
(Kou and Cohen, 2007), stacked dependency parsing
(Martins et al., 2008) and joint Chinese word seg-
mentation and part-of-speech tagging (Sun, 2011).
(Kou and Cohen, 2007) propose stacked graphical
learning which captures dependencies between data
with relational template. Our method is inspired by
their approach. The difference is our base learner is
an L2R model. We search related entity candidates
in a large semantic relatedness graph, based on the
assumption that true candidates are often semanti-
cally correlated while false ones scattered around.

Wikipedians annotate entries in Wikipedia with
category network. This valuable information gener-
alizes entity-context correlation to category-context
correlation. (Bunescu and Pasca, 2006) utilize
category-word as features in their ranking model.
(Kataria et al., 2011) employ a hierarchical topic
model where each inner node in the hierarchy is a
category. Both approaches must rely on pruned cate-
gories because the large number of noisy categories.
We try to address this problem with recent advances
of representation learning (Bai et al., 2009), which
learns the relatedness of category and context in la-
tent continuous space. This method scales well to
potentially large knowledge base.
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3 Method

In this section, we first introduce our base learner
and local features used; next, the stacking train-
ing strategy is given, followed by an explana-
tion of our global coherence model with aug-
mented feature space; finally we explain how to
learn category-context correlation with representa-
tion learning technique.

3.1 Base learner and local predictor g0

Entity linking is formalized as follows: given
an ambiguous name mention m with its con-
textual document d, a list of candidate entities
e1, e2, . . . , en(m) ∈ C(m) is generated for m, our
predictor g will generate a ranking score g(ei) for
each candidate ei. The ranking score will be used
to construct augmented features for the next level
learner, or used by our end system to select the an-
swer:

ê = arg max
e∈C(m)

g(e) (1)

In an L2R framework, the model is often defined
as a linear combination of features. Here, our fea-
tures f⃗(d, e) are derived from document d and can-
didate e. The model is defined as g(e) = w⃗f⃗(d, e).
In our problem, we are given a list of training data
D = {(di, ei)}. We want to optimize the parameter
w⃗, such that the correct entity has a higher score over
negative ones. This is done via a preference learning
technique SV M rank, first introduced by (Joachims,
2002). The following margin based loss is mini-
mized w.r.t w⃗:

L =
1

2
∥w⃗∥2 + C

∑
ξd,e′ (2)

s.t. w⃗(f⃗(d, e)− f⃗(d, e′)) ≥ 1− ξd,e′ (3)

ξd,e′ ≥ 0 (4)

where C is a trade-off between training error and
margin size; ξ is slacking variable and loops over
all query documents d and negative candidates e′ ∈
C(m)− {e}.

This model is expressive enough to include any
form of features describing the similarity and dis-
similarity of d and e. We only include some typical
features seen in literature. The inclusion of these
features is not meant to be exhaustive. Our purpose
is to build a moderate model in which some of the

Surface matching:
1. mention string m exactly matches candidate
e, i.e. m = e
2. neither m is a substring of e nor e is a sub-
string of m
3. m ̸= e and m is a substring of e
4. m ̸= e and e is a substring of m
5. m ̸= e and m is a redirect pointing to e in
Wikipedia
6. m ̸= e and e starts with m
7. m ̸= e and e ends with m

Context matching:
1. cosine similarity of TF-IDF score between
context and entire Wikipedia page of candidate
2. cosine similarity of TF-IDF score between
context and introduction of Wikipedia page
3. jaccard distance between context and entire
Wikipedia page of candidate
4. jaccard distance between context and intro-
duction of Wikipedia page
Popularity or prominence feature:
percentage of Wikipedia hyperlinks pointing to
e given mention m, i.e. P(e|m)
Category-context coherence model:
cat0 and cat1 (details in Section 3.4)

Table 1: Features for local predictor g0.

useful features like string matching and entity pop-
ularity cannot be easily expressed by collective ap-
proaches like (Hoffart et al., 2011; Han et al., 2011).
The features for level 0 predictor g0 are described
in Table 1. The reader can consult (Li et al., 2009;
Zheng et al., 2010; Lehmann et al., 2010) for further
reference.

3.2 Stacking training for global predictor g1

Stacked generalization (Wolpert, 1992) is a meta
learning algorithm that stacks two “levels” of pre-
dictors. Level 0 includes one or more predictors
h

(0)
1 , h

(0)
2 , . . . , h

(0)
K : Rd → R, each one is trained on

the original d-dimensional feature space. The level
1 predictor h(1) : Rd+K → R is trained in the aug-
mented (d+K)-dimensional feature space, in which
predictions at level 0 are taken as extra features in
h(1).

(Kou and Cohen, 2007) proposed stacked graphi-
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cal learning for learning and inference on relational
data. In stacked graphical learning, dependencies
among data are captured by relational template, with
which one searches for related instances of the cur-
rent instance. The augmented feature space does
not necessarily to be d + K. Instead, one can con-
struct any declarative feature with the original data
and predictions of related instances. For instance,
in collective document classification (Kou and Co-
hen, 2007) employ relational template to extract
documents that link to this document, then apply a
COUNT aggregator over each category on neighbor-
ing documents as level 1 features.

In our entity linking task, we use a single predic-
tor g0 trained with local features at level 0. Com-
pared with (Kou and Cohen, 2007), both g0 and g1

are L2R models rather than classifier. At level 1, for
each document-candidate entity pair, we use the re-
lational templateN (x) to find related entities for en-
tity x, and construct global features with some func-
tion G({g0(n)|n ∈ N (x)}) (details in Sec. 3.3).
The global predictor g1 receives as input the origi-
nal features plus G.

One problem is that if we use g0 trained on the en-
tire training set to predict related instances in train-
ing set, the accuracy can be somehow different (typ-
ically lower) for future unseen data. g1 with this pre-
diction as input doesn’t generalize well to test data.
This is known as train/test mismatch problem. To
mimic test time behavior, training is performed in a
cross-validation-like way. Let D be the entire train-
ing set:

1. Split D into L partitions {D1, . . . ,DL}

2. For each split Di:

2.1 Train an instance of g0 on D −Di

2.2 Predict all related instances inDi with this
predictor g0

2.3 Augment feature space for x ∈ Di, with G
applied on predictions of N (x)

3. Train level 0 predictor g0 on entire D, for ex-
panding feature space for test data

4. Train level 1 predictor g1 on entire D, in the
augmented feature space.

In the next subsection, we will describe how to
construct global features from the predictions of g0

on neighbors N (x) with G.

3.3 Enforcing coherence with global features G
If one wants to identify the correct entity for an am-
biguous name, he would possibly look for related
entities in its surrounding context. However, sur-
rounding entities can also exhibit some degree of
ambiguity. In ideal cases, most true candidates are
inter-connected with semantic links while negative
candidates are scattered around (Fig. 1). Thus, we
ask the following question: Is there any highly rele-
vant entity to this candidate in context? Or, is there
any mention with highly relevant entity to this can-
didate in the top k ranking list of this mention? And
how many those mentions are? The reason to look
up top k candidates is to improve recall. g0 may not
perfectly rank related entity at the first place, e.g.
“Mitt Romney” in Figure 1.

Assume the ambiguous mention set is M . For
each mention mi ∈ M , we rank each entity ei,j ∈
C(mi) by its score g0(ei,j). Denote its rank as
Rank(ei,j). For each entity e in the candidate set
E = {ei,j |∀ei,j ∈ C(mi), ∀mi ∈ M}, we search
related instances for e as follows:

1. search in E for entities with semantic related-
ness above a threshold ({0.1,0.3,0.5,0.7,0.9});

2. select those entities in step (1) with Rank(e)
less than or equal to k (k ∈ {1, 3, 5});

3. map entities in step (2) to unique set of men-
tions U , excluding current m, i.e. e ∈ C(m).

This process is relatively fast. It only involves a
sparse matrix slicing operation on the large pre-
computed semantic relatedness matrix in step (1),
and logical operation in step (2,3). The following
features are fired concerning the unique set U :

- if U is empty;

- if U is not empty;

- if the percentage |U |/|M | is above a threshold
(e.g. 0.3).

The above process generates a total of 45 (5×3×3)
global features.
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Barack Obama Democratic Party (United States)

Mitt Romney

Republican Party (United States)

Obama, Fukui

Obama, Nagasaki

Democratic Party (Italy)

Democratic Party (Serbia)

Republican Party of Minnesota

Republicanism

Romney, West Virginia

HMS Romney (1694)

... ... ... ...

received national attention during his campaign  ...  with his vectory in the March   [[Obama|Barack Obama]]

[[Democratic Party|Democratic Party (United States)]] primary  ...  He was re-elected president in November

2012, defeating [[Republican|Republican Party (United States)]] nominee [[Romney|Mitt Romney]]

Figure 1: Semantic links for collective entity linking. Annotation [[mention|entity]] follows Wikipedia conventions.

Finally, the semantic relatedness measure of two
entities ei,ej is defined as the common in-links of ei

and ej in Wikipedia (Milne and Witten, 2008; Han
et al., 2011):

SR(ei, ej) = 1− log(max(|A|, |B|))− log(|A ∩B|)
log(|W |)− log(min(|A|, |B|))

(5)
where A and B are the set of in-links for entity ei

and ej respectively, and W is the set of all Wikipedia
pages.

Our method is a trade-off between exact collec-
tive inference and approximating related instance
with top ranked entities produced by g0. Most
collective approaches take all ambiguous mentions
into consideration and disambiguate them simulta-
neously, resulting in difficulty when inference in
large search space (Kulkarni et al., 2009; Hoffart
et al., 2011). Others resolve to some kinds of ap-
proximation. (Cucerzan, 2007) construct features as
the average of all candidates for one mention, in-
troducing considerable noise. (Ratinov et al., 2011)
also employ a two level architecture but only take
top 1 prediction for features. This most resembles
our approach, except we use stacking to tackle the
train/test mismatch problem, and construct different
set of features from top k candidates predicted by
g0. We will show in our experiments that this indeed
helps boost performance.

3.4 Learning category-context coherence
model cat

Entities in Wikipedia are annotated with rich se-
mantic structures. Category network provides us
with another valuable information for entity link-
ing. Take the mention “Romney” as an exam-

ple, one candidate “Mitt Romney” with category
“Republican party presidential nominee” co-occurs
frequently with context like “election” and “cam-
paign”, while another candidate “Milton Romney”
with category “Utah Utes football players” is fre-
quently observed with context like “quarterback”
and “backfield”. The category network forms a di-
rected acyclic graph (DAG). Some entities can share
category through the network, e.g. “Barack Obama”
with category “Democratic Party presidential nom-
inees” shares the category “United States presiden-
tial candidates by party” with “Mitt Romney” when
travelling two levels up the network.

(Bunescu and Pasca, 2006) propose to learn the
category-context correlation at word level through
category-word pair features. This method creates
sparsity problem and does not scale well because
the number of features grows linearly with both the
number of categories and the vocabulary size. More-
over, the category network is somewhat noisy, e.g.
travelling up four levels of the hierarchy can result
in over ten thousand categories, with many irrelevant
ones.

Rather than learning the correlation at word level,
we explore a representation learning method that
learns category-context correlation in the latent se-
mantic space. Supervised Semantic Indexing (SSI)
(Bai et al., 2009) is trained on query-document pairs
to predict their degree of matching. The compar-
ison is performed in the latent semantic space, so
that synonymy and polysemy are implicitly handled
by its inner mechanism. The score function between
query q and document d is defined as:

f(q, d) = qT Wd (6)
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where W is learned with supervision like click-
through data.

Given training data {(qi, di)}, training is done by
randomly sampling a negative target d−. The model
optimizes W such that f(q, d+) > f(q, d−). Thus,
the training objective is to minimize the following
margin-based loss function:∑

q,d+,d−

max(0, 1− f(q, d+) + f(q, d−)) (7)

which is also known as contrastive estimation
(Smith and Eisner, 2005).

W can become very large and inefficient when we
have a big vocabulary size. This is addressed by re-
placing W with its low rank approximation:

W = UT V + I (8)

here, the identity term I is a trade-off between the
latent space model and a vector space model. The
gradient step is performed with Stochastic Gradient
Descent (SGD):

U ←U + λV (d+ − d−)qT ,

if 1− f(q, d+) + f(q, d−) > 0 (9)

V ←V + λUq(d+ − d−)T ,

if 1− f(q, d+) + f(q, d−) > 0. (10)

where λ is the learning rate.
The query and document are not necessary real

query and document. In our case, we treat our
problem as: given the occurring context of an en-
tity, retrieving categories corresponding to this en-
tity. Thus, we use context as query q and the cat-
egories of this candidate entity as d. We also treat
the definition page of an entity as its context, and
first train the model with definition pages, because
definition pages exhibit more focused topic. This
considerably accelerates the training process. To
reduce noise, We input the categories directly con-
nected with one entity as a word vector. The input
can be a TF-IDF vector or binary vector. We denote
model trained with normalized TF-IDF and with bi-
nary input as cat0 and cat1 respectively.

4 Experiments

4.1 Datasets
Previous researches have used diverse datasets for
evaluation, which makes it hard for comparison

with others’ approaches. TAC-KBP has several
years of data for evaluating entity linking system,
but is not well suited for evaluating collective ap-
proaches. Recently, (Hoffart et al., 2011) anno-
tated a clean and much larger dataset AIDA 1 for
collective approaches evaluation based on CoNLL
2003 NER dataset. (Ratinov et al., 2011) also re-
fined previous work and contribute four publicly
available datasets 2. Thanks to their great works,
we have enough data to evaluate against. Accord-
ing to the setting of (Hoffart et al., 2011), we
split the AIDA dataset for train/development/test
with 946/216/231 documents. We train a separate
model on the Wikipedia training set for evaluating
ACE/QUAINT/WIKI dataset (Ratinov et al., 2011).
Table 2 gives a brief overview of the datasets used.

For knowledge base, we use the Wikipedia XML
dump 3 to extract over 3.3 million entities. We use
annotation from Wikipedia to build a name dictio-
nary from mention string m to entity e for can-
didate generation, including redirects, disambigua-
tion pages and hyperlinks, follows the approach of
(Cucerzan, 2007). For candidate generation, we
keep the top 30 candidates by popularity (Tbl. 1).
Note that our name dictionary is different from
(Ratinov et al., 2011) and has a much higher recall.
Since (Ratinov et al., 2011) evaluate on “solvable”
mentions and we have no way to recover those men-
tions, we re-implement their global features and the
final scores are not directly comparable to theirs.

4.2 Methods under comparison

We compare our algorithm with several state-of-the-
art collective entity disambiguation systems. The
AIDA system proposed by (Hoffart et al., 2011) use
a greedy graph cutting algorithm that iteratively re-
move entities with low confidence scores. (Han et
al., 2011) employ personalized PageRank to prop-
agate evidence between different decisions. Both
algorithms use simple local features without dis-
criminative training. (Kulkarni et al., 2009) pro-
pose to use integer linear programming (ILP) for
inference. Except our re-implementation of Han’s

1available at http://www.mpi-inf.mpg.de/yago-naga/aida/
2http://cogcomp.cs.illinois.edu/Data, we don’t find the

MSNBC dataset in the zip file.
3available at http://dumps.wikimedia.org/enwiki/, we use

the 20110405 xml dump.
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Dataset ndocs non-
NIL

identified solvable

AIDA dev 216 4791 4791 4707
AIDA test 231 4485 4485 4411
ACE 36 257 238 209(185)
AQUAINT 50 727 697 668(588)
Wikipedia 40 928 918 854(843)

Table 2: Number of mentions in each dataset. “identi-
fied” means the mention exists in our name dictionary
and “solvable” means the true entity are among the top 30
candidates by popularity. Number in parenthesis shows
the results of (Ratinov et al., 2011).

method, both AIDA and ILP solution are quite slow
at running time. The online demo of AIDA takes
over 10 sec to process one document with mod-
erate size, while the ILP solution takes around 2-
3 sec/doc. In contrast, our method takes only 0.3
sec/doc, and is easy to implement.

(Ratinov et al., 2011) also utilize a two layer
learner architecture. The difference is that their
method use top 1 candidate generated by local
learner for global feature generation , while we
search the top k candidates. Moreover, stacking is
used to tackle the train/test mismatch problem in
our model. We re-implement the global features of
(Ratinov et al., 2011) and use our local predictor
g0 for level 0 predictor. Note that we only imple-
ment their global features concerning common in-
links and inter-connection (totally 9 features) for fair
comparison because all other models don’t use com-
mon outgoing links for global coherence.

4.3 Settings

We implement SV M rank with an adaptation of lin-
ear SVM in scikit-learn (which is a wrapper of Li-
blinear). The category-context coherence model is
implemented with Numpy configured with Open-
Blas library, and we train this model on the entire
Wikipedia hyperlink annotation. It takes about 1.5d
for one pass over the entire dataset. The learning
rate λ is set to 1e-4 and training cost before update
is below 0.02.

Parameter tuning: there aren’t many parameters
to tune for both g0 and g1. The context document
window size is fixed as 100 for compatibility with

(Ratinov et al., 2011; Hoffart et al., 2011). The num-
ber of candidates is fixed to top 30 ranked by entity’s
popularity. Increase this value will generally boost
recall at the cost of lower precision.

We introduce the following default parameter for
global features in g1. The number of fold for stack-
ing is set to {1,5,10} (see Table 4, default is 10; 1
means no stacking, i.e. training g0 with all training
data and generating level 1 features for training data
directly with this g0). The number k for searching
neighboring entities with relational template is set
to {1,3,5,7} (e.g. in step 2 of Section 3.3 k = 5;
default is 5).

For category-context modeling, the vocabulary
sizes of context and category are set to top 10k and
6k unigrams by frequency. The latent dimension of
low rank approximation is set to 200.

Performance measures: For all non-NIL
queries, we evaluate performance with micro pre-
cision averaged over queries and macro precision
averaged over documents. Mean Reciprocal Rank
(MRR) is an information retrieval measure and is
defined as 1

|Q|
∑|Q|

i
1

ranki
, where ranki is the rank

of correct answer in response to query i. For
ACE/AQUAINT/WIKI we also give the accuracy of
“solvable” mentions, but this is not directly compa-
rable to (Ratinov et al., 2011). Our name dictionary
is different from theirs and ours has a higher recall
rate (Tbl. 2). Hence, the “solvable” set is different.

k recall k recall

1 78.56 6 96.31
2 89.59 7 97.04
3 93.01 8 97.37
4 94.97 9 97.62
5 95.78 10 97.81

Table 3: Top k recall for local predictor g0.

4.4 Discussions
Table 4 shows the evaluation results on AIDA
dataset and Table 5 shows results on datasets
ACE/AQUAINT/WIKI.

Effect of cat:The first group in Table 4 shows
some baseline features for comparison. We can see
even if the categories only carry incomplete and
noisy information about an entity, it performs much
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Methods Devset Testset

micro
p@1

macro
p@1

MRR micro
p@1

macro
p@1

MRR

cosine 33.25 28.61 46.03 33.33 28.63 46.54
jaccard 44.71 36.56 57.76 45.66 36.89 57.08
cat0 54.75 47.14 67.70 61.52 54.72 72.55
cat1 60.15 54.64 72.98 65.46 61.04 76.84
popularity 69.21 67.59 79.26 69.07 72.63 79.45
g0 76.04 73.63 84.21 76.16 78.17 84.58
g0+global(Ratinov) 81.30 78.03 88.14 81.45 81.89 88.70
g1+1fold 82.01 78.52 88.90 83.59 83.58 90.05
g1+5fold 81.99 78.42 88.87 83.52 83.37 89.99
g1+10fold 82.01 78.53 88.91 83.59 83.55 90.03
g1+top1 81.65 78.76 88.51 81.81 82.55 89.06
g1+top3 82.20 78.64 88.98 83.52 83.34 89.94
g1+top5 82.01 78.57 88.90 83.63 83.76 90.05
g1+top7 82.05 78.40 88.90 83.75 83.58 90.08
g0+cat 79.36 76.14 86.66 79.64 80.47 87.32
g1+cat 82.24 78.49 89.02 84.88 84.49 90.65
g1+cat+all context 82.99 78.56 89.51 86.49 85.11 91.55

(Hoffart et al., 2011) - - - 82.29 82.02 -
(Shirakawa et al., 2011) - - - 81.40 83.57 -
(Kulkarni et al., 2009) - - - 72.87 76.74 -
(Han et al., 2011) - - - 78.97 75.77 -

Table 4: Performance on AIDA dataset. Maximal value in each group are highlighted with bold font. top k means up
to k candidates are used for searching related instances with relational template.

better than word level features. Group 5 in Table
4 shows cat information generally boosts perfor-
mance for both predictor g0 and g1.

Effect of stacking: Group 3 in Table 4 shows the
results with different fold in stacking training. 1 fold
means training g0 with all training data and directly
augment training data with this g0. Surprisingly, we
do not observe any substantial difference with vari-
ous fold size. We deduce it is possible the way we
fire global features with top k candidates that alle-
viates the problem of train/test mismatch when ex-
tending feature space for g1. Despite the ranking of
true entity can be lower in testset than in training
set, the semantic coherence information can still be
captured with searching over top k candidates.

Effect of top k global features: Group 4 in Table
4 shows the effect of k on g1 performance. Clearly,
increasing k generally improves precision and one

possible reason is the improvement in recall when
searching for related instances. Table 3 shows the
top k recall of local predictor g0. Further increasing
k does not show any improvement.

Our method benefits from such a searching strat-
egy, and consistently outperforms the global fea-
tures of (Ratinov et al., 2011). While their method
is a trade-off between expensive exact search over
all mentions and greedy assigning all mentions
with local predictor, we show this idea can be fur-
ther extended, somewhat like increasing the beam
search size without additional computational over-
head. The only exception is the ACE dataset, since
this dataset is so small, the difference translates to
only one mention. One may notice the improvement
on ACE/AQUAINT datasets is a little inconsistent.
These datasets are much smaller and the results only
differ within 4 mentions. Because these models are
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Method micro
p@1

macro
p@1

MRR correct
/ solv-
able

ACE
g0 77.43 81.30 79.03 95.22
Ratinov 77.43 80.70 78.81 95.22
g1+5fold 77.04 79.85 78.96 94.74
g0+cat 77.82 81.48 79.31 95.69
g1+cat 77.43 80.16 79.25 95.22

AQUAINT
g0 84.46 84.69 87.49 91.92
Ratinov 85.14 85.29 87.90 92.66
g1+5fold 85.83 85.55 88.27 93.41
g0+cat 85.01 85.00 87.89 92.51
g1+cat 85.28 85.14 88.23 92.81

Wikipedia test
g0 83.19 84.30 86.63 90.40
Ratinov 84.48 85.96 87.62 91.80
g1+5fold 84.81 86.29 88.13 92.15
g0+cat 84.38 86.13 87.51 91.69
g1+cat 85.45 87.16 88.31 92.86

Table 5: Evaluation on ACE/AQUAINT/WIKI datasets.

trained on Wikipedia, the annotation style can be
quite different.

Finally, as we analyze the development set of
AIDA, we discover that some location entities rely
on more distant information across the context, as
we increase the context to the entire contextual doc-
ument, we can gain extra performance boost.

4.5 Error analysis

As we analyze the development set of AIDA, we find
some general problems with location names. Loca-
tion name generally is not part of the main topic
of one document. Thus, comparing context with
its definition is not realistic. Most of the time, we
can find some related location names in context; but
other times, it is not easily distinguished. For in-
stance, in “France beats Turkey in men’s football...”
France refers to “France national football team” but
our system links it to the country page “France” be-
cause it is more popular. This can be addressed by
modeling finer context (Sen, 2012) or local syntac-
tic pattern (Hoffart et al., 2011). In other cases,

our system misclassifies “New York City” for “New
York” and “Netherlands” for “Holland” and “Peo-
ple’s Republic of China” for “China”, because in
all these cases, the latter ones are the most popu-
lar in Wikipedia. It is even hard for us humans to
tell the difference based only on context or global
coherence.

5 Conclusions

We propose a stacking based collective entity link-
ing method, which stacks a global predictor on top
of a local predictor to collect coherence information
from neighboring decisions. It is fast and easy to im-
plement. Our method trades off between inefficient
exact search and greedily assigning mention with lo-
cal predictor. It can be seen as searching related
entities with relational template in stacked graphi-
cal learning, with beam size k. Furthermore, we
adopt recent progress in representation learning to
learn category-context coherence model. It scales
better than existing approaches on large knowledge
base and performs comparison in the latent semantic
space. Combining these two techniques, our model
consistently outperforms all existing more sophisti-
cated collective approaches in our experiments.
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Abstract
Web search can be enhanced in powerful ways if to-

ken spans in Web text are annotated with disambiguated
entities from large catalogs like Freebase. Entity anno-
tators need to be trained on sample mention snippets.
Wikipedia entities and annotated pages offer high-quality
labeled data for training and evaluation. Unfortunately,
Wikipedia features only one-ninth the number of enti-
ties as Freebase, and these are a highly biased sample
of well-connected, frequently mentioned “head” entities.
To bring hope to “tail” entities, we broaden our goal to a
second task: assigning types to entities in Freebase but
not Wikipedia. The two tasks are synergistic: know-
ing the types of unfamiliar entities helps disambiguate
mentions, and words in mention contexts help assign
types to entities. We present TMI, a bipartite graphical
model for joint type-mention inference. TMI attempts
no schema integration or entity resolution, but exploits
the above-mentioned synergy. In experiments involving
780,000 people in Wikipedia, 2.3 million people in Free-
base, 700 million Web pages, and over 20 professional
editors, TMI shows considerable annotation accuracy im-
provement (e.g., 70%) compared to baselines (e.g., 46%),
especially for “tail” and emerging entities. We also com-
pare with Google’s recent annotations of the same corpus
with Freebase entities, and report considerable improve-
ments within the people domain.

1 Introduction
Thanks to automatic information extraction and se-
mantic Web efforts, keyword search over unstruc-
tured Web text is rapidly evolving toward entity-
and type-oriented queries (Guo et al., 2009; Pan-
tel et al., 2012) over semi-structured databases such
as Wikipedia, Freebase, and other forms of Linked
Data.

A key enabling component for such enhanced
search capability is a type and entity catalog. This
includes a directed acyclic graph of types under the
subTypeOf relation between types, and entities at-
tached to one or more types via instanceOf edges.
∗soumen@cse.iitb.ac.in

YAGO (Suchanek et al., 2007) provides such a cat-
alog by unifying Wikipedia and WordNet, followed
by some cleanup.

Another enabling component is an annotated cor-
pus in which token spans (e.g., the word “Albert”)
are identified as a mention of an entity (e.g., the
Physicist Einstein). Equipped with suitable indices,
a catalog and an annotated corpus let us find “sci-
entists who played some musical instrument”, and
answer many other powerful classes of queries (Li
et al., 2010; Sawant and Chakrabarti, 2013).

Consequently, accurate corpus annotation has
been intensely investigated (Mihalcea and Csomai,
2007; Cucerzan, 2007; Milne and Witten, 2008;
Kulkarni et al., 2009; Han et al., 2011; Ratinov et
al., 2011; Hoffart et al., 2011). With two exceptions
(Zheng et al., 2012; Gabrilovich et al., 2013) that we
discuss later, public-domain corpus annotation work
has almost exclusively used Wikipedia and deriva-
tives, partly because Wikipedia provides not only a
standardized space of entities, but also reliably la-
beled mention text within its own documents, which
can be used to train machine learning algorithms for
entity disambiguation.

However, the high quality of Wikipedia comes
at the cost of low entity coverage (4.2 million)
and bias toward often-mentioned, richly-connected
“head” entities. Hereafter, Wikipedia entities are
called W . Freebase has fewer editorial controls, but
has at least nine times as many entities. This is par-
ticularly perceptible for people entities: one needs
to be relatively famous to be featured on Wikipedia,
but Freebase is less selective. Hereafter, Freebase
entities are called F .

As in any heavy-tailed distribution, even rela-
tively obsecure entities from F \W are collectively
mentioned a great many times on the Web, and in-
cluding them in Web annotation is critical, if entity-
oriented search is to impact the vast number of tail
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queries submitted to Web search engines.

Primary goal — corpus annotation: We have
thus established a pressing need to bootstrap from a
small entity catalog W (such as Wikipedia entities),
and a small reference corpus CW (e.g., Wikipedia
text) reliably annotated with entities from W , to a
much larger catalog F (e.g., Freebase), and an open-
domain large payload corpus C (e.g., the Web).

We can and will use entities in F ∩ W 1 in the
bootstrapping process, but the real challenge is to
annotate C with mentions m of entities in F \W .
Unlike for F ∩W , we have no training mentions for
F \W . Therefore, the main disambiguation signal
is from the immediate entity neighborhood N(e) of
the candidate entity e in the Freebase graph. I.e., if
m also reliably mentions some entity in N(e), then
e becomes a stronger candidate. Unfortunately, for
many “tail” entities e ∈ F \W , N(e) is sparse. Is
there hope for annotating the Web with tail entities?
Here, we achieve enhanced accuracy for the primary
annotation goal by extending it with a related sec-
ondary goal.

Secondary goal — entity typing: If we had avail-
able a suitable type catalog T with associated enti-
ties in W , which in turn have known textual men-
tions, we can build models of contexts referring to
types like chemists, sports people and politicans.
When faced with people called John Williams in
F \W , we may first try to associate them with types.
This can then help disambiguate mentions to specific
instances of John Williams in F \W . In principle,
useful information may also flow in the reverse di-
rection: words in mention contexts may help assign
types to entities in F \W . For reasons to be made
clear, we choose YAGO (Suchanek et al., 2007) as
the type catalog T accompanying entities in W .

Our contributions: We present TMI, a bootstrap-
ping system for solving the two tasks jointly. Apart
from matches between the context of m and entity
names in N(e), TMI combines and balances evi-
dence from two other sources to decide if e is men-
tioned at token span m, and has type t:

• a language model for the context in which enti-
ties of type t are usually mentioned

1With F=Freebase and W=Wikipedia, F ∩W ≈W but not
quite; W \ F is small but non-empty.

• correlations between t and certain path features
generated from N(e).

TMI uses a novel probabilistic graphical model for-
mulation to integrate these signals. We give a de-
tailed account of our design of node and edge po-
tentials, and a natural reject option (recall/precision
tradeoff).

We report on extensive experiments using YAGO
types, Wikipedia entities and text, Freebase en-
tities, and text from ClueWeb122, a 700-million-
page Web corpus. We focus on all people enti-
ties in Wikipedia and Freebase, and provide three
kinds of evaluation. First, we evaluate TMI on over
1100 entities in F ∩ W and 5500 snippets from
Wikipedia text, where it visibly improves upon base-
lines and a recently proposed alternative method
(Zheng et al., 2012). Second, we resort to exten-
sive manual evaluation of annotation on ClueWeb12
Web text with Freebase entities, by professional ed-
itors at a commercial search company. TMI again
clearly outperforms strong baselines, doing partic-
ularly well for nascent or tail entities. TMI im-
proves per-snippet accuracy, for some classes of
entities, from 46% to 70%, and pooled F1 score
from 66% to 73%. Third, we compare TMI an-
notations with Google’s FACC1 (Gabrilovich et al.,
2013) annotations restricted to people; TMI is sig-
nificantly better. Our annotations and related data
can be downloaded from http://www.cse.iit
b.ac.in/˜soumen/doc/CSAW/. To our knowl-
edge, this is among the first reports on extensive hu-
man evaluation of machine annotation for F \W on
a large Web corpus.

2 Related work

The vast majority of entity annotation work (Mi-
halcea and Csomai, 2007; Cucerzan, 2007; Milne
and Witten, 2008; Kulkarni et al., 2009; Han et al.,
2011; Ratinov et al., 2011; Hoffart et al., 2011) use
Wikipedia or derivative knowledge bases. (Ritter et
al., 2011) and (Zheng et al., 2012) are notable ex-
ceptions. (Ritter et al., 2011) use entity names for
distant supervision in POS tagging, chunking and
broad named entity typing in short tweets, which are
different from our goals.

Recently, others have investigated inferring types

2http://lemurproject.org/clueweb12/
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Fig. 1: Signal synergies. Three of the many people mentioned as “John Williams” on the Web are shown, with
Freebase MIDs. (a) Easy case where Freebase neighbors of 0ggbn2k match snippet and salient text, and type links are
also available. (b) No match exists between Freebase neighborhood and snippet, but type links help attach the snippet
to 03nmvfz. (c) Freebase provides no types, but we can provide types from YAGO based on snippet and salient text,
which also match neighbors of 0bhbqmm.

of emerging entities (related to our secondary goal).
In concurrent work, (Nakashole et al., 2013) pro-
pose integer linear program formulations for infer-
ring types of emerging entities from the way their
mentions are embedded in curated relation-revealing
phrases. (Lin et al., 2012) earlier approached the
problem using weight propagation in a bipartite
graph connecting unknown to known entities via
textual relation patterns. Both note that this can
boost mention disambiguation accuracy.

The closest work to ours is by (Zheng et al.,
2012): they use semisupervised learning to anno-
tate a corpus with Freebase entities. Like (Milne
and Witten, 2008), they depend on unambiguous
entity-mention pairs to bootstrap a classifier, then
apply it to unlabeled, ambiguous mentions, creating
more training data. They use a per-type language
model like us (§3.3), but this is used as a secondary
cause for (word) feature generation, supplementing
and smoothing entity-specific language models. In
contrast, we use a rigorous graphical model to com-
bine new signals, not depending on naturally unam-
biguous mentions. Finally, in the interest of fully
automated evaluation, they limit their experiments
to F ∩W and Wikipedia corpus, thus differing crit-
ically from our human evaluation on F and a Web

corpus.
(Gabrilovich et al., 2013) have recently released

FACC1: annotations of ClueWeb09 and ClueWeb12
with Freebase entities. Their algorithm is not yet
public. They report: “Due to the sheer size of the
data, it was not possible to verify all the automatic
annotations manually. Based on a small-scale hu-
man evaluation, the precision . . . is believed to be
around 80–85%. Estimating the recall is of course
difficult; however, it is believed to be around 70-
85%.” In §5, we will see that, for people entities,
TMI greatly increases recall beyond FACC1, keep-
ing precision unimpaired.

3 The three signals

Fig. 1 shows three Freebase entities mentioned as
“John Williams” in Web text, represented as nodes
with Freebase “MID”s e = 0ggbn2k, 03nmvfz,
and 0bhbqmm, embedded in their Freebase graph
neighborhoods. Owing to larger size and higher
flux, Freebase shows less editorial uniformity than
Wikipedia. This shows up in missing or non-
standard relation edges. Unlike YAGO, where
each entity is attached to one or more types, e =
0bhbqmm does not have a type link. Many people
have a link labeled profession, which is a second
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kind of type link. Entities like e = 0bhbqmm also
have small, uninformative graph neighborhoods.

Also shown are three mention contexts, each rep-
resented by the snippet immediately surrounding the
mention, and salient words from the documents con-
taining each snippet. (Salient words may be ex-
tracted as words that contribute the largest compo-
nents to the document represented as a TFIDF vec-
tor.) (a) shows a favorable but relatively rare case
where e = 0ggbn2k has reliable type links. We can-
not assume there will be a 1-to-1 correspondence be-
tween Freebase and YAGO types, but in §3.2 we will
describe how to learn associations between Freebase
paths around entities and their YAGO types. The
snippet and salient words show reasonable overlap
with N(e). In §3.4 we will describe features that
characterize such overlap. In (b), e = 03nmvfz
is reliably typed, but there is no direct match be-
tween N(e) and the snippet. Nevertheless, the snip-
pet can be reliably annotated with 03nmvfz if we
can learn associations between types American foot-
ball player and Athlete (or their approximate YAGO
target types) and several context/salient words (see
§3.3). In (c), e = 0bhbqmm is not reliably typed.
However, there are matches between N(e) and con-
text/salient words. Once the snippet-to-entity asso-
ciation is established, it is easier to assign 0bhbqmm
to suitable types in YAGO.

In this section we will first describe our design of
the target type space, and then the tree signals that
will be used in our joint inference.

3.1 Designing the target type space

By typing two people called John Williams as ac-
tor and footballer, we may also disambiguate their
mentions accurately. Therefore, we need a well-
organized type space where the types

• collectively cover most entities of interest,
• offer reasonable type prediction accuracy, and
• can be selected algorithmically, for any do-

main.

Wikipedia and Freebase have many obscure types
like “people born in 1937” or “artists from On-
tario” which satisfy none of the above requirements.
YAGO, on the other hand, has a clean hierarchy of
over 200,000 types with broad coverage and fine dif-
ferentiation. Most entities in F \ W can be accu-

if t has < Nlow = 5000 member entities then
reject t from our type space
return

if t has > Nhigh = 25000 member entities then
for each immediate child t′ ⊂ t do

call ChooseTypes(t′)
else

accept t into our type space (but do not recurse)

Fig. 2: Procedure ChooseTypes(t).

rately attached to one or more YAGO types.
YAGO lists around 37,000 subtypes of person.

To satisfy the three requirements above, we called
ChooseTypes(person) (Fig. 2); this resulted in
130 suitable types being selected. These directly
covered 80% of Freebase people; the rest could
mostly be attached to slightly over-generic types
within our selection.

3.2 Predicting types from entity neighborhood

There will generally not be a simple mapping be-
tween Freebase and target types. E.g., entity e
may be known as a Mayor in Freebase, but the
closest YAGO type may be Politician. Edge and
node labels from the Freebase graph neighborhood
N(e) can embed many clues for assigning e a target
type. E.g., e = 03nmvfz may have an edge labeled
playedFor to a node representing the Wikipedia en-
tity Pittsburgh Steelers, which has a type
link to NFL team. This two-hop link label sequence
would repeat for a large number of players, and can
be used as a feature in a classifier.
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Fig. 3: Freebase has small diameter despite graph thin-
ning. Prune1 removes paths from the whole Free-
base graph that pass through nodes /user/root and /com-
mon/topic, Prune2 also removes node /people/person,
and Prune3 removes several other high degree hubs.

Two further refinements are needed to make this
work. First, we have to collect path labels around
negative instances we well, and submit positive and
negative path labels to a binary classifier to can-
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cel the effect of frequent but non-informative path
types. Second, indiscriminate expansion around e is
infeasible because the Freebase graph has very small
diameter. Even after substantial pruning, paths of
length 3 and 4 reach over 40% and 96% of all nodes
(Fig. 3). This increases computational burden and
floods us with noisy and spurious paths. We rem-
edy the problem using an idea from PathRank (Lao
and Cohen, 2010). Instead of trying to explore all
paths originating (or terminating) at e, where e may
or may not belong to a target type, we focus on paths
between e and other known members of the target
type.

3.3 Type “language model”
To exploit the second signal, shown in Fig. 1(b), we
need to model the association between target YAGO
types and the mention contexts of Wikipedia entities
known to belong to those types. This model compo-
nent is in the same spirit as (Zheng et al., 2012).

For each target YAGO type t, we sample positive
entities e ∈ F ∩W , and for each e, we collect, from
Wikipedia annotated text, a corpus of snippets men-
tioning e. We remove the mention words and retain
the rest. We also collect salient words from the en-
tire Wikipedia document containing the snippet, as
shown in Fig. 1.

At this point each target type is associated with
a “corpus” of contexts, each represented by snippet
words. We compute the IDF of all words in this
corpus3, and then represent each type as a TFIDF
vector (Salton and McGill, 1983). A test context is
turned into a similar vector, and its score with re-
spect to t is the cosine between these two vectors.
This simple approach was found superior to building
a more traditional smoothed multinomial unigram
model (Zhai, 2008) for each type. Given the output
of this component feeds into an outer discriminative
inference mechanism, a strict probabilistic model is
not necessary.

3.4 Entity neighborhood match with snippet
The third signal is a staple of any disambiguation
work: match the occurrence context against the
neighborhood in the structured representation. In
word sense disambiguation (WSD), support for as-
signing a word in context to a synset comes from

3Generic IDF from Wiki text does not work.

matches between, say, other words in the context and
the WordNet neighborhood of the proposed synset.
As in WSD, many approaches to Wikification mea-
sure some local consistency between a mention m
and the neighborhood N(e) of a candidate entity e.
N(e) is again limited by a maximum path length `.
From snippetmwe extract all phrases P (m) exclud-
ing the mention words. For each phrase p ∈ P (m),
if p occurs at least once4 in any node of N(e), then
we accumulate a credit of |p|

∑
w∈p IDF(w), where

w ranges over words in p, IDF(w) is its inverse
document frequency (Salton and McGill, 1983) in
Wikipedia, and |p| is the length of the phrase. This
rewards exact phrase matches.

e

t t’

m2m1

e’

Mentions in context

Candidate
entities

Candidate types

Fig. 4: Tripartite assignment problem.

4 Unified model
Figure 4 abstracts out the signals shown in Figure 1
into a tripartite assignment problem. Each mention
likem1 has to choose at most one entity from among
candidate aliasing entities like e and e′. Each entity
e ∈ F \W has to choose one type (for simplicity we
ignore zero or more than one types as possibilities)
from candidates like t and t′.

The configuration of thick (green) edges should
be preferred to alternative dotted (red) edges under
these considerations:

• There is high local affinity or compatibility be-
tween e and t, based on associations between t
and N(e) as discussed in §3.2.

• There are better textual matches between N(e)
and m1, as compared to N(e′) and m1.

• In aggregate, the non-mention tokens in the
context of m1,m2 (shown as gray horizontal
lines) match well the language model associ-
ated with mentions of entities of type t (rather
than t′).

4Incorporating term frequency often polluted the score.
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Potential of edge
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Fig. 5: Illustration of the proposed bipartite graphical model, with tables for node and edge potentials and synthetic
⊥-entity nodes to implement the reject option.

We now present a unified model that combines the
signals and solves the two proposed tasks jointly.
We model two kinds of decision variables, which
will be represented by nodes in a graphical model.
Associated with each entity e ∈ F \ W there is a
hidden type variable (node) Te, which can take on a
value from (some subset of) the type catalog T . As-
sociated with each mention m (along with its snip-
pet context and all its observable features) there is
a hidden entity variable Em, which can take on val-
ues from some subset of entities. (For simplicity, we
assume that entities in F ∩W have already been an-
notated in the corpus, and no m of interest mentions
such entities.)

We will model the probability of a joint assign-
ment of values to Te, Em as

log Pr(~t,~e) = α
∑

e

φe(te) + β
∑
m

φm(em)

+
∑
e,m

ψe,m(te, em)− const., (1)

where node log potentials are called φe, φm, edge
log potentials are called ψe,m, and α, β are tuned
constants. The log partition function, written
“const.” above, will not be of interest in infer-
ence, where we will seek to choose ~t,~e to maximize
Pr(~t,~e). In this section, we will design the node and
edge log potentials.

4.1 Node log potentials

Each node Te is associated with a node potential ta-
ble, mapping from possible types in Te to nonneg-
ative potentials. The potential values are supplied
from §3.2 as the classifier output scores.

Each node Em is associated with a node poten-
tial table, mapping from possible entities in Em to
nonnegative potentials. The potential values are sup-
plied from §3.4.

4.2 Edge log potentials

Suppose we assign Em = e, and Te = t. Then
we would like the non-mention context words of
m to be highly compatible with the type “language
model” developed in §3.3.

If e is among the set of values Em that Em can
take, then nodes Te and Em are joined by an edge.
This edge is associated with an edge potential table
ψe,m : Te×Em → R+. ψe,m(·, e′) will be set to zero
(cells shaded gray in Fig. 5) when e 6= e′. ψe,m(t, e)
is set to the cosine match score described in §3.3.

4.3 The reject (a.k.a. null, nil, NA, ⊥) option

An algorithm may reject many snippets, i.e., refrain
from annotating them. This could be because the
snippet mentions an entity outside F (and outside
W ), or the system wishes to ensure high precision at
some cost to recall.

Rejection is modeled by adding, for each snippet
m, a pseudo or “null” entity⊥m (also called “no an-
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notation” NA, null or nil in the TAC-KBP5 commu-
nity). For simplicity, we assume that ⊥m and ⊥m′

are incomparable or distinct for m 6= m′. I.e., we
do not offer to cluster mentions of unknown enti-
ties. These remain separate, unconnected nodes in
the (augmented) Freebase graph.

If we choose Em = ⊥m, we get zero credit for
matching non-mention text inm toN(⊥m), because
N(⊥m) = ∅ and §3.4 has no information to con-
tribute. I.e., we set φm(⊥m) = 0. In general,
φm(·) ≥ 0, so ⊥m gets the lowest possible credit
(but this will be modified shortly).

There is also a type variable T⊥m . To what type
should we assign “entity” ⊥m? Because ⊥m has no
connections in the Freebase graph, no hint can come
from §3.2. Put differently, φ⊥m(t) will be constant
(say, zero) for all snippets m and types t.

Even if we do not know the entity mentioned in
m, the non-mention text in m will have differential
affinity to different types, obtained from §3.3. This
means that, if Em = ⊥m is chosen, T⊥m will be
arg maxt ψ⊥m,m(t,⊥m), which explains the non-
mention words in m using the best available lan-
guage model associated with some type. For a dif-
ferent entity Em = e0 and type Te0 = t assign-
ment to win, αφm(e0)+βφe0(t)+ψe0,m(t, e0) must
exceed the null score above. This provides a us-
able recall/precision handle: we modify φm(⊥m) to
a tuned number; making it smaller generally gives
higher recall and lower precision.

4.4 Inference and training

The goal of collective inference will be to assign a
type value to each Te and an entity value to each
Em. We seek the maximum a-posteriori (MAP) la-
bel, for which we use tree-reweighted message pass-
ing (TRW-S) (Kolmogorov, 2006). Our graph has
plenty of bipartite cycles, so inference is approxi-
mate. Given the sparsity of data, we preferred to
delexicalize our objective (1), i.e., avoid word-level
features and pre-aggregate their signals via time-
tested aggregators (such as TFIDF cosine). As a re-
sult we have only two free parameters α, β in (1),
which we tune via grid search. A more principled
training regimen is left for future work.

5http://www.nist.gov/tac/2013/KBP/

5 Experiments

We focus our experiments on one broad type of en-
tities, people, that is more challenging for disam-
biguators than typical showcase examples of distin-
guishing (Steve) Jobs from employment and Apple
Inc. from fruit.

We report on three sets of experiments. In §5.1,
we restrict to entities from F ∩ W and Wikipedia
text, for which ground truth annotation is avail-
able. In §5.2, we evaluate TMI and baselines on
ClueWeb12 and entities from Freebase, not lim-
ited to Wikipedia. In §5.3, we compare TMI
with Google’s recently published FACC1 annota-
tions (Gabrilovich et al., 2013).

5.1 Reference corpus CW with F ∩W entities

Limited to people, |F | = 2323792, |W | = 807381,
|F \ W | = 1544942, and |F ∩ W | = 778850. It
is easiest to evaluate TMI and others on Wikipedia
entities. They have known YAGO types. Wikipedia
text has explicit (disambiguated) entity annotations.
For these reasons, the few known systems for
Freebase-based annotation (Zheng et al., 2012) are
evaluated exclusively on F ∩W .

5.1.1 Seeding and setup

People in F ∩W are known by one or more men-
tion words/phrases. From these, we collect mention
phrases along with the candidate entity set for each
phrase. The number of candidates is the phrase’s de-
gree of ambiguity. We sort phrases by ambiguity and
draw a sample over the ambiguity range. This gives
us seed phrases with representative ambiguity. Then
we collect all entities mentioned by these phrases.
Overall we collect about 1100 entities and 5500 dis-
tinct mentions.

Contrast this with (Zheng et al., 2012), who sam-
ple entities from much fewer than 130, and largely
well-separated types: professional athletes, aca-
demics, actors, films, books, hotels, and tourist at-
tractions. If there were only two namesakes, an ac-
tor and a politician, the politician disappears, leav-
ing a naturally unambiguous alias. I.e., (Zheng et
al., 2012) did not “complete” their entity sets with
aliased entities. For all these reasons, Z0 numbers
here are not directly comparable to those in their pa-
per.
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5.1.2 Tasks and baselines
The structure of TMI suggests two natural base-

lines to compare against it. TMI solves two tasks si-
multaneously: assign types to entities and entities to
snippets. So the first baseline, T0, is one that solves
the typing task separately, and the second, A0, does
snippet annotation separately. A third baseline, Z0,
from (Zheng et al., 2012) does only snippet annota-
tion; they do not consider typing entities.

While evaluating types output by TMI and T0
against ground truth, we may wish to assign partial
credit for overlapping types, e.g., athlete vs. soccer
player, because our types form an incomplete hierar-
chy. We use the standard “M&W” score of semantic
similarity between types (Milne and Witten, 2008)
for this.

As regards snippet annotation, Z0 (Zheng et al.,
2012) does not specify any mechanism for han-
dling ⊥. Therefore we run two sets of experiments.
In one we eliminate all snippets with ground truth
⊥. A0, and TMI are also debarred from returning ⊥
for any snippet. In the other, snippets marked ⊥ in
ground truth are included. A0 and TMI are enabled
to return ⊥, but Z0 cannot.

TMI A0 Z0
0/1 snippet accuracy 0.827 0.699 0.627

Fig. 6: Snippet annotation onCW corpus, F ∩W entities,
⊥ not allowed.

TMI A0 Z0
0/1 snippet accuracy 0.7307 0.651 0.622
Snippet precision 0.858 0.843 0.622
Snippet recall 0.777 0.692 0.639
Snippet F1 0.815 0.760 0.630

Fig. 7: Snippet annotation onCW corpus, F ∩W entities,
⊥ allowed.

5.1.3 Snippet annotation results
Fig. 6 shows snippet annotation accuracy (frac-

tion of snippets labeled with the correct entity) when
⊥ is not allowed as an entity. As two uninformed
refernces, uniform random choice gives an accuracy
of 0.423 and choosing the entity with the largest
prior gives an accuracy of 0.767. TMI is consid-
erably better than A0, which is better than Z0 and
the uninformed references. This is despite training
Z0’s per-type topic models not only on unambiguous
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Fig. 8: Bucketed comparison between TMI and baselines,
F ∩W , ⊥ allowed.

TMI T0
0/1 type accuracy 0.80 0.81
M&W type accuracy 0.82 0.83

Fig. 9: Type inference, CW corpus, F ∩W entities.

snippets, but also on a disjoint fraction ofF∩W , as a
surrogate for Wikipedia’s containment in Freebase.

Fig. 7 repeats the experiment while allowing ⊥.
Here, in 0/1 accuracy, ⊥ is regarded as just another
entity. Again, we see that TMI has a clear advantage.
Z0’s performance here is worse than in (Zheng et
al., 2012). This is explained by our much larger and
difficult-to-separate type system.

We disaggregate the summary results into buck-
ets, shown in Fig. 8. Each bucket covers a range of
degrees of entity nodes in Freebase, while roughly
balacing the number of snippets in each bucket. TMI
generally shows larger gains for low-degree buckets.

5.1.4 Type prediction results

We also compared the type inference accuracy of
TMI and T0; (Zheng et al., 2012) do not infer types.
The summary is in Fig. 9. Two uninformed baselines
are worth mentioning. Uniform random choice over
130 types gave only 2% accuracy. Chossing the type
with largest prior probability gave 28.2% accuracy.
TMI is much better, but offers no significant ben-
efit (or degradation) compared to T0. We verified,
partly by way of debugging, that there do exist enti-
ties e with small degree but a modest number of as-
signed snippets, for which snippet-to-N(e) matches
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angus mcdonald, chris robinson, christopher henry, elizabeth
cameron, george woods , henry barnes, jack scott, jeremy
robert, john sherman, leonard thomas, marc anthony, mitchell
donald, morrison mark, parker edward, richard andrew , simon
scott, stephen ross, stuart baron, tom clark, whitney john, austin
scott, barbara johnson, brian peterson, carlos rivero, david
berman, david johns, donald fraser, george davies, george fisher,
graham smith, john pepper, jonathan edwards, kevin brown,
kevin hughes, matt johnson, michael davidson, nancy johnson,
paul holmes, pedro martins, peter frank, peter mitchell, peter
mullen, robert stern, roger edwards, stuart walker, terry evans,
tony angelo, tony ward, william jarvis, william sampson

Fig. 10: Seed mentions for confusion clusters for Web
corpus C and entities in F .

provide a boost to type prediction accuracy (about
50%), as compared to T0 (about 20% for these in-
stances). Therefore, the flow of information between
type and entity assignments is, in principle, bidirec-
tional, in the regime of such entities.

5.2 Payload corpus C with entities in F

Recall our main goal is to annotate payload cor-
pus C with entities in all of F . Experience with
F ∩W and CW may not be representative of F and
C. Entities in F \W may not come with reference
mentions, and their type and entity neighborhoods
may be sparse. Furthermore, compared to the closed
world of F ∩W , evaluating TMI and baselines over
C and F \ W is challenging. Entities in F \ W
do not have ground truth types in the type catalog
T (here, YAGO), nor snippets labeled by humans as
mentioning them. Therefore, we need human edi-
torial judgment, which is scarce. Even though TMI
can be applied at Web scale, the scale if evaluation
is limited by editorial input.

5.2.1 Seeding and data setup
There are about 2.3 million Freebase entities con-

nected to /people/person via type links. Similar to
§5.1.1, we chose phrases (Fig. 10) with diverse de-
gree of ambiguity (Fig. 11), to seed confusion clus-
ters. Then we completed the clusters by including
aliased entities, as before, so as not to artifically re-
duce the degree of ambiguity. Note that entities in
W can and do contend with entities in F \W . The
cluster size distribution is shown in Fig. 12. Limited
by editorial budget, we finished with 634 entities,
238 distinct aliases and 4,500 snippets.

We used the 700-million-page ClueWeb12 Web
corpus. All phrases in the expanded clusters are
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Fig. 12: Confusion cluster size distribution for Web cor-
pus C.

loaded into a trie used by a map-reduce job to ex-
tract documents, then snippets, from the corpus.
Some phrases in Figs. 10 and 11 have overwhelm-
ing numbers of pages with matches. In produc-
tion, we naturally want all of them to be annotated.
But human editorial judgment being the bottleneck,
we sampled 50% or 50,000 snippets, whichever was
smaller. Starting with about 752,450 pages, we ran
the Stanford NER (Finkel et al., 2005) to mark per-
son spans. Pages with fewer than five non-person to-
kens per person were discarded; this effectively dis-
carded long list pages without any informative text
to disambiguate anyone, and left us with 574,135
pages. From these we collected 304,309 snippets
where the mention phrase is marked by the NER as
a person. Each seed phrase leads to one cluster on
which TMI and A0 are run. Note that ⊥ must be
allowed on the open Web.

5.2.2 Editorial judgment
Finally, for each algorithm, about 634 entity-type

and about 4500 snippet-entity assignments are ran-
domly sampled and sent to 20 editors in a commer-
cial search engine company, who judged each as-
signment as correct or incorrect, without knowing
which algorithm produced the annotation, to avoid
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TMI A0
entity

0/1 accuracy .714 .562
Pooled recall .764 .869
Precision .714 .562
F1 .738 .683

e
∈
W

(0
/1

ac
c.

)

e
∈
F
\
W

(0
/1

)

TMI .75 .62
A0 .65 .42

Fig. 13: Snippet summary for F and payload corpus C.

bias. Because the editors are trained professionals
(unlike Mechanical Turks), we increased our evalu-
ation coverage by having each type or entity assign-
ment reviewed by one editor.

Pooling: Ideally, editors can be asked to find the
best type or entity for each entity or snippet, but,
given the size and diversity of Freebase, the cogni-
tive burden would be unacceptable. In the Wikipedia
corpus CW , a snippet marked⊥ (no entity) by an al-
gorithm can be judged a loss of recall if Wikipedia
ground truth annotates it with an entity. Unfortu-
nately, this is no longer practical for Web corpus C,
because 8,217 snippets marked ⊥ would have to be
manually inspected and compared with a large num-
ber of candidate entities in Freebase. Therefore, we
adopt pooling as in TREC. (Although the pool is
small, A0 has very high recall.) Recall is evaluated
with respect to the union of snippets annoted with a
non-⊥ entity by at least one competing algorithm,
with agreement in case of more than one.

0/1 Type accuracy: Editors judged each pro-
posed type as correct or not. Unlike in §5.1, where
the true and proposed types could be compared via
M&W (Milne and Witten, 2008), they could not be
asked to objectively estimate relatedness between
types. Therefore we present only their reported post-
hoc 0/1 accuracy for types: T0 and TMI have 0/1
type accuracy of 0.828 and 0.818.

5.2.3 Snippet annotation results
Given the large gap between TMI and Z0 in the

easier setup in §5.1, we no longer consider Z0, and
instead focus on TMI vs. A0. The summary com-
parison of A0 vs. TMI is shown in Fig. 13. Here
TMI’s absolute gains in 0/1 accuracy and F1 are
even larger than in §5.1. To understand TMI’s per-
formance across a diversity of Freebase entity nodes
e, as a function of 1. the size and richness of N(e),
and 2. the number of snippets claimed to mention e,
we disaggregate the data of Fig. 13 into buckets of
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Fig. 14: 0/1 accuracy and F1 for snippets, payload corpus
C and entities in F .

Snippet label judgements %
TMI ok, FACC1 ok, neither ⊥ 22
TMI ok, FACC1 wrong, neither ⊥ 6
TMI6= ⊥ ok, FACC1=⊥ wrong 40
TMI6= ⊥ wrong, FACC1=⊥ 23
TMI wrong, FACC1 wrong, neither ⊥ 2
TMI= ⊥ wrong, FACC16= ⊥ correct 4
TMI= ⊥, FACC16= ⊥, wrong 3
(TMI= ⊥, FACC1= ⊥, not judged) -

Fig. 15: TMI vs. FACC1 comparison.

consecutive degrees, roughly balancing the number
of snippets per bucket, as shown in Fig. 14. At the
very low end of almost disconnected entity nodes,
no algorithm does very well, because these entities
are also hardly ever mentioned. When the entity is
popular and well-connected, TMI’s benefits are rela-
tively modest. TMI’s gains are best in the mid-range
of degrees. The gap narrows for large-degree nodes,
which is expected.

5.3 Comparison with FACC1

After collecting our pool of snippets as in §5.2.2,
we consulted FACC1 (Gabrilovich et al., 2013), and
passed on FACC1 annotations to our editors. As be-
fore, the identity of the algorithm was concealed.
Results are shown in Fig. 15. In a large 40% of
cases, TMI labels correctly while FACC1 backs off.
The converse, where FACC1 backs off and TMI
makes a mistake, is about half as frequent. These
preliminary numbers suggest that TMI is able to
push recall beyond FACC1 while also giving better
precision.
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6 Conclusion
We presented a formal model for bootstrapping from
YAGO types and entities annotated in Wikipedia to
two tasks, 1. annotating Web snippets with Freebase
entities, and 2. associating Freebase entities with
YAGO types. We presented TMI, a system to solve
the two tasks jointly. Experiments show that TMI’s
snippet annotation accuracy, especially for relatively
weakly-connected Freebase entities, is superior to
baselines. We aim to extend from people to all major
Freebase categories, and larger Web crawls.

Acknowledgment: We are grateful to Shrikant
Naidu, Muthusamy Chelliah, and the editors from
Yahoo! for their generous support. Shashank Gupta
helped process FACC1 data.
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Abstract

A large number of Open Relation Extrac-
tion approaches have been proposed recently,
covering a wide range of NLP machinery,
from “shallow” (e.g., part-of-speech tagging)
to “deep” (e.g., semantic role labeling–SRL).
A natural question then is what is the trade-
off between NLP depth (and associated com-
putational cost) versus effectiveness. This pa-
per presents a fair and objective experimental
comparison of 8 state-of-the-art approaches
over 5 different datasets, and sheds some light
on the issue. The paper also describes a novel
method, EXEMPLAR, which adapts ideas from
SRL to less costly NLP machinery, resulting
in substantial gains both in efficiency and ef-
fectiveness, over binary and n-ary relation ex-
traction tasks.

1 Introduction

Open Relation Extraction (ORE) (Banko and Et-
zioni, 2008) has become prevalent over traditional
relation extraction methods, especially on the Web,
because of the intrinsic difficulty in training indi-
vidual extractors for every single relation. Broadly
speaking, existing ORE approaches can be grouped
according to the level of sophistication of the NLP
techniques they rely upon: (1) shallow parsing, (2)
dependency parsing and (3) semantic role labelling
(SRL). Shallow methods annotate the sentences with
part-of-speech (POS) tags and the ORE approaches
in this category, such as ReVerb (Fader et al., 2011)
and SONEX (Merhav et al., 2012), identify rela-
tions by matching patterns over such tags. Depen-
dency parsing gives unambiguous relations among

each word in the sentence, and the ORE approaches
in this category such as PATTY (Nakashole et al.,
2012), OLLIE (Mausam et al., 2012), and TreeK-
ernel (Xu et al., 2013) identify whole subtrees con-
necting the relation predicate and its arguments. Fi-
nally, semantic annotators, such as Lund (Johans-
son and Nugues, 2008) and SwiRL (Surdeanu et al.,
2003), add roles to each node in a parse tree, en-
abling ORE approaches that identify the precise con-
nection between each argument and the predicate in
a relation, independently.

The first contribution of the paper is an objec-
tive and fair experimental comparison of the state-
of-the-art in ORE, on 5 datasets with varying de-
gree of “difficulty”. Of these, 4 datasets were an-
notated manually, covering both well-formed sen-
tences, from the New York Times (NYT) and the
Penn Treebank, as well as mixed-quality sentences
from a popular Web corpus. A much larger corpus
with 12,000 sentences from NYT, automatically an-
notated is also used. Another experiment focuses
on n-ary relation extractions separately. The results
show, as expected, that the three broad classes above
are separated by orders of magnitude when it comes
to throughput. Shallow methods handle ten times
more sentences than dependency parsing methods,
which in turn handle ten times more sentences than
semantic parsing methods. Nevertheless, the cost-
benefit trade-off is not as simple; and the higher
computation cost of dependency or semantic parsing
does not always pays off with higher effectiveness.

The second contribution of the paper is a new
ORE method, called EXEMPLAR, which applies a
key idea in semantic approaches (namely, to iden-
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tify the precise connection between the argument
and the predicate words in a relation) over a depen-
dency parse tree (i.e., without applying SRL). The
goal is to achieve the higher accuracy of the seman-
tic approaches at the lower computational cost of the
dependency parsing approaches. EXEMPLAR is a
rule-based system derived from a careful study of all
dependency types identified by the Stanford parser.
(Note, however, that other parsers can be used, as
shown later on.) EXEMPLAR works for both binary
and n-ary relations, and is evaluated separately in
each case. For binary relations, EXEMPLAR outper-
forms all previous methods in terms of accuracy, los-
ing to the shallow methods only in terms of through-
put. As for n-ary relations, EXEMPLAR outperforms
the methods that support this kind of extraction.

2 Related Work

Others have pointed out the importance of under-
standing the trade-off between “shallow” versus
“deep” NLP in ORE. One side of the argument fa-
vors shallow methods, claiming deep NLP costs or-
ders of magnitude more and provide much less dra-
matic gains in terms of effectiveness (Christensen et
al., 2011). The counterpoint, illustrated with a re-
cent analysis on a industrial-scale Web crawl (Dalvi
et al., 2012), is that the diversity with which infor-
mation is encoded in text is too high. Framing the
debate as “shallow” versus “deep” is perhaps con-
venient, but nevertheless an oversimplification. This
paper sheds more light into the debate by compar-
ing the state-of-the-art from three broad classes of
approaches.

Shallow ORE. TextRunner (Banko and Etzioni,
2008) and its successor ReVerb (Fader et al., 2011)
are based on the idea that most relations are ex-
pressed using few syntactic patterns. ReVerb, for ex-
ample, detects only three types of relations (“verb”,
“verb+preposition” and “verb+noun+preposition”).
Following a similar approach, SONEX (Merhav et
al., 2012) extends ReVerb by detecting patterns with
appositions and possessives.

ORE via dependency parsing. PATTY (Nakas-
hole et al., 2012) extracts textual patterns from sen-
tences based on paths in the dependency graph. For
all pairs of named entities, PATTY finds the shortest

Dataset Source # Sentences # Relations
WEB-500 Search Snippets 500 461
NYT-500 New York Times 500 150

PENN-100 Penn Treebank 100 51

Table 1: Binary relation datasets.

path in the dependency graph that connects the two
named entities. They limit the search to only paths
that start with one of these dependencies: nsubj, rc-
mod and partmod.

OLLIE (Mausam et al., 2012) also extracts rela-
tions between two entities. It applies pattern tem-
plates over the dependency subtree containing pairs
of entities. Pattern templates are learned automat-
ically from a large training set that is bootstrapped
from high confidence extractions from ReVerb. OL-
LIE merges binary relations that differ only in the
preposition and second argument to produce n-ary
extractions, as in: (A, “met with”, B) and (A, “met
in”, C) leading to (A, “met”, [with B, in C]).

The TreeKernel (Xu et al., 2013) method uses a
dependency tree kernel to classify whether candi-
date tree paths are indeed instances of relations. The
shortest path between the two entities along with the
shortest path between relational words and an entity
are used as input to the tree kernel. An expanded set
of syntactic patterns based on those from ReVerb are
used to generate relation candidates.

ORE via semantic parsing. Recently, a method
based on SRL, called SRL-IE, has shown that the ef-
fectiveness of ORE methods can be improved with
semantic features (Christensen et al., 2011). We im-
plemented our version of SRL-IE by relying on the
output of two SRL systems: Lund (Johansson and
Nugues, 2008) and SwiRL (Surdeanu et al., 2003).
SwiRL is trained on PropBank and expands upon the
syntactic features used in previous work. One of its
major limitations is that it is only able to label ar-
guments with verb predicates. Lund, on the other
hand, is based on dependency parsing and is trained
on both PropBank and NomBank, making it able to
extract relations with both verb and noun predicates.

3 Experimental Study

This section compares the effectiveness and effi-
ciency of the following ORE methods: ReVerb,
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Method
NYT-500 WEB-500 PENN-100

Time P R F Time P R F Time P R F
ReVerb 0.02 0.70 0.11 0.18 0.01 0.92 0.29 0.44 0.02 0.78 0.14 0.23
SONEX 0.04 0.77 0.22 0.34 0.02 0.98 0.30 0.45 0.04 0.92 0.43 0.59
OLLIE 0.05 0.62 0.27 0.38 0.04 0.81 0.29 0.43 0.14 0.81 0.43 0.56
EXEMPLAR[M] 0.08 0.70 0.39 0.50 0.06 0.95 0.44 0.61 0.16 0.83 0.49 0.62
EXEMPLAR[S] 1.03 0.73 0.39 0.51 0.47 0.96 0.46 0.62 0.62 0.79 0.51 0.62
PATTY 1.18 0.49 0.23 0.32 0.48 0.71 0.48 0.57 0.66 0.46 0.24 0.31
SwiRL 2.96 0.63 0.10 0.17 1.73 0.97 0.34 0.50 2.17 0.89 0.16 0.27
Lund 11.40 0.78 0.24 0.37 2.69 0.91 0.37 0.52 5.21 0.86 0.35 0.50
TreeKernel – – – – – – – – 0.85 0.85 0.33 0.48

Table 2: Results for the task of extracting binary relations. Methods are ordered by computing time per
sentence (in seconds). Best results for each column are underlined and marked in bold, for clarity.

SONEX, OLLIE, PATTY, TreeKernel, SwiRL,
Lund and our two variants of our method, EX-
EMPLAR, explained in detail in Appendix A: (1)
EXEMPLAR[S] uses the Stanford parser (Klein and
Manning, 2003) and (2) EXEMPLAR[M] uses the
Malt parser (Nivre and Nilsson, 2004).

3.1 Binary Relations – Setup

We start by evaluating the extraction of binary re-
lations. Table 1 shows our experimental datasets.
WEB-500 is a commonly used dataset, developed
for the TextRunner experiments (Banko and Etzioni,
2008). These sentences are often incomplete and
grammatically unsound, representing the challenges
of dealing with web text. NYT-500 represents the
other end of the spectrum with formal, well written
new stories from the New York Times Corpus (Sand-
haus, 2008). PENN-100 contains sentences from the
Penn Treebank recently used in an evaluation of the
TreeKernel method (Xu et al., 2013). We manu-
ally annotated the relations for WEB-500 and NYT-
500 and use the PENN-100 annotations provided by
TreeKernel’s authors (Xu et al., 2013).

We annotate each sentence manually as follows.
We identify exactly two entities and a trigger (a sin-
gle token indicating a relation–see Section A.3) for
the relation between them, if one exists. In addi-
tion, we specify a window of tokens allowed to be
in a relation, including modifiers of the trigger and
prepositions connecting triggers to their arguments.
For each sentence annotated with two entities, a sys-
tem must extract a string representing the relation
between them. Our evaluation method deems an ex-
traction as correct if it contains the trigger and al-

lowed tokens only.
In our annotated sentences, entities are enclosed

in triple square brackets, triggers and enclosed in
triple curly brackets and the window of allowed to-
kens is defined by arrows (“--->” and “<---”),
as in this example:

I’ve got a media call about
[[[ORG Google]]] --->’s
{{{acquisition}}} of<--- [[[ORG
YouTube]]] --->today<---.

where “Google” and “YouTube” are entities of the
type organization, “acquisition” is the trigger and the
allowed tokens are “acquisition”, “’s” and “of”. We
include time and location modifiers (e.g., “today”,
“here”) in the list of allowed tokens since OLLIE ex-
tracts them as part of the relation. OLLIE’s extrac-
tions may also include auxiliary verbs and preposi-
tions that are not present in the original sentence. To
be fair with OLLIE, we remove auxiliary verbs and
prepositions from OLLIE extractions.

Our benchmarks are available upon request.

Ensuring entities are recognized properly.
Since every method uses a different tool to recog-
nize entities, we try to ensure every method is able
to recognize the entities marked by our annotators.
We replace the original entities by a single word,
preventing any system from recognizing only part
of an entity. Entities are replaced by “Europe” and
“Asia”, since we empirically found that, for 99.7%
of the sentences in our experiment, all methods
were able to recognize “Europe” and “Asia” as
entities (or nouns, for systems that do not use a NER
tool). In addition, we did not find any occurrence of
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“Europe” and “Asia” in the original sentences that
could conflict with our entity placeholders.

For methods that extract relations between noun
phrases (ReVerb, OLLIE, SwiRL and Lund), there
is the additional task of identifying whether a
noun phrase containing additional words surround-
ing “Europe” and “Asia” is still a reference to the an-
notated entity. For example, “the beautiful Europe”
refers to the entity, while “Europe’s enemy” does
not. In our evaluation, we ignore noun phrases that
do not reference the annotated entity. For SwiRL
and Lund, we ignore any noun phrase that do not
present “Europe” or “Asia” as its head word. For
ReVerb and OLLIE, we ignore noun phrases that do
not contain these words in the end of the phrase.

Metrics. Our evaluation focuses on sentence-level
extractions. Therefore, we only apply the steps of
each method that perform this task. Additional steps
to merge relations and remove infrequent relations
are not applied. In addition, we assume there is
only one relation between a pair of entities in a sen-
tence. The number of entity pairs with more than
one relation was insignificant in our datasets (less
than 0.5%).

The metrics used in this analysis are precision (P),
recall (R) and f-measure (F), defined as usual:

P =
# correct

# extractions
, R =

# correct
# relations

, F =
2PR

P + R

where “# correct” is the number of extractions
deemed as correct.

We also measure the total computing time of each
method, excluding initialization or loading any li-
braries or models in memory. To ensure a fair com-
parison, we make sure each method runs in a single-
threaded mode, thus utilizing a single computing
core at all times.

3.2 Binary Relations – Results

Table 2 presents the results for our experiment with
binary relations. WEB-500 turned out to contain the
easiest sentences as evidenced by the precision of
all methods in this dataset. This is because WEB-
500 sentences were collected by querying a search
engine with known relation instances. The other
two datasets, on the other hand, contain randomly
chosen sentences. Although WEB-500 is a popular
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dataset, it perhaps does not represent the challenges
found in web text.

We were unable to run TreeKernel for NYT-500
and WEB-500 for lack of training data. We ran
TreeKernel, as trained by its authors, on the same
test set used in their paper (Xu et al., 2013).

Comparing methods based on effectiveness (f-
measure) or efficiency (computational cost) alone
can be misleading. To do so, we compare methods
in terms of dominance. We say method A dominates
method B if A is: (1) more effective and as efficient
as B; (2) more efficient and as effective as B; or (3)
both more effective and more efficient than B. The
methods that are not dominated by any other form
the state-of-the-art.

Figure 1 plots the effectiveness and efficiency of

450



all methods, averaged over all datasets (TreeKernel
was not included due to missing results). For effi-
ciency, there is a clear separation of approximately
one order of magnitude among methods based on
shallow parsing (ReVerb and SONEX), dependency
parsing (OLLIE, EXEMPLAR[M], EXEMPLAR[S],
and PATTY) and semantic parsing (SwiRL and
Lund). The lines in the plot identify the state-of-
the-art before (dashed) and after (solid) EXEMPLAR.
(Note: Although not clear in the figure, OLLIE and
Lund are dominated by SONEX as they tie in terms
of effectiveness.)

In terms of efficiency, EXEMPLAR[M] and EX-
EMPLAR[S] closely match OLLIE and PATTY, re-
spectively, since they use the same dependency
parsers. EXEMPLAR outperforms both systems by
covering a larger number of relational patterns. This
is possible because EXEMPLAR looks at each argu-
ment separately, as opposed to the whole subtree
connecting two arguments. As it turns out, this de-
sign choice greatly simplifies the task of designing
good patterns.

The poor performance of PATTY is due to its
rather permissive sentence-level extraction of rela-
tions, which looks at the shortest path between argu-
ments. PATTY relies on redundancy of extractions
to normalize the produced relations in order to re-
cover from mistakes done in the sentence-level.

Figure 2 illustrates the dominance relation dif-
ferently, using precision versus recall. Again, the
dashed line shows the previous state-of-the-art, and
the solid line shows the current situation. SONEX
dominates PATTY and Lund, since they tied in
recall. OLLIE, however, achieved greater recall
than SONEX. Somewhat surprisingly, EXEMPLAR

presents 44% more recall than the more sophisti-
cated Lund, at a close level of precision. This can be
explained by Lund’s dependency on training data,
which contains only a subset of all possible pred-
icates and roles. The importance of relations trig-
gered by nouns is illustrated by the higher recall
of SONEX and Lund when compared, respectively,
to ReVerb and SwiRL, similar methods that handle
verb triggers only.

3.3 Binary Relations – Discussion
Differences in annotation. It is worth noting
some differences between our annotations (WEB-

500 and NYT-500) and the annotations from PEN-
100. The first difference concerns the definition
of an entity. Consider the following sentence from
PEN-100:

“. . . says Leslie Quick Jr., chairman of the
Quick & Reilly discount brokerage firm.”

Unlike our annotation style, the original annotation
defines that “Leslie Quick Jr.” is the chairman of
“the Quick & Reilly discount brokerage firm”, as op-
posed to “Quick & Reilly”. While we consider the
words surrounding “Quick & Reilly” as apposition,
the original consider them as part of the entity.

Another difference concerns the definition of the
RE task. We assume that RE methods are respon-
sible for resolving co-references when necessary to
identify a relation. For example, consider the sen-
tence:

“It also marks P&G’s growing concern that its
Japanese rivals, such as Kao Corp., may bring
their superconcentrates to the U.S.”

According to our annotation style, there is a rela-
tion “rivals” between “P&G” and “Kao Corp.” in
this sentence. On the other hand, the original an-
notations for PENN-100 consider only the relation
between “Kap Corp.” and the pronoun “it”, leav-
ing the task of resolving the coreference between
“P&G” and “it” as a posterior step.

These differences in annotation illustrate the chal-
lenges of producing a benchmark for open relation
extraction.

Differences in evaluation methodology. A
sentence-level evaluation like ours focuses on each
sentence, separately. On the other hand, the evalua-
tions of SONEX, ReVerb, PATTY, TreeKernel and
OLLIE are performed at the corpus level. Corpus-
level evaluations consider an extracted relation as
correct regardless of whether a method was able
to identify one or all sentences that describe this
relation.

Creating a ground truth for corpus-level evalu-
ations is extremely hard, since one has to iden-
tify and curate (e.g., merge near-duplicate relations
and co-referential entities) all relations described
in a corpus. As a consequence, most corpus-level
evaluations perform only a manual inspection of a
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Method
NYT n-ary

Time P R F
EXEMPLAR[M] 0.11 0.94 0.40 0.56
OLLIE 0.12 0.87 0.14 0.25
EXEMPLAR[S] 0.88 0.92 0.39 0.55
SwiRL 2.90 0.94 0.30 0.45
Lund 9.20 0.95 0.36 0.53

Table 3: Results for n-ary relations.

method’s extractions. This manual inspection mea-
sures a method’s precision, but is unable to measure
recall.

Other differences in methodology are as follows.
PATTY’s evaluation concerns relation patterns (e.g.,
“wrote hits for”) and their type signatures (e.g.
Musician–Musician), as opposed to the relation it-
self, which includes its two arguments. The eval-
uations of ReVerb and OLLIE consider any noun
phrase as a potential argument, while the evaluations
of TreeKernel and SONEX consider named entities
only.

Due to the lack of a ground truth and differences
in evaluation methodology, results from different pa-
pers are usually not comparable. This work tries to
alleviate this problem by providing reusable annota-
tions that are flexible and can be used to evaluate a
wide range of methods.

3.4 n-ary Relations

The goal of this experiment is to evaluate the accu-
racy and performance of our method when extract-
ing n-ary relations (n > 2). For this experiment, we
manually tagged 222 sentences with n-ary relations
from the New York Times. Every sentence is anno-
tated with a single relation trigger and its arguments.

This experiment measures precision and recall
over the extracted arguments. For each sentence, a
system can extract a number of relations of the form
r(a1, a2, . . . , an), where r is the relation name and
ai is an argument. We only use the extracted rela-
tion whose name contains the annotated trigger, if
it exists. An argument of such relation is deemed a
correct extraction if it is annotated in the sentence;
otherwise, it is deemed incorrect.

Precision and recall are now defined as follows:

P =
# correct

# extracted args
, R =

# correct
# annotated args

.

Method
NYT 12K

Time P R F
ReVerb 0.01 0.84 0.11 0.19
OLLIE 0.02 0.85 0.22 0.35
SONEX 0.03 0.87 0.20 0.32
EXEMPLAR[M] 0.05 0.87 0.26 0.40
EXEMPLAR[S] 1.20 0.86 0.29 0.43
PATTY 1.29 0.86 0.18 0.30
SwiRL 3.58 0.87 0.16 0.27
Lund 11.28 0.86 0.21 0.33

Table 4: Results for binary relations automatically
annotated using Freebase and WordNet.

where “# correct” is the number of arguments
deemed as correct. There are 765 annotated argu-
ments in total. Table 3 reports the results for our
experiment with n-ary relations. EXEMPLAR[M]
shows a 6% increase in f-measure over Lund, the
second best system, while being almost two orders
of magnitude faster.

3.5 Automatically Annotated Sentences

The creation of datasets for open RE is an extremely
time-consuming task. In this section we investigate
whether external data sources such as Freebase1 and
WordNet2 can be used to automatically annotate a
dataset, leading to a useful benchmark.

Our automatic annotator identifies pairs of enti-
ties and a trigger of the relation between them. It
does so by first trying to link all entities to Wikipedia
(and consequently to Freebase, since Freebase is
linked to Wikipedia) by using the method proposed
by (Cucerzan, 2007). Given two entities appearing
within 10 tokens of each other in a sentence, our an-
notator checks whether there is a relation connect-
ing them in Freebase. If such a relation exists, the
annotator looks for a trigger in the sentence. A trig-
ger must be a synonym for the Freebase relation (ac-
cording to WordNet) and its distance to the nearest
entity cannot be more than 5 tokens.

We applied this method for the New York Times
and were able to annotate over 60,000 sentences
with over 13,000 distinct entity pairs. For our ex-
periments, we randomly selected one sentence for
each entity pair and separated a thousand for devel-
opment and over 12,000 for test.

1http://www.freebase.com
2http://wordnet.princeton.edu/
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Comparing with human annotators. Although
we expect our automatic annotator to be less accu-
rate than a human annotator, we are interested to
measure the difference in accuracy between them.
To do so, two authors of this paper looked at our de-
velopment set and marked each sentence as correct
or incorrect. The agreement (that is, the percent-
age of matching answers) between the humans was
82%. On other hand, the agreement between our
automatic annotator and each human was 71% and
72%. This shows that our annotator’s accuracy is not
too far below human’s level of accuracy.

Table 4 shows the results for the test sentences.
Both EXEMPLAR[S] and EXEMPLAR[M] outper-
formed all systems in recall, while keeping the same
level of precision.

4 Conclusion

This work presents a fair and objective evaluation of
several ORE methods, shedding some light on the
trade-offs between f-measure and computational as
well as precision and recall. Our evaluation is able
to assess the effectiveness of different methods by
specifying a trigger and a window of allowed tokens
for each relation.

EXEMPLAR’s promising results indicate that rule-
based methods may still be very competitive, espe-
cially if rules are applied to each argument sepa-
rately. Looking at the recall levels of different meth-
ods, we conjecture that EXEMPLAR outperforms
machine learning methods like Ollie and TreeKer-
nel, because its rules apply in cases not trained by
these methods. From a pragmatic point of view, EX-
EMPLAR is also preferable because it doesn’t require
training data.

An interesting research question is whether ma-
chine learning can be used to learn more rules for
EXEMPLAR in order to improve recall without loss
in precision. Rules could be learned from both de-
pendency parsing and shallow parsing, or just shal-
low parsing if computing time is extremely limited.

The next step for our experimental study is to
evaluate corpus-level extractions, where an auto-
matic annotator is essential due to the massive num-
ber of annotations required for even one relation, let
alone thousands.
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A EXEMPLAR

ORE methods must recognize relations from the text
alone. To do this, each method tries to model how
relations are expressed in English. Banko and Et-
zioni claim that more than 90% of binary relations
are expressed through a few syntactic patterns, such
as “verb” and “noun+preposition” (Banko and Et-
zioni, 2008). It is unclear, however, whether n-ary
relations follow.

This section presents a study focusing on how n-
ary relations (n > 2) are expressed in English, based
on 100 distinct relations manually annotated from a
random sample of 514 sentences in the New York
Times Corpus (Sandhaus, 2008).

Table 5 shows six syntactic patterns that cover
86% of our n-ary relations. These patterns are
slightly different from those used for binary rela-
tions. In binary relations, the pattern implicitly de-
fines the roles of the two arguments. For instance,
a relation “met with” indicates that the first argu-
ment is the subject and the second one is the object
of “with”. In order to represent n-ary relations, our
patterns do not contain prepositions, possessives or
any other word connecting the relation to the argu-
ment. For instance, the sentence “Obama met with
Putin in Russia” contains the relation “meet” along
three arguments: “Obama” (subject), “Putin” (object
of preposition with) and “Russia” (object of prepo-
sition in).

Relation types. A single relation can be repre-
sented in different ways using the patterns shown
in Table 5. For instance, the relation “donate” can
be expressed as an active verb (“donates”), passive
voice (“was donated by”) and normalized verb (“do-
nation”). In addition, an apposition+noun relation
can be expressed as an copula+noun relation by re-
placing apposition for the copula verb “be”. By
merging these patterns, we have that most relations
fall into one of the following types: verb, verb+noun
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Pattern Frequency Example
Verb 30% Hingis beat Steffi Graf in the Italian Open two weeks ago.
Apposition+noun 19% Jaden and Willow, the famous children of Will Smith, ...
Passive verb 14% Jumbo the Elephant was exported from Sudan to Paris.
Verb+noun 14% D-League will move its offices from Greenville to New York.
Copula+noun 5% Kimball was a Fulbright scholar at the University of Heidelberg.
Nominalized verb 4% Thousands died in Saddam Hussein’s attack on Halabja in 1988.

Table 5: Patterns representing 86% of the relations with three or more arguments. Frequencies collected
from 100 relations from the New York Times Corpus. Relation triggers are highlighted in bold.

Relation Type Freq. Example Variations
Verb 48% beat Pass. verb, nom. verb
Copula+noun 24% is son Apposition+noun
Verb+noun 14% sign deal –

Table 6: Relation types recognized by EXEMPLAR.

and copula+noun.
Table 6 present the relation types found through

our analysis. We developed EXEMPLAR to specifi-
cally recognize these relation types, including their
variations.

Argument roles. An argument role defines how
an argument participates in a relation. In ORE, the
roles for each relation are not provided and must also
be recognized from the text.

We use the following roles: subject,
direct object and prep object. An argu-
ment has a role prep object when its connected
to the relation by a preposition. The roles of
prepositional objects consist of their preposition and
the suffix “ object”, indicating that each preposition
corresponds to a different role. In the sentence
“Obama is the president of the U.S.”, “U.S.” is
an object of the preposition “of” and has the role
of object.

Multiple entities can play the same role in a
relation instance. For instance, in the sentence
“Obama and Putin discuss the Syria conflict”, both
“Obama” and “Putin” have the subject role. Fur-
thermore, some relations accept less roles than oth-
ers. Verb relations accept all three roles, while cop-
ula+noun and verb+noun relations accept subject
and prep object only.

Our roles are different from those used in SRL.
SRL roles carry semantic information across differ-
ent relations. This information is unavailable for
ORE systems, and for this reason, we rely on syn-
tactic roles. An open problem is to determine which

subject: “NFL”
relation: “approve new stadium”
of object: “Falcons”
in object: “Atlanta”

Figure 3: A relation instance extracted by EXEM-
PLAR for the sentence “NFL approves Falcons’ new
stadium in Atlanta”.

NFL approves Falcons' new stadium in Atlanta.

nsubj amod

poss

dobj prep_in

Figure 4: A input sentence after pre-processing. En-
tities are in bold, triggers are underline and arrows
represent dependencies.

syntactic roles correspond to the same semantic role
across different relations (Chambers and Jurafsky,
2011). However, this problem is out of the scope
of this work.

A.1 The method
EXEMPLAR takes a stream of textual documents and
extracts instances of n-ary relations as illustrated in
Figure 3.

A.2 Preprocessing
Given a document, EXEMPLAR extracts its syntactic
structure by applying a pipeline of NLP tools pro-
vided by the Stanford Parser (Klein and Manning,
2003). Our method converts the original text into
sentences, each containing a list of tokens. Each to-
ken is tagged with part of speech, lemma and de-
pendencies. EXEMPLAR also works with other de-
pendency parsers based on Stanford’s dependencies,
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such as the Malt parser (Nivre and Nilsson, 2004).
Figure 4 illustrates our running example where

each word is a token and arrows represent dependen-
cies among tokens. In this example, “stadium” de-
pends on “approves” and the arrow connecting them
can be read as “the direct object of approves is sta-
dium”.

Extracting Named Entities. EXEMPLAR em-
ploys the Stanford NER (Finkel et al., 2005) to rec-
ognize named entities. We consider these types of
entities: people, organization, location, miscella-
neous and date. Figure 4 shows entities highlighted
in bold.

A.3 Detecting triggers

After recognizing entities, EXEMPLAR detects re-
lation triggers. A trigger is a single token that in-
dicates the presence of a relation. A relation may
present one or two triggers. For instance, the rela-
tion in our running example has two triggers. EX-
EMPLAR also uses triggers to determine the relation
name, as discussed later.

A trigger can be any noun or verb that was not
tagged as being part of an entity mention. Other re-
quirements are enforced for each canonical pattern.

Verb relations. A verb relation is triggered by a
verb that does not include a noun as its direct object.
The name of the relation is the trigger’s lemma.

A noun must be a nominalized verb to be a trigger
for verb relations. To identify nominalized verbs,
EXEMPLAR checks if a noun is filed under the type
“event” in Wordnet’s Morphosemantic Database3.
Doing so may generate false positives; however,
EXEMPLAR has a filtering step to eliminate these
false positives, as discussed later.

The name of a relation triggered by a nominalized
verb is the trigger’s original verb (before nominal-
ization). For instance, “donation” triggers the rela-
tion “donate”.

Copula+noun relations. Only noun triggers are
accepted for copula+noun relations. The copula
used in the relation name can be a verb with cop-
ula dependency to the trigger, or the verb “be” for

3http://wordnetcode.princeton.edu/
standoff-files/morphosemantic-links.xls

appositions. The relation name is the concatena-
tion of the copula’s lemma and the trigger’s lemma
along its modifiers. For instance, the relation in the
sentence “Jaden and Willow, the famous children of
Will Smith” is “be famous child”.

Verb+noun relations. EXEMPLAR recognizes
two triggers for each verb+noun relation: a verb
and a noun acting as its direct object. The relation
name is defined by concatenating the verb’s lemma
with the the noun and its modifiers. In our running
example, “approves” and “stadium” trigger the
relation “approve new stadium”.

A.4 Detecting candidate arguments

After relation triggers are identified, EXEMPLAR

proceeds to detect their candidate arguments. For
this, we look at the dependency between each entity
and a trigger separately. EXEMPLAR relies on two
observations: (1) an argument is often adjacent to
a trigger in the dependency graph, and (2) the type
of the dependency can accurately predict whether an
entity is an argument for the relation or not.

Table 7 enumerates 12 types of dependencies
(from a total of 53) that often connect arguments and
triggers. EXEMPLAR identifies as a candidate argu-
ment every entity that is connected to trigger, as long
as their dependency type is listed in Table 7.

Our observations can be seen in our running ex-
ample. The entities “NFL” and “Atlanta” depends
on the trigger “approves” and “Falcons” depend on
the trigger “stadium”. Since their dependency types
are listed in Table 7, these entities are marked as can-
didate arguments.

A.5 Role Detection

EXEMPLAR determines the role of an argument
based on the trigger type (noun or verb), the type of
dependency between the trigger and argument and
the direction of the dependency. To take into ac-
count the dependency direction, we prefix each de-
pendency type with “>” when an entity depends on
the trigger and “<” when the trigger depends on the
entity.

Table 8 shows EXEMPLAR’s rules that assign
roles to arguments for each relation type. Rules are
triples (trigger , dependency , role) whose meaning
is as follows:
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Dependency Example
nsubj (Subject) Romeo loves Juliet
dobj (Direct Object) The Prince exiles Romeo
nsubjpass (Pass. Subj.) Romeo was seen in Verona
agent (Pass. Voice Obj.) Juliet is loved by Romeo
iobj (Indirect Object) Romeo gave Juliet a kiss
poss (Possessive) Romeo’s father Montague
appos (Apposition) Capulet, Juliet’s father,
amod (Adj. Modifier) The Italian city of Verona
nn (Noun Comp. Mod.) Romeo’s cousin Benvolio
prep * (Prep. Modifier) Romeo lived in Verona
partmod (Participal Mod.) Romeo, born in Italy
rcmod (Rel. Clause Mod.) Juliet, who loved Romeo

Table 7: Dependencies connecting arguments and
triggers. Arguments are in bold and triggers are un-
derlined.

If trigger type = trigger and dependency
type = dependency then assign role.

For example, the first rule in Table 8a specifies
that an argument must be assigned the role of a sub-
ject if this argument depends on a verb trigger and
the dependency type is >nsubj.

Rules are ordered by descending priority in Ta-
ble 8. In case several rules can be applied for an ar-
gument, we apply only the rule with higher priority.
If none of the rules applies to an argument, EXEM-
PLAR removes this argument from the relation.

Exceptions. There are three exceptions for the
rules above. The first exception concerns argu-
ments of verb relations whose dependency type is
<partmod or <rcmod. EXEMPLAR chooses the role
of direct object (as oppose to subject) for these ar-
guments when the verb trigger is in passive form.
For instance, in the sentence “Barbie, (which was)
invented by Handler”, “Barbie” has the role di-
rect object because “invented” is in passive form.

The second exception is for nominalized verbs
followed by the preposition “by”, such as in “Geor-
gian invasion by Russia”. Arguments of this type
of trigger with dependency types >nn, >amod or
>poss are assigned the role direct object.

Finallly, there is an exception for copula+noun
relations expressed with close appositions of the
form: “determiner entity noun”. An example is “the
Greenwood Heights section of Brooklyn”. Here,
EXEMPLAR assigns the subject role to the entity be-
tween the determiner and the noun.

Trigger Type Dependency Type Role
Verb >nsubj subject
Verb >agent subject
Verb <partmod subject
Verb <rcmod subject
Verb >dobj direct object
Verb >subjpass direct object
Verb >iobj to object
Verb >prep * prep object
Noun >prep by subject
Noun >amod subject
Noun >nn subject
Noun >poss subject
Noun >prep of direct object
Noun >prep * prep object

(a) Rules for verb relations.

Trigger Type Dependency Type Role
Noun >nsubj subject
Noun >appos subject
Noun <appos subject
Noun <partmod subject
Noun <rcmod subject
Noun >prep of of object
Noun >amod of object
Noun >nn of object
Noun >poss of object
Noun >prep * prep object

(b) Rules for copula+noun relations.

Trigger Type Dependency Type Role
Verb >nsubj subject
Verb >agent subject
Verb <partmod subject
Verb <rcmod subject
Verb >iobj to object
Verb >prep * prep object
Noun >amod of object
Noun >nn of object
Noun >poss of object
Noun >prep * prep object

(c) Rules for verb+noun relations.

Table 8: Rules for assigning roles to arguments.

A.6 Filtering Relations

The final step in EXEMPLAR is to remove incom-
plete relations. EXEMPLAR removes relations with
less than two arguments and relations that do not
present subject and direct object.

For EXEMPLAR, Lund and SwiRL, which extract
n-ary relations, our evaluation needs to convert n-ary
relations into binary ones. This is done by selecting
all pairs of arguments from a n-ary relation and cre-
ating a new (binary) relation for each of them. Bi-
nary relations containing two prepositional objects
(or equivalent for SRL systems) are removed.
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Abstract

This paper proposes a framework for automat-
ically engineering features for two important
tasks of question answering: answer sentence
selection and answer extraction. We represent
question and answer sentence pairs with lin-
guistic structures enriched by semantic infor-
mation, where the latter is produced by auto-
matic classifiers, e.g., question classifier and
Named Entity Recognizer. Tree kernels ap-
plied to such structures enable a simple way to
generate highly discriminative structural fea-
tures that combine syntactic and semantic in-
formation encoded in the input trees. We con-
duct experiments on a public benchmark from
TREC to compare with previous systems for
answer sentence selection and answer extrac-
tion. The results show that our models greatly
improve on the state of the art, e.g., up to 22%
on F1 (relative improvement) for answer ex-
traction, while using no additional resources
and no manual feature engineering.

1 Introduction

Question Answering (QA) systems are typically
built from three main macro-modules: (i) search and
retrieval of candidate passages; (ii) reranking or se-
lection of the most promising passages; and (iii) an-
swer extraction. The last two steps are the most in-
teresting from a Natural Language Processing view-
point since deep linguistic analysis can be carried
out as the input is just a limited set of candidates.

Answer sentence selection refers to the task of se-
lecting the sentence containing the correct answer

among the different sentence candidates retrieved by
a search engine.

Answer extraction is a final step, required for
factoid questions, consisting in extracting multi-
words constituting the synthetic answer, e.g., Barack
Obama for a question: Who is the US president?
The definition of rules for both tasks is conceptually
demanding and involves the use of syntactic and se-
mantic properties of the questions and its related an-
swer passages.

For example, given a question from TREC QA1:

Q: What was Johnny Appleseed’s real
name?

and a relevant passage, e.g., retrieved by a search
engine:

A: Appleseed, whose real name was John
Chapman, planted many trees in the early
1800s.

a rule detecting the semantic links between Johnny
Appleseed’s real name and the correct answer
John Chapman in the answer sentence has to
be engineered. This requires the definition of
other rules that associate the question pattern
real name ?(X) with real name is(X) of
the answer sentence. Although this can be done by
an expert NLP engineer, the effort for achieving the
necessary coverage and a reasonable accuracy is not
negligible.

An alternative to manual rule definition is the use
of machine learning, which often shifts the problem

1We use it as our running example in the rest of the paper.
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to the easier task of feature engineering. Unfortu-
nately, when the learning task is semantically dif-
ficult such as in QA, e.g., features have to encode
combinations of syntactic and semantic properties.
Thus their extraction modules basically assume the
shape of high-level rules, which are, in any case, es-
sential to achieve state-of-the-art accuracy. For ex-
ample, the great IBM Watson system (Ferrucci et
al., 2010) uses a learning to rank algorithm fed with
hundreds of features. The extraction of some of the
latter requires articulated rules/algorithms, which,
in terms of complexity, are very similar to those
constituting typical handcrafted QA systems. An
immediate consequence is the reduced adaptability
to new domains, which requires a substantial re-
engineering work.

In this paper, we show that tree kernels (Collins
and Duffy, 2002; Moschitti, 2006) can be applied to
automatically learn complex structural patterns for
both answer sentence selection and answer extrac-
tion. Such patterns are syntactic/semantic structures
occurring in question and answer passages. To make
such information available to the tree kernel func-
tions, we rely on the shallow syntactic trees enriched
with semantic information (Severyn et al., 2013b;
Severyn et al., 2013a), e.g., Named Entities (NEs)
and question focus and category, automatically de-
rived by machine learning modules, e.g., question
classifier (QC) or focus classifier (FC).

More in detail, we (i) design a pair of shallow
syntactic trees (one for the question and one for the
answer sentence); (ii) connect them with relational
nodes (i.e., those matching the same words in the
question and in the answer passages); (iii) label the
tree nodes with semantic information such as ques-
tion category and focus and NEs; and (iv) use the NE
type to establish additional semantic links between
the candidate answer, i.e., an NE, and the focus word
of the question. Finally, for the task of answer ex-
traction we also connect such semantic information
to the answer sentence trees such that we can learn
factoid answer patterns.

We show that our models are very effective in pro-
ducing features for both answer selection and ex-
traction by experimenting with TREC QA corpora
and directly comparing with the state of the art,
e.g., (Wang et al., 2007; Yao et al., 2013). The re-
sults show that our methods greatly improve on both

tasks yielding a large improvement in Mean Average
Precision for answer selection and in F1 for answer
extraction: up to 22% of relative improvement in F1,
when small training data is used. Moreover, in con-
trast to the previous work, our model does not rely
on external resources, e.g., WordNet, or complex
features in addition to the structural kernel model.

The reminder of this paper is organized as fol-
lows, Sec. 2 describes our kernel-based classifiers,
Sec. 3 illustrates our question/answer relational
structures also enriched with semantic information,
Sec. 4 describes our model for answer selection and
extraction, Sec. 5 illustrates our comparative exper-
iments on TREC data, Sec. 6 reports on our error
analysis, Sec. 7 discusses the related work, and fi-
nally, Sec. 8 derives the conclusions.

2 Structural Kernels for classification

This section describes a kernel framework where the
input question/answer pairs are handled directly in
the form of syntactic/semantic structures.

2.1 Feature vector approach to object pair
classification

A conventional approach to represent a ques-
tion/answer pairs in linear models consists in defin-
ing a set of similarity features {xi} and computing
the simple scalar product h(xxx) = www · xxx =

∑
iwixi,

where www is the model weight vector learned on the
training data. Hence, the learning problem boils
down to estimating individual weights of each of
the similarity features xi. Such features often en-
code various types of lexical, syntactic and semantic
similarities shared between a question and its can-
didate. Previous work used a rich number of distri-
butional semantic, knowledge-based, translation and
paraphrase resources to build explicit feature vector
representations. One evident potential downside of
using feature vectors is that a great deal of structural
information encoded in a given text pair is lost.

2.2 Pair Classification using Structural Kernels
A more versatile approach in terms of the input
representation relies on kernels. A typical ker-
nel machine, e.g., SVM, classifies a test input xxx
using the following prediction function: h(xxx) =∑

i αiyiK(xxx,xxxi), where αi are the model parame-
ters estimated from the training data, yi are target
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variables, xxxi are support vectors, andK(·, ·) is a ker-
nel function. The latter can measure the similarity
between question and answer pairs.

We define each question/answer pair xxx as a triple
composed of a question treeTTT q and answer sentence
tree TTT s and a similarity feature vector vvv, i.e., xxx =
〈TTT q,TTT s, vvv〉. Given two triples xxxi and xxxj , we define
the following kernel:

K(xxxi,xxxj) = KTK(TTT i
q,TTT

j
q)

+ KTK(TTT i
s,TTT

j
s)

+ Kv(vvv
i, vvvj),

(1)

where KTK computes a structural kernel, e.g., tree
kernel, and Kv is a kernel over feature vectors, e.g.,
linear, polynomial, gaussian, etc. Structural kernels
can capture the structural representation of a ques-
tion/answer pair whereas traditional feature vectors
can encode some sort of similarity, e.g., lexical, syn-
tactic, semantic, between a question and its candi-
date answer.

We prefer to split the kernel computation over a
question/answer pair into two terms since tree ker-
nels are very efficient and there are no efficient
graph kernels that can encode exhaustively all graph
fragments. It should be noted that the tree kernel
sum does not capture feature pairs. Theoretically,
for such purpose, a kernel product should be used.
However, our experiments revealed that using the
product is actually worse in practice. In contrast,
we solve the lack of feature pairing by annotating
the trees with relational tags which are supposed
to link the question tree fragments with the related
fragments from the answer sentence.

Such relational information is very important to
improve the quality of the pair representation as well
as the implicitly generated features. In the next sec-
tion, we show simple structural models that we used
in our experiments for question and answer pair clas-
sification.

2.3 Partial Tree Kernels

The above framework can use any kernel for
structural data. We use the Partial Tree Kernel
(PTK) (Moschitti, 2006) to compute KTK(·, ·) as it
is the most general convolution tree kernel, which
at the same time shows rather good efficiency. PTK
can be effectively applied to both constituency and

dependency parse trees. It generalizes the syntactic
tree kernel (STK) (Collins and Duffy, 2002), which
maps a tree into the space of all possible tree frag-
ments constrained by the rule that sibling nodes can-
not be separated. In contrast, the PTK fragments
can contain any subset of siblings, i.e., PTK allows
for breaking the production rules in syntactic trees.
Consequently, PTK generates an extremely rich fea-
ture space, which results in higher generalization
ability.

3 Relational Structures

This section introduces relational structures de-
signed to encode syntactic and shallow semantic
properties of question/answer pairs. We first define a
simple to construct shallow syntactic tree represen-
tation derived from a shallow parser. Next, we in-
troduce a relational linking scheme based on a plain
syntactic matching and further augment it with ad-
ditional semantic information.

3.1 Shallow syntactic tree

Our shallow tree structure is a two-level syntactic
hierarchy built from word lemmas (leaves), part-of-
speech tags that organized into chunks identified by
a shallow syntactic parser (Fig. 1). We defined a
similar structure in (Severyn and Moschitti, 2012)
for answer passage reranking, which improved on
feature vector baselines.

This simple linguistic representation is suitable
for building a rather expressive answer sentence se-
lection model. Moreover, the use of a shallow parser
is motivated by the need to generate text spans to
produce candidate answers required by an answer
extraction system.

3.2 Tree pairs enriched with relational links

It is important to establish a correspondence be-
tween question and answer sentence aligning related
concepts from both. We take on a two-level ap-
proach, where we first use plain lexical matching to
connect common lemmas from the question and its
candidate answer sentence. Secondly, we establish
semantic links between NEs extracted from the an-
swer sentence and the question focus word, which
encodes the expected lexical answer type (LAT). We
use the question categories to identify NEs that have
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Figure 1: Shallow tree representation of the example q/a pair from Sec. 1. Dashed arrows (red) indicate the tree
fragments (red dashed boxes) in the question and its answer sentence linked by the relational REL tag, which is
established via syntactic match on the word lemmas. Solid arrows (blue) connect a question focus word name with the
related named entities of type Person corresponding to the question category (HUM) via a relational tag REL-HUM.
Additional ANS tag is used to mark chunks containing candidate answer (here the correct answer John Chapman).

higher probability to be correct answers following a
mapping defined in Table 1.

Next, we briefly introduce our tree kernel-based
models for building question focus and category
classifiers.

Lexical Answer Type. Question Focus represents
a central entity or a property asked by a question
(Prager, 2006). It can be used to search for semanti-
cally compatible candidate answers, thus greatly re-
ducing the search space (Pinchak, 2006). While sev-
eral machine learning approaches based on manual
features and syntactic structures have been recently
explored, e.g. (Quarteroni et al., 2012; Damljanovic
et al., 2010; Bunescu and Huang, 2010), we opt for
the latter approach where tree kernels handle auto-
matic feature engineering.

To build an automatic Question Focus detector we
use a tree kernel approach as follows: we (i) parse
each question; (ii) create a set of positive trees by
labeling the node exactly covering the focus with
FC tag; (iii) build a set of negative trees by labeling
any other constituent node with FC; (iii) we train
the FC node classifier with tree kernels. At the test
time, we try to label each constituent node with FC
generating a set of candidate trees. Finally, we select
the tree and thus the constituent associated with the
highest SVM score.

Question classification. Our question classification
model is simpler than before: we use an SVM multi-
classifier with tree kernels to automatically extract
the question class. To build a multi-class classifier
we train a binary SVM for each of the classes and
apply a one-vs-all strategy to obtain the predicted

Table 1: Expected Answer Type (EAT) → named entity
types.

EAT Named Entity types
HUM Person
LOCATION Location
ENTITY Organization, Person, Misc
DATE Date, Time, Number
QUANTITY Number, Percentage
CURRENCY Money, Number

class. We use constituency trees as our input repre-
sentation.

Our question taxonomy is derived from the
UIUIC dataset (Li and Roth, 2002) which defines
6 coarse and 50 fine grain classes. In particular,
our set of question categories is formed by adopt-
ing 3 coarse classes: HUM (human), LOC (loca-
tion), ENTY (entities) and replacing the NUM (nu-
meric) coarse class with 3 fine-grain classes: CUR-
RENCY, DATE, QUANTITY2. This set of question
categories is sufficient to capture the coarse seman-
tic answer type of the candidate answers found in
TREC. Also using fewer question classes results in
a more accurate multi-class classifier.
Semantic tagging. Question focus word specifies
the lexical answer type capturing the target informa-
tion need posed by a question, but to make this piece
of information effective, the focus word needs to
be linked to the target candidate answer. The focus
word can be lexically matched with words present in

2This class is composed by including all the fine-grain
classes from NUMERIC coarse class except for CURRENCY
and DATE.
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the answer sentence, or the match can be established
using semantic information. Clearly, the latter ap-
proach is more appealing since it helps to alleviate
the lexical gap problem, i.e., it improves the cover-
age of the näive string matching of words between a
question and its answer.

Hence, we propose to exploit a question focus
along with the related named entities (according to
the mapping from Table 1) of the answer sentence
to establish relational links between the tree frag-
ments. In particular, once the question focus and
question category are determined, we link the fo-
cus word wfocus in the question, with all the named
entities whose type matches the question class (Ta-
ble 1). We perform tagging at the chunk level and
use a relational tag typed with a question class, e.g.,
REL-HUM. Fig. 1 shows an example q/a pair where
the typed relational tag is used in the shallow syntac-
tic tree representation to link the chunk containing
the question focus name with the named entities of
the corresponding type Person, i.e., Appleseed and
John Chapman.

4 Answer Sentence Selection and Answer
Keyword Extraction

This section describes our approach to (i) answer
sentence selection used to select the most promising
answer sentences; and (ii) answer extraction which
returns the answer keyword (for factoid questions).

4.1 Answer Sentence Selection

We cast the task of answer sentence selection as
a classification problem. Considering a supervised
learning scenario, we are given a set of questions
{qi}Ni=1 where each question qi is associated with
a list of candidate answer sentences {(ri, si)}Ni=1,
with ri ∈ {−1,+1} indicating if a given candidate
answer sentence si contains a correct answer (+1)
or not (−1). Using this labeled data, our goal is to
learn a classifier model to predict if a given pair of
a question and an answer sentence is correct or not.
We train a binary SVM with tree kernels3 to train an
answer sentence classifier. The prediction scores ob-
tained from a classifier are used to rerank the answer
candidates (pointwise reranking), s.t. the sentences
that are more likely to contain correct answers will

3disi.unitn.it/moschitti/Tree-Kernel.htm

be ranked higher than incorrect candidates. In addi-
tion to the structural representation, we augment our
model with basic bag-of-word features (unigram and
bigrams) computed over lemmas.

4.2 Answer Sentence Extraction

The goal of answer extraction is to extract a text span
from a given candidate answer sentence. Such span
represents a correct answer phrase for a given ques-
tion. Different from previous work that casts the an-
swer extraction task as a tagging problem and apply
a CRF to learn an answer phrase tagger (Yao et al.,
2013), we take on a simpler approach using a kernel-
based classifier.

In particular, we rely on the shallow tree represen-
tation, where text spans identified by a shallow syn-
tactic parser serve as a source of candidate answers.
Algorithm 1 specifies the steps to generate training
data for our classifier. In particular, for each ex-
ample representing a triple 〈a, Tq, Ts〉 composed of
the answer a, the question and the answer sentence
trees, we generate a set of training examples E with
every candidate chunk marked with an ANS tag (one
at a time). To reduce the number of generated exam-
ples for each answer sentence, we only consider NP
chunks, since other types of chunks, e.g., VP, ADJP,
typically do not contain factoid answers. Finally, an
original untagged tree is used to generate a positive
example (line 8), when the answer sentence contains
a correct answer, and a negative example (line 10),
when it does not contain a correct answer.

At the classification time, given a question and a
candidate answer sentence, all NP nodes of the sen-
tence are marked with ANS (one at a time) as the
possible answer, generating a set of tree candidates.
Then, such trees are classified (using the kernel from
Eq. 1) and the one with the highest score is selected.
If no tree is classified as positive example we do not
extract any answer.

5 Experiments

We provide the results on two related yet different
tasks: answer sentence selection and answer extrac-
tion. The goal of the former is to learn a model
scoring correct question and answer sentence pairs
to bring in the top positions sentences containing the
correct answers. Answer extraction derives the cor-
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Algorithm 1 Generate training data for answer ex-
traction

1: for all 〈a, Tq, Ts〉 ∈DDD do
2: E ← ∅
3: for all chunk ∈ extract chunks(Ts) do
4: if not chunk == NP then
5: continue
6: T ′

s ← tagAnswerChunk(Ts, chunk)
7: if contains answer(a, chunk) then
8: label← +1
9: else

10: label← −1
11: e← build example(Tq, T

′
s, label)

12: E ← E ∪ {e}
13: return E

rect answer keywords, i.e., a text span such as multi-
words or constituents, from a given sentence.

5.1 Semantic Annotation

We briefly describe the experiments of training auto-
matic question category and focus classifiers, which
are more extensively described in (Severyn et al.,
2013b).
Question Focus detection. We used three datasets
for training and evaluating the performance of our
focus detector: SeCo-600 (Quarteroni et al., 2012),
Mooney GeoQuery (Damljanovic et al., 2010) and
the dataset from (Bunescu and Huang, 2010). The
SeCo dataset contains 600 questions. The Mooney
GeoQuery contains 250 question targeted at ge-
ographical information in the U.S. The first two
datasets are very domain specific, while the dataset
from (Bunescu and Huang, 2010) is more generic
containing the first 2,000 questions from the answer
type dataset from Li and Roth annotated with fo-
cus words. We removed questions with implicit and
multiple focuses.
Question Classification. We used the UIUIC
dataset (Li and Roth, 2002) which contains 5,952
factoid questions 4 to train a multi-class question
classifier.

Table 2 summarizes the results of question focus
and category classification.

4We excluded questions from TREC to ensure there is no
overlap with the data used for testing models trained on TREC
QA.

Table 2: Accuracy (%) of focus (FC) and question classi-
fiers (QC) using PTK.

TASK SET PTK

FC
MOONEY 80.5

SECO-600 90.0
BUNESCU 96.9

QC
UIUIC 85.9

TREC 11-12 78.1

5.2 Answer Sentence Selection

We used the train and test data from (Wang et al.,
2007) to enable direct comparison with previous
work on answer sentence selection. The training
data is composed by questions drawn from TREC
8-12 while questions from TREC 13 are used for
testing. The data provided for training comes as
two sets: a small set of 94 questions (TRAIN) that
were manually curated for errors5 and 1,229 ques-
tions from the entire TREC 8-12 that contain at least
one correct answer sentence (ALL). The latter set
represents a more noisy setting, since many answer
sentences are marked erroneously as correct as they
simply match a regular expression. Table 3 summa-
rizes the data used for training and testing.

Table 4 compares our kernel-based structural
model with the previous state-of-the-art systems for
answer sentence selection. In particular, we com-
pare with four most recent state of the art answer
sentence reranker models (Wang et al., 2007; Heil-
man and Smith, 2010; Wang and Manning, 2010;
Yao et al., 2013), which report their performance on
the same questions and candidate sets from TREC
13 as provided by (Wang et al., 2007).

Our simple shallow tree representation (Severyn
and Moschitti, 2012) delivers state-of-the-art ac-
curacy largely improving on previous work. Fi-
nally, augmenting the structure with semantic link-
ing (Severyn et al., 2013b) yields additional im-
provement in MAP and MRR. This suggests the
utility of using supervised components, e.g., ques-
tion focus and question category classifiers coupled
with NERs, to establish semantic mapping between
words in a q/a pair.

5In TREC correct answers are identified by regex matching
using the provided answer pattern files
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Table 3: Summary of TREC data for answer extraction
used in (Yao et al., 2013).

data questions candidates correct
TRAIN 94 4718 348
ALL 1229 53417 6410
TEST 89 1517 284

Table 4: Answer sentence reranking on TREC 13.

System MAP MRR
Wang et al. (2007) 0.6029 0.6852
Heilman & Smith (2010) 0.6091 0.6917
Wang & Manning (2010) 0.5951 0.6951
Yao et al. (2013) 0.6319 0.7270

+ WN 0.6371 0.7301
shallow tree (S&M, 2012) 0.6485 0.7244

+ semantic tagging 0.6781 0.7358

It is worth noting that our kernel-based classifier
is conceptually simpler than approaches in the previ-
ous work, as it relies on the structural kernels, e.g.,
PTK, to automatically extract salient syntactic pat-
terns relating questions and answers. Our model
only includes the most basic feature vector (uni- and
bi-grams) and does not rely on external sources such
as WordNet.

5.3 Answer Extraction
Our experiments on answer extraction replicate the
setting of (Yao et al., 2013), which is the most recent
work on answer extraction reporting state-of-the-art
results.

Table 5 reports the accuracy of our model in re-
covering correct answers from a set of candidate an-
swer sentences for a given question. Here the fo-
cus is on the ability of an answer extraction system
to recuperate as many correct answers as possible
from each answer sentence candidate. The set of
extracted candidate answers can then be used to se-
lect a single best answer, which is the final output
of the QA system for factoid questions. Recall (R)
encodes the percentage of correct answer sentences
for which the system correctly extracts an answer
(for TREC 13 there are a total of 284 correct answer
sentences), while Precision (P) reflects how many
answers extracted by the system are actually correct.

Clearly, having a high recall system, allows for cor-
rectly answering more questions. On the other hand,
a high precision system would attempt to answer less
questions (extracting no answers at all) but get them
right.

We compare our results to a CRF model of (Yao et
al., 2013) augmented with WordNet features (with-
out forced voting) 6. Unlike the CRF model which
obtains higher values of precision, our system acts
as a high recall system able to recover most of the
answers from the correct answer sentences. Having
higher recall is favorable to high precision in answer
extraction since producing more correct answers can
help in the final voting scheme to come up with a
single best answer. To solve the low recall problem
of their CRF model, Yao et al. (2013) apply fairly
complex outlier resolution techniques to force an-
swer predictions, thus aiming at increasing the num-
ber of extracted answers.

To further boost the number of answers produced
by our system we exclude negative examples (an-
swer sentences not containing the correct answer)
from training, which slightly increases the number
of pairs with correctly recovered answers. Never-
theless, it has a substantial effect on the number of
questions that can be answered correctly (assuming
perfect single best answer selection). Clearly, our
system is able to recover a large number of answers
from the correct answer sentences, while low pre-
cision, i.e., extracting answer candidates from sen-
tences that do not contain a correct answer, can be
overcome by further applying various best answer
selection strategies, which we explore in the next
section.

5.4 Best Answer Selection
Since the final step of the answer extraction module
is to select for each question a single best answer
from a set of extracted candidate answers, an answer
selection scheme is required.

We adopt a simple majority voting strategy, where
we aggregate the extracted answers produced by our
answer extraction model. Answers sharing simi-
lar lemmas (excluding stop words) are grouped to-
gether. The prediction scores obtained by the an-

6We could not replicate the results obtained in (Yao et al.,
2013) with the forced voting strategy. Thus such result is not
included in Table 5.
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Table 5: Results on answer extraction. P/R - precision
and recall; pairs - number of QA pairs with a correctly ex-
tracted answer, q - number of questions with at least one
correct answer extracted, F1 sets an upper bound on the
performance assuming the selected best answer among
extracted candidates is always correct. *-marks the set-
ting where we exclude incorrect question answer pairs
from training.

set P R pairs q F1
Yao et al. (2013) 25.7 23.4 73 33 -

+ WN 26.7 24.3 76 35 -
TRAIN 29.6 64.4 183 58 65.2
TRAIN* 15.7 71.8 204 66 74.1
Yao et al. (2013) 35.2 35.1 100 38 -

+ WN 34.5 34.7 98 38 -
ALL 29.4 74.6 212 69 77.5
ALL* 15.8 76.7 218 73 82.0

Table 6: Results on finding the best answer with voting.

system set P R F1
Yao et al. (2013)

TRAIN

55.7 43.8 49.1
+ forced 54.5 53.9 54.2
+ WN 55.2 53.9 54.5

this work 66.2 66.2 66.2
Yao et al. (2013)

ALL

67.2 50.6 57.7
+ forced 60.9 59.6 60.2
+ WN 63.6 62.9 63.3

this work 70.8 70.8 70.8

swer extraction classifier are used as votes to decide
on the final rank to select the best single answer.

Table 6 shows the results after the majority vot-
ing is applied to select a single best answer for each
candidate. A rather naı̈ve majority voting scheme
already produces satisfactory outcome demonstrat-
ing better results than the previous work. Our vot-
ing scheme is similar to the one used by (Yao et al.,
2013), yet it is much simpler since we do not per-
form any additional hand tuning to account for the
weight of the “forced” votes or take any additional
steps to catch additional answers using outlier detec-
tion techniques applied in the previous work.

6 Discussion and Error Analysis

There are several sources of errors affecting the fi-
nal performance of our answer extraction system: (i)
chunking, (ii) named entity recognition and seman-
tic linking, (iii) answer extraction, (iv) single best
answer selection.
Chunking. Our system uses text spans identified by
a chunker to extract answer candidates, which makes
it impossible to extract answers that lie outside the
chunk boundaries. Nevertheless, we found this to
be a minor concern since for 279 out of total 284
candidate sentences from TREC 13 the answers are
recoverable within the chunk spans.
Semantic linking. Our structural model relies heav-
ily on the ability of NER to identify the relevant en-
tities in the candidate sentence that can be further
linked to the focus word of the question. While
our answer extraction model is working on all the
NP chunks, the semantic tags from NER serve as a
strong cue for the classifier that a given chunk has
a high probability of containing an answer. Typical
off-the-shelf NER taggers have good precision and
low recall, s.t. many entities as potential answers are
missed. In this respect, a high recall entity linking
system, e.g., linking to wikipedia entities (Ratinov
et al., 2011), is required to boost the quality of can-
didates considered for answer extraction. Finally,
improving the accuracy of question and focus clas-
sifiers would allow for having more accurate input
representations fed to the learning algorithm.
Answer Extraction. Our answer extraction model
acts as a high recall system, while it suffers from
low precision in extracting answers for many incor-
rect sentences. Improving the precision without sac-
rificing the recall would ease the successive task of
best answer selection, since having less incorrect an-
swer candidates would result in a better final per-
formance. Introducing additional constraints in the
form of semantic tags to allow for better selection of
answer candidates could also improve our system.
Best Answer Selection. We apply a naı̈ve majority
voting scheme to select a single best answer from
a set of extracted answer candidates. This step has
a dramatic impact on the final performance of the
answer extraction system resulting in a large drop
of recall, i.e., from 82.0 to 70.8 before and after vot-
ing respectively. Hence, a more involved model, i.e.,
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performing joint answer sentence re-ranking and an-
swer extraction, is required to yield a better perfor-
mance.

7 Related Work

Tree kernel methods have found many applications
for the task of answer reranking which are reported
in (Moschitti, 2008; Moschitti, 2009; Moschitti and
Quarteroni, 2008; Severyn and Moschitti, 2012).
However, their methods lack the use of important
relational information between a question and a can-
didate answer, which is essential to learn accurate
relational patterns. In this respect, a solution based
on enumerating relational links was given in (Zan-
zotto and Moschitti, 2006; Zanzotto et al., 2009) for
the textual entailment task but it is computationally
too expensive for the large dataset of QA. A few so-
lutions to overcome computational issues were sug-
gested in (Zanzotto et al., 2010).

In contrast, this paper relies on structures directly
encoding the output of question and focus classifiers
to connect focus word and good candidate answer
keywords (represented by NEs) of the answer pas-
sage. This provides more effective relational infor-
mation, which allows our model to significantly im-
prove on previous rerankers. Additionally, previous
work on kernel-based approaches does not target an-
swer extraction.

One of the best models for answer sentence selec-
tion has been proposed in (Wang et al., 2007). They
use the paradigm of quasi-synchronous grammar to
model relations between a question and a candidate
answer with syntactic transformations. (Heilman
and Smith, 2010) develop an improved Tree Edit
Distance (TED) model for learning tree transforma-
tions in a q/a pair. They search for a good sequence
of tree edit operations using complex and com-
putationally expensive Tree Kernel-based heuristic.
(Wang and Manning, 2010) develop a probabilistic
model to learn tree-edit operations on dependency
parse trees. They cast the problem into the frame-
work of structured output learning with latent vari-
ables. The model of (Yao et al., 2013) has reported
an improvement over the Wang’s et al. (2007) sys-
tem. It applies linear chain CRFs with features de-
rived from TED and WordNet to automatically learn
associations between questions and candidate an-

swers.
Different from previous approaches that use tree-

edit information derived from syntactic trees, our
kernel-based learning approach also use tree struc-
tures but with rather different learning methods, i.e.,
SVMs and structural kernels, to automatically ex-
tract salient syntactic patterns relating questions and
answers. In (Severyn et al., 2013c), we have shown
that such relational structures encoding input text
pairs can be directly used within the kernel learning
framework to build state-of-the-art models for pre-
dicting semantic textual similarity. Furthermore, se-
mantically enriched relational structures, where au-
tomatic have been previously explored for answer
passage reranking in (Severyn et al., 2013b; Sev-
eryn et al., 2013a). This paper demonstrates that this
model also works for building a reranker on the sen-
tence level, and extends the previous work by apply-
ing the idea of automatic feature engineering with
tree kernels to answer extraction.

8 Conclusions

Our paper demonstrates the effectiveness of han-
dling the input structures representing QA pairs di-
rectly vs. using explicit feature vector representa-
tions, which typically require substantial feature en-
gineering effort. Our approach relies on a kernel-
based learning framework, where structural kernels,
e.g., tree kernels, are used to handle automatic fea-
ture engineering. It is enough to specify the desired
type of structures, e.g., shallow, constituency, de-
pendency trees, representing question and its can-
didate answer sentences and let the kernel learning
framework learn to use discriminative tree fragments
for the target task.

An important feature of our approach is that it
can effectively combine together different types of
syntactic and semantic information, also generated
by additional automatic classifiers, e.g., focus and
question classifiers. We augment the basic struc-
tures with additional relational and semantic infor-
mation by introducing special tag markers into the
tree nodes. Using the structures directly in the ker-
nel learning framework makes it easy to integrate
additional relational constraints and semantic infor-
mation directly in the structures.

The comparison with previous work on a public
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benchmark from TREC suggests that our approach
is very promising as we can improve the state of the
art in both answer selection and extraction by a large
margin (up to 22% of relative improvement in F1 for
answer extraction). Our approach makes it relatively
easy to integrate other sources of semantic informa-
tion, among which the use of Linked Open Data can
be the most promising to enrich the structural repre-
sentation of q/a pairs.

To achieve state-of-the-art results in answer sen-
tence selection and answer extraction, it is sufficient
to provide our model with a suitable tree structure
encoding relevant syntactic information, e.g., using
shallow, constituency or dependency formalisms.
Moreover, additional semantic and relational infor-
mation can be easily plugged in by marking tree
nodes with special tags. We believe this approach
greatly eases the task of tedious feature engineering
that will find its applications well beyond QA tasks.
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Abstract 

Web users are increasingly looking for 

structured data, such as lyrics, job, or recipes, 

using unstructured queries on the web. 

However, retrieving relevant results from such 

data is a challenging problem due to the 

unstructured language of the web queries. In 

this paper, we propose a method to improve 

web search ranking by detecting Structured 

Annotation of queries based on top search 

results. In a structured annotation, the original 

query is split into different units that are 

associated with semantic attributes in the 

corresponding domain. We evaluate our 

techniques using real world queries and achieve 

significant improvement. 

1 Introduction 

Search engines are getting more sophisticated by 

utilizing information from multiple diverse sources. 

One such valuable source of information is 

structured and semi-structured data, which is not 

very difficult to access, owing to information 

extraction (Wong et al., 2009; Etzioni et al., 2008; 

Zhai and Liu 2006) and semantic web efforts. 

                                                           
 *Work was done when the first author was visiting Microsoft 

Research Asia 

Driving the web search evolution are the user 

needs. Users usually have a template in mind when 

formulating queries to search for information. 

Agarwal et al., (2010) surveyed a search log of 15 

million queries from a commercial search engine. 

They found that 90% of queries follow certain 

templates. For example, by issuing the query 

“taylor swift lyrics falling in love”, the users are 

actually seeking for the lyrics of the song “Mary's 

Song (oh my my my)” by artist Taylor Swift. The 

words “falling in love” are actually part of the 

lyrics they are searching for. However, some top 

search results are irrelevant to the query, although 

they contain all the query terms. For example, the 

first top search result shown in Figure 1(a) does 

not contain the required lyrics. It just contains the 

lyrics of another song of Taylor Swift, rather than 

the song that users are seeking. 

A possible way to solve the above ranking 

problem is to understand the underlying query 

structure. For example, after recognizing that 

“taylor swift” is an artist name and “falling in love” 

are part of the lyrics, we can improve the ranking 

by comparing the structured query with the 

corresponding structured data in documents 

(shown in Figure 1(b)). Some previous studies 

investigated how to extract structured information 

from user queries, such as query segmentation 

(Bergsma and Wang, 2007). The task of query 

segmentation is to separate the query words into 
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disjointed segments so that each segment maps to a 

semantic unit (Li et al., 2011). For example, the 

segmentation of the query “taylor swift lyrics 

falling in love” can be “taylor swift | lyrics | falling 

in love”. Since query segmentation cannot tell 

“talylor swift” is an artist name and “falling in love” 

are part of lyrics, it is still difficult for us to judge 

whether each part of the query segmentations 

matches the right field of the documents or not 

(such as judge whether “talylor swift” matches the 

artist name in the document). Recently, a lot of 

work (Sarkas et al., 2010; Li et al., 2009) proposed 

the task of structured annotation of queries which 

aims to detect the structure of the query and assign 

a specific label to it. However, to our knowledge, 

the previous methods do not exploit an effective 

approach for improving web search ranking by 

incorporating structured annotation of queries. 

In this paper, we investigate the possibility of 

using structured annotation of queries to improve 

web search ranking. Specifically, we propose a 

greedy algorithm which uses the structured data 

(named annotated tokens in Figure 1(b)) extracted 

from the top search results to annotate the latent 

structured semantics in web queries. We then 

compute matching scores between the annotated 

query and the corresponding structured 

information contained in documents. The top 

search results can be re-ranked according to the 

matching scores. However, it is very difficult to 

extract structured data from all of the search results. 

Hence, we propose a relevance feedback based re-

ranking model. We use these structured documents 

whose matching scores are greater than a threshold 

as feedback documents, to effectively re-rank other 

search results to bring more relevant and novel 

information to the user. 

Experiments on a large web search dataset from 

a major commercial search engine show that the F-

Measure of structured annotation generated by our 

approach is as high as 91%. On this dataset, our re-

ranking model using the structured annotations 

significantly outperforms two baselines. 

The main contributions of our work include: 

1. We propose a novel approach to generate 

structured annotation of queries based on top 

search results. 

2. Although structured annotation of queries has 

been studied previously, to the best of our 

knowledge this is the first paper that attempts 

to improve web search ranking by 

incorporating structured annotation of queries. 

The rest of this paper is organized as follows. 

We briefly introduce related work in Section 2. 

Section 3 presents our method for generating 

structured annotation of queries. We then propose 

two novel re-ranking models based on structured 

annotation in Section 4. Section 5 introduces the 

data used in this paper. We report experimental 

results in Section 6. Finally we conclude the work 

in Section 7. 

 
Figure 1. Search results of query “taylor swift lyrics falling in love” and processing pipeline 

[Taylor Swift, #artist_name, 0.34]

...

[Mary’s Song (oh my my my), #song_name, 0.16]

[Crazier, #song_name, 0.1]

[Jump Then Fall, #song_name, 0.08]

...

[Growing up and falling in love…, #lyrics, 0.16]

[Feel like I’m falling and …, #lyrics, 0.1]

[I realize your love is the best …, #lyrics, 0.08]

d1 [Taylor Swift, #artist_name]

[Crazier, #song_name]

[Feel like I’m falling and …, #lyrics]

d2 [Taylor Swift, #artist_name]

[Mary’s Song (oh my my my), #song_name]

[Growing up and falling in love…, #lyrics]

d3 [Taylor Swift, #artist_name]

[Jump Then Fall, #song_name]

[I realize your love is the best …, #lyrics]

d4 [Taylor Swift, #artist_name]

[Mary’s Song (oh my my my), #song_name]

[Growing up and falling in love…, #lyrics]Search Results (a)

Weighted Annotated Tokens (c)Query Structured Annotation Generation (d)Top Results Re-ranking (e)

Annotated Tokens (b)
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3.
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Query: taylor swift lyrics falling in love

<[taylor swift, #artist_name] lyrics 

[falling in love, #lyrics]>
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2 Related Work 

There is a great deal of prior research that 

identifies query structured information. We 

summarize this research according to their 

different approaches. 

2.1 Structured Annotation of Queries 

Recently, a lot of work has been done on 

understanding query structure (Sarkas et al., 2010; 

Li et al., 2009; Bendersky et al., 2010). One 

important method is structured annotation of 

queries which aims to detect the structure of the 

query and assign a specific label to it. Li et al., 

(2009) proposed web query tagging and its goal is 

to assign to each query term a specified category, 

roughly corresponding to a list of attributes. A 

semi-supervised Conditional Random Field (CRF) 

is used to capture dependencies between query 

words and to identify the most likely joint 

assignment of words to “categories.” Comparing 

with previous work, the advantages of our 

approach are on the following aspects. First, we 

generate structured annotation of queries based on 

top search results, not some global knowledge base 

or query logs. Second, they mainly focus on the 

method of generating structured annotation of 

queries, rather than leverage the generated query 

structures to improve web search rankings. In this 

paper, we not only offer a novel solution for 

generating structured annotation of queries, but 

also propose a re-ranking approach to improve 

Web search based on structured annotation of 

queries. Bendersky et al., (2011) also used top 

search results to generate structured annotation of 

queries. However, the annotations in their 

definition are capitalization, POS tags, and 

segmentation indicators, which are different from 

ours. 

2.2 Query Template Generation 

The concept of query template has been discussed 

in a few recent papers (Agarwal et al., 2010; Pasca 

2011; Liu et al., 2011; Szpektor et al., 2011). A 

query template is a sequence of terms, where each 

term could be a word or an attribute. For example, 

<#artist_name lyrics #lyrics> is a query template, 

“#artist_name” and “#lyrics” are attributes, and 

“lyrics” is a word. Structured annotation of queries 

is different from query template, as a query 

template can instantiate multiple queries while a 

structured annotation only serves for a specific 

query. Unlike query template, our work is ranking-

oriented. We aim to automatically annotate query 

structure based on top search results, and further 

use these structured annotations to re-rank top 

search results for improving search performance. 

2.3 Query Segmentation 

The task of query segmentation is to separate the 

query words into disjointed segments so that each 

segment maps to a semantic unit (Li et al., 2011). 

Query segmentation techniques have been well 

studied in recent literature (Tan and Peng, 2008; 

Yu and Shi, 2009). However, structured annotation 

of queries cannot only separate the query words 

into disjoint segments but can also assign each 

segment a semantic label which can help the search 

engine to judge whether each part of query 

segmentation matches the right field of the 

documents or not. 

2.4 Entity Search 

The problem of entity search has received a great 

deal of attention in recent years (Guo et al., 2009; 

Bron et al., 2010; Cheng et al., 2007). Its goal is to 

answer information needs that focus on entities. 

The problem of structured annotation of queries is 

related to entity search because for some queries, 

structured annotation items are entities or attributes. 

Some existing entity search approaches also 

exploit knowledge from the structure of webpages 

(Zhao et al., 2005). Annotating query structured 

information differs from entity search in the 

following aspects. First, structured annotation 

based ranking is applicable for all queries, rather 

than just entity related queries. Second, the result 

of an entity search is usually a list of entities, their 

attributes, and associated homepages, whereas our 

work uses the structured information from 

webpages to annotate query structured information 

and further leverage structured annotation of 

queries to re-rank top search results. 

Table 1. Example domain schemas 
Domain Schema Example structured annotations 

lyrics #artist_name 

#song_name 

#lyrics 

<lyrics of [hey jude, #song_name] [beatles, 

#artist_name]> 

job #category 

#location 

<[teacher, #category] job in [America, 

#location]> 

recipe  #directions 

#ingredients 

<[baking, # directions] [bread, # 

ingredients] recipe> 
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3 Structured Annotation of Queries  

3.1 Problem Definition 

We start our discussion by defining some basic 

concepts. A token is defined as a sequence of 

words including space, i.e., one or more words. For 

example, the bigram “taylor swift” can be a single 

token. As our objective is to find structured 

annotation of queries in a specific domain, we 

begin with a definition of domain schema. 

Definition 1 (Domain Schema): For a given 

domain of interest, the domain schema is the set of 

attributes. We denote the domain schema as 𝐴 =
{𝑎1, 𝑎2, ⋯ , 𝑎𝑛}, where each 𝑎𝑖  is the name of an 

attribute of the domain. Sample domain schemas 

are shown in Table 1. In contrast to previous 

methods (Agarwal et al., 2010), our definition of 

domain schema does not need attribute values. For 

the sake of simplicity, this paper assumes that 

attributes in domain schema are available. 

However, it is not difficult to pre-specify attributes 

in a specific domain. 

Definition 2 (Annotated Token): An annotated 

token in a specific domain is a pair [𝑣, 𝑎], where v 

is a token and a is a corresponding attribute for v 

in this domain. [hey jude, #song_name] is an 

example of an annotated token for the “lyrics” 

domain shown in Table 1. The words “hey jude” 

comprise a token, and its corresponding attribute 

name is #song_name. If a token does not have any 

corresponding attributes, we denote it as free token. 

Definition 3 (Structured Annotation): A 

structured annotation p is a sequence of terms <
𝑠1,𝑠2,⋯,𝑠𝑘 >, where each 𝑠𝑖 could be a free token or 

an annotated token, and at least one of the terms is 

an annotated token, i.e., ∃𝑖 ∈ [1, 𝑘] for which 𝑠𝑖 is 

an annotated token. 

Given the schema for the domain “lyrics”, 

<[taylor swift, #artist_name] lyrics [falling in love, 

#lyrics]> is a possible structured annotation for the 

query “taylor swift lyrics falling in love”. In this 

annotation, [taylor swift, #artist_name] and 

[falling in love, #lyrics] are two annotated tokens. 

The word “lyrics” is a free token. 

Intuitively, a structured annotation corresponds 

to an interpretation of the query as a request for 

some structured information from documents. The 

set of annotated tokens expresses the information 

need of the documents that have been requested. 

The free tokens may provide more diverse 

information. Annotated tokens and free tokens 

together cover all query terms, reflecting the 

complete user intent of the query. 

3.2 Generating Structured Annotation 

In this paper, given a domain schema A, we 

generate structured annotation for a query q based 

on the top search results of q. We propose using 

top search results, rather than some global 

knowledge base or query logs, because: 

(1) Top search results have been proven to be 

a successful technique for query explanation 

(Bendersky et al., 2010). 

(2) We have observed that in most cases, a 

reasonable percentage of the top search results are 

relevant to the query. By aggregating structured 

information from the top search results, we can get 

more query-dependent annotated tokens than using 

global data sources which may contain more noise 

and outdated. 

(3) Our goal for generating structured 

annotation is to improve the ranking quality of 

queries. Using top search results enables 

simultaneous and consistent detection of structured 

information from documents and queries. 

As mentioned in Section 3.1, we generate 

structured annotation of queries based on annotated 

tokens, which are actually structured data (shown 

in Figure 1(b)) embedded in web documents. In 

this paper, we assume that the annotated tokens are 

Algorithm 1: Query Structured Annotation Generation 

Input: a list of weighted annotated tokens T = {t1, … , tm} ; 

          a query q = “w1, … , wn”  where wi ∈ W; 

a pre-defined threshold score 𝛿. 

Output: a query structured annotation p = <s1, … , sk>. 

  1: Set p = q = {s1, …, sn}, where si = wi 

  2: for u = 1 to T.size do 

  3:       compute 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑢) 

            = 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑢. 𝑣)  

            = 𝑡𝑢. 𝑤 × 𝑚𝑎𝑥0≤𝑖<𝑗≤𝑛𝑆𝑖𝑚(𝑝𝑖𝑗 , 𝑡𝑢. 𝑣), 

            where pij = si,…,sj, s.t. sl ∈ W for l ∈ [i, j]. //pij is just 

in the remaining query words 

  4: end for 

  5: find the maximum matching tu with  

            𝑡𝑚𝑎𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑢≤𝑚𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑢) 

  6: if 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑡𝑚𝑎𝑥) > 𝛿 then 

  7:      replace si,…,sj in p with [si,…,sj, tmax.a ] 

  8:      remove tmax from T 

9:      n ← n – (j - i) 

10:      go to step 2 

11: else  

12:      return p 

13: end if 
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available and we mainly focus on how to use these 

annotated tokens from top search results to 

generate structured annotation of queries. The 

approach is comprised of two parts, one for 

weighting annotated tokens and the other for 

generating structured annotation of queries based 

on the weighted annotated tokens. 

Weighting: As shown in Figure 1, annotated 

tokens extracted from top results may be 

inconsistent, and hence some of the extracted 

annotated tokens are less useful or even useless for 

generating structured annotation. 

We assume that a better annotated token should 

be supported by more top results; while a worse 

annotated token may appear in fewer results. 

Hence we aggregate all the annotated tokens 

extracted from top search results, and evaluate the 

importance of each unique one by a ranking-aware 

voting model as follows. For an annotated token [v, 

a], its weight w is defined as: 

                      𝑤 =
1

𝑁
∑ 𝑤𝑗1≤𝑗≤𝑁                           (1) 

where wj is a voting from document dj, and 

𝑤𝑗 = {
𝑁 − 𝑗 + 1

𝑁
,             if [𝑣, 𝑎] ∈ 𝑑𝑗

0,                      else        
 

Here, N is the number of top search results and j 

is the ranking position of document dj. We then 

generate a weighted annotated token [v, a, w] for 

each original unique token [v, a]. 

Generating: The process by which we map a 

query q to Structured Annotation is shown in 

Algorithm 1. The algorithm takes as input a list of 

weighted annotated tokens and the query q, and 

outputs the structured annotation of the query q. 

The algorithm first partitions the query q by 

comparing each sub-sequence of the query with all 

the weighted annotated tokens, and find the 

maximum matching annotated token (line 1 to line 

5). Then, if the degree of match is greater than the 

threshold 𝛿 which is a pre-defined threshold score 

for fuzzy string matching, the query substring will 

be assigned the attribute label of the maximum 

matching annotated token (line 6 to line 8). The 

algorithm stops when all the weighted annotated 

tokens have been scanned, and outputs the 

structured annotation of the query.  

Note that in some cases, the query may fail to 

exactly match with the annotated tokens, due to 

spelling errors, acronyms or abbreviations in users’ 

queries. For example, in the query “broken and 

beatuful lyrics”, “broken and beatuful” is a 

misspelling of “broken and beautiful.” We adopt a 

fuzzy string matching function for comparing a 

sub-sequence string s with a token v: 

          𝑆𝑖𝑚(𝑠, 𝑣) = 1 −
𝐸𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠,𝑣)

max (|𝑠|,|𝑣|)
                (2) 

where EditDistance(s, v) measures the edit 

distances of two strings, |s| is the length of string s 

and |v| is the length of string v. 

4 Ranking with Structured Annotation 

Given a domain schema 𝐴 = {𝑎1, 𝑎2, ⋯ , 𝑎𝑛}, and a 

query q, suppose that 𝑝 = < 𝑠1,𝑠2,⋯,𝑠𝑘 >  is the 

structured annotation for query q obtained using 

the method introduced in the above sections. p can 

better reflects the user’s real search intent than the 

original q, as it presents the structured semantic 

information needed instead of a simple word string. 

Therefore, a document di can better satisfy a user’s 

information need if it contains corresponding 

structured semantic information in p. Suppose that 

Ti is the set of annotated tokens extracted from 

document di, we compute a re-ranking score, 

denoted by RScore, for document di as follows: 

RScore(q, di) = 𝑀𝑎𝑡𝑐ℎ(𝑞, 𝑑𝑖) 

                      = 𝑀𝑎𝑡𝑐ℎ(𝑝, 𝑇𝑖) 

                      = ∑ ∑ 𝑀𝑎𝑡𝑐ℎ(𝑠𝑗 , 𝑡)𝑡∈𝑇𝑖1≤𝑗≤𝑘  

where 

  𝑀𝑎𝑡𝑐ℎ(𝑠𝑗 , 𝑡)= {
𝑆𝑖𝑚(𝑠𝑗 . 𝑣𝑗 , 𝑡. 𝑣),        if 𝑠𝑗 . 𝑎𝑗 = 𝑡. 𝑎

0,                                else
      (3) 

where 𝑠𝑗  is an annotated token in p and t is an 

annotated token in di. We use Equation (2) to 

compute the similarity between values in query 

annotated tokens and values in document annotated 

tokens. We propose two re-ranking models, 

namely the conservative re-ranking model, to re-

rank top results based on RScore and relevance 

feedback based re-ranking model. 

4.1 Conservative Re-ranking Model 

A nature way to re-rank top search results is 

according to their RScore. However, we fail to 

obtain annotated tokens from some retrieved 

documents, and hence the RScore of these 

documents are not available. In the conservative 

re-ranking model, we only re-rank search results 

that have an RScore. For example, suppose there 

are five retrieved documents {d1, d2, d3, d4, d5} for 

query q, we can extract structured information 

from document d3 and d4 and RScore(q, d4) > 

RScore(q, d3). Note that we cannot obtain 
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structured information from d1, d2, and d5.  In the 

conservative re-ranking method, d1, d2, and d5 

retain their original positions; while d3 and d4 will 

be re-ranked according to their RScore. Therefore, 

the final ranking generated by our conservative re-

ranking model should be {d1, d2, d4, d3, d5}, in 

which the documents are re-ranked among the 

affected positions. 

There is also useful information in the 

documents without structured data, such as 

community question answering websites. However, 

in the conservative re-ranking model they will not 

be re-ranked. This may hurt the performance of our 

re-ranking model. One reasonable solution is 

relevance feedback model. 

4.2 Relevance Feedback based Re-ranking 

Model 

The disadvantage of the conservative re-ranking 

model is that it only can re-rank those top search 

results with structured data. To make up its 

limitation, we propose a relevance feedback based 

re-ranking model. The key idea of this model is 

based on the observation that the search results 

with the corrected annotated tokens could give 

implicit feedback information. Hence, we use these 

structured documents whose RScore are greater 

than a threshold γ (empirically set it as 0.6) as 

feedback documents, to effectively re-rank other 

search results to bring more relevant and novel 

information to the user. 

Formally, given a query Q and a document 

collection C, a retrieval system returns a ranked list 

of documents D. Let di denote the i-th ranked 

document in the ranked list. Our goal is to study 

how to use these feedback documents, J ⊆ {d1,…, 

dk}, to effectively re-rank the other r search results: 

U ⊆ {dk+1,…, dk+r}. A general formula of relevance 

feedback model (Salton et al, 1990) R is as follows: 

𝑅(𝑄′) = (1 − α)𝐿𝑞(Q) + α𝐿𝑑(J)             (4) 

where α ∈ [0, 1] is the feedback coefficient, and 𝐿𝑞 

and 𝐿𝑑 are two models that map a query and a set 

of relevant documents, respectively, into some 

comparable representations. For example, they can 

be represented as vectors of weighted terms or 

language models. 

In this paper, we explore the problem in the 

language model framework, particularly the KL-

divergence retrieval model and mixture-model 

feedback method (Zhai and Lafferty, 2001), mainly 

because language models deliver state-of-the-art 

retrieval performance and the mixture-model based 

feedback is one of the most effective feedback 

techniques which outperforms Rocchio feedback. 

4.2.1 The KL-Divergence Retrieval Model 

The KL-divergence retrieval model was introduced 

in Lafferty and Zhai, (2001) as a special case of the 

risk minimization retrieval framework and can 

support feedback more naturally. In this model, 

queries and documents are represented by unigram 

language models. Assuming that these language 

models can be appropriately estimated, KL-  

divergence retrieval model measures the relevance 

value of a document D with respect to a query Q 

by computing the negative Kullback-Leibler 

divergence between the query language model 𝜃𝑄 

and the document language model 𝜃𝐷 as follows: 

𝑆(𝑄, 𝐷) = −𝐷(𝜃𝑄||𝜃𝐷) = − ∑ 𝑝(𝑤|𝜃𝑄)𝑙𝑜𝑔
𝑝(𝑤|𝜃𝑄)

𝑝(𝑤|𝜃𝐷)𝑤∈𝑉       (5) 

where V is the set of words in our vocabulary. 

Intuitively, the retrieval performance of the KL-

divergence relies on the estimation of the 

document model 𝜃𝐷 and the query model 𝜃𝑄.  

For the set of k relevant documents, the 

document model 𝜃𝐷  is estimated as 𝑝(w|𝜃𝐷) =
1

𝑘
∑

𝑐(𝑤,𝑟𝑖)

|𝑟𝑖|
𝑘
𝑖=1 , where 𝑐(𝑤, 𝑟𝑖) is the count of word 

w in the i-th relevant document, and |𝑟𝑖| is the total 

number of words in that document. The document 

model 𝜃𝐷  needs to be smoothed and an effective 

method is Dirichlet smoothing (Zhai et al., 2001). 

The query model intuitively captures what the 

user is interested in, and thus would affect retrieval 

performance. With feedback documents, 𝜃𝑄  is 

estimated by the mixture-model feedback method. 

4.2.2 The Mixture Model Feedback Method 

As the problem definition in Equation (4), the 

query model can be estimated by the original query 

model 𝑝(𝑤|𝜃𝑄) =
𝑐(𝑤,𝑄)

|𝑄|
 (where c(w,Q) is the count 

of word w in the query Q, and |Q| is the total 

number of words in the query) and the feedback 

document model. Zhai and Lafferty, (2001) 

proposed a mixture model feedback method to 

estimate the feedback document model. More 

specifically, the model assumes that the feedback 

documents can be generated by a background 

language model 𝑝(𝑤|𝐶) estimated using the whole 

collection and an unknown topic language model 
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𝜃𝐹 to be estimated. Formally, let F ⊂ C be a set of 

feedback documents. In this paper, F is comprised 

of documents that RScore are greater thanγ. The 

log-likelihood function of the mixture model is: 

𝑙𝑜𝑔(𝐹|𝜃𝐹) = 

      ∑ ∑ 𝑐(𝑤, 𝐷)𝑤∈𝑉 log [(1 − 𝜆)𝑝(𝑤|𝜃𝐹) + 𝜆𝑝(𝑤|𝐶)]𝐷∈𝐹     (6) 

where 𝜆 ∈ [0,1)  is a mixture noise parameter 

which controls the weight of the background 

model. Given a fixed 𝜆, a standard EM algorithm 

can then be used to estimate 𝑝(𝑤|𝜃𝐹), which is 

then interpolated with the original query model 

𝑝(𝑤|Q) to obtain an improved estimation of the  

query model: 

𝑝(𝑤|𝜃𝑄) = (1 − 𝛼)𝑝(𝑤|𝑄) + 𝛼𝑝(𝑤|𝜃𝐹)         (7) 

 where 𝛼 is the feedback coefficient. 

5 Data 

We used a dataset composed of 12,396 queries 

randomly sampled from query logs of a search 

engine. For each query, we retrieved its top 100 

results from a commercial search engine. The 

documents were judged by human editors. A five-

grade (from 0 to 4 meaning from bad to perfect) 

relevance rating was assigned for each document. 

We used a proprietary query domain classifier to 

identify queries in three domains, namely “lyrics,”  

“recipe,” and “job,” from the dataset. The statistics 

about these domains are shown in Table 2. To 

investigate how many queries may potentially have 

structured annotations, we manually created 

structured annotations for these queries. The last 

column of Table 2 shows the percentage of queries 

that have structured annotations created by 

annotators. We found that for each domain, there 

was on average more than 90% of queries 

identified by us that had a certain structured 

annotation. This indicates that a large percentage 

of these queries contain structured information, as 

we expected. 

6 Experimental Results 

In this section, we present the structured annotation 

of queries and further re-rank the top search results 

for the three domains introduced in Section 5. We 

used the ranking returned by a commercial search 

engine as our one of the Baselines. Note that as the 

baseline already uses a large number of ranking 

signals, it is very difficult to improve it any further. 

We evaluate the ranking quality using the widely 

used Normalized Discounted Cumulative Gain 

measure (NDCG) (Javelin and Kekalainen., 2000). 

We use the same configuration for NDCG as 

(Burges et al. 2005). More specifically, for a given 

query q, the NDCG@K is computed as: 

                        𝑁𝑞 =  
1

𝑀𝑞

∑ (2𝑟(𝑗)−1)𝐾
𝑗=1

log (1 + 𝑗)
                            (4) 

Mq is a normalization constant (the ideal NDCG) 

so that a perfect ordering would obtain an NDCG 

of 1; and r(j) is the rating score of the j-th  

document in the ranking list.  

6.1 Overall Results 

6.1.1 Quality of Structured Annotation of 

Queries 

We generated the structured annotation of queries 

based on the top 10 search results and used 𝛿 =

0.04  for Algorithm 1. We used several existing 

metrics, P (Precision), R (Recall), and F-Measure 

to evaluate the quality of the structured annotation. 

As a query structured annotation may contain more 

than one annotated token, we concluded that the 
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Table 3. Quality of Structured Annotation. All the 

improvements are significant (p < 0.05) 

Domain Method Precision Recall F-Measure 

lyrics Baseline 

Our 

90.06% 

95.45% 

84.92% 

89.83% 

87.41% 

92.55% 

job Baseline 

Our 

89.62% 

95.31% 

80.14% 

84.93% 

84.62% 

89.82% 

recipe Baseline 

Our 

83.96% 

89.68% 

84.23% 

88.44% 

84.09% 

89.06% 

All Baseline 

Our 

87.88% 

93.61% 

83.10% 

88.45% 

85.42% 

90.96% 

 

Table 2. Domain queries used in our experiment 

Domain Containing 

Keyword 

Queries 

 

Structured  

Annotation% 

lyrics “lyrics” 196 95% 

job “job” 124 92% 

recipe “recipe” 76   93% 
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annotation was correct only if the entire annotation 

was completely the same as the annotation labeled 

by annotators. Otherwise we treated the structured 

annotation as incorrect. Experimental results for 

the three domains are shown in Table 3. We 

compare our approach with Xiao Li, (2010) 

(denoted as baseline), on the dataset described in 

Section 5. They labeled the semantic structure of 

noun phrase queries based on semi-Markov CRFs. 

Our approach achieves better performance than the 

baseline (about 5.5% significant improvement on 

F-Measure). This indicates that the approach of 

generating structured annotation based on the top 

search results is more effective. With the high-

quality structured annotation of queries in hand, it 

may be possible to obtain better ranking results 

using our proposed re-ranking models. 

6.1.2 Re-ranking Result 

We used the models introduced in Section 4 to re-

rank the top 10 search results, based on structured 

annotation of queries and annotated tokens.  

Recall that our goal is to quantify the 

effectiveness of structured annotation of queries 

for real web search. One dimension is to compare 

with the original search results of a commercial 

search engine (denoted as Ori-Ranker). The other 

is to compare with the query segmentation based 

re-ranking model (denoted as Seg-Ranker; Li et 

al., 2011) which tries to improve web search 

ranking by incorporating query segmentation. Li et 

al., (2011) incorporated query segmentation in the 

BM25, unigram language model and bigram 

language model retrieval framework, and bigram 

language model achieved the best performance. In 

this paper, Seg-Ranker integrates bigram language 

model with query segmentation. 

The ranking results of these models are shown 

in Figure 2. This figure shows that all our two 

rankers significantly outperform the Ori-Ranker– 

the original search results of a commercial search 

engine. This means that using high-quality 

structured annotation does help better 

understanding of user intent. By comparing these 

structured annotations and the annotated tokens in 

documents, we can re-rank the more relevant 

results higher and yield better ranking quality. 

Figure 2 also suggests that structured annotation 

based re-ranking models outperform query 

segmentation based re-ranking model. This is 

mainly because structured annotation can not only 

separate the query words into disjoint segments but 

can also assign each segment a semantic label. 

Taking full advantage of the semantic label can 

lead to better ranking performance. 

Furthermore, Figure 2 shows that FB-Ranker 

outperforms Con-Ranker. The main reason is that 

in Con-Ranker, we can only reasonably re-rank the 

search results with structured data. However, in 

FB-Ranker we can not only re-rank the structured 

search results but also can re-rank other documents 

by incorporating implicit information from those 

structured documents.  

On average, FB-Ranker achieves the best 

ranking performance. Table 4 shows more detailed 

Table 4. Detailed ranking results on three domains. 

All the improvements are significant (p < 0.05) 
Domain Ranking Method NDCG@1 NDCG@3 NDCG@5 

lyrics Seg-Ranker 0.572 0.574 0.575 

Ori-Ranker 

FB-Ranker 
0.621 

0.637 
0.628 

0.639 
0.636 

0.647 
recipe Seg-Ranker 0.629 0.631 0.634 

Ori-Ranker 

FB-Ranker 
0.678 

0.707 
0.687 

0.704 
0.696 

0.709 
job Seg-Ranker 0.438 0.413 0.408 

Ori-Ranker 

FB-Ranker 
0.470 

0.504 
0.453 

0.474 
0.442 

0.459 
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Figure 3. Quality of re-ranking and quality of query structured annotation with different number of search results 
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results for the three selected domains. This table 

shows that FB-Ranker consistently outperforms the 

two baseline rankers on these domains. In the 

remaining part of this paper, we will only report 

the results for this ranker, due to space limitations. 

Table 4 also indicates that we can get robust 

ranking improvement in different domains, and we 

will consider applying it to more domains. 

6.2 Experiment with Different Thresholds of 

Query Structured Annotation Algorithm 

As introduced in Algorithm 1, we pre-defined a 

threshold δ for fuzzy string matching. We 

evaluated the quality of re-ranking and query 

structured annotation with different settings for δ. 

The results are shown in Figure 3. We found that: 

(1) When we use δ = 0, which means that the 

structured annotations can be generated no matter 

how small the similarity between the query string 

and a weighted annotated token is, we can get a 

significant NDCG@3 gain of 2.15%. Figure 3(b) 

shows that the precision of the structured 

annotation is lowest when δ = 0 . However, the 

precision is still as high as 0.7375, and the highest 

recall is obtained in this case. This means that the 

quality of the generated structured annotations is 

still reasonable, and hence we can get a ranking 

improvement when δ = 0, as shown in Figure 3(a). 

(2) Figure 3(a) suggests that the quality of re-

ranking increases when the threshold δ increases 

from 0 to 0.05. It then decreases when δ increases 

from 0.06 to 0.5. Comparing these two figures 

shows that the trend of re-ranking performance 

adheres to the quality of the structured annotation. 

The settings for δ dramatically affect the recall and 

precision of the structured annotation; and hence 

the ranking quality is impacted. The larger δ is, the 

lower the recall of the structured annotation is. 

(3) Since the re-ranking performance 

dramatically changes along with the quality of the 

structured annotation, we conducted a re-ranking 

experiment with perfect structured annotations (F-

Measure equal to 1.0). Perfect structured 

annotations mean the annotations created by 

annotators as introduced in Section 5. The results 

are shown in the last bar of Figure 3(a). We did not 

find a large space for ranking improvement. The 

NDCG@3 when using perfect structured 

annotations was 0.606, which is just slightly better 

than our best result (yield when δ=0.05). It 

indicates that our structured annotation generation 

algorithm is already quite effective. 

(4) Figure 3(a) shows that our approach 

outperforms the two baseline approaches with most 

settings for δ. This indicates that our approach is 

relatively stable with different settings for δ. 

6.3 Experiment with Number of Top Search 

Results 

The above experiments are conducted based on the 

top 10 search results. In this section, by adjusting 

the number of top search results, ranging from 2 to 

100, we investigate whether the quality of 

structured annotation of queries and the 

performance of re-ranking are affected by the 

quantity of search results. The results shown in 

Figure 4 indicate that the number of search results 

does affect the quality of structured annotation of 

queries and the performance of re-ranking. 

Structured annotations of queries become better 

when more search results are used from 2 to 20. 

This is because more search results cover more 

websites in our domain list, and hence can generate 

more annotated tokens. More results also provide 

more evidence for voting the importance of 
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annotated tokens, and hence can improve the 

quality of structured annotation of queries. 

In addition, we also found that structured 

annotation of queries become worse when too 

many lower ranked results are used (e.g, using 

results ranked lower than 20). This is because the 

lower ranked results are less relevant than the 

higher ranked results. They may contain more 

irrelevant or noisy annotated tokens than higher 

ranked documents; and hence using them may 

harm the precision of the structured annotations. 

Figure 4 also indicates that the quality of ranking 

and the accuracy of structured annotations are 

correlated. 

7 Conclusions 

In this paper, we studied the problem of improving 

web search ranking by incorporating structured 

annotation of queries. We proposed a systematic 

solution, first to generate structured annotation of 

queries based on top search results, and then 

launching two structured annotation based re-

ranking models. We performed a large-scale 

evaluation over 12,396 queries from a major search 

engine. The experiment results show that the F-

Measure of query structured annotation generated 

by our approach is as high as 91%. In the same 

dataset, our structured annotation based re-ranking 

model significantly outperforms the original ranker 

– the ranking of a major search engine, with 

improvements 5.2%. 
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Abstract

Bilingual lexicons are central components of
machine translation and cross-lingual infor-
mation retrieval systems. Their manual con-
struction requires strong expertise in both lan-
guages involved and is a costly process. Sev-
eral automatic methods were proposed as an
alternative but they often rely on resources
available in a limited number of languages
and their performances are still far behind
the quality of manual translations. We intro-
duce a novel approach to the creation of spe-
cific domain bilingual lexicon that relies on
Wikipedia. This massively multilingual en-
cyclopedia makes it possible to create lexi-
cons for a large number of language pairs.
Wikipedia is used to extract domains in each
language, to link domains between languages
and to create generic translation dictionaries.
The approach is tested on four specialized do-
mains and is compared to three state of the art
approaches using two language pairs: French-
English and Romanian-English. The newly in-
troduced method compares favorably to exist-
ing methods in all configurations tested.

1 Introduction

The plethora of textual information shared on the
Web is strongly multilingual and users’ information
needs often go well beyond their knowledge of for-
eign languages. In such cases, efficient machine
translation and cross-lingual information retrieval
systems are needed. Machine translation already has
a decades long history and an array of commercial
systems were already deployed, including Google

Translate 1 and Systran 2. However, due to the intrin-
sic difficulty of the task, a number of related prob-
lems remain open, including: the gap between text
semantics and statistically derived translations, the
scarcity of resources in a large majority of languages
and the quality of automatically obtained resources
and translations. While the first challenge is general
and inherent to any automatic approach, the second
and the third can be at least partially addressed by
an appropriate exploitation of multilingual resources
that are increasingly available on the Web.

In this paper we focus on the automatic creation of
domain-specific bilingual lexicons. Such resources
play a vital role in Natural Language Processing
(NLP) applications that involve different languages.
At first, research on lexical extraction has relied on
the use of parallel corpora (Och and Ney, 2003).
The scarcity of such corpora, in particular for spe-
cialized domains and for language pairs not involv-
ing English, pushed researchers to investigate the
use of comparable corpora (Fung, 1998; Chiao and
Zweigenbaum, 2003). These corpora include texts
which are not exact translation of each other but
share common features such as domain, genre, sam-
pling period, etc.

The basic intuition that underlies bilingual lexi-
con creation is the distributional hypothesis (Harris,
1954) which puts that words with similar meanings
occur in similar contexts. In a multilingual formu-
lation, this hypothesis states that the translations of
a word are likely to appear in similar lexical envi-
ronments across languages (Rapp, 1995). The stan-
dard approach to bilingual lexicon extraction builds

1http://translate.google.com/
2http://www.systransoft.com/
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on the distributional hypothesis and compares con-
text vectors for each word of the source and tar-
get languages. In this approach, the comparison of
context vectors is conditioned by the existence of a
seed bilingual dictionary. A weakness of the method
is that poor results are obtained for language pairs
that are not closely related (Ismail and Manandhar,
2010). Another important problem occurs whenever
the size of the seed dictionary is small due to ignor-
ing many context words. Conversely, when dictio-
naries are detailed, ambiguity becomes an important
drawback.

We introduce a bilingual lexicon extraction ap-
proach that exploits Wikipedia in an innovative
manner in order to tackle some of the problems
mentioned above. Important advantages of using
Wikipedia are:

• The resource is available in hundreds of lan-
guages and it is structured as unambiguous con-
cepts (i.e. articles).

• The languages are explicitly linked through
concept translations proposed by Wikipedia
contributors.

• It covers a large number of domains and is thus
potentially useful in order to mine a wide array
of specialized lexicons.

Mirroring the advantages, there are a number of
challenges associated with the use of Wikipedia:

• The comparability of concept descriptions in
different languages is highly variable.

• The translation graph is partial since, when
considering any language pair, only a part of
the concepts are available in both languages
and explicitly connected.

• Domains are unequally covered in Wikipedia
(Halavais and Lackaff, 2008) and efficient do-
main targeting is needed.

The approach introduced in this paper aims to
draw on Wikipedia’s advantages while appropri-
ately addressing associated challenges. Among
the techniques devised to mine Wikipedia content,
we hypothesize that an adequate adaptation of Ex-
plicit Semantic Analysis (ESA) (Gabrilovich and

Markovitch, 2007) is fitted to our application con-
text. ESA was already successfully tested in differ-
ent NLP tasks, such as word relatedness estimation
or text classification, and we modify it to mine spe-
cialized domains, to characterize these domains and
to link them across languages.

The evaluation of the newly introduced approach
is realized on four diversified specialized domains
(Breast Cancer, Corporate Finance, Wind Energy
and Mobile Technology) and for two pairs of lan-
guages: French-English and Romanian-English.
This choice allows us to study the behavior of dif-
ferent approaches for a pair of languages that are
richly represented and for a pair that includes Roma-
nian, a language that has fewer associated resources
than French and English. Experimental results show
that the newly introduced approach outperforms the
three state of the art methods that were implemented
for comparison.

2 Related Work

In this section, we first give a review of the stan-
dard approach and then introduce methods that build
upon it. Finally, we discuss works that rely on Ex-
plicit Semantic Analysis to solve other NLP tasks.

2.1 Standard Approach (SA)
Most previous approaches that address bilingual lex-
icon extraction from comparable corpora are based
on the standard approach (Fung, 1998; Chiao and
Zweigenbaum, 2002; Laroche and Langlais, 2010).
This approach is composed of three main steps:

1. Building context vectors: Vectors are first
extracted by identifying the words that ap-
pear around the term to be translated Wcand

in a window of n words. Generally, asso-
ciation measures such as the mutual infor-
mation (Morin and Daille, 2006), the log-
likelihood (Morin and Prochasson, 2011) or the
Discounted Odds-Ratio (Laroche and Langlais,
2010) are employed to shape the context vec-
tors.

2. Translation of context vectors: To enable the
comparison of source and target vectors, source
vectors are translated intoto the target language
by using a seed bilingual dictionary. When-
ever several translations of a context word exist,
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all translation variants are taken into account.
Words not included in the seed dictionary are
simply ignored.

3. Comparison of source and target vectors:
Given Wcand, its automatically translated con-
text vector is compared to the context vectors
of all possible translations from the target lan-
guage. Most often, the cosine similarity is
used to rank translation candidates but alterna-
tive metrics, including the weighted Jaccard in-
dex (Prochasson et al., 2009) and the city-block
distance (Rapp, 1999), were studied.

2.2 Improvements of the Standard Approach

Most of the improvements of the standard approach
are based on the observation that the more repre-
sentative the context vectors of a candidate word
are, the better the bilingual lexicon extraction is. At
first, additional linguistic resources, such as special-
ized dictionaries (Chiao and Zweigenbaum, 2002) or
transliterated words (Prochasson et al., 2009), were
combined with the seed dictionary to translate con-
text vectors.

The ambiguities that appear in the seed bilingual
dictionary were taken into account more recently.
(Morin and Prochasson, 2011) modify the standard
approach by weighting the different translations ac-
cording to their frequency in the target corpus. In
(Bouamor et al., 2013), we proposed a method that
adds a word sense disambiguation process relying
on semantic similarity measurement from WordNet
to the standard approach. Given a context vector in
the source language, the most probable translation of
polysemous words is identified and used for build-
ing the corresponding vector in the target language.
The most probable translation is identified using the
monosemic words that appear in the same lexical en-
vironment.

On specialized French-English comparable cor-
pora, this approach outperforms the one proposed in
(Morin and Prochasson, 2011), which is itself bet-
ter than the standard approach. The main weakness
of (Bouamor et al., 2013) is that the approach relies
on WordNet and its application depends on the ex-
istence of this resource in the target language. Also,
the method is highly dependent on the coverage of
the seed bilingual dictionary.

2.3 Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) (Gabrilovich and
Markovitch, 2007) is a method that maps textual
documents onto a structured semantic space using
classical text indexing schemes such as TF-IDF. Ex-
amples of semantic spaces used include Wikipedia
or the Open Directory Project but, due to superior
performances, Wikipedia is most frequently used.
In the original evaluation, ESA outperformed state
of the art methods in a word relatedness estimation
task.

Subsequently, ESA was successfully exploited in
other NLP tasks and in information retrieval. Radin-
sky and al. (2011) added a temporal dimension to
word vectors and showed that this addition improves
the results of word relatedness estimation. (Hassan
and Mihalcea, 2011) introduced Salient Semantic
Analysis (SSA), a development of ESA that relies
on the detection of salient concepts prior to map-
ping words to concepts. SSA and the original ESA
implementation were tested on several word related-
ness datasets and results were mixed. Improvements
were obtained for text classification when compar-
ing SSA with the authors’ in-house representation
of the method. ESA has weak language depen-
dence and was already deployed in multilingual con-
texts. (Sorg and Cimiano, 2012) extended ESA to
other languages and showed that it is useful in cross-
lingual and multilingual retrieval task. Their focus
was on creating a language independent conceptual
space in which documents would be mapped and
then retrieved.

Some open ESA topics related to bilingual lex-
icon creation include: (1) the document represen-
tation which is simply done by summing individ-
ual contributions of words, (2) the adaptation of the
method to specific domains and (3) the coverage of
the underlying resource in different language.

3 ESA for Bilingual Lexicon Extraction

The main objective of our approach is to devise lex-
icon translation methods that are easily applicable
to a large number of language pairs, while preserv-
ing the overall quality of results. A subordinated
objective is to exploit large scale background mul-
tilingual knowledge, such as the encyclopedic con-
tent available in Wikipedia. As we mentioned, ESA
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Figure 1: Overview of the Explicit Semantic
Analysis enabled bilingual lexicon extraction.

(Gabrilovich and Markovitch, 2007) was exploited
in a number of NLP tasks but not in bilingual lexi-
con extraction.

Figure 1 shows the overall architecture of the lex-
ical extraction process we propose. The process is
completed in the following three steps:

1. Given a word to be translated and its con-
text vector in the source language, we derive
a ranked list of similar Wikipedia concepts (i.e.
articles) using the ESA inverted index.

2. Then, a translation graph is used to retrieve the
corresponding concepts in the target language.

3. Candidate translations are found through a sta-
tistical processing of concept descriptions from
the ESA direct index in the target language.

In this section, we first introduce the elements of
the original formulation of ESA necessary in our ap-

proach. Then, we detail the three steps that com-
pose the main bilingual lexicon extraction method
illustrated in Figure 1. Finally, as a complement to
the main method we introduce a measure for domain
word specificity and present a method for extracting
generic translation lexicons.

3.1 ESA Word and Concept Representation

Given a semantic space structured using a set of M
concepts and including a dictionary of N words,
a mapping between words and concepts can be
expressed as the following matrix:

w(W1, C1) w(W2, C1) ... w(WN , C1)
w(W1, C2) w(W2, C2) ... w(WN , C2)

... ... ...
w(W1, CM ) w(W2, CM ) ... w(WN , CM )

When Wikipedia is exploited concepts are
equated to Wikipedia articles and the texts of the ar-
ticles are processed in order to obtain the weights
that link words and concepts. In (Gabrilovich and
Markovitch, 2007), the weights w that link words
and concepts were obtained through a classical TF-
IDF weighting of Wikipedia articles. A series of
tweaks destined to improve the method’s perfor-
mance were used and disclosed later3. For instance,
administration articles, lists, articles that are too
short or have too few links are discarded. Higher
weight is given to words in the article title and
more longer articles are favored over shorter ones.
We implemented a part of these tweaks and tested
our own version of ESA with the Wikipedia ver-
sion used in the original implementation. The cor-
relation with human judgments of word relatedness
was 0.72 against 0.75 reported by (Gabrilovich and
Markovitch, 2007). The ESA matrix is sparse since
the N size of the dictionary, is usually in the range
of hundreds of thousands and each concept is usu-
ally described by hundreds of distinct words. The
direct ESA index from Figure 1 is obtained by read-
ing the matrix horizontally while the inverted ESA
index is obtained by reading the matrix vertically.

3https://github.com/faraday/
wikiprep-esa/wiki/roadmap
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Terme Concepts
action évaluation d’action, communisme, actionnaire activiste, socialisme,

dévelopement durable . . .
déficit crise de la dette dans la zone euro, dette publique, règle d’or budgétaire,

déficit, trouble du déficit de l’attention . . .
cisaillement taux de cisaillement, zone de cisaillement, cisaillement, contrainte de cisaille-

ment, viscoanalyseur . . .
turbine ffc turbine potsdam, turbine à gaz, turbine, urbine hydraulique, cogénération

. . .
cryptage TEMPEST, chiffrement, liaison 16, Windows Vista, transfert de fichiers . . .
protocole Ad-hoc On-demand Distance Vector, protocole de Kyoto, optimized link state

routing protocol, liaison 16, IPv6 . . .
biopsie biopsie, maladie de Horton, cancer du sein, cancer du poumon, imagerie par

résonance magnétique . . .
palpation cancer du sein, cellulite, examen clinique, appendicite, ténosynovite . . .

Table 1: The five most similar Wikipedia concepts to the French terms action[share], déficit[deficit], ci-
saillement[shear], turbine[turbine], cryptage[encryption], biopsie[biopsie] and palpation[palpation] and
their context vectors.

3.2 Source Language Processing

The objective of the source language processing is
to obtain a ranked list of similar Wikipedia concepts
for each candidate word (Wcand) in a specialized do-
main. To do this, a context vector is first built for
each Wcand from a specialized monolingual corpus.
The association measure between Wcand and context
words is obtained using the Odds-Ratio (defined in
equation 5). Wikipedia concepts in the source lan-
guage Cs that are similar to Wcand and to a part of its
context words are extracted and ranked using equa-
tion 1.

Rank(Cs) = (10 ∗max(OddsWcand
Wsi

)

∗w(Wcand, Cs)) +
n∑

i=1

OddsWcand
Wsi

∗w(Wsi , Cs)

(1)

where max(OddsWcand
Wsi

) is the highest Odds-Ratio
association between Wcand and any of its context
words Wsi ; the factor 10 was empirically set to
give more importance to Wcand over context words;
w(Wcand, Cs) is the weight of the association be-
tween Wcand and Cs from the ESA matrix; n is the
total number of words Wsi in the context vector of
Wcand; OddsWcand

Wsi
is the association value between

Wcand and Wsi and w(Wsi , Cs) are the weights of
the associations between each context word Wsi and
Cs from the ESA matrix. The use of contextual in-
formation in equation 1 serves to characterize the
candidate word in the target domain.

In table 1, we present the five most similar
Wikipedia concepts to the French terms action,
déficit, cisaillement, turbine, cryptage, biopsie and
palpation and their context vectors. These terms are
part of the four specialized domains we are studying
here. From observing these examples, we note that
despite the difference between the specialized do-
mains and word ambiguity (words action and proto-
cole), our method has the advantage of successfully
representing each word to be translated by relevant
conceptual spaces.

3.3 Translation Graph Construction

To bridge the gap between the source and target lan-
guages, a concept translation graph that enables the
multilingual extension of ESA is used. This con-
cept translation graph is extracted from the explicit
translation links available in Wikipedia articles and
is exploited in order to connect a word’s conceptual
space in the source language with the correspond-
ing conceptual space in the target language. Only a
part of the articles have translations and the size of
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the conceptual space in the target language is usu-
ally smaller than the space in the source language.
For instance, the French-English translation graph
contains 940,215 pairs of concepts while the French
and English Wikipedias contain approximately 1.4
million articles, respectively 4.25 million articles.

3.4 Target Language Processing
The third step of the approach takes place in the tar-
get language. Using the translation graph, we select
the 100 most similar concept translations (thresh-
old determined empirically after preliminary exper-
iments) from the target language and use their di-
rect ESA representations in order to retrieve poten-
tial translations for the candidate word Wcand from
source language. These candidate translations Wt

are ranked using equation 2.

Rank(Wt) = (
n∑

i=1

w(Wt, Cti)
avg(Cti)

)

∗ log(count(Wt, S)) (2)

with w(Wt, Cti) is the weight of the translation can-
didate WT for concept Cti from the ESA matrix
in the target language; avg(Cti) is the average TF-
IDF score of words that appear in Cti ; S is the set
of similar concepts Cti in the target language and
count(Wt, S) accounts for the number of different
concepts from S in which the candidate translation
WT appears.

The accumulation of weights w(Wt, Cti) fol-
lows the way original ESA text representations
are calculated (Gabrilovich and Markovitch, 2007)
and avg(Cti) is used in order to correct the
bias of the TF-IDF scheme towards short articles.
log(count(Wt, S)) is used to favor words that are
associated with a larger number of concepts. log
weighting was chosen after preliminary experiments
with a wide range of functions.

3.5 Domain Specificity
In previous works, ESA was usually exploited
in generic tasks that did not require any domain
adaptation. Here we process information from
specific domains and we need to measure the
specificity of words in those domains. The domain
extraction is seeded by using Wikipedia concepts
(noted Cseed) that best describes the domain in

the target language. For instance, in English,
the Corporate Finance domain is seeded with
https://en.wikipedia.org/wiki/Corporate finance.
We extract a set of 10 words with the highest
TF-IDF score from this article (noted SW ) and use
them to retrieve a domain ranking of concepts in the
target language Rankdom(Ct) with equation 3.

Rankdom(Ct) = (
n∑

i=1

w(Wti , Ct)

∗ w(Cseed, Wti)) ∗ count(SW, Ct) (3)

where n is size of the seed list of words (i.e. 10
items), w(Wti , Ct) is the weight of the domain
words in the concept Ct ; w(Cseed, Wti) is the
weight of Wti in Cseed, the seed concept of the do-
main, and count(SW, Ct) is the number of distinct
seed words from SW that appear in Ct.

The first part of equation 3 sums up the contribu-
tions of different words from SW that appear in Ct

while the second part is meant to further reinforce
articles that contain a larger number of domain key-
words from SW .

Domain delimitation is performed by retaining
articles whose Rankdom(Ct) is at least 1% or the
score of the top Rankdom(Ct) score. This threshold
was set up during preliminary experiments. Given
the delimitation obtained with equation 3, we calcu-
late a domain specificity score (specifdom(Wt)) for
each word that occurs in the domain ( equation 4).
specifdom(Wt) estimates how much of a word’s use
in an underlying corpus is related to a target domain.

specifdom(Wt) =
DFdom(Wt)
DFgen(Wt)

(4)

where DFdom and DFgen stand for the domain and
the generic document frequency of the word Wt.

specifdom(Wt) will be used to favor words with
greater domain specificity over more general ones
when several translations are available in a seed
generic translation lexicon. For instance, the French
word action is ambiguous and has English transla-
tions such as action, stock, share etc. In a general
case, the most frequent translation is action whereas
in a corporate finance context, share or stock are
more relevant. The specificity of the three transla-
tions, from highest to lowest, is: share, stock and ac-
tion and is used to rank these potential translations.
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3.6 Generic Dictionaries

Generic translation dictionaries, already used by ex-
isting bilingual lexicon extraction approaches, can
also be integrated in the newly proposed approach.
The Wikipedia translation graph is transformed into
a translation dictionary by removing the disam-
biguation marks from ambiguous concept titles, as
well as lists, categories and other administration
pages. Moreover, since the approach does not han-
dle multiword units, we retain only translation pairs
that are composed of unigrams in both languages.
When existing, unigram redirections are also added
in each language.

The obtained dictionaries are incomplete since:
(1) Wikipedia focuses on concepts that are most of-
ten nouns, (2) specialized domain terms often do not
have an associated Wikipedia entry and (3) the trans-
lation graph covers only a fraction of the concepts
available in a language. For instance, the result-
ing translation dictionaries have 193,543 entries for
French-English and 136,681 entries for Romanian-
English. They can be used in addition to or instead
of other resources available and are especially useful
when there are only few other resources that link the
pair of languages processed.

4 Evaluation

The performances of our approach are evaluated
against the standard approach and its developments
proposed by (Morin and Prochasson, 2011) and
(Bouamor et al., 2013). In this section, we first
describe the data and resources we used in our ex-
periments. We then present differents parameters
needed in the implementation of the different meth-
ods tested. Finally, we discuss the obtained results.

4.1 Data and Resources

Comparable corpora
We conducted our experiments on four French-
English and Romanian-English specialized compa-
rable corpora: Corporate Finance, Breast Can-
cer, Wind Energy and Mobile Technology. For
the Romanian-English language pair, we used
Wikipedia to collect comparable corpora for all do-
mains since they were not already available. The
Wikipedia corpora are harvested using a category-
based selection. We consider the topic in the source

Domain FR EN
Corporate Finance 402,486 756,840
Breast Cancer 396,524 524,805
Wind Energy 145,019 345,607
Mobile Technology 197,689 144,168
Domain RO EN
Corporate Finance 206,169 524,805
Breast Cancer 22,539 322,507
Wind Energy 121,118 298,165
Mobile Technology 200,670 124,149

Table 2: Number of content words in the
comparable corpora.

language (for instance Cancer Mamar [Breast Can-
cer]) as a query to Wikipedia and extract all its sub-
topics (i.e., sub-categories) to construct a domain-
specific category tree. Then, based on the con-
structed tree, we collect all Wikipedia articles be-
longing to at least one of these categories and use
inter-language links to build the comparable cor-
pora.

Concerning the French-English pair, we followed
the strategy described above to extract the compa-
rable corpora related to the Corporate Finance and
Breast Cancer domains since they were otherwise
unavailable. For the two other domains, we used
the corpora released in the TTC project4. All cor-
pora were normalized through the following linguis-
tic preprocessing steps: tokenization, part-of-speech
tagging, lemmatization, and function word removal.
The resulting corpora5 sizes are presented in Table
2. The size of the domain corpora vary within and
across languages, with the corporate finance domain
being the richest in both languages. In Romanian,
Breast Cancer is particularly small, with approxi-
mately 22,000 tokens included. This variability will
allow us to test if there is a correlation between cor-
pus size and quality of results.

Bilingual dictionary
The seed generic French-English dictionary used
to translate French context vectors consists of an
in-house manually built resource which contains
approximately 120,000 entries. For Romanian-

4http://www.ttc-project.eu/index.php/
releases-publications

5Comparable corpora will be shared publicly
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Domain FR-EN RO-EN
Corporate Finance 125 69

Breast Cancer 96 38
Wind Energy 89 38

Mobile Technology 142 94

Table 3: Sizes of the evaluation lists.

English, we used the generic dictionary extracted
following the procedure described in Subsection 3.6.

Gold standard
In bilingual terminology extraction from compara-
ble corpora, a reference list is required to evaluate
the performance of the alignment. Such lists are usu-
ally composed of around 100 single terms (Hazem
and Morin, 2012; Chiao and Zweigenbaum, 2002).
Reference lists6 were created for the four specialized
domains and the two pairs of languages. For the
French-English, reference words from the Corpo-
rate Finance domain were extracted from the glos-
sary of bilingual micro-finance terms7. For Breast
Cancer, the list is derived from the MESH and the
UMLS thesauri8. Concerning Wind Energy and Mo-
bile Technology, lists were extracted from special-
ized glossaries found on the Web. The Romanian-
English gold standard was manually created by a na-
tive speaker starting from the French-English lists.
Table 3 displays the sizes of the obtained lists. Ref-
erence terms pairs were retained if each word com-
posing them appeared at least five times in the com-
parable domain corpora.

4.2 Experimental setup

Aside from those already mentioned, three param-
eters need to be set up: (1) the window size that
defines contexts, (2) the association measure that
measures the strength of the association between
words and the (3) similarity measure that ranks can-
didate translations for state of the art methods. Con-
text vectors are defined using a seven-word window
which approximates syntactic dependencies. The
association and the similarity measures (Discounted
Log-Odds ratio (equation 5) and the cosine simi-

6Reference lists will be shared publicly
7http://www.microfinance.lu/en/
8http://www.nlm.nih.gov/

larity) were set following Laroche and Langlais
(2010), a comprehensive study of the influence of
these parameters on the bilingual alignment.

Odds-Ratiodisc = log
(O11 + 1

2 )(O22 + 1
2 )

(O12 + 1
2 )(O21 + 1

2 )
(5)

where Oij are the cells of the 2× 2 contingency ma-
trix of a token s co-occurring with the term S within
a given window size.

The F-measure of the Top 20 results (F-
Measure@20), which measures the harmonic mean
of precision and recall, is used as evaluation metric.
Precision is the total number of correct translations
divided by the number of terms for which the system
returned at least one answer. Recall is equal to the
ratio between the number of correct translation and
the total number of words to translate (Wcand).

4.3 Results and discussion
In addition to the basic approach based on ESA
(denoted ESA), we evaluate the performances of
a method so-called DicoSpec in which the transla-
tions are extracted from a generic dictionary and
a method we called ESASpec which combine ESA
and DicoSpec. DICOSpec is based on the generic
dictionary we presented in subsection 3.6 and pro-
ceeds as follows: we extract a list of translations for
each word to be translated from the generic dictio-
nary. The domain specificity introduced in subsec-
tion 3.5 is then used to rank these translations. For
instance, the french term port referring in the Mobile
Technology domain, to the system that allows com-
puters to receive and transmit information is trans-
lated into port and seaport. According to domain
specificity values, the following ranking is obtained:
the English term port obtain the highest specificity
value (0.48). seaport comes next with a specificity
value of 0.01. In ESASpec, the translations set out in
the translations lists proposed by both ESA and the
generic dictionary are weighted according to their
domain specificity values. The main intuition be-
hind this method is that by adding the information
about the domain specificity, we obtain a new rank-
ing of the bilingual extraction results.

The obtained results are displayed in table 4. The
comparison of state of the art method shows that
BA13 performs better than STAPP and MP11 for
French-English and has comparable performances

486



a)
FR

-E
N

Method
F-Measure@20

Breast Cancer Corporate Finance Wind Eenrgy Mobile Technology
STAPP 0.49 0.17 0.08 0.06
MP11 0.55 0.33 0.24 0.05
BA13 0.61 0.37 0.30 0.24

Dicospec 0.50 0.20 0.36 0.25
ESA 0.74 0.50 0.83 0.72

ESAspec 0.81 0.56 0.86 0.75

b)
R

O
-E

N

Method
F-Measure@20

Breast Cancer Corporate Finance Wind Eenrgy Mobile Technology
STAPP 0.21 0.13 0.08 0.16
MP11 0.21 0.13 0.08 0.16
BA13 0.21 0.14 0.08 0.17

Dicospec 0.44 0.11 0.21 0.16
ESA 0.76 0.17 0.58 0.53

ESAspec 0.78 0.24 0.58 0.55

Table 4: Results of the specialized dictionary creation on four specific domains, two pairs of languages.Three
state of the art methods were used for comparison: STAPP is the standard approach, MP11 is the improve-
ment of the standard approach introduced in (Morin and Prochasson, 2011), BA13 is a recent method that
we developed (Bouamor et al., 2013). Dicospec exploits a generic dictionary, combined with the use of do-
main specificity (see Subsection 3.5). ESA stands for the ESA based approach introduced in this paper (see
Figure 1). ESAspec combines the results of Dicospec and ESA.

for RO-EN. Consequently, we will use BA13 as the
main baseline for discussing the newly introduced
approach. The results presented in Table 4 show
that ESAspec clearly outperforms the three base-
lines for the four domains and the two pairs of lan-
guages tested. When comparing ESAspec to BA13
for French-English, improvements range between
0.19 for Corporate Finance and 0.56 for Wind En-
ergy. For RO-EN, the improvements vary from 0.1
for Corporate Finance to 0.5 for Wind Energy. Also,
except for the Corporate Finance domain in Roma-
nian, the performance variation across domains is
much smaller for ESAspec than for the three state
of the art methods. This shows that ESAspec is more
robust to domain change and thus more generic.

The results obtained with ESA are signifi-
cantly better than those obtained with Dicospec and
ESAspec, their combination, further improves the
results. The main contribution to ESAspec perfor-
mances comes from ESA, a finding that validates
our assumption that the adequate use of a rich multi-
lingual resource such as Wikipedia is appropriate for
specialized lexicon translation. Dicospec is a sim-

ple method that ranks the different meanings of a
candidate word available in a generic dictionary but
its average performances are comparable to those
of BA13 for FR-EN and higher for RO-EN. This
finding advocates for the importance of good qual-
ity generic dictionaries in specialized lexicon trans-
lation approaches. However, it is clear that such
dictionaries are far from being sufficient in order
to cover all possible domains. There is no clear
correlation between domain size and quality of re-
sults. Although richer than the other three domains,
Corporate Finance has the lowest associated per-
formances. This finding is probably explained by
the intrinsic difficulty of each domain. When pass-
ing from FR-EN to RO-EN the average performance
drop is more significant for BA13 than for the ESA
based methods. The result indicates that our ap-
proach is more robust to language change.

5 Conclusion

We have presented a new approach to the creation
of specialized bilingual lexicons, one of the central
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building blocks of machine translation systems. The
proposed approach directly tackles two of the ma-
jor challenges identified in the Introduction. The
scarcity of resources is addressed by an adequate
exploitation of Wikipedia, a resource that is avail-
able in hundreds of languages. The quality of auto-
matic translations was improved by appropriate do-
main delimitation and linking across languages, as
well as by an adequate statistical processing of con-
cepts similar to a word in a given context.

The main advantages of our approach compared
to state of the art methods come from: the increased
number of languages that can be processed, from
the smaller sensitivity to structured resources and
the appropriate domain delimitation. Experimental
validation is obtained through evaluation with four
different domains and two pairs of languages which
shows consistent performance improvement. For
French-English, two languages that have rich asso-
ciated Wikipedia representations, performances are
very interesting and are starting to approach those of
manual translations for three domains out of four (F-
Measure@20 around 0.8). For Romanian-English, a
pair involving a language with a sparser Wikipedia
representation, the performances of our method drop
compared to French-English . However, they do not
decrease to the same extent as those of the best state
of the art method tested. This finding indicates that
our approach is more general and, given its low lan-
guage dependence, it can be easily extended to a
large number of language pairs.

The results presented here are very encouraging
and we will to pursue work in several directions.
First, we will pursue the integration of our method,
notably through comparable corpora creation using
the data driven domain delimitation technique de-
scribed in Subsection 3.5. Equally important, the
size of the domain can be adapted so as to find
enough context for all the words in domain reference
lists. Second, given a word in a context, we currently
exploit all similar concepts from the target language.
Given that comparability of article versions in the
source and the target language varies, we will eval-
uate algorithms for filtering out concepts from the
target language that have low alignment with their
source language versions. A final line of work is
constituted by the use of distributional properties of
texts in order to automatically rank parts of concept

descriptions (i.e. articles) by their relatedness to the
candidate word. Similar to the second direction, this
process involves finding comparable text blocks but
rather at a paragraph or sentence level than at the
article level.
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Abstract

Joint compression and summarization has
been used recently to generate high quality
summaries. However, such word-based joint
optimization is computationally expensive. In
this paper we adopt the ‘sentence compression
+ sentence selection’ pipeline approach for
compressive summarization, but propose to
perform summary guided compression, rather
than generic sentence-based compression. To
create an annotated corpus, the human anno-
tators were asked to compress sentences while
explicitly given the important summary words
in the sentences. Using this corpus, we train
a supervised sentence compression model us-
ing a set of word-, syntax-, and document-
level features. During summarization, we use
multiple compressed sentences in the inte-
ger linear programming framework to select
salient summary sentences. Our results on the
TAC 2008 and 2011 summarization data sets
show that by incorporating the guided sen-
tence compression model, our summarization
system can yield significant performance gain
as compared to the state-of-the-art.

1 Introduction

Automatic summarization can be broadly divided
into two categories: extractive and abstractive sum-
marization. Extractive summarization focuses on
selecting the salient sentences from the document
collection and concatenating them to form a sum-
mary; while abstractive summarization is generally
considered more difficult, involving sophisticated
techniques for meaning representation, content plan-

ning, surface realization, etc., and the “true abstrac-
tive summarization remains a researcher’s dream”
(Radev et al., 2002).

There has been a surge of interest in recent
years on generating compressed document sum-
maries as a viable step towards abstractive sum-
marization. These compressive summaries often
contain more information than sentence-based ex-
tractive summaries since they can remove insignif-
icant sentence constituents and make space for more
salient information that is otherwise dropped due to
the summary length constraint. Two general strate-
gies have been used for compressive summarization.
One is a pipeline approach, where sentence-based
extractive summarization is followed or proceeded
by sentence compression (Knight and Marcu, 2000;
Lin, 2003; Zajic et al., 2007; Wang et al., 2013).
Another line of work uses joint compression and
summarization. They have been shown to achieve
promising performance (Daumé, 2006; Martins and
Smith, 2009; Berg-Kirkpatrick et al., 2011; Chali
and Hasan, 2012; Almeida and Martins, 2013; Qian
and Liu, 2013). One popular approach for such joint
compression and summarization is via integer lin-
ear programming (ILP). However, since words are
the units in the optimization framework, solving this
ILP problem can be expensive.

In this study, we use the pipeline compression
and summarization method because of its compu-
tational efficiency. Prior work using such pipeline
methods simply uses generic sentence-based com-
pression for each sentence in the documents, no mat-
ter whether compression is done before or after sum-
mary sentence extraction. We propose to use sum-
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mary guided compression combined with ILP-based
sentence selection for summarization in this paper.
We create a compression corpus for this purpose.
Using human summaries for a set of documents, we
identify salient words in the sentences. During anno-
tation, the human annotators are given these salient
words and asked to generate compressed sentences.
We expect such “guided” sentence compression is
beneficial for the pipeline compression and summa-
rization task. In addition, previous research on joint
modeling for compression and summarization sug-
gested that the labeled extraction and compression
data sets would be helpful for learning a better joint
model (Daumé, 2006; Martins and Smith, 2009).
We hope that our work on this guided compression
will also be of benefit to the future joint modeling
studies.

Using our created compression data, we train
a supervised compression model using a variety
of word-, sentence-, and document-level features.
During summarization, we generate multiple com-
pression candidates for each sentence, and use the
ILP framework to select compressed summary sen-
tences. In addition, we also propose to apply a pre-
selection step to select some important sentences,
which can both speed up the summarization system
and improve performance. We evaluate our pro-
posed summarization approach on the TAC 2008
and 2011 data sets using the standard ROUGE met-
ric (Lin, 2004). Our results show that by incorporat-
ing a guided sentence compression model, our sum-
marization system can yield significant performance
gain as compared to the state-of-the-art reported re-
sults.

2 Related Work

Summarization research has seen great development
over the last fifty years (Nenkova and McKeown,
2011). Compared to the abstractive counterpart, ex-
tractive summarization has received considerable at-
tention due to its clear problem formulation – to ex-
tract a set of salient and non-redundant sentences
from the given document set. Both unsupervised and
supervised approaches have been explored for sen-
tence selection. The supervised approaches include
the Bayesian classifier (Kupiec et al., 1995), max-
imum entropy (Osborne, 2002), skip-chain condi-

tional random fields (CRF) (Galley, 2006), discrim-
inative reranking (Aker et al., 2010), among others.

The extractive summary sentence selection prob-
lem can also be formulated in an optimization
framework. Previous approaches include the inte-
ger linear programming (ILP) and submodular func-
tions, which are used to solve the optimization prob-
lem. In particular, Gillick et al. (2009) proposed
a concept-based ILP approach for summarization.
Li et al. (2013) improved it by using supervised
stragety to estimate concept weight in ILP frame-
work. In (Lin and Bilmes, 2010), the authors model
the sentence selection problem as maximizing a sub-
modular function under a budget constraint. A
greedy algorithm is proposed to efficiently approxi-
mate the solution to this NP-hard problem.

Compressive summarization receives increasing
attention in recent years, since it offers a viable
step towards abstractive summarization. The com-
pressed summaries can be generated through a joint
model of the sentence selection and compression
processes, or through a pipeline approach that in-
tegrates a generic sentence compression model with
a summary sentence pre-selection or post-selection
step.

Many studies explore the joint sentence compres-
sion and selection setting. Martins and Smith (2009)
jointly perform sentence extraction and compression
by solving an ILP problem; Berg-Kirkpatrick et al.
(2011) propose an approach to score the candidate
summaries according to a combined linear model
of extractive sentence selection and compression.
They train the model using a margin-based objec-
tive whose loss captures the final summary qual-
ity. Woodsend and Lapata (2012) present a method
where the summary’s informativeness, succinctness,
and grammaticality are learned separately from data
but optimized jointly using an ILP setup; Yoshikawa
et al. (2012) incorporate semantic role information
in the ILP model; Chali and Hasan (2012) investi-
gate three strategies in compressive summarization:
compression before extraction, after extraction, or
joint compression and extraction in one global op-
timization framework. These joint models offer a
promise for high quality summaries, but they often
have high computational cost. Qian and Liu (2013)
propose a graph-cut based method that improves the
speed of joint compression and summarization.
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The pipeline approach, where sentence-based ex-
tractive summarization is followed or proceeded by
sentence compression, is also popular. Knight and
Marcu (2000) utilize the noisy channel and deci-
sion tree method to perform sentence compression;
Lin (2003) shows that pure syntactic-based com-
pression may not improve the system performance;
Zajic et al. (2007) compare two sentence compres-
sion approaches for multi-document summarization,
including a ‘parse-and-trim’ and a noisy-channel ap-
proach; Galanis and Androutsopoulos (2010) use
the maximum entropy model to generate the candi-
date compressions by removing the branches from
the source sentences; Liu and Liu (2013) couple
the sentence compression and extraction approaches
for summarizing the spoken documents; Wang et al.
(2013) design a series of learning-based compres-
sion models built on parse trees, and integrate them
in query-focused multi-document summarization.
Prior studies often rely heavily on the generic sen-
tence compression approaches (McDonald, 2006;
Nomoto, 2007; Clarke and Lapata, 2008; Thadani
and McKeown, 2013) for compressing the sentences
in the documents, yet a generic compression system
may not be the best fit for the summarization pur-
pose.

In this paper, we adopt the pipeline-based com-
pressive summarization framework, but propose a
novel guided compression method that is catered to
the summarization task. We expect this approach
to take advantage of the efficient pipeline process-
ing while producing satisfying results as the joint
models. We train a supervised guided compression
model to produce n-best compressions for each sen-
tence, and use an ILP formulation to select the best
set of summary sentences. In addition, we pro-
pose to apply a sentence pre-selection step to fur-
ther accelerate the processing and enhance the per-
formance.

3 Guided Compression Corpus

The goal of guided sentence compression is to create
compressed sentences that are grammatically cor-
rect and contain the important information that we
would like to preserve in the final summary. Fol-
lowing the compression literature (Clarke and Lap-
ata, 2008), the compression task is defined as a word

Original Sentence:
The gas leak was contained Monday afternoon , nearly 18
hours after it was reported , Statoil spokesman Oeivind
Reinertsen said .

Compression A:
The gas leak was contained
Compression B:
The gas leak was contained Monday afternoon
Compression C:
The gas leak was contained nearly 18 hours after it was
reported

Table 1: Example sentence and three compressions.

deletion problem, that is, the human annotators (and
also automatic compression systems) are allowed to
only remove words from the original sentence to
form a compression. The key difference between
our proposed guided compression with generic sen-
tence compression is that, we provide guidance to
the human compression process by specifying a set
of “important words” that we wish to keep for each
sentence. We expect this kind of summary oriented
compression would benefit the ultimate summariza-
tion task. Take the sentence shown in Table 1 as an
example. For generic sentence compression, there
may be multiple ‘good’ human compressions for this
sentence, such as those listed in the table. Without
guidance, a human annotator (or automatic system)
is likely to use option A or B; however, if “18 hours”
appears in the summary, then we want to provide this
guidance in the compression process, hence option
C may be the best compression choice. This guided
compression therefore avoids removing the salient
words that are important to the final summary.

To generate the guided compression corpus, we
use the TAC 2010 data set1 that was used for
the multi-document summarization task. There are
46 topics. Each has 10 news documents, and
also four human-created abstractive reference sum-
maries. Since annotating all the sentences in this
data set is time consuming and some sentences are
not very important for the summarization task, we
choose a set of sentences that are highly related to
the human abstracts for annotation. We compare
each sentence with the four human abstracts using
the ROUGE-2 metric (Lin, 2004), and the sentences

1http://www.nist.gov/tac/2010/
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Original Sentence:
He said Vietnam veterans are presumed to have been ex-
posed to Agent Orange and veterans with any of the 10 dis-
eases is presumed to have contracted it from the exposure ,
without individual proof .

Guided Compression:
Vietnam veterans are presumed to have been exposed to
Agent Orange.

Original Sentence:
The province has limited the number of trees to be chopped
down in the forest area in northwest Yunnan and has stopped
building sugar factories in the Xishuangbanna region to
preserve the only tropical rain forest in the country located
there .

Guided Compression:
province has stopped building sugar factories in the
Xishuangbanna region to preserve tropical rain forest.

Table 2: Example original sentences and their guided
compressions. The “guiding words” are italicized and
marked in red.

with the highest scores are selected.
In annotation, human annotators are provided

with important ‘guiding words’ (highlighted in the
annotation interface) that we want to preserve in the
sentences. We calculate the word overlap between a
sentence and each of those sentences in the human
abstracts, and use a set of heuristic rules to deter-
mine the “guiding words” in a sentence: the longest
consecutive word overlaps (greater than 2 words) in
each sentence pair are first selected; the rest overlaps
that contain 2 or more words (excluding the stop-
words) are also selected. We suggest the human an-
notators to use their best judgment to keep the guid-
ing words as many as possible while compressing
the sentence.

We use the Amazon Mechanical Turk (AMT) for
data annotation2. In total, we select 1,150 sentences
from the TAC news documents. They are grouped
into about 230 human intelligence tasks (HITs) with
5 sentences in each HIT. A sentence was compressed
by 3 human annotatorsand we select the shortest
candidate as the goldstandard compression for each
sentence. In Table 2, we show two example sen-
tences, their guiding words (bold), and the human
compressions. The first example shows that giving
up some guiding words is acceptable, since more

2http://www.mturk.com

unnecessary words will be included in order to ac-
commodate all the guiding words; the second ex-
ample shows that the guided compression can lead
to more aggressive word deletions since the con-
stituents that are not important to the summary will
be deleted even though they contain salient informa-
tion by themselves.

For our compression corpus, which contains
1,150 sentences and their guided compressions, the
average compression rate, as measured by the per-
centage of dropped words, is about 50%. This com-
pression ratio is higher compared to other generic
sentence compression corpora, in which the word
deletion rate ranges from 24% to 34% depending
on different text genres and annotation guidelines
(Clarke and Lapata, 2008; Liu and Liu, 2009). This
suggests that the annotators can remove words more
aggressively when they are provided with a limited
set of guiding words.

4 Summarization System

Our summarization system consists of three key
components: we train a supervised guided compres-
sion model using our created compression data, with
a variety of features.then we use this model to gener-
ate n-best compressions for each sentence; we feed
the multiple compressed sentences to the ILP frame-
work to select the best summary sentences. In ad-
dition, we propose a sentence pre-selection step that
can both speed up the summarization system and im-
prove the performance.

4.1 Guided Sentence Compression

Sentence compression has been explored in previous
studies using both supervised and unsupervised ap-
proaches, including the noisy-channel and decision
tree model (Knight and Marcu, 2000; Turner and
Charniak, 2005), discriminative learning (McDon-
ald, 2006), integer linear programming (Clarke and
Lapata, 2008; Thadani and McKeown, 2013), con-
ditional random fields (CRF) (Nomoto, 2007; Liu
and Liu, 2013), etc. In this paper, we employ the
CRF-based compression approach due to its proved
performance and its flexibility to integrate differ-
ent levels of discriminative features. Under this
framework, sentence compression is formulated as
a sequence labeling problem, where each word is
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labeled as either “0” (retained) or “1” (removed).
We develop different levels of features to capture
word-specific characteristics, sentence related infor-
mation, and document level importance. Most of the
features are extracted based only on the sentence to
be compressed. However, we introduce a few doc-
ument level features. These are designed to cap-
ture the word and sentence significance within the
given document collection and are thus expected to
be more summary related.
Word and sentence features:

• Word n-grams: identity of the current word
and two words before and after, as well as all
the bigrams and trigrams that can be formed by
the adjacent words and the current word.

• POS n-grams: same as the word n-grams, but
use the part-of-speech tags instead.

• Named entity tags: binary features represent-
ing whether the current word is a person, loca-
tion, or temporal expression. We use the Stan-
ford CoreNLP tools3 for named entity tagging.

• Stopwords: whether the current word is a stop-
word or not.

• Conjunction features: (1) conjunction of the
current word with its relative position in the
sentence; (2) conjunction of the NER tag with
its relative position.

• Syntactic features: We obtain the syntactic
parsing tree using the Berkeley Parser (Petrov
and Klein, 2007), then obtain the following fea-
tures: (1) the last sentence constituent tag in
the path from the root to the word; (2) depth:
length of the path starting from the root node
to the word; (3) normalized depth: depth di-
vided by the longest path in the parsing tree;
(4) whether the word is under an SBAR node;
(5) depth and normalized depth of the SBAR
node if the word is under an SBAR node;

• Dependency features: We employ the
Penn2Malt toolkit 4 to convert the parse re-
sult from the Berkeley parser to the depen-
dency parsing tree, and use these dependency

3http://nlp.stanford.edu/software/corenlp.shtml
4http://stp.lingfil.uu.se/˜nivre/research/Penn2Malt.html

features: (1) dependency relations such as
‘AMOD’ (adjective modifier), ‘NMOD’ (noun
modifier), etc. (2) whether the word has a child,
left child, or right child in the dependency tree.

Document-level features:

• Sentence salience score: We use a simple re-
gression model to estimate a salience score for
each sentence (more details in Section 4.3),
which represents the importance of the sen-
tence in the document. This score is discretized
into four binary features according to the aver-
age sentence salience.

• Unigram document frequency: this is the
current word’s document frequency based on
the 10 documents associated with each topic.

• Bigram document frequency: document fre-
quency for the two bigrams, the current word
and its previous or next word.

Some of the above features were employed in re-
lated sentence compression studies (Nomoto, 2007;
Liu and Liu, 2013). In addition to these features, we
explored other related features, including the abso-
lute position of the current word, whether the word
appears in the corresponding topic title and descrip-
tions, conjunction of the syntactic tag with the tree
depth, etc.; however, these features did not lead to
improved performance. We train the CRF model
with the Pocket CRF toolkit5 using the guided com-
pression corpus collected in Section 3. During sum-
marization, we apply the model to a given sentence
to generate its n-best guided compressions and use
them in the following summarization step.

4.2 Summary Sentence Selection

The sentence selection process is similar to the stan-
dard sentence-based extractive summarization, ex-
cept that the input to the selection module is a list
of compressed sentences in our work. Many extrac-
tive summarization approaches can be applied for
this purpose. In this work, we choose the integer
linear programming (ILP) method, specifically, the
concept-based ILP framework introduced in (Gillick

5http://sourceforge.net/projects/pocket-crf-1/
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et al., 2009), mainly because it yields best perfor-
mance in the TAC evaluation tasks. This ILP ap-
proach aims to extract sentences that can cover as
many important concepts as possible, while ensuring
the summary length is within a given constraint. We
follow the study in (Gillick et al., 2009) to use word
bi-grams as concepts, and assign a weight to each
bi-gram using its document frequency in the given
document collection for a test topic. Two differences
are between our ILP setup and that in (Gillick et al.,
2009). First, since we use multiple compressions
for one sentence, we need to introduce an additional
constraint: for each sentence, only one of the n-best
compressions may be included in the summary. Sec-
ond, we optimize a joint score of the concept cover-
age and the sentence salience. The formal ILP for-
mulation is shown below:

max
∑

i

wici +
∑

j

vj

∑
k

sjk (1)

s.t.
∑

k

sjk ≤ 1∀j (2)

sjkOcci jk ≤ ci (3)∑
jk

sjkOcci jk ≥ ci (4)

∑
jk

ljksjk ≤ L (5)

ci ∈ {0, 1} ∀i (6)

sjk ∈ {0, 1} ∀j, k (7)

where ci and sjk are binary variables indicating the
presence of a concept and a sentence respectively;
sjk denotes the kth candidate compression of the
jth sentence; wi represents the weight of the con-
cept; vj is the sentence salience score of the jth

sentence, predicted using a regression model (Sec-
tion 4.3), and all of its compressed candidates share
this value. (1) is the new objective function we use
that combines the coverage of the concepts and the
sentence salience scores. (2) represents our addi-
tional constraint, which requires that for each sen-
tence j, only one candidate compression will be cho-
sen. Occi jk represents the occurrence of concept i
in the sentence sjk. Inequalities (3) and (4) associate
the sentences and the concepts. Constraint (5) con-
trols the summary length, as measured by the total
number of words in the summary. We use an open

source ILP solver6.

4.3 Sentence Pre-selection
The above ILP method can offer an exact solution
to the defined objective function. However, ILP is
computationally expensive when the formulation in-
volves large quantities of variables, i.e, when we
have many sentences and a large number of candi-
date compressions for each sentence. We therefore
propose to apply a sentence pre-selection step be-
fore the compression. This kind of selection step
has been used in previous ILP-based summarization
systems (Berg-Kirkpatrick et al., 2011; Gillick et al.,
2009). In this work, we propose to use a simple su-
pervised support vector regression (SVR) model (Ng
et al., 2012) to predict a salience score for each sen-
tence and select the top ranked sentences for further
processing (compression and summarization).

To train the SVR model, the target value for each
sentence is the ROUGE-2 score between the sen-
tence and the four human abstracts (this same value
is used for sentence selection in corpus annotation
(Section 3)). We employ three commonly used fea-
tures: (1) sentence position in the document; (2) sen-
tence length as indicated by a binary feature: it takes
the value of 0 if the number of words in the sentence
is greater than 50 or less than 10, otherwise the fea-
ture value is 1; (3) interpolated n-gram document
frequency as introduced in (Ng et al., 2012), which
is a weighted linear combination of the document
frequency of the unigrams and bigrams contained in
the sentence:

f(s) =
α

∑
wu∈S DF (wu) + (1− α)

∑
wb∈S DF (wb)

|S|

where wu and wb represent the unigrams and bi-
grams contained in the sentence S; α is a balancing
factor; |S| denotes the number of words in the sen-
tence.

The SVR model was trained using the SVMlight
toolkit7. Using this model, we can predict a salience
score (Vj in Eq 1) for each sentence and only select
the top n sentences and supply them to the compres-
sion and summarization steps. In practice, using a
fixed n may not be a good choice since the number

6http://www.gnu.org/software/glpk/
7http://svmlight.joachims.org/
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of sentences varies greatly for different topics. We
therefore set n heuristically based on the total num-
ber of sentencesm for each topic: n=15 ifm > 150;
n=10 if m < 100; n=0.1 ∗m otherwise.

5 Experimental Results

5.1 Experimental Setup
For our experiments, we use the standard TAC data
sets8, which have been used in the NIST competi-
tions and in other summarization studies. In par-
ticular, we used the TAC 2010 data set for creating
the guided compression corpus and training the SVR
pre-selection model, the TAC 2009 data set as devel-
opment set for parameter tuning, and the TAC 2008
and 2011 data sets as the test set for reporting the
final summarization results.

We compare our pipeline summarization sys-
tem against three recent studies, which have re-
ported some of the highest published results on this
task. Berg-Kirkpatrick et al. (2011) introduce a
joint model for sentence extraction and compres-
sion. The model is trained using a margin-based ob-
jective whose loss captures the end summary qual-
ity; Woodsend and Lapata (2012) learn individ-
ual summary aspects from data, e.g., informative-
ness, succinctness, grammaticality, stylistic writ-
ing conventions, and jointly optimize the outcome
in an integer linear programming framework. Ng
et al. (2012) exploit category-specific information
for multi-document summarization. In addition to
the three previous studies, we also report the best
achieved results in the TAC competitions.

5.2 Summarization Results
In Table 3 and Table 4, we present the results of our
system and the aforementioned summarization stud-
ies. We use the ROUGE evaluation metrics (Lin,
2004), with R-2 measuring the bigram overlap be-
tween the system and reference summaries and R-
SU4 measuring the skip-bigram with the maximum
gap length of 4. “Our System” uses the pipeline
setting including the three components described in
Section 4. We use the SVR-based approach to pre-
select a set of sentences from the document set; these
sentences are further fed to the guided compression
module that produces n-best compressions for each

8http://www.nist.gov/tac/data/index.html

System R-2 R-SU4 CompR

TAC’08 Best System 11.03 13.96 n/a
(Berg-Kirkpatrick et al., 2011) 11.70 14.38 n/a
(Woodsend et al., 2012) 11.37 14.47 n/a

Our System 12.35† 15.27† 43.06%

Our System w/o Pre-selection 12.02 14.98 55.69%
Our System w/ Generic Comp 10.88 13.79 30.90%

Table 3: Results on the TAC 2008 data set. “Our Sys-
tem” uses the SVR-based sentence pre-selection + guided
compression + ILP-based summary sentence selection.
“Our System w/ Generic Comp” uses the pre-selection +
generic compression + ILP summary sentence selection
setting. “CompR” represents the compression ratio, i.e.,
percentage of dropped words. † represents our system
outperforms the best previous result at the 95% signifi-
cance level.

System R-2 R-SU4 CompR

TAC’11 Best System 13.44 16.51 n/a
(Ng et al., 2012) 13.93 16.83 n/a

Our System 14.40 16.89 39.90%

Our System w/o Pre-selection 13.74 16.5 53.81%
Our System w/ Generic Comp 13.08 16.23 30.10%

Table 4: Results on the TAC 2011 data set. The systems
use the same settings as for the TAC 2008 data set.

sentence; the ILP-based framework is then used to
select the summary sentences from these compres-
sions.

We can see from the table that in general, our sys-
tem achieves considerably better results compared to
the state-of-the-art on both the TAC 2008 and 2011
data sets. On the TAC 2008 data set, our system out-
performs the best reported result at the 95% signifi-
cance level; on the TAC 2011 data set, our system
also yields considerable performance gain though
not exceed the 95% significance level. In the fol-
lowing, we show more detailed analysis to study the
effect of different system parameters.

With or without sentence pre-selection. First
we evaluate the impact of sentence pre-selection
step. In Table 3 and Table 4, we include the
results when this step is not used (“Our System
w/o Pre-selection”). That is, all of the sentences
in the documents (excluding those containing less
than 5 words) are compressed and used in the ILP-
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based summary sentence selection module. We can
see that although sentence pre-selection removes
some sentences from consideration in the later sum-
marization step, it actually significantly improves
system performance. In the TAC 2008 data set,
each topic contains averagely 210 sentences; while
the pre-selection step chooses 13 sentences among
them. These numbers are 185 and 12 for the TAC
2011 data set. Table 5 shows the average running
time of each topic in TAC 2011 data for the two sys-
tems, with or without the pre-selection step. Here
we fix the number of compressions to 100 in both
cases for fair comparison. We can see the selec-
tion step greatly accelerates the system processing.
When applying the pre-selection step, fewer sen-
tences are used in the compression and summariza-
tion, this means we are able to use more compres-
sion candidates for each sentence (considering the
complexity of ILP module). Using the TAC 2009
as development set, we tuned the number of can-
didate compressions generated for each sentence.
Without pre-selection, we used the 100-best candi-
dates generated from the compression model; with
pre-selection, we are able to increase the number
to 200-best candidate compressions and still main-
tain reasonable computational cost. These are the
numbers used in the results in Table 3 and 4. Us-
ing more compressions helps improve summariza-
tion performance. We also notice that the compres-
sion ratios are quite different when using sentence
pre-selection vs. not. This suggests that in the im-
portant sentences (those are kept after pre-selection),
there is more summary related information and thus
the compression model keeps more words in them
(lower compression ratio).

System
Compressed Number of Running
Sentences Compressions Time (sec)

w/o Pre-selection 185 100 3.9
w/ Pre-selection 12 100 0.85

Table 5: Average running time of our system, w/ or w/o
the sentence pre-selection step. Experiments conducted
on the TAC 2011 data set. Running time refers only to
the execution time of the ILP module for each topic.

Number of compression candidates. This pa-
rameter (denoted as n) also impacts system perfor-

mance. Figure 1 shows the R-2 scores of the two
systems (with and without the sentence pre-selection
step) when using different number of compressions
for each sentence. In general, we find that the R-2
scores do not change much when n is large enough.
For example, the ‘with pre-selection’ system can
achieve relatively stable R-2 scores on the TAC 2008
data set (ranging from 12.2 to 12.4) when m is
greater than 140; similarly, the R-2 scores on the
TAC 2011 data is over 14.2 when m is greater than
100. Without the pre-selection step, the scores are
less stable in regard to the changing of the m value,
since the large amount of sentences plus a high vol-
ume of the compression candidates may incur huge
computational cost to the ILP solver. This is also the
reason that in Figure 1, for the system without pre-
selection, we only vary n from 1 to 100. In general,
we also notice that given more compression candi-
dates, the R-2 score is still improving, as indicated
by Figure 1. The improved performance of ‘with
pre-selection’ over ‘without pre-selection’ is partly
because fewer sentences are used and thus we are
able to increase the number of compression candi-
dates for these sentences in the ILP sentence extrac-
tion module.

Quality of sentence compression training data.
In order to illustrate the contribution of our
summary-guided sentence compression component,
we train a generic sentence compression model
and use this in our compression and summariza-
tion pipeline. The generic compression model was
trained using the Edinburgh sentence compression
corpus (Clarke and Lapata, 2008), which contains
1370 sentences collected from news articles. This
data set has been widely used in other summariza-
tion studies (Martins and Smith, 2009). Each sen-
tence has 3 compressions and we choose the short-
est compression as the reference. The average com-
pression rate of this corpus is about 28%, lower than
that in our summary guided compression data. Note
that in generic sentence compression, we only use
those word and sentence features described in Sec-
tion 4.1, not the document-level features since they
are not available for the Edinburgh data set. Results
of our system using the generic compression model
(with sentence pre-selection) are shown in the last
row of Table 3 and Table 4. We can see that the sys-
tem with this generic compression model performs
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Figure 1: R-2 scores of the two systems (without and
with the sentence pre-selection step) when using differ-
ent number of compressions for each sentence.

worse than ours, and is also inferior to the TAC best
performing system on both data sets, which signi-
fies the importance of our proposed summary guided
sentence compression approach. We can also see
there is a difference in the compression ratio in the
system generated compressions when using differ-
ent compression corpora to train the compression
models. The resulting compression ratio patterns are
consistent with those in the training data, that is, us-
ing our guided compression corpus our system com-
pressed sentences more aggressively.

Learning curve of guided compression. Since
we use a supervised compression model, we further
consider the relationship between the summarization
performance and the number of sentence pairs used
for training the guided compression model. In to-
tal, there are 1150 training sentence pairs in our cor-
pus. We incrementally add 100 sentence pairs each
time and plot the learning curve in Figure 2. In
the compression step, we generate only the 1-best
compression candidate in order to remove the im-

pact caused by the downstream summary sentence
selection module. As seen from Figure 2, increasing
the compression training data generally improves
summarization performance, although there are also
fluctuations. When adding more training sentence
pairs, the system performance is likely to further in-
crease.
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Figure 2: ROUGE-2 scores when using different number
of sentences to train the guided compression model.

6 Conclusion and Future Work

In this paper, we propose a pipeline summariza-
tion approach that combines a novel guided com-
pression model with ILP-based summary sentence
selection. We create a guided compression cor-
pus, where the human annotators were explicitly in-
formed about the important summary words during
the compression annotation. We then train a super-
vised compression model to capture the guided com-
pression process using a set of word-, sentence-, and
document-level features. We conduct experiments
on the TAC 2008 and 2011 summarization data sets
and show that by incorporating the guided sentence
compression model, our summarization system can
yield significant performance gain as compared to
the state-of-the-art. In future, we would like to
further explore the reinforcement relationship be-
tween keywords and summaries (Wan et al., 2007),
improve the readability of the sentences generated
from the guided compression system, and report re-
sults using multiple evaluation metrics (Nenkova et
al., 2007; Louis and Nenkova, 2012) as well as per-
forming human evaluations.

498



Acknowledgments

Part of this work was done during the first au-
thor’s internship in Bosch Research and Technol-
ogy Center. The work is also partially supported
by NSF award IIS-0845484 and DARPA Contract
No. FA8750-13-2-0041. Any opinions, findings,
and conclusions or recommendations expressed are
those of the author and do not necessarily reflect the
views of the funding agencies.

References

Ahmet Aker, Trevor Cohn, and Robert Gaizauskas. 2010.
Multi-document summarization using a* search and
discriminative training. In Proceedings of EMNLP.

Miguel B. Almeida and Andre F. T. Martins. 2013. Fast
and robust compressive summarization with dual de-
composition and multi-task learning. In Proceedings
of ACL.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of ACL.

Yllias Chali and Sadid A. Hasan. 2012. On the effective-
ness of using sentence compression models for query-
focused multi-document summarization. In Proceed-
ings of COLING.

James Clarke and Mirella Lapata. 2008. Global infer-
ence for sentence compression an integer linear pro-
gramming approach. Journal of Artificial Intelligence
Research.
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Abstract

Reordering poses one of the greatest chal-
lenges in Statistical Machine Translation re-
search as the key contextual information may
well be beyond the confine of translation units.
We present the “Anchor Graph” (AG) model
where we use a graph structure to model
global contextual information that is crucial
for reordering. The key ingredient of our AG
model is the edges that capture the relation-
ship between the reordering around a set of
selected translation units, which we refer to as
anchors. As the edges link anchors that may
span multiple translation units at decoding
time, our AG model effectively encodes global
contextual information that is previously ab-
sent. We integrate our proposed model into a
state-of-the-art translation system and demon-
strate the efficacy of our proposal in a large-
scale Chinese-to-English translation task.

1 Introduction

Reordering remains one of the greatest challenges
in Statistical Machine Translation (SMT) research as
the key contextual information may span across mul-
tiple translation units.1 Unfortunately, previous ap-
proaches fall short in capturing such cross-unit con-
textual information that could be critical in reorder-
ing. For example, state-of-the-art translation mod-
els, such as Hiero (Chiang, 2005) or Moses (Koehn
et al., 2007), are good at capturing local reordering
within the confine of a translation unit, but their for-
mulation is approximately a simple unigram model

∗ This work was done when the authors were with IBM.
1We define translation units as phrases in phrase-based SMT

or as translation rules in syntax-based SMT.

over derivation (a sequence of the application of
translation units) with some aid from target language
models. Moving to a higher order formulation (say
to a bigram model) is highly impractical for several
reasons: 1) it has to deal with a severe sparsity issue
as the size of the unigram model is already huge;
and 2) it has to deal with a spurious ambiguity issue
which allows multiple derivations of a sentence pair
to have radically different model scores.

In this paper, we develop “Anchor Graph” (AG)
where we use a graph structure to capture global
contexts that are crucial for translation. To circum-
vent the sparsity issue, we design our model to rely
only on contexts from a set of selected translation
units, particularly those that appear frequently with
important reordering patterns. We refer to the units
in this special set as anchors where they act as ver-
tices in the graph. To address the spurious ambigu-
ity issue, we insist on computing the model score for
every anchors in the derivation, including those that
appear inside larger translation units, as such our AG
model gives the same score to the derivations that
share the same reordering pattern.

In AG model, the actual reordering is modeled
by the edges, or more specifically, by the edges’ la-
bels where different reordering around the anchors
would correspond to a different label. As detailed
later, we consider two distinct set of labels, namely
dominance and precedence, reflecting the two domi-
nant views about reordering in literature, i.e. the first
one that views reordering as a linear operation over
a sequence and the second one that views reordering
as a recursive operation over nodes in a tree struc-
ture The former is prevalent in phrase-based con-
text, while the latter in hierarchical phrase-based and
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syntax-based context. More concretely, the domi-
nance looks at the anchors’ relative positions in the
translated sentence, while the precedence looks at
the anchors’ relative positions in a latent structure,
induced via a novel synchronous grammar: Anchor-
centric, Lexicalized Synchronous Grammar.

From these two sets of labels, we develop two
probabilistic models, namely the dominance and the
orientation models. As the edges of AG link pairs
of anchors that may appear in multiple translation
units, our AG models are able to capture high or-
der contextual information that is previously absent.
Furthermore, the parameters of these models are es-
timated in an unsupervised manner without linguis-
tic supervision. More importantly, our experimental
results demonstrate the efficacy of our proposed AG-
based models, which we integrate into a state-of-the-
art syntax-based translation system, in a large scale
Chinese-to-English translation task. We would like
to emphasize that although we use a syntax-based
translation system in our experiments, in principle,
our approach is applicable to other translation mod-
els as it is agnostic to the translation units.

2 Anchor Graph Model

Formally, an AG consists of {A,L} where A is a
set of vertices that correspond to anchors, while L
is a set of labeled edges that link a pair of anchors.
In principle, our AG model is part of a transla-
tion model that focuses on the reordering within the
source sentence F and its translation E. Thus, we
start by first introducing A into a translation model
(either word-based, phrase-based or syntax-based
model) followed by L. Given an F , A is essentially
a subset of non-overlapping (word or phrase) units
that make up F . As the information related to A is
not observed, we introduce A as a latent variable.

Let P (E,∼ |F ) be a translation model where ∼
corresponds to the alignments between units in F
and E. 2 We introduce A into a translation model,

2Alignment (∼) represents an existing latent variable. De-
pending on the translation units, it can be defined at different
level, i.e. word, phrase or hierarchical phrase. As during trans-
lation, we are interested in the anchors that appear inside larger
translation units, we set∼ at word level, which information can
be induced for (hierarchical) phrase units by either keeping the
word alignment from the training data inside the units or infer-
ring it via lexical translation probability. We use the former.

as follow:

P (E,∼ |F ) =
∑
∀A′

P (E,∼,A′|F ) (1)

P (E,∼,A′|F ) = P (E,∼ |A′, F )P (A′) (2)

As there can be many possible subsets of F and
summing over all possibleA is intractable, we make
the following approximation for P (A′) such that we
only need to consider one particular A∗: P (A′) =
δ(A′ = A∗) which returns 1 only for A∗, otherwise
0. The exact definition of the heuristic will be de-
scribed in Section 7, but in short, we equateA∗ with
units that appear frequently with important reorder-
ing patterns in training data.

Given an A∗, we then introduce the edges of AG
(L) into the equation as follow:

P (E,∼ |A∗, F ) = P (E,∼,L|A∗, F ) (3)

Note that L is also a latent variable but its values are
derived deterministically from (F,E,∼) and A∗,
thus no extra summation is present in Eq. 3.

Then, we further simplify Eq. 3 by factorizing it
with respect to each individual edges, as follow:

P (E,∼,L|A∗, F ) ≈
∏

∀am,an∈A∗
m<n

P (Lm,n|am, an) (4)

where Lm,n ∈ L corresponds to the label of an edge
that links am and an.

In principle, Lm,n can take any arbitrary value.
For addressing the reordering challenge, it should
ideally correspond to some aspect of the reordering
around am and an, for example, how the reorder-
ing around am affects the reordering around an. As
mentioned earlier, we choose to associate Lm,n with
the dominance and the precedence relations between
am and an, where the former looks at the relative po-
sitions of the two anchors when they are projected
into a latent tree structure, while the latter looks at
their relative positions when they are projected into
the target sentence. We illustrate the two in Fig. 1.

Furthermore, we assume that dominance and
precedence are independent and develop one model
for each, resulting in the dominance and the orien-
tation models, which we describe in Section 3 and 4
respectively. To make the model more compact, we
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introduce an additional parameterO that restricts the
maximum order of AG as follows:

≈
O∏

o=1

|A∗|+o−1∏
i=0

Po(Li−o,i|ai−o, ai) (5)

Thus, we only consider edges that link two anchors
that are at most O− 1 anchors apart. For O = 1, the
AG model only considers relations between neigh-
boring anchors. Following the standard practice in
the n-gram language modeling, we append O num-
ber of pseudo anchors at the beginning and at the end
of F , which represent the sentence delimiter mark-
ers. We do so in a monotone order.

Figure 1: The illustration of the dominance and the prece-
dence relations. The former looks at the anchors’ pro-
jection on a derivation structure. The latter looks at the
anchors’ projection on the translated sentence.

3 Dominance Model

This section describes our dominance model where
we equate Lm,n in Eq. 4 with dom(am, an) that ex-
presses to the dominance relation between am and
an in a latent tree structure. Due to reordering, an-
chors can only appear in specific nodes. We first
describe a novel formalism of Anchor-centric, Lexi-
calized Synchronous Grammar (AL-SG), used to in-
duce the tree structure and then discuss the proba-
bilistic formulation of the model. Just to be clear,
we introduce AL-SG mainly to facilitate the compu-
tation of dom(am, an). The actual translation model
at decoding time remains either phrase-based, hier-
archical phrase-based or syntax-based model.

3.1 Anchor-centric, Lexicalized Synchronous
Grammar

Given (F,E,∼) and A, Anchor-centric, Lexical-
ized Synchronous Grammar (AL-SG) produces a

tree structure where the nodes are decorated with
anchors-related information. As the name alludes,
the core of AL-SG is anchor-centric constituents
(ACC), which corresponds to nodes, composed from
merging anchors with by either their left, their right
neighboring constituents or both.

More concretely, first of all, we consider a span
on the source sentence F to be a constituent if it is
consistent with the alignment (∼). Second of all, we
can construct a larger constituent by merging smaller
constituents given that the larger constituent is also
consistent with the alignment. These two constraints
are similar to the heuristic applied to extract hierar-
chical phrases (Chiang, 2005).

Then, specific to AL-SG, we consider an anchor a
to lexicalize a constituent c, if: a) we can compose c
from at most three smaller constituents: cL, a and cR
where a is the anchor while cL,cR are the (possibly
empty) constituents immediately to the left and to
the right of a; and b) we can create smaller anchors-
centric constituents from concatenating a with cL
and a with cR. If a can lexicalize c, then the node
associated with c would be marked with a. In com-
puting dom(am, an), we look at the constituents that
cover both anchors and check whether the anchors
can lexicalized any of such constituents.

Now, we will describe AL-SG in a formal way.
For simplicity, we use a simple grammar, called In-
version Transduction Grammar (ITG) (Wu, 1997),
although in practice, we handle a more powerful
synchronous grammar. Hence, we proceed to de-
scribe Anchor-centric, Lexicalized ITG (AL-ITG).

An AL-ITG is a quadruple {Σ,A,V,R} where:

• Σ = {(f/e)} is a set of terminal symbols,
which represents all possible units defined over
(F,E,∼) where each pair corresponds to a link
in ∼. We define ∼ at the most fine-grained
level (i.e. word-level), as we insist on comput-
ing model score for each anchors even if they
appear inside larger units.
• A ∈ Σ is a set of anchors, which is a subset of

the terminal symbols.
• V = {{P,X, Y } × {A, ∅}} is a set of (possi-

bly lexicalized) nonterminal symbols. P rep-
resents the terminal symbols (Σ); while X and
Y correspond to the spans that are created from
merging two adjacent constituents. On the tar-
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Figure 2: An illustration of an aligned Chinese-English sentence pair with one possible AL-ITG derivation obtained
by applying the grammar in a left-to-right fashion. Circles represent alignment points. Black circle represents the
anchor; boxes represent the anchor’s neighbors. In the derivation tree, the anchors are represented by their position
and in bold. For succinctness, we omit the preterminal rules in the tree.

get side, for X , the order of the two children
follows the source order, while for Y , the or-
der follows the inverse. Nonterminal symbols
can be lexicalized with zero or more than one
anchor. We represent a lexicalized constituent
as a nonterminal symbol followed by a bracket
which contains the lexicalizing anchors, e.g.
P (H) where H is the anchors lexicalizing P .
• R is a set of production rules which can be clas-

sified into the following categories:
– Preterminal rules. We propagate the sym-

bol if it corresponds to an anchor.

P (H = f/e)→ f/e, if f/e ∈ A∗

P (H = ∅)→ f/e, otherwise

– Monotone production rules, which reorder
the children in monotone order, denoted
by square brackets (“[”,“]”).

X(H1 ∪H2)→ [P (H1)P (H2)]

X(H1 ∪H2)→ [X(H1)P (H2)]

X(H1 ∪H2)→ [X(H1)X(H2)]

X(H1)→ [X(H1)Y (H2)]

X(H2)→ [Y (H1)P (H2)]

X(H2)→ [Y (H1)X(H2)]

X(∅)→ [Y (H1)Y (H2)]

– Inverse production rules, which reorder
the children in the inverse order, denoted

by angle brackets (“〈”,“〉”).

Y (H1 ∪H2)→ 〈P (H1)P (H2)〉
Y (H1 ∪H2)→ 〈Y (H1)P (H2)〉
Y (H1 ∪H2)→ 〈Y (H1)Y (H2)〉

Y (H1)→ 〈Y (H1)X(H2)〉
Y (H2)→ 〈X(H1)P (H2)〉
Y (H2)→ 〈X(H1)Y (H2)〉
Y (∅)→ 〈X(H1)X(H2)〉

Like ITG, AL-ITG only permits two kind of re-
ordering operations, namely monotone and inverse.
To accommodate the lexicalization, we first assign
a unique nonterminal symbol for each, i.e. X for
monotone reordering and Y for inverse reordering.
Then, we lexicalize Xs and Y s with anchors as long
as they satisfy the constraint that the child shares the
same label as the parent. This constraint guarantees
that the constituents are valid ACCs. It also enables
the anchors to lexicalize long constituents, although
the terminal symbols are defined at word-level.

Fig. 2 illustrates an example Chinese-to-English
translation with a AL-ITG derivation when the
grammar is applied in a left-to-right fashion. Admit-
tedly, AL-ITG (or more generally AL-SG) is suscep-
tible to spurious ambiguity as it produces multiple
derivation trees for a given (F,E,∼). Fortunately,
the value of dom(am, an) is identical for all deriva-
tions, since the computation of dom(am, an) relies
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only on whether am and an can lexicalize at least
one constituent that covers both anchors. Hence,
we only need to look at one derivation to compute
dom(am, an). Generalizing AL-ITG to a more pow-
erful formalism is trivial; we just need to forbid the
propagation for non-binarizeable production rules.

3.2 Probabilistic Model
We read-off the dominance relations dom(am, an)
from D obtained from the application of AL-SG to
(F,E,∼). As lexicalization is a bottom-up process,
for reading-off dom(am, an), it is sufficient to look
at the lowest common ancestor (LCA) of both an-
chors; if the anchors cannot lexicalize the LCA, they
won’t be able to lexicalize the constituents larger
than LCA. To be more concrete, let’s consider theD
in Fig. 2. In that D, the LCA of am = yu3/with10

and an = de7/that7 is Y5(7). Then, we check the
anchors that can lexicalize the LCA. Let V (H) be
the LCA, then dom(am, an) ∈

(LH) , if am ∈ H ∧ an 6∈ H
(RH) , if am 6∈ H ∧ an ∈ H
(BL) , if am ∈ H ∧ an ∈ H
(BD) , if am 6∈ H ∧ an 6∈ H

The value refers to cases where am and an can
lexicalize V (H) and it is useful to model spans
that share a simple, uniform reordering, i.e. all-
monotone or all-inverse, while the value refers to
the cases where am and an cannot lexicalize V (H)
and it is useful to model spans that involve in a com-
plex reordering. Meanwhile, the and refer to cases
where only one anchor can lexicalize V (H), i.e. am

and an respectively. These values are useful for
modeling cases where the surroundings of the two
anchors exhibit different kind of reordering pattern.

With such definition, the edge labels L in Fig. 2
are indicated in Table 1. Note that in Table 1, we
don’t specify the relations involving pseudo anchors,
although they are crucial.

The final probabilistic formulation of the domi-
nance model is as follows:

≈
O∏

o=1

|A|+o−1∏
i=0

Pdomo(dom(ai−o, ai)|ai−o, ai) (6)

As shown, we allocate a separate model Pdomo for
each separate order (o) where each Pdomo will con-

HHH
HHn
m

1 2 3 4 5

1 = (shi2/is2) - - - - -
2 = (yu3/with10) LH - - - -
3 = (you5/have8) LH BD - - -
4 = (de7/that7) LH RH RH - -
5 = (zhi10/of4) LH RH RH BL -

Table 1: The dominance relations between pairs of an-
chors according to the derivation in Fig. 2.

tribute as one additional feature in the log-linear
model of the translation model. In allocating a sep-
arate model for each o, we conjecture that different
pair of anchors contributes differently depending on
how far the two anchors are.

4 Orientation Model

In this section, we introduce the orientation model
(ori) where we equate Lm,n with the precedence re-
lations between a pair of anchors. Instead of directly
modeling the precedence between the two anchors,
we approximate it by modeling the precedence of
each anchor with its neighboring constituents. For-
mally, we approximate P (Lm,n|am, an) as

PoriR(ori(am,MR(am))|am)×
PoriL(ori(an,ML(an))|an) (7)

where MR(am) is the largest constituent to the right
of the first anchor am, ML(an) the largest con-
stituent to the left of the second anchor an, and ori()
a function that maps the anchor and the neighboring
constituent to a particular orientation.

Plugging Eq. 7 into Eq. 5 results in the following
approximation of P (Θ|A):

C.

|A|−1∏
i=0

{PoriL(ori(ai,ML(ai))|ai)×

PoriR(ori(ai,MR(ai))|ai)}O (8)

where C is a constant term related to the pseudo an-
chors and O is the maximum order of the AG. In
practice, we can safely ignore both C and O as they
are constant for a given AG. As shown, the orienta-
tion model is simplified into a model that looks at the
reordering of the anchors’ neighboring constituents.

The exact definition of ML and MR will be
discussed in Section 5. Their orientation, i.e.
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oriL(CL, a) and oriR(CR, a) respectively, may take
one of the following four values: (MA), (RA), (MG)
and (RG). The first clause (monotone, reverse) in-
dicates whether the target order follows the source
order; the second (adjacent, gap) indicates whether
the anchor and its neighboring constituent are adja-
cent or separated by an intervening when projected.

5 Parameter Estimation

For each (F,E,∼), the training starts with the iden-
tification of the regions in the source sentences as
anchors (A). For our Chinese-English experiments,
we use a simple heuristic that equates anchors (A∗)
with constituents whose corresponding word class
belongs to function words-related classes, bearing
a close resemblance to (Setiawan et al., 2007). In
total, we consider 21 part-of-speech tags; some of
which are as follows: VC (copula), DEG, DEG,
DER, DEV (de-related), PU (punctuation), AD (ad-
jectives) and P (prepositions).

5.1 Extracting Events from (F,E,∼)

The parameter estimation first involves extracting
two statistics from (F,E,∼), namely dom(am, an)
for the dominance model as well as ori(a,ML(a))
and ori(a,MR(a)) for the orientation model. In-
stead of developing a separate algorithm for each,
we describe a unified way to extract these statistics
via the largest neighboring constituents of the an-
chors, i.e. ML(a) and MR(a). This approach en-
ables the dominance model to share the same resid-
ual state information as the orientation model.3

Let am be an anchor and MR(am) be its largest
neighboring constituent to the right. Let an be
an anchor to the left of am and ML(an) be an’s
largest neighboring constituent to the left. Ac-
cording to AL-SG, we say that am dominates an

if ori(am,MR(am)) ∈ {MA,RA} and an ∈
MR(am). By the same token, we say that an dom-
inates am if ori(an,ML(an)) ∈ {MA,RA} and
am ∈ ML(an). The constraints on the orientation
reflect the fact that in AL-SG, anchors can only be
propagated through monotone or inverse production
rules, which correspond to the MA and RA respec-
tively. The fact that we are looking at the largest

3The analogy in an n-gram language model is the first n−1
words of the hypothesis that have incomplete history.

neighboring constituents guarantees that if the other
anchor is outside that constituent, then that other an-
chor is never dominated.

More formally, given an aligned sentence pair
Θ = (F,E,∼), let ∆(Θ) be all possible con-
stituents that can be extracted from Θ:4

{(f j2
j1
/ei2i1) :∀(j, i) ∈∼: ((j1≤ j≤ j2) ∧ (ii≤ i≤ i2))

∨(¬(j1≤ j≤ j2) ∧ ¬(ii≤ i≤ i2))

Then, let the anchors A be a subset of ∆(Θ).
Given A ⊂ ∆(Θ), let a = (f j2

j1
/ei2i1) ∈ A be a par-

ticular anchor. And, let CL(a) ⊂ ∆(Θ) be a’s left
neighbors and let CR(a) ⊂ ∆(Θ) be a’s right neigh-
bors, iff:

∀CL = (f j4
j3
/ei4i3) ∈ CL(a) : j4 + 1 = j1

∀CR = (f j6
j5
/ei6i5) ∈ CR(a) : j2 + 1 = j5

Then, let ML(a) ∈ CL(a) and MR(a) ∈ CR(a) be
the largest left and right neighbors according to:

ML(a) = arg max
(f

j4
j3

/e
i4
i3

)∈CL(a)

(j4 − j3)

MR(a) = arg max
(f

j6
j5

/e
i6
i5

)∈CR(a)

(j6 − j5)

Let ML = (f j4
j3
/ei4i3) and MR = (f j6

j5
/ei6i5).

We then proceed to extract oriL(a,ML(a)) and
oriR(a,MR(a)) respectively as follows:

• MA, if (i4 +1) = i1 for oriL or if (i2 +1) = i5
for oriR

• RA, if (i2 + 1) = i3 for oriL or if (i6 + 1) = i1
for oriR

• MG, if (i4 +1) < i1 for oriL or if (i2 +1) < i5
for oriR

• RG, if (i2 + 1) < i3 for oriL or if (i6 + 1) < i1
for oriR.

Then, we proceed to extract dom(am, an). Given
two anchors am, an where m < n, we define the

4We represent a constituent as a source and target phrase
pair (f j2

j1
/ei2

i1
) where the subscript and the superscript indicate

the starting and the ending indices as such f j2
j1

denotes a source
phrase that spans from j1 to j2.
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dominance relation between am and an viaMR(am)
and ML(an). Let am = (f j2

j1
/ei2i1), MR(am) =

(f j4
j3
/ei4i3), an = (f j6

j5
/ei6i5) and ML(an) = (f j8

j7
/ei8i7).

Then, ldom(am, an) is true only if (j4 ≥ j6)
and oriR(am,MR(am)) ∈ {MA,RA}. Simi-
larly, rdom(am, an) is true only if (j7 ≤ j1) and
oriL(an,ML(an)) ∈ {MA,RA}.

Hence, dom(am, an) is as follows:

• LH, if ldom(am, an) ∧ ¬rdom(am, an)

• RH, if ¬ldom(am, an) ∧ rdom(am, an)

• BL, if ldom(am, an) ∧ rdom(am, an)

• BD, if ¬ldom(am, an) ∧ ¬rdom(am, an)

5.2 Parameterization and Training
After extracting events, we are now ready to train
the models. To estimate them, we train a discrimi-
native classifier for each model and use the normal-
ized posteriors at decoding time as additional feature
scores in SMT’s log-linear framework.

At a high level, we use a rich set of binary fea-
tures ranging from lexical to part-of-speech (POS)
and to syntactic features. Additionally, we augment
the feature set with compound features, e.g. a con-
junction of the source word of the left anchor and the
source word of the right anchor. Although they in-
crease the number of features significantly, we found
that they are empirically beneficial.

Suppose a = (f j2
j1
/ei2i1), ML(a) = (f j4

j3
/ei4i3) and

MR(a) = (f j6
j5
/ei6i5), then based on the context’s

location, the elementary features employed in our
classifiers can be categorized into:

• anchor-related: (the actual word of f j2
j1

),
(part-of-speech (POS) tag of ), (’s parent in the
parse tree), (ei2i1’s actual target word).
• surrounding: (the previous word / f j1−1

j1−1 ), (the
next word / f j2+1

j2+1 ), (’s POS tag), (’s POS tag),
(’s parent), (’s parent).
• non-local: (the previous anchor’s source word)

, (the next anchor’s source word), (’s POS tag),
(’s POS tag).

There is a separate set of elementary features for am

and an and we come up with manual combination to
construct compound features.

In training the models, we manually come up with
around 30-50 types of features, which consists of a
combination of elementary and compound features.
Due to space constraints, we will describe the ac-
tual features that we use and the classification per-
formance of our models elsewhere. In total, we
generate around one hundred millions binary fea-
tures from our training data that contains six million
sentence pairs. To reduce the number of features,
we employ the L1-regularization in training to en-
force sparse solutions, using the off-the-shelf LIB-
LINEAR toolkit (Fan et al., 2008). After training,
the number of features in our classifiers decreases to
below 1 million features for each classifier.

6 Decoding

As mentioned earlier, we wish to avoid the spuri-
ous ambiguity issue where different derivations have
radically different scores although they lead to the
same reordering. This section describes our decod-
ing algorithm that avoids spurious ambiguity issue
by incrementally constructing MLs and MRs thus
allowing the computation of the models over partial
hypotheses.

In our experiments, we integrate our dominance
model as well as our orientation model into a syntax-
based SMT system that uses SCFG formalism. In-
tegrating the models into syntax-based SMT sys-
tems is non-trivial, especially since the anchors of-
ten reside within translation rules and the model
doesn’t always decompose naturally with the hy-
pothesis structure. To facilitate that, we need to
first induce the necessary alignment for all transla-
tion units in the hypothesis.

To describe the algorithm, let us consider a cheat-
ing exercise where we have to translate the Chinese
sentence in Fig. 2 with the following set of hierar-
chical phrases:

Xa→〈Aozhou1shi2X1,Australia1 is2X1〉
Xb→〈yu3 Beihan4X1, X1with3 North4 Korea〉
Xc→〈you5bangjiao6, have5dipl.6 rels.〉
Xd→〈X1 de7shaoshu8 guojia9 zhi10 yi11,

one11of10the few8 countries9 that7X1〉

As a case in point, let us consider D = Xa ≺ Xb

≺ Xd ≺ Xc, which will lead to the correct English
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Target string (w/ source index) Symbol(s) read Op. Stack(s)
(1) Xc have5 dipl.6 rels. [5][6] S,S,R Xc:[5-6]
(2) Xd one11 of10 few8 countries9 [11][10] S,S,R [10-11]

that7 Xc

(3) [8][9] S,S,R,R [8-11]
(4) [7] S [8-11][7]
(5) Xc:[5,6] S Xd:[8-11][7][5,6]
(6) Xb Xd with3 North4 Korea Xd:[8-11][7][5,6] S [8-11][7][5,6]
(7) [3][4] S,S,R,R Xb:[8-11][7][3-6]
(8) Xa Australia1 is2 Xb [1][2] S,S,R [1-2]
(9) Xb:[8-11][7][3,6] S,A Xa:[1-2][8-11][7][3,6]

Table 2: The application of the shift-reduce parsing algorithm, which corresponds to the following derivation D =
Xa ≺ Xb ≺ Xd ≺ Xc. Anchor is in bold. In column Op., S, R and A refer to shift, reduce and accept operation
respectively.

translation as in Fig. 2. Note that the translation
rules contain internal word alignment, which we as-
sume to have been previously inferred.

The algorithm bears a close resemblance to the
shift-reduce algorithm found in phrase-based decod-
ing (Galley and Manning, 2008; Feng et al., 2010;
Cherry et al., 2012). A stack is used to accumulate
(partial) information about a, ML and MR for each
a ∈ A in the derivation. This algorithm takes an in-
put stream and applies either the shift or the reduce
operations starting from the beginning until the end
of the stream. The shift operation advances the input
stream by one symbol and push the symbol into the
stack; while the reduce operation applies some rule
to the top-most elements of the stack. The algorithm
terminates at the end of the input stream where the
resulting stack will be propagated to the parent for
the later stage of decoding. In our case, the input
stream is the target string of the rule and the symbol
is the corresponding source index of the elements of
the target string. The reduction rule looks at two in-
dices and merge them if they are adjacent (i.e. has
no intervening phrase). We forbid the application
of the reduction rule to anchors. Table 2 shows the
execution trace of the algorithm for the derivation
described earlier. For conciseness, we assume that
there is only one anchor and that is de7/that7.

As shown, the algorithm starts with an empty
stack. It then projects the source index to the corre-
sponding target word and then enumerates the target
string in a left to right fashion. If it finds a target
word with a source index, it applies the shift oper-

ation, pushing the index to the stack. Unless the
symbol corresponds to an anchor, it tries to apply
the reduce operation. Line (4) indicates the special
treatment to the anchor. If the symbol being read
is a nonterminal, then we push the entire stack that
corresponds to that nonterminal. For example, when
the algorithm reads Xd at line (6), it pushes the en-
tire stack from line (5).

As MLs and MRs are being incremen-
tally constructed, we can immediately com-
pute Pdomo(dom(am, an)|am, an) as soon
as a partial derivation covers both am

and an. For example, we can compute
Pdom1(dom(you5/have8, de7/that7) = ),
Pdom1(dom(de7/that7, zhi10/of4) = ) and
Pdom2(dom(you5/have8, zhi10/of4) = ) at
partial hypothesis Xd ≺ Xc which corresponds to a
constituent spanning from 5-11.

7 Experiments

Our baseline systems is a state-of-the-art string-to-
dependency system (Shen et al., 2008). The sys-
tem is trained on 10 million parallel sentences that
are available to the Phase 1 of the DARPA BOLT
Chinese-English MT task. The training corpora in-
clude a mixed genre of newswire, weblog, broad-
cast news, broadcast conversation, discussion fo-
rums and comes from various sources such as LDC,
HK Law, HK Hansard and UN data.

In total, our baseline model employs more than
50 features, including from our proposed dominance
and orientation models. In addition to the standard
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Model
newswire weblog newswire+weblog

BLEU TER Comb BLEU TER Comb BLEU TER Comb
(a) (b) (c) (d) (e) (f) (g) (h) (i)

(1) S2D 37.63 53.17 7.77 27.60 57.19 14.77 33.39 54.97 10.79
(2) +dom1 38.12 52.31 7.10 27.56 56.58 14.51 33.64 54.24 10.30
(3) +dom2 38.31 52.28 6.99 27.66 56.57 14.45 33.78 54.20 10.21
(4) +dom3 38.31 52.52 7.10 28.24 56.56 14.16 34.02 54.33 10.15
(5) +dom4 38.54 52.22 6.84 28.38 56.55 14.08 34.20 54.16 9.98
(6) +dom5 38.17 52.57 7.20 28.67 56.27 13.80 34.16 54.27 10.05
(7) +dom6 38.17 52.52 7.18 28.64 56.22 13.79 34.10 54.18 10.04
(8) +ori 38.52 52.43 6.96 28.26 56.54 14.14 34.15 54.27 10.06
(9) +ori+dom1 38.87 52.05 6.59 28.01 56.48 14.23 34.26 54.03 9.89
(10) +ori+dom2 38.96 51.87 6.45 27.98 56.23 14.12 34.29 53.82 9.77
(11) +ori+dom3 39.19 51.77 6.29 28.19 56.15 13.98 34.52 53.73 9.61
(12) +ori+dom4 39.34 51.77 6.21 28.41 56.17 13.88 34.60 53.69 9.54
(13) +ori+dom5 39.31 51.67 6.18 28.62 56.09 13.74 34.76 53.65 9.45

Table 3: The NIST MT08 results on newswire (nw), weblog (wb) and combined genres. S2D is the baseline string-
to-dependency system (line 1). Lines 2-7 shows the results of the dominance model with O = 1 − 6. Line 8 shows
result on adding ori to the baseline. Lines 9-13 shows the results of the orientation complemented with the dominance
model with varying O. The best BLEU, TER and Comb on each genre of the first set are in italic while those of the
second set are in bold. For BLEU, higher scores are better, while for TER and Comb, lower scores are better.

features such as translation probabilities, we incor-
porate features that are found useful for developing
a state-of-the-art baseline, such as the provenance
features (Chiang et al., 2011). We use a 6-gram
language model, which was trained on 10 billion
English words from multiple corpora, including the
English side of our parallel corpus plus other cor-
pora such as Gigaword (LDC2011T07) and Google
News. We also train a class-based language model
(Chen, 2009) on two million English sentences se-
lected from the parallel corpus. As for our string-to-
dependency system, we train 3-gram models for left
and right dependencies and unigram for head using
the target side of the parallel corpus. To train our
models, we select a set of 5 million sentence pairs.

For the tuning and development sets, we set
aside 1275 and 1239 sentences selected from
LDC2010E30 corpus. We tune the feature weights
with PRO (Hopkins and May, 2011) to minimize
(TER-BLEU)/2 metric. As for the blind test set,
we report the performance on the NIST MT08 eval-
uation set, which consists of 691 sentences from
newswire and 666 sentences from weblog. We pick
the weights that produce the highest development set
scores to decode the test set.

We perform two sets of experiments. The first set
looks at the contribution of the dominance model
with varying values of o. The second one looks at
the combination of the dominance model and the
orientation model. Table 3 summarizes the experi-
mental results on NIST MT08 sets, categorized by
genres. We report the results on newswire genre in
columns a-c, those on weblog genre in column d-f,
and those on mixed genre in column g-i. The perfor-
mance of our baseline string-to-dependency syntax-
based SMT is shown in the first line.

Lines 2-7 in Table 3 show the results of our first
set of experiments, starting from the result of dom1,
which looks at only at pairs of adjacent anchors, to
the result of dom6, which looks at pairs of anchors
that are at most 5 anchors away. As shown in line
2, our dominance model provides a nice improve-
ment of around 0.5 point over the baseline even if it
only looks at restricted context. Increasing the or-
der of our dominance model provides an additional
gain. However, the gain is more pronounced in the
weblog genre (up to around 1 BLEU point) than in
the newswire genre. We conjecture that this may be
the artifact of our tune set, which comes from the
weblog genre. We stop at dom6 because we observe
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that the weight of the feature score that corresponds
to the maximum order (o = 6) has a negative sign,
which often indicates a high correlation between the
new features and existing ones.

Lines 8-13 in Table 3 shows the results of our sec-
ond set of experiments. Line 8 shows the result of
adding the orientation model (ori) to the baseline
system. As shown, integrating ori shows a signifi-
cant gain. On top of which, we then integrate dom1

to dom5. We see a very encouraging result as adding
the dominance model increases the performance fur-
ther, consistently over different value of o. This sug-
gests that the dominance model is complementary
to the orientation model. Our best result provides
more than 1 BP improvement and 1 TER reduction
consistently over different genres. We see this result
as confirming our intuition that the global contextual
information provided by our AG model can signifi-
cantly improve the performance of SMT even in a
state-of-the-art system.

8 Related Work

Our work intersects with existing work in many dif-
ferent respects. In this section, we mainly focus on
work related to introducing higher-order contextual
information to reordering model.

In providing global contextual information, our
work is related to a large amount of literature. To
name a few, Zens and Ney (2006) improves the lexi-
calized reordering model of Tillman (2004) by in-
corporating part-of-speech information. Chang et
al. (2009) incorporates contexts from syntactic parse
tree. Bach et al. (2009) exploits the dependency in-
formation and Xiong et al. (2012) uses the predicate-
argument structure.

Vaswani et al. (2011) introduces rule markov
models for a forest-to-string model in which the
number of possible derivations is restricted. More
recently, Durrani et al. (2013) and Zhang et al.
(2013) cast reordering process as a Markov process.
Similar to these models, our proposed model also
provide context dependencies to the application of
translation rules, however, as they focus on mini-
mal translation units (MTU) where we focus on a
selected set of translation units. (Banchs et al., 2005)
introduces a bigram model for monotone phrase-
based system, but their definition of translation units

is suitable only for language pairs with limited re-
ordering, such as translating Spanish to English.

In equating anchors with the function word class,
our work is closely related to the function word-
centered model of Setiawan et al. (2007), especially
the orientation model. Our dominance model is
closely related to the reordering model of Setiawan
et al. (2009), except that they only look at pair of ad-
jacent anchors, forming a chain structure instead of
a graph like in our dominance model. Furthermore,
we provide a discriminative treatment to the model
to include a richer set of features including syntac-
tic features. This work can be seen as modeling the
identity of the neighboring of the anchors, similar to
(Setiawan et al., 2013). However, instead of looking
at the words at the borders, we look at whether the
neighboring constituents contain other anchors.

9 Conclusion

We propose the “Anchor Graph” (AG) model to en-
code global contextual information. A selected set
of translation units, which we call anchors, serves
as the vertices of AG. And as the edges, we model
two types of relations, namely the dominance and
the precedence relations, where the former looks at
the positions of the anchors in the derivation struc-
ture, while the latter looks at the positions of the
anchors in the surface structure, resulting into two
probabilistic models over edge labels. As the mod-
els look at the pairs of anchors that go beyond multi-
ple translation units, our AG model provides global
contextual information.

Our AG model embodies (admittedly crudely)
some basic principles of sentence organization,
namely categorization (in categorizing units into an-
chors and non-anchors), linear order (in modeling
the precedence of anchors) and constituency struc-
ture (in modeling the dominance between anchors).
We are encouraged by the facts that we learn these
principles in an unsupervised way and that we can
achieve a significant improvement over a strong
baseline in a large-scale Chinese-to-English trans-
lation task. In the future, we hope to continue this
line of research, perhaps by learning to identify an-
chors automatically from training data or by using
our models to induce derivations directly from un-
aligned sentence pair.
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Abstract

We present a simple and novel classifier-based
preordering approach. Unlike existing pre-
ordering models, we train feature-rich dis-
criminative classifiers that directly predict the
target-side word order. Our approach com-
bines the strengths of lexical reordering and
syntactic preordering models by performing
long-distance reorderings using the structure
of the parse tree, while utilizing a discrimina-
tive model with a rich set of features, includ-
ing lexical features. We present extensive ex-
periments on 22 language pairs, including pre-
ordering into English from 7 other languages.
We obtain improvements of up to 1.4 BLEU
on language pairs in the WMT 2010 shared
task. For languages from different families the
improvements often exceed 2 BLEU. Many of
these gains are also significant in human eval-
uations.

1 Introduction

Generating the appropriate word order for the tar-
get language has been one of the fundamental prob-
lems in machine translation since the ground setting
work of Brown et al. (1990). Lexical reordering ap-
proaches (Tillmann, 2004; Zens and Ney, 2006) add
a reordering component to standard phrase-based
translation systems (Och and Ney, 2004). Because
the reordering model is trained discriminatively, it
can use a rich set of lexical features. However,
it only has access to the local context which often
times is insufficient to make the long-distance re-
ordering decisions that are necessary for language
pairs with significantly different word order.

Preordering (sometimes called pre-reordering or
simply reordering) approaches (Xia and McCord,
2004; Collins et al., 2005) preprocess the input in
such a way that the words on the source side appear
closer to their final positions on the target side. Be-
cause preordering is performed prior to word align-
ment, it can improve the alignment process and can
then be combined with any subsequent translation
model. Most preordering models use a source-side
syntactic parser and perform a series of tree trans-
formations. Approaches that do not use a parser ex-
ist as well and typically induce a hierarchical rep-
resentation that also allows them to perform long-
distance changes (Tromble and Eisner, 2009; DeN-
ero and Uszkoreit, 2011; Neubig et al., 2012).

Models that use a source-side parser differ on two
main dimensions: the way tree transformations are
expressed, and whether they are built manually or
learned from data. One common type of tree trans-
formation are rewrite rules. These typically involve
some condition under which the transformation can
be applied (e.g., a noun and an adjective found in
the same clause) and the transformation itself (e.g.,
move the adjective after the noun). These rules can
be designed manually (Collins et al., 2005; Wang
et al., 2007) or learned from data (Xia and McCord,
2004; Habash, 2007; Genzel, 2010; Wu et al., 2011).

Another type of tree transformations uses ranking
functions to implement precedence-based reorder-
ing. Here, a function assigns a numerical value
to every word in a clause, intended to express the
precedence of the word in the target language. The
reordering operation is then to sort the words accord-
ing to their assigned values. The ranking function
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can be designed manually (Xu et al., 2009) or trained
from data (Yang et al., 2012). This approach is
particularly effective for Subject-Object-Verb (SOV)
languages.

In this work we present a simple classifier-based
preordering model. Our model operates over de-
pendency parse trees and is therefore able to per-
form long-distance reordering decisions, as is typ-
ical for preordering models. But instead of deter-
ministic rules or ranking functions, we use discrim-
inative classifiers to directly predict the final word
order, using rich (bi-)lexical and syntactic features.

We present two models. The first model uses a
classifier to directly predict the permutation order in
which a family of words (a head word and all its
children) will appear on the target side. This ap-
proach is similar in spirit to the work of Li et al.
(2007), except that they use constituency parse trees
and consider only nodes with 2 or 3 children. We
instead work with dependency trees and consider
much larger head-children sets. Our second model is
designed to decompose the exponential search space
of all possible permutations. The prediction task is
broken into two separate steps. In the first step, for
each child word a binary classifier decides whether
it appears before or after its parent in the target lan-
guage. In the second step, we predict the best order
of the words on each side of the parent. We show
that the second approach is never worse than the first
one and sometimes significantly better.

We present experiments on 22 language pairs
from different language families using our preorder-
ing approach in a phrase-based system (Och and
Ney, 2004), as well as a forest-to-string system
(Zhang et al., 2011). In a first set of experiments,
we use the WMT 2010 shared task data (Callison-
Burch et al., 2010) and show significant improve-
ments of up to 1.4 BLEU (Papineni et al., 2002)
on three out of eight language pairs. In a second
set of experiments, we use automatically mined par-
allel data from the web and build translation sys-
tems for languages from various language families.
We obtain especially big improvements in transla-
tion quality (2-7 BLEU) when the language pairs
have divergent word order (for example English to
Indonesian, Japanese, Korean or Malay). In our ex-
periments on English to and from Hungarian, Dutch,
and Portuguese translation, we find that we can ob-

tain consistent improvements in both translation di-
rections. To additionally verify our improvements
we use human raters, who confirm the significance
of the BLEU score improvements.

Finally, we compare training the preordering clas-
sifiers on small amounts of manually aligned data to
training on large quantities of automatically aligned
data for English to Arabic, Hebrew, and Japanese.
When evaluated on a pure reordering task, the mod-
els trained on manually aligned data perform slightly
better, but similar BLEU scores are obtained in both
scenarios on an end-to-end translation task.

2 Classifier Reordering

Our goal is to learn a model that can transform the
word order of an input sentence to an order that is
natural in the target language. For example, when
translating the English sentence:

The black cat climbed to the tree top.

to Spanish, we would like to reorder it as:

The cat black climbed to the top tree.

When translating to Japanese, we would like to get:

The black cat the tree top to climbed.

Such a model can then be used in combination with
any translation model.

In our approach we first part-of-speech (POS) tag
and parse the input sentence, producing the POS
tags and head-modifier dependencies shown in Fig-
ure 1. Reordering is then done by traversing the
dependency tree starting at the root. For each head
word we determine the order of the head and its chil-
dren (independently of other decisions) and continue
the traversal recursively in that order. In the exam-
ple, we first need to decide on the order of the head
“climbed” and the children “cat”, “to”, and “.”.

2.1 Classification Model & Features
The reordering decisions are made by multi-class
classifiers where class labels correspond to permu-
tation sequences. We train a separate classifier for
each number of possible children. Crucially, we do
not learn explicit tree transformations rules, but let
the classifiers learn to trade off between a rich set of
overlapping features.
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Obviously, it is possible to use any classification
model and learning algorithm. We use maximum
entropy classifiers with l1/l∞ regularization trained
with the GradBoost algorithm (Duchi and Singer,
2009). We chose this setup since it naturally sup-
ports multi-class prediction and can therefore be
used to select one out of many possible permuta-
tions. Additionally, the learning algorithm produces
a sparse set of features. In our experiments the final
models have typically only a few 100K non-zero fea-
ture weights per language pair. Given this relatively
small number of features, it is possible to manually
inspect the feature weights and gain insights into the
behavior of the model. We show an example analy-
sis in Section 5.

Our features encode information about the context
in which a word occurs in the sentence. We model
context as “informative” words:
• The head itself.
• The children. We indicate whether each child is

before, immediately before, immediately after,
or after the head.
• For every child, if there is a gap between it and

the head, then the first and last word of that gap.
• For every pair of consecutive children, if there

is a gap between them, then the first and last
word of that gap.
• The head’s immediate sibling to the left/right or

an indication that none exists.
When extracting the features, every word can be rep-
resented by its word identity, its fine-grained POS
tag from the treebank, and a coarse-grained POS cat-
egory, similar to the universal categories described
in Petrov et al. (2012). We also include pairs of these
features, resulting in potentially bilexical features.

2.2 Training Data

The training data for the classifiers is generated from
the word aligned parallel text. Since parallel data
is plentiful, we can afford to be selective. We first
construct the intersection of high-confidence source-
to-target and target-to-source alignments. For every
family in the source dependency tree we generate a
training instance if and only if the intersection de-
fines a full order on the source words:
• Every source word must be aligned to at least

one target word.

The black cat climbed to the tree top .
DT JJ NN VBD IN DT NN NN .
DET ADJ NOUN VERB ADP DET NOUN NOUN .

det

amod
nsubj prep

det

nc

pobj

p

ROOT

Figure 1: A sentence, its dependency parse and its fine-
grained and coarse-grained POS tags.

• No two source words can be aligned to the
same target word.
• If a source word is aligned to multiple target

words, then no target word in this range can be
aligned to a different source word.

While this might sound restrictive, we can usually
generate at least some training instances from every
sentence and discard the remaining families in the
tree. In particular, we do not need to extract train-
ing instances for all words in a given sentence since
the reordering decisions are made independently for
every head word.

A potential concern might be that our method for
selecting training data can exclude all instances of
certain words. Consider the English phrase “the
boy”. For languages without articles (e.g. Russian
or Japanese) the determiner “the” may either not be
aligned to any word or get aligned to the foreign
word for “boy”. In both cases the family will be
discarded according to either the first or the second
condition above. The concern is therefore that we
would have no training data with the English word
“the”. In practice, however, this does not seem to be
a problem. First, there are instances where the En-
glish word “the” gets aligned to something (perhaps
a preposition), and second, since the word “the” is
omitted in the target language its location in the re-
ordered sentence is not very important.

Naturally we learn better classifier models from
better alignments. The other direction is also true
– if we run preordering on the source side then the
alignment task becomes easier and tends to produce
better results. Therefore it can be useful to iter-
ate between generating the alignment and learning
a preordering model. Empirically, the gains from
this bootstrapping approach are not dramatic and are
realized after just one iteration, i.e., create the align-
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ment, train a preordering model, use the preordering
model to learn a new alignment, and then train the
final preordering model.

2.3 1-Step Classifier

As a first approach we use a single classifier to di-
rectly predict the correct permutation of a given fam-
ily. Consider the family headed by “climbed” in
Figure 1. There are three children and the original
order of the words is “cat”, “climbed”, “to”, and
“.”. A possible outcome of the classifier can be the
permutation 0-2-1-3, representing the order “cat”,
“to”, “climbed”, and “.”.

The number of permutations for the head and n
children is of course (n + 1)!, which becomes large
very quickly and causes some problems. In practice
we therefore limit ourselves to the K most common
permutations. Unfortunately, this means that when-
ever there are many children, the correct permuta-
tion order might not be available as an option. Even
when the correct permutation is available, classifica-
tion accuracy typically deteriorates as the number of
possible classes increases.

An additional subtle issue is that the 1-step classi-
fier cannot share useful information across different
numbers of children. For example, in Spanish adjec-
tives usually appear after the noun, but sometimes
they appear before the noun. The decision depends
on the adjective itself and sometimes the head noun,
but does not depend on other children. Ideally, if for
some adjective we have enough examples with 1 or
2 children we would like to make the same decision
for a larger number of children, but these classifiers
may not have enough relevant examples.

2.4 2-Step Classifier

Our 2-step approach addresses the exponential
blowup of the number of children by decomposing
the prediction into two steps:

1. For every child, decide whether it should ap-
pear before or after the head.

2. Determine the order of the children that appear
before the head and the order of the children
after the head.

The two steps make the reordering of the modifiers
before and after the head independent of each other,
which is reminiscent of the lexicalized parse tree

generation approach of Collins (1997). In the run-
ning example, for the head “climbed” we might first
make the following three binary decisions: the word
“cat” should appear before the head and the words
“to” and “.” should appear after the head. In the
second step there is only one word before the head
so there is nothing to do. There are two words after
the head, so we use another classifier to determine
their order. The first step is implemented using a bi-
nary classifier, called the pivot classifier (since the
head functions like the pivot in quicksort). The sec-
ond step classifiers directly predict the correct per-
mutation of the children before / after the head.

To illustrate the effectiveness of the 2-step ap-
proach, consider a head word with 4 children. The 1-
step approach must predict 1 of 5! = 120 outcomes.
In the 2-step approach, in the worst case the second
step must predict 1 of 4! = 24 outcomes (if all the
children are on one side of the head); if we are lucky
and the children split evenly, then we only need two
binary decisions in the second step (for the two pairs
before and after the head). If we define hard cases as
cases involving 5 or more words, 5.54% of the non-
leaves are hard cases with the 1-step approach, but
only 1.07% are hard cases with the 2-step approach.

3 Experimental Setup

To provide a through evaluation of our approach, we
conduct experiments on two sets of data and with
two translation systems. The first translation system
is a phrase-based system (Och and Ney, 2004). In
addition to the regular distance distortion model, we
incorporate a maximum entropy based lexicalized
phrase reordering model (Zens and Ney, 2006). Our
second system is a forest-to-string system (Zhang et
al., 2011). The forest-to-string system uses a one-
best parse tree but factorizes it into a packed forest
of binary elementary trees – hence the name forest-
to-string rather than tree-to-string.

The systems are configured and tuned for each
language pair to produce the best results. We then
add our 1-step and 2-step preordering classifiers as
preprocessing steps at training and test time. We
train the reordering classifiers on up to 15M train-
ing instances. We train separate classifiers for every
number of involved words, and restrict each one to
the K = 20 most frequent outcomes.

516



In our implementation, in the 1-step approach we
did not do any reordering for nodes with 7 or more
children. In the 2-step approach we did not reorder
the children on either side of the head if there were 7
or more of them. Even though there was no techni-
cal reason that prevented us from raising the thresh-
olds, there was no good reason to do so. There were
very few cases where children were not reordered
because of these thresholds, many of them corre-
sponded to bad parses, and they had very little im-
pact on the final scores. Thus, for the 1-step ap-
proach we had 6 classifiers: 1 binary classifier for a
head and a single child and 5 multi-class classifiers
for 3–7 words. For the 2-step approach we had 11
classifiers: 1 pivot classifier, 5 classifiers for words
before the head, and 5 for words after the head.

For a direct comparison to a strong preordering
system, we compare to the system of Genzel (2010),
which learns a set of unlexicalized reordering rules
from automatically aligned data by minimizing the
number of crossing alignments. We used a sliding
window of size 3 and tried all three of their vari-
ants. There were about 40-50 rules per language
pair. While conceptually possible, it is not practi-
cal to learn more rules (including lexicalized rules)
with this system, because of the computational com-
plexity of the learning algorithm and the incremental
nature in which the rules are learned and applied.

3.1 WMT Setup

In our first set of experiments, we use the data pro-
vided for the WMT 2010 shared task (Callison-
Burch et al., 2010). We build systems for all lan-
guage pairs: English to and from Czech, French,
German, and Spanish. Since this is a publicly avail-
able dataset, it is easy to compare our results to other
submissions to the shared task.

During word alignment, we filter out sentences
exceeding 60 words in the parallel texts and per-
form 6 iterations of IBM Model-1 training (Brown
et al., 1993), followed by 6 iterations of HMM train-
ing (Vogel et al., 1996). We do not use Model-4
because it is slow and did not add much value to our
systems in a pilot study. Standard phrase extraction
heuristics (Koehn et al., 2003) are applied to extract
phrase pairs with a length limit of 6 from alignments
symmetrized with the “union” heuristic. Maximum
jump width is set to 8. Rule extraction for the forest-

to-string system is limited to 16 rules per tree node.
There are no length-based reordering constraints in
the forest-to-string system. We train two 5-gram lan-
guage models with Kneser-Ney smoothing for each
of the target languages. One is trained on the tar-
get side of the parallel text, the other on a news cor-
pus provided by the shared task. We tune the fea-
ture weights for every configuration with 10 rounds
of hypergraph-based Minimum Error Rate Training
(MERT) (Kumar et al., 2009).

3.2 Additional Languages

In our second set of experiments, we explore the im-
pact of classifier preordering for a number of lan-
guages with different word orders. Some of the lan-
guages included in our study are verb-subject-object
(VSO) languages (Arabic, Irish, Welsh), subject-
object-verb (SOV) languages (Japanese, Korean),
and fairly free word order languages (Dutch, Hun-
garian). Where a parser is available, we also conduct
experiments on translating into English.

Since there are no standard training sets for many
of these language pairs, we use parallel data auto-
matically mined from the web. The amount of par-
allel text for each language pair is between 120M
and 160M words. For evaluation, we use a set of 9K
English sentences collected from the web and trans-
lated by humans into each of the target languages.
Each sentence has one reference translation. We use
5K sentences for evaluation and the rest for tuning.

The systems and training configurations are sim-
ilar to the WMT setup. The word alignment step
includes 3 iterations of IBM Model-1 training and
2 iterations of HMM training. Lexical reordering is
included where it helps, but typically makes only a
small difference. We again use a 5-gram language
model trained on a large amount of monolingual
text. Overall, we use between 20 and 30 features,
whose weights are optimized using hypergraph-
based MERT. All experiments for a given language
pair use the same set of MERT weights. This po-
tentially underestimates the improvements that can
be obtained, but also eliminates MERT as a pos-
sible source of improvement, allowing us to trace
back improvements in translation quality directly to
changes in preordering of the input data.
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3.3 Evaluation

We use case-sensitive BLEU (Papineni et al., 2002)
to assess translation quality. For Japanese and Ko-
rean we use character-level BLEU. We use bootstrap
resampling to compute confidence intervals.

Additionally, we also conduct a side-by-side hu-
man evaluation on 750 sentences for each language
pair (sampled from the same sentences used for
computing BLEU). For each sentence, we ask bilin-
gual annotators to compare the translations from two
different systems and say whether one is better, lead-
ing to three possible scores of -1, 0, and +1. We fo-
cus on this relative comparison since absolute scores
are difficult to calibrate across languages and raters.

3.4 Syntactic Parsers

Table 1 shows our treebank sources and parsing ac-
curacies. For English, we use the updated WSJ with
OntoNotes-style annotations converted to Stanford
dependencies (de Marneffe et al., 2006). The re-
maining treebanks are all available in dependency
format. In all cases, we apply a set of heuristics to
the treebank data to make the tokenization as simi-
lar as possible to the one of the bitext. Our heuristics
can split treebank tokens but do not merge treebank
tokens. We found that adjusting the treebank tok-
enization is crucial for obtaining good results. How-
ever, this makes the reported parsing accuracies not
comparable to other numbers in the literature. When
necessary, we projectivize the treebanks by raising
arcs until the tree becomes projective, as described
in Nivre and Nilsson (2005); we do not reconstruct
non-projective arcs at parsing time, since our subse-
quent systems expect projective trees.

Our part-of-speech tagger is a conditional random
field model (Lafferty et al., 2001) with simple word-
identity and affix features. The parsing model is
a shift-reduce dependency parser, using the higher-
order features from Zhang and Nivre (2011). Addi-
tionally, we include 256 word-cluster features (Koo
et al., 2008) trained on a large amount of unlabeled
monolingual text (Uszkoreit and Brants, 2008).

4 Experiments

Due to the large number of experiments and lan-
guage pairs we divide the experiments into groups
and discuss each in turn. We only include the results

UAS LAS POS
en: English1 92.28 90.28 97.05
cs: Czech2 84.66 72.01 98.97
de: German3 89.30 86.98 97.69
es: Spanish4 86.24 82.32 96.62
fr: French5 88.57 86.40 97.48
hu: Hungarian2 87.66 82.51 94.47
nl: Dutch3 86.09 82.31 97.38
pt: Portuguese4 90.22 87.26 98.10

Table 1: Parsing accuracies on the retokenized treebanks.
UAS is unlabeled attachment score, LAS is labeled at-
tachment score, and POS is part-of-speech tagging accu-
racy. The treebank sources are (1): Marcus et al. (1993)
+ Judge et al. (2006) + Petrov and McDonald (2012), (2):
Nivre et al. (2007), (3): Buchholz and Marsi (2006), (4):
McDonald et al. (2013), (5): Abeillé et al. (2003).

from the forest-to-string system when they are bet-
ter than the phrase-based results. We use * to denote
results from the forest-to-string system.

4.1 WMT Experiments

Table 2 presents detailed results on the WMT setup.
Lexical reordering (Zens and Ney, 2006) never hurts
and is thus included in all systems. Overall, our re-
sults are a little better than the best results of the
WMT 2010 shared task for two language pairs and
within reach of the best results in most other cases.

The 2-step classifier preordering approach pro-
vides statistically significant improvements over the
lexical reordering baseline on three out of the eight
language pairs: English-Spanish (en-es: 1.4 BLEU),
German-English (de-en: 1.2 BLEU), and English-
French (en-fr: 1.0 BLEU). These improvements are
significant in our human side-by-side evaluation.
We also observe gains when combining our pre-
ordering approach with the forest-to-string system
for English-Spanish and German-English. While the
forest-to-string system is capable of performing long
distance reordering in the decoder, it appears that
an explicitly trained lexicalized preordering model
can provide complementary benefits. These bene-
fits are especially pronounced for German-English
where long distance verb movement is essential. For
the romance languages (Spanish and French), word
ordering depends highly on lexical choice which is
captured by the lexical features in our classifiers.
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base lexical rule 1-step 2-step wmt best
en-cs 14.9 15.1 15.2 15.2 15.2 15.4
en-de 15.3 15.6 15.9 15.9 15.7 16.3
en-es 27.4 27.8s 28.4p 29.0 28.8♠♣ 28.6
en-es* 28.9 - 28.7 29.0 29.2 28.6
en-fr 26.3 26.5s 26.8p 27.2 27.3♠p 27.6
cs-en 21.6 21.6 21.5 21.6 21.7 21.9
de-en 20.6 21.1s 21.9 21.9 21.8♠ 22.8
de-en* 22.1 - 22.5 22.5 22.7 22.8
es-en 28.3 28.7 28.7 28.8 28.9 28.8
fr-en 26.8 27.0 26.9 26.9 27.0 28.3

Table 2: BLEU scores on the WMT 2010 setup. Results from the forest-to-string system are marked with * and are
only included when better than the phrase-based results. The base system includes a distance distortion model; the
lexical system adds lexical reordering; rule is the rule preordering system of Genzel (2010) plus lexical reordering;
1-step and 2-step are our classifier-based systems plus lexical reordering. Bolded results are statistically significantly
better than non-bolded results as measured by a bootstrap sample test with a 99% confidence interval. Human evals
are conducted only where indicated; we use ♠ and ♣ to indicate a significantly better result than s and p in the human
eval at 95%. Also included are the best results from the WMT 2010 task.

Compared to a state-of-the-art preordering sys-
tem, the automatic rule extraction system of Gen-
zel (2010), we observe significant gains in several
cases and no losses at all. The improvements on
English-Spanish are significant also in the human
evaluation, while the English-French improvements
are positive, but not statistically significant.

Comparing the different languages, Czech (cs) ap-
pears the most immune to improvements from pre-
ordering (and lexical reordering). One possible ex-
planation is that Czech has a relatively free word
order with a default SVO structure. It is therefore
difficult to learn reordering changes from English
to Czech. Additionally, the accuracy (LAS) of our
Czech parser is by far the lowest of all parsers that
we used, potentially limiting the benefits that can be
obtained when translating from Czech into English.

On this setup there is fairly little difference in per-
formance between the 1-step and 2-step approaches.
The main benefit of the 2-step approach is compact-
ness: the set of 2-step classifiers has about half the
number of non-zero features as the 1-step classifiers.

4.2 Additional Languages Experiments

Table 3 shows our first set of results on the additional
languages, including some languages with a wide
disparity in word order relative to English. The SOV
languages Korean (ko) and Japanese (ja) benefit the

most from preordering and gain more than 7 BLEU
relative to the phrase-based baseline and still more
than 3 BLEU for the forest-to-string system. Simi-
lar improvements were reported by Xu et al. (2009)
with manual reordering rules. Indonesian (id) and
Malay (ms) are next with gains of 2.5 BLEU. Malay
does not have a grammatical subject in the sense
that English does, but instead uses a concept of an
agent and an object, whose order is determined by
the voice of the verb. It appears that our classifiers
have learned to model some of these highly lexical,
but systematic ordering preferences. Welsh (cy) and
Irish (ga) as VSO languages also exhibit large gains
of 2.1 BLEU. For Arabic (ar) and Hebrew (iw), the
gains are smaller, but still significant and exceed 1
BLEU relative to the baseline.

The benefits of our 2-step approach over the 1-
step approach become apparent on this set of lan-
guages where reordering is most important. By pre-
dicting the target word order in two steps, we reduce
sparsity and make two easier decisions in place of
a single difficult high entropy decision. Indeed, the
2-step approach produces improvements over the 1-
step approach on five out of nine language pairs. The
improvements are as large as 0.9 BLEU for Korean
and 0.5 BLEU for Japanese and Welsh. We per-
formed human evaluation for all language pairs with
a noticeable BLEU gain for the 2-step system over
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base rule 1-step 2-step
en-ar 11.4 12.3 12.5 12.6
en-cy 29.3 31.1 31.9p 32.4♣
en-ga 17.0 18.5 18.8p 19.1♣
en-iw 18.8 19.7 20.2 20.2
en-id 31.0 33.4 34.0p 34.3p
en-ja 10.4 16.4 17.5p 18.0♣
en-ja* 14.9 18.0 18.2p 18.6♣
en-ko 24.1 31.8 31.8p 32.7♣
en-ms 20.4 22.5 22.9 22.9

Table 3: BLEU scores for language from various lan-
guage families: Arabic (ar), Welsh (cy), Irish (ga), In-
donesian (id), Hebrew (iw), Japanese (ja), Korean (ko),
and Malay (ms). Lexical reordering is not included in
any of the systems. Bolded results are significant at 99%.
♣ is significantly better than p in a human eval at 95%.

the 1-step system. The human judgments exactly
agree with the results of the BLEU significance tests.
The gains relative to the rule reordering system of
Genzel (2010) and the no-preordering baseline are
even larger and therefore clearly also significant.

In Table 4 we show results for Hungarian (hu),
Dutch (nl), and Portuguese (pt). In all cases but
English-Hungarian we observe significant improve-
ments over the no preordering baseline. It should be
noted that the gains are not symmetric – sometimes
there are larger gains for translating out of English,
while for Hungarian the gains are higher for trans-
lating into English. Hungarian has a free word order
which is difficult to predict which might partially ex-
plain why there are no improvements for translating
into Hungarian. For Dutch-English, the forest-to-
string system yields the best results, which was also
the case for German-English, further supporting the
observation that combining different types of syn-
tactic reordering approaches can be beneficial.

4.3 Manually Aligned Data

For Arabic (ar), Hebrew (iw), and Japanese (ja) we
conducted some additional experiments with man-
ually aligned data. We asked bilingual speakers to
translate about 20K English sentences into the re-
spective target language and to mark the alignment
between the words. We reserved 20% of this data for
evaluation and used the rest for training. For evalu-
ation we used the fuzzy metric defined by Talbot et

base rule 1-step 2-step
en-hu 12.7 12.6 12.8 12.7
en-nl 25.3 26.1 26.4 26.4
en-pt 30.2 31.9 32.6 32.8
hu-en 22.0 22.2 22.7 22.7
nl-en 34.9 35.7 35.2 35.1
nl-en* 36.3 36.5 36.6 36.7
pt-en 39.8 40.1 40.1 40.1

Table 4: BLEU scores for translating to and from En-
glish for: Hungarian (hu), Dutch (nl), and Portuguese
(pt). Lexical reordering is not used for any language pair.
Bolded results are significant at 99%.

al. (2011), which counts the fraction of words that
are reordered into the correct position.

The BLEU scores in Table 5 show that training
from small amounts of manually aligned data or
large amounts of automatically aligned data results
in models of similar quality. In terms of the fuzzy
metric, the models trained from manually aligned
data were better. A possible explanation is that these
models were trained on data which was much more
similar to the evaluation data (both were subsets of
the manually aligned data), biasing the metric in
their favor. In absolute terms, the reordering ac-
curacy is around 80% for Arabic and Japanese and
close to 90% for Hebrew. Most impressively, more
than 60% of the Hebrew sentences are exactly in the
correct word order, implying that monotonic trans-
lation may suffice.

We also examined the accuracy of the individual
classifiers and found that the pivot classifier has an
accuracy around 95%. It is therefore unlikely that
a word is reordered to the wrong side of its head in
the 2-step reordering approach. The classifiers that
predict the final word order have an accuracy above
90% when there are only two words and drop to still
respectable 70%-80% when there are 4 or more chil-
dren or 20 possible options.

5 Analysis

In this section, we analyze an example whose trans-
lation is significantly improved by our preordering
approach, demonstrating the usefulness of our lexi-
calized features. Consider the English sentence:

It was a real whirlwind.
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no reordering manual automatic
fuzzy exact BLEU fuzzy exact BLEU fuzzy exact BLEU

en-ar 63.2 19.8 11.4 83.5 47.6 12.4 79.0 38.9 12.6
en-iw 67.9 22.2 18.8 89.8 62.4 20.3 89.2 61.2 20.2
en-ja* 44.1 0.0 14.9 80.9 41.5 18.4 78.5 36.8 18.6

Table 5: Preordering accuracy for the 2-step classifiers using manual alignments vs. automatic alignments. Fuzzy
refers to the metric defined in Talbot et al. (2011) and exact is the percentage of sentences with a perfect preordering.

taken from the WMT test set. The dependency parse
tree is shown in Figure 2. In our experiments the
rule-based approach of (Genzel, 2010) reordered the
source sentence into:

It was a whirlwind real.

and produced the translation:
Es un torbellino real.

In comparison, our 2-step system kept the English
sentence unchanged and produced the translation:

Fue un auténtico torbellino.

The second translation is better than the first because
of the correct tense (which is not related directly to
the preordering) and because the noun phrase “real
whirlwind” is ordered correctly.

The main reason for the difference in the ordering
is that the rule-based system can only use the unlex-
icalized information from the parse tree. The head
“whirlwind” is a noun and the child “real” is an ad-
jective; since adjectives typically appear after nouns
in Spanish, their order is reversed.

To understand why the classifier-based system
keeps “real” before “whirlwind” we can examine
the features used by the classifier to make this deci-
sion. In Table 6 we consider the 3 strongest features
in favor of the child “real” appearing after the head
“whirlwind” and the three strongest features in favor
of the child appearing before the head. Recall that
the pivot is a binary classifier: positive features sup-
port one decision (in our case: the child should be
after the head) and the negative features support the
other decision (the child should be before the head).

The three features that have the highest positive
weight encode the fact that the child is an adjective,
since in general, adjectives in Spanish appear after
the noun. On the other hand, the three features with
the most negative weights all encode the fact that the
child is the word “real” which unlike most adjec-

tives tends to appear before the noun. It is interesting
to note that for this particular ordering decision the
child word is much more informative than the head
word and indeed, all the important features contain
information about the child and none of them con-
tains any information about the head.

6 Conclusions & Future Work

We presented a simple and novel preordering ap-
proach that produces substantial improvements in
translation accuracy on a large number of languages.
We use a source-side syntactic parser and train dis-
criminative classifiers to predict the order of a parent
and its children in the target language, using features
from the dependency tree as well as (bi-)lexical fea-
tures. To decompose the exponential space of all
possible permutations, we introduce the 2-step ap-
proach. We show empirically that this approach is
significantly better than directly predicting the full
permutation for some languages, and never signifi-
cantly worse.

We obtain strong results on the WMT 2010 shared
task data, observing gains of up to 1.4 BLEU over a
state-of-the-art system. We also show gains of up
to 0.5 BLEU over a strong directly comparable pre-
ordering system that is based on learning unlexical-
ized reordering rules. We obtain improvements of
more than 2 BLEU in experiments on additional lan-
guages. The gains are especially large for languages
where the sentence structure is very different from
English. These positive results are confirmed in hu-
man side-by-side evaluations.

When comparing our approach to syntax-based
translation systems (Yamada and Knight, 2001; Gal-
ley et al., 2004; Huang et al., 2006; Dyer and Resnik,
2010) we note that both approaches use syntactic in-
formation for reordering decisions. Our preorder-
ing approach has several advantages. First, be-
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It was a real whirlwind .
NN VBD DT JJ NN .

NOUN VERB DET ADJ NOUN .

nsubj

det

amod

attr

p
ROOT

Figure 2: An example where lexical information is nec-
essary for choosing the correct word order.

cause preordering is performed before learning word
alignments, it has the potential to improve the word
alignments. Second, by using discriminative clas-
sifiers we can take advantage of lexical features.
Finally, preordering can be combined with syntax-
based translation models and our results confirm the
complementary benefits that can be obtained.

Compared to other preordering models, our ap-
proach has the obvious problem of having to make
predictions over an exponential set of permutations.
We show that this is not an insurmountable diffi-
culty: our 2-step approach decomposes the exponen-
tial space, often leading to much easier prediction
tasks. Even when the number of possible permuta-
tions is large we can limit ourselves to the K most
popular permutations.

On the other hand, our approach provides im-
portant advantages. Compared to systems that use
rewrite rules, it is much easier to encode useful
knowledge that by itself is not enough to determine
a full rewrite rule, such as “a determiner is unlikely
to be the last word in a clause.” Perhaps more im-
portantly, our model provides an elegant answer to
the question of what to do when multiple rewrite
rules can be applied. Previous work has employed
different heuristics: use the most specific rule (Xia
and McCord, 2004), use all applicable rules (Gen-
zel, 2010), or use the most frequent rule (Wu et al.,
2011). In our model there is no need for such heuris-
tics – all the “rules” are treated as features to a dis-
criminative classifier, and the task of analyzing their
interactions is handled by the learning algorithm.

Compared to preordering systems that use rank-
ing functions, our model has the advantage that it
can encode information about the complete permu-
tation. For example, for three source words A, B,
and C, we can naturally express the useful prior that

Feature Weight
PrevChild:tag=JJ,PrevSibling:a 0.448

PrevChild:cat=ADJ,PrevSibling:a 0.292

PrevChild:cat=ADJ,NoNextSibling 0.212

...

PrevChild:real,NoNextHeadSibling -0.310

PrevChild:real,PrevSibling:cat=DET -0.516

PrevChild:real,PrevSibling:a -0.979

Table 6: The three features with the highest and low-
est weights for choosing the position of “real” relative
to “whirlwind.” PrevChild means that the child is the
immediate word before the head. PrevSibling refers to
the child’s sibling immediately to the left (the determiner
“a”). NoNextSibling and NoNextHeadSibling mean that
the child and head do not have a sibling to the right.

A-B-C and C-B-A are likely orders but C-A-B is not.
Promising directions for future work are joint

parsing and reordering models, and measuring the
influence of parsing accuracy on preordering and fi-
nal translation quality.
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structuring for statistical machine translation. In Proc.
of ACL ’05.

M. Collins. 1997. Three generative, lexicalised models
for statistical parsing. In ACL ’97.

M.-C. de Marneffe, B. MacCartney, and C. Manning.
2006. Generating typed dependency parses from
phrase structure parses. In Proc. of LREC ’06.

522



J. DeNero and J. Uszkoreit. 2011. Inducing sentence
structure from parallel corpora for reordering. In Proc.
of EMNLP ’11.

J. Duchi and Y. Singer. 2009. Boosting with structural
sparsity. In Proc. of ICML ’09.

C. Dyer and P. Resnik. 2010. Context-free reordering,
finite-state translation. In Proc. of NAACL-HLT ’10.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule? In Proc. of NAACL-HLT
’04.

D. Genzel. 2010. Automatically learning source-side re-
ordering rules for large scale machine translation. In
Proc. of COLING ’10.

N. Habash. 2007. Syntactic preprocessing for statistical
machine translation. In Proc. of MTS ’07.

L. Huang, K. Knight, and A. Joshi. 2006. Statistical
syntax-directed translation with extended domain of
locality. In Proc. of AMTA ’06.

J. Judge, A. Cahill, and J. v. Genabith. 2006. Question-
Bank: creating a corpus of parse-annotated questions.
In Proc. of ACL ’06.

P. Koehn, F. J. Och, and D. Marcu. 2003. Statistical
phrase based translation. In Proc. of NAACL-HLT ’03.

T. Koo, X. Carreras, and M. Collins. 2008. Simple semi-
supervised dependency parsing. In Proc. of ACL-HLT
’08.

S. Kumar, W. Macherey, C. Dyer, and F. Och. 2009. Effi-
cient minimum error rate training and minimum bayes-
risk decoding for translation hypergraphs and lattices.
In Proc. of ACL ’09.

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional Random Fields: Probabilistic models for seg-
menting and labeling sequence data. In Proc. of ICML
’01.

C. H. Li, M. Li, D. Zhang, M. Li, M. Zhou, and Y. Guan.
2007. A Probabilistic Approach to Syntax-based Re-
ordering for Statistical Machine Translation. In Proc.
of ACL ’07.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
Building a large annotated corpus of English: The
Penn Treebank. In Computational Linguistics.

R. McDonald, J. Nivre, Y. Quirmbach-Brundagez,
Y. Goldberg, D. Das, K. Ganchev, K. Hall, S. Petrov,
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Abstract 

This paper proposes a novel approach that uti-
lizes a machine learning method to improve 
pivot-based statistical machine translation 
(SMT). For language pairs with few bilingual 
data, a possible solution in pivot-based SMT 
using another language as a "bridge" to gen-
erate source-target translation. However, one 
of the weaknesses is that some useful source-
target translations cannot be generated if the 
corresponding source phrase and target phrase 
connect to different pivot phrases. To allevi-
ate the problem, we utilize Markov random 
walks to connect possible translation phrases 
between source and target language. Experi-
mental results on European Parliament data, 
spoken language data and web data show that 
our method leads to significant improvements 
on all the tasks over the baseline system. 

1 Introduction 

Statistical machine translation (SMT) uses bilin-
gual corpora to build translation models. The 
amount and the quality of the bilingual data 
strongly affect the performance of SMT systems. 
For resource-rich language pairs, such as Chinese-
English, it is easy to collect large amounts of bi-
lingual corpus. However, for resource-poor lan-
guage pairs, such as Chinese-Spanish, it is difficult 

to build a high-performance SMT system with the 
small scale bilingual data available.  

The pivot language approach, which performs 
translation through a third language, provides a 
possible solution to the problem. The triangulation 
method (Wu and Wang, 2007; Cohn and Lapata, 
2007) is a representative work for pivot-based ma-
chine translation. With a triangulation pivot ap-
proach, a source-target phrase table can be 
obtained by combining the source-pivot phrase 
table and the pivot-target phrase table. However, 
one of the weaknesses is that some corresponding 
source and target phrase pairs cannot be generated, 
because they are connected to different pivot 
phrases (Cui et al., 2013). As illustrated in Figure 
1, since there is no direct translation between “很
可口 henkekou” and “really delicious”, the trian-
gulation method is unable to establish a relation 
between “很可口 henkekou” and the two Spanish 
phrases. 

To solve this problem, we apply a Markov ran-
dom walk method to pivot-based SMT system. 
Random walk has been widely used. For example, 
Brin and Page (1998) used random walk to dis-
cover potential relations between queries and doc-
uments for link analysis in information retrieval. 
Analogous to link analysis, the aim of pivot-based 
translation is to discover potential translations be-
tween source and target language via the pivot 
language.  
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The goal of this paper is to extend the previous 
triangulation approach by exploring implicit trans-
lation relations using random walk method. We 
evaluated our approach in several translation tasks, 
including translations between European lan-
guages; Chinese-Spanish spoken language transla-
tion and Chinese-Japanese translation with English 
as the pivot language. Experimental results show 
that our approach achieves significant improve-
ments over the conventional pivot-based method, 
triangulation method. 

The remainder of this paper is organized as fol-
lows. In section 2, we describe the related work. 
We review the triangulation method for pivot-
based machine translation in section 3. Section 4 
describes the random walk models. In section 5 
and section 6, we describe the experiments and 
analyze the performance, respectively. Section 7 
gives a conclusion of the paper. 

2 Related Work 

Several methods have been proposed for pivot-
based translation. Typically, they can be classified 
into 3 kinds of methods: 

Transfer Method: Within the transfer frame-
work (Utiyama and Isahara, 2007; Wang et al., 
2008; Costa-jussà et al., 2011), a source sentence 
is first translated to n pivot sentences via a source-
pivot translation system, and then each pivot sen-
tence is translated to m target sentences via a piv-
ot-target translation system. At each step (source 
to pivot and pivot to target), multiple translation 
outputs will be generated, thus a minimum Bayes-
risk system combination method is often used to 
select the optimal sentence (González-Rubio et al., 
2011; Duh et al., 2011). A problem with the trans-
fer method is that it needs to decode twice. On one 

hand, the time cost is doubled; on the other hand, 
the translation error of the source-pivot translation 
system will be transferred to the pivot-target trans-
lation. 

Synthetic Method: A synthetic method creates 
a synthetic source-target corpus using source-pivot 
translation model or pivot-target translation model 
(Utiyama et al., 2008; Wu and Wang, 2009). For 
example, we can translate each pivot sentence in 
the pivot-target corpus to source language with a 
pivot-source model, and then combine the translat-
ed source sentence with the target sentence to ob-
tain a synthetic source-target corpus, and vice 
versa. However, it is difficult to build a high quali-
ty translation system with a corpus created by a 
machine translation system. 

Triangulation Method: The triangulation 
method obtains source-target model by combining 
source-pivot and pivot-target translation models 
(Wu and Wang, 2007; Cohn and Lapata 2007), 
which has been shown to work better than the oth-
er pivot approaches (Utiyama and Isahara, 2007). 
As we mentioned earlier, the weakness of triangu-
lation is that the corresponding source and target 
phrase pairs cannot be connected in the case that 
they connect to different pivot phrases. 

3 The Triangulation Method 

In this section, we review the triangulation method 
for pivot-based translation. 

With the two additional bilingual corpora, the 
source-pivot and pivot-target translation models 
can be trained. Thus, a pivot model can be ob-
tained by merging these two models. In the trans-
lation model, the phrase translation probability and 
the lexical weight are language dependent, which 
will be introduced in the next two sub-sections. 

Figure 1: An example of random walk on phrase table. The dashed line indicates an implicit relation 
in the phrase table. 

非常好吃 
feichanghaochi 

really delicious 

very tasty 
 

很可口
henkekou 

realmente delicioso 
 

Chinese English Spanish 

muy delicioso 
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3.1 Phrase Translation Probability 

The triangulation method assumes that there exist 
translations between phrases s  and phrase p  in 
source and pivot languages, and between phrase 
p  and phrase t  in pivot and target languages. 

The phrase translation probability φ  between 
source and target languages is determined by the 
following model: 

( | ) ( | , ) ( | )

          ( | ) ( | )
p

p

s t s p t p t

s p p t

φ φ φ

φ φ

=

=

∑

∑
       (1) 

3.2 Lexical Weight 

Given a phrase pair ( , )s t and a word alignment 
a  between the source word positions 1, ,i n=   
and the target word positions 0,1, ,j m=  , the 
lexical weight of phrase pair ( , )s t  can be calcu-
lated with the following formula (Koehn et al. 
2003) : 

( , )1

1( | , ) ( | )
{ | ( , ) }

n

i j
i j ai

p s t a s t
j i j aξ ω

∀ ∈=

=
∈ ∑∏ (2) 

In formula 2, the lexical translation probability 
distribution ( | )s tω  between source word s  and 
target word t  can be estimated with formula 3. 

'
'

( , )( | )
( , )

s

count s ts t
count s t

ω =
∑

            (3) 

Thus the alignment a  between the source 
phrase s  and target phrase t  via pivot phrase p  
is needed for computing the lexical weight. The 
alignment a  can be obtained as follows: 

1 2{( , ) | : ( , ) & ( , ) }a s t p s p a p t a= ∃ ∈ ∈    (4) 
where 1a  and 2a  indicate the word alignment be-
tween the phrase pair ( , )s p  and ( , )p t , respec-
tively. 

The triangulation method requires that both the 
source and target phrases connect to the same piv-
ot phrase. Otherwise, the source-target phrase pair 
cannot be discovered. As a result, some useful 
translation relations will be lost. In order to allevi-
ate this problem, we propose a random walk model, 
to discover the implicit relations among the source, 
pivot and target phrases. 

4 Random Walks on Translation Graph 

For phrase-based SMT, all source-target phrase 
pairs are stored in a phrase table. In our random 
walk approach, we first build a translation graph 
according to the phrase table. A translation graph 
contains two types of nodes: source phrase and 
target phrase. A source phrase s  and a target 
phrase t  are connected if exists a phrase pair 
( , )s t  in the phrase table. The edge can be 
weighted according to translation probabilities or 
alignments in the phrase table. For the pivot-based 
translation, the translation graph can be derived 
from the source-pivot phrase table and pivot-target 
phrase table.  

Our random walk model is inspired by two 
works (Szummer and Jaakkola, 2002; Craswell 
and Szummer,2007). The general process of ran-
dom walk can be described as follows: 

Let ( , )G V E= be a directed graph with n  ver-
tices and m  edges. For a vertex v V∈ , ( )vΓ  de-
notes the set of neighbors of v  in G . A random 
walk on G  follows the following process: start at 
a vertex 0v , chose and walk along a random 
neighbor 1v , with 1 0( )v v∈Γ . At the second step, 
start from 1v  and chose a random neighbor 2v , and 
so on. 

Let S be the set of source phrases, and P be the 
set of pivot phrases. Then the nodes V are the un-
ion of S and P. The edges E correspond to the rela-
tions between phrase pairs.  

Let R represent the binary relations between 
source phrases and pivot phrases. Then the 1-step 
translation ikR from node i to node k can be direct-
ly obtained in the phrase table. 

Define operator ⊗  to denote the calculation of 
relation R. Then 2-step translation ijR  from node i 
to node j can be obtained with the following for-
mula.  

ij ik kjR R R= ⊗                           (4) 

We use |0 ( | )tR k i  to denote a t-step translation 
relation from node i to node k. In order to calculate 
the translation relations efficiently, we use a ma-
trix A to represent the graph. A t step translation 
probability can be denoted with the following for-
mula. 
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|0 ( | ) [ ]t
t ikP k i A=                         (5) 

where A is a matrix whose i,k-th element is ikR . 

4.1 Framework of Random Walk Approach 

The overall framework of random walk for pivot-
based machine translation is shown in Figure 2. 
Before using random walk model, we have two 
phrase tables: source-pivot phrase table (SP phrase 
table) and pivot-target phrase table (PT phrase ta-
ble). After applying the random walk approach, we 
can achieve two extended phrase table: extended 
source-pivot phrase table (S’P’ phrase table) and 
extended pivot-target phrase table (P’T’ phrase 
table). The goal of pivot-based SMT is to get a 
source-target phrase table (ST phrase table) via SP 
phrase table and PT phrase table.  

Our random walk was applied on SP phrase ta-
ble or PT phrase table separately. In next 2 sub-
sections, we will explain how the phrase transla-

tion probabilities and lexical weight are obtained 
with random walk model on the phrase table. 

Figure 3 shows some possible decoding pro-
cesses of random walk based pivot approach. In 
figure 3-a, the possible source-target phrase pair 
can be obtained directly via a pivot phrase, so it 
does not need a random walk model. In figure 3-b 
and figure 3-c, one candidate source-target phrase 
pair can be obtained by random walks on source-
pivot side or pivot-target side. Figure 3-d shows 
that the possible source-target can only by ob-
tained by random walks on source-pivot side and 
pivot-target side. 

4.2 Phrase Translation Probabilities 

For the translation probabilities, the binary relation 
R is the translation probabilities in the phrase table. 
The operator ⊗  is multiplication. According to 
formula 5, the random walk sums up the probabili-
ties of all paths of length t between the node i and 
k. 

Figure 2: Framework of random walk based pivot translation. The ST phrase table was generated by combin-
ing SP and PT phrase table through triangulation method. The phrase table with superscript “’” means that it 

was enlarged by random walk. 
 

S’P’
Phrase Table

P’T’ 
Phrase Table

 SP 
Phrase Table

PT 
Phrase Table

ST 
Phrase Table

S’T’
Phrase Table

Pivot without 
random walk

Pivot with 
random walkrandom walk

random walk

Figure 3: Some possible decoding processes of random walk based pivot approach. The □ stands for the 
source phrase (S); the ○ represents the pivot phrase (P) and the ◇ stands for the target phrase (T). 

 

(a) Pivot without  
       random walk 

S P T 

(d) Random walk on   
     both sides 

S P T 

(b) Random walk on  
      source-pivot side 

S P T 

(c) Random walk on 
      pivot-target side 

S P T 
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Take source-to-pivot phrase graph as an exam-
ple; denote matrix A contains s+p nodes (s source 
phrases and p pivot phrases) to represent the trans-
lation graph.  

( ) ( )ij s p s p
A g

+ × +
 =                           (6) 

where ijg  is the i,j-th elements of matrix A. 
We can split the matrix A into 4 sub-matrixes: 

0
0

s s sp

ps p p

A
A

A
×

×

 
=  
 

                      (7) 

where the sub-matrix [ ]sp ik s pA p ×=  represents the 
translation probabilities from source to pivot lan-
guage, and psA  represents the similar meaning. 

Take 3 steps walks as an example: 
Step1: 

0
0

s s sp

ps p p

A
A

A
×

×

 
=  
 

 

Step2: 
2 0

0
sp ps s p

p s ps sp

A A
A

A A
×

×

× 
=  × 

 

Step3: 
3 0

0
s s sp ps sp

ps sp ps p p

A A A
A

A A A
×

×

× × 
=  × × 

 

For the 3 steps example, each step performs a 
translation process in the form of matrix’s self-
multiplication.  
1. The first step means the translation from 

source language to pivot language. The matrix 
A is derived from the phrase table directly and 
each element in the graph indicates a transla-
tion rule in the phrase table.  

2. The second step demonstrates a procedure: S-
P-S’. With 2 steps random walks, we can find 
the synonymous phrases, and this procedure is 

analogous to paraphrasing (Bannard and 
Callison-Burch, 2005). For the example shown 
in  figure 1 as an example, the hidden relation 
between “很可口 henkekou” and “非常好吃
feichanghaochi” can be found through Step 2. 

3. The third step describes the following proce-
dure: S-P-S’-P’. An extended source-pivot 
phrase table is generated by 3-step random 
walks. Compared with the initial phrase table 
in Step1, although the number of phrases is 
not increased, the relations between phrase 
pairs are increased and more translation rules 
can be obtained. Still for the example in Fig-
ure 1 , the hidden relation between “很可口
henkekou” and “really delicious” can be gen-
erated in Step 3. 

4.3 Lexical Weights 

To build a translation graph, the two sets of phrase 
translation probabilities are represented in the 
phrase tables. However, the two lexical weights 
are not presented in the graph directly. To deal 
with this, we should conduct a word alignment 
random walk model to obtain a new alignment a 
after t steps. For the computation of lexical 
weights, the relation R can be expressed as the 
word alignment in the phrase table. The operator 
⊗  can be induced with the following formula. 

1 2{( , ) | : ( , ) & ( , ) }a x y p x z a z y a= ∃ ∈ ∈         (8) 
where a1 and a2 represent the word alignment 
information inside the phrase pairs ( , )x y  and 
( , )y z respectively. An example of word 
alignment inducing is shown in Figure 4. With a 
new word alignment, the two lexical weights can 
be calculated by formula 2 and formula 3. 

Figure 4: An example of word alignment induction with 3 steps random walks 

请   填写   这   张   表 

could   you   fill   out   this   form 请   您   填写   这个   表格 

please   fill   out   this   form 

请   填写   这   张   表 

could   you   fill   out   this   form 

step 1 

step 2 

step 3 
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5 Experiments 

5.1 Translation System and Evaluation Met-
ric 

In our experiments, the word alignment was ob-
tained by GIZA++ (Och and Ney, 2000) and the 
heuristics “grow-diag-final” refinement rule. 
(Koehn et al., 2003). Our translation system is an 
in-house phrase-based system using a log-linear 
framework including a phrase translation model, a 
language model, a lexicalized reordering model, a 
word penalty model and a phrase penalty model, 
which is analogous to Moses (Koehn et al., 2007). 
The baseline system is the triangulation method 
based pivot approach (Wu and Wang, 2007).  

To evaluate the translation quality, we used 
BLEU (Papineni et al., 2002) as our evaluation 
metric. The statistical significance using 95% con-
fidence intervals were measured with paired boot-
strap resampling (Koehn, 2004). 

5.2 Experiments on Europarl 

5.2.1. Data sets 

We mainly test our approach on Europarl1

We perform our experiments on different trans-
lation directions and via different pivot languages. 
As a most widely used language in the world 
(Mydans, 2011), English was used as the pivot 
language for granted when carrying out experi-
ments on different translation directions. For trans-
lating Portuguese to Swedish, we also tried to 
perform our experiments via different pivot lan-

 corpus, 
which is a multi-lingual corpus including 21 Euro-
pean languages. Due to the size of the data, we 
only select 11 languages which were added to 
Europarl from 04/1996 or 01/1997, including Dan-
ish (da), German (de), Greek (el), English (en), 
Spanish (es), Finnish (fi), French (fr), Italian (it) 
Dutch (nl) Portuguese (pt) and Swedish (sv). In 
order to avoid a trilingual scenario, we split the 
training corpus into 2 parts by the year of the data: 
the data released in odd years were used for train-
ing source-pivot model and the data released in 
even years were used for training pivot-target 
model.  

                                                           
1 http://www.statmt.org/europarl/ 

guages. Table 1 and Table 2 summarized the train-
ing data. 
 

Language 
Pairs  

(src-pvt) 

Sentence 
Pairs # 

Language 
Pairs 

(pvt-tgt) 

Sentence 
Pairs # 

da-en 974,189 en-da 953,002 
de-en 983,411 en-de 905,167 
el-en 609,315 en-el 596,331 
es-en 968,527 en-es 961,782 
fi-en 998,429 en-fi 903,689 
fr-en 989,652 en-fr 974,637 
it-en 934,448 en-it 938,573 
nl-en 982,696 en-nl 971,379 
pt-en 967,816 en-pt 960,214 
sv-en 960,631 en-sv 869,254 

 
Table1. Training data for experiments using English as 
the pivot language. For source-pivot (src-pvt; xx-en) 

model training, the data of odd years were used. Instead 
the data of even years were used for pivot-target (pvt-

src; en-xx) model training. 
 
 

Language 
Pairs  

(src-pvt) 

Sentence 
Pairs # 

Language 
Pairs 

(pvt-tgt) 

Sentence 
Pairs # 

pt-da 941,876 da-sv 865,020 
pt-de 939,932 de-sv 814,678 
pt-el 591,429 el-sv 558,765 
pt-es 934,783 es-sv 827,964 
pt-fi 950,588 fi-sv 872,182 
pt-fr 954,637 fr-sv 860,272 
pt-it 900,185 it-sv 813,000 
pt-nl 945,997 nl-sv 864,675 

 
Table2. Training data for experiments via different piv-
ot languages. For source-pivot (src-pvt; pt-xx) model 
training, the data of odd years were used. Instead the 
data of even years were used for pivot-target (pvt-src; 

xx-sv) model training. 
 

Test Set Sentence # Reference # 
WMT06 2,000 1 
WMT07 2,000 1 
WMT08 2,000 1 

 
Table3. Statistics of test sets. 
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Several test sets have been released for the 
Europarl corpus. In our experiments, we used 
WMT20062, WMT20073 and WMT20084 as our 
test data. The original test data includes 4 lan-
guages and extended versions with 11 languages 
of these test sets are available by the EuroMatrix5

5.2.2. Experiments on Different Translation 
Directions 

  
project. Table 3 shows the test sets. 

We build 180 pivot translation systems6

The baseline system was built following the tra-
ditional triangulation pivot approach. Table 4 lists 
the results on Europarl training data. Limited by 

 (including 
90 baseline systems and 90 random walk based 
systems) using 10 source/target languages and 1 
pivot language (English).  

                                                           
2 http://www.statmt.org/wmt06/shared-task/ 
3 http://www.statmt.org/wmt07/shared-task.html 
4 http://www.statmt.org/wmt08/shared-task.html 
5 http://matrix.statmt.org/test_sets/list 
6 Given N languages, a total of N*(N-1) SMT systems should 
be build to cover the translation between each language.  

the length of the paper, we only show the results 
on WMT08, the tendency of the results on 
WMT06 and WMT07 is similar to WMT08. 

Several observations can be made from the table.  
1. In all 90 language pairs, our method achieves 

general improvements over the baseline system.  
2. Among 90 language pairs, random walk 

based approach is significantly better than the 
baseline system in 75 language pairs. 

3. The improvements of our approach are not 
equal in different translation directions. The im-
provement ranges from 0.06 (it-es) to 1.21 (pt-da). 
One possible reason is that the performance is re-
lated with the source and target language. For ex-
ample, when using Finnish as the target language, 
the improvement is significant over the baseline. 
This may be caused by the great divergence be-
tween Uralic language (Finnish) and Indo-
European language (the other European language 
in Table4). From the table we can find that the 
translation between languages in different lan-
guage family is worse than that in some language 
family. But our random walk approach can im-

 TGT 
SRC da de el es fi fr it nl pt sv 

Baseline 
RW da - 19.83 

20.15* 
20.46 
21.02* 

27.59 
28.29* 

14.76 
15.63* 

24.11 
24.71* 

20.49 
20.82* 

22.26 
22.57* 

24.38 
24.88* 

28.33 
28.87* 

Baseline 
RW de 23.35 

23.69* - 19.83 
20.05 

26.21 
26.70* 

12.72 
13.57* 

22.43 
22.78* 

18.82 
19.32* 

23.74 
24.11* 

23.05 
23.35* 

21.17 
21.27 

Baseline 
RW el 23.24 

23.82* 
18.12 
18.49* - 32.28 

32.48 
13.31 
14.08* 

27.35 
27.67* 

23.19 
23.63* 

20.80 
21.26* 

27.62 
27.86 

22.70 
23.15* 

Baseline 
RW es 25.34 

26.07* 
19.67 
20.17* 

27.24 
27.52 - 13.93 

14.61* 
32.91 
33.16 

27.67 
27.92 

22.37 
22.85* 

34.73 
34.93 

24.83 
25.50* 

Baseline 
RW fi 18.29 

18.63* 
13.20 
13.40 

14.72 
15.00* 

20.17 
20.48* - 17.52 

17.84* 
14.76 
15.01 

15.50 
16.04* 

17.30 
17.68* 

16.63 
16.79 

Baseline 
RW fr 25.67 

26.51* 
20.02 
20.45* 

26.58 
26.75 

37.50 
37.80* 

13.90 
14.75* - 28.51 

28.71 
22.65 
23.33* 

33.81 
33.93 

24.64 
25.59* 

Baseline 
RW it 22.63 

23.27* 
17.81 
18.40* 

24.24 
24.66* 

34.36 
35.42* 

13.20 
14.11* 

30.16 
30.48* - 21.37 

21.81* 
30.84 
30.92* 

22.12 
22.64* 

Baseline 
RW nl 22.49 

22.76 
19.86 
20.45* 

18.56 
19.10* 

24.69 
25.19* 

11.96 
12.63* 

21.48 
22.05* 

18.36 
18.67* - 21.71 

22.13* 
19.83 
22.17* 

Baseline 
RW pt 24.08 

25.29* 
19.11 
19.83* 

25.30 
26.20* 

36.59 
37.13* 

13.33 
14.21* 

32.47 
32.78* 

28.08 
28.44* 

21.52 
22.46* - 22.90 

23.90* 
Baseline 

RW sv 31.24 
31.75* 

20.26 
20.74* 

22.06 
22.59* 

29.21 
29.87* 

15.39 
16.13* 

25.63 
26.18* 

21.25 
21.81* 

22.30 
22.62* 

25.60 
26.09* - 

Table4. Experimental results on Europarl with different translation directions (BLEU% on WMT08). 
RW=Random Walk. * indicates the results are significantly better than the baseline (p<0.05). 
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prove the performance of translations between dif-
ferent language families. 

5.2.3. Experiments via Different Pivot Lan-
guages 

In addition to using English as the pivot language, 
we also try some other languages as the pivot 
language. In this sub-section, experiments were 
carried out from translating Portuguese to Swedish 
via different pivot languages.  

Table 5 summarizes the BLEU% scores of dif-
ferent pivot language when translating from Por-
tuguese to Swedish. Similar to Table 4, our 
approach still achieves general improvements over 
the baseline system even if the pivot language has 
been changed. From the table we can see that for 
most of the pivot language, the random walk based 
approach gains more than 1 BLEU score over the 
baseline. But when using Finnish as the pivot lan-
guage, the improvement is only 0.02 BLEU scores 
on WMT08. This phenomenon shows that the piv-
ot language can also influence the performance of 
random walk approach. One possible reason for 
the poor performance of using Finnish as the pivot 
language is that Finnish belongs to Uralic lan-
guage family, and the other languages belong to 
Indo-European family. The divergence between 
different language families led to a poor perfor-
mance. Thus how to select a best pivot language is 
our future work. 

The problem with random walk is that it will 
lead to a larger phrase table with noises. In this 
sub-section, a pre-pruning (before random walk) 
and a post-pruning (after random walk) method 
were introduced to deal with this problem.  

We used a naive pruning method which selects 
the top N phrase pairs in the phrase table. In our 
experiments, we set N to 20. For pre-pruning, we 
prune the SP phrase table and PT phrase table be-
fore applying random walks. Post-pruning means 
that we prune the ST phrase table after random 
walks. For the baseline system, we also apply a 
pruning method before combine the SP and PT 
phrase table. We test our pruning method on pt-en-
sv translation task. Table 6 shows the results. 

With a pre- and post-pruning method, the ran-
dom walk approach is able to achieve further im-
provements. Our approach achieved BLEU scores 
of 25.11, 24.69 and 24.34 on WMT06, WMT07 
and WMT08 respectively, which is much better 

than the baseline and the random walk approach 
with pruning.  Moreover, the size of the phrase 
table is about half of the no-pruning method. 
When adopting a post-pruning method, the per-
formance of translation did not improved signifi-
cantly over the pre-pruning, but the scale of the 
phrase table dropped to 69M, which is only about 
2 times larger than the triangulation method. 

Phrase table pruning is a key work to improve 
the performance of random walk. We plan to ex-
plore more approaches for phrase table pruning. 
E.g. using significance test (Johnson et al., 2007) 
or monolingual key phrases (He et al., 2009) to 
filter the phrase table. 
 

 
Table5. Experimental results on translating from Portu-

guese to Swedish via different pivot language. 
RW=Random Walk. * indicates the results are signifi-

cantly better than the baseline (p<0.05). 
 

 
Table6. Results of Phrase Table Filtering 

 trans 
language 

WMT 
06 

WMT 
07 

WMT 
08 

Baseline 
RW pt-da-sv 23.40 

24.47* 
22.80 
24.21* 

22.49 
23.75* 

Baseline 
RW pt-de-sv 22.72 

23.12* 
22.21 
23.26* 

21.76 
22.35* 

Baseline 
RW pt-el-sv 22.53 

23.75* 
22.19 
23.22* 

21.37 
22.40* 

Baseline 
RW pt-en-sv 23.54 

24.66* 
23.24 
24.22* 

22.90 
23.90* 

Baseline 
RW pt-es-sv 23.58 

24.65* 
23.37 
24.10* 

22.80 
23.77* 

Baseline 
RW pt-fi-sv 21.06 

21.17 
20.06 
20.42* 

20.26 
20.28 

Baseline 
RW pt-fr-sv 23.55 

24.75* 
23.09 
24.15* 

22.89 
23.96* 

Baseline 
RW pt-it-sv 23.65 

24.74* 
22.96 
24.18* 

22.79 
24.02* 

Baseline 
RW pt-nl-sv 21.87 

23.06* 
21.83 
22.76* 

21.36 
22.29* 

 WMT 
06 

WMT 
07 

WMT 
08 

Phrase 
Pairs # 

Baseline 
+pruning 

23.54 
24.05

* 

23.24 
23.70

* 

22.90 
23.59

* 

46M 
32M 

RW 
+pre-pruning 
+post-pruning 

24.66 
25.11 
25.19

* 

24.22 
24.69 
24.79

* 

23.90 
24.34 
24.41

* 

215M 
109M 
69M 
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5.3 Experiments on Spoken Language 

The European languages show various degrees of 
similarity to one another. In this sub-section, we 
consider translation from Chinese to Spanish with 
English as the pivot language. Chinese belongs to 
Sino-Tibetan Languages and English/Spanish be-
longs to Indo-European Languages, the gap be-
tween two languages is wide. 

A pivot task was included in IWSLT 2008 in 
which the participants need to translate Chinese to 
Spanish via English. A Chinese-English and an 
English-Spanish data were supplied to carry out 
the experiments. The entire training corpus was 
tokenized and lowercased. Table 7 and Table 8 
summarize the training data and test data. 

Table 9 shows the similar tendency with Table 4. 
The random walk models achieved BLEU% scores 
32.09, which achieved an absolute improvement of 
2.08 percentages points on BLEU over the base-
line.   

 

Corpus Sentence 
pair # 

Source 
word # 

Target 
word # 

CE 20,000 135,518 182,793 
ES 19,972 153,178 147,560 

 
Table 7: Training Data of IWSLT2008 

 
Test Set Sentence # Reference # 

IWSLT08 507 16 
 

Table8. Test Data of IWSLT2008 
 

System BLEU% phrase pairs # 
Baseline 30.01 143,790 
+pruning 30.25 108,407 

RW 31.57 2,760,439 
+pre-pruning 31.99 1,845,648 
+post-pruning 32.09* 1,514,694 

 
Table9. Results on IWSLT2008 

5.4 Experiments on Web Data 

The setting with Europarl data is quite artificial as 
the training data for directly translating between 
source and target actually exists in the original 
data sets. The IWSLT data set is too small to rep-
resent the real scenario. Thus we try our experi-
ment on a more realistic scenario: translating from 

Chinese to Japanese via English with web crawled 
data. 

All the training data were crawled on the web. 
The scale of Chinese-English and English-
Japanese is 10 million respectively. The test set 
was built in house with 1,000 sentences and 4 ref-
erences. 
 

System BLEU% phrase pairs # 
Baseline 28.76 4.5G 
+pruning 28.90 273M 

RW 29.13 46G 
+pre-pruning 29.44 11G 
+post-pruning 29.51* 3.4G 

 
Table10. Results on Web Data 

 
Table 10 lists the results on web data. From the 

table we can find that the random walk model can 
achieve an absolute improvement of 0.75 percent-
ages points on BLEU over the baseline.  

In this subsection, the training data contains 
parallel sentences with different domains. And the 
two training corpora (Chinese-English and Eng-
lish-Japanese) are typically very different. It 
means that our random walk approach is robust in 
the realistic scenario. 

6 Discussions 

The random walk approach mainly improves the 
performance of pivot translation in two aspects: 
reduces the OOVs and provides more hypothesis 
phrases for decoding.  

6.1 OOV 

Out-of-vocabulary (OOV 7

We count the OOVs when decoding with trian-
gulation model and random walk model on 
IWSLT2008 data. The statistics shows that when 
using triangulation model, there are 11% OOVs 
when using triangulation model, compared with 
9.6% when using random walk model. Less OOV 
often lead to a better result. 

) terms cause serious 
problems for machine translation systems (Zhang 
et al., 2005). The random walk model can reduce 
the OOVs. As illustrated in Figure 1, the Chinese 
phrase “很可口henkekou” cannot be connected to 
any Spanish phrase, thus it is a OOV term.  

                                                           
7 OOV refer to phrases here. 
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6.2 Hypothesis Phrases 

To illustrate how the random walk method helps 
improve the performance of machine translation, 
we illustrate an example as follows: 

 
- Source: 我 想 要 枕头 

              wo xiang yao zhentou 
- Baseline trans: Quiero almohada 
- Random Walk trans: Quiero una almohada 

 
For translating a Chinese sentence “我想要枕头

wo xiang yao zhentou” to Spanish, we can get two 
candidate translations. In this case, the random 
walk translation is better than the baseline system. 
The key phrase in this sentence is “枕头 zhentou”, 
figure 5 shows the extension process. In this case, 
the article “a” is hidden in the source-pivot phrase 
table. The same situation often occurs in articles 
and prepositions. Random walk is able to discover 
the hidden relations (hypothesis phrases) among 
source, pivot and target phrases. 

 
 
 
 
 
 
 

 
 
 

7 Conclusion and Future Work 

In this paper, we proposed a random walk method 
to improve pivot-based statistical machine transla-
tion. The random walk method can find implicit 
relations between phrases in the source and target 
languages. Therefore, more source-target phrase 
pairs can be obtained than conventional pivot-
based method. Experimental results show that our 
method achieves significant improvements over 
the baseline on Europarl corpus, spoken language 
data and the web data.  

A critical problem in the approach is the noise 
that may bring in. In this paper, we used a simple 
filtering to reduce the noise. Although the filtering 
method is effective, other method may work better. 
In the future, we plan to explore more approaches 
for phrase table pruning. 
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Abstract

This paper proposes a multi-objective opti-
mization framework which supports heteroge-
neous information sources to improve align-
ment in machine translation system combi-
nation techniques. In this area, most of
techniques usually utilize confusion networks
(CN) as their central data structure to com-
pact an exponential number of an potential hy-
potheses, and because better hypothesis align-
ment may benefit constructing better quality
confusion networks, it is natural to add more
useful information to improve alignment re-
sults. However, these information may be het-
erogeneous, so the widely-used Viterbi algo-
rithm for searching the best alignment may
not apply here. In the multi-objective opti-
mization framework, each information source
is viewed as an independent objective, and
a new goal of improving all objectives can
be searched by mature algorithms. The so-
lutions from this framework, termed Pareto
optimal solutions, are then combined to con-
struct confusion networks. Experiments on
two Chinese-to-English translation datasets
show significant improvements, 0.97 and 1.06
BLEU points over a strong Indirected Hidden
Markov Model-based (IHMM) system, and
4.75 and 3.53 points over the best single ma-
chine translation systems.

1 Introduction

System combination (SC) techniques have the
power of boosting translation quality in BLEU by
several percent over the best among all input ma-
chine translation systems (Bangalore et al., 2001;

Matusov et al., 2006; Sim et al., 2007; Rosti et al.,
2007b; Rosti et al., 2007a; Huang and Papineni,
2007; He et al., 2008; Rosti et al., 2008; He and
Toutanova, 2009; Li et al., 2009; Feng et al., 2009;
Pauls et al., 2009). A central data structure in the
SC is the confusion network, and its quality greatly
affects the final performance. He et al. (2008) pro-
posed a new hypothesis alignment algorithm for
constructing high-quality confusion networks called
Indirect Hidden Markov Model (IHMM), which
does better in synonym matching compared with
the classic translation edit rate (TER) based algo-
rithm (Rosti et al., 2007b; Rosti et al., 2008; Sim et
al., 2007). Now, current state-of-the-art SC systems
have been using IHMM or variants in their align-
ment algorithms more or less (Li et al., 2009; Feng
et al., 2009).

Our motivation derives from an observation that
in an ideal alignment of a pair of sentences, many-to-
many alignments often exist. For instance, “be about
to” has the same meaning with “be on the point
of”. Because Hidden Markov Model based align-
ment algorithms, e.g. IHMM for system combina-
tion, HMM in GIZA++ software for statistical ma-
chine translation (SMT) (Och and Ney, 2000; Koehn
et al., 2003), are designed for one-to-many align-
ment, and running GIZA++ from two directions to
gain better performance turns into a standard opera-
tion in SMT, therefore we are seeking a way to em-
power IHMM by introducing bi-directional informa-
tion.

However, it appears to be intractable in an IHMM
model to search the optimal solution by simply
defining a new goal as a product of probabilities
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from two directions. To bypass this problem, Liang
et al. (2006) adopts a simple and effective variational
inference algorithm.

Further, different alignment algorithms capture
different information and linguistic phenomena for
a pair of sentences, hence more information would
be expected to benefit the final alignment. Liang’s
method may not be suitable for this expected out-
come.

We propose to adopt multi-objective optimiza-
tion framework to support heterogeneous informa-
tion sources which may induce difficulties in a
conventional search algorithm. In this framework,
there exist a variety of matured multi-objective op-
timization algorithms, e.g. evolutionary algorithm
(Deb et al., 2000; Deb et al., 2002), Tabu search
(Hansen, 1997), ants colony (Engelbrecht, 2005),
and simulated annealing (Serafini, 1994). In this
work, we select the multi-objective evolutionary al-
gorithm because of its public open source software
(http://www.iitk.ac.in/kangal/codes.shtml). On the
other hand, this framework is also totally unsuper-
vised. It prevents weights of a linearly combined
goal from training even if all information is homoge-
neous and applicable in a Viterbi search (Forney Jr,
1973). This framework views any useful informa-
tion benefiting alignment as an independent objec-
tive, and researchers just need to write short codes
for objective definitions. The search algorithm seeks
for potentially better solutions which are no worse
than the current solution set. The output from multi-
objective optimization algorithms includes a set of
solutions, called Pareto optimal solutions, each one
being a many-to-many alignment. We then com-
bine and normalize them into a unique one-to-one
alignment to perform confusion network construc-
tion (Section 3.3).

Our work is conducted on the classic pipeline
which has three modules, pair-wise hypothesis
alignment, confusion network construction, and
training. Now many work integrates neighboring
modules to avoid propagated errors to gain improved
performance. For example, Rosti et al. (2008), and
Li et al. (2009) combine the first and the second
module, and He and Toutanova (2009) combine all
modules into one directly. Nevertheless, the classic
structure also owns its merits. Because of the in-
dependence between modules, a system is relatively

simple to maintain, and improvements on each mod-
ule might contribute to final performance additively.
Based on our work, lattice-based minimum error
rate training (lattice-MERT) and minimum bayes
risk training techniques (Kumar et al., 2009) could
be adopted on the third module. And Feng et al.
(2009) in the second module adopts a different data
structure called lattice which could directly use our
better many-to-many alignment for construction.

Experiments on the Chinese-to-English task on
two datasets use four objectives, IHMM probabil-
ity (Section 3.2.1), and alignment probability from
GIZA++ (Section 3.2.2) from two directions. Re-
sults show multi-objective optimization framework
efficiently integrates different information to gain
approximately 1 BLEU point improvement over a
strong baseline.

2 Background

We briefly give an introduction to confusion net-
works, and because the IHMM based alignment is
an important objective in our multi-objective frame-
work, here we also provide detailed definition of for-
mulas for completeness of content.

2.1 Confusion Network
Table 1 shows hypotheses h1 and h2 are aligned to
selected backbone h0. When alignment algorithm
obtains good enough results, the expected output
“he prefers apples” is included in its corresponding
confusion network in Figure 1. This suggests de-
veloping better alignment algorithm may help creat-
ing high-quality confusion networks. This also mo-
tivates us to use the BLEU of oracle hypotheses to
approximately measure the quality of a set of CNs.
We hereafter call it an oracle BLEU of a CN. See
more in Section 5.1.

h0 :he feels like apples
h1 :he prefer ε apples
h2 :him prefers to apples

Table 1: A toy example of hypothesis alignment, where
h0 is the backbone hypothesis. h1and h2 are aligned to
the backbone separately. The resulting confusion net-
work is in Figure 1.

A confusion network G = (V,E) is a directed
acyclic graph with a unique source and sink vertex,
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Figure 1: A classic confusion network, and the bold path
the expected output.

formally a weighted finite state automation (FSA),
where V is the set of nodes andE is the set of edges.
Each edge is restricted to attach to a single word as
well as an associated probability. A special mark ε
is a place-holder denoting no word here.

2.2 IHMM-based Alignment

Indirected Hidden Markov Model (IHMM) was
firstly proposed by He et. al (2008). Compared with
TER-based alignment performing literal matching,
IHMM supports synonym comparison in redefining
emission probabilities in an IHMM model.

Let f I = (f1, . . . fI) be a backbone hypothesis,
and eJ = (e1, . . . eJ) be a hypothesis aligned to the
backbone, both being English sentences in our ex-
periments. Let aJ = {a1, . . . aj} be an alignment.
Suppose the aj th word in f I is aligned to jth word
in eJ , and the conditional probability that the hy-
pothesis is generated by the backbone, shown in the
upper graph of Figure 3, is given by

p(f I , eJ) =
∑
aJ

J∏
j=1

{pt(aj |aj−1, I)p
o(ej |faj )}

(1)
The distortion probability pt(aj |aj−1, I) from po-

sition aj−1 to aj , relies on jumped distance, which
is computed as follows:

pt(i
′ |i, I) =

c(i
′ − i)∑I

t=1 c(t− i)
(2)

The distortion parameters c(d) are grouped into
11 buckets, c(≤ −4),c(−3),c(−2). . .c(5),c(≥ 6).
Because all the hypotheses in system combina-
tion are in the same language, the IHMM model
would support more monotonic alignments, and
non-monotonic alignments will be penalized.

c(d) = (1 + |d− 1|)−K , d = −4 . . . 6 (3)

where K is tuned on held-out data.
Let p0 be the probability of jumping to a null

word state, which is also tuned on held-out data, and
the accurate transition probability becomes:

pt(i
′ |i, I) =

{
p0 if i

′
= null

(1− p0)p
t(i
′ |i, I) otherwise

(4)
The output probability po(e|f) from the state

word f to the observation word e, also called trans-
lation probability, is a linear interpolation of se-
mantic similarity psem(e|f) and surface similarity
psur(e|f), and α is the interpolation factor:

po(e|f) = αpsem(e|f) + (1− α)psur(e|f) (5)

When calculating semantic similarity psem(e|f),
source sentence src is needed, and a bilingual prob-
abilistic dictionary pdic(w1|w2) is necessary.

psem(e|f) ≈
∑
c∈src

pdic(c|f) · pdic(e|c) (6)

Note that psem(e|f) has been updated with differ-
ent source sentences.

The surface similarity psur(e|f) is measured by
the literal matching rate:

psur(e, f) = exp{ρ[ LMP(f, e)

max(|f |, |e|)
− 1]} (7)

where LMP(f, e) is the length of the longest
matched prefix, and ρ is a smoothing parameter.

3 Multi-objective Optimization

Many decision making problems in the real world
consider more than one objective. One natural way
is to scalarize multiple objectives into one by assign-
ing it with a weight vector. This method allows a
simple optimization algorithm in many cases, while
in system combination, it would cause problems.

In the first module, in order to train suitable
weights of objectives, extra labeled data is needed,
besides that, the efficient Viterbi algorithm for
searching the optimal alignment would not work for
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the alignment objectives in this work. More, the pa-
rameter training in the third module relies on the
CNs constructed from the output of the first mod-
ule, which increases the instability of the whole sys-
tem. Therefore, an unsupervised multi-objective al-
gorithm may be a good choice allowing for more
alignment information.

There exist other alternative optimization algo-
rithms in the multi-objective optimization frame-
work, though the evolutionary algorithm is adopted
here, we only introduce some general concepts.

3.1 Pareto Optimal Solutions

A general multi-objective optimization problem
consists of a number of objectives and is associated
with a number of constraints. Mathematically, the
problem can be written as follows (Deb, 2001)

Maximize fi(x) i = 1 . . .M

s.t. gj(x) ≤ 0 j = 1 . . . N

hk(x) = 0 k = 1 . . .K

where x denotes a potential solution, its structure re-
lying on different problems, and the number of con-
straints M,N,K depend on different problems. All
the functions fi, gj , hk map a solution x into a scalar.
We will explain them in terms of system combina-
tion.

In this work, we refer to x = {xi,j |xi,j ∈ {0, 1}}
as a potential alignment of a pair of hypotheses,
where xi,j is a boolean value to denote whether the
ith word in the first hypothesis is aligned to the jth
word in the second hypothesis. Here the definition of
x seems different from that of a in Formula 1, and
they could convert to each other. Using a line-based
access style, a matrix can be unfolded as a vector.
We refer to f as IHMM alignment probability (He et
al., 2008) and GIZA++ alignment probability (Chen
et al., 2009), total four objectives from two direc-
tions, and the larger the objectives, the better. The
gjs and hks serve as the role of checking if x repre-
sents a legal alignment. For instance, the subscripts
of xi,j are not in bounds.

Definition 1. Let x, x′ be two potential align-
ments. If fi(x) ≥ fi(x

′) holds for all i, we call
the alignment x dominates the alignment x′. If there
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Figure 2: Sample solutions with only two objectives.
Pareto Optimal Solutions p1, p3, p5, p7. Other points
p2, p4, p6 are dominated by at least one point in the Pareto
optimal solutions.

does not exist any alignment x′′ to dominate x, we
call the alignment x to be non-dominated.

Definition 2. A alignment x is said to be Pareto
optimal if there is no other alignment x′ found to
dominate x.

In Figure 2, p1 dominates p2, and p2 dominates
p4. To summarize, a point is dominated by the ones
on its upper and right side with ties. In this example,
p1, p3, p5, p7 are Pareto optimal.

In some cases, Pareto optimal solutions can be
used for good candidate solutions. Considering
the IHMM model, maximizing Y axis, the top-4
best alignments are p1, p2, p3, p4. But from the
view of Pareto optimal, the top-4 alignments would
be p1, p3, p5, p7 without order, which considers a
greater range than a single optimization model. In
our method, we just combine these Pareto optimal
solutions equally into a unique alignment (Section
3.3).

Our adopted multi-objective optimization search-
ing algorithm is the non-dominated sorting ge-
netic algorithm II (NSGA-II) (Deb et al., 2000;
Deb et al., 2002) with an open source software
(http://www.iitk.ac.in/kangal/codes.shtml). NSGA-
II has a complexity of O(mn2), wherem is the num-
ber of objectives and n is the population size in an
evolutionary algorithm.

3.2 Objectives in Evolutionary Algorithm

The optimization objectives in our experiments can
be categorized as an IHMM alignment probability
(He et al., 2008) and GIZA++ alignment probability
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Figure 3: The same alignment (f1, e1)(f1, e2)(f2, e3) in
two IHMM models. The upper one is a typical example
in IHMM, and in the bottom one, because any word in the
observation is required not to correspond to two statuses,
it has a minor trouble. S: status sequence, O: observation
sequence.

(Chen et al., 2009), total four from two directions.

3.2.1 IHMM Probability
A typical IHMM alignment is demonstrated

in the upper graph of Figure 3, where a
backbone is acting the role of a status se-
quence. The unnormalized conditional align-
ment probability is [pt(1|null)] · [pt(1|1)pt(2|1)] ·
[po(e1|f1)p

o(e2|f1)p
o(e3|f2)]. However, the same

alignment (f1, e1)(f1, e2)(f2, e3), if we change the
alignment direction, the backbone being observa-
tions, would be a bit different. We offer a minor
modification to Formula 1.

Look at the bottom graph of Figure 3, the obser-
vation f1 has two statuses, e1 and e2 at the same
time, it becomes ambiguous to compute the tran-
sitional probability between pt(3|1) and pt(3|2).
This is because IHMM algorithm deals with one-
to-many alignments, and MOEA permits many-to-
many alignments.

We hence empirically modify the IHMM model
to support many-to-many alignments. A new status
is defined, rather than a single position pt(j|i), but
as a set of positions pt({j}|{i}). The positions in
one status need not to be adjacent to each other.

The redefined transitional probability

pt({j}|{i}) =
1

|{j}| · |{i}|
∑
i,j

pt(j|i)

The redefined emission probability

po(j|{i}) =
∏

i

po(j|i)

We need to note that there is no guarantee on

the closed property of probabilities, though these
approximations prove to be effective in a practical
sense. Straightforwardly, when there is only one po-
sition in a new status, the expanded IHMM degener-
ates to the standard IHMM.

Let us return to the second IHMM ex-
ample. The new probability becomes
[pt(1|null)pt(2|null)] · [12p

t(3|1)pt(3|2) ·pt(null|3)] ·
[po(f1|e1)po(f1|e2)po(f2|e3)po(f3|null)].

3.2.2 Alignment Probability

GIZA++ considers very different and more in-
formation in alignment, we attempt to utilize them.
All probabilities appearing in below formulas can be
looked up in GIZA++.

Given a pair of hypotheses f I = (f1, . . . fI),
eJ = (e1, . . . eJ), and their alignment a, the align-
ment probability could be calculated as follows

pGiza(eJ |f I ,a) =
∏
ei

T (ei|f I ,a)

T (ei|f I ,a) =

{
n(φi|ei)

∑
(j,i)∈a t(ei|fj)a(j|i)/φi ifφi 6= 0

n(0|ei)t(ei|null)a(0|i) otherwise

φi = |{j|(i, j) ∈ a}|

where φi is the fertility number, t(e|c) the transla-
tion probability for the word pair, z(j|i) alignment
probability to show how likely a target word at posi-
tion i could be translated into a source word at posi-
tion j, and n(φ|e) is the fertility probability to show
how likely a given target word e is translated into φ
source words.

In order to increase the coverage of words, we col-
lect all the hypothesis pairs in both the tuning set
and the test set and feed them into GIZA++. This
is an off-line operation, which makes it not suitable
for an online translation system. In some circum-
stances, users submit a pile of documents in the hope
of high-quality translations, thus more useful knowl-
edge sources would be helpful. In our experiments,
a pure GIZA++ based system combination does not
perform as well as IHMM based, but does benefit
the final translation quality if combined in our multi-
objective optimization framework.
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3.3 Configuration of Evolutionary Algorithm

3.3.1 Encoding
Given a sentence pair <f I , eJ>, we define a two-

dimensional matrix x = {zi,j |zij ∈ {0, 1}} to en-
code a set of possible alignments. Using a line-based
access style, the matrix could be unfolded as a vector
with |I| · |J | bits of length.

3.3.2 Initialization
Because in NSGA-II software the initial popu-

lation are generated at random. In order to make
NSGA-II more consistent and flexible, better initial
seeds should be fed with, thus we combine an ex-
isting word alignment results as input. Here we use
together two N-best lists generated from directional
HMM and reversed HMM respectively for initializa-
tion.

3.3.3 Normalization of Pareto Optimal
Solutions

Multi-objective optimization algorithms do not
pose weights on objectives, thus they output a set
of so-called Pareto optimal solutions, each of which
is a many-to-many alignment. We can understand
them as an N-best alignment list without explicit
preferences. We also empirically compare it with the
idea that directly cuts an N-best list from the IHMM
based alignment.

We describe a two-stage strategy for normaliza-
tion. Firstly, we use a simple and effective voting
strategy to combine a set of many-to-many align-
ments into a single many-to-many alignment, and
Secondly we normalize it into a one-to-one align-
ment for confusion network construction. In the first
stage, we count the number of word-to-word align-
ments on each position pair (i, j). If there is more
than a half number of alignments, then we output 1,
otherwise 0. In the second stage, if any word relates
to more than one word alignment, the one with the
highest posterior probability is selected (He et al.,
2008; Feng et al., 2009). The posterior probabili-
ties can be computed in a classic forward-backward
procedure in IHMM (He et al., 2008).

4 Training and Decoding

Our work does not change the classic pipeline, thus
the model and features are nearly identical to the

ones in (Rosti et al., 2007b; He et al., 2008), which
are modeled in a log-linear fashion in Eq. 8. Trans-
lation on a CN is just a concatenation of edges tra-
versed, on which 4 categories of features are defined.

1. word posterior probabilities. In Eq. 8,
p(w|sys, span) are word confidence scores. If
the word w comes from the kth hypothesis of
thesys-th system, the raw score should be 1

k+1 ,
and then it would be normalized by the same
sys and span. The same word coming from
different systems owns a different score, so
there are sys system weights λsys.

2. logarithm of language model score, L(h).

3. number of null edge, Numnull.

4. number of words, Numw.

log(h) =
∑

span log(
∑

sys λsysp(w|sys, span))

+ w0L(h) + w1Numnull + w2Numw

(8)
Decoding a confusion network is straightforward,

traversing each node from left to right, and the beam
search algorithm will retain for each node an N-
best list. The final N-best can be acquired following
(Huang and Chiang, 2005).

The training process follows minimum error rate
training (MERT) described in (Och, 2003; Koehn et
al., 2003). In each iteration, the Powell algorithm
would attempt to predict the optimal parameters on
the cumulative N-best list.

5 Experiments

We evaluate our method in two datasets in the
Chinese-to-English task. In the first one, NIST MT
2002 and 2005 are used for tuning and testing re-
spectively, and in the second, the newswire part of
MT 2006 and 2008 are for tuning and testing. A 5-
gram language model is trained on the Xinhua por-
tion of the Gigaword corpus. We report the case-
sensitive NIST-BLEU score.

Four single machine translation systems partici-
pating in the system combination consist of a BTG-
based system using a Max-Entropy based reordering
model, a hierarchical phrase-based system, a Moses
decoder and a syntax-based system. 10-best unique
hypotheses from a single system on the development
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SYSTEM MT 2005 MT 2008(news)
best single 0.3207 0.3016

IHMM* 0.3585(+3.78%) 0.3263(+2.47%)

IncIHMM 0.3639(+4.32%) 0.3320(+3.04%)

GIZA++ 0.3438(+2.31%) 0.3166(+1.50%)

PPBD 0.3619(+4.10%) 0.3306(+2.90%)

N-best IHMM 0.3590(+3.83%) 0.3270(+2.54%)

dH+rH 0.3604 0.3284

dH+dT 0.3610 0.3290

dH+rH+dT 0.3609 0.3289

dH+rH+rT 0.3630∗(+4.27%) 0.3320∗(+3.04%)

dH+rH+dT+rT 0.3682∗∗(+4.75%) 0.3369∗∗(+3.53%)

Table 2: PPBD is a posterior probabilistic-based decod-
ing (section 5.3). N-best IHMM simulates the Pareto op-
timal solutions in our method (section 5.3). The last five
systems adopt different objective combinations. The im-
provement percents in parentheses are compared to the
best single. dH: directed IHMM, rH: reversed IHMM,
dT: directed translation probability, rT: reversed transla-
tion probability. ∗∗ significance at 0.01 level, and ∗ sig-
nificance at 0.05 level over the IHMM model.

and test sets are collected as the input of the system
combination.

Our baseline systems are described as follows.
Two main baseline systems are IHMM based and in-
cremental IHMM (Li et al., 2009). The first system
differs from our method just in hypothesis alignment
algorithm, and the second combines the first and sec-
ond module of the system combination pipeline.

Because our method utilizes bidirectional infor-
mation, we also provide another two alternative
systems for comparison, which are GIZA++ based
alignment and the posterior probability based align-
ment (Liang et al., 2006). Finally, we also provide
an N-best alignment IHMM system, which com-
bines an N-best alignment list to simulate the Pareto
optimal solutions in our method.

The method that linearly combines all objectives
is not listed as our baseline like (Duh et al., 2012)
does, because their algorithm finds the best weighted
solution in a fixed and small solution set, while
in our problem, the solution space is a trellis-style
structure consisting of an exponential number of so-
lutions, and no efficient algorithms apply here.

The IHMM based alignment utilizes typical set-
tings (He et al., 2008; Feng et al., 2009). The

smoothing factor for the surface similarity model,
and ρ = 3 the controlling factor for the distor-
tion model, K = 2. The bilingual probabilistic
dictionary is trained in the FBIS corpus which in-
cludes about 230k parallel sentence pairs. GIZA++
based system is to run GIZA++ from two directions
to align all the hypotheses, and make the intersec-
tion using grow-diag-final heuristics (Koehn et al.,
2003). The many-to-many alignments are normal-
ized with the same method with ours. Our system
employs NSGA-II software to realize the MOEA al-
gorithm. The main parameters, generation number,
cross probability and mutation probability, and pop-
ulation size, are empirically set as 100, 0.9, 0.001
and 40, and we examine the influence of difference
populations sizes in the full system combination.

5.1 The Quality of Confusion Networks
This experiment shows the relationship between hy-
pothesis alignment and confusion network. Intu-
itively, we expect a better hypothesis alignment
would reduce the error in constructing confusion
networks, and then improve the final translation
quality.

We first use the alignment error rate (AER) (Och
and Ney, 2000), which is widely used to measure
the quality of hypothesis alignment. The smaller,
the better. For convenience, we only examine exact
literal matching. IHMM based alignment reaches
around 0.15 in AER, and our method 0.145.

As the AER may not vividly reflect the relations
between alignment and the final BLEU of systems,
and the quality of confusion network is hard to mea-
sure directly, we assume that the quality of confu-
sion networks could be measured by the oracle hy-
potheses that could be generated from them. We test
the BLEU of the oracle hypotheses.

From this angle, we demonstrate several oracle
BLEU of CNs generated from some conventional
alignment algorithms. The results are shown in Ta-
ble 3.

We find the confusion network from IHMM based
alignment (He et al., 2008) is better than that from
TER based alignment (Rosti et al., 2007b) by about
1 point in both two datasets. These quantities agree
with the final improvements in the BLEU score in
(He et al., 2008). As confusion networks from
MOEA based alignment also show superiority over

541



alignment MT02 MT05
GIZA++ 0.5690 0.5228

TER 0.5720 0.5270

IHMM 0.5883 0.5382

IncIHMM 0.5931 0.5453

MOEA 0.6017 0.5526

Table 3: Oracle BLEUs of CNs. GIZA++: invoking
GIZA++ software. TER: minimum translation edit rate.
IHMM: indirect hidden markov model. IncIHMM: in-
cremental indirect hidden markov model. MOEA: multi-
objective evolution algorithm.

that from IHMM based in the oracle BLEU, we ex-
pect our final translation quality would be improved.

In Table 3, GIZA++ and TER perform simi-
larly, because the former is more capable of tackling
many-to-many alignments over the latter, while lat-
ter based might obtain relatively more precise align-
ment information. Both of the two do not consider
synonym matching compared to IHMM.

Our method and IncIHMM overpass IHMM on
this metric due to different strategies. Obtaining bet-
ter hypothesis alignment or better construction of
confusion networks benefit the quality of CNs.

5.2 Different Objective Combinations

As our framework is convenient to support different
alignment information, we test the influence of dif-
ferent objective combinations to the final translation
quality. We adopt four objectives to depict the can-
didate alignment, directed IHMM probability (dH),
reversed IHMM probability (rH), directed alignment
probability (dT), and reversed alignment probability
(rT). Table 2 demonstrates all the results.

We can see that the IHMM based system out-
performs the GIZA++ based system by about 1-1.5
points in BLEU, which agrees with the difference of
oracle BLEU in Table 1. From (He et al., 2008), the
IHMM based system outperforms the TER based by
1 point, which also agrees with our results in Table
1. Our system, using dH + rH + dT + rT, improves
BLEU score by about 1 points over the IHMM based
system. This comparison verifies our assumption,
improving the quality of the confusion network does
improve system performance.

The different feature combinations exhibit inter-
esting results. The system with dH + rH + dT is

0.05 point better than the system with dH + rH, and
the system dH + rH + rT is 0.3 point better than sys-
tem with dH + rH, so the contributions of feature
dT and rT are 0.05 and 0.3 respectively. While the
two features are used together in the fourth system,
the contribution is about 0.8 point, rather than 0.35.
This phenomenon also proves the correlations be-
tween different features.

Our method explores a way to integrate GIZA++
and IHMM, and is supportive of useful features.
Compared to the classic and powerful IHMM based
system, we obtained an improvement of 0.97 points
on MT 05 and 1.06 points on news of MT 2008,
and equivalently over the best single system by 4.75
points and 3.53 points respectively. More, compared
with the incremental IHMM, our system also shows
moderate improvement, though not much. We hope
these two ideas could be effectively combined in the
future work.

5.3 Comparison with Other Bi-directional
Alignment Methods

Our method introduces multiple alignment infor-
mation into system combination to obtain improve-
ments, thus it would be interesting to explore other
alternative methods for utilizing this information.
We provide three alternative methods similar to our
motivations, and they fall into two categories.

The first category is from the angle of bi-
directional alignment. We use GiZA++ alignment
and the posterior probability decoding-based align-
ment for comparison. The basic idea for the lat-
ter is setting a word-to-word alignment xi,j as 1,
if its approximate posterior marginal probability
q(xi,j , x) = pd(xi,j |x, θd) · pr(xi,j |x, θr) is greater
than a threshold δ, where pd and pr are posterior
marginal probabilities from directed and reversed
IHMM models, which could be conveniently com-
puted with a forward-backward algorithm, and the δ
is tuned on a validation-set optimized data. We just
list some δ values to examine its best performance
shown in Table 4.

The second class is because our method combines
the Pareto optimal solutions that consist of several
candidate alignments, thus for fairness we also use
a 100-best outputs from the directed IHMM model
and conduct the same normalization technique.

The general results are shown in Table 2. We can

542



δ MT 2005 MT 2008
IHMM 0.3585 0.3263

0.15 0.3556 0.3391
0.2 0.3619 0.3306
0.25 0.3575 0.3278

0.3 0.3608 0.3259

Table 4: Posterior decoding. When threshold δ are set
to suitable values, simple bi-directional alignment could
overpass the baseline.

see that, GIZA++ leads to the worst performance,
which can be explained as GIZA++ does not support
synonym matching like IHMM. The N-best IHMM
has a minor improvement over the IHMM method.
We found differences in the N-best list are not obvi-
ous enough. In comparison, the posterior decoding
method brings relatively significant improvements
on both datasets. However, the threshold δ must
be selected suitably. Table 4 lists the ideal results,
which will be hampered when tuning on a validation
set.

All of the three candidate methods can not conve-
niently support extra alignment information, and a
linear model poses restrictions on features to get an
efficient decoding, the multi-objective optimization
may be a good selection as an inference algorithm in
many circumstances.

5.4 Population Size

We test the influence of final translation quality and
time consumed by different population size.

population BLEU
size MT 2005

20 0.3597

40 0.3682

60 0.3655

Table 5: Big population size consumes more CPU time.
In our experiments, we use a multi-thread technique to
speed up the alignment, and choose 40 as the parameter
to leverage the time and BLEU.

We expect enlarging the population size would
improve the translation quality, but the BLEU in
population size set as 60 does not overpass when set
as 40. We conjecture that, in our code, if the N-best
size from IHMM (we set as 50-best) does not reach

the population size, we would use randomly gener-
ated seeds, which may hamper the performance of
MOEA. We also tried a larger population in MOEA,
but did not receive obvious improvement on perfor-
mance.

We exerted a hard restriction on the genes in evo-
lutionary algorithm, that is many-to-many discon-
tiguous alignment is forbidden. This trick speeds up
running by about 20 times, and does not harm sys-
tem performance. Now our method runs about 0.9
seconds to align a pair of hypotheses. In practice,
we utilize multi-thread to speed up.

6 Conclusion

In this paper, we explore a multi-objective frame-
work to conveniently support more useful alignment
objectives to improve the hypothesis alignment. By
a minor modification of the first module in the
classic pipeline, we successfully combine GIZA++
and IHMM to obtain significant improvement over
a powerful and state-of-the-art IHMM based sys-
tem. In comparison with another genre of improving
system combination by combing adjacent modules
of the pipeline, more powerful incremental IHMM
here, our system also show moderate improvement.
Though, our best system may not overpass He and
Toutanova (2009) who combine all the modules into
a unified training procedure, we believe our method
could boost many work on the higher modules of the
pipeline to obtain a further improvement to match
their work.
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Martin Čmejrek†‡

†IBM Prague Research Lab

V Parku 2294/4

Prague, Czech Republic, 148 00

martin.cmejrek@us.ibm.com

Haitao Mi‡ and Bowen Zhou‡

‡IBM T. J. Watson Research Center

1101 Kitchawan Rd

Yorktown Heights, NY 10598

{hmi,zhou}@us.ibm.com

Abstract

Machine translation benefits from system

combination. We propose flexible interaction

of hypergraphs as a novel technique combin-

ing different translation models within one de-

coder. We introduce features controlling the

interactions between the two systems and ex-

plore three interaction schemes of hiero and

forest-to-string models—specification, gener-

alization, and interchange. The experiments

are carried out on large training data with

strong baselines utilizing rich sets of dense

and sparse features. All three schemes signif-

icantly improve results of any single system

on four testsets. We find that specification—a

more constrained scheme that almost entirely

uses forest-to-string rules, but optionally uses

hiero rules for shorter spans—comes out as

the strongest, yielding improvement up to 0.9

(Ter-Bleu)/2 points. We also provide a de-

tailed experimental and qualitative analysis of

the results.

1 Introduction

Recent years have witnessed the success of var-

ious statistical machine translation (SMT) mod-

els using different levels of linguistic knowledge–

phrase (Koehn et al., 2003), hiero (Chiang, 2005),

and syntax-based (Liu et al., 2006; Galley et al.,

2006). System combination became a promising

way of building up synergy from different SMT sys-

tems and their specific merits.

Numerous efforts that have been proposed in this

field recently can be broadly divided into two cat-

∗M. Č and H. M. contributed equally to this work.

egories: Offline system combination (Rosti et al.,

2007; He et al., 2008; Watanabe and Sumita, 2011;

Denero et al., 2010) aims at producing consensus

translations from the outputs of multiple individ-

ual systems. Those outputs usually contain k-best

lists of translations, which only explore a small por-

tion of the entire search space of each system. This

issue is well addressed in joint decoding (Liu et

al., 2009), or online system combination, showing

comparable improvements to the offline combina-

tion methods. Rather than finding consensus trans-

lations from the outputs of individual systems, joint

decoding works with different grammars at the de-

coding time. Although limited to individual systems

sharing the same search paradigm (e.g. left-to-right

or bottom-up), joint decoding offers many poten-

tial advatages: search through a larger space, bet-

ter efficiency, features designed once for all subsys-

tems, potential cross-system features, online sharing

of partial hypotheses, and many others.

Different approaches have different strengths in

general–hiero rules are believed to provide reliable

lexical coverage, while tree-to-string rules are good

at non-local reorderings. Different contexts present

different challenges–noun phrases usually follow

the adjacency principle, while verb phrases require

more challenging reorderings. In this work, we study

different schemes of interaction between translation

models, reflecting their specific strengths at differ-

ent (syntactic) contexts. We make five new contribu-

tions:

First, we propose a framework for joint decod-

ing by means of flexible combination of trans-

lation hypergraphs, allowing for detailed con-
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trol of interactions between the different sys-

tems using soft constraints (Section 3).

Second, we study three interaction schemes–

special cases of joint decoding: generalization,

specification, and interchange (Section 3.3).

Third, instead of using a tree-to-string system,

we use a much stronger forest-to-string sys-

tem with fuzzy match of nonterminal categories

(Section 2.1).

Fourth, we train strong systems on a large-

scale data set, and test all methods on four test

sets. Experimental results (Section 6) show that

our new approach brings improvement of up to

0.9 points in terms of (Ter − Bleu)/2 over the

best single system.

Fifth, we conduct a comprehensive experimen-

tal analysis, and find that joint decoding actu-

ally prefers tree-to-string rules in both shorter

and longer spans. (Section 6.3).

The paper is organized as follows: We briefly re-

view the individual models in Section 2, describe

the method of joint decoding using three alternative

interaction schemes in Section 3, describe the fea-

tures controlling the interactions and fuzzy match in

Section 4, review the related work in Section 5, and

finally, describe our experiments and give detailed

discussion of the results in Section 6.

2 Individual Models

Our individual models are two state-of-the-art sys-

tems: a hiero model (Chiang, 2005), and a forest-to-

string model (Mi et al., 2008; Mi and Huang, 2008).

We will use the following example from Chinese

to English to explain both individual and joint de-

coding algorithms throughout this paper.

SS tǎolùnSSSSSSSS hùiSSSSS zěnmeyàng

discussion/NN SSS will/VV how/VV

S discuss/VV SS meeting/NN

There are several possible meanings based on the

different POS tagging sequences:

1: NN VV VV: How is the discussion going?

2: VV NN VV: Discuss about the meeting.

3: NN NN VV: How was the discussion meeting?

4: VV VV VV: Discuss what will happen.

id rule

r1 VV(tǎolùn)→ discuss

r2 NP(tǎolùn)→ the discussion

r3 NP(hùi)→ the meeting

r4 VP(zěnmeyàng)→ how

r′
4

VP(zěnmeyàng)→ about

r5 IP(x1:NP x2:VP)→ x2 x1

r6 IP(x1:VV x2:IP)→ x1 x2

r7 IP(x1:NP VP(VV(hùi) x2:VP))→ x2 is x1 going

r11 X(x1:X zěnmeyàng)→ how was x1

r12 X(zěnmeyàng)→ what

r13 X(tǎolùn hùi)→ the discussion meeting

r14 X(hùi x1:X)→ x1 will happen

r15 S(x1:S x2:X)→ x1 x2

Table 1: Translation rules. Tree-to-string (r1–r7), hiero

(r11–r14), vanilla glue (r15).

IP

x1:NP VP

VV

hùi

x2:VP
→ x2 is x1 going

Figure 1: Tree-to-string rule r7.

Table 1 shows translation rules that can generate

all four translations. We will use those rules in the

following sections.

2.1 Forest-to-string

Forest-to-string translation (Mi et al., 2008) is a lin-

guistic syntax-based system, which significantly im-

proves the translation quality of the tree-to-string

model (Liu et al., 2006; Huang et al., 2006) by using

a packed parse forest as the input instead of a single

parse tree.

Figure 1 shows a tree-to-string translation

rule (Huang et al., 2006), which is a tuple

〈lhs(r), rhs(r), ψ(r)〉, where lhs(r) is the source-side

tree fragment, whose internal nodes are labeled by

nonterminal symbols (like NP and VP), and whose

frontier nodes are labeled by source-language words

(like “hùi”) or variables from a set X = {x1, x2, . . .};

rhs(r) is the target-side string expressed in target-

language words (like “going”) and variables; and

ψ(r) is a mapping from X to nonterminals. Each
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(a)

IP0, 3

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

VP1, 3

VP2, 3

zěnmeyàng

Rt

⇒
(b)

IP0, 3

X0, 2

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

X1, 3 VP1, 3

VP2, 3

zěnmeyàng

X0, 3

e5

e6

e7

⇓ Rh ⇓

(b′)

IP0, 3

X0, 2

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

X1, 3 VP1, 3

VP2, 3

zěnmeyàng

X2, 3

X0, 3

e11

e14

⇒ (c)

IP0, 3

X0, 2

VV0, 1

tǎolùn

NP0, 1

IP1, 3

NP1, 2

hùi

VV1, 2

X1, 3 VP1, 3

VP2, 3

zěnmeyàng

X2, 3

X0, 3

Figure 2: Parse and translation hypergraphs. (a) The parse forest of the example sentence. Solid hyperedges denote

the 1-best parse. (b) The corresponding translation forest F t after applying the tree-to-string translation rule set Rt.

Target lexical content is not shown. Each translation hyperedge (e.g. e7) has the same index as the corresponding rule

(r7). Gray nodes (e.g. VP1,3) became inaccessible due to the insufficient rule coverage. (b′) The translation forest Fh

after applying the hierarchical rule set Rh to the input sentence. (c) The combined translation forest Hm obtained by

superimposing b and b′. The nodes within each solid box share the same span. See Figure 3 for an example of the

internal structure of a box. The forest-to-string system can produce the translation 1 (dashed derivation: r2, r4 and r7)

and 2 (solid derivation: r1, r3, r′
4
, r5, and r6). Hierarchical rules generate the translation 3 (r11 and r13). The translation

4 is available by using joint decoding at X1, 3 → IP1, 3 with the derivation: r1, r6, r12, and r14.

variable xi ∈ X occurs exactly once in lhs(r) and

exactly once in rhs(r). Take the rule r7 in Figure 1

for example, we have:

lhs(r7) = IP(x1:NP VP(VV(hùi) x2:VP)),

rhs(r7) = x2 is x1 going,

ψ(r7) = {x1 7→ NP, x2 7→ VP}.

Typically, a forest-to-string system performs

translation in two steps (shown in Figure 2): pars-

ing and decoding. In the parsing step, we convert the

source language input into a parse forest (a). In the

decoding step, we first convert the parse forest into a

translation forest Ft in (b) by using the fast pattern-

matching technique (Zhang et al., 2009). For exam-

ple, we pattern-match the rule r7 rooted at IP0, 3, in

such a way that x1 spans NP0, 1 and x2 spans VP2, 3,

and add a translation hyperedge e7 in (b). Then the

decoder searches for the best derivation on the trans-

lation forest and outputs the target string.

2.2 Hiero

Hiero (hierarchical phrase-based) model (Chiang,

2005) acquires rules of synchronous context-free

grammars (SCFGs) from word-aligned parallel data,

and uses plain sequences of words as the input, with-

out any syntactic information.
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FN

IP′1, 3

IP1, 3

BBBBSN

X′1, 3

X1, 3

EEEE

scheme interaction edges in supernode

Generalization

IP′1, 3 X′1, 3

IP1, 3 X1, 3

Specification

IP′1, 3 X′1, 3

IP1, 3 X1, 3

Interchange

IP′1, 3 X′1, 3

IP1, 3 X1, 3

Figure 3: Three interaction schemes for joint decoding.

Details of the interaction supernode for span (1, 3) shown

in Figure 2 (c). Soft constraints control the transitions.

SCFG can be formalized as a set of tuples

〈lhs(r), rhs(r), φ(r)〉, where lhs(r) is the source-side

one-level CFG, whose root is X or S, and whose

frontier nodes are labeled by source-language words

(like “hùi”) or variables from a set X = {x1, x2, . . .};

rhs(r) is the target-side string expressed in target-

language words (like “going”) and variables; and

φ(r) is a mapping from X to nonterminals. Table 1

shows examples of hiero rules r11–r15.

Although different on source side, hiero decod-

ing can be formalized equally as forest-to-string de-

coding: First, pattern-match the input sentence into

a translation forest Fh. For example, since the rule

r11 matches “zěnmeyàng” such that x1 spans the first

two words, add a hyperedge e11 in Figure 2 (b′).

Then search for the best derivation over the trans-

lation forest.

3 Joint Decoding

The goal of joint decoding is to let different MT

models collaborate within the framework of a single

decoder. This can be done by combining translation

hypergraphs of the different models at the decod-

ing time, so that online sharing of partial hypotheses

overcomes weaknesses and boosts strengths of the

systems combined.

As both forest-to-string and hiero produce trans-

lation forests that share the same hypergraph struc-

ture, we first formalize the hypergraph, then we in-

troduce an algorithm to combine different hyper-

graphs, and finally we describe three joint decoding

schemes over the merged hypergraph.

3.1 Hypergraphs

More formally, a hypergraph H is a pair 〈V, E〉,

where V is the set of nodes, and E the set of hyper-

edges. For a given sentence w1:l = w1 . . .wl, each

node v ∈ V is in the form of Y i, j, where Y is a

nonterminal in the context-free grammar1 and i, j,

0 ≤ i < j ≤ l, are string positions in the sentence

w1:l, which denote the recognition of nonterminal

Y spanning the substring from positions i through j

(that is, wi+1 . . .w j). Each hyperedge e ∈ E is a tuple

〈tails(e), head(e), target(e)〉, where head(e) ∈ V is

the consequent node in the deductive step, tails(e) ∈

V∗ is the list of antecedent nodes, and target(e) is

a list of rhs(r) for rules r such that each rule r has

the same lhs(r) pattern-matched at the node head(e).

For example, the hyperedge e7 in Figure 2 (b) is

e7 = 〈(NP0, 1,VP2, 3), IP0, 3, (x2 is x1 going)〉,

where we can infer the mapping to be

{x1 7→ NP0, 1, x2 7→ VP2, 3 }.

We also denote BS(v) to be the set of incoming

hyperedges of node v, which represent the different

ways of deriving v. For example, BS(IP0, 3) is a set

of e7 and e6.

There is also a distinguished root node TOP in

each hypergraph, denoting the goal item in transla-

tion, which is simply TOP0, l.

3.2 Combining Hypergraphs

We enable interaction between translation hyper-

graphs, such as hiero Fh = 〈Vh, Eh〉 and forest-to-

string Ft = 〈V t, Et〉, on nodes covering the same

span (e.g. IP1, 3 and X1, 3 in Figure 2 (c) grouped in

a box). We call such groups interaction supernodes

and show a detailed example of a supernode for span

(1, 3) in Figure 3.

The combination runs in four steps:

1In this paper, nonterminal labels X and S denote hiero

derivations, other labels are tree-to-string labels.
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1. For each node v = Y i, j, v ∈ Vh ∪ V t, we create

a new interaction node v′ = Y ′i, j with empty

BS (v′). For example, we create two nodes,

IP′1, 3 and X′1, 3, at the top of Figure 3.

2. For each hyperedge e ∈ BS(v), v ∈ V t ∪ Vh,

we replace each v in tails(e) with v′. For exam-

ple, e7 becomes 〈(NP′0, 1,VP′2, 3), IP0, 3, (x2 is

x1 going)〉.

3. All the nodes and hyperedges form the merged

hypergraph Fm, such as in Figure 2 (c).

4. Insert interaction hyperedges connecting nodes

within each interaction supernode to make Fm

connected again.

In the following subsection we present details of in-

teractions and introduce three alternative schemes.

3.3 Three Schemes of Joint Decoding

Interaction hyperedges within each supernode allow

the decoder either to stay within the same system

(e.g. in hiero using X1, 3 → X′1, 3 in Figure 3), or to

switch to the other (e.g. to forest-to-string using X1, 3

→ IP′1, 3).

For example, translation 4 can be produced as

follows: The source string “zěnmeyàng” is trans-

lated by the phrase rule r12. The hiero hyperedge

e14 combines it with the translation of “hùi”, reach-

ing the hiero node X1, 3. Using the interaction edge

X1, 3 → IP′1, 3 will switch into the tree-to-string

model, so that the translation can be completed with

the tree-to-string edge e6 that connects it with a par-

tial tree-to string translation of “tǎolùn” done by r1.

In order to achieve more precise control over the

interaction between tree-to-string and hiero deriva-

tions, we propose the following three basic inter-

action schemes: generalization, specification, in-

terchange. The schemes control the interaction be-

tween hiero and tree-to-string models by means of

soft constraints. Some schemes may even restrict

certain types of transitions. The schemes are de-

picted in Figure 3 and their details are discussed in

the following three subsections.

3.3.1 Specification

The specification decoding scheme reflects the in-

tuition of using hiero rules to translate shorter spans

and tree-to-string rules to reorder higher-level sen-

tence structures. In other words, the scheme allows

one-way switching from the hiero general nontermi-

nal into the more specific nonterminal of a tree-to-

string rule. Transitions in reverse directions are not

allowed. This is achieved by inserting specification

interaction hyperedges e leading from hiero nodes

Xi, j or Si, j into all tree-to-string interaction nodes

Y′i, j within the same supernode.

3.3.2 Generalization

In some translation domains, hiero outperforms

tree-to-string systems, as was shown in experiments

in Section 6. While local hiero or tree-to-string re-

orderings perform well, long distance reorderings

proposed by tree-to-string may be too risky (e.g. due

to parsing errors), so that monotone concatenation

of long sequences2 is the more reliable strategy. The

generalization decoding scheme, complementary to

the specification, is motivated by the idea of incorpo-

rating reliable tree-to-string translations for some se-

quences into a strong hiero translation system. This

is achieved by inserting generalization interaction

hyperedges e leading from tree-to-string nodes Yi, j

nodes into general hiero interaction nodes X′i, j and

S′i, j within the same supernode.

3.3.3 Interchange

The interchange decoding scheme is a union of

the two previous approaches. Any derivation can

freely combine hiero and tree-to-string productions.

Both specification and generalization interaction

hyperedges are inserted leading from all hiero and

tree-to-string nodes Xi, j, Si, j, and Yi, j into all inter-

action nodes X′i, j, S′i, j, and Y′i, j.

3.4 Fuzzy match

The translation rule set cannot usually cover all

hyperedges in the parse forest, thus some nodes

become inaccessible in the translation forest (e.g.

VP1, 3 in Figure 2). However, in the parse forest, as

opposed to a 1-best tree, we can find other nodes

spanning the same sequence wi: j (e.g. node IP1, 3).

In order to re-enable inaccessible nodes and to in-

crease the variability of the translation forest, we

allow reaching them from the other tree-to-string

2Monotone glue is the only possibility for very long spans

exceeding the hiero maxParse treshold.
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nodes within the same interaction node. This can

be achieved by adding fuzzy hyperedges between

every tree-to-string state Y i, j and a differently la-

beled tree-to-string interaction state Z′i, j. For exam-

ple, in the span (0,1), we have a fuzzy hyperedge

VV0, 1 → NP′0, 1.

While interaction hyperedges combine different

translation models, fuzzy hyperedges combine dif-

ferent derivations within the same (tree-to-string)

model.

4 Interaction Features

Our baseline systems use the log-linear framework

to estimate the probability P(D) of a derivation D

from features φi and their weights λi as P(D) ∝

exp
(∑

i λiφi

)

. Similarly as Chiang et al. (2009), our

systems use tens of dense (e.g. language models,

translation probabilities) and thousands of sparse

(e.g. lexical, fertility) features.

The features related to the joint decoding experi-

ments are the costs for specification, generalization,

interchange, and the fuzzy match. Let Lt be the set

of the labels used by the source language parser and

Lh = {S,X} be the labels used by hiero.

The generalization feature

φY→Z = |{e; e ∈ D,∃i, j tails(e) = {Yi, j} (1)

∧head(e) = Z′i, j}|

is the total number of generalization hyperedges in

D going from tree-to-string states Y ∈ Lt to hiero

states Z′ ∈ Lh.

The specification feature

φZ→Y = |{e; e ∈ D,∃i, j tails(e) = {Zi, j} (2)

∧head(e) = Y′i, j}|

is the total number of specification hyperedges in D

going from hiero states Z ∈ Lh to tree-to-string states

Y ′ ∈ Lt.

The interchange feature is implemented by en-

abling the generalization and specification features

at the same time for both tuning and testing.

The fuzzy match feature

φU→W = |{e; e ∈ D,∃i, j tails(e) = {Ui, j} (3)

∧head(e) =W′i, j}|

is the total number of fuzzy match hyperedges in D

going from tree-to-tree states U ∈ Lt to tree-to-string

states W′ ∈ Lt. 3

We use MIRA to obtain weights for the new fea-

tures by tuning on the development set. The num-

ber of new parameters to tune can be estimated as

|Lh| × |Lt| for generalization and specification, and

2 × |Lh| × |Lt| for interchange. For the fuzzy match

of tree-to-string nonterminals we have |Lt| × |Lt| pa-

rameters organized as a sparse matrix, since we only

consider combinations on nonterminal labels that

cooccur in the data.4

5 Related Work

From the previous explorations of online translation

model combination, we see the work of Liu et al.

(2009) proposing an unconstrained combination of

hiero and tree-to-string models as a special configu-

ration of our framework, and we also replicate it.

Denero et al. (2010) combine translation mod-

els even with different search paradigms. Their ap-

proach is different, since their component systems

do not interact at decoding time, instead, each of

them provides its weighted translation forest first,

the forests are then combined to infer a new com-

bination model.

6 Experiment

In this section we describe the setup, present results,

and analyze the experiments. Finally, we propose fu-

ture directions of research.

3Here we allow U = W, which can be viewed in such a way

that exact match is a special case of fuzzy match.
4We also carried out an alternative experiment with only

three fuzzy match features estimated from the training data

parse forest by Naı̈ve Bayes by observing all spans in the train-

ing data, accumulating counts Cs(U) and Cs(U,W) of nonter-

minals (or pairs of nonterminals) heading the same span s. The

first two features (one for each direction) are based on condi-

tional probabilities:

φ(U |W) = − log

(
∑

s∈spans Cs (U,W)
∑

s∈spans Cs(W)

)

. (4)

The third feature is based on joint probability:

φ(U,W) = − log

(
∑

s∈spans Cs(U,W)
∑

s∈spans,A,B∈Lt Cs(A, B)

)

. (5)

The average performance drops by 0.1 (Ter-Bleu)/2 points,

compared to the interchange eperiment.

550



System
GALE-web P1R6-web MT08 news MT08 web Avg.

Bleu (T-B)/2 Bleu (T-B)/2 Bleu (T-B)/2 Bleu (T-B)/2 (T-B)/2

Single

T2S 32.6 11.6 16.9 23.5 37.7 7.8 28.1 14.5 14.4

Hiero 33.7 10.2 17.0 23.1 39.2 6.3 28.8 13.7 13.3

F2S 34.0 10.3 17.3 23.2 39.6 6.3 29.2 13.6 13.4

Joint

Liu:09 34.1 9.7 17.0 23.0 38.8 6.7 29.0 13.2 13.2

Gen. 34.4 9.7 17.8 22.6 40.0 6.1 29.6 13.1 12.9

Spe. 35.1 9.4 18.1 22.2 40.2 5.8 29.6 12.9 12.6

Int. 34.9 9.4 17.9 22.3 40.0 6.2 29.6 12.9 12.7

Table 2: All results of single and joint decoding systems.

6.1 Setup

The training corpus consists of 16 million sen-

tence pairs available within the DARPA BOLT

Chinese-English task. The corpus includes a mix

of newswire, broadcast news, webblog and comes

from various sources such as LDC, HK Law, HK

Hansard and UN data. The Chinese text is seg-

mented with a segmenter trained on CTB data using

conditional random fields (CRF). Language models

are trained on the English side of the parallel cor-

pus, and on monolingual corpora, such as Gigaword

(LDC2011T07) and Google News, altogether com-

prising around 10 billion words.

We use a modified version of the Berkeley parser

(Petrov and Klein, 2007) to obtain a parse forest

for each training sentence, then we prune it with

the marginal probability-based inside-outside algo-

rithm to contain only 3n CFG nodes, where n is the

sentence length. Finally, we apply the forest-based

GHKM algorithm (Mi and Huang, 2008; Galley et

al., 2004) to extract tree-to-string translation rules

from forest-string pairs.

In the decoding step, we prune the input hyper-

graphs to 10n nodes before we use fast pattern-

matching (Zhang et al., 2009) to convert the parse

forest into the translation forest.

We tune on 1275 sentences, each with 4 refer-

ences, from the LDC2010E30 corpus, initially re-

leased under the DARPA GALE program.

All MT experiments are optimized with

MIRA (Crammer et al., 2006) to maximize

(Ter-Bleu)/2.

We test on four different test sets: GALE-web test

set from LDC2010E30 corpus (1239 sentences, 4

references), P1R6-web test set from LDC2012E124

corpus (1124 sentences, 1 reference), NIST MT08

newswire portion (691 sentences, 4 references), and

NIST MT08 web portion (666 sentences, 4 refer-

ences).

6.2 Results

Table 2 shows all results of single and joint decoding

systems. The Bleu score of the single hiero baseline

is 39.2 on MT08-news, showing that it is a strong

system. The single F2S baseline achieves compara-

ble scores on all four test sets.

Then, for reference, we present results of joint Hi-

ero and T2S decoding, which is, to our knowledge, a

strong and competitive reimplementaion of the work

described by Liu et al. (2009). Finally, we present re-

sults of joint decoding of hiero and F2S in three in-

teraction schemes: generalization, specification, and

interchange.

All three combination schemes significantly im-

prove results of any single system on all four test-

sets. On average and measured in (Ter-Bleu)/2,

our systems improve the best single system by 0.4

(generalization), 0.7 (specification), and 0.6 (inter-

change).

The specification comes out as the strongest inter-

action scheme, beating the second interchange on 2

testsets by 0.1 and 0.4 (Ter-Bleu)/2 points and on 3

testsets by 0.2 Bleu points.

6.3 Discussion of Results

Interpretations of model behavior with thousands of

parameters that may possibly overlap and interfere

should be always attempted with caution. In this sec-

tion we highlight some interesting observations, ac-
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Specification Generalization Interchange

X→ ∗ ∗ → X X→ ∗ ∗ → X

VP

IP

VV

NR

ADVP

QP

CC

DVP

NP

P

...

CS

CP

AD

VRD

PU

ADJP

DNP

PP

PRN

DP

0.069

0.059

0.053

0.032

0.025

0.023

0.017

0.017

0.017

0.012

...

-0.005

-0.007

-0.011

-0.012

-0.028

-0.028

-0.045

-0.064

-0.069

-0.092

QP

PP

NN

DP

NR

DNP

NP

LC

DEC

DEG

...

VV

PRN

PN

BA

VP

VRD

JJ

VC

DFL

PU

0.057

0.054

0.048

0.044

0.034

0.032

0.030

0.025

0.023

0.023

...

-0.010

-0.011

-0.013

-0.015

-0.015

-0.028

-0.035

-0.037

-0.054

-0.073

VV

VP

NN

QP

ADVP

LCP

NP

P

IP

NR

...

VSB

PN

PU

M

VRD

DNP

ADJP

PP

DP

PRN

0.062

0.044

0.034

0.025

0.022

0.021

0.018

0.017

0.016

0.016

...

-0.004

-0.004

-0.004

-0.007

-0.014

-0.023

-0.039

-0.058

-0.070

-0.080

NN

PP

CP

LCP

DEG

DP

DEC

QP

LC

NP

...

FLR

DVP

BA

JJ

AS

VRD

ADVP

PN

DFL

PU

0.048

0.041

0.035

0.035

0.031

0.028

0.027

0.027

0.021

0.019

...

-0.006

-0.009

-0.010

-0.011

-0.014

-0.017

-0.021

-0.033

-0.038

-0.103

Table 3: Examples of specification, generalization, and interchange weights. POS tags in italics.
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Figure 4: Average span length for selected syntactic la-

bels on GALE-web test set.

companying them with our subjective judgements

and speculations.

Table 3 shows the specification and generalization

features tuned for the three combination schemes,

then sorted by their weights λX→Y or λY→X . Features

shown at the top of the table are very expensive (the

#Interactions Generalization Inter. gen.

F2S→ glue 5557 4202

F2S→ hiero 695 1178

total gen. 6252 5380

Specification Inter. spec.

phrase→ F2S 2763 2235

glue→ F2S 946 841

hiero→ F2S 683 839

total spec. 4392 3915

Table 5: Rule interactions on GALE-web test set.

system tries to avoid them), while inexpensive fea-

tures are at the bottom (the system is encouraged to

use them).

The most expensive interactions for the specifi-

cation belong to constituents (IP, VP) that usually

occur higher in a syntactic tree (see Figure 4 for av-

erage span lengths of selected syntactic labels), and

often require non-local reorderings. This indicates

that the decoder is discouraged from switching from

hiero into F2S derivation at these higher-level spans.
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rule type Generalization Specification Interchange

F2S 18,807 58% 19,399 70% 18,400 61%

Hiero 3,730 12% 2,330 8% 3,133 10%

Glue 7,367 23% 571 2% 4,714 16%

Phrase 2,274 7% 5,484 20% 3,868 13%

total 32,178 27,784 30,115

Table 4: Rule counts on GALE-web test set.
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Figure 5: Rule distributions on GALE-web test set.

The third most expensive feature belongs to a

part-of-speech tag—the preterminal VV. We may

hypothesize that it shows the importance of lexical

information for the precision of reordering typically

carried out within (parent) VP nodes, and/or the im-

portance of POS information for succesful disam-

biguation of word senses in translation. Ideally, the

system can use a VP rule with a lexicalized VV. Less

preferably, the VV part has to be translated by an-

other T2S rule (losing the lexical constraint). In the

worst case, the system has to use a hiero hypothe-

sis to translate the VV part (losing the syntactic con-

straint), risking imprecise translation, since the hiero

rule is not constrained to senses corresponding to the

source POS VV. Again, the high penalty discourages

from using the hiero derivation in this context.

On the other hand, the bottom of the table shows

labels that encourage using hiero–DP, PP, DNP,

ADJP, etc.–shorter phrases that tend to be monotone

and less ambiguous.

Similar interpretations seem plausible when ex-

amining the generalization experiment. Expensive

features related to preterminals (NR, NN, CD) may

suggest two alternative principles: First, using F2S

rules for thes POS categories and then switching to

hiero is discouraged, since these contexts are more

reliably handled by hiero due to better lexical cover-

age and common adjacency in nominal categories.

Second, since there is only one attempt to switch

from F2S derivation to hiero, letting F2S complete

even larger spans (and maybe switching to hiero

later) is favorable.

The tail of generalization feature weights is more

difficult to interpret. The discount on VP encourages

decoder to use F2S for entire verb phrases before

switching to hiero, on the other hand, other verb-

related preterminals occupy the tail as well, hurrying

into early switching from F2S to hiero.
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Finally, the feature weights tuned for the in-

terchange experiment are divided into two sub-

columns. Both generalization and specification

weights show similar trends as in the previous two

interaction schemes, although blurred (VP and IP

descending from the absolute top). Since transitions

in both ways are allowed, the search space is big-

ger and the system may behave differently. It is even

possible for a path in the hypergraph to zigzag be-

tween F2S and hiero nodes to collect interaction dis-

counts, “diluting” the syntactic homogeneity of the

hypothesis.

Figure 5 and Tables 4 and 5 show rule distribu-

tions, total rule counts, and numbers of interactions

of different types for the three interaction schemes

on the GALE-web test set. The scope of phrase rules

is limited to 6 words. The scope of hiero rules is lim-

ited to 20 words by the commonly used maxParse

parameter, leaving longer spans to the glue rule.

The trends of F2S and glue rules show the most

obvious difference. In the generalization, F2S rules

translate spans of up to 50 words. Glue rules pre-

vail on spans longer then 7 words. The specification

is reversed, pushing the longest scope of hiero and

glue rules down to 40 words, completing the longest

sentences entirely with F2S. The interchange comes

out as a mixture of the previous two trends.

All three schemes prefer using F2S rules at

shorter spans, to the contrary of our original assump-

tion of phrasal and hiero rules being stronger on lo-

cal contexts in general. Here we may refer again

to the specification feature weights for preterminals

VV, NR, CC and P in Table 3 and to our previously

stated hypothesis about the importance of preserving

lexical and syntactic context.

Hiero rules usage on longer spans drops fastest

for specification, slowest for generalization, and in

between for interchange.

It is also interesting to notice the trends on very

short spans (2–4 words) shown by rule distributions

and reflected in numbers of interaction types. While

specification often transitions from a single phrase

rule directly into F2S, the interchange has relatively

higher counts of hiero rules, another sign of the hiero

and F2S interaction.

Synthesizing from several sources of indications

is difficult, however, we arrive at the conclusion that

joint decoding of hiero and F2S significantly im-

proves the performance. While the single systems

show similar performance, their roles are not bal-

anced in joint decoding. It seems that the role of hi-

ero consists in enabling F2S in most contexts.

We have focused on three special cases of inter-

action. We see a great potential in further studies

of other schemes, allowing more flexible interaction

than simple specification, but still more constrained

than the interchange. It seems also promising to re-

fine the interaction modeling with features taking

into account more information than a single syntac-

tic label, and to explore additional ways of parame-

ter estimation.

7 Conclusion

We have proposed flexible interaction of hyper-

graphs as a novel technique combining hiero

and forest-to-string translation models within one

decoder. We have explored three basic interac-

tion schemes—specification, generalization, and

interchange—and described soft constraints control-

ling the interactions. We have carried out experi-

ments on large training data and with strong base-

lines. Of the three schemes, the specification shows

the highest gains, achieving improvements from 0.5

to 0.9 (Ter-Bleu)/2 points over the best single sys-

tem. We have conducted a detailed analysis of each

system output based on different indications of inter-

actions, discussed possible interpretations of results,

and finally offered our conclusion and proposed fu-

ture lines of research.
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Abstract

This paper describes a factored approach to
incorporating soft source syntactic constraints
into a hierarchical phrase-based translation
system. In contrast to traditional approaches
that directly introduce syntactic constraints to
translation rules by explicitly decorating them
with syntactic annotations, which often ex-
acerbate the data sparsity problem and cause
other problems, our approach keeps transla-
tion rules intact and factorizes the use of syn-
tactic constraints through two separate mod-
els: 1) a syntax mismatch model that asso-
ciates each nonterminal of a translation rule
with a distribution of tags that is used to
measure the degree of syntactic compatibil-
ity of the translation rule on source spans; 2)
a syntax-based reordering model that predicts
whether a pair of sibling constituents in the
constituent parse tree of the source sentence
should be reordered or not when translated to
the target language. The features produced
by both models are used as soft constraints
to guide the translation process. Experiments
on Chinese-English translation show that the
proposed approach significantly improves a
strong string-to-dependency translation sys-
tem on multiple evaluation sets.

1 Introduction

Hierarchical phrase-based translation models (Chi-
ang, 2007) are widely used in machine translation
systems due to their ability to achieve local flu-
ency through phrasal translation and handle non-
local phrase reordering using synchronous context-
free grammars. A large number of previous works

have tried to introduce grammaticality to the trans-
lation process by incorporating syntactic constraints
into hierarchical translation models. Despite some
differences in the granularity of syntax units (e.g.,
tree fragments (Galley et al., 2004; Liu et al., 2006),
treebank tags (Shen et al., 2008; Chiang, 2010), and
extended tags (Zollmann and Venugopal, 2006)),
most previous work incorporates syntax into hier-
archical translation models by explicitly decorating
translation rules with syntactic annotations. These
approaches inevitably exacerbate the data sparsity
problem and cause other problems such as increased
grammar size, worsened derivational ambiguity, and
unavoidable parsing errors (Hanneman and Lavie,
2013).

In this paper, we propose a factored approach
that incorporates soft source syntactic constraints
into a hierarchical string-to-dependency translation
model (Shen et al., 2008). The general ideas are ap-
plicable to other hierarchical models as well. Instead
of enriching translation rules with explicit syntactic
annotations, we keep the original translation rules
intact, and factorize the use of source syntactic con-
straints through two separate models.

The first is a syntax mismatch model that intro-
duces source syntax into the nonterminals of transla-
tion rules, and measures the degree of syntactic com-
patibility between a translation rule and the source
spans it is applied to during decoding. When a hi-
erarchical translation rule is extracted from a par-
allel training sentence pair, we determine a tag for
each nonterminal based on the dependency parse of
the source sentence. Instead of fragmenting rule
statistics by directly labeling nonterminals with tags,
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we keep the original string-to-dependency transla-
tion rules intact and associate each nonterminal with
a distribution of tags. That distribution is then used
to measure the syntactic compatibility between the
syntactic context from which the translation rule is
extracted and the syntactic analysis of a test sen-
tence.

The second is a syntax-based reordering model
that takes advantage of phrasal cohesion in transla-
tion (Fox, 2002). The reordering model takes a pair
of sibling constituents in the source parse tree as in-
put, and uses source syntactic clues to predict the
ordering distribution (straight vs. inverted) of their
translations on the target side. The resulting order-
ing distribution is used in the decoder at the word
pair level to guide the translation process. This sep-
arate reordering model allows us to utilize source
syntax to improve reordering in hierarchical trans-
lation models without having to explicitly annotate
translation rules with source syntax.

Our results show that both the syntax mismatch
model and the syntax-based reordering model are
able to achieve significant gains over a strong
Chinese-English MT baseline. The rest of the pa-
per is organized as follows. Section 2 discusses
related work in the literature. Section 3 provides
an overview of our baseline string-to-dependency
translation system. Section 4 describes the details
of the syntax mismatch and syntax-based reordering
models. Experimental results are presented in Sec-
tion 5. The last section concludes the paper.

2 Related Work

Attempts to use rich syntactic annotations do not
always result in improved performance when com-
pared to purely hierarchical models that do not
use linguistic guidance. For example, as shown
in (Mi and Huang, 2008), tree-to-string translation
models (Huang et al., 2006) only start to outper-
form purely hierarchical models when significant ef-
forts were made to alleviate parsing errors by using
forest-based approaches in both rule extraction and
decoding. Using only syntactic phrases is too re-
strictive in phrasal translation as many useful phrase
pairs are not syntactic constituents (Koehn et al.,
2003). The syntax-augmented translation model
of Zollmann and Venugopal (2006) annotates non-

terminals in hierarchical rules with thousands of ex-
tended syntactic categories in order to capture the
syntactic variations of phrase pairs. This results
in exacerbated data sparsity problems, partially due
to the requirement of exact matches in nonterminal
substitutions between translation rules in the deriva-
tion. Several solutions were proposed. Shen et
al. (2009) and Chiang (2010) used soft match fea-
tures to explicitly model the substitution of nonter-
minals with different labels; Venugopal et al. (2009)
used a preference grammar to soften the syntactic
constraints through the use of a preference distribu-
tion of syntactic categories; and recently Hanneman
and Lavie (2013) proposed a clustering approach
to reduce the number of syntactic categories. Our
proposed syntax mismatch model associates non-
terminals with a distribution of tags. It is simi-
lar to the preference grammar in (Venugopal et al.,
2009); however, we use treebank tags and focus on
the syntactic compatibility between translation rules
and the source sentence. The work of Huang et al.
(2010) is most similar to ours, with the main differ-
ence being that their syntactic categories are latent
and learned automatically in a data driven fashion
while we simply use treebank tags based on depen-
dency parsing. Marton and Resnik (2008) also ex-
ploited soft source syntax constraints without mod-
ifying translation rules. However, they focused on
the quality of translation spans based on the syn-
tactic analysis of the source sentence, while our
method explicitly models the syntactic compatibil-
ity between translation rules and source spans.

Most research on reordering in machine transla-
tion focuses on phrase-based translation models as
they are inherently weak at non-local reordering.
Previous efforts to improve reordering for phrase-
based systems can be largely classified into two cat-
egories. Approaches in the first category try to re-
order words in the source sentence in a preprocess-
ing step to reduce reordering in both word alignment
and MT decoding. The reordering decisions are ei-
ther made using manual or automatically learned
rules (Collins et al., 2005; Xia and McCord, 2004;
Xia and McCord, 2004; Genzel, 2010) based on the
syntactic analysis of the source sentence, or con-
structed through an optimization procedure that uses
feature-based reordering models trained on a word-
aligned parallel corpus (Tromble and Eisner, 2009;
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Khapra et al., 2013). Approaches in the second cate-
gory try to explicitly model phrase reordering in the
translation process. These approaches range from
simple distance based distortion models (Koehn et
al., 2003) that globally penalizes reordering based
on the distorted distance, to lexicalized reordering
models (Koehn et al., 2005; Al-Onaizan and Pap-
ineni, 2006) that assign reordering preferences of
adjacent phrases for individual phrases, and to hi-
erarchical reordering models (Galley and Manning,
2008; Cherry, 2013) that handle reordering prefer-
ences beyond adjacent phrases. Although hierarchi-
cal translation models are capable of handling non-
local reordering, their accuracy is far from perfect.
Xu et al. (2009) showed that the syntax-augmented
hierarchical model (Zollmann and Venugopal, 2006)
also benefits from reordering source words in a pre-
processing step. Explicitly adding syntax to trans-
lation rules helps with reordering in general, but it
introduces additional complexities, and is still lim-
ited by the context-free nature of hierarchical rules.
Our work exploits an alternative direction that uses
an external reordering model to improve word re-
ordering of hierarchical models. Gao et al. (2011),
Xiong et al. (2012), and Li et al. (2013) also studied
external reordering models for hierarchical models.
However, they focused on specific word pairs such
as a word and its dependents or a predicate and its
arguments, while our proposed general framework
considers all word pairs in a sentence. Our syntax-
based reordering model exploits phrasal cohesion in
translation (Fox, 2002) by modeling the reordering
of sibling constituents in the source parse tree, which
is similar to the recent work of Yang et al. (2012).
However, the latter focuses on finding the optimal
reordering of sibling constituents before MT decod-
ing, while our proposed model generates reordering
features that are used together with other MT fea-
tures to determine the optimal reordering during MT
decoding.

3 String-to-Dependency Translation

Our baseline translation system is based on a string-
to-dependency translation model similar to the im-
plementation in (Shen et al., 2008). It is an extension
of the hierarchical translation model of Chiang et al.
(2006) that requires the target side of a phrase pair

to have a well-formed dependency structure, defined
as either of the two types:

• fixed structure: a single rooted dependency
sub-tree with each child being a complete con-
stituent. In this case, the phrase has a unique
head word inside the phrase, i.e., the root of
the dependency sub-tree. Each dependent of
the head word, together with all of its descen-
dants, is either completely inside the phrase or
completely outside the phrase. For example,
the phrase give him in Figure 1 (a) has a fixed
dependency structure with head word give.

• floating structure: a sequence of siblings with
each being a complete constituent. In this case,
the phrase is composed of a sequence of sibling
constituents whose common parent is outside
the phrase. For example, the phrase him that
brown coat in Figure 1 is a floating structure
whose common parent give is not in the phrase.

Requiring the target side to have a well-formed
dependency structure is less restrictive than requir-
ing it to be a syntactic constituent, allowing more
translation rules to be extracted. However, it still
results in fewer rules than pure hierarchical transla-
tion models and might hurt MT performance. The
well-formed dependency structure on the target side
makes it possible to introduce syntax features dur-
ing decoding. Shen et al. (2008) obtained signif-
icant improvements from including a dependency
language model score in decoding, outweighing the
negative effect of the dependency constraint. Shen et
al. (2009) proposed an approach to label each non-
terminal, which can be either on the left-hand-side
(LHS) or the right-hand-side (RHS) of the rule, with
the head POS tag of the underlying target phrase if
it has a fixed dependency structure1, and measure
the mismatches between nonterminal labels when a
RHS nonterminal of a rule is substantiated with the
LHS nonterminal of another rule during decoding.
This also resulted in further improvements in MT
performance. Figure 1 (c) shows an example string-
to-dependency translation rule in our baseline sys-
tem.

1Nonterminals corresponding to floating structures keep
their default label “X” as experiments show that it is not bene-
ficial to label them differently.
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X :  give  X2  X1 

X  :  X1  �  X2

(b) pure hierarchical rule

VV  :  give  PRP2  NN1 

X  :  X1  �  X2

(c) string-to-dependency rule

那件  褐色  的  外套  �  他

 give   him   that  brown  coat 

(a) word alignments

Figure 1: An example of extracting a string-to-
dependency translation rule from word alignments. The
nonterminals on the target side of the hierarchical rule
(b) all correspond to fixed dependency structures and so
they are labeled by the respective head tag in the string-
to-dependency rule (c).

4 Factored Syntactic Constraints

Although the string-to-dependency formulation
helps to improve the grammaticality of translations,
it lacks the ability to incorporate source syntax into
the translation process. We next describe a factored
approach to address this problem by utilizing source
syntax through two models: one that introduces syn-
tactic awareness to translation rules themselves, and
another that focuses on reordering based on the syn-
tactic analysis of the source.

4.1 Syntax Mismatch Model

A straightforward method to introduce awareness
of source syntax to translation rules is to apply
the same well-formed dependency constraint and
head POS annotation on the target side of string-
to-dependency translation rules to the source side.
However, as discussed earlier, this would signifi-
cantly reduce the number of rules that can be ex-
tracted, exacerbate data sparsity, and cause other
problems, especially given that the target side is al-
ready constrained by the dependency requirement.

A relaxed method is to bypass the dependency
constraint and only annotate source nonterminals
whose underlying phrase is a fixed dependency
structure with the head POS tag of the phrase. This
method would still extract all of the rules that can
be extracted from the baseline string-to-dependency

VV  :  give  PRP2  NN1 

X  :  X1  �  X2

2
4

VV : 0.7
NN : 0.1
X : 0.2

3
5

2
4

NN : 0.8
VV : 0.1
X : 0.1

3
5

2
4

PN : 0.5
NN : 0.4
X : 0.1

3
5

VV

(a) nonterminal tag distributions

source:
gross:

NN PNspan tag:

(b) source span tags

� 他
his

的 笔
pen

我
me

��

give

dependency:

Figure 2: Example distribution of tags for nonterminals
on the source side (a) and example tags for source spans
(b)

translation model, but the extra annotation on non-
terminals can split a rule into multiple rules, with the
only difference being the nonterminal labels on the
source side. Unfortunately, our experiments have
shown that even this moderate annotation results
in significantly lower translation quality due to the
fragmentation of translation rules, and the increased
derivational ambiguity. We have also tried to include
some source tag mismatch features (with details de-
scribed later) to measure the syntactic compatibility
between the nonterminal labels of a translation rule
and the corresponding tags of source spans. This im-
proves translation accuracy, but not enough to com-
pensate for the performance drop caused by annotat-
ing source nonterminals.

Our proposed method introduces syntax to trans-
lation rules without sacrificing performance. Instead
of imposing dependency constraints or explicitly an-
notating source nonterminals, we keep the original
string-to-dependency translation rules intact and as-
sociate each nonterminal on the source side with a
distribution of tags. The tags are determined based
on the dependency structure of training samples. If
the underlying source phrase of a nonterminal is a
fixed dependency structure in a training sample, we
use the head POS tag of the phrase as the tag. Oth-
erwise, we use the default tag “X” to denote float-
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Feature Condition Value

f1 ts = X P(tr = X)
f2 ts = X P(tr ≠ X)
f3 ts ≠ X P(tr = X)
f4 ts ≠ X P(tr = ts)
f5 ts ≠ X P(tr ≠ X, tr ≠ ts)

Table 1: Source tag mismatch features. The default value
of each feature is zero if the source span tag ts does not
match the condition

ing structures and dependency structures that are not
well formed. As a result, we still extract the same
set of rules as in the baseline string-to-dependency
translation model, and also obtain a distribution of
tags for each nonterminal. Figure 2 (a) illustrates the
example tag distributions of a string-to-dependency
translation rule. The tag distributions provide an ap-
proximation of the source syntax of the training data
from which the translation rules are extracted. They
are used to measure the syntactic compatibility be-
tween a translation rule and the source spans it is
applied to. At decoding time, we parse the source
sentence and assign each span a tag in the same way
as it is done during rule extraction, as shown in the
example in Figure 2 (b). When a translation rule is
used to expand a derivation, for each nonterminal
(which can be on the LHS or RHS) on the source
side of the rule, five source tag mismatch features
are computed based on the distribution of tags P(tr)
on the rule nonterminal, and the tag ts on the cor-
responding source span. The features are defined in
Table 1. We use soft features instead of hard syn-
tactic constraints, and allow the tuning process to
choose the appropriate weight for each feature. As
shown in Section 5, these source syntax mismatch
features help to improve the baseline system.

4.2 Syntax-based Reordering Model

Most previous research on reordering models has fo-
cused on improving word reordering for statistical
phrase-based translation systems (e.g., (Collins et
al., 2005; Al-Onaizan and Papineni, 2006; Tromble
and Eisner, 2009)). There has been less work on im-
proving the reordering of hierarchical phrase-based
translation systems (see (Xu et al., 2009; Gao et al.,
2011; Xiong et al., 2012) for a few exceptions), ex-

cept through explicit syntactic annotation of transla-
tion rules. It is generally assumed that hierarchical
models are inherently capable of handling both lo-
cal and non-local reorderings. However, many hier-
archical translation rules are noisy and have limited
context, and so may not be able to produce transla-
tions in the right order.

We propose a general framework that incorpo-
rates external reordering information into the decod-
ing process of hierarchical translation models. To
simplify the presentation, we make the assumption
that every source word translates to one or more
target words, and that the translations for a pair
of source words is either straight or inverted. We
discuss the general case later. Given a sentence
w1,⋯,wn, suppose we have a separate reordering
model that predicts Porder(oij), the probability distri-
bution of ordering oij ∈ {straight, inverted} between
the translations of any source word pair (wi,wj).
We can measure the goodness of a given hypothe-
sis h with respect to the ordering predicted by the
reordering model as the sum of log probabilities2

for ordering each pair of source words, as defined
in Equation 1:

forder(h) = ∑
1≤i<j≤n

logPorder(oij = oh
ij) (1)

where oh
ij is the ordering between the translations of

source word pair (wi,wj) in hypothesis h. The re-
ordering score forder(h) can be computed efficiently
through recursion during hierarchical decoding as
follows:

• Base case: for phrasal (i.e. non-hierarchical)
rules, the ordering of translations for any word
pair covered by the source phrase can be deter-
mined based on the word alignment of the rule.
The value of the reordering score can be simply
computed according to Equation 1.

• Recursive case: when a hierarchical rule is used
to expand a partial derivation, two types of
word pairs are encountered: a) word pairs that
are covered exclusively by one of the nonter-
minals on the RHS of the rule, and b) other

2In practice, the log probability is thresholded to avoid neg-
ative infinity, which would otherwise result in a hard constraint.
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(a)

VV  :  give  PRP2  NN1 

X  :  X1  �  X2

source:
gross:

� �
his

� �
pen

�
me

��
give

(b)

word pair translation order
(他, �) inverted
(他, 我) inverted
(的, �) inverted
(的, 我) inverted
(笔, �) inverted
(笔, 我) inverted
(�, 我) straight
(他, 的) previously considered
(他, 笔) previously considered
(的, 笔) previously considered

Figure 3: An example rule application (a) with the trans-
lation order of new source word pairs covered by the rule
shown in (b). The translation order of word pairs covered
by X1 is previously considered and is thus not shown.

word pairs. The reordering scores of the for-
mer would be already computed in previous
rule applications, and can simply be retrieved
from the partial derivation. Word pairs of the
latter case are new word pairs introduced by the
hierarchical rule, and their ordering can be de-
termined based on the alignment of the hierar-
chical rule. The value of the reordering score
of the new derivation is the sum of the reorder-
ing scores retrieved from the partial derivations
for the nonterminals and the reordering scores
of the new word pairs.

Figure 3 shows an example of determining the
ordering of translations when applying a string-to-
dependency rule. The alignment in the translation
rule is able to fully determine the translation order
for all new word pairs introduced by the rule. For
example, “笔/pen” is covered by X1 in the rule and
the translation order for X1 and “给/give” is inverted
on the target side. Since “笔/pen” is translated to-
gether with other words covered by X1 as a group,
we can determine that the translation order between
the source word pair “笔/pen” and “给/give” is also
inverted on the target side. The words “他/his”,
“的”, “笔 /pen” are all covered by the same nonter-

Reordering features

The syntactic production rule
The syntactic labels of the nodes in the context
The head POS tags of the nodes in the context
The dep. labels of the nodes in the context
The seq. of dep. labels connecting the two nodes
The length of the nodes in the context

Table 2: Features in the reordering model

minal X1 and thus their pairwise reordering scores
have already been considered in previous rule appli-
cations.

In practice, not all source words in a translation
rule are translated to a target word; sometimes there
is no clear ordering between the translations of two
source words. In such cases we use a binary discount
feature instead of the reordering feature.

This reordering framework relies on an external
model to provide the ordering probability distribu-
tion of source word pairs. In this paper, we inves-
tigate a simple maximum-entropy reordering model
based on the syntactic parse tree of the source sen-
tence. This allows us to take advantage of the source
syntax to improve reordering without using syntactic
annotations in translation rules. The syntax-based
reordering model attempts to predict the reordering
probability of a pair of sibling constituents in the
source parse tree, building on the fact that syntac-
tic phrases tend to move in a group during transla-
tion (Fox, 2002). The reordering model is trained on
a word-aligned corpus. For each pair of sibling con-
stituents in the source parse tree, we determine the
translation order on the target side based on word
alignments. If there is a clear ordering3, i.e., either
straight or inverted, on the target side, we include
the context of the constituent pair and its translation
order as a sample for training or evaluating the max-
imum entropy reordering model. Table 2 lists the
features of the reordering model.

The ordering distributions of source word pairs
are determined based on the ordering distributions
of sibling constituent pairs. For each pair of sib-

3If the translations overlap with other, the non-overlapping
parts are used to determine the translation order.
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ling constituents4 in the parse tree of a source sen-
tence, we compute its distribution of translation or-
der using the reordering model. The distribution is
shared among all word pairs covered by the respec-
tive constituents, which guarantees that the order-
ing distribution of any source word pair is computed
exactly once. The ordering distributions of source
word pairs are then used through the general reorder-
ing framework in the decoder to guide the decoding
process.

5 Experiments

5.1 Experimental Setup

Our main experiments use the Chinese-English par-
allel training data and development sets released by
the LDC, and made available to the DARPA GALE
and BOLT programs. We train the translation model
on 100 million words of parallel data. We use a 8 bil-
lion words of English monolingual data to train two
language models: a trigram language model used in
chart decoding, and a 5-gram language model used
in n-best rescoring. The systems are tuned and eval-
uated on a mixture of newswire and web forum text
from the development sets available for the DARPA
GALE and BOLT programs, with up to 4 indepen-
dent references for each source sentence. We also
evaluate our final systems on both newswire and
web text from the NIST MT06 and MT08 evalua-
tions using an experimental setup compatible with
the NIST MT12 Chinese-English constrained track.
In this setup, the translation and language models
are trained on 35 million words of parallel data and
3.8 billion words of English monolingual data, re-
spectively. The systems are tuned on the MT02-
05 development sets. All systems are tuned and
evaluated on IBM BLEU (Papineni et al., 2002).
The baseline string-to-dependency translation sys-
tem uses more than 10 core features and a large num-
ber of sparse binary features similar to the method
described in (Chiang et al., 2009). It achieves trans-
lation accuracies comparable to the top ranked sys-
tems in the NIST MT12 evaluation.

4Note that the constituent pairs used to train the reordering
model are filtered to only contain these with clear ordering on
the target side, while no such pre-filtering is applied to con-
stituent pairs when applying the reordering model in translation.
We leave it to future work to address this mismatch problem.

GIZA++ (Och and Ney, 2003) is used for auto-
matic word alignment in all of the experiments. We
use Charniak’s parser (Charniak and Johnson, 2005)
on the English side to obtain string-to-dependency
translation rules, and use a latent variable PCFG
parser (Huang and Harper, 2009) to parse the source
side of the parallel training data as well as the
test sentences for extracting syntax mismatch and
reordering features. For both languages, depen-
dency structures are read off constituency trees us-
ing manual head word percolation rules. We use
a lexicon-based longest-match-first word segmenter
to tokenize source Chinese sentences. Since the
source tokenization used in our MT system is dif-
ferent from the treebank tokenization used to train
the Chinese parser, the source sentences are first to-
kenized using the treebank-trained Stanford Chinese
segmenter (Tseng et al., 2005), then parsed with
the Chinese parser, and finally projected to MT tok-
enization based on the character alignment between
the tokens. The syntax-based reordering model is
trained on a set of Chinese-English manual word
alignment corpora released by the LDC5.

5.2 Syntax Mismatch Model

We first conduct experiments on the GALE/BOLT
data sets to evaluate different strategies of incor-
porating source syntax into string-to-dependency
translation rules. As mentioned in Section 4.1, con-
straining the source side of translation rules to only
well-formed dependency structures is too restrictive
given that our baseline system already has depen-
dency constraint on the target side. We evaluate
the relaxed method that only annotates source non-
terminals with the head POS tag of the underlying
phrase if the phrase is a fixed dependency structure.
As shown in Table 3, nonterminal annotation results
in a big drop in performance, decreasing the BLEU
score of the baseline from 27.82 to 25.54. This sug-
gests that it is undesirable to further fragment the
translation rules. Introducing the syntax mismatch
features described in Section 4.1 helps to improve

5The alignment corpora are LDC2012E24, LDC2012E72,
LDC2012E95, and LDC2013E02. The reordering model can
also be trained on automatically aligned data; however, our ex-
periments show that using manual alignments results in a bet-
ter accuracy for the reordering model itself and more improve-
ments for the MT system.
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BLEU

baseline 27.82
+ tag annotation only 25.54
+ tag annotation, mismatch feat. 25.90
+ tag distribution, mismatch feat. 28.23

Table 3: Effects of tag annotation, tag distribution, and
syntax mismatch features on MT performance on the
GALE/BOLT data set.

BLEU from 25.54 to 25.90. This improvement is
not large enough to compensate for the performance
drop caused by annotating the nonterminals.

Our proposed approach, on the other hand, does
not modify the translation rules in the baseline sys-
tem, but only associates each nonterminal with a dis-
tribution of tags. For that reason, it does not suffer
from the aforementioned problem. It achieves ex-
actly the same performance as the baseline system
if no source syntactic constraints are imposed dur-
ing decoding. When the source syntax mismatch
features are used, the proposed approach is able to
achieve a gain of 0.41 in BLEU over the baseline
system. Table 4 lists the learned weights of the syn-
tax mismatch features after MT tuning. The nega-
tive weights of f1 and f2 mean that the MT system
penalizes source spans that do not have a fixed de-
pendency structure, and it assigns a higher penalty
to rules whose nonterminals have a high probability
of being extracted from source phrases that do not
have a fixed dependency structure. When the source
span has a fixed dependency structure, the MT sys-
tem prefers translation rules that have a high proba-
bility of matching the tag on the source span (feature
f4) over the ones that do not match (features f3 and
f5). This result is consistent with our expectations
of the syntax mismatch features.

Feature Description Weight

f1 ts = X, tr = X −1.543
f2 ts = X, tr ≠ X −0.676
f3 ts ≠ X, tr = X 0.380
f4 ts ≠ X, tr ≠ X, tr = ts 1.677
f5 ts ≠ X, tr ≠ X, tr ≠ ts 0.232

Table 4: Learned syntax mismatch feature weight

5.3 Syntax-based Reordering Model

Before evaluating the syntax-based reordering
model, we would like to establish the upper bound
improvement that could be achieved using the gen-
eral reordering framework for hierarchical transla-
tion models. Towards that goal, we conduct an ora-
cle experiment on the GALE/BOLT development set
that uses the oracle translation order from the ref-
erence as the external reordering model. For each
source sentence in the development set, we pair it
with the first reference translation (out of up to 4 in-
dependent translations). We then add the sentence
pairs from the development set to the parallel train-
ing data and run GIZA++ to obtain word alignments.
We consider the GIZA++ word alignments for the
development set to be all correct, and use it to de-
termine the oracle order in the reference translation.
For the ordering distribution, we set the log proba-
bility of the reference translation order to 0 and the
reverse order to -1 to avoid negative infinity. As
shown in Table 5, the system tuned and evaluated
with the oracle reordering model significantly out-
performs the baseline by a large margin of 2.32 in
BLEU on the GALE/BOLT test set. This suggests
that there is room for potential improvement by us-
ing a fairly trained reordering model.

BLEU

baseline 27.82
+ oracle reorder 30.14
+ syntax reorder 28.40

Table 5: Effects of external reordering features on MT
performance on the GALE/BOLT test set.

We next evaluate the syntax-based reordering
model. We train the model on manually aligned
Chinese-English corpora. Since the tokenization
used in the manual alignment corpora is different
from the tokenization used in our MT system, the
manual alignment is projected to the MT tokeniza-
tion based on the character alignment between the
tokens. Some extraneously tagged alignment links
in the manual alignment corpora are not useful for
machine translation and are thus removed before
projecting the alignment. As described in Sec-
tion 4.2, the syntax-based reordering method mod-
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els the translation order of sibling constituent pairs
in the source parse tree. As a result of strong phrasal
cohesion (Fox, 2002), we find that 94% of con-
stituent pairs have a clear ordering on the target
side. We only retain these constituent pairs for train-
ing and evaluating the reordering model. In order
to evaluate the accuracy of the maximum entropy
reordering model, we divide the manual alignment
corpora into 2/3 for training and 1/3 for evaluation.
A baseline that only chooses the majority order (i.e.
straight) has an accuracy of 69%, while the syntax-
based reordering model improves the accuracy to
79%.

The final reordering model used in MT is trained
on all of the samples extracted from the manual
alignment corpora. As shown in Table 5, the syntax-
based reordering feature improves the baseline by
0.58 in BLEU, which is a good improvement given
our strong baseline. Table 6 lists the number of
shifting errors in TER measurement (Snover et al.,
2006) of various systems on the GALE/BOLT test
set. The syntax-based reordering model achieves a
6.1% reduction in the number of shifting errors in
the baseline system, and its combination with the
syntax mismatch model achieves an additional re-
duction of 0.6%. This suggests that the proposed
method helps to improve word reordering in transla-
tion.

Shifting errors

baseline 3205
+ syntax mismatch 3089
+ syntax reorder 3010
+ syntax mismatch and reorder 2990

Table 6: Number of shifting errors in TER measurement
of multiple systems on the GALE/BOLT test set

5.4 Final Results

Table 7 shows the final results on the GALE/BOLT
test set, as well as the NIST MT06 and MT08 test
sets. Both the syntax mismatch and the syntax-based
reordering features improve the baseline system, re-
sulting in moderate to significant gains in all of the
five test sets. The two features are complementary
to each other and their combination results in better

improvement in four out of the five test sets com-
pared to adding them separately. In three out of the
five test sets, the improvement from the combina-
tion of the two features is statistically significant at
the 95% confidence level over the baseline, with the
largest absolute improvement of 1.43 in BLEU ob-
tained on MT08 web.

6 Conclusion

In this paper, We have discussed problems resulting
from explicitly decorating translation rules with syn-
tactic annotations. We presented a factored approach
to incorporate soft source syntax mismatch and re-
ordering constraints to hierarchical machine transla-
tion, and showed how our models avoid the pitfalls
of the explicit decoration approach. Experiments on
Chinese-English translation show that the proposed
approach significantly improves a strong string-to-
dependency translation baseline on multiple evalu-
ation sets. There are many directions in which this
work can be continued. The syntax mismatch model
can be extended to dynamically adjust the transla-
tion distribution based on the syntactic compatibil-
ity between a translation rule and a source sentence.
It also might be beneficial to look beyond syntactic
constituent pairs when modeling reordering, given
that phrasal cohesion does not always hold in trans-
lation. The general framework that uses an external
reordering model in hierarchical models via features
can also be naturally extended to use multiple re-
ordering models.
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Abstract

While inversion transduction grammar (ITG)
is well suited for modeling ordering shifts
between languages, how to make applying
the two reordering rules (i.e., straight and
inverted) dependent on actual blocks being
merged remains a challenge. Unlike previous
work that only uses boundary words, we pro-
pose to use recursive autoencoders to make
full use of the entire merging blocks alter-
natively. The recursive autoencoders are ca-
pable of generating vector space representa-
tions for variable-sized phrases, which enable
predicting orders to exploit syntactic and se-
mantic information from a neural language
modeling’s perspective. Experiments on the
NIST 2008 dataset show that our system sig-
nificantly improves over the MaxEnt classifier
by 1.07 BLEU points.

1 Introduction

Phrase-based models (Koehn et al., 2003; Och and
Ney, 2004) have been widely used in practical ma-
chine translation (MT) systems due to their effec-
tiveness, simplicity, and applicability. First, as se-
quences of consecutive words, phrases are capable
of memorizing local word selection and reorder-
ing, making them an effective mechanism for trans-
lating idioms or translations with word insertions
or omissions. Moreover, n-gram language models
can be seamlessly integrated into phrase-based de-
coders since partial translations grow left to right
in decoding. Finally, phrase-based systems can be
applicable to most domains and languages, espe-

cially for resource-scarce languages without high-
accuracy parsers.

However, as phrase-based decoding casts transla-
tion as a string concatenation problem and permits
arbitrary permutations, it proves to be NP-complete
(Knight, 1999). Therefore, phrase reordering mod-
eling has attracted intensive attention in the past
decade (e.g., Och et al., 2004; Tillman, 2004; Zens
et al., 2004; Al-Onaizan and Papineni, 2006; Xiong
et al., 2006; Koehn et al., 2007; Galley and Man-
ning, 2008; Feng et al., 2010; Green et al., 2010;
Bisazza and Federico, 2012; Cherry, 2013).

Among them, reordering models based on inver-
sion transduction grammar (ITG) (Wu, 1997) are
one of the important ongoing research directions.
As a formalism for bilingual modeling of sentence
pairs, ITG is particularly well suited to predicting
ordering shifts between languages. As a result, a
number of authors have incorporated ITG into left-
to-right decoding to constrain the reordering space
and reported significant improvements (e.g., Zens et
al., 2004; Feng et al., 2010). Along another line,
Xiong et al. (2006) propose a maximum entropy
(MaxEnt) reordering model based on ITG. They use
the CKY algorithm to recursively merge two blocks
(i.e., a pair of source and target strings) into larger
blocks, either in a straight or an inverted order. Un-
like lexicalized reordering models (Tillman, 2004;
Koehn et al., 2007; Galley and Manning, 2008) that
are defined on individual bilingual phrases, the Max-
Ent ITG reordering model is a two-category classi-
fier (i.e., straight or inverted) for two arbitrary bilin-
gual phrases of which the source phrases are adja-
cent. This potentially alleviates the data sparseness
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problem since there are usually a large number of
reordering training examples available (Xiong et al.,
2006). As a result, the MaxEnt ITG model and its
extensions (Xiong et al., 2008; Xiong et al., 2010)
have achieved competing performance as compared
with state-of-the-art phrase-based systems.

Despite these successful efforts, the ITG reorder-
ing classifiers still face a major challenge: how to
extract features from training examples (i.e., a pair
of bilingual strings). It is hard to decide which words
are representative for predicting reordering, either
manually or automatically, especially for long sen-
tences. As a result, Xiong et al. (2006) only use
boundary words (i.e., the first and the last words in
a string) to predict the ordering. What if we look
inside? Is it possible to avoid manual feature engi-
neering and learn semantic representations from the
data?

Fortunately, the rapid development of intersect-
ing deep learning with natural language processing
(Bengio et al., 2003; Collobert and Weston, 2008;
Collobert et al., 2011; Glorot et al., 2011; Bordes et
al., 2011; Socher et al., 2011a; Socher et al., 2011b;
Socher et al., 2011c; Socher et al., 2012; Bordes et
al., 2012; Huang et al., 2012; Socher et al., 2013;
Hermann and Blunsom, 2013) brings hope for alle-
viating this problem. In these efforts, natural lan-
guage words are represented as real-valued vectors,
which can be naturally fed to neural networks as in-
put. More importantly, it is possible to learn vec-
tor space representations for multi-word phrases us-
ing recursive autoencoders (Socher et al., 2011c),
which opens the door to leveraging semantic repre-
sentations of phrases in reordering models from a
neural language modeling point of view.

In this work, we propose an ITG reordering clas-
sifier based on recursive autoencoders. The neu-
ral network consists of four autoencoders (i.e., the
first source phrase, the first target phrase, the sec-
ond source phrase, and the second target phrase)
and a softmax layer. The recursive autoencoders,
which are trained on reordering examples extracted
from word-aligned bilingual corpus, are capable
of producing vector space representations for arbi-
trary multi-word strings in decoding. Therefore,
our model takes the whole phrases rather than only
boundary words into consideration when predict-
ing phrase permutations. Experiments on the NIST

2008 dataset show that our system significantly im-
proves over the MaxEnt classifier by 1.07 in terms
of case-insensitive BLEU score.

2 Recursive Autoencoders for ITG-based
Translation

2.1 Inversion Transduction Grammar
Inversion transduction grammar (ITG) (Wu, 1997)
is a formalism for synchronous parsing of bilingual
sentence pairs. Xiong et al. (2006) apply bracketing
transduction grammar (BTG), which is a simplified
version of ITG, to phrase-based translation using the
following production rules:

X → [X1, X2] (1)

X → 〈X1, X2〉 (2)

X → f/e (3)

where X is a block that consists of a pair of source
and target strings, f is a source phrase, and e is a tar-
get phrase. X1 and X2 are two neighboring blocks
of which the two source phrases are adjacent. While
rule (1) merges two target phrases in a straight or-
der, rule (2) merges in an inverted order. Besides
these two reordering rules, rule (3) is a lexical rule
that translates a source phrase f into a target phrase
e. This is exactly a bilingual phrase used in conven-
tional phrase-based systems.

An ITG derivation, which consists of a sequence
of production rules, explains how a sentence pair is
generated simultaneously. Figure 1 shows an ITG
derivation for a Chinese sentence and its English
translation. We distinguish between two types of
blocks:

1. atomic blocks: blocks generated by applying
lexical rules,

2. composed blocks: blocks generated by apply-
ing reordering rules.

In Figure 1, the sentence pair is segmented into
five atomic blocks:

X0,3,0,3 : wo you yi ge↔ I have a

X3,5,5,6 : cong mei you↔ never

X5,8,6,8 : jian guo de↔ seen before

X8,10,3,5 : nv xing peng you↔ female friend

X10,11,8,9 : .↔ .
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(1) X0,11,0,9 → [X0,10,0,8, X10,11,8,9]
(2) X0,10,0,8 → [X0,3,0,3, X3,10,3,8]
(3) X0,3,0,3 → wo you yi ge / I have a
(4) X3,10,3,8 → 〈X3,8,5,8, X8,10,3,5〉
(5) X3,8,5,8 → [X3,5,5,6, X5,8,6,8]
(6) X3,5,5,6 → cong mei you / never
(7) X5,8,6,8 → juan guo de / seen before
(8) X8,10,3,5 → nv xing peng you/ female friend
(9) X10,11,8,9 → . / .

Figure 1: An ITG derivation for a Chinese sentence and its translation. We useXi,j,k,l = 〈f j
i , e

l
k〉 to represent a block.

Our neural ITG reordering model first assigns vector space representations to single words and then produces vectors
for phrases using recursive autoencoders, which form atomic blocks. The atomic blocks are recursively merged into
composed blocks, the vector space representations of which are produced by recursive autoencoders simultaneously.
The neural classifier makes decisions at each node using the vectors of all its descendants.
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where X3,5,5,6 indicates that the block consists of a
source phrase spanning from position 3 to position 5
(i.e., “cong mei you”) and a target phrase spanning
from position 5 to position 6 (i.e., “never”). More
formally, a block Xi,j,k,l = 〈f ji , elk〉 is a pair of a
source phrase f ji = fi+1 . . . fj and a target phrase
elk = ek+1 . . . el. Obviously, these atomic blocks
are generated by lexical rules.

Two blocks of which the source phrases are adja-
cent can be merged into a larger one in two ways:
concatenating the target phrases in a straight order
using rule (1) or in an inverted order using rule (2).
For example, atomic blocks X3,5,5,6 and X5,8,6,8 are
merged into a composed block X3,8,5,8 in a straight
order, which is further merged with an atomic block
X8,10,3,5 into another composed block X3,10,3,8 in
an inverted order. This process recursively proceeds
until the entire sentence pair is generated.

The major challenge of applying ITG to machine
translation is to decide when to merge two blocks
in a straight order and when in an inverted order.
Therefore, the ITG reordering model can be seen as
a two-category classifier P (o|X1, X2), where o ∈
{straight, inverted}.

A naive way is to assign fixed probabilities to two
reordering rules, which is referred to as flat model
by Xiong et al. (2006):

P (o|X1, X2) =

{
p o = straight
1− p o = inverted

(4)

The drawback of the flat model is ignoring the
actual blocks being merged. Intuitively, different
blocks should have different preferences between
the two orders.

To alleviate this problem, Xiong et al. (2006) pro-
pose a maximum entropy (MaxEnt) classifier:

P (o|X1, X2) =
exp(θ · h(o,X1, X2))∑
o′ exp(θ · h(o′, X1, X2))

(5)

where h(·) is a vector of features defined on the
blocks and the order, θ is a vector of feature weights.

While MaxEnt is a flexible and powerful frame-
work for including arbitrary features, feature engi-
neering becomes a major challenge for the MaxEnt
classifier. Xiong et al. (2006) find that boundary
words (i.e., the first and the last words in a string)
are informative for predicting reordering. Actually,

Figure 2: A recursive autoencoder for multi-word strings.
The example is adapted from (Socher et al., 2011c). Blue
and grey nodes are original and reconstructed ones, re-
spectively.

it is hard to decide which internal words in a long
composed blocks are representative and informa-
tive. Therefore, they only use boundary words as
the main features.

However, it seems not enough to just consider
boundary words and ignore all internal words when
making order predictions, especially for long sen-
tences.1 Indeed, Xiong et al. (2008) find that the
MaxEnt classifier with boundary words as features
is prone to make wrong predictions for long com-
posed blocks. As a result, they have to impose a hard
constraint to always prefer merging long composed
blocks in a monotonic way.

Therefore, it is important to consider more than
boundary words to make more accurate reordering
predictions. We need a new mechanism to achieve
this goal.

2.2 Recursive Autoencoders

2.2.1 Vector Space Representations for Words
In neural networks, a natural language word is

represented as a real-valued vector (Bengio et al.,
2003; Collobert and Weston, 2008). For example,
we can use [0.1 0.8 0.4]T to represent “female” and

1Strictly speaking, the ITG reordering model is not a phrase
reordering model since phrase pairs are only the atomic blocks.
Instead, it is defined to work on arbitrarily long strings because
composed blocks become larger and larger until the entire sen-
tence pair is generated.
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Figure 3: A neural ITG reordering model. The binary classifier makes decisions based on the vector space representa-
tions of the source and target sides of merging blocks.

[0.7 0.1 0.5]T to represent “friend”. Such vector
space representations enable natural language words
to be fed to neural networks as input.

Formally, we denote each word as a vector x ∈
Rn. These word vectors are then stacked into a word
embedding matrix L ∈ Rn×|V |, where |V | is the vo-
cabulary size. Given a sentence that is an ordered list
ofmwords, each word has an associated vocabulary
index k into the word embedding matrix L that we
use to retrieve the word’s vector space representa-
tion. This look-up operation can be seen as a simple
projection layer:

xi = Lbk ∈ Rn (6)

where bk is a binary vector which is zero in all posi-
tions except for the kth index.

In Figure 1, we assume n = 3 for simplicity and
can retrieve vectors for Chinese and English words
from two embedding matrices, respectively.

2.2.2 Vector Space Representations for
Multi-Word Strings

To apply neural networks to ITG-based transla-
tion, it is important to generate vector space repre-
sentations for atomic and composed blocks.

For example, since the vector of “female” is
[0.1 0.8 0.4]T and the vector of “friend” is
[0.7 0.1 0.5]T , what is the vector of the phrase “fe-
male friend”? If we denote “female friend” as p
(i.e., parent), “female” as c1 (i.e., the first child),
and “friend” as c2 (i.e., the second child), this can

be done by applying a function f (1):

p = f (1)(W (1)[c1; c2] + b(1)) (7)

where [c1; c2] ∈ R2n×1 is the concatenation of c1
and c2, W (1) ∈ Rn×2n is a parameter matrix, b(1) ∈
Rn×1 is a bias term, and f (1) is an element-wise ac-
tivation function such as tanh(·), which is used in
our experiments.

Note that the resulting vector for the parent is also
an n-dimensional vector, e.g, [0.6 0.9 0.2]T . The
same neural network can be recursively applied to
two strings until the vector of the entire sentence is
generated. As ITG derivation builds a binary parse
tree, the neural network can be naturally integrated
into CKY parsing.

To assess how well the learned vector p represents
its children, we can reconstruct the children in a
reconstruction layer:

[c′1; c
′
2] = f (2)(W (2)p+ b(2)) (8)

where c′1 and c′2 are the reconstructed children,W (2)

is a parameter matrix for reconstruction, b(2) is a bias
term for reconstruction, and f (2) is an element-wise
activation function, which is also set as tanh(·) in
our experiments. Similarly, the same reconstruction
neural network can be applied to each node in an
ITG parse.

These neural networks are called recursive au-
toencoders (Socher et al., 2011c). Figure 2 illus-
trates an application of a recursive autoencoder to a
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binary tree. The blue and grey nodes are the original
and reconstructed nodes, respectively. The autoen-
coder is re-used at each node of the tree. The bi-
nary tree is composed of a set of triplets in the form
of (p → c1 c2), where p is a parent vector and c1
and c2 are children vectors of p. Each child can be
either an input word vector or a multi-word vector.
Therefore, the tree in Figure 2 can be represented as
three triplets: (y1 → x1 x2), (y2 → y1 x3), and
(y3 → y2 x4).

In Figure 1, we use recursive autoencoders to gen-
erate vector space representations for Chinese and
English phrases, which form the atomic blocks for
further block merging.

2.2.3 A Neural ITG Reordering Model
Once the vectors for blocks are generated, it is

straightforward to introduce a neural ITG reorder-
ing model. As shown in Figure 3, the neural net-
work consists of an input layer and a softmax layer.
The input layer is composed of the vectors of the
first source phrase, the first target phrase, the second
source phrase, and the second target phrase. Note
that all phrases in the same language use the the
same recursive autoencoder. The softmax layer out-
puts the probabilities of the two merging orders:

P (o|X1, X2) =
exp(g(o,X1, X2))∑
o′ exp(g(o′, X1, X2))

(9)

g(o,X1, X2) = f(W oc(X1, X2) + bo) (10)

where o ∈ {straight, inverted}, W o ∈ R1×4n

is a parameter matrix, bo ∈ R is a bias term, and
c(X1, X2) ∈ R4n×1 is the concatenation of the vec-
tors of the four phrases.

3 Training

There are three sets of parameters in our recursive
autoencoders:

1. θL: word embedding matrix L for both source
and target languages (Section 2.2.1);

2. θrec: recursive autoencoder parameter matrices
W (1), W (2) and bias terms b(1), b(2) for both
source and target languages (Section 2.2.2);

3. θreo: neural ITG reordering model parameter
matrix W o and bias term bo (Section 2.2.3).

All these parameters are learned automatically from
the training data. For clarity, we will use θ to denote
all these parameters in the rest of the paper.

For training word embedding matrix, there are
two settings commonly used. In the first setting,
the word embedding matrix is initialized randomly.
This works well in a supervised scenario, in which
a neural network updates the matrix in order to op-
timize some task-specific objectives (Collobert et
al., 2011; Socher et al., 2011c). In the second set-
ting, the word embedding matrix is pre-trained us-
ing an unsupervised neural language model (Bengio
et al., 2003; Collobert and Weston, 2008) with huge
amount of unlabeled data. In this work, we prefer to
the first setting because the word embedding matri-
ces can be trained to minimize errors with respect to
reordering modeling.

There are two kinds of errors involved

1. reconstruction error: how well the learned
vector space representations represent the cor-
responding strings?

2. reordering error: how well the classifier pre-
dicts the merging order?

As described in Section 2.2.2, the input vector
c1 and c2 of a recursive autoencoder can be recon-
structed using Eq. 8 as c′1 and c′2. We use Euclidean
distance between the input and the reconstructed
vectors to measure the reconstruction error:

Erec([c1; c2]; θ) =
1

2

∥∥[c1; c2]− [c′1; c
′
2]
∥∥2
. (11)

Given a sentence, there are exponentially many
ways to obtain its vector space representation. Note
that each way corresponds to a binary tree like Fig-
ure 2. To find a binary tree with minimal reconstruc-
tion error, we follow Socher et al. (2011c) to use a
greedy algorithm. Taking Figure 2 as an example,
the greedy algorithm begins with computing the re-
construction error Erec(·) for each pair of consecu-
tive vectors, i.e., Erec([x1;x2]; θ), Erec([x2;x3]; θ)
and Erec([x3;x4]; θ). Suppose Erec([x1;x2]; θ) is
the smallest, the algorithm will replace x1 and x2

with their vector representation y1 produced by the
recursive autoencoder. Then, the algorithm evalu-
ates Erec([y1;x3]; θ) and Erec([x3;x4]; θ) and re-
peats the above replacing steps until only one vector
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remains. Socher et al. (2011c) find that the greedy
algorithm runs fast without significant loss in perfor-
mance as compared with CKY-style algorithms.

Given a training example set S = {ti =
(oi, X

1
i , X

2
i )}, the average reconstruction error on

the source side on the training set is defined as

Erec,s(S; θ) =
1

Ns

∑
i

∑
p∈T θR(ti,s)

Erec([p.c1, p.c2]; θ)

(12)
where T θR(ti, s) denotes all the intermediate nodes
on the source side in binary trees, Ns is the num-
ber of these intermediate nodes, and p.ck is the kth
child vector of p. The average reconstruction error
on the target side, denoted by Erec,t(S; θ), can be
computed in a similar way.

Therefore, the reconstruction error is defined as

Erec(S; θ) = Erec,s(S; θ) + Erec,t(S; θ). (13)

Given a training example ti = (oi, X
1
i , X

2
i ), we

assume the probability distribution dti for its label
is [1, 0] when oi = straight, and [0, 1] when oi =
inverted. Then the cross-entropy error is

Ec(ti; θ) = −
∑
o

dti(o) log
(
Pθ(o|X1, X2)

)
(14)

where o ∈ {straight, inverted}. As a result, the
reordering error is defined as

Ereo(S; θ) =
1

|S|
∑
i

Ec(ti; θ). (15)

Therefore, the joint training objective function is

J = αErec(S; θ)+(1−α)Ereo(S; θ)+R(θ) (16)

where α is a parameter used to balance the prefer-
ence between reconstruction error and reordering er-
ror, R(θ) is the regularizer and defined as 2

R(θ) =
λL
2
‖θL‖2 +

λrec
2
‖θrec‖2 +

λreo
2
‖θreo‖2 .

(17)
As Socher et al. (2011c) stated, a naive way for

lowering the reconstruction error is to make the
magnitude of the hidden layer very small, which is

2The bias terms b(1), b(2) and bo are not regularized. We do
not exclude them from the equation explicitly just for clarity.

not desirable. In order to prevent such behavior, we
normalize all the output vectors of the hidden layers
to have length 1 in the same way as (Socher et al.,
2011c). Namely we set p = p

||p|| after computing p

as in Eq. 7, and c′1 =
c′1
||c′1||

, c′2 =
c′2
||c′2||

in Eq. 8.
Following Socher et al. (2011c), we use L-BFGS

to estimate the parameters with respect to the joint
training objective. Given a set of parameters, we
construct binary trees for all the phrases using the
greedy algorithm. The derivatives for these fixed
binary trees can be computed via backpropagation
through structures (Goller and Kuchler, 1996).

4 Experiments

4.1 Data Preparation
We evaluated our system on Chinese-English trans-
lation. The training corpus contains 1.23M sen-
tence pairs with 32.1M Chinese words and 35.4M
English words. We used SRILM (Stolcke, 2002)
to train a 4-gram language model on the Xinhua
portion of the GIGAWORD corpus, which con-
tains 398.6M words. We used the NIST 2006 MT
Chinese-English dataset as the development set and
NIST 2008 dataset as the test set. The evaluation
metric is case-insensitive BLEU. Because of the ex-
pensive computational cost for training our neural
ITG reordering model, only the reordering exam-
ples extracted from about 1/5 of the entire parallel
training corpus were used to train our neural ITG re-
ordering model.

For the neural ITG reordering model, we set the
dimension of the word embedding vectors to 25 em-
pirically, which is a trade-off between computational
cost and expressive power. We use the early stop-
ping principle to determine when to stop L-BFGS.
The hyper-parameters α, λL, λrec and λreo are op-
timized by random search (Bergstra and Bengio,
2012). As preliminary experiments show that classi-
fication accuracy has a high correlation with BLEU
score, we optimize these hyper-parameters with re-
spect to classification accuracy instead of BLEU
to reduce computational cost. We randomly select
400,000 reordering examples as training set, 500 as
development set, and another 500 as test set. The
numbers of straight and inverted reordering exam-
ples in the development/test set are set to be equal
to avoid biases. We draw α uniformly from 0.05
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System NIST 2006 (tune) NIST 2008
maxent 30.40 23.75
neural 31.61* 24.82*

Table 1: BLEU scores on the NIST 2006 and 2008
datasets. *: significantly better (p < 0.01). “maxent”
denotes the baseline maximum entropy system and “neu-
ral” denotes our recursive autoencoder system.

length > = <

[1, 10] 43 121 57
[11, 20] 181 67 164
[21, 30] 170 11 152
[31, 40] 105 3 90
[41, 50] 69 1 53
[51, 119] 40 0 30

Table 2: Number of sentences that our system has a
higher (>), equal (=) or lower (<) sentence-level BLEU-
4 score on the NIST 2008 dataset.

to 0.3, and λL, λrec, λreo exponentially from 10−8

to 10−2. We use the following hyper-parameters in
our experiments: α = 0.11764, λL = 7.59 × 10−5,
λrec = 1.30× 10−5 and λreo = 3.80× 10−4. 3

The baseline system is a re-implementation of
(Xiong et al., 2006). Our system is different from the
baseline by replacing the MaxEnt reordering model
with a neural model. Both the systems have the same
pruning settings: the threshold pruning parameter is
set to 0.5 and the histogram pruning parameter to
40. For minimum-error-rate training, both systems
generate 200-best lists.

4.2 MT Evaluation

Table 1 shows the case-insensitive BLEU-4 scores
of the baseline system and our system on the devel-
opment and test sets. Our system outperforms the
baseline system by 1.21 BLEU points on the de-
velopment set and 1.07 on the test set. Both the
differences are statistically significant at p = 0.01
level (Riezler and Maxwell, 2005).

Table 2 shows the number of sentences that our
system has a higher (>), equal (=) or lower (<)
BLEU score on the NIST 2008 dataset. We find that
our system is superior to the baseline system for long

3The choice of α is very important for achieving high BLEU
scores. We tried a number of intervals and found that the clas-
sification accuracy is most stable in the interval [0.100,0.125].
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Figure 4: Comparison of reordering classification accu-
racies between the MaxEnt and neural classifiers over
varying phrase lengths. “Length” denotes the sum of the
lengths of two source phrases in a reordering example.
Our classifier (neural) outperforms the MaxEnt classi-
fier (maxent) consistently, especially for predicting long-
distance reordering.

# of examples NIST 2006 (tune) NIST 2008
100,000 30.88 23.78
200,000 30.75 23.89
400,000 30.80 24.35
800,000 31.01 24.45

6,004,441 31.61 24.82

Table 3: The effect of reordering training data size on
BLEU scores. The BLEU scores rise with the increase of
training data size. Due to the computational cost, we only
used 1/5 of the entire bilingual corpus to train our neural
reordering model.

sentences.
Figure 4 compares classification accuracies of the

neural and MaxEnt classifiers. “Length” denotes the
sum of the lengths of two source phrases in a re-
ordering example. For each length, we randomly se-
lect 200 unseen reordering examples to calculate the
classification accuracy. Our classifier outperforms
the baseline consistently, especially for long com-
posed blocks.

Xiong et al. (2008) find that the performance of
the baseline system can be improved by forbidding
inverted reordering if the phrase length exceeds a
pre-defined distortion limit. This heuristic increases
the BLEU score of the baseline system significantly
to 24.46 but is still significantly worse (p < 0.05)
than our system without the heuristic. We find that
imposing this heuristic fails to improve our system
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cluster 1 cluster 2 cluster 3 cluster 4 cluster 5
1.18 works for alternative duties these people who of the three
accessibility verify on one-day conference the reasons why on the fundamental
wheelchair tunnels from armed groups the story of how over the entire
candies transparency in chinese language works the system which through its own
cough opinion at eating habits the trend towards with the best

Table 4: Words and phrases that are close in the Euclidean space. The words and phrases in the same cluster have
similar behaviors from a reordering point of view rather than relatedness, suggesting that the vector representations
produced by the recursive autoencoders are helpful for capturing reordering regularities.

significantly. One possible reason is that there is
limited room for improvement as our system makes
fewer wrong predictions for long composed blocks.

The above results suggest that our system does go
beyond using boundary words and make a better use
of the merging blocks by using vector space repre-
sentations.

Table 3 shows the effect of training dataset size
on BLEU scores. We find that BLEU scores on both
the development and test sets rise with the increase
of the training dataset size. As the training process is
very time-consuming, only the reordering examples
extracted from 1/5 of the entire parallel training cor-
pus are used in our experiments to train our model.
Obviously, with more efficient training algorithms,
making full use of all the reordering examples ex-
tracted from the entire corpus will result in better
results. We leave this for future work.

4.3 Qualitative Analysis on Vector
Representations

Table 4 shows a number of words and phrases that
are close (measured by Euclidean distance) in the
n-dimensional space. We randomly select about
370K target side phrases used in our experiments
and cluster them into 983 clusters using k-means al-
gorithm (MacQueen, 1967). The distance between
two phrases are measured by the Euclidean distance
between their vector representations. As shown in
Table 4, cluster 1 mainly consists of nouns, clus-
ter 2 mainly contains verb/noun+preposition struc-
tures, cluster 3 contains compound phrases, cluster
4 consists of phrases which should be followed by
a clause, and cluster 5 mainly contains the begin-
ning parts of prepositional phrases that tend to be
followed by a noun phrase or word. We find that
the words and phrases in the same cluster have sim-

ilar behaviors from a reordering point of view rather
than relatedness. This indicates that the vector rep-
resentations produced by the recursive autoencoders
are helpful for capturing reordering regularities.

5 Conclusion

We have presented an ITG reordering classifier
based on recursive autoencoders. As recursive au-
toencoders are capable of producing vector space
representations for arbitrary multi-word strings in
decoding, our neural ITG system achieves an ab-
solute improvement of 1.07 BLEU points over the
baseline on the NIST 2008 Chinese-English dataset.

There are a number of interesting directions we
would like to pursue in the near future. First, re-
placing the MaxEnt classifier with a neural one re-
defines the conditions for risk-free hypothesis re-
combination. We find that the number of hypothe-
ses that can be recombined reduces in our system.
Therefore, we plan to use forest reranking (Huang,
2008) to alleviate this problem. Second, it is in-
teresting to follow Socher et al. (2013) to combine
linguistically-motivated labels with recursive neural
networks. Another problem with our system is that
the decoding speed is much slower than the baseline
system because of the computational overhead intro-
duced by RAEs. It is necessary to investigate more
efficient decoding algorithms. Finally, it is possible
to apply our method to other phrase-based and even
syntax-based systems.
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Abstract

In this paper, we analyze a novel set of fea-
tures for the task of automatic edit category
classification. Edit category classification as-
signs categories such as spelling error correc-
tion, paraphrase or vandalism to edits in a doc-
ument. Our features are based on differences
between two versions of a document includ-
ing meta data, textual and language properties
and markup. In a supervised machine learning
experiment, we achieve a micro-averaged F1
score of .62 on a corpus of edits from the En-
glish Wikipedia. In this corpus, each edit has
been multi-labeled according to a 21-category
taxonomy. A model trained on the same
data achieves state-of-the-art performance on
the related task of fluency edit classification.
We apply pattern mining to automatically la-
beled edits in the revision histories of different
Wikipedia articles. Our results suggest that
high-quality articles show a higher degree of
homogeneity with respect to their collabora-
tion patterns as compared to random articles.

1 Introduction

Due to its ever-evolving and collaboratively built
content, Wikipedia has been the subject of many
NLP studies. While the number of newly created
articles in the online encyclopedia declined in the
last few years (Suh et al., 2009), the number of edits
in existing articles is rather stable.1 It is reasonable
to assume that the latter will not change in the near

1http://stats.wikimedia.org/EN/
TablesDatabaseEdits.htm

future. One of the major reasons for the popular-
ity of Wikipedia is its up-to-dateness (Keegan et al.,
2013), which in turn requires constant editing activ-
ity. Wikipedia’s revision history stores all changes
made to any page in the encyclopedia in separate
revisions. Previous studies have exploited revision
history data in tasks such as preposition error cor-
rection (Cahill et al., 2013), spelling error correc-
tion (Zesch, 2012) or paraphrasing (Max and Wis-
niewski, 2010). However, they all use different ap-
proaches to extract the information needed for their
task. Ferschke et al. (2013) outline several appli-
cations benefiting from revision history data. They
argue for a unified approach to extract and classify
edits from revision histories based on a predefined
edit category taxonomy.

In this work, we show how the extraction and
automatic multi-label classification of any edit in
Wikipedia can be handled with a single approach.
Therefore, we use the 21-category edit classification
taxonomy developed in previous work (Daxenberger
and Gurevych, 2012). This taxonomy enables a fine-
grained analysis of edit activity in revision histories.
We present the results from an automatic classifica-
tion experiment, based on an annotated corpus of ed-
its in the English Wikipedia. Additional information
necessary to reproduce our results, including word
lists and training, development and test data, is re-
leased online.2 To the best of our knowledge, this
is the first approach allowing to classify each single
edit in Wikipedia into one or more of 21 different
edit categories using a supervised machine learning

2http://www.ukp.tu-darmstadt.de/data/
edit-classification
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approach.
We define our task as edit category classification.

An edit is a coherent, local change which modifies a
document and which can be related to certain meta
data (e.g. its author, time stamp etc.). In edit ca-
tegory classification, we aim to detect all n edits
ekv−1,v with 0 ≤ k < n in adjacent versions rv−1, rv
of a document (we refer to the older revision as rv−1

and to the newer as rv) and assign each of them
to one or more edit categories. There exist at least
two main applications of edit category classification:
First, a fine-grained classification of edits in collab-
oratively created documents such as Wikipedia ar-
ticles, scientific papers or research proposals, would
help us to better understand the collaborative writing
process. This includes answers to questions about
the kind of contribution of individual authors (Who
has added substantial contents?, Who has improved
stylistic issues?) and about the kind of collabora-
tion which characterizes different articles (Liu and
Ram, 2011). Second, automatic classification of ed-
its generates huge amounts of training data for the
above mentioned NLP systems.

Edit category classification is related to the bet-
ter known task of document pair classification.
In document pair classification, a pair of docu-
ments has to be assigned to one or more categories
(e.g. paraphrase/non-paraphrase, plagiarism/non-
plagiarism). Here, the document may be a very short
text, such as a sentence or a single word. Appli-
cations of document pair classification include pla-
giarism detection (Potthast et al., 2012), paraphrase
detection (Madnani et al., 2012) or text similarity
detection (Bär et al., 2012). In edit category clas-
sification, we also have two documents. However,
these documents are different versions of the same
text. This scenario implies certain characteristics for
a well-designed feature set as we will demonstrate in
this study.

The main contributions of this paper are: First,
we introduce a novel feature set for edit category
classification. Second, we evaluate the performance
of this feature set on different tasks within a cor-
pus of Wikipedia edits. We propose the new task of
edit category classification and show that our model
is able to classify edits from a 21-category taxon-
omy. Furthermore, our model achieves state-of-the-
art performance in a fluency edit classification task

(Bronner and Monz, 2012). Third, we analyze col-
laboration patterns based on edit categories on two
subsets of Wikipedia articles, namely featured and
non-featured articles. We detect correlations be-
tween collaboration patterns and high-quality arti-
cles. This is demonstrated by the fact that featured
articles have a higher degree of homogeneity with
respect to their collaboration patterns as compared
to random articles.

The rest of this paper is structured as follows. In
Section 2, we motivate our experiments based on
previous work. Section 3 explains our training data
and the features we use for the machine learning ex-
periments. In Section 4, we present and discuss the
results of our experiments. We also demonstrate an
application of our classifier model in Section 5 by
mining frequent collaboration patterns in the revi-
sion histories of different articles. Finally, we draw
a conclusion in Section 6.

2 Related Work

Wikipedia is a huge data source for generating train-
ing data for edit category classification, as all pre-
vious versions of each page in the encyclopedia
are stored in its revision history. Unsurprisingly,
the number of studies extracting certain kinds of
Wikipedia edits keeps growing. Most of these use
manually defined rules or filters find the right kind
of edits. Among the latter, there are NLP applica-
tions such as the detection of lexical errors (Nelken
and Yamangil, 2008), spelling error correction (Max
and Wisniewski, 2010; Zesch, 2012), preposition er-
ror correction (Cahill et al., 2013), sentence com-
pression (Nelken and Yamangil, 2008; Yamangil
and Nelken, 2008), summarization (Nelken and Ya-
mangil, 2008), simplification (Yatskar et al., 2010;
Woodsend and Lapata, 2011), paraphrasing (Max
and Wisniewski, 2010; Dutrey et al., 2011), tex-
tual entailment (Zanzotto and Pennacchiotti, 2010;
Cabrio et al., 2012), information retrieval (Aji et al.,
2010; Nunes et al., 2011) and bias detection (Re-
casens et al., 2013).

Bronner and Monz (2012) define features for the
supervised classification of factual and fluency edits.
Their features are calculated both on character- and
word-level. Furthermore, they use features based
on POS tags, named entities, acronyms, and a lan-
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Figure 1: An example edit from WPEC labeled with REFERENCE-M, as displayed by Wikimedia’s diff page tool.

guage model (word n-grams). In their experiments,
character-level features and named entity features
show the highest improvement over the baseline.

Vandalism detection in Wikipedia has mostly
been defined as a binary machine learning task,
where the goal is to classify a pair of adjacent re-
visions as vandalized or not-vandalized based on
edit category features. In Adler et al. (2011), the
authors group these features into meta data (au-
thor, comment and time stamp of a revision), rep-
utation (author and article reputation), textual (lan-
guage independent, i.e. token- and character-based)
and language features (language dependent, mostly
dictionary-based). They carry out cross-validation
experiments on the PAN-WVC-10 corpus (Potthast
and Holfeld, 2011). Classifiers based on reputa-
tion and text performed best. Adler et al. (2011)
use Random Forests as classifier (Breiman, 2001)
in their experiments. This classifier was also used
in the vandalism detection study of Javanmardi et al.
(2011) where it outperformed the classifiers based
on Logistic Regression and Naive Bayes.

Different to the approach of Bronner and Monz
(2012) and previous vandalism classification stud-
ies, we built a model which accounts for multi-
labeling and a fine-grained edit category system.
Our feature set builds upon existing work while
adding a substantial number of new features.

3 Experiments

3.1 Wikipedia Edit Category Corpus

For our experiments, we used the freely avail-
able Wikipedia Edit Category Corpus (WPEC) com-
piled in previous work (Daxenberger and Gurevych,
2012). In this corpus, each pair of adjacent revisions
is segmented into one or more edits. This enables
an accurate picture of the editing process, as an au-

thor may perform several independent edits in the
same revision. Furthermore, edits are multi-labeled,
i.e. each edit is assigned one or more categories.
This is important for a precise description of major
edits, e.g. when an entire new paragraph including
text, references and markup is added. There are four
basic types of edits, namely Insertions, Deletions,
Modifications and Relocations. These are calculated
via a line-based diff comparison on the source text
(including wiki markup). As previously suggested
(Daxenberger and Gurevych, 2012), inside modified
lines, only the span of text which has actually been
changed is marked as edit (either Insertion, Dele-
tion or Modification), not the entire line. We ex-
tracted the data which is not contained in WPEC
(meta data and plain text of rv−1 and rv) using the
Java Wikipedia Library (JWPL) with the Revision
Toolkit (Ferschke et al., 2011).

In Daxenberger and Gurevych (2012), we divide
the 21-category taxonomy into text-base (meaning-
changing edits), surface (non meaning-changing ed-
its) and Wikipedia policy (VANDALISM and RE-
VERT) edits. Among the text-base edits, we include
categories for templates, references (internal and ex-
ternal links), files and information, each of which
is further divided into an insertion (I), deletion (D)
and modification (M) category. Surface edits con-
sist of paraphrases, spelling and grammar correc-
tions, relocations and markup edits. The latter cate-
gory contains all edits which affect markup elements
that are not covered by any of the other categories
and is divided into insertions, deletions and modifi-
cations. This includes, for example, apostrophes in
'''bold text'''. We also suggested an OTHER category,
which is intended for edits which cannot be labeled
due to segmentation errors. Figure 1 shows an exam-
ple edit from WPEC, labeled with the REFERENCE-
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Feature Value Explanation

M
et

a
D

at
a

Author group user Wikimedia user group of the author
Author is registered* true Author is registered (otherwise: IP user)
Same author* false Authors of rv and rv−1 are the same
Comment length* 0 Number of characters in the comment
Vulgarism in comment false Comment contains a word from in the vulgarism word list
Comment is auto-generated false Entire comment has been auto-generated
Auto-generated comment ratio 0 Auto-generated part of comment divided by length of the comment
Incorrect comment ratio 0 Out-of-dictionary word count divided by word count in the comment
Comment n-grams1 — Presence or absence of token n-grams in the comment
Is revert* false Comment contains a word from in the revert word list
Is minor false Revision has been marked as minor change
Time difference* 505 Time difference between rv−1 and rv (in minutes)
Number of edits 1 Absolute number of edits in the (rv−1, rv)-pair

Te
xt

ua
l

Diff capitals* 0 Difference in the number of capitals
Diff digits* 0 Difference in the number of digits
Diff special characters* 2 Difference in the number of non-alphanumeric characters
Diff whitespace characters 1 Difference in the number of whitespace characters
Diff characters* 9 Difference in the number of characters
Diff tokens* 1 Difference in the number of whitespace-separated tokens
Diff repeated characters 0 Difference in the number of repeated characters
Diff repeated tokens 0 Difference in the number of repeated white-space separated tokens
Cosine similarity 0 Cosine similarity
Levenshtein distance* 9 Levenshtein distance
Optimal string alignment distance 9 Optimal string alignment distance (Damerau-Levenshtein distance)
Ratio diff to paragraph characters 0.02 Diff characters divided by the length of the edited paragraph
Ratio diff to revision characters 0.0005 Diff characters divided by the length of rv−1

Ratio diff to paragraph tokens 0.04 Diff tokens divided by the length of the edited paragraph
Ratio diff to revision tokens 0.0003 Diff tokens divided by the length of rv−1

Ratio old to new paragraph 0 Difference in the number of characters in the edited paragraph
Character n-grams1 p,o,e,t,r,y2 Presence or absence of n-grams of edited characters
Token n-grams1 poetry2 Presence or absence of n-grams of edited tokens
Simple edit type Insertion Modification, Insertion, Deletion or Relocation

M
ar

ku
p

Diff number m 0 Difference in the number of m
Diff type m false Different types of m
Diff type context m true3 Different types of m within the immediate context of the edit
Is covered by m true3 Edit is covered by m in rv−1

Covers m false Edit covers m in rv−1

L
an

gu
ag

e Diff spelling errors* 0 Difference in the number of out-of-dictionary words
Diff vulgar words* 0 Difference in the number of tokens contained in vandalism word list
Semantic similarity -1 Explicit Semantic Analysis with vector indexes from Wiktionary
Diff POS tags* false POS tag sets are symmetrically different
Diff type POS tags* 0 Number of distinct POS tags

1 N-gram features are represented as boolean features.
2 In this example, n = 1 (unigrams).
3 True if m corresponds to internal link, false otherwise.

Table 1: List of edit category classification features with explanations. The values correspond to the the example edit
from Figure 1. m may refer to internal link, external link, image, template or markup element. Features marked with
* have previously been mentioned in Adler et al. (2011), Javanmardi et al. (2011) or Bronner and Monz (2012).
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M category. WPEC was created in a manual anno-
tation study with three annotators. The overall inter-
annotator agreement measured as Krippendorf’s α is
.67 (Daxenberger and Gurevych, 2012). The exper-
iments in this study are based on the gold standard
annotations in WPEC, which have been derived by
means of a majority vote for each edit.

WPEC consists of 981 revision pairs, segmented
into 1,995 edits. We define edit category classifica-
tion as a multi-label classification task. For the sake
of readability, in the following we will refer to an
edit ekv−1,v as ei, with ei ∈ E, where 0 ≤ i < 1995
and E is the set of all edits. An edit ei is the basic
classification unit in our task. Each ei has to be la-
beled with a set of categories y ⊆ C, where C is the
set of all edit categories, |C| = 21.

3.2 Features for Edit Category Classification

We grouped our features into meta data, textual,
markup and language features. An overview and
explanation of all features can be found in Table 1.
The scheme we apply to group edit category clas-
sification features is similar to the system used by
Adler et al. (2011). We re-use some of the features
suggested by Adler et al. (2011), Javanmardi et al.
(2011) and Bronner and Monz (2012), as marked in
Table 1. Features are calculated on edited text spans.
We label the edited text span corresponding to ei in
rv−1 as tv−1 and the edited text span in rv as tv. In
edits which are insertions, we consider tv−1 to be
empty, while tv is considered empty for deletions.
For Relocations, tv−1 = tv.

Table 1 includes the value of each feature for the
example edit from Figure 1. This edit modifies the
link [[Dactyl|Dactylic]] by adding a speci-
fication to the target of that link. For spell-checking,
we use British and US-American English Jazzy dic-
tionaries.3 Markup elements are detected by the
Sweble Wikitext parser (Dohrn and Riehle, 2011).

Meta data features We consider the comment,
author, time stamp or any other flag (“minor
change”) of rv as meta data. The Wikimedia user
group4 of an author specifies the edit permissions

3http://sourceforge.net/projects/
jazzydicts

4http://meta.wikimedia.org/wiki/User_
classes

of this user (e.g. bot, administrator, blocked user).
We indicate whether the revision comments or parts
of it have been auto-generated. This happens when
a page is blanked, i.e. all of its content has been
deleted or replaced or when a new page or redirect is
created (denoted by the Comment is auto-generated
feature). Furthermore, edits within a specific sec-
tion of an article are automatically marked by adding
a prefix with the name of this section to the com-
ment of the revision (denoted by the Auto-generated
comment ratio feature). Meta data features have the
same value for all edits in a (rv−1, rv)-pair.

Textual features Textual features are calculated
based on a certain property of the changed text. In
a preprocessing step, any wiki markup inside tv−1

and tv is deleted. As for the example edit from Fig-
ure 1, tv−1 would correspond to an empty string and
tv would be represented as “ (poetry)”. The n-gram
feature spaces are composed of n-grams that are
present either in tv−1 but not tv, or vice verse. Char-
acter n-grams only contain English alphabet charac-
ters, token n-grams consist of words excluding spe-
cial characters.

Markup features As opposed to textual features,
wiki markup features account for the Wikimedia
specific markup elements. Markup features are cal-
culated based on the number and type of a markup
element m and the surrounding context of an edit.
Here, m can be a template, an external or internal
link, an image or any other element used to describe
markup including HTML tags. The type of m is
defined by the link target for internal and external
links and images, by the name of the template for
templates and by the wiki markup element name for
markup elements. Markup features are calculated on
text spans tv−1 and tv. Naturally, wiki markup is not
deleted beforehand. The edited text spans tv−1 and
tv may be located inside a markup elementm (e.g. a
link or a template). In such cases, our diff algorithm
will not label the entire element m, but rather the
actually modified text. However, such an edit may
change the name of a template or the target of a link
(as in the example edit from Figure 1). We there-
fore include the immediate context sv−1 and sv of
each edit and compare the type of potential markup
elements m in sv−1 and sv. Here, sv (sv−1) is de-
fined as tv (tv−1) including all preceding and follow-
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Revisions Edits Cardinality
Train 713 1,597 1.20
Test 89 229 1.24
Dev 89 169 1.21

Table 2: Statistics of the training, test and development
set. Cardinality is the average number of edit categories
assigned to an edit.

ing characters in rv (rv−1) which are not separated
from tv (tv−1) by a boundary character (whitespace
or line break). The above described features model
what is actually edited in the text. A number of fea-
tures are calculated on tv−1 only. These features are
more likely to inform about where an edit is con-
ducted. They specify whether tv−1 covers (i.e. con-
tains) a certain wiki markup element and vice versa,
i.e. whether tv−1 is located inside a text span that
belongs to a markup element.

Language Language features are calculated on the
context sv−1 and sv of edits, any wiki markup is
deleted. For the Explicit Semantic Analysis, we use
Wiktionary (Zesch et al., 2008) and not Wikipedia
assuming that the former has a better coverage with
respect to different lexical classes. POS tagging was
carried out using the OpenNLP POS tagger.5 The
vandalism word list contains a hand-crafted set of
around 100 vandalism and spam words from various
places in the web.

3.3 Experimental Setup

We extract features with the help of ClearTK (Ogren
et al., 2008). For the machine learning part, we use
Weka (Hall et al., 2009) with the Meka6 and Mu-
lan (Tsoumakas et al., 2010) extensions for multi-
label classification. We use DKPro Lab (Eckart de
Castilho et al., 2011) to test different parameter com-
binations. We randomly split the gold standard data
from WPEC into 80% training, 10% test and 10%
development set, as shown in Table 2.

Multi-label Classification We report the perfor-
mance of various machine learning algorithms. A
comprehensive overview of multi-label classifica-
tion algorithms and evaluation measures can be

5Maxent model for English, http://opennlp.
apache.org

6http://meka.sourceforge.net
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Threshold – – .10 .25 .33

Example

Accuracy .09 .13 .50 .44 .53
Exact Match .06 .13 .35 .36 .44
F1 .09 .13 .55 .47 .56
Precision .10 .13 .54 .46 .56
Recall .10 .13 .61 .50 .60

Label
Macro-F1 .10 .06 .49 .35 .51
Micro-F1 .10 .12 .59 .49 .62

Ranking One Error .90 .87 .42 .48 .34

Table 3: Overall classification results with 3 multi-label
classifiers and a C4.5 decision tree base classifier, as com-
pared to random and majority category baselines.

found in Madjarov et al. (2012). Multi-label classi-
fication problems are solved by either transforming
the multi-label classification task into one or more
single-label classification tasks (problem transfor-
mation method) or by adapting single-label clas-
sification algorithms (algorithm adaption method).
Several algorithms have been developed on top of
the former methods and use ensembles of such clas-
sifiers (ensemble methods). We applied the Bi-
nary Relevance approach (BR), a simple transfor-
mation method which converts the multi-label prob-
lem into |C| binary single-label problems, where |C|
is the number of categories. Hence, this method
trains a classifier for each category in the corpus
(one-against-all). It is the most straightforward ap-
proach when dealing with multi-labeled data. How-
ever, it does not consider possible relationships or
dependencies between categories. Therefore, we
tested two more sophisticated methods. Hierar-
chy of multi-label classifiers HOMER (Tsoumakas
et al., 2008) is a problem transformation method.
It accounts for possibly hierarchical relationships
among categories by dividing the overall category
set into a tree-like structure with nodes of small ca-
tegory sets of size k and leaves of single categories.
Subsequently, a multi-label classifier is applied to
each node in the tree. Random k-labelsets RAKEL
(Tsoumakas et al., 2011) is an ensemble method,
which randomly chooses l typically small subsets
with k categories from the overall set of catego-
ries. Subsequently, all k-labelsets which are found
in the multi-labeled data set are converted into new
categories in a single-labeled data set using the la-
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bel powerset transformation (Trohidis et al., 2008).
HOMER and BR are among the multi-label clas-
sifiers, which Madjarov et al. (2012) recommend
as benchmark methods. As underlying single-label
classification algorithm, we used a C4.5 decision
tree classifier (Quinlan, 1993), as decision tree clas-
sifiers yield state-of-the-art performance in the re-
lated work.

Multi-label Evaluation We denote the set of rel-
evant categories for each edit ei ∈ E as yi ∈
C and the set of predicted categories as h(ei).
Evaluation measures for multi-label classification
systems are based on either bipartitions or rank-
ings. Among the former, we report example-
based (weighting each edit equally) and label-based
(weighting each edit category equally) measures.
The accuracy of a multi-label classifier is defined
as 1
|E|

∑|E|
i=1

|h(ei)∩yi|
|h(ei)∪yi| , which corresponds to the Jac-

card similarity of h(ei) and yi averaged over all ed-
its. We report subset accuracy (exact match), cal-
culated as 1

|E|
∑|E|

i=1 I , with I = 1 if h(ei) =
yi and I = 0 otherwise. Example-based pre-
cision is defined as 1

|E|
∑|E|

i=1
|h(ei)∩yi|
|h(ei)| , recall as

1
|E|

∑|E|
i=1

|h(ei)∩yi|
|yi| , and F1 as 1

|E|
∑|E|

i=1
2×|h(ei)∩yi|
|h(ei)|+|yi| .

For the label-based measures, we report macro-
and micro-averaged F1 scores. As a ranking-based
measure, we report one error, which is defined as
1
|E|

∑|E|
i=1J[arg max

c∈C
f(ei, c)] /∈ yiK, JexprK = 1 if

expr is true and JexprK = 0 otherwise. f(ei, c) de-
notes the rank of category c ∈ C as predicted by
the classifier. The one error measure evaluates the
number of edits where the highest ranked category
in the predictions is not in the set of relevant cate-
gories. It becomes smaller when the performance of
the classifier increases.

Table 3 shows the overall classification scores.
We calculated a random baseline, which multi-labels
edits at random considering the label powerset fre-
quencies it has learned from the training data. Fur-
thermore, we calculated a majority category base-
line, which labels all edits with the most frequent
edit category in the training data. In Figure 2, we
list the results for each category, together with the
average pair-wise inter-rater agreement (F1 scores).
The F1 scores are calculated based on the study we
carried out in Daxenberger and Gurevych (2012).

Parameters and Feature selection All parame-
ters have been adjusted on the development set us-
ing the RAKEL classifier, aiming to optimize accu-
racy. With respect to the n-gram features, we tested
values for n = 1, 2 and 3. For comment n-grams,
unigrams turned out to yield the best overall per-
formance, and bigrams for character and token n-
grams. The word and character n-gram spaces are
limited to the 500 most frequent items, the comment
n-gram space is limited to the 1,500 most frequent
items. To transform ranked output into bipartitions,
it is necessary to set a threshold. This threshold is
reported in Table 3 and has been optimized for each
classifier with respect to label cardinality (average
number of labels assigned to edits) on the develop-
ment set. Since most of the traditional feature se-
lection methods cannot be applied directly to multi-
labeled data, we used the label powerset approach to
transform the multi-labeled data into single-labeled
data and subsequently applied χ2. Feature reduc-
tion to the highest-ranked features clearly improved
the classifier performance on the development set.
We therefore limited the feature space to the 150
highest-ranked features in our experiments.

For the RAKEL classifier, we set l = 42 (twice
the size of the category set) and k = 3. In HOMER,
we used BR as transformation method, random dis-
tribution of categories to the children nodes and
k = 3. For all other classifier parameters, we used
the default settings as configured in Meka respective
Mulan.

4 Discussion

The classifiers significantly outperformed both base-
lines. RAKEL shows best performance for almost
all measures in Table 3. The simpler BR approach,
which assumes no dependencies between categories,
still outperforms HOMER.

We trained and tested the classifier with different
feature groups (see Table 1), to analyze the impor-
tance of single types of features. As shown in Fig-
ure 2, textual features had the highest impact on clas-
sification performance. On the opposite, language
features played a minor role in our experiments.
Among the highest ranked individual features for the
entire set of categories, we find textual (Levenshtein
distance, Simple edit type), markup (Diff number
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markup elements) and meta data (Number of edits)
features.

Bronner and Monz (2012) report an accuracy
of .88 for their best performing system on the bi-
nary classification task of distinguishing fluency and
factual edits. The best performing classifier in
their study was Random Forests (Breiman, 2001).
To compare our features with their approach, we
mapped the 21 edit categories from Daxenberger and
Gurevych (2012) to the binary category set (factual
vs. fluency) of Bronner and Monz (2012). Edits la-
beled as SPELLING/GRAMMAR, MARKUP, RELO-
CATION and PARAPHRASE are considered fluency
edits, the remaining categories factual edits. We re-
moved all edits labeled as OTHER, REVERT or VAN-
DALISM from WPEC. After applying the category
mapping, we deleted all edits which were labeled
with both the fluency and factual category. The lat-
ter may happen due to multi-labeling. This resulted
in 1,262 edits labeled as either fluency or factual.
On the 80% training split from Table 2, we trained
a Random Forests classifier with the optimized fea-
ture set and feature reduction as described in Sec-
tion 3.3. The number of trees was set to 100, with
unlimited depth. On the remaining data (test and
development split), we achieved an accuracy of .90.
Although we did not use the same data set as Bron-
ner and Monz (2012), this result suggests that our

feature set is suited for related tasks such as fluency
detection.

With respect to vandalism detection in Wikipedia,
state-of-the-art systems have a performance of
around .82 to .85 AUC-PR on the English Wikipedia
(Adler et al., 2011). We suspect that the low perfor-
mance of our system for Vandalism edits is mostly
due to a lower amount of training data, a higher skew
in the training and test data and the fact that we did
not include features which inform about future ac-
tions (e.g. whether a revision is reverted).

Error Analysis Sparseness is a major problem
for some of the 21 categories, as shown in Fig-
ure 2 by categories such as FILE-D, TEMPLATE-
D, MARKUP-M or PARAPHRASE which have only
very few examples in training, development and
test set. Categories with low inter-annotator agree-
ment in WPEC such as MARKUP-M, PARAPHRASE

or OTHER also yielded low classification accuracy.
We analyzed frequent errors of the classifier with
the help of a confusion matrix. PARAPHRASE ed-
its have been confused with INFORMATION-M by
the classifier. Furthermore, the classifier had prob-
lems to distinguish between VANDALISM and RE-
VERT as well as INFORMATION-I. Generally, modi-
fications as compared to insertions or deletions per-
form worse. All of the classifiers we tested, build
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their predictions by thresholding over a ranking, cf.
Table 3. This generates a source of errors, because
the classifier is not able to make a prediction, if it
does not have enough confidence for any of the cate-
gories. The imbalance of the data, because of the
high skew in the category distribution, is another
reason for classification errors. In ambiguous cases,
the classifier will be biased toward the category with
more examples in the training data.

5 A closer look at edit sequences: Mining
collaboration patterns

An edit category classifier allows us to label en-
tire article revision histories. We applied the best-
performing model from Section 3.3 trained on the
entire WPEC to automatically classify all edits in the
Wikipedia Quality Assessment Corpus (WPQAC)
as presented in previous work (Daxenberger and
Gurevych, 2012). WPQAC consists of 10 fea-
tured and 10 non-featured articles7, with an over-
all number of 21,578 revisions (9,986 revisions
from featured articles and 11,592 from non-featured
articles), extracted from the April 2011 English
Wikipedia dump. The articles in WPQAC are care-
fully chosen to form comparable pairs of featured
and non-featured articles, which should reduce the
noise of external influences on edit activity such
as popularity or visibility. In Daxenberger and
Gurevych (2012), we have shown significant dif-
ferences in the edit category distribution of arti-
cles with featured status before and after the articles
were featured. We concluded that articles become
more stable after being featured, as shown by the
higher number of surface edits and lower number of
meaning-changing edits.

Different to our previous approach which is based
on the mere distribution of edit categories, in the
present study we include the chronological order of
edits and use a 10 times larger amount of data for our
experiments. We segmented all adjacent revisions
in WPQAC into edits, following the approach ex-
plained in Daxenberger and Gurevych (2012). Dur-
ing the classification process, we discarded revisions
where the classifier could not assign any of the 21
edit categories with a confidence higher than the

7http://en.wikipedia.org/wiki/Wikipedia:
FA

threshold, cf. Table 3. This resulted in 17,640 re-
maining revisions. We applied a sequential pattern
mining algorithm with time constraints (Hirate and
Yamana, 2006; Fournier-Viger et al., 2008) to the
data. The latter is based on the PrefixSpan algorithm
(Pei et al., 2004). Calculations have been carried out
within the open-source SPMF Java data mining plat-
form.8

We created one time-extended sequence database
for the 10 featured articles and one for the 10 non-
featured articles. The sequence databases consist
of one row per article. Each row is a chronologi-
cally ordered list of revisions. Each revision is rep-
resented by the itemset of all edit categories for all
edits in that revision (in alphabetical order).

The output of the algorithm are sequential pat-
terns with time constraints. To obtain meaningful
results, we constrained the output with the follow-
ing parameters:

• Minimum support: 1 (the patterns have to be
present in each article)

• Time interval allowed between two successive
itemsets in the patterns: 1 (patterns are ex-
tracted only from adjacent revisions)

• Minimum time interval between the first item-
set and the last itemset in the patterns: 1 (the
length of the patterns is 2 or higher)

As this output reflects recurring sequences of ad-
jacent revisions labeled with edit categories, we re-
fer to it as collaboration patterns. With these pa-
rameters, the algorithm discovered 1,358 sequen-
tial patterns for featured articles and 968 for non-
featured articles. The number of shared patterns in
featured and non-featured articles is 427, this corre-
sponds to the number of frequent patterns in a se-
quence database which contains all 20 featured and
non-featured articles. The maximum length of pat-
terns which were found was 6 for featured articles,
and 5 for non-featured articles. These numbers show
that the defined collaboration patterns seem to have
discriminative power for different kinds of articles.
Featured articles can be characterized by a higher

8http://www.philippe-fournier-viger.
com/spmf
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Featured
1 INFORMATION-I 2 INFORMATION-I 3 INFORMATION-I 4 INFORMATION-I 5 INFORMATION-I

1 INFORMATION-D, INFORMATION-I 2 INFORMATION-I 3 INFORMATION-I 4 REFERENCE-I

1 TEMPLATE-D 2 REFERENCE-I

Non-
Featured

1 INFORMATION-I 2 INFORMATION-I, REFERENCE-I 3 INFORMATION-I 4 REFERENCE-I 5 MARKUP-I

1 MARKUP-I 2 REFERENCE-D 3 MARKUP-I

1 VANDALISM 2 REVERT

Table 4: Examples of collaboration patterns which have been found in either all featured or all non-featured articles of
WPQAC.

degree of homogeneity with respect to their collab-
orative patterns due to a higher number and length
of frequent sequential patterns in featured articles as
compared to non-featured articles.

In Table 4, we list some examples of collabora-
tion patterns with a minimum support of 1 which
we found in featured, but not non-featured arti-
cles, or vice verse. Unsurprisingly, patterns which
contain combinations of the most frequent catego-
ries (INFORMATION-I, REFERENCE-I), have a high
overall frequency. The diversity inside collaboration
patterns measured by the number of different edit
categories was higher in non-featured articles. For
example, the VANDALISM - REVERT pattern was
only found in non-featured articles. Patterns in fea-
tured articles tended to be more homogeneous, as
shown by the first pattern in Table 4, a repetition
of additions of information. We conclude that dis-
tinguished, high-quality articles, show a higher de-
gree of homogeneity as compared to a subset of non-
featured articles and the overall corpus.

6 Conclusion

In this study, we evaluated a novel feature set
for building a model to automatically classify
Wikipedia edits. Using a freely available cor-
pus (Daxenberger and Gurevych, 2012), our model
achieved a micro-averaged F1 score of .62 classify-
ing edits within a range of 21 categories. Textual
features had the highest impact on classifier perfor-
mance, whereas language features play a minor role.
The same classifier model obtained state-of-the-art
performance on the related task of fluency edit clas-
sification. Applications which potentially benefit
from our work include the analysis of the writing
process in collaboratively created documents, such
as wikis or research papers. We have demonstrated

how our model can be used to detect collaboration
patterns in article revision histories. On a subset
of articles from the English Wikipedia, we found
that high-quality articles show a higher degree of
homogeneity in their collaborative patterns as com-
pared to random articles. Furthermore, automatic
edit category classification allows to generate huge
amounts of category-filtered training data for NLP
tasks, e.g. spelling and grammar correction or van-
dalism detection. With respect to future work, we
plan to include more resources, e.g. the PAN-WVC-
10 (Potthast and Holfeld, 2011) or WiCoPaCo (Max
and Wisniewski, 2010) to increase the size of train-
ing data. A larger amount of labeled data would
certainly help to improve the classifier performance
for weak categories (e.g. VANDALISM and PARA-
PHRASE) and sparse categories (e.g. TEMPLATE-D,
MARKUP-M). Based on our trained classifier, anno-
tating more examples can be alleviated with the help
of active learning.
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Abstract

We introduce a novel discriminative model for
phrase-based monolingual alignment using a
semi-Markov CRF. Our model achieves state-
of-the-art alignment accuracy on two phrase-
based alignment datasets (RTE and para-
phrase), while doing significantly better than
other strong baselines in both non-identical
alignment and phrase-only alignment. Addi-
tional experiments highlight the potential ben-
efit of our alignment model to RTE, para-
phrase identification and question answering,
where even a naive application of our model’s
alignment score approaches the state of the art.

1 Introduction

Various NLP tasks can be treated as an alignment
problem: machine translation (aligning words in one
language with words in another language), ques-
tion answering (aligning question words with the an-
swer phrase), textual entailment recognition (align-
ing premise with hypothesis), paraphrase detection
(aligning semantically equivalent words), etc. Even
though most of these tasks involve only a single lan-
guage, alignment research has primarily focused on
the bilingual setting (i.e., machine translation) rather
than monolingual. Moreover, most work has con-
sidered token-based approaches over phrase-based.1

Here we seek to address this imbalance by proposing
better phrase-based models for monolingual word
alignment.

∗Performed while faculty at Johns Hopkins University.
1In this paper we use the term token-based alignment for

one-to-one alignment and phrase-based for non one-to-one
alignment, and word alignment in general for both.

Most token-based alignment models can extrin-
sically handle phrase-based alignment to some ex-
tent. For instance, in the case of NYC align-
ing to New York City, the single source word
NYC may align three times separately to the tar-
get words: NYC↔New, NYC↔York, NYC↔City.
Or in the case of identical alignment, New York
City aligning to New York City is simply
New↔New, York↔York, City↔City. How-
ever, it is not as clear how to token-align New York
(as a city) with New York City. The problem is
more prominent when aligning phrasal paraphrases
or multiword expressions, such as pass away and
kick the bucket. This suggests an intrinsi-
cally phrase-based alignment model.

The token aligner jacana-align (Yao et al., 2013a)
has achieved state-of-the-art result on the task of
monolingual alignment, based on previous work of
Blunsom and Cohn (2006). It employs a Conditional
Random Field (Lafferty et al., 2001) to align tokens
from the source sentence to tokens in the target sen-
tence, by treating source tokens as “observation” and
target tokens as “hidden states”. However, it is not
designed to handle phrase-based alignment, largely
due to the Markov nature of the underlying model:
a state can only span one token each time, making
it unable to align multiple consecutive tokens (i.e. a
phrase). We extend this model by introducing semi-
Markov states for phrase-based alignment: a state
can instead span multiple consecutive time steps,
thus aligning phrases on the source side. Also, we
merge phrases on the target side to phrasal states,
allowing the model to align phrases on the target
side as well. We evaluate the resulting semi-Markov
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CRF model on the task of phrase-based alignment,
and then show a basic application in the NLP tasks
of recognizing textual entailment, paraphrase iden-
tification, and question answering sentence ranking.
The final phrase-based aligner is open-source.2

2 Related Work

Most work in monolingual alignment employs de-
pendency tree/graph matching algorithms, includ-
ing tree edit distance (Punyakanok et al., 2004;
Kouylekov and Magnini, 2005; Heilman and Smith,
2010; Yao et al., 2013b), Particle Swarm Optimiza-
tion (Mehdad, 2009), linear regression/classification
models (Chambers et al., 2007; Wang and Manning,
2010), and min-cut (Roth and Frank, 2012). These
works inherently only support token-based align-
ment, with phrase-like alignment achieved by first
merging tokens to phrases as a preprocessing step.

The MANLI aligner (MacCartney et al., 2008)
and its derivations (Thadani and McKeown, 2011;
Thadani et al., 2012) are the first known phrase-
based aligners specifically designed for aligning En-
glish sentence pairs. It applies discriminative per-
ceptron learning with various features and handles
phrase-based alignment of arbitrary phrase lengths.
MANLI suffers from slow decoding time due to its
large search space. This was optimized by Thadani
and McKeown (2011) through Integer Linear Pro-
gramming (ILP), where benefiting from modern ILP
solvers they showed an order-of-magnitude speedup
in decoding. Also, various syntactic constraints can
be easily added, significantly improving exact align-
ment match rate for whole sentence pairs. Besides
the common application of textual entailment and
question answering, monolingual alignment has also
been applied in the field of text generation (Barzilay
and Lee, 2003; Pang et al., 2003).

Word alignment has been more explored in ma-
chine translation. The IBM models (Brown et al.,
1993) allow many-to-one alignment and are essen-
tially asymmetric. Phrase-based MT historically
relied on heuristics (Koehn, 2010) to merge two
sets of word alignment in opposite directions to
yield phrasal alignment. Later, researchers explored
non-heuristic phrase-based methods. Among them,
Marcu and Wong (2002) described a joint proba-

2http://code.google.com/p/jacana/

bility model that generates both the source and tar-
get sentences simultaneously. All possible pairs of
phrases in both sentences are enumerated and then
pruned with statistical evidence. Deng and Byrne
(2008) explored token-to-phrase alignment based
on HMM models (Vogel et al., 1996) by explic-
itly modeling the token-to-phrase probability and
phrase lengths. However, the token-to-phrase align-
ment is only in one direction: each target state still
only spans one source word, and thus alignment on
the source side is limited to tokens. Andrés-Ferrer
and Juan (2009) extended the HMM-based method
to Hidden Semi-Markov Models (HSMM) (Osten-
dorf et al., 1996), allowing phrasal alignments on
the source side. Finally, Bansal et al. (2011) unified
the HSMM models with the alignment by agreement
framework (Liang et al., 2006), achieving phrasal
alignment that agreed in both directions.

Despite successful usage of generative semi-
Markov models in bilingual alignment, this has not
been followed with models in discriminative mono-
lingual alignment. Essentially monolingual align-
ment would benefit more from discriminative mod-
els with various feature extractions (just like those
defined in MANLI) than generative models without
any predefined feature (just like how they were used
in bilingual alignment). To combine the strengths of
both semi-Markov models and discriminative train-
ing, we propose to use the semi-Markov Conditional
Random Field (Sarawagi and Cohen, 2004), which
was first used in information extraction to tag con-
tinuous segments of input sequences and outper-
formed conventional CRFs in the task of named en-
tity recognition. We describe this model in the fol-
lowing section.

3 The Alignment Model

Our objective is to define a model that supports
phrase-based alignment of arbitrary phrase length.
In this section we first describe a regular CRF
model that supports one-to-one token-based align-
ment (Blunsom and Cohn, 2006; Yao et al., 2013a),
then extend it to phrase-based alignment with the
semi-Markov model.
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3.1 Token-based Model
Given a source sentence s of length M , and a target
sentence t of lengthN , the alignment from s to t is a
sequence of target word indices a, where ai∈[1,M ] ∈
[0, N ]. We specify that when ai = 0, source word si

is aligned to a NULL state, i.e., deleted. This models
a many-to-one alignment from source to target: mul-
tiple source words can be aligned to the same target
word, but not vice versa. One-to-many alignment
can be obtained by running the aligner in the other
direction. The probability of alignment sequence a
conditioned on both s and t is then:

p(a | s, t) =
exp(

∑
i,k λkfk(ai−1, ai, s, t))

Z(s, t)

This assumes a first-order Conditional Random
Field (Lafferty et al., 2001). Since the word align-
ment task is evaluated over F1, instead of directly
optimizing it, we choose a much easier objective
(Gimpel and Smith, 2010) and add a cost function
to the normalizing function Z(s, t) in the denomi-
nator:

Z(s, t) =
∑
â

exp(
∑
i,k

λkfk(âi−1, âi, s, t)

+cost(ay, â))

where ay is the true alignments. cost(ay, â) can
be viewed as special “features” that encourage de-
coding to be consistent with true labels. It is only
computed during training in the denominator be-
cause in the numerator cost(ay,ay) = 0. Ham-
ming cost is used in practice without learning the
weights (i.e., uniform weights). The more inconsis-
tence there is between ay and â, the more penalized
is the decoding sequence â through the cost func-
tion.

3.2 Phrase-based Model
The token-based model supports 1 : 1 alignment.
We first extend it in the direction of ls : 1, where
a target state spans ls words on the source side (ls
source words align to 1 target word). Then we ex-
tend it in the direction of 1 : lt, where lt is the tar-
get phrase length a source word aligns to (1 source
word aligns to lt target words). The final combined

shops areShops closed up for now until March

NULL

closed

temp.

are

Shops

down

shops
-are

...-...
7..14

0

1

2

3

4

5

6

closed-
down

15

Figure 1: A semi-Markov phrase-based model
example and the desired Viterbi decoding path.
Shaded horizontal circles represent the source
sentence (Shops are closed up for now
until March) and hollow vertical circles repre-
sent the hidden states with state IDs for the target
sentence (Shops are temporarily closed
down). State 0, a NULL state, is designated for dele-
tion. One state (e.g. state 3 and 15) can span multi-
ple consecutive source words (a semi-Markov prop-
erty) for aligning phrases on the source side. States
with an ID larger than the target sentence length
indicate “phrasal states” (states 6-15 in this exam-
ple), where consecutive target tokens are merged for
aligning phrases on the target side. Combining the
semi-Markov property and phrasal states yields for
instance, a 2×2 alignment between closed up in
the source and closed down in the target.

model supports ls : lt alignment. Throughout this
section we use Figure 1 as an illustrative example,
which shows phrasal alignment between the source
sentence: (Shops are closed up for now
until March) and the target sentence: (Shops
are temporarily closed down).

1 : 1 alignment is a special case of ls : 1 align-
ment where the target side state spans ls = 1 source
word, i.e., at each time step i, the source side word
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si aligns to one state ai and the next aligned state
ai+1 only depends on the current state ai. This is
the Markovian property of the CRF. When ls > 1,
during the time frame [i, i + ls), all source words
[ai, ai+ls) share the same state ai. Or in other words,
the state ai “spans” the following ls time steps. The
Markovian property still holds “outside” the time
frame ls, i.e., ai+ls still only depends on ai, the pre-
vious state ls time steps ago. But “within” the time
frame ls, the Markovian property does not hold any
more: [ai, ..., ai+ls−1] are essentially the same state
ai. This is the semi-Markov property . States can be
distinguished by this property into two types: semi-
Markovian states and Markovian states.

We have generalized the regular CRF to a semi-
Markov CRF. Now we define it by generalizing the
feature function:

p(a | s, t) =
exp(

∑
i,k,ls

λkfk(ai−ls , ai, s, t))

Z(s, t)

At time i, the k-th feature function fk mainly
extracts features from the pair of source words
(si−ls , ..., si] and target word tai (still with a spe-
cial case that ai = 0 marks for deletion). Inference
is still Viterbi-like: except for the fact during maxi-
mization, the Viterbi algorithm not only checks the
previous one time step, but all ls time steps. Sup-
pose the allowed maximal source phrase length is
Ls, define Vi(a | s, t) as the highest score along the
decoding path until time i ending with state a:

Vi(a | s, t) = max
a1,a2,...ai−1

p(a1, a2, . . . , ai = a | s, t)

then the recursive maximization is:

Vi(a | s, t) = max
a′

max
ls=1...Ls

[Vi−ls(a
′ | s, t)

+Ψi(a
′
, a, ls, s, t)]

with factor:

Ψi(a
′
, a, ls, s, t) =

∑
k

λkfk(a
′
i−ls , ai, s, t)

and the best alignment a can be obtained by back-
tracking the last state aM from VM (aM | s, t).

Training a semi-Markov CRF is very similar to
the inference, except for replacing maximization
with summation. The forward-backward algorithm
should also be used to dynamically compute the nor-
malization function Z(s, t). Compared to regular
CRFs, a semi-Markov CRF has a decoding time
complexity of O(LsMN2), a constant factor Ls

(usually 3 or 4) slower.
To extend from 1 : 1 alignment to 1 : lt alignment

with one source word aligning to lt target words,
we simply explode the state space by Lt times with
Lt the maximal allowed target phrase length. Thus
the states can be represented as an N × Lt ma-
trix. The state at (j, lt) represents the target phrase
[tj , ..., tj+lt). In this paper we distinguish states by
three types: NULL state (j = 0, lt = 0), token state
(lt = 1) and phrasal state (lt > 1).

To efficiently store and compute these states, we
linearize the two dimensional matrix with a linear
function mapping uniquely between the state ID and
the target phrase offset/span. Suppose the target
phrase tj of length ltj ∈ [1, Lt] holds a position
ptj ∈ [1, N ], and the source word si is aligned to
this state (ptj , ltj ), a tuple for (position, span). Then
state ID asi is computed as:

asi(ptj , ltj ) =

{
ptj ltj = 1

N + (ptj − 1)× Lt + ltj 1 < ltj ≤ Lt

Assume in Figure 1, Lt = 2, then the state ID for
the phrasal state (5, 2) closed-down with ptj = 5
for the position of word down and ltj = 2 for the
span of 2 words (looking “backward” from the word
down) is: 5 + (5− 1)× 2 + 2 = 15.

Similarly, given a state id asi , the original target
phrase position and length can be recovered through
integer division and modulation. Thus during decod-
ing, if one output state is 15, we would know that it
uniquely comes from the phrasal state (5,2), repre-
senting the target phrase closed down.

This two dimensional definition of state space ex-
pands the number of states from 1 + N to 1 +
LtN . Thus the decoding complexity becomes
O(M(LtN)2) = O(L2

tMN2) with a usual value
of 3 or 4 for Lt.

Now we have defined separately the ls : 1 model
and the 1 : lt model. We can simply merge them to
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have an ls : lt alignment model. The semi-Markov
property makes it possible for any target states to
align phrases on the source side, while the two di-
mensional state mapping makes it possible for any
source words to align phrases on the target side. For
instance, in Figure 1, the phrasal state a15 repre-
sents the two-word phrase closed down on the
target side, while still spanning for two words on the
source side, allowing a 2× 2 alignment. State a15 is
phrasal, and at source word position 3 and 4 (span-
ning closed up) it is semi-Markovian. The final
decoding complexity is O(LsL

2
tMN2), a factor of

30 ∼ 60 times slower than the token-based model
(with a typical value of 3 or 4 for Ls and Lt).

In the following we describe features.

3.3 Feature Design
We reused features in the original token-based
model based on string similarity, POS tags, position,
WordNet, distortion and context. Then we used an
additional chunker to mark phrase boundaries only
for feature extraction:

Chunking Features are binary indicators of
whether the phrase types of two phrases match.
Also, we added indicators for mappings between
source phrase types and target phrase types, such as
“vp2np”, meaning that a verb phrase in the source is
mapped to a noun phrase in the target.

Moreover, we introduced the following lexical
features:

PPDB Features (Ganitkevitch et al., 2013) in-
clude various similarity scores derived from a para-
phrase database with 73 million phrasal and 8 mil-
lion lexical paraphrases. Various paraphrase condi-
tional probability was employed. For instance, for
the ADJP/VP phrase pair capable of and able
to, there are the following minus-log probabilities:

p(lhs|e1) = 0.1, p(lhs|e2) = 0.3, p(e1|lhs) = 5.0
p(e1|e2) = 1.3, p(e2|lhs) = 6.7, p(e2|e1) = 2.8

p(e1|e2, lhs) = 0.6, p(e2|e1, lhs) = 2.3

where e1/e2 are the phrase pair, and lhs is the
left hand side syntactic non-terminal symbol. We
did not use the syntactic part (e.g., the NP of
NNS ↔ the NNS of NP) of PPDB as we did not
make the assumption that the input sentence pairs
were well-formed (and newswire-like) English, or

even of a language with a parser available. Also, for
phrasal alignments, we ruled out those paraphrases
spanning multiple syntactic structures, or of differ-
ent syntactic structures (indicated as [X] in PPDB),
for instance, and crazy↔ , mad.

Semantic Relatedness Feature is a single scaled
number in [0, 1] from the best performing system
(Han et al., 2013) of the *Sem 2013 Semantic Tex-
tual Similarity (STS) task. We included this fea-
ture mainly to deal with cases where “related” words
cannot be well measured by either paraphrases or
distributional similarities. For instance, in one align-
ment dataset annotators aligned married with
wife. Adding a few other words as comparison, the
Han et al. (2013) system gives the following similar-
ity scores:
married/wife: 0.85

married/husband: 0.84

married/child: 0.10

married/stone: 0.01

Name Phylogeny Feature (Andrews et al., 2012)
is a similarity feature with a string transducer to
model how one name evolves to another. Examples
below show how similar is the name Bill associ-
ated with other names in log probability:
Bill/Bill: -0.8

Bill/Billy: -5.2

Bill/William: -13.6

Bill/Mary: -18.6

Finally, one decision we made during feature
design was not to use any parsing-based features,
with a permissive assumption that the input might
not be well-formed English, or even not complete
sentences (such as fragmented snippets from web
search). The “deepest” linguistic processing stays at
the level of tagging and chunking, making the model
more easily extendable to other languages.

3.4 Feature Value

In this phrase-based model, the width of a state span
over the source words depends on the competition
between features fired on the phrases as a whole vs.
the consecutive but individual tokens. We found it
critical to assign feature values “fairly” among to-
kens and phrases to make sure that semi-Markov
states and phrasal states fire up often enough for
phrasal alignments.
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train test length %align.
MSR06 800 800 29/11 36%

Edinburgh++ 715 305 22/22 78%

Table 1: Statistics of the two manually aligned cor-
pora, divided into training and test in sentence pairs.
The length column shows average lengths of source
and target sentences in a pair. %align. is the per-
centage of aligned tokens.

To illustrate this in a simplified way, take
closed up↔closed down in Figure 1, and as-
sume the only feature is the normalized number of
matching tokens in the pair. Then this feature firing
on the following pairs would have values (the nor-
malization factor is the maximal phrase length):

closed↔closed 1.0
closed up↔closed 0.5
closed up↔up 0.5

closed up↔closed down 0.5
...↔... ...

The desired alignment closed up↔closed
down would not have survived the state com-
petition due to its weak feature value. In this
case the model would simply prefer a token align-
ment closed↔closed and up↔... (probably
NULL).

Thus we upweighted feature values by the max-
imum source or target phrase length to encour-
age phrasal alignments, in this case closed up
↔closed down:1.0. Then this alignment would
have a better chance to be picked out with additional
features, such as with the PPDB and Semantic Relat-
edness Features, which are also upweighted by max-
imum phrase lengths.

4 Experiment

4.1 Data Preparation
There are two annotated datasets for training and
testing. MSR063 (Brockett, 2007) has annotated
alignments on the 2006 PASCAL RTE2 develop-
ment and test corpora, with 1600 pairs in total.

3http://www.cs.biu.ac.il/˜nlp/files/RTE_
2006_Aligned.zip

1x1 1x2 1x3 2x2 2x3 3x3 more
MSR06 89.2 1.9 0.3 5.7 0.0 1.9 0.8

EDB++ 81.9 3.5 0.8 8.3 0.4 3.0 2.1

Table 2: Percentage of various alignment sizes
(undirectional, e.g., 1x2 and 2x1 are merged) af-
ter synthesizing phrasal alignment from token align-
ment in the training portion of two corpora.

Semantically equivalent words and phrases in the
premise and hypothesis sentences are aligned in a
manner analogous to alignments in statistical ma-
chine translation. This dataset is asymmetric: on
average the premises contain 29 words and the hy-
potheses 11 words. Edinburgh++4 (Thadani et al.,
2012) is a revised version of the Edinburgh para-
phrase corpus(Cohn et al., 2008) with sentences
from the following resources: 1. the Multiple-
Translation Chinese corpus; 2. Jules Verne’s novel
Twenty Thousand Leagues Under the Sea. 3. the
Microsoft Research paraphrase corpus (Dolan et al.,
2004). The corpus is more balanced and symmetric:
the source and target sentences are both 22 words
long on average. Table 1 shows some statistics.

Both corpora contain mostly token-based align-
ment. For MSR06, MacCartney et al. (2008) showed
that setting the allowable phrase size to be greater
than one only increased F1 by 0.2%. For Ed-
inburgh++, the annotation guideline5 explicitly in-
structs to “prefer smaller alignments whenever pos-
sible”. Statistics shows that single token alignment
counts 96% and 95% of total alignments in these two
corpora separately. With such a heavy imbalance to-
wards only token-based alignment, a phrase-based
aligner would learn feature weights that award token
alignments more than phrasal alignments.

Thus we synthesized phrasal alignments from
continuous monotonic token alignments in these two
corpora. We first ran the OpenNLP chunker through
the corpora. Then for each phrase pair, if each token
in the source phrase is aligned to a token in the tar-
get phrase in a monotonic way, and vice versa, we

4http://www.ling.ohio-state.edu/˜scott/
#edinburgh-plusplus

5http://staffwww.dcs.shef.ac.uk/people/
T.Cohn/paraphrase_guidelines.pdf
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merge these alignments to form one single phrasal
alignment.6 Table 2 lists the percentage of vari-
ous alignment sizes after the merge. Two obser-
vations can be made: first, the portion of phrasal
alignments increases to 10% ∼ 20% after merging;
second, allowing a maximal phrase length of 3 cov-
ers 98% ∼ 99% of total alignments, thus a phrase
length larger than 3 would be a bad trade-off for cov-
erage vs speed.

4.2 Baselines and Evaluation Metrics

MacCartney et al. (2008) and Yao et al. (2013a)
showed that the traditional MT bilingual aligner
GIZA++ (Och and Ney, 2003) presented weak re-
sults on the task of monolingual alignment. Thus
we instead used four other strong baselines:

Meteor (Denkowski and Lavie, 2011): a sys-
tem for evaluating machine translation by aligning
MT output with reference sentences. It is designed
for the task of monolingual alignment and supports
phrasal alignment. We used version 1.4 and default
weights to optimize by maximum accuracy.

MANLI-constraint (Thadani and McKeown,
2011): a re-implemented MANLI system with ILP-
powered decoding for speed and hard syntactic con-
straints to boost exact match rate, with reported
numbers on MSR06.

MANLI-joint (Thadani et al., 2012): an im-
proved version of MANLI-constraint that not only
models phrasal alignments, but also alignments be-
tween dependency arcs, with reported numbers on
the original Edinburgh paraphrase corpus.

jacana-token (Yao et al., 2013a): a token-
based aligner with state-of-the-art performance on
MSR06.

Note that the jacana-token aligner is open-source,
so we were able to re-train it with exactly the
same feature set used by our phrase-based model.
This allows a fair comparison of model performance
(token-based vs. phrase-based). The MANLI* sys-
tems are not available, thus we only reported their
numbers from published papers.

The standard evaluation metrics for alignments
are precision (P), recall (R), F1, and exact matching

6a few examples: two Atlanta-based
companies↔two Atlanta companies, the
UK↔the UK, the 17-year-old↔the teenager,
was held↔was held.

rate (E) based on either tokens (two tokens are con-
sidered aligned iff they are aligned) or phrases (two
tokens are considered aligned iff they are contained
within phrases that are aligned). Following Thadani
et al. (2012), we only report the results based on
token alignments (which allows a partial credit if
their containing phrases are not aligned), even for
the phrase-based alignment task. The reasoning is
that if a phrase-based aligner is already doing bet-
ter than a token aligner in terms of token alignment
scores, then the difference in terms of phrase align-
ment scores will be even larger. Thus showing the
superiority of token alignment scores is sufficient.

4.3 Implementation and Training

The elements in the phrase-based model: dynamic
state indices, semi-Markov and phrasal states, are
not typically found in standard CRF implementa-
tions. Thus we implemented the phrase-based model
in the Scala programming language, which is fully
interoperable with Java, using one semi-Markov
CRF package7 as a reference. We used the L2 reg-
ularizer and LBFGS for optimization. OpenNLP8

provided the POS tagger and chunker and JWNL9

interfaced with WordNet (Fellbaum, 1998).

4.4 Results

Table 3 gives scores (in bigger fonts) of different
aligners on MSR06 and Edinburgh++ and their cor-
responding phrasal versions. Overall, the token-
based aligner did the best on the original corpora, in
which single token alignment counts more than 95%
of total alignment. The phrase-based aligner did
slightly worse. We think the main reason was that it
output more phrasal alignment, which in turn harms
scores in token-based evaluation (for instance, if the
gold alignment is New↔New, York↔York, then
the phrasal alignment of New York↔New York
would only have half the precision because it inher-
ently also aligns New in the source with York in
the target.). Further investigation showed that on the
Edinburgh++ corpus, over-generated phrase-based
alignment, when evaluated under just token align-
ment, contributed hurting about 1.1% of overall F1,

7http://crf.sf.net
8http://opennlp.apache.org/
9http://jwordnet.sf.net/
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a gap that would make the phrase aligner (85.9%)
outperform the token aligner (86.4%).

On the phrasal alignment corpora (represented by
MSR06P and EDB++P in Table 3), the phrase-based
aligner did significantly better. Note that the over-
all F1 and exact match rate are still much lower
than those scores obtained from the original corpora,
suggesting that the phrasal corpora present a much
harder task. Furthermore, as a more “fair” com-
parison between the two aligners, we synthesized
phrasal alignments from the output of the token-
based aligner, just as how the phrased-based corpora
were prepared, then evaluated its performance again.
Still, on the EDB++P corpus, the token aligner was
about 1.6% (current difference is 69.1% vs. 72.8%)
worse than the phrase-based aligner.

Also, we want to emphasize that since the token-
based aligner and the phrase-based aligner shared
exactly the same features and lexical resources, the
performance boost of the phrase-based aligner on
the phrasal corpora results from a better model de-
sign: it is the semi-Markov property and phrasal
states making the phrase-based aligner better.

To further investigate the performance of aligners
with respect to different types of alignment, we di-
vided the scores into those for identical alignments
(such as New↔New) and non-identical alignments
(such as wife↔spouse), indicated by the sub-
scripts i and n in Table 3. In terms of identical
alignment, most aligners were able to score more
than 90%, but for non-identical alignment there was
noticeable decrease. Still, on the phrasal alignment
corpora, the phrase-based model has a much larger
recall score for non-identical alignment than others.

We also divided scores with respect to token-only
alignment and phrase-only alignment. Due to space
limit, we only show results on synthesized Edin-
burgh++, in Table 4. Meteor and the token aligner
inherently have either very limited or no support for
phrasal alignment, thus they had very low scores
on phrase-only alignment. We then ran the align-
ers in two directions and merged the results with the
“union” MT heuristic to get better phrase support.
But that still did not bring F1p’s up to over 5%.

The phrase-based aligner baseline Meteor did
worse than our aligners. We think there are two rea-
sons: First, Meteor was not trained on these corpora.
Second, Meteor only does strict word, stem, syn-

System
P% R% F1%

E%
Pi/Pn Ri/Rn F1i/F1n

M
SR

06
(7

8.
6%

) Meteor
82.5 81.2 81.9

15.0
89.9/39.9 97.3/24.6 93.5/30.5

MANLI-cons. 89.5 86.2 87.8 33.0

token
93.6 83.5 88.3

32.1
96.6/77.7 96.9/35.6 96.8/48.8

phrase
92.1 82.8 86.8

29.1
95.7/65.0 95.9/34.7 95.8/45.2

29.1

M
SR

06
P

(5
9.

0%
) Meteor

82.5 68.3 74.7
7.3

89.9/40.1 97.3/8.8 93.5/14.5

token
92.9 66.1 77.2

13.5
95.5/77.5 94.3/11.1 94.9/19.5

13.5

phrase
83.5 77.0 80.1

14.3
94.9/55.5 94.2/48.1 94.5/51.5

E
D

B
++

(7
5.

2%
) Meteor

88.3 80.5 84.2
12.7

94.0/61.4 97.8/24.1 95.9/34.7

MANLI-jnt* 76.6 83.8 79.2 12.2

token
91.3 82.0 86.4

15.0
96.4/63.9 97.4/36.4 96.9/46.4

phrase
90.4 81.9 85.9

13.7
96.0/57.4 97.8/38.3 96.9/46.0

13.7

E
D

B
++

P
(5

1.
7%

) Meteor
88.4 60.6 71.9

2.9
94.0/61.9 97.0/6.5 95.5/11.7

token
90.7 55.8 69.1

2.3
96.2/58.6 91.3/7.1 93.7/12.7

2.3

phrase
82.3 65.3 72.8

1.6
95.6/60.4 93.1/34.3 94.4/43.8

Table 3: Results on original (mostly token) and phrasal
(P) alignment corpora, where (x%) indicates how much
alignment is identical alignment, such as New↔New. E%
stands for exact (perfect) match rate. Subscript i stands
for corresponding scores for “identical” alignment and n
for “non-identical”. *: scores of MANLI-joint were for
the original Edinburgh corpus instead of Edinburgh++
(with hand corrections) so it is not a direct comparison.

onym and paraphrase matching but does not use any
string similarity measures; this can be supported by
the large difference between, for instance, F1i and
F1n. In general Meteor did well on identical align-
ment, but not so well on non-identical alignment.

5 Applications

Natural language alignment can be applied to vari-
ous NLP tasks. While how to most effectively apply
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System
P% R% F1%

E%
Pt/Pp Rt/Rp F1t/F1p

E
D

B
++

P

Meteor
88.4 60.6 71.9

2.9
59.5/14.9 90.6/1.1 71.8/2.0

token
90.7 55.8 69.1

2.3
59.4/21.4 85.5/0.9 70.1/1.7

2.3

phrase
82.3 65.3 72.8

1.6
73.3/48.0 73.5/44.2 73.4/46.0

Table 4: Same results on the phrasal Edinburgh++ cor-
pus but with scores divided by token-only alignment
(subscript t) and phrase-only alignment (subscript p).

it is another topic, we simply show in this section us-
ing just alignment scores in binary prediction prob-
lems. Specifically, we pick the tasks of recognizing
textual entailment (RTE), paraphrase identification
(PP), and question answering sentence ranking (QA)
described in Heilman and Smith (2010):

RTE: predicting whether a hypothesis can be in-
ferred from the premise, with training data from
RTE-1/2 and RTE-3 dev, and test from RTE-3 test.

PP: predicting whether two sentences are para-
phrases, with training and test data from the MSR
Paraphrase Corpus (Dolan et al., 2004).

QA: predicting whether a sentence contains the
answer to the question, with training data from
TREC-8 to TREC-12 and test data from TREC-13.

For each aligned pair, we can compute a normal-
ized decoding score. Following MacCartney et al.
(2008), we select a threshold score and predict true
if the decoding score is above this threshold. For the
tasks of RTE and PP, we tuned this threshold w.r.t
the maximal accuracy on the training set, then re-
ported performance on the test set. For the task of
QA, since the evaluation methods in Mean Average
Precision and Mean Reciprocal Rank only need a
ranked list of answer sentences, and the scores on
the test set are sufficient to provide the ranking, we
did not tune anything on training but instead directly
ran the aligner on the test set. All three tasks shared
the same aligner model trained on the superset of
MSR06 and Edinburgh++. Results are reported in
Table 5. We could not report on Meteor as Meteor
does not explicitly output alignment scores.

We did not expect the aligners to beat any of the

system A% P% R%
de Marneffe et al. (2006) 60.5 61.8 60.2
MacCartney and Manning (2008) 64.3 65.5 63.9

Heilman and Smith (2010) 62.8 61.9 71.2
the token aligner 59.1 61.2 55.4

our phrasal aligner 57.6 57.2 68.8
(a) Recognizing Textual Entailment

system A% P% R%
Wan et al. (2006) 75.6 77 90

Das and Smith (2009) 73.9 74.9 91.3
Heilman and Smith (2010) 73.2 75.7 87.8

the token aligner 70.0 72.6 88.1
our phrasal aligner 68.1 68.6 95.8

(b) Paraphrase Identification

system MAP MRR
Cui et al. (2005) 0.4271 0.5259

Wang et al. (2007) 0.6029 0.6852
Heilman and Smith (2010) 0.6091 0.6917

Yao et al. (2013b) 0.6307 0.7477
the token aligner 0.5982 0.6582

our phrasal aligner 0.6165 0.7333
(c) Question Answering Sentence Ranking

Table 5: Results (Accuracy, Precision, Recall, Mean
Average Precision, Mean Reciprocal Rank) on the
tasks of RTE, PP and QA.

state-of-the-art result since no sophisticated models
were additionally used but only the alignment score.
Still, the aligners showed competitive performance.
It still follows the pattern from the alignment exper-
iment that the phrasal aligner had higher recall and
lower precision than the token aligner in the task of
RTE and PP. In the QA task, the phrasal aligner per-
formed better than all systems except for the top one.

6 Conclusion

We have introduced a phrase-to-phrase alignment
model based on semi-Markov Conditional Random
Fields. The combination of semi-Markov states and
phrasal states makes phrasal alignment on both the
source and target sides possible. The final phrase-
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based aligner performed the best on two phrasal
alignment corpora and showed its potential usage
in three NLP tasks. Future work includes aligning
discontinuous (gappy) phrases and integrating align-
ment more closely in NLP applications.
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Abstract

Coreference resolution is a well known clus-
tering task in Natural Language Processing. In
this paper, we describe the Latent Left Linking
model (L3M), a novel, principled, and linguis-
tically motivated latent structured prediction
approach to coreference resolution. We show
that L3M admits efficient inference and can be
augmented with knowledge-based constraints;
we also present a fast stochastic gradient based
learning. Experiments on ACE and Ontonotes
data show that L3M and its constrained ver-
sion, CL3M, are more accurate than several
state-of-the-art approaches as well as some
structured prediction models proposed in the
literature.

1 Introduction

Coreference resolution is a challenging task, that in-
volves identification and clustering of noun phrases
mentions that refer to the same real-world entity.
Most machine learning approaches to coreference
resolution learn a scoring function to estimate the
compatibility between two mentions or two sets of
previously clustered mentions. Then, a decoding al-
gorithm is designed to aggregate these scores and
find an optimal clustering assignment.

The most popular of these frameworks is the pair-
wise mention model (Soon et al., 2001; Ng and
Cardie, 2002; Bengtson and Roth, 2008), which
learns a compatibility score of mention-pairs and
uses these pairwise scores to obtain a global cluster-
ing. Recently, efforts have been made (Haghighi and
Klein, 2010; Rahman and Ng, 2011b; Rahman and
Ng, 2011c) to consider models that capture higher
order interactions, in particular, between mentions

and previously identified entities (that is, between
mentions and clusters). While such models are po-
tentially more expressive, they are largely based on
heuristics to achieve computational tractability.

This paper focuses on a novel and principled ma-
chine learning framework that pushes the state-of-
the-art while operating at a mention-pair granularity.
We present two models — the Latent Left-Linking
Model (L3M), and a version of that is augmented
with domain knowledge-based constraints, the Con-
strained Latent Left-Linking Model (CL3M). L3M
admits efficient inference, linking each mention to a
previously occurring mention to its left, much like
the existing best-left-link inference models (Ng and
Cardie, 2002; Bengtson and Roth, 2008). How-
ever, unlike previous best-link techniques, learning
in our case is performed jointly with decoding — we
present a novel latent structural SVM approach, op-
timized using a fast stochastic gradient-based tech-
nique. Furthermore, we present a probabilistic gen-
eralization of L3M that is more expressive in that
it is capable of considering mention-entity interac-
tions using scores at the mention-pair granularity.
We augment this model with a temperature-like pa-
rameter (Samdani et al., 2012) to provide additional
flexibility.

CL3M augments L3M with knowledge-based
constraints following (Roth and Yih, 2004; Denis
and Baldridge, 2007). This capability is very de-
sirable as shown by the success of the rule-based de-
terministic approach of Raghunathan et al. (2010)
in the CoNLL shared task 2011 (Pradhan et al.,
2011). In L3M, domain-specific constraints are in-
corporated into learning and inference in a straight-
forward way. CL3M scores a mention’s contribution
to its cluster by combining the corresponding score
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of the underlying L3M model with that from a set of
constraints.

Most importantly, in our experiments on bench-
mark coreference datasets, we show that CL3M,
with just five constraints, compares favorably with
other, more complicated, state-of-the-art algorithms
on a variety of evaluation metrics. Over-
all, the main contribution of this paper is a
principled machine learning model operating at
mention-pair granularity, using easy to implement
constraint-augmented inference and learning, that
yields competitive results on coreference resolution
on Ontonotes-5.0 (Pradhan et al., 2012) and ACE
2004 (NIST, 2004).

2 Related Work

The idea of Latent Left-linking Model (L3M) is in-
spired by a popular inference approach to corefer-
ence which we call theBest-Left-Link approach (Ng
and Cardie, 2002; Bengtson and Roth, 2008). In the
best-left-link strategy, each mentioni is connected
to the best antecedent mentionj with j < i (i.e. a
mention occurring to the left ofi, assuming a left-
to-right reading order), thereby creating aleft-link.
The “best” antecedent mention is the one with the
highest pairwise score,wij ; furthermore, ifwij is
below some threshold, say 0, theni is not connected
to any antecedent mention. The final clustering is
a transitive closure of these “best” links. The intu-
ition behind best-left-link strategy is based on how
humans read and decipher coreference links – they
mostly rely on information to the left of the men-
tion when deciding whether to add it to a previously
constructed cluster or not. This strategy has been
successful and commonly used in coreference res-
olution (Ng and Cardie, 2002; Bengtson and Roth,
2008; Stoyanov et al., 2009). However, most works
have developed ad-hoc approaches to implement this
idea. For instance, Bengtson and Roth (2008) train
a modelw on binary training data generated by tak-
ing for each mention, the closest antecedent corefer-
ent mention as a positive example, and all the other
mentions as negative examples. Similar approaches
to training and, additionally, decoupling the training
stage from the clustering stage were used by other
systems. In this paper, we formalize the learning
problem of the best-left-link model as a structured

prediction problem and analyze our system with de-
tailed experiments. Furthermore, we generalize this
approach by considering multiple pairwise left-links
instead of just the best link, efficiently capturing the
notion of a mention-to-cluster link.

Many techniques in the coreference literature
break away from the mention pair-based, best-left-
link paradigm. Denis and Baldridge (2008) and Ng
(2005) learn a local ranker to rank the mention
pairs based on their compatibility. While these ap-
proaches achieve decent empirical performance, it
is unclear why these are the right ways to train the
model. Some techniques consider a more expres-
sive model by using features defined over mention-
cluster or cluster-cluster (Rahman and Ng, 2011c;
Stoyanov and Eisner, 2012; Haghighi and Klein,
2010). For these models, the inference and learn-
ing algorithms are usually complicated. Very re-
cently, Durrett et al. (2013) propose a probabilis-
tic model which enforces structural agreement con-
straints between specified properties of mention
cluster when using a mention-pair model. This ap-
proach is very related to the probabilistic extension
of our method as both models attempt to leverage
entity-level information from mention-pair features.
However, our approach is simpler because it directly
considers the probabilities of multiple links. Fur-
thermore, while their model performs only slightly
better than the Stanford rule-based system (Lee et
al., 2011), we significantly outperform this system.
Most importantly, our model obtains state-of-the-art
performance on OntoNotes-5.0 while still operating
at the mention-pair granularity. We believe that this
is due to our novel and principled structured predic-
tion framework which results in accurate (and effi-
cient) training.

Several structured prediction techniques have
been applied to coreference resolution in the ma-
chine learning literature. For example, McCallum
and Wellner (2003) and Finley and Joachims (2005)
model coreference as a correlational clustering prob-
lem (Bansal et al., 2002) on a complete graph over
the mentions with edge weights given by the pair-
wise classifier. However, correlational clustering is
known to be NP Hard (Bansal et al., 2002); nonethe-
less, an ILP solver or an approximate inference algo-
rithm can be used to solve this problem. Another ap-
proach proposed by Yu and Joachims (2009) formu-
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lates coreference with latent spanning trees. How-
ever, their approach has no directionality between
mentions, whereas our latent structure captures the
natural left-to-right ordering of mentions. In our
experiments (Sec. 5), we show that our technique
vastly outperforms both the spanning tree and the
correlational clustering techniques. We also com-
pare with (Fernandes et al., 2012) and the pub-
licly available Stanford coreference system (Raghu-
nathan et al., 2010; Lee et al., 2011), a state-of-the-
art rule-based system.

Finally, some research (Ratinov and Roth, 2012;
Bansal and Klein, 2012; Rahman and Ng, 2011a)
has tried to integrate world knowledge from web-
based statistics or knowledge bases into a corefer-
ence system. World knowledge is potentially use-
ful for resolving coreference and can be injected
into our system in a straightforward way via the
constraints framework. We will show an example
of incorporating our system with name-entity and
WordNet-based similarity metric (Q. Do, 2009) in
Sec. 5. Including massive amount of information
from knowledge resources is not the focus of this
paper and may distort the comparison with other
relevant models but our results indicate that this is
doable in our model, and may provide significant
improvements.

3 Latent Left-Linking Model with
Constraints

In this section, we describe our Constrained Latent
Left-Linking Model (CL3M). CL3M is inspired by
a few ideas from the literature: (a) the popularBest-
Left-Link inference approach to coreference (Ng and
Cardie, 2002; Bengtson and Roth, 2008), and (b) the
injection of domain knowledge-based constraints for
structured prediction (Roth and Yih, 2004; Clarke
and Lapata, 2006; Chang et al., 2012b; Ganchev et
al., 2010; Koo et al., 2010; Pascal and Baldridge,
2009).

We first introduce the notion of a pairwise
mention-scorer, then introduce our Left-Linking
Model (L3M), and finally describe how to inject con-
straints into our model.

Let d be a document withmd mentions. Mentions
are denoted solely using their indices, ranging from
1 to md. A coreference clusteringC for document

d is a collection of disjoint sets partitioning the set
{1, . . . , md}. We representC as a binary function
with C(i, j) = 1 if mentionsi andj are coreferent,
otherwiseC(i, j) = 0. Let s(C;w, d) be the score
of a given clusteringC for a given document and a
given pairwise weight vectorw. Then, during infer-
ence, a clusteringC is predicted by maximizing the
scoring functions(C;w, d), over all valid (i.e. sat-
isfying symmetry and transitivity) clustering binary
functionsC : {1, . . . , md}×{1, . . . , md} → {0, 1}.

3.1 Mention Pair Scorer

We model the task of coreference resolution using a
pairwise scorer which indicates the compatibility of
a pair of mentions. The inference routine then pre-
dicts the final clustering — a structured prediction
problem — using these pairwise scores.

Specifically, for any two mentionsi andj (w.l.o.g.
j < i), we produce a pairwise compatibility score
wji using extracted featuresφ(j, i) as

wji = w · φ(j, i) , (1)

wherew is a weight parameter that is learned.

3.2 Latent Left-Linking Model

Our inference algorithm is inspired by the best-left-
link approach. In particular, the scores(C; d,w) is
defined so that each mention links to the antecedent
mention (to its left) with the highest score (as long
as the score is above some threshold, say, 0). Specif-
ically:

s(C; d,w) =

md
∑

i=1

max
0≤j<i,C(i,j)=1

w · φ(j, i) . (2)

In order to simplify the notation, we introduce a
dummy mention with index0, which is to the left
(i.e. appears before) of all other mentions and has
w0i = 0 for all actual mentionsi > 0. For a given
clusteringC, if a mentioni is not co-clustered with
any previous actual mentionj, 0 < j < i, then we
assume thati links to 0 andC(i, 0) = 1. In other
words,C(i, 0) = 1 iff i is the first actual item of a
cluster inC. However, such an itemi is not consid-
ered to be co-clustered with0 and for any valid clus-
tering, item0 is always in a singleton dummy clus-
ter, which is eventually discarded. The important
property of the scores is that it is exactly maximized
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by the best-left-link inference, as it maximizes indi-
vidual left link scores and the creation of one left-
link does not affect the creation of other left-links.

3.3 Learning

We use a max-margin approach to learnw. We are
given a training setD of documents where for each
documentd ∈ D, Cd refers to the annotated ground
truth clustering. Then we learnw by minimizing

L(w) =
λ

2
‖w‖2 +

1

|D|

∑

d∈D

1

md

(

max
C

(

s(C; d,w)

+ ∆(C, Cd)
)

− s(Cd; d,w)
)

,

where∆(C, Cd) is a loss function used in corefer-
ence. In order to achieve tractable loss-augmented
minimization — something not possible with stan-
dard loss functions used in coreference (e.g.
B3 (Bagga and Baldwin, 1998)) — we use a de-
composable loss function that just counts the num-
ber of mention pairs on whichC andCd disagree:
∆(C, Cd) =

∑md

i,j=0,j<i IC(i,j)=Cd(i,j), where I is
a binary indicator function. This loss function
is equivalent to the numerator of the Rand index
loss (Rand, 1971). With this form of loss function
and using the scoring function in Eq. (2), we can
write L(w) as

λ

2
‖w‖2 +

1

|D|

∑

d∈D

1

md

md
∑

i=1

(

max
0≤j<i

(

w · φ(j, i)

+ δ(Cd, i, j)
)

− max
0≤j<i,C(i,j)=1

(w · φ(j, i))
)

,

(3)

whereδ(Cd, i, j) = 1 − Cd(i, j) is the loss-based
margin that is 1 ifi andj are not coreferent inCd,
and is 0 otherwise. In the above objective function,
the left-links remain latent while we get to observe
the clustering. This objective function is related to
latent structural SVMs (Yu and Joachims, 2009).
However Yu and Joachims (2009) use a spanning
tree based latent structure which does not have the
left-to-right directionality we exploit. We can mini-
mize the above function using Concave Convex Pro-
cedure (Yuille and Rangarajan, 2003), which is guar-
anteed to reach the local minima. However, such a
procedure is costly as it requires doing inference on
all the documents to compute a single gradient up-
date. Consequently, we choose a faster stochastic

sub-gradient descent (SGD) approach. SinceL(w)
in Eq. (3) decomposes not only over training doc-
uments, but also over individual mentions in each
document, we can perform SGD on a per-mention
basis. The stochastic sub-gradient w.r.t. mentioni

in documentd is given by

∇L(w)i
d ∝ φ(j′, i)− φ(j′′, i) + λw, where (4)

j′ = arg max
0≤j<i

(w · φ(j, i) + 1− Cd(i, j))

j′′ = arg max
0≤j<i,C(i,j)=1

w · φ(j, i)

While SGD has no theoretically convergence guar-
antee, it works excellently in our experiments.
Specifically, we observe that SGD achieves similar
training performance to CCCP with a speed-up of
around 10,000.

3.4 Incorporating Constraints

Next, we show how to incorporate domain
knowledge-based constraints into L3M and gener-
alize it to CL3M. In CL3M, we obtain a cluster-
ing by maximizing a constraint-augmented scoring
functionf given by

s(C; d,w) +

nc
∑

p=1

ρpψp(d, C),

where the second term on the R.H.S. is the
score contributed by domain specific constraints
ψ1, . . . , ψnc with their respective scoresρ1, . . . , ρnc .
In particular,ψp(d, C) measures the extent to which
a given clusteringC satisfies thepth constraint. Note
that this framework is general and can be applied to
inject mention-to-cluster or cluster-to-cluster level
constraints too. However, for simplicity, we con-
sider here only constraints between mention pairs.
This allows us derive fast greedy algorithm to solve
the inference problem. The details of our constraints
are presented in Sec. 5.

All of our constraints can be categorized into two
groups: “must-link” and “cannot-link”.“Must-link”
constraints encourage a pair of mentions to connect,
while “cannot-link” constraints discourage mention
pairs from being linked. Consequently, the coeffi-
cientsρp associated with “must-link” constraints are
positive whileρp for “cannot-link” constraints are
negative. In the following, we briefly discuss how to
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solve the inference problem with these two types of
constraints.

We slightly abuse notations and useψp(j, i) to in-
dicate thepth constraint on a pair of mentions(i, j).
ψp(j, i) is a binary function that is 1iff two mentions
i andj satisfy the conditions specified in constraint
p. Chang et al. (2011) shows that best-left-link in-
ference can be formulated as an ILP problem. When
we add constraints, the ILP becomes:

arg max
B,C∈{0,1}

∑

i,j:j<i
wjiBji +

∑

i,j
ρpψp(j, i)Cij

s.t Ckj ≥ Cij + Cki − 1, ∀i, j, k,
∑i−1

j=0
Bji = 1, ∀i

Bji < Cji, Cji = Cji,∀i, j,

(5)

whereCij ≡ C(i, j) is a binary variable indicating
whetheri andj are in the same cluster or not and
Bji is an auxiliary variable indicating the best-left-
link for mention i. The first set of inequality con-
straints in (5) enforces the transitive closure of the
clustering. The constraintsBji < Cji,∀i, j enforce
the consistency between these two sets of variables.

One can use an off-the-shelf solver to solve Eq.
(5). However, when the absolute values of the con-
straint scores (|ρp|) are high (the hard constraint
case), then the following greedy algorithm approxi-
mately solves the inference efficiently. We scan the
document from left-to-right (or in any other arbitrary
order). When processing mentioni, we find

j∗ = arg max
j<i

wji +
∑

k:Ĉ(k,j)=1

∑

p
ρpψp(k, i),

(6)
whereĈ is the current clustering obtained from the
previous inference steps. Then, we add a link be-
tween mentioni and j∗. The rest of the infer-
ence process is the same as in the original best-left-
link inference. Specifically, this inference procedure
combines the classifier score for mention pairi, j,
with the constraints score of all mentions currently
co-clustered withj. We discuss this further in Sec-
tion 5.

4 Probabilistic Latent Left-Linking Model

In this section, we extend and generalize our left-
linking model approach to a probabilistic model,

Probabilistic Latent Left-Linking Model (PL3M),
that allows us to naturally consider mention-to-
entity (or mention-to-cluster) links. While in L3M,
we assumed that each mention links determinis-
tically to the max-scoring mention on its left, in
PL3M, we assume that mentioni links to mention
j, j ≤ i, with probability given by

Pr[j ← i; d,w] =
e

1

γ
(w·φ(i,j))

Zi(w, γ)
. (7)

HereZi(w, γ) =
∑

0≤k<i e
1

γ
(w·φ(i,k)) is a normal-

izing constant andγ ∈ (0, 1] is a constant tem-
perature parameter that is tuned on a development
set (Samdani et al., 2012). We assume that the event
that mentioni links to a mentionj is independent of
the event that mentioni′ links to j′ for i 6= i′.

Inference with PL3M: Given the probability of a
link as in Eq. (7), the probability that mentioni joins
an existing clusterc, Pr[c ⊙ i; d,w], is simply the
sum of the probabilities ofi linking to the mentions
insidec:

Pr[c⊙ i; d,w] =
∑

j∈c,0≤j<i

Pr[j ← i; d,w]

=
∑

j∈c,0≤j<i

e
1

γ
(w·φ(i,j))

Zi(d,w, γ)
. (8)

Based on Eq. (8) and making use of the indepen-
dence assumption of left-links, we follow a simple
greedy clustering (or inference) algorithm: sequen-
tially add each mentioni to a previously formed
clusterc∗, wherec∗ = arg maxc Pr[c ⊙ i; d,w].
If the arg max cluster is the singleton cluster with
the dummy mention0 (i.e. the score of all other
clusters is below the threshold of 0), theni starts a
new cluster and is not included in the dummy clus-
ter. Note that we link a mention to a cluster tak-
ing into account all the mentions inside that cluster,
mimicking the notion of a mention-to-cluster link.
This provides more expressiveness than the Best-
Left-Link inference, where a mention connects to
a cluster solely based on a single pairwise link to
some antecedent mention (the best-link mention) in
that cluster.

The case ofγ = 0: As γ approaches zero, it is
easy to show that the probabilityP [j ← i; d, w]
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in Eq. (7) approaches a Kronecker delta function
that puts probability 1 on themax-scoring mention
j = arg max0≤k<i w·φ(i, j) (assuming no ties), and
0 everywhere else (Pletscher et al., 2010; Samdani et
al., 2012). Consequently, asγ → 0, Pr[c ⊙ i; d,w]
in Eq. 8 approaches a Kronecker delta function cen-
tered on the cluster containing the max-scoring men-
tion, thus reducing to the best-link case of L3M.
Thus, PL3M, when tuning the value ofγ, is a strictly
more general model than L3M.

Learning with PL 3M We use a likelihood-based
approach to learning with PL3M, and first compute
the probabilityPr[C; d,w] of generating a cluster-
ing C, given w. We then learnw by minimizing
the regularized negative log-likelihood of the data,
augmenting the partition function with a loss-based
margin (Gimpel and Smith, 2010). We omit the de-
tails of likelihood computation due to lack of space.

With PL3M, we again follow a stochastic gradi-
ent descent technique instead of CCCP for the same
reasons mentioned in Sec. 3.3. The stochastic gra-
dient (subgradient whenγ = 0) w.r.t. mentioni in
documentd is given by

∇LL(w)i
d ∝

∑

0≤j<i

pjφ(i, j)−
∑

0≤j<i

p′jφ(i, j) + λw,

wherepj andp′j , j = 0, . . . , i− 1, are non-negative
weights that sum to one and are given by

pj =
e

1

γ
(w·φ(i,j)+δ(Cd,i,j))

∑

0≤k<i e
1

γ
(w·φ(i,k)+δ(Cd,i,k))

and

p′j =
Cd(i, j)Zi(d,w, γ)

Zi(Cd; d,w, γ)
Pr[j ← i; d,w] .

Interestingly, the above update rule generalizes the
one for L3M, as we are incorporating a weighted
sum of all previous mentions in the update rule.
With γ → 0, the SGD in Eq. (4) converges to the
SGD update in L3M (Eq. (4)). Finally, in the pres-
ence of constraints, we can fold them inside the pair-
wise link probabilities as in Eq. (6).

5 Experiments and Results

In this section, we present our experiments on the
two commonly used benchmarks for coreference
— Ontonotes-5.0 (Pradhan et al., 2012) and ACE

2004 (NIST, 2004). Table 1 exhibits our bottom line
results: CL3M achieves the best result reported on
Ontonotes-5.0 development set and essentially ties
with (Fernandes et al., 2012) on the test set. As
shown in Table 3, CL3M is also the best algorithm
on ACE and when evaluated on the gold mentions
of Ontonotes. We show that CL3M performs partic-
ularly well on clusters containing named entity men-
tions, which are more important for many informa-
tion extraction applications. In the rest of this sec-
tion, after describing our experimental setting, we
provide careful analysis of our algorithms and com-
pare them to competitive coreference approaches in
the literature.

5.1 Experimental Setup

Datasets: ACE 2004 contains 443 documents —
we used a standard split of these documents into
268 training, 68 development, and 106 testing doc-
uments used by Culotta et al. (2007) and Bengt-
son and Roth (2008). OntoNotes-5.0 dataset, re-
leased for the CoNLL 2012 Shared Task (Pradhan et
al., 2012), is by far the largest annotated corpus on
coreference. It contains 3,145 annotated documents
drawn from a wide variety of sources — newswire,
bible, broadcast transcripts, magazine articles, and
web blogs. We report results on both development
set and test set. To test on the development set, we
further split the training data into training and devel-
opment sets.

Classifier details: For each of the pairwise ap-
proaches, we assume the pairwise score is given by
w·φ(·, ·)+t whereφ are the features,w is the weight
vector learned by the approach, andt is a threshold
which we set to0 during learning (as in Eq. (1)), but
use a tuned value (tuned on a development set) dur-
ing testing. For learning with L3M, we do stochastic
gradient descent with 5 passes over the data. Empir-
ically, we observe that this is enough to generate a
stable model. For PL3M (Sec. 4), we tune the value
of γ using the development set picking the bestγ

from {0.0, 0.2, . . . , 1.0}. Recall that whenγ = 0,
PL3M is the same as L3M. We refer to L3M and
PL3M with incorporating constraints during infer-
ence as CL3M and CPL3M (Sec. 3.4), respectively.

Metrics: We compare the systems using three
popular metrics for coreference — MUC (Vilain et
al., 1995), BCUB (Bagga and Baldwin, 1998), and
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Entity-based CEAF (CEAFe) (Luo, 2005). Follow-
ing, the CoNLL shared tasks (Pradhan et al., 2012),
we use the average F1 scores of these three metrics
as the main metric of comparison.

Features: We build our system on the publicly
available Illinois-Coref system1 primarily because it
contains a rich set of features presented in Bengtson
and Roth (2008) and Chang et al. (2012a) (the latter
adds features for pronominal anaphora resolution).
We also compare with the Best-Left-Link approach
described by Bengtson and Roth (2008).

Constraints: We consider the following con-
straints in CL3M and CPL3M.
• SameSpan: two mentions must be linked to

each other if they share the same surface text
span and the number of words in the text span
is larger than a threshold (set as 5 in our imple-
mentation).

• SameDetNom: two mentions must be linked
to each other if both mentions start with a de-
terminer and the [0,1] wordnet-based similarity
score between the mention head words is above
a threshold (set to 0.8).

• SameProperName: two mentions must be
linked if they are both proper names and the
similarity score measured by a named entity-
based similarity metric, Illinois NESim2, are
higher than a threshold (set to 0.8). For a per-
son entity we add additional rules to extract the
first name, last name and professional title as
properties.

• ModifierMismatch: the constraint prevents two
mentions to be linked if the head modifiers
conflict. For example, the constraint prevents
“northern Taiwan” from linking to “southern
Taiwan”. We gather a list of mutual exclusive
modifiers from the training data.

• PropertyMismatch: the constraint prevents two
mentions to be linked if their properties con-
flict. For example, it prevents male pronouns
to link to female pronouns and “Mr. Clinton”
to link to “Mrs. Clinton” by checking the gen-
der property. The properties we consider are
gender, number, professional title and the na-

1The system is available athttp://cogcomp.cs.
illinois.edu/page/software_view/Coref/

2http://cogcomp.cs.illinois.edu/page/
software_view/NESim

MUC BCUB CEAFe AVG
Dev Set

Stanford 64.30 70.46 46.35 60.37
(Chang et al., 2012a) 65.75 70.25 45.30 60.43
(Martschat et al., 2012) 66.76 71.91 47.52 62.06
(Björkelund and Farkas, ) 67.12 71.18 46.84 61.71
(Chen and Ng, 2012) 66.4 71.8 48.8 62.3
(Fernandes et al., 2012)69.46 71.93 48.66 63.35
L3M 67.88 71.88 47.16 62.30
CL3M 69.20 72.89 48.67 63.59

Test Set
Stanford 63.83 68.52 45.36 59.23
(Chang et al., 2012a) 66.38 69.34 44.81 60.18
(Martschat et al., 2012) 66.97 70.36 46.60 61.31
(Björkelund and Farkas, ) 67.58 70.26 45.87 61.24
(Chen and Ng, 2012) 63.7 69.0 46.4 59.7
(Fernandes et al., 2012)70.51 71.24 48.37 63.37
L3M 68.31 70.81 46.73 61.95
CL3M 69.64 71.93 48.32 63.30

Table 1: Performance on OntoNotes-5.0 with predicted
mentions. We report the F1 scores (%) on various coref-
erence metrics (MUC, BCUB, CEAF). The column AVG
shows the average scores of the three. We observe that
PL3M and CPL3M (see Sec. 4) yields the same perfor-
mance as L3M and CL3M, respectively as the tunedγ for
all the datasets turned out to be 0.

tionality.
While the “must-link” constraints described in the
paper can be treated as features, due to their high
precision, treating them as hard constraints (setρ to
a high value) is a safe and direct way to inject hu-
man knowledge into the learning model. Moreover,
our framework allows a constraint to use informa-
tion from previous decisions (such as “cannot-link”
constraints). Treating such constraints as features
will complicate the learning model.

5.2 Performance of the End-to-End System

We compare our system with the top systems re-
ported in the CoNLL shared task 2012 as well as
with the Stanford’s publicly released rule-based sys-
tem (Lee et al., 2013; Lee et al., 2011), which won
the CoNLL 2011 Shared Task (Pradhan et al., 2011).
Note that all the systems use the same annotations
(e.g., gender prediction, part-of-speech tags, name
entity tags) provided by the shared task organizers.
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However, each system implements its own mention
detector and pipelines the identified mentions into
the coreference clustering component. Moreover,
different systems use a different set of features. In
order to partially control for errors on mention de-
tection and better evaluate the clustering component
in our coreference system, we will also present re-
sults on correct (gold) mentions in the next section.

Table 1 shows the end-to-end results. On the
development set, only the best performing system
of Fernandes et al. (2012) is better than L3M, but this
difference disappears when we use our system with
constraints, CL3M. Although our system is much
simple, it achieves the bestB3 score on the test set
and is competitive with the best system participated
in the CoNLL shared task 2012.

Performance on named entities: The corefer-
ence annotation in Ontonotes 5.0 includes various
types of mentions. However, not all mention types
are equally interesting. In particular, clusters which
contain at least one proper name or a named entity
mention are more important for information extrac-
tion tasks like Wikification (Mihalcea and Csomai,
2007; Ratinov et al., 2011), cross-document coref-
erence resolution (Bagga and Baldwin, 1998), and
entity linking and knowledge based population (Ji
and Grishman, 2011).

Inspired by this, we compare our system to the
best systems in the CoNLL shared task of 2011
(Stanford (Lee et al., 2011)) and 2012 (Fernan-
des (Fernandes et al., 2012)) on the following spe-
cific tasks on Ontonotes-5.0.
• ENT-C: Evaluate the system on clusters that

contain at least one proper name mention. We
generate the gold annotation and system out-
puts by using the gold and predicted name en-
tity tag annotations provided by the CoNLL
shard task 2012. That is, if a cluster does not
include any name entity mention, then it will
be removed from the final clustering.

• PER-C: As in the construction of ENT-C, but
here we only consider clusters which contain at
least one “Person (PER)” entity.

• ORG-C: As in the construction of Entity-C, but
here we only consider clusters which contain at
least one “Organization (ORG)” entity.

Typically, the clusters that get ignored in the above
definitions contain only first and second person

Task Stanford Fernandes L3M CL3M
ENT-C 44.06 47.05 46.63 48.02
PER-C 34.04 36.43 37.01 37.57
ORG-C 25.02 26.23 26.22 27.01

Table 2: Performance on named entities for OntoNotes-
5.0 data. We compare our system to Fernandes (Fernan-
des et al., 2012) and Stanford (Lee et al., 2013) systems.

pronouns (which often happens in transcribed dis-
course.) Also note that all the systems are trained
with the same name entity tags, provided by the
shared task organizers, and we use the same name
entity tags to construct the specific clustering. Also,
in order to further ensure fairness, we do not tune
our system to favor the evaluation of these specific
types of clusters. We chose to do so because we only
have access to the system output of Fernandes et al.
(2012).

Table 2 shows the results. The performance of
all systems degrades when considering only clusters
that contain name entities, indicating that ENT-C is
actually a harder task than the original coreference
resolution problem. In particular, resolving ORG
coreferent clusters is hard, because names of organi-
zations are sometimes confused with person names,
and they can be referred to using a range of pronouns
(including “we” and “it”). Overall, CL3M outper-
forms all the competing systems on the clusters that
contain at least one specific type of entity by a mar-
gin larger than that for the overall coreference.

5.3 Analysis on Gold Mentions

To better understand the contribution of our joint
learning and clustering model, we present experi-
ments assuming that gold mentions are given. The
definitions of gold mentions in ACE and Ontonotes
are different because Ontonotes-5.0 excludes single-
ton clusters in the annotation. In addition, Ontonotes
includes longer mentions; for example, it includes
NP and appositives in the same mention. We com-
pare with the publicly available Stanford (Lee et al.,
2011) and IllinoisCoref (Chang et al., 2012a) sys-
tems; the system of Fernandes et al. (2012) is not
publicly available. In addition, we also compare
with the following two structured prediction base-
lines that use the same set of features as L3M and
PL3M.
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MUC BCUB CEAFe AVG
ACE 2004 Gold Ment.

All-Link-Red. 77.45 81.10 77.57 78.71
Spanning 73.31 79.25 74.66 75.74
IllinoisCoref 76.02 81.04 77.6 78.22
Stanford 75.04 80.45 76.75 77.41
(Stoyanov and Eisner, 2012) 80.1 81.8 - -
L3M 77.57 81.77 78.15 79.16
PL3M 78.18 82.09 79.21 79.83
CL3M 78.17 81.64 78.45 79.42
CPL3M 78.29 82.20 79.26 79.91

Ontonotes 5.0 Gold Ment.
All-Link-Red. 83.72 75.59 64.00 74.44
Spanning 83.64 74.83 61.07 73.18
IllinoisCoref 80.84 74.29 65.96 73.70
Stanford 82.26 76.82 61.69 73.59
L3M 83.44 78.12 64.56 75.37
PL3M 83.97 78.25 65.69 75.97
CL3M 84.10 78.30 68.74 77.05
CPL3M 84.80 78.74 68.75 77.43

Table 3: Performance on ACE 2004 and OntoNotes-5.0.
All-Link-Red. is based on correlational clustering; Span-
ning is based on latent spanning forest based clustering
(see Sec. 2). Our proposed approach is L3M (Sec. 3) and
PL3M (sec. 4). CL3M and CPL3M are the version with
incorporating constraints.

1. All-Link-Red: a reduced and faster alterna-
tive to the correlational clustering based ap-
proach (Finley and Joachims, 2005). We im-
plemented this algorithm as an ILP and droped
one of the three transitivity constraints for each
triplet of mention variables. Following Pascal
and Baldridge (2009) and Chang et al. (2011)
we observe that this slightly improves the ac-
curacy over a pure correlation clustering ap-
proach, in addition to speeding up inference.

2. Spanning: the latent spanning forest based ap-
proach presented by Yu and Joachims (2009).
We use the publicly available implementation
provided by the authors3 for the ACE data;
since their CCCP implementation is slow, we
implemented our own stochastic gradient de-
scent version to scale it to the much larger
Ontonotes data.

3Available at http://www.cs.cornell.edu/ cnyu/latentssvm/

Table 3 lists the results. Although L3M is simple
and use only the features defined on pairwise men-
tions, it compares favorably with all recently pub-
lished results. Moreover, the probabilistic general-
ization of L3M, PL3M, achieves even better perfor-
mance. For example, L3M with γ = 0.2 improves
L3M with γ = 0 by 0.7 points in ACE 2004. In par-
ticular, This shows that considering more than a one
left-links is helpful. This is in contrast with the pre-
dicted mentions whereγ = 0 performed best. We
suspect that this is because noisy mentions can hurt
the performance of PL3M that takes into account
not just the best scoring links, but also weaker links
which are likely to be less reliable (more false pos-
itives). Also, as opposed to what is reported by Yu
and Joachims (2009), the correlation clustering ap-
proach performs better than the spanning forest ap-
proach. We think that this is because we compare
the systems on different metrics than they did and
also because we use exact ILP inference for corre-
lational clustering whereas Yu and Joachims (2009)
used approximate greedy inference.

Both L3M and PL3M can be benefit from using
constraints. However, The constraints improve only
marginally on the ACE 2004 data because ACE uses
shorter phrases as mentions. Consequently, con-
straints designed for leveraging information from
long mention spans are less effective. Overall, the
experiments show that L3M and PL3M perform well
on modeling coreference clustering.

5.4 Ablation Study of Constrains

Finally, we study the value of individual constraints
by adding one constraint at a time to the corefer-
ence system starting with the simple L3M model.
The system with all the constraints added is the
CL3M model introduced in Table 1. We then re-
move individual constraints from CL3M to assess
its contribution. Table 4 shows the results on the
Ontonotes dataset with predicted mentions. Overall,
it is shown that each one of the constraints has a con-
tribution, and that using all the constraints improves
the performance of the system by 1.29% in the AVG
F1 score. In particular, most of this improvement
(1.19%) is due to the must-link constraints (the first
four constraints in the table). The must-link con-
straints are more useful for L3M as L3M achieves
higher precision than recall (e.g., the precision and
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MUC BCUB CEAFe AVG
L3M 67.88 71.88 47.16 62.30
+SameSpan 68.27 72.27 47.73 62.75
+SameDetNom 68.79 72.57 48.30 63.22
+SameProperName69.11 72.81 48.56 63.49
+ModifierMismatch 69.11 72.81 48.58 63.50
+PropertyMismatch

69.20 72.89 48.67 63.59
(i.e. CL3M)

-SameSpan 68.91 72.66 48.36 63.31
-SameDetNom 68.62 72.51 48.06 63.06
-SameProperName 68.97 72.69 48.50 63.39
-ModifierMismatch 69.12 72.80 48.63 63.52
-PropertyMismatch 69.11 72.81 48.58 63.50

Table 4: Ablation study on constraints. We first show
cumulative performance on OntoNotes-5.0 data with pre-
dicted mentions as constraints are added one at a time into
the coreference system. Then we demonstrate the value
of individual constraints by leaving out one constraint at
each time.

recall of L3M are 78.38% and 67.96%, respectively
in B3). As a result, the must-link constraints, which
aim at improving the recall, do better when optimiz-
ing F1.

6 Conclusions

We presented a principled yet simple framework for
coreference resolution. Furthermore, we showed
that our model can be augmented in a straightfor-
ward way with knowledge based constraints, to im-
prove performance. We also presented a probabilis-
tic generalization of this model that can take into
account entity-mention links by considering mul-
tiple possible coreference links. We proposed a
fast stochastic gradient-based learning technique for
our model. Our model, while operating at men-
tion pair granularity, obtains state-of-the-art results
on OntoNotes-5.0, and performs especially well on
mention clusters containing named entities. We pro-
vided a detailed analysis of our experimental results.
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Abstract

The performance of nearest neighbor methods
is degraded by the presence of hubs, i.e., ob-
jects in the dataset that are similar to many
other objects. In this paper, we show that the
classical method of centering, the transforma-
tion that shifts the origin of the space to the
data centroid, provides an effective way to re-
duce hubs. We show analytically why hubs
emerge and why they are suppressed by cen-
tering, under a simple probabilistic model of
data. To further reduce hubs, we also move
the origin more aggressively towards hubs,
through weighted centering. Our experimental
results show that (weighted) centering is effec-
tive for natural language data; it improves the
performance of the k-nearest neighbor classi-
fiers considerably in word sense disambigua-
tion and document classification tasks.

1 Introduction

1.1 Background
The k-nearest neighbor (kNN) algorithm is a sim-
ple nonparametric method of classification. It has
been applied to various natural language process-
ing (NLP) tasks such as document classification
(Masand et al., 1992; Yang and Liu, 1999), part-
of-speech tagging (Søgaard, 2011), and word sense
disambiguation (Navigli, 2009).

To apply the kNN algorithm, data is typically rep-
resented as a vector object in a feature space, and
(dis)similarity between data is measured by the dis-
tance between the vectors, their inner product, or co-
sine of the angle between them (Jurafsky and Mar-
tin, 2008). With such a (dis)similarity measure, the

unknown class label of a test object is predicted by
a majority vote of the classes of its k most similar
objects in the labeled training set.

Recent studies (Radovanović et al., 2010a;
Radovanović et al., 2010b) have shown that if the
feature space is high-dimensional, some objects in
the dataset emerge as hubs; i.e., these objects fre-
quently appear in the k nearest neighbors of other
objects.

The emergence of hubs may deteriorate the per-
formance of kNN classification and nearest neighbor
search in general:

• If hub objects exist in the training set, they have
a strong chance to be a kNN of many test ob-
jects. Because the class of a test object is pre-
dicted by a majority vote from its k nearest
neighbors, prediction is biased toward the la-
bels of the hubs.

• In information retrieval, nearest neighbor
search finds objects in the database that are
most relevant, or similar, to user-provided
queries. If particular objects, such as hubs, are
nearly always returned for any query, the re-
trieved results are probably not very useful.

These drawbacks may hinder application of near-
est neighbor methods in NLP, as typical natural lan-
guage data are extremely high-dimensional (Juraf-
sky and Martin, 2008) and thus prone to produce
hubs.

1.2 Contributions
Centering (Mardia et al., 1979; Fisher and Lenz,
1996; Eriksson et al., 2006) is a standard technique
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for removing observation bias in the data. It is a
transformation of feature space in a way that the ori-
gin of the space is moved to the data centroid (sam-
ple mean). The distance between data objects is not
changed by centering, but their inner product and co-
sine are affected; see Section 3 for detail.

In this paper, we advocate the use of centering as a
means of reducing hubs. Specifically, we propose to
measure the similarity of objects by the inner prod-
uct (not distance or cosine) in the centered feature
space.

Our approach is motivated by the observation that
the objects similar to the data centroid tend to be-
come hubs (Radovanović et al., 2010a). This ob-
servation suggests that the number of hubs may be
reduced if we can define a similarity measure that
makes all objects in a dataset equally similar to the
centroid (Suzuki et al., 2012). The inner product in
the centered space indeed enjoys this property.

In Section 4, we analyze why hubs emerge under
a simple probabilistic model of data, and also give
an account of why they are suppressed by centering.

Using both synthetic and real datasets, we show
that objects similar to the centroid also emerge as
hubs in multi-cluster data (Section 5), so the applica-
tion of centering is wider than expected. To further
reduce hubs, we also propose to move the origin of
the space more aggressively towards hubs, through
weighted centering (Section 6).

In Section 7, we show that centering and weighted
centering are effective for natural language data.
these methods markedly improve the performance
of kNN classifiers in word sense disambiguation and
document classification tasks.

2 Related work

Centering is a classical technique widely used in
many fields of science. For instance, centering
forms a preprocessing step in principal component
analysis and Fisher linear discriminant analysis.

In NLP, however, centering is seldom used; the
use of cosine and inner product similarities is quite
common, but they are nearly always used uncen-
tered. Non-centered cosine is used, for instance, in
word sense disambiguation (Schütze, 1998; Navigli,
2009), paraphrasing (Erk and Padó, 2008; Thater
et al., 2010), and compositional semantics (Mitchell

and Lapata, 2008), to name a few.
There have been several approaches to improv-

ing kNN classification: learning similarity/distance
measures from training data (metric learning)
(Weinberger and Saul, 2009; Qamar et al., 2008),
weighting nearest neighbors for similarity-based
classification (Chen et al., 2009), and neighbor-
hood size selection (Wang et al., 2006; Guo and
Chakraborty, 2010). However, none of these have
addressed the reduction of hubs.

More recently, Schnitzer et al. (2012) proposed
the Mutual Proximity transformation that rescales
distance measures to decrease hubs in a dataset.
Suzuki et al. (2012) showed that kernels based on
graph Laplacian, such as the commute-time kernels
(Saerens et al., 2004) and the regularized Laplacian
(Chebotarev and Shamis, 1997; Smola and Kondor,
2003), make all objects equally similar to the data
centroid, which in turn reduce hubs.

In Section 7, we evaluate centering, Mutual Prox-
imity, and Laplacian kernels in NLP tasks, and
demonstrate that centering is equally or even more
effective. Section 4 presents a theoretical justifica-
tion for using centering to reduce hubs, but this kind
of analysis is missing for the Laplacian kernels.

Centering is easier to compute as well. For a
dataset of n objects, it takes O(n2) time to com-
pute, whereas computing a Laplacian-based kernel
requires O(n3) time for matrix inversion. Mutual
Proximity also has a time complexity of O(n2).

3 Centering

Consider a dataset of n objects in an m-dimensional
feature space, x1, · · · , xn ∈ R

m. Throughout this
paper, we use the inner product 〈xi, x j〉 as a measure
of similarity between xi and x j. Let K be the Gram
matrix of the n feature vectors, i.e., the n × n matrix
whose (i, j) element holds 〈xi, x j〉. Using m× n data
matrix X = [x1, · · · , xn], we can write K as

K = XTX,

where XT represents the matrix transpose of X.
Centering is a transformation in which the origin

of the feature space is shifted to the data centroid

x̄ =
1
n

n∑
i=1

xi, (1)
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and object x is mapped to the centered feature vector

xcent = x − x̄. (2)

The similarity between two objects x and x′ is now
measured by 〈xcent, x′cent〉 = 〈x − x̄, x′ − x̄〉.

After centering, the inner product between any
object and the data centroid (which is a zero vector
because x̄cent = x̄ − x̄ = 0) is uniformly 0; in other
words, all objects in the dataset have an equal simi-
larity to the centroid. According to the observation
that the objects similar to the centroid become hubs
(Radovanović et al., 2010a), we can expect hubs to
be reduced after centering.

Intuitively, centering reduces hubs because it
makes the length of the feature vector xcent short
for (hub) objects x that lie close to the data centroid
x̄; see Eq. (2). And since we measure object simi-
larity by inner product, shorter vectors tend to pro-
duce smaller similarity scores. Hence objects close
to the data centroid become less similar to other ob-
jects after centering, and no longer be hubs. In Sec-
tion 4, we analyze the effect of centering on hubness
in more detail.

3.1 Centered Gram matrix

Let I be an n × n identity matrix and 1 be an n-
dimensional all-ones vector. The symmetric matrix
H = I−(1/n)11T is called centering matrix, because
the centered data matrix Xcent = [xcent

1 , · · · , xcent
n ]

can be computed by Xcent = XH (Mardia et al.,
1979).

The Gram matrix Kcent of the centered feature
vectors, whose (i, j) element holds the inner prod-
uct 〈xcent

i , xcent
j 〉, can be calculated from the original

Gram matrix K by

Kcent =
(
Xcent

)T (
Xcent

)
= HXTXH = HKH. (3)

Eq. (3) implies that the original data matrix X is
not needed to compute the centered Gram matrix
Kcent, provided that K is given. It is hence possi-
ble to use the so-called kernel trick; i.e., centering
can be applied even if data matrix X is not available
but the similarity of objects can be measured by a
kernel function in an implicit feature space.

4 Theoretical analysis of the effect of
centering on hubness

We now analyze why objects most similar to the
centroid tend to be hubs in the dataset, and give an
explanation as to why centering may suppress the
emergence of hubs.

4.1 Before centering
Consider a dataset of m-dimensional feature vectors,
with each vector x ∈ Rm generated independently
from a distribution with a finite mean vector µ. In
other words, objects x in this dataset are drawn from
a distribution P(x), i.e.,

x ∼ P(x),

and
µ = E[x] =

∫
x dP(x) (4)

where E[·] denotes the expectation of a random vari-
able.

We will use the following elementary lemma on
the distributions of inner product subsequently.

Lemma 1. Let a ∈ Rm be a fixed vector, and x ∈ Rm

be an object sampled according to distribution P(x).
Then the inner product 〈a, x〉 follows a distribution
with mean 〈a,µ〉.

Proof. From the linearity of the inner product and
Eq. (4), we obtain

E[〈a, x〉] =

∫
〈a, x〉 dP(x)

= 〈a,
∫

x dP(x)〉 = 〈a,µ〉. �

Now, imagine that we have an object x sam-
pled from P(x), and we want to compute its nearest
neighbor in a dataset. Let h and ` be two fixed ob-
jects in the dataset, such that the inner product to the
true mean µ is higher for h than for `, i.e.,

〈h,µ〉 − 〈`,µ〉 > 0. (5)

We are interested in which of h and ` is more similar
to x (in terms of inner product), or in other words,
the difference of two inner products

z = 〈h, x〉 − 〈`, x〉 = 〈h − `, x〉. (6)
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Because x is a random variable, so is z. Let Q(z) be
the distribution of z; i.e., z ∼ Q(z).

Using Lemma 1 with a = h − `, together with
Eq. (5), we have

E[z] = 〈h − `,µ〉 = 〈h,µ〉 − 〈`,µ〉 > 0. (7)

Note that the above statement is only concerned
about the mean, so it does not in general assure that

〈h, x〉 > 〈`, x〉 (8)

holds with high probability; there is a chance that
a small number of outliers are inflating the mean.
To assure that inequality (8) holds with probability
greater than 1/2 for instance, the median rather than
the mean of the distribution Q(z) must be greater
than 0.

If the distribution Q(z) is symmetric, the median
occurs at the same point as the mean, and the above
claim holds. Indeed, if the components of x are gen-
erated independently from (possibly non-identical)
normal distributions, we can show that Q(z) also
obeys a normal distribution. Because it is a symmet-
ric distribution, we can safely say that in this case,
Eq. (8) holds with probability greater than 1/2.

For a general non-symmetric distribution with a
finite variance, the median is known to be within the
standard deviation of the mean (Mallows, 1991), so
we could still say that Eq. (8) is likely to hold if 〈h−
`,µ〉 is sufficiently large compared to the standard
deviation.

Now, if we let h be the object in a given dataset
with the highest similarity (inner product) to the
mean µ, and let ` be any other object in the set, then
we see from the above discussion that h is likely to
have higher similarity to x, a test sample drawn from
distribution P(x). Because this holds for any ` in
the dataset, the conclusion is that the objects in the
dataset most similar to µ are likely to become hubs.

4.2 After centering

Next let us investigate what happens if the dataset
is centered. Let x̄ be the sample (empirical) mean
given by Eq. (1). After centering, the similarity of x
with each of the two fixed objects h and ` are evalu-
ated by 〈h− x̄, x− x̄〉 and 〈`− x̄, x− x̄〉, respectively.

Their difference zcent is given by

zcent = 〈h − x̄, x − x̄〉 − 〈` − x̄, x − x̄〉
= 〈h − `, x − x̄〉
= 〈h − `, x〉 − 〈h − `, x̄〉
= z − 〈h − `, x̄〉.

The last equality follows from Eq. (6). By definition
we have z ∼ Q(z), and since 〈h − `, x̄〉 is a constant,

zcent = z − 〈h − `, x̄〉 ∼ Q(z + 〈h − `, x̄〉).

In other words, the shape of the distribution does not
change, but the mean is shifted to

E[zcent] = E[z] − 〈h − `, x̄〉
= 〈h − `,µ〉 − 〈h − `, x̄〉
= 〈h − `,µ − x̄〉,

where E[z] is given by Eq. (7). If the sample mean
x̄ is close enough to the true mean µ, i.e., x̄ ≈ µ, we
have an approximation

E[zcent] = 〈h − `,µ − x̄〉 ≈ 0. (9)

Thus, if the median and the mean of distribution
Q(z) are again not far apart, Eq. (9) suggests that
h − x̄ and ` − x̄ are about equally likely to be more
similar to x − x̄; i.e., neither has a greater chance to
become a hub.

5 Hubs in multi-cluster data

In this section, we discuss emergence of hubs when
the data consists of multiple clusters. In fact, the
analysis of Section 4 is distribution-free, and thus
also applies to the case of multi-modal P(x). How-
ever, one might still argue that objects similar to the
data centroid should hardly occur in that case. Us-
ing both synthetic and real datasets, we demonstrate
below that even in multi-cluster data, objects that
are only slightly more similar to the data mean (cen-
troid) may emerge as hubs.

5.1 Synthetic data
5.1.1 Data generation

We generated a high-dimensional multi-cluster
dataset by modeling it as a mixture of ten von Mises-
Fisher distributions (Mardia and Jupp, 2000) in
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between objects and neighbors

Figure 1: 300-dimensional synthetic data. (a), (d): scatter plot of the N10 value of objects and their similarity to
centroid. (b), (e): kNN matrices. The points are colored according to the N10 value of object x; warmer colors indicate
higher N10 values. (c), (f): the number of times (y-axis) an object (whose ID is on the x-axis) appears in the 10 nearest
neighbors of objects of the same cluster (black bars), and those of different clusters (magenta).

R300. The von Mises-Fisher distribution is a distri-
bution of unit vectors (it can roughly be thought of
as a normal distribution on a unit hypersphere), so
for objects (feature vectors) sampled from this dis-
tribution, inner product reduces to cosine similarity.

We sampled1 100 objects from each of the ten dis-
tributions (clusters), and made a dataset of 1,000 ob-
jects in total.

The von Mises-Fisher distribution has two param-
eters, the mean direction vector µ, and the concen-
tration parameter κ characterizing how strongly the
population is concentrated around the direction µ.
We set κ = 500 for all ten distributions, but the mean
directions µ were made distinct; all mean direction

1We used the random sampling code available at http:
//people.kyb.tuebingen.mpg.de/suvrit/work/progs/movmf.html
(Banerjee et al., 2005).

vectors had 30 components set to 0.5 while the re-
maining 270 components were set to 1, but the 30
components with value 0.5 were chosen to be dis-
tinct among the ten clusters. This configuration as-
sures that all ten mean directions have the same an-
gle from the all-ones vector [1, . . . , 1]T, which is the
direction of the mean of the entire data distribution.

Note that even though all sampled objects reside
on the surface of the unit hypersphere, the data cen-
troid lies not on the surface but inside the hyper-
sphere. And after centering, the length of the fea-
ture vectors may vary from one another, but we do
not normalize these vectors; i.e., object similarity is
measured by raw inner product, not by cosine.
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5.1.2 Correlation between hubness and
centroid similarity

The scatter plot in Figure 1(a) shows the correla-
tion between the degree of hubness (N10) of an ob-
ject and its inner product similarity to the data cen-
troid. The N10 value of an object is defined as the
number of times the object appears in the 10 nearest
neighbors of other objects in the dataset. It was used
in (Radovanović et al., 2010a) to measure the degree
of hubness of individual objects.

The plot clearly shows that the hub objects (i.e.,
those with high N10) consist of objects that are simi-
lar to the centroid. Figure 1(d) shows the scatter plot
after the data is centered, created in the same way
as Figure 1(a). The similarity to the centroid is uni-
formly 0 as a result of centering, and no objects have
an N10 value greater than 33.

5.1.3 Influence of hubs on objects in different
clusters

The kNN matrix of Figure 1(b) depicts the kNN
relations with k = 10 among objects before center-
ing. In this matrix, both the x- and y- axes represent
the ID of the objects. If object x is in the 10 nearest
neighbors of object y, a point is plotted at coordi-
nates (x, y). As a result, there are exactly k = 10
points in each row. The color of points indicates the
degree of hubness of object x; warmer color repre-
sents higher N10 value of the object.

In this matrix, object IDs are sorted by the clus-
ter the objects belong to. Hence in the ideal case in
which the k nearest neighbors of every object consist
genuinely of objects from the same cluster, only the
diagonal blocks would be colored, and off-diagonal
areas would be left blank.

As Figure 1(b) shows, the actual situation is far
from ideal, even though ten diagonal blocks are still
identifiable. The presence of many warm colored
vertical lines suggests that many hub objects appear
in the 10 nearest neighbors of other objects that are
not in the same cluster as the hubs. Thus these hubs
may have a strong influence on the kNN prediction
of other objects.

Figure 1(e) shows the kNN matrix after centering.
The warm colored lines have disappeared, and the
diagonal blocks are now more visible.

The bar graphs of Figures 1(c) and (f) plot the N10
value of each object (whose ID is on the x-axis). Re-

call that N10 is the number of times an object appears
in the 10 nearest neighbors of other objects. The
bar for each object is broken down by whether the
object and its neighbors belong to the same cluster
(black bar) or in different clusters (magenta bar). In
terms of kNN classification, having a large number
of nearest neighbors with the same class improves
the classification performance, so longer black bars
and shorter magenta bars are more desirable.

Before centering (Figure 1(c)), hub objects with
large N10 values are similar not only to objects be-
longing to the same cluster (as indicated by black
bars), but also to objects belonging to different clus-
ters (magenta bars). After centering (Figure 1(f)),
the number of tall magenta bars decreases.

Before centering, 22.7% of the 10 nearest neigh-
bors of an object have the same class label as the
object (as indicated by the ratio of the total height of
black bars relative to that of all bars in Figure 1(c)).
After centering, the percentage increases to 31.6%.

5.2 Real dataset

We did the same analysis as Sections 5.1.2–5.1.3
to a real dataset with multiple-cluster structure: the
Reuters Transcribed dataset. This multi-class docu-
ment classification dataset has ten classes, and each
class roughly forms a cluster. We will also use this
dataset in an experiment in Section 7.2.

The results are shown in Figure 2. We can ob-
serve the same trends as we saw in Figure 1 for the
synthetic data: positive correlation between hubness
(N10) and inner product with the data centroid be-
fore centering; hubs appearing in the nearest neigh-
bors of many objects of different classes; and both
are reduced after centering.

The ratio of the height of black bars to that of
all bars in Figure 2(c) is 38.4% before centering,
whereas it improves to 41.0% after centering (Fig-
ure 2(f)).

6 Hubness weighted centering

Centering shifts the origin of the space to the data
centroid, and objects similar to the centroid tend to
become hubs. Thus in a sense, centering can be
interpreted as an operation that shifts the origin to-
wards hubs.

In this section, we extrapolate this interpretation,
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by class match/mismatch between
objects and neighbors

Figure 2: Reuters Transcribed data.

and move the origin more actively towards hub ob-
jects in the dataset, rather than towards the data cen-
troid. To this end, we consider weighted centering,
a variation of centering in which each object is asso-
ciated with a weight, and the origin is shifted to the
weighted mean of the data. Specifically, we define
the weight of an object as the sum of the similarities
(inner products) between the object and all objects,
regarding this sum as the index of how likely the ob-
ject can be a hub.

6.1 Weighted centering

In weighted centering, we associate weight wi to
each object i in the dataset, and move the origin to
the weighted centroid

x̄weighted =

n∑
i=1

wixi

where
∑n

i=1 wi = 1 and 0 ≤ wi ≤ 1 for i = 1, . . . , n.
Thus, object x is mapped to a new feature vector

xweighted = x − x̄weighted = x −
n∑

i=1

wixi.

Notice that the original centering formula (2) is re-
covered by letting wi = 1/n for all i = 1, . . . , n.

Weighted centering can also be kernelized by us-
ing the weighted centering matrix H(w) = I − 1wT

in place of H in Eq. (3). The resulting Gram matrix
is

Kweighted = H(w)KH(w)T. (10)

6.2 Similarity-dependent weighting

To move the origin towards hubs more aggressively,
we place more weights on objects that are more
likely to become hubs. This likelihood is estimated
by the similarity of individual objects to all objects
in the data set.
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Let di be the sum of the similarity between object
xi and all objects in the dataset. So,

di =

n∑
j=1

〈xi, x j〉 = n 〈xi,
1
n

n∑
j=1

x j〉.

As seen from the last equation, di is proportional to
the similarity (inner product) between object xi and
the data centroid.

Now we define {wi}
n
i=1 from {di}

n
i=1 by

wi =
dγi∑n
j=1 dγj

,

where γ is a parameter controlling how much we
emphasize the effect of di. Setting γ = 0 results in
wi = 1 for every i, and hence is equivalent to normal
centering. When γ > 0, weighted centering moves
the origin closer to the objects with a large di than
normal centering would.

7 Experiments

We evaluated the effect of centering in two natural
language tasks: word sense disambiguation (WSD)
and document classification. We are interested in
whether hubs are actually reduced after centering,
and whether the performance of kNN classification
is improved.

Throughout this section, K denotes cosine simi-
larity matrix; i.e., inner product of feature vectors
normalized to unit length; Kcent denotes the cen-
tered similarity matrix computed by Eq. (3) from K;
Kweighted denotes its hubness weighted variant given
by Eq. (10). Depending on context, these symbols
are also used to denote kNN classifiers using respec-
tive similarity measures.

For comparison, we also tested two recently pro-
posed approaches to hub reduction: transformation
of the base similarity measure (in our case, K) by
Mutual Proximity (Schnitzer et al., 2012)2, and the
one (Suzuki et al., 2012) based on graph Laplacian
kernels. Since the Laplacian kernels are defined for
graph nodes, we computed them by taking the co-
sine similarity matrix K as the weighted adjacency
(affinity) matrix of a graph. For Laplacian kernels,

2We used the Matlab script downloaded from http://www.
ofai.at/∼dominik.schnitzer/mp/.

we computed both the regularized Laplacian ker-
nel (Chebotarev and Shamis, 1997; Smola and Kon-
dor, 2003) with several parameter values, as well as
the commute-time kernel (Saerens et al., 2004), but
present only the best results among these kernels.

7.1 Word sense disambiguation

7.1.1 Task and dataset
In the WSD experiment, we used the dataset for

the Senseval-3 English Lexical Sample (ELS) task
(Mihalcea et al., 2004). It is a collection of sen-
tences containing 57 polysemous words, and each
of these sentences is annotated with a gold standard
sense of the target word. The goal of the ELS task
is to build a classifier for each target word, which,
given a context around the word, predicts a sense
from the known set of senses.

We used a basic bag-of-words representation for
the context surrounding a target word (Mihalcea,
2004; Navigli, 2009). A context is thus represented
as a high-dimensional feature vector holding the tf-
idf weighted frequency of words3 in context.

7.1.2 Compared methods
We applied kNN classification using cosine sim-

ilarity K, and its four transformed similarity mea-
sures: centered similarity Kcent, its weighted vari-
ant Kweighted, Mutual Proximity and graph Laplacian
kernels. The sense of a test object was predicted by
voting from the k training objects most similar to the
test object, as measured by the respective similarity
measures.

We used leave-one-out cross validation within the
training data to tune neighborhood size k for the
kNN classification and the voting scheme, i.e., ei-
ther (unweighted) majority vote, or weighted vote in
which votes from individual objects are weighted by
their similarity score to the test objects. We also se-
lected parameter γ in Kweighted and the best graph
Laplacian kernel among the regularized Laplacian
and commute time kernels using the training data.

7.1.3 Evaluation
We computed two indices for each similarity mea-

sure: (i) skewness of the N10 distribution to evaluate

3We removed stop words listed in the on-line appendix of
(Lewis et al., 2004).
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Method F1 score Skewness

K 60.3 4.55
Kcent 64.0 1.19
Kweighted 64.8 1.02
Mutual Proximity 63.0 1.00
Graph Laplacian 61.2 4.51
GAMBL (Decadt et al., 2004) 64.5 —

Table 1: WSD results: Macro-averaged F1 score (points)
of the compared methods (larger is better) and empirical
skewness of the N10 distribution for each similarity mea-
sure (smaller is better).

the emergence of hubs, and (ii) macro-averaged F1
score to evaluate the classification performance.

Skewness To evaluate the degree of hub emer-
gence for each similarity measure, we followed
(Radovanović et al., 2010a) and counted Nk(x), the
number of times object x occurs in the kNN lists
of other objects in the dataset (we fix k = 10 be-
low). The emergence of hubs in a dataset can then
be quantified with skewness, defined as follows:

S Nk =
E

[(
Nk − µNk

)3
]

σ3
Nk

.

In this equation, E[ · ] denotes expectation, and µNk

and σNk are the mean and the standard deviation of
the Nk distribution, respectively.

When hubs exist in a dataset, the distribution of
Nk is expected to skew to the right, and yields a large
S Nk (Radovanović et al., 2010a). In other words,
similarity measures that yield smaller S Nk are more
desirable in terms of hub reduction.

Skewness can only be computed for each dataset,
and in the WSD task, each target word has its own
dataset. Hence we computed the skewness S N10 for
each word and then took average.

Macro-averaged F1 score Classification perfor-
mance was measured by the F1 score macro-
averaged over all the 57 target words in the Senseval-
3 ELS dataset. The standard Senseval-3 ELS scor-
ing method is based on micro average, but we used
macro average to make the evaluation consistent
with skewness computation, which, as mentioned
above, can only be computed for each dataset (i.e.,
word).

Dataset #classes #objects #features

Reuters Transcribed 10 201 2730
Mini Newsgroups 20 2000 8811

Table 2: Document classification datasets: Number of
classes, data size, and number of features.

7.1.4 Result
Table 1 shows the F1 scores and the skewness of

the N10 distributions, macro averaged over the 57
target words. The table also includes the macro-
averaged F1 score4 of the GAMBL system, the best
memory-based system participated in the Senseval-
3 ELS task. Note however that GAMBL uses more
elaborate features (e.g., part-of-speech of words)
than just a plain bag-of-words used by other methods
in this comparison. GAMBL also employs complex
post-processing of the kNN outputs.

After centering (Kcent and Kweighted) skewness
became markedly smaller than that of the non-
centered cosine K. F1 score also improved with the
decrease in skewness. In particular, weighted cen-
tering (Kweighted) slightly outperformed GAMBL,
though the difference was small. Recall however
that Kcent and Kweighted only use naive bag-of-words
features, unlike GAMBL.

7.2 Document classification

7.2.1 Task and dataset
Two multiclass document classification datasets

were used: Reuters Transcribed and Mini News-
groups, distributed at http://archive.ics.uci.edu/ml/.
The properties of the datasets are summarized in Ta-
ble 2.

7.2.2 Evaluation
The performance was evaluated by the F1 score

(equivalent to accuracy in this task) of prediction us-
ing leave-one-out cross validation, due to the limited
number of documents.

7.2.3 Compared methods
We used the cosine similarity as the base sim-

ilarity matrix (K). The centered similarity matrix
(Kcent) and its weighted variant (Kweighted), Mutual

4The macro-averaged F1 of GAMBL was calculated from
the per-word F1 scores listed in Table 1 of (Decadt et al., 2004).
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Method F1 score Skewness

K 56.7 1.61
Kcent 61.2 0.11
Kweighted 60.2 0.04
Mutual Proximity 60.2 −0.10
Graph Laplacian 57.2 0.37

(a) Reuters Transcribed

Method F1 score Skewness

K 76.5 4.37
Kcent 79.0 1.56
Kweighted 79.4 1.68
Mutual Proximity 79.0 0.49
Graph Laplacian 77.6 2.13

(b) Mini Newsgroups

Table 3: Document classification results: F1 score (%)
(larger is better) and skewness of the N10 distribution for
each similarity measure (smaller is better).

Proximity, and graph Laplacian based kernels were
computed from K.

kNN classification was done in a standard way:
The class of object x is predicted by the majority
vote from k = 10 objects most similar to x, mea-
sured by a specified similarity measure. The param-
eter k for the kNN classification, the voting scheme
(i.e., either unweighted or weighted majority vote),
γ in Kweighted, and the best graph Laplacian kernel
were selected by leave-one-out cross validation.

7.2.4 Result
Table 3 shows the F1 score and the skewness of

the N10 distribution of the respective methods in
document classification. Centered cosine (Kcent)
outperformed uncentered cosine similarity K, and
achieved an F1 score comparable to Mutual Proxim-
ity. Weighted centering (Kweighted) further improved
F1 on the Mini Newsgroups data.

8 Conclusion

We have shown that centering similarity matrices re-
duces the emergence of hubs in the data, and conse-
quently improves the accuracy of nearest neighbor
classification. We have theoretically analyzed why
objects most similar to the mean tend to make hubs,
and also proved that centering cancels the bias in the
distribution of inner products, and thus is expected

to reduce hubs.
In WSD and document classification tasks, kNN

classifiers showed much better performance with
centered similarity measures than non-centered
ones. Weighted centering shifts the origin towards
hubs more aggressively, and further improved the
classification performance in some cases.

In future work, we plan to exploit the class distri-
bution in the dataset to make more effective similar-
ity measures; notice that the hubness weighted cen-
tering of Section 6 is an unsupervised method, in the
sense that class information was not used for deter-
mining weights. We will investigate if more effec-
tive weighting can be done using this information.
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Abstract

We derive a spectral method for unsupervised
learning of Weighted Context Free Grammars.
We frame WCFG induction as finding a Han-
kel matrix that has low rank and is linearly
constrained to represent a function computed
by inside-outside recursions. The proposed al-
gorithm picks the grammar that agrees with a
sample and is the simplest with respect to the
nuclear norm of the Hankel matrix.

1 Introduction

Weighted Context Free Grammars (WCFG) define
an important class of languages. Their expressivity
makes them good candidates for modeling a wide
range of natural language phenomena. This expres-
sivity comes at a cost: unsupervised learning of
WCFG seems to be a particularly hard task. And
while it is a well-studied problem, it is still to a great
extent unsolved.

Several methods for unsupervised learning of
WCFG have been proposed. Some rely on heuristics
that are used to build incrementally an approxima-
tion of the unknown grammar (Adriaans et al., 2000;
Van Zaanen, 2000; Tu and Honavar, 2008). Other
methods are based on maximum likelihood estima-
tion, searching for the grammar that has the largest
posterior given the training corpus (Baker, 1979;
Lari and Young, 1990; Pereira and Schabes, 1992;
Klein and Manning, 2002). Several Bayesian in-
ference approaches have also been proposed (Chen,
1995; Kurihara and Sato, 2006; Liang et al., 2007;
Cohen et al., 2010). These approaches perform pa-

rameter estimation by exploiting Markov sampling
techniques.

Recently, for the related problem of unsupervised
dependency parsing, Gormley and Eisner (2013)
proposed a new way of framing the max-likelihood
estimation. In their formulation the problem is ex-
pressed as an integer quadratic program subject to
non-linear constraints. They exploit techniques from
mathematical programming to solve the resulting
optimization.

In spirit, the work by Clark (2001; 2007) is prob-
ably the most similar to our approach since both ap-
proaches share an algebraic view of the problem. In
his case the key idea is to work with an algebraic
representation of a WCFG. The problem of recover-
ing the constituents of the grammar is reduced to the
problem of identifying its syntactic congruence.

In the last years, multiple spectral learning algo-
rithms have been proposed for a wide range of mod-
els (Hsu et al., 2009; Bailly et al., 2009; Bailly et al.,
2010; Balle et al., 2011; Luque et al., 2012; Cohen
et al., 2012). Since the spectral approach provides a
good thinking tool to reason about distributions over
Σ∗, the question of whether they can be used for un-
supervised learning of WCFG seems natural. Still,
while spectral algorithms for unsupervised learning
of languages can learn regular languages, tree lan-
guages and simple dependency grammars, the fron-
tier to WCFG seems hard to reach.

In fact, the most recent theoretical results on spec-
tral learning of WCFG do not seem to be very en-
couraging. Recently, Hsu et al. (2012) showed that
the problem of recovering the joint distribution over
PCFG derivations and their yields is not identifiable.
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Although, for some simple grammar subclasses (e.g.
independent left and right children), identification in
the weaker sense (over the yields of the grammar)
implies strong identification (e.g. over joint distri-
bution of yields and derivations). In their paper, they
propose a spectral algorithm based on a generaliza-
tion of the method of moments for these restricted
subclasses.

Thus one open direction for spectral research con-
sists on defining subclasses of context free lan-
guages that can be learned (in the strong sense) from
observations of yields. Yet, an alternative research
direction is to consider learnability in the weaker
sense. In this paper we take the second road, and
focus on the problem of approximating the distribu-
tion over yields generated by a WCFG.

Our main contribution is to present a spectral al-
gorithm for unsupervised learning of WCFG. Fol-
lowing ideas from Balle et al. (2012), the algo-
rithm is framed as a convex optimization where we
search for a low-rank matrix satisfying two types
of constraints: (1) Constraints derived from observ-
able statistics over yields; and (2) Constraints de-
rived from certain recurrence relations satisfied by a
WCFG. Our derivations of the learning algorithm il-
lustrate the main ingredients behind the spectral ap-
proach to learning functions over Σ∗ which are: (1)
to exploit the recurrence relations satisfied by the
target family of functions and (2) provide algebraic
formulations of these relations.

We alert the reader that although we are able to
frame the problem as a convex optimization, the
number of variables involved is quite large and pro-
hibits a practical implementation of the method on
a realistic scenario. The experiments we present
should be regarded as examples designed to illus-
trate the behavior of the method. More research
is needed to make the optimization more efficient,
and we are optimistic that such improvements can
be achieved by exploiting problem-specific proper-
ties of the optimization. Regardless of this, ours is
a novel way of framing the grammatical inference
problem.

The rest of the paper is organized as follows. Sec-
tion 2 gives preliminaries on WCFG and the type of
functions we will learn. Section 3 establishes that
spectral methods can learn a WCFG from a Han-
kel matrix containing statistics about context-free

cuts. Section 4 presents the unsupervised algorithm,
where we formulate grammar induction as a low-
rank optimization. Section 5 presents experiments,
and finally we conclude the paper.

Notation Let Σ be an alphabet. We use σ to de-
note an arbitrary symbol in Σ. The set of all fi-
nite strings over Σ is denoted by Σ?, where we
write λ for the empty string. We also use the set
Σ+ = Σ? \ {λ}.

We use bold letters to represent column vectors
v and matrices M . We use In to denote the n-
dimensional identity matrix. We use M+ to de-
note the Moore-Penrose pseudoinverse of some ma-
trixM . M⊗M ′ is the Kronecker product between
matricesM ∈ Rm×n andM ′ ∈ Rp×q resulting in a
matrix in Rmp×nq. The rest of notation will be given
as needed.

2 Weighted Context Free Grammars

In this section we define Weighted Context Free
Grammars (WCFG). We start with a classic defini-
tion and then describe an algebraic form of WCFG
that will be used throughout the paper. We also de-
scribe the fundamental recursions in WCFG.

2.1 WCFG in Classic Form

A WCFG over Σ is a tuple Ḡ =
〈V,R, T, w?, wT , wR〉 where

• V is the set of non-terminal symbols. We as-
sume that V = {1, . . . , n} for some natural
number n, and that V ∩ Σ = ∅.
• R is a set of binary rules of the form i → j k

where i, j, k ∈ V .
• T is a set of unary rules of the form i → σ

where i ∈ V and σ ∈ Σ.
• w? : V → R, with w?(i) being the weight of

starting a derivation with non-terminal i.
• wT : V × Σ → R, with wT (i → σ) being the

weight of rule rewriting i into σ.
• wR : V × V × V → R, with wR(i → j k)

being the weight of rewriting i into j k.

A WCFG Ḡ computes a function gḠ : Σ+ → R
defined as

gḠ(x) =
∑
i∈V

w?(i)β̄Ḡ(i
?
=⇒ x) , (1)
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where we define the inside function β̄Ḡ : V ×Σ+ →
R recursively:

β̄Ḡ(i
?
=⇒ σ) = wT (i→ σ) (2)

β̄Ḡ(i
?
=⇒ x) =

∑
j,k∈V

x1,x2∈Σ+

s.t. x=x1x2

wR(i→ j k) (3)
β̄Ḡ(j

?
=⇒ x1)β̄Ḡ(k

?
=⇒ x2) ,

where in the second case we assume |x| > 1. The
inside function β̄Ḡ(i

?
=⇒ x) exploits the fundamen-

tal inside recursion in WCFG (Baker, 1979; Lari and
Young, 1990). We will find useful to define the out-
side function ᾱḠ : Σ?×V ×Σ? → R defined recur-
sively as:

ᾱḠ(λ; i;λ) = w?(i) (4)

ᾱḠ(x; i; y) =
∑
j,k∈V

x1∈Σ?,x2∈Σ+

s.t. x=x1x2

wR(j → k i)· (5)
ᾱḠ(x1; j; y) · β̄Ḡ(k

?
=⇒ x2)

+
∑
j,k∈V

y1∈Σ+,y2∈Σ?

s.t. y=y1y2

wR(j → i k)·
ᾱḠ(x; j; y2) · β̄Ḡ(k

?
=⇒ y1) ,

where in the second case we assume that either
x 6= λ or y 6= λ.

For x, z ∈ Σ? and y ∈ Σ+ we have that∑
i∈V

ᾱḠ(x; i; z) · β̄Ḡ(i
?
=⇒ y) (6)

is the weight that the grammar Ḡ assigns to a string
xyz that has a cut or bracketing around y. Techni-
cally, it corresponds to the sum of the weights of all
derivations that have a constituent spanning y. In
particular we have that

gḠ(x) =
∑
i

ᾱḠ(λ; i;λ) · β̄Ḡ(i
?
=⇒ x) .

If x is a string of lengthm, and x[t:t′] is the substring
of x from positions t to t′, it also happens that

gḠ(x) =
∑
i

ᾱḠ(x[1:t−1]; i;x[t+1:m])·β̄Ḡ(i
?
=⇒ x[t]))

for any t between 1 and m.
In this paper we will make frequent use of inside

and outside quantities. Notationally, for outsides the
semi-colon between two strings, i.e. x; z, will sim-
bolize a cut where we can insert an inside string y.

Finally, we note that Probabilistic Context Free
Grammars (PCFG) are a special case of WCFG
where: w?(i) is the probability to start a derivation
with non-terminal i; wR(i → j k) is the condi-
tional probability of rewriting nonterminal i into j
and k; wT (i → σ) is the probability of rewriting i
into symbol σ;

∑
iw?(i) = 1; and for each i ∈ V ,∑

j,k wR(i → j k) +
∑

σ wT (i → σ) = 1. Un-
der these conditions the function gḠ is a probability
distibution over Σ+.

2.2 WCFG in Algebraic Form

We now define a WCFG in algebraic form. A
Weighted Context Free Grammar (WCFG) over Σ
with n states is a tuple G = 〈α?, {βσ},A〉 with:

• An initial vector α? ∈ Rn.
• Terminal vectors βσ ∈ Rn for σ ∈ Σ.
• A bilinear operatorA ∈ Rn×n2

.

A WCFG G computes a function gG : Σ? → R
defined as

gG(x) = α>? βG(x) (7)

where the inside function βG : Σ+ → Rn is

βG(σ) = βσ (8)

βG(x) =
∑

x1,x2∈Σ+

x=x1x2

A(βG(x1)⊗ βG(x2)) (9)

We will define the outside function αG : Σ? ×
Σ? → Rn as:

αG(λ;λ) = α? (10)

αG(x; z)> =
∑

x1∈Σ?,x2∈Σ+

x=x1x2

αG(x1; z)>A(βG(x2)⊗ In)

+
∑

z1∈Σ+,z2∈Σ?

z=z1z2

αG(x; z2)>A(In ⊗ βG(z1)) (11)

For x, z ∈ Σ? and y ∈ Σ+ we have that

αG(x; z)>βG(y) (12)

is the weight that the grammar assigns to the string
xyz with a cut around y. In particular, gG(x) =
αG(λ;λ)>βG(x).
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Let us make clear that a WCFG is the same
device in classic or algebraic forms. If Ḡ =
〈V,R, T, w?, wT , wR〉 and G = 〈α?, {βσ},A〉, the
mapping is:

w?(i) = α?(i) (13)

wT (i→ σ) = βσ[i] (14)

wR(i→ j k) = A[i, j, k] (15)

β̄Ḡ(i
?
=⇒ x) = βG(x)[i] (16)

ᾱḠ(x; i; z) = αG(x; z)[i] (17)

See Section A.1 for a proof of Eq. 16 and 17.

3 WCFG and Hankel Matrices

In this section we describe Hankel matrices for
WCFG. These matrices explicitly capture inside-
outside recursions employed by WCFG functions,
and are key to a derivation of a spectral learning al-
gorithm that learns a grammar G using statistics of
a training sample.

Let us define some sets. We say that I1 = Σ+

is the set of inside strings. The set of composed in-
side strings I2 is the set of elements (x, x′), where
x, x′ ∈ Σ+. Intuitively (x, x′) represents two adja-
cent spans with an operation, i.e., it keeps the trace
of the operation that composes x with x′ and yields
xx′. We will use the set I = I1 ∪ I2.

The set of outside contextsO is the set containing
elements 〈x; z〉, where x, z ∈ Σ?. Intuitively, 〈x; z〉
represents a context where we can insert an inside
element y in between x and z, yielding xyz.

Consider a function f : O × I → R. The Hankel
matrix of f is the bi-infinite matrix Hf ∈ RO×I
such thatHf (o, i) = f(o, i).

In practice we will work with finite sub-blocks of
Hf . To this end we will employ the notion of basis
B = (P,S), where {〈λ, λ〉} ⊆ P ⊆ O is a set
of outside contexts and Σ ⊆ S ⊆ I1 is a set of
inside strings. We will use p = |P| and s = |S|.
Furthermore, we define the inside completion of S
as the set S† = {(x, x′) | x, x′ ∈ S}. Note that
S† ⊆ I2. We say that B† = (P,S†) is the inside
completion of B.

The sub-block of Hf defined by B is the p × s
matrix HB ∈ RP×S with HB(o, i) = Hf (o, i) =
f(o, i). In addition toHB, we are interested in these
additional finite vectors and matrices:

• h? ∈ RS is the s-dimensional vector with co-
ordinates h?(x) = f(〈λ, λ〉, x).

• hσ ∈ RP is the p-dimensional vector with co-
ordinates hσ(o) = f(o, σ).

• HA ∈ RP×S† with HA(o, (x1, x2)) =
f(o, (x1, x2)).

3.1 Hankel Factorizations

If f is computed by a WCFG G, then Hf has rank
n factorization. To see this, consider the follow-
ing matrices. First a matrix S ∈ Rn×I1 of inside
vectors for all strings, with column x taking value
Sx = βG(x). Then a matrix P ∈ RO×n of out-
side vectors for all contexts, with row 〈x; z〉 tak-
ing value P 〈x;z〉 = αG(x; z). It is easy to see that
Hf = PS, since Hf (〈x; z〉, y) = P 〈x;z〉Sy =

αG(x; z)>βG(y). ThereforeHf has rank n.
The same happens for sub-blocks. If HB is the

sub-block associated with basis B = (P,S), then
the sub-blocks P B ∈ RP×n and SB ∈ Rn×S of P
and S also accomplish that HB = P BSB . It also
happens that

h>? = α>? SB (18)

hσ = P Bβσ (19)

HA = P BA(SB ⊗ SB) . (20)

We say that a basis B is complete for f if
rank(HB) = rank(Hf ). The following is a key
result for spectral methods.

Lemma 1. Let B = (P,S) be a complete basis of
dimension n for a function f and let HB ∈ RP×S
be the Hankel sub-block of f for B. Let h?, hσ and
HA be the additional matrices for B. IfHB = PS
is a rank n factorization, then the WCFG G =
〈α?, {βσ},A〉 with

α>? = h>? S
+ (21)

βσ = P+hσ (22)

A = P+HA(S ⊗ S)+ (23)

computes f .

See proof in Section A.2.
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3.2 Supervised Spectral Learning of WCFG
The spectral learning method directly exploits
Lemma 1. In a nutshell, the spectral method is:

1. Choose a complete basis B = (P,S) and a di-
mension n.

2. Use training data to compute estimates of the
necessary Hankel matrices: HB, h?, hσ,HA.

3. Compute the SVD ofHB,HB = UΛV >.

4. Create a truncated rank n factorization of HB
asP nSn, havingP n = UnΛn andSn = V >n ,
where we only consider the top n singular val-
ues/vectors of Λ,U ,V .

5. Use Lemma 1 to computeG, usingP n and Sn.

Because of Lemma 1, if B is complete and we
have access to the trueHB, h?, hσ,HA of a WCFG
target function g∗, then the algorithm will compute
a G that exactly computes g∗. In practice, we only
have access to empirical estimates of the Hankel ma-
trices. In this case, there exist PAC-style sample
complexity bounds that state that gG will be a close
approximation to g∗ (Hsu et al., 2009; Bailly et al.,
2009; Bailly et al., 2010).

The parameters of the algorithm are the basis and
the dimension of the grammar n. One typically em-
ploys some validation strategy using held-out data.
Empirically, the performance of these methods has
been shown to be good, and similar to that of EM
(Luque et al., 2012; Cohen et al., 2013). It is also
important to mention that in the case that the target
g∗ is a probability distribution, the function gG will
be close to g∗, but it will only define a distribution in
the limit: in practice it will not sum to one, and for
some inputs it might return negative values. This is a
practical difficulty of spectral methods, for example
to apply evaluation metrics like perplexity which are
only defined for distributions.

4 Unsupervised Learning of WCFG

In the previous section we have exposed that if we
have access to estimates of a Hankel matrix of a
WCFG G, we can recover G. However, the statis-
tics in the Hankel require access to strings that have
information about context-free cuts. We will assume
that we only have access to statistics about plain
strings of a distribution, i.e. p(x), which we call

observations. In this scenario, one natural idea is
to search for a Hankel matrix that agrees with the
observations. The method we present in this sec-
tion frames this problem as a low-rank matrix op-
timization problem. We first characterize the space
of solutions to our problem, i.e. Hankel matrices
associated with WCFG that agree with observable
statistics. Then we present the method.

4.1 Characterization of a WCFG Hankel
In this section we describe valid WCFG Hankel ma-
trices using linear constraints.

We first describe an inside-outside basis that is
an extension of the one in the previous section. In-
side elements are the same, namely I = I1 ∪ I2,
where I1 are strings (x) and I2 are composed
strings (x, x′). The set of outside contexts O1 is
the set containing elements 〈x; z〉, defined as be-
fore. The set of composed outside contexts has el-
ements 〈x, x′; z〉, and 〈x; z′, z〉, where x, z ∈ Σ?

and x′, z′ ∈ Σ+. These outside contexts keep an
operation open in one of the sides. For example, if
we consider 〈x; z′, z〉 and insert a string y, we obtain
x(y, z′)z, where we use (y, z′) to explicitly denote a
composed inside string. We will use O = O1 ∪ O2.

In this section, we will assume that I and O are
finite and closed. By closed, we mean that:

• (x) ∈ I ⇒ (x1, x2) ∈ I for x = x1x2

• (x1, x2) ∈ I ⇒ x1 ∈ I, x2 ∈ I
• 〈x; z〉 ∈ O ⇒ 〈x1, x2; z〉 ∈ O for x = x1x2

• 〈x; z〉 ∈ O ⇒ 〈x; z1, z2〉 ∈ O for z = z1z2

• 〈x1, x2; z〉 ∈ O ⇒ (x2) ∈ I
• 〈x; z1, z2〉 ∈ O ⇒ (z1) ∈ I

We will consider a Hankel matrix H ∈ RO×I .
Some entries of this matrix will correspond to ob-
servable quantities. Specifically, for any string x ∈
I1 for which we know p(x) we can define the fol-
lowing observable constraint:

p(x) = H(〈λ;λ〉, (x)) (24)

The rest of entries of H correspond to a string
with an inside-outside cut, and these are not ob-
servable. Our method will infer the values of these
entries. The following constraints will ensure that
the matrix H is a well defined Hankel matrix for
WCFG:
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• Hankel constraints: ∀ 〈x; z〉 ∈ O, (y1, y2) ∈ I

H(〈x; z〉, (y1, y2)) = H(〈x, y1; z〉, (y2))

= H(〈x; y2, z〉, (y1)) (25)

• Inside constraints: ∀ o ∈ O, (x) ∈ I

H(o, (x)) =
∑

x=x1x2

H(o, (x1, x2)) (26)

• Outside constraints: ∀ 〈x; z〉 ∈ O, i ∈ I

H(〈x; z〉, i) =
∑

x=x1x2

H(〈x1, x2; z〉, i)

+
∑

z=z1z2

H(〈x; z1, z2〉, i) (27)

Constraint (25) states that composition operations
that result in the same structure should have the same
value. Constraints (26) and (27) ensure that the val-
ues in the Hankel follow the inside-outside recur-
sions that define the computations of a WCFG func-
tion. The following lemma formalizes this concept.
LetHε be the sub-block ofH restricted toO1×I1,
i.e. without compositions.

Lemma 2. If H satisfies constraints (25),(26) and
(27), and if rank(H) = rank(Hε) then there exists
a WCFG that generatesHε.

See proof in Section A.3.

4.2 Convex Optimization

We now present the core optimization program be-
hind our method. Let vec(H) be a vector in R|O|·|I|
corresponding to all coefficients of H in column
vector form. Let O be a matrix such that O ·
vec(H) = z represents the observation constraints.
For example, if i-th row of O corresponds to the
Hankel coefficientH(〈λ;λ〉, (x)) then z(i) = p(x).
Let K be a matrix such that K · vec(H) = 0 rep-
resents the constraints (25), (26) and (27).

The optimization problem is:

minimize
H

rank(H)

subject to ‖O · vec(H)− z‖2 ≤ µ
K · vec(H) = 0

‖H‖2 ≤ 1.

(28)

Intuitively, we look for H that agrees with the ob-
servable statistics and satisfies the inside-outside
constraints. µ is a parameter of the method that con-
trols the degree of error in fitting the observables z.
The ‖H‖2 ≤ 1 is satisfied by any Hankel matrix
derived from a true distribution, and is used to avoid
incoherent solutions.

The above optimization problem, however, is
computationally hard because of the rank objective.
We employ a common relaxation of the rank objec-
tive, based on the nuclear norm as in (Balle et al.,
2012). The optimization is:

minimize
H

‖H‖∗

subject to ‖O · vec(H)− z‖2 ≤ µ
K · vec(H) = 0

‖H‖2 ≤ 1.

(29)

To optimize (29) we employ a projected gradient
strategy, similar to the FISTA scheme proposed by
Beck and Teboulle (2009). The method alternates
between separate projections for the observable con-
straints, the `2 norm, the inside-outside constraints,
and the nuclear norm. Of these, the latter two are the
most expensive.

Elsewhere, we develop theoretical properties of
the optimization (28) applied to finite-state transduc-
tions (Bailly et al., 2013). One can prove that there is
theoretical identifiability of the rank and the param-
eters of an FST distribution, using a rank minimiza-
tion formulation. However, this problem is NP-hard,
and it remains open whether there exists a polyno-
mial method with identifiability results. These re-
sults should generalize to WCFG.

5 Experiments

In this section we describe some experiments with
the learning algorithms for WCFG. Our goal is
to verify that the algorithms can learn some basic
context-free languages, and to study the possibility
of using them on real data.

5.1 Synthetic Experiments
We performed experiments on synthetic data, ob-
tained by choosing a PCFG with random parameters
(∈ [0, 1]), with a normalization step in order to get
a probability distribution. We built the Hankel ma-
trix from the inside basis {(x)}x∈Σ and outside basis
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Figure 1: KL divergence for spectral and EM methods,
unsupervised and supervised, for different sizes of learn-
ing sample, on log-log scales. Results are averages over
50 random target PCFG with 2 states and 2 symbols.

{〈λ;λ〉} ∪ {〈x;λ〉, 〈λ;x〉}x∈Σ. The composed in-
sides for the operator matrix are thus {(x, y)}x,y∈Σ.
The matrix in the optimizer has the following struc-
ture

H =


(y) · · · (y, z)

〈λ;λ〉 (λ; y;λ) · · · (λ; y, z;λ)
〈x;λ〉 (x; y;λ) · · · (x; y, z;λ)
〈λ;x〉 (λ; y;x) · · · (λ; y, z;x)

... · · · · · · · · ·


The constraints we use are:

K ={H((x; y;λ)) = H((λ;x; y))}x,y∈Σ∪
{H((λ;x; y)) = H((λ;x, y;λ))}x,y∈Σ∪
{H((x; y;λ)) = H((λ;x, y;λ))}x,y∈Σ

and

O ={H((λ;x;λ)) = pS(x)}x∈Σ ∪
{H((λ;x; y)) = pS(xy)}x,y∈Σ ∪

{H((x; y, z;λ)) +H((λ;x, y; z)) = pS(xyz)}x,y,z∈Σ

We use pS to denote the empirical distribution.
Those are simplified versions of the Hankel, inside,
outside and observation constraints. The set O is
built from the following remarks: (1) (xy) = (x, y)
and (2) (xyz) = (xy, z)+(x, yz). The method uses
statistics for sequences up to length 3.

The algorithm we use for the unsupervised spec-
tral method is a simplified version: we use alter-
natively a hard projection on the constraints (by
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Figure 2: KL divergence for unsupervised and supervised
spectral methods, for different sizes of learning sample,
on log-log scales. Results are averages over 50 random
target PCFG with 3 states and 6 symbols.

projecting iteratively on each constraint), and a
thresholding-shrinkage operation for the target di-
mension. We use the same trick as FISTA for the
update. We finally use the regular spectral method
on this matrix to get our model.

We compare this method with an unsupervised
EM, and also with supervised versions of spectral
method and EM. We compare the accuracy of the
different models in terms of KL-divergence for se-
quences up to length 10. We run 50 optimization
steps for the unsupervised spectral method, and 200
iterations for the EM methods. Figure 1 shows the
results, corresponding the the geometric mean over
50 experiments on random targets of 2 symbols and
2 states.

For sample size greater than 105, the unsupervised
spectral method seems to provide better solutions
than both EM and supervised EM. The solution, in
terms of KL-divergence, is comparable to the one
obtained with the supervised spectral method. The
computation time of unsupervised spectral method
is almost constant w.r.t. the sample size, around
1.67s, while computation time of unsupervised EM
(resp. supervised EM) is 6.103s (resp. 2.104s) for
sample size 106.

Figure 2 presents learnings curve for random tar-
gets with 3 states and 6 symbols. One can see that,
for big sample sizes (109), the unsupervised spectral
method is losing accuracy compared to the super-
vised method. This is due to a lack of information,
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and could be overcome by considering a greater ba-
sis (e.g. inside sequences up to length 2 or 3).

5.2 Dyck Languages

We now present experiments using the following
PCFG:

S → S S (0.2) | aS b (0.4) | a b (0.4)

This PCFG generates a probabilistic version of the
well-known Dyck language or balanced parenthesis
language, an archetypical context-free language.

We do experiments with the following models and
algorithms:

• WFA: a Weighted Finite Automata learned us-
ing spectral methods as described in (Luque et
al., 2012). Parameters: number of states and
size of basis.

• Supervised Spectral: a WCFG learned from
structured strings using the algorithm of sec-
tion 3.2. We choose as basis the most frequent
insides and outsides observed in the training
data. The size of the basis is determined by a
parameter f called the basis factor, that deter-
mines the proportion of total insides and out-
sides that will be in the basis.

• Unsupervised Spectral: a WCFG learned from
strings using the algorithm of Section 4. The
basis is like in the supervised case, but since
context-free cuts in the strings are not observed,

basis size of H obs. i/o ctr.
1 × 11 39 × 159 34 162
6 × 14 1,163 × 764 146 6,360

12 × 18 4,462 × 2,239 322 25,374
18 × 22 9,124 × 4,149 479 52,524
24 × 26 15,755 × 6,858 657 89,718
30 × 29 19,801 × 8,545 769 112,374
36 × 34 27,989 × 11,682 916 156,690
42 × 37 3,638 × 15,026 1,035 200,346
48 × 41 45,192 × 18,235 1,157 244,398
54 × 45 53,741 × 21,196 1,281 284,466
60 × 48 60,844 × 23,890 1,382 318,354

Table 1: Problem sizes for the WSJ10 training corpus.

basis / n 5 10 15 20
1 × 11 1.265 10−3

6 × 14 7.06 10−4 6.92 10−4

12 × 18 7.30 10−4 6.28 10−4 6.01 10−4

18 × 22 7.31 10−4 6.29 10−4 5.84 10−4 5.59 10−4

24 × 26 7.35 10−4 6.39 10−4 5.88 10−4 5.31 10−4

30 × 29 7.34 10−4 6.41 10−4 5.86 10−4 5.30 10−4

Table 2: Experiments with the unsupervised spectral
method on the WSJ10 corpus. Results are in terms of
expected L1 on the training set, for different basis and
numbers of states.

all possible inside and outsides of the sample
(i.e. all possible substrings and contexts) are
considered.

We generate a training set by sampling 4,000
strings from the target PCFG and counting the rel-
ative frequency of each. For the supervised model,
we generate strings paired with their context-free
derivation. To measure the quality of the learned
models, we use the L1 distance to the target distri-
bution over a fixed set of strings Σ≤n, for n = 7.1

Figure 3 shows the results for the different mod-
els and for different basis sizes (in terms of the basis
factor f ). Here we can clearly see that the WCFG
models, even the unsupervised one, outperform the
WFA in reproducing the target distribution.

5.3 Natural Language Experiments
Now we present some preliminar tests using natural
language data. For these tests, we used the WSJ10
subset of the Penn Treebank, as Klein and Manning
(2002). This dataset consists of the sentences of
length ≤ 10 after filtering punctuation and currency.
We removed lexical items and mapped the POS tags

1Given two functions f1 and f2 over strings, the L1 distance
is the sum of the absolute difference over all strings in a set:∑

x |f1(x)− f2(x)|.
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to the Universal Part-of-Speech Tagset (Petrov et al.,
2012), reducing the alphabet to a set of 11 symbols.

Table 1 shows the size of the problem for differ-
ent basis sizes. As described in the previous sub-
section for the unsupervised case, we obtain the ba-
sis by taking the most frequent observed substrings
and contexts. We then compute all yields that can
be generated with this basis, and close the basis to
include all possible insides and outsides with oper-
ations completions, such that we create a Hankel as
described in Section 4.1. Table 1 shows, for each
base, the size of H we induce, the number of ob-
servable constraints (i.e. sentences we train from),
and the number of inside-outside constraints.

With the current implementation of the optimizer
we were only able to run the unsupervised learning
for small basis sizes. Table 2 shows the expected L1

on training data. For a fixed basis, as we increase
the number of states we see that the error decreases,
showing that the method is inducing a Hankel matrix
that explains the observable statistics.

6 Conclusions

We have presented a novel approach for unsuper-
vised learning of WCFG. Our method combines in-
gredients of spectral learning with low-rank convex
optimization methods.

Our method optimizes over a matrix that, even if it
grows polynomially with respect to the size of train-
ing, results in a large problem. To scale the method
to learn languages of the complexity of natural lan-
guages we would need to identify optimization algo-
rithms specially suited for this problem.

A Proofs

A.1 Proof of Inside-Outside Eq. 16 and 17
For the inside function, the base case is trivial. By
induction:

βG(x)[i] =
∑

x=x1x2

A(βG(x1)⊗ βG(x2))[i]

=
∑
j,k∈V
x=x1x2

A[i, j, k] · βG(x1)[j] · βG(x2)[k]

=
∑
j,k∈V
x=x1x2

wR(i→ j k) · β̄Ḡ(j
?
=⇒ x1) · β̄Ḡ(k

?
=⇒ x2)

= β̄Ḡ(i
?
=⇒ x)

For the outside function, let ei be an n-
dimensional vector with coordinate i to 1 and the
rest to 0. We reformulate the mapping as:

αG(x; z)>ei = ᾱḠ(x; i; z) (30)

The base case is trivial by definitions. We use the
property of Kronecker products that (v ⊗ In)v′ =
(v⊗ v′) and (In⊗ v)v′ = (v′⊗ v) for v,v′ ∈ Rn.
We first look at one of the terms of αG(x; z)>ei:

αG(x1; z)>A(βG(x2)⊗ In)ei

= αG(x1; z)>A(βG(x2)⊗ ei)

=
∑
j,k∈V

(αG(x1; z)>ej) ·A[j, k, i] · βG(x2)[k]

=
∑
j,k∈V

ᾱḠ(x1; j; z) · wR(j → k i) · β̄Ḡ(k
?
=⇒ x2)

Applying the distributive property in αG(x; z)>ei it
is easy to see that all terms are mapped to the corre-
sponding term in ᾱḠ(x; i; z).

A.2 Proof of Lemma 1

Let G′ = 〈α′?, {β′σ},A′〉 be a WCFG for f that in-
duces a rank factorizationH = P ′S′. We first show
that there exists an invertible matrixM that changes
the basis of the operators of G into those of G′.
Define M = S′S+ and note that P+P ′S′S+ =
P+HS+ = I implies that M is invertible with
M−1 = P+P ′. We now check that the operators
of G correspond to the operators of G′ under this
change of basis. First we see that

A = P+HA(S ⊗ S)+

= P+P ′A′(S′ ⊗ S′)(S ⊗ S)+

= M−1A′(S′S+ ⊗ S′S+)

= M−1A′(M ⊗M) .

Now, since h? = α′>? S
′ and hσ = P ′β′σ , it follows

that α>? = α′?
>M and βσ = M−1β′σ.

Finally we check that G and G′ compute the
same function, namely f(o, i) = αG(o)>βG(i) =
αG′(o)

>βG′(i). We first see that βG(x) =
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M−1βG′(x):

βG(σ) = βσ = M−1β′σ (31)

βG(x) =
∑

x=x1x2

A(βG(x1)⊗ βG(x2)) (32)

=
∑

x=x1x2

M−1A′(M ⊗M)(βG(x1)⊗ βG(x2))

= M−1
∑

x=x1x2

A′(MβG(x1)⊗MβG(x2))

= M−1
∑

x=x1x2

A′(βG′(x1)⊗ βG′(x2))

It can also be shown that αG(x; z)> =
αG′(x; z)>M . One must see that in any term:

αG(x1; z)>A(βG(x2)⊗ In) (33)

= αG(x1; z)>M−1A′(M ⊗M)(βG(x2)⊗ In)

= αG′(x1; z)>A′(MβG(x2)⊗MIn)

= αG′(x1; z)>A′(βG′(x2)⊗ In)M

and the relation follows. Finally:

αG(x; z)>βG(y) (34)

= αG′(x; z)>MM−1βG′(y)

= αG′(x; z)>βG′(y)

A.3 Proof of Lemma 2
We will use the following sub-blocks ofH:

• Hε is the sub-block restricted to O1 × I1, i.e.
without compositions.
• HA is the sub-block restricted to O1 × I2, i.e.

inside compositions.
• H ′A is the sub-block restricted to O2 × I1, i.e.

outside compositions.
• h>? ∈ RI1 is the row ofHε for 〈λ;λ〉.
• h(x) ∈ RO1

is the column ofHε for (x).

• h(x1,x2) ∈ RO1
is the column of HA for

(x1, x2).
• h′〈x;z〉 ∈ RI1 is the row of hε for 〈x; z〉.
• h′〈x1,x2;z〉 and h′〈x;z1,z2〉 be the rows in RI1 of
h′A for 〈x1, x2; z〉 and 〈x; z1, z2〉).

One supposes that rank(Hε) = rank(H). We de-
fine G as

α>? = h>?H
+
ε , βa = h(a),A = HA(H+

ε ⊗H+
ε )

Lemma 3. One has that βG(x) = h(x), and
βG(x1, x2) = h(x1,x2).

Proof. By induction. For sequences of size 1, one
has βG(x) = βx = h(x). For the recursive case,
let e(x) be a vector in RI1 with 1 in the coordinate
of (x) in Hε. Let e(x,y) be a vector in RI2 with 1
in the coordinate of (x, y) in HA. For βG(x, y),
one has H+

ε βG(x) = e(x), and H+
ε βG(y) =

e(y), thus H+
ε βG(x) ⊗ H+

ε βG(y) = e(x,y) and
HA(H+

ε βG(x) ⊗ H+
ε βG(y)) = h(x,y). Finally,

one has that βG(x) =
∑

x=x1x2
βG(x1, x2) =∑

x=x1x2
h(x1,x2) = h(x1x2x3) by the equation

(26).

One has a symmetric result for outside vectors. We
define G′ as

α>? = h>? , βa = H+
ε h(a),A = H+

εHA

Lemma 4. One has that αG′(〈x; z〉)> =
h′〈x;z〉, αG′(〈x1, x2; z〉)> = h′〈x1,x2;z〉 and
αG′(〈x; z1, z2〉)> = h′〈x;z1,z2〉.

Proof. (Sketch) Equation (31) is used in the same
way than (27) before. Equation (25) is used to en-
sure a link betweenH ′A andHA.

Let g be the mapping computed by G and
G′. One has that g(o, i) = αG′(o)

>βG′(i) =
αG(o)>βG(i) = αG′(o)

>H+
ε βG(i) = Hε(o, i).
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Abstract

We address the problem of identifying mul-
tiword expressions in a language, focus-
ing on English phrasal verbs. Our poly-
glot ranking approach integrates frequency
statistics from translated corpora in 50 dif-
ferent languages. Our experimental eval-
uation demonstrates that combining statisti-
cal evidence from many parallel corpora us-
ing a novel ranking-oriented boosting algo-
rithm produces a comprehensive set of English
phrasal verbs, achieving performance compa-
rable to a human-curated set.

1 Introduction

A multiword expression (MWE), or noncomposi-
tional compound, is a sequence of words whose
meaning cannot be composed directly from the
meanings of its constituent words. These idiosyn-
cratic phrases are prevalent in the lexicon of a lan-
guage; Jackendoff (1993) estimates that their num-
ber is on the same order of magnitude as that of sin-
gle words, and Sag et al. (2002) suggest that they
are much more common, though quantifying them
is challenging (Church, 2011). The task of identify-
ing MWEs is relevant not only to lexical semantics
applications, but also machine translation (Koehn et
al., 2003; Ren et al., 2009; Pal et al., 2010), informa-
tion retrieval (Xu et al., 2010; Acosta et al., 2011),
and syntactic parsing (Sag et al., 2002). Awareness
of MWEs has empirically proven useful in a num-
ber of domains: Finlayson and Kulkarni (2011), for
example, use MWEs to attain a significant perfor-
mance improvement in word sense disambiguation;
Venkatapathy and Joshi (2006) use features associ-
ated with MWEs to improve word alignment.

∗Research conducted during an internship at Google.

We focus on a particular subset of MWEs, English
phrasal verbs. A phrasal verb consists of a head
verb followed by one or more particles, such that
the meaning of the phrase cannot be determined by
combining the simplex meanings of its constituent
words (Baldwin and Villavicencio, 2002; Dixon,
1982; Bannard et al., 2003).1 Examples of phrasal
verbs include count on [rely], look after [tend], or
take off [remove], the meanings of which do not in-
volve counting, looking, or taking. In contrast, there
are verbs followed by particles that are not phrasal
verbs, because their meaning is compositional, such
as walk towards, sit behind, or paint on.

We identify phrasal verbs by using frequency
statistics calculated from parallel corpora, consist-
ing of bilingual pairs of documents such that one
is a translation of the other, with one document in
English. We leverage the observation that a verb
will translate in an atypical way when occurring as
the head of a phrasal verb. For example, the word
look in the context of look after will tend to trans-
late differently from how look translates generally.
In order to characterize this difference, we calculate
a frequency distribution over translations of look,
then compare it to the distribution of translations of
look when followed by the word after. We expect
that idiomatic phrasal verbs will tend to have unex-
pected translation of their head verbs, measured by
the Kullback-Leibler divergence between those dis-
tributions.

Our polyglot ranking approach is motivated by the
hypothesis that using many parallel corpora of dif-
ferent languages will help determine the degree of
semantic idiomaticity of a phrase. In order to com-

1Nomenclature varies: the term verb-particle construction
is also used to denote what we call phrasal verbs; further, the
term phrasal verb is sometimes used to denote a broader class
of constructions.
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bine evidence from multiple languages, we develop
a novel boosting algorithm tailored to the task of
ranking multiword expressions by their degree of id-
iomaticity. We train and evaluate on disjoint subsets
of the phrasal verbs in English Wiktionary2. In our
experiments, the set of phrasal verbs identified au-
tomatically by our method achieves held-out recall
that nears the performance of the phrasal verbs in
WordNet 3.0, a human-curated set. Our approach
strongly outperforms a monolingual system, and
continues to improve when incrementally adding
translation statistics for 50 different languages.

2 Identifying Phrasal Verbs

The task of identifying phrasal verbs using corpus
information raises several issues of experimental de-
sign. We consider four central issues below in moti-
vating our approach.

Types vs. Tokens. When a phrase is used in con-
text, it takes a particular meaning among its pos-
sible senses. Many phrasal verbs admit composi-
tional senses in addition to idiomatic ones—contrast
idiomatic “look down on him for his politics” with
compositional “look down on him from the balcony.”
In this paper, we focus on the task of determining
whether a phrase type is a phrasal verb, meaning that
it frequently expresses an idiomatic meaning across
its many token usages in a corpus. We do not at-
tempt to distinguish which individual phrase tokens
in the corpus have idiomatic senses.

Ranking vs. Classification. Identifying phrasal
verbs involves relative, rather than categorical, judg-
ments: some phrasal verbs are more compositional
than others, but retain a degree of noncomposition-
ality (McCarthy et al., 2003). Moreover, a poly-
semous phrasal verb may express an idiosyncratic
sense more or less often than a compositional sense
in a particular corpus. Therefore, we should expect
a corpus-driven system not to classify phrases as
strictly idiomatic or compositional, but instead as-
sign a ranking or relative scoring to a set of candi-
dates.

Candidate Phrases. We distinguish between the
task of identifying candidate multiword expressions

2http://en.wiktionary.org

Feature Description

ϕL (×50) KL Divergence for each language L
µ1 frequency of phrase given verb
µ2 PMI of verb and particles
µ3 µ1 with interposed pronouns

Table 1: Features used by the polyglot ranking system.

and the task of ranking those candidates by their se-
mantic idiosyncracy. With English phrasal verbs, it
is straightforward to enumerate all desired verbs fol-
lowed by one or more particles, and rank the entire
set.

Using Parallel Corpora. There have been a num-
ber of approaches proposed for the use of multilin-
gual resources for MWE identification (Melamed,
1997; Villada Moirón and Tiedemann, 2006; Caseli
et al., 2010; Tsvetkov and Wintner, 2012; Salehi
and Cook, 2013). Our approach differs from pre-
vious work in that we identify MWEs using transla-
tion distributions of verbs, as opposed to 1–1, 1–m,
or m–n word alignments, most-likely translations,
bilingual dictionaries, or distributional entropy. To
the best of our knowledge, ours is the first approach
to use translational distributions to leverage the ob-
servation that a verb typically translates differently
when it heads a phrasal verb.

3 The Polyglot Ranking Approach

Our approach uses bilingual and monolingual statis-
tics as features, computed over unlabeled corpora.
Each statistic characterizes the degree of idiosyn-
crasy of a candidate phrasal verb, using a single
monolingual or bilingual corpus. We combine fea-
tures for many language pairs using a boosting algo-
rithm that optimizes a ranking objective using a su-
pervised training set of English phrasal verbs. Each
of these aspects of our approach is described in de-
tail below; for reference, Table 1 provides a list of
the features used.

3.1 Bilingual Statistics

One of the intuitive properties of an MWE is that
its individual words likely do not translate literally
when the whole expression is translated into another
language (Melamed, 1997). We capture this effect
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by measuring the divergence between how a verb
translates generally and how it translates when head-
ing a candidate phrasal verb.

A parallel corpus is a collection of document
pairs 〈DE , DF 〉, where DE is in English, DF is in
another language, one document is a translation of
the other, and all documents DF are in the same
language. A phrase-aligned parallel corpus aligns
those documents at a sentence, phrase, and word
level. A phrase e aligns to another phrase f if some
word in e aligns to some word in f and no word in
e or f aligns outside of f or e, respectively. As a
result of this definition, the words within an aligned
phrase pair are themselves connected by word-level
alignments.

Given an English phrase e, define F (e) to be the
set of all foreign phrases observed aligned to e in a
parallel corpus. For any f ∈ F (e), let P (f |e) be the
conditional probability of the phrase e translating to
the phrase f . This probability is estimated as the
relative frequency of observing f and e as an aligned
phrase pair, conditioned on observing e aligned to
any phrase in the corpus:

P (f |e) =
N(e, f)∑
f ′ N(e, f ′)

with N(e, f) the number of times e and f are ob-
served occurring as an aligned phrase pair.

Next, we assign statistics to individual verbs
within phrases. The first word of a candidate phrasal
verb e is a verb. For a candidate phrasal verb e and
a foreign phrase f , let π1(e, f) be the subphrase of
f that is most commonly word-aligned to the first
word of e. As an example, consider the phrase pair
e = talk down to and f = hablar con menosprecio.
Suppose that when e is aligned to f , the word talk is
most frequently aligned to hablar. Then π1(e, f) =
hablar.

For a phrase e and its set F (e) of aligned trans-
lations, we define the constituent translation proba-
bility of a foreign subphrase x as:

Pe(x) =
∑

f∈F (e)

P (f |e) · δ (π1(e, f), x) (1)

where δ is the Kronecker delta function, taking value
1 if its arguments are equal and 0 otherwise. Intu-
itively, Pe assigns the probability mass for every f

to its subphrase most commonly aligned to the verb
in e. It expresses how this verb is translated in the
context of a phrasal verb construction.3 Equation (1)
defines a distribution over all phrases x of a foreign
language.

We also assign statistics to verbs as they are trans-
lated outside of the context of a phrase. Let v(e)
be the verb of a phrasal verb candidate e, which
is always its first word. For a single-word verb
phrase v(e), we can compute the constituent transla-
tion probability Pv(e)(x), again using Equation (1).
The difference between Pe(x) and Pv(e)(x) is that
the latter sums over all translations of the verb v(e),
regardless of whether it appears in the context of e:

Pv(e)(x) =
∑

f∈F (v(e))

P (f |v(e)) · δ (π1(v(e), f), x)

For a one-word phrase such as v(e), π1(v(e), f)
is the subphrase of f that most commonly directly
word-aligns to the one word of v(e).

Finally, for a phrase e and its verb v(e), we calcu-
late the Kullback-Leibler (KL) divergence between
the translation distribution of v(e) and e:

DKL

(
Pv(e)‖Pe

)
=
∑

x

Pv(e)(x) ln
Pv(e)(x)

Pe(x)
(2)

where the sum ranges over all x such that Pv(e)(x) >
0. This quantifies the difference between the trans-
lations of e’s verb when it occurs in e, and when it
occurs in general. Figure 1 illustrates this computa-
tion on a toy corpus.

Smoothing. Equation (2) is defined only if, for ev-
ery x such that Pv(e)(x) > 0, it is also the case
that Pe(x) > 0. In order to ensure that this con-
dition holds, we smooth the translation distributions
toward uniform. Let D be the set of phrases with
non-zero probability under either distribution:

D = {x : Pv(e)(x) > 0 or Pe(x) > 0}

Then, let UD be the uniform distribution over D:

UD(x) =

{
1/|D| if x ∈ D
0 if x /∈ D

3To extend this statistic to other types of multiword expres-
sions, one could compute a similar distribution for other content
words in the phrase.
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\begin{tabular}{rrrr}
         &\textit{mirando}   &\textit{deseando} &\textit{buscando} \\ [2ex]
$P_{v(e)}(x)$ &$\frac{5}{8}=0.625 $  &$0$       &$\frac{3}{8}=0.375 $ \\ [1ex]
\hline \\ [-1ex]
$P'_{v(e)}(x)$&$0.610     $         &$0.02$     &$0.373$ \\ [1ex]
\hline \\ [-1ex]
$P_e(x)$ &$\frac{3}{4}=0.75 $  &$\frac{1}{4}=0.25 $ &$0$ \\ [1.5ex]
\hline \\ [-1ex]
$P'_e(x)$&$0.729     $         &$0.254    $     &$0.02$ \\ [1ex]
\hline \\ [-1ex]
\end{tabular}

DKL(P 0
v(ei)

kP 0
ei

) = �0.109 +�0.045 + 1.159 = 1.005

D_{KL} (P'_{v(e_i)} \| P'_{e_i}) = -0.109 + -0.045 + 1.159 = 1.005

mirando deseando buscando

Pv(e)(x) 5
8 = 0.625 0 3

8 = 0.375

P 0
v(e)(x) 0.610 0.02 0.373

Pe(x) 3
4 = 0.75 1

4 = 0.25 0

P 0
e(x) 0.729 0.254 0.02

Figure 1: The computation of DKL(P ′
v(ei)
‖P ′

ei
) using a

toy corpus, for e = looking forward to. Note that the sec-
ond aligned phrase pair contains the third, so the second’s
count of 3 must be included in the third’s count of 5.

When computing divergence in Equation (2), we use
the smoothed distributions P ′e and P ′v(e):

P ′e(x) = αPe(x) + (1− α)UD(x)

P ′v(e)(x) = αPv(e)(x) + (1− α)UD(x).

We use α = 0.95, which distributes 5% of the total
probability mass evenly among all events in D.

Morphology. We calculate statistics for morpho-
logical variants of an English phrase. For a candi-
date English phrasal verb e (for example, look up),
letE denote the set of inflections of that phrasal verb
(for look up, this will be [look|looks|looked|looking]
up). We extract the variants in E from the verb en-
tries in English Wiktionary. The final score com-
puted from a phrase-aligned parallel corpus translat-
ing English sentences into a language L is the aver-
age KL divergence of smoothed constituent transla-

tion distributions for any inflected form ei ∈ E:

ϕL(e) =
1

|E|
∑
ei∈E

DKL

(
P ′v(ei)

‖P ′ei

)
3.2 Monolingual Statistics
We also collect a number of monolingual statistics
for each phrasal verb candidate, motivated by the
considerable body of previous work on the topic
(Church and Hanks, 1990; Lin, 1999; McCarthy et
al., 2003). The monolingual statistics are designed
to identify frequent collocations in a language. This
set of monolingual features is not comprehensive, as
we focus our attention primarily on bilingual fea-
tures in this paper.

As above, define E to be the set of morpholog-
ically inflected variants of a candidate e, and let
V be the set of inflected variants of the head verb
v(e) of e. We define three statistics calculated from
the phrase counts of a monolingual English corpus.
First, we define µ1(e) to be the relative frequency of
the candidate e, given e’s head verb, summed over
morphological variants:

µ1(e) = lnP (E|V )

= ln

∑
ei∈E N(ei)∑
vi∈V N(vi)

where N(x) is the number of times phrase x was
observed in the monolingual corpus.

Second, define µ2(e) to be the pointwise mutual
information (PMI) between V (the event that one of
the inflections of the verb in e is observed) and R,
the event of observing the rest of the phrase:

µ2(e)

= PMI(V,R)

= lgP (V,R)− lg (P (V )P (R))

= lgP (E)− lg (P (V )P (R))

= lg
∑
ei∈E

N(ei)−lg
∑
vi∈V

N(vi)−lgN(r)+lgN

where N is the total number of tokens in the corpus,
and logarithms are base-2. This statistic character-
izes the degree of association between a verb and
its phrasal extension. We only calculate µ2 for two-
word phrases, as it did not prove helpful for longer
phrases.
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Finally, define µ3(e) to be the relative frequency
of the phrasal verb e augmented by an accusative
pronoun, conditioned on the verb. Let A be the
set of phrases in E with an accusative pronoun (it,
them, him, her, me, you) optionally inserted either at
the end of the phrase or directly after the verb. For
e = look up, A = {look up, look X up, look up X,
looks up, looks X up, looks up X, . . . }, with X an
accusative pronoun. The µ3 statistic is similar to µ1,
but allows for an intervening or following pronoun:

µ3(e) = lnP (A|V )

= ln

∑
ei∈AN(ei)∑
vi∈V N(vi)

.

This statistic is designed to exploit the intuition that
phrasal verbs frequently have accusative pronouns
either inserted into the middle (e.g. look it up) or at
the end (e.g. look down on him).

3.3 Ranking Phrasal Verb Candidates
Our goal is to assign a single real-valued score to
each candidate e, by which we can rank candidates
according to semantic idiosyncrasy. For each lan-
guage L for which we have a parallel corpus, we
defined, in section 3.1, a function ϕL(e) assigning
real values to candidate phrasal verbs e, which we
hypothesize is higher on average for more idiomatic
compounds. Further, in section 3.2, we defined real-
valued monolingual functions µ1, µ2, and µ3 for
which we hypothesize the same trend holds. Be-
cause each score individually ranks all candidates,
it is natural to view each ϕL and µi as a weak rank-
ing function that we can combine with a supervised
boosting objective. We use a modified version of
AdaBoost (Freund and Schapire, 1995) that opti-
mizes for recall.

For each ϕL and µi, we compute a ranked list
of candidate phrasal verbs, ordered from highest to
lowest value. To simplify learning, we consider only
the top 5000 candidate phrasal verbs according to
µ1, µ2, and µ3. This pruning procedure excludes
candidates that do not appear in our monolingual
corpus.

We optimize the ranker using an unranked, in-
complete training set of phrasal verbs. We can eval-
uate the quality of the ranker by outputting the top
N ranked candidates and measuring recall relative

Algorithm 1 Recall-Oriented Ranking AdaBoost
1: for i = 1 : |X| do
2: w[i]← 1/|X|
3: end for
4: for t = 1 : T do
5: for all h ∈ H do
6: εh ← 0
7: for i = 1 : |X| do
8: if xi 6∈ h then
9: εh ← εh + w[i]

10: end if
11: end for
12: end for
13: ht ← argmaxh∈H |εB − εh|
14: αt ← ln(εB/εht)
15: for i = 1 : |X| do
16: if xi ∈ ht then
17: w[i]← 1

Zw[i] exp (−αt)
18: else
19: w[i]← 1

Zw[i] exp (αt)
20: end if
21: end for
22: end for

to this gold-standard training set. We choose this
recall-at-N metric so as to not directly penalize pre-
cision errors, as our training set is incomplete.

DefineH to be the set of N -element sets contain-
ing the top proposals for each weak ranker (we use
N = 2000). That is, each element ofH is a set con-
taining the 2000 highest values for some ϕL or µi.
We define the baseline error εB to be 1−E[R], with
R the recall-at-N of a ranker ordering the candidate
phrases in the set ∪H at random. The value E[R] is
estimated by averaging the recall-at-N of 1000 ran-
dom orderings of ∪H.

Algorithm 1 gives the formulation of the Ada-
Boost training algorithm that we use to combine
weak rankers. The algorithm maintains a weight
vector w (summing to 1) which contains a positive
real number for each gold standard phrasal verb in
the training set X . Initially, w is uniformly set to
1/|X|. At each iteration of the algorithm, w is mod-
ified to take higher values for recently misclassi-
fied examples. We repeatedly choose weak rankers
ht ∈ H (and corresponding real-valued coefficients
αt) that correctly rank examples with high w values.
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Lines 5–12 of Algorithm 1 calculate the weighted
error values εh for every weak ranker set h ∈ H.
The error εh will be 1 if h contains none of X and 0
if h contains all of X , as w always sums to 1. Line
13 picks the ranker ht ∈ H whose weighted error is
as far as possible from the random baseline error εB .
Line 14 calculates a coefficient αt for ht, which will
be positive if εht < εB and negative if εht > εB .
Intuitively, αt encodes the importance of ht—it will
be high if ht performs well, and low if it performs
poorly. The Z in lines 17 and 19 is the normalizing
constant ensuring the vector w sums to 1.

After termination of Algorithm 1, we have
weights α1, . . . , αT and lists h1, . . . , hT . Define ft

as the function that generated the list ht (each ft will
be some ϕL or µi). Now, we define a final combined
function ϕ, taking a phrase e and returning a real
number:

ϕ(e) =
T∑

t=1

αtft(e).

We standardize the scores of individual weak
rankers to have mean 0 and variance 1, so that their
scores are comparable.

The final learned ranker outputs a real value, in-
stead of the class labels frequently found in Ada-
Boost. This follows previous work using boosting
for learning to rank (Freund et al., 2003; Xu and Li,
2007). Our algorithm differs from previous methods
because we are seeking to optimize for Recall-at-N ,
rather than a ranking loss.

4 Experimental Evaluation

4.1 Training and Test Set
In order to train and evaluate our system, we con-
struct a gold-standard list of phrasal verbs from
the freely available English Wiktionary. We gather
phrasal verbs from three sources within Wiktionary:

1. Entries labeled as English phrasal verbs4,

2. Entries labeled as English idioms5, and

3. The derived terms6 of English verb entries.
4http://en.wiktionary.org/wiki/Category:

English_phrasal_verbs
5http://en.wiktionary.org/wiki/Category:

English_idioms
6For example, see http://en.wiktionary.org/

wiki/take#Derived_terms

about across after against along
among around at before behind
between beyond by down for
from in into like off
on onto outside over past
round through to towards under
up upon with within without

Table 2: Particles and prepositions allowed in phrasal
verbs gathered from Wiktionary.

Many of the idioms and derived terms are not
phrasal verbs (e.g. kick the bucket, make-or-break).
We filter out any phrases not of the form V P+, with
V a verb, and P+ denoting one or more occurrences
of particles and prepositions from the list in Table 2.
We omit prepositions that do not productively form
English phrasal verbs, such as amid and as. This
process also omits some compounds that are some-
times called phrasal verbs, such as light verb con-
structions, e.g. have a go (Butt, 2003), and noncom-
positional verb-adverb collocations, e.g. look for-
ward.

There are a number of extant phrasal verb cor-
pora. For example, McCarthy et al. (2003) present
graded human compositionality judgments for 116
phrasal verbs, and Baldwin (2008) presents a large
set of candidates produced by an automated system,
with false positives manually removed. We use Wik-
tionary instead, in an attempt to construct a maxi-
mally comprehensive data set that is free from any
possible biases introduced by automatic extraction
processes.

4.2 Filtering and Data Partition
The merged list of phrasal verbs extracted from Wik-
tionary included some common collocations that
have compositional semantics (e.g. know about), as
well as some very rare constructions (e.g. cheese
down). We removed these spurious results system-
atically by filtering out very frequent and very infre-
quent entries. First, we calculated the log probability
of each phrase, according to a language model built
from a large monolingual corpus of news documents
and web documents, smoothed with stupid back-
off (Brants et al., 2007). We sorted all Wiktionary
phrasal verbs according to this value. Then, we se-
lected the contiguous 75% of the sorted phrases that
minimize the variance of this statistic. This method
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Recall-at-1220
Dev Test

Frequent Candidates 17.0 19.3
B

as
el

in
e

WordNet 3.0 Frequent 41.6 43.7
WordNet 3.0 Filtered 49.4 48.8
Monolingual Only 30.1 30.2

B
oo

st
ed

Bilingual Only 47.1 43.9
Monolingual+Bilingual 50.8 47.9

Table 3: Our boosted ranker combining monolingual
and bilingual features (bottom) compared to three base-
lines (top) gives comparable performance to the human-
curated upper bound.

removed a few very frequent phrases and a large
number of rare phrases. The remaining phrases were
split randomly into a development set of 694 items
and a held-out test set of 695 items.

4.3 Corpora

Our monolingual English corpus consists of news ar-
ticles and documents collected from the web. Our
parallel corpora from English to each of 50 lan-
guages also consist of documents collected from
the web via distributed data mining of parallel doc-
uments based on the text content of web pages
(Uszkoreit et al., 2010).

The parallel corpora were segmented into aligned
sentence pairs and word-aligned using two iterations
of IBM Model 1 (Brown et al., 1993) and two iter-
ations of the HMM-based alignment model (Vogel
et al., 1996) with posterior symmetrization (Liang et
al., 2006). This training recipe is common in large-
scale machine translation systems.

4.4 Generating Candidates

To generate the set of candidate phrasal verbs con-
sidered during evaluation, we exhaustively enumer-
ated the Cartesian product of all verbs present in the
previously described Wiktionary set (V), all parti-
cles in Table 2 (P) and a small set of second parti-
cles T = {with, to, on, ε}, with ε the empty string.
The set of candidate phrasal verbs we consider dur-
ing evaluation is the product V ×P ×T , which con-
tains 96,880 items.

4.5 Results

We optimize a ranker using the boosting algorithm
described in section 3.3, using the features from Ta-
ble 1, optimizing performance on the Wiktionary de-
velopment set described in section 4.2. Monolingual
and bilingual statistics are calculated using the cor-
pora described in section 4.3, with candidate phrasal
verbs being drawn from the set described in section
4.4.

We evaluate our method of identifying phrasal
verbs by computing recall-at-N . This statistic is the
fraction of the Wiktionary test set that appears in the
top N proposed phrasal verbs by the method, where
N is an arbitrary number of top-ranked candidates
held constant when comparing different approaches
(we use N = 1220). We do not compute precision,
because the test set to which we compare is not an
exhaustive list of phrasal verbs, due to the develop-
ment/test split, frequency filtering, and omissions in
the original lexical resource. Proposing a phrasal
verb not in the test set is not necessarily an error, but
identifying many phrasal verbs from the test set is an
indication of an effective method. Recall-at-N is a
natural way to evaluate a ranking system where the
gold-standard data is an incomplete, unranked set.

Table 3 compares our approach to three baselines
using the Recall-at-1220 metric evaluated on both
the development and test sets. As a lower bound, we
evaluated the 1220 most frequent candidates in our
Monolingual corpus (Frequent Candidates).

As a competitive baseline, we evaluated the set of
phrasal verbs in WordNet 3.0 (Fellbaum, 1998). We
selected the most frequent 1220 out of 1781 verb-
particle constructions in WordNet (WordNet 3.0 Fre-
quent). A stronger baseline resulted from apply-
ing the same filtering procedure to WordNet that
we did to Wiktionary: sorting all verb-particle en-
tries by their language model score and retaining the
1220 consecutive entries that minimized language
model variance (WordNet 3.0 Filtered). WordNet
is a human-curated resource, and yet its recall-at-N
compared to our Wiktionary test set is only 48.8%,
indicating substantial divergence between the two
resources. Such divergence is typical: lexical re-
sources often disagree about what multiword expres-
sions to include (Lin, 1999).

The three final lines in Table 3 evaluate our

642



0%

10%

20%

30%

40%

50%

0 5 10 15 20 25 30 35 40 45 50

Te
st

 se
t r

ec
al

l-a
t-1

22
0

Number of languages (k)

Combined with AdaBoost
Individual Bilingual Statistics

Figure 2: The solid line shows recall-at-1220 when com-
bining the k best-performing bilingual statistics and three
monolingual statistics. The dotted line shows the indi-
vidual performance of the kth best-performing bilingual
statistic, when applied in isolation to rank candidates.

boosted ranker. Automatically detecting phrasal
verbs using monolingual features alone strongly out-
performed the frequency-based lower bound, but un-
derperformed the WordNet baseline. Bilingual fea-
tures, using features from 50 languages, proved sub-
stantially more effective. The combination of both
types of features yielded the best performance, out-
performing the human-curated WordNet baseline on
the development set (on which our ranker was opti-
mized) and approaching its performance on the held-
out test set.

4.6 Feature Analysis

The solid line in Figure 2 shows the recall-at-1220
for a boosted ranker using all monolingual statistics
and k bilingual statistics, for increasing k. Bilin-
gual statistics are added according to their individual
recall, from best-performing to worst. That is, the
point at k = 0 uses only µ1, µ2, and µ3, the point at
k = 1 adds the best individually-performing bilin-
gual statistic (Spanish) as a weak ranker, the next
point adds the second-best bilingual statistic (Ger-
man), etc. Boosting maximizes performance on the
development set, and evaluation is performed on the
test set. We use T = 53 (equal to the total number
of weak rankers).

Recall-at-1220
Dev Test

Bilingual only 47.1 43.9
Bilingual+µ1 48.1 46.9
Bilingual+µ2 50.1 48.3
Bilingual+µ3 48.4 46.3
Bilingual+µ1 + µ2 50.2 47.9
Bilingual+µ1 + µ3 49.0 47.4
Bilingual+µ2 + µ3 50.4 49.4
Bilingual+µ1 + µ2 + µ3 50.8 47.9

Table 4: An ablation of monolingual statistics shows that
they are useful in addition to the 50 bilingual statistics
combined, and no single statistic provides maximal per-
formance.

The dotted line in Figure 2 shows that individual
bilingual statistics have recall-at-1220 ranging from
34.4% to 5.0%. This difference reflects the differ-
ent sizes of parallel corpora and usefulness of dif-
ferent languages in identifying English semantic id-
iosyncrasy. Combining together the signal of mul-
tiple languages is clearly beneficial, and including
many low-performing languages still offers overall
improvements.

Table 4 shows the effect of adding different sub-
sets of the monolingual statistics to the set of all
50 bilingual statistics. Monolingual statistics give
a performance improvement of up to 5.5% recall
on the test set, but the comparative behavior of the
various combinations of the µi is somewhat unpre-
dictable when training on the development set and
evaluating on the test set. The pointwise mutual in-
formation of a verb and its particles (µ2) appears to
be the most useful feature. In fact, the test set per-
formance of using µ2 alone outperforms the combi-
nation of all three. The best combination even out-
performs the WordNet 3.0 baseline on the test set,
though optimizing on the development set would not
select this model.

4.7 Error Analysis
Table 5 shows the 100 highest ranked phrasal verb
candidates by our system that do not appear in either
the development or test sets. Most of these candi-
dates are in fact English phrasal verbs that happened
to be missing from Wiktionary; some are present
in Wiktionary but were removed from the reference
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pick up pat on tap into fit for charge with suit against
catch up burst into muck up haul up give up get off
get through get up get in tack on buzz about do like
plump for haul in keep up with strap on catch up with suck into
get round chop off slap on pitch into get into inquire into
drop behind get on catch up on pass on cue from carry around
get around get over shoot at pick over shoot by shoot in
make up to get past cast down set up with rule off hand round
piss on hit by break down move for lead off pluck off
flip through edge over strike off plug into keep up go past
set off pull round see about stay on put up sidle up to
buzz around take off set up slap in head towards shoot past
inquire for tuck up lie with well before go on with reel from
drive along snap off barge into whip on put down instance through
bar from cut down on let in tune in to move off suit in
lean against well beyond get down to go across sail into lie over
hit with chow down on look after catch at

Table 5: The highest ranked phrasal verb candidates from our full system that do not appear in either Wiktionary set.
Candidates are presented in decreasing rank; “pat on” is the second highest ranked candidate.

sets during filtering, and the remainder are in fact
not phrasal verbs (true precision errors).

These errors fall largely into two categories.
Some candidates are compositional, but contain pol-
ysemous verbs, such as hit by, drive along, and head
towards. In these cases, prepositions disambiguate
the verb, which naturally affects translation distri-
butions. Other candidates are not phrasal verbs, but
instead phrases that tend to have a different syntac-
tic role, such as suit against, instance through, fit
for, and lie over (conjugated as lay over). A care-
ful treatment of part-of-speech tags when computing
corpus statistics might address this issue.

5 Related Work

The idea of using word-aligned parallel corpora
to identify idiomatic expressions has been pur-
sued in a number of different ways. Melamed
(1997) tests candidate MWEs by collapsing them
into single tokens, training a new translation model
with these tokens, and using the performance of
the new model to judge candidates’ noncomposi-
tionality. Villada Moirón and Tiedemann (2006)
use word-aligned parallel corpora to identify Dutch
MWEs, testing the assumption that the distributions
of alignments of MWEs will generally have higher
entropies than those of fully compositional com-
pounds. Caseli et al. (2010) generate candidate mul-

tiword expressions by picking out sufficiently com-
mon phrases that align to single target-side tokens.
Tsvetkov and Wintner (2012) generate candidate
MWEs by finding one-to-one alignments in paral-
lel corpora which are not in a bilingual dictionary,
and ranking them based on monolingual statistics.
The system of Salehi and Cook (2013) is perhaps
the closest to the current work, judging noncompo-
sitionality using string edit distance between a can-
didate phrase’s automatic translation and its com-
ponents’ individual translations. Unlike the current
work, their method does not use distributions over
translations or combine individual bilingual values
with boosting; however, they find, as we do, that in-
corporating many languages is beneficial to MWE
identification.

A large body of work has investigated the identifi-
cation of noncompositional compounds from mono-
lingual sources (Lin, 1999; Schone and Jurafsky,
2001; Fazly and Stevenson, 2006; McCarthy et
al., 2003; Baldwin et al., 2003; Villavicencio,
2003). Many of these monolingual statistics could
be viewed as weak rankers and fruitfully incorpo-
rated into our framework.

There has also been a substantial amount of work
addressing the problem of differentiating between
literal and idiomatic instances of phrases in con-
text (Katz and Giesbrecht, 2006; Li et al., 2010;
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Sporleder and Li, 2009; Birke and Sarkar, 2006;
Diab and Bhutada, 2009). We do not attempt this
task; however, techniques for token identification
could be used to improve type identification (Bald-
win, 2005).

6 Conclusion

We have presented the polyglot ranking approach
to phrasal verb identification, using parallel corpora
from many languages to identify phrasal verbs. We
proposed an evaluation metric that acknowledges the
inherent incompleteness of reference sets, but dis-
tinguishes among competing systems in a manner
aligned to the goals of the task. We developed a
recall-oriented learning method that integrates mul-
tiple weak ranking signals, and demonstrated exper-
imentally that combining statistical evidence from a
large number of bilingual corpora, as well as from
monolingual corpora, produces the most effective
system overall. We look forward to generalizing
our approach to other types of noncompositional
phrases.
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Abstract

This study explores the feasibility of perform-
ing Chinese word segmentation (CWS) and
POS tagging by deep learning. We try to avoid
task-specific feature engineering, and use deep
layers of neural networks to discover relevant
features to the tasks. We leverage large-scale
unlabeled data to improve internal representa-
tion of Chinese characters, and use these im-
proved representations to enhance supervised
word segmentation and POS tagging models.
Our networks achieved close to state-of-the-
art performance with minimal computational
cost. We also describe a perceptron-style al-
gorithm for training the neural networks, as
an alternative to maximum-likelihood method,
to speed up the training process and make the
learning algorithm easier to be implemented.

1 Introduction

Word segmentation has been a long-standing chal-
lenge for the Chinese NLP community. It has re-
ceived steady attention over the past two decades.
Previous studies show that joint solutions usually
lead to the improvement in accuracy over pipelined
systems by exploiting POS information to help word
segmentation and avoiding error propagation. How-
ever, traditional joint approaches usually involve a
great number of features, which arises four limita-
tions. First, the size of the result models is too large
for practical use due to the storage and computing
constraints of certain real-world applications. Sec-
ond, the number of parameters is so large that the
trained model is apt to overfit on training corpus.

Third, a longer training time is required. Last but
not the least, the decoding by dynamic programming
technique might be intractable since a large search
space is faced by the decoder.

The choice of features, therefore, is a critical suc-
cess factor for these systems. Most of the state-of-
the-art systems address their tasks by applying linear
statistical models to the features carefully optimized
for the tasks. This approach is effective because re-
searchers can incorporate a large body of linguistic
knowledge into the models. However, the approach
does not scale well when it is used to perform more
complex joint tasks, for example, the task of joint
word segmentation, POS tagging, parsing, and se-
mantic role labeling. A challenge for such a joint
model is the large combined search space, which
makes engineering effective task-specific features
and structured learning of parameters very hard. In-
stead, we use multilayer neural networks to discover
the useful features from the input sentences.

There are two main contributions in this paper. (1)
We describe a perceptron-style algorithm for train-
ing the neural networks, which not only speeds up
the training of the networks with negligible loss in
performance, but also can be implemented more eas-
ily; (2) We show that the tasks of Chinese word seg-
mentation and POS tagging can be effectively per-
formed by the deep learning. Our networks achieved
close to state-of-the-art performance by transferring
the unsupervised internal representations of Chinese
characters into the supervised models.

Section 2 presents the general architecture of
neural networks, and our perceptron-style training
algorithm for tagging. Section 3 describes how to
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leverage large unlabeled data to obtain more useful
character embeddings, and reports the experimental
results of our systems. Section 4 presents a brief
overview of related work. The conclusions are given
in section 5.

2 The Neural Network Architecture

Chinese word segmentation and part-of-speech tag-
ging tasks can be formulated as assigning labels to
characters of an input sentence. The performance
of the traditional tagging approaches is heavily de-
pendent on the choice of features, for example, con-
ditional random fields (CRFs), often with a set of
feature templates. For that reason, much of the ef-
fort in designing such systems goes into the feature
engineering, which is important but labor-intensive,
mainly based on human ingenuity and linguistic in-
tuition.

In order to make learning algorithms less depen-
dent on the feature engineering, we chose to use a
variant of the neural network architecture first pro-
posed by (Bengio et al., 2003) for probabilistic lan-
guage model, and reintroduced later by (Collobert
et al., 2011) for multiple NLP tasks. The network
takes the input sentence and discovers multiple lev-
els of feature extraction from the inputs, with higher
levels representing more abstract aspects of the in-
puts. The architecture is shown in Figure 1. The first
layer extracts features for each Chinese character.
The next layer extracts features from a window of
characters. The following layers are classical neural
network layers. The output of the network is a graph
over which tag inference is achieved with a Viterbi
algorithm.

2.1 Mapping Characters into Feature Vectors

The characters are fed into the network as indices
that are used by a lookup operation to transform
characters into their feature vectors. We consider
a fixed-sized character dictionary D1. The vector
representations are stored in a character embedding
matrixM ∈ Rd×|D|, where d is the dimensionality
of the vector space (a hyper-parameter to be chosen)
and |D| is the size of the dictionary.

1Unless otherwise specified, the character dictionary is ex-
tracted from the training set. Unknown characters are mapped
to a special symbol that is not used elsewhere.
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Figure 1: The neural network architecture.

Formally, assume we are given a Chinese sen-
tence c[1:n] that is a sequence of n characters ci, 1 ≤
i ≤ n. For each character ci ∈ D that has an associ-
ated index ki into the column of the embedding ma-
trix, an d-dimensional feature vector representation
is retrieved by the lookup table layer ZD(·) ∈ Rd:

ZD(ci) =Meki
(1)

where we use a binary vector eki
∈ R|D|×1 which is

zero in all positions except at the ki-th index. The
lookup operation can be seen as a simple projection
layer. The feature vector of each character, starting
from a random initialization, can be automatically
trained by back propagation to be relevant to the task
of interest.

In practice, it is common that one might want to
provide other additional features that is thought to
be helpful for the task. For example, for the name
entity recognition task, one could provide a feature
which says if a character is in a list of the common
Chinese surnames or not. Another common practice
is to introduce some statistics-based measures, such
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as boundary entropy (Jin and Tanaka-Ishii, 2006)
and accessor variety (Feng et al., 2004), which are
commonly used in unsupervised CWS models. We
associate a lookup table to each additional feature,
and the character feature vector becomes the con-
catenation of the outputs of all these lookup tables.

2.2 Tag scoring
A neural network can be considered as a function
fθ(·) with parameters θ. Any feed-forward neural
network with L layers can be seen as a composition
of functions f l

θ(·) defined for each layer l:

fθ(·) = fL
θ (fL−1

θ (. . . f1
θ (·) . . .)) (2)

For each character in a sentence, a score is pro-
duced for every tag by applying several layers of the
neural network over the feature vectors produced by
the lookup table layer. We use a window approach
to handle the sequences of variable sentence length.
The window approach assumes that the tag of a char-
acter depends mainly on its neighboring characters.
More precisely, given an input sentence c[1:n], we
consider all successive windows of size w (a hyper-
parameter), siding over the sentence, from character
c1 to cn. At position ci, the character feature win-
dow produced by the first lookup table layer can be
written as:

f1
θ (ci) =


ZD(ci−w/2)

...
ZD(ci)

...
ZD(ci+w/2)

 (3)

The characters with indices exceeding the sentence
boundaries are mapped to one of two special sym-
bols, namely “start” and “stop” symbols.

The fixed-sized vector f1
θ is fed to two stan-

dard Linear Layers that successively perform affine
transformations over f1

θ , interleaved with some non-
linearity function g(·), to extract highly non-linear
features. Given a set of tags T for the task of inter-
est, the network outputs a vector of size |T | for each
character at position i, interpreted as a score for each
tag in T and each character ci in the sentence:

fθ(ci) = f3
θ (g(f2

θ (f1
θ (ci))))

= W 3g(W 2f1
θ (ci) + b2) + b3

(4)

where the matrices W 2 ∈ RH×(wd), b2 ∈ RH ,
W 3 ∈ R|T |×H and b3 ∈ R|T | are the parameters to
be trained. The hyper-parameter H is usually called
the number of hidden units. As non-linear function,
we chose a sigmoidal function2:

g(x) = 1/(1 + e−x) (5)

2.3 Tag Inference

There are strong dependencies between character
tags in a sentence for the tasks like word segmen-
tation and POS tagging. The tags are organized in
chunks, and it is impossible for some tags to fol-
low other tags. We introduce a transition score Aij

for jumping from i ∈ T to j ∈ T tags in succes-
sive characters, and an initial scores A0i for starting
from the i-th tag for taking into account the sentence
structure. We want the valid paths of tags to be en-
couraged, while discouraging all other paths.

Given an input sentence c[1:n], the network out-
puts the matrix of scores fθ(c[1:n]). We use a nota-
tion fθ(t|i) to indicate the score output by the net-
work with parameters θ, for the sentence c[1:n] and
for the t-th tag, at the i-th character. The score of a
sentence c[1:n] along a path of tags t[1:n] is then given
by the sum of transition and network scores:

s(c[1:n], t[1:n], θ) =
n∑

i=1

(Ati−1ti + fθ(ti|i)) (6)

Given a sentence c[1:n], we can find the best tag path
t∗[1:n] by maximizing the sentence score:

t∗[1:n] = arg max
∀t′

[1:n]

s(c[1:n], t
′
[1:n], θ) (7)

The Viterbi algorithm can be used for this inference.
Now we are prepared to show how to train the para-
meters of the network in an end-to-end fashion.

2.4 Training

The training problem is to determine all the para-
meters of the network θ = (M,W 2, b2,W 3, b3, A)
from training data. The network generally is trained

2In our experiments, the sigmoidal function performs
slightly better than the “hard” version of the hyperbolic tangent
used by (Collobert, 2011).
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by maximizing a likelihood over all the sentences in
the training setR with respect to θ:

θ 7→
∑

∀(c,t)∈R

log p(t|c, θ) (8)

where c represents a sentence and its associated fea-
tures, and t denotes the corresponding tag sequence.
We drop the subscript [1 : n] from now for nota-
tion simplification. The probability p(·) is calcu-
lated from the outputs of the neural network. We
will present in the following section how to interpret
neural network outputs as probabilities.

Maximizing the log-likelihood (8) with the gradi-
ent ascent algorithm3 is achieved by iteratively se-
lecting a example (c, t) and applying the following
gradient update rule:

θ ← θ + λ
∂ log p(t|c, θ)

∂θ
(9)

where λ is the learning rate (a hyper-parameter).
The gradient in (9) can be computed by a classical
back propagation: the differentiation chain rule is
applied through the network, until the character em-
bedding layer.

2.4.1 Sentence-Level Log-Likelihood
The score of a sentence (6) is interpreted as a con-

ditional tag path probability by taking it to the expo-
nential (making the score positive) and normalizing
it over all possible tag paths (summing to 1 over all
paths). Taking the log, the conditional probability of
the true path t is given by4:

log p(t|c, θ) = s(c, t, θ)− log
∑
∀t′

exp{s(c, t′, θ)}

(10)

3We did not use the stochastic gradient ascent algorithm
(Bottou, 1991) to train the network as (Collobert et al.,
2011). The gradient ascent algorithm was used instead for fairly
comparing our algorithm with the sentence-level maximum-
likelihood method (see Section 2.4.1). The gradient ascent al-
gorithm requires a loop over all the examples to compute the
gradient of the cost function, which will not cause a problem
since all the training sets used in this article are finite.

4The cost functions are differentiable everywhere thanks
to the differentiability of sigmoidal function chosen as non-
linearity instead of a “hard” version of the hyperbolic tangent.
For details about gradient computations, see Appendix A of
(Collobert et al., 2011).

The number of terms in (10) grows exponentially
with the length of the input sentence. Although one
can compute it in linear time with the Viterbi algo-
rithm, it is quite computationally expensive to com-
pute the conditional probability of the true path, and
its derivatives with respect to fθ(t|i) and Aij . The
gradients with respect to the trainable parameters
other than fθ(t|i) and Aij can all be computed using
the derivatives with respect to fθ(t|i) by applying
the differentiation chain rule. We will see in the next
section our training algorithm that has the advantage
of being much cheaper to compute the gradients.

2.5 A New Training Method
The log-likelihood (10) can be seen as the difference
between the forward score constrained over the valid
path and the sum of the scores of all possible paths.
While this training criterion is used, the neural net-
works are trained by maximizing the likelihood of
training data. In fact, a CRF maximizes the same
log-likelihood (Lafferty et al., 2001) by using a lin-
ear model in stead of a nonlinear neural network.

As an alternative to maximum-likelihood method,
we propose the following training algorithm inspired
by the work of (Collins, 2002). Given a training
example (c, t), the network outputs the matrix of
scores fθ(c) under the current parameter settings.
The highest scoring sequence of tags for the input
sentence c then can be found using the Viterbi al-
gorithm: this tagged sequence is denoted by t′. For
every character ci where ti 6= t′i, we simply set

∂Lθ(t, t′|c)
∂fθ(ti|i)

++,
∂Lθ(t, t′|c)
∂fθ(t′i|i)

−− (11)

and for every transition where ti−1 6= t′i−1 or ti 6= t′i,
we set

∂Lθ(t, t′|c)
∂Ati−1ti

++,
∂Lθ(t, t′|c)
∂At′i−1t′i

−− (12)

where “++” (which increases a value by one) and
“−−” (which decreases a value by one) are two
unary operators, and Lθ(t, t′|c) is a new function
which we now want to maximize over all the training
pairs (c, t). The function Lθ(t, t′|c) can be viewed as
the difference between the score of the correct path
and that of the incorrect one (which is the highest
scoring sequence produced by the network under the
current parameters θ).
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As an example, say the correct tag sequence of the
sentence�ì3p� ‘A dog sits in the corner’ is

�/S ì/S 3/S p/B �/E

and under the current parameter settings the highest
scoring tag sequence is

�/S ì/B 3/E p/B �/E

Then the derivatives with respect to fθ(S|ì), and
fθ(S|3) will be set to 1, that with respect to ASB ,
ABE , AEB , fθ(B|ì), and fθ(E|3) to−1, and that
with respect to ASS to 2 respectively5. Intuitively
these assignments have the effect of updating the pa-
rameter values in a way that increases the score of
the correct tag sequence and decreases the score of
the incorrect one output by the network with the cur-
rent parameter settings. If the tag sequence produced
by the network is correct, no changes are made to the
values of parameters.

Inputs:
R: a training set.
N : a specified maximum number of iterations.
E: a desired tagging precision.

Initialization: set the initial parameters of the network with
small random values.
Output: the trained parameters θ̃

Algorithm:
do

for each example (c, t) ∈ R
get the matrix fθ(c) by the neural network under the
current parameters θ

find the highest scoring sequence of tags t′ for c with
fθ(c) and Aij by using the Viterbi algorithm
if (t 6= t′)

compute the gradients with respect to fθ(c) and
Aij as (11) and (12)
compute the gradients with respect to the weights
from output layer to character embedding layer
update the parameters of the network by (9)

until the desired precision E achieved or maximum num-
ber of iterations N reached
return θ̃

Figure 2: The training algorithm for tagging.

We propose the training algorithm in Figure 2.
Note that the perceptron algorithm of (Collins,
2002) was designed for discriminatively training an

5The derivatives with respect to ASB will be set to 0, be-
cause it is increased first and decreased afterwards.

HMM-style tagger, while our algorithm is used to
calculate the “direction” in which the parameters are
updated (i.e. the gradient of the function we want to
maximize). Due to space limitations, we do not give
convergence theorems justifying the training algo-
rithm in this paper. Intuitively it can be achieved by
combining the theorems of convergence for the per-
ceptron applied to tagging problem from (Collins,
2002) with the convergence results of backpropaga-
tion algorithm from (Rumelhart et al., 1986).

3 Experiments

We conducted three sets of experiments. The goal
of the first one is to test several variants for each
training algorithm on the development set, to gain
some understanding of how the choice of hyper-
parameters impacts upon the performance. We ap-
plied the network both with the sentence-level log-
likelihood (SLL) and our perceptron-style training
algorithm (PSA) to the two Chinese NLP problems:
word segmentation, and joint CWS and POS tag-
ging. We ran this set of experiments on the part of
Chinese Treebank 4 (CTB-4)6. Ninety percent of the
sentences (1529) were randomly chosen for training
and the rest (168) were used as development set.

The second set of experiments was run on the
Chinese Treebank (CTB) data sets from Bakeoff-3
(Levow, 2006), which contains a training and a test
corpus for supervised word segmentation and POS
tagging tasks. The results were obtained without us-
ing any extra knowledge (i.e. the closed test), and
are comparable with other models in the literature.

In the third experiment, we study to see how well
large unlabeled texts can be used to enhance the
supervised learning. Following (Collobert et al.,
2011), we first use large unlabeled data set to ob-
tain character embeddings carrying more syntactic
and semantic information, and then use these im-
proved embeddings to initialize the character lookup
tables of the networks instead of previous random
values. Our corpus is the Sina news7 that contains
about 325MB data.

6The data set was sections 1–43, 144–169, and 900–931 of
the treebank, containing 78,023 characters, 45,135 words and
1,697 sentences. These files are double-annotated and can be
regarded as golden standard files.

7Available at http://www.sina.com.cn/
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We implemented two versions of the network:
one for the sentence-level log-likelihood and one
for our perceptron-style training algorithm. Both
are written in Java language. All experiments were
run on a computer equipped with an Intel Core i3
processor working at 2.13GHz, with 2GB RAM,
running Linux and Java Development Kit 1.6. The
standard F-score was used to evaluate the perfor-
mance of both word segmentation and joint word
segmentation and POS tagging tasks. F-score is the
harmonic mean of precision p and recall r, which is
defined as 2pr/(p + r).
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Figure 3: Average F-score versus window size.

3.1 Tagging Schemes
The network will output the scores for all the possi-
ble tags for the task of interest. For word segmen-
tation, each character will be assigned one of four
possible boundary tags: “B” for a character located
at the beginning of a word, “I” for that inside of a
word, “E” for that at the end of a word, and “S” for
a character that is a word by itself.

Following Ng and Lou (2004) we perform joint
word segmentation and POS tagging task in a la-
beling fashion by expanding boundary labels to in-
clude POS tags. For instance, we describe verb
phases using four different tags. Tag “S VP” is used
to mark a verb phase containing a single character.
Other tags “B VP”, “I VP”, and “E VP” are used to
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Figure 4: Average F-score versus number of hidden units.

mark the first, in-between and last characters of the
verb phrase. In fact, we used the “IOBES” tagging
scheme, and tag “O” is not applicable to Chinese
word segmentation and POS tagging tasks.

3.2 The Choice of Hyper-parameters

We tuned the hyper-parameters by trying only a
few different networks. We report in Figure 3
the F-scores on the development set versus win-
dow size for word segmentation (SEG) and joint
word segmentation and POS tagging (JWP) tasks
with the sentence-level log-likelihood (SLL) and our
perceptron-style training algorithm (PSA), and re-
port in Figure 4 the F-scores on the same data set
versus number of hidden units. The average F-
scores were obtained over 5 runs with different ran-
dom initialization for each setting of the network.
The F-scores of the word segmentation, out-of-
vocabulary, and POS tagging are denoted by Fword,
Foov and Fpos respectively.

Generally, the number of hidden units has a lim-
ited impact on the performance if it is large enough,
which is consistent with the findings of (Collobert
et al., 2011) for English. It can be seen from Fig-
ure 3 that the performance drops smoothly when the
window size is larger than 3. In particularly, the F-
score of out-of-vocabulary identification decreases
relatively fast beyond window size 5, which shows
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that the size of window (and the number of parame-
ters) is too large that the trained network has over-
fitted on training data. An explanation for this result
is that most Chinese words are less than 3 charac-
ters, and the neighboring characters outside of the
window (size 5) become “noise” when we perform
word segmentation.

The hyper-parameters of the network used in all
the following experiments are shown in Table 1. Al-
though the top performance was obtained by the net-
work with window size 3, we chose the architecture
with window size 5 because a larger training corpus
will be used in the following experiments, and the
sparseness problem would be alleviated. Further-
more, in order to obtain character embeddings by
using large unlabeled data, we prefer to “observe”
a character within a slightly larger window to better
discover its syntactic and semantic information.

Hyper-parameter Value
Window size 5
Number of hidden units 300
Character feature dimension 50
Learning rate 0.02

Table 1: Hyper-parameters of the network.

We report in Table 2 the F-score of the first five
iterations on the development set for word segmen-
tation with SLL and PSA. The data in the fourth
and fifth rows of the table shows the convergence
of PSA. The difference of the F-scores between the
networks with SLL and PSA can be negligible after
the number of iteration is greater than 5. In our im-
plementation, for each iteration the training time is
reduced at least 10% by using PSA, compared with
SLL. The training time can be reduced further for
more complex tasks like POS tagging and semantic
role labeling in which a larger tag set is used.

Iteration 1 2 3 4 5

SSL
Fword 49.89 69.56 88.91 90.19 91.24
Foov 15.92 27.54 54.37 55.89 59.74
Time (s) 209 398 586 737 886

PSA
Fword 49.04 68.54 87.79 89.07 91.19
Foov 13.61 25.79 52.30 55.15 60.49
Time (s) 184 343 497 610 754

Table 2: Word segmentation results with SLL and PSA
for the first five iterations.

Many exponential sums (
∑

i exp(xi)) are re-
quired for training the networks with SLL, and in
most cases the values of exponential sums will ex-
ceed the range of double-precision floating-point
arithmetic defined in popular programming lan-
guages. These sums need to be estimated by an-
alytic number theory. In comparison, a lot of the
computation-intensive exponential sums are avoided
in our training algorithm, which not only speed up
the training of the networks but also make it easier
to be implemented.

3.3 Closed Test on the SIGHAN Bakeoff

We trained the networks with PSA on the Chinese
Treebank (CTB) data set from Bakeoff-3 for both
SEG and JWP tasks. The results are reported in Ta-
ble 3. The hyper-parameters of our networks are re-
ported in Table 1. Although results show that our
networks with PSA are behind the state-of-the-art
systems, the networks perform comparatively well,
considering we did not use any extra information.
Many other systems used some extra heuristics or re-
sources to improve their performance. For example,
a key parameter in the system of (Wang et al., 2006)
was optimized in advance by using an external seg-
mented corpus, and a manually prepared list of char-
acters as well as their types was used in (Zhao et al.,
2006; Zhu et al., 2006; Kruengkrai et al., 2009).

It is worth noting that the comparison for joint
word segmentation and POS tagging task is indirect
because the different versions of CTB were used.
We reported the results on CTB-3 from SIGHAN
Bakeoff-3, while both (Jiang et al., 2008) and (Kru-
engkrai et al., 2009) used CTB-5. Both (Ng and
Lou, 2004) and (Zhang and Clark, 2008) evenly par-
titioned the sentences in CTB3 into ten groups, and
used nine groups for training and the rest for testing.

Following (Bengio et al., 2003; Collobert et al.,
2011), we want semantically and syntactically sim-
ilar characters to be close in the embedding space.
If we knew that� ‘dog’ andc ‘cat’ were similar
semantically, and similarly forì ‘sit’ and2 ‘lie’,
we could generalize from �ì3p� ‘A dog sits
in the corner’ tocì3p� ‘A cat sits in the cor-
ner’, and toc23p� ‘A cat lies in the corner’ in
the same way. We describe the way to obtain these
character embeddings by using large unlabeled data
in the next section.
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Approach Fword Roov Fpos

SEG

(Zhao et al., 2006) 93.30 70.70 −
(Wang et al., 2006) 93.00 68.30 −
(Zhu et al., 2006) 92.70 63.40 −
(Zhang et al., 2006) 92.60 61.70 −
(Feng et al., 2006) 91.70 68.00 −
PSA 92.59 64.24 −
PSA + LM 94.57 70.12 −

JWP

(Ng and Lou, 2004) 95.20 − −
(Zhang and Clark, 2008) 95.90 − 91.34
(Jiang et al., 2008) 97.30 − 92.50
(Kruengkrai et al., 2009) 96.11 − 90.85
PSA 93.83 68.21 90.79
PSA + LM 95.23 72.38 91.82

Table 3: Comparison of the F-scores on the Penn Chinese
Treebank

3.4 Combined Approach

We used the corpus of Sina news to obtain charac-
ter embeddings carrying more semantic and syntac-
tic information by training a language model that
evaluates the acceptability of a piece of text. This
language model is again the neural network, and we
also use PSA to train the language model. Following
(Collobert et al., 2011), we minimize the following
criterion with respect to the parameters θ:

θ 7→
∑
∀h∈H

∑
∀c′∈D

max{0, 1− fθ(c|h) + fθ(c′|h)}

(13)
where the score fθ(c|h) is the output of the network
with parameters θ for a character c at the center of
a window h, D is the dictionary of characters, H is
the set of all possible text windows (i.e. character se-
quences) from the training data, and c′|h denotes the
window obtained by replacing the central character
of the window h by the character c′.

We used a dictionary consisting of the charac-
ters extracted from all the data sets in Bakeoff-
3, which contains about eight thousand characters.
The total unsupervised training time was about two
weeks. Our combined approach works as initializing
the lookup tables of the supervised networks with
the character embeddings obtained by unsupervised
learning, and then performing supervised training on
CTB-3. The lookup tables will not be modified at the
supervised training stage.

We reported the results in Table 3, in which our
combined approach is indicated by “PSA + LM”.

It can be seen from Table 3 that this approach re-
sults in a performance boost for both SEG and JWP
tasks. The POS tagging F-score of our approach
was comparable to but still less than the model of
(Jiang et al., 2008). They achieved the best score by
first separately training multiple word-, character-,
and POS n-gram based models, and then integrat-
ing them by cascading method. In comparison, our
networks achieve the performance by automatically
discovering useful features by itself and avoiding the
task-specific engineering.

Table 4 compares the decoding speeds on the test
data from CTB-3 for our system and for two CRFs-
based word segmentation systems. Regardless of
the differences in implementation, the neural net-
works clearly run considerably faster than the sys-
tems based on the CRFs model. They also require
much more memory than our neural networks.

System Number of parameters Time (s)
(Tsai et al., 2006) 3.1× 106 1669
(Zhao et al., 2006) 3.8× 106 2382
Neural network 4.7× 105 138

Table 4: Comparison of computational cost.

4 Related Work

Word segmentation has been pursued with consid-
erable efforts in the Chinese NLP community, and
statistical approaches are clearly dominant in the
last decade. A popular statistical approach is the
character-based tagging solution that treats word
segmentation as a sequence tagging problem, as-
signing labels to the characters indicating whether a
character locates at the beginning of, inside, or at the
end of a word. The character-based tagging solution
was first proposed in (Xue, 2003). This work caused
quite a number of character position tagging based
CWS studies because known and unknown words
can be treated in the same way. Peng, Feng and Mc-
Callum (2004) first introduced a linear-chain CRFs
model to the character tagging based word segmen-
tation. Zhang and Clark (2007) proposed a word-
based CWS approach using a discriminative percep-
tron learning algorithm, which allows word-level in-
formation to be added as features.

Recent years have seen a rise of joint word seg-
mentation and POS tagging approach that improves
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the accuracies of both tasks and does not suffer from
the error propagation. Ng and Lou (2004) perform
such joint task in a labeling fashion by expanding
boundary labels to include POS tags. Zhang and
Clark (2008) proposed a linear model for the same
joint task, which overcomed the disadvantage of
(Ng and Lou, 2004), in which it was unable to incor-
porate “whole word + POS tag” features. Sun (2011)
described a sub-word model using stacked learn-
ing technique for the joint task, which explored the
complementary strength of different character- and
word-based segmenters with different views.

The majority of the state-of-the-art systems ad-
dress their tasks by applying linear statistical mod-
els to ad-hoc features. The researchers first chose
task-specific features which are then fed to a classi-
fication algorithm. The selected features may vary
greatly because they are usually chosen in a empir-
ical process, mainly based first on linguistic intu-
ition, and then trial and error. It seems reasonable
to assume that the number and effectiveness of fea-
tures constitutes a major factor in the performance
of the various systems, and might even more impor-
tant than the particular statistical models they used.
In comparison, we try to avoid task-specific feature
engineering, and use the neural network to learn sev-
eral layers of feature extraction from the inputs. To
the best of our knowledge, this study is among the
first ones to perform Chinese word segmentation and
POS tagging by deep learning.

It was reported that supervised and unsupervised
approaches can be integrated to improve on the over-
all performance of word segmentation by combin-
ing the strengths of both. Zhao and Kit (2011) ex-
plored the feasibility of enhancing supervised seg-
mentation by informing the supervised learner of
goodness scores obtained from large unlabeled cor-
pus. Sun and Xu (2011) investigated how to improve
on the accuracy of supervised word segmentation by
leveraging the statistics-based features derived from
large unlabeled in-domain corpus and the document
to be segmented. The basic idea of these integration
solutions is to incorporate a set of statistics-based
measures into a CRFs model after these measures
are derived from unlabeled data and discretized into
feature values. In comparison, we use large unla-
beled data to obtain the character embeddings with
more syntactic and semantic information.

Several works have investigated how to use deep
learning for NLP applications (Bengio et al., 2003;
Collobert et al., 2011; Collobert, 2011; Socher et
al., 2011). In most cases, words are fed to the neural
networks as inputs, and the lookup tables map each
word to a vector representation. Our network is dif-
ferent in that the inputs to the network are charac-
ters, more raw units than words. In many Asian
languages, such as Chinese and Japanese, they are
written without using whitespace to delimit words.
For these languages, the character becomes a more
natural form of input. Furthermore, a perceptron-
style algorithm for tagging is proposed for training
the networks.

5 Conclusion

We have described a perceptron-style algorithm for
training the neural networks, which is much easier to
be implemented, and has speed advantage over the
maximum-likelihood scheme, while the loss in per-
formance is negligible. The neural networks trained
with PSA have been applied to Chinese word seg-
mentation and POS tagging tasks, and the networks
achieved close to state-of-the-art performance by us-
ing the character representations learned from large
unlabeled corpus.

Although we focus on the question of how far we
can go for Chinese word segmentation and POS tag-
ging without using the extra task-specific features in
this study, there are at least three ways to further im-
prove the performance of the networks, which are
worthy to be explored in the future: (1) introduce
specific linguistic features (e.g. gazetteer features)
that are helpful for the tasks; (2) incorporate some
common techniques, such as cascading, voting, and
ensemble; and (3) use the special network architec-
ture tailored for the tasks of interest.
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Abstract

Chinese word segmentation and part-of-
speech tagging (S&T) are fundamental
steps for more advanced Chinese language
processing tasks. Recently, it has at-
tracted more and more research interests
to exploit heterogeneous annotation cor-
pora for Chinese S&T. In this paper, we
propose a unified model for Chinese S&T
with heterogeneous annotation corpora.
We first automatically construct a loose
and uncertain mapping between two rep-
resentative heterogeneous corpora, Penn
Chinese Treebank (CTB) and PKU’s Peo-
ple’s Daily (PPD). Then we regard the
Chinese S&T with heterogeneous corpora
as two “related” tasks and train our model
on two heterogeneous corpora simultane-
ously. Experiments show that our method
can boost the performances of both of the
heterogeneous corpora by using the shared
information, and achieves significant im-
provements over the state-of-the-art meth-
ods.

1 Introduction
Currently, most of statistical natural language

processing (NLP) systems rely heavily on manu-
ally annotated resources to train their statistical
models. The more of the data scale, the better
the performance will be. However, the costs are
extremely expensive to build the large scale re-
sources for some NLP tasks. Even worse, the ex-
isting resources are often incompatible even for a
same task and the annotation guidelines are usu-
ally different for different projects, since there
are many underlying linguistic theories which

explain the same language with different per-
spectives. As a result, there often exist multi-
ple heterogeneous annotated corpora for a same
task with vastly different and incompatible an-
notation philosophies. These heterogeneous re-
sources are waste on some level if we cannot fully
exploit them.

However, though most of statistical NLP
methods are not bound to specific annota-
tion standards, almost all of them cannot deal
simultaneously with the training data with
different and incompatible annotation. The
co-existence of heterogeneous annotation data
therefore presents a new challenge to utilize
these resources.

The problem of incompatible annotation stan-
dards is very serious for many tasks in NLP,
especially for Chinese word segmentation and
part-of-speech (POS) tagging (Chinese S&T). In
Chinese S&T, the annotation standards are of-
ten incompatible for two main reasons. One is
that there is no widely accepted segmentation
standard due to the lack of a clear definition
of Chinese words. Another is that there are no
morphology for Chinese word so that there are
many ambiguities to tag the parts-of-speech for
Chinese word. For example, the two commonly-
used corpora, PKU’s People’s Daily (PPD) (Yu
et al., 2001) and Penn Chinese Treebank (CTB)
(Xia, 2000), use very different segmentation and
POS tagging standards.

For example, in Table 1, it is very different
to annotate the sentence “刘翔进入中国区总
决赛 (Liu Xiang reaches the national final in
China)” with guidelines of CTB and PDD. PDD
breaks some phrases, which are single words in

658



Liu Xiang reachs China final
CTB 刘翔/NR 进入/VV 中国区/NN 总决赛/NN
PDD 刘/nrf 翔/nrg 进入/v 中国/ns 区/n 总/b 决赛/vn

Table 1: Incompatible word segmentation and POS tagging standards between CTB and PDD

CTB, into two words. The POS tagsets are also
significantly different. For example, PDD gives
diverse tags “n” and “vn” for the noun, while
CTB just gives “NN”. For proper names, they
may be tagged as “nr”, “ns”, etc in PDD, while
they are just tagged as “NR” in CTB.

Recently, it has attracted more and more re-
search interests to exploit heterogeneous anno-
tation data for Chinese word segmentation and
POS tagging. (Jiang et al., 2009) presented a
preliminary study for the annotation adapta-
tion topic. (Sun and Wan, 2012) proposed a
structure-based stacking model to fully utilize
heterogeneous word structures. They also re-
ported that there is no one-to-one mapping be-
tween the heterogeneous word classification and
the mapping between heterogeneous tags is very
uncertain.

These methods usually have a two-step pro-
cess. The first step is to train the preliminary
taggers on heterogeneous annotations. The sec-
ond step is to train the final taggers by using
the outputs of the preliminary taggers as fea-
tures. We call these methods as “pipeline-
based” methods.

In this paper, we propose a method for joint
Chinese word segmentation and POS tagging
with heterogeneous annotation corpora. We re-
gard the Chinese S&T with heterogeneous cor-
pora as two “related” tasks which can improve
the performance of each other. Since it is impos-
sible to establish an exact mapping between two
annotations, we first automatically construct a
loose and uncertain mapping the heterogeneous
tagsets of CTB and PPD. Thus we can tag a sen-
tence in one style with the help of the “related”
information in another heterogeneous style. The
proposed method can improve the performances
of joint Chinese S&T on both corpora by using
the shared information of each other, which is
proven effective by experiments.

There are three main contributions of our
model:

• First, we regard these two joint S&T tasks
on different corpora as two related tasks
which have interdependent and peer rela-
tionship.

• Second, different to the pipeline-based
methods, our model can be trained simul-
taneously on the heterogeneous corpora.
Thus, it can also produce two different
styles of POS tags.

• Third, our model do not depend on the
exactly correct mappings between the two
heterogeneous tagsets. The correct map-
ping relations can be automatically built in
training phase.

The rest of the paper is organized as follows:
We first introduce the related works in section 2
and describe the background of character-based
method for joint Chinese S&T in section 3. Sec-
tion 4 presents an automatic method to build
the loose mapping function. Then we propose
our method on heterogeneous corpora in 5 and
6. The experimental results are given in section
7. Finally, we conclude our work in section 8.

2 Related Works
There are some works to exploit heteroge-

neous annotation data for Chinese S&T.
(Gao et al., 2004) described a transformation-

based converter to transfer a certain annotation-
style word segmentation result to another style.
However, this converter need human designed
transformation templates, and is hard to be gen-
eralized to POS tagging.

(Jiang et al., 2009) proposed an automatic
adaptation method of heterogeneous annotation
standards, which depicts a general pipeline to in-
tegrate the knowledge of corpora with different
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TaggerPPD

TaggerCTB

Input: x

Output: f(x)

Output: CTB-style Tags

z=f(x)

y=h(x,f(x))

Figure 1: Traditional Pipeline-based Strategy for
Heterogeneous POS Tagging

underling annotation guidelines. They further
proposed two optimization strategies, iterative
training and predict-self re-estimation, to fur-
ther improve the accuracy of annotation guide-
line transformation (Jiang et al., 2012).

(Sun and Wan, 2012) proposed a structure-
based stacking model to fully utilize heteroge-
neous word structures.

These methods regard one annotation as the
main target and another annotation as the com-
plementary/auxiliary purposes. For example, in
their solution, an auxiliary tagger TaggerPPD
is trained on a complementary corpus PPD, to
assist the target CTB-style TaggerCTB. To re-
fine the character-based tagger, PPD-style char-
acter labels are directly incorporated as new
features. The brief sketch of these methods is
shown in Figure 1.

The related work in machine learning liter-
ature is multiple task learning (Ben-David and
Schuller, 2003), which learns a problem together
with other related problems at the same time,
using a shared representation. This often leads
to a better model for the main task, because
it allows the learner to use the commonality
among the tasks. Multiple task learning has
been proven quite successful in practice and has
been also applied to NLP (Ando and Zhang,
2005). We also preliminarily verified that mul-
tiple task learning can improve the performance
on this problem in our previous work (Zhao et

al., 2013), which is a simplified case of the work
in this paper and has a relative low complexity.

Different with the multiple task learning,
whose tasks are actually different labels in the
same classification task, our model utilizes the
shared information between the real different
tasks and can produce the corresponding differ-
ent styles of outputs.

3 Joint Chinese Word Segmentation
and POS Tagging

Currently, the mainstream method of Chi-
nese POS tagging is joint segmentation & tag-
ging with character-based sequence labeling
models(Lafferty et al., 2001), which can avoid
the problem of segmentation error propagation
and achieve higher performance on both sub-
tasks(Ng and Low, 2004; Jiang et al., 2008; Sun,
2011; Qiu et al., 2012).

The label of each character is the cross-
product of a segmentation label and a tagging
label. If we employ the commonly used label set
{B, I, E, S} for the segmentation part of cross-
labels ({B, I, E} represent Begin, Inside, End of
a multi-node segmentation respectively, and S
represents a Single node segmentation), the la-
bel of character can be in the form of {B-T}(T
represents POS tag). For example, B-NN indi-
cates that the character is the begin of a noun.

4 Automatically Establishing the
Loose Mapping Function for the
Labels of Characters

To combine two human-annotated corpora,
the relationship of their guidelines should be
found. A mapping function should be estab-
lished to represent the relationship between two
different annotation guidelines. However, the
exact mapping relations are hard to establish.
As reported in (Sun and Wan, 2012), there is
no one-to-one mapping between their heteroge-
neous word classification, and the mapping be-
tween heterogeneous tags is very uncertain.

Fortunately, there is a loose mapping
can be found in CTB annotation guide-
line1 (Xia, 2000). Table 2 shows some

1Available at http://www.cis.upenn.edu/ ˜chi-
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CTB’s Tag PDD’ Tag1

Total tags 33 26
verbal noun NN v[+nom]
proper noun NR n
是 (shi4) VC v
有 (you3) VE, VV v

conjunctions CC, CS c
other verb VV, VA v, a, z

number CD, OD m

1 The tag set of PDD just includes the 26 broad
categories in the mapping table. The whole tag set
of PDD has 103 sub categories.

Table 2: Examples of mapping between CTB and
PDD’s tagset

mapping relations in CTB annotation guide-
line. These loose mapping relations are
many-to-many mapping. For example, the
mapping may be “NN/CTB↔{n,nt,nz}/PDD”,
“NR/CTB↔{nr,ns}/PDD”, “v/PDD↔{VV,
VA}/CTB” and so on.

We define T1 and T2 as the tag sets for two
different annotations, and t1 ∈ T1 and t2 ∈ T2
are the corresponding tags in two tag sets re-
spectively.

We first establish a loose mapping function
m : T1 × T2 → {0, 1} between the tags of CTB
and PDD.

m(t1, t2) =

{
1 if t1 and t2 have mapping relation
0 else

(1)
The mapping relations are automatically

build from the CTB guideline (Xia, 2000). Due
to the fact that the tag set of PPD used in
the CTB guideline is just broad categories, we
expand the mapping relations to include the
sub categories. If a PPD’s tag is involved
in the mapping, all its sub categories should
be involved. For example, for the mapping
“NR/CTB↔nr/PDD”, the relation of NR and
nrf/nrg should be added in the mapping rela-
tions too (nrf/nrg belong to nr).

Since we use the character-based joint S&T
model, we also need to find the mapping func-
tion between the labels of characters.
nese/posguide.3rd.ch.pdf

In this paper, we employ the commonly used
label set {B, I, E, S} for the segmentation part
of cross-labels and the label of character can be
in the form of {B-T}(T represents POS tag).
Thus, each mapping relation t1 ↔ t2 can be
automatically transformed to four forms: B-
t1 ↔B-t2, I-t1 ↔I-t2, E-t1 ↔E-t2 and S-t1 ↔S-
t2. (“B-NR/CTB↔{B-nr,B-ns}/PPD” for ex-
ample).

Beside the above transformation, we also
give a slight modification to adapt the dif-
ferent segmentation guidelines. For in-
stance, the person name “莫言 (Mo Yan)”
is tagged as “B-NR, E-NR” in CTB but
“S-nrf, S-nrg” in PPD. So, some spe-
cial mappings may need to be added like
“B-NR/CTB↔S-nrf/PPD”, “E-NR/CTB↔{S-
nrg, E-nrg}/PPD”, “M-NR/CTB↔{B-nrg, M-
nrg}/PPD” and so on. Although these spe-
cial mappings are also established automatically
with an exhaustive solution. In fact, we give seg-
mentation alignment only to proper names due
to the limitation of computing ability.

Thus, we can easily build the loose bidirec-
tional mapping function m̃ for the labels of
characters. An illustration of our construction
flowchart is shown in Figure 2.

Finally, total 524 mappings relationships are
established.

5 Joint Chinese S&T with
Heterogeneous Data with Multiple
Task Learning

Inspired by the multiple task learning (Ben-
David and Schuller, 2003), we can regard the
joint Chinese S&T with heterogeneous data as
two “related” tasks, which can improve the
performance of each other simultaneously with
shared information.

5.1 Sequence Labeling Model
We first introduce the commonly used se-

quence labeling model in character-based joint
Chinese S&T.

Sequence labeling is the task of assigning la-
bels y = y1, . . . , yn(yi ∈ Y) to an input sequence
x = x1, . . . , xn. Y is the set of labels.
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nrf nrg
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mapping function m() 
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Figure 2: An Illustration of Automatically Establishing the Loose Mapping Function

Given a sample x, we define the feature
Φ(x,y). Thus, we can label x with a score func-
tion,

ŷ = arg max
y

S(w,Φ(x,y)), (2)

where w is the parameter of score function S(·).
The feature vector Φ(x,y) consists of lots of
overlapping features, which is the chief benefit of
discriminative model. Different algorithms vary
in the definition of S(·) and the corresponding
objective function. S(·) is usually defined as lin-
ear or exponential family function.

For first-order sequence labeling, the feature
can be denoted as ϕk(x, yi−1:i), where i stands
for the position in the sequence and k stands for
the number of feature templates. For the linear
classifier, the score function can be rewritten in
detail as

ŷ = arg max
y

L∑
i=1

(⟨u, f(x, yi)⟩+ ⟨v,g(x, yi−1:i)⟩) ,

(3)
where yi:j denotes label subsequence
yiyi+1 · · · yj ; f and g denote the state and
transition feature vectors respectively, u and v
are their corresponding weight vectors; L is the
length of x.

5.2 The Proposed Model
Different to the single task learning, the het-

erogeneous data have two sets of labels Y and
Z.

The heterogeneous datasets Ds and Ds con-
sist of {xi,yi}(i = 0, · · · ,m) and {xi, zi}(i =
0, · · · , n) respectively.

For a sequence x = x1, . . . , xL with length
L. , there may have two output sequence labels
y = y1, . . . , yL and z = z1, . . . , zL, where yi ∈ Y
and zi ∈ Z.

We rewrite the loose mapping function m̃ be-
tween two label sets into the following forms,

φ(y) = {z|m̃(y, z) = 1}, (4)
φ(z) = {y|m̃(y, z) = 1}, (5)

where φ(z) ⊂ Y and φ(y) ⊂ Z are the subsets
of Y and Z. Give a label y(or z) in an annota-
tion, the loose mapping function φ returns the
corresponding mapping label set in another het-
erogeneous annotation.

Our model for heterogeneous sequence label-
ing can be write as

ŷ = arg max
y,yi∈Y

L∑
i=1

(
⟨u, f(x, yi)⟩

+ ⟨s,
∑

z∈φ(yi)

h(x, z)⟩

+ ⟨v1,g1(x, yi−1:i)⟩

+ ⟨v2,
∑

zi−1∈φ(yi−1)

zi∈φ(yi)

g2(x, zi−1:i)⟩
)
, (6)

and

ẑ = arg max
z,zi∈Z

L∑
i=1

(
⟨u,

∑
y∈φ(zi)

f(x, y)⟩+

⟨s,h(x, zi)⟩
+ ⟨v1,

∑
yi−1∈φ(zi−1)

yi∈φ(zi)

g1(x, yi−1:i)⟩

+ ⟨v2,g2(x, zi−1:i)⟩
)
, (7)

where f and h represent the state feature vectors
on two label sets Y and Z respectively.

In Eq.(6) and (7), the score of the label of
every character is decided by the weights of the
corresponding mapping labels and itself.
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Input sequence: x

Output: PPD-style Tags

TaggerPPD TaggerCTB
Shared

Information

Output: CTB-style Tags

Figure 3: Our model for Heterogeneous POS Tagging

The main challenge of our model is the effi-
ciency of decoding algorithm, which is similar to
structured learning with latent variables(Liang
et al., 2006) (Yu and Joachims, 2009). Most
methods for structured learning with latent vari-
ables have not expand all possible mappings.
In this paper, we also only expand the map-
ping that with highest according to the current
model.

Our model is shown in Figure 3 and the
flowchart is shown in Algorithm 1. If given the
output type of label T , we only consider the la-
bels in T to initialize the Viterbi matrix, and
the score of each node is determined by all the
involved heterogeneous labels according to the
loose mapping function.

input : character sequence x1:L

loose mapping function φ
output type: T (T ∈ {Ty, Tz})

output: label sequence ls
if T == Ty then

calculate ls using Eq. (6);
else if T == Tz then

calculate ls using Eq. (7) ;
else

return null;
end
return ls

Algorithm 1: Flowchart of the Tagging pro-
cess of the proposed model

6 Training
We use online Passive-Aggressive (PA) algo-

rithm (Crammer and Singer, 2003; Crammer et
al., 2006) to train the model parameters. Fol-
lowing (Collins, 2002), the average strategy is
used to avoid the overfitting problem.

For the sake of simplicity, we merge the Eq.(6)
and (7) into a unified formula.

Given a sequence x and the expect type of
tags T , the merged model is

ŷ = arg max
y

t(y)=T

⟨w,
∑

z∈ψ(y)

Φ(x, z)⟩, (8)

where t(y) is a function to judge the type of
output tags; ψ(y) represents the set {φ(y1) ⊗
φ(y2) ⊗ · · · ⊗ φ(yL)} ∪ {y}, where ⊗ means
Cartesian product; w = (uT , sT ,vT1 ,vT2 )T and
Φ = (fT ,hT ,gT1 ,gT2 )T .

We redefine the score function as

S(w,x,y) = ⟨w,
∑

z∈ψ(y)

Φ(x, z)⟩. (9)

Thus, we rewrite the model into a unified for-
mula

ŷ = arg max
y

t(y)=T

S(w,x,y). (10)

Given an example (x,y), ŷ is denoted as the
incorrect label sequence with the highest score

ŷ = arg max
ȳ ̸=y

t(ȳ)=t(y)

S(w,x, ȳ). (11)

The margin γ(w; (x,y)) is defined as

γ(w; (x,y)) = S(w,x,y)− S(w,x, ŷ). (12)

Thus, we calculate the hinge loss
ℓ(w; (x,y)), (abbreviated as ℓw) by

ℓw =

{
0, γ(w; (x,y)) > 1
1− γ(w; (x,y)), otherwise

(13)
In round k, the new weight vector wk+1 is

calculated by

wk+1 = arg min
w

1

2
||w−wk||2 + C · ξ,

s.t. ℓ(w; (xk,yk)) <= ξ and ξ >= 0 (14)
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where ξ is a non-negative slack variable, and C
is a positive parameter which controls the influ-
ence of the slack term on the objective function.

Following the derivation in PA (Crammer et
al., 2006), we can get the update rule,

wk+1 = wk + τkek, (15)

where

ek =
∑

z∈ψ(yk)

Φ(xk, z)−
∑

z∈ψ(ŷk)

Φ(xk, z),

τk = min(C, ℓwk

∥ek∥2
).

As we can see from the Eq. (15), when we up-
date the weight vector, the update information
includes not only the features extracted from
current input, but also that extracted from the
loose mapping sequence of input. For each fea-
ture, the weights of its corresponding related
features derived from the loose mapping func-
tion will be updated with the same magnitude
as well as itself.

Our method regards two annotations to be in-
terdependence and peer relationship. Therefore,
the two heterogeneous annotated corpora can be
simultaneously used as the input of our training
algorithm. Because of the tagging and training
algorithm, the weights and tags of two corpora
can be used separately with the only dependent
part built by the loose mapping function.

Our training algorithm based on PA is shown
in Algorithm 2.

6.1 Analysis
Although our mapping function between two

heterogeneous annotations is loose and uncer-
tain, our online training method can automat-
ically increase the relative weights of features
from the beneficial mapping relations and de-
crease the relative weights of features from the
unprofitable mapping relations.

Consider an illustrative loose mapping re-
lation “NN/CTB↔n,nt,nz/PDD”. For an in-
put sequence x and PDD-style output is ex-
pected. If the algorithm tagging a charac-
ter as “n/PDD”(with help of the weight of
“NN/CTB”) and the right tag isn’t one of

input : mixed heterogeneous datasets:
(xi,yi), i = 1, · · · , N ;
parameters: C,K;
loose mapping function: φ ;

output: wK

Initialize: wTemp← 0,w← 0;
for k = 0 · · ·K − 1 do

for i = 1 · · ·N do
receive an example (xi,yi);
predict: ŷi with Eq.(11);
if hinge loss ℓw > 0 then

update w with Eq. (15);
end

end
wTemp = wTemp + w ;

end
wK = wTemp/K ;

Algorithm 2: Training Algorithm

“n,nt,nz/PDD”, the weight of “NN/CTB” will
also be decreased, which is reasonable since
it is beneficial to distinguish the right tag.
And if the right tag is one of “n,nt,nz/PDD”
but not “n/PDD” (for example, “nt/PDD”),
which means it is a “NN/CTB”, the weight of
“NN/CTB” will remain unchanged according to
the algorithm (updating “n/PDD” changes the
“NN/CTB”, but updating “nt/PDD” changes it
back).

Therefore, after multiple iterations, useful fea-
tures derived from the mapping function are
typically receive more updates, which take rela-
tively more responsibility for correct prediction.
The final model has good parameter estimates
for the shared information.

We implement our method based on Fu-
danNLP(Qiu et al., 2013).

7 Experiments

7.1 Datasets

We use the two representative corpora men-
tioned above, Penn Chinese Treebank (CTB)
and PKU’s People’s Daily (PPD) in our ex-
periments.
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Dataset Partition Sections Words

CTB-5

Training 1−270 0.47M
400−931

1001−1151
Develop 301−325 6.66K

Test 271−300 7.82K

CTB-S Training 0.64M
Test - 59.96K

PPD Training - 1.11M
Test - 0.16M

Table 3: Data partitioning for CTB and PD

7.1.1 CTB Dataset
To better comparison with the previous

works, we use two commonly used criterions to
partition CTB dataset into the train and test
sets.

• One is the partition criterion used in (Jin
and Chen, 2008; Jiang et al., 2009; Sun and
Wan, 2012) for CTB 5.0.

• Another is the CTB dataset from the
POS tagging task of the Fourth Interna-
tional Chinese Language Processing Bake-
off (SIGHAN Bakeoff 2008)(Jin and Chen,
2008).

7.1.2 PPD Dataset
For the PPD dataset, we use the PKU dataset

from SIGHAN Bakeoff 2008.
The details of all datasets are shown in Table

3. Our experiment on these datasets may lead to
a fair comparison of our system and the related
works.

7.2 Setting
We conduct two experiments on CTB-5 +

PPD and CTB-S + PPD respectively.
The form of feature templates we used is

shown in Table 7.2, where C represents a Chi-
nese character, and T represents the character-
based tag. The subscript i indicates its position
related to the current character.

Our method can be easily combined with
some other complicated models, but we only use
the simple one for the purpose of observing the

Ci, T0(i = −2,−1, 0, 1, 2)

Ci, Ci+1, T0(i = −1, 0)

T−1, T0

Table 4: Feature Templates

sole influence of our unified model. The parame-
ter C is tested on develop dataset, and we found
that it just impact the speed of convergence and
have no effect on the accuracy. Moreover, since
we use the averaged strategy, we wish more iter-
ations to avoid overfitting and set a small value
0.01 to it. The maximum number of iterations
K is 50.

The F1 score is used for evaluation, which is
the harmonic mean of precision P (percentage of
predict phrases that exactly match the reference
phrases) and recall R (percentage of reference
phrases that returned by system).

7.3 Evaluation on CTB-5 + PPD
The experiment results on the heterogeneous

corpora CTB-5 + PPD are shown in Table
5. Our method obtains an error reductions of
24.08% and 90.8% over the baseline on CTB-5
and PDD respectively.

Our method also gives better performance
than the pipeline-based methods on heteroge-
neous corpora, such as (Jiang et al., 2009) and
(Sun and Wan, 2012).

The reason is that our model can utilize the
information of both corpora effectively, which
can boost the performance of each other.

Although the loose mapping function are bidi-
rectional between two annotation tagsets, we
may also use unidirectional mapping. Therefore,
we also evaluate the performance when we use
unidirectional mapping. We just use the map-
ping function ψPDD→CTB, which means we ob-
tain the PDD-style output without the informa-
tion from CTB in tagging stage. Thus, in train-
ing stage, there are no updates for the weights of
CTB-features for the instances from PDD cor-
pus, while instances from CTB corpus can result
to updates for PDD-features.

Surprisedly, we find that the one-way map-
ping can also improve the performances of both
corpora. The results are shown in Table 7. The
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Method Training Dataset Test Dataset P R F1
(Jiang et al., 2009) CTB-5, PDD CTB-5 - - 94.02

(Sun and Wan, 2012) CTB-5, PDD CTB-5 94.42 94.93 94.68
Our Model CTB-5 CTB-5 93.28 93.35 93.31
Our Model PDD PDD 89.41 88.58 88.99
Our Model CTB-5, PDD CTB-5 94.74 95.11 94.92
Our Model CTB-5, PDD PDD 90.25 89.73 89.99

Table 5: Performances of different systems on CTB-5 and PPD.

Method Training Dataset Test Dataset P R F1
Our Model CTB-S CTB-S 89.11 89.16 89.13
Our Model PDD PDD 89.41 88.58 88.99
Our Model CTB-S, PDD CTB-S 89.86 90.02 89.94
Our Model CTB-S, PDD PDD 90.5 89.82 90.16

Table 6: Performances of different systems on CTB-S and PPD.

modelPPD→CTB obtains an error reductions of
14.63% and 6.12% over the baseline on CTB-5
and PDD respectively.

Method P R F1
ModelS on CTB-5 93.86 94.73 94.29
ModelS on PDD 90.05 89.28 89.66

“ModelS” is the model which is trained on both CTB-
5 and PDD training datasets with just just using the
unidirectional mapping function ψPDD→CTB.

Table 7: Performances of unidirectional PPD→CTB
mapping on CTB-5 and PPD.

7.4 Evaluation on CTB-S + PPD
Table 6 shows the experiment results on the

heterogeneous corpora CTB-S + PPD. Our
method obtains an error reductions of 7.41% and
10.59% over the baseline on CTB-S and PDD re-
spectively.

7.5 Analysis
As we can see from the above experiments,

our proposed unified model can improve the
performances of the two heterogeneous corpora
with unidirectional or bidirectional loose map-
ping functions. Different to the pipeline-based
methods, our model can use the shared infor-
mation between two heterogeneous POS tag-
gers. Although the mapping function is loose

and uncertain, it is still can boost the perfor-
mances. The features derived from the wrong
mapping function take relatively less responsi-
bility for prediction after multiple updates of
their weights in training stage. The final model
has good parameter estimates for the shared in-
formation.

Another phenomenon is that the performance
of one corpus can gains when the data size of an-
other corpus increases. In our two experiments,
the training set’s size of CTB-S is larger than
CTB-5, so the performance of PDD is higher in
latter experiment.

8 Conclusion

We proposed a method for joint Chinese word
segmentation and POS tagging with heteroge-
neous annotation data. Different to the previous
pipeline-based works, our model is learned on
heterogeneous annotation data simultaneously.
Our method also does not require the exact
corresponding relation between the standards
of heterogeneous annotations. The experimen-
tal results show our method leads to a signif-
icant improvement with heterogeneous annota-
tions over the best performance for this task.
Although our work is for a specific task on joint
Chinese word segmentation and POS, the key
idea to leverage heterogeneous annotations is
very general and applicable to other NLP tasks.
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In the future, we will continue to refine the
proposed model in two ways: (1) We wish to use
the unsupervised method to extract the loose
mapping relation between the different annota-
tion standards, which is useful to the corpora
without loose mapping guideline. (2) We will
analyze the shared information (weights of the
features derived from the tags which have the
mapping relation) in detail and propose a more
effective model. Besides, we would also like to
investigate for other NLP tasks which have dif-
ferent annotation-style corpora.
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Abstract

Studies of the graph of dictionary definitions
(DD) (Picard et al., 2009; Levary et al., 2012)
have revealed strong semantic coherence of
local topological structures. The techniques
used in these papers are simple and the main
results are found by understanding the struc-
ture of cycles in the directed graph (where
words point to definitions). Based on our ear-
lier work (Levary et al., 2012), we study a dif-
ferent class of word definitions, namely those
of the Free Association (FA) dataset (Nelson
et al., 2004). These are responses by subjects
to a cue word, which are then summarized by
a directed, free association graph.

We find that the structure of this network is
quite different from both the Wordnet and the
dictionary networks. This difference can be
explained by the very nature of free associa-
tion as compared to the more “logical” con-
struction of dictionaries. It thus sheds some
(quantitative) light on the psychology of free
association.

In NLP, semantic groups or clusters are inter-
esting for various applications such as word
sense disambiguation. The FA graph is tighter
than the DD graph, because of the large num-
ber of triangles. This also makes drift of
meaning quite measurable so that FA graphs
provide a quantitative measure of the seman-
tic coherence of small groups of words.

1 Introduction

The computer study of semantic networks has been
around since the advent of computers (Brunet, 1974)

and has been used to study semantic relations be-
tween concepts and for analyzing semantic data.
Traditionally, a popular lexical database of English
is Wordnet (Miller, 1995; Miller and Fellbaum,
1998), which organizes the semantic network in
terms of graph theory. In contrast to manual ap-
proaches, the automatic analysis of semantically in-
teresting graph structures of language has received
increasing attention. For example, it has become
clear more recently that cycles and triangles play
an important role in semantic networks, see e.g.,
(Dorow et al., 2005). These results suggest that the
underlying semantic structure of language may be
discovered through graph-theoretical methods. This
is in line with similar findings in much wider realms
than NLP (Eckmann and Moses, 2002).

In this paper, we compare two different types
of association networks. The first network is con-
structed from an English dictionary (DD), the sec-
ond from a free association (FA) database (Nelson
et al., 2004). We represent both datasets through
directed graphs. For DD, the nodes are words and
the directed edges point from a word to its defini-
tion(s). For FA, the nodes are again words, and each
cue word has a directed edge to each association it
elicits.

Although the links in these graphs were not con-
structed by following a rational centralized process,
their graph exhibits very specific features and we
concentrate on the study of its topological proper-
ties. We will show that these graphs are quite dif-
ferent in global and local structure, and we inter-
pret this as a reflection of the different nature of
DD vs. FA. The first is an objective set of rela-
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tions between words and their meaning, as explained
by other words, while the second reveals the nature
of subjective reactions to cue words by individuals.
This matter of fact is reflected by several quantita-
tive differences in the structure of the corresponding
graphs.

The main contribution of this paper is an empiri-
cal analysis of the way semantic knowledge is struc-
tured, comparing two different types of association
networks (DD and FA). We conduct a mathemati-
cal analysis of the structure of the graphs to show
that the way humans express their thoughts exhibits
structural properties in which one can find seman-
tic patterns. We show that a simple graph-based
approach can leverage the information encoded in
free association to narrow down the ambiguity of
meaning, resulting in precise semantic groups. In
particular, we find that the main strongly connected
component of the FA graph (the so-called core) is
very cyclic in nature and contains a large predom-
inance of short cycles (i.e., co-links and triangles).
In contrast to the DD graph, bunches of triangles
form well-delimited lexical fields of collective se-
mantic knowledge. This property may be promising
for downstream tasks. Further, the methods devel-
oped in this paper may be applicable to graph rep-
resentations that occur in other problems such as
word sense disambiguation (e.g., (Heylighen, 2001;
Agirre and Soroa, 2009)) or sentiment polarity in-
duction (Hassan and Radev, 2010; Scheible, 2010).

To show the semantic coherence of these lexi-
cal fields of the FA graph, we perform an exper-
iment with human raters and find that cycles are
strongly semantically connected even when com-
pared to close neighbors in the graph.

The reader might wonder why sets of pairwise
associations can lead to any interesting structure.
One of the deep results in graph theory, (Bollobás,
2001), is that in sparse graphs, i.e., in graphs with
few links per node, the number of triangles is ex-
tremely rare. Therefore, if one does find many tri-
angles in a graph, they must be not only a signal
of non-randomness, but carry relevant information
about the domain of research as shown earlier (Eck-
mann and Moses, 2002).

2 The USF FA dataset

This dataset is one of the largest existing databases
of free associations (FA) and has been collected at
the University of South Florida since 1973 by re-
searchers in psychology (Nelson et al., 2004). Over
the years, more than 6’000 participants produced
about 750’000 responses to 5’019 stimulus words.

The procedure for collecting the data is called dis-
crete association task and consists in asking partici-
pants to give the first word that comes to mind (tar-
get) when presented a stimulus word (cue).

For creating the initial set of stimulus words,
the Jenkins and Palermo word association norms
(Palermo and Jenkins, 1964) proved useful but too
limited as they consist of only 200 words. For this
reason, additional words have been regularly added
to the pool of normed words, unfortunately without
well established rules being followed. For instance,
some were selected as potentially interesting cues,
some were added as responses to the first sets of cues
and, some others were collected for supporting new
studies on verbs. We still work with this database,
because of its breadth.

The final pool of stimuli comprises 5’019 words
of which 76% are nouns, 13% adjectives, and 7%
verbs. A word association is said to be normed
when the target is also part of the set of norms, i.e.,
a cue. The USF dataset of free associations con-
tains 72’176 cue-target pairs, 63’619 of which are
normed. As an example, the association puberty-sex
is normed whereas the association puberty-thirteen
is not, because thirteen is not a cue.

3 Mathematical definitions

We collect here those notions we need for the analy-
sis of the data.

A directed graph is a pair G = (V,E) of a set
V of vertices and, a set E of ordered pairs of ver-
tices also called directed edges. For a directed edge
(u, v) ∈ E, u is called the tail and v the head of
the edge. The number of edges incident to a vertex
v ∈ V is called the degree of v. The in-degree
(resp. out-degree) of a vertex v is the number of
edge heads (resp. edge tails) adjacent to it. A vertex
with null in-degree is called a source and a vertex
with null out-degree is called a sink.

A directed path is a sequence of vertices such
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that a directed edge exists between each consecutive
pair of vertices of the graph. A directed graph is
said to be strongly connected, (resp. weakly con-
nected) if for every pair of vertices in the graph,
there exists a directed path (resp. undirected path)
between them. A strongly connected component,
SCC, (resp. weakly connected component, WCC)
of a directed graph G is a maximal strongly con-
nected (resp. weakly connected) subgraph of G.

A directed cycle is a directed path such that its
start vertex is the same as its end vertex. A co-
link is a directed cycle of length 2 and a triangle a
directed cycle of length 3.

The distance between two vertices in a graph is
the number of edges in the shortest path connecting
them. The diameter of a graph G is the greatest
distance between any pair of vertices. The charac-
teristic path length is the average distance between
any two vertices of G.

The density of a directed graph G(V,E) is the
proportion of existing edges over the total number
of possible edges and is defined as:

d = |E|/(|V |(|V | − 1))

The neighborhoodNi of a vertex vi isNi = {vj :
eij ∈ E or eji ∈ E}.

The local clustering coefficient Ci for a vertex vi

corresponds to the density of its neighborhood sub-
graph. For a directed graph, it is thus given by:

Ci =
|{ejk : vj , vk ∈ Ni, ejk ∈ E}|

|Ni|(|Ni| − 1)

The clustering coefficient of a graph G is the aver-
age of the local clustering coefficients of all its ver-
tices.

The efficiency Eff of a directed graph G is an in-
dicator of the traffic capacity of a network. It is the
harmonic mean of the distance between any two ver-
tices of G. It is defined as:

Eff =
1

|V |(|V | − 1)

∑
i 6=j∈V

1

dij

The linear correlation coefficient between two
random variables X and Y is defined as:

ρ(X,Y ) = (E[XY ]− µXµY )/(σXσY )

where µX and σX are respectively the mean and
standard deviation of the random variable X .

The linear degree correlation coefficient of a
graph is called assortativity and is expressed as:

ρD =
∑
xy

xy(exy − axby)/(σaσb)

where exy is the fraction of all links that connect
nodes of degree x and y and where ax and by are re-
spectively the fraction of links whose tail is adjacent
to nodes with degree x and whose head is adjacent to
nodes with degree y, satisfying the following three
conditions:∑

xy

exy = 1, ax =
∑

y

exy, by =
∑

x

exy

When ρD is positive, the graph possesses assor-
tative mixing and high-degree nodes tend to con-
nect to other high-degree nodes. On the other hand,
when ρD is negative, the graph features disassorta-
tive mixing and high-degree nodes tend to connect
to low degree nodes.

The intersection graph of sets Ai, i = 1, . . . ,m,
is constructed by representing each setAi as a vertex
vi ∈ V and adding an edge for each pair of sets with
a non-empty intersection:

E = {(vi, vj) : Ai ∩Aj 6= ∅}

4 Graph topology analysis

4.1 Graph generation

Our goal being to study the FA network topology,
we first concentrate on the generation of an un-
weighted directed graph. We generate the corre-
sponding graph by adding a directed edge for each
cue-target pair of the dataset. We only consider pairs
whose target was normed in order to avoid overload-
ing the graph with noisy data (e.g., a response mean-
ingful only to a specific participant). The graph has
5’019 vertices and 63’619 edges. It is composed of
a single WCC and 166 SCCs.

For comparison with dictionary definitions (DD),
we construct a graph from the Wordnet2 dictionary
(nouns only), following (Levary et al., 2012). This
graph contains 54’453 vertices and 179’848 edges.
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4.2 Core extraction

The so-called core was defined previously in (Picard
et al., 2009; Levary et al., 2012) as that subset of
nodes in which a random walker gets trapped after
only a few steps.

The shave algorithm was used in (Levary et al.,
2012) to isolate this subset. It consists in recursively
removing the source and sink nodes from a weakly
connected directed graph and permits to get the sub-
graph induced by the union of its strongly connected
components. Note that the dictionary graph (DD)
has no sinks (i.e., words that never get defined) and
that it contains a giant SCC whose size is compara-
ble to the one of the initial graph.

It turns out that the FA graph also contains a giant
SCC, therefore getting the core consists more simply
in extracting the main SCC of the initial graph. We
use Tarjan’s algorithm (Tarjan, 1972) for isolating
the FA core.

4.3 Vertex degree analysis

The FA core has a maximum in-degree of 313, a
maximum out-degree of 33 and an average degree
of 25.42. The in-degree distribution follows a power
law (γ = 1.93) and the out-degrees are Poisson-like
distributed with a peak at 14 (Steyvers and Tenen-
baum, 2005; Gravino et al., 2012).

Words having a high in-degree are targets that
tend to be cited more frequently. On the other hand,
words having a high out-degree are cues that evoke
many different targets.

The most evocative cues are, in decreasing order
of out-degree: field (33), body (31), condemn (29),
farmer (29), crisis (28), plan (28), attention (27),
animal (27), and hang (27). Interestingly, the most
cited targets (i.e., targets with highest in-degree) are
in decreasing order: food (313), money (295), water
(271), car (251), good (246), bad (221), work (187),
house (183), school (182), love (179).

4.4 Cycle decomposition of the core

We define the vertex k-cycle multiplicity
(resp. edge k-cycle multiplicity) as the num-
ber of k-cycles a given vertex (resp. edge) belongs
to. We call core-ER the set of Erdös-Rényi (ER)
random graphs G(n,M) having the same number
of nodes and the same number of edges as the FA
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Figure 1: Distribution of shortest cycles lengths in the
core compared to equivalent ER models
One should bear in mind that we only consider the set of short-
est cycles. Thus, a k-cycle is not counted if each of its nodes
belongs to a cycle whose length is < k. Although the num-
ber of 4-shortest cycles is comparable in the core and core-ER
graphs for example, there are in reality far more 4-cycles in the
core (i.e., 42’738 versus 6’517). We see that when considering
shortest cycles, short cycles tend to hide long ones, and, as a
large proportion of nodes in the core belong to 2- and 3-cycles,
many longer cycles do not get counted at all.

core. We start by extracting the 2- and 3-cycles by
using a customized version of Johnson’s algorithm
(Johnson, 1975). The first thing we observe is that
the core has a very high density of short cycles: the
subset of nodes belonging to 2-cycles (i.e., nodes
with 2-cycle multiplicities > 0) cover 95% of the
core vertices and the 3-cycles cover 88% of the
core vertices. The corresponding core-ER graphs
have on average about 100 times fewer 2-cycles and
almost 20 times fewer 3-cycles.

This shows that the core is very cyclic in nature
and that it remains very well connected for short-
length cycles: most vertices of the core indeed be-
long to at least one co-link or triangle.

In order to limit computation times, we only con-
sidered shortest cycles for lengths ≥ 3 and analyzed
the distribution of the number of shortest cycles
in the core compared to equivalent random graphs.
Whereas there are many more short cycles in the
core, we observe a predominance of 4, 5 and 6-
cycles in core-ER graphs. However, we find again a
slight predominance of long cycles (length between
7 and 15) in the core (see Fig. 1). See (Levary et al.,
2012), Fig. 3, where the cycle distribution is very
different, with a minimum at length 5.
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4.5 Interpretation of cycles

2-cycles are composed of concretely related words
(e.g., drug-coke, destiny-fate, einstein-genius, . . . ).
The vertex with highest 2-cycle multiplicity is music
(22).

Words in 3- and 4-cycles often belong to the
same lexical field. Examples of 3-cycles: protect-
guard-defend or space-universe-star. The vertex
(resp. edge) with highest 3-cycle multiplicity is
car (86) (resp. bad-crime (11)). Examples of 4-
cycles: monster-dracula-vampire-ghost or flu-virus-
infection-sick.

Longer cycles are more difficult to describe: Re-
lations linking words of a given cycle exhibit se-
mantic drift with increasing length (cf. (Levary et
al., 2012)). Examples of 5-cycles: yellow-coward-
chicken-soup-noodles and sleep-relax-music-art-
beauty.

The cumulated set of free associations reflects the
way in which a group of people retrieved its seman-
tic knowledge. As the associated graph is highly
circular, this suggests that this knowledge is not
stored in a hierarchical way (Steyvers and Tenen-
baum, 2005). The large predominance of short cy-
cles in the core may indeed be a natural conse-
quence of the semantic information being acquired
by means of associative learning (Ashcraft and Rad-
vansky, 2009; Shanks, 1995).

4.6 FA core clustering

4.6.1 The walktrap community algorithm
Complex networks are globally sparse but con-

tain locally dense subgraphs. These groups of highly
interconnected vertices are called communities and
convey important properties of the network.

Although the notion of community is difficult to
define formally, the current consensus establishes
that a partition P = {C1, C2, . . . , Ck} of the ver-
tex set of a graph G represents a good community
structure if the proportion of edges inside the Ci is
higher than the proportion of edges between them
(Fortunato, 2010).

Computing such communities in a large graph is
generally computationally expensive (Lancichinetti
and Fortunato, 2009). We use the so-called ‘Walk-
trap’ community detection algorithm (Pons and Lat-
apy, 2006) for extracting communities from the FA

networks. The idea lying behind this algorithm is
that random walks on a graph will tend to get trapped
in the densely connected subgraphs.

Let P t
ij be the probability of going from vertex i

to vertex j through a random walk of length t. The
distance between two vertices i and j of the graph is
defined as:

rij(t) =

√√√√ n∑
k=1

(P t
ik − P t

jk)2

d(k)

where d(k) is the degree of vertex k.
One defines the probability P t

C,j to go from
community C to vertex j in t steps: P t

C,j =∑
i∈C P

t
ij/|C|, and then the distance is easily gen-

eralized for two communities C1, C2.
The algorithm starts with a partition P1 = {{v} ∈

V } of the initial graph into n communities each of
which is a single vertex. At each step, two communi-
ties are chosen and merged according to the criterion
described below and the distances between commu-
nities are updated. The process goes on until we ob-
tain the partition Pn = {V }.

In order to reduce complexity, only adjacent com-
munities are considered for merging. The decision
is then made according to Ward’s method (Everitt
et al., 2001): at each step k, the two communities
that minimize the mean σk of the squared distances
between each vertex and its community are merged:

σk =
1

n

∑
C∈Pk

∑
i∈C

r2iC

4.6.2 Clustering of the core
We first identify the communities of the FA core

using the Walktrap algorithm. We immediately
observe that when the path length parameter in-
creases, the number of identified communities de-
creases (i.e., for a length of 2, we find 35 communi-
ties whereas for a length of 9, we only find 8 com-
munities).

For a path length of 2, the algorithm extracts 35
communities, 7 of which contain more than 100 ver-
tices, 3 of which contain between 100 and 50 ver-
tices and 25 of which contain less than 50 vertices.

We observe that for most small communities (i.e.,
the ones containing less than 50 vertices), there ex-
ists a clear relation between the labels of their ver-
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tices. Typically, the labels are part of the same lexi-
cal field (e.g., all the planets (except earth) or related
by a common grammatical function (such as why,
where, what, . . . ).

4.6.3 Clustering of the core co-links
We define the k-cycle induced subgraph of a

graph G as the subgraph of G induced by the set
of its vertices with k-cycle multiplicity > 0.

The co-link graph of a graphG(V,E) is the undi-
rected graph obtained by replacing each co-link (i.e.,
2-cycle) of the 2-cycle induced subgraph of G by a
single undirected edge and removing all other edges.

The co-link graph of the FA core has 4’508 ver-
tices and 8’309 edges for a density of 8×10−4. It
is composed of a single weakly connected compo-
nent that can be seen as a projection of the strongest
semantic links from the original graph. Extracting
the co-link graph is thus an efficient way of select-
ing the set of most important semantic links (i.e., the
set of 2-cycles that appear in large predominance in
the core compared to what is found in an equivalent
random graph) while filtering out the noisy or negli-
gible ones.

The sets of communities extracted by the Walk-
trap algorithm exhibit different degrees of granular-
ity depending on the length parameter. For short
paths, a large number of very small communities are
returned (e.g., 923 communities when length equals
2) whereas for longer paths the average size of the
communities increases more and more.

The community detection exhibits thus a far finer
degree of granularity for the core co-links graph than
for the core itself. The size of the communities being
much smaller in average, it is striking to notice to
which extent the words of a given community are
semantically related.

Examples of communities found in the core co-
links graph include (standards, values, morals,
ethics), (hopeless, romantic, worthless, useless),
(thesaurus, dictionary, vocabulary, encyclopedia)
or (molecule, atom, electron, nucleus, proton, neu-
tron).

4.6.4 DD core clustering vs FA core clustering
The clustering of both cores has very different

characteristics: We illustrate the neighborhoods of
conflict for both cases in Fig. 2 and 3.
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Figure 2: Neighborhood of conflict in the FA core
The set of words belonging to the neighborhood of conflict are
clearly part of the same lexical field. The high density of co-
links leads to cyclicity and we see that many directed triangles
are present in the local subgraph (e.g., conflict-trouble-fight,
conflict-argument-disagree). We can even find triangles of co-
links that link together words semantically strongly related (e.g.,
fight-war-battle, fight-quarrel-argument). Nodes that are part of
the neighborhood of conflict in both FA and DD are in empty
circles.

On one hand, the words in communities of the DD
core are in most cases either synonyms, e.g., (decla-
ration, assertion, claim) or an instance-of kind of
relation, e.g., (signal, gesture, motion) or (zero, inte-
ger).

On the other hand, communities of the FA core
are generally composed of words belonging to the
same lexical field and sharing the same level of ab-
straction.

Moreover, we notice that it is often difficult to es-
tablish the semantic relation existing between words
of many small communities (i.e., containing less
than 10 words) of the DD core. Two such examples
are: (choice, probate, executor, chosen, certificate,
testator, will) and (numeral, monarchy, monarch,
crown, significance, autocracy, symbol, interpreta-
tion).

The comparison of DD and FA reveals, in a quan-
titative way, fundamental differences between the
two realms. The interesting data are shown in ta-
ble 1.
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Figure 3: Neighborhood conflict in the DD core
First, we note that the neighborhood has a lower density than
in the FA core. We also see that there is no cycle and there
seems to be a flow going from source nodes to sink nodes. As
it generally happens in the neighborhood subgraphs of the DD
core, source nodes are rather specific words whereas sink nodes
are generic words.

FA core DD core
# vertices 4’843 1’496
# edges 61’544 4’766
density 2.5×10−3 2.1×10−3

avg degree 25.4 6.37
max in-degree 313 59
directed diameter 10 29
characteristic path length 4.26 10.42
efficiency 2.5×10−1 1.2×10−1

clustering coefficient 8.5×10−2 5.1×10−2

assortativity 5.5×10−2 6.1×10−2

Table 1: Comparison FA vs DD

Note that while the FA core is in fact larger than
the DD core, its diameter is smaller. This illustrates
in a beautiful way the nature of free association as
compared to the more neutral dictionary. In par-
ticular, the characteristic path length is smaller in
the FA graph, because humans use generalized event
knowledge (McRae and Matsuki, 2009) in free asso-
ciation, producing semantic shortcuts. For example,
FA contains a direct link mirage→water, whereas
in DD, the shortest path between the two words is
mirage→refraction→wave→water.

5 The Bricks of Meaning

5.1 Extraction of the seed
We already saw that most vertices of the core be-
long to directed 2- and 3-cycles. Whereas 2-cycles

establish strong semantic links (i.e., synonymy or
antonymy relations) and provide cyclicity to the un-
derlying directed graph, we claim that 3-cycles (i.e.,
triangles) form the set of elementary concepts of the
core.

These structues are common to DD and to FA, but
we will see that the links in FA are somehow more
direct than in DD.

We call seed the subgraph of the core induced by
the set V3 of vertices belonging to directed triangles
and shell the subgraph of the core induced by the
set V \V3 (i.e., the set of vertices with a null 3-cycle
multiplicity), see Fig. 4.

Initial graph
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sh
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se
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Figure 4: Composition of the FA graph
The graph of FA contains a giant SCC (the core). The subgraph
of the core induced by the set of nodes belonging to at least one
triangle also forms a giant component we call the ‘seed’. The
subgraph of the core induced by the set of nodes not belonging
to any triangle is called the ‘shell’ and is composed of many
small SCCs, including single vertices. Although the shell has a
low density, its nodes are very well connected to the seed.

The shell contains 530 nodes and 309 edges.
There are 7’035 edges connecting the shell to the
seed. The shell consists of of many small SCCs and
although its average degree is low (1.17), its ver-
tices have on average many (13.27) connections to
the seed.

The seed contains 4’313 vertices (89% of the
core) and 54’197 edges. The first thing to notice
is that it has 100 times more co-links (7’895) and
20 times more triangles (13’119) than an equivalent
random graph. We call shortcuts the 32’773 edges
of the seed that do not belong to 3-cycles, see Fig. 5.

The seed obviously also contains cycles whose
length is greater than 3. One can check that there ex-
ist only 5 basic motifs involving 2 attached triangles
and 1 shortcut for creating 4- and 5-cycles, and that
linking 2 isolated triangles with 2 shortcuts also per-
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S

Figure 5: Shortcut edges between two triangles sharing a
single vertex S
Two triangles can share 0, 1 or 2 vertices. For each of these three
basic motifs, we count the maximum number of shortcut edges
(i.e., edges not belonging to 3-cycles) that can be added. By
linking two triangles, these shortcuts permit to move two basic
semantic units closer together and create longer cycles (i.e., 4,
5, and 6-cycles). Long cycles can be thus considered as group-
ings of basic semantic units. In the case of two triangles sharing
one vertex for example, it is possible to add at most 6 short-
cuts, whereas, for two triangles sharing two vertices, at most 2
shortcuts can be added.

mit to form 4-, 5- and 6-cycles. All longer cycles are
simply made of a juxtaposition of these basic motifs.

Furthermore, there is a limit on the number of
shortcuts that can possibly be added in the seed be-
fore it gets saturated, as all its vertices belong to at
least one triangle. We show that at most 16 shortcuts
can be added between two isolated triangles, at most
6 between 2 triangles sharing 2 vertex and at most 2
between 2 triangles sharing 2 vertices (see Fig. 5).

5.2 The elementary lexical fields

Once the seed is isolated, we go on digging into its
structure. We focus on the arrangements of triangles
as they constitute the set of elementary concepts.

We start by removing all shortcuts from the seed
and convert it then to an undirected graph, in order
to get a homogeneous simplicial 2-complex.

Let t be the graph operator which transforms a
graph G into the intersection graph tG of its 2-
simplices (i.e., triangles sharing an edge). We apply
t to the homogeneous simplicial 2-complex found
previously. The result represents the links between
the basic semantic units of the seed. We call seed-
crux the giant WCC in the intersection graph.

We enumerate the 8’380 maximal cliques of FA
seed-crux and get the list of words composing each

Distance Acc κ KS
original – 0.404 30
1 74 0.522 42
2 97 0.899 89
∞ 99 0.899 89

Table 2: Accuracy, κ, and count(p < 0.05) for KS

clique. By removing the ones that are subsets of big-
ger lists, we finally obtain 3’577 lists of words .

These lists of words have a rather small and ho-
mogeneous size (between 4 and 17) and 95% have
a size comprised between 4 and 10. More in-
terestingly, they clearly define well-delimited lexi-
cal fields. We will show this through two experi-
ments in the following sections. A few examples
include (honest, trustworthy, reliable, responsible),
(stress, problem, worry, frustration) and (data, pro-
cess, computer, information).

From a topological perspective, we deduce that
bunches of triangles (i.e., cliques of elementary con-
cepts) span the seed in a homogeneous way. These
bunches form a set of cohesive lexical fields and
constitute essential bricks of semantic knowledge.

5.3 Semantic similarity of the lexical fields

In order to quantify the relative meaning of words
in the lexical fields of the seed-crux, we define the
following semantic similarity metric based on the
Wordnet WUP metric (Wu and Palmer, 1994) for a
given set of words L:

S`(L) = 2
∑

wi,wj∈L,wi 6=wj

Sw(wi, wj)/(|L|(|L| − 1))

where Sw(wi, wj) = max
Sk3wiandS`3wj

{wup(Sk, S`)}

and wup is the WUP semantic metric and Sk and S`

are Wordnet synsets.
The average value of S` for the set of cliques of

seed-crux is 0.6 whereas it is only 0.43 for randomly
sampled set of words. This suggests the correspond-
ing lists of words are indeed semantically related.
We will show the strength of this relation in the fol-
lowing experiment with human raters.

5.4 Human evaluation of the lexical fields

To validate our findings, we conducted an empirical
evaluation through human annotators. Starting from
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the 1’204 4-groups, we designed the following ex-
periment: We corrupt the groups by exchanging one
of the 4 elements with a randomly chosen word at a
distance from the group of 1, 2, and “infinity” (i.e.,
any word of the whole core). We presented 100 ran-
dom samples for each of the 3 distances as well as
100 unperturbed groups (original) to annotators at
Amazon Mechanical Turk1, asking which word fits
the group the least. Intuitively, the closer the ran-
domly chosen words get to the group, the closer the
distribution of the votes for each sample should be
to the uniform distribution. We collected 10 votes
for each of the 4 problems of 100 random samples.
We calculated accuracy (i.e., the relative frequency
of correctly identified random words) for the 3 ran-
dom confounder experiments and Fleiss’ κ. Fur-
ther, we used the Kolmogorov-Smirnov (KS) test for
how uniform the label distribution is, reporting the
relative frequency of samples that are significantly
(p < 0.05) different from the uniform distribution.
The results of this experiment are summarized in Ta-
ble 2 and show clearly that the certainty about the
“odd man out” increases together with the distance.

5.5 Error analysis

If we view our results as a resource for a downstream
task, it is important to know about possible down-
sides. First, we note that there are words which are
not in a triangle and will thus be missing in the in-
tersection graph. This is an indication that the corre-
sponding word is less well embedded contextually,
so conversely, any prediction made about it from the
data may be less reliable. Additionally, semantic
leaps caused by generalized event knowledge may
lead to lesser-connected groups such as (steel, pipe,
lead, copper). Jumps like these may or may not be
desired in a subsequent application.

6 The Case of the EAT FA dataset

The Edinburgh Associative Thesaurus (EAT) (Kiss
et al., 1973) is a large dataset of free associations.
We extract the EAT FA seed-crux with the previ-
ously described methods.

We start by generating the initial graph (23’219
vertices and 325’589 edges), then extract its core
(7’754 vertices and 247’172 edges) and its seed

1http://www.mturk.com

(7’500 vertices and 238’677 edges). It is interest-
ing to notice at this stage that the EAT seed contains
74% of the words belonging to the USF seed. Af-
ter generating the seed-crux which contains 63’363
vertices, 6’825’731 edges, and 342’490 maximal
cliques, we finally obtain 40’998 lists of words.

These lists comprise between 4 and 233 words but
80% of them have a relatively small size between 4
and 20. Although we find exceptions for this graph,
most of the extracted lists again form well-delimited
lexical fields (e.g., (health, resort, spa, bath, salts) or
(god, devil, angel, satan).

Comparing the two association experiments, we
see that the local topologies are quite similar. Both
FA cores have a high density of connected trian-
gles, whereas cycles in the DD graph tend to be
longer and most triangles are isolated. This can be
attributed to the different ways in which DD and FA
are obtained, the former being built rationally by fol-
lowing a humanly-driven process and the latter re-
flecting an implicit collective semantic knowledge.

7 Related Work

A number of metrics like Latent Semantic Analy-
sis (Deerwester et al., 1990) and Word Association
Spaces (Steyvers et al., 2004) have been recently
developed for quantifying the relative meaning of
words. As the topological properties of free associ-
ation graphs reflect key aspects of semantic knowl-
edge, we believe some graph theory metrics could
be used efficiently to derive new ways of measuring
semantic similarity between words.

Topological analysis of the Florida Word Associa-
tions (FA) was started by (Steyvers and Tenenbaum,
2005; Gravino et al., 2012), who extracted global
statistics. We follow the basic methodology of these
studies, but extend their approach. First, we conduct
deeper analyses by examining the neighborhood of
nodes and extracting the statistics of cycles. Second,
we compare the properties of FA and DD graphs.

Word clustering based on graphs has been the sub-
ject of various earlier studies. Close to our work
is (Widdows and Dorow, 2002). These authors rec-
ognize that nearest-neighbor-based clustering of co-
occurrence give rise to semantic groups. This type of
approach has since been applied in various modified
forms, e.g., by (Biemann, 2006) who performs label-
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propagation based on randomized nearest neighbors,
or Matsuo et al. (2006) who perform greedy cluster-
ing. Hierarchical clustering algorithms (e.g., (Jonyer
et al., 2002; Manning et al., 2008)) are related as
well, however, the key difference is that in hierarchi-
cal clustering, the granularity of a cluster is difficult
to determine.

Dorow et al. (2005) recognize that triangles form
semantically strongly cohesive groups and apply
clustering coefficients for word sense disambigua-
tion. Their work focuses on undirected graphs of
corpus co-occurrences whereas our work builds on
directed associations. Building on this work, we
take finer topological graph structures into account,
which is one of the main contributions in this paper.

8 Conclusion

The cognitive process of discrete free association be-
ing an epiphenomenon of our semantic memory at
work, the cumulative set of free associations of the
USF dataset can be viewed as the projection of a col-
lective semantic memory.

To analyze the semantic memory, we use the tools
of graph theory, and compare it also to dictionary
graphs. In both cases, triangles play a crucial role
in the local topology and they form the set of ele-
mentary concepts of the underlying graph. We also
show that cohesive lexical fields (taking the form
of cliques of concepts) constitute essential bricks of
meaning, and span the core homogeneously at the
global level; 89% of all words in the core belong
to at least one triangle, and 77% belong to cliques
of triangles containing 4 words (i.e., pairs of trian-
gles sharing an edge or forming tetrahedras). As the
words of a graph of free associations acquire their
meaning from the set of associations they are in-
volved in (Deese, 1962), we go a step further by
examining the neighborhood of nodes and extracting
the statistics of cycles. We further check through hu-
man evaluation that the clustering is strongly related
to meaning, and furthermore, the meaning becomes
measurably more confused as one walks away from
a cluster.

-¿ -¿I call the pairs of triangles sharing an edge
the 2-clovers ;-)

Comparing dictionaries to free association, we
find the free association graph being more concept

driven, with words in small clusters being on the
same level of abstraction. Moreover, we think that
graphs of free associations could find interesting
applications for Word Sense Disambiguation (e.g.,
(Heylighen, 2001; Agirre and Soroa, 2009)), and
could be used for detecting psychological disorders
(e.g., depression, psychopathy) or whether someone
is lying (Hancock et al., 2013; Kent and Rosanoff,
1910).

Finally, we believe that studying the dynamics of
graphs of free associations may be of particular in-
terest for observing the change in meaning of certain
words (Deese, 1967), or more generally to follow the
cultural evolution arising among a social group.
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Abstract

Creating a language-independent meaning
representation would benefit many cross-
lingual NLP tasks. We introduce the first un-
supervised approach to this problem, learn-
ing clusters of semantically equivalent English
and French relations between referring expres-
sions, based on their named-entity arguments
in large monolingual corpora. The clusters
can be used as language-independent semantic
relations, by mapping clustered expressions
in different languages onto the same relation.
Our approach needs no parallel text for train-
ing, but outperforms a baseline that uses ma-
chine translation on a cross-lingual question
answering task. We also show how to use the
semantics to improve the accuracy of machine
translation, by using it in a simple reranker.

1 Introduction

Identifying a language-independent semantics is a
major long term goal of computational linguistics,
and is interesting both theoretically and for practical
applications. It assumes that semantically equiva-
lent sentences in any language can be mapped onto
a common meaning representation. Such a repre-
sentation would be of great utility for tasks such
as translation, relation extraction, summarization,
question answering, and information retrieval. Re-
gardless of whether it is even possible to create such
a semantics, we show that an incomplete version can
be useful for downstream tasks.

Semantic machine translation aims to map a
source language to a language-independent meaning
representation, and then generate the target language

translation from this. It is hoped this would allevi-
ate the difficulties of simpler models when translat-
ing between languages with very different word or-
dering and syntax (Vauquois, 1968). Despite many
attempts to define interlingual representations (Mi-
tamura et al., 1991; Beale et al., 1995; Banarescu et
al., 2013), state-of-the-art machine translation still
uses phrase-based models (Koehn et al., 2007). The
major obstacle to defining interlinguas has been de-
vising a meaning representation that is language-
independent, but capable of expressing the limitless
number of meanings that natural languages can ex-
press (Dorr et al., 2004).

Our approach avoids this problem by utilizing the
methods of distributional semantics. Recent work
has shown that paraphrases of expressions can be
learned by clustering those with similar arguments
(Poon and Domingos, 2009; Yao et al., 2011; Lewis
and Steedman, 2013)—for example learning that X
wrote Y and X is the author of Y are equivalent if
they appear in a corpus with similar (X, Y) argument-
pairs such as {(Shakespeare, Macbeth), (Dickens,
Oliver Twist)}. We extend this to the multilingual
case, aiming to also map the French equivalents X
a écrit Y and Y est un roman de X on to the same
cluster as the English paraphrases. Conceptually,
we treat a foreign expression as a paraphrase of an
English expression. The cluster identifier can be
used as a predicate in a logical form, suggesting that
the fundamental predicates of an interlingua can be
learnt in an unsupervised manner via clustering.

In this paper we focus on learning binary relations
between named entities. This problem is much sim-
pler than attempting complete interlingual semantic
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interpretation, but the approach could be general-
ized. This class of expressions has proved extremely
useful in the monolingual case, with direct applica-
tions for question answering and relation extraction
(Poon and Domingos, 2009; Mintz et al., 2009), and
we demonstrate how to use them to improve ma-
chine translation. It is important to be able to ex-
tract knowledge across languages, as many facts will
not be expressed in all languages—either due to less-
complete encyclopedias being available in some lan-
guages, or facts being most relevant to a single coun-
try.

In contrast to most previous work on machine
translation and cross-lingual clustering, our method
requires no parallel text (see Section 8 for discussion
of some exceptions). It instead exploits an alignment
between named-entities in different languages. The
limited size of parallel corpora is a significant bot-
tleneck for machine translation (Resnik and Smith,
2003), whereas our approach can be used on much
larger monolingual corpora. This means it is poten-
tially useful for language-pairs where little parallel
text is available, for domain adaptation, or for semi-
supervised approaches.

2 Basic Approach

Our work builds on clustering-based approaches to
monolingual distributional semantics, aiming to cre-
ate clusters of semantically equivalent predicates,
based on their arguments in a corpus. In each lan-
guage, we first map each sentence in a large mono-
lingual corpus onto a simple logical form, by ex-
tracting binary predicates between named entities.
Then, we cluster predicates both within and between
languages into those with similar arguments.

When parsing a new sentence, instead of using
the monolingual predicate, we use the cluster identi-
fier as a language-independent semantic relation, as
shown in Figure 1. The resulting logical form can be
used for inference in question answering.

Unlike traditional approaches to translation, this
does not require parallel text—but it does impose
some additional constraints on language resources.
Our approach requires:

• A large amount of factual text, as we rely on
the same facts being expressed in different lan-
guages. We use Wikipedia, which contains ar-

ticles in 250 languages, including 121 with at
least 10,000 articles.1 Other domains, such as
Newswire, may also be effective.

• A method for extracting binary relations from
sentences. This is straightforward from depen-
dency parses, which are available for many lan-
guages. It is also possible without a parser,
with some language-specific work (Fader et al.,
2011). We describe our approach in Section 3.

• A method for linking entities in the training
data to some canonical representation. Mc-
Namee et al. (2011) report good results on this
task in 21 languages. We describe our method
for this in Section 4.1.

3 Predicate Extraction

Our method relies on extracting binary predicates
between entities from sentences. Various represen-
tations have been suggested for binary predicates,
such as Reverb patterns (Fader et al., 2011), de-
pendency paths (Lin and Pantel, 2001; Yao et al.,
2011), and binarized predicate-argument relations
derived from a CCG-parse (Lewis and Steedman,
2013). Our approach is formalism-independent, and
is compatible with any method of expressing binary
predicates.

We choose the CCG-based parser of Lewis and
Steedman (2013) for several reasons. It out-
puts a logical form derived automatically from
the CCG-parse, containing predicates such as:
writearg0,arg1(shakespeare,macbeth). By using the
close relationship between the CCG syntax and se-
mantics, it is able to generalize over many seman-
tically equivalent syntactic constructions (such as
passives, conjunctions and relative clauses), mean-
ing we can map both Shakespeare wrote Macbeth
and Macbeth was written by Shakespeare to the
same logical form. Using a dependency-based rep-
resentation, these would have different predicates,
which would need to be clustered later. CCG also
has a well developed theory of operator semantics
(Steedman, 2012), so is able to represent semantic
operators such as quantifiers, negation and tense—
understanding these is crucial to high performance
on question answering or translation tasks. As in
1As of June 2013.
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Shakespeare wrote Macbeth

Shakespeare wrote Macbeth

NP (S\NP)/NP NP
>

S\NP
<

S

writearg0:PER,arg1:BOOK(william shakespeare,
macbeth)

relation43(william shakespeare, macbeth)

Shakespeare a écrit Macbeth

Shakespeare

subj

��
a

mod
��
écrit Macbeth

obj
��

écriresub j:PER,ob j:BOOK(william shakespeare,
macbeth)

CCG Parse

Initial Semantic Analysis

Lookup predicate
in clustering

Dependency Parse

Initial Semantic Analysis

Figure 1: Example showing how our system can map sentences in different languages to the same meaning represen-
tation, assuming we have clustered the equivalent predicates writearg0:PER,arg1:BOOK and écriresub j:PER,ob j:BOOK.

Lewis and Steedman (2013), clusters derived from
the output from the parser can be integrated into the
lexicon, allowing us to build logical forms which
capture both operator and lexical semantics.

Accurate CCG syntactic parsers are currently
only available for English, whereas dependency
treebanks and parsers exist for many languages
(Buchholz and Marsi, 2006). Consequently, for
French we use the dependency path representation,
which captures the nodes and edges connecting two
named entities in a dependency parse. The extrac-
tion of these paths is language-independent, and
does not depend on the dependency grammar used,
which means our approach could be adapted to new
languages with minimal work.

4 Entity Semantics

4.1 Entity Linking
As discussed, our approach assumes that semanti-
cally similar predicates will have similar argument
entities. This requires us to be able to identify core-
ferring entities across languages during training. In

the monolingual case, it suffices to represent entities
by the string used in the sentence. This is inadequate
in the multilingual case, as many entities may be re-
ferred to by different names in different languages—
for example the United States translates as les États-
Unis in French and die Vereinigte Staaten in Ger-
man. This problem is worsened by the ambiguity of
named-entity strings—for example, in the context of
a sports article, United States may refer specifically
to a team, rather than a country.

Recent work on multilingual named-entity link-
ing (McNamee et al., 2011) shows how to link
named entities in multiple languages onto English
Wikipedia articles, which can be used as unique
identifiers for entities. This means that we could
gain the information we need from unrestricted
text. However, as we use Wikipedia itself for
our training corpora, we can bootstrap entity infor-
mation directly from its markup. Wikipedia con-
tains cross-language links, e.g. between the United
States articles in different languages, allowing us
to determine the equivalence of entities in differ-
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ent languages. Wikipedia links also help us au-
tomatically disambiguate entities to a given arti-
cle. For unlinked named-entity mentions, we per-
form some simple heuristic co-reference—based on
word-overlap with previously mentioned entities in
the document, whether the mention name is the ti-
tle of a Wikipedia article, or whether the mention
name is a Freebase (Bollacker et al., 2008) alias of
an entity. We emphasise that this does not mean our
approach is only applicable to the Wikipedia corpus.

4.2 Entity Typing

It has become standard in clustering approaches to
distributional semantics to assign types to predicates
before clustering, and only cluster predicates with
the same type (Schoenmackers et al., 2010; Berant
et al., 2011; Yao et al., 2012). This is useful for
resolving ambiguity—for example the phrase born
in may express a place-of-birth or date-of-birth rela-
tion depending on whether its second argument has
a LOC or DAT type. Ambiguous expressions may
translate differently in other languages—for exam-
ple, the two interpretations of was born in translate
in French as est né à and est né en respectively. The
type of a predicate is determined by the type of its
arguments, and predicates with different types are
treated as distinct.

Lewis and Steedman (2013) induce an unsuper-
vised model of entity types using Latent Dirichlet
Allocation (Blei et al., 2003), based on selectional
preferences of verbs and argument-taking nouns.
When applied cross-linguistically, we found this
technique tended to create language-specific topics.
Instead, we exploit the fact that many Wikipedia en-
tities are linked to the Freebase database, which has
a detailed manually-built type-schema. This means
for a Wikipedia entity, we can look up its set of types
in Freebase.2 We use the simplified type-set of 112
types created by Ling and Weld (2012). Where en-
tities have multiple types (for example, Shakespeare
is both an author and a person), we create a separate
relation for each type.

2Named entities not present in Freebase are ignored during
training.

5 Relation Clustering

Predicates are clustered into those which are seman-
tically equivalent, based on their argument-pairs in
a corpus. The initial semantic analysis is run over
the corpora, and for each predicate we build a vector
containing counts for each of its argument-pairs (we
divide these counts by the overall frequency of an
argument-pair in the corpus, so that rarer argument-
pairs are more significant). These vectors are used
to compute similarity between predicates.

First, we run the clustering algorithm on each lan-
guage independently, and then we attempt to find an
alignment between the clusters. Duc et al. (2011)
and Täckström et al. (2012) use similar two-step ap-
proaches. Running the clustering on both languages
simultaneously was found to produce many clusters
only containing predicates from a single language.
This appears to be because even if predicates in two
different languages are truth-conditionally equiva-
lent, the language biases the sample of entity-pairs
found in a corpus. For example, the French verb
écrire may contain more French author/book pairs
than the English equivalent write. This difference
can make the verbs appear to represent different
predicates to the clustering algorithm. Our two-step
approach also means that advances in monolingual
clustering should directly lead to improved cross-
lingual clusters.

5.1 Monolingual Clustering

Following Lewis and Steedman (2013), we use the
Chinese Whispers algorithm (Biemann, 2006) for
monolingual clustering—summarized in Algorithm
1. The algorithm is non-parametric, meaning that
the number of relation clusters is induced from the
data, and highly scalable. We create a separate graph
for each type of predicate in each language—for
example, predicates between types AUTHOR and
BOOK in French (so only predicates with the same
type will be clustered). We create one node per pred-
icate in the graph, and edges represent the distribu-
tional similarity between the predicates.

The distributional similarity between a pair of
predicates is calculated as the cosine-similarity of
their argument pair vectors in the corpus. Many
more sophisticated approaches to determining sim-
ilarity have been proposed (Kotlerman et al., 2010;

684



Weisman et al., 2012), and future work should ex-
plore these. We prune nodes with less than 25 oc-
currences, edges of weight less than 0.05, and a short
list of stop predicates. We find many of our French
dependency paths do not have a clear semantic inter-
pretation, so add the requirement that dependency
paths contain at least one content word, contain at
most 5 edges, and that one of the dependencies con-
nected to the root is subject, object or the French
preposition de.

Data: Set of predicates P
Result: A cluster assignment rp for all p ∈ P
∀p ∈ P : rp←− unique cluster identifier;
while not converged do

randomize order of P
for p ∈ P do

rp←− argmax
r

∑p′ 1r=rp′ sim(p, p′)

end
end

Algorithm 1: Chinese Whispers algorithm, used
for monolingual predicate clustering. sim(p, p′) is
the distributional similarity between p and p′, and
1r=r′ is 1 iff r=r’ and 0 otherwise

5.2 Cross-lingual Cluster Alignment

We use a simple greedy procedure to find an align-
ment between the monolingual clusters in different
languages. First, the entity-pair vectors for each
predicate in a relation cluster are merged. Then,
the cosine similarity between entity-pair vectors for
clusters in different languages is calculated—we
base this only on argument-pairs that occur in both
languages, to reduce the potential bias of some en-
tities being more relevant to one language. Clus-
ters are then greedily aligned, in order of their sim-
ilarity, as in Algorithm 2 (pruning similarities less
than 0.01). This means that clusters are aligned with
their most similar foreign cluster. We only attempt
to align clusters with the same argument types.

6 Cross Lingual Question Answering
Experiments

We evaluate our system on English and French, us-
ing Wikipedia for corpora. The English corpus is
POS-tagged and CCG-parsed with the C&C tools

Data: Sets of monolingual relation clusters RL1
and RL2

Result: An alignment between the monolingual
clusters A

A←− {};
while RL1 6= {}∧RL2 6= {} do

(r1,r2)←− argmax
(r1,r2)∈RL1×RL2

sim(r1,r2);

A←− A∪{(r1,r2)};
RL1←− RL1/{r1};
RL2←− RL2/{r2};

end
Algorithm 2: Cluster alignment algorithm

English French
X invades Y X envahit Y

invasion de Y par X
X orbits Y X est un satellite de Y

X est une lune de Y
X is a skyscraper in Y X est un gratte-ciel de Y
X is a novel by Y X est un roman de Y
X joins Y X adhère à Y
X is a member of Y X entre dans Y

X rejoint Y

Table 1: Some example cross-lingual clusters. Predicates
are given in a human-readable form, and predicate types
are suppressed.

(Clark and Curran, 2004). The French corpus is
tagged with MElt (Denis et al., 2009) and parsed
with MaltParser (Nivre et al., 2007), trained on the
French Treebank (Candito et al., 2010). Wikipedia
markup is filtered using Wikiprep (Gabrilovich and
Markovitch, 2007)—replacing internal links with
the name of their target article, to help entity link-
ing. Some example clusters learnt by our model are
shown in Table 1. We find that the cross-lingual
clusters typically contain more French expressions
than English, possibly due to the differing sizes of
the corpora—adjusting the parameters in Section 5
results in larger clusters, but introduces noise.

6.1 Experimental Setup

We evaluate our system on a cross-lingual question
answering task, similar to monolingual QA evalua-
tions by Poon and Domingos (2009) and Lewis and
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Steedman (2013). A question is asked in language
L, and is answered by the system from a corpus of
language L’. Human annotators are shown the ques-
tion, answer entity, and the sentence that provided
the answer, and are then asked whether the answer
is a reasonable conclusion based on the sentence.
Whilst this task is much easier than full translation,
it is both a practical application for our approach,
and a reasonably direct extrinsic evaluation for our
cross-lingual clusters.

Following Poon and Domingos (2009) and Lewis
and Steedman (2013), the question dataset is auto-
matically generated from the corpus. This approach
has the advantage of evaluating on expressions in
proportion to their corpus frequency, so understand-
ing frequent expressions is more important than rare
ones. We then sample 1000 questions for each lan-
guage, by extracting binary relations matching cer-

tain patterns (X
nsub j← verb

dob j→ Y, X
nsub j← verb

pob j→ Y or

X
nsub j← be

dob j→ noun
pob j→ Y), and removing one of the

arguments. For example, from the sentence Obama
lives in Washington we create the questions X lives
in Washington?, and Obama lives in X?.3 Answers
are judged by fluent bilingual humans, and do not
have to match the entity that originally instantiated
X. Multiple answers can be returned for the same
question.

Our system attempts this task by mapping both
the question and candidate answer sentences (which
will be in a different language to the question) on
to a logical form using the clusters, and determin-
ing whether they express the same relation. This
tests the ability of our approach to cluster expres-
sions into those which are semantically equivalent
between languages. It is possible for entities to have
multiple types (see Section 4.2), and answers are
ranked by the number of types in which the entail-
ment relation is predicted to hold.

3Questions are given in a declarative form, to make the tasks
simpler for the machine translation baseline. We found the
machine translation performed poorly on questions such as
What is Obama the president of?, as inverted word-orders and
long-range dependencies are difficult to handle with re-ordering
models and language models (though are straightforward to
handle for a CCG system (Clark et al., 2004)). We find that
machine translation performs much better on declarative equiv-
alents, such as: Obama is the president of X.

6.2 Baseline

Our baseline makes use of the Moses machine trans-
lation system (Koehn et al., 2007), and is similar
to previous approaches to cross-lingual question an-
swering such as Ahn et al. (2004). We train a Moses
model on the Europarl corpus (Koehn, 2005). First,
the question is translated from language L to L’,
taking the 50-best translations. As the questions
are typically shorter than corpus sentences, this is
substantially easier for the machine-translation than
translating the corpus. These are then parsed, and
patterns are extracted (as in Section 3). We also
manually supply a translation of the named-entity
in the question (based on the Freebase entity name
translation), to avoid penalizing the translation sys-
tem for failing to translate named-entities that have
not been seen in its training data. These patterns
are then used to find answers to the questions. An-
swers are ranked by the score of the best translation
that produced the pattern. Figure 2 illustrates this
pipeline.

The choice of languages is very favourable to
the machine-translation system, English and French
have similar word-order, and there is a large amount
of parallel text available (Koehn and Monz, 2006).
Our system works with any word-order, and does not
require parallel text for training, so we would expect
better performance relative to machine-translation
on other language pairs. Future work will experi-
ment with more diverse languages. The sentences to
be translated are also very short, reducing the poten-
tial for error.

6.3 Results

Results are shown in Table 3, based on a sample
of 100 answers from the output of each of the sys-
tems. Unsurprisingly, the machine-translation has
high accuracy on this task, given the choice of lan-
guages and the short queries. Pleasingly, our clusters
achieve similar accuracy, with much greater recall,
with no usage of parallel text.

Examining the results, we see that the distribu-
tion of answers is highly skewed for all systems,
with many answers to a smaller number of ques-
tions (multiple answers can be returned to the same
question). This is due to the Zipfian nature of lan-
guage, the difficulty of the task (which is far from
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Question Answer
X dies in Moscow Sergueı̈ Guerassimov meurt d’une crise cardiaque le mardi

26 novembre 1985 à Moscou
Germany invades X . . . depuis l’invasion de la Pologne par l’Allemagne et l’URSS
X wins the FA Cup Portsmouth FC remporte la FA Challenge Cup en s’imposant en

finale face à Wolverhampton Wanderers FC
X is a band from Finland Yearning est un groupe Finlande de doom metal atmosphérique
X vit en France Dewi Sukarno . . . has lived in different countries including

Switzerland, France and the United States
X bat Kurt Angle Anderson defeated Kurt Angle and Abyss to advance to the finals
X est une ville de Kirghizistan Il’chibay is a village in the Issyk Kul Province of Kyrgyzstan

Table 2: Example questions correctly answered using our clusters, with the answer entity highlighted in bold.

Obama lives in X

Obama habite à X

Obama

subj
��
habite

prep
��
à

pobj
��

X

habitesub j,à(barack obama, X)

Machine Translation

Syntactic Parse

Semantic Analysis

Figure 2: Pipeline used by baseline system for answering
French questions. The pattern extracted from the trans-
lated sentence is used to search for answers in an English
corpus.

English→ French Answers Correct
Baseline 269 86%
Clusters (best 270) 270 100%
Clusters (all) 1032 72%
French→ English Answers Correct
Baseline 274 85%
Clusters (all) 401 93%

Table 3: Results on wide-coverage Question Answer-
ing task. Best-N results are shown to illustrate the ac-
curacy of our cluster-based system at the same rank as
the baseline. It is not possible to give a recall figure, as
the total number of correct answers in the corpus is un-
known. English→ French results are from the full French
Wikipedia corpus, whereas French→ English results are
from a 10% sample.

solved in the monolingual case), and the possibil-
ity that questions may have no answers in the for-
eign corpus. This is particuarly true for the cluster-
ing approach—although the clustering system finds
more answers with the English corpus, the baseline
system answers slightly more unique questions (57
vs 66). The 1032 answers found by the clusters
in the French corpus came from just 56 questions
(compared to 29 unique questions answered by the
baseline). This suggests that the translations found
by the clustering can be more useful than those of
Moses on this task—for example, it may find an
equivalence between a rare French term and a com-
mon related English term, where machine transla-
tion may only find a more literal translation.

Despite this, we see the clusters have learnt to
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paraphrase a variety of relations between languages
with high accuracy, suggesting that there is much
potential for the use of unsupervised clusters in
cross-lingual semantic applications. Some examples
answers are given in Table 2. Most of the errors are
caused by a small number of questions.

7 Translation Reranking Experiments

Ultimately, we would like to be able to translate
using semantic parsing with cross-lingual clusters.
As a step towards this, we investigated whether we
could rerank the output of a machine translation sys-
tem, on the basis of whether the semantic parse of
the source sentence is consistent with that of candi-
date translations.

We sample French sentences where we can pro-
duce a semantic parse (i.e. we can extract a predicate
between named entities that maps to a cross-lingual
cluster). These sentences are translated to English
using Moses, taking the 50-best list, and semantic
parses are produced for each of these. If the seman-
tic parse for the 1-best translation does not match the
source semantic parse, we take the parse from the
50-best list that most closely matches it—otherwise
we discard the sentence from our evaluation, as our
semantics agrees with the machine-translation.

To ensure that the evaluation focuses on the clus-
ters, we try to exclude several other factors that
might affect the results. The coverage of our CCG
parsing and semantic analysis drops significantly on
noisy translated sentences, and potentially acts as a
language model by failing to produce any semantic
parse on ungrammatical output sentences. We there-
fore only consider sentences where we can produce
a semantic parse for the 1-best machine translation
output. We also try to avoid penalizing the machine-
translation system for failing to translate named en-
tities correctly, so we do not attempt to rerank sen-
tences where the entities from the source sentence
are not present in the 1-best translation.

Human annotators were shown the source sen-
tence, the 1-best translation, and the translation cho-
sen by the reranker (the translations were shown in
a random order). To focus the evaluation on the se-
mantic relations we are modelling, we ask the anno-
tators which sentence best preserves the meaning be-
tween the named entities that have different relations

Percentage of
translations preferred

1-best Moses translation 5%
Cluster-based Reranker 39%
No preference 56%

Table 5: Human preference judgements for the transla-
tion reranking experiment, based on a sample of 87 sen-
tences. Results show the percentage of sentences for
which the annotators preferred the original translation,
the reranked translation, or neither. As discussed in the
text, results where annotators had no preference were typ-
ically due to syntactic parse errors.

in the semantic parse. This avoids our system being
penalized for choosing a translation that is worse in
aspects other than the relations it is modelling. An
example is shown in Table 4. The data was anno-
tated jointly by two fluent bilingual speakers, who
reported high agreement on this task.

Results are shown in Table 5, and are highly en-
couraging, with the original Moses output being pre-
ferred to the reranked translation in only 5% of cases
where our model makes a positive prediction.

Inspecting the results, we see that many of the
cases where the annotators had no preference were
caused by syntactic parse errors. For example, if
the 1-best translation is correct, but a prepositional
phrase is incorrectly attached, it will appear to have
an incorrect semantics. A similar translation in the
50-best list may be correctly parsed, and conse-
quently selected by our reranker. However, a human
will have no preference between these translations.
Incorporating K-Best parsing into our pipeline may
help mitigate against such cases.

This preliminary experiment suggests that there is
potential for future improvements in machine trans-
lation using cross-lingual distributional semantics.
The system only attempts to rerank a very small
proportion of sentences, but we believe the cover-
age could be greatly improved by including relations
between common nouns (rather than just named-
entities)—future work should explore this.

8 Related Work

Our work builds on recent progress in monolingual
distributional semantics (Poon and Domingos, 2009;
Yao et al., 2011; Lewis and Steedman, 2013) by
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Source Le Princess Elizabeth arrive à Dunkerque le 3 août 1999
Machine translation 1-best Le Princess Elizabeth is to manage to Dunkirk on 3 August 1999
Reranked translation The Princess Elizabeth arrives at Dunkirk on 3 August 1999

Table 4: Example sentence that is reranked by our clusters. Human evaluators were asked which translation best
preserved the meaning between Princess Elizabeth and Dunkirk.

clustering typed predicates into those which are se-
mantically equivalent. We also show how to boot-
strap semantic information about entities from the
Wikipedia markup, and believe this makes it an in-
teresting corpus for future work on monolingual dis-
tributional semantics.

Cross-language Latent Relational Analysis (Duc
et al., 2011) is perhaps the most similar previous
work to ours, which moves the work of Turney
(2005) into a multilingual setting. Duc et al. (2011)
aim to compute, for example, that the ‘latent rela-
tion’ between (Obama, US) in an English corpus is
similar to that between (Cameron, UK) in a foreign
corpus. This is solved by finding all textual patterns
between the two entity-pairs, and computing their
overall similarity. Like us, they compute similarity
between expressions in different languages based on
named-entity arguments and clustering (unlike us,
they also rely on machine translation for comput-
ing similarity). A key difference is that their sys-
tem aims to understand the overall relation between
an entity-pair based on many observations, whereas
our approach attempts to understand each sentence
individually (as is required for tasks such as transla-
tion).

Various recent papers have explored the rela-
tionship between translation and monolingual para-
phrases —for example Bannard and Callison-Burch
(2005) create paraphrases by pivoting through a for-
eign translation, and Callison-Burch et al. (2006)
show that including monolingual paraphrases im-
proves the quality of translation by reducing spar-
sity. The success of these approaches depends on the
many-to-many relationship between equivalent ex-
pressions in different languages. Our approach aims
to model this relationship explicitly by clustering all
equivalent paraphrases in different languages.

Current state-of-the-art machine translation sys-
tems circumvent the problem of full semantic in-
terpretation, by using phrase-based models learnt

from large parallel corpora (Brown et al., 1993). Al-
though this approach has been very successful, it has
significant limitations—for example, when translat-
ing between languages with very different word-
orders (Birch et al., 2009), or with little parallel text.

Semantic machine translation aims to map the
source language to an interlingual semantic rep-
resentation, and then generate the target language
sentence from this. Jones et al. (2012) show how
this can be done on a small dataset using hyper-
edge replacement grammars. A major obstacle to
this is designing a suitable meaning representation,
which involves choosing a set of primitive concepts
which are abstract enough to be capable of express-
ing meaning in any language (Dorr et al., 2004).
A recent proposal for this is the Abstract Meaning
Representation (Banarescu et al., 2013), which uses
English verbs as a set of predicates. This is a less ab-
stract form of semantic interpretation than our pro-
posal, as semantically equivalent paraphrases may
be given a different representation. Such an ap-
proach also relies on annotating large amounts of
text with the semantic representation—whereas our
unsupervised approach offers a way to build such an
interlingua using only a method for extracting pred-
icates from sentences.

Whilst almost all recent work on machine-
translation has relied on parallel text, there have
been several interesting approaches that do not.
Rapp (1999) learns to translate words based on small
seed bilingual dictionary. Klementiev et al. (2012a)
exploit a variety of interesting indirect sources of
information to learn a lexicon—for example as-
suming that equivalent Wikipedia articles in differ-
ent languages will use semantically similar words.
The Polylingual Topic Model (Mimno et al., 2009)
makes use of similar intuitions. Whilst we exploit
equivalent Wikipedia articles for entity linking, we
do not require aligned articles. Incorporating such
techniques into our model would be a natural next
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step, allowing us to learn a more complete lexicon.
To our knowledge, ours is the first approach to learn
to translate semantic relations, rather than words and
phrases.

Several other recent papers have learnt cross-
lingual word clusters, and used these to improve
cross-lingual tasks such as document-classification
(Klementiev et al., 2012b), parsing (Täckström et
al., 2012) and semantic role labelling (Kozhevnikov
and Titov, 2013) in resource-poor languages. Cross-
lingual word clusters are learnt by aligning mono-
lingual clusters on the basis of parallel text—in
language-pairs where parallel text is available, this
offers an interesting complement to our method of
clustering based on named entities.

9 Conclusions and Future Work

We have demonstated that our previous work on
monolingual distributional semantics can simply be
extended to learn a language-independent semantics
of relations from unlabelled text, and that this se-
mantics is powerful enough to aid applications such
as question answering and translation reranking.

There is much potential for future extensions to
address the limitations of the process described here.
As we use a flat clustering of relations, we are
only able to model synonyms and not hypernyms.
More sophisticated clustering techniques, such as
those used by Berant et al. (2011), seem to offer
a way to address this. Our system clusters rela-
tions with similar named-entity arguments, but this
means it does not cluster relations whose arguments
are rarely named entities. However, using cross-
lingual clusters of common nouns, such as those
from Täckström et al. (2012), it should be possible to
cluster relations that take semantically similar com-
mon noun arguments. Embedding cluster-identifiers
in a logical form allows us to also model logical op-
erators, such as negation and quantifiers, which may
help to improve the translation of these. It would
also be interesting to experiment with more diverse
languages types.
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Abstract

In this paper we propose a two-stage method
to acquire contradiction relations between
typed lexico-syntactic patterns such as Xdrug

prevents Ydisease and Ydisease caused by
Xdrug . In the first stage, we train an SVM
classifier to detect contradiction pattern pairs
in a large web archive by exploiting the exci-
tation polarity (Hashimoto et al., 2012) of the
patterns. In the second stage, we enlarge the
first stage classifier’s training data with new
contradiction pairs obtained by combining the
output of the first stage’s classifier and that of
an entailment classifier. We acquired this way
750,000 typed Japanese contradiction pattern
pairs with an estimated precision of 80%. We
plan to release this resource to the NLP com-
munity.

1 Introduction

The ability to detect contradictory information in
text has many practical applications. Among those,
Murakami et al. (2009) pointed out that a contra-
diction recognition system can detect conflicts and
anomalies in large bodies of texts and flag them to
help users identify unreliable information. For ex-
ample, many Japanese web pages claim that agari-
cus prevents cancer, where agaricus is a species of
mushroom found in a variety of commercial prod-
ucts. Although this has been accepted by many
Japanese people, by Googling keywords ”agaricus”,
”promotes” and ”cancer”, we can find pages claim-
ing that ”agaricus promotes cancer”, some of which
point to a study authorized by the Japanese Min-
istry of Health, Labour and Welfare1 reporting that

1 http://www.mhlw.go.jp/topics/bukyoku/iyaku/syoku-
anzen/qa/060213-1.html

a commercial product containing agaricus promoted
cancer. Obviously, the existence of these pages casts
serious doubt on the ability of agaricus to prevent
cancer and encourages readers to dig more about this
subject.

The above example suggests that recognizing
contradictory information can guide users to a true
fact. Likewise, we believe that contradiction recog-
nition is also useful when dealing with non-factual
information that occupy most of our daily lives. For
instance, there is a big controversy recently whether
Japan should join an economic partnership agree-
ment called the Trans Pacific Partnership (TPP), and
quite serious but contradictory claims are plentiful in
the mass media and on the web, e.g., TPP will wipe
out Japan’s agricultural businesses and TPP will
strengthen Japan’s agricultural businesses. Neither
of these are facts; they are predictions that can only
be realized or disputed after the underlying decision-
making is done: joining or refusing the TPP.

Furthermore, after reading documents including
contradictory predictions, one should notice that
each of them is supported by a convincing the-
ory that has no obvious defect, e.g., “Exports of
Japan’s agricultural products will increase thanks to
the TPP” or “A large amount of low-price agricul-
tural products will be imported to Japan due to the
TPP”. Even if one of these predictions may just hap-
pen to be true because of unexpected reasons such as
minor fluctuations in the Japanese yen, we must sur-
vey such theories that support contradictory predic-
tions, conduct balanced decision-making, and pre-
pare counter measures for the expected problems af-
ter examining multiple viewpoints. Contradiction
recognition should be useful to select documents to
be surveyed.
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Figure 1: Method workflow

We have developed a method for recog-
nizing pairs of contradictory binary patterns
such as 〈“X promotes Y”, “X prevents Y”〉 and
〈“X will wipe out Y”, “X will strengthen Y”〉. To
solve the problem described above, we can easily
develop a system that can find contradictory text
fragments from the web like “agaricus promotes
cancer” and “agaricus prevents cancer” from the
discovered contradictory pattern pairs.

Our method is a two-stage procedure with three
supervised classifiers (Fig. 1). In the first stage,
we build a classifier BASE to recognize contradic-
tions between binary patterns, and a classifier ENT
to recognize entailment. In the second stage, we
combine the contradiction pairs recognized by BASE
and the entailment pairs recognized by ENT to ex-
pand BASE’s training data and train a new contra-
diction classifier, EXP. This expansion using en-
tailment is one key idea of this work: we acquired
750,000 contradiction pairs with 80% precision us-
ing the expanded training data, more than doubling
the 285,000 pairs acquired at the same precision
level without expansion. We also demonstrate that
this result is not trivial by showing that our method
outperforms an alternative one based on Integer Lin-
ear Programming inspired by the successful entail-
ment recognition method of Berant et al. (2011).

As another technical contribution of this work, we
exploit the recently proposed semantic polarity of
excitation (Hashimoto et al., 2012) to recognize con-
tradictions between binary patterns. Hashimoto et
al. (2012) previously showed that excitation polari-
ties are useful to recognize contradictions between
phrases that consist of a noun and a predicate, such
as “promote cancer” and “prevent cancer”. While

it is trivial to extend this framework to contradic-
tions between unary patterns such as “promote X”
and “prevent X” by replacing the common nouns
in each pair with a variable, the information rep-
resented in unary patterns is often vague, and it is
unlikely that a contradiction between unary patterns
directly leads to the discovery of unreliable infor-
mation to be flagged or to a meaningful survey of
complex problems. As exemplified by the agaricus
and TPP examples, contradictions between binary
patterns that include two variables such as “X pro-
motes Y” or “X will wipe out Y” are more useful
than those between unary patterns. We also show
that it is not trivial to recognize contradictions be-
tween binary patterns using contradictions between
unary patterns.

Most works dealing with contradiction recogni-
tion up till now (Harabagiu et al., 2006; Bobrow
et al., 2007; Kawahara et al., 2008; Kawahara et
al., 2010; Ohki et al., 2011) focus on recognizing
contradictions between full sentences or documents,
not text fragments that match our relatively short
patterns (survey in Section 5). We expect that the
contradictory pattern pairs we acquired can be used
as building blocks in such full-fledged contradiction
recognition for full sentences or documents, simi-
larly to antonym pairs in Harabagiu et al. (2006).

Also, we should emphasize that our method
focuses on the most challenging part of contra-
diction recognition according to the classification
of De Marneffe et al. (2008). Since we discard
patterns with negations, an evident source of contra-
dictions like 〈“X causes Y”, “X does not cause Y”〉,
most of our output are non-trivial contradic-
tions related to high-level semantic phenomena,
e.g., contradiction pairs related to antonyms
like 〈“Xが Yを上げる”, “Xが Yを下げる”〉
(〈“X increases Y”, “X decreases Y”〉), lexical contra-
dictions like 〈“Xが Yに勝つ”, “Yが Xに勝つ”〉
(〈“X wins against Y”, “Y wins against X”〉), or
contradictions due to common-sense knowledge
like 〈“Xが Yを安心させる”, “Xが Yを裏切る”〉
(〈“X reassures Y”, “X betrays Y”〉). We believe
acquiring such contradictions in a large scale is a
valuable contribution.

The following is the outline of this paper. Sec-
tion 2 details our target and our proposed method.
Evaluation results are discussed in Section 3. Sec-
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Figure 2: Detailed data flow

tion 4 details our features set, and Section 5 related
work. Section 6 provides a conclusion.

2 Proposed method

As showed in Figure 1, our method consists of
three supervised classifiers. Classifiers BASE and
EXP recognize contradiction relations between bi-
nary patterns, and ENT recognizes entailment rela-
tions between binary patterns. The contradiction
pairs recognized by BASE and the entailment pairs
recognized by ENT are combined to generate new
contradiction pairs, part of which are then added to
BASE training data to train the EXP classifier. Our
final output is the set of all binary pattern pairs re-
garded as contradictions by EXP. Since the depen-
dencies between these three classifiers, their distinct
sets of training data, and the two data sets to be clas-
sified (we describe those in the two sections below)
is a bit complex, we show a complete description of
the whole process in Figure 2.

The key idea is in the scheme that expands the
training data. Logically speaking, patterns p and r
are contradictory if there exists a pattern q such that
p entails q and q contradicts r. For example, since
“X causes Y” entails “X promotes Y” and “X pro-
motes Y” contradicts “X prevents Y”, then “X causes
Y” contradicts “X prevents Y”. Hence, by combin-
ing entailment and contradiction pairs, we can ob-
tain more contradiction pairs.

Following this property of contradiction relations,
we collect a set of pattern pairs {〈p, r〉} for which

there exists a pattern q such that ENT recognizes that
p entails q and BASE recognizes that q contradicts r.
Then we rank these pairs based on a novel scoring
function called Contradiction Derivation Precision
(CDP) and expand BASE training data by adding to
it the top-ranked pairs according to CDP in order to
train EXP. This ranking scheme selects highly accu-
rate contradiction pairs and prevents errors caused
by BASE and ENT from being propagated to EXP.

In the following, after defining the patterns for
which we acquire contradiction relations, we de-
scribe BASE, EXP, ENT, and our expansion scheme.

2.1 Patterns

In this work, a binary pattern is a word sequence
on the path of dependency relations connecting two
nouns in a syntactic dependency tree, like “X causes
Y”, and we say a noun pair co-occurs with a pattern
if the two nouns are connected by this pattern in the
dependency tree of a sentence in the corpus.

We focus on typed binary patterns, which place
semantic class restrictions on the noun pairs they
co-occur with, e.g., “Yorganization is in Xlocation”.
Subscripts organization and location indicate the se-
mantic classes of the X and Y slots. Since typed
patterns can distinguish between multiple senses
of ambiguous patterns, they greatly reduce errors
due to pattern ambiguity (De Saeger et al., 2009;
Schoenmackers et al., 2010; Berant et al., 2011).
We automatically induced semantic classes from our
corpus using the EM-based noun clustering algo-
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rithm presented in Kazama and Torisawa (2008),
and clustered one million nouns into 500 rela-
tively clean semantic classes, including for example
classes of diseases and of chemical substances.

The binary patterns and their co-occurring noun
pairs were extracted from our corpus of 600 mil-
lion Japanese web pages dependency parsed with
KNP (Kurohashi and Nagao, 1994). We restricted
our patterns to the most frequent 3.9 million pat-
terns of the form “X-[case particle] Y-[case parti-
cle] predicate” such as “X-ga Y-ni aru” (“X is in Y”)
which do not contain any negation, number, symbol
or punctuation character. Based on our observation
that patterns in meaningful contradiction and entail-
ment pairs tend to share many co-occurring noun
pairs, we used as input to our classifiers the set Pall

of 792 million pattern pairs for which both patterns
share three co-occurring noun pairs.

2.2 BASE: First stage Classifier for
Contradiction

Below, we detail BASE: its training data and input
data to be classified, and some experimental results.

Our first stage classifier for contradictions, BASE,
is an SVM that uses commonsensical surface and
lexical resources based features, such as n-grams ex-
tracted from patterns, which will be detailed in Sec-
tion 4. An important point to be stressed here is
that we restricted the pattern pairs to be classified
by BASE by exploiting their excitation polarity, a
semantic orientation proposed by Hashimoto et al.
(2012). Excitation characterizes unary patterns as
excitatory, inhibitory, or neutral. Excitatory unary
patterns, such as “cause X” or “increase X”, entail
that the function, effect, purpose, or role of their ar-
gument’s referent is activated or enhanced, and in-
hibitory unary patterns, such as “prevent X” or “X
disappears”, entail that the function, effect, purpose,
or role of their argument’s referent is deactivated or
suppressed. Neutral unary patterns like “close to X”
are neither excitatory nor inhibitory.

We exploited excitation to restrict the input of
BASE. Based on the result of Hashimoto et al.
(2012) showing that two unary patterns with op-
posite polarity have a higher chance to be a con-
tradiction, we extracted from set Pall the set Popp

of binary pattern pairs that contain unary patterns
with opposite excitation polarities as sub-patterns.

〈“Y cause X”, “Y prevent X”〉 is an example of such
a pair since the unary sub-patterns “cause X” and
“prevent X” are respectively excitatory and in-
hibitory. We used here 6,470 excitation unary pat-
terns hand-labeled as either excitatory (4,882 pat-
terns) or inhibitory (1,588 patterns). Set Popp con-
tains 8 million pattern pairs with roughly 38% true
contradiction pairs, and is the input to BASE. We
will show in experiments at the end of this section
that this restriction is necessary to obtain good per-
formance for BASE. We also tried to add the excita-
tion polarities in BASE’s feature set and classify Pall,
but the performance was worse.

Training Data Another key feature of BASE is
that it is distantly supervised. We did not use
training samples that are directly manually anno-
tated. Instead we automatically generated training
data from a smaller set of (non-)contradiction unary
pattern pairs. We first prepared a set of roughly
800 unary pattern pairs hand-labeled by three human
annotators as contradictions (238 pairs) and non-
contradictions (558 pairs) using majority vote. The
inter-annotator agreement was 0.78 (Fleiss’kappa).
Inspired by Hashimoto et al. (2012), we selected
these unary pattern pairs among pairs with high dis-
tributional similarity, with and without restricting
them to having opposite excitation polarity, such as
to get a fair distribution of contradictions and non-
contradictions.

We then extracted from set Pall all 256,000 pat-
tern pairs containing a contradictory unary pattern
pair, and all 5.2 million pattern pairs containing a
non-contradictory unary pattern pair, which we re-
spectively used as positive and negative training data
(estimated 79% and 73% accuracy from 200 hand-
labeled samples). Table 1 shows some examples.

The optimal composition of training data for
BASE was determined according to preliminary ex-
periments using our development set (1,000 manu-
ally labelled samples. See Section 3.1). We trained
20 different classifiers using from 6,250 to 50,000
positive samples (4 sets) and from 12,500 to 200,000
negative samples (5 sets), doubling the amounts in
each step, for a total of 20 configurations. We could
not try a larger training data due to long training time
but we do not expect it to be a problem because the
worst performance was observed with large train-
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Table 1: Examples of training samples for BASE obtained from unary pattern pairs
Binary pattern pair (the unary pattern pair that extracted it is underlined) Unary pattern pair label

Y も X が悪い (X is bad in Y too) - Y でも X が良い (X is good even in Y) contradiction
Y も X に向かう (Y too heads toward X) - Y も X を出る (Y too comes out of X) contradiction

X にY を 加える (add Y to X) - X をY に 入れる (insert X into Y) non-contradiction
Y も X に来る (Y too comes to X) - Y とは X に行く (go to X with Y) non-contradiction

Figure 3: Effect of the restriction using excitation

ing data (25,000 positives and 200,000 negatives;
the difference from the optimal setting was 2.3% in
average precision). The optimal training data set,
Trainbase, consists of 12,500 positives and 100,000
negatives samples as described above and is the one
we use in our experiments below and in Section 3.

Since BASE input for classification data is Popp

we also tried sampling Trainbase from Popp. We
obtained 56.27% average precision for our classi-
fier BASE, and 52.99% when restricting the source
of training data to pairs in Popp. We believe that the
difference lies in the size of the sets from which we
sampled our training data: while there are 5.46 mil-
lion binary pattern pairs in Pall with a hand-labeled
unary pattern pair in Pall, there are only 237,000
pairs in Popp. We believe this much smaller sam-
ple source lead to a lower performance because it
included much less variations of the patterns.

To train BASE and other classifiers mentioned in
this paper, we used the SVM tool TinySVM2 with
a polynomial kernel of degree 2, the setting which
showed the best performance during our preliminary
experiments.

Effect of Excitation Polarities We also empiri-
cally examined the effect of the restriction on the
patterns using excitation polarities. We used our test
set (2,000 manually annotated samples described in

2 http://chasen.org/˜taku/software/TinySVM/

Section 3.1) and 250 manually annotated samples
(majority vote from 3 annotators) from top ranked
pairs of Pall to draw precision curves for BASE over
the top 2 million binary pairs from both Popp and
Pall. In each case we assumed that pairs were dis-
tributed uniformly (i.e., with a constant interval) in
the ranked list of pairs of Popp and Pall, and com-
puted precision accordingly. Since the pairs sets
are reasonably large and were sampled randomly we
thought this was a reasonable hypothesis. The pre-
cision over Popp is higher than that over Pall with
a large margin, suggesting that the restriction using
excitation polarities is beneficial.

2.3 ENT: First stage Classifier for Entailment

ENT is an SVM classifier for entailment trained us-
ing 27,500 hand-annotated binary pattern pairs (set
Trainent, 45% of positive entailment pairs) created
for some previous work (Kloetzer et al., 2013). It es-
sentially uses the same feature set as that for BASE
with the addition of several distributional similar-
ity measures (see Section 4 below for more details).
This classifier is given all pairs of Pall as input and
scores each of them. For this study, we considered
the 44.5 million pattern pairs with a positive SVM
score as entailment pairs. Manual annotation of 200
random samples revealed that the precision of these
pairs was 63% and that the top 7.1 million pairs had
80% precision (result interpolated from the top 16%
of the annotated samples).

2.4 Second stage: Training Data Expansion
and Classifier EXP

Below, we show how we combine BASE’s top output
(hereafter C) and ENT’s top output (hereafter E) in
the second stage of our method to expand Trainbase

and train a new classifier, EXP.
The training data expansion process is based on

the following logical constraint: if a pattern p entails
a pattern q and pattern q contradicts a third pattern r,
then p must contradict r. For example, because “X
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Table 2: Examples of triplets 〈p, q,r〉 where p entails q, q contradicts r, and hence p contradicts r

Pattern p Pattern q Pattern r X/Y examples SV M Score(p, r) CDP (p, r)
Y から X が消える Y から X が無くなる Y が X に満ちる 怒り/眼 0.3 0.98X disappears from Y X vanishes from Y Y is full of X anger/eye
Y に X を停止する Y に X を終える Y から X を始める ４月/活動 -0.3 0.61stop X in Y finish X in Y start X in Y April/activity

X は Y を示す X が Y を持つ X は Y を失う チーム/自信 0.07 0.45X shows Y X have Y X loses Y team/confidence

Algorithm 1 Training data expansion: C is the top 5%
output of BASE, E is the top output of ENT (score > 0)
1: procedure EXPAND(C, E)
2: Compute the set of expanded pairs C′ = {〈p, r〉 |

∃q : 〈p, q〉∈ E,〈q, r〉∈ C}.
3: Rank the pairs in C′ using CDP.
4: Add the N top-ranked pairs in C′ \ C as new positive

samples to Trainbase.
5: Remove incoherent negative training samples using

negative cleaning.
6: end procedure

causes Y” (pattern p) entails “X promotes Y” (pattern
q) and the latter contradicts “X prevents Y” (pattern
r), we conclude that “X causes Y” (p) contradicts
“X prevents Y” (r). We call the former contradic-
tion 〈q, r〉 a source contradiction pair, and the later
pair 〈p, r〉 an expanded contradiction pair. Based on
this idea, we combine C and E to aggressively ex-
pand Trainbase. This process is described in Al-
gorithm 1, and Table 2 shows examples of triples
〈p, q,r〉 obtained in our experiments.

Expanding pairs from C and E compounds the er-
rors made by BASE and ENT, hence it is crucial to
select a highly precise subset of the expanded pairs.
Taking the top pairs according to their SVM score
would achieve this, but since BASE already handles
correctly such pairs, they should not help much as
new training data. We therefore propose a new scor-
ing function for selecting highly precise expanded
pairs: Contradiction Derivation Precision (CDP ).

CDP was designed according to the following
assumption: a source contradiction pair that derives
correct expanded pairs with a high precision should
be reliable. Probably, all the expanded pairs derived
from such a reliable source pair will be correct and
should be included in the new training data .

In our formulation of CDP , correctness of an ex-
panded pair is judged according to the pair’s SVM
score using BASE. In other words, we regard an

expanded pair that has an SVM score above some
threshold α as a true contradiction. A source contra-
diction pair that derives true contradiction pairs with
a high precision is regarded as a reliable source con-
tradiction pair. CDP , which is defined over a ex-
panded pairs, is the maximum precision among that
of the source contradiction pairs that derive a given
expanded pair.

We first define CDPsub(q, r) over a source con-
tradiction pair 〈q, r〉 as the ratio of expanded pairs
obtained from 〈q, r〉 whose SVM score is above
threshold α. This ratio corresponds to the precision
of the expanded pairs derived from the source con-
tradiction pair 〈q, r〉.

CDPsub(q, r) =
|{〈p, r〉 ∈ Ex(q, r) | Sc(p, r) > α}|

|Ex(q, r)|

Here Ex(q, r) is the set of expanded pairs derived
from a source pair 〈q, r〉, and Sc is the SVM score
given by BASE. In our experiments, we set α = 0.46
such that pattern pairs for which BASE gives a score
over α corresponds to the top 5% of BASE’s output.
CDP (p, r) over an expanded pair is defined as fol-
lows, where Source(p, r) is the set of source con-
tradiction pairs that were derived into the expanded
pair 〈p, r〉.

CDP (p, r) = max〈q,r〉∈Source(p,r)CDPsub(q, r)

We then expand the top 5% contradictions of
BASE’s output (set C) and pattern pairs scored pos-
itively by ENT (set E), rank all expanded pairs not
already in C according to CDP, and add the top N
pairs with the highest CDP values as positives to
Trainbase to train EXP. The value of N shall be
determined empirically in later experiments using
a development set. Note that, since CDP (p, r) is
independent of 〈p, r〉’s SVM score, even pairs that
were assigned a negative score by BASE can become
highly ranked by CDP (second triplet in Table 2)
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and be added to train EXP, hence we expect EXP to
learn something new from these pairs.

Finally, after the addition of expanded pairs, we
remove incoherent training samples. We propose to
remove from the negative training samples of EXP
any pattern pair that may conflict with the newly
added positives; we call this step negative cleaning.
Intuitively, since the content word pairs in a pattern
pair should present some of the strongest evidence
for determining the patterns (non-)contradiction sta-
tus, we remove any negative sample that shares a
content word pair with one of the added expanded
pairs. The final training data for EXP, set Trainexp,
consists of the following: (1) positive samples from
Trainbase, (2) (positive) expanded pairs, and (3)
negative training samples from Trainbase, cleaned
using negative cleaning. We confirmed in our exper-
iments that negative cleaning was necessary to train
a strong EXP classifier (details omitted for reason of
space).

After training EXP with Trainexp, we classify
Popp with EXP to produce the final output of the
whole method. Note that while this expansion pro-
cess can be re-iterated with EXP’s output, our exper-
iments failed to show any improvement with subse-
quent iterations.

3 Evaluation

This section presents our experimental results. We
describe first how we constructed test and develop-
ment data, and then report comparison results be-
tween our method and others including BASE and an
Integer Linear Programming-based (ILP) method.

3.1 Development and Test Data

We asked three human annotators to label 3,000 bi-
nary pattern pairs randomly sampled from Popp as
contradiction or non-contradiction to be used as de-
velopment (1,000 pairs) and test (2,000 pairs) sets.
We considered a pattern pair as a true contradic-
tion relation if at least two out of the three annota-
tors marked it as positive. The inter-rater agreement
score (Fleiss Kappa) was 0.523, indicating moderate
agreement (Landis and Koch, 1977). As a definition
of contradiction, we used the notion of incompati-
bility (i.e., two statements are extremely unlikely to
be simultaneously true) proposed by De Marneffe et

Figure 4: Precision of all the compared methods

al. (2008). We then say binary patterns such as “X
causes Y” and “X prevents Y” are contradictory if
the above definition holds for any noun pair that can
instantiate the patterns’ variables in the provided se-
mantic class pair.

Because our semantic classes are obtained by au-
tomatic clustering and have no meaningful labels,
we followed Szpektor et al. (2007) and provided the
annotators with three random noun pairs that co-
occur with the patterns as a proxy for the class pair.
The annotators marked a given pattern pair as posi-
tive if the contradiction relation between the patterns
held for all three noun pairs presented.

3.2 Experimental Results
Here we show how our proposed method outper-
forms baseline methods. We compare the following
four methods:

• PROPOSED: our proposed method. N , the
number of newly added positive training sam-
ples during the training data expansion pro-
cess, was set to 6,000 according to preliminary
experiments using the development set. We
tried 50 different values of N from 1,000 up to
50,000, adding 1,000 each time, and chose the
N value giving the highest average precision
against our development set (1,000 samples).

• BASE: our first stage classifier.

• PROP-SCORE: same as PROPOSED except for
the use of BASE’s SVM score instead of CDP .
N was set to 30,000 in the same way we set N
for PROPOSED.

• HAS: an adaptation of the contradiction ex-
traction method presented in Hashimoto et al.
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(2012). For a binary pattern pair we first
extracted its unary pattern pair with opposite
polarity (or one at random in case there are
two) and scored it based on our implementa-
tion of Hashimoto et al. (2012); the score is
based on the distributional similarity between
unary patterns and an excitation score obtained
using a minimally supervised method based on
the spin model. We then scored the binary pat-
tern pair by the score of this unary pattern pair.

We ranked the pattern pairs of our test set (2,000
random pairs from set Popp) based on the score pro-
duced by each method. For each tested method we
assumed that pairs in the test set were distributed
uniformly like explained in Section 2.2. The pre-
cision curves we obtained are shown in Figure 4.

PROPOSED clearly outperformed BASE and ac-
quired around 750,000 contradiction pattern pairs
with an estimated precision of 80%, out of which
some examples are shown in Table 3. These pairs
cover 26,941 content word pairs and reduce to
272,164 untyped pairs, showing that PROPOSED
does not just acquire a handful of contradictions in
many different class pairs. Also, when matching
these pairs against an antonyms database (extracted
from the dictionary of the morphical analyzer JU-
MAN) we found that only 100,886 of these pattern
pairs contain an antonym pair, which means that
most of the extracted pairs’ contradictions are due
to more complex phenomena than simple antonymy.

With the same precision, BASE and PROP-SCORE
acquired only 285,000 pairs (covering 11,794 con-
tent word pairs) and 636,000 pairs respectively. This
implies that our two-stage method can more than
double the number of highly precise contradiction
pairs we acquire as well as increasing their vari-
ety, and that ranking expanded pairs using our scor-
ing function CDP is better than with SVM score,
though even PROP-SCORE performs better than
BASE in our setting. Finally, the poor performance
of HAS suggests that extending the Hashimoto et
al.’s framework to recognition of binary patterns is
not a trivial task.

As to why adding only 6,000 top pairs ranked
by CDP performs better than adding 30,000 pairs
ranked by SVM score, the pattern pairs added in
PROP-SCORE had high SVM scores given by BASE
and as such are already handled nicely by BASE.

Table 3: Examples of pairs acquired by PROPOSED: con-
tradiction (label +) and non-contradiction (label -)

Lab. Pattern pairs (with rank) X/Y example
Y で X が終わる - Y より X を開始する 販売/昨日

+ X finished Y - X started from Y sale/yesterday
Rank 228,039

X が Y に勝つ - Y が X に勝つ 日本/ベトナム
+ X wins against Y - Y wins against X Japan/Vietnam

Rank: 258,068
X は Y を失う - X には Y はある 人/興味

- X lose Y - Have Y in X people/interest
Rank 474,143

Y に X を無くす - Y にも X をもつ 自信/自分
+ Lose X in Y - Have X in Y too confidence/

Rank 522,534 oneself
Y は X まで落ちる - X に Y を上げる 9 位/順位

- Y falls down to X - raise Y to X 9th/ranking
Rank 538,901

X に Y が存在する - X から Y を防ぐ 中/ウイルス
+ Y exists in X - Keep Y out X inside/virus

Rank 620,430
X から Y を外す - X は Y で答える 僕/目

- Remove Y off X - X answer with Y I (or me)/eyes
Rank 652,530

Y を X から追い出す - X に Y が残る 体/疲労
+ Kick out Y from X - Y remains in X body/fatigue

Rank 697,177
Y が X を安心させる - Y が X がを裏切る 僕/彼女

+ X reassures Y - X betrays Y I/her
Rank: 749,916

Hence, we think the effect of adding a new sam-
ple from PROP-SCORE is smaller than that in PRO-
POSED, because in PROPOSED we add to the train-
ing data pattern pairs with both high and low (possi-
bly negative) SVM scores.

Finally, while the quality of the entailment pairs
plays a very important role in the assumption that
was the base of CDP , these results show that even
a simple rule such as “Use entailment pairs with
SVM score over 0 to expand contradictions before
ranking them with CDP ” is sufficient to make the
method work. Though it may be possible to design
a more complex CDP formula which takes entail-
ment score into account, we did not explore this di-
rection in this work.

Comparison with an ILP-based method Finally,
we would like to compare our method with an ILP-
based method. The interaction between contradic-
tion and entailment that forms the basis for our ex-
pansion method has a natural interpretation as an op-
timization problem. We thus compared our method
to the following ILP formulation of this interaction
inspired by Berant et al. (2011), using our test set:

700



Figure 5: Comparison between PROPOSED, BASE and
BASE+ILP on a restricted test set (1,306 samples)

(1) G = argmax
∑
p6=q

(e(p, q)−β)∗Epq +(c(p, q)−β)∗Cpq

(2) s.t. ∀p,q,r Epq + Cqr − Cpr ≤ 1

(3) ∀p,q Epq + Cpq ≤ 1

(4) ∀p,q Epq ∈ {0, 1} (5) ∀p,q Cpq ∈ {0, 1}

The objective in Equation (1) is a sum over the
weights of every pair of patterns 〈p, q〉, where Epq

indicates whether a pair 〈p, q〉 is an entailment pair
(Equation (4)), and Cpq indicates whether it is a con-
tradiction pair (Equation (5)). e(p, q) and c(p, q) are
the score given respectively by ENT and BASE, and
β is a prior defining the weight of a pair as neither
entailment nor contradiction that shall be set before
any experimentation. Equation (2) states the tran-
sitivity relation which is the basis of our expansion
method. Finally, Equation (3) states that a given pat-
tern pair cannot be a contradiction pair and an entail-
ment pair at the same time. Since our patterns are
class-dependent, we solved separate ILP instances
for each semantic class pair.

We drew a precision curve for each of BASE,
PROPOSED and BASE+ILP. To draw the curve for
BASE+ILP, we incrementally raised the sample’s
non-contradiction non-entailment prior β (more de-
tails in Berant et al. (2011)). Because of the com-
putational difficulty of ILP (NP-complete) and the
size of our data, the computation for the ILP-based
method ran out of memory on a 72GB machine for
116 class pairs out of the 1,031 that our test set cov-
ers. For this reason, we only used the 1,306 samples
of the test set covered by the remaining 915 class
pairs. We also measured the performance of BASE
and PROPOSED on the same restricted test set.

Figure 5 shows that under these conditions the
ILP-based method performance resembles BASE

and is worse than PROPOSED on all data points.
PROPOSED performs slightly worse in this setting
compared to when classifying the whole of Popp,
but this only means that its performance is good for
the 116 class pairs we ignored in this experiment.
While this comparison is only made in a restricted
setting, our expansion method still outperforms ILP
and is clearly more scalable. The ILP results could
be improved by adding more constraints (contradic-
tion is symmetric, entailment is transitive), but this
would also make the problem even more intractable
in terms of computational costs.

4 Features

In this section we present the features used in our
classifiers, which are mainly categorized into three:
surface features (i.e., those reflecting the patterns’
content itself), features based on external lexical re-
sources, and distributional similarity based features;
all features are listed in Table 4. ENT uses all the
features while BASE and EXP use all except for the
distributional similarity based ones. The optimality
of the feature sets was confirmed through ablation
tests using the development set (results omitted for
the sake of space).

Since patterns with a contradiction or entailment
relation are often superficially similar, for instance,
in case structure or inflection, we use a number of
surface features based on string similarity measures,
extending the feature sets used by Malakasiotis and
Androutsopoulos (2007) for entailment recognition.
They include bag-of-words features such as n-grams
and similarity scores concerning the bag-of-words
such as their Euclidian distance.

To complement the surface features with knowl-
edge about the content words, we used lexi-
cal databases including such as antonymy, syn-
onymy, entailment, or allography. The presence
of such word pairs is usually a good indicator of
(non-)contradiction or (non-)entailment at the pat-
tern level. More specifically, for any word pair
〈wp, wq〉 taken from a pattern pair 〈p, q〉 we mark
the presence of 〈wp, wq〉 in each of the lexical re-
sources as a binary feature. We used the Japanese
lexical resources distributed by the ALAGIN Fo-
rum3: the verb entailment database (117,000 verb

3 http://www.alagin.jp/

701



Table 4: Features summary, computed over a pair of patterns 〈p, q〉
su

rf
ac

e Similarity measures: common elements ratios, Dice coefficient, Jaccard and discounted Jaccard scores, Cosine, Euclidian, Manhattan, Levenshtein
and Jaro distances; computed over: the patterns’ 1-, 2- and 3-grams sets of: characters, morphemes, their stems & POS; content words and stems
binary feature for each of the patterns’ subtrees, 1- and 2-grams ; patterns’ lengths and length ratios

le
x.

r. entries in databases of verb entailments and non-entailments, synonyms, antonyms, allographs ; checked over: pairs of content words,
pairs of content word stems, same for the reverse pattern pair 〈q, p〉

di
s.

s.

Distributional similarity measures: Common elements ratios, Jaccard and discounted Jaccard scores, sets and sets intersection cardinality,
DIRT (Lin and Pantel, 2001), Weeds (Weeds and Weir, 2003) and Hashimoto (Hashimoto et al., 2009) scores; computed over: patterns’
co-occurring noun pairs, POS tags of those, nouns co-occurring in each variable slot, nouns co-occurring with each unary sub-patterns

ot
he

r binary feature for each semantic class pair and individual semantic classes
patterns frequency rank in the given semantic class pair

pairs; Alagin ID A-2), the databases of synonyms,
antonyms and meronyms (respectively 111,000,
5000 and 2500 pairs; Alagin ID A-9), and the al-
lographic word database (2.7 million pairs; Alagin
ID A-7). We also used the information concerning
allographic words in the dictionary of the morpho-
logical analyzer JUMAN4.

Distributional similarity values between patterns
are based on the idea that patterns that appear in
similar contexts tend to have similar meanings and
as such are useful to recognize entailment (Lin and
Pantel, 2001). We computed as features several dis-
tributional similarity measures on the sets of each
pattern’s co-occurring noun pairs and their POS
tags, of nouns co-occurring in each variable slot, and
with each of the pattern’s unary sub-patterns.

We also added a few more uncategorizable fea-
tures. See Table 4 for more details.

5 Related Work

A number of previous work dealt with the recogni-
tion of contradictions between sentences. Harabagiu
et al. (2006) proposed a contradiction detection
method that focuses on negation, antonymy and
some discourse information. Kawahara et al. (2010)
also used negations and antonyms to extract con-
trastive/contradictory statements from the web to
present users with a bird ’s-eye view of statements
about a given topic. Bobrow et al. (2007) showed
a method using logical forms with relatively precise
results. Ohki et al. (2011) proposed a method to rec-
ognize confinment, a novel semantic relation related
to both entailment and contradiction. While we do
not deal ourselves directly with sentences, we expect
that the binary pattern pairs we acquire can play a
role similar to that of basic linguistic resources such

4 http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN

as antonyms and negations in these works. Closer
to our work, Ritter et al. (2008) presented a method
for detecting contradictions between functional re-
lations like “X was born in Y”, but these constitute
only a part of the semantic relations expressed by the
binary patterns we deal with in this paper.

Other works analyzed contradictions from lin-
guistic/semantic viewpoints. Voorhees (2008) ana-
lyzed the contradiction recognition-task of the RTE3
contest. Magnini and Cabrio (2010) examined rela-
tions between contradictions and textual entailment
samples. De Marneffe et al. (2008) presented a
typology of contradictions, and showed that con-
tradictions can arise from a multitude of phenom-
ena. They showed contradictions based on lexical or
world knowledge are challenging and require a high-
level understanding of language and/or the world.
As stated in the introduction, these are the types of
contradictions our method focuses on.

6 Conclusion

This paper showed how to acquire a large number of
contradiction pairs between lexico-syntactic binary
patterns by exploiting (1) the interaction between
contradiction and entailment, and (2) excitation po-
larities. In the end, we could acquire 750,000 typed
contradiction pattern pairs with an estimated 80%
precision. The resulting contradiction pairs cov-
ered ones deeply related to world knowledge such
as the pair 〈“X reassures Y”, “X betrays Y”〉. We ex-
pect our work to lead to a high level analysis of
textual information, such as flagging unreliable in-
formation or identifying important documents to be
surveyed for understanding complex social prob-
lems. We plan to release the data we acquired to
the NLP community through the ALAGIN Forum5.

5 http://www.alagin.jp/
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Abstract

A common form of sarcasm on Twitter con-
sists of a positive sentiment contrasted with a
negative situation. For example, many sarcas-
tic tweets include a positive sentiment, such as
“love” or “enjoy”, followed by an expression
that describes an undesirable activity or state
(e.g., “taking exams” or “being ignored”). We
have developed a sarcasm recognizer to iden-
tify this type of sarcasm in tweets. We present
a novel bootstrapping algorithm that automati-
cally learns lists of positive sentiment phrases
and negative situation phrases from sarcastic
tweets. We show that identifying contrast-
ing contexts using the phrases learned through
bootstrapping yields improved recall for sar-
casm recognition.

1 Introduction

Sarcasm is generally characterized as ironic or satir-
ical wit that is intended to insult, mock, or amuse.
Sarcasm can be manifested in many different ways,
but recognizing sarcasm is important for natural lan-
guage processing to avoid misinterpreting sarcastic
statements as literal. For example, sentiment anal-
ysis can be easily misled by the presence of words
that have a strong polarity but are used sarcastically,
which means that the opposite polarity was intended.
Consider the following tweet on Twitter, which in-
cludes the words “yay” and “thrilled” but actually
expresses a negative sentiment:“yay! it’s a holi-
day weekend and i’m on call for work! couldn’t be
more thrilled! #sarcasm.”In this case, the hashtag
#sarcasm reveals the intended sarcasm, but we don’t
always have the benefit of an explicit sarcasm label.

In the realm of Twitter, we observed that many
sarcastic tweets have a common structure that
creates a positive/negative contrast between a senti-
ment and a situation. Specifically, sarcastic tweets
often express a positive sentiment in reference to a
negative activity or state. For example, consider the
tweets below, where the positive sentiment terms
are underlinedand the negative activity/state terms
areitalicized.

(a) Oh how I lovebeing ignored. #sarcasm

(b) Thoroughly enjoyedshoveling the driveway
today! :) #sarcasm

(c) Absolutely adoreit whenmy bus is late
#sarcasm

(d) I’m so pleasedmomwoke me upwith
vacuuming my room this morning. :) #sarcasm

The sarcasm in these tweets arises from the jux-
taposition of a positive sentiment word (e.g., love,
enjoyed, adore, pleased) with a negative activity or
state (e.g., being ignored, bus is late, shoveling, and
being woken up).

The goal of our research is to identify sarcasm
that arises from the contrast between a positive sen-
timent referring to a negative situation. A key chal-
lenge is to automatically recognize the stereotypi-
cally negative “situations”, which are activities and
states that most people consider to be unenjoyable or
undesirable. For example, stereotypically unenjoy-
able activities include going to the dentist, taking an
exam, and having to work on holidays. Stereotypi-
cally undesirable states include being ignored, hav-
ing no friends, and feeling sick. People recognize
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these situations as being negative through cultural
norms and stereotypes, so they are rarely accompa-
nied by an explicit negative sentiment. For example,
“I feel sick” is universally understood to be a nega-
tive situation, even without an explicit expression of
negative sentiment. Consequently, we must learn to
recognize phrases that correspond to stereotypically
negative situations.

We present a bootstrapping algorithm that auto-
matically learns phrases corresponding to positive
sentiments and phrases corresponding to negative
situations. We use tweets that contain a sarcasm
hashtag as positive instances for the learning pro-
cess. The bootstrapping algorithm begins with a sin-
gle seed word, “love”, and a large set of sarcastic
tweets. First, we learnnegative situation phrases
that follow a positive sentiment (initially, the seed
word “love”). Second, we learnpositive sentiment
phrasesthat occur near a negative situation phrase.
The bootstrapping process iterates, alternately learn-
ing new negative situations and new positive sen-
timent phrases. Finally, we use the learned lists
of sentiment and situation phrases to recognize sar-
casm in new tweets by identifying contexts that con-
tain a positive sentiment in close proximity to a neg-
ative situation phrase.

2 Related Work

Researchers have investigated the use of lexical
and syntactic features to recognize sarcasm in text.
Kreuz and Caucci (2007) studied the role that dif-
ferent lexical factors play, such as interjections (e.g.,
“gee” or “gosh”) and punctuation symbols (e.g., ‘?’)
in recognizing sarcasm in narratives. Lukin and
Walker (2013) explored the potential of a bootstrap-
ping method for sarcasm classification in social di-
alogue to learn lexical N-gram cues associated with
sarcasm (e.g., “oh really”, “I get it”, “no way”, etc.)
as well as lexico-syntactic patterns.

In opinionated user posts, Carvalho et al. (2009)
found oral or gestural expressions, represented us-
ing punctuation and other keyboard characters, to
be more predictive of irony1 in contrast to features
representing structured linguistic knowledge in Por-

1They adopted the term ‘irony’ instead of ‘sarcasm’ to re-
fer to the case when a word or expression with prior positive
polarity is figuratively used to express a negative opinion.

tuguese. Filatova (2012) presented a detailed de-
scription of sarcasm corpus creation with sarcasm
annotations of Amazon product reviews. Their an-
notations capture sarcasm both at the document level
and the text utterance level. Tsur et al. (2010) pre-
sented a semi-supervised learning framework that
exploits syntactic and pattern based features in sar-
castic sentences of Amazon product reviews. They
observed correlated sentiment words such as “yay!”
or “great!” often occurring in their most useful pat-
terns.

Davidov et al. (2010) used sarcastic tweets and
sarcastic Amazon product reviews to train a sarcasm
classifier with syntactic and pattern-based features.
They examined whether tweets with a sarcasm hash-
tag are reliable enough indicators of sarcasm to be
used as a gold standard for evaluation, but found that
sarcasm hashtags are noisy and possibly biased to-
wards the hardest form of sarcasm (where even hu-
mans have difficulty). González-Ibáñez et al. (2011)
explored the usefulness of lexical and pragmatic fea-
tures for sarcasm detection in tweets. They used sar-
casm hashtags as gold labels. They found positive
and negative emotions in tweets, determined through
fixed word dictionaries, to have a strong correlation
with sarcasm. Liebrecht et al. (2013) explored N-
gram features from 1 to 3-grams to build a classifier
to recognize sarcasm in Dutch tweets. They made an
interesting observation from their most effective N-
gram features that people tend to be more sarcastic
towards specific topics such as school, homework,
weather, returning from vacation, public transport,
the church, the dentist, etc. This observation has
some overlap with our observation that stereotypi-
cally negative situations often occur in sarcasm.

The cues for recognizing sarcasm may come from
a variety of sources. There exists a line of work
that tries to identify facial and vocal cues in speech
(e.g., (Gina M. Caucci, 2012; Rankin et al., 2009)).
Cheang and Pell (2009) and Cheang and Pell (2008)
performed studies to identify acoustic cues in sarcas-
tic utterances by analyzing speech features such as
speech rate, mean amplitude, amplitude range, etc.
Tepperman et al. (2006) worked on sarcasm recog-
nition in spoken dialogue using prosodic and spec-
tral cues (e.g., average pitch, pitch slope, etc.) as
well as contextual cues (e.g., laughter or response to
questions) as features.
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While some of the previous work has identi-
fied specific expressions that correlate with sarcasm,
none has tried to identify contrast between positive
sentiments and negative situations. The novel con-
tributions of our work include explicitly recogniz-
ing contexts that contrast a positive sentiment with a
negative activity or state, as well as a bootstrapped
learning framework to automatically acquire posi-
tive sentiment and negative situation phrases.

3 Bootstrapped Learning of Positive
Sentiments and Negative Situations

Sarcasm is often defined in terms of contrast or “say-
ing the opposite of what you mean”. Our work fo-
cuses on one specific type of contrast that is common
on Twitter: the expression of a positive sentiment
(e.g., “love” or “enjoy”) in reference to a negative
activity or state (e.g., “taking an exam” or “being ig-
nored”). Our goal is to create a sarcasm classifier for
tweets that explicitly recognizes contexts that con-
tain a positive sentiment contrasted with a negative
situation.

Our approach learns rich phrasal lexicons of pos-
itive sentiments and negative situations using only
the seed word “love” and a collection of sarcastic
tweets as input. A key factor that makes the algo-
rithm work is the presumption that if you find a pos-
itive sentiment or a negative situation in a sarcastic
tweet, then you have found the source of the sar-
casm. We further assume that the sarcasm probably
arises from positive/negative contrast and we exploit
syntactic structure to extract phrases that are likely
to have contrasting polarity. Another key factor is
that we focus specifically on tweets. The short na-
ture of tweets limits the search space for the source
of the sarcasm. The brevity of tweets also probably
contributes to the prevalence of this relatively com-
pact form of sarcasm.

3.1 Overview of the Learning Process

Our bootstrapping algorithm operates on the as-
sumption that many sarcastic tweets contain both a
positive sentiment and a negative situation in close
proximity, which is the source of the sarcasm.2 Al-
though sentiments and situations can be expressed

2Sarcasm can arise from a negative sentiment contrasted
with a positive situation too, but our observation is that this is
much less common, at least on Twitter.

Positive
Sentiment
Phrases

Negative
Situation
Phrases

Seed Word
"love"

Sarcastic Tweets

1 2
34

Figure 1: Bootstrapped Learning of Positive Sentiment
and Negative Situation Phrases

in numerous ways, we focus on positive sentiments
that are expressed as a verb phrase or as a predicative
expression (predicate adjective or predicate nomi-
nal), and negative activities or states that can be a
complement to a verb phrase. Ideally, we would
like to parse the text and extract verb complement
phrase structures, but tweets are often informally
written and ungrammatical. Therefore we try to rec-
ognize these syntactic structures heuristically using
only part-of-speech tags and proximity.

The learning process relies on an assumption that
a positive sentiment verb phrase usually appears to
the left of a negative situation phrase and in close
proximity (usually, but not always, adjacent). Picto-
rially, we assume that many sarcastic tweets contain
this structure:

[+ VERB PHRASE] [– SITUATION PHRASE]

This structural assumption drives our bootstrap-
ping algorithm, which is illustrated in Figure 1.
The bootstrapping process begins with a single seed
word, “love”, which seems to be the most common
positive sentiment term in sarcastic tweets. Given
a sarcastic tweet containing the word “love”, our
structural assumption infers that “love” is probably
followed by an expression that refers to a negative
situation. So we harvest the n-grams that follow the
word “love” as negative situation candidates. We se-
lect the best candidates using a scoring metric, and
add them to a list of negative situation phrases.

Next, we exploit the structural assumption in the
opposite direction. Given a sarcastic tweet that con-
tains a negative situation phrase, we infer that the
negative situation phrase is preceded by a positive
sentiment. We harvest the n-grams that precede the
negative situation phrases as positive sentiment can-
didates, score and select the best candidates, and
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add them to a list of positive sentiment phrases.
The bootstrapping process then iterates, alternately
learning more positive sentiment phrases and more
negative situation phrases.

We also observed that positive sentiments are fre-
quently expressed as predicative phrases (i.e., pred-
icate adjectives and predicate nominals). For ex-
ample: “I’m taking calculus. It is awesome. #sar-
casm”. Wiegand et al. (2013) offered a related ob-
servation that adjectives occurring in predicate ad-
jective constructions are more likely to convey sub-
jectivity than adjectives occurring in non-predicative
structures. Therefore we also include a step in
the learning process to harvest predicative phrases
that occur in close proximity to a negative situation
phrase. In the following sections, we explain each
step of the bootstrapping process in more detail.

3.2 Bootstrapping Data

For the learning process, we used Twitter’s stream-
ing API to obtain a large set of tweets. We col-
lected 35,000 tweets that contain the hashtag #sar-
casm or #sarcastic to use as positive instances of sar-
casm. We also collected 140,000 additional tweets
from Twitter’s random daily stream. We removed
the tweets that contain a sarcasm hashtag, and con-
sidered the rest to be negative instances of sarcasm.
Of course, there will be some sarcastic tweets that do
not have a sarcasm hashtag, so the negative instances
will contain some noise. But we expect that a very
small percentage of these tweets will be sarcastic, so
the noise should not be a major issue. There will also
be noise in the positive instances because a sarcasm
hashtag does not guarantee that there is sarcasm in
the body of the tweet (e.g., the sarcastic content may
be in a linked url, or in a prior tweet). But again, we
expect the amount of noise to be relatively small.

Our tweet collection therefore contains a total of
175,000 tweets: 20% are labeled as sarcastic and
80% are labeled as not sarcastic. We applied CMU’s
part-of-speech tagger designed for tweets (Owoputi
et al., 2013) to this data set.

3.3 Seeding

The bootstrapping process begins by initializing the
positive sentiment lexicon with one seed word:love.
We chose this seed because it seems to be the most
common positive sentiment word in sarcastic tweets.

3.4 Learning Negative Situation Phrases

The first stage of bootstrapping learns new phrases
that correspond to negative situations. The learning
process consists of two steps: (1) harvesting candi-
date phrases, and (2) scoring and selecting the best
candidates.

To collect candidate phrases for negative situa-
tions, we extract n-grams that follow a positive senti-
ment phrase in a sarcastic tweet. We extract every 1-
gram, 2-gram, and 3-gram that occurs immediately
after (on the right-hand side) of a positive sentiment
phrase. As an example, consider the tweet in Figure
2, where “love” is the positive sentiment:

I love waiting forever for the doctor #sarcasm

Figure 2: Example Sarcastic Tweet

We extract three n-grams as candidate negative situ-
ation phrases:

waiting, waiting forever, waiting forever for

Next, we apply the part-of-speech (POS) tagger
and filter the candidate list based on POS patterns so
we only keep n-grams that have a desired syntactic
structure. For negative situation phrases, our goal
is to learn possible verb phrase (VP) complements
that are themselves verb phrases because they should
represent activities and states. So we require a can-
didate phrase to be either a unigram tagged as a verb
(V) or the phrase must match one of 7 POS-based
bigram patterns or 20 POS-based trigram patterns
that we created to try to approximate the recogni-
tion of verbal complement structures. The 7 POS bi-
gram patterns are: V+V, V+ADV, ADV+V, “to”+V,
V+NOUN, V+PRO, V+ADJ. Note that we used
a POS tagger designed for Twitter, which has a
smaller set of POS tags than more traditional POS
taggers. For example there is just a single V tag
that covers all types of verbs. The V+V pattern will
therefore capture negative situation phrases that con-
sist of a present participle verb followed by a past
participle verb, such as “being ignored” or “getting
hit”.3 We also allow verb particles to match a V tag
in our patterns. The remaining bigram patterns cap-
ture verb phrases that include a verb and adverb, an

3In some cases it may be more appropriate to consider the
second verb to be an adjective, but in practice they were usually
tagged as verbs.
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infinitive form (e.g., “to clean”), a verb and noun
phrase (e.g., “shoveling snow”), or a verb and ad-
jective (e.g., “being alone”). We use some simple
heuristics to try to ensure that we are at the end of an
adjective or noun phrase (e.g., if the following word
is tagged as an adjective or noun, then we assume
we arenot at the end).

The 20 POS trigram patterns are similar in nature
and are designed to capture seven general types of
verb phrases: verb and adverb mixtures, an infini-
tive VP that includes an adverb, a verb phrase fol-
lowed by a noun phrase, a verb phrase followed by a
prepositional phrase, a verb followed by an adjective
phrase, or an infinitive VP followed by an adjective,
noun, or pronoun.

Returning to Figure 2, only two of the n-grams
match our POS patterns, so we are left with two can-
didate phrases for negative situations:

waiting, waiting forever

Next, we score each negative situation candidate
by estimating the probability that a tweet is sarcastic
given that it contains the candidate phrase following
a positive sentiment phrase:

| follows(–candidate, +sentiment) & sarcastic|

| follows(–candidate, +sentiment)|

We compute the number of times that the negative
situation candidate immediately follows a positive
sentiment in sarcastic tweets divided by the number
of times that the candidate immediately follows a
positive sentiment in all tweets. We discard phrases
that have a frequency< 3 in the tweet collection
since they are too sparse.

Finally, we rank the candidate phrases based on
this probability, using their frequency as a secondary
key in case of ties. The top 20 phrases with a prob-
ability ≥ .80 are added to the negative situation
phrase list.4 When we add a phrase to the nega-
tive situation list, we immediately remove all other
candidates that are subsumed by the selected phrase.
For example, if we add the phrase “waiting”, then
the phrase “waiting forever” would be removed from
the candidate list because it is subsumed by “wait-
ing”. This process reduces redundancy in the set of

4Fewer than 20 phrases will be learned if< 20 phrases pass
this threshold.

phrases that we add during each bootstrapping itera-
tion. The bootstrapping process stops when no more
candidate phrases pass the probability threshold.

3.5 Learning Positive Verb Phrases

The procedure for learning positive sentiment
phrases is analogous. First, we collect phrases that
potentially convey a positive sentiment by extract-
ing n-grams that precede a negative situation phrase
in a sarcastic tweet. To learn positive sentiment verb
phrases, we extract every 1-gram and 2-gram that
occurs immediately before (on the left-hand side of)
a negative situation phrase.

Next, we apply the POS tagger and filter the n-
grams using POS tag patterns so that we only keep
n-grams that have a desired syntactic structure. Here
our goal is to learn simple verb phrases (VPs) so we
only retain n-grams that contain at least one verb and
consist only of verbs and (optionally) adverbs. Fi-
nally, we score each candidate sentiment verb phrase
by estimating the probability that a tweet is sarcastic
given that it contains the candidate phrase preceding
a negative situation phrase:

| precedes(+candidateVP,–situation) & sarcastic|

| precedes(+candidateVP,–situation)|

3.6 Learning Positive Predicative Phrases

We also use the negative situation phrases to harvest
predicative expressions (predicate adjective or pred-
icate nominal structures) that occur nearby. Based
on the same assumption that sarcasm often arises
from the contrast between a positive sentiment and
a negative situation, we identify tweets that contain
a negative situation and a predicative expression in
close proximity. We then assume that the predicative
expression is likely to convey a positive sentiment.

To learn predicative expressions, we use 24 copu-
lar verbs from Wikipedia5 and their inflections. We
extract positive sentiment candidates by extracting
1-grams, 2-grams, and 3-grams that appear immedi-
ately after a copular verb and occur within 5 words
of the negative situation phrase, on either side. This
constraint only enforces proximity because predica-
tive expressions often appear in a separate clause or
sentence (e.g.,“It is just great that my iphone was
stolen” or “My iphone was stolen. This is great.” )

5http://en.wikipedia.org/wiki/Listof Englishcopulae
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We then apply POS patterns to identify n-grams
that correspond to predicate adjective and predicate
nominal phrases. For predicate adjectives, we re-
tain ADJ and ADV+ADJ n-grams. We use a few
heuristics to check that the adjective is not part of a
noun phrase (e.g., we check that the following word
is not a noun). For predicate nominals, we retain
ADV+ADJ+N, DET+ADJ+N and ADJ+N n-grams.
We excluded noun phrases consisting only of nouns
because they rarely seemed to represent a sentiment.
The sentiment in predicate nominals was usually
conveyed by the adjective. We discard all candidates
with frequency< 3 as being too sparse. Finally,
we score each remaining candidate by estimating the
probability that a tweet is sarcastic given that it con-
tains the predicative expression near (within 5 words
of) a negative situation phrase:

| near(+candidatePRED,–situation) & sarcastic|

| near(+candidatePRED,–situation)|

We found that the diversity of positive senti-
ment verb phrases and predicative expressions is
much lower than the diversity of negative situation
phrases. As a result, we sort the candidates by their
probability and conservatively add only the top 5
positive verb phrases and top 5 positive predicative
expressions in each bootstrapping iteration. Both
types of sentiment phrases must pass a probability
threshold of≥ .70.

3.7 The Learned Phrase Lists

The bootstrapping process alternately learns pos-
itive sentiments and negative situations until no
more phrases can be learned. In our experiments,
we learned 26 positive sentiment verb phrases, 20
predicative expressions and 239 negative situation
phrases.

Table 1 shows the first 15 positive verb phrases,
the first 15 positive predicative expressions, and the
first 40 negative situation phrases learned by the
bootstrapping algorithm. Some of the negative sit-
uation phrases are not complete expressions, but it
is clear that they will often match negative activities
and states. For example, “getting yelled” was gener-
ated from sarcastic comments such as “I love getting
yelled at”, “being home” occurred in tweets about
“being home alone”, and “being told” is often be-
ing told what to do. Shorter phrases often outranked

longer phrases because they are more general, and
will therefore match more contexts. But an avenue
for future work is to learn linguistic expressions that
more precisely characterize specific negative situa-
tions.

Positive Verb Phrases (26): missed, loves,
enjoy, cant wait, excited, wanted, can’t wait,
get, appreciate, decided, loving, really like,
looooove, just keeps, loveee, ...

Positive Predicative Expressions (20):great,
so much fun, good, so happy, better, my
favorite thing, cool, funny, nice, always fun,
fun, awesome, the best feeling, amazing,
happy, ...

Negative Situations (239):being ignored, be-
ing sick, waiting, feeling, waking up early, be-
ing woken, fighting, staying, writing, being
home, cleaning, not getting, crying, sitting at
home, being stuck, starting, being told, be-
ing left, getting ignored, being treated, doing
homework, learning, getting up early, going to
bed, getting sick, riding, being ditched, get-
ting ditched, missing, not sleeping, not talking,
trying, falling, walking home, getting yelled,
being awake, being talked, taking care, doing
nothing, wasting, ...

Table 1: Examples of Learned Phrases

4 Evaluation

4.1 Data

For evaluation purposes, we created a gold stan-
dard data set of manually annotated tweets. Even
for people, it is not always easy to identify sarcasm
in tweets because sarcasm often depends on con-
versational context that spans more than a single
tweet. Extracting conversational threads from Twit-
ter, and analyzing conversational exchanges, has its
own challenges and is beyond the scope of this re-
search. We focus on identifying sarcasm that is self-
contained in one tweet and does not depend on prior
conversational context.

We defined annotation guidelines that instructed
human annotators to read isolated tweets and label
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a tweet assarcasticif it contains comments judged
to be sarcastic based solely on the content of that
tweet. Tweets that do not contain sarcasm, or where
potential sarcasm is unclear without seeing the prior
conversational context, were labeled asnot sarcas-
tic. For example, a tweet such as“Yes, I meant that
sarcastically.” should be labeled asnot sarcasticbe-
cause the sarcastic content was (presumably) in a
previous tweet. The guidelines did not contain any
instructions that required positive/negative contrast
to be present in the tweet, so all forms of sarcasm
were considered to be positive examples.

To ensure that our evaluation data had a healthy
mix of both sarcastic and non-sarcastic tweets, we
collected 1,600 tweets with a sarcasm hashtag (#sar-
casm or #sarcastic), and 1,600 tweets without these
sarcasm hashtags from Twitter’s random streaming
API. When presenting the tweets to the annotators,
the sarcasm hashtags were removed so the annota-
tors had to judge whether a tweet was sarcastic or
not without seeing those hashtags.

To ensure that we had high-quality annotations,
three annotators were asked to annotate the same set
of 200 tweets (100 sarcastic + 100 not sarcastic).
We computed inter-annotator agreement (IAA) be-
tween each pair of annotators using Cohen’s kappa
(κ). The pairwise IAA scores wereκ=0.80,κ=0.81,
andκ=0.82. We then gave each annotator an addi-
tional 1,000 tweets to annotate, yielding a total of
3,200 annotated tweets. We used the first 200 tweets
as our Tuning Set, and the remaining 3000 tweets as
our Test Set.

Our annotators judged 742 of the 3,200 tweets
(23%) to be sarcastic. Only 713 of the 1,600 tweets
with sarcasm hashtags (45%) were judged to be sar-
castic based on our annotation guidelines. There are
several reasons why a tweet with a sarcasm hash-
tag might not have been judged to be sarcastic. Sar-
casm may not be apparent without prior conversa-
tional context (i.e., multiple tweets), or the sarcastic
content may be in a URL and not the tweet itself, or
the tweet’s content may not obviously be sarcastic
without seeing the sarcasm hashtag (e.g.,“The most
boring hockey game ever #sarcasm”).

Of the 1,600 tweets in our data set that were ob-
tained from the random stream and did not have a
sarcasm hashtag, 29 (1.8%) were judged to be sar-
castic based on our annotation guidelines.

4.2 Baselines

Overall, 693 of the 3,000 tweets in our Test Set
were annotated as sarcastic, so a system that classi-
fies every tweet as sarcastic will have 23% precision.
To assess the difficulty of recognizing the sarcastic
tweets in our data set, we evaluated a variety of base-
line systems.

We created two baseline systems that use n-gram
features with supervised machine learning to create
a sarcasm classifier. We used the LIBSVM (Chang
and Lin, 2011) library to train two support vector
machine (SVM) classifiers: one with just unigram
features and one with both unigrams and bigrams.
The features had binary values indicating the pres-
ence or absence of each n-gram in a tweet. The clas-
sifiers were evaluated using 10-fold cross-validation.
We used the RBF kernel, and the cost and gamma
parameters were optimized for accuracy using un-
igram features and 10-fold cross-validation on our
Tuning Set. The first two rows of Table 2 show the
results for these SVM classifiers, which achieved F
scores of 46-48%.

We also conducted experiments with existing sen-
timent and subjectivity lexicons to see whether they
could be leveraged to recognize sarcasm. We exper-
imented with three resources:

Liu05 : A positive and negative opinion lexicon
from (Liu et al., 2005). This lexicon contains
2,007 positive sentiment words and 4,783 neg-
ative sentiment words.

MPQA05 : The MPQA Subjectivity Lexicon that
is part of the OpinionFinder system (Wilson et
al., 2005a; Wilson et al., 2005b). This lexicon
contains 2,718 subjective words with positive
polarity and 4,910 subjective words with nega-
tive polarity.

AFINN11 The AFINN sentiment lexicon designed
for microblogs (Nielsen, 2011; Hansen et al.,
2011) contains 2,477 manually labeled words
and phrases with integer values ranging from -5
(negativity) to 5 (positivity). We considered all
words with negative values to have negative po-
larity (1598 words), and all words with positive
values to have positive polarity (879 words).

We performed four sets of experiments with each
resource to see how beneficial existing sentiment

710



System Recall Precision F score
Supervised SVM Classifiers

1grams .35 .64 .46
1+2grams .39 .64 .48

Positive Sentiment Only
Liu05 .77 .34 .47
MPQA05 .78 .30 .43
AFINN11 .75 .32 .44

Negative Sentiment Only
Liu05 .26 .23 .24
MPQA05 .34 .24 .28
AFINN11 .24 .22 .23

Positive and Negative Sentiment, Unordered
Liu05 .19 .37 .25
MPQA05 .27 .30 .29
AFINN11 .17 .30 .22

Positive and Negative Sentiment, Ordered
Liu05 .09 .40 .14
MPQA05 .13 .30 .18
AFINN11 .09 .35 .14

Our Bootstrapped Lexicons
Positive VPs .28 .45 .35
Negative Situations .29 .38 .33
Contrast(+VPs, –Situations), Unordered .11 .56 .18
Contrast(+VPs, –Situations), Ordered .09 .70 .15

& Contrast(+Preds, –Situations) .13 .63 .22
Our Bootstrapped Lexicons∪ SVM Classifier

Contrast(+VPs, –Situations), Ordered .42 .63 .50
& Contrast(+Preds, –Situations) .44 .62 .51

Table 2: Experimental results on the test set

lexicons could be for sarcasm recognition in tweets.
Since our hypothesis is that sarcasm often arises
from the contrast between something positive and
something negative, we systematically evaluated the
positive and negative phrases individually, jointly,
and jointly in a specific order (a positive phrasefol-
lowed bya negative phrase).

First, we labeled a tweet as sarcastic if it con-
tains any positive term in each resource. ThePos-
itive Sentiment Onlysection of Table 2 shows that
all three sentiment lexicons achieved high recall (75-
78%) but low precision (30-34%). Second, we la-
beled a tweet as sarcastic if it contains any negative
term from each resource. TheNegative Sentiment
Only section of Table 2 shows that this approach
yields much lower recall and also lower precision
of 22-24%, which is what would be expected of a
random classifier since 23% of the tweets are sar-
castic. These results suggest that explicit negative

sentiments are not generally indicative of sarcasm.
Third, we labeled a tweet as sarcastic if it contains

both a positive sentiment term and a negative senti-
ment term, in any order. ThePositive and Negative
Sentiment, Unorderedsection of Table 2 shows that
this approach yields low recall, indicating that rela-
tively few sarcastic tweets contain both positive and
negative sentiments, and low precision as well.

Fourth, we required the contrasting sentiments to
occur in a specific order (the positive term must pre-
cede the negative term) and near each other (no more
than 5 words apart). This criteria reflects our obser-
vation that positive sentiments often closely precede
negative situations in sarcastic tweets, so we wanted
to see if the same ordering tendency holds for neg-
ative sentiments. ThePositive and Negative Senti-
ment, Orderedsection of Table 2 shows that this or-
dering constraint further decreases recall and only
slightly improves precision, if at all. Our hypothe-
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sis is that when positive and negative sentiments are
expressed in the same tweet, they are referring to
different things (e.g., different aspects of a product).
Expressing positive and negative sentiments about
the same thing would usually sound contradictory
rather than sarcastic.

4.3 Evaluation of Bootstrapped Phrase Lists

The next set of experiments evaluates the effective-
ness of the positive sentiment and negative situa-
tion phrases learned by our bootstrapping algorithm.
The results are shown in theOur Bootstrapped Lex-
icons section of Table 2. For the sake of compar-
ison with other sentiment resources, we first eval-
uated our positive sentiment verb phrases and neg-
ative situation phrases independently. Our positive
verb phrases achieved much lower recall than the
positive sentiment phrases in the other resources, but
they had higher precision (45%). The low recall
is undoubtedly because our bootstrapped lexicon is
small and contains only verb phrases, while the other
resources are much larger and contain terms with
additional parts-of-speech, such as adjectives and
nouns.

Despite its relatively small size, our list of neg-
ative situation phrases achieved 29% recall, which
is comparable to the negative sentiments, but higher
precision (38%).

Next, we classified a tweet as sarcastic if it con-
tains both a positive verb phrase and a negative sit-
uation phrase from our bootstrapped lists, in any
order. This approach produced low recall (11%)
but higher precision (56%) than the sentiment lex-
icons. Finally, we enforced an ordering constraint
so a tweet is labeled as sarcastic only if it contains
a positive verb phrase that precedes a negative situa-
tion in close proximity (no more than 5 words apart).
This ordering constraint further increased precision
from 56% to 70%, with a decrease of only 2 points
in recall. This precision gain supports our claim that
this particular structure (positive verb phrase fol-
lowed by a negative situation) is strongly indicative
of sarcasm. Note that the same ordering constraint
applied to a positive verb phrase followed by a neg-
ative sentimentproduced much lower precision (at
best 40% precision using the Liu05 lexicon). Con-
trasting a positive sentiment with a negativesitua-
tion seems to be a key element of sarcasm.

In the last experiment, we added the positive pred-
icative expressions and also labeled a tweet as sar-
castic if a positive predicative appeared in close
proximity to (within 5 words of) a negative situa-
tion. The positive predicatives improved recall to
13%, but decreased precision to 63%, which is com-
parable to the SVM classifiers.

4.4 A Hybrid Approach

Thus far, we have used the bootstrapped lexicons
to recognize sarcasm by looking for phrases in our
lists. We will refer to our approach as the Contrast
method, which labels a tweet as sarcastic if it con-
tains a positive sentiment phrase in close proximity
to a negative situation phrase.

The Contrast method achieved 63% precision but
with low recall (13%). The SVM classifier with un-
igram and bigram features achieved 64% precision
with 39% recall. Since neither approach has high
recall, we decided to see whether they are comple-
mentary and the Contrast method is finding sarcastic
tweets that the SVM classifier overlooks.

In this hybrid approach, a tweet is labeled as sar-
castic if either the SVM classifier or the Contrast
method identifies it as sarcastic. This approach im-
proves recall from 39% to 42% using the Contrast
method with only positive verb phrases. Recall im-
proves to 44% using the Contrast method with both
positive verb phrases and predicative phrases. This
hybrid approach has only a slight drop in precision,
yielding an F score of 51%. This result shows that
our bootstrapped phrase lists are recognizing sarcas-
tic tweets that the SVM classifier misses.

Finally, we ran tests to see if the performance of
the hybrid approach (Contrast∪ SVM) is statisti-
cally significantly better than the performance of the
SVM classifier alone. We used paired bootstrap sig-
nificance testing as described in Berg-Kirkpatrick
et al. (2012) by drawing106 samples with repeti-
tion from the test set. These results showed that the
Contrast∪ SVM system is statistically significantly
better than the SVM classifier at thep < .01 level
(i.e., the null hypothesis was rejected with 99% con-
fidence).

4.5 Analysis

To get a better sense of the strength and limitations
of our approach, we manually inspected some of the
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tweets that were labeled as sarcastic using our boot-
strapped phrase lists. Table 3 shows some of the sar-
castic tweets found by the Contrast method but not
by the SVM classifier.

i love fightingwith the one i love
love workingon my last day of summer
i enjoy tweeting [user] andnot gettinga reply
workingduring vacation is awesome.
can’t waitto wakeup early to babysit !

Table 3: Five sarcastic tweets found by the Contrast
method but not the SVM

These tweets are good examples of a positive sen-
timent (love, enjoy, awesome, can’t wait) contrast-
ing with a negative situation. However, the negative
situation phrases are not always as specific as they
should be. For example, “working” was learned as
a negative situation phrase because it is often neg-
ative when it follows a positive sentiment (“I love
working...”). But the attached prepositional phrases
(“on my last day of summer” and “during vacation”)
should ideally have been captured as well.

We also examined tweets that were incorrectly la-
beled as sarcastic by the Contrast method. Some
false hits come from situations that are frequently
negative but not always negative (e.g., some peo-
ple genuinely like waking up early). However, most
false hits were due to overly general negative situa-
tion phrases (e.g., “I loveworkingthere” was labeled
as sarcastic). We believe that an important direction
for future work will be to learn longer phrases that
represent more specific situations.

5 Conclusions

Sarcasm is a complex and rich linguistic phe-
nomenon. Our work identifies just one type of sar-
casm that is common in tweets: contrast between a
positive sentiment and negative situation. We pre-
sented a bootstrapped learning method to acquire
lists of positive sentiment phrases and negative ac-
tivities and states, and show that these lists can be
used to recognize sarcastic tweets.

This work has only scratched the surface of pos-
sibilities for identifying sarcasm arising from posi-
tive/negative contrast. The phrases that we learned
were limited to specific syntactic structures and we
required the contrasting phrases to appear in a highly

constrained context. We plan to explore methods for
allowing more flexibility and for learning additional
types of phrases and contrasting structures.

We also would like to explore new ways to iden-
tify stereotypically negative activities and states be-
cause we believe this type of world knowledge is
essential to recognize many instances of sarcasm.
For example, sarcasm often arises from a descrip-
tion of a negative event followed by a positive emo-
tion but in a separate clause or sentence, such as:
“Going to the dentist for a root canal this after-
noon. Yay, I can’t wait.”Recognizing the intensity
of the negativity may also be useful to distinguish
strong contrast from weak contrast. Having knowl-
edge about stereotypically undesirable activities and
states could also be important for other natural lan-
guage understanding tasks, such as text summariza-
tion and narrative plot analysis.

6 Acknowledgments

This work was supported by the Intelligence Ad-
vanced Research Projects Activity (IARPA) via De-
partment of Interior National Business Center (DoI
/ NBC) contract number D12PC00285. The U.S.
Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The
views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies or en-
dorsements, either expressed or implied, of IARPA,
DoI/NBE, or the U.S. Government.

References

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical signifi-
cance in nlp. InProceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing, EMNLP-CoNLL ’12, pages 995–1005.

Paula Carvalho, Luı́s Sarmento, Mário J. Silva, and
Eugénio de Oliveira. 2009. Clues for detecting irony
in user-generated contents: oh...!! it’s ”so easy” ;-). In
Proceedings of the 1st international CIKM workshop
on Topic-sentiment analysis for mass opinion, TSA
2009.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM:
A library for support vector machines.ACM Transac-

713



tions on Intelligent Systems and Technology, 2:27:1–
27:27.

Henry S. Cheang and Marc D. Pell. 2008. The sound of
sarcasm.Speech Commun., 50(5):366–381, May.

Henry S. Cheang and Marc D. Pell. 2009. Acous-
tic markers of sarcasm in cantonese and english.
The Journal of the Acoustical Society of America,
126(3):1394–1405.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences in
twitter and amazon. InProceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, CoNLL 2010.

Elena Filatova. 2012. Irony and sarcasm: Corpus gener-
ation and analysis using crowdsourcing. InProceed-
ings of the Eight International Conference on Lan-
guage Resources and Evaluation (LREC’12).

Roger J. Kreuz Gina M. Caucci. 2012. Social and par-
alinguistic cues to sarcasm.online 08/02/2012, 25:1–
22, February.
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Abstract 

Personal profile information on social media 

like LinkedIn.com and Facebook.com is at the 

core of many interesting applications, such as 

talent recommendation and contextual advertis-

ing. However, personal profiles usually lack or-

ganization confronted with the large amount of 

available information. Therefore, it is always a 

challenge for people to find desired information 

from them. In this paper, we address the task of 

personal profile summarization by leveraging 

both personal profile textual information and so-

cial networks. Here, using social networks is 

motivated by the intuition that, people with 

similar academic, business or social connections 

(e.g. co-major, co-university, and co-

corporation) tend to have similar experience and 

summaries. To achieve the learning process, we 

propose a collective factor graph (CoFG) model 

to incorporate all these resources of knowledge 

to summarize personal profiles with local textual 

attribute functions and social connection factors. 

Extensive evaluation on a large-scale dataset 

from LinkedIn.com demonstrates the effective-

ness of the proposed approach.
*
 

1 Introduction 

Web 2.0 has empowered people to actively interact 

with each other, forming social networks around 

mutually interesting information and publishing a 

large amount of useful user-generated content 

(UGC) online (Lappas et al., 2011; Tan et al., 

2011). One popular and important type of UGC is 

the personal profile, where people post detailed 

                                                 
* Corresponding author 

information on online portals about their education, 

experiences and other personal information. Social 

websites like Facebook.com and LinkedIn.com 

have created a viable business as profile portals, 

with the popularity and success partially attributed 

to their comprehensive personal profiles. 

Generally, online personal profiles provide val-

uable resources for businesses, especially for hu-

man resource managers to find talents, and help 

people connect with others of similar backgrounds 

(Yang et al., 2011a; Guy et al., 2010). However, as 

there is always large-scale information of experi-

ence and education fields, it is hardly for us to find 

useful information from the profile. Therefore, it is 

always a challenge for people to find desired in-

formation from them. For this regard, it is highly 

desirable to develop reliable methods to generate a 

summary of a person through his profile automati-

cally.  

To the best of our knowledge, this is the first re-

search that explores automatic summarization of 

personal profiles in social media. A straightfor-

ward approach is to consider personal profile 

summarization as a traditional document summari-

zation problem, which treating each personal pro-

file independently and generate a summary for 

each personal profile individually. For example, 

the well-known extraction and ranking approaches 

(e.g. PageRank, HITS) extract a certain amount of 

important sentences from a document according to 

some ranking measurements to form a summary 

(Wan and Yang, 2008; Wan, 2011).  

However, such straightforward approaches are 

not sufficient to benefit from the carrier of person-

al profiles. As the centroid of social networking, 

people are usually connected to others with similar 
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background in social media (e.g. co-major, co-

corporation). Therefore, it is reasonable to lever-

age social connection to improve the performance 

of profile summarizing. For example if there are 

co-major, co-university, co-corporation or other 

academic and business relationships between two 

persons, we consider them sharing similar experi-

ence and having similar summaries. 

The remaining challenge is how to incorporate 

both the profile textual information and the con-

nection knowledge in the social networks. In this 

study, we propose a collective factor graph model 

(CoFG) to summarize the text of personal profile 

in social networks with local textual information 

and social connection information. The CoFG 

framework utilizes both the local textual attribute 

functions of an individual person and the social 

connection factor between different persons to col-

lectively summarize personal profile on one person. 

In this study, we treat the profile summarization 

as a supervised learning task. Specifically, we 

model each sentence of the profile as a vector. In 

the training phase, we use the vectors with the so-

cial connection between each person to build the 

CoFG model; while in the testing phase, we per-

form collective inference for the importance of 

each sentence and select a subset of sentences as 

the summary according to the trained model. Eval-

uation on a large-scale data from LinkedIn.com 

indicates that our proposed joint model and social 

connection information improve the performance 

of profile summarization. 

The remainder of our paper is structured as fol-

lows. We go over the related work in Section 2. In 

Section 3, we introduce the data we collected from 

LinkedIn.com and the annotated corpus we con-

structed. In Section 4, we present some motiva-

tional analysis. In Section 5, we explain our pro-

posed model and describe algorithms for parame-

ter estimation and prediction. In Section 6, we pre-

sent our experimental results. We sum up our work 

and discuss future directions in Section 7. 

2 Related Work 

In this section, we will introduce the related work 

on the traditional topic-based summarization, so-

cial-based summarization and factor graph model 

respectively. 

2.1 Topic-based Summarization 

Generally, traditional topic-based summarization 

can be categorized into two categories: extractive 

(Radev et al., 2004) and abstractive (Radev and 

McKeown, 1998) summarization. The former se-

lects a subset of sentences from original docu-

ment(s) to form a summary; the latter reorganizes 

some sentences to form a summary where several 

complex technologies, such as information fusion, 

sentence compression and reformulation are nec-

essarily employed (Wan and Yang, 2008; Celiky-

ilmaz and Hakkani-Tur, 2011; Wang and Zhou, 

2012). This study focuses on extractive summari-

zation.  

Radev et al. (2004) proposed a centroid-based 

method to rank the sentences in a document set, 

using various kinds of features, such as the cluster 

centroid, position and TF-IDF features. Ryang and 

Abekawa (2012) proposed a reinforcement learn-

ing approach on text summarization, which models 

the summarization within a reinforcement learn-

ing-based framework.  

Compared to unsupervised approaches, super-

vised learning for summarization is relatively rare. 

A typical work is Shen et al., (2007) which present 

a Conditional Random Fields (CRF) based frame-

work to treat the summarization task as a sequence 

labeling problem. However, different from all ex-

isting studies, our work is the first attempt to con-

sider both textual information and social relation-

ship information for supervised summarization. 

2.2 Social-based Summarization 

As web 2.0 has empowered people to actively in-

teract with each other, studies focusing on social 

media have attracted much attention recently 

(Meeder et al., 2011; Rosenthal and McKeown, 

2011; Yang et al., 2011a). Social-based summari-

zation is exactly a special case of summarization 

where the social connection is employed to help 

obtaining the summarization. Although topic-

based summarization has been extensively studied, 

studies on social-based summarization are relative 

new and rare.  

Hu et al., (2011) proposed an unsupervised Pag-

eRank-based social summarization approach by 

incorporating both document context and user con-

text in the sentence evaluation process. Meng et al., 

(2012) proposed a unified optimization framework 

to produce opinion summaries of tweets through 
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integrating information from dimensions of topic, 

opinion and insight, as well as other factors (e.g. 

topic relevancy, redundancy and language styles). 

Unlike all the above studies, this paper focuses 

on a novel task, profile summarization. Further-

more, we employ many other kinds of social in-

formation in profiles, such as co-major, and co-

corporation between two people. They are shown 

to be very effective for profile summarization.  

2.3 Factor Graph Model 

As social network has been investigated for sever-

al years (Leskovec et al., 2010; Tan et al., 2011; 

Lu et al., 2010; Guy et al., 2010) and Factor Graph 

Model (FGM) is a popular approach to describe 

the relationship of social network (Tang et al., 

2011a; Zhuang et al., 2012). Factor Graph Model 

builds a graph to represent the relationship of 

nodes on the social networks, and the factor func-

tions are always considered to represent the rela-

tionship of the nodes. 

Tang et al. (2011a) and Zhuang et al. (2012) 

formalized the problem of social relationship 

learning into a semi-supervised framework, and 

proposed Partially-labeled Pairwise Factor Graph 

Model (PLP-FGM) for learning to infer the type of 

social ties. Dong et al. (2012) gave a formal defini-

tion of link recommendation across heterogeneous 

networks, and proposed a ranking factor graph 

model (RFG) for predicting links in social net-

works, which effectively improves the predictive 

performance. Yang et al., (2011b) generated sum-

maries by modeling tweets and social contexts into 

a dual wing factor graph (DWFG), which utilized 

the mutual reinforcement between Web documents 

and their associated social contexts.  

Different from all above researches, this paper 

proposes a pair-wise factor graph model to collec-

tively utilize both textual information and social 

connection factor to generate summary of profile. 

3 Data Collection and Statistics   

The personal profile summarization is a novel task 

and there exists no related data for accessing this 

issue. Therefore, in this study, we collect a data set 

containing personal summaries with the corre-

sponding knowledge, such as the self-introduction 

and personal profiles. In this section, we will in-

troduce this data set in detail. 

3.1 Data Collection  

We collect our data set from LinkedIn.com
1
. It 

contains a large number of personal profiles gen-

erated by users, containing various kinds of infor-

mation, such as personal overview, summary, edu-

cation, experience, projects and skills.  

 

John Smith
2
  

Overview 

Current Applied Researcher at Apple Inc. 

Previous 
Senior Research Scientist at IBM 

… 

Education 

MIT, 

Georgia Institute of Technology,   

… 

Summary 

Machine learning researcher and engineer on 

many fields: 

Query understanding. Automatic Information 

extraction… 

Experience 

Applied Researcher 

Apple Inc., September 2012 ~  

Query recognition and relevance 

… 

Education 

MIT 

Ph.D., Electrical Engineering, 2002 – 2008 

… 
Figure 1: An example of a profile webpage from 

LinkedIn.com 

 

In this study, the data set is crawled in the fol-

lowing ways. To begin with, 10 random people’s 

public profiles are selected as seed profiles, and 

then the profiles from their “People Also Viewed” 

field were collected. The data is composed of 

3,182 public profiles
3
 in total. We do not collect 

personal names in public profiles to protect peo-

ple’s privacy. Figure 1 shows an example of a per-

son’s profile from LinkedIn.com. The profile in-

cludes following fields: 

 Overview: It gives a structure description of a 

person’s general information, such as cur-

rent/previous position and workplace, brief 

                                                 
1 http://www.linkedin.com 
2 The information of the example is a pseudo one. 
3 We collect all the data from LinkedIn.com at Dec 17, 

2012.  
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education background and general technical 

background.  

 Summary: It summarizes a person’s work, 

experience and education.  

 Experience: It details a person’s work experi-

ence.  

 Education: It details a person’s education 

background.  

Among these fields, the Overview is required 

and the others are optional, such as Project, 

Course and Interest groups. However, compared 

with Overview, Summary, Experience, Education 

fields, they seem to be less important for summari-

zation of personal profiles. Thus, we ignore them 

in our study. 

3.2 Data Statistics of Major Fields 

We collected 3,182 personal profiles from 

LinkedIn.com. Table 1 shows the statistics of ma-

jor fields in our data collection. 

 

Field 
#Non-empty 

fields 

Average 

field 

length 

Overview 3,182 45.1 

Summary 921 25.8 

Experience 3,148 192.1 

Education 2,932 33.6 
Table 1: Statistics of major fields in our data set, i.e. the 

number of non-empty fields and the average length for 

each field 
 

From Table 1, we can see that, 

 The information of each profile is incom-

plete and inconsistent, That is, not all kinds 

of fields are available in each personal’s 

profile.  

 Most people provide their experience and 

education information. However, the Sum-

mary fields are popularly missing (Only 

about 30% of people provide it). This is 

mainly because writing summary is nor-

mally more difficult than other fields. 

Therefore, it is highly desirable to develop 

reliable automatic methods to generate a 

summary of a person through his/her pro-

file. 

 The length of the Experience field is the 

longest one, and work experience always 

could represent general information of 

people.  

3.3 Corpus Construction and Annotation  

Among the 921 profiles that contain the summary, 

we manually select 497 profiles with high quality 

summary to construct the corpus for our research. 

These high-quality summaries are all written by 

the authors themselves. Here, the quality is meas-

ured by manually checking that whether they are 

well capable of summarizing their profiles. That is, 

they are written carefully, and could give an over-

view of a person and represent the education and 

experience information of a person. 

After carefully seeing the profiles, we observe 

that the Experience field contains the most abun-

dant information of a person. Thus, we treat the 

text of Experience field as the source of summary 

for each profile. Besides, we collect social context 

information from Education and Experience field, 

and these social contexts are including by 

LinkedIn explicitly. Table 2 shows the average 

length of summary and experience fields we used 

for evaluating our summarization approach.  

 

Field 
Average 

length 

Summary 

(the summary of the 

profile) 

37.2 

Experience 

(the source text for the 

summarizing) 

372.0 

Table 2: Average length of the high-quality summary  
and corresponding experience fields 

 

From Table 2, we can see that,  

 Compared with the average length of 25.8 

in Table 1, summaries of high quality have 

longer length because they contain more in-

formation of the profiles.  

 The compression ratio of our proposed cor-

pus is 0.1 (37.2/372.0).  

4 Motivation and Analysis 

In this section, we propose the motivation of social 

connection to address the task of personal profile 

summarization. To preliminarily support the moti-

vation, some statistics of the social connection are 

provided. 
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Figure 2: An example of personal profile network.  

Red is for female, blue is for male, and the dotted line 

means the social connection between two persons. 

 

We first describe the social connections which 

we used. Figure 2 shows an example of social 

connection between people from the profiles of 

LinkedIn. We find that people are sometimes con-

nected by several social connections. For example, 

John and Lucy are connected by co_unvi relation-

ship, while Lily and Linda are connected by 

co_corp relationship. From LinkedIn, four kinds of 

social relationship between people are extracted 

from the Education field and Experience field. 

They are: 

 co_major denotes that two persons have the 

same major at school 

 co_univ denotes that two persons are graduat-

ed from the same university 

 co_title denotes that two persons have the 

same title at corporation. 

 co_corp denotes that two persons work at the 

same corporation. 

Our basic motivation of using social connection 

lies in the fact that “connected” people will tend to 

hold related experience and similar summaries.  

We then give the statistics of edges of social 

connection. Table 3 shows basic statistics across 

these edges. From Table 3, we can see that the 

number of users is 497 while the number of social 

connection edges is 14,307. The latter is much 

larger than the former. The number of the edges 

from Education field is similar with the number of 

the edges from Experience filed. Among all the 

relationships, co_unvi is the most common one.  

 

 Numbers 

# users 497 

co_major 1,288 

co_unvi 6,015 

# education field 7,303 

co_title 3,228 

co_corp 3,776 

# experience field 7,004 

# total edges 14,307 
Table 3: The statistic of edges for our main datasets 

5 Collective Factor Graph Model 

In this section, we propose a collective factor 

graph (CoFG) model for learning and summarizing 

the text of personal profile with local textual in-

formation and social connection. 

5.1 Overview of Our Framework 

To generate summaries for profiles, a straightfor-

ward approach is to treat each personal profile in-

dependently and generating a summary for each 

personal profile individually. As we mentioned on 

Section 3.3, we use the sentences of Experience 

field as a text document and consider it as the 

source of summary for each profile. 

Instead, we formalize the problem of personal 

profile summarization in a pair-wise factor graph 

model and propose an approach referred to as 

Loopy Belief Propagation algorithm to learn the 

model for generating the summary of the profile. 

Our basic idea is to define the correlations using 

different types of factor functions. An objective 

function is defined based on the joint probability 

of the factor functions. Thus, the problem of col-

lective personal profile summarization model 

learning is cast as learning model parameters that 

maximizes the joint probability of the input con-

tinuous dynamic network. 

The overview of the proposed method is a su-

pervised framework (as shown in Figure 3).  First, 

we treat each sentence of the training data and test-

ing data as vectors with textual information (local 

textual attribute functions); Second, all the vectors 

are connected by social connection relationships 

(social connection factors) and we model these 

vectors and their relationships into the collective 

factor graph; third, we propose Loopy Belief Prop-

 

John 

Antony 

   Bill 

Lily  

Lucy  

       Linda 

 

 
 

 

 

co_major 

co_univ 

co_corp 

co_corp 

co_title 

co_title 

co_major 

co_univ 
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agation algorithm to learn the model and predict 

the sentences of testing data; finally, we select a 

subset of sentences of each testing profile as the 

summary according to the models with top-n pre-

diction score. Thus, the core issues of our frame-

work are 1) how to define the collective factor 

graph model to connection profiles with social 

connection; 2) how to learn and predict the pro-

posed CoFG model; 3) how to predict the sentenc-

es from the testing data with the proposed CoFG 

model, and generate the summary by the predict 

scores. We will discuss these issues on the follow-

ing subsections. 

 

 
Figure 3: The overview of our proposed framework 

 

5.2 Model Definition 

Formally, given a network ( , , , )L UG V S S X , 

each sentence is  is associated with an attribute 

vector ix  of the profile and a label iy  indicating 

whether the sentence is selected as a summary of 

the profile (The value of iy  is binary. 1 means that 

the sentence is selected as a summary sentence, 

whereas 0 stands for the opposite). V denotes the 

authors of the profiles, LS  denotes the labeled 

training data, and US denotes the unlabeled testing 

data. Let { }iX x and { }iY y . Then, we have the 

following formulation 

          
   

 

, |
| ,

,

P X G Y P Y
P Y X G

P X G
              (1) 

Here, G denotes all forms of network infor-

mation. This probabilistic formulation indicates 

that labels of skills depend on not only local at-

tributes X, but also the structure of the network G. 

According to Bayes’ rule, we have 

         
 

   

 

   

, |
| ,

,

                  | |

P X G Y P Y
P Y X G

P X G

P X Y P Y G





             (2) 

Where ( | )P Y G represents the probability of labels 

given the structure of the network and ( | )P X Y  

denotes the probability of generating attributes X
associated to their labels Y . We assume that the 

generative probability of attributes given the label 

of each edge is conditionally independent, thus we 

have 

     | , | |i i

i

P Y X G P Y G P x y      (3) 

Where ( | )i iP x y  is the probability of generating 

attributes ix given the label iy . Now, the problem 

becomes how to instantiate the probability 

( | )P Y G and ( | )i iP x y . We model them in a Mar-

kov random field, and thus according to the Ham-

mersley-Clifford theorem (Hammersley and 

Clifford, 1971), the two probabilities can be in-

stantiated as follows: 

   
11

1
| exp ,

d

i i j j ij i

j

P x y f x y
Z




 
  

 
        (4) 

   
( )2

1
| exp ,

i j NB i

P Y G g i j
Z 

 
  

 
         (5) 

                       

Where 1 2 and Z Z  are normalization factors. Eq. 4 

indicates that we define an attribute function 

( , )i if x y  for each attribute ijx  associated with 

sentence is . j  is the weight of the j
th
 attribute. Eq. 

5 represents that we define a set of correlation fac-

tor functions ( , )g i j  over each pair ( , )i j in the 

network. ( )NB i  denotes the set of social relation-

ship neighbors nodes of i.  
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Figure 4: Graph representation of CoFG 
The left figure shows the personal profile network. Each dotted line indicates a social connection. Each dotted 

square denotes a person, and the grey square denotes the sentence selected in the summary, and the white square 

denotes a sentence that is not selected as the summary.. 

The right figure shows the CoFG model derived from left figure. Each eclipse denotes a sentence vector of a 

person, and each circle indicates the hidden variable yi. f(vi,yi) indicates the attribute factor function. g(yi,yj) indi-

cates the social connection factor function. 

 

4 

5 

6 
  

  

co_major 

co_corp 

  

Person A  
Person B  

Person C  

We now briefly introduce possible ways to de-

fine the attribute functions{ ( , )}ij i jf x y , and factor 

function ( , )g i j  .  

Local textual attribute functions{ ( , )}ij i jf x y : 

It denotes the attribute value associated with each 

sentence i. We define the local textual attribute as 

a feature (Lafferty et al., 2001). We can accumu-

late all the attribute functions and obtain local en-

tropy for a person: 

 
1

1
exp ,k k ik i

i k

f x y
Z


 
 
 
               (6) 

The textual attributes include following features 

(Shen et al., 2007; Yang et al., 2011b):  

1) BOW: the bag-of-words of each sentence, we 

use unigram features as the basic textual fea-

tures for each sentence.  

2) Length: the number of terms of each sentence. 

3) Topic_words: these are the most frequent 

words in the sentence after the stop words are 

removed. 

4) PageRank_scores: as shown in the related 

work section, a document can be treated as a 

graph and applying a graph-based ranking al-

gorithm (Wan and Yang., 2008). We thus use 

the PageRank score to reflect the importance 

of each sentence. 

Social connection factor function ( , )i jg y y : 

For the social correlation factor function, we de-

fine it through the pairwise network structure. That 

is, if the person of sentence i and the person of 

sentence j have a social relationship, a factor func-

tion for this social connection is defined (Tang et 

al., 2011a; Tang et al., 2011b), i.e., 

    2

, expi j ij i jg y y y y           (7) 

The person-person social relationships are de-

fined on Section 4, e.g. co_major, co_univ, co_title, 

and co_corp. We define that if two persons have at 

least one social connection edge, they have a so-

cial relationship. In addition, ij  is the weight of 

the function, representing the influence degree of i 

on j. 

To better understand our model, one example of 

factor decomposition is given in Figure 4. In this 

example, there are six sentences from three pro-

files. Among them, four sentences are labeled (two 

are labeled with the category of “1”, i.e,  1y   and 

the other two are labeled with the category of “0’, 

i.e., 0y  ) and two sentences are unlabeled (they 

are represented by y=?). We have six attribute 

functions. For example, 
1( , )if v y  denotes the set 
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of local textual attribute functions of iy . We also 

have five pairwise relationships (e.g., 2 4( , )y y ,

3 5( , )y y ) based on the structure of the input per-

sonal profile social network. For example, 

3 5( , )g y y  denotes social connection between 
3y  

and 
5y , while they share the co_major relationship 

on the left figure. 

5.3 Model Learning 

We now address the problem of estimating the free 

parameters. The objective of learning the CoFG 

model is to estimate a parameter configuration 

({ },{ })    to maximize the log-likelihood ob-

jective function ( ) log ( | , )L P Y X G  , i.e., 

 * argmax L                      (9) 

To solve the objective function, we adopt a gra-

dient descent method. We use   (the weight of 

the social connection factor function ( , )i jg y y ) as 

the example to explain how we learn the parame-

ters (the algorithm also applies to tune   by simp-

ly replacing  with ). Specifically, we first write 

the gradient of each k with regard to the objective 

function (Eq. 9) :  

  
 

   ( | , ), ,
kP Y X G

k

L
E g i j E g i j






            (10) 

Where [ ( , )]E g i j is the expectation of factor 

function ( , )g i j  given the data distribution (essen-

tially it can be considered as the average value of 

the factor function ( , )g i j over all pair in the train-

ing data); and 
( | , )

[ ( , )]
k Y X GPE g i j


is the expectation of 

factor function ( , )g i j under the distribution 

( | , )kP Y X G given by the estimated model. A 

similar gradient can be derived for parameter ja . 

We approximate the marginal distribution

( | , )
[ ( , )]

k Y X GPE g i j


 using LBP (Tang et al., 2011; 

Zhuang et al., 2012). With the marginal probabili-

ties, the gradient can be obtained by summing over 

all triads. It is worth noting that we need to per-

form the LBP process twice for each iteration: one 

is to estimate the marginal distribution of unknown 

variables ?iy   and the other is to estimate the 

marginal distribution over all pairs. In this way, 

the algorithm essentially performs a transfer learn-

ing over the complete network. Finally, with the 

obtained gradient, we update each parameter with 

a learning rate . The learning algorithm is sum-

marized in Figure 5. 

 

Input: Network G , Learning rate    

Output: Estimated parameters    

Initialize 0    

Repreat 

1) Perform LBP to calculate the 

marginal distribution of unknown 

variables, i.e.,  | ,i iP y x G   

2) Perform LBP to calculate the 

marginal distribution of each  

variables, i.e.,  ( , ), | ,i j i jP y y X G   

3) Calculate the gradient of k ac-

cording to Eq. 10 (for a  with a 

similar formula) 

4) Update parameter   with the 

learning rate   

               

 
new old

L 
  


 

 
Until Convergence 

Figure 5: The Learning Algorithm for CoFG model 

 

5.4 Model Prediction and Summary Gener-

ated 

We can see that in the learning process, the learn-

ing algorithm uses an additional loopy belief prop-

agation to infer the label of unknown relationships. 

With the estimated parameter , the summariza-

tion process is to find the most likely configuration 

of Y  for a given profile. This can be obtained by  

 * argmax | , ,Y L Y X G               (11) 

Finally, we select a subset of sentences of each 

testing profile as the summary according to the 

trained models with top-n prediction scores by *Y   

(Tang et al., 2011b; Dong et al, 2012).  

6 Experimentation 

In this section, we describe the settings of our ex-

periment and present the experimental results of 

our proposed CoFG model. 

722



6.1 Experiment Settings 

In the experiment, we use the corpus collected 

from LinkedIn.com that contains 497 profiles (see 

more details in Section 3). The existing summaries 

in these profiles are served as the reference sum-

mary (the standard answers). As discussed in sub-

section 3.3, the average length of summary is 

about 40 words. Thus, we extract 40 words to con-

struct the summary for each profile. We use 200 

personal profiles as the testing data, and the re-

maining ones as the training data. 

We use the ROUGE-1.5.5 (Lin and Hovy, 2004) 

toolkit for evaluation, a popular tool that has been 

widely adopted by several evaluations such as 

DUC and TAC (Wan and Yang, 2008; Wan, 2011). 

We provide four of the ROUGE F-measure scores 

in the experimental results: ROUGE-2 (bigram-

based), ROUGE-L (based on longest common 

subsequences), ROUGE-W (based on weighted 

longest common subsequence, weight=1.2), and 

ROUGE-SU4 (based on skip bigram with a maxi-

mum skip distance of 4).  

6.2 Experimental Results 

We compare the proposed CoFG approach with 

three baselines illustrated as follows: 

 Random: we randomly select sentences of 

each profile to generate the summary for the 

profile. 

 HITS: we employ the HITS algorithm to per-

form profile summarization (Wan and Yang, 

2008). In detail, we first consider the words as 

hubs the sentences as authorities; Then, we 

rank the sentences with the authorities’ scores 

for each profile individually; Finally, the 

highest ranked sentences are chosen to consti-

tute the summary. 

 PageRank: we employ the PageRank algo-

rithm to perform profile summarization (Wan 

and Yang, 2008). In detail, we first connect 

the sentences of the profile with cosine text-

based similar measure to construct a graph; 

Then, we apply PageRank algorithm to rank 

the sentence through the graph for each pro-

file individually; Finally, the highest ranked 

sentences are chosen to constitute the sum-

mary.  

  MaxEnt: as a supervised learning approach, 

maximum entropy uses textual attribute as 

features to train a classification model. Then, 

the classification model is employed to pre-

dict which sentences can be selected to gener-

ate the summary. For the implementation of 

MaxEnt, we employ the tool of mallent 

toolkits
4
. 

Table 4 shows the comparison results of our ap-

proach (CoFG) and the baseline approaches. From 

Table 4, we can see that 1) either HITS or Pag-

eRank outperforms the approach of  random selec-

tion; 2) The supervised approach i.e. MaxEnt, out-

performs both the HITS algorithm and the Pag-

eRank approach; 3) CoFG model performs best 

and it greatly outperforms both the unsupervised 

and supervised learning baseline approaches in 

terms of the ROUGE-2 F-measure score. This re-

sult verifies the effectiveness of considering the 

social connection between the sentences in differ-

ent profiles, 

Figure 6 shows the performance of our proposed 

CoFG model with different sizes of training data. 

From Figure 6, we can see that CoFG model with 

social connection always performs better than 

MaxEnt, and the performance of our approach de-

scends slowly when the training dataset becomes 

small. Specifically, the performance of CoFG us-

ing only 10% training data achieves better perfor-

mance than MaxEnt using 100% training data. 

 

                                                 
4 http://mallet.cs.umass.edu/ 

 ROUGE-2 ROUGE-L ROUGE-W ROUGE-SU4 

Random 0.0219 0.1363 0.0831 0.0288 

HITS 0.0295 0.1499 0.0905 0.0355 

PageRank 0.0307 0.1574 0.0944 0.0383 

MaxEnt 0.0349 0.1659 0.0995 0.0377 

CoFG 0.0383 0.1696 0.1015 0.0415 
Table 4: Performances of different approaches to profile summarization in terms of different measurements 
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Figure 6:  The performance of CoFG with different 

training data size 

 

Table 5 shows the contribution of the social 

edges with CoFG. Specifically, CoFG is our pro-

posed approach with both education and experi-

ence information, CoFG-edu means that the CoFG 

model considers the social edges of education field 

(co_major, co_univ) only, and CoFG-exp means 

that the CoFG model considers the social edges of 

work experience field (co_title, co_corp) only. 

MaxEnt can be considered as using textual infor-

mation only. 

 

 ROUGE-2 

MaxEnt 0.0349 

CoFG 0.0383 

CoFG-edu 0.0382 

CoFG-exp 0.0381 
Table 5: ROUGE-2 F-Measure score of the contribu-

tion of social edges 

 

From Table 5, we can see that all of our pro-

posed approaches, i.e., CoFG-edu, CoFG-exp, and 

CoFG, outperform the baseline approach, i.e., 

MaxEnt. However, the performance of CoFG-edu, 

CoFG-exp and CoFG are similar. This result is 

mainly due to the fact that the information of so-

cial connection is redundant. For example, two 

persons who are connected by co_major (educa-

tion field) might also be connected by co_corp 

(experience field).  

7 Conclusion and Future Work 

In this paper, we present a novel task named pro-

file summarization and propose a novel approach 

called collective factor graph model to address this 

task. One distinguishing feature of the proposed 

approach lies in its incorporating the social con-

nection. Empirical studies demonstrate that the 

social connection is effective for profile summari-

zation, which enables our approach outperform 

some competitive supervised and unsupervised 

baselines. 

The main contribution of this paper is to explore 

social context information to help generate the 

summary of the profiles, which represents an in-

teresting research direction in social network min-

ing. In the future work, we will explore more kinds 

of social context information and investigate better 

ways of incorporating them into profile summari-

zation and a wider range of social network mining. 
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Abstract

Recently, much research focuses on event s-
toryline generation, which aims to produce a
concise, global and temporal event summary
from a collection of articles. Generally, each
event contains multiple sub-events and the sto-
ryline should be composed by the componen-
t summaries of all the sub-events. However,
different sub-events have different part-whole
relationship with the major event, which is
important to correspond to users’ interests
but seldom considered in previous work. To
distinguish different types of sub-events, we
propose a mixture-event-aspect model which
models different sub-events into local and
global aspects. Combining these local/global
aspects with summarization requirements to-
gether, we utilize an optimization method to
generate the component summaries along the
timeline. We develop experimental systems on
6 distinctively different datasets. Evaluation
and comparison results indicate the effective-
ness of our proposed method.

1 Introduction

With the rapid growth of the World Wide Web, in-
formation explosion has become an important issue
to modern people. Those who search for informa-
tion from the Internet often get lost and confused
by the overwhelmingly large collection of web doc-
uments. So how to get a concise and global pic-
ture for a given event subject is an urgent prob-
lem to be solved. Although many document un-
derstanding systems have been proposed, such as

∗Corresponding author

multi-document summarization systems, to gener-
ate a compressed summary by extracting the ma-
jor information from the collection of documents,
they ignored the dynamic development information
of an event. Intuitively, each event is long-running
and contains multiple sub-events, including related
events. Users are likely to prefer a summary of all
occurrences of all the sub-events along the timeline
of the event. This motivates us to study the task of
generating event storyline from a collection of web
documents related to an event subject.

The research of event storyline summarization is
popular in recent years. Its task is to summarize a
collection of web documents by extracting represen-
tative information based on all the sub-events and
generate a global summary. Generally, generating
such a global storyline is quite interesting for the fol-
lowing main reasons: (1) It can help people catch the
whole incident based on an overall temporal struc-
tured summary for a given subject, and understand
the cause, climax, development process and result
of an event. (2) It can also make people know what
other events are related, or the effect of this incident
to subsequent events, which can present the evolu-
tion of an event along a timeline.

Though several methods of generating event sto-
ryline have been proposed recently, there are still
some problems unresolved. As event storyline sum-
marization is a process to generate component sum-
maries based on the multiple sub-events, which is d-
ifferent from traditional summarization focusing on
only one subject, so how to exactly extract all the
sub-events is the first challenge. Moreover, user-
s tend to bias to the sub-events which have global
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consistency with the given event subject, so the sub-
events should not be considered equally when gen-
erating the component summaries. It is also a great
challenge to generate a qualified summary based on
the different types of sub-events. The componen-
t summaries should be correlative across differen-
t dates based on the global collection (Yan et al.,
2011a).

Mei and Zhai (Mei and Zhai, 2005) proposed to
use theme or topic to model different sub-events,
which is to some extent similar to our method. To
be different, in this paper we introduce “local/glob-
al” property to distinguish different part-whole rela-
tionship between the sub-events and the major even-
t, which have not been considered before in story-
line generation or summarization, to improve the
quality of the storyline. The local/global proper-
ty corresponds to the elements of an event, such
as the place, characters and other body informa-
tion. These information reflects the relationship be-
tween the sub-events and the major event. Some
sub-events have distinctive body information and lit-
tle relevance with each other. They generally occur
for a local period, which we name as “local-sub-
events”. While other sub-events often share com-
mon properties with each other and have close re-
lationship with the major event and we call them
as “global-sub-events”. Here we give some exam-
ples to illustrate the difference. For the event “Con-
necticut school shooting” which occurred on Dec.14
2012, its sub-events such as “Obama’s speech for
this massacre” or “Gun control Act” have little word
co-occurrences and distinctive event body informa-
tion to each other, while the process and result of this
tragedy can be regarded as global-sub-events which
have a lot of word co-occurrences and share com-
mon properties with the major event.

Inspired by these, to detect different types of sub-
events based on word co-occurrences between sub-
events and the major event, we propose a mixture-
event-aspect (MEA) model to formalize differen-
t types of sub-events into local/global aspects, which
are implicated with clusters of sentences. Then com-
bining the local/global aspects with summarization
requirements together, we utilized an optimization
approach to get the optimal component summaries
along the timeline. We evaluate our method on 6 dis-
tinctively different datasets. Performance compar-

isons among different system-generated storylines
demonstrate the necessity to distinguish differen-
t types of sub-events and also indicates the effective-
ness of the proposed mixture-event-aspect model.

The rest of the paper is organized as follows. We
briefly review the related work in section 2. In sec-
tion 3 we present the details of optimized event s-
toryline generation based on mixture-event-aspect
model. Experiments and results are discussed in
Section 4. Finally we draw a conclusion of this s-
tudy in Section 5.

2 Related Work

Our work is related to several lines of research in the
literature including multi-document summarization
(MDS), topic detection and tracking (TDT), tempo-
ral text mining (TXM) and temporal news summa-
rization (TNS).

Multi-document summarization is a process to
generate a summary by reducing documents in size
while retaining the main information. To date, dif-
ferent features and ranking strategies have been s-
tudied. Radev et al. (Radev et al., 2004) proposed
to implement MEAD as a centroid-based summa-
rizer by combining several predefined features to s-
core the sentence. LexPageRank (Erkan and Radev,
2004) is the representative work which is based on
PageRank (Page et al., 1999) algorithm. Some meth-
ods have been proposed to extend the conventional
graph-based models recently including multi-layer
graph incorporated with different relationship (Wan,
2008), ToPageRank based on the topic information
(Pei et al., 2012) and DivRank (Mei et al., 2010) bal-
ancing the prestige and diversity.

Topic detection and tracking (TDT) aims to group
news articles based on the topics discussed in them,
detect some novel and previously unreported events
and track future events related to the topics (Wang
et al., 2012). Kumaran and Allan (Kumaran and Al-
lan, 2004) showed how performance on new event
detection could be improved by the use of text clas-
sification techniques as well as by using named en-
tities in a new way. Makkonen et al. (Makkonen
et al., 2004) proposed a method that incorporated
simple semantics into TDT by splitting the term s-
pace into groups of terms. Krause et al. Wang et al.
(Wang et al., 2007) and Wang et al. (Wang et al.,
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2009) worked on topic tracking from multiple news
streams. Their methods extracted meaningful top-
ics from multi-source news collections and tracked
different topics as they evolved from one to another
along the timeline.

Our work is also related to temporal text mining
and temporal news summarization. The task of tem-
poral news summarization is to generate news sum-
maries along the timeline from massive data. Chieu
et al. (Chieu and Lee, 2004) built a system that ex-
tracted events relevant to a query from a collection
of related documents and placed such events along
a timeline. Yan et al. (Yan et al., 2011b) designed
an evolutionary timeline summarization approach to
construct a timeline of a topic by optimizing the rel-
evance, coverage, coherence, and diversity. Lin et al.
(Lin et al., 2012) explored the problem of generating
storylines from microblogs for user input queries.
They first proposed a language model with dynamic
pseudo relevance feedback to obtain relevant tweet-
s and then generated storylines via graph optimiza-
tion.

3 Approach Details

In this section, we first propose a mixture-event-
aspect model to detect local/global sub-events based
on part-whole relationship with the major event and
then present a new method to estimate the bursty of
each aspect on a certain date. Afterwards we uti-
lize an optimization method based on local/global
aspects to extract the qualified summary.

3.1 Mixture-Event-Aspect Model

The key challenge to our storyline generation task
is to detect and distinguish different types of sub-
events contained in the article collection. In the col-
lection, each sentence is assigned with a certain date
and sentences that are assigned with the same date
are grouped into the same sub-collection. Consid-
ering the consistency of content between the sub-
events and the major event, we model different sub-
events into two types: local-sub-event and global-
sub-event, and introduce local/global aspects cor-
respondingly. Generally, local aspects which cor-
respond to local-sub-events have distinctive word-
s distribution from each other and sustain for a lo-
cal context while the global aspects corresponding

to global-sub-events have coincident words distri-
bution with the major event. To capture specific
words, Titov and McDonald (Titov and McDonald,
2008) proposed a multi-grain topic model, relying
on word co-occurrences within short paragraphs and
Li et al. (Li et al., 2010) proposed a entity-aspect
model based on word co-occurrences within single
sentences. Inspired by these ideas, we rely on word
co-occurrences within local period context to detec-
t mixed local and global aspects implicated in the
whole collection. We name this model as “Mixture-
Event-Aspect (MEA)” model which can simultane-
ously detect local/global aspects and cluster sen-
tences and words into different aspects.

3.1.1 Model Description
Our mixture-event-aspect (MEA) model can be

extended from both the Probabilistic Latent Seman-
tic Analysis (PLSA) (Hofmann, 1999) and Laten-
t Dirichlet Allocation (LDA) (Blei et al., 2003). We
model two distinct types of aspects: global aspect-
s and local aspects, based on their relationship with
the major event. The distribution of global aspects is
fixed for the collection while the distribution of local
aspects is fixed to a local period of sub-collections.
That means a sentence is sampled either from the
mixture of the global aspects or from the local as-
pects specific for the local context. Here we take
the event “Connecticut school shooting” as an exam-
ple. For the sentence “On Sunday, President Obama
came to Connecticut to give a lecture, expressing his
sorrow for ... and calling for an end to such inci-
dents”, the words such as “Obama”, “lecture”, “ex-
press” are only occurred for the local period of two
days and have no co-occurrence with other neigh-
boring period sentences, so we sample the sentence
as a local aspect sentence. But for the sentence “All
schools in Newtown, the northeastern U.S. state of
Connecticut were in lockdown after a shooting was
reported at a local elementary school”, the word-
s such as “Connecticut”, “shooting”, “elementary”
have high co-occurrence frequency in the whole col-
lection, so we sample the sentence as a global aspect
sentence.

To detect aspects, we first divide words into two
types: aspect words and background words. Back-
ground words are commonly used in the whole even-
t corpus while aspect words are clearly associat-
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ed with the aspects of the sentences they occur in.
Stop words are removed using a standard stop word
list. In order to get the distribution of local aspect-
s, we implement a mechanism called “Time Win-
dow” which covers Sp sequential time-based sub-
collections. We associate each time window with
a distribution over local aspects and a distribution
defining preference of local aspects versus global as-
pects.

draw φB ∼ Dir(β), ψc(v) ∼ Dir(λ), π ∼ Dir(γ)

draw φgl ∼ Dir(β) for Agl times

draw φloc ∼ Dir(β) for Aloc times

choose a distribution of global aspects θgl ∼ Dir(αgl)

For each time window v in collection c

choose θloc
c,v ∼ Dir(αloc)

choose ρc,v ∼ Beta(αmix)

For each sentence s in collection c

choose window νc,s ∼ ψc

choose ηc,s ∼ ρc,νc,s

if ηc,s = gl, zc,s ∼ θgl

if ηc,s = loc, zc,s ∼ θloc
c,v

For each word w of sentence s in collection c

draw yc,s,n ∼Multi(π)

draw wc,s,n ∼Multi(φB) if yc,s,n = 1

draw wc,s,n ∼Multi(φzc,s) if yc,s,n = 2

Figure 1: The Collection Generation Process

Formally, let C = {Ct|t = 1, 2, 3, ..., T} be
T time based sub-collections related to the even-
t subject, Ct represents the collection of sentences
which are assigned with the date t. Let v be a time
window containing Sp sequential sub-collections,
v = {Ct|t = i, i + 1, ..., i + Sp − 1}. We draw
a background unigram language model which gen-
erates words for all sub-collections, and draw Agl

global aspect unigram language models for global
aspects andAloc word distributions for local aspects.
We assume these word distributions have a uniform
Dirichlet prior Dir(β). There is also a multinomi-
al distribution π that controls in each sentence how
often the word occurs as a background word or an
aspect word. π has a Dirichlet prior with parame-
ter γ. We assign each window v with an distribution
over local aspects and a distribution ρ defining pref-
erence for local aspects versus global aspects. ρ has

a Beta prior αmix. A sentence can be sampled using
any window which is chosen according to a categor-
ical distribution.

In Figure 2 the corresponding graphical model is
presented. This model allows for fast approximate
inference with collapsed Gibbs sampling.

Figure 2: Mixture-Event-Aspect Model

Let SC denotes the number of sentences in col-
lection C, Nc,s denotes the number of words in sen-
tence s of collection c, and wc,s,n denotes the nth

word in sentence s. There are two kinds of hidden
variables: zc,s for each sentence to indicate the as-
pect a sentence belongs to, and yc,s,n for each word
to indicate whether a word is generated from the
background model or the aspect model.

3.1.2 Inference via Gibbs Sampling

In order to estimate the hidden parameter-
s in the model, we try to maximize distribution
p(z,y|w;α, β, γ, λ), where z, y and w represent the
set of all z, y and w variables, respectively. Giv-
en a sentence s in the collection c, we apply Gibbs
Sampling to estimate the conditional probability for
local/global aspects using the following rules:

p(vc,s = vh, ηc,s = gl, zc,s = a|v′ , z′ , y, w) ∝
nc

h∗+λ

nc
(.)

+S∗
pλ ·

n
c,vh
gl

+αmix
gl

n
c,vh
(.)

+
∑

r
′∈gl,loc

αmix

r
′

· nc
gl,a+αgl

nc
gl

+Aglαgl ·

∏L

l=1

∏E(l)−1

i=0
(Ca

(l)
+i+β)

Π
E(.)−1
i=0 (Ca

(.)
+i+Lβ)
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p(vc,s = vh, ηc,s = loc, zc,s = a|v′ , z′ , y, w) ∝
nc

h∗+λ

nc
(.)

+S∗
pλ · n

c,vh
loc

+αmix
loc

n
c,vh
(.)

+
∑

r
′∈gl,loc

αmix

r
′

·
n

c,vh
loc,a

+αloc

n
c,vh
loc

+Alocαloc
·

∏L

l=1

∏E(l)−1

i=0
(Ca

(l)
+i+β)∏E(.)−1

i=0
(Ca

(.)
+i+Lβ)

where nc
h∗ =#{si|vc,si = vi−sp+h∗+1}, denotes

the number of times a sentence si in collection c is
assigned to its h∗th window and for each sentence
si, we have h = i− Sp + 1 + h∗. S∗

p is the number
of windows that contain sentence s. nc

(.) denotes the
number of sentences in collection c. Sp represents
the number of dates a window covered. nc,vh

gl and
nc,vh

loc are the number of sentences in window vh that
are assigned to global or local aspects. nc,vh

(.) is the
number of sentences assigned to window vh. nc

gl,a

is the number of sentences in all global aspects that
are assigned to aspect a and nc,vh

loc,a is the number of
local aspect sentences in the window vh are assigned
to aspect a. Agl is the number of global aspects in
collection C while Aloc is the number of local as-
pects. E(l) represents the number of times of word
l occurs in the current sentence and is assigned to
be an aspect word, while E(.) is the total number of
words in the current sentence that are assigned to be
an aspect word.

Then we compute the assignments of the consid-
ered word. We sample the hidden variables yc,s,n for
each word with the following rules:

p(yc,s,n = 1|z, y
′
) ∝

Cπ
(1) + γ

Cπ
(·) + 2 · γ

·
CB

(wc,s,n) + β

CB
(·) + L · β

p(yc,s,n = 2|z, y
′
) ∝

Cπ
(2) + γ

Cπ
(·) + 2 · γ

·
Ca

(wc,s,n) + β

Ca
(·) + L · β

where Cπ
(1) and Cπ

(2) are the numbers of words as-
signed to be background words and aspect words.
Cπ

(·) is the total number of words. CB
(·) is the total

number of background words and Ca
(·) is the number

of words assigned to aspect a.
By using the samples from Gibbs sampling, we

can effectively make the following estimations:

φB
w = CB

w +β

CB
· +L·β , φ

a
w = Ca

w+β
Ca

w+L·β , ψh∗ =
nc

h∗+λ

nc
(.)

+S∗
pλ

πy =
Cπ

y +γ

Cπ
· +2·γ , ρ

c,v
η =

nc,v
η +αmix

η

nc,v+
∑

r∈(gl,loc)

αmix
r

θgl
a =

nc
gl,a+αgl

nc
gl

+Aglαgl , θ
loc
a =

nc,v
loc,a

+αloc

nc,v
loc

+Alocαloc

The hyper-parameters like α, β, γ, λ can be estimat-
ed using standard methods introduced in (Minka,
2000).

3.2 Bursty Period Detection
We borrow the definition of “bursty” from (Lappas
et al., 2009) to measure the popularity of the event
on a certain date. Intuitively, each aspect have differ-
ent bursties on different dates. In this section, we try
to obtain the temporal aspect sequences of an event
based on the bursty periods of all the aspects. Dur-
ing its bursty period, one aspect should (1)be more
popular than other aspects (2) be continuously more
popular than other time. Following these intuitions,
we design a method to measure the bursty of each
aspect and get the bursty period.

Let Ak be the kth aspect obtained from the
mixture-event-aspect model, we estimate the bursty
of Ak at a certain date t as follows.

bursty(Ak,t) = p(t|Ak) =
p(Ak|t) · p(t)∑

t′
p(Ak|t′)p(t′)

where p(Ak|t) is measured by the number of sen-
tences assigned to aspect Ak in date t divided by the
total number of sentences in date t. p(t) is estimated
by the total number of sentences in aspect Ak divid-
ed by the overall number of sentences in the collec-
tion C.

After getting the bursty of aspect Ak at each date,
we can find the most popular date and expand on
both sides to obtain the whole burst period in which
the bursties are higher than the neighboring aspects
and continuous higher than other dates.

3.3 Optimization-based Storyline Generation
With the methods discussed in previous sections, we
can get the local/global aspect sequence. Each as-
pect contains numbers of sentences and we are aim-
ing to select the most representative ones to compose
the final storyline. Considering users’ bias and the
length requirement, different aspects should have d-
ifferent proportions in the last storyline. For glob-
al aspects which correspond more to users’ interest,
they should share a larger proportion in the final sto-
ryline than local aspects. Thus, we use an optimiza-
tion method to determine if a sentence is selected to
be an summary sentence or to be discarded based on
the multiple local/global aspects and finally get the
optimal storyline. We formalize this problem as se-
lecting a subset of sentences S from the aspect Ak
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to minimize the information loss.

arg min
∑

Ak∈C,S∈Ak

∑
z∈Ak−S,s∈S

O(z, s)

where O(z, s) is the cost function which measures
the cost of representing sentence z with sentence s.
Generally, this is an NP-hard problem (Cheung et
al., 2009) but we can use POPSTAR, an implemen-
tation of an approximate solution proposed by Re-
sende and Werneck (Resende and Werneck, 2004).
To model different costs between global or local
aspects and determine the proportions of differen-
t aspects in the final storyline, we utilize a func-
tion ζ(s). When sentences z and s are local as-
pect sentences, ζ(s) = χ, or, ζ(s) = 1 − χ. For-
mally, we incorporate two kinds of decreasing/in-
creasing logistic functions, ℓ1(x) = 1/(1 + ex) and
ℓ2(x) = ex/(1 + ex), to define the cost function as

O(z, s) = ζ(s) · ℓ1(S(s)) · ℓ2(S(z)) ·DKL(s, z)

where S(s) and S(z) are the ranking scores of sen-
tences s and z among the aspectAk with LexPageR-
ank algorithm. DKL(s, z) is used to measure the
similarity between sentence s and z with Kullback-
Leibler divergence here.

With this optimization method, we get the repre-
sentative sentences of each aspect for the given event
subject. Combining all the representative sentences
together based on the aspect sequence, we finally
generate the storyline.

4 Experiments and Evaluation

4.1 Datasets
To evaluate our framework for event storyline gen-
eration, we conduct our experiments on the dataset-
s amounting to 12418 articles for 6 event subjects
from 6 famous news websites, which provide date
edited by professional editors. Each article consists
of three parts, title, publish-time and news content.
Table 1 and Table 2 give the brief description of the
12418 articles. To generate reference summary, we
invite 12 undergraduate students with good English
ability to read the sentences, and for each event sub-
ject we ask two students to label human storylines.

4.2 Evaluation Metrics
We use the ROUGE1 (Lin and Hovy, 2003) (Recall
Oriented Understudy for Gisting Evaluation) toolkit

1http://www.isi/edu/licensed-sw/see/rouge/

Table 1: News sources of the 6 datasets
News Sources Number of Articles

CNN 2357
Fox News 1936

New York Times 2178
ABC 2113

Washington Post 1405
Xinhua 2429

Table 2: Event subjects of the datasets
Event Subjects Number of Articles

Connecticut school shooting 1792
The earthquake in Tokyo, Japan 2046
The U.S. presidential election 2573

Sandy hurricane attacked America 1827
American curiosity rover landed on Mars 1651

The 30th London Olympic Games 2529

to evaluate our framework, which has been widely
applied for summarization evaluation. It evaluates
the quality of a summary by counting the overlap-
ping units between the candidate summary and ref-
erence summaries. There are many kinds of ROUGE
metrics to measure the system-generated summa-
rization such as ROUGE-N, ROUGE-L, ROUGE-
W, and ROUGE-U, of which the most important one
is ROUGE-N with 3 sub-metrics: precision, recall,
and F-score.

ROUGE − N =

∑
S∈RS

∑
N−gram∈S

Countmatch(N − gram)∑
S∈RS

∑
N−gram∈S

Count(N − gram)

where RS represents the reference summaries. N-
gram∈RS in the metrics denotes the N-grams in ref-
erence summaries. Countmatch(N − gram) is the
maximum number of N-grams co-occurring in the
candidate summary and in the set of reference sum-
maries. Count(N − gram) is the number of N-
grams in the reference summaries.

The ROUGE toolkit can report separate scores for
1, 2, 3, and 4-gram. In the experimental results we
report three ROUGE F-measure scores: ROUGE-
1, ROUGE-2, ROUGE-W metrics. The higher the
ROUGE scores, the better the summary is.

4.3 Algorithms for Comparison
Given a collection of news articles, we first decom-
pose them into sentences, and then assign each sen-
tence with a certain date, afterwards stop-words re-
moving and words stemming are performed. We
choose the following algorithms as baseline system-
s. Specifically, baseline 2 and 3 are summarization
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systems which are similar to our storyline genera-
tion system. Then we choose baseline 4, 5 to evalu-
ate the effectiveness of the proposed method. It must
be said that all the systems are required to generate
the same number of summary words with the hu-
man reference. We conduct the same preprocessing
for all algorithms for fairness.
• Random : The method selects sentences ran-

domly from the sentence collection.
• LexPageRank (LexRank): This method applies

the graph-based multi-document summarization al-
gorithm which first constructs a sentence connec-
tivity graph based on the cosine similarity and then
chooses top-ranked sentences with PageRank.
• Chieu : This method was proposed by Chieu

(Chieu and Lee, 2004), utilizing interest and bursti-
ness to rank sentences, and choosing the top-ranked
query related sentences to construct the timeline.
• LDA+LexPageRank (LDALR) : This method

first applies standard LDA to detect latent topics
from the collection and clusters sentences to mul-
tiple aspects, then utilizes PageRank to generate the
most representative component summaries from all
the aspects.
• MEA+LexPageRank (MEALR) : This method

applies the proposed mixture-event-aspect model to
cluster sentences into multiple aspects and then uti-
lizes PageRank to generate the most representative
component summaries from all the aspects.
• MEA+Optimization (MEAOp) : This method

extracts local/global aspects with the proposed
mixture-event-aspect model, and then utilizes the
optimization method to get the qualified summary.

Figure 3: Overall performance for comparison

Table 3: Results of different systems on 6 subjects
Subject1 Subject2

Systems R-1 R-2 R-W R-1 R-2 R-W
Random 0.234 0.037 0.188 0.242 0.039 0.192
LexRank 0.317 0.045 0.257 0.326 0.051 0.262

Chieu 0.332 0.056 0.277 0.351 0.055 0.283
LDALR 0.356 0.069 0.297 0.369 0.066 0.327
MEALR 0.369 0.072 0.313 0.381 0.076 0.348
MEAOp 0.381 0.075 0.331 0.398 0.081 0.364

Subject3 Subject4
Systems R-1 R-2 R-W R-1 R-2 R-W
Random 0.258 0.042 0.191 0.234 0.036 0.179
LexRank 0.339 0.049 0.272 0.309 0.043 0.242

Chieu 0.364 0.059 0.296 0.329 0.053 0.264
LDALR 0.383 0.071 0.331 0.347 0.065 0.308
MEALR 0.396 0.076 0.3512 0.368 0.069 0.312
MEAOp 0.419 0.082 0.371 0.376 0.071 0.323

Subject5 Subject6
Systems R-1 R-2 R-W R-1 R-2 R-W
Random 0.222 0.034 0.166 0.264 0.045 0.195
LexRank 0.309 0.042 0.237 0.349 0.054 0.276

Chieu 0.319 0.049 0.258 0.371 0.062 0.293
LDALR 0.342 0.062 0.291 0.392 0.073 0.325
MEALR 0.372 0.068 0.299 0.406 0.079 0.349
MEAOp 0.384 0.070 0.309 0.427 0.087 0.368

4.4 Overall Performance Comparison

We experiment with all the baselines and our frame-
work on the 6 datasets. We take the average F-
score performance in terms of 3 ROUGE-F scores:
ROUGE-1, ROUGE-2 and ROUGE-SU4. The over-
all results are shown in Figure 3 and details are listed
in Tables 3.

Figure 3 and Table 3 show the performance of
these systems on the same datasets. The local/global
optimization balance parameter χ = 0.5. From Fig-
ure 3 and Table 3 we have following observations:
• Generally, the Random gets the worst perfor-

mance;
• The LexRank system outperforms Random al-

gorithm. This is due to the fact that LexRank ranks
all the sentences based on eigenvector centrality and
the global relationship between sentences, which
tends to select the most informative sentences as the
summary.
• The results of Chieu (Chieu and Lee, 2004) sys-

tem are better than those of LexRank. This may
be mainly for the reason that Chieu used the date
dimension to filter away uninteresting sentences by
paraphrasing and defined two different ranking mea-
sures: interest and burtiness, to select top-ranked in-
formative sentences.
• The LDALR system outperforms the Chieu sys-
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tem. This may be for the fact that Chieu’s method is
actually based on flat clustering-based summariza-
tion, which is not as effective as LDA topic model
to extract latent sub-events.

Figure 4: Examine the performance of the balance pa-
rameter χ

• The MEALR system outperforms the LDAL-
R system. This may be mainly for the reason that
MEALR utilizes the mixture-event-aspect model to
detect the more salient sub-events based on the sub-
whole relationship, which seems to satisfy users’
bias to different sub-events.
• The MEAOp system which utilizes our method

outperforms all the baselines, indicating the effec-
tiveness of detecting different types of sub-events
with mixture-event-aspect model and the necessity
to distinguish different proportions of the compo-
nent summaries based on local/global aspects.

4.5 Parameter Tuning

Figure 5: Aspect sequence of event “Connecticut school
shooting” (X-axis is the number of days after Dec. 14,
2012. Y-axis is bursty(Ak,t))

In this section, we compare the performance of
the parameters. The hyper-parameters such as α, β,
γ, λ can be estimated using standard methods intro-
duced by Minka (Minka, 2000). So we mainly ex-
amine the local/global optimization balance parame-
ter χ. We try to evaluate the influence of this param-
eter on the three kinds of ROUGE measure results
respectively. Figure 4 shows the performance of the
balance parameters χ. It is obvious that when the
balance parameter χ is set to 0.7 this method per-
forms best.

4.6 Sample Output and Case Study

Figure 6: Bursties of sub-event “Gun control debate” (X-
axis is the number of days after Dec. 14, 2012. Y-axis is
bursty(Ak,t))

We take the event “Connecticut school shooting”
as an example to show the usefulness of our method.
Figure 5 shows the aspect sequence based on the
bursty periods of all aspects. We select a sub-
event “Gun control debate” and Figure 6 shows the
bursties of this sub-event on the whole timeline. Ta-
ble 4 shows part of the storylines for the event “Con-
necticut school shooting” generated by human and
our method. Through observation, we find that the
peak of the event “Connecticut school shooting” is
around the date when it occurred, and the sub-event
“Gun control debate” has two bursty periods around
the two peaks. Compared with the human summary,
our framework can extract the important sub-events
contained in the collection, and satisfy users’ inter-
est on different sub-events based on the part-whole
relationship with the event subject.

From the sample output and the human storylines,
we also get some observations. (1) The component
summary of global aspect tend to share larger pro-
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Table 4: Selected part of storyline generated by MEAOp and human
Storyline Generated by human:
December 14, 2012 Global Aspect
Shooting massacre occurred in a primary school in Connecticut town, Sandy hoot Newton.
20-year-old Adam lanza broke into the primary school after shotting his mother, and in 10 minutes shot more than 100 times, killing twenty children
and eight adult, including himself.
The youngest death was a children in preschool students.
December 15, 2012 Global Aspect
Photos of the teachers and students shoot in the Connecticut massacre are released as well as the shooter’s.
The shooter was very smart but lonely.
December 16-17, 2012 Local Aspect
President Obama arrived in the locality of school shooting, mourned for the victims and made a speech.
December 18-20, 2012 Local Aspect
American gun control bill was put on the agenda again.

Storyline Generated by MEAOp:
December 14, 2012 Global Aspect
Children and adults gunned down in Connecticut school massacre.
20 children, six adults and the shooter are dead after shooting at Sandy Hoot Elementary School in Newtown, Connecticut.
Three law enforcement officials say Adam Lanza, 20, was the shooter, and that he died apparently by his own hand.
Suspect’s mother, Nancy Lanza, found dead in suspects home in Newtown, law enforcement source says.
Ryan Lanza, older brother of Adam Lanza, questioned by police but not labeled a suspect.
December 15-16, 2012 Global Aspect
Victims’ names released Saturday; all of the slain children were either 6 or 7 years old.
Understanding school lockdowns in regards to Connecticut shooting.
Connecticut gunman recalled as intelligent but remote.
December 17, 2012 Local Aspect
President obama leads interfaith preyer vigil in newtown connecticut.
A tearful Obama says “we’ve endured too many of these tragedies”.
December 18-20, 2012 Local Aspect
Moderate dems join gun control debate call for commission on us violence gains.
Gun debate gains traction as some lawmakers say its time to act.

portion in the final storyline. This is mainly for
the reason that when researching for an event sub-
ject, users bias more to the information about the
global-sub-events that have closely connection and
coincident properties with the major event based on
the part-whole relationship. So it is really neces-
sary to distinguish different sub-events with distinc-
tive properties. (2) Our system performs better for
the persistent event, such as “The U.S. presidential
election”. This may be for the fact that these events
are usually long running and have more global-sub-
events than local-sub-events.

5 Conclusion

In this work, we study the task of event storyline
generation and present a novel method. We inno-
vatively introduce the properties of different sub-
events based on word co-occurrences to determine
the part-whole relationship with the major event and
develop a mixture-event-aspect (MEA) model to for-
malize different types of sub-events into local/global
aspects. Based on these local/global aspects, we uti-
lize an optimization method to get the optimal com-

ponent summaries along the aspect sequence. We
conduct experiments with our method and various
baselines on real web datasets. Through our exper-
iments we notice that our method generates over-
all better storyline than other baselines. This indi-
cates the effectiveness to detect different types of
sub-events with the proposed mixture-event-aspect
model and the necessity to distinguish different pro-
portions of the component summaries based on lo-
cal/global aspects.
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Abstract

Document summarization is an important task

in the area of natural language processing,

which aims to extract the most important in-

formation from a single document or a clus-

ter of documents. In various summarization

tasks, the summary length is manually de-

fined. However, how to find the proper sum-

mary length is quite a problem; and keeping

all summaries restricted to the same length

is not always a good choice. It is obvi-

ously improper to generate summaries with

the same length for two clusters of docu-

ments which contain quite different quantity

of information. In this paper, we propose

a Bayesian nonparametric model for multi-

document summarization in order to automat-

ically determine the proper lengths of sum-

maries. Assuming that an original document

can be reconstructed from its summary, we

describe the ”reconstruction” by a Bayesian

framework which selects sentences to form

a good summary. Experimental results on

DUC2004 data sets and some expanded data

demonstrate the good quality of our sum-

maries and the rationality of the length deter-

mination.

1 Introduction

Text summarization is the process of generating a

short version of a given text to indicate its main top-

ics. As the number of documents on the web expo-

nentially increases, text summarization has attracted

increasing attention, because it can help people get

the most important information within a short time.

In most of the existing summarization systems,

people need to first define a constant length to re-

strict all the output summaries. However, in many

cases it is improper to require all summaries are of

the same length. Take the multi-document summa-

rization as an example, generating the summaries

of the same length for a 5-document cluster and a

50-document cluster is intuitively improper. More

specifically, consider two different clusters of doc-

uments: one cluster contains very similar articles

which all focus on the same event at the same time;

the other contains different steps of the event but

each step has its own topics. The former cluster may

need only one or two sentences to explain its infor-

mation, while the latter needs to include more.

Research on summary length dates back in the

late 90s. Goldstein et al. (1999) studied the char-

acteristics of a good summary (single-document

summarization for news) and showed an empiri-

cal distribution of summary length over document

size. However, the length problem has been grad-

ually ignored later, since researchers need to fix

the length so as to estimate different summarization

models conveniently. A typical instance is the Doc-

ument Understanding Conferences (DUC)1, which

provide authoritative evaluation for summarization

systems. The DUC conferences collect news arit-

cles as the input data and define various summariza-

tion tasks, such as generic multi-document summa-

rization, query-focused summarization and update

summarization. In all the DUC tasks, the output is

restricted within a length. Then human-generated

1After 2007, the DUC tasks are incorporated into the Text

Analysis Conference (TAC).
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summaries are provided to evaluate the results of dif-

ferent summarization systems. Limiting the length

of summaries contributed a lot to the development

of summarization techniques, but as we discussed

before, in many cases keeping the summaries of the

same size is not a good choice.

Moreover, even in constant-length summariza-

tion, how to define a proper size of summaries for

the summarization tasks is quite a problem. Why

does DUC2007 main task require 250 words while

Update task require 100 words? Is it reasonable?

A short summary may sacrifice the coverage, while

a long summary may cause redundance. Automati-

cally determining the best size of summaries accord-

ing to the input documents is valuable, and it may

deepen our understanding of summarization.

In this work, we aim to find the proper length

for document summarization automatically and gen-

erate varying-length summaries based on the doc-

ument itself. The varying-length summarization is

more robust for unbalanced clusters. It can also

provide a recommended size as the predefined sum-

mary length for general constant-length summariza-

tion systems. We advance a Bayesian nonparametric

model of extractive multi-document summarization

to achieve this goal. As far as we are concerned, it is

the first model that can learn appropriate lengths of

summaries.

Bayesian nonparametric (BNP) methods are pow-

erful tools to determine the size of latent vari-

ables (Gershman and Blei, 2011). They let the data

”speak for itself” and allow the dimension of la-

tent variables to grow with the data. In order to

integrate the BNP methods into document summa-

rization, we follow the assumption that the original

documents should be recovered from the reconstruc-

tion of summaries (Ma and Wan, 2010; He et al.,

2012). We use the Beta process as a prior to gen-

erate binary vectors for selecting active sentences

that reconstruct the original documents. Then we

construct a Bayesian framework for summarization

and use the variational approximation for inference.

Experimental results on DUC2004 dataset demon-

strate the effectiveness of our model. Besides, we

reorganize the original documents to generate some

new datasets, and examine how the summary length

changes on the new data. The results prove that our

summary length determination is rational and neces-

sary on unbalanced data.

2 Related Work

2.1 Research on Summary Length

Summary length is an important aspect for gener-

ating and evaluating summaries. Early research on

summary length (Goldstein et al., 1999) focused on

discovering the properties of human-generated sum-

maries and analyzing the effect of compression ratio.

It demonstrated that an evaluation of summarization

systems must take into account both the compres-

sion ratios and the characteristics of the documents.

Radev and Fan (2000) compared the readability and

speedup in reading time of 10% summaries and 20%
summaries2 for topic sets with different number of

documents. Sweeney et al. (2008) developed an in-

cremental summary containing additional sentences

that provide context. Kaisser et al. (2008) studied

the impact of query types on summary length of

search results. Other than the content of original

documents, there are also some other factors affect-

ing summary length especially in specific applica-

tions. For example, Sweeney and Crestani (2006)

studied the relation between screen size and sum-

mary length on mobile platforms. The conclusion of

their work is the optimal summary size always falls

into the shorter one regardless of the screen size.

In sum, the previous works on summary length

mostly put their attention on the empirical study of

the phenomenon, factors and impacts of summary

length. None of them automatically find the best

length, which is our main task in this paper. Nev-

ertheless, they demonstrated the importance of sum-

mary length in summarization and the reasonability

of determining summary length based on content of

news documents (Goldstein et al., 1999) or search

results (Kaisser et al., 2008). As our model is mainly

applied for generic summarization of news articles,

we do not consider the factor of screen size in mo-

bile applications.

2.2 BNP Methods in Document Summarization

Bayesian nonparametric methods provide a

Bayesian framework for model selection and

adaptation using nonparametric models (Gershman

210% and 20% are the compression rates, and the documents

are from search results in information retrieval systems.
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and Blei, 2011). A BNP model uses an infinite-

dimensional parameter space, but invokes only a

finite subset of the available parameters on any

given finite data set. This subset generally grows

with the data set. Thus BNP models address the

problem of choosing the number of mixture compo-

nents or latent factors. For example, the hierarchical

Dirichlet process (HDP) can be used to infer the

number of topics in topic models or the number of

states in the infinite Hidden Markov model (Teh et

al., 2006).

Recently, some BNP models are also involved in

document summarization approaches (Celikyilmaz

and Hakkani-Tür, 2010; Chang et al., 2011; Darling

and Song, 2011). BNP priors such as the nested Chi-

nese restaurant process (nCRP) are associated with

topic analysis in these models. Then the topic dis-

tributions are used to get the sentence scores and

rank sentences. BNP here only impacts the number

and the structure of the latent topics, but the sum-

marization framework is still constant-length. Our

BNP summarization model differs from the previous

models. Besides using the HDP for topic analysis,

our approach further integrates the beta process into

sentence selection. The BNP method in our model

are directly used to determine the number of sum-

mary sentences but not latent topics.

3 BNP Summarization

In this section, we first introduce the BNP priors

which will be used in our model. Then we propose

our model called BNP summarization.

3.1 The Beta Process and the Bernoulli process

The beta process(BP) (Thibaux and Jordan, 2007;

Paisley and Carin, 2009) and the related Indian buf-

fet process(IBP) (Griffiths and Ghahramani, 2005)

are widely applied to factor/feature analysis. By

defining the infinite dimensional priors, these factor

analysis models need not to specify the number of

latent factors but automatically determine it.

Definition of BP (Paisley et al., 2010): Let B0 be

a continuous measure on a space Θ and B0(Θ) = γ.

If Bk is defined as follows,

Bk =

N∑
k=1

πkδθk
,

πk ∼ Beta(
αγ

N
, α(1 − γ

N
))

θk ∼ 1

γ
B0 (1)

(where δθk
is the atom at the location θk; and α is a

positive scalar), then as N → ∞, Bk → B and B is

a beta process: B ∼ BP (αB0).

Finite Approximation: The beta process is de-

fined on an infinite parameter space, but sometimes

we can also use its finite approximation by sim-

ply setting N to a large number (Paisley and Carin,

2009).

Bernoulli Process: The beta process is conju-

gate to a class of Bernoulli processes, denoted by

X ∼ Bep(B). If B is discrete, of the form in

(1), then X =
∑

k bkδθk
where the bk are indepen-

dent Bernoulli variables with the probability p(bk =
1) = πk. Due to the conjugation between the

beta process priors and Bernoulli process, the pos-

terior of B given M samples X1, X2, ...XM where

Xi ∼ Bep(B)fori = 1, , , M. is also a beta process

which has updated parameters:

B|X1, X2, ..., XM

∼ BP (α + M, α
α+M B0 + 1

c+M

∑
i Xi) (2)

Application of BP: Furthermore, marginalizing

over the beta process measure B and taking α =
1, provides a predictive distribution on indicators

known as the Indian buffet process (IBP) (Thibaux

and Jordan, 2007). The beta process or the IBP is

often used in a feature analysis model to generate

infinite vectors of binary indicator variables(Paisley

and Carin, 2009), which indicates whether a feature

is used to represent a sample. In this paper, we use

the beta process as the prior to select sentences.

3.2 Framework of BNP Summarization

Most existing approaches for generic extractive

summarization are based on sentence ranking. How-

ever, these methods suffer from a severe problem

that they cannot make a good trade-off between

the coverage and minimum redundancy (He et al.,
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2012). Some global optimization algorithms are de-

veloped, instead of greedy search, to select the best

overall summaries (Nenkova and McKeown, 2012).

One approach to global optimization of summariza-

tion is to regard the summarization as a reconstruc-

tion process (Ma and Wan, 2010; He et al., 2012)

. Considering a good summary must catch most of

the important information in original documents, the

original documents are assumed able to be recov-

ered from summaries with some information loss.

Then the summarization problem is turned into find-

ing the sentences that cause the least reconstruction

error (or information loss). In this paper, we fol-

low the assumption and formulate summarization as

a Bayesian framework.

First we review the models of (Ma and Wan,

2010) and (He et al., 2012). Given a cluster of

M documents x1, x2, ..., xM and the sentence set

contained in the documents as S = [s1, s2, ..., sN ],
we denote all corresponding summary sentences as

V = [v1, ..., vn], where n is the number of summary

sentences and N is the number of all sentences in

the cluster. A document xi and a sentence vi or si

here are all represented by weighted term frequency

vectors in the space R
d, where d is the number of

total terms (words).

Following the reconstruction assumption, a can-

didate sentence vi can be approximated by the

linear combination of summary sentences: si �∑n
j=1 w′

jvj , where w′
j is the weight for summary

sentence vj . Thus the document can also be ap-

proximately represented by a linear combination of

summary sentences (because it is the sum of the sen-

tences).

xi �
n∑

j=1

wjvj . (3)

Then the work in (He et al., 2012) aims to find

the summary sentence set that can minimize the re-

construction error
∑N

i=1 ||si −
∑n

j=1 w′
jvj ||2; while

the work in (Ma and Wan, 2010) defines the prob-

lem as finding the sentences that minimize the dis-

tortion between documents and its reconstruction

dis(xi,
∑n

j=1 wjvj) where this distortion function

can also be a squared error function.

Now we consider the reconstruction for each doc-

ument, if we see the document xi as the dependent

variable, and the summary sentence set S as the

independent variable, the problem to minimize the

reconstruction error can be seen as a linear regres-

sion model. The model can be easily changed to a

Bayesian regression model by adding a zero-mean

Gaussian noise ε (Bishop, 2006), as follows.

xi =

n∑
j=1

wjvj + εi (4)

where the weights wj are also assigned a Gaussian

prior.

The next step is sentence selection. As our sys-

tem is an extractive summarization model, all the

summary sentences are from the original document

cluster. So we can use a binary vector zi =<
zi1, ..., ziN >T to choose the active sentences V
(i.e. summary sentences) from the original sen-

tence set S. The Equation (4) is turned into xi =∑N
j=1 φij ∗zijsj +εi. Using a beta process as a prior

for the binary vector zi, we can automatically infer

the number of active component associated with zi.

As to the weights of the sentences, we use a random

vector φi which has the multivariate normal distri-

bution because of the conjugacy. φi ∈ R
N is an

extension to the weights {w1, ...wn} in (4).

Integrating the linear reconstruction (4) and the

beta process3 (1), we get the complete process of

summary sentence selection as follows.

xi = S(φi ◦ zi) + εi

S = [s1, s2, ..., sN ]

zij ∼ Bernoulli(πj)

πj ∼ Beta(
αγ

N
, α(1 − γ

N
))

φi ∼ N (0, σ2
φI)

εi ∼ N (0, σ2
ε I) (5)

where N is the number of sentences in the whole

document cluster. The symbol ◦ represents the ele-

mentwise multiplication of two vectors.

One problem of the reconstruction model is that

the word vector representation of the sentences are

sparse, which dramatically increase the reconstruc-

tion error. So we bring in topic models to reduce the

3We use the finite approximation because the number of sen-

tences is large but finite
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dimension of the data. We use a HDP-LDA (Teh et

al., 2006) to get topic distributions for each sentence,

and we represent the sentences and documents as

the topic weight vectors instead of word weight vec-

tors. Finally xi is a K-dimensional vector and S is

a K ∗N matrix, where K is the number of topics in

topic models.

4 Variational Inference

In this section, we derive a variational Bayesian al-

gorithm for fast inference of our sentence selec-

tion model. Variational inference (Bishop, 2006)

is a framework for approximating the true posterior

with the best from a set of distributions Q : q∗ =
arg minq∈Q KL(q(Z)|p(Z|X)). Suppose q(Z) can

be partitioned into disjoint groups denoted by Zj ,

and the q distribution factorizes with respect to these

groups: q(Z) =
∏M

j=1 q(Zj). We can obtain a gen-

eral expression for the optimal solution q∗j (Zj) given

by

ln q∗j (Zj) = Ei �=j [ln p(X, Z)] + const. (6)

where Ei �=j [ln p(X, Z)] is the expectation of the log-

arithm of the joint probability of the data and latent

variables, taken over all variables not in the parti-

tion. We will therefore seek a consistent solution

by first initializing all of the factors qj(Zj) appro-

priately and then cycling through the factors and re-

placing each in turn with a revised estimate given by

(6) evaluated using the current estimates for all of

the other factors.

Update for Z

p(zij |πj , xi, S, φi) ∝ p(xi|zij , sj , φi)p(zij |πj)

We use q(zij) to approximate the posterior:

q(zij)

∝ exp{E[ln(p(xi|zij , z
−j
i , S, φi)) + ln(p(zij |π))]}

∝ exp{E[ln(πj)]}∗
exp{E[− 1

2σ2
ε

(
x−j

i − sjzijφij

)T (
x−j

i − sjzijφij

)
]}

∝ exp{ln(πj)}∗

exp{−
(
φ2

ij ∗ z2
ij ∗ sT

j sj − 2φij ∗ zij ∗ sj
T ∗ x−j

i

)
2σ2

ε

}
(7)

where x−j
i = xi − S−j(φ−j

i ◦ z−j
i ), and the symbol

¯ indicates the expectation value. The φ2
ij can be

extended to this form:

φ2
ij = φij

2
+ Δj

i (8)

where Δj
i means the jth diagonal element of Δi

which is defined by Equation 13.

As zi is a binary vector, we only calculate the

probability of zij = 1 and zij = 0.

q(zij = 1) ∝ exp{ln(πj)} ∗
exp{− 1

2σ2
ε

(
φ2

ij ∗ sT
j sj − 2φij ∗ sj

T ∗ x−j
i

)
}

q(zij = 0) ∝ exp{ln(1 − πj)} (9)

The expectations can be calculated as

ln(πj) = ϕ(
αγ

N
+ nj) − ϕ(α + M) (10)

ln(1 − πj) = ϕ(α(1− γ

N
)+M −nj)−ϕ(α+M)

(11)

where nj =
∑M

i=1 zij .

Update for π

p(πj |Z) ∝ p(πj |α, γ, N)p(Z|πj)

Because of the conjugacy of the beta to Bernoulli

distribution, the posterior of π is still a beta distribu-

tion:

πj ∼ Beta(
αγ

N
+ nj , α(1 − γ

N
) + M − nj) (12)

Update for Φ

p(φi|xi, Z, S) ∝ p(xi|φi, Z, S)p(φi|σ2
φ)

The posterior is also a normal distribution with mean

μi and covariance Δi.

Δi =

(
1

σ2
ε

S̃i
T
S̃i +

1

σ2
φ

I

)−1

(13)

μi = Δi

(
1

σ2
ε

S̃i

T
xi

)
(14)

Here S̃i ≡ S ◦ z̃i and z̃i ≡ [zi, ..., zi]
T is a K × N

matrix with the vector zi repeated K(the number of

the latent topics) times.

S̃i = S ∗ z̃i (15)
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S̃i
T
S̃i = (ST S) ◦ (zi ∗ zi

T + Bcovi) (16)

Bcovi = diag[zi1(1− zi1), ..., ziN (1− ziN )] (17)

Update for σ2
ε

p(σ2
ε |Φ, X, Z, S) ∝ p(X|Φ, Z, S, σ2

ε )p(σ2
ε )

By using a conjugate prior, inverse gamma prior

InvGamma(u, v), the posterior can be calculated

as a new inverse gamma distribution with parame-

ters

u′ = u + MK/2

v′ = v +
1

2

M∑
i=1

(||xi − S(zi ◦ φi)|| + ξi)

(18)

where

ξi =
∑N

j=1(z
2
ij ∗ φ2

ij ∗ sT
j sj − zij

2 ∗ φij
2 ∗ sT

j sj)

+
∑

j �=l zij ∗ zil ∗ Δi,jl ∗ sT
j sl

Update for σ2
φ

p(σ2
φ|Φ) ∝ p(Φ|σ2

φ)p(σ2
φ)

By using a conjugate prior, inverse gamma prior

InvGamma(e, f), the posterior can be calculated

as a new inverse gamma distribution with parame-

ters

e′ = e + MN/2

f ′ = f +
1

2

M∑
i=1

(
(Φ)T Φ + trace(Δ′

i)
)

(19)

5 Experiments

To test the capability of our BNP summarization sys-

tems, we design a series of experiments. The aim of

the experiments mainly includes three aspects:

1. To demonstrate the summaries extracted by our

model have good qualities and the summary

length determined by the model is reasonable.

2. To give examples where varying summary

length is necessary.

3. To observe the distribution of summary length.

We evaluate the performance on the dataset of

DUC2004 task2. The data contains 50 document

clusters, with 10 news articles in each cluster. Be-

sides, we construct three new datasets from the

DUC2004 dataset to further prove the advantage of

variable-length summarization. We separate each

cluster in the original dataset into two parts where

each has 5 documents, hence getting the Separate
Dataset; Then we randomly combine two origi-

nal clusters in the DUC2004 dataset, and get two

datasets called Combined1 and Combined2. Thus

each of the clusters in the combined datasets include

20 documents with two different themes.

5.1 Evaluation of Summary Qualities

First, we implement our BNP summarization model

on the DUC2004 dataset, with summary length not

limited. At the topic analysis step, we use the HDP

model and follow the inference in (Teh et al., 2006).

For the sentence selection step, we use the varia-

tional inference described in Section 4, where the

parameters in the beta process (5) are set as γ =
1, α = 1. The summaries that we finally generate

have an average length of 164 words. We design sev-

eral popular unsupervised summarization systems

and compare them with our model.

• The Random model selects sentences randomly

for each document cluster.

• The MMR (Carbonell and Goldstein, 1998)

strives to reduce redundancy while maintaining

relevance. For generic summarization, we re-

place the query relevance with the relevance to

documents.

• The Lexrank model (Erkan and Radev, 2004) is

a graph-based method which choose sentences

based on the concept of eigenvector centrality.

• The Linear Representation model (Ma and

Wan, 2010) has the same assumption as ours

and it can be seen as an approximation of the

constant-length version of our model.
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Figure 1: Rouge-1 values on DUC2004 dataset.
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Figure 2: Rouge-2 values on DUC2004 dataset.
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Figure 3: Rouge-L values on DUC2004 dataset.

All the compared systems are implemented at dif-

ferent predefined lengths from 50 to 300 words.

Then we evaluate the summaries with ROUGE4

tools (Lin and Hovy, 2003) in terms of the f-measure

4we use ROUGE1.5.5 in this work.

scores of Rouge-1 Rouge-2, and Rouge-L. The met-

ric of Rouge f-measure takes into consideration the

summary length in evaluation, so it is proper for

our experiments. From Fig.1, Fig.2 and Fig.3, we

can see that the result of BNP summarization (the

dashed line) gets the second best value among all

systems. It is only defeated by the Linear model

but the result is comparable to the best in Fig.1 and

Fig.3; while it exceeds other systems at all lengths.

This proves the good qualities of our BNP sum-

maries. The reason that the Linear system gets a

little better result may be its weights for linear com-

bination of summary sentences are guaranteed non-

negative while in our model the weights are zero-

mean Gaussian variables. This may lead to less re-

dundance in sentence selection for the Linear Rep-

resentation model.

Turn to the length determination. We take ad-

vantage of the Linear Representation model to ap-

proximate the constant-length version of our model.

Comparing the summaries generated at different

predefined lengths, Fig.4 shows the the model gets

the best performance (Rouge values) at the length

around 164 words, the length learned by our BNP

model. This result partly demonstrates our length

determination is rational and it can be used as the

recommended length for some constant-length sum-

marization systems, such as the Linear .
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Figure 4: Rate-dist value V.S. summary word length.
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5.2 A New Evaluation Metric

The Rouge evaluation requires golden standard sum-

maries as the base. However, in many cases we

cannot get the reference summaries. For example,

when we implement experiments on our expanded

datasets (the separate and combined clusters of doc-

uments), we do not have exact reference summaries.

Louis and Nenkova (2009) advanced an automatic

summary evaluation without human models. They

used the Jensen-Shannon divergence(JSD) between

the input documents and the summaries as a fea-

ture, and got high correlation with human evalua-

tions and the rouge metric. Unfortunately, it was

designed for comparison at a constant-length, which

cannot meet our needs. To extend the JSD evaluation

to compare varying-length summaries, we propose a

new measure based on information theory, the rate-

distortion (Cover and Thomas, 2006).

Rate-Distortion: The distortion function d(x, x̂)
is a measure of the cost of representing the symbol

x to a new symbol x̂; and the rate can indicate how

much compression can be achieved. The problem of

finding the minimum rate can be solved by minimiz-

ing the functional

F [p(x̂|x)] = I(X; X̂) + βE(d(x, x̂)). (20)

where I(X; X̂) denotes the mutual information.

The rate-distortion theory is a fundamental the-

ory for lossy data compression. Recently, it has

also been successfully employed for text cluster-

ing (Slonim, 2002) and document summarization

(Ma and Wan, 2010). Slonim (2002) claims that

the mutual information I(X; X̂) measures the com-

pactness of the new representation. Thus the rate-

distortion function is a trade-off between the com-

pactness of new representation and the expected dis-

tortion. Specifically in summarization, the sum-

maries can be seen as the new representation X̂ of

original documents X . A good summary balances

the compression ratio and the information loss, thus

minimizing the function (20). So we use the func-

tion (20)(we set β = 1) to compare which summary

is a better compression. The JS-divergence (JSD),

which has been proved to have high correlation with

manual evaluation (Louis and Nenkova, 2009) for

constant-length summary evaluation, is utilized as

the distortion in the function. In the following sec-

tions, we simply call the values of the function (20)

rate-dist. In fact, the rate-dist values can be seen as

the JSD measure with length regularization.

To check the effectiveness of rate-dist measure,

we evaluate all summaries generated in Section 5.1

with the new measure (the lower the better). Fig. 5

shows that the results accord with the ones in Fig. 1

and Fig. 3. Moreover, in Fig. 4, the curve of rate-

dist values has a inverse tendency of Rouge mea-

sures (Rouge-1, Rouge-2, Rouge-L and Rouge-SU4

are all listed here), and the best performance also oc-

curs around the summary length of 164 words. This

even more clearly reveals that the BNP summariza-

tion achieves a perfect tradeoff between compact-

ness and informativeness. Due to the accordance

with rouge measures, it is promising to be regarded

as an alternative to the rouge measures in case we do

not have reference summaries.
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Figure 5: Comparison of BNP Summarization with other

systems using rate-dist measure.

5.3 Necessity of Varying Summary Length

In this section, we discuss the necessity of length

determination and how summary length changes ac-

cording to the input data. As explained before,

we generate three new datasets from the original

DUC2004 dataset. Now we use them to indicate

varying summary length is necessary when the in-

put data varies a lot.

Table 1 shows the average summary length of dif-

ferent data sets. The results satisfy the intuitive ex-

pectation of summary length change. When we split

a 10-document cluster into two 5-document parts,

we expect the average summary length of the new

clusters to be a little smaller than the original clus-

ter but much larger than half of the original length,
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because all the documents concentrate on the same

themes. When we combine two clusters into one, the

summary length should be smaller than the sum of

the summary lengths of two original clusters due to

some unavoidable common background information

but much larger than the summary length of original

clusters.

Original Separate Combined1 Combined2

164 115 250 231

Table 1: Average summary length (number of words) on

different datasets

We also run the Linear Representation system at

different lengths on the new datasets and evaluate

the qualities. As we do not have golden standard

for the new datasets, so we only use the rate-dist

measure here. Results in Table 2,3,4 show the sum-

maries which do not change the predefined length
5 perform significantly worse than the BNP sum-

marization. All the comparison is statistically sig-

nificant. So varying summary length is necessary

when the input changes a lot, and our model can just

give a good match to the new data. This characteris-

tic also can be used to give recommended summary

length for extractive summarization systems when

given unknown data.

Predefined Unchanged BNP

Length 665 bytes 164 words 115 words

Rate-dist 0.4130 0.4404 0.4007

Table 2: Comparison of summary lengths on Separate

Dataset.

Predefined Unchanged BNP

Length 665 bytes 164 words 250 words

Rate-dist 0.3768 0.3450 0.3238

Table 3: Comparison of summary lengths on Combined1

Dataset.

Then we observe the summary length distribu-

tions and compression ratios according to document

size(the length of the whole documents in a clus-

ter). The average summary length increases (Fig. 6),

5665 bytes is the DUC2004 requirement and 164 words is

the best length on original data

Predefined Unchanged BNP

Length 665 bytes 164 words 231 words

Rate-dist 0.3739 0.3464 0.3326

Table 4: Comparison of summary lengths on Combined2

Dataset.

while the compression ratios decreases (Fig. 7) as

document size grows. The rule of the compres-

sion ratio here agrees with the rule in (Goldstein

et al., 1999), although that work is done for single-

document summarization.
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Figure 6: The distribution of summary word length.
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Figure 7: Compression ratio versus document word

length.
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6 Conclusion and Future Work

In this paper, we present a new problem of finding a

proper summary length for multi-document summa-

rization based on the document content. A Bayesian

nonparametric model is proposed to solve this prob-

lem. We use the beta process as the prior to construct

a Bayesian framework for summary sentence selec-

tion. Experimental results are shown on DUC2004

dataset, as well as some expanded datasets. We

demonstrate the summaries we extract have good

qualities and the length determination of our system

is rational.

However, there is still much work to do for

variable-length summarization. First, Our sys-

tem is extractive-base summarization, which cannot

achieve the perfect coherence and readability. A sys-

tem which can determine the best length even for

abstractive summarization will be better. Moreover,

in this work we only consider the aspect of data

compression and evaluate the performance using an

information-theoretic measure. In future we may

consider more human factors, and prove the sum-

mary length determined by our system agrees with

human preference. In addition, in the experiments,

we only use the imbalanced datasets as the example

that intuitively needs varying the summary length.

However, the data type is also important to impact

the summary length. In future, we may extend the

work by studying more cases that need varying sum-

mary length.
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Abstract

We present a method which exploits auto-
matically generated scientific discourse an-
notations to create a content model for the
summarisation of scientific articles. Full pa-
pers are first automatically annotated using the
CoreSC scheme, which captures 11 content-
based concepts such as Hypothesis, Result,
Conclusion etc at the sentence level. A content
model which follows the sequence of CoreSC
categories observed in abstracts is used to pro-
vide the skeleton of the summary, making a
distinction between dependent and indepen-
dent categories. Summary creation is also
guided by the distribution of CoreSC cate-
gories found in the full articles, in order to
adequately represent the article content. Fi-
nally, we demonstrate the usefulness of the
summaries by evaluating them in a complex
question answering task. Results are very en-
couraging as summaries of papers from auto-
matically obtained CoreSCs enable experts to
answer 66% of complex content-related ques-
tions designed on the basis of paper abstracts.
The questions were answered with a precision
of 75%, where the upper bound for human
summaries (abstracts) was 95%.

1 Introduction

The publication boom of the last few years, espe-
cially in the life sciences, has highlighted the need
to facilitate automatic access to the information con-
tent of articles. Researchers, curators, reviewers all
need to process a continuously expanding flow of
articles whether the purpose is to follow the state of
the art, curate large knowledge bases or have a good

working knowledge of their own and related disci-
plines to assess progress in research. While a lot
of effort has concentrated on information extraction
of particular types of entities and relations from the
scientific literature (Cohen and Hersh, 2005; Kim
et al., 2009; Ananiadou et al., 2010; Kim et al.,
2011), with a view to support scientists in obtain-
ing relevant information from scientific articles and
abstracts, less work has focussed on automatically
combining such information in the form of a co-
hesive summary which preserves the context. Re-
searchers rely to a great extent on author-written ab-
stracts, but the latter suffer from a number of prob-
lems; they are less structured, vary significantly in
terms of length, are often not self-contained and
have been written independently of the main doc-
ument (Teufel, 2010, p.83).

Teufel (2001; 2010), (Teufel and Moens, 2002)
identify argumentative zones within scientific arti-
cles and use them to create use-targeted extractive
summaries. Argumentative zones are annotations
which designate the type of knowledge claim and
rhetorical status for a sentence and how these relate
to the communicative function of the entire paper.
A selection of various combinations of argumenta-
tive zones are chosen for the use-targeted extractive
summaries (rhetorical extracts), each of which ful-
fills a different role. For instance, purpose-oriented
extracts less than 10 sentences long are generated
containing a predetermined number of AIM, SOLU-
TION and BACKGROUND zones. As the emphasis
of this approach was the identification of the argu-
mentative zones, less attention was given to the sen-
tence selection criteria for the extractive summaries.
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The sentences chosen for the rhetorical extracts were
either all sentences of a particular category (in the
case of rare categories) (Teufel and Moens, 2002),
selected according to a classifier trained on a rele-
vance gold standard (Teufel and Moens, 2002), man-
ually or randomly selected (Teufel, 2010, p.60).

More recently Contractor et al. (2012) have used
automatically annotated argumentative zones (Guo
et al., 2011) to guide the creation of extractive sum-
maries of scientific articles. Here argumentative
zones are used as features for the summariser, along
with verbs, tf-idf values and sentence location. They
use a standard approach to summarisation, with a bi-
nary classification recognising candidate sentences
which are then fed into a clustering mechanism. Ex-
tracts can be created to summarise the entire paper or
focus on specific user-specified aspects. The num-
ber of sentences to include in the summary is pre-
specified (either directly or using a compression ra-
tio).

Our approach also makes use of the scientific dis-
course for summarisation purposes. We use the sci-
entific discourse to create a content model for ex-
tractive summarisation, with a focus on represent-
ing the content of the full paper, while keeping the
cohesion of the narrative. We first automatically
annotate the articles with a scheme which captures
fine-grained aspects of the content and conceptual
structure of the papers, namely the Core Scientific
Concepts (CoreSC) scheme (Liakata et al., 2010; Li-
akata et al., 2012). The CoreSC scheme is “uniquely
suited to recovering common types of scientific ar-
guments about hypotheses, explanations, and evi-
dence” (White et al., 2011), which are not read-
ily identifiable by other annotation schemes. Also,
when compared to argumentative zoning and more
specifically its extension for chemistry papers, AZ-
II (Teufel et al., 2009), it was shown to provide a
greater level of detail in terms of categories denot-
ing objectives, methods and outcomes whereas AZ-
II focusses on the attribution of knowledge claims
and the relation with previous work (Liakata et al.,
2010).

We then use the distribution of CoreSC categories
observed in abstracts to create a content model
which provides a skeleton for extractive summaries.
The reasoning behind this is to try to preserve co-
hesion within the summaries and we hypothesise

that the sequence of CoreSC categories is a good
proxy for cohesion (see section 3.1). In creating
the summary, instantiating the content model, we
identify independent categories and dependent cate-
gories, and we argue that in order to preserve the co-
hesion of the text the independent categories should
be determined first (see section 3.2). We also pre-
serve in the summary the distribution of CoreSC cat-
egories found in the corresponding full paper.

Finally, we evaluate the extractive summaries in
a complex real world question-answering task, in
which we assess the usefulness of the summaries as
well as to what extent the generated CoreSC sum-
maries represent the content of the original arti-
cle. Experts are presented with different types of
summaries and are asked to answer article-specific
questions on the basis of the summaries (see sec-
tion 4.1). Our results show that automatically gen-
erated CoreSC summaries can answer 66% of com-
plex questions with 75% precision, outperforming
a baseline of microsoft autosummarise summaries
(See section 4.2).

We have also peformed an intrinsic evaluation of
the summaries using ROUGE and automatic mea-
sures for summary informativeness, such as the
Jensen-Shannon divergence, yielding positive re-
sults (See section 4.2). However, as such measures
have not yet reached maturity and are harder to in-
terpret, we consider the user-based evaluation to be
a more reliable measure of summary quality.

Code for generating the summaries can be ob-
tained by contacting the first author and/or visiting
http://www.sapientaproject.com/software.

2 Related work

The Core Scientific Concepts (CoreSC) Scheme:
The CoreSC scheme consists of three layers; the first
layer corresponds to eleven concepts (Background
(BAC), Hypothesis (HYP), Motivation (MOT), Goal
(GOA), Object (OBJ), Method (MET), Model
(MOD), Experiment (EXP), Observation (OBS),
Result (RES) and Conclusion (CON)); the second
layer corresponds to properties of the concepts (e.g.
New/Old) and the third layer provides identifiers
which link instances of the same category. Liakata
et al. (2010) created a corpus of 265 full scientific
articles from chemistry and biochemistry annotated
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with this scheme and trained classifiers using SVMs
and CRFs in (Liakata et al., 2012), with an accu-
racy of >51% across the 11 concepts. Their data
and CoreSC classification system are available on-
line and can provide a good benchmark for com-
parison. Louis & Nenkova (2012) have successfully
used the CoreSC corpus for evaluating syntax-based
coherence models, which indicates the strong con-
nection between coherence and discourse structure.
Summarisation for scientific articles: A lot of
the work on summarising scientific articles has fo-
cussed on citation-based summaries. Qazvinian &
Radev (2008) use sentences from papers citing the
article to be summarised. Sentences are clustered to-
gether creating a topic, with the combination of clus-
ters forming a citation summary network. Qazvinian
& Radev (2010), (Qazvinian et al., 2010) also make
use of citation sentences in other scientific papers to
summarize the contributions of a paper. The draw-
back of citation summaries is that a paper must be
already cited, so this type of summary will not be
useful to a paper reviewer. Also, citations of articles
will have been influenced by other citations rather
than the paper itself.
Document models for summarisation: Our con-
tent model has some similarities with content mod-
elling using global sentence ordering (Barzilay and
Lee, 2004; Chen et al., 2009). In (Barzilay and
Lee, 2004) unsupervised methods are used to cre-
ate HMM topic sequence models for newswire text
articles. Topics are assigned to texts according to
the content model and extracts of fixed length are
created by selecting the topics most likely to occur
in summaries. While we use supervised methods to
annotate papers with a fixed set of topics (CoreSCs)
in scientific papers, our summary content model for
extracts shares similar principles such as global or-
dering of sentences and non-recurrence. However,
their evaluation involved newspaper articles and ex-
tracts which are a lot shorter (15 and 6 sentences,
respectively).

It is not clear whether unsupervised topic mod-
elling such as (Chen et al., 2009) can be applied to
scientific articles (over 100 sentences long), which
by nature include repetition of topics. It would be
interesting to make comparisons with summaries us-
ing content models learnt from our data automati-
cally, following a similar approach to (Sauper et al.,

2010) which learns a content model jointly with a
particular supervised task in web-based documents.

3 Extractive Summarisation using
CoreSCs

In this section we describe how we use CoreSC dis-
course categories annotated at the sentence level to
create extractive summaries of full papers, which we
subsequently evaluate in a question answering task
in section 4.

To generate summaries we follow classic text ex-
traction techniques while making use of a document
content model based on CoreSCs. Our aim is for
the content model to reflect both the distribution of
CoreSCs in the paper as well as the discourse model
of human summaries, as the latter is indicated by the
generic ordering of CoreSC categories in abstracts
encountered in a corpus of 265 annotated full pa-
pers (Liakata and Soldatova, 2009; Liakata et al.,
2012). While we do not consider abstracts to be ade-
quate summaries, we at least consider them to be co-
herent summaries, which is why the content model
reflects the distribution of CoreSCs in the abstracts.

To create our summaries, we employed automat-
ically generated CoreSC annotations, which are the
output of the classifiers described in (Liakata et al.,
2012). These classifiers assign CoreSC categories
to sentences on the basis of features local to a sen-
tence, such as significant n-grams, verbs and word
triples, as well as global features such as the posi-
tion of the sentence within the document and within
a paragraph and section headers. The following sub-
sections give details about the creation of extractive
summaries from CoreSC categories.

3.1 A content model for CoreSC extractive
summaries

Building an extractive summary using a computa-
tional model of document structure is an idea shared
by many previous approaches, whether the model is
hand-crafted, based on rhetorical elements (McKe-
own, 1985; Teufel and Moens, 2002) or rhetorical
relations (Marcu, 1998b; Marcu, 1998a) or whether
it is a content model, learnt automatically from text
as in (Barzilay and Lee, 2004), focussing on the lo-
cal content or a combination of the local content and
global structure (Sauper et al., 2010).
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Our document content model is primarily based
on the global discourse of the article as provided by
the type and number of CoreSC categories. How-
ever, unlike (Teufel and Moens, 2002), who take a
fixed number of AZ categories of specific type to
create rhetorical extracts, the number of categories
used from each CoreSC category depends on their
distribution in the original article. Any and all types
of CoreSC category could potentially appear in a
summary, as our summaries are meant to be repre-
sentative of the entire content of the paper. Also, the
ordering of the categories in the summary is learnt
to reflect the ordering of categories observed in ab-
stracts of papers from the same domain.

Our model also caters for local discourse depen-
dencies. For example, the selection of a particu-
lar ‘Method’ sentence for inclusion in the summary
should influence the choice of ‘Experiment’ sen-
tences, which refers to particular experimental pro-
cedures performed. This is not an issue of concern
to (Teufel and Moens, 2002), but relates to the no-
tion of NUCLEUS and SATELLITE clauses, which
form the foundation of Rhetorical Structure The-
ory (Mann and Thompson, 1998), and guides the
summarisation paradigm of (Marcu, 1998a; Marcu,
1998b). However, the difference here is that we
define a-priori certain categories to be independent
(have the property of playing the role of nucleus in
the discourse) and specify their relation with partic-
ular types of dependent categories. Thus, nuclearity
becomes a property of the CoreSC category, which
is indirectly inherited by the sentence.

Therefore, when creating the CoreSC content
model for summaries we addressed the following is-
sues: (i) summary length; (ii) number of sentences
from each CoreSC, (iii) the ordering in which sen-
tences from each CoreSC category should appear
and (iv) the extraction of sentences according to in-
dependent and dependent categories.

• Summary length: While the literature (Teufel,
2010, p.45) suggests that 20–30% of the original
document is required for an adequately informa-
tive summary, (Teufel, 2010, p.55) assumes this
is too long for scientific papers. For this reason
and to allow better comparison between papers
of varying lengths, we fixed our summary length
to 20 sentences. This is reasonable considering

we have 11 CoreSCs, any and all of which can
appear in both abstracts and full papers.

• Number of sentences from each category: To
reflect the content of the paper, the distribution
of the CoreSC categories in the extract follows
the distribution of CoreSCs in the full paper.

For each CoreSC we determine the number of
sentences to be selected (n(selected(C))) by
multiplying the ratio of that category in the paper
by 20. A difficulty arises if the ratio of a partic-
ular concept in the paper is very low (≤ 0.05)
in which case we prefer to include one sentence.
If a particular concept is not at all present in the
paper, the number of selected sentences for that
category will be 0.

• Ordering of CoreSC categories in the sum-
mary: According to a study of empirical sum-
maries (Liddy, 1991), sentences of a particular
textual type appear in a particular order. Since
paper abstracts were the closest approximation
of human summaries available to us, CoreSC
category transitions found in abstracts have been
adopted in our content model for extracts. The
transitions were derived semi-empirically. First,
we extracted initial, medium and final bi-grams
of categories from paper abstracts together with
transition probabilities.

Using this information we manually constructed
transitions of the CoreSC categories that best fit
the observed frequencies and our own intuitions.
This gave us the following sequence: MOT >
(HYP) > OBJ > GOA > BAC > MOD > MET
> EXP > OBS > (HYP) > RES > CON. HYP
appears twice in the sequence as annotators had
distinguished two types of hypotheses, global
hypotheses (stated together with other objec-
tives) and hypotheses about particular observa-
tions. The model provides an amalgamated rep-
resentation of CoreSC concepts in abstracts. In-
terestingly, our semi-empirically derived model
closely follows the content model for abstracts
described in (Liddy, 1991). It would be interest-
ing to see how this compares to a Markov model
of CoreSC categories learnt from the annotated
abstracts.
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3.2 Sentence extraction based on independent
and dependent categories

Sentence extraction involves selecting the most rel-
evant sentences to include in a summary. Typically,
this entails ranking the sentences according to some
measure of salience and selecting the top n-best
sentences. For example, a sentence will be repre-
sented by a number of features associated with it,
such as whether it contains certain high frequency
words or cue phrases, its location in the document,
location in a paragraph (Brandow et al., 1995; Ku-
piec et al., 1995). Other methods include clustering
based on sentence similarity and choosing the cen-
troids (Erkan and Radev, 2004) or choosing the best
connected sentences (Mihalcea and Tarau, 2004).

When sentences are classified according to
CoreSC categories features such as the ones de-
scribed above for text extraction are taken into
account. Liakata et al. (2012) report that the
most salient features for classifying CoreSC cat-
egories are overall n-grams, verbs and direct ob-
jects whereas other features such as the location of
the sentence, the neighbouring section headings and
whether a sentence contains citations play an impor-
tant role for some of the categories. Thus, classi-
fication into CoreSC categories already provides a
selection bias for sentence extraction.

As explained in section 3.1, the number of
CoreSC categories in the summaries is determined
according to their distribution in the paper and the
order of the categories is specified in the content
model. Salience for sentence extraction in this case
is determined by the need to select the most repre-
sentative sentences for a category. There isn’t much
point, for example, in identifying that we need to in-
clude a Method sentence (MET) and that this should
be followed by an Experiment sentence (EXP), if we
are not sure that those are indeed the categories of
the sentences we are about to select.

We therefore rank sentences according to the clas-
sifier confidence score (probability) with which they
were assigned a CoreSC category in (Liakata et al.,
2012). The intuition behind this is that sentences
with high classifier confidence will be less noisy,
high precision cases and more representative of a
particular category. Indeed, (Liakata et al., 2012)
report statistical significance for the correlation be-

tween high classifier confidence and agreement be-
tween manual and automatic classification

However, as mentioned in section 3.1, there is
inter-dependence between sentences in the text,
which is in turn inherited by the categories assigned
to them. For example, the highest ranking MET
sentence will be related to an Experiment (EXP) or
Background (BAC) sentence, which may not be the
ones with the highest confidence score in their cate-
gory.

In order to preserve discourse cohesion it is im-
portant to select related sentences from different
categories. We resolve this by distinguising the
CoreSCs into independent categories, which by def-
inition are expected to show nucleus behaviour, and
dependent categories. We also specify the rela-
tion between independent and dependent categories.
The independent categories include the categories
with the lowest percentage of sentences in scien-
tific articles as reported in (Liakata et al., 2012),
namely: Motivation (MOT) (1%), Goal (GOA)(1%),
Hypothesis (HYP)(2%), Object (OBJ)(3%), Model
(MOD)(9%), Conclusion (CON)(9%) and Method
(MET)(11%). Categories whose sentence selec-
tion semantically depends on the former are Exper-
iment (EXP)(10%), Background (BAC)(19%), Re-
sult (RES)(21%) and Observation (OBS)(14%). The
independent categories also have higher precision
than recall, in contrast to the dependent categories.
While MET and EXP are almost equally represented
in the CoreSC corpus, EXP by definition provides
the detailed steps of an experimental method and
thus it is semantically dependent on some MET cat-
egory. More specifically, the dependencies are con-
sidered to be as follows: EXP, BAC depend on MET,
RES depends on CON and OBS depends on RES
(OBS is double-dependent).

Sentence extraction is driven by first identifying
the independent categories based on classifier con-
fidence scores and then choosing the corresponding
dependent categories on the basis of both related-
ness to the independent categories and classifier con-
fidence. We use sentence proximity (defined below)
as a measure for relatedness and combine it with
classifier confidence during sentence extraction.

The mechanism to select sentences for inclusion
in the summary, which considers category depen-
dencies, proceeds as follows:

751



• For an independent category CatI, order sentences by
decreasing order of confidence score. The confidence
score is the average confidence score of the SVM and
CRF classifiers reported in (Liakata et al., 2012) for
a sentence.

• For a dependent category Cat, for which we need n
sentences, given the selected sentences m from the
corresponding independent category CatI we do the
following:

• If m = 0, then treat Cat as independent category
for this case.

• Otherwise, for each selected sentence ti in CatI,
calculate its proximity score to every sentence cj

of the dependent category Cat. Proximity is de-
fined as 1−Distance where Distance is an ab-
solute difference in sentence ids between cj and
ti normalised by the maximum absolute distance
found between all cj and ti pairs.

• The classifier prediction score for each cj is mul-
tiplied by the Proximity(cj , ti) score and the
sentences are re-ranked according to the new
scores, where only the n highest ranking cjs are
kept. The last two steps result in an m×n matrix.

• If m = 1, then the choice for the n sentences for
Cat is straightforward.

• Otherwise, we pick the n highest ranking cjs,
proceeding row-wise. Thus, the highest ranking
cjs for the highest ranking independent sentences
ti are given priority and any cj is chosen at most
once.

Once the sentence ids are selected for each inde-
pendent and each dependent category we plug them
into the content model. Sentence order is preserved
within each CoreSC category. For example, if two
Result sentences are selected, the order in which
they appear in the paper will be preserved in the
summary.

4 Summary evaluation via question
answering

4.1 Task Description and experimental setup

We evaluate the extractive CoreSC summaries in
terms of how well they enable 12 chemistry ex-
perts/evaluators (with at least a Masters degree in
chemistry) to answer complex questions about the
papers. Our test corpus consists of 28 papers held
out from the ART/CoreSC corpus, roughly 1/9,
which were annotated automatically with the SVM

and CRF classifiers described in (Liakata et al.,
2012) trained on the remaining 8/9 of the corpus.
For each of the 28 papers in the test corpus, we gen-
erated CoreSC summaries automatically using the
method described in section 3. We compare the
performance of the experts on a question answer-
ing (Q-A) task when given the CoreSC summaries
and two other types of summary, amounting to a
total of three experimental conditions (A,B,C). The
other two types of summary are the original paper
abstracts (summaries A), in the absence of human
summaries, and summaries generated by Microsoft
Office Word 2007 AutoSummarize (summaries B).

Microsoft Office Word 2007 AutoSummarize
(MA) is a widely available commercial system with
reportedly good results (Garcia-Hernandez et al.,
2009) and performance equivalent to TextRank (Mi-
halcea and Tarau, 2004). MA works by assigning a
score to each word in a sentence depending on its
frequency in the document and sentences are ranked
and extracted according to the combination of scores
of the words they contain. MA therefore follows
classic lexicalised text extraction techniques, is do-
main independent and is completely agnostic of the
discourse. For the latter reason, we considered MA
to be a suitable baseline the comparison with which
would illustrate the effect of using CoreSC cate-
gories on the summary and the merits of having a
discourse based model for summarisation.

Neither the paper title nor section headings were
available to any of the summarising systems as our
extractive system does not make direct use of them
and we were not sure how they would influence MA.

To ensure that each evaluator considered only one
type of summary per paper, so as to avoid bias from
previous stimuli, and to make sure all experts were
exposed to all papers and all types of summary, the
12 experts were assigned to four groups (G1-G4)
and were allocated 28 summaries each according to
the Latin Square design in Table 1.1.

The experimental setup follows the paradigm
of (Teufel, 2001). However, while (Teufel, 2001) de-
veloped a Q-A task to evaluate summaries showing
the contribution of a scientific article in relation to
previous work, the purpose of the Q-A task at hand

1Initially we had four experimental conditions but one was
dropped, so is not presented in this context
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is to show the usefulness of the extracted summaries
in answering questions on the paper, and how they
compare to a discourse-agnostic baseline. In the
case of (Teufel, 2001) the task consists of a fixed set
of five questions, the same for all articles tuned par-
ticularly to the relation of current and previous work.
By contrast, the current Q-A task aims to show how
well the summaries represent the content of the en-
tire paper, which means that questions are individ-
ual to each paper and required domain knowledge to
create.

Each of the 12 experts answered three content-
based questions per summary, where the questions
were individual to each paper. An example of the
questions and the corresponding answers for a given
paper can be found below.

Example 4.1.1
• Q:What do DNJ imino sugars inhibit the action of?

A: They inhibit glycosidases and ceramide glucosyl-
transferases.

• Q:What methods do the authors use to study the confor-
mation of N-benzyl-DNJ?
A: They use resonant two-photon ionization (R2PI),
ultraviolet–ultraviolet (UV–UV) hole burning, and in-
frared (IR) ion-dip spectroscopies in conjunction with
electronic structure theory calculations.

• Q:What is the conformation of the exocyclic hydrox-
ymethyl group?
A: The exocyclic hydroxymethyl group is axial to the
piperidine ring (gauche- to the ring nitrogen).

As one can see, the questions are complex wh-
questions and correspond to answers with multiple
components. Questions were complex, to minimise
the likelihood of correct random answers. They
were designed by a senior chemistry expert with
knowledge of linguistics, so that they could be an-
swered based on the abstracts (A). For this purpose,
the senior expert chose abstracts that were at least
three sentences long. Ideally, the questions and an-
swers should have been set on the basis of the en-
tire paper, but this was not possible given our time-
frame for the experiment.The underlying assump-
tion is that a good summary should cover most of the
main points of the paper. One of the merits of set-
ting the questions on the basis of the abstracts was
that the answers to be identified were deemed suf-
ficiently important to be expressed in the humanly
created abstract. However, automatic summaries
created in the way proposed here could potentially

answer questions beyond the scope of the abstract
and in cases of very short abstracts be much more
informative.

Experts were told that summaries were automati-
cally generated with no details about different types
of summary; it is assumed that none of them is com-
pletely familiar with the work mentioned in the 28
papers.

On average, it took experts less than 10 minutes to
read a summary and answer the three content-based
questions.

Papers (28)
Evaluator groups 1–7 8–14 15–21 22-28

G1 A B - C
G2 C A B -
G3 - C A B
G4 B - C A

Table 1: Distribution of summaries to evaluators

4.2 Results and Discussion
We compared each evaluator’s answers obtained af-
ter reading a summary against the model answers
set by the senior expert, the author of the questions,
based on the abstract (A) of the corresponding pa-
per. If an evaluator’s answer is identical to a model
answer, then this counts as “matched”.

For instance in example 4.1.1 above, “axial to
the piperidine ring”, “gauche- to the ring nitrogen”
and “The OH6 group is axial (Gauche) to the ring
nitrogen” were all considered correct, fully matched
answers to the question “What is the conformation
of the exocyclic hydroxymethyl group?”. In the
case of the second question in the same example all
of the following were considered correct and fully
matched: “Resonant two-photon ionization (R2PI),
UV/UV hole-burn, and IR ion-dip spectroscopies in
conjunction with electronic structure theory calcula-
tions”, “R2PI UV/UV hole-burn IR ion-dip e- struc-
ture theory calculations” and “a combination of res-
onant two-photon ionization (R2PI), UV/UV hole-
burn, and IR ion-dip spectroscopies in conjunction
with electronic structure theory calculations”.

If the answer requires listing more than one item
(as is the case with questions one and two of ex-
ample 4.1.1), all of the items have to be matched.
Partially matched answers are counted as “partially
matched”. Non-matching answers can be of two
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types. If an un-matched answer coincided with the
answer the senior expert would have given after
reading that particular summary, then it was marked
as “un-matched:justified”: Such answers were cor-
rect given the particular summary, but are not nec-
essarily correct with respect to the paper and do
not count as alternative answers. If the answer
was un-matched and also unjustified given the con-
tent of the summary, then it was marked as “un-
matched:unjustified” . These are cases of evalua-
tor error. Similarly, cases where the evaluator gave
“N/A” as an answer were marked as “justified” or
“unjustified” according to whether the senior expert
could find the answer in the summary or not. The
results from marking answers are shown in Table 2.

Number of A B C
Matched 240 126 135
Partially matched 0 4 3
Un-matched:justified 0 25 15
N/A:justified 0 71 71
Un-matched:unjustified 5 11 17
N/A:unjustified 7 15 11
All answers 252 252 252

Table 2: Matches between summary-based answers and
model answers

Micro-AVG Macro-AVG
S. types R P F R P F
A 1 0.95 0.98 1 0.95 0.97
B 0.64 0.70 0.67 0.64 0.64 0.60
C 0.66 0.75 0.70 0.64 0.70 0.65

Table 3: Precision, Recall and F-score for answering
questions using the four types of summary. A: abstracts,
B: autosummarize, C:automatic CoreSC summaries.

We report Precision, Recall and F-score (P-R-F)
for answering questions given each type of sum-
mary (Table 3). To calculate these we define TP as
matched answers, FN as N/A:justified and FP every-
thing else (partially matched + un-matched:justified
+ un-matched:unjustified + N/A:unjustified). Here,
the standard definition of recall (TP/(TP+FN))
demonstrates how many questions can be answered
using the summary (summary coverage) and Preci-
sion (TP/(TP+FP)) how well the questions are an-
swered (summary clarity).

We consider the F-measure to be an overall indi-
cator of the summary usefulness. Micro-averaging
is obtained by adding all answers from all papers to

calculate TP, FN and FP whereas macro-averaging
calculates P-R-F first per paper and then averages
over all papers.

The rankings remain consistent regardless of the
averaging method. Condition A (abstracts) shows
perfect Recall (the evaluators are able to answer all
the questions) whereas Precision is affected by un-
justified failed matches (Table 2). The perfect recall
is hardly surprising as the questions are designed
on the basis of the abstract but provides a sanity
check for the experiment. The precision sets an up-
per bound for precision with automatic summaries.
Summaries of condition C provide answers to more
questions (Recall) and with greater accuracy (Pre-
cision) than summaries B. When macro-averaging,
the Recall score of summaries C is tied with that for
summaries B but Precision is 6% higher.

To verify the statistical significance for the dif-
ference in precision and recall for summaries B and
C respectively, we performed Monte Carlo sampling
10000 times, for the populations of answers for sum-
maries B and C. During each iteration of sampling,
precision and recall were calculated, creating popu-
lations of 10000 recalls and 10000 precisions propa-
gated to be representative of the original population
of answers. A t-test performed on the population
of precision and the population of recalls showed
statistical significance at 95% in both cases, with
summaries C having a precision of 5% higher and
a recall of 1.4-1.6% higher than summaries B (see
Table 4). Therefore, we can say that CoreSC sum-
maries C are overall better for answering questions
than summaries B.

Comparison between B and C (B-C)
precision recall

t = -105.90 t = -32.52
df = 19959.79 df = 19994.40

p-value < 2.2e-16 p-value < 2.2e-16
alternative hypothesis: true difference in means 6= 0

95% confidence interval: 95% confidence interval:
-0.051 -0.049 -0.016 -0.014

sample estimates: sample estimates:
mean of x mean of y mean of x mean of y

0.696 0.746 0.639 0.655

Table 4: Test for statistical significance betwen sum-
maries B (microsoft) and C (CoreSC)

The difference in precision between summaries
B and C shows the advantage of having a con-
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tent model: summaries C are significantly clearer.
We had also expected CoreSC summaries to have a
much higher coverage than summaries B, and there-
fore significantly higher recall. However, this dif-
ference was less pronounced perhaps because au-
tosummarize favours shorter sentences, which are
more likely to be found in the abstracts. We expect
that a refinement in the sentence selection criterion,
which would also take sentence length into account,
will help to showcase further the benefits of using a
CoreSC-based content model.

Analysis using ROUGE showed that while sum-
maries C had a slightly higher ROUGE-1 measure
than summaries B (0.75 vs 0.73), with respect to ab-
stracts, ROUGE-L was the same for the two (0.70).

In table 5 we also report measurements on sum-
mary informativeness based on divergence (Kull-
back Leibler (KL) divergence and Jensen Shannon
(JS) divergence), as in (Louis and Nenkova, 2013).
KL divergence is asymmetric and reflects the aver-
age number of bits wasted by coding samples of a
distribution P using another distribution Q. JS diver-
gence is an information-theoretic measure, reflect-
ing the average distance of the KL divergence be-
tween summary and input (the full paper in our case)
from the mean vocabulary distributions. Compared
to other measures, JS divergence has been found
to produce the best predictions of summary qual-
ity (Louis and Nenkova, 2013). In practice, what JS
divergence tells us is how ‘different’/divergent the
summary is from the original paper. Low divergence
scores are indicative of greater overlap between the
summaries and the original paper and are considered
positive in terms of the summary information con-
tent.

type KLI-S KLS-I UnJSD SJSD
B 1.66 0.70 0.21 0.19
C 1.40 0.62 0.18 0.17
random 1.61 0.79 0.21 0.19

Table 5: Macro-averaged divergence scores for the 28
test summaries. B: Autosummarize, C: CoreSC, random:
random summaries each 20 sentences long for each paper.
KLI-S: Average Kullback Leibler divergence between in-
put and summary. KLS-I: Kullback Leibler divergence
between summary and input, since KL divergence is not
symmetric. UnJSD: Jensen Shannon divergence between
input and summary. No smoothing. SJSD:A version with
smoothing.

One can see the that CoreSC summaries have con-
sistently lower divergence (both KL and JS) than mi-
crosoft autosummarise summaries and random sum-
maries of the same length. This is a positive out-
come but since such automatic measures of sum-
mary quality have not yet reached maturity and are
harder to interpret, we consider the manual evalua-
tion a more reliable indicator of summary informa-
tiveness and usefulness. Note that it is not appropri-
ate to use divergence to assess the abstracts as this
measure is influenced by the length of a text, which
varies dramatically in the case of abstracts.

5 Conclusions and future work

We have shown how a content model based on
the scientific discourse as annotated by the CoreSC
scheme can be used to produce extractive sum-
maries. These summaries can be generated as al-
ternatives to abstracts. Since they preserve the dis-
tribution of CoreSCs in the paper and are not pro-
duced independently of it, as is the case with many
abstracts, they are potentially more representative of
abstracts than the full article. We have tested the use-
fulness CoreSC based summaries in answering com-
plex questions relating to the content of scientific
papers. Extracts from automated CoreSCs are infor-
mative, outperform microsoft autosummarise sum-
maries, in both intrinsic and extrinsic evaluation, and
enable experts to answer 66% of complex questions
with a precision of 75%.

In the future we would like to experiment further
with refining the sentence selection method so as
to consider criteria for local cohesion, such as lex-
ical chains. We would also like to perform com-
parisons with automatically induced content mod-
els and check their viability for scientific articles.
We also would like to perform a human based eval-
uation of coherence and explore the full potential
of these summaries as alternatives to author-written
abstracts. This work constitutes a very important
step in producing automatic summaries of scientific
papers and enabling experts to extract information
from the papers, a major requirement for resource
curation, which is dependent on constant reviewing
of the literature.
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Abstract

We present the first provably optimal polyno-
mial time dynamic programming (DP) algo-
rithm for best-first shift-reduce parsing, which
applies the DP idea of Huang and Sagae
(2010) to the best-first parser of Sagae and
Lavie (2006) in a non-trivial way, reducing
the complexity of the latter from exponential
to polynomial. We prove the correctness of
our algorithm rigorously. Experiments con-
firm that DP leads to a significant speedup
on a probablistic best-first shift-reduce parser,
and makes exact search under such a model
tractable for the first time.

1 Introduction

Best-first parsing, such as A* parsing, makes con-
stituent parsing efficient, especially for bottom-up
CKY style parsing (Caraballo and Charniak, 1998;
Klein and Manning, 2003; Pauls and Klein, 2009).
Traditional CKY parsing performs cubic time exact
search over an exponentially large space. Best-first
parsing significantly speeds up by always preferring
to explore states with higher probabilities.

In terms of incremental parsing, Sagae and Lavie
(2006) is the first work to extend best-first search to
shift-reduce constituent parsing. Unlike other very
fast greedy parsers that produce suboptimal results,
this best-first parser still guarantees optimality but
requires exponential time for very long sentences
in the worst case, which is intractable in practice.
Because it needs to explore an exponentially large
space in the worst case, a bounded priority queue
becomes necessary to ensure limited parsing time.

∗This work is mainly supported by DARPA FA8750-13-2-
0041 (DEFT), a Google Faculty Research Award, and a PSC-
CUNY Award. In addition, we thank Kenji Sagae and the
anonymous reviewers for their constructive comments.

On the other hand, Huang and Sagae (2010) ex-
plore the idea of dynamic programming, which is
originated in bottom-up constituent parsing algo-
rithms like Earley (1970), but in a beam-based non
best-first parser. In each beam step, they enable
state merging in a style similar to the dynamic pro-
gramming in bottom-up constituent parsing, based
on an equivalence relation defined upon feature val-
ues. Although in theory they successfully reduced
the underlying deductive system to polynomial time
complexity, their merging method is limited in that
the state merging is only between two states in the
same beam step. This significantly reduces the num-
ber of possible merges, because: 1) there are only
a very limited number of states in the beam at the
same time; 2) a lot of states in the beam with differ-
ent steps cannot be merged.

We instead propose to combine the idea of dy-
namic programming with the best-first search frame-
work, and apply it in shift-reduce dependency pars-
ing. We merge states with the same features set
globally to further reduce the number of possible
states in the search graph. Thus, our DP best-first al-
gorithm is significantly faster than non-DP best-first
parsing, and, more importantly, it has a polynomial
time complexity even in the worst case.

We make the following contributions:

• theoretically, we formally prove that our DP
best-first parsing reaches optimality with poly-
nomial time complexity. This is the first time
that exact search under such a probabilistic
model becomes tractable.

• more interestingly, we reveal that our dynamic
programming over shift-reduce parsing is in
parallel with the bottom-up parsers, except that
we have an extra order constraint given by the
shift action to enforce left to right generation of
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input w0 . . . wn−1

axiom 0 : 〈0, ε〉: 0

sh
` : 〈j, S〉 : c

`+ 1 : 〈j + 1, S|wj〉 : c+ scsh(j, S)
j < n

rex
` : 〈j, S|s1|s0〉 : c

`+ 1 : 〈j, S|s1
xs0〉 : c+ screx(j, S|s1|s0)

rey
` : 〈j, S|s1|s0〉 : c

`+ 1 : 〈j, S|s1
ys0〉 : c+ screy(j, S|s1|s0)

Figure 1: Deductive system of basic non-DP shift-reduce
parsing. Here ` is the step index (for beam search), S is
the stack, c is the score of the precedent, and sca(x) is
the score of action a from derivation x. See Figure 2 for
the DP version.

partial trees, which is analogous to Earley.

• practically, our DP best-first parser is only ∼2
times slower than a pure greedy parser, but is
guaranteed to reach optimality. In particular,
it is ∼20 times faster than a non-DP best-first
parser. With inexact search of bounded prior-
ity queue size, DP best-first search can reach
optimality with a significantly smaller priority
queue size bound, compared to non-DP best-
first parser.

Our system is based on a MaxEnt model to meet
the requirement from best-first search. We observe
that this locally trained model is not as strong as
global models like structured perceptron. With that
being said, our algorithm shows its own merits in
both theory and practice. To find a better model for
best-first search would be an interesting topic for fu-
ture work.

2 Shift-Reduce and Best-First Parsing

In this section we review the basics of shift-reduce
parsing, beam search, and the best-first shift-reduce
parsing algorithm of Sagae and Lavie (2006).

2.1 Shift-Reduce Parsing and Beam Search
Due to space constraints we will assume some ba-
sic familiarity with shift-reduce parsing; see Nivre
(2008) for details. Basically, shift-reduce parsing
(Aho and Ullman, 1972) performs a left-to-right

scan of the input sentence, and at each step, chooses
either to shift the next word onto the stack, or to re-
duce, i.e., combine the top two trees on stack, ei-
ther with left as the root or right as the root. This
scheme is often called “arc-standard” in the litera-
ture (Nivre, 2008), and is the basis of several state-
of-the-art parsers, e.g. Huang and Sagae (2010). See
Figure 1 for the deductive system of shift-reduce de-
pendency parsing.

To improve on strictly greedy search, shift-reduce
parsing is often enhanced with beam search (Zhang
and Clark, 2008), where b derivations develop in
parallel. At each step we extend the derivations in
the current beam by applying each of the three ac-
tions, and then choose the best b resulting deriva-
tions for the next step.

2.2 Best-First Shift-Reduce Parsing
Sagae and Lavie (2006) present the parsing prob-
lem as a search problem over a DAG, in which each
parser derivation is denoted as a node, and an edge
from node x to node y exists if and only if the corre-
sponding derivation y can be generated from deriva-
tion x by applying one action.

The best-first parsing algorithm is an applica-
tion of the Dijkstra algorithm over the DAG above,
where the score of each derivation is the priority.
Dijkstra algorithm requires the priority to satisfy
the superiority property, which means a descendant
derivation should never have a higher score than its
ancestors. This requirement can be easily satisfied if
we use a generative scoring model like PCFG. How-
ever, in practice we use a MaxEnt model. And we
use the negative log probability as the score to sat-
isfy the superiority:

x ≺ y ⇔ x.score < y.score,

where the order x ≺ y means derivation x has a
higher priority than y.1

The vanilla best-first parsing algorithm inher-
its the optimality directly from Dijkstra algorithm.
However, it explores exponentially many derivations
to reach the goal configuration in the worst case.
We propose a new method that has polynomial time
complexity even in the worst case.

1For simplicity we ignore the case when two derivations
have the same score. In practice we can choose either one of
the two derivations when they have the same score.
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3 Dynamic Programming for Best-First
Shift-Reduce Parsing

3.1 Dynamic Programming Notations
The key innovation of this paper is to extend best-
first parsing with the “state-merging” method of dy-
namic programming described in Huang and Sagae
(2010). We start with describing a parsing configu-
ration as a non-DP derivation:

〈i, j, ...s2s1s0〉,

where ...s2s1s0 is the stack of partial trees, [i..j] is
the span of the top tree s0, and s1s2... are the re-
mainder of the trees on the stack.

The notation fk(sk) is used to indicate the features
used by the parser from the tree sk on the stack. Note
that the parser only extracts features from the top
d+1 trees on the stack.

Following Huang and Sagae (2010), f̃(x) of a
derivation x is called atomic features, defined as the
smallest set of features s.t.

f̃(i, j, ...s2s1s0) = f̃(i, j, ...s′2s
′
1s
′
0)

⇔ fk(sk) = fk(s
′
k), ∀k ∈ [0, d].

The atomic feature function f̃(·) defines an equiv-
alence relation ∼ in the space of derivations D:

〈i, j, ...s2s1s0〉 ∼ 〈i, j, ...s′2s′1s′0〉

⇔ f̃(i, j, ...s2s1s0) = f̃(i, j, ...s′2s
′
1s
′
0)

This implies that any derivations with the same
atomic features are in the same equivalence class,
and their behaviors are similar in shift and reduce.
We call each equivalence class a DP state. More
formally we define the space of all states S as:

S ∆
= D/∼.

Since only the top d+1 trees on the stack are used
in atomic features, we only need to remember the
necessary information and write the state as:

〈i, j, sd...s0〉.

We denote a derivation x’s state as [x]∼. In the rest
of this paper, we always denote derivations with let-
ters x, y, and z, and denote states with letters p, q,
and r.

The deductive system for dynamic programming
best-first parsing is adapted from Huang and Sagae
(2010). (See the left of Figure 2.) The difference is
that we do not distinguish the step index of a state.

This deductive system describes transitions be-
tween states. However, in practice we use one state’s
best derivation found so far to represent the state.
For each state p, we calculate the prefix score, p.pre,
which is the score of the derivation to reach this
state, and the inside score, p.ins , which is the score
of p’s top tree p.s0. In addition we denote the shift
score of state p as p.sh ∆

= scsh(p), and the reduce

score of state p as p.re ∆
= scre(p). Similarly we

have the prefix score, inside score, shift score, and
reduce score for a derivation.

With this deductive system we extend the concept
of reducible states with the following definitions:

The set of all states with which a state p can
legally reduce from the right is denoted L(p), or left
states. (see Figure 3 (a)) We call any state q ∈ L(p)
a left state of p. Thus each element of this set would
have the following form:

L(〈i, j, sd...s0〉)
∆
={〈h, i, s′d...s′0〉 |

fk(s
′
k−1)=fk(sk), ∀k ∈ [1, d]} (1)

in which the span of the “left” state’s top tree ends
where that of the “right” state’s top tree begins, and
fk(sk) = fk(s

′
k−1) for all k ∈ [1, d].

Similarly, the set of all states with which a state p
can legally reduce from the left is denoted R(p), or
right states. (see Figure 3 (a)) For two states p, q,

p ∈ L(q)⇔ q ∈ R(p)

3.2 Algorithm 1
We constrain the searching time with a polynomial
bound by transforming the original search graph
with exponentially many derivations into a graph
with polynomial number of states.

In Algorithm 1, we maintain a chart C and a prior-
ity queue Q , both of which are based on hash tables.

Chart C can be formally defined as a function
mapping from the space of states to the space of
derivations:

C : S → D.
In practice, we use the atomic features f̃(p) as the
signature of state p, since all derivations in the same
state share the same atomic features.
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sh

state p:

〈 , j, sd...s0〉: (c, )

〈j, j + 1, sd−1...s0, wj〉 : (c+ ξ, 0)
j < n PRED

〈 , j, A→ α.Bβ〉 : (c, )

〈j, j, B → .γ〉 : (c+s, s)
(B → γ) ∈ G

rex

state q:

〈k, i, s′d...s′0〉: (c′, v′)
state p:

〈i, j, sd...s0〉: ( , v)

〈k, j, s′d...s′1, s′0
x
s0〉 : (c′+v+δ, v′+v+δ)

q ∈ L(p) COMP
〈k, i, A→α.Bβ〉 : (c′, v′) 〈i, j, B〉 : ( , v)

〈k, j, A→ αB.β〉 : (c′+v, v′+v)

Figure 2: Deductive systems for dynamic programming shift-reduce parsing (Huang and Sagae, 2010) (left, omitting
rey case), compared to weighted Earley parsing (Stolcke, 1995) (right). Here ξ = scsh(p), δ = scsh(q) + screx(p),
s = sc(B → γ), G is the set of CFG rules, 〈i, j, B〉 is a surrogate for any 〈i, j, B → γ.〉, and is a wildcard that
matches anything.

. . .

L(p)

sh sh
. . .

R(p)p

. . .

L(p)

sh
. . .

T (p)p

(a) L(p) andR(p) (b) T (p) = R(L(p))

Figure 3: Illustrations of left states L(p), right states R(p), and left corner states T (p). (a) Left states L(p) is the set
of states that can be reduced with p so that p.s0 will be the right child of the top tree of the result state. Right states
R(p) is the set of states that can be reduced with p so that p.s0 will be the left child of the top tree of the result state.
(b) Left corner states T (p) is the set of states that have the same reducibility as shifted state p, i.e., ∀p′ ∈ L(p), we
have ∀q ∈ T (p), q ∈ R(p′). In both (a) and (b), thick sh arrow means shifts from multiple states; thin sh arrow means
shift from a single state.

We use C [p] to retrieve the derivation in C that
is associated with state p. We sometimes abuse this
notation to say C [x] to retrieve the derivation asso-
ciated with signature f̃(x) for derivation x. This is
fine since we know derivation x’s state immediately
from the signature. We say state p ∈ C if f̃(p) is
associated with some derivation in C . A derivation
x ∈ C if C [x] = x. Chart C supports operation
PUSH, denoted as C [x]← x, which associate a sig-
nature f̃(x) with derivation x.

Priority queue Q is defined similarly as C , except
that it supports the operation POP that pops the high-
est priority item.

Following Stolcke (1995) and Nederhof (2003),
we use the prefix score and the inside score as the
priority in Q :

x ≺ y ⇔ x.pre < y.pre or

(x.pre = y.pre and x.ins < y.ins), (2)

Note that, for simplicity, we again ignore the spe-
cial case when two derivations have the same prefix
score and inside score. In practice for this case we

can pick either one of them. This will not affect the
correctness of our optimality proof in Section 5.1.

In the DP best-first parsing algorithm, once a
derivation x is popped from the priority queue Q ,
as usual we try to expand it with shift and reduce.
Note that both left and right reduces are between
the derivation x of state p = [x]∼ and an in-chart
derivation y of left state q = [y]∼ ∈ L(p) (Line 10
of Algorithm 1), as shown in the deductive system
(Figure 2). We call this kind of reduction left expan-
sion.

We further expand derivation x of state p with
some in-chart derivation z of state r s.t. p ∈ L(r),
i.e., r ∈ R(p) as in Figure 3 (a). (see Line 11 of
Algorithm 1.) Derivation z is in the chart because it
is the descendant of some other derivation that has
been explored before x. We call this kind of reduc-
tion right expansion.

Our reduction with L andR is inspired by Neder-
hof (2003) and Knuth (1977) algorithm, which will
be discussed in Section 4.
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Algorithm 1 Best-First DP Shift-Reduce Parsing.

Let LC (x)
∆
= C [L([x]∼)] be in-chart derivations of

[x]∼’s left states
Let RC (x)

∆
= C [R(p)] be in-chart derivations of

[x]∼’s right states
1: function PARSE(w0 . . . wn−1)
2: C ← ∅ . empty chart
3: Q ← {INIT} . initial priority queue
4: while Q 6= ∅ do
5: x← POP(Q)
6: if GOAL(x) then return x . found best parse
7: if [x]∼ 6∈ C then
8: C [x]← x . add x to chart
9: SHIFT(x,Q)

10: REDUCE(LC (x), {x},Q) . left expansion
11: REDUCE({x},RC (x),Q) . right expansion
12: procedure SHIFT(x,Q)
13: TRYADD(sh(x),Q) . shift
14: procedure REDUCE(A,B,Q)
15: for (x, y) ∈ A×B do . try all possible pairs
16: TRYADD(rex(x, y),Q) . left reduce
17: TRYADD(rey(x, y),Q) . right reduce
18: function TRYADD(x, Q)
19: if [x]∼ 6∈ Q or x ≺ Q[x] then
20: Q[x]← x . insert x into Q or update Q[x]

3.3 Algorithm 2: Lazy Expansion
We further improve DP best-first parsing with lazy
expansion.

In Algorithm 2 we only show the parts that are
different from Algorithm 1.

Assume a shifted derivation x of state p is a direct
descendant from derivation x′ of state p′, then p ∈
R(p′), and we have:

∀ys.t . [y]∼ = q ∈ REDUCE({p′},R(p′)), x ≺ y

which is proved in Section 5.1.
More formally, we can conclude that

∀ys.t . [y]∼ = q ∈ REDUCE(L(p), T (p)), x ≺ y

where T (p) is the left corner states of shifted state
p, defined as

T (〈i, i+1, sd...s0〉)
∆
={〈i, h, s′d...s′0〉 |

fk(s
′
k)=fk(sk), ∀k ∈ [1, d]}

which represents the set of all states that have the
same reducibility as a shifted state p. In other words,

T (p) = R(L(p)),

Algorithm 2 Lazy Expansion of Algorithm 1.

Let TC (x)
∆
= C [T ([x]∼)] be in-chart derivations of

[x]∼’s left-corner states
1: function PARSE(w0 . . . wn−1)
2: C ← ∅ . empty chart
3: Q ← {INIT} . initial priority queue
4: while Q 6= ∅ do
5: x← POP(Q)
6: if GOAL(x) then return x . found best parse
7: if [x]∼ 6∈ C then
8: C [x]← x . add x to chart
9: SHIFT(x,Q)

10: REDUCE(x.lefts, {x},Q) . left expansion
11: else if x.action is sh then
12: REDUCE(x.lefts, TC (x),Q) . right expan.
13: procedure SHIFT(x,Q)
14: y ← sh(x)
15: y.lefts ← {x} . initialize lefts
16: TRYADD(y,Q)
17: function TRYADD(x, Q)
18: if [x]∼ ∈ Q then
19: if x.action is sh then . maintain lefts
20: y ← Q[x]
21: if x ≺ y then Q[x]← x
22: Q[x].lefts ← y.lefts ∪ x.lefts
23: else if x ≺ Q[x] then
24: Q[x]← x

25: else . x 6∈ Q
26: Q[x]← x

which is illustrated in Figure 3 (a). Intuitively, T (p)
is the set of states that have p’s top tree, p.s0, which
contains only one node, as the left corner.

Based on this observation, we can safely delay the
REDUCE({x},RC (x)) operation (Line 11 in Algo-
rithm 1), until the derivation x of a shifted state is
popped out from Q . This helps us eliminate unnec-
essary right expansion.

We can delay even more derivations by extending
the concept of left corner states to reduced states.
Note that for any two states p, q, if q’s top tree q.s0

has p’s top tree p.s0 as left corner, and p, q share the
same left states, then derivations of p should always
have higher priority than derivations of q. We can
further delay the generation of q’s derivations until
p’s derivations are popped out.2

2We did not implement this idea in experiments due to its
complexity.
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4 Comparison with Best-First CKY and
Best-First Earley

4.1 Best-First CKY and Knuth Algorithm

Vanilla CKY parsing can be viewed as searching
over a hypergraph(Klein and Manning, 2005), where
a hyperedge points from two nodes x, y to one node
z, if x, y can form a new partial tree represented by
z. Best-first CKY performs best-first search over
the hypergraph, which is a special application of the
Knuth Algorithm (Knuth, 1977).

Non-DP best-first shift-reduce parsing can be
viewed as searching over a graph. In this graph, a
node represents a derivation. A node points to all its
possible descendants generated from shift and left
and right reduces. This graph is actually a tree with
exponentially many nodes.

DP best-first parsing enables state merging on
the previous graph. Now the nodes in the hyper-
graph are not derivations, but equivalence classes of
derivations, i.e., states. The number of nodes in the
hypergraph is no longer always exponentially many,
but depends on the equivalence function, which is
the atomic feature function f̃(·) in our algorithms.

DP best-first shift-reduce parsing is still a special
case of the Knuth algorithm. However, it is more dif-
ficult than best-first CKY parsing, because of the ex-
tra topological order constraints from shift actions.

4.2 Best-First Earley

DP best-first shift-reduce parsing is analogous to
weighted Earley (Earley, 1970; Stolcke, 1995), be-
cause: 1) in Earley the PRED rule generates states
similar to shifted states in shift-reduce parsing; and,
2) a newly completed state also needs to check all
possible left expansions and right expansions, simi-
lar to a state popped from the priority queue in Al-
gorithm 1. (see Figure 2)

Our Algorithm 2 exploits lazy expansion, which
reduces unnecessary expansions, and should be
more efficient than pure Earley.

5 Optimality and Polynomial Complexity

5.1 Proof of Optimality

We define a best derivation of state [x]∼ as a deriva-
tion x such that ∀y ∈ [x]∼, x � y.

Note that each state has a unique feature signa-
ture. We want to prove that Algorithm 1 actually fills
the chart by assigning a best derivation to its state.
Without loss of generality, we assume Algorithm 1
fills C with derivations in the following order:

x0, x1, x2, . . . , xm

where x0 is the initial derivation, xm is the first goal
derivation in the sequence, and C [xi] = xi, 0 ≤ i ≤
m. Denote the status of chart right after xk being
filled as Ck. Specially, we define C−1 = ∅

However, we do not have superiority as in non-DP
best-first parsing. Because we use a pair of prefix
score and inside score, (pre, ins), as priority (Equa-
tion 2) in the deductive system (Figure 2). We have
the following property as an alternative for superior-
ity:

Lemma 1. After derivation xk has been filled into
chart, ∀x s.t. x ∈ Q , and x is a best derivation
of state [x]∼, then x’s descendants can not have a
higher priority than xk.

Proof. Note that when xk pops out, x is still in Q ,
so xk � x. Assume z is x’s direct descendant.

• If z = sh(x) or z = re(x, ), based on the de-
ductive system, x ≺ z, so xk � x ≺ z.

• If z = re(y, x), y ∈ L(x), assume z ≺ xk.

z.pre = y.pre + y.sh + x.ins + x.re

We can construct a new derivation x′ ∼ x by
appending x’s top tree, x.s0 to y’s stack, and

x′.pre = y.pre + y.sh + x.ins < z.pre

So x′ ≺ z ≺ xk � x, which contradicts that x
is a best derivation of its state.

With induction we can easily show that any descen-
dants of x can not have a higher priority than xk.

We can now derive:

Theorem 1 (Stepwise Completeness and Optimal-
ity). For any k, 0 ≤ k ≤ m, we have the following
two properties:

∀x ≺ xk, [x]∼ ∈ Ck−1 (Stepwise Completeness)

∀x ∼ xk, xk � x (Stepwise Optimality)
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Proof. We prove by induction on k.

1. For k = 0, these two properties trivially hold.

2. Assume this theorem holds for k = 2, ..., i−1.
For k = i, we have:

a) [Proof for Stepwise Completeness]

(Proof by Contradiction) Assume ∃x ≺ xi

s.t. [x]∼ 6∈ Ci−1.Without loss of generality we
take a best derivation of state [x]∼ as x. x must
be derived from other best derivations only.
Consider this derivation transition hypergraph,
which starts at initial derivation x0 ∈ Ci−1, and
ends at x 6∈ Ci−1.

There must be a best derivation x′ in this tran-
sition hypergraph, s.t. all best parent deriva-
tion(s) of x′ are in Ci−1, but not x′.

If x′ is a reduced derivation, assume x′’s best
parent derivations are y ∈ Ci−1, z ∈ Ci−1.
Because y and z are best derivations, and they
are in Ci−1, from Stepwise Optimality on k =
1, ..., i− 1, y, z ∈ {x0, x1, . . . , xi−1}. From
Line 7-11 in Algorithm 1, x′ must have been
pushed into Q when the latter of y, z is popped.

If x′ is a shifted derivation, similarly x′ must
have been pushed into Q .

As x′ 6∈ Ci−1, x′ must still be in Q when xi is
popped. However, from Lemma 1, none of x′’s
descendants can have a higher priority than xi,
which contradicts x ≺ xi.

b) [Proof for Stepwise Optimality]

(Proof by Contradiction) Assume ∃x ∼ xi

s.t. x ≺ xi. From Stepwise Completeness on
k = 1, ..., i, x ∈ Ci−1, which means the state
[xi]∼ has already been assigned to x, contra-
dicting the premise that xi is pushed into chart.

Both of the two properties have very intuitive
meanings. Stepwise Optimality means Algorithm 1
only fills chart with a best derivation for each state.
Stepwise Completeness means every state that has
its best derivation better than best derivation pi must
have been filled before pi, this guarantees that the

rex

〈h′′, h
′

k...i

〉 : (c′, v′) 〈h′, h

i...j

〉 : ( , v)

〈h′′, h

k...j

〉 : (c′ + v + λ, v′ + v + λ)

Figure 4: Example of shift-reduce with dynamic pro-
gramming: simulating an edge-factored model. GSS
is implicit here, and rey case omitted. Here λ =
scsh(h

′′, h′) + screx(h′, h).

global best goal derivation is captured by Algo-
rithm 1.

More formally we have:

Theorem 2 (Optimality of Algorithm 1). The first
goal derivation popped off the priority queue is the
optimal parse.

Proof. (Proof by Contradiction.) Assume ∃x, x is
the a goal derivation and x ≺ xm. Based on Step-
wise Completeness of Theorem 1, x ∈ Cm−1, thus x
has already been popped out, which contradicts that
xm is the first popped out goal derivation.

Furthermore, we can see our lazy expansion ver-
sion, i.e., Algorithm 2, is also optimal. The key ob-
servation is that we delay the reduction of derivation
x′ and a derivation of right states R([x′]∼) (Line 11
of Algorithm 1), until shifted derivation, x = sh(x′),
is popped out (Line 11 of Algorithm 2). However,
this delayed reduction will not generate any deriva-
tion y, s.t. y ≺ x, because, based on our deduc-
tive system (Figure 2), for any such kind of reduced
derivations y, y.pre = x′.pre+x′.sh+y.re+y.ins ,
while x.pre = x′.pre + x′.sh .

5.2 Analysis of Time and Space Complexity

Following Huang and Sagae (2010) we present the
complexity analysis for our DP best-first parsing.

Theorem 3. Dynamic programming best-first pars-
ing runs in worst-case polynomial time and space,
as long as the atomic features function satisfies:

• bounded: ∀ derivation x, |̃f(x)| is bounded by
a constant.

• monotonic:
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– horizontal: ∀k, fk(s) = fk(t) ⇒
fk+1(s) = fk+1(t), for all possible trees
s, t.

– vertical: ∀k, fk(s
ys′) = fk(t

yt′) ⇒
fk(s) = fk(t) and fk(s

xs′) = fk(t
xt′)⇒

fk(s
′) = fk(t

′), for all possible trees s, s′,
t, t′.

In the above theorem, boundness means we can
only extract finite information from a derivation, so
that the atomic feature function f̃(·) can only dis-
tinguish a finite number of different states. Mono-
tonicity requires the feature representation fk sub-
sumes fk+1. This is necessary because we use the
features as signature to match all possible left states
and right states (Equation 1). Note that we add the
vertical monotonicity condition following the sug-
gestion from Kuhlmann et al. (2011), which fixes
a flaw in the original theorem of Huang and Sagae
(2010).

We use the edge-factored model (Eisner, 1996;
McDonald et al., 2005) with dynamic programming
described in Figure 4 as a concrete example for com-
plexity analysis. In the edge-factored model the fea-
ture set consists of only combinations of informa-
tion from the roots of the two top trees s1, s0, and
the queue. So the atomic feature function is

f̃(p) = (i, j, h(p.s1), h(p.s0))

where h(s) returns the head word index of tree s.
The deductive system for the edge-factored model

is in Figure 4. The time complexity for this deduc-
tive system is O(n6), because we have three head
indexes and three span indexes as free variables in
the exploration. Compared to the work of Huang
and Sagae (2010), we reduce the time complexity
from O(n7) to O(n6) because we do not need to
keep track of the number of the steps for a state.

6 Experiments

In experiments we compare our DP best-first parsing
with non-DP best-first parsing, pure greedy parsing,
and beam parser of Huang and Sagae (2010).

Our underlying MaxEnt model is trained on the
Penn Treebank (PTB) following the standard split:
Sections 02-21 as the training set and Section 22 as
the held-out set. We collect gold actions at differ-
ent parsing configurations as positive examples from

model score accuracy # states time
greedy −1.4303 90.08% 125.8 0.0055
beam∗ −1.3302 90.60% 869.6 0.0331
non-DP −1.3269 90.70% 4, 194.4 0.2622

DP −1.3269 90.70% 243.2 0.0132

Table 1: Dynamic programming best-first parsing reach
optimality faster. *: for beam search we use beam size of
8. (All above results are averaged over the held-out set.)

gold parses in PTB to train the MaxEnt model. We
use the feature set of Huang and Sagae (2010).

Furthermore, we reimplemented the beam parser
with DP of Huang and Sagae (2010) for compari-
son. The result of our implementation is consistent
with theirs. We reach 92.39% accuracy with struc-
tured perceptron. However, in experiments we still
use MaxEnt to make the comparison fair.

To compare the performance we measure two sets
of criteria: 1) the internal criteria consist of the
model score of the parsing result, and the number
of states explored; 2) the external criteria consist of
the unlabeled accuracy of the parsing result, and the
parsing time.

We perform our experiments on a computer with
two 3.1GHz 8-core CPUs (16 processors in total)
and 64GB RAM. Our implementation is in Python.

6.1 Search Quality & Speed

We first compare DP best-first parsing algorithm
with pure greedy parsing and non-DP best-first pars-
ing without any extra constraints.

The results are shown in Table 1. Best-first pars-
ing reaches an accuracy of 90.70% in the held-out
set. Since that the MaxEnt model is locally trained,
this accuracy is not as high as the best shift-reduce
parsers available now. However, this is sufficient for
our comparison, because we aim at improving the
search quality and efficiency of parsing.

Compared to greedy parsing, DP best-first pars-
ing reaches a significantly higher accuracy, with ∼2
times more parsing time. Given the extra time in
maintaining priority queue, this is consistent with
the internal criteria: DP best-first parsing reaches a
significantly higher model score, which is actually
optimal, exploring twice as many as states.

On the other hand, non-DP best-first parsing also
achieves the optimal model score and accuracy.
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Figure 5: DP best-first significantly reduces parsing time.
Beam parser (beam size 8) guarantees linear parsing time.
Non-DP best-first parser is fast for short sentences, but
the time grows exponentially with sentence length. DP
best-first parser is as fast as non-DP for short sentences,
but the time grows significantly slower.

However, it explores∼17 times more states than DP,
with an unbearable average time.

Furthermore, on average our DP best-first parsing
is significantly faster than the beam parser, because
most sentences are short.

Figure 5 explains the inefficiency of non-DP best-
first parsing. As the time complexity grows expo-
nentially with the sentence length, non-DP best-first
parsing takes an extremely long time for long sen-
tences. DP best-first search has a polynomial time
bound, which grows significantly slower.

In general DP best-first parsing manages to reach
optimality in tractable time with exact search. To
further investigate the potential of this DP best-
first parsing, we perform inexact search experiments
with bounded priority queue.

6.2 Parsing with Bounded Priority Queue

Bounded priority queue is a very practical choice
when we want to parse with only limited memory.

We bound the priority queue size at 1, 2, 5, 10,
20, 50, 100, 500, and 1000, and once the priority
queue size exceeds the bound, we discard the worst
one in the priority queue. The performances of non-
DP best-first parsing and DP best-first parsing are
illustrated in Figure 6 (a) (b).

Firstly, in Figure 6 (a), our DP best-first pars-
ing reaches the optimal model score with bound

50, while non-DP best-first parsing fails even with
bound 1000. Also, in average with bound 1000,
compared to non-DP, DP best-first only needs to ex-
plore less than half of the number of states.

Secondly, for external criteria in Figure 6 (b), both
algorithms reach accuracy of 90.70% in the end. In
speed, with bound 1000, DP best-first takes ∼1/3
time of non-DP to parse a sentence in average.

Lastly, we also compare to beam parser with beam
size 1, 2, 4, 8. Figure 6 (a) shows that beam parser
fails to reach the optimality, while exploring signif-
icantly more states. On the other hand, beam parser
also fails to reach an accuracy as high as best-first
parsers. (see Figure 6 (b))

6.3 Simulating the Edge-Factored Model

We further explore the potential of DP best-first
parsing with the edge-factored model.

The simplified feature set of the edge-factored
model reduces the number of possible states, which
means more state-merging in the search graph. We
expect more significant improvement from our DP
best-first parsing in speed and number of explored
states.

Experiment results confirms this. In Figure 6 (c)
(d), curves of DP best-first diverge from non-DP
faster than standard model (Figure 6 (a) (b)).

7 Conclusions and Future Work

We have presented a dynamic programming algo-
rithm for best-first shift-reduce parsing which is
guaranteed to return the optimal solution in poly-
nomial time. This algorithm is related to best-first
Earley parsing, and is more sophisticated than best-
first CKY. Experiments have shown convincingly
that our algorithm leads to significant speedup over
the non-dynamic programming baseline, and makes
exact search tractable for the first-time under this
model.

For future work we would like to improve the per-
formance of the probabilistic models that is required
by the best-first search. We are also interested in
exploring A* heuristics to further speed up our DP
best-first parsing.
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Figure 6: Parsing performance comparison between DP and non-DP. (a) (b) Standard model with features of Huang
and Sagae (2010). (c) (d) Simulating edge-factored model with reduced feature set based on McDonald et al. (2005).
Note that to implement bounded priority queue we use two priority queues to keep track of the worst elements, which
introduces extra overhead, so that our bounded parser is slower than the unbounded version for large priority queue
size bound.
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Abstract
The problem of learning language models
from large text corpora has been widely stud-
ied within the computational linguistic com-
munity. However, little is known about the
performance of these language models when
applied to the computer vision domain. In this
work, we compare representative models: a
window-based model, a topic model, a distri-
butional memory and a commonsense knowl-
edge database, ConceptNet, in two visual
recognition scenarios: human action recog-
nition and object prediction. We examine
whether the knowledge extracted from texts
through these models are compatible to the
knowledge represented in images. We de-
termine the usefulness of different language
models in aiding the two visual recognition
tasks. The study shows that the language
models built from general text corpora can be
used instead of expensive annotated images
and even outperform the image model when
testing on a big general dataset.

1 Introduction

Computational linguistics have created many tools
for automatic knowledge acquisition which have
been successfully applied in many tasks inside the
language domain, such as question answering, ma-
chine translation, semantic web, etc. In this paper
we ask whether such knowledge generalizes to the
observed reality outside the language domain, where
we use well-known image datasets as a proxy for ob-
served reality.

In particular, we aim to determine which language
model yields knowledge that is most suitable for use

in Computer Vision. Therefore we test a variety of
language models and a linguistically mined knowl-
edge base within two computer vision scenarios:

Human action recognition : Recognizing
<subject, verb, object> triples based on
objects (e.g., car, horse) and scenes (the place
that the actions occur, e.g., countryside, forest,
office) recognized in images. In this scenario,
we only consider images with human actions
so the “human” subject is always present.

Objects in context : Predicting the most likely
identity of an object given its context as ex-
pressed in terms of co-occurring objects.

Computer vision can greatly benefit from natural
language processing as learning from images re-
quires a prohibitively expensive annotation effort. A
major goal of natural language processing is to ob-
tain general knowledge from text and in this paper
we test which model provides the best knowledge
for use in the visual domain.

Within the two visual scenarios, we compare three
state-of-the-art language models and a knowledge
base: (1) A window-based model, which counts
co-occurrence frequencies within a fixed window;
(2) R-LDA (Séaghdha, 2010), an extension of LDA
that enables generation of joint probabilities; (3)
TypeDM (Baroni and Lenci, 2010), a strong Distri-
butional Memory model; (4) ConceptNet (Speer and
Havasi, 2013), an automatically generated semantic
graph containing concepts with their relations.

We test the language models in two ways: (1) We
directly compare the statistics of the linguistic mod-
els with statistics extracted from the visual domain.
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(2) We compare the linguistic models inside the two
computer vision applications, leading to a direct es-
timation of their usefulness.

To summarize, our main research questions are:
(1) Is the knowledge from language compatible with
the knowledge from vision? (2) Can the knowl-
edge extracted from language help in computer vi-
sion scenarios?

2 Related Work

Using high level knowledge to aid image under-
standing has become a recent interest in the com-
puter vision community. Objects, actions and scenes
are detected and localized in images using low-
level features. This detection and localization pro-
cess is guided by reasoning and knowledge. Such
knowledge is employed to disambiguate locations
between objects in (Gupta and Davis, 2008). From
the defined relationships between nouns (e.g., above,
below, brighter, smaller), the system constrains
which region in an image corresponds to which ob-
ject/noun. Similarly, (Srikanth et al., 2005) ex-
ploit ontologies extracted from WordNet to asso-
ciate words and images and image regions. (Yu
et al., 2011) employ relations between scenes and
objects introducing an active model to recognize
scenes through objects. The reasoning knowledge
limits the detector to search for an object within a
particular region rather than on the whole image.

Language models have also been employed to
generate descriptive sentences for images. (Ushiku
et al., 2012) introduce an online learning method for
multi-keyphrase estimation to generate a sentence
using a grammar model to describe an image. Simi-
larly, from objects and scenes detected in an image,
(Yang et al., 2011) estimated a sentence structure to
generate a sentence description composed of a noun,
verb, scene and preposition.

The studies most similar to ours are (Teo et al.,
2012) and (Lampert et al., 2009). In (Teo et al.,
2012), the Gigaword corpus is used to extract rela-
tionships between tools and actions (e.g., knife - cut,
cup - drink) by counting their co-occurences. These
relationships are used to constrain and select the
most plausible actions within a predefined set of ac-
tions in cooking videos. Instead of using this knowl-
edge as a guidance during recognition, we compare

different language models and build a general frame-
work that is able to detect unseen actions through
their components (verb - object - scene), hence our
method does not limit the number of actions in im-
ages. (Lampert et al., 2009) use attributes of nouns
(e.g., an animal: white, eat fish, water, etc.). They
can detect animals without having seen training ex-
amples by manually defining the attributes of the tar-
get animal. In this work, rather than relying on man-
ual definitions, our aim is to find the best language
models built automatically from available corpora to
extract relations from natural language.

Currently, human action recognition is popular
and mostly studied in video using the Bag-of-Visual-
Words method (Delaitre et al., 2010; Everts et al.,
2013; Kuehne et al., 2012; Reddy and Shah, 2012;
Wang et al., 2013). In this method one extracts small
local visual patches of, say, 24 by 24 pixels by 10
frames at every 12th pixel at every 5th frame. For
each patch local gradients or local movement (opti-
cal flow) histograms are calculated. Then these local
visual features are mapped to abstract, predefined
“visual words”, previously obtained using k-means
clustering on a set of random features. While results
are good, there are two main drawbacks with this
approach. First of all, human actions are semantic
and more naturally recognized through their compo-
nents (human, objects, scene) rather than through a
bag of local gradient/motion patterns. Hence we use
a component-based method for human action recog-
nition. Second, the number of possible human ac-
tions is huge (the number of objects times the num-
ber of verbs). Obtaining annotated visual examples
for each action is therefore prohibitively expensive.
So we learn from language models how components
combine into human actions.

3 Two Visual Recognition Scenarios

We now describe the two computer vision scenarios:
human action recognition and objects in context.

3.1 Human Action Recognition

We want to identify a human action, defined as a
<subject, verb, object> triple. We do this by recog-
nizing the human, the object, and the scene and then
determine the most likely verb based on these com-
ponents. Scenes are only used here as features for
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predicting/disambiguating the human action and the
final task is to define the human action triple. As in
most work in human action recognition, we simplify
the problem by considering only images in which
human actions occur. This means that a human is
always present, leaving the problem of predicting
the verb given the object and the scene. While this
may seem like a strong assumption, the possibility
of having no action in the image at all is largely un-
explored in computer vision due to its difficulty.
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Figure 1: Human action suggestion: based on the objects
and scenes recognized in an image, the system suggests
the most plausible actions. The action models provide the
relationships between objects - scenes - verbs

3.1.1 Human action recognition framework
Our general action recognition framework is pre-

sented in Figure 1. Given an image, an object recog-
nizer will predict the probability of each object (e.g,
bike, horse) presented in that image. Furthermore,
a scene recognizer will provide the probabilities of
each scene (e.g., countryside, suburb, forest) given
the image. The action model is composed of the
conditional probabilities that relate verbs, objects
and scenes, which have been learned from training
images or language corpora. Given the object and
scene probabilities recognized in the image, the ac-
tion model will guide the action prediction process
and finally, the system will suggest the most proper
actions (e.g., ride horse, drive car). We will now de-
scribe each component in detail:

• Object and scene recognizers: To train the ob-
ject recognizer, we use a set of images where ob-
jects have been annotated with bounding boxes (to

specify objects’ locations). We follow the state-
of-the-art method of (Uijlings et al., 2013). The
method is based on multiple hierarchical segmen-
tations to sample a limited set of high quality ob-
ject locations in terms of bounding boxes. A Bag-
of-Visual-Words method (Uijlings et al., 2010) is
applied to these boxes to localize and recognize
objects. For the scene recognizer, we trained the
same Bag-of-Visual-Words method on complete
images on a dataset annotated with 15 scenes. In
both cases we use Support Vector Machines to
learn the object/scene models. We use Platt’s sig-
moid function to obtain the final conditional prob-
abilities P (oj |I) and P (sk|I).

• Action models: The model captures the relation-
ship between Object - Scene, Verb - Scene and
Verb - Object: the probability of an object given a
scene P (oj |sk), a verb given an object P (vi|oj),
and a verb given a scene P (vi|sk). In one exper-
iment we learn the probabilities from the train-
ing images, where each image has been anno-
tated with an object, a verb (of an action) and a
scene. All three probabilities are computed using
frequency counts in the training set, for example:

P (oj |sk) =
#images having oj , sk

#images having sk
(1)

We aim to replace this learning from annotated
training images, which are expensive to obtain,
with learning from language corpora. The de-
tails of how to extract the probability distributions
from language models are explained in section 4.

3.1.2 Component integration
To combine these components in the framework,

we use an energy-based model (Lecun et al., 2006)
visualized in Figure 2, which includes the image I
(an observed variable) and object O, scene S, and
verb V . This energy-based formulation allows us to
set different weights for energies which come from
disparate sources (i.e. language and vision) using
Gibbs measure.

Now given an image I , we can compute the score
function S(aij ; I) of an action aij as:

S(aij ; I) = S(vi, oj ; I) =
1

Z
exp

(
−
∑
F∈F

Eij
F

)
,
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Figure 2: An energy-based model for action recognition

where we define each energy function Eij
F to give

lower energies to correct answers and higher ener-
gies to incorrect ones, with S is the set of all scenes:

Eij
F1

(O, I) = −wF1 logP (oj |I) (2)

Eij
F2

(S, I) = −wF2 log
∑
S∈S

P (oj |S)× P (S|I)

(3)

Eij
F3

(V,O) = −wF3 logP (vi|oj) (4)

Eij
F4

(V, S) = −wF4 log
∑
S∈S

P (vi|S)× P (S|I)

(5)

Let Pi be the position of the correct action in the
ranked list of predicted actions for a certain image
Ii. The ranked list is sorted in the order of the score
S. We evaluate human action recognition in terms of
this position average over all images, which we call
Average Ranking (AR). Therefore we use Average
Ranking as our loss-function:

L(wF ) = ARN =
1

N

N∑
i=0

Pi. (6)

Training the energy model involves finding the fac-
tors w∗F that minimizes the loss:

w∗F = argmin
wF

L(wF ) (7)

As we have only four parameters to learn in our
energy model, we do this by performing an ex-
haustive search and cross validation. We require
wF ∈ {0.0, 0.1, 0.2, ..., 0.9} and set the constraint∑

F∈F wF = 1. We note that the factor graph for-
mulation of our framework would allow us to use
more advanced learning algorithms. We plan to look
into this once the model becomes more complex by
adding, for example, information about the position
of the objects and the human.

3.1.3 Dataset
Recently, researchers have released many im-

age action datasets such as the 7 everyday ac-
tions (Delaitre et al., 2010), the Stanford 40 action
dataset (Yao et al., 2011), the PASCAL action clas-
sification competition (Everingham et al., 2012), and
the 89 action dataset (Le et al., 2013). The 89 action
dataset was originally created for the recognition of
20 objects. Afterwards also actions were annotated.
Therefore, the actions occurring with these objects
are mostly unbiased, unlike in other action datasets.
Hence we choose to use the 89 action dataset.

In the 89 action dataset, every image has been an-
notated with human actions, where each action is
composed of a verb and an object. We addition-
ally annotated every image with one of the 15 scenes
from the 15 scene dataset (Lazebnik et al., 2006).

3.2 Objects in Context

Our other computer vision scenario is about objects
in context. Context is useful in visual recognition for
two reasons: Firstly, context can significantly reduce
the number of possible object categories simplifying
the problem. Secondly, when the object appearance
is inconclusive for its identity, context can be used
for disambiguation. For example, a grey rectangle
on a desk may be recognized as a pen, while a grey
rectangle on a table may be recognized as a knife.
As the recognition systems are not always reliable,
the use of context can greatly improve results.

For this scenario we choose a theoretical setting
in which we want to predict the identity of one ob-
ject given that the identities of all other objects in
the image are known. We believe that our main con-
clusions on the linguistic models will transfer to a
practical computer vision application where visual
recognition systems predict the object identities.

Formally, we can describe this scenario as fol-
lows: Given an image I with N objects O =
{o1, o2, · · · , oN}, we want to predict the identity of
object oi given all other objects O \ oi. In this paper
we use a Naive Bayes assumption, leading to:

P (oi|O \ oi) =
P (O \ oi|oi)× P (oi)

P (O \ oi)

≈ P (oi)×
∏

oj∈O\oi

P (oj |oi). (8)
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In this scenario, we need conditional relations
P (oj |oi) and priors. We obtain these from language
data or from images directly.

3.2.1 Dataset
For the objects in context scenario, we use the

SUN object dataset (Xiao et al., 2010), which con-
tains more than 16 thousand images, more than
79,000 objects whose locations are annotated us-
ing polygons. The dataset has been annotated by
various people who could choose their own object
categories, leading to duplicate categories such as
“building” and “buildings”, “person” and “person
walking”. Furthermore, for some images large parts
are not annotated leading to an incomplete context.
We therefore cleaned the object categories (mapping
from around 7,500 objects to over 700 unique object
categories) and considered only images whose con-
tent was sufficiently annotated.

In our experiments, we used the predefined train-
ing and testing parts of the SUN dataset and obtained
around 4,500 images for learning the object relations
and 10,600 images for testing the object prediction.
We obtain conditional probabilities P (oj |oi) from
frequency counts.

4 Language models & distribution
extraction

To extract probability distributions from texts, we
use ConceptNet, the Window2 and 20 model,
TypeDM and R-LDA. We will now describe
how we estimate the four conditional probabilities
P (V |O), P (V |S), P (O|S), P (O|O) needed in the
two visual scenarios for each language model.

4.1 ConceptNet
ConceptNet (Speer and Havasi, 2013) is a large se-
mantic graph containing concepts and relations be-
tween them. It includes everyday basic, cultural
and scientific knowledge, which have been automat-
ically extracted from Internet using predefined rules.
In this work we use the most current version, Con-
ceptNet 5. As it was mined from free text using
rules, the database has uncontrolled vocabulary and
contains many false/nonesense statements.

To extract relations from ConceptNet5, we first
examine all relations in the database and define those
that are relevant to our scenarios (Figure 3). For

Figure 3: List of relations in ConceptNet

example, for the conditional probability of objects
given scenes, relations such as “At Location”, “Lo-
cated Near” are extracted. For the human action
recognition scenario, we used a list of 19 objects,
15 scenes and around 5 thousand verbs for comput-
ing P (V |O), P (O|S), P (V |S). For the objects in
context scenario, we used 700 objects for comput-
ing P (O|O). Examples of relations extracted from
ConceptNet are illustrated in Table 1, such as: Oil -
Located near - Car, Horse - Related to - Zebra. From
these relations, we define the four conditional prob-
abilities using their frequency counts. For example,
to compute the conditional probability of an object
given a scene P (oi|sj), we extract all triples having
the form <object, rel, scene>, where “rel” can be
“AtLocation”, “LocatedNear”, etc.

P (oi|sj) =
freq(< oi, rel, sj >)∑

om∈O freq< om, rel, sj >
(9)

4.2 Window model
One of the most famous and basic statistical model is
based on counting co-occurrences within a window
of fixed width, which follows the tradition of hy-
perspace analogue to language (Lund and Burgess,
1996). We took the Window2, 20 models which
have been built in (Bruni et al., 2012) using the
ukWaC (1.9B tokens) and Wackypedia (820M to-
kens). As the Window2 model only looks at 2 words
on the left and right of the current one, it reflects
the relationships between words occurring near each
other, while the Window20 searches for a broader
view of how words are related to each other. The
weights of each pairs of words are calculated using
the Local Mutual Information (LMI). To compute
the conditional probabilities, we use the LMI scor-
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LocatedNear RelatedTo UsedFor AtLocation
oil car seatbelt car horse zebra plant garden bottle store liquid horse race bus city car city

chair your bottom chair school horse pony sheep baa boat fish table eat off of bike street dog city
plant everywhere muzzle dog plant green sheep cloud dog companionship chair rest bird countryside dog street

trailer car dog bark bone boat ship cow bull horse riding bus travel car street chair city
salt table horse cowboy chair table horse riding chair sitting table eat meal cat store bus city

stool table carriage horse dog wolf sheep farm chair sit on boat travel car street chair store
pasture cow horse fence dog cat cow milk car transportation bottle hold liquid car street bicycle store

cat dog whisker cat sheep lamb table desk sheep wool boat float on water bird forest chair store
horse zebra desk chair sheep wool cat feline table put thing on table eat at car city bottle store

cat household train railroad dog a wolf dog canine boat travel on water cat catch mouse table kitchen chair office
horsehair horse sheep wool cat dog plant flower chair sit cow milk chair office chair city

Table 1: Examples of relations extracted from ConceptNet 5

ing function provided by the models, for example:

P (vi|oj) =
LMIvi,oj∑

vm∈V LMIvm,oj

(10)

4.3 Distributional Memory

Distributional Memory (Baroni and Lenci, 2010)
(DM) is a multi-purpose framework for semantic
modeling. This model is more complex than the
Window models because it exploits different de-
grees of lexicalization for each relation. Distribu-
tional information is extracted as a set of weighted
<word-link-word> tuples obtained from a depen-
dency parse of corpora. In the Window model the
relation between each word pair is decided by their
co-occurences within a sliding window, while in DM
this relation is defined by distributional properties of
the two words. These distributional properties are
based on a syntactic relation or lexico-syntactic pat-
tern that links the two words. For example, the tu-
ple <marine, use, bomb> encodes that marine co-
occurs with bomb in the corpus, and the word “use”
specifies the type of the syntagmatic link.

Distributional Memory contains three different
models, corresponding to different ways to con-
struct the weighted structure through the “link”. The
first model, LexDM is the most heavily lexicalized
model with the most variety of links, whereas the
DepDM has the minimum degree of lexicalization,
thus having the smallest number of links. TypeDM,
which was reported to achieve the best performance
in different tasks including selectional preferences,
is laying somewhere in the middle of the other two
models. It shares the same lexical information as in
LexDM but use a different scoring function, which
focuses on the variety of surface forms, rather than
the frequency of a link. Hence we choose the best
model, TypeDM, to learn the relationships between

verbs, objects and scenes. As in the window model,
we compute conditional probabilities using the LMI
scores provided by the model (Equation 10).

4.4 R-LDA
To model the relationships between verbs, objects
and scenes, we adapt the R-LDA model (Séaghdha,
2010) (ROOTH-LDA), which has been used for the
selectional preference task in order to obtain con-
ditional probabilities of two words. Each relation m
of< w1, w2 > is generated by picking up a distribu-
tion over topics, then both elements of the relationm
share the same topic assignment zm, which keep two
differentw1-topic andw2-topic distributions sharing
the same topic (Figure 4). The models are estimated
by Gibbs sampling following (Heinrich, 2004). It is
also noted that these models are generative, hence
they also predict the probabilities of tuples that do
not occur in the corpus.
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Figure 4: Generative graphical model of R-LDA: model-
ing the relations between two words

To model the relations between objects and verbs,
we follow the data preparation in (Le et al., 2013),
using the British National Corpus (BNC) which has
been preprocessed and parsed using TreeTagger and
Maltparser. Verbs are heads of sentences while ob-
jects are either direct or indirect objects related to
those verbs by the parser. For the relations between
verbs and scenes, we consider also verbs as heads
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Topic 8: Topic 14: Topic 0: Topic 54:
Noun Verb Noun Verb Noun Noun Noun Noun

people 0.0208 have 0.157 year 0.0154 win 0.109 attention 0.0172 study 0.01 decision 0.02 case .0176
job 0.0167 work 0.108 Cup 0.0093 have 0.099 model 0.0147 research 0.0123 view 0.0244 fact .0096

work 0.0156 make 0.0262 team 0.0086 beat 0 study 0.014 work 0.0111 question 0.018 question .0096
class 0.014 take 0.0244 race 0.00772 take 0.025 role 0.0139 chapter 0.0085 issue 0.0124 law .0096

worker 0.0123 find 0.0194 season 0.0062 lose 0.0211 account 0.013 problem 0.0075 evidence 0.0104 decision .0092
staff 0.0111 pay 0.0156 time 0.006 run 0.0152 analysis 0.0123 issue 0.006 point 0.0099 time .0067

group 0.0089 say 0.0146 world 0.0058 finish 0.0135 aspect 0.012 system 0.0065 reason 0.0096 issue .0062
way 0.0086 get 0.0136 game 0.0055 make 0.0127 problem 0.0106 area 0.006 statement 0.0086 evidence .00617

service 0.008 leave 0.0114 champion 0.0053 lead 0.0122 effect 0.0105 process 0.006 doubt 0.008 interest .0059
company 0.0076 run 0.0102 seat 0.0049 follow 0.0098 pattern 0.0103 policy 0.0055 attention 0.0076 point .0058

day 0.0069 come 0.0101 match 0.0049 qualify 0.008 issue 0.0102 theory 0.00551 matter 0.00738 judge .0055
number 0.00615 help 0.0088 place 0.0047 compete 0.0074 range 0.0095 way 0.0053 policy 0.006 statement .005

Table 2: Random R-LDA topics with the relations between Noun-Verb (first 2 columns) and between Noun-Noun (last
2 columns)

of sentences while scenes are all nouns occurring in
the same sentence. For the relations between objects
and scenes as well as objects and objects, we use all
nouns to capture a general model1. The statistics of
the BNC corpus with their corresponding relations
are reported in Table 3.

#Relations #Tokens
Verb - Object 3.3M 6.7M
Noun - Noun 19.8M 39.7M
Verb - Noun 83.4M 166.8M

Table 3: The statistics of the dataset used for estimating
R-LDA models for each relation type

Samples of topics extracted through R-LDA are
illustrated in Table 3. It shows that Noun and Object
share many similar terms in the same topic while
Noun and Verb sharing the same topics tend to go
often together (e.g., win, cup, beat, race).

5 Experiments

In this section we want to answer our two main re-
search questions: (1) Is knowledge from language
compatible with knowledge from vision? (2) Can
we use knowledge extracted from language in com-
puter vision scenarios?

5.1 Is knowledge from language and vision
compatible?

In this section we compare statistics mined from
texts with those mined from visual sources. Ideally,

1Different from objects and verbs, which can be defined ex-
plicitly from the parsed corpora, scenes can only be defined
from more restrained rules (e.g., followed by some preposi-
tions), so here we take all nouns to have the most general model.

Chi statistics P(V|O) P(V|S) P(O|S)
R-LDA 17.8 11.6 11.9

Window2 11.6 11.4 32.6
Window20 11.7 11.4 23.7
TypeDM 11.5 13.3 23.2

ConceptNet 17.5 11.5 34.4

Table 4: X 2 distance for relations between verbs, objects,
scenes from different language models to image data

we want statistics from the language models to fol-
low those of the image model, even though not all
statistics from images can be reliably measured due
to insufficient data. Therefore, we measure how well
the estimated language models fit the estimated vi-
sual distributions using the the χ2-distance:

X 2 =
N∑

i=1

(PI
i − PL

i)2

PI
i

(11)

where PI and PL are the probability distribution ob-
tained from the image data and language models re-
spectively.

For the conditional probabilities P (V |O),
P (V |S), and P (O|S) we compare language models
with image statistics extracted from the 89 human
action dataset. Table 4 shows the results. For the re-
lations between verb and scene P (V |S), there is not
much fluctuation among different language models.
For objects and scenes P (O|S), R-LDA is closest
to the image model. This is because R-LDA is good
at measuring contextual and indirect relations by
design, which is the case for object-scene relations.
This also explains why TypeDM and Window20 are
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further away from the image model, followed by
the Window2 model. Instead, human actions are
found in language as the relation between verbs and
their direct linguistic objects. Indeed, TypeDM is
closest to the image model for P (V |O) as it makes
explicit use of this linguistic link. The Window2
and 20 models are almost as close to the image
model for P (V |O), while R-LDA is considerably
further away due to its contextual nature. Finally,
ConceptNet is the furthest away from the image
model. To conclude, TypeDM is best for modelling
direct verb-object relations, while R-LDA is better
at capturing the more contextual object-scene
relations.

To look closer at the difference between the statis-
tics obtained from the image and language data,
we give an example of the conditional probabil-
ities of an object given a scene P (O|S) in Fig-
ure 5. We see that the distribution extracted from
language (TypeDM) is much smoother and contains
more relations than the image model since it has
been trained on general and large text corpora. The
distribution from image data on the other hand is
more sparse and tailored to this specific dataset. For
example, given a “store”, the probability that there
is a “table” is 1, given “highway”, the probability of
a “car” is also 1 in the image dataset, while the high-
est conditional probability of the language model is
only less than 60%. ������
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Figure 6: χ2-distances between the tested language mod-
els and the image model for conditional probabilities of
objects P (O|O).

For the relations between objects and objects, we
use the SUN dataset, which is much bigger and more
general than the action dataset. As shown in Fig-
ure 6, R-LDA is most similar to the image model,
closely followed by TypeDM and the Window20

model. All these three models are good at captur-
ing broad contextual relations. The Window2 model
has a significantly larger distance to the image model
as it captures a narrow context of 2 words, which is
apparently not enough to find co-occurences of ob-
jects. ConceptNet is the most inconsistent with this
image data since not enough objects and their re-
lations are extracted from it. To sum up, R-LDA
achieves the best performance in modeling the re-
lations between objects and objects among all lan-
guage models.

5.2 Language Models for Visual Recognition
To measure the performance of the two visual recog-
nition scenarios, we use the position pi of the correct
action found in the ranked list for each image i.

We report the average ranking over all images
(ARI ) and over all objects or actions (ARO, ARA):

ARI =

∑N
i=0 p

i

N
;ARO =

∑No
j=0 p

j
o

No
(12)

where N is the number of images, No is the number
of objects and pj

o is the average rank of all images
having object j. The average rank over all actions
ARA is defined similarly to ARO. The average rank
over all image measures the performance over the
image dataset, but infrequent objects/events have lit-
tle impact on this performance. The average rank
over objects or actions gives more weight to rare ex-
amples.

5.2.1 Human Action Recognition
We evaluate the performance of human action

recognition in images based on objects and scenes
individually, and then study the integration of them.
The training set contains 1,104 images (for training
the image relations) and the test set has 710 im-
ages. First, we test how the model predicts an ac-
tion knowing the actual object and/or scene appear-
ing in an image (given object/scene gold standard),
i.e., Ogs, Sgs and OgsSgs in the settings. After that,
we test a complete model which is based on the out-
put of our object recognizer and our scene recog-
nizer (Orec, Srec, OrecSrec).

For each setting, we try different action models,
either learnt from the training images (Image), or
from each of the language models (TypeDM, R-
LDA, Window2, Window20, ConceptNet).
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Figure 5: Probability distributions of scene over object extracted from: (left) image dataset; (right) TypeDM model
(as there are many <object - scene> relations, only a few are shown on the Y-axises). The number of relations in the
TypeDM is much bigger than in the image model, which shows a more general model than the image one.

Table 5 presents the average ranking over all im-
ages. Results show that the action model learnt di-
rectly from the training images achieves the best per-
formance in all settings, even if we give more weight
to infrequent actions by taking the average ranking
over all actions, as presented in Table 6. One ex-
planation may be that the action dataset has a lim-
ited domain of only 19 objects, while the language
models were learnt from broad knowledge (See Fig-
ure 5). Another possibility is that verbs used for
describing actions in images are more specific than
verbs used in language. For example, in language
one would “use the car”, while in images such ac-
tion would be labelled “drive a car”.

If we look at the performance of the language
models, TypeDM performs best by a significant mar-
gin. This makes sense, as the most powerful term
for predicting an action is obviously P (V |O), and
we saw earlier that TypeDM produces probabili-
ties P (V |O) which are closest to the image model.
For the same reason, the second and third best
language model are the Window2 and Window20
models, although their performance is significantly
lower when using the predictions for objects and/or
scenes. This is somewhat surprising considering
that TypeDM, Window2 and Window20 are all very
close in distance to the image model. Of course,

Image TypeDM R-LDA Window2 Window20 C.Net
Ogs 0.3 16.1 63.4 16.4 18.3 86.1
Orec 14.9 26.9 66.7 44.7 54.9 115.6
Sgs 35.7 181.7 174.9 168.5 174.8 252.5
Srec 46.8 250.5 348 190.2 189.8 241.2

OgsSgs 0.28 10.2 15.2 13.8 13.6 81.9
OrecSrec 13.6 26.9 66.7 44.7 54.9 115.6

Table 5: Average rank over all images ARI of the human
action recognition using different settings: Ogs, Orec

use only objects (gold standard and object recognizer);
Sgs, Srec use only scenes,OgsSgs andOrecSrec integrate
both objects and scenes together

the distance is just an indication. R-LDA performs
poorly because it is much more contextual. Finally,
ConceptNet performs the worst.

Another observation is that using the scene iden-
tity should theoretically help in human action recog-
nition: Using TypeDM, the use of the gold standard
object identity yields an average ranking over all im-
ages of 16.1, while using both the scene and object
identity yields an average ranking of 10.2, which
is significantly better. It means that the use of the
scene can disambiguate some actions (e.g. “ride a
horse” vs. “feed a horse”). However, when using
the recognition system, using the scene does not in-
crease the overall performance. This shows that the
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visual recognition system may not be strong enough
for recognizing these 15 scenes. Another problem
may be the limitation of 15 scenes only: while an-
notating we frequently found that it was hard for nu-
merous images to put them into one of the 15 scenes.
So a bigger scene database may help.

The main problem with most available annotated
human action datasets is that they are very restricted
and domain-specific. For example, in this dataset
with 19 objects and 15 scenes, there are many photos
of a person riding a motorbike on rocky mountains
as a kind of sport. Consequently, the probability
of “riding” given “mountain” learnt from the image
dataset is high according to the image data (78%)
but is uncommon in general. So the image dataset
might be too restricted or biased for general knowl-
edge to work well. In the next section we therefore
use a more general dataset.

Image TypeDM R-LDA Window2 Window20 C.Net
ARI 13.6 26.9 66.7 44.7 54.9 115.6
ARA 16.4 30.8 64.7 45.3 51.9 131.7

Table 6: Average rank over all images vs. actions of the
human action recognition using the OrecSrec setting

5.2.2 Objects in Context
For every object in every image in the test set of

the SUN database, we guess the identity of an object
given the identity of all other objects in the image.
In total, there are 78,306 object predictions within
10,652 images.

As shown in Figure 7, the R-LDA model outper-
forms all other models for both average rank over
images and over objects. Interestingly, both R-LDA
and TypeDM are better at predicting the correct ob-
jects in images than the model learnt from the image
training set itself. It shows that for many cases, the
relation statistics learnt from language data can help
in visual recognition. These language models are
even better than the information extracted from gen-
eral, relatively unbiased image datasets, where an-
notation is limited. For the limited annotation, this
hypothesis is further supported by looking at the av-
erage rank over objects, which gives more weight
to rarely occurring objects. As seen in Figure 7, all
language models except ConceptNet outperform the
image model. We conclude that language models
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Figure 7: Average rank over all images and objects using
different language models and ID (image data)

can aid visual models in large-scale visual recogni-
tion problems which use co-occurrence of objects as
their context, especially when the annotation is lim-
ited, as is often the case.

6 Conclusion

In this paper, we investigated the problem of ap-
plying knowledge learnt from language corpora to
visual recognition. We compared statistics of var-
ious language models mined on general corpora
with statistics observed in image datasets. It shows
that the generative R-LDA model is good at relat-
ing contextual relations (e.g., object - object, ob-
ject - scene), while the syntactic based distributional
model TypeDM is good at representing direct rela-
tions such as verb - object in images.

We have evaluated the performance of the lan-
guage models in two visual scenarios: human action
recognition and object prediction. It suggests that
the language models need some tailoring when ap-
plied to restricted datasets, but for a bigger and more
general dataset, the language models even outper-
form the model learnt from annotated images itself.
This shows that language models built from avail-
able text corpora can be used for visual recognition
instead of expensive annotated image data.

In the future, we want to further investigate the
problem of domain adaptation when applying gen-
eral language models to a new image dataset. This
problem can be integrated into the energy-based
model during the training phase. We plan to extend
work on human action recognition by including the
relative position between the human and object in
the images.
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Abstract

This paper presents DefMiner, a supervised
sequence labeling system that identifies scien-
tific terms and their accompanying definitions.
DefMiner achieves 85% F1 on a Wikipedia
benchmark corpus, significantly improving
the previous state-of-the-art by 8%.

We exploit DefMiner to process the ACL An-
thology Reference Corpus (ARC) – a large,
real-world digital library of scientific arti-
cles in computational linguistics. The re-
sulting automatically-acquired glossary rep-
resents the terminology defined over several
thousand individual research articles.

We highlight several interesting observations:
more definitions are introduced for conference
and workshop papers over the years and that
multiword terms account for slightly less than
half of all terms. Obtaining a list of popular
defined terms in a corpus of computational lin-
guistics papers, we find that concepts can of-
ten be categorized into one of three categories:
resources, methodologies and evaluation met-
rics.

1 Introduction

Technical terminology forms a key backbone in
scientific communication. By coining formalized
terminology, scholars convey technical information
precisely and compactly, augmenting the dissemi-
nation of scientific material. Collectively, scholarly

∗This research is supported by the Singapore National Re-
search Foundation under its International Research Centre @
Singapore Funding Initiative and administered by the IDM Pro-
gramme Office.

compilation efforts result in reference sources such
as printed dictionaries, ontologies and thesauri.

While online versions are now common in many
fields, these are still largely compiled manually, re-
lying on costly human editorial effort. This leads
to resources that are often outdated or stale with re-
spect to the current state-of-the-art. Another indirect
result of this leads to a second problem: lexical re-
sources tend to be general, and may contain multi-
ple definitions for a single term. For example, the
term “CRF” connotes “Conditional Random Fields”
in most modern computational linguistics literature;
however, there are many definitions for this acronym
in Wikipedia. Because only one correct sense ap-
plies, readers may need to expend effort to identify
the appropriate meaning of a term in context.

We address both issues in this work by automat-
ically extracting terms and definitions directly from
primary sources: scientific publications. Since most
new technical terms are introduced in scientific pub-
lications, our extraction process addresses the bottle-
neck of staleness. Second, since science is organized
into disciplines and sub-disciplines, we can exploit
this inherent structure to gather contextual informa-
tion about a term and its definition.

Aside from performance improvements, the key
contributions of our work are in 1) recasting the
problem as a sequence labeling task and exploring
suitable learning architectures, 2) our proposal and
validation of the the use of shallow parsing and de-
pendency features to target definition extraction, and
3) analyzing the ACL Anthology Reference Cor-
pus from statistical, chronological and lexical view-
points.
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2 Related Work

The task of definition mining has attracted a fair
amount of research interest. The output of such sys-
tems can be used to produce glossaries or answer
definition questions. The primary model for this
task in past work has been one of binary classifi-
cation: does a sentence contain a definition or not?
Existing methods can be cast into three main cat-
egories, namely rule-based (Muresan and Klavans,
2002; Westerhout and Monachesi, 2007), supervised
machine learning (Fahmi and Bouma, 2006; Wester-
hout, 2009), and semi-supervised approaches (Nav-
igli and Velardi, 2010; Reiplinger et al., 2012).

Rule-based approaches are intuitive and efficient,
and were adopted in early research. Here, system
performance is largely governed by the quality of
the rules. Muresan and Klavans (2002) developed a
rule-based system to extract definitions from online
medical articles. The system first selects candidates
using hand-crafted cue-phrases (e.g. is defined as,
is called; analogous to “IS-A” phrases), further fil-
tering the candidates with grammar analysis. West-
erhout and Monachesi (2007) augmented the set of
rules with part-of-speech (POS) tag patterns, achiev-
ing an F2 of 0.43.

While such manually-crafted expert rules have
high precision, they typically suffer from low re-
call. Definitions can be expressed in a variety of
ways, making it difficult to develop an exhaustive
set of rules to locate all definition sentences. To ad-
dress low recall, later research adopted data-driven
machine learning approaches. Fahmi and Bouma
(2006) made used of supervised machine learning to
extract definitions from a corpus of Dutch Wikipedia
pages in the medical domain. They showed that
a baseline approach which simply classifies every
first sentence as a definition works surprisingly well,
achieving an accuracy of 75.9% (undoubtedly due to
the regular structure and style for Wikipedia). Their
final system, based on the important feature of sen-
tence position, was augmented with surface-level
features (bag-of-words, bigrams, etc.) and syntac-
tic features (type of determiner, position of the sub-
ject in the sentence). Their study with three different
learners – naı̈ve Bayes, maximum entropy (MaxEnt)
and the support vector machine (SVM) – showed
that MaxEnt gave the best results (92.2% accurate).

Westerhout (2009) worked on a hybrid approach,
augmenting a machine learner to a set of hand-
written rules. A random forest classifier is used to
exploit linguistic and structural features. Informed
by Fahmi and Bouma (2006)’s study, she included
article and noun types in her feature set. Lexico-
structural cues like the layout of the text are also
exploited. She evaluated the performance of dif-
ferent cue phrases including the presence of “IS-
A” phrases, other verbs, punctuations and pronouns.
The highest F2 score of 0.63 is reported for the “IS-
A” pattern.

Since 2009 the focus of the research shifted to
methods not limited to feature engineering. Borg
et al. (2009) implemented a fully automated system
to extract and rank definitions based on genetic al-
gorithms and genetic programming. They defined
two sub-problems including 1) acquiring the rela-
tive importance of linguistic forms, and 2) learn-
ing of new linguistic forms. Starting with a small
set of ten simple hand-coded features, such as hav-
ing sequence “FW IS” (FW is a tag for foreign
word) or containing keyword identified by the sys-
tem, the system is able to learn simple rules such as
“NN is a NN”. However, their system is optimized
for similar “IS-A” patterns, as was used in (West-
erhout, 2009). Their system, achieving an average
f-measure of 0.25, also performs poorer than ma-
chine learning systems which exploit more specific
features.

To cope with the generality of patterns, Navigli
and Velardi (2010) proposed the three-step use of
directed acyclic graphs, called Word-Class Lattices
(WCLs), to classify a Wikipedia dataset of defini-
tions. They first replace the uncommon words in the
sentences with a wildcard (*), generating a set of
“star patterns”. Star patterns are then clustered ac-
cording to their similarity. For each cluster, a WCL
is generated by aligning the sentences in the cluster
to form a generalized sentence. Although they re-
ported a higher precision and recall compared with
previous work, the result for WCL (F1 of 75.23%)
is not significantly better than the baseline system
which exploits only star patterns (F1 of 75.05%)
without generating the directed graphs.

Reiplinger et al. (2012) took a semi-supervised
approach. They employed bootstrapping to ex-
tract glossary sentences from scientific articles in

781



the ACL Anthology Reference Corpus (ACL ARC)
(Bird et al., 2008). Their results show that bootstrap-
ping is useful for definition extraction. Starting from
a few initial term-definition pairs and hand-written
patterns as seeds, their system iteratively acquires
new term-definition pairs and new patterns.

We note that these previous systems rely heav-
ily on lexico-syntactic patterns. They neither suf-
ficiently exploit the intrinsic characteristics of the
term and definition, nor invest effort to localize them
within the sentence1. Given the significant structure
in definitions, we take a more fine-grained approach,
isolating the term and its definition from sentences.
According to Pearson (1996), a definition can be for-
mally expressed as:

X = Y + distinguishing characteristics,

where “X” is the definiendum (defined term; here-
after, term), and “Y + distinguishing characteristics”
can be understood as the definiens (the term’s defini-
tion; hereafter, definition). The connector “=” can be
replaced by a verb such as “define”, “call”, a punc-
tuation mark or other phrase. Our task is thus to find
pairs of terms and their associated definitions in in-
put scholarly articles. The sentence-level task of de-
ciding whether a sentence s is a definition sentence
or not, is thus a simplification of our task.

3 Methodology

Our DefMiner system is based on the sequence la-
beling paradigm – it directly assigns an annotation
ai from A ∈ {(T)erm,(D)efinition,(O)ther} for each
input word wi. We post-process our labeler’s results
to achieve parity with the simplified definition sen-
tence task: When we detect both a term’s and defini-
tion’s presence in a sentence, we deem the sentence
a definition sentence. To be clear, this is a require-
ment; when we detect only either a term or a def-
inition, we filter these out as false positives and do
not include them as system output – by definition in
DefMiner, terms must appear within the same sen-
tence as their definitions.

To train our classifier, we need a corpus of defi-
nition sentences where all terms and definitions are

1While Navigli and Velardi (2010) tagged terms and defini-
tions explicitly in their corpus, their evaluation restricts itself to
the task of definition sentence identification.

annotated. While Navigli and Velardi (2010) com-
piled the WCL definition corpus from the English
Wikipedia pages, we note that Wikipedia has stylis-
tic conventions that make detection of definitions
much easier than in the general case (i.e., “The first
paragraph defines the topic with a neutral point of
view”2). This makes it unsuitable for training a gen-
eral extraction system from scholarly text.

As such, we choose to construct our own dataset
from articles collected from the ACL ARC, follow-
ing (Reiplinger et al., 2012). We compiled a corpus
– the W00 corpus, named for its prefix in the ACL
Anthology – derived from a total of 234 workshop
papers published in 2000. Due to limited resources
and time, only one individual (the first author) per-
formed the corpus annotation. We built three dis-
joint prototype classifiers to further filter the sen-
tences. The prototype classifiers are based on sur-
face patterns, keyphrases and linguistic phenomena
(# of NP, # of VP, etc.). We took all the 2,512 sen-
tences marked as definition sentences by at least one
of our individual prototypes and proceeded to an-
notate all of them. In total, 865 of the total 2,512
sentences were real definition sentences.

The annotation instance is a single token (includ-
ing single word or punctuation mark). Each token
wi was marked with ai from A ∈ {T,D,O} depend-
ing on whether it is part of a term, a definition or
neither (other). Therefore, a sentence that is not a
definition sentence would have all its tokens marked
as O. The corpus and its annotations are available
for comparative study3.

We use Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001) to extract the term and defini-
tion from input. We incorporate evidence (features)
drawn from several levels of granularity: from the
word-, sentence- and document-levels, not limiting
ourselves to the window of previous n words. CRFs
allow us to encode such features which may not be
conditionally independent. We use the open source
implementation, CRF++ (Kudo, 2005) in our work4.

One straightforward approach is to train indepen-
dent classifiers for terms and definitions, which we

2http://en.wikipedia.org/wiki/Wikipedia:
Manual_of_Style/Lead_section

3http://wing.comp.nus.edu.sg/downloads/
term_definition_mining/

4http://code.google.com/p/crfpp/

782



test in Section 4.1. While simple, this is suboptimal
as it ignores the correlation between the presence
of the two components. Term identification (in the
guise of key-word/-phrase extraction) is well studied
and common features such as tf.idf and English or-
thography achieve satisfactory results (Nguyen and
Kan, 2007). In contrast, definitions exhibit more
flexible structure and hence are more difficult to dis-
tinguish from normal English text.

As such, we further investigate a serial archi-
tecture where we perform the classifications in se-
quence. I.e., first utilizing the results from term clas-
sification, and then incorporating them into defini-
tion classification. This two-stage architecture is ex-
plored later in Section 4.2

Our expanded feature set is an amalgamation of
related works and utilizes a mix of simple lexical,
orthography, dictionary lookup and corpus features
(here, idf ). Note that each feature class may derive
more than one feature (e.g., for the POS tag feature,
we extract features from not only the current word
but the surrounding contextual words as well). We
now enumerate the feature classes (FCs) that we
exploit, marking whether they apply to the (W)ord,
(S)entence or (D)ocument levels:

FC1) Lexical (W): The word, POS tag, stemmed word,
and if the word contains a signal suffix5.
FC2) Orthography (W): Whether the word is 1) capital-
ized or 2) mixed case; whether the word contains 3) hy-
phens or 4) digits.
FC3) Keyphrase List (W): Whether the word is in the
keyphrase list of the origin document. We use the open
source KEA keyphrase extraction system (Witten et al.,
1999) to extract 20 keyphrases for each document.
FC4) Corpus (W): Discretized Inverse Document Fre-
quency (idf ), calculated as log(N

c ), where N is the total
number of documents and c is the number of occurrences
of the word in all the documents. IDF values are dis-
cretize into eight uniform partitions.
FC5) Position (D,S): The 1) Section ID, 2) name and 3)
the sentence’s relative position in the document.
FC6) Has acronym (S): Whether the sentence contains an
acronym. We use Stanford dependency parser (Cer et al.,
2010) to parse the sentences. We deem the sentence to
contain an acronym if the dependency type “abbrev” is
present in the output of the parser.
FC7) Surface pattern (S): Whether the sentence contain

5The suffixes we extract are “-ion”,“-ity”,“-tor”,“-ics”,“-
ment”,“-ive” and “-ic”.

<term > defined (as|by) <definition>
define(s)? <term> as <definition>
definition of <term> <definition>
<term> a measure of <definition>
<term> is DT <definition> (that|which|where)
<term> comprise(s)? <definition>
<term> consist(s)? of <definition>
<term> denote(s)? <definition>
<term> designate(s)? <definition>
<definition> (is|are|also) called <term>
<definition> (is|are|also) known as <term>

Table 1: Hand-crafted surface patterns used in DefMiner.

one of the hand-crafted pattern, as listed in Table 1. The
list is compiled from previous works and augmented
based on our observations on the corpus.

Long Distance Features. During develop-
ment, we noticed that the syntactic variation of
the definition might benefit from features that
identify long-distance dependencies. As such, we
further studied the impact of including additional
features developed from the shallow (chunk) and
dependency parses of the input. Compared to
the above features, these features are much more
computationally-intensive.

FC8) Shallow tag (W): Shallow parsing tag for each word
(e.g., np, vp). We used OpenNLP toolkit to shallow parse
the sentences. (Baldridge, 2005)
FC9) Shallow pattern (S): If the shallow parsing sequence
contains one of the seven parse patterns listed in Table 2.
We also give some example sentences which can be de-
tected by the patterns.
FC10) Governor (W): The word that the current word de-
pends on in a binary dependency relation. (e.g., for the
phrase computational linguistics, the governor of the
word computational is linguistics).
FC11) Dependency path distance (W): Distance from the
current word to the root of the sentence in the dependency
tree.
FC12) Typed dependency path (W): The dependency
path from the current word to the root of the sentence
(recording the dependency types instead of the words in
the path).
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Pattern Example
NP : NP JavaRAP : An open-source implementa-

tion of the RAP
NP is * NP IR is the activity of obtaining informa-

tion resources
NP is * NP
that/of/which

NLP is a subject which is well studied

NP or NP Conditional Random field or CRF tack-
les ...

known as NP The corpus of English Wikipedia pages,
known as EnWiki

NP ( * NP) Hidden Markov Model (HMM) is used
to solve ...

NP defined by/as
* NP

The accuracy is defined by the produc-
tion of ...

Table 2: Hand-crafted shallow parsing patterns used in
DefMiner.

4 Evaluation

We now assess the overall effectiveness of
DefMiner, at both the word and sentence level. Ad-
ditionally, we want to ascertain the performance
changes as we add features to an informed lexical
baseline. We not only benchmark DefMiner’s per-
formance over our own W00 collection, but also
compare DefMiner against previous published work
on the definition sentence identification task on the
WCL (English Wikipedia) corpus.

4.1 Single-Pass Extraction from W00
We run ten-fold cross validation on our annotated
W00 corpus. We first evaluate our results at word
level, calculating the precision, recall, and F1 scores
for each incrementally enhanced feature set. We
present results on the corpus in the top portion of
Table 3 (Rows 1–9).

We calculate both micro and macro- (category)
averaged F1 scores for term and definition extrac-
tion. Fmicro assigns equal weight to every token,
while Fmacro gives equal weight to every category.
As definition tokens greatly outnumber term tokens
in our corpus (roughly 6:1), we feel that the macro-
average is a better indicator of the balance between
term and definition identification.

Our baseline system makes use of basic word
and POS tag sequences as features (FC1), which
are common to baselines in other sequence labeling
works. We can see that most features result in per-
formance improvements to the baseline, especially
for recall. Interestingly, although the shallow pars-
ing and dependency features we use are rather sim-

ple, they effectively improve the performance of the
system. In System 7, we only use the seven shallow
parsing patterns shown in Table 2, but the Fmacro

measure improves 3%. Our best single-stage sys-
tem (System 9 in Table 3) boosts recall for term and
definition classification by 7% and 5%, respectively,
without sacrificing precision. The Fmacro measure
is improved from 0.44 to 0.48.

Unexpectedly, the inclusion of the position fea-
tures cause performance to drop. One possible rea-
son is that the authors of scientific papers have
more flexibility to choose the positions to present
definitions. This makes the position feature much
less indicative (compared to running on a corpus of
Wikipedia articles). Due to this observation, we ex-
clude the position features when carrying out fol-
lowing experiments.

4.2 Serial Term and Definition Classification
We now investigate the two-stage, serial archi-
tecture where the system first performs term
classification before definition classification (i.e.,
term�definition). We provision the second-stage
definition classifier with three additional features
from the first-stage term classification output:
whether the current word (1) is a term, and (2) ap-
pears before or (3) after a term.

Row 10 shows this resulting system, which we
coin as DefMiner. Interestingly, there is a 10% in-
crease in the precision of definition classification.
With the two-stage classifier, Fmacro score further
increases from 0.48 to 0.51. The results verify our
intuition that term classification does help in defini-
tion classification. Pipelining in the opposite direc-
tion (definition�term; Row 11) does not show any
improvement. We posit that since the advantage is
only in a single direction, joint inference may be less
likely to yield benefits.

To determine the upper bound performance that
could result from proper term identification, we pro-
vided correct, oracular term labels from our ground
truth annotations in our corpus to the second-stage
definition classifier. This scenario effectively upper-
bounds the performance that perfect term knowledge
has on definition classification. The results of this
system in Row 12 indicates a strong positive influ-
ence on definition extraction, improving definition
extraction from 49% to 80%, a leap of 31%. This
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System / Feature Class (cf Section 3) Term Definition Overall
P R F1 P R F1 Fmicro Fmacro

1: Baseline (FC1) 0.49 0.34 0.40 0.41 0.49 0.45 0.45 0.44
2: (1) + Orthography (FC2) 0.46 0.35 0.40 0.42 0.51 0.46 0.46 0.44
3: (2) + Dictionary (FC3) 0.48 0.36 0.41 0.41 0.49 0.44 0.44 0.43
4: (3) + Corpus (FC4) 0.50 0.35 0.41 0.40 0.52 0.45 0.45 0.44
5: (4) + Position (FC5) 0.47 0.37 0.42 0.36 0.48 0.41 0.41 0.41
6: (4) + Shallow parsing tag (FC8) 0.51 0.38 0.43 0.41 0.50 0.45 0.45 0.44
7: (6) + Shallow parse pattern (FC9) 0.50 0.40 0.45 0.42 0.52 0.47 0.47 0.47
8: (7) + Surface pattern (FC7) 0.49 0.39 0.44 0.43 0.53 0.48 0.48 0.47
9: (8) + Dependency + acronym
(FC6,10,11,12)

0.50 0.41 0.45 0.45 0.54 0.49 0.49 0.48

10 [DefMiner]: (9) + 2-stage 0.50 0.41 0.45 0.55 0.58 0.56 0.55 0.51
11: (9) + Reverse 2-stage 0.50 0.40 0.44 0.45 0.54 0.49 0.49 0.48
12: (9) + Term Oracle N/A N/A N/A 0.79 0.82 0.80 N/A N/A

Table 3: 10-fold cross validation word-level performance over different system configurations on our W00 corpus.

motivates future work as how to improve the perfor-
mance of the term classifier so as to reap the benefits
possible with our two-stage classifier.

4.3 Comparative results over the WCL Dataset

For most of the related research reviewed, we could
neither obtain their source code nor the corpora used
in their work, making comparative evaluation diffi-
cult. To the best of our knowledge, Reiplinger et
al. (2012) is the only attempt to extract definitions
from the ACL ARC corpus, which is a superset of
our W00 corpus. It would be desirable to have a di-
rect comparison with their work, but their evaluation
method is mainly based on human judges and their
reported coverage of 90% is only for a sample, short
list of domain terms they defined in advance.

To directly compare with the previous, more com-
plex state-of-the-art system from (Navigli and Ve-
lardi, 2010), we evaluate DefMiner on the defini-
tion sentence detection task. For the sentence-level
evaluation, we calculate the P/R/F1 score based on
whether the sentence is a definition sentence. We
applied DefMiner on their whole WCL annotated
corpus, reporting results in Table 4. We random-
ized the definition and none-definition sentences in
their corpus and applied 10-folds cross validation.
In each each iteration we used 90% of the sentences
for training and 10% for testing.

Compared to their results reported in (Navigli and

System Token Level Sentence
Term Definition Level

P / R / F1 P / R / F1 P / R / F1

DefMiner .82/.78/.80 .82/.79/.81 .92/.79/.85
N&V ’10 – / – / – – / – / – .99/.61/.77

Table 4: Comparative performance over the WCL.

Velardi, 2010), DefMiner improves overall F1 by
8%. While certainly less precise (precision of 92%
versus 99%), recall is improved over their consid-
erably more complex WCL-3 algorithm by almost
20%. Even using just the simple heuristic of only
classifying sentences that have identified terms as
well as definitions as definition sentences, DefMiner
serves to competitively identify definition sentences.

4.4 Manual Inspection of DefMiner Output

To gauge the noise from our system outside of our
cross-validation experiments, we conducted a man-
ual inspection of results over other workshop papers
from other years (2001 and 2002), as a sanity check.
DefMiner identifies 703 and 1,217 sentences in W01
and W02 as definition sentences separately.

Overall, 77.8% of the extracted sentences are real
definition sentences, while the remaining are false
positives.
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4.4.1 Analysis of Common Errors

The P/R/F1 score by itself only gives a hint
of the system’s overall performance. We are also
interested to study the common errors made by our
system, which could help us engineer better features
for improving DefMiner. As our two-stage classifier
still lags behind the system with oracular term
labels by 24% in F1 for definition detection (Sec-
tion 4.2), we believe there is still much room for
improvement. We show three example misclassified
sentences that represent the major types of errors
we observed, where DefMiner’s output annotations
follow tokens marked as part of terms or definitions.

1) A PSS/TERM thus contains abstract linguistic values
for closed features ( tense/DEF ,/DEF mood/DEF ,/DEF
voice/DEF ,/DEF number/DEF ,/DEF gender/DEF
,/DEF etc/DEF ./DEF ) .

This first instance shows that DefMiner tends to
mark the first several tokens as “TERM” while the
real term appears somewhere else in the sentence.
The actual term being defined is “closed features”
instead of “PSS”. Many terms in the training set
appear at the beginning of the sentence and are
preceded by a determinant. “PSS” is also likely
to receive a high IDF and orthographic shape
(capitalized) score and therefore are misclassified
as terms. It may be useful to thus model the (usual)
distance between the term and its definition in a
feature in future work.

2) Similarly , ‘I’/TERM refers to an/DEF interior/DEF
character/DEF and/DEF ‘L’/DEF indicates/DEF
the/DEF last/DEF character/DEF of/DEF a/DEF
word/DEF .

DefMiner is occasionally confused when encoun-
tering recursive definition or multiple definitions in
a single sentence. Sentence 2 contains two parallel
definitions. The classifier fails to classify “L”
as a separate term, incorporating it as part of the
definition. One possible improvement is to break the
original sentence into clauses that are independent
from each other, perhaps by using even simple
surface cues such as coordinating conjunctions
marked by commas or “and”.

3) Again one could argue that the ability to convey
such uncertainty and reliability information to a non-
specialist/TERM is a/DEF key/DEF advantage/DEF
of/DEF textual/DEF summaries/DEF over/DEF
graphs/DEF .

Another difficult problem faced by the classifier
is the lack of contextual information. In sentence
3), if we just look at part of the sentence “a non-
specialist is a key advantage of textual summaries
over graphs”, without trying to understand the mean-
ing of the sentence, we may well conclude that it is
a definition sentence because of the cue phrase “is
a”. But clearly, the whole sentence is not a defini-
tion sentence. More sophisticated features based on
the sentence parse tree have to be exploited to detect
such false positive examples.

5 Insights from the Definitions Extracted
from the ACL ARC

In this second half of the paper, we apply DefMiner
to gain insights on the distributional and lexical
properties of terms and definitions that appear in
the large corpus of computational linguistics publi-
cations represented by the ACL ARC (Bird et al.,
2008). The ARC consists of 10,921 scholarly publi-
cations from ACL venues, of which our earlier W00
corpus is a subset (n.b., as such, there is a small
amount of overlap). We trained a model using the
whole of the W00 corpus and used the obtained clas-
sifier to identify a list of terms and definitions for
each publication in the ACL ARC.

Inspecting such output gives us an understanding
of the properties of definition components, eventu-
ally helping the community to define better features
to capture them, as well as intrinsically deepening
our knowledge of the natural language of definitions
and the structure of scientific discourse.

5.1 Demographics

From a term’s perspective we can introspect prop-
erties of the enclosing paper, the host sentence, the
term itself and its definition.

At the document level, we can analyze document
metadata: its venue (journal, conference or work-
shop published) and year of publication.

786



At the sentence level, we analyze the position of
the sentences that are definition sentences.

Focusing on terms, we want to find out in more
detail the technical terminology that is defined. Are
they different from general keyphrases? What type
of entities are defined? What words do these terms
consist of? What structures are common?

We are interested in analogous questions when
focusing on the accompanying definitions. How
many words or clauses do definition sentences
consist of? Do we lose a lot of recall by restricting
definitions to a single sentence? Are embedded
definitions (definitions embedded with other defini-
tions) common?

We highlight some specific findings from our ba-
sic analyses here:

Where do definitions occur? As terms are usu-
ally defined on first use, we expect the distribution
of definition sentences to skew towards the begin-
ning portions of a scientific document as input. We
count the occurrences of definition sentences in each
of ten equally-sized (by number of sentences) non-
overlapping partitions. The results are shown in Fig-
ure 1, aligning with our intuition: The first three
quantiles contribute almost 40% of all detected def-
inition sentences, while the last three quantiles con-
tain only 17.8%.
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Figure 1: Occurrences of definitions within different seg-
ments of an article.

How long are the detected terms and defini-
tions? Figure 2 shows the detected aggregate dis-
tributions. Over 54% of the detected terms are sin-
gle tokens, where majority of the remaining 45% of
terms being multi-word terms of six words or less.
Among the single token terms, a further analysis
reveals that 17.4% are detected as single-character
variables, 34.9% are acronyms (consisting of more
than one capitalized letters), while the remaining
47.7% are normal words. Definitions, in contrast,

are longer and more varied, with a peak length of
nine words. Slightly over half of the definitions have
a length of 5–16 words; 75% have lengths between
3 and 23 words.
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(b) Definition length distribution.

Figure 2: Length distributions of (top) terms, (bottom)
definitions.

In Table 5, we present the 10 most frequent POS
tag bigrams for terms and definitions. We can see
that among terms, a sequence of consecutive two
nouns is most common, making up four out of the
top five bigrams. We notice that determiners and
prepositions are absent from the term list but are
common in definitions.

5.2 Inspection of Definition over Time

The ACL ARC covers journal articles, conference
and workshop proceedings over a few decades. As
with other fields in recent years, the amount of
computational linguistics literature has steadily in-
creased over the number of years.

We study if definitions appear as frequently in dif-
ferent types of scientific articles (e.g. journals, con-
ference papers or workshop papers). We also want
to investigate if there is a significant shift in the dis-
tribution of definitions across years. In Figure 3,
we present the density of definitions (defined as the
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Term Definition
NNP NNP DT NN
NN NN NNP NNP
NNP NN NN IN
NN NNP IN DT
JJ NN NN NN
NN JJ JJ NN
NNP : NN :
: NNP DT JJ
NN NNS NNS IN
NN ” NN NNS

Table 5: Most frequent POS bigrams for terms and defi-
nitions.

percentage of sentences that are identified as defini-
tion sentences), for these three different categories
of publications6.

In Figure 3, the three data series overlap each
other, so we cannot conclude definitions appear
more often in one type of papers than another. How-
ever, as a side effect, we see that while the definition
density for journal papers remain relatively constant,
for conference and workshop papers the number of
definitions extracted per sentence has increased no-
ticeably over time. The average number of defini-
tions presented in conference papers, for instance,
increased more than 100% in the 40 years repre-
sented in the ACL ARC.

The increasing number of definitions alone does
not show that new knowledge is introduced at a
faster rate, as definitions may be repeated. To con-
trol for this effect, we also need to know which def-
initions are new or defined in previous year(s). We
studied this effect in more detail for the relatively
smaller set of journal papers (Figure 4). For jour-
nal papers, the number of definitions of previously
introduced terms in each year against the number of
new definitions. We say a definition is new when the
detected term was not identified in any article (not
limited to journals) in previous years.

We see that the number of new terms being de-
fined also increases with the years. But the increase
is much slower than that for the total definitions. The
area between the two lines denotes the definitions

6The ACL ARC is organized by the venue of the publication,
which is associated to a category. For the assigned category for
each venue please refer to Appendix A.

where the same term has been multiply defined from
the same or previous years as the current year under
investigation.

5.3 Trends
We can use terms and definitions to also intro-
spect how the computational linguistics literature
has changed over time. Table 6 shows a subset of
the most frequently defined terms in the ACL ARC,
where we exclude single-character terms (“vari-
ables”).

WordNet (292) Part Of Speech (45)
Precision (172) Probablistic CFG (43)
Recall (167) FrameNet (38)
Noun phrase (97) Conditional Random Field (29)
Word sense disambiguation (60) Inverse document frequency (28)
Support Vector Machine (60) PropBank (27)
Hidden Markov Model (54) Context Free Grammar (25)
Latent Semantic Analysis (57) Accuracy (20)

Table 6: Subset of most frequently defined terms. Raw
counts in parentheses. Variations of the same term (e.g.
plurals, acronyms) are collapsed into one instance.

To be expected, these popular terms are mostly
specific to computational linguistics. From our
observation, we can fit these terms into one of
three categories, including 1) resources (WordNet,
FrameNet, PropBank), 2) methodologies (SVM,
HMM, LSA), and 3) evaluation metrics (Precision,
Recall, Accuracy). We feel that the final category
of evaluation metrics is more general and would be
shared among other scientific disciplines.

An interesting analysis that follows from this cat-
egorization is that we can study major trends and
changes in the research directions of the commu-
nity. This can help to draw the attention of re-
searchers to emerging trends. We illustrate this ap-
proach in Figure 5 that focuses on three sequence
labeling methodologies that have been used to ad-
dress similar problems – namely, hidden Markov
model (HMM), maximum entropy Markov model
(MEMM), and conditional random fields (CRF) –
during the period from 1989 to 2006 (where we have
sufficient data points). From the early 90s, we see
that HMM was a clear favorite. However since 2000,
MEMM gained in popularity and use. Lafferty et
al. (2001) introduced CRFs in 2001 and the new
methodology was widely adopted soon after that.

788



0.000	
  

0.005	
  

0.010	
  

0.015	
  

0.020	
  

0.025	
  

0.030	
  

0.035	
  

1967	
   1973	
   1979	
   1982	
   1987	
   1993	
   1999	
   2005	
  

De
fin

i&
on

	
  D
en

si
ty
	
  

Year	
  

Conference	
  Papers	
   Journals	
   Workshops	
  

Figure 3: Occurrences of definitions across publication cat-
egories.
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Figure 5: The occurrence of definitions for various se-
quence labeling methodologies over the years.

6 Conclusions and Future Work

We study the task of identifying definition sentences,
as a two-part entity containing a term and its ac-
companying definition. Unlike previous work, we
propose the harder task of delimiting the component
term and definitions, which admits sequence label-
ing methodologies as a compatible solution.

Leveraging the current best practice of using con-
ditional random fields, we contribute two additional
ideas that lead to DefMiner, a state-of-the-art schol-
arly definition mining system. First, we show that
shallow parsing and dependency parse features that
may provide additional non-local information, are
useful in improving task performance. Second,
viewing the problem as two correlated subproblems
of term and definition extraction, we measure the
tightness and dependency of the correlation. We

find that a two-stage sequential learning architecture
(term first, definition second) leads to best perfor-
mance. DefMiner outperforms the state of the art,
and we feel is fit for macroscopic analysis of scien-
tific corpora, despite significant noise.

We thus deployed DefMiner on the ACL An-
thology Reference Corpus. We demonstrate how
DefMiner can yield insights into both the struc-
ture and semantics of terms and definitions, in both
static and diachronic modes. We think future work
could pursue more in-depth analysis of the distribu-
tional and demographic properties of automatically
extracted lexica. We can use the lexicon obtained
from different years to carry out trend prediction,
which we have illustrated here. Downstream sys-
tems may predict which term will become popular,
or could alert an author if their definition of a term
significantly differs from the original source.

We hope to tackle the annotation bottleneck in fu-
ture work on definition extraction, common in many
data-driven learning fields. We plan to explore iter-
ative, semi-supervised methods to best manage hu-
man effort to maximize the effectiveness of future
annotation.

In addition, with respect to modeling, although
we showed that doing definition classification before
term classification does not improve over our single-
stage classifier, we hope to study whether suitable
joint inference models can benefit from the interac-
tion between the two classification processes.
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Abstract

State-of-the-art systems for grammatical er-
ror correction are based on a collection of
independently-trained models for specific er-
rors. Such models ignore linguistic interac-
tions at the sentence level and thus do poorly
on mistakes that involve grammatical depen-
dencies among several words. In this paper,
we identify linguistic structures with interact-
ing grammatical properties and propose to ad-
dress such dependencies via joint inference
and joint learning.

We show that it is possible to identify interac-
tions well enough to facilitate a joint approach
and, consequently, that joint methods correct
incoherent predictions that independently-
trained classifiers tend to produce. Further-
more, because the joint learning model con-
siders interacting phenomena during training,
it is able to identify mistakes that require mak-
ing multiple changes simultaneously and that
standard approaches miss. Overall, our model
significantly outperforms the Illinois system
that placed first in the CoNLL-2013 shared
task on grammatical error correction.

1 Introduction

There has recently been a lot of work addressing er-
rors made by English as a Second Language (ESL)
learners. In the past two years, three competitions
devoted to grammatical error correction for non-
native writers took place: HOO-2011 (Dale and Kil-
garriff, 2011), HOO-2012 (Dale et al., 2012), and
the CoNLL-2013 shared task (Ng et al., 2013).

Nowadays *phone/phones *has/have many
functionalities, *included/including *∅/a
camera and *∅/a Wi-Fi receiver.

Figure 1: Examples of representative ESL errors.

Most of the work in the area of ESL error cor-
rection has addressed the task by building statistical
models that specialize in correcting a specific type
of a mistake. Figure 1 illustrates several types of
errors common among non-native speakers of En-
glish: article, subject-verb agreement, noun num-
ber, and verb form. A significant proportion of re-
search has focused on correcting mistakes in article
and preposition usage (Izumi et al., 2003; Han et
al., 2006; Felice and Pulman, 2008; Gamon et al.,
2008; Tetreault and Chodorow, 2008; Gamon, 2010;
Rozovskaya and Roth, 2010b). Several studies also
consider verb-related and noun-related errors (Lee
and Seneff, 2008; Gamon et al., 2008; Dahlmeier
and Ng, 2012). The predictions made by individual
models are then applied independently (Rozovskaya
et al., 2011) or pipelined (Dahlmeier and Ng, 2012).

The standard approach of training individual clas-
sifiers considers each word independently and thus
assumes that there are no interactions between er-
rors and between grammatical phenomena. But an
ESL writer may make multiple mistakes in a single
sentence and these result in misleading local cues
given to individual classifiers. In the example shown
in Figure 1, the agreement error on the verb “have”
interacts with the noun number error: a correction
system that takes into account the context may in-
fer, because of the word “phone”, that the verb num-
ber is correct. For this reason, a system that consid-
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ers noun and agreement errors separately will fail to
identify and correct the interacting errors shown in
Fig. 1. Furthermore, it may also produce inconsis-
tent predictions.

Even though it is quite clear that grammatical er-
rors interact, for various conceptual and technical
reasons, this issue has not been addressed in a sig-
nificant way in the literature. We believe that the
reasons for that are three-fold: (1) Data: until very
recently we did not have data that jointly annotates
sufficiently many errors of interacting phenomena
(see Sec. 2). (2) Conceptual: Correcting errors in
interacting linguistic phenomena requires that one
identifies those phenomena and, more importantly,
can recognize reliably the interacting components
(e.g., given a verb, identify the subject to enable en-
forcing agreement). The perception has been that
this cannot be done reliably (Sec. 4). (3) Technical:
The NLP community has started to better understand
joint learning and inference and apply it to various
phenomena (Roth and Yih, 2004; Punyakanok et al.,
2008; Martins et al., 2011; Clarke and Lapata, 2007;
Sutton and McCallum, 2007) (Sec. 5).

In this paper we present, for the first time, a suc-
cessful approach to jointly resolving grammatical er-
rors. Specifically:
• We identify two pairs of interacting phenomena,
subject-verb and article-NPhead agreements; we
show how to reliably identify these pairs in noisy
ESL data, thereby facilitating the joint correction of
these phenomena.
•We propose two joint approaches: (1) a joint infer-
ence approach implemented on top of individually
learned models using an integer linear programming
formulation (ILP, (Roth and Yih, 2004)), and (2) a
model that jointly learns each pair of these phenom-
ena. We show that each of these methods has its ad-
vantages, and that both solve the two challenges out-
lined above: the joint models exclude inconsistent
predictions that violate linguistic constraints. The
joint learning model exhibits superior performance,
as it is also able to overcome the problem of the
noisy context encountered by the individual mod-
els and to identify errors in contexts, where multiple
changes need to be applied at the same time.

We show that our joint models produce state-of-
the-art performance and, in particular, significantly
outperform the University of Illinois system that

placed first in the CoNLL-2013 shared task, increas-
ing the F1 score by 2 and 4 points in different evalu-
ation settings.

2 Task Description and Motivation

To illustrate the utility of jointly addressing interact-
ing grammatical phenomena, we consider the cor-
pus of the CoNLL-2013 shared task on grammatical
error correction (Ng et al., 2013), which we found
to be particularly well-suited for addressing interac-
tions between grammatical phenomena. The task fo-
cuses on the following five common mistakes made
by ESL writers: article, preposition, noun number,
subject-verb agreement, and verb form, and we ad-
dress two interactions: article-NPhead and subject-
verb.

The training data for the task is from the NUCLE
corpus (Dahlmeier et al., 2013), an error-tagged col-
lection of essays written by non-native learners of
English. The test data is an additional set of essays
by learners from the same linguistic background.
The training and the test data contain 1.2M and 29K
words, respectively. Although the corpus contains
errors of other types, the task focuses on five types
of errors. Table 1 shows the number of mistakes1 of
each type and the error rates, i.e. the percentage of
erroneous words by error type.

Error Number of errors and error rate
Training Test

Article 6658 (2.4%) 690 (10.0%)
Prep. 2404 (2.0%) 311 (10.7%)
Noun 3779 (1.6%) 396 (6.0%)
Verb Agr. 1527(2.0%) 124 (5.2%)
Verb Form 1453 (0.8%) 122 (2.5%)

Table 1: Number of annotated errors in the CoNLL-
2013 shared task. Percentage denotes the error rates, i.e.
the number of erroneous instances with respect to the to-
tal number of relevant instances in the data. For example,
10.7% of prepositions in the test data are used incorrectly.
The numbers in the revised data set are slightly higher.

We note that the CoNLL-2013 data set is the first
annotated collection that makes a study like ours
feasible. The presence of a common test set that

1System performance in the shared task is evaluated on data
with and without additional revisions added based on the input
from participants. The number of mistakes in the revised test
data is slightly higher.
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contains a good number of interacting errors – ar-
ticle, noun, and verb agreement mistakes – makes
the data set well-suited for studying which approach
works best for addressing interacting phenomena.
The HOO-2011 shared task collection (Dale and
Kilgarriff, 2011) contains a very small number of
noun and agreement errors (41 and 11 in test, re-
spectively), while the HOO-2012 competition (Dale
et al., 2012) only addresses article and preposition
mistakes. Indeed, in parallel to the work presented
here, Wu and Ng (2013) attempted the ILP-based
approach of Roth and Yih (2004) in this domain.
They were not able to show any improvement, for
two reasons. First, the HOO-2011 data set which
they used does not contain a good number of errors
in interacting structures. Second, and most impor-
tantly, they applied constraints in an indiscriminate
manner. In contrast, we show how to identify the
interacting structures’ components in a reliable way,
and this plays a key role in the joint modeling im-
provements.

Lack of data hindered other earlier efforts for
error correction beyond individual language phe-
nomena. Brockett et al. (2006) applied machine-
translation techniques to correct noun number errors
on mass nouns and article usage but their application
was restricted to a small set of constructions. Park
and Levy (2011) proposed a language-modeling ap-
proach to whole sentence error correction but their
model is not competitive with individually trained
models. Finally, Dahlmeier and Ng (2012) proposed
a decoder model, focusing on four types of errors
in the data set of the HOO-2011 competition (Dale
and Kilgarriff, 2011). The decoder optimized the se-
quence in which individual classifiers were to be ap-
plied to the sentence. However, because the decoder
still corrected mistakes in a pipeline fashion, one at
a time, it is unlikely that it could deal with cases that
require simultaneous changes.

3 The University of Illinois System

Below, we briefly describe the University of Illinois
system (henceforth Illinois; in the overview paper of
the shared task the system is referred to as UI) that
achieved the best result in the CoNLL-2013 shared
task and which we use as our baseline model. For
a complete description, we refer the reader to Ro-

zovskaya et al. (2013).
The Illinois system implements five machine-

learning independently-trained classifiers that fol-
low the popular approach to ESL error correction
borrowed from the context-sensitive spelling correc-
tion task (Golding and Roth, 1999; Carlson et al.,
2001). A confusion set is defined that specifies a
list of confusable words. Each occurrence of a con-
fusable word in text is represented as a vector of
features derived from a context window around the
target. The problem is cast as a multi-class classi-
fication task and a classifier is trained on native or
learner data. At prediction time, the model selects
the most likely candidate from the confusion set.

The confusion set for prepositions includes the
top 12 most frequent English prepositions. The arti-
cle confusion set is as follows: {a,the,∅}2. The con-
fusion sets for noun, agreement, and form modules
depend on the target word and include its morpho-
logical variants (Table 2).

“Hence, the environmental *factor/factors also
*contributes/contribute to various difficulties,
*included/including problems in nuclear technol-
ogy.”
Error type Confusion set
Noun {factor, factors}
Verb Agr. {contribute, contributes}
Verb Form {included, including, includes, include}

Table 2: Confusion sets for noun number, agreement,
and form classifiers.

The article classifier is a discriminative model
that draws on the state-of-the-art approach described
in Rozovskaya et al. (2012). The model makes use
of the Averaged Perceptron algorithm (Freund and
Schapire, 1996) and is trained on the training data of
the shared task with rich features.

The other models are trained on native English
data, the Google Web 1T 5-gram corpus (henceforth,
Google, (Brants and Franz, 2006)) with the Naı̈ve
Bayes (NB) algorithm. All models use word n-gram
features derived from the 4-word window around the
target word. In the preposition model, priors for
preposition preferences are learned from the shared
task training data (Rozovskaya and Roth, 2011).

2∅ denotes noun-phrase-initial contexts where an article is
likely to have been omitted. The variants “a” and “an” are con-
flated and are restored later.

793



Example Predictions made by the Illinois system
“They believe that such situation must be avoided.” such situation→ such a situations
“Nevertheless , electric cars is still regarded as a great trial innovation.” cars is→ car are
“Every students have appointments with the head of the department.” No change

Table 3: Examples of predictions of the Illinois system that combines independently-trained models.

The words that are selected as input to classifiers
are called candidates. Article and preposition can-
didates are identified with a closed list of words;
noun-phrase-initial contexts for the article classifier
are determined using a shallow parser3 (Punyakanok
and Roth, 2001). Candidates for the noun, agree-
ment, and form classifiers are identified with a part-
of-speech tagger4, e.g. noun candidates are words
that are tagged as NN or NNS. Table 4 shows the
total number of candidates for each classifier.

Classifier
Art. P N Agr. F

Train 254K 103K 240K 75K 175K
Test 6K 2.5K 2.6K 2.4K 4.8K

Table 4: Number of candidate words by classifier type
in training and test data.

4 Interacting Mistakes

The approach of addressing each type of mistake in-
dividually is problematic when multiple phenomena
interact. Consider the examples in Table 3 and the
predictions made by the Illinois system. In the first
and second sentences, there are two possible ways
to correct the structures “such situation” and “cars
is”. In the former, either the article or the noun num-
ber should be changed; in the latter, either the noun
number or the verb agreement marker5. In these ex-
amples, each of the independently-trained classifiers
identifies the problem because each system makes a
decision using the second error as part of its contex-
tual cues, and thus the individual systems produce
inconsistent predictions.

3http://cogcomp.cs.illinois.edu/page/
software view/Chunker

4http://cogcomp.cs.illinois.edu/page/
software view/POS

5Both of these solutions will result in grammatical output
and the specific choice between the two depends on the wider
essay context.

The second type of interaction concerns cases that
require correcting more than one word at a time:
the last example in Table 3 requires making changes
both to the verb and the subject. Since each of the in-
dependent classifiers (for nouns and for verb agree-
ment) takes into account the other word as part of
its features, they both infer that the verb number is
correct and that the grammatical subject “student”
should be plural.

We refer to the words whose grammatical prop-
erties interact as structures. The independently-
trained classifiers tend to fail to provide valid cor-
rections in contexts where it is important to consider
both words of the structure.

4.1 Structures for Joint Modeling

We address two linguistic structures that are relevant
for the grammatical phenomena considered: article-
NPhead and subject-verb. In the article-NPhead
structures, the interaction is between the head of
the noun phrase (NP) and the article that refers to
the NP (first example in Table 3). In particular,
the model should take into account that the article
“a” cannot be combined with a noun in plural form.
For subject-verb agreement, the subject and the verb
should agree in number.

We now need to identify all pairs of candidates
that form the relevant structures. Article-NPhead
structures are pairs of words, such that the first word
is a candidate of type article, while the second word
is a noun candidate. Given an article candidate, the
head of its NP is determined using the POS infor-
mation (this information is obtained from the article
feature vector because the NP head is a feature used
by the article system)6. Subject-verb structures are
pairs of noun-agreement candidates. Given a verb,
its subject is identified with a dependency parser
(Marneffe et al., 2006).

To evaluate the accuracy of subject and NP head
6Some heads are not identified or belong to a different part

of speech.
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predictions, a random sample of 500 structures of
each type from the training data was examined by
a human annotator with formal training in Linguis-
tics. The human annotations were then compared
against the automatic predictions. The results of
the evaluation for subject-verb and article-NPhead
structures are shown in Tables 5 and 6, respectively.
Although the overall accuracy is above 90% for both
structures, the accuracy varies by the distance be-
tween the structure components and drops signifi-
cantly as the distance increases. For article-NPhead
structures, distance indicates the position of the NP
head with respect to the article, e.g. distance of 1
means that the head immediately follows the arti-
cle. For subject-verb structures, distance is shown
with respect to the verb: a distance of -1 means that
the subject immediately precedes the verb. Although
in most cases the subject is located to the left of
the verb, in some constructions, such as existential
clauses and inversions, it occurs after the verb.

Based on the accuracy results for identifying the
structure components, we select those structures
where the components are reliably identified. For
article-NPhead, valid structures are those where the
distance is at most three words. For subject-verb, we
consider as valid those structures where the identi-
fied subject is located within two words to the left or
three words to the right of the verb.

The valid structures are selected as input to the
joint model (Sec. 5). The joint learning model con-
siders only those valid structures whose components
are adjacent. In adjacent structures the NP head im-
mediately follows the article, and the verb immedi-
ately follows the subject. Joint inference is not re-
stricted to adjacent structures.

The last column of Table 5 shows that valid
subject-verb structures account for 67.5% of all
verbs whose subjects are common nouns (51.7% are
cases where the words are adjacent). Verbs whose
subjects are common nouns account for 57.8% of all
verbs that have subjects (verbs with different types
of subjects, most of which are personal pronouns,
are not considered here, since these subjects are not
part of the noun classifier).

Valid article-NPhead structures account for
98.0% of all articles whose NP heads are common
nouns (47.5% of those are adjacent structures), as
shown in the last column of Table 6. 71.0% of arti-

cles in the training data belong to an NP whose head
is a common noun; NPs whose heads belong to dif-
ferent parts of speech are not considered.

Note also that because a noun may belong both to
an article-NPhead and a subject-verb structure, the
structures contain an overlap.

Distance Accuracy % of all subj. Cumul.
predictions

-1 97.6% 51.7% 51.7%
1,2,3 100.0% 8.9% 60.6%

-2 88.2% 6.9% 67.5%
Other 80.8% 32.5% 100.0%

Table 5: Accuracy of subject identification on a random
sample of subject-verb structures from the training data.
The overall accuracy is 91.52%. For each distance, the follow-
ing are shown: accuracy based on comparison with human eval-
uation; the percentage of all predictions that have this distance;
the cumulative percentage.

Distance Accuracy % of all head Cumul.
predictions

1 94.8% 47.5% 47.5%
2 94.4% 44.0% 91.5%
3 92.3% 6.5% 98.0%

Other 89.1% 2.0% 100%

Table 6: Accuracy of NP head identification on a random
sample of article-NPhead structures from training data. The
overall accuracy is 94.45%. For each distance, the following are
shown: accuracy based on comparison with human evaluation;
the percentage of all predictions that have this distance; the cu-
mulative percentage.

5 The Joint Model

In this section, we present the joint inference and
the joint learning approaches. In the joint inference
approach, we use the independently-learned models
from the Illinois system, and the interacting target
words identified earlier are considered only at infer-
ence stage. In the joint learning method, we jointly
learn a model for the interacting phenomena.

The label space in the joint models corresponds
to sequences of labels from the confusion sets of
the individual classifiers: {a − sing, a − pl, the −
sing, the − pl, ∅ − sing, ∅ − pl} and {sing −
sing, sing−pl, pl−sing, pl−pl} for article-NPhead
and subject-verb structures, respectively7. Invalid

7“sing” and “pl” refer to the grammatical number of noun
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structures, such as pl-sing are excluded via hard con-
straints (when we run joint inference) or via implicit
soft constraints (when we use joint learning).

5.1 Joint Inference

In the individual model approach, decisions are
made for each word independently, ignoring the in-
teractions among linguistic phenomena. The pur-
pose of joint inference is to include linguistic (i.e.
structural) knowledge, such as “plural nouns do not
take an indefinite article”, and “agreement consis-
tency between the verb and the subject that controls
it”. This knowledge should be useful for resolving
inconsistencies produced by individual classifiers.

The inference approach we develop in this paper
follows the one proposed by Roth and Yih (2004)
of training individual models and combining them
at decision time via joint inference. The advantage
of this method is that it allows us to build upon
any existing independently-learned models that pro-
vide a distribution over their outcome, and produce
a coherent global output that respects our declarative
constraints. We formulate our component inference
problems as integer linear program (ILP) instances
as in Roth and Yih (2004).

The inference takes as input the individual clas-
sifiers’ confidence scores for each prediction, along
with a list of constraints. The output is the optimal
solution that maximizes the linear sum of the confi-
dence scores, subject to the constraints that encode
the interactions. The joint model thus selects a hy-
pothesis that both obtains the best score according
to the individual models and satisfies the constraints
that reflect the interactions among the grammatical
phenomena at the level of linguistic structures, as
defined in Sec. 4.
Inference The joint inference is enforced at the
level of structures, and each structure corresponds
to one ILP instance. All structures consist of two or
three words: when an article-NPhead structure and
a subject-verb structure include the same noun, the
structure input to the ILP consists of an article-noun-

and verb agreement candidates. The candidates themselves are
the surface forms of specific words that realize these grammat-
ical properties. Note that a subject in subject-verb structures is
always third person, since all subjects in subject-verb structures
are common nouns; other subjects, including pronouns, are ex-
cluded. Thus the agreement distinction is singular vs. plural.

verb triple. We formulate the inference problem as
follows: Given a structure s that consists of n words,
let wi correspond to the ith word in the structure. Let
h denote a hypothesis from the hypothesis space H
for s, and score(wi, h, li) denote the score assigned
by the appropriate error-specific model to wi under
h for label l from the confusion set of word wi. We
denote by ew,l the Boolean variable that indicates
whether the prediction on word w is assigned the
value l (ew,l = 1) or not (ew,l = 0).

We assume that each independent classifier re-
turns a score that corresponds to the likelihood of
word wi under h being labeled li. The softmax func-
tion (Bishop, 1995) is used to convert raw activation
scores to conditional probabilities for the discrimi-
native article model. The NB scores are also normal-
ized and correspond to probabilities. Then the infer-
ence task is solved by maximizing the overall score
of a candidate assignment of labels l to words w (this
set of feasible assignments is denoted H here) sub-
ject to the constraints C for the structure s:

ĥ = arg max
h∈H

score(h) =

= arg max
h∈H

n∑
i=1

score(wi, h, li)ewi,li

subject to C(s)
Constraints In the {0, 1} linear programming for-
mulation described above, we can encode linguis-
tic constraints that reflect the interactions among the
linguistic phenomena. The inference enforces the
following structural and linguistic constraints:

1. The indefinite article “a” cannot refer to an NP headed by
a plural noun.

2. Subject and verb must agree in number.

In addition, we encode “legitimacy” constraints, that
make sure that each w is assigned a single label. All
constraints are encoded as hard constraints.

5.2 Joint Learning
We now describe how we learn the subject-verb and
article-NPhead structures jointly. The joint model is
implemented as a NB classifier and is trained in the
same way as the independent models on the Google
corpus with word n-gram features. Unlike the inde-
pendent models, where the target corresponds to one
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System Adjacent structures All distances
F1 (Orig.) F1 (Revised) F1 (Orig.) F1 (Revised)

Illinois 31.20 42.14 31.20 42.14
Naı̈veVerb 31.19 42.20 31.13 42.16
Naı̈veNoun 31.03 41.87 30.91 41.70
This paper joint systems Joint Inference (adjacent) Joint Inference (all distances)

F1 (Orig.) F1 (Revised) F1 (Orig.) F1 (Revised)
Subject-verb 31.90 42.94 31.97 42.86
Article-NPhead 31.63 42.48 31.79 42.59
Subject-verb + article-NPhead 32.35 43.16 32.51 43.19

Table 7: Joint Inference Results. All results are on the CoNLL-2013 test data using the original and revised gold annotations.
Adjacent denotes a setting, where the joint inference is applied to structures with consecutive components (article-NPhead or
subject-verb). All distances denotes a setting, where the constraints are applied to all valid structures, as described in Sec. 4.1.
Illinois denotes the result obtained by the top CoNLL-2013 shared task system. In all cases, the candidates that are not part of the
structures are handled by the respective components of the Illinois system. Naı̈veVerb and Naı̈veNoun denote heuristics, where a
verb or subject are changed to ensure agreement. All improvements over the Illinois system are statistically significant (McNemar’s
test, p < 0.01).

word, here the target corresponds to two words that
are part of the structure and the label space of the
model is modified accordingly. Since we use fea-
tures that can be computed from the small windows
in the Google corpus, the joint learning model han-
dles only adjacent structures (Sec. 4.1). Because the
target consists of two words and the Google corpus
contains counts for n-grams of length at most five,
the features are collected in the three word window
around the target.8

Unlike with the joint inference, here we do not
explicitly encode linguistic constraints. One reason
for this is that the NP head and subject predictions
are not 100% accurate, so input structures will have
noise. However, the joint model learns these con-
straints through the evidence seen in training.

6 Experiments

In this section, we describe our experimental setup
and evaluate the performance of the joint approach.
In the joint approach, the joint components pre-
sented in Sec. 5 handle the interacting structures de-
scribed in Sec. 4. The individual classifiers of the
Illinois system make predictions for the remaining
words. The research question addressed by the ex-
periments is the following: Given independently-
trained systems for different types of errors, can we
improve the performance by considering the phe-

8Also note that when the article is ∅, the surface form of
the structure corresponds to the NP head alone; this does not
present a problem because in the NB model the context counts
are normalized with the prior counts.

nomena that interact jointly? To address this, we
report the results in the following settings:
1. Joint Inference: we compare the Illinois sys-
tem that is a collection of individually-trained mod-
els that are applied independently with a model
that uses joint inference encoded as declarative con-
straints in the ILP formulation and show that using
joint inference results in a strong performance gain.
2. Joint Learning: we compare the Illinois system
with a model that incorporates jointly-trained com-
ponents for the two linguistic structures that we de-
scribed in Sec. 4. We show that joint training pro-
duces an even stronger gain in performance com-
pared to the Illinois model.
2. Joint Learning and Inference: we apply joint in-
ference to the output of the joint learning system to
account for dependencies not covered by the joint
learning model.

We report F1 performance scored using the offi-
cial scorer from the shared task (Dahlmeier and Ng,
2012). The task reports two types of evaluation: on
the original gold data and on gold data with addi-
tional corrections. We refer to the results as Origi-
nal and Revised.

6.1 Joint Inference Results

Table 7 shows the results of applying joint infer-
ence to the Illinois system. Both the article-NPhead
and the subject-verb constraints improve the perfor-
mance. The results for the joint inference are shown
in two settings, adjacent and all structures, so that
later we can compare joint inference with the joint
learning model that handles only adjacent structures.
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Illinois system Illinois-NBArticle
F1 (Orig.) F1 (Revised) F1 (Orig.) F1 (Revised)

Illinois 31.20 42.14 31.71 41.38
This paper joint systems Joint Learning (adjacent) Joint Learning (adjacent)

F1 (Orig.) F1 (Revised) F1 (Orig.) F1 (Revised)
Subject-verb 32.64* 43.37* 33.09* 42.78*
Article-NPhead 33.89* 42.57* 33.16* 41.51
Subject-verb + article-NPhead 35.12* 43.73* 34.41* 42.76*

Table 8: Joint Learning Results. All results are on the CoNLL-2013 test data using the original and revised gold annotations.
Illinois-NBArticle denotes the Illinois system, where the discriminative article model is replaced with a NB classifier. Adjacent
denotes a setting, where the structure components are consecutive (article-NPhead or subject-verb), as described in Sec. 4.1.
Illinois denotes the result obtained by the top CoNLL-2013 shared task system. In all cases, the candidates that are not part of the
structures are handled by the respective components of the Illinois system. Statistically significant improvements (McNemar’s test,
p < 0.01) over the Illinois system are marked with an asterisk (*).

It is also interesting to note that the key improvement
comes from considering structures whose compo-
nents are adjacent. This is not surprising given that
the accuracy for subject and NP head identification
drops as the distance increases.

For subject-verb constraints, we also implement
a naı̈ve approach that looks for contradictions and
changes either the verb or the subject if they do not
satisfy the number agreement. These two heuris-
tics are denoted as Naı̈veVerb and Naı̈veNoun. The
heuristics differ from the joint inference in that they
enforce agreement by always changing either the
noun (Naı̈veNoun) or the verb (Naı̈veVerb), while
the joint inference does this using the scores pro-
duced by the independent models. In other words,
the key is the objective function, while the compo-
nents of the objective function are the same in the
heuristics and the joint inference. The results in Ta-
ble 7 show that simply enforcing agreement does not
work well and that the ILP formulation is indeed ef-
fective and improves over the independently-trained
models in all cases.

Recall that valid structures include only those
whose components can be identified in a reliable
way (Sec. 4.1). To evaluate the impact of that filter-
ing, we perform two experiments with subject-verb
structures (long-distance dependencies are more
common in those constructions than in the article-
NPhead structures): first, we apply joint inference
to all subject-verb structures. We obtain F1 scores of
31.61 and 42.28, on original and revised gold data,
respectively, which is significantly worse than the
results on subject-verb structures in Table 7 (31.97
and 42.86, respectively) and only slightly better than

the baseline performance of the Illinois system. Fur-
thermore, when we apply joint inference to those
structures which were excluded by filtering in Sec.
4.1, we find that the performance degrades com-
pared to the Illinois system (30.85 and 41.58). These
results demonstrate that the joint inference improve-
ments are due to structures whose components can
be identified with high accuracy and that it is essen-
tial to identify these structures; bad structures, on the
other hand, hurt performance.

6.2 Joint Learning Results

Now we show experimental results of the joint learn-
ing (Table 8). Note that the joint learning component
considers only those structures where the words are
adjacent. Because the Illinois system presented in
Sec. 3 makes use of a discriminative article model,
while the joint model uses NB, we also show results,
where the article model is replaced by a NB classi-
fier trained on the Google corpus. In all cases, joint
learning demonstrates a strong performance gain.

6.3 Joint Learning and Inference Results

Finally, we apply joint inference to the output of the
joint learning system in Sec. 6.2. Table 9 shows
the results of the Illinois model, the model that ap-
plies joint inference and joint learning separately,
and both. Even though the joint learning performs
better than the joint inference, the joint learning
covers only adjacent structures. Furthermore, joint
learning does not address overlapping structures of
triples that consist of article, subject, and verb (6%
of all structures). Joint inference allows us to ensure
consistent predictions in cases not addressed by the
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Example Illinois system JL and JI
“Moreover, the increased technologies help people to overcome
different natural disasters. No change technology helps

“At that time,... there are surveillances in everyone’s heart and
criminals are more difficult to hide.” there are* surveillance* there is surveillance

“In such situation, individuals will lose their basic privacy.” such a* situations* such a situation
“In supermarket monitor is needed because we have to track
thieves.” No change monitors are

Table 10: Examples of mistakes that are corrected by the joint model but not by the Illinois model. Illinois denotes the result
obtained by the top CoNLL-2013 shared task system from the University of Illinois. JL and JI stand for joint learning and joint
inference, respectively. Inconsistent predictions are starred.

F1 (Orig.) F1 (Revised)
Illinois 31.20 42.14
Joint Inference 32.51 43.19
Joint Learning 35.12 43.73
Joint Learn. + Inf. 35.21 43.74

Table 9: Joint Learning and Inference. All results are on the
CoNLL-2013 test data using the original and revised gold anno-
tations. Results of the joint models that include the joint infer-
ence component are shown for structures of all distances. Illi-
nois denotes the result obtained by the top CoNLL-2013 shared
task system. All joint systems demonstrate a statistically sig-
nificant improvement over the Illinois system; joint learning
improvements are also statistically significant compared to the
joint inference results (McNemar’s test, p < 0.01).

joint learning model. Indeed, we can get a small im-
provement by adding joint inference on top of the
joint learning on original annotations. Since the re-
vised corrections are based on the participants’ input
and are most likely biased towards system predic-
tions for corrections missed by the original annota-
tors (Ng et al., 2013), it is more difficult to show
improvement on revised data.

7 Discussion and Error Analysis

In the previous section, we evaluated the proposed
joint inference and joint learning models that han-
dle interacting grammatical phenomena. We showed
that the joint models produce significant improve-
ments over the highest-scoring CoNLL-2013 shared
task system that consists of independently-trained
classifiers: the joint approaches increase the F1
score by 4 F1 points on the original gold data and
almost 2 points on the revised data (Table 9).

These results are interesting from the point of
view of developing a practical error correction sys-
tem. However, recall that the errors in the interact-

ing structures are only a subset of mistakes in the
CoNLL-2013 data set but the evaluation in Sec. 6 is
performed with respect to all of these errors. From
a scientific point of view, it is interesting to evalu-
ate the impact of the joint models more precisely by
considering the improvements on the relevant struc-
tures only. Table 11 shows how much the joint learn-
ing approach improves on the subset of relevant mis-
takes.

Structure Performance (F1)
Illinois Joint Learning

Subject-verb 39.64 52.25
Article-NPhead 30.65 35.90

Table 11: Evaluation of the joint learning performance on
the subset of the data containing interacting errors. All re-
sults are on the CoNLL-2013 test data using the original anno-
tations. Illinois denotes the result obtained by the top CoNLL-
2013 shared task system. All improvements are statistically sig-
nificant over the Illinois system (McNemar’s test, p < 0.01).

Error Analysis To better understand where the joint
models have an advantage over the independently-
trained classifiers, we analyze the output produced
by each of the approaches. In Table 10 we show
examples of mistakes that the model that uses joint
learning and inference is able to identify correctly,
along with the original predictions made by the Illi-
nois system.
Joint Inference vs. Joint Learning We wish
to stress that the joint approaches do not simply
perform better but also make coherent decisions
by disallowing illegitimate outputs. The joint in-
ference approach does this by enforcing linguis-
tic constraints on the output. The joint learning
model, while not explicitly encoding these con-
straints, learns them from the distribution of the
training data.
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Joint inference is a less expensive model, since it
uses the scores produced by the individual classifiers
and thus does not require additional training. Joint
learning, on the other hand, is superior to joint infer-
ence, since it is better at modeling interactions where
multiple errors occur simultaneously – it eliminates
the noisy context present when learning the inde-
pendent classifiers. Consider the first example from
Table 10, where both the noun and the agreement
classifiers receive noisy input: the verb “help” and
the noun “technologies” act as part of input features
for the noun and agreement classifiers, respectively.
The noisy features prevent both modules from iden-
tifying the two errors.

Finally, an important distinction of the joint learn-
ing method is that it considers all possible output se-
quences in training, and thus it is able to better iden-
tify errors that require multiple changes, such as the
last example in Table 10, where the Illinois system
proposes no changes.

7.1 Error Correction: Challenges
We finalize our discussion with a few comments on
the challenges of the error correction task.
Task Difficulty As shown in Table 1 in Sec. 2, only
a small percentage of words have mistakes, while
over 90% (about 98% in training) are used correctly.
The low error rates are the key reason the error cor-
rection task is so difficult: it is quite challenging for
a system to improve over a writer that already per-
forms at the level of over 90%. Indeed, very few
NLP tasks already have systems that perform at that
level, even when the data is not as noisy as the ESL
data.
Evaluation Metrics In the CoNLL-2013 competi-
tion, as well as the competitions alluded to earlier,
systems were compared on F1 performance, and,
consequently, this is the metric we optimize in this
paper. Practical error correction systems, however,
should be tuned to minimize recall to guarantee that
the overall quality of the text does not go down. In-
deed, the error sparsity makes it very challenging to
identify mistakes accurately, and no system in the
shared task achieves a precision over 50%. How-
ever, once the precision drops below 50%, the sys-
tem introduces more mistakes than it identifies.

Clearly, optimizing the F1 measure does not en-
sure that the quality of the text improves as a re-

sult of running the system. Thus, it can be argued
that the F1 measure is not the right measure for er-
ror correction. A different evaluation metric based
on the accuracy of the data before and after running
the system was proposed in Rozovskaya and Roth
(2010c). When optimizing for this metric, the noun
module, for instance, at recall point 20%, achieves
a precision of 63.93%. This translates into accuracy
of 94.46%, while the baseline on noun errors in the
test data (i.e. the accuracy of the data before running
the system) is 94.0% (Table 1). This means that the
system improves the quality of the data.
Annotation Lastly, we believe that it is important
to provide alternative corrections, as the agreement
on what constitutes a mistake even among native
English speakers can be quite low (Madnani et al.,
2011).

8 Conclusion

This work presented the first successful study that
jointly corrects grammatical mistakes. We ad-
dressed two pairs of interacting phenomena and
showed that it is possible to reliably identify their
components, thereby facilitating the joint approach.

We described two joint methods: a joint in-
ference approach implemented via ILP and a
joint learning model. The joint inference en-
forces constraints using the scores produced by the
independently-trained models. The joint learning
model learns the interacting phenomena as struc-
tures. The joint methods produce a significant im-
provement over a state-of-the-art system that com-
bines independently-trained models and, impor-
tantly, produce linguistically legitimate output.
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Abstract

Nilsson and Nivre (2009) introduced a tree-
based model of persons’ eye movements in
reading. The individual variation between
readers reportedly made application across
readers impossible. While a tree-based model
seems plausible for eye movements, we show
that competitive results can be obtained with
a linear CRF model. Increasing the inductive
bias also makes learning across readers pos-
sible. In fact we observe next-to-no perfor-
mance drop when evaluating models trained
on gaze records of multiple readers on new
readers.

1 Introduction

When we read a text, our gaze does not move
smoothly and continuously along its lines. Rather,
our eyes fixate at a word, then skip a few words,
to jump to a new fixation point. Such rapid eye
movements are calledsaccades. Sometimes we even
jump backwards. Backward saccades are calledre-
gressions. Gaze can be recorded using eye track-
ing devices (Starr and Rayner, 2001). Since eye
movements in reading give us important information
about what readers find complicated in a text, and
what readers find completely predictable, predicting
eye movements on new texts has many practical ap-
plications in text-to-text generation and human com-
puter interaction, for example.

The problem of predicting eye movements in
reading is, for a readerri and a given sequence of
word tokensw1 . . . wn, to predict a set of fixation
pointsF ⊆ {w1, . . . , wn}, i.e., the fixation points of
ri’s gaze. For each tokenwj, the readerri may skip

wj or fixate atwj. Models are evaluated on record-
ings of human reading obtained using eye tracking
devices. The supervised prediction problem that we
consider in this paper, also uses eye tracking data for
learning models of eye movement.

Nilsson and Nivre (2009) first introduced this su-
pervised learning task and used the Dundee corpus
to train and evaluate a tree-based model, essentially
treating the problem of predicting eye movements in
reading as transition-based dependency parsing.

We follow Hara et al. (2012) in modeling only
forward saccades andnot regressions and refix-
ations. While Nilsson and Nivre (2009) try to
model a subset of regressions and refixations, they
do not evaluate this part of their model focusing
only on fixation accuracy and distribution accuracy,
i.e., they evaluate how well they predicta set
of fixation points rather than a sequence of points in
order. This enables us to model eye movements in
reading as a sequential problem of determining the
length of forward saccades, increasing the inductive
bias of our learning algorithm in a motivated way.
Note that because we work with visual input, we
do not tokenize our input in our experiments, i.e.,
punctuation does not count as input tokens.

Example Figure 1 presents an example sentence
and gaze records from the Dundee corpus. The
Dundee corpus contains gaze records of 10 readers
in total. Note that there is little consensus on what
words are skipped. 5/10 readers skip the first word.
Generally, closed class items (prepositions, copulae,
quantifiers) seem to be skipped more open, but we
do see a lot of individual variation. While others for
this reason have refrained from evaluation across
readers (Nilsson and Nivre, 2009; Hara et al., 2012),
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Sentence
Are tourists enticed by these attractions threathening their very existence?

r1 Fixate Fixate Fixate Skip Fixate Fixate Fixate Skip Fixate Fixate
r2 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r3 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Skip Fixate
r4 Skip Fixate Fixate Skip Fixate Fixate Fixate Fixate Fixate Fixate
r5 Skip Fixate Fixate Skip Fixate Fixate Fixate Skip Fixate Fixate
r6 Skip Fixate Fixate Skip Fixate Fixate Fixate Fixate Skip Fixate
r7 Skip Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r8 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r9 Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate Fixate
r10 Skip Fixate Fixate Fixate Fixate Fixate Fixate Fixate Skip Fixate
# skips 5 0 0 4 0 0 0 2 3 0

Figure 1: The gaze records of the three first readers for the first sentence in the Dundee corpus.

we show that our model predicts gaze betteracross
readers than a previously proposed model (Nilsson
and Nivre, 2009) does training and evaluating on the
same readers. A final observation is that fixations
are very frequent at the word level – in fact, even
skilled readers make 94 fixations per 100 words
(Starr and Rayner, 2001) – which motivates using
F1-score of skips as metric. We follow Nilsson and
Nivre (2009) in reporting word-level accuracy, but
find it particularly interesting that the simple model
proposed here outperforms previous models by a
large margin in F1-score over skips.

Related work Below we use a sequential model
rather than a tree-based model to bias our model
toward predicting forward saccades. Nilsson and
Nivre (2009), in contrast, present a more expressive
tree-based model for modeling eye movements, with
some constraints on the search space. The transition-
based model uses consecutive classification rather
than structured prediction. The features used in their
model are very simple. In particular, they use use
word lengths and frequencies, like us, as well as
distances between tokens (important in a transition-
based model), and, finally, the history of previous
decisions.

Hara et al. (2012) use a linear CRF model for the
same problem, like us, but they consider a slightly
different problem, namely that of predicting eye
movement when reading text on a specific screen.
They therefore use screen position as a feature. In
addition, they use word forms, POS, various mea-
sures of surprise of word length, as well as per-

plexity of bi- and trigrams. The features relating to
screen position were the most predictive ones.

2 Our approach

We use linear CRFs to model eye movements in
reading. We follow Hara et al. (2012) in using small
window sizes (at most five words) for extracting fea-
tures. Rather than using word forms, POS, etc.,
we use only word length and the log probability of
words – both known to correlate well with likeli-
hood of fixation, as well as fixation times (McDon-
ald and Shillcock, 2012; Kliegl et al., 2004; Rein-
gold et al., 2012). The model thus reflects a hy-
pothesis that eye movements are largely unaffected
by semantic content, that eye movements depend on
the physical properties and frequency of words, and
that there is a sequential dependence between fixa-
tion times. Tabel 1 gives the complete set of fea-
tures. We also evaluated using word forms and POS
on held-out data, but this did not lead to improve-
ments. There is evidence for the impact of mor-
phology on eye movements (Liversedge and Blythe,
2007; Bertram, 2011), but we did not incorporate
this into our model. Finally, we did not incorporate
predictability of tokens, although this is also known
to correlate with fixation times (Kliegl et al., 2004).
Hara et al. (2012) use perplexity features to capture
this.

We use a publicly available implementation of lin-
ear CRFs1 with default parameters (L2-regularized,
C = 1).

1https://code.google.com/p/crfpp/
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3 Predicting a reader’s eye movements

In this experiment we consider exactly the same set-
up as Nilsson and Nivre (2009) considered. In the
Dundee corpus, we have gaze data for 10 persons.
The corpus consists of 2,379 sentences, 56,212 to-
kens and 9,776 types. The gaza data was recorded
using a Dr. Bouis Oculometer Eyetracker, sampling
the position of the right eye every millisecond. We
use texts 1–16 (1911 sentences) for training, 17–
18 (237 sentences) for development and 19–20 (231
sentences) for testing.

Results are presented in Table 2 and are slightly
better than Nilsson and Nivre (2009), mainly be-
cause of better predictions of skips. Our error re-
duction over their model in terms of F1 over skips
is 9.4%. The baseline model used in Nilsson and
Nivre (2009), the E-Z Reader (Reichle et al., 1998),
obtained a fixation accuracy of 57.7%.

4 Predicting across readers

Hara et al. (2012) consider the problem of learning
from the concatenation of the gaze data from the 10
persons in the Dundee corpus, but they also evalu-
ate on data from these persons. In our second ex-
periment, we consider the more difficult problem of
learning from one person’s gaze data, but evaluat-
ing on gaze data from another test person. This is a
more realistic scenario if we want to use our model
to predict eye movements in reading on anyone but
our test persons. This has been argued to be impossi-
ble in previous work (Nilsson and Nivre, 2009; Hara
et al., 2012).

Our results are presented in Table 3. Interestingly,
results are very robust across reader pairs. In fact,
only in 4/10 cases do we get the best results training
on gaze data from the reader we evaluate on. Note
also that the readers seem to form two groups – (a, b,
h, i, j) and (c, d, e, f, g) – that provide good training
material for each other. Training on concatenated
data from all members in each group may be benefi-
cial.

5 Learning from multiple readers

In our final experiment, we learn from the gaze
records of nine readers and evaluate on the tenth.
This is a realistic evaluation of our ability to predict

fixations for new, previously unobserved readers. In-
terestingly we can predict the fixations of new read-
ers better than Nilsson and Nivre (2009) predict fix-
ations when the training and test data are produced
by the same reader. The results are presented in Ta-
ble 4. In fact our skip F1 score is actually better than
in our first experiments. As already mentioned, this
result can probably be improved by using a subset of
readers or by weighting training examples, e.g., by
importance weighting (Shimodaira, 2000). For now,
this is left for future work.

6 Discussion

Our contributions in this paper are: (i) a model for
predicting a reader’s eye movements that is compet-
itive to state-of-the-art, but simpler, with a smaller
search space than Nilsson and Nivre (2009) and a
smaller feature model than Hara et al. (2012), (ii)
showing that the simpler model is robust enough to
model eye movements across readers, and finally,
(iii) showing that even better models can be obtained
training on records from multiple readers.

It is interesting that a model without lexical infor-
mation is more robust across readers. This suggests
that deep processing has little impact on eye move-
ments. See Starr and Rayner (2001) for discussion.
The features used in this study are well-motivated
and account as well for the phenomena as previously
proposed models. It would be interesting to incor-
porate morphological features and perplexity-based
features, but we leave this for future work.

7 Conclusion

This study is, to the best of our knowledge, the first
to consider the problem of learning to predict eye
movements in reading across readers. We present
a very simple model of eye movements in read-
ing that performs a little better than Nilsson and
Nivre (2009) in terms of fixation accuracy, evaluated
on one reader at a time, but predicts skips signifi-
cantly better. The true merit of the approach, how-
ever, is its ability to predict eye movements across
readers. In fact, it predicts the eye movements of
new readers better than Nilsson and Nivre (2009) do
when the training and test data are produced by the
same reader.
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Feature Description
WordLength {L

−2, L
−1, L0, L1, L2} The number of letters for a token

WordProbability {P
−1, P0, P1} The log probability of a word (rounded) as

given in the Dundee data

Table 1: Feature template

Fixation Accuracy Fixations (F1) Skips (F1)
Reader N&N Model N&N Model N&N Model

a 70.0 70.2 71.8 70.0 67.4 70.3
b 66.5 66.2 74.1 71.2 75.0 58.8
c 70.9 70.4 77.3 74.7 59.4 64.4
d 78.9 76.5 84.7 81.3 65.9 68.5
e 71.8 70.5 73.5 69.9 69.9 71.0
f 67.9 66.4 76.8 72.8 47.7 55.8
g 56.6 65.1 61.7 61.8 49.9 67.8
h 66.9 67.7 72.7 70.3 58.2 64.6
i 69.1 71.5 74.1 73.9 60.7 68.8
j 76.3 74.6 82.0 77.3 65.2 71.1

average 69.5 69.9 75.2 72.3 62.6 66.1

Table 2: Comparison between NN09 and our model.

train/test a b c d e f g h i j
a - 67.2 67.6 71.5 69.7 63.4 64.9 66.9 70.7 72.6
b 67.7 - 70.1 76.9 68.0 65.7 62.9 67.1 69.1 72.8
c 69.3 67.3 - 76.5 69.7 65.1 64.3 67.4 71.0 74.2
d 69.0 67.2 70.0 - 69.1 65.1 63.9 67.3 70.1 73.9
e 70.1 66.6 67.5 71.2 - 63.8 64.7 66.9 70.9 72.6
f 66.5 65.9 69.1 76.7 66.5 - 62.4 66.8 68.6 71.4
g 69.7 67.1 67.2 69.5 69.6 61.6 - 67.8 70.3 70.3
h 70.5 67.5 69.3 74.7 70.5 64.2 64.5 - 70.8 74.2
i 70.9 68.1 69.6 74.4 70.7 64.0 64.6 68.0 - 74.2
j 70.7 68.0 69.5 74.7 70.4 64.1 64.7 68.2 71.5 -

Table 3: Results learning across readers. Bold-faced numbers better than when training on same reader

Fixation Accuracy Fixations (F1) Skips (F1)
Reader N&N Model N&N Model N&N Model

a 70.0 70.3 71.8 72.1 67.4 68.2
b 66.5 67.9 74.1 70.6 75.0 64.6
c 70.9 69.8 77.3 73.1 59.4 65.6
d 78.9 75.5 84.7 79.5 65.9 69.5
e 71.8 70.6 73.5 72.0 69.9 69.0
f 67.9 64.5 76.8 68.6 47.7 59.2
g 56.6 64.7 61.7 65.0 49.9 64.5
h 66.9 68.1 72.7 70.9 58.2 64.8
i 69.1 71.3 74.6 74.1 60.7 67.9
j 76.3 74.2 82.0 77.2 65.2 70.4

average 69.5 69.7 75.2 72.3 62.6 66.4

Table 4: Comparison of NN09 and our cross-reader model trained on nine readers
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Abstract

This paper explores to what extent lemmati-
sation, lexical resources, distributional seman-
tics and paraphrases can increase the accuracy
of supervised models for dialogue manage-
ment. The results suggest that each of these
factors can help improve performance but that
the impact will vary depending on their com-
bination and on the evaluation mode.

1 Introduction

One strand of work in dialog research targets the
rapid prototyping of virtual humans capable of con-
ducting a conversation with humans in the context
of a virtual world. In particular, question answering
(QA) characters can respond to a restricted set of
topics after training on a set of dialogs whose utter-
ances are annotated with dialogue acts (Leuski and
Traum, 2008).

As argued in (Sagae et al., 2009), the size of the
training corpus is a major factor in allowing QA
characters that are both robust and accurate. In ad-
dition, the training corpus should arguably be of
good quality in that (i) it should contain the various
ways of expressing the same content (paraphrases)
and (ii) the data should not be skewed. In sum, the
ideal training data should be large (more data is
better data) ; balanced (similar amount of data for
each class targeted by the classifier) and varied (it
should encompass the largest possible number of
paraphrases and synonyms for the utterances of each
class).

In this paper, we explore different ways of im-
proving and complementing the training data of a

supervised QA character. We expand the size and
the quality (less skewed data) of the training corpus
using paraphrase generation techniques. We com-
pare the performance obtained on lemmatised vs.
non lemmatised data. And we investigate how vari-
ous resources (synonym dictionaries, WordNet, dis-
tributional neighbours) can be used to handle unseen
words at run time.

2 Related work

Previous work on improving robustness of super-
vised dialog systems includes detecting and han-
dling out of domain utterances for generating feed-
back (Lane et al., 2004) ; using domain-restricted
lexical semantics (Hardy et al., 2004) ; and work on
manual data expansion (DeVault et al., 2011). Our
work follows up on this research but provides a sys-
tematic investigation of how data expansion, lemma-
tisation and synonym handling impacts the perfor-
mance of a supervised QA engine.

3 Experimental Setup

We run our experiments on a dialog engine de-
veloped for a serious game called Mission Plastech-
nologie. In this game, the player must interact with
different virtual humans through a sequence of 12
subdialogs, each of them occurring in a different part
of the virtual world.

Training Data. The training corpus consists of
around 1250 Human-Human dialogues which were
manually annotated with dialog moves. As the fol-
lowing dialog excerpt illustrates, the dialogs are con-
ducted in French and each dialog turn is manu-
ally annotated using a set of 28 dialog acts. For
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a more detailed presentation of the training corpus
and of the annotation scheme, the reader is referred
to (Rojas-Barahona et al., 2012a)
dialog : 01_dialogDirecteur-Tue Jun 14 11 :04 :23 2011

>M.Jasper : Bonjour, je suis M.Jasper le directeur. || greet

(Hello, I am the director, Mr. Jasper.)

>M.Jasper : Qu’est-ce que je peux faire pour vous ? || ask(task(X))

(What can I do for you ?)

>Lucas : je dois sauver mon oncle || first_step

(I must rescue my uncle)

>M.Jasper : Pour faire votre manette, il vous faut

des plans. Allez voir dans le bureau d’études,

ils devraient y être. || inform(do(first_step))

(To build the joystick you will need the plans.

You will find them in the Designing Office.)

>M.Jasper : Bonne Chance ! || quit

(Good Luck !)

Dialog Systems For our experiments, we use a hy-
brid dialog system similar to that described in (Ro-
jas Barahona et al., 2012b; Rojas Barahona and
Gardent, 2012). This system combines a classifier
for interpreting the players utterances with an infor-
mation state dialog manager which selects an appro-
priate system response based on the dialog move as-
signed by the classifier to the user turn. The clas-
sifier is a logistic regression classifier 1 which was
trained for each subdialog in the game. The features
used for training are the set of content words which
are associated with a given dialog move and which
remain after TF*IDF 2 filtering. Note that in this ex-
periment, we do not use contextual features such as
the dialog acts labeling the previous turns. There are
two reasons for this. First, we want to focus on the
impact of synonym handling, paraphrasing and lem-
matisation on dialog management. Removing con-
textual features allows us to focus on how content
features (content words) can be improved by these
mechanisms. Second, when evaluating on the H-C
corpus (see below), contextual features are often in-
correct (because the system might incorrectly inter-
pret and thus label a user turn). Excluding contextual
features from training allows for a fair comparison
between the H-H and the H-C evaluation.

Test Data and Evaluation Metrics We use accu-

1. We used MALLET (McCallum, 2002) for the LR classi-
fier with L1 Regularisation.

2. TF*IDF = Term Frequency*Inverse Document Fre-
quency

racy (the number of correct classifications divided
by the number of instances in the testset) to mea-
sure performance and we carry out two types of
evaluation. On the one hand, we use 10-fold cross-
validation on the EmoSpeech corpus (H-H data). On
the other hand, we report accuracy on a corpus of
550 Human-Computer (H-C) dialogues obtained by
having 22 subjects play the game against the QA
character trained on the H-H corpus. As we shall see
below, performance decreases in this second evalua-
tion suggesting that subjects produce different turns
when playing with a computer than with a human
thereby inducing a weak out-of-domain effect and
negatively impacting classification. Evaluation on
the H-H corpus therefore gives a measure of how
well the techniques explored help improving the di-
alog engine when used in a real life setting.

Correspondingly, we use two different tests for
measuring statistical significance. In the H-H eval-
uation, significance is computed using the Wilcoxon
signed rank test because data are dependent and are
not assumed to be normally distributed. When build-
ing the testset we took care of not including para-
phrases of utterances in the training partition (for
each paraphrase generated automatically we keep
track of the original utterance), however utterances
in both datasets might be generated by the same sub-
ject, since a subject completed 12 distinct dialogues
during the game. Conversely, in the H-C evaluation,
training (H-H data) and test (H-C data) sets were
collected under different conditions with different
subjects therefore significance was computed using
the McNemar sign-test (Dietterich, 1998).

4 Paraphrases, Synonyms and
Lemmatisation

We explore three main ways of modifying the
content features used for classification : lemmatising
the training and the test data ; augmenting the train-
ing data with automatically acquired paraphrases ;
and substituting unknown words with synonyms at
run time.

Lemmatisation We use the French version of
Treetagger 3 to lemmatise both the training and the
test data. Lemmas without any filtering were used

3. http://www.ims.uni-stuttgart.de/projekte/
corplex/TreeTagger/
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to train classifiers. We then compare performance
with and without lemmatisation. As we shall see,
the lemma and the POS tag provided by TreeTag-
ger are also used to lookup synonym dictionaries and
EuroWordNet when using synonym handling at run
time.

Paraphrases : (DeVault et al., 2011) showed that
enriching the training corpus with manually added
paraphrases increases accuracy. Here we exploit au-
tomatically acquired paraphrases and use these not
only to increase the size of the training corpus but
also to better balance it 4. We proceed as follows.

First, we generated paraphrases using a pivot ma-
chine translation approach where each user utter-
ance in the training corpus (around 3610 utterances)
was translated into some target language and back
into French. Using six different languages (English,
Spanish, Italian, German, Chinese and Arabian),
we generated around 38000 paraphrases. We used
Google Translate API for translating.

Category Train Instances Balanced Instances

greet 24 86

help 20 82

yes 92 123

no 55 117

ack 73 135

other 27 89

quit 38 100

find_plans 115 146

job 26 88

staff 15 77

studies 20 82

security_policies 24 86

µ 44.08 100.92

σ ±32.68 ±23.32

TABLE 1: Skewed and Balanced Data on a sample sub-
dialog. The category with lowest number of paraphrases
is greet, with 62 paraphrases, hence lp = 62. All cat-
egories were increased by 62 except find_plans and
yes that were increased by half : 31.

Second, we eliminate from these paraphrases,
words that are likely to be incorrect lexical transla-
tions by removing words with low normalized term

4. The Emospeech data is highly skewed with some classes
being populated with many utterances and others with few.

Algorithm extendingDataWithParaphrases(trainingset ts)
1. Let c be the set of categories in ts.
2. µ be the mean of train instances per category
3. σ be the standard deviation of train instances per category
4. Let Npc be the number of paraphrases per category
5. Let lp ← min Npcj
6. Repeat
7. set i ← 0
8. Ninstci

be the number of instances per category ci
9. di ← Ninstci

− µ

10. if di < σ then
11. Ninstci

← lp
12. else

13. Ninstci
← lp

2
14. end if
15. set i←i+1
16. if i>‖c‖ then
17. terminate
18. end

FIGURE 1: Algorithm for augmenting the training data
with paraphrases.

frequency (< 0.001) across translations i.e., lexical
translations given by few translations and/or transla-
tion systems. We then preprocessed the paraphrases
in the same way the utterances of the initial train-
ing corpus were preprocessed i.e., utterances were
unaccented, converted to lower-case and stop words
were removed, the remaining words were filtered
with TF*IDF. After preprocessing, duplicates were
removed.

Third, we added the paraphrases to the training
data seeking to improve the balance between dialog
moves per dialog, as shown in Figure 1. To this end,
we look for the category c with the lowest number
of paraphrases lp (line 5). We then compute the de-
viation di for each dialog move ci from the mean
µ in the original training set (line 9). If the devia-
tion di is lower than the standard deviation then we
add lp number of paraphrases instances (line 11).
Conversely, if di is higher than the standard devia-
tion, we reduce the number of instances to be added
by half lp

2 (line 13). Table 1 shows the original and
the extended training data for the third sub-dialog
in the Emospeech game. In this dialogue the player
is supposed to ask information about the joystick
plans (find_plans, which is the mandatory goal).
The categories cover mandatory and optional goals
and general dialogue acts, such as greetings, asking
for help, confirm and disconfirm, acknowledgment
and out of topic questions (i.e. other).

Substituting Synonyms for Unknown Words A
word is unknown, if it is a well-formed French
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word 5 and if it does not appear in the training cor-
pus. Conversely, a word is known if it is not un-
known.

When an unknown word w is detected in a player
utterance at runtime, we search for a word w′ which
occurs in the training data and is either a synonym of
w or a distributional neighbour. After disambigua-
tion, we substitute the unknown word for the syn-
onym.

To identify synonyms, we make use of two lexical
resources namely, the French version of EuroWord-
Net (EWN) (Vossen, 1998), which includes 92833
synonyms, hyperonyms and hyponyms pairs, and a
synonym lexicon for French (DIC) 6 which contains
38505 lemmas and 254149 synonym pairs. While
words are categorised into Noun, Verbs and Adjec-
tives in EWN, DIC contains no POS tag information.

To identify distributional neighbours, we con-
structed semantic word spaces for each subdialog
in the EmoSpeech corpus 7 using random indexing
(RI) 8 on the training corpus expanded with para-
phrases. Using the cosine measure as similarity met-
rics, we then retrieve for any unknown word w, the
word w′ which is most similar to w and which ap-
pear in the training corpus.

For lexical disambiguation, two methods are com-
pared. We use the POS tag provided by TreeTagger.
In this case, disambiguation is syntactic only. Or we
pick the synonym with highest probability based on
a trigram language model trained on the H-H cor-
pus 9.

5 Results and Discussion

Table 2 summarises the results obtained in four
main configurations : (i) with and without para-
phrases ; (ii) with and without synonym handling ;
(iii) with and without lemmatisation ; and (iv) when

5. A word is determined to be a well-formed French word if
it occurs in the LEFFF dictionary, a large-scale morphological
and syntactic lexicon for French (Sagot, 2010)

6. DICOSYN (http ://elsap1.unicaen.fr/dicosyn.html).
7. We also used distributional semantics from the Gigaword

corpus but the results were poor probably because of the very
different text genre and domains between the the Gigaword and
the MP game.

8. Topics are Dialog acts while documents are utterances ;
we used the S-Space Package http://code.google.com/p/
airhead-research/wiki/RandomIndexing

9. We used SRILM (http://www.speech.sri.com/
projects/srilm)

combining lemmatisation with synonym handling.
We also compare the results obtained when evalu-
ating using 10-fold cross validation on the training
data (H-H dialogs) vs. evaluating the performance
of the system on H-C interactions.

Overall Impact The largest performance gain is
obtained by a combination of the three techniques
explored in this paper namely, data expansion, syn-
onym handling and lemmatisation (+8.9 points for
the cross-validation experiment and +2.3 for the H-
C evaluation).

Impact of Lexical Substitution at Run Time Be-
cause of space restrictions, we do not report here
the results obtained using lexical resources without
lemmatisation. However, we found that lexical re-
sources are only useful when combined with lemma-
tisation. This is unsurprising since synonym dictio-
naries and EuroWordNet only contain lemmas. In-
deed when distributional neighbours are used, lem-
matisation has little impact (e.g., 65.11% using dis-
tributional neighbours without lemmatisation on the
H-H corpus without paraphrases vs. 66.41% when
using lemmatisation).

Another important issue when searching for a
word synonym concerns lexical disambiguation : the
synonym used to replace an unknown word should
capture the meaning of that word in its given con-
text. We tried using a language model trained on the
training corpus to choose between synonym candi-
dates (i.e., selecting the synonym yielding the high-
est sentence probability when substituting that syn-
onym for the unknown word) but did not obtain a
significant improvement. In contrast, it is noticeable
that synonym handling has a higher impact when us-
ing EuroWordNet as a lexical resource. Since Eu-
roWordNet contain categorial information while the
synonym dictionaries we used do not, this suggests
that the categorial disambiguation provided by Tree-
Tagger helps identifying an appropriate synonym in
EuroWordNet.

Finally, it is clear that the lexical resources used
for this experiment are limited in coverage and qual-
ity. We observed in particular that some words which
are very frequent in the training data (and thus which
could be used to replace unknown words) do not oc-
cur in the synonym dictionaries. For instance when
using paraphrases and dictionaries (fourth row and
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H Lemmatisation

H-H Orig. Lemmas +EWN +DIC +RI

Orig. 65.70%± 5.62 66.04% ± 6.49 68.17%± 6.98 67.92%± 4.51 66.83%± 5.92

Parap. 70.89%± 6.45 74.31% ± 4.78* 74.60% ± 5.99* 73.07% ± 7.71* 72.63% ± 5.82*

H-C Orig. Lemmas +EWN +DIC +RI

Orig. 59.71%± 16.42 59.88%± 7.19 61.14%± 16.65 61.41%± 16.59 60.75%± 17.39

Parap. 59.82%± 15.53 59.48%± 14.02 61.70% ± 14.09* 62.01% ± 14.37* 61.16%± 14.41*

TABLE 2: Accuracy on the H-H and on the H-C corpus. The star denotes statistical significance with the Wilcoxon test
(p < 0.005) used for the HH corpus and the McNemar test (p < 0.005) for the HC corpus.

fourth column in Table 2) 50% of the unknown
words were solved, 17% were illformed and 33% re-
mained unsolved. To compensate this deficiency, we
tried combining the three lexical resources in vari-
ous ways (taking the union or combining them in a
pipeline using the first resource that would yield a
synonym). However the results did not improve and
even in some cases worsened due probably to the in-
sufficient lexical disambiguation. Interestingly, the
results show that paraphrases always improves syn-
onym handling presumably because it increases the
size of the known vocabulary thereby increasing the
possibility of finding a known synonym.

In sum, synonym handling helps most when (i)
words are lemmatised and (ii) unknown words can
be at least partially (i.e., using POS tag information)
disambiguated. Moreover since data expansion in-
creases the set of known words available as potential
synonyms for unknown words, combining synonym
handling with data expansion further improves ac-
curacy.

Impact of Lemmatisation When evaluating using
cross validation on the training corpus, lemmatisa-
tion increases accuracy by up to 3.42 points indi-
cating that unseen word forms negatively impact ac-
curacy. Noticeably however, lemmatisation has no
significant impact when evaluating on the H-C cor-
pus. This in turn suggests that the lower accuracy
obtained on the H-C corpus results not from unseen
word forms but from unseen lemmas.

Impact of Paraphrases On the H-H corpus, data
expansion has no significant impact when used
alone. However it yields an increase of up to 8.27
points and in fact, has a statistically significant im-
pact, for all configurations involving lemmatisation.
Thus, data expansion is best used in combination

with lemmatisation and their combination permits
creating better, more balanced and more general
training data. On the H-C corpus however, the im-
pact is negative or insignificant suggesting that the
decrease in performance on the H-C corpus is due to
content words that are new with respect to the train-
ing data i.e., content words for which neither a syn-
onym nor a lemma can be found in the expanded
training data.

Conclusion

While classifiers are routinely trained on dialog
data to model the dialog management process, the
impact of such basic factors as lemmatisation, au-
tomatic data expansion and synonym handling has
remained largely unexplored. The empirical eval-
uation described here suggests that each of these
factors can help improve performance but that the
impact will vary depending on their combination
and on the evaluation mode. Combining all three
techniques yields the best results. We conjecture
that there are two main reasons for this. First, syn-
onym handling is best used in combination with
POS tagging and lemmatisation because these sup-
ports partial lexical semantic disambiguation. Sec-
ond, data expansion permits expanding the set of
known words thereby increasing the possibility of
finding a known synonym to replace an unknown
word with.
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Abstract

Recognizing bridging anaphora is difficult due
to the wide variation within the phenomenon,
the resulting lack of easily identifiable surface
markers and their relative rarity. We develop
linguistically motivated discourse structure,
lexico-semantic and genericity detection fea-
tures and integrate these into a cascaded mi-
nority preference algorithm that models bridg-
ing recognition as a subtask of learning fine-
grained information status (IS). We substan-
tially improve bridging recognition without
impairing performance on other IS classes.

1 Introduction

In bridging or associative anaphora (Clark, 1975;
Prince, 1981; Gundel et al., 1993), the antecedent
and anaphor are not coreferent but are linked via a
variety of contiguity relations.1 In Example 1, the
phrases a resident, the stairs and the lobby are bridg-
ing anaphors with the antecedent One building.2

(1) One building was upgraded to red status while peo-
ple were taking things out, and a resident called up the
stairs to his girlfriend, telling her to keep sending things
down to the lobby.

Bridging is an important problem as it affects lin-
guistic theory and applications alike. For exam-
ple, without bridging resolution, entity coherence
between the first and second coordinated clause in

1We exclude comparative anaphora where anaphor and an-
tecedent are in a similarity/exclusion relation, indicated by ana-
phor modifiers such as other or similar (Modjeska et al., 2003).

2Examples are from OntoNotes (Weischedel et al., 2011).
Bridging anaphora are set in boldface; antecedents in italics.

Example 1 cannot be established. This is a prob-
lem both for coherence theories such as Centering
(Grosz et al., 1995) (where bridging is therefore in-
corporated as an indirect realization of previous en-
tities) as well as applications relying on entity co-
herence modelling, such as readability assessment
or sentence ordering (Barzilay and Lapata, 2008).

Full bridging resolution needs (i) recognition that
a bridging anaphor is present and (ii) identification
of the antecedent and contiguity relation. In re-
cent work, these two tasks have been tackled sep-
arately, with bridging recognition handled as part of
information status (IS) classification (Markert et al.,
2012; Cahill and Riester, 2012; Rahman and Ng,
2012). Each mention in a text gets assigned one IS
class that describes its accessibility to the reader at
a given point in a text, bridging being one possible
class. We stay within this framework.

Bridging recognition is a difficult task, so that we
had to report very low results on this IS class in pre-
vious work (Markert et al., 2012). This is due to the
phenomenon’s variety, leading to a lack of clear sur-
face features for recognition. Instead, we formulate
in this paper novel discourse structure and lexico-
semantic features as well as features that distinguish
bridging from generics (see Section 3). In addition,
making up between 5% and 20% of definite descrip-
tions (Gardent and Manuélian, 2005; Caselli and
Prodanof, 2006) and around 6% of all NPs (Mark-
ert et al., 2012), bridging is still less frequent than
many other IS classes and recognition of minority
classes is well known to be more difficult. We there-
fore use a cascaded classification algorithm to ad-
dress this problem (Omuya et al., 2013).
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2 Related Work

Most bridging research concentrates on antecedent
selection only (Poesio and Vieira, 1998; Poesio et
al., 2004a; Markert et al., 2003; Lassalle and De-
nis, 2011; Hou et al., 2013), assuming that bridg-
ing recognition has already been performed. Previ-
ous work on recognition is either limited to definite
NPs based on heuristics evaluated on small datasets
(Hahn et al., 1996; Vieira and Poesio, 2000), or
models it as a subtask of learning fine-grained IS
(Rahman and Ng, 2012; Markert et al., 2012; Cahill
and Riester, 2012). Results within this latter frame-
work for bridging have been mixed: We reported in
Markert et al. (2012) low results for bridging in writ-
ten news text whereas Rahman and Ng (2012) re-
port high results for the four subcategories of bridg-
ing annotated in the Switchboard dialogue corpus by
Nissim et al. (2004). We believe this discrepancy to
be due to differences in corpus size and genre as well
as in bridging definition. Bridging in Switchboard
includes non-anaphoric, syntactically linked part-of
and set-member relationships (such as the building’s
lobby), as well as comparative anaphora, the latter
being marked by surface indicators such as other,
another etc. Both types are much easier to identify
than anaphoric bridging cases.3 In addition, many
non-anaphoric lexical cohesion cases have been an-
notated as bridging in Switchbard as well.

We also separate bridging recognition and ante-
cedent selection. One could argue that a joint model
is more attractive as potential antecedents such as
building “trigger” subsequent bridging cases such as
stairs (Example 1). However, bridging can be indi-
cated by referential patterns without world knowl-
edge about the anaphor/antecedent NPs, as the non-
sense example 2 shows: the wug is clearly a bridging
anaphor although we do not know the antecedent.4

(2) The blicket couldn’t be connected to the dax. The
wug failed.

Similarly, Clark (1975) distinguishes between
bridging via necessary, probable and inducible
parts/roles and argues that only in the first and
maybe the second case the antecedent triggers the

3See also the high results for our specific category for com-
parative anaphora (Markert et al., 2012).

4We thank an anonymous reviewer for pointing this out.

bridging anaphor in the sense that we already spon-
taneously think of the anaphor when we read the an-
tecedent. Also, bridging recognition on its own can
be valuable for applications: for example, prosody is
influenced by IS status without needing antecedent
knowledge (Baumann and Riester, 2013).

3 Characterizing Bridging Anaphora for
Automatic Recognition

3.1 Properties of bridging anaphora
Bridging anaphors are rarely marked by surface fea-
tures. Indeed, even the common practice (Vieira and
Poesio, 2000; Lassalle and Denis, 2011; Cahill and
Riester, 2012) to limit bridging to definite NPs does
not seem to be correct: We report in previous work
(Hou et al., 2013) that less than 40% of the bridg-
ing anaphora in our corpus are definites. Instead,
bridging is diverse with regard to syntactic form
and function: bridging anaphora can be definite NPs
(Examples 4 and 6), indefinite NPs (Example 5) or
bare NPs (Examples 3, 8 and 9). The only frequent
syntactic property shared is that bridging NPs tend
to have a simple internal structure with regards to
modification. Bridging is also easily confused with
generics: friends is used as bridging anaphor in Ex-
ample 9 but generically in Example 10.

(3) . . . meat . . . The Communists froze prices instead.

(4) . . . the fund’s building . . . The budget was only
$400,000.

(5) . . . employees . . . A food caterer stashed stones in the
false bottom of a milk pail.

(6) . . . his truck . . . The farmer at the next truck shouts,
”Wheat!”

(7) . . . the firms . . . Crime was the reason that 26% re-
ported difficulty recruiting personnel and that 19% said
they were considering moving.

(8) . . . the company . . . His father was chairman and
chief executive until his death in an accident five years
ago.

(9) . . . Josephine Baker . . . Friends pitched in.

(10) Friends are part of the glue that holds life and faith
together.

Bridging anaphora can have almost limitless varia-
tion. However, we observe that bridging anaphors
are often licensed because of discourse structure

815



Markert et al. (2012) local feature set
f1 FullPrevMention (b) f2 FullPreMentionTime (n)
f3 PartialPreMention (b) f4 ContentWordPreMention (b)
f5 Determiner (n) f6 NPtype (n)
f7 NPlength (int) f8 GrammaticalRole (n)
f9 NPNumber (n) f10 PreModByCompMarker (b)
f11 SemanticClass (n)
Markert et al. (2012) relational feature set
f12 HasChild (r) f13 Precedes (r)

Table 1: Markert et al.’s (2012) feature set, b indi-
cates binary, n nominal, r relational features.

and/or lexical or world knowledge. With regard to
discourse structure, Grosz et al. (1995) observe that
bridging is often needed to establish entity coher-
ence between two adjacent sentences (Examples 1,
2, 4, 5, 6, 7 and 9). With regard to lexical and world
knowledge, relational noun phrases (Examples 3, 4,
8 and 9), building parts (Example 1), set member-
ship elements (Example 7), or, more rarely, tem-
poral/spatial modification (Example 6) may favor a
bridging reading. Motivated by these observations,
we develop discourse structure and lexico-semantic
features indicating bridging anaphora as well as fea-
tures designed to separate genericity from bridging.

3.2 Features

In Markert et al. (2012) we classify eight fine-
grained IS categories for NPs in written text: old,
new and 6 mediated categories (syntactic, world-
Knowledge, bridging, comparative, aggregate and
function). This feature set (Table 1, f1-f13) works
well to identify old, new and several mediated cate-
gories. However, it fails to recognize most bridging
anaphora which we try to remedy in this work by
including more diverse features.

Discourse structure features (Table 2, f1-f3).
Bridging occurs frequently in sentences where oth-
erwise there would no entity coherence to previous
sentences/clauses (see Grosz et al. (1995) and Poe-
sio et al. (2004b) for discussions about bridging, en-
tity coherence and centering transitions in the Cen-
tering framework). This is especially true for topic
NPs (Halliday and Hasan, 1976) in such sentences.

We follow these insights by identifying coherence
gap sentences (see Examples 1, 4, 5, 6, 7, 9 and also
2): a sentence has a coherence gap (f1) if it has none

new local features for bridging
discourse f1 IsCoherenceGap (b)
structure f2 IsSentFirstMention (b)

f3 IsDocFirstMention (b)
semantics f4 IsWordNetRelationalNoun (b)

f5 IsInquirerRoleNoun (b)
f6 IsBuildingPart (b)
f7 IsSetElement (b)
f8 PreModSpatialTemporal (b)
f9 IsYear (b)
f10 PreModifiedByCountry (b)

generic f11 AppearInIfClause (b)
NP f12 VerbPosTag (l)
features f13 IsFrequentGenericNP (b)

f14 WorldKnowledgeNP (l)
f15 PreModByGeneralQuantifier (b)

other features f16 Unigrams (l)
f17 BridgingHeadNP (l)
f18 HasChildNP (b)

new features for other mediated categories
aggregate f19 HasChildCoordination (r)
function f20 DependOnChangeVerb (b)
worldKnowledge f21 IsFrequentProperName (b)

Table 2: New feature set, l indicates lexical features.

of the following three coherence elements: (1) entity
coreference to previous sentences, as approximated
via string match or presence of pronouns, (2) com-
parative anaphora approximated by mentions modi-
fied via a small set of comparative markers (see also
Table 1, f10 PreModByCompMarker), or (3) proper
names. We approximate the topic of a sentence via
the first mention (f2).

f3 models that bridging anaphors do not appear
at the beginning of a text.

Semantic features (Table 2, f4-f10). In contrast
to generic patterns, our semantic features capture
lexical properties of nouns that make them more
likely to be the head of a bridging NP. We create
f4-f8 to capture four kinds of bridging anaphora.

Löbner (1985) distinguishes between relational
nouns that take on at least one obligatory semantic
role (such as friend) and sortal nouns. It is likely that
relational nouns are more frequently used as bridg-
ing than sortal nouns (see Examples 3, 4, 8 and 9).
We extract a list containing around 4,000 relational
nouns from WordNet and a list containing around
500 nouns that specify professional roles from the
General Inquirer lexicon (Stone et al., 1966), then
determine whether the NP head appears in these lists
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or not (f4 and f5). The obligatory semantic role for
a relational noun can of course also be filled NP in-
ternally instead of anaphorically and we use the fea-
tures f10 (for instances such as the Egyptian presi-
dent) and f18 (for complex NPs that are likely to fill
needed roles NP internally) to address this.

Because part-of relations are typical bridging re-
lations (see Example 1 and Clark (1975)), we use f6
to determine whether the NP is a part of the building
or not, using again a list extracted from Inquirer.

f7 is used to identify set membership bridging
cases (see Example 7), by checking whether the
NP head is a number or indefinite pronoun (such as
none, one, some) or modified by each, one. How-
ever, not all numbers are bridging cases (such as
1976) and we use f9 to exclude such cases.

Lassalle and Denis (2011) note that some bridging
anaphors are indicated by spatial or temporal modi-
fications (see Example 6). We use f8 to detect this
by compiling 20 such adjectives from Inquirer.

Features to detect generic nouns (Table 2, f11-
f15). Generic NPs (Example 10) are easily con-
fused with bridging anaphora. Inspired by Reiter
and Frank (2010) who build on linguistic research,
we develop features (f11-f15) to exclude generics.

First, hypothetical entities are likely to refer to
generic entities (Mitchell et al., 2002), We approx-
imate this by determining whether the NP appears
in an if-clause (f11). Also the clause tense and
mood may play a role to decide genericity (Reiter
and Frank, 2010). This is often reflected by the main
verb of a clause, so we extract its POS tag (f12).

Some NPs are commonly used generically, such
as children, men, or the dollar. The ACE-2 corpus
(distinct from our corpus) contains generic annota-
tion . We collect all NPs from ACE-2 that are always
used generically (f13). We also try to learn NPs that
are uniquely identifiable without further description
or anaphoric links such as the sun or the pope. We
do this by extracting common nouns which are an-
notated as worldKnowledge from the training part of
our corpus5 and use these as lexical features (f14).

Finally, motivated by the ACE-2 annotation
guidelines, we identify six quantifiers that may in-
dicate genericity, such as all, no, neither (f15).

5This list varies for each run of our algorithm in 10-fold
cross validation.

Other features for bridging (Table 2, f16-f18).
Following Rahman and Ng (2012), we use unigrams
(f16). We also extract heads of bridging anaphors
from the training data as lexical features (f17) to
learn typical nouns used for bridging that we did not
cover in lexicon extraction (f4 to f6).

Feature f18 models that bridging anaphora most
often have a simple internal structure and usually do
not contain any other NPs.

Features for other IS categories (Table 2, f19-
f21). We propose three features to improve other
IS categories. In the relational feature f19, we sep-
arate coordination parent-child from other parent-
child relations to help with the class aggregate. f20
determines whether a number is the object of an in-
crease/decrease verb (using a list extracted from In-
quirer) and therefore likely to be the IS class func-
tion. Frequent proper names are more likely to be
hearer old and hence of the class worldKnowledge.
f21 extracts proper names that occur in at least 100
documents in the Tipster corpus to approximate this.

4 Experiments and Results

Experimental setup. We perform experiments on
the corpus provided in Markert et al. (2012)6. It con-
sists of 50 texts taken from the WSJ portion of the
OntoNotes corpus (Weischedel et al., 2011) with al-
most 11,000 NPs annotated for information status
including 663 bridging NPs and their antecedents.
All experiments are performed via 10-fold cross-
validation on documents. We use gold standard
mentions and the OntoNotes named entity and syn-
tactic annotation layers for feature extraction.

Reimplemented baseline system (rbls). rbls uses
the same features as Markert et al. (2012) (Table 1)
but replaces the local decision tree classifier with
LibSVM as we will need to include lexical features.

rbls + Table 2 feature set (rbls+newfeat). Based
on rbls, all the new features from Table 2 are added.

Cascading minority preference system (cmps).
Minority classes such as bridging suffer during stan-
dard multi-class classification. Inspired by Omuya

6http://www.h-its.org/nlp/download/
isnotes.php
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collective cascade + collective
markert 12 rbls rbls+newfeat cmps cmps−newfeat

R P F R P F R P F R P F R P F

old 84.1 85.2 84.6 84.6 85.5 85.1 84.4 86.0 85.2 82.2 87.2 84.7 78.9 89.5 83.8
med/worldKnowledge 60.6 70.0 65.0 65.9 69.6 67.7 67.4 77.3 72.0 67.2 77.2 71.9 67.5 66.7 67.1
med/syntactic 75.7 80.1 77.9 77.8 81.2 79.4 82.2 81.9 82.0 81.6 82.5 82.0 73.9 81.7 77.6
med/aggregate 43.1 55.8 48.7 47.9 58.0 52.5 64.5 79.5 71.2 63.5 77.9 70.0 46.9 60.0 52.7
med/function 35.4 53.5 48.7 33.8 56.4 42.3 67.7 72.1 69.8 67.7 72.1 69.8 41.5 50.0 45.4
med/comparative 81.4 82.0 81.7 81.8 82.5 82.1 81.8 82.1 82.0 86.6 78.2 82.2 86.2 78.7 82.3
med/bridging 12.2 41.7 18.9 10.7 36.6 16.6 19.3 39.0 25.8 44.9 39.8 42.2 31.8 23.9 27.3
new 87.7 73.3 79.8 87.5 74.8 80.7 86.5 76.1 81.0 83.0 78.1 80.5 82.4 76.1 79.1
acc 76.8 77.6 78.9 78.6 75.0

Table 3: Experimental results

et al. (2013), we develop a cascading minority pref-
erence system for fine-grained IS classification. For
the five minority classes (function, aggregate, com-
parative, bridging and worldKnowledge) that each
make up less than the expected 1

8 of the data set, we
develop five binary classifiers with LibSVM7 using
all features from Tables 1 and 2 and apply them in
order from rarest to more frequent category. When-
ever a minority classifier predicts true, this class is
assigned. When all minority classifiers say false, we
back off to the multiclass rbls+newfeat system.

cmps − Table 2 feature set (cmps−newfeat). To
test the effect of using the minority preference sys-
tem without additional features, we employ a cmps
system with baseline features from Table 1 only.

Results and Discussion (Table 3). Our novel
features in rbls+newfeat show improvements for
worldKnowledge, aggregate and function as well as
bridging categories compared to both baseline sys-
tems, although the performance for bridging is still
low. In addition, the overall accuracy is significantly
better than the two baseline systems (at the level of
1% using McNemar’s test). Using the cascaded mi-
nority preference system cmps in addition improves
bridging results substantially while the performance
on other categories does not worsen. The algorithm
needs both our novel feature classes as well as cas-
caded modelling to achieve this improvement as the
comparison to cmps−newfeat shows: the latter low-
ers overall accuracy as it tends to overgenerate rare

7Parameter against data imbalance is set according to the
ratio between positive and negative instances in the training set.

classes (including bridging) with low precision if the
features are not strong enough. Our novel features
(addressing linguistic properties of bridging) and the
cascaded algorithm (addressing data sparseness) ap-
pear to be complementary.

To look at the impact of features in our best sys-
tem, we performed an ablation study. Lexical fea-
tures as well as semantic ones have the most impact.
Discourse structure and genericity information fea-
tures have less of an impact. We believe the latter to
be due to noise involved in extracting these features
(such as approximating coreference for the coher-
ence gap feature) as well as genericity recognition
still being in its infancy (Reiter and Frank, 2010).

5 Conclusions

This paper aims to recognize bridging anaphora in
written text. We develop discourse structure, lexico-
semantic and genericity features based on linguis-
tic intuition and corpus research. By using a cas-
cading minority preference system, we show that
our approach outperforms the bridging recognition
in Markert et al. (2012) by a large margin without
impairing the performance on other IS classes.
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Abstract

We present an approach to time normalization
(e.g. the day before yesterday⇒2013-04-12)
based on a synchronous context free grammar.
Synchronous rules map the source language
to formally defined operators for manipulat-
ing times (FINDENCLOSED, STARTATENDOF,
etc.). Time expressions are then parsed using
an extended CYK+ algorithm, and converted
to a normalized form by applying the opera-
tors recursively. For evaluation, a small set
of synchronous rules for English time expres-
sions were developed. Our model outperforms
HeidelTime, the best time normalization sys-
tem in TempEval 2013, on four different time
normalization corpora.

1 Introduction

Time normalization is the task of converting a natural
language expression of time into a formal representa-
tion of a time on a timeline. For example, the expres-
sion the day before yesterday would be normalized
to the formal representation 2013-04-12 (assuming
that today is 2013-04-14) in the ISO-TimeML rep-
resentation language (Pustejovsky et al., 2010). Time
normalization is a crucial part of almost any infor-
mation extraction task that needs to place entities or
events along a timeline. And research into methods
for time normalization has been growing since the
ACE1 and TempEval (Verhagen et al., 2010; UzZa-
man et al., 2013) challenges began to include time
normalization as a shared task.

1http://www.itl.nist.gov/iad/mig/tests/ace/

Most prior work on time normalization has taken
a rule-based, string-to-string translation approach.
That is, each word in a time expression is looked up
in a normalization lexicon, and then rules map this
sequence of lexical entries directly to the normalized
form. HeidelTime (Strötgen and Gertz, 2012), which
had the highest performance in TempEval 2010 and
2013, and TIMEN (Llorens et al., 2012), which re-
ported slightly higher performance in its own experi-
ments, both follow this approach. A drawback of this
approach though is that there is no nesting of rules:
for example, in HeidelTime the rules for yesterday
and the day before yesterday are completely separate,
despite the compositional nature of the latter.

A notable exception to the string-to-string ap-
proach is the work of (Angeli et al., 2012). They de-
fine a target grammar of typed pre-terminals, such as
YESTERDAY (a SEQUENCE) or DAY (a DURATION),
and compositional operations, such as SHIFTLEFT

(a (RANGE, DURATION) → RANGE). They apply
an expectation-maximization approach to learn how
words align to elements of the target grammar, and
achieve performance close to that of the rule-based
systems. However, their grammar does not allow
for non-binary or partially lexicalized rules (e.g. SE-
QUENCE → DURATION before SEQUENCE would
be impossible), and some of their primitive elements
could naturally be expressed using other primitives
(e.g. YESTERDAY as SHIFTLEFT(TODAY, 1 DAY)).

We present a synchronous grammar for time nor-
malization that addresses these shortcomings. We
first define a grammar of formal operations over tem-
poral elements. We then develop synchronous rules
that map time expression words to temporal opera-
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Source: English

[TIMESPAN]1

[UNIT]2

[NIL]4

the

week

of [TIMESPAN]3

[FIELD]5

[FIELD:MONTH]6

March

[FIELD:DAY]7

[INT:1-31]8

6

Target: Time Operators

[TIMESPAN]1

FINDENCLOSING [TIMESPAN]3

FINDEARLIER PRESENT [FIELD]5

[FIELD:MONTH]6

MONTHOFYEAR 3

[FIELD:DAY]7

DAYOFMONTH [INT:1-31]8

6

[UNIT]2

WEEKS

Figure 1: The synchronous parse from the source language the week of March 6 to the target formal time representation
FINDENCLOSING(FINDEARLIER(PRESENT, MONTHOFYEAR→3, DAYOFMONTH→6), WEEKS). Subscripts on
non-terminals indicate the alignment between the source and target parses.

tors, and perform normalization by parsing with an
extended CYK+ parsing algorithm. We evaluate this
approach to time normalization on the TimeBank,
AQUAINT, Timen and TempEval 2013 corpora.

2 Synchronous grammars

Our time grammar is based on the synchronous con-
text free grammar formalism. Synchronous gram-
mars allow two trees, one in the source language
and one in the target language, to be constructed si-
multaneously. A synchronous context free grammar
has rules of the form X → (S,T, A), where X is a
non-terminal, S is the sequence of terminals and non-
terminals that X expands to in the source language,
T is the sequence of terminals and non-terminals
that X expands to in the target language, and A is
the alignment between the non-terminals of S and T
(which must be the same).

For time normalization, the source side is the nat-
ural language text, and the target side is a formal
grammar of temporal operators. Figure 1 shows a
synchronous parse of the week of March 6 2. The left
side is the source side (an English expression), the
right side is the target side (a temporal operator ex-
pression), and the alignment is shown via subscripts.

2Figure 1 corresponds to an interpretation along the lines of
the week of the last March 6. The full grammar developed in this
article would also produce an interpretation corresponding to the
week of the next March 6, since the phrase is ambiguous.

3 Target time grammar

The right side of Figure 1 shows an example of
our target formal representation: FINDENCLOSING(
FINDEARLIER(PRESENT, MONTHOFYEAR→3,
DAYOFMONTH→6), WEEKS). Each terminal in
the parse is either a numeric value or an opera-
tor like FINDENCLOSING, WEEKS or MONTHOF-
YEAR. Each non-terminal combines terminals or
non-terminals to create a [TIMESPAN], [PERIOD],
[FIELD], [UNIT] or [INT]. The list of rules allowed
by our target grammar (the right-hand side of our
synchronous grammar) is given in Table 1.

Each of the target operators defines a procedure for
creating a temporal object from others. For example,
FINDENCLOSING takes a [TIMESPAN] and a [UNIT]
and expands the start and end of the time span to fill
a period of one unit. This could be used, for exam-
ple, to define today as FINDENCLOSING(PRESENT,
DAYS), where the PRESENT, which is instantaneous,
is expanded out to the enclosing day. Note that we
define things like today and yesterday in terms of
primitive operations, rather than making them primi-
tives themselves as in (Angeli et al., 2012).

The left side of Figure 1 shows the synchronous
parse of the source language. Note that each of the
non-terminals is aligned (shown as a subscript) with
a non-terminal in the target parse3, while terminals
are not aligned and may freely appear or disappear

3We actually allow a slightly asynchronous grammar, where
a non-terminal may be used 0 or more times on the target side.
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[INT] → integer
[UNIT] → unit
[FIELD] → field [INT]
[FIELD] → [FIELD]*
[PERIOD] → SIMPLE [INT] [UNIT]
[PERIOD] → FRACTIONAL [INT] [INT] [UNIT]
[PERIOD] → UNSPECIFIED [UNIT]
[PERIOD] → WITHMODIFIER [PERIOD] modifier
[TIMESPAN] → PAST

[TIMESPAN] → PRESENT

[TIMESPAN] → FUTURE

[TIMESPAN] → FINDEARLIER [TIMESPAN] [FIELD]
[TIMESPAN] → FINDLATER [TIMESPAN] [FIELD]
[TIMESPAN] → FINDENCLOSING [TIMESPAN] [UNIT]
[TIMESPAN] → FINDENCLOSED [TIMESPAN] [FIELD]
[TIMESPAN] → STARTATENDOF [TIMESPAN] [PERIOD]
[TIMESPAN] → ENDATSTARTOF [TIMESPAN] [PERIOD]
[TIMESPAN] → MOVEEARLIER [TIMESPAN] [PERIOD]
[TIMESPAN] → MOVELATER [TIMESPAN] [PERIOD]
[TIMESPAN] → WITHMODIFIER [TIMESPAN] modifier

Table 1: Rules allowed by the target time grammar.
A “unit” is any java.time.temporal.TemporalUnit,
e.g. SECONDS, WEEKS or DECADES. A “field” is any
java.time.temporal.TemporalField, e.g. HOUR-
OFAMPM, DAYOFMONTH or CENTURY. A “modifier”
is any of the TIMEX3 “mod” values defined in TimeML.

from the source to the target. Each non-terminal thus
corresponds to a synchronous grammar rule that de-
scribes how a source expression should be translated
into the target time grammar. For example the root
nodes correspond to an application of the following
full synchronous rule:

[TIMESPAN]→
source: [UNIT] of [TIMESPAN]
target: FINDENCLOSING [TIMESPAN] [UNIT]

4 Parsing algorithm

Parsing with a synchronous context free grammar is
much the same as parsing with just the source side of
the grammar. Only a small amount of bookkeeping is
necessary to allow the generation of the target parse
once the source parse is complete. We can therefore
apply standard parsing algorithms to this task.

However, we have some additional grammar re-
quirements. As shown in Figure 1, we allow rules
that expand into more than two terminals or non-
terminals, the mixing of terminals and non-terminals
in a production, a special [NIL] non-terminal for the
ignoring of words, and a special [INT] non-terminal
that can match ranges of integers and does not re-
quire all possible integers to be manually listed in

the grammar. This means that we can’t directly use
CYK parsing or even CYK+ parsing (Chappelier and
Rajman, 1998), which allows rules that expand into
more than two terminals or non-terminals, but does
not meet our other requirements.

Algorithm 1 shows our extended version of CYK+
parsing. As with standard CYK+ parsing, two charts
are filled, one for rules that have been completed (C)
and one for rules that have been only partially ad-
vanced (P ). All parses covering 1 terminal are com-
pleted first, then these are used to complete parses
covering 2 terminals, etc. until all parses covering all
terminals are complete.

Our extensions to the standard CYK+ parsing are
as follows. To handle integers, we modify the ini-
tialization to generate new rules on the fly for any
numeric terminals that fit the range of an [INT:X-Y]
non-terminal in the grammar (starts at line 5). To
allow mixing of terminals and non-terminals, we ex-
tend the initialization step to also produce partial
parses (line 17), and extend the parse advancement
step to allow advancing rules with terminals (starting
at line 23). Finally, to handle [NIL] rules, which con-
sume tokens but are not included in the final parse,
we add a step where rules are allowed to advance,
unchanged, past a [NIL] rule (starting at line 35).

5 Parsing example
As an example, consider parsing the week of March
6 with the following source side grammar:

[NIL] → the
[UNIT] → week
[MONTH] → March
[DAY] → [INT:1-31]
[FIELD] → [MONTH][DAY]
[TIMESPAN] → [FIELD]
[TIMESPAN] → [UNIT] of [TIMESPAN]

First the algorithm handles the numeric special case,
completing an [INT] parse for the token 6 at index 4:
C(1,4) ∪= [INT:1-31] → 6

Then it completes parses based on just the terminals:
C(1,0) ∪= [NIL] → the
C(1,1) ∪= [UNIT] → week
C(1,3) ∪= [MONTH] → March

Next, the algorithm starts working on parses that
span 1 token. It can start two partial parses, using the
[UNIT] at C(1,1), and using the [MONTH] at C(1,3):
P(1,1) ∪= [TIMESPAN] → [UNIT] • of [TIMESPAN]
P(1,3) ∪= [FIELD] → [MONTH] • [DAY]
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Algorithm 1 CYK+ parsing, extended for partially
lexicalized rules, [Nil] rules and numbers
Require: G a set of rules, w a sequence of tokens

1: function PARSE(G,w)
2: C ← a new |w|+ 1 by |w| matrix
3: P ← a new |w|+ 1 by |w| matrix
4: // Generate rules on the fly for numeric tokens
5: for i← 0 . . . (|w| − 1) do
6: if ISNUMBER(wi) then
7: for all [INT:x-y] ∈ non-terminals of G do
8: if x ≤ TONUMBER(wi) ≤ y then
9: C(1,i) ∪= [INT:x-y]→ wi

10: // Start any rules that begin with terminals
11: for i← 0 . . . (|w| − 1) do
12: for all X→ αβ ∈ G do
13: if ∃j | α = wi:j ∧ ¬ISTERMINAL(β0) then
14: if β = ε then
15: C(|wi:j |,i) ∪= X→ wi:jα
16: else
17: P(|wi:j |,i) ∪= (|wi:j |,X→ wi:jα)

18: for n← 1 . . . |w|; i← 0 . . . (|w| − n) do
19: // Find all parses of size n starting at i
20: for m← 1 . . . n do
21: for all (p,X→ α) ∈ P(m,i) do
22: // Advance partial parses using terminals
23: if wi+m:i+n = αp:p+n−m then
24: if αp+n−m:|α| = ε then
25: C(n,i) ∪= X→ α
26: else
27: P(n,i) ∪= (p+ n−m,X→ α)

28: // Advance partial parses using completes
29: for all αp → β ∈ C(n−m,i+m) do
30: if |α| = p+ 1 then
31: C(n,i) ∪= X→ α
32: else
33: P(n,i) ∪= (p+ 1,X→ α)

34: // Advance complete parses past [Nil] parses
35: for all X→ α ∈ C(m,i) do
36: for all Y→ β ∈ C(n−m,i+m) do
37: if X 6= Nil ∧ Y = Nil then
38: C(n,i) ∪= X→ α
39: else if X = Nil ∧ Y 6= Nil then
40: C(n,i) ∪= Y→ β

41: // Start any rules that begin with a complete parse
42: for all X→ α ∈ C(n,i) do
43: for all Y→ Xα ∈ C(n,i) do
44: if α = ε then
45: C(n,i) ∪= Y→ Xα
46: else
47: P(n,i) ∪= (1,Y→ Xα)

48: return C(|w|,0)

(The • is the visual equivalent of the first element in
the partial parse tuples of Algorithm 1, which marks
parsing progress.) And given the [INT:1-31] atC(1,4)
the algorithm can make a complete size 1 parse:
C(1,4) ∪= [DAY] → [INT:1-31]

The algorithm then moves on to create parses that
span 2 tokens. The special handling of [NIL] allows
the [UNIT] at C(1,1) to absorb the [NIL] at C(1,0):

C(2,0) ∪= [UNIT] → week

This [UNIT] then allows the start of a partial parse:
P(2,0) ∪= [TIMESPAN] → [UNIT] • of [TIMESPAN]

The partial parse at P(1,1) can be advanced using of
at position 2, creating another 2 token partial parse:
P(2,1) ∪= [TIMESPAN] → [UNIT] of • [TIMESPAN])

The partial parse at P(1,3) can be advanced using the
[DAY] at C(1,4), completing the 2 token parse:

C(2,3) ∪= [FIELD] → [MONTH][DAY]

This [FIELD] allows completion of a 2 token parse:
C(2,3) ∪= [TIMESPAN] → [FIELD]

The algorithm then moves on to 3 token parses. Only
one is possible: the partial parse at P(2,0) can be
advanced using the of at position 2, yielding:
P(3,0) ∪= [TIMESPAN] → [UNIT] of • [TIMESPAN]

The algorithm moves on to 4 token parses, finding
that the partial parse at P(2,1) can be advanced using
the [TIMESPAN] at C(2,3), completing the parse:

C(4,1) ∪= [TIMESPAN] → [UNIT] of [TIMESPAN]

Finally, the algorithm moves on to 5 token parses,
where (1) the special handling of [NIL] allows the
partial parse at C(4,1) to consume the [NIL] at C(1,0)
and (2) the partial parse at P(3,0) can be advanced
using the [TIMESPAN] at C(2,3). Both of these yield:

C(5,0) ∪= [TIMESPAN] → [UNIT] of [TIMESPAN]

The complete parses in C(5,0) are then determinis-
tically translated into target side parses using the
alignments in the rules of the synchronous grammar.

6 Evaluation

Using our synchronous grammar formalism for time
normalization, we manually developed a grammar
for English time expressions. Following the lead of
TIMEN and HeidelTime, we developed our grammar
by inspecting examples from the AQUAINT4 and

4http://www.ldc.upenn.edu/Catalog/
catalogEntry.jsp?catalogId=LDC2002T31
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N TIMEN HeidelTime SCFG
AQUAINT 652 69.5 74.7 76.5
TimeBank 1426 67.7 80.9 84.9
Timen 214 67.8 49.1 56.5
TempEval2013 158 74.1 78.5 81.6

Table 2: Performance of TIMEN, HeidelTime and our
synchronous context free grammar (SCFG) on each evalu-
ation corpus. (N is the number of time expressions.)

TimeBank (Pustejovsky et al., 2003) corpora. The
resulting grammar has 354 rules, 192 of which are
only lexical, e.g., [UNIT]→ (seconds, SECONDS).

Our grammar produces multiple parses when the
input is ambiguous. For example, the expression
Monday could mean either the previous Monday or
the following Monday, and the expression the day
could refer either to a period of one day, or to a spe-
cific day in time, e.g. 2013-04-14. For such expres-
sions, our grammar produces both parses. To choose
between the two, we employ a very simple set of
heuristics: (1) prefer [TIMESPAN] to [PERIOD], (2)
prefer an earlier [TIMESPAN] to a later one and (3)
prefer a [TIMESPAN] with QUARTERS granularity
if the anchor time is also in QUARTERS (this is a
common rule in TimeBank annotations).

We evaluate on the AQUAINT corpus, the Time-
Bank corpus, the Timen corpus (Llorens et al., 2012)
and the TempEval 2013 test set (UzZaman et al.,
2013)5. We compare to two6 state-of-the-art systems:
TIMEN and HeidelTime. Table 2 shows the results.
Our synchronous grammar approach outperformed
HeidelTime on all corpora, both on the training cor-
pora (AQUAINT and TimeBank) and on the test cor-
pora (Timen and TempEval 2013). Both our model
and HeidelTime outperformed TIMEN on all corpora
except for the Timen corpus.

To better understand the issues in the Timen cor-
pus, we manually inspected the 33 time expressions
that TIMEN normalized correctly and our approach

5We evaluate normalization accuracy over all time expres-
sions, not the F1 of both finding and normalizing expressions, so
the numbers here are not directly comparable to those reported
by the TempEval 2013 evaluation.

6Though its performance was slightly lower than HeidelTime,
we also intended to compare to the (Angeli et al., 2012) system.
Its authors graciously helped us get the code running, but to date
all models we were able to train performed substantially worse
than their reported results, so we do not compare to them here.

normalized incorrectly. 4 errors were places where
our heuristic was wrong (e.g. we chose the earlier,
not the later Sept. 22). 6 errors were coverage prob-
lems of our grammar, e.g. not handling season, every
time or long ago. 2 errors were actually human an-
notation errors (several years ago was annotated as
PASTREF and daily was annotated as XXXX-XX-
XX, while the guidelines say these should be PXY
and P1D respectively). The remaining 21 errors were
from two new normalization forms not present at all
in the training data: 19 instances of THH:MM:SS
(times were always YYYY-MM-DDTHH:MM:SS
in the training data) and 2 instances of BCYYYY
(years were always YYYY in the training data).

7 Discussion

Our synchronous grammar approach to time normal-
ization, which handles recursive structures better than
existing string-to-string approaches and handles a
wider variety of grammars than existing parsing ap-
proaches, outperforms the HeidelTime system on
four evaluation corpora and outperforms the TIMEN
system on three of the four corpora.

Our time normalization code and models are
freely available. The source code and English
grammar are hosted at https://github.com/

bethard/timenorm, and official releases are pub-
lished to Maven Central (group=info.bethard,
artifact=timenorm).

In future work, we plan to replace the heuristic
for selecting between ambiguous parses with a more
principled approach. It would be a simple extension
to support a probabilistic grammar, as in (Angeli et
al., 2012). But given an expression like Monday, it
would still be impossible to decide whether it refers to
the future or the past, since the surrounding context,
e.g. tense of the governing verb, is needed for such a
judgment. A more promising approach would be to
train a classifier that selects between the ambiguous
parses based on features of the surrounding context.
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Abstract

The rise of “Big Data” analytics over unstruc-
tured text has led to renewed interest in infor-
mation extraction (IE). We surveyed the land-
scape of IE technologies and identified a major
disconnect between industry and academia:
while rule-based IE dominates the commercial
world, it is widely regarded as dead-end tech-
nology by the academia. We believe the dis-
connect stems from the way in which the two
communities measure the benefits and costs of
IE, as well as academia’s perception that rule-
based IE is devoid of research challenges. We
make a case for the importance of rule-based
IE to industry practitioners. We then lay out a
research agenda in advancing the state-of-the-
art in rule-based IE systems which we believe
has the potential to bridge the gap between
academic research and industry practice.

1 Introduction

The recent growth of “Big Data” analytics over large
quantities of unstructured text has led to increased
interest in information extraction technologies from
both academia and industry (Mendel, 2013).

Most recent academic research in this area starts
from the assumption that statistical machine learn-
ing is the best approach to solving information ex-
traction problems. Figure 1 shows empirical ev-
idence of this trend drawn from a survey of re-
cent published research papers. We examined the
EMNLP, ACL, and NAACL conference proceedings
from 2003 through 2012 and identified 177 different
EMNLP research papers on the topic of entity ex-
traction. We then classified these papers into three
categories, based on the techniques used: purely

Commercial*Vendors*(2013)*
NLP*Papers*
(200392012)*

100%$

50%$

0%$

3.5%*

21%$

75%$

Rule,$
Based$

Hybrid$

Machine$
Learning$
Based$

45%*

22%$

33%$

Implementa@ons*of*En@ty*Extrac@on*

Large*Vendors*

67%*

17%$

17%$

All*Vendors*

Figure 1: Fraction of NLP conference papers from
EMNLP, ACL, and NAACL over 10 years that use ma-
chine learning versus rule-based techniques to perform
entity extraction over text (left); the same breakdown for
commercial entity extraction vendors one year after the
end of this 10-year period (right). The rule-based ap-
proach, although largely ignored in the research commu-
nity, dominates the commercial market.

rule-based, purely machine learning-based, or a hy-
brid of the two. We focus on entity extraction, as it
is a classical IE task, and most industrial IE systems
offer this feature.

The left side of the graph shows the breakdown
of research papers according to this categorization.
Only six papers relied solely on rules to perform the
extraction tasks described. The remainder relied en-
tirely or substantially on statistical techniques. As
shown in Figure 2, these fractions were roughly con-
stant across the 10-year period studied, indicating
that attitudes regarding the relative importance of the
different techniques have remained constant.

We found that distinguishing “hybrid” systems
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Figure 2: The conference paper data (left-hand bar) from
Figure 1, broken down by year of publication. The rel-
ative fractions of the three different techniques have not
changed significantly over time.

from pure machine learning systems was quite chal-
lenging. The papers that use a mixture of rule-
based and machine learning techniques were gener-
ally written so as to obfuscate the use of rules, em-
phasizing the machine learning aspect of the work.
Authors hid rules behind euphemisms such as “de-
pendency restrictions” (Mausam et al., 2012), “en-
tity type constraints” (Yao et al., 2011), or “seed dic-
tionaries” (Putthividhya and Hu, 2011).

In the commercial world, the situation is largely
reversed. The right side of Figure 1 shows the result
of a parallel survey of commercial entity extraction
products from 54 different vendors listed in (Yuen
and Koehler-Kruener, 2012). We studied analyst
reports and product literature, then classified each
product according to the same three categories. Ta-
ble 1 shows the 41 products considered in the study
1. We conducted this industry survey in 2013, one
year after the ten-year run of NLP papers we stud-
ied. One would expect the industrial landscape to
reflect the research efforts of the previous 10 years,
as mature technology moved from academia to in-
dustry. Instead, results of this second survey showed
the opposite effect, with rule-based systems com-
prising the largest fraction of those surveyed. Only
1/3 of the vendors relied entirely on machine learn-
ing. Among public companies and private compa-

1Other products do not offer entity extraction, or we did not
find sufficient evidence to classify the technology.

Table 1: Vendors and products considered in the study.

ai-one NathanApp
Attensity Command Center
Basis Technology Rosette
Clarabridge Analyze
Daedalus Stilus NER
GATE Information Extraction
General Sentiment
HP Autonomy IDOL Eduction
IBM InfoSphere BigInsights Text

Analytics
IBM InfoSphere Streams Text An-

alytics
IBM SPSS Text Analytics for Sur-

veys
IntraFind iFinder NAMER
IxReveal uHarmonize
Knime
Language Computer Cicero LITE
Lexanalytics Salience
alias-i LingPipe
Marklogic Analytics & Business Intelli-

gence
MeshLabs eZi CORE
Microsoft FAST Search Server
MotiveQuest
Nice Systems NiceTrack Open Source In-

telligence
OpenAmplify Insights
OpenText Content Analytics
Pingar
Provalis Research WordStat
Rapid-I Text Processing Extension
Rocket AeroText
salesforce.com Radian 6
SAP HANA Text Analysis
SAS Text Analytics
Serendio
Smartlogic Semaphore Classification

and Text Mining Server
SRA International NetOwl Text Analytics
StatSoft STATISTICA Text Miner
Temis Luxid Content Enrichment

Platform
Teradata (integration w/ Attensity)
TextKernel Extract!
Thompson Reuters OpenCalais
Veda Semantics Entity Identifier
ZyLab Text Mining&Analytics

828



Table 2: Pros and Cons

Pros Cons
R

ul
e-

ba
se

d

• Declarative • Heuristic
• Easy to comprehend • Requires tedious
• Easy to maintain manual labor
• Easy to incorporate

domain knowledge
• Easy to trace and fix

the cause of errors

M
L

-b
as

ed

• Trainable • Requires labeled data
• Adaptable • Requires retraining
• Reduces manual for domain adaptation

effort • Requires ML expertise
to use or maintain

• Opaque

nies with more than $100 million in revenue, the sit-
uation is even more skewed towards rule-based sys-
tems, with large vendors such as IBM, SAP, and Mi-
crosoft being completely rule-based.

2 Explaining the Disconnect

What is the source of this disconnect between re-
search and industry? There does not appear to be
a lack of interaction between the two communities.
Indeed, many of the smaller companies we surveyed
were founded by NLP researchers, and many of the
larger vendors actively publish in the NLP literature.
We believe that the disconnect arises from a differ-
ence in how the two communities measure the costs
and benefits of information extraction.

Table 2 summarizes the pros and cons of machine
learning (ML) and rule-based IE technologies (Atz-
mueller and Kluegl, 2008; Grimes, 2011; Leung et
al., 2011; Feldman and Rosenfeld, 2006; Guo et
al., 2006; Krishnan et al., 2005; Yakushiji et al.,
2006; Kluegl et al., 2009). On the surface, both
academia and commercial vendors acknowledge es-
sentially the same pros and cons for the two ap-
proaches. However, the two communities weight the
pros and cons significantly differently, leading to the
drastic disconnect in Figure 1.
Evaluating the benefits of IE. Academic papers
evaluate IE performance in terms of precision and
recall over standard labeled data sets. This simple,
clean, and objective measure is useful for judging
competitions, but the reality of the business world is

much more fluid and less well-defined.
In a business context, definitions of even basic en-

tities like “product” and “revenue” vary widely from
one company to another. Within any of these ill-
defined categories, some entities are more important
to get right than others. For example, in electronic
legal discovery, correctly identifying names of ex-
ecutives is much more important than finding other
types of person names.

In real-world applications, the output of extrac-
tion is often the input to a larger process, and it
is the quality of the larger process that drives busi-
ness value. This quality may derive from an aspect
of extracted output that is only loosely correlated
with overall precision and recall. For example, does
extracted sentiment, when broken down and aggre-
gated by product, produce an unbiased estimate of
average sentiment polarity for each product?

To be useful in a business context, IE must func-
tion well with metrics that are ill-defined and sub-
ject to change. ML-based IE models, which require
a careful up-front definition of the IE task, are poor
fit for these metrics. The commercial world greatly
values rule-based IE for its interpretability, which
makes IE programs easier to adopt, understand, de-
bug, and maintain in the face of changing require-
ments (Kluegl et al., 2009; Atzmueller and Kluegl,
2008). Furthermore, rule-based IE programs are val-
ued for allowing one to easily incorporate domain
knowledge, which is essential for targeting specific
business problems (Grimes, 2011). As an example,
an application may pose simple requirements to its
entity recognition component to output only full per-
son names, and not include salutation. With a rule-
based system, such a requirement translates to re-
moving a few rules. On the other hand, a ML-based
approach requires a complete retrain.
Evaluating the costs of IE. In a business setting,
the most significant costs of using information ex-
traction are the labor cost of developing or adapting
extractors for a particular business problem, and the
hardware cost of compute resources required by the
system.

NLP researchers generally have a well-developed
sense of the labor cost of writing extraction rules,
viewing this task as a “tedious and time-consuming
process” that “is not really practical” (Yakushiji et
al., 2006). These criticisms are valid, and, as we
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point out in the next section, they motivate a research
effort to build better languages and tools.

But there is a strong tendency in the NLP lit-
erature to ignore the complex and time-consuming
tasks inherent in solving an extraction problem using
machine learning. These tasks include: defining the
business problem to be solved in strict mathematical
terms; understanding the tradeoffs between different
types of models in the context of the NLP task def-
inition; performing feature engineering based on a
solid working understanding of the chosen model;
and gathering extensive labeled data — far more
than is needed to measure precision and recall —
often through clever automation.

All these steps are time-consuming; even highly-
qualified workers with postgraduate degrees rou-
tinely fail to execute them effectively. Not sur-
prisingly, in industry, ML-based systems are often
deemed risky to adopt and difficult to understand
and maintain, largely due to model opaqueness (Fry,
2011; Wagstaff, 2012; Malioutov and Varshney,
2013). The infeasibility of gathering labeled data in
many real-world scenarios further increases the risk
of committing to a ML-based solution.

A measure of the system’s scalability and run-
time efficiency, hardware costs are a function of two
metrics: throughput and memory footprint. These
figures, while extremely important for commercial
vendors, are typically not reported in NLP litera-
ture. Nevertheless, our experience in practice sug-
gests that ML-based approaches are much slower,
and require more memory compared to rule-based
approaches, whose throughput can be in the order
of MB/second/core for complex extraction tasks like
NER (Chiticariu et al., 2010).

The other explanation. Finally, we believe that the
most notable reason behind the academic commu-
nity’s steering away from rule-based IE systems is
the (false) perception of lack of research problems.
The general attitude is one of “What’s the research
in rule-based IE? Just go ahead and write the rules.”
as indicated by anecdotal evidence and only implic-
itly stated in the literature, where any usage of rules
is significantly underplayed as explained earlier. In
the next section, we strive to debunk this perception.

3 Bridging the Gap

As NLP researchers who also work regularly with
business customers, we have become increasingly
worried about the gap in perception between infor-
mation extraction research and industry. The recent
growth of Big Data analytics has turned IE into big
business (Mendel, 2013). If current trends continue,
the business world will move ahead with unprinci-
pled, ad-hoc solutions to customers’ business prob-
lems, while researchers pursue ever more complex
and impractical statistical approaches that become
increasingly irrelevant. Eventually, the gap between
research and practice will become insurmountable,
an outcome in neither community’s best interest.

The academic NLP community needs to stop
treating rule-based IE as a dead-end technology. As
discussed in Section 2, the domination of rule-based
IE systems in the industry is well-justified. Even in
their current form, with ad-hoc solutions built on
techniques from the early 1980’s, rule-based sys-
tems serve the industry needs better than the lat-
est ML techniques. Nonetheless, there is an enor-
mous untapped opportunity for researchers to make
the rule-based approach more principled, effective,
and efficient. In the remainder of this section, we
lay out a research agenda centered around captur-
ing this opportunity. Specifically, taking a systemic
approach to rule-based IE, one can identify a set of
research problems by separating rule development
and deployment. In particular, we believe research
should focus on: (a) data models and rule language,
(b) systems research in rule evaluation and (c) ma-
chine learning research for learning problems in this
richer target language.
Define standard IE rule language and data
model. If research on rule-based IE is to move
forward in a principled way, the community needs
a standard way to express rules. We believe that
the NLP community can replicate the success of
the SQL language in connecting data management
research and practice. SQL has been successful
largely due to: (1) expressivity: the language pro-
vides all primitives required for performing basic
manipulation of structured data, (2) extensibility: the
language can be extended with new features without
fundamental changes to the language, (3) declara-
tivity: the language allows the specification of com-
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putation logic without describing its control flow,
thus allowing developers to code what the program
should accomplish, rather than how to accomplish it.

An earlier attempt in late 1980’s to formal-
ize a rule language resulted in the Common Pat-
tern Specification Language (CPSL) (Appelt and
Onyshkevych, 1998). While CPSL did not suc-
ceed due to multiple drawbacks, including expres-
sivity limitations, performance limitations, and its
lack of support for core operations such as part of
speech (Chiticariu et al., 2010), CPSL did gain some
traction, e.g., it powers the JAPE language of the
GATE open-source NLP system (Cunningham et al.,
2011). Meanwhile, a number of declarative IE lan-
guages developed in the database community, in-
cluding AQL (Chiticariu et al., 2010; Li et al., 2011),
xLog (Shen et al., 2007), and SQL extensions (Wang
et al., 2010; Jain et al., 2009), have shown that for-
malisms of rule-based IE systems are possible, as
exemplified by (Fagin et al., 2013). However, they
largely remain unknown in the NLP community.

We believe now is the right time to establish a
standard IE rule language, drawing from existing
proposals and experience over the past 30 years. To-
wards this goal, IE researchers need to answer the
following questions: What is the right data model to
capture text, annotations over text, and their proper-
ties? Can we establish a standard declarative exten-
sible rule language for processing data in this model
with a clear set of constructs that is sufficiently ex-
pressive to solve most IE tasks encountered so far?
Systems research based on standard IE rule lan-
guage. Standard IE data model and language en-
ables the development of systems implementing the
standard. One may again wonder, “Where is the re-
search in that?” As in the database community, ini-
tial research should focus on systemic issues such
as data representation and speeding up rule evalua-
tion via automatic performance optimization. Once
baseline systems are established, system-related re-
search would naturally diverge in several directions,
such as extending the language with new primitives
(and corresponding optimizations), and exploring
modern hardware.
ML research based on standard IE rule language.
A standard rule language and corresponding execu-
tion engine enables researchers to use the standard
language as the expressivity of the output model,

and define learning problems for this target lan-
guage, including learning basic primitives such as
regular expressions and dictionaries, or complete
rule sets. (One need not worry about choosing the
language, nor runtime efficiency.) With an expres-
sive rule language, a major challenge is to prevent
the system from generating arbitrarily complex rule
sets, which would be difficult to understand or main-
tain. Some interesting research directions include
devising proper measures for rule complexity, con-
straining the search space such that the learnt rules
closely resemble those written by humans, active
learning techniques to cope with scarcity of labeled
data, and visualization tools to assist rule develop-
ers in exploring and choosing between different au-
tomatically generated rules. Finally, it is conceiv-
able that some problems will not fit in the target
language, and therefore will need alternative solu-
tions. However, the community would have shown
– objectively – that the problem is not learnable
with the available set of constructs, thus motivating
follow-on research on extending the standard with
new primitives, if possible, or developing novel hy-
brid IE solutions by leveraging the standard IE rule
language together with ML technology.

4 Conclusion

While rule-based IE dominates the commercial
world, it is widely considered obsolete by the
academia. We made a case for the importance
of rule-based approaches to industry practitioners.
Drawing inspiration from the success of SQL and
the database community, we proposed directions
for addressing the disconnect. Specifically, we call
for the standardization of an IE rule language and
outline an ambitious research agenda for NLP re-
searchers who wish to tackle research problems of
wide interest and value in the industry.
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Abstract

Automatically constructed Knowledge Bases
(KBs) are often incomplete and there is a gen-
uine need to improve their coverage. Path
Ranking Algorithm (PRA) is a recently pro-
posed method which aims to improve KB cov-
erage by performing inference directly over
the KB graph. For the first time, we demon-
strate that addition of edges labeled with la-
tent features mined from a large dependency
parsed corpus of 500 million Web documents
can significantly outperform previous PRA-
based approaches on the KB inference task.
We present extensive experimental results val-
idating this finding. The resources presented
in this paper are publicly available.

1 Introduction

Over the last few years, several large scale Knowl-
edge Bases (KBs) such as Freebase (Bollacker et
al., 2008), NELL (Carlson et al., 2010), and YAGO
(Suchanek et al., 2007) have been developed. Each
such KB consists of millions of facts (e.g., (Tiger
Woods, playsSport, Golf )) spanning over multiple
relations. Unfortunately, these KBs are often incom-
plete and there is a need to increase their coverage of
facts to make them useful in practical applications.

A strategy to increase coverage might be to per-
form inference directly over the KB represented as a
graph. For example, if the KB contained the follow-
ing facts, (Tiger Woods, participatesIn, PGA Tour))
and (Golf, sportOfTournament, PGA Tour), then by
putting these two facts together, we could potentially
infer that (Tiger Woods, playsSport, Golf ). The

Figure 1: Example demonstrating how lexicalized syn-
tactic edges can improve connectivity in the KB enabling
PRA (Lao and Cohen, 2010) to discover relationships be-
tween Alex Rodriguez and World Series. Edges with la-
tent labels can improve inference performance by reduc-
ing data sparsity. See Section 1.1 for details.

recently proposed Path Ranking Algorithm (PRA)
(Lao and Cohen, 2010) performs such inference by
automatically learning semantic inference rules over
the KB (Lao et al., 2011). PRA uses features based
off of sequences of edge types, e.g., 〈playsSport,
sportOfTournament〉, to predict missing facts in the
KB.

PRA was extended by (Lao et al., 2012) to per-
form inference over a KB augmented with depen-
dency parsed sentences. While this opens up the
possibility of learning syntactic-semantic inference
rules, the set of syntactic edge labels used are
just the unlexicalized dependency role labels (e.g.,
nobj, dobj, etc., without the corresponding words),
thereby limiting overall expressitivity of the learned
inference rules. To overcome this limitation, in this
paper we augment the KB graph by adding edges
with more expressive lexicalized syntactic labels
(where the labels are words instead of dependen-
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cies). These additional edges, e.g., (Alex Rodriguez,
“plays for”, NY Yankees), are mined by extracting
600 million Subject-Verb-Object (SVO) triples from
a large corpus of 500m dependency parsed docu-
ments, which would have been prohibitively expen-
sive to add directly as in (Lao et al., 2012). In order
to overcome the explosion of path features and data
sparsity, we derive edge labels by learning latent em-
beddings of the lexicalized edges. Through exten-
sive experiments on real world datasets, we demon-
strate effectiveness of the proposed approach.

1.1 Motivating Example

In Figure 1, the KB graph (only solid edges) is dis-
connected, thereby making it impossible for PRA to
discover any relationship between Alex Rodriguez
and World Series. However, addition of the two
edges with SVO-based lexicalized syntactic edges
(e.g., (Alex Rodriguez, plays for, NY Yankees)) re-
stores this inference possibility. For example, PRA
might use the edge sequence 〈“plays for”, team-
PlaysIn〉 as evidence for predicting the relation in-
stance (Alex Rodriguez, athleteWonChampionship,
World Series). Unfortunately, such naı̈ve addition
of lexicalized edges may result in significant data
sparsity, which can be overcome by mapping lexi-
calized edge labels to some latent embedding (e.g.,
(Alex Rodriguez, LatentFeat#5, NY Yankees) and
running PRA over this augmented graph. Using la-
tent embeddings, PRA could then use the following
edge sequence as a feature in its prediction models:
〈LatentFeat#5, teamPlaysIn〉. We find this strategy
to be very effective as described in Section 4.

2 Related Work

There is a long history of methods using suface-level
lexical patterns for extracting relational facts from
text corpora (Hearst, 1992; Brin, 1999; Agichtein
and Gravano, 2000; Ravichandran and Hovy, 2002;
Etzioni et al., 2004). Syntactic information in the
form of dependency paths have been explored in
(Snow et al., 2006; Suchanek et al., 2006). A
method of latent embedding of relation instances
for sentence-level relation extraction was shown in
(Wang et al., 2011). However, none of this prior
work makes explicit use of the background KBs as
we explore in this paper.

Path Ranking Algorithm (PRA) (Lao and Cohen,
2010) has been used previously to perform inference
over graph-structured KBs (Lao et al., 2011), and to
learn formation of online communities (Settles and
Dow, 2013). In (Lao et al., 2012), PRA is extended
to perform inference over a KB using syntactic in-
formation from parsed text. In contrast to these pre-
vious PRA-based approaches where all edge labels
are either KB labels or at surface-level, in this pa-
per we explore using latent edge labels in addition
to surface-level labels in the graph over which PRA
is applied. In particular, we focus on the problem of
performing inference over a large KB and learn la-
tent edge labels by mining dependency syntax statis-
tics from a large text corpus.

Though we use Principal Components Analysis
(PCA) for dimensionality reduction for the experi-
ments in this paper, this is by no means the only
choice. Various other dimensionality reduction tech-
niques, and in particular, other verb clustering tech-
niques (Korhonen et al., 2003), may also be used.

OpenIE systems such as Reverb (Etzioni et al.,
2011) also extract verb-anchored dependency triples
from large text corpus. In contrast to such ap-
proaches, we focus on how latent embedding of
verbs in such triples can be combined with explicit
background knowledge to improve coverage of ex-
isting KBs. This has the added capability of infer-
ring facts which are not explicitly mentioned in text.

The recently proposed Universal Schema (Riedel
et al., 2013) also demonstrates the benefit of us-
ing latent features for increasing coverage of KBs.
Key differences between that approach and ours in-
clude our use of syntactic information as opposed to
surface-level patterns in theirs, and also the ability
of the proposed PRA-based method to generate use-
ful inference rules which is beyond the capability of
the matrix factorization approach in (Riedel et al.,
2013).

3 Method
3.1 Path Ranking Algorithm (PRA)
In this section, we present a brief overview of the
Path Ranking Algorithm (PRA) (Lao and Cohen,
2010), building on the notations in (Lao et al., 2012).
Let G = (V,E, T ) be the graph, where V is the set
of vertices, E is the set of edges, and T is the set of
edge types. For each edge (v1, t, v2) ∈ E, we have
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v1, v2 ∈ V and t ∈ T . LetR ⊂ T be the set of types
predicted by PRA. R could in principal equal T , but
in this paper we restrict prediction to KB relations,
while T also includes types derived from surface text
and latent embeddings. Let π = 〈t1, t2, . . . , tw〉 be
a path type of length w over graph G, where ti ∈ T
is the type of the ith edge in the path. Each such
path type is also a feature in the PRA model. For
a given source and target node pair s, t ∈ V , let
P (s → t;π) be the value of the feature π specify-
ing the probability of reaching node t starting from
node s and following a path constrained by path type
π. We approximate these probabilities using random
walks. A value of 0 indicates unreachability from s
to t using path type π.

Let B = {π1, . . . , πm} be the set of all features
(path types). The score that relation r holds between
node s and node t is given by the following function:

ScorePRA(s, t, r) =
∑
π∈B

P (s→ t;π) θrπ

where θrπ is the weight of feature π in class r ∈ R.
Feature Selection: The set B of possible path

types grows exponentially in the length of the paths
that are considered. In order to have a manageable
set of features to compute, we first perform a feature
selection step. The goal of this step is to select for
computation only those path types that commonly
connect sources and targets of relation r. We per-
form this feature selection by doing length-bounded
random walks from a given list of source and tar-
get nodes, keeping track of how frequently each path
type leads from a source node to a target node. The
most common m path types are selected for the set
B.

Training: We perform standard logistic regres-
sion with L2 regularization to learn the weights θrπ.
We follow the strategy in (Lao and Cohen, 2010) to
generate positive and negative training instances.

3.2 PRAsyntactic

In this section, we shall extend the knowledge graph
G = (V,E, T ) from the previous section with an
augmented graph G

′
= (V,E

′
, T

′
), where E ⊂ E

′

and T ⊂ T ′
, with the set of vertices unchanged.

In order to get the edges in E
′ − E, we first

collect a set of Subject-Verb-Object (SVO) triples
D = {(s, v, o, c)} from a large dependency parsed

text corpus, with c ∈ R+ denoting the frequency
of this triple in the corpus. The additional edge
set is then defined as Esyntactic = E

′ − E =
{(s, v, o) | ∃(s, v, o, c) ∈ D, s, o ∈ V }. We de-
fine S = {v | ∃(s, v, o) ∈ Esyntactic} and set
T

′
= T ∪ S. In other words, for each pair of

directly connected nodes in the KB graph G, we add
an additional edge between those two nodes for each
verb which takes the NPs represented by two nodes
as subjects and objects (or vice versa) as observed in
a text corpus. In Figure 1, (Alex Rodriguez, “plays
for”, NY Yankees) is an example of such an edge.

PRA is then applied over this augmented graph
G

′
, over the same set of prediction types R as be-

fore. We shall refer to this version of PRA as
PRAsyntactic. For the experiments in this paper, we
collected |D| = 600 million SVO triples1 from the
entire ClueWeb corpus (Callan et al., 2009), parsed
using the Malt parser (Nivre et al., 2007) by the
Hazy project (Kumar et al., 2013).

3.3 PRAlatent

In this section we construct G
′′

= (V,E′′, T
′′
),

another syntactic-information-induced extension of
the knowledge graph G, but instead of using the sur-
face forms of verbs in S (see previous section) as
edge types, we derive those edges types T

′′
based

on latent embeddings of those verbs. We note that
E ⊂ E′′

, and T ⊂ T ′′
.

In order to learn the latent or low dimensional em-
beddings of the verbs in S, we first define QS =
{(s, o) | ∃(s, v, o, c) ∈ D, v ∈ S}, the set of
subject-object tuples in D which are connected by
at least one verb in S. We now construct a matrix
X|S|×|QS | whose entry Xv,q = c, where v ∈ S, q =
(s, o) ∈ QS , and (s, v, o, c) ∈ D. After row normal-
izing and centering matrix X , we apply PCA on this
matrix. Let A|S|×d with d << |QS | be the low di-
mensional embeddings of the verbs in S as induced
by PCA. We use two strategies to derive mappings
for verbs from matrix A.

• PRAlatentc : The verb is mapped to concatena-
tion of the k

2 most positive columns in the row
in A that corresponds to the verb. Similarly, for
the most negative k

2 columns.
1This data and other resources from the paper are publicly

available at http://rtw.ml.cmu.edu/emnlp2013 pra/.
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Precision Recall F1
PRA 0.800 0.331 0.468
PRAsyntactic 0.804 0.271 0.405
PRAlatentc 0.885 0.334 0.485
PRAlatentd

0.868 0.424 0.570

Table 1: Comparison of performance of different variants
of PRA micro averaged across 15 NELL relations. We
find that use of latent edge labels, in particular the pro-
posed approach PRAlatentd

, significantly outperforms
other approaches. This is our main result. (See Section 4)

• PRAlatentd
: The verb is mapped to disjunction

of top-k most positive and negative columns in
the row in A that corresponds to the verb.

4 Experiments

We compared the various methods using 15 NELL
relations. For each relation, we split NELL’s known
relation instances into 90% training and 10% testing.
For each method, we then selected 750 path features
and trained the model, as described in Section 3, us-
ing GraphChi (Kyrola et al., 2012) to perform the
random walk graph computations. To evaluate the
model, we took all source nodes in the testing data
and used the model to predict target nodes. We re-
port the precision and recall (on the set of known tar-
get nodes) of the set of predictions for each model
that are above a certain confidence threshold. Be-
cause we used strong regularization, we picked for
our threshold a model score of 0.405, correspond-
ing to 60% probability of the relation instance being
true; values higher than this left many relations with-
out any predictions. Table 1 contains the results.

As can be seen in the table, PRAsyntactic on av-
erage performs slightly worse than PRA. While
the extra syntactic features are very informative for
some relations, they also introduce a lot of spar-
sity, which makes the model perform worse on other
relations. When using latent factorization meth-
ods to reduce the sparsity of the syntactic features,
we see a significant improvement in performance.
PRAlatentc has a 45% reduction in precision er-
rors vs. PRA while maintaining the same recall,
and PRAlatentd

reduces precision errors by 35%
while improving recall by 27%. Section 4.1 con-
tains some qualitative analysis of how sparsity is re-
duced with the latent methods. As a piece quanti-
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Figure 2: Precision (y axis) - Recall (x axis) plots for the
relations cityLiesOnRiver (top) and athletePlaysForTeam
(bottom). PRAlatentd

(rightmost plot), the proposed ap-
proach which exploits latent edge labels, outperforms
other alternatives.

tative analysis, there were 908 possible path types
found in the feature selection step with PRA on the
relation cityLiesOnRiver (of which we then selected
750). For PRAsyntactic, there were 73,820, while
PRAlatentc had 47,554 and PRAlatentd

had 58,414.
Table 2 shows F1 scores for each model on

each relation, and Figure 2 shows representative
Precision-Recall plots for two NELL relations. In
both cases, we find that PRAlatentd

significantly
outperforms other baselines.

4.1 Discussion

While examining the model weights for each of
the methods, we saw a few occasions where sur-
face relations and NELL relations combined to form
interpretable path types. For example, in ath-
letePlaysForTeam, some highly weighted features
took the form of 〈athletePlaysSport, “(sport) played
by (team)”〉. A high weight on this feature would
bias the prediction towards teams that are known to
play the same sport as the athlete.

For PRA, the top features for the best performing
relations are path types that contain a single edge
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PRA PRAsyntactic PRAlatentc PRAlatentd

animalIsTypeOfAnimal 0.52 0.50 0.47 0.53
athletePlaysForTeam 0.22 0.21 0.56 0.64
athletePlaysInLeague 0.81 0.75 0.73 0.74
cityLiesOnRiver 0.05 0 0.07 0.31
cityLocatedInCountry 0.15 0.20 0.45 0.55
companyCeo 0.29 0.18 0.25 0.35
countryHasCompanyOffice 0 0 0 0
drugHasSideEffect 0.96 0.95 0.94 0.94
headquarteredIn 0.31 0.11 0.41 0.64
locationLocatedWithinLocation 0.40 0.38 0.38 0.41
publicationJournalist 0.10 0.06 0.10 0.16
roomCanContainFurniture 0.72 0.70 0.71 0.73
stadiumLocatedInCity 0.53 0 0.13 0.67
teamPlaysAgainstTeam 0.47 0.24 0.26 0.21
writerWroteBook 0.59 0.62 0.73 0.80

Table 2: F1 performance of different variants of PRA for all 15 relations tested.

which is a supertype or subtype of the relation be-
ing predicted. For instance, for the relation ath-
letePlaysForTeam (shown in Figure 2), the highest-
weighted features in PRA are athleteLedSport-
sTeam (more specific than athletePlaysForTeam)
and personBelongsToOrganization (more general
than athletePlaysForTeam). For the same rela-
tion, PRAsyntactic has features like “scored for”,
“signed”, “have”, and “led”. When using a latent
embedding of these verb phrases, “signed”, “have”,
and “led” all have the same representation in the la-
tent space, and so it seems clear that PRAlatent gains
a lot by reducing the sparsity inherent in using sur-
face verb forms.

For cityLiesOnRiver, where PRA does not per-
form as well, there is no NELL relation that is an im-
mediate supertype or subtype, and so PRA does not
have as much evidence to use. It finds features that,
e.g., are analogous to the statement “cities in the
same state probably lie on the same river”. Adding
lexical labels gives the model edges to use like “lies
on”, “runs through”, “flows through”, “starts in”
and “reaches”, and these features give a significant
boost in performance to PRAsyntactic. Once again,
almost all of those verb phrases share the same latent
embedding, and so PRAlatent gains another signifi-
cant boost in performance by combining them into a
single feature.

5 Conclusion

In this paper, we introduced the use of latent lexi-
cal edge labels for PRA-based inference over knowl-
edge bases. We obtained such latent edge labels
by mining a large dependency parsed corpus of
500 million web documents and performing PCA
on the result. Through extensive experiments on
real datasets, we demonstrated that the proposed ap-
proach significantly outperforms previous state-of-
the-art baselines.
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Abstract

Most of the machine translation systems rely
on a large set of translation rules. These rules
are treated as discrete and independent events.
In this short paper, we propose a novel method
to model rules as observed generation output
of a compact hidden model, which leads to
better generalization capability. We present a
preliminary generative model to test this idea.
Experimental results show about one point im-
provement on TER-BLEU over a strong base-
line in Chinese-to-English translation.

1 Introduction

Most of the modern Statistical Machine Transla-
tion (SMT) systems, for example (Koehn et al.,
2003; Och and Ney, 2004; Chiang, 2005; Marcu et
al., 2006; Shen et al., 2008), employ a large rule
set that may contain tens of millions of translation
rules or even more. In these systems, each transla-
tion rule has about 20 dense features, which repre-
sent key statistics collected from the training data,
such as word translation probability, phrase transla-
tion probability etc. Except for these common fea-
tures, there is no connection among the translation
rules. The translation rules are treated as indepen-
dent events.

The use of sparse features as in (Arun and Koehn,
2007; Watanabe et al., 2007; Chiang et al., 2009) to
some extent mitigated this problem. In their work,
there are as many as 10,000 features defined on the
appearance of certain frequent words and Part of
Speech (POS) tags in rules. They provide signifi-
cant improvement in automatic evaluation metrics.
However, these sparse features fire quite randomly

and infrequently on each rule. Thus, there is still
plenty of space to better model translation rules.

In this paper, we will explore the relationship
among translation rules. We no longer view rules
as discrete or unrelated events. Instead, we view
rules, which are observed from training data, as ran-
dom variables generated by a hidden model. This
generative process itself is also hidden. All possible
generative processes can be represented with factor-
ized structures such as weighted hypergraphs and fi-
nite state machines. This approach leads to a com-
pact model that has better generalization capability
and allows translation rules not explicitly observed
in training date.

This paper reports work-in-progress to exploit
hidden relations among rules. Preliminary experi-
ments show about one point improvement on TER-
BLEU over a strong baseline in Chinese-to-English
translation.

2 Hidden Models

LetG = {(r, f)} be a grammar observed from paral-
lel training data, wheref is the frequency of a bilin-
gual translation ruler.

Let M be a hidden model that generates every
translation ruler. For example,M could be mod-
eled with a weighted hypergraph or finite state ma-
chine. For the sake of convenience, in this section
we assumeM is a meta-grammarM = {m}, where
eachm represents a meta-rule. For each translation
r, there exists a hypergraphHr that represents all
possible derivationsDr = {d} that can generate rule
r. Here, each derivationd is a hyperpath using meta-
rulesMd, whereMd ⊆ M. Thus, we can use hy-
pergraphHr to characterizer. Translation rules inG
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can share nodes and meta-rules in their hypergraphs,
so thatM is more compact model thanG.

In the rest of this section, we will introduce three
methods to quantifyHr as features of ruler. It
should be noted that there are more ways to exploit
the compact model ofM than these three.

2.1 Type 1 : A Generative Model

Let θ be the parameters of a statistical model
Pr(m; θ) for meta-rulesm in meta-grammarM es-
timated from the observed translation grammarG.
The probability of a translation ruler can be calcu-
lated as follows.

Pr(r; θ) ∝ Pr(Hr; θ)

=
∑

d∈Dr

Pr(d; θ) (1)

By assuming separability,

Pr(d; θ) =
∏

m∈Md

Pr(m; θ) (2)

we can further decompose rule probabilityPr(r; θ)
as below.

Pr(r; θ) =
∑

d∈Dr

∏

m∈Md

Pr(m; θ) (3)

In practice, Pr(r; θ) in (3) can be calculated
through bottom-up dynamic programming on hyper-
graphHr. Hypergraphs of different rules can share
nodes and meta-rules. This reveals the underlying
relationship among translation rules.

As a by-product of this generative model, we use
the log-likelihood of a translation rule,log Pr(r; θ),
as a new dense feature. We call itType 1 in experi-
ments.

2.2 Type 2 : Meta-Rules as Sparse Features

As given in (3), likelihood of a translation rule is
a function overPr(m; θ), in which θ is estimated
from the training data with a generative model. Pre-
vious work in (Chiang et al., 2009) showed the ad-
vantage of using a discriminative model to optimize
individual weights for these factors towards a better
automatic score.

Following this practice, we treat each meta-rule
m as a sparse feature. Feature valuef(m) = 1 if

and only ifm is used in hypergraphHr. Otherwise,
its default value is 0. We call these featuresType
2 in experiments. The Type 2 system contains the
log-likelihood feature in Type 1.

2.3 Type 3 : Posterior as Feature Values

A natural question on the binary sparse features de-
fined above is why all the active features have the
same value of 1. We use these meta-rules to repre-
sent a translation rule in feature space. Intuitively,
for meta-rules with closer connection to the trans-
lation rules, we hope to use relatively larger feature
values to increase their effect.

We formalize this intuition with the posterior
probability that a meta-rulem is used to generate
r, as below.

f(m) ≡ Pr(m|r; θ) (4)

=
Pr(m, r; θ)

Pr(r; θ)

=

∑
d∈Dr ,m∈Md

Pr(d; θ)

Pr(r; θ)

The posterior in (4) could be too sharp. Follow-
ing the common practice, we smooth the posterior
features with a scaling factorα.

f(m) ≡ Pr(m|r)α

We useType 3(α) to represent the posterior model
with a scaling factor ofα in experiments. The Type
3 systems also contain the log-likelihood feature in
Type 1.

2.4 Parameter Estimation

Now we explain how to obtain parameterθ. With
proper definition of the underlying modelM, we
can estimateθ with the traditional EM algorithm or
Bayesian methods.

In the next section, we will present an example
of the hidden model. We will employ the EM algo-
rithm to estimate the parameters inθ. Here, trans-
lation rules and their frequencies inG are observed
data, and derivationd for each ruler is hidden. At
the Expectation step, we search all derivationsd in
Dr of each ruler and calculate their probabilities
according to equation (2). At theMaximization step,
we re-estimateθ on all derivations in proportion to
their posterior probability.
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3 Case Study

In Section 2, we explored the use of meta-grammars
as the underlying modelM and developed three
methods to define features. Similar techniques can
be applied to finite state machines and other underly-
ing models. Now, we introduce a POS-based under-
lying model to illustrate the generic model proposed
in Section 2. We will show experimental results in
Section 4.

3.1 Meta-rules on POS tags

Let r ∈ G be a translation rule composed of a pair of
source and target word strings (Fw, Ew). LetFp and
Ep be the POS tags for the source and target sides
respectively. For the sake of simplicity as the first
attempt, we treat non-terminal as a special wordX

with POS tagX.
Suppose we have a Chinese-to-English translation

rule as below.

yuehan qu zhijiage ⇒ john leaves for chicago

We call

NR VV NR ⇒ NNP VBZ IN NNP (5)

a translation rule in POS tags.
We will propose an underlying modelM to gen-

erate translation rules in POS tags instead of trans-
lation rules themselves. For the rest of this section,
we take translation rules in POS tags as the target of
our generative model. We define meta-rules on pairs
of POS tag strings, e.g.NR VV ⇒ NNP VBZ .

We can decompose the probability of translation
rule in (5) into a product on meta-rule probabilities
via various derivations, such as

• Pr(NR VV , NNP VBZ ) ×
Pr(NR, IN NNP), and

• Pr(NR, NNP) × Pr(VV , VBZ IN ) ×
Pr(NR, NNP).

3.2 The Underlying Model and Features

Now, we introduce a generative modelM for trans-
lation rules in POS tags. We still use the example in
(5) as shown in Figure 1, where the top box repre-
sents the source side and the bottom box represents
the target side. Dotted lines represent word align-
ments on three pairs of words.

Figure 1: An example

We first generate the number of source tokens of
a translation rule with a uniform distribution for up
to, for example, 7 tokens.

Then we split the source side into chunks with
a binomial distribution with a Bernoulli variable at
the gap between each two continuous words, which
splits the two words into two chunks with a proba-
bility of p. For example, the probability of obtaining
two chunksNR VV andNR is (1 − p)p, as shown in
Figure 1.

Suppose we split the target side into two parts,
NNP VBZ and IN NNP, which respects the word
alignments. It generates two meta-rulesNR VV ⇒
NNP VBZ andNR⇒ IN NNP, as shown in Figure 1.
The probability for the first meta-rule is

Pr(|E| = 2 | |F | = 2) ×

Pr(NR VV ,NNP VBZ | |F | = 2, |E| = 2),

where|F | represents the number of source tokens,
and |E| the number of target tokens. Similarly, the
probability of the second one is as follows.

Pr(|E| = 2 | |F | = 1) ×

Pr(NR, IN NNP | |F | = 1, |E| = 2).

To sum up, the probability of a derivationd for a
translation ruler : F ⇒ E is

Pr(d) ≈ Prθ1
(|F |)

× Prθ2
(Fs)

×
∏

m∈Md

Prθ3
(|Em| | |Fm|)

×
∏

m∈Md

Prθ4
(m | |Fm|, |Em|) (6)

whereFm andEm are source and target sides of a
meta-rulem used in derivationd, andFs is a split-
ting of the source side. As for the distributions, we
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have

θ1 ∼ Uniform

θ2 ∼ Binomial

θ3 ∼ Categorical

θ4 ∼ Categorical

whereθ1 andθ2 have pre-selected hyperparameters,
andθ3 andθ4 are estimated with the EM algorithm.

As for sparse features, we will obtain 7 meta-rule
features as below.

• NR⇒ NNP

• VV ⇒ VBZ

• VV ⇒ VBZ IN

• NR VV ⇒ NNP VBZ

• NR VV ⇒ NNP VBZ IN

• VV NR⇒ VBZ IN NNP

• NR VV NR⇒ NNP VBZ IN NNP

All of them respect the word alignment, which
means that

• there is no alignment that aligns one word in a
meta-rule with the other out of the same meta-
rule, and

• there is at least one alignment within a meta-
rule.

3.3 Implementation Details

Even though the size of all possible meta-rules is
much smaller than the space of translation rules,
it is still too large to work with existing optimiza-
tion methods for sparse features in MT, i.e. MIRA
(Chiang et al., 2009) or L-BFGS (Matsoukas et al.,
2009). In practice, we have to limit the feature space
to around 20,000 dimensions.

For this purpose, we first use a frequency based
method to filter meta-rule features. Specifically,
we first divide all the meta-rules into 100 bins,
(|F |, |E|), where|F | is the number of words on the
source side, and|E| the target side,0 < |F |, |E| ≤
10. For each bin, we keep the same topk-percentile
of the meta-rules such that we obtain a total of
20,000 meta-rules as features.

System BLEU% TER% T-B
Baseline 30.35 55.32 24.97
Type 1 30.74 55.48 24.74
Type 2 31.07 55.07 24.00
Type 3 (1) 30.93 55.34 24.41
Type 3 (0.1) 31.05 55.02 23.97
Type 3 (0.01) 31.09 54.96 23.87

Table 1: scores on test-1

A shortcoming of this filtering method is that all
these features are positive indicators, while low-
frequency negative indicators are discarded. In order
to keep the features of various level of frequency, we
define class features with a 3-tupleC(|F |, |E|, q),
where|F | and|E| are numbers of source and target
words as defined above, andq is the integer part of
thelog2 value of the feature frequency in the training
data.

In this way, each meta-rule feature can be mapped
to one of these classes. The value of a class feature
equals the sum of the meta-rule features that mapped
into this class. We have about 2,000 class features
defined in this way. They are applied on both Type
2 and Type 3 features.

4 Experiments

We carry out our experiments on web genre of
Chinese-to-English translation. The training set
contains about 10 million parallel sentences avail-
able to Phase 1 of the DARPA BOLT MT task. The
tune set contains 1275 sentences. Each has four ref-
erences. There are two test sets. Test-1 is from a
similar source of the tune set, and it contains 1239
sentences. Test-2 is the web part of the MT08 eval-
uation data.

Our baseline system is a home-made Hiero (Chi-
ang, 2005) style system. The baseline rule set con-
tains about 17 million rules. It contains about 40
dense features, including a 6-gram LM.

The sparse feature optimization algorithm is sim-
ilar to the MIRA recipe described in (Chiang et al.,
2009). We optimize on TER-BLEU (Snover et al.,
2006; Papineni et al., 2001).

The BLEU, TER and T-B scores on the two tests
are shown in Tables 1 and 2. It should be noted that,
even though our metric of tuning is T-B, the baseline
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System BLEU% TER% T-B
Baseline 25.80 56.96 31.16
Type 1 26.18 57.09 30.91
Type 2 26.63 56.64 30.01
Type 3 (1) 26.30 57.00 30.70
Type 3 (0.1) 26.34 56.73 30.39
Type 3 (0.01) 26.50 56.73 30.23

Table 2: scores on test-2 (MT08-WB)

system already provides a very competitive BLEU
score on MT08-WB as compared the best system in
the evaluation1, thanks to comprehensive features in
the baseline system and more data in training.

All the three types of systems provide consis-
tent improvement on both test sets in terms of T-B,
our optimization metric. Type 1 gives marginal im-
provement of 0.2. This shows the limitation of the
generative feature. When we use meta-rules as bi-
nary sparse features in Type 2, we obtain about one
point improvement on T-B on both sets. This shows
the advantage of tuning individual meta-rule weights
over a generative model. Type 3 (0.01) and Type 2
are at the same level. Proper smoothing is important
to Type 3.

5 Discussion

In the case study of Section 3, we use POS-based
rules as hidden states. However, it should be noted
that the hidden structures surely do not have to be
POS tags. For example, an alternative could be
unsupervised NT splitting similar to (Huang et al.,
2010).

The meta-grammar based approach was also mo-
tivated by the insight acquired on mono-lingual lin-
guistic grammar generation, especially in the TAG
related research (Xia, 2001; Prolo, 2002). Meta-
grammar was viewed as an effective way to remove
redundancy in grammars.

The link between Tree Adjoining Grammar
(TAG) (Joshi et al., 1975; Joshi and Schabes, 1997)
and MT was first introduced in (Shieber and Sch-
abes, 1990), a pioneer work in tree-to-tree transla-
tion. (DeNeefe and Knight, 2009) re-visited the use
of adjoining operation in the context of Statistical
MT, and reported encouraging results. On the other

1http://www.itl.nist.gov/iad/mig/tests/mt/2008/

hand, (Dras, 1999) showed how a meta-level gram-
mar could help in modeling parallel operations in
(Shieber and Schabes, 1990). Our work is another
effort of statistical modeling of well-recognized lin-
guistic insight in NLP and MT.

6 Conclusions and Future Work

In this paper, we introduced a novel method to model
translation rules as observed generation output of a
compact hidden model. As a case study to capital-
ize this model, we presented three methods to en-
rich rule modeling with features defined on a hid-
den model. Preliminary experiments verified gain of
one point on TER-BLEU over a strong baseline in
Chinese-to-English translation.

As for future work, we plan to extend this work in
the following aspects.

• To try other prior distributions to generate the
number of source tokens.

• Unsupervised and semi-supervised learning of
hidden models.

• To incorporate rich models into the generative
process, e.g. reordering, non-terminals, struc-
tural information and lexical models.

• To improve the posterior model with better pa-
rameter estimation, e.g. Bayesian methods.

• To replace the exhaustive translation rule set
with a compact meta grammar that can create
and parameterize new translation rules dynam-
ically, which is the ultimate goal of this line of
work.
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Abstract

Neural network language models, or
continuous-space language models (CSLMs),
have been shown to improve the performance
of statistical machine translation (SMT)
when they are used for reranking n-best
translations. However, CSLMs have not
been used in the first pass decoding of SMT,
because using CSLMs in decoding takes a lot
of time. In contrast, we propose a method
for converting CSLMs into back-off n-gram
language models (BNLMs) so that we can
use converted CSLMs in decoding. We show
that they outperform the original BNLMs and
are comparable with the traditional use of
CSLMs in reranking.

1 Introduction

Language models are important in natural language
processing tasks such as speech recognition and
statistical machine translation. Traditionally, back-
off n-gram language models (BNLMs) (Chen and
Goodman, 1996; Chen and Goodman, 1998;
Stolcke, 2002) are being widely used for these tasks.

Recently, neural network language models,
or continuous-space language models (CSLMs)
(Bengio et al., 2003; Schwenk, 2007; Le et al., 2011)
are being used in statistical machine translation
(SMT) (Schwenk et al., 2006; Son et al., 2010;
Schwenk et al., 2012; Son et al., 2012; Niehues
and Waibel, 2012). These works have shown that
CSLMs can improve the BLEU (Papineni et al.,
2002) scores of SMT when compared with BNLMs,
on the condition that the training data for language

modeling are the same size. However, in practice,
CSLMs have not been widely used in SMT.

One reason is that the computational costs of
training and using CSLMs are very high. Various
methods have been proposed to tackle the training
cost issues (Son et al., 2010; Schwenk et al., 2012;
Mikolov et al., 2011). However, there has been little
work on reducing using costs. Since the using costs
of CSLMs are very high, it is difficult to use CSLMs
in decoding directly.

A common approach in SMT using CSLMs is
the two pass approach, or n-best reranking. In this
approach, the first pass uses a BNLM in decoding
to produce an n-best list. Then, a CSLM is used to
rerank those n-best translations in the second pass.
(Schwenk et al., 2006; Son et al., 2010; Schwenk et
al., 2012; Son et al., 2012)

Another approach is using restricted Boltzmann
machines (RBMs) (Niehues and Waibel, 2012)
instead of using multi-layer neural networks
(Bengio et al., 2003; Schwenk, 2007; Le et al.,
2011). Since probability in a RBM can be calculated
very efficiently (Niehues and Waibel, 2012), they
can use the RBM language model in SMT decoding.
However, the RBM was just used in an adaptation of
SMT, not in a large SMT task, because the training
costs of RBMs are very high.

The last approach is using a BNLM to simulate
a CSLM (Deoras et al., 2011; Arsoy et al., 2013).
(Deoras et al., 2011) used a recurrent neural network
language model (RNNLM) to generate a large
amount of text, which was generated by sampling
words from the probability distributions calculated
by the RNNLM. Then, they trained the BNLM
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from the text using the interpolated Kneser-Ney
smoothing method. (Arsoy et al., 2013) converted
neural network language models of increasing order
to pruned back-off language models, using lower-
order models to constrain the n-grams allowed in
higher-order models.

Both of these methods were used in decoding for
speech recognition. These methods were applied
to not-so-large scale experiments (55 million (M)
words for training their BNLMs) (Arsoy et al.,
2013). In contrast, our method is applied to SMT
and can be used to improve a BNLM created from
746 M words by using a CSLM trained from 42 M
words.

Because BNLMs can be trained from much larger
corpora than those that can be used for training
CSLMs, improving a BNLM by using a CSLM
trained from a smaller corpus is very important.
Actually, a CSLM trained from a smaller corpus
can improve the BLEU scores of SMT if it is used
in the n-best reranking (Schwenk, 2010; Huang et
al., 2013). In contrast, we will demonstrate that a
BNLM simulating a CSLM can improve the BLEU
scores of SMT in the first pass decoding.

Our approach is as follows: (1) First, we train a
CSLM (Schwenk, 2007) from a corpus. (2) Second,
we also train a BNLM from the same corpus or
larger corpus. (3) Finally, we rewrite the probability
of each n-gram of the BNLM with that probability
calculated from the CSLM. We also re-normalize the
probabilities of the BNLM, then use the re-written
BNLM in SMT decoding.

In Section 2, we describe the BNLM and CSLM
(Schwenk, 2010) used for re-writing BNLMs. In
Section 3, we describe the method of converting
a CSLM into a BNLM. In Sections 4 and 5, we
evaluate our method and conclude.

2 Language Models

In this section, we will introduce the standard
BNLM and CSLM structure and probability
calculation.

2.1 Standard back-off ngram language model

A BNLM predicts the probability of a word wi given
its preceding n − 1 words hi = wi−1

i−n+1. But
it will suffer from data sparseness if the context,

hi, does not appear in the training data. So an
estimation by “backing-off” to models with smaller
histories is necessary. In the case of the modified
Kneser-Ney smoothing (Chen and Goodman, 1998),
the probability of wi given hi under a BNLM,
Pb(wi|hi), is:

Pb(wi|hi) = P̂b(wi|hi) + γ(hi)Pb(wi|wi−1
i−n+2) (1)

where P̂b(wi|hi) is a discounted probability and
γ(hi) is the back-off weight. A BNLM is used with
a CSLM as shown below.

2.2 CSLM structure and probability
calculation

The main structure of a CSLM using a multi-
layer neural network contains four layers: the input
layer projects all words in the context hi onto
the projection layer (the first hidden layer); the
second hidden layer and the output layer achieve the
non-liner probability estimation and calculate the
language model probability P (wi|hi) for the given
context. (Schwenk, 2007).

The CSLM calculates the probabilities of all
words in the vocabulary of the corpus given
the context at once. However, because the
computational complexity of calculating the
probabilities of all words is quite high, the CSLM is
only used to calculate the probabilities of a subset
of the whole vocabulary. This subset is called
a short-list, which consists of the most frequent
words in the vocabulary. The CSLM also calculates
the sum of the probabilities of all words not in the
short-list by assigning a neuron for that purpose.
The probabilities of other words not in the short-list
are obtained from a BNLM (Schwenk, 2007;
Schwenk, 2010).

Let wi, hi be the current word and history. The
CSLM with a BNLM calculates the probability of
wi given hi, P (wi|hi), as follows:

P (wi|hi) =

{
Pc(wi|hi)
1−Pc(o|hi)

Ps(hi) if wi ∈ short-list
Pb(wi|hi) otherwise

(2)

where Pc(·) is the probability calculated by the
CSLM, Pc(o|hi) is the probability of the neuron
for the words not in the short-list, Pb(·) is the
probability calculated by the BNLM as in Eq. 1,
and

Ps(hi) =
∑

v∈short-list
Pb(v|hi). (3)
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It can be considered that the CSLM redistributes
the probability mass of all words in the short-list.
This probability mass is calculated by using the
BNLM.

3 Conversion of CSLM into BNLM

As described in the introduction, we first train a
CSLM from a corpus. We also train a BNLM from
the same corpus or a larger corpus. Then, we rewrite
the probability of each ngram in the BNLM with the
probability calculated from the CSLM.

First, we use the probabilities of 1-grams in
the BNLM as they are. Next, we rewrite the
probabilities of n-grams (n=2,3,4,5) in the BNLM
with the probabilities calculated by using the n-gram
CSLM, respectively. Note that the n-gram CSLM
means that the length of its history is n − 1. Note
also that we only need to rewrite the probabilities
of n-grams ending with a word in the short-list.
Finally, we re-normalize the probabilities of the
BNLM using the SRILM’s ‘-renorm’ option.

When we rewrite a BNLM trained from a larger
corpus, the ngrams in the BNLM often contain
unknown words for the CSLM. In that case, we use
the probabilities in the BNLM as they are.

4 Experiments

4.1 Common settings
We used the patent data for the Chinese to English
patent translation subtask from the NTCIR-9 patent
translation task (Goto et al., 2011). The parallel
training, development, and test data consisted of 1
M, 2,000, and 2,000 sentences, respectively.

We followed the settings of the NTCIR-9 Chinese
to English translation baseline system (Goto et al.,
2011) except that we used various language models
to compare them. We used the MOSES phrase-
based SMT system (Koehn et al., 2003), together
with Giza++ (Och and Ney, 2003) for alignment and
MERT (Och, 2003) for tuning on the development
data. The translation performance was measured by
the case-insensitive BLEU scores on the tokenized
test data. We used mteval-v13a.pl for
calculating BLEU scores.1

1It is available at http://www.itl.nist.gov/iad/
mig/tests/mt/2009/

We used the 14 standard SMT features: five
translation model scores, one word penalty score,
seven distortion scores and one language model
score. Each of the different language models was
used to calculate the language model score.

As the baseline BNLM, we trained a 5-gram
BNLM with modified Kneser-Ney smoothing using
the English side of the 1 M sentences training data,
which consisted of 42 M words. We did not discard
any n-grams in training this model. That is, we
did not use count cutoffs. We call this BNLM as
BNLM42.

A 5-gram CSLM was trained on the same
1 M training sentences using the CSLM toolkit
(Schwenk, 2010). The settings for the CSLM
were: projection layer of dimension 256 for each
word, hidden layer of dimension 384 and output
layer (short-list) of dimension 8192, which were
recommended in the CSLM toolkit. We call this
CSLM CSLM42. CSLM42 used BNLM42 as the
background BNLM.

We also trained a larger 5-gram BNLM with
modified Kneser-Ney smoothing by adding
sentences from the 2005 US patent data distributed
in the NTCIR-8 patent translation task (Fujii et al.,
2010) to the 42 M words. The data consisted of
746 M words. We call this BNLM BNLM746. We
discarded 3,4,5-grams that occurred only once when
we created BNLM746.

Next, we re-wrote BNLM42 with CSLM42 by
using the method described in Section 3. This
re-written BNLM was interpolated with BNLM42.
The interpolation weight was determined by the grid
search. That is, we changed the interpolation weight
to 0.1, 0.3, 0.5, 0.7, 0.9 to create an interpolated
BNLM. Then we used that BNLM in the SMT
system to tune the weight parameters on the first
half of the development data. Next, we selected
the interpolation weight that obtained the highest
BLEU score on the second half of the development
data. After we selected the interpolation weight,
we applied MERT again to the 2,000 sentence
development data to tune the weight parameters.2

We call this BNLM CONV42. We also obtained
CONV746 by re-writing BNLM746 with CSLM42

2We aware that the interpolation weight might be
determined by minimizing the perplexity on the development
data. However, we opted to directly maximize the BLEU score.
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in the same way.
The vocabulary of these language models was the

same, which was extracted from the 1 M training
sentences.

4.2 Experimental results
Table 1 shows the percent BLEU scores on the test
data. The figures in the “1st pass” column show
the BLEU scores in the first pass decoding when
we changed the language model. The figures in the
“reranking” column show the BLEU scores when
we applied CSLM42 to rerank the 100-best lists for
the different language models. When we applied
CSLM42 for reranking, we added the CSLM42
score as the additional 15th feature. The weight
parameters were tuned by using Z-MERT (Zaidan,
2009).

LMs 1st pass rerank
BNLM42 31.60 32.44
CONV42 32.58 32.98

BNLM746 32.83 33.36
CONV746 33.22 33.54

Table 1: Comparison of BLEU scores

We also performed the paired bootstrap re-
sampling test (Koehn, 2004).3 We sampled 2000
samples for each significance test.

Table 2 shows the results of a statistical
significance test, in which the “1st” is short for
the “1st pass”. The marks indicate whether the
LM to the left of a mark is significantly better
than that above the mark at a certain level. (“≫”:
significantly better at α = 0.01, “>”: α = 0.05,
“−”: not significantly better at α = 0.05)

First, as shown in the tables, the reranking
by applying CSLM42 increased the BLEU scores
for all language models. This observation is in
accordance with those of previous work (Schwenk,
2010; Huang et al., 2013).

Second, the reranking results of BNLM42 (32.44)
were not better than those of the first pass of
BNLM746 (32.83). This indicates that if the
underlying BNLM is made from a small corpus, the
reranking using CSLM can not compensate for it.

3We used the code available at http://www.ark.cs.
cmu.edu/MT/.
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CONV746 (rerank) − ≫ ≫ ≫ ≫ ≫ ≫
BNLM746 (rerank) − ≫ > ≫ ≫ ≫
CONV746 (1st) ≫ − ≫ ≫ ≫
CONV42 (rerank) − ≫ ≫ ≫
BNLM746 (1st) − ≫ ≫
CONV42 (1st) − ≫
BNLM42 (rerank) ≫

Table 2: Significance tests for systems with different LMs

Third, CONV42 was better than BNLM42 for
both first-pass and reranking. This also holds in the
case of CONV746 and BNLM746. This indicated
that our conversion method improved the BNLMs,
even if the underlying BNLM was trained on a larger
corpus than that used for training the CSLM. As
described in the introduction, this is very important
because BNLMs can be trained from much larger
corpora than those that can be used for training
CSLMs. This observation has not been found in the
previous work.

In addition, the first-pass of CONV42 and
CONV746 (32.58 and 33.22) were comparable with
those of the reranking results of BNLM42 and
BNLM746 (32.44 and 33.36), respectively. That is,
there were no significant differences between these
results. This indicates that our conversion method
preserves the performance of the reranking using
CSLM.

5 Conclusion

We have proposed a method for converting CSLMs
into BNLMs. The method can be used to improve
a BNLM by using a CSLM trained from a smaller
corpus than that used for training the BNLM. We
have also shown that BNLMs created by our method
performs as good as the reranking using CSLMs.

Our future work is to compare our conversion
method with that of (Arsoy et al., 2013).4

4We aware that (Arsoy et al., 2013) compared their method
with the one that is identical with our method. However, the
experiments were conducted on a speech recognition task and
the scale of the experiment was not so large. Since we noticed
their work just before the submission of our paper, we did not
have time to compare their method with our method in SMT.
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Abstract

MIRA based tuning methods have been
widely used in statistical machine translation
(SMT) system with a large number of fea-
tures. Since the corpus-level BLEU is not de-
composable, these MIRA approaches usually
define a variety of heuristic-driven sentence-
level BLEUs in their model losses. Instead,
we present a new MIRA method, which em-
ploys an exact corpus-level BLEU to com-
pute the model loss. Our method is simpler in
implementation. Experiments on Chinese-to-
English translation show its effectiveness over
two state-of-the-art MIRA implementations.

1 Introduction

Margin infused relaxed algorithm (MIRA) has been
widely adopted for the parameter optimization in
SMT with a large feature size (Watanabe et al., 2007;
Chiang et al., 2008; Chiang et al., 2009; Chiang,
2012; Eidelman, 2012; Cherry and Foster, 2012).
Since BLEU is defined on the corpus, and not de-
composed into sentences, most MIRA approaches
consider a variety of sentence-level BLEUs for the
model losses, many of which are heuristic-driven
(Watanabe et al., 2007; Chiang et al., 2008; Chi-
ang et al., 2009; Chiang, 2012; Cherry and Foster,
2012). The sentence-level BLEU appearing in the
objective is generally based on a pseudo-document,
which may not precisely reflect the corpus-level
BLEU. We believe that this mismatch could poten-
tially harm the performance. To avoid the sentence
BLEU, the work in (Haddow et al., 2011) proposed
to process sentences in small batches. The authors

adopted a Gibbs sampling (Arun et al., 2009) tech-
nique to search the hope and fear hypotheses, and
they did not compare with MIRA. Watanabe (2012)
also tuned the parameters with small batches of sen-
tences and optimized a hinge loss not explicitly re-
lated to BLEU using stochastic gradient descent.
Both approaches introduced additional complexities
over baseline MIRA approaches.

In contrast, we propose a remarkably simple but
efficient batch MIRA approach which exploits the
exact corpus-level BLEU to compute model losses.
We search for a hope and a fear hypotheses for the
corpus with a straightforward approach and mini-
mize the structured hinge loss defined on them. The
experiments show that our method consistently out-
performs two state-of-the-art MIRAs in Chinese-to-
English translation tasks with a moderate margin.

2 Margin Infused Relaxed Algorithm

We optimize the model parameters based on N-best
lists. Our development (dev) set is a set of triples
{(fi, ei , ri)}Mi=1, where fi is a source-language sen-
tence, corresponded by a list of target-language hy-
potheses ei = {eij}N(fi)

j=1 , with a number of refer-
ences ri. h(e ij ) is a feature vector. Generally, most
decoders return a top-1 candidate as the transla-
tion result, such that ēi(w) = arg maxj w · h(eij ),
where w are the model parameters. In this paper, we
aim at optimizing the BLEU score (Papineni et al.,
2002).

MIRA is an instance of online learning which as-
sumes an overlap of the decoding procedure and the
parameter optimization procedure. For example in
(Crammer et al., 2006; Chiang et al., 2008), MIRA
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is performed after an input sentence are decoded,
and the next sentence is decoded with the updated
parameters. The objective for each sentence i is,

min
w

1

2
||w −w′||2 + C · li(w) (1)

li(w) = max
eij

{b(e∗i )− b(eij)

−w · [h(e∗i )− h(eij )]} (2)

where e∗i ∈ ei is a hope candidate, w′ is the pa-
rameter vector from the last sentence. Since MIRA
defines its objective only based on the current sen-
tence, b(·) is a sentence-level BLEU.

Most MIRA algorithms need a deliberate defini-
tion of b(·), since BLEU cannot be decomposed into
sentences. The types of the sentence BLEU calcula-
tion includes: (a) a smoothed version of BLEU for
eij (Liang et al., 2006), (b) fit eij into a pseudo-
document considering the history (Chiang et al.,
2008; Chiang, 2012), (c) use eij to replace the corre-
sponding hypothesis in the oracles (Watanabe et al.,
2007). The sentence-level BLEU sometimes per-
plexes the algorithms and results in a mismatch with
the corpus-level BLEU.

3 Corpus-level MIRA

3.1 Algorithm

We propose a batch tuning strategy, corpus-level
MIRA (c-MIRA), in which an objective is not built
upon a hinge loss of a single sentence, but upon that
of the entire corpus.

The online MIRAs are difficult to parallelize.
Therefore, similar to the batch MIRA in (Cherry and
Foster, 2012), we conduct the batch tuning by re-
peating the following steps: (a) Decode source sen-
tences (in parallel) and obtain {ei}Mi=1, (b) Merge
{ei}Mi=1 with the one from the previous iteration, (c)
Invoke Algorithm 1.

We define E = (eE,1 , eE,2 , ..., eE,M ) as a corpus

hypothesis, with H (E) =
1

M

M∑
i=1

h(eE,i). eE,i is the

hypothesis of the source sentence fi covered by E .
E is corresponded to a corpus-level BLEU, which
we ultimately want to optimize. Following MIRA
formulated in (Crammer et al., 2006; Chiang et al.,

2008), c-MIRA repeatedly optimizes,

min
w

1

2
||w −w′||2 + C · lcorpus(w) (3)

lcorpus(w) = max
E
{B(E∗)− B(E)

−w · [H(E∗)−H(E)]} (4)

where B(·) is a corpus-level BLEU. E∗ is a hope
hypothesis. E ∈ L, where L is the hypothesis space
of the entire corpus, and |L| = |e1| · · · |eM|.

Algorithm 1 Corpus-Level MIRA
Require: {(fi, ei , ri)}Mi=1, w0, C

1: for t = 1 · · ·T do
2: E∗ = {} ,E ′ = {} . Initialize the hope and fear
3: for i = 1 · · ·M do
4: eE∗,i = arg max

eij

[wt−1 · h(eij) + b′(eij )]

5: eE′,i = arg max
eij

[wt−1 · h(eij)− b′(eij )]

6: E∗ ← E∗ + {eE∗,i} . Build the hope
7: E ′ ← E ′ + {eE′,i} . Build the fear
8: end for
9: 4B = B(E∗)− B(E ′) . the BLEU difference

10: 4H = H(E ′)−H(E∗) . the feature difference
11: α = min

[
C, 4B+wt−1·4H

||4H||2

]
12: wt = wt−1 − α · 4H

13: w̄t =
1

t+ 1

t∑
t=0

wt

14: end for
15: return w̄t with the optimal BLEU on the dev set.

c-MIRA can be regarded as a standard MIRA,
in which there is only one single triple (F ,L,R),
where F and R are the source and reference of
the corpus respectively. Eq. 3 is equivalent to a
quadratic programming with |L| constraints. Cram-
mer et al. (2006) show that a single constraint with
one hope E∗ and one fear E ′ admits a closed-form
update and performs well. We denote one execution
of the outer loop as an epoch. The hope and fear
are updated in each epoch. Similar to (Chiang et al.,
2008), the hope and fear hypotheses are defined as
following,

E∗ = max
E

[w ·H(E) + B(E)] (5)

E ′ = max
E

[w ·H(E)− B(E)] (6)

Eq. 5 and 6 find the hypotheses with the best and
worse BLEU that the decoder can easily achieve. It
is unnecessary to search the entire space of L for
precise solution E∗and E ′, because MIRA only at-
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tempts to separate the hope from the fear by a mar-
gin proportional to their BLEU differentials (Cherry
and Foster, 2012). We just construct E∗and E ′ re-
spectively by,

eE∗,i = max
ei,j

[w · h(ei,j) + b′(ei,j)]

eE ′,i = max
ei,j

[w · h(ei,j)− b′(ei,j)]

where b′ is simply a BLEU with add one smoothing
(Lin and Och, 2004). A smoothed BLEU is good
enough to pick up a “satisfying” pair of hope and
fear. However, the updating step (Line 11) uses the
corpus-level BLEU.

3.2 Justification

c-MIRA treats a corpus as one sentence for decod-
ing, while conventional decoders process sentences
one by one. We show the optimal solutions from the
two methods are equivalent theoretically.

We follow the notations in (Och and Ney,
2002). We search a hypothesis on corpus E =
{e1 ,k1 , e2 ,k2 , ..., eM ,kM } with the highest probabil-
ity given the source corpus F = {f1, f2, ..., fM},

E = arg max
E

logP (E|F)

= arg max
E

(
w ·

M∑
i=1

h(ei,ki
)−

M∑
i=1

log(Zi)

)
(7)

= {arg max
ei,ki

w · h(ei,ki
)}Mi=1 (8)

where Zi =
∑N(fi)

j=1 exp(w · h(ei ,j )), which is a
constant with respective to E . Eq. 7 shows that
the feature vector of E is determined by the sum of
each candidate’s feature vectors. Also, the model
score can be decomposed into each sentence in Eq.
8, which shows that decoding all sentences together
equals to decoding one by one.

We also show that if the metric is decomposable,
the loss in c-MIRA is actually the sum of the hinge
loss li(w) in structural SVM (Tsochantaridis et al.,
2004; Cherry and Foster, 2012). We assume B(eij)
to be the metric of a sentence hypothesis, then the

loss of c-MIRA in Eq. 4 is,

lcorpus(w) ∝ max
E′

M∑
i=1

[B(ei,kE∗ )−B(ei,kE′ )

−w·h(ei,kE∗ ) + w · h(ei,kE′ )]

=

M∑
i=1

max
eij

[B(ei,kE∗ )−B(eij)

−w·h(ei,kE∗ ) + w · h(eij)] =

M∑
i=1

li(w)

Instead of adopting a cutting-plane algorithm
(Tsochantaridis et al., 2004), we optimize the same
loss with a MIRA pattern in a simpler way. How-
ever, since BLEU is not decomposable, the struc-
tural SVM (Cherry and Foster, 2012) uses an inter-
polated sentence BLEU (Liang et al., 2006). Al-
though Algorithm 1 has an outlook similar to the
batch-MIRA algorithm in (Cherry and Foster, 2012),
their loss definitions differ fundamentally. Batch
MIRA basically uses a sentence-level loss, and they
also follow the sentence-by-sentence tuning pattern.
In the future work, we will compare structural SVM
and c-MIRA under decomposable metrics like WER
or SSER (Och and Ney, 2002).

4 Experiments and Analysis

We first evaluate c-MIRA in a iterative batch tuning
procedure in a Chinese-to-English machine transla-
tion system with 228 features. Second, we show c-
MIRA is also effective in the re-ranking task with
more than 50,000 features.

In both experiments, we compare c-MIRA and
three baselines: (1) MERT (Och, 2003), (2) Chiang
et al.’s MIRA (MIRA1) in (Chiang et al., 2008). (3)
batch-MIRA (MIRA2) in (Cherry and Foster, 2012).
Here, we roughly choose C with the best BLEU on
dev set, from {0.1, 0.01, 0.001, 0.0001, 0.00001}.
We convert Chiang et al.’s MIRA to the batch mode
described in section 3.1. So the only difference be-
tween MIRA1 and MIRA2 is: MIRA1 obtains mul-
tiple constraints before optimization, while MIRA2

only uses one constraint. We implement MERT
and MIRA1, and directly use MIRA2 from Moses
(Koehn et al., 2007). We conduct experiments in a
server of 8-cores with 2.5GHz Opteron. We set the
maximum number of epochs as we generally do not
observe an obvious increase on the dev set BLEU.
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MERT MIRA1 MIRA2 c-MIRA

C 0.0001 0.001 0.0001

8 dev 34.80 34.70 34.73 34.70

feat. 04 31.92 31.81 31.73 31.83

05 28.85 28.94 28.71 28.92

C 0.001 0.001 0.001

all dev 34.61 35.24 35.14 35.56

feat. 04 31.76 32.25 32.04 32.57+

05 28.85 29.43 29.37 29.41

06news 30.91 31.43 31.24 31.82+

06others 27.43 28.01 28.13 28.45

08news 25.62 26.11 26.03 26.40

08others 16.22 16.66 16.46 17.10+

Table 1: BLEUs (%) on the dev and test sets with 8 dense
features only and all features. The significant symbols (+
at 0.05 level) are compared with MIRA2

The epoch size for MIRA1 and MIRA2 is 40, while
the one for c-MIRA is 400. c-MIRA runs more
epochs, because we update the parameters by much
fewer times. However, we can implement Line 3∼8
in Algorithm 1 in multi-thread (we use eight threads
in the following experiments), which makes our al-
gorithm much faster. Also, we increase the epoch
sizes of MIRA1 and MIRA2 to 400, and find there
is no improvement on their performance.

4.1 Iterative Batch Training

In this experiment, we conduct the batch tuning pro-
cedure shown in section 3. We align the FBIS data
including about 230K sentence pairs with GIZA++
for extracting grammar, and train a 4-gram language
model on the Xinhua portion of Gigaword corpus. A
hierarchical phrase-based model (Chiang, 2007) is
tuned on NIST MT 2002, which has 878 sentences,
and tested on MT 2004, 2005, 2006, and 2008. All
features used here, besides eight basic ones in (Chi-
ang, 2007), consists of an extra 220 group features.
We design such feature templates to group gram-
mar by the length of source side and target side,
(feat type, a ≤ src side ≤ b, c ≤ tgt side ≤ d) ,
where feat type denotes any of relative frequency,
reversed relative frequency, lexical probability and
reversed lexical probability, and [a, b], [c, d] enumer-
ate all possible subranges of [1, 10], as the maximum

MERT MIRA1 MIRA2 c-MIRA

R. T. 25.8min 16.0min 7.3min 7.8min

Table 2: Running time.

length on each side of a hierarchical grammar is lim-
ited to 10. There are 4× 55 extra group features. We
also set the size of N-best list per sentence before
merge as 200.

All methods use 30 decoding iterations. We se-
lect the iteration with the best BLEU of the dev set
for testing. We present the BLEU scores in Table 1
on two feature settings: (1) 8 basic features only, and
(2) all 228 features. In the first case, due to the small
feature size, MERT can get a better BLEU of the
dev set, and all MIRA algorithms fails to generally
beat MERT on the test set. However, as the feature
size increase to 228, MERT degrades on the dev-set
BLEU, and also become worse on test sets, while
MIRA algorithms improve on the dev set expect-
edly. MIRA1 performs better than MIRA2, proba-
bly because of more constraints. c-MIRA can mod-
erately improve BLEU by 0.2∼0.4 from MIRA1

and 0.2∼0.6 from MIRA2. This might indicate that
a loss defined on corpus is more accurate than the
one defined on sentence. Table 2 lists the running
time. Only MIRA2 is fairly faster than c-MIRA be-
cause of more epochs in c-MIRA.

4.2 Re-ranking Experiments

The baseline system is a state-of-the-art hierarchi-
cal phrase-based system, and trained on six million
parallel sentences corpora available to the DARPA
BOLT Chinese-English task. This system includes
51 dense features (including translation probabili-
ties, provenance features, etc.) and about 50k sparse
features (mostly lexical and fertility-based). The
language model is a six-gram model trained on a
10 billion words monolingual corpus, including the
English side of our parallel corpora plus other cor-
pora such as Gigaword (LDC2011T07) and Google
News. We use 1275 sentences for tuning and 1239
sentences for testing from the LDC2010E30 corpus
respectively. There are four reference translations
for each input sentence in both tuning and testing
datasets.

We use a N-best list which is an intermediate out-
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MIRA1 MIRA2 c-MIRA

dense dev 31.90 31.78 32.00

only test 30.89 30.89 31.07

dense dev 32.29 32.20 32.49

+sparse test 31.12 31.00 31.39

Table 3: BLEUs (%) on re-ranking experiments.

MIRA1 MIRA2 c-MIRA

about 1,966,720 35,120 400

Table 4: Times of updating model parameters.

put of the baseline system optimized on TER-BLEU
instead of BLEU. Before the re-ranking task, the ini-
tial BLEUs of the top-1 hypotheses on the tuning
and testing set are 31.45 and 30.56. The average
numbers of hypotheses per sentence are about 200
and 500, respectively for the tuning and testing sets.
Again, we use the best epoch on the tuning set for
testing. The BLEUs on dev and test sets are reported
in Table 3. We observe that the effectiveness of c-
MIRA is not harmed as the feature size is scaled up.

4.3 Analysis

To examine the simple search for hopes and fears
(Line 3∼8 in Alg. 1), we use two hope/fear building
strategies to get E∗ and E ′ : (1) simply connect each
e∗i and e′i in Line 4∼5 of Algorithm 1, (2) conduct a
slow beam search among the N-best lists of all for-
eign sentences from e1 to eM and use Eq. 5 and
6 to prune the stack. The stack size is 10. We ob-
serve that there is no significant difference between
the two strategies on the BLEU of the dev set. But
the second strategy is about 10 times slower.

We also consider more constraints in Eq. 3. By
beam search, we obtain one corpus-level oracle and
29 other hypotheses similar to (Chiang et al., 2008),
and optimize with SMO (Platt, 1998). Unfortu-
nately, experiments show that more constraints lead
to an overfitting and no improved performance.

As shown in Table 4, in one execution, our
method updates the parameters by only 400 times;
MIRA2 updates by 40 × 878 = 35120 times; and
MIRA1 updates much more (about 1,966,720 times)
due to the SMO procedure. We are surprised to find
c-MIRA gets a higher training BLEU with such few

parameter updates. This probably suggests that there
is a gap between sentence-level BLEU and corpus-
level BLEU, so standard MIRAs need to update the
parameters more often.

Regarding simplicity, MIRA1 uses a strongly-
heuristic definition of a sentence BLEU, and
MIRA2 needs a pseudo-document with a decay rate
of γ = 0.9. In comparison, c-MIRA avoids both
the sentence level BLEU and the pseudo-document,
thus needs fewer variables.

5 Conclusion

We present a simple and effective MIRA batch tun-
ing algorithm without the heuristic-driven calcula-
tion of sentence-level BLEU, due to the indecom-
posability of a corpus-level BLEU. Our optimiza-
tion objective is directly defined on the corpus-level
hypotheses. This work simplifies the tuning pro-
cess, and avoid the mismatch between the sentence-
level BLEU and the corpus-level BLEU. This strat-
egy can be potentially applied to other optimiza-
tion paradigms, such as the structural SVM (Cherry
and Foster, 2012), SGD and AROW (Chiang, 2012),
and other forms of samples, such as forests (Chiang,
2012) and lattice (Cherry and Foster, 2012).
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Abstract

Multilingual speakers switch between lan-
guages in online and spoken communication.
Analyses of large scale multilingual data re-
quire automatic language identification at the
word level. For our experiments with mul-
tilingual online discussions, we first tag the
language of individual words using language
models and dictionaries. Secondly, we incor-
porate context to improve the performance.
We achieve an accuracy of 98%. Besides word
level accuracy, we use two new metrics to
evaluate this task.

1 Introduction

There are more multilingual speakers in the world
than monolingual speakers (Auer and Wei, 2007).
Multilingual speakers switch across languages in
daily communication (Auer, 1999). With the in-
creasing use of social media, multilingual speakers
also communicate with each other in online environ-
ments (Paolillo, 2011). Data from such resources
can be used to study code switching patterns and lan-
guage preferences in online multilingual conversa-
tions. Although most studies on multilingual online
communication rely on manual identification of lan-
guages in relatively small datasets (Danet and Her-
ring, 2007; Androutsopoulos, 2007), there is a grow-
ing demand for automatic language identification in
larger datasets. Such a system would also be useful
for selecting the right parsers to process multilingual
documents and to build language resources for mi-
nority languages (King and Abney, 2013).

In this paper, we identify Dutch (NL) en Turkish
(TR) at the word level in a large online forum for
Turkish-Dutch speakers living in the Netherlands.
The users in the forum frequently switch languages
within posts, for example:

<TR> Sariyi ver </TR>
<NL> Wel mooi doelpunt </NL>

So far, language identification has mostly been mod-
eled as a document classification problem. Most ap-
proaches rely on character or byte n-grams, by com-
paring n-gram profiles (Cavnar and Trenkle, 1994),
or using various machine learning classifiers. While
McNamee (2005) argues that language identification
is a solved problem, classification on a more fine-
grained level (instead of document level) remains a
challenge (Hughes et al., 2006). Furthermore, lan-
guage identification is more difficult for short texts
(Baldwin and Lui, 2010; Vatanen et al., 2010), such
as queries and tweets (Bergsma et al., 2012; Carter
et al., 2012; Ceylan and Kim, 2009). Tagging in-
dividual words (without context) has been done us-
ing dictionaries, affix statistics and classifiers us-
ing character n-grams (Hammarström, 2007; Got-
tron and Lipka, 2010). Although Yamaguchi and
Tanaka-Ishii (2012) segmented text by language,
their data was artificially created by randomly sam-
pling and concatenating text segments (40-160 char-
acters) from monolingual texts. Therefore, the lan-
guage switches do not reflect realistic switches as
they occur in natural texts. Most related to ours is
the work by King and Abney (2013) who labeled
languages of words in multilingual web pages, but
evaluated the task only using word level accuracy.
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Our paper makes the following contributions: 1)
We explore two new ways to evaluate the task for an-
alyzing multilingual communication and show that
only word accuracy gives a limited view 2) We are
the first to apply this task on a conversational and
larger dataset 3) We show that features using the
context improve the performance 4) We present a
new public dataset to support research on language
identification.

In the rest of the paper, we first discuss the related
work and describe our dataset. Secondly, we present
our experiments. We finally conclude with a sum-
mary and suggestions for future work.

2 Corpus

Our data1 comes from one of the largest online
communities in The Netherlands for Turkish-Dutch
speakers. All posts from May 2006 until October
2012 were crawled. Although Dutch and Turkish
dominate the forum, English fixed phrases (e.g. no
comment, come on) are also occasionally observed.
Users switch between languages within and across
posts. Examples 1 and 2 illustrate switches between
Dutch and Turkish within the same post. Example 1
is a switch at sentence level, example 2 is a switch
at word level.

Example 1:
<NL>Mijn dag kan niet stuk :) </NL>
<TR> Cok guzel bir haber aldim </TR>

Translation: <NL> This made my day:)
</NL><TR> I received good news
</TR>

Example 2:
<TR>kahvalti</TR><NL>met
vriendinnen by my thuis </NL>

Translation: <TR>breakfast </TR>
<NL> with my girlfriends at my home
</NL>

The data is highly informal with misspellings,
lengthening of characters (e.g. hotttt), replacement
of Turkish characters (kahvalti instead of kahvaltı)
and spelling variations (tankyu instead of thank
you). Dutch and Turkish sometimes share common
spellings (e.g. ben is am in Dutch and I in Turkish),
making this a challenging task.

1Available at http://www.dongnguyen.nl/data-langid-
emnlp2013.html

Annotation
For this research, we classify words as either Turkish
or Dutch. Since Dutch and English are typologically
more similar to each other than Turkish, the English
phrases (less than 1%) are classified as Dutch. Posts
were randomly sampled and annotated by a native
Turkish speaker who is also fluent in Dutch. A na-
tive Dutch speaker annotated a random set of 100
posts (Cohen’s kappa = 0.98). The following tokens
were ignored for language identification:

• Smileys (as part of the forum markup, as well
as textual smileys such as “:)” ).

• Numeric tokens and punctuation.

• Forum tags (e.g. [u] to underline text).

• Links, images, embedded videos etc.

• Turkish and Dutch first names and place
names2.

• Usernames when indicated with special forum
markup.

• Chat words, such as hahaha, ooooh and lol rec-
ognized using regular expressions.

Posts for which all tokens are ignored, are not
included in the corpus.

Statistics
The dataset was randomly divided into a training,
development and test set. The statistics are listed
in Table 1. The statistics show that Dutch is the
majority language, although the difference between
Turkish and Dutch is not large. We also find that the
documents (i.e. posts) are short, with on average 18
tokens per document. The data represents realistic
texts found in online multilingual communication.
Compared to previously used datasets (Yamaguchi
and Tanaka-Ishii, 2012; King and Abney, 2013), the
data is noisier and the documents are much shorter.

#NL tokens #TR tokens #Posts/(BL%)
Train 14900 (54%) 12737 (46%) 1603 (15%)
Dev 8590 (51%) 8140 (49%) 728 (19%)
Test 5895 (53%) 5293 (47%) 735 (17%)

Table 1: Number of tokens and posts for Dutch (NL) and
Turkish (TR), including % of bilingual (BL) posts

2Based on online name lists and Wikipedia pages
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3 Experimental Setup

3.1 Training Corpora
We used the following corpora to extract dictionaries
and language models.

• GenCor: Turkish web pages (Sak et al., 2008).

• NLCOW2012: Dutch web pages (Schäfer and
Bildhauer, 2012).

• Blog authorship corpus: English blogs (Schler
et al., 2006).

Each corpus was chunked into large segments
which were then selected randomly until 5M tokens
were obtained for each language. We tokenized the
text and kept the punctuation.

3.2 Baselines
As baselines, we use langid.py3 (Lui and Bald-
win, 2012) and van Noord’s TextCat implementa-
tion4 of the algorithm by Cavnar and Trenkle (1994).
TextCat is based on the comparison of n-gram pro-
files and langid.py on Naive Bayes with n-gram fea-
tures. For both baselines, words were entered indi-
vidually to each program. Words for which no lan-
guage could be determined were assigned to Dutch.
These models were developed to identify the lan-
guages of the documents instead of words and we
did not retrain them. Therefore, these models are
not expected to perform well on this task.

3.3 Models
We start with models that assign languages based on
only the current word. Next, we explore models and
features that can exploit the context (the other words
in the post). Words with the highest probability for
English were assigned to Dutch for evaluation.

Dictionary lookup (DICT)
We extract dictionaries with word frequencies from
the training corpora. This approach looks up the
words in the dictionaries and chooses the language
for which the word has the highest probability. If
the word does not occur in the dictionaries, Dutch is
chosen as the language.

3https://github.com/saffsd/langid.py
4http://www.let.rug.nl/∼vannoord/TextCat/

Language model (LM)
We build a character n-gram language model for
each language (max. n-gram length is 5). We use
Witten-Bell smoothing and include word boundaries
for calculating the probabilities.

Dictionary + Language model (DICT+LM)
We first use the dictionary lookup approach (DICT).
If the word does not occur in dictionaries, a decision
is made using the language models (LM).

Logistic Regression (LR)
We use a logistic regression model that incorporates
context with the following features:

• (Individual word) Label assigned by the
DICT+LM model.

• (Context) The results of the LM model based on
previous + current token, and current token +
next token (e.g. the sequence “ben thuis” (am
home) as a whole if ben is the current token).
This gives the language model more context for
estimation. We compare the use of the assigned
labels (LAB) with the use of the log probability
values (PROB) as feature values.

Conditional Random Fields (CRF)
We treat the task as a sequence labeling problem and
experiment with linear-chain Conditional Random
Fields (Lafferty et al., 2001) in three settings:

• (Individual word) A CRF with only the tags as-
signed by the DICT+LM to the individual to-
kens as a feature (BASE).

• (Context). CRFs using the LAB or PROB as ad-
ditional features (same features as in the logis-
tic regression model) to capture additional con-
text.

3.4 Implementation
Language identification was not performed for texts
within quotes. To handle the alphabetical length-
ening (e.g. lolllll), words are normalized by trim-
ming same character sequences of three characters
or more. We use the Lingpipe5 and Scikit-learn (Pe-
dregosa et al., 2011) toolkits for our experiments.

5http://alias-i.com/lingpipe/
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Word classification Fraction Post classification
TR NL MAE

Run P R P R Acc. ρ All Mono. BL F1 Acc.
Textcat 0.872 0.647 0.743 0.915 0.788 0.739 0.251 0.264 0.188 0.386 0.396
LangIDPy 0.954 0.387 0.641 0.983 0.701 0.615 0.364 0.371 0.333 0.413 0.475
DICT 0.955 0.733 0.802 0.969 0.858 0.827 0.196 0.200 0.175 0.511 0.531
LM 0.950 0.930 0.938 0.956 0.944 0.926 0.074 0.076 0.065 0.699 0.703
DICT + LM 0.951 0.934 0.942 0.957 0.946 0.943 0.067 0.067 0.063 0.711 0.717
LR + LAB 0.965 0.952 0.958 0.969 0.961 0.917 0.066 0.066 0.068 0.791 0.808
LR + PROB 0.956 0.976 0.978 0.959 0.967 0.945 0.048 0.044 0.064 0.826 0.849
CRF + BASE 0.973 0.974 0.977 0.976 0.975 0.940 0.043 0.027 0.119 0.858 0.898
CRF + LAB 0.964 0.977 0.979 0.967 0.972 0.933 0.046 0.033 0.111 0.855 0.891
CRF + PROB 0.970 0.980 0.982 0.973 0.976 0.946 0.039 0.025 0.103 0.853 0.895

Table 2: Results of language identification experiments.

3.5 Evaluation

The assigned labels can be used for computational
analysis of multilingual data in different ways. For
example, these labels can be used to analyze lan-
guage preferences in multilingual communication or
the direction of the switches (from Turkish to Dutch
or the other way around). Therefore, we evaluate the
methods from different perspectives.

The evaluation at word and post levels is done
with the following metrics:

• Word classification precision (P), recall (R) and
accuracy. Although this is the most straightfor-
ward approach to evaluate the task, it ignores
the document boundaries.

• Fraction of language in a post: Pearson’s cor-
relation (ρ) and Mean Absolute Error (MAE) of
proportion of Turkish in a post. This evaluates
the measured proportion of languages in a post
when the actual tags for individual words are
not needed. For example, such information is
useful for analyzing the language preferences
of users in the online forum. Besides report-
ing the MAE over all posts, we also separate
the performance over monolingual and bilin-
gual posts (BL).

• Post classification: Durham (2003) analyzed
the switch between languages in terms of the
amount of monolingual and bilingual posts.
Our posts are classified as NL, TR or bilingual
(BL) if all words are tagged in the particular
language or both. We report F1 and accuracy.

4 Results

The results are presented in Table 2. Significance
tests were done by comparing the results of the word
and post classification measures using McNemar’s
test, and comparing the MAEs using paired t-tests.
All runs were significantly different from each other
based on these tests (p < 0.05), except the MAEs of
the DICT+LM and LR+LAB runs and the MAEs and
post classification metrics between the CRFs runs.

The difficulty of the task is illustrated by exam-
ining the coverage of the tokens by the dictionaries.
24.6% of the tokens (dev + test set) appear in both
dictionaries, 31.1% only in the Turkish dictionary,
30.5% only in the Dutch dictionary and 13.9% in
none of the dictionaries.

The baselines do not perform well. This confirms
that language identification at the word level needs
different approaches than identification at the docu-
ment level. Using language models result in a bet-
ter performance than dictionaries. They can han-
dle unseen words and are more robust against the
noisy spellings. The combination of language mod-
els and dictionaries is more effective than the indi-
vidual models. The results improve when context
was added using a logistic regression model, espe-
cially with the probability values as feature values.

CRFs improve the results but the improvement
on the correlation and MAE is less. More specifi-
cally, CRFs improve the performance on monolin-
gual posts, especially when a single word is tagged
in the wrong language. However, when the influence
of the context is too high, CRFs reduce the perfor-
mance in bilingual posts.
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This is also illustrated with the results of the post
classification. The LR+PROB run has a high recall
(0.905), but a low precision (0.559) for bilingual
posts, while the CRF+PROB approach has a low re-
call (0.611) and a high precision (0.828).

The fraction of Dutch and Turkish in posts varies
widely, providing additional challenges to the use of
CRFs for this task. Classifying posts first as mono-
lingual/bilingual and tagging individual words after-
wards for bilingual posts might improve the perfor-
mance.

The evaluation metrics highlight different aspects
of the task whereas word level accuracy gives a
limited view. We suggest using multiple metrics to
evaluate this task for future research.

Dictionaries versus Language Models
The results reported in Table 2 were obtained by
sampling 5M tokens of each language. To study the
effect of the number of tokens on the performance
of the DICT and LM runs, we vary the amount of
data. The performance of both methods increases
consistently with more data (Figure 1). We also
find that language models achieve good performance
with only a limited amount of data, and consistently
outperform the approach using dictionaries. This is
probably due to the highly informal and noisy nature
of our data.

Num. sampled tokens
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ur
ac
y
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6

0.
7

0.
8

0.
9

1.
0

0 2 × 106 4 × 106

LM
DICT

Figure 1: Effect of sampling size

Post classification
We experimented with classifying posts into TR, NL
and bilingual using the results of the word level lan-
guage identification (Table 2: post classification).
Posts were classified as a particular language if all
words were tagged as belonging to that language,
and bilingual otherwise. Runs using CRFs achieved
the best performance.

We now experiment with allowing a margin (e.g.
a margin of 0.10 classifies posts as TR if at least
90% of the words are classified as TR). Allowing
a small margin already increases the results of sim-
pler approaches (such as the LR-PROB run, Table 3)
by making it more robust against errors. However,
allowing a margin reduces the performance of the
CRF runs.

Margin 0.0 0.05 0.10 0.15 0.20
Accuracy 0.849 0.873 0.876 0.878 0.865

Table 3: Effect of margin on post classification
(LR-PROB run)

Error analysis
The manual analysis of the results revealed three
main challenges: 1) Our data is highly informal
with many spelling variations (e.g. moimoimoi,
goooooooooooolllll) and noise (e.g. asdfghjfgsha-
haha) 2) Words sharing spelling in Dutch and Turk-
ish are difficult to identify especially when there
is no context available (e.g. a post with only one
word). These words are annotated based on their
context. For example, the word super in “Seyma,
super” is annotated as Turkish since Seyma is also a
Turkish word. 3) Named entity recognition is neces-
sary to improve the performance of the system and
decrease the noise in evaluation. Based on precom-
piled lists, our system ignores named entities. How-
ever, some names still remain undetected (e.g. user-
names).

5 Conclusion

We presented experiments on identifying the lan-
guage of individual words in multilingual conversa-
tional data. Our results reveal that language models
are more robust than dictionaries and adding context
improves the performance. We evaluate our methods
from different perspectives based on how language
identification at word level can be used to analyze
multilingual data. The highly informal spelling in
online environments and the occurrences of named
entities pose challenges.

Future work could focus on cases with more than
two languages, and languages that are typologically
less distinct from each other or dialects (Trieschnigg
et al., 2012).
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R. Schäfer and F. Bildhauer. 2012. Building large cor-
pora from the web using a new efficient tool chain. In
Proceedings of LREC 2012.

J. Schler, M. Koppel, S. Argamon, and J. Pennebaker.
2006. Effects of age and gender on blogging. In Pro-
ceedings of 2006 AAAI Spring Symposium on Compu-
tational Approaches for Analyzing Weblogs.

D. Trieschnigg, D. Hiemstra, M. Theune, F. Jong, and
T. Meder. 2012. An exploration of language identifi-
cation techniques for the Dutch folktale database. In
Adaptation of Language Resources and Tools for Pro-
cessing Cultural Heritage workshop (LREC 2012).
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Abstract

Linking name mentions in microblog posts to
a knowledge base, namely microblog entity
linking, is useful for text mining tasks on mi-
croblog. Entity linking in long text has been
well studied in previous works. However few
work has focused on short text such as mi-
croblog post. Microblog posts are short and
noisy. Previous method can extract few fea-
tures from the post context. In this paper we
propose to use extra posts for the microblog
entity linking task. Experimental results show
that our proposed method significantly im-
proves the linking accuracy over traditional
methods by 8.3% and 7.5% respectively.

1 Introduction

Microblogging services (e.g. Twitter) are attracting
millions of users to share and exchange their ideas
and opinions. Millions of new microblog posts are
generated on such open broadcasting platforms ev-
ery day 1. Microblog provides a fruitful and instant
channel of global information publication and acqui-
sition.

A necessary step for the information acquisition
on microblog is to identify which entities a post is
about. Such identification can be challenging be-
cause the entity mention may be ambiguous. Let’s
begin with a real post from Twitter.

(1) No excuse for floods tax, says Abbott
URL

∗Corresponding author
1See http://blog.twitter.com/2011/06/ 200-million-tweets-

per-day.html.

This post is about an Australia political lead-
er, Tony Abbot, and his opinion on flood tax
policy. To understand that this post mentions
Tony Abbot is not trivial because the name Ab-
bot can refer to many people and organization-
s. In the Wikipedia page of Abbott, there list-
s more than 20 Abbotts, such as baseball player
Jim Abbott, actor Bud Abbott and company
Abbott Laboratories, etc..

Given a knowledge base (KB) (e.g. Wikipedia),
entity linking is the task to identify the referent KB
entity of a target name mention in plain text. Most
current entity linking techniques are designed for
long text such as news/blog articles (Mihalcea and
Csomai, 2007; Cucerzan, 2007; Milne and Witten,
2008; Han and Sun, 2011; Zhang et al., 2011; Shen
et al., 2012; Kulkarni et al., 2009; Ratinov et al.,
2011). Entity linking for microblog posts has not
been well studied.

Comparing with news/blog articles, microblog
posts are:

short each post contains no more than 140 charac-
ters;

fresh the new entity-related content may have not
been included in the knowledge base;

informal acronyms and spoken language writing
style are common.

Due to these properties, few feature can be ex-
tracted from a post. Without enough features, pre-
vious entity linking methods may fail. In order to
overcome the feature sparseness, we turn to another
property of microblog:
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redundancy For each day, over 340M short mes-
sages are posted in twitter. Similar information
may be posted in different expressions.

For example, we find the following post,

(2) Julia Gillard and Tony Abbott on
the flood levy just after 8.30am on
@612brisbane!

The content of post (2) is highly related to post
(1). In contrast to the confusing post (1), the text
in post (2) explicitly indicates that the Abbott here
refers to the Australian political leader. This inspires
us to bridge the confusing post and the knowledge
base with other posts.

In this paper, we approach the microblog entity
linking by leveraging extra posts. A straightforward
method is to expand the post context with similar
posts, which we call Context-Expansion-based Mi-
croblog Entity Linking (CEMEL). In this method,
we first construct a query with the given post and
then search for it in a collection of posts. From the
search result, we select the most similar posts for the
context expansion. The disambiguation will benefit
from the extra posts if, hopefully, they are related
to the given post in content and include explicit fea-
tures for the disambiguation.

Furthermore, we propose a Graph-based Mi-
croblog Entity Linking (GMEL) method. In contrast
to CEMEL, the extra posts in GMEL are not directly
added into the context. Instead, they are represented
as nodes in a graph, and weighted by their similarity
with the target post. We use an iterative algorithm
in this graph to propagate the entity weights through
the edges between the post nodes.

We conduct experiments on real microblog da-
ta which we harvested from Twitter. Current enti-
ty linking corpus, such as the TAC-KBP data (M-
cNamee and Dang, 2009), mainly focuses on long
text. And few microblog entity linking corpus is
publicly available. In this work, we manually anno-
tated a microblog entity linking corpus. This corpus
inherit the target names from TAC-KBP2009. So it
is comparable with the TAC-KBP2009 corpus.

Experimental results show that the performance
of previous methods drops on microblog posts com-
paring with on long text. Both of CEMEL and
GMEL can significantly improve the performance

over baselines, which means that entity linking sys-
tem on microblog can be improved by leveraging ex-
tra posts. The results also show that GMEL outper-
forms CEMEL significantly.

We summarize our contributions as follows.

• We propose a context-expansion-based and a
graph-based method for microblog entity link-
ing by leveraging extra posts.

• We annotate a microblog entity linking corpus
which is comparable to an existing long text
corpus.

• We show the inefficiency of previous method
on the microblog corpus and our method can
significantly improve the results.

2 Task defination

The microblog entity linking task is that, for a name
mention in a microblog post, the system is to find the
referent entity of the name in a knowledge base, or
return a NIL mark if the entity is absence from the
knowledge base. This definition is close to the en-
tity linking task in the TAC-KBP evaluation (Ji and
Grishman, 2011) except for the context of the target
name is microblog post whereas in TAC-KBP the
context is news article or web log.

Several related tasks have been studied on mi-
croblog posts. In Meij et al. (2012)’s work, they
link a post, rather than a name mention in the post,
to relevant Wikipedia concepts. Guo et al. (2013a)
and Liu et al. (2013) define entity linking as to first
detect all the mentions in a post and then link the
mentions to the knowledge base. In contrast, our
definition (as well as the TAC-KBP definition) fo-
cuses on a concerned name mention across different
posts/documents.

3 Method

A typical entity linking system can be broken down
into two steps:

candidate generation This step narrows down the
candidate entity range from any entity in the
world to a limited set.

candidate ranking This step ranks the candidates
and output the top ranked entity as the result.
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Figure 1: An example of the GMEL graph. p1 . . . p4 are
post nodes and c1 . . . c3 are candidate entity nodes. Each
post node is connected to the corresponding candidate n-
odes from the knowledge base. The edges between the
nodes are weighted by the similarity between them.

In this paper, we use the candidate generation
method described in Guo et al.(2013). For the candi-
date ranking, we use a Vector Space Model (VSM)
and a Learning to Rank (LTR) as baselines. VSM
is an unsupervised method and LTR is a supervised
method. Both of them have achieved the state-of-
the-art performances in the TAC-KBP evaluations.

The major challenge in microblog entity linking
is the lack of context in the post. An ideal solu-
tion is to expand the context with the posts which
contain the same entity. However, automatically
judging whether a name mention in two documents
refers to the same entity, namely cross document co-
reference, is not trivial. Here our solution is to rank
the posts by their possibility of co-reference to the
target one and select the most possible co-referent
posts for the expansion.

CEMEL is based on the assumption that, given a
name and two posts where the name is mentioned,
the higher similarity between the posts the high-
er possibility of their co-reference and that the co-
referent posts may contains useful features for the
disambiguation. However, two literally similar posts
may not be co-referent. If such non co-referent post
is expanded to the context, noises may be included.

Take the following post as an example.

(3) AG Abbott says that bullets have
crossed the border from Mexico to
Texas at least four times. URL

This post is similar to post (1) because they both
contains “says” and “URL”. But the Abbott in post
(3) refers to the Texas Attorney General Greg Ab-
bott. In this mean, the expanded context in post (3)

could mislead the disambiguation for post (1). Such
noise can be controlled by setting a strict number of
posts to expand the context or weighting the contri-
bution of this post to the target one.

Our CEMEL method consists of the following
steps: First we construct a query with the terms from
the target post. Second we search for the query in a
microblog post collection using a common informa-
tion retrieval model such as the vector space model.
Note that here we limit the searched posts must con-
tain the target name mention. Then we expand the
target post with top N similar posts and use a typical
entity linking method (such as VSM and LTR) with
the expanded context.

Figure 1 illustrates the graph of GMEL. Each n-
ode of this graph represents an candidate entity (e.g.
c1 . . . c3) or a post of the given target name (e.g.
p1 . . . p4) In this graph, each node represents an en-
tity or a post of the given target name. Between each
pair of post nodes, each pair of entity nodes and each
post node and its candidate entity nodes, there is an
edge. The edge is weighted by the similarity be-
tween the two linked nodes. Entity nodes are labeled
by themselves and candidate nodes are initialized as
unlabeled nodes. For the edges between post node
pairs and entity node pairs, we use cosine similari-
ty. For the edges between a post node and its can-
didate entity nodes, we use the score given by tra-
ditional entity linking methods. We use an iterative
algorithm on this graph to propagate the labels from
the entity nodes to the post nodes. We adapt Label
Propagation (LP) (Zhu and Ghahramani, 2002) and
Modified Adsorption (MAD) (Talukdar and Pereira,
2010) for the iteration over the graph.

4 Experiment

4.1 Data Annotation

Till now, few microblog entity linking data is pub-
licly available. In this work, we manually annotate
a data set on microblog posts2. We collect 15.6 mil-
lion microblog posts in Twitter dated from January
23 to February 8, 2011. In order to compare with ex-
isting entity linking on long text, we select a subset
of target names from TAC-KBP2009 and inherit the
knowledge base in the TAC-KBP evaluation. The

2We published this data so that researchers can reproduce
our results.
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Figure 2: Percentage of the co-reference posts in the top
N similar posts

Figure 3: Impact of expansion post number in CEMEL

TAC-KBP2009 data set includes 513 target names.
We search for all the target names in the post col-
lection and get 26,643 matches. We randomly sam-
ple 120 posts for each of the top 30 most frequently
matched target names and filter out non-English and
overly short (i.e. less than 3 words) posts. Then
we get 2,258 posts for 25 target names and manual-
ly link the target name mentions in the posts to the
TAC-KBP knowledge base.

In order to evaluate the assumption in CEMEL:
similar posts tend to co-reference, we randomly s-
elect 10 posts for 5 target names respectively and
search for the posts in the post collection. From
the search result of each of the 50 posts, we select
the top 20 posts and manually annotate if they co-
reference with the query post.

4.2 Settings
We generate candidates with the method described
in (Guo et al., 2013b) and use Vector Space Mod-
el (VSM) (Varma et al., 2009) and Learning to Rank
(LTR) (Zheng et al., 2010) as the ranking model. We

Figure 4: Accuracy of GMEL with different rate of extra
post nodes

use Lucene and ListNet with default settings for the
VSM and LTR implementation respectively. We use
bigram feature for VSM and the feature set of (Chen
et al., 2011) for LTR. LTR is evaluated with 10-fold
cross validation. Given a target name, the GMEL
graph includes all the evaluation posts as well as a
set of extra post nodes searched from the post collec-
tion with the query of the target name. We filter out
determiners, interjections, punctuations, emoticon-
s, discourse markers and URLs in the posts with a
twitter part-of-speech tagger (Owoputi et al., 2013).
The similarity between a post and its candidate en-
tities is set with the score given by VSM or LTR
and the similarity between other nodes is set with the
corresponding cosine similarity. We employ junto3

with default settings for the iterative algorithm im-
plementation .

4.3 Results

Figure 2 shows the relationship between similari-
ty and co-reference. From this figure we can see
that the percentage decreases with the growth of N.
When the N is up to 10, about 60% of the similar
posts co-reference with the query post and the de-
crease speed slows down. The Pearson correlation
coefficient between the percentage and the number
of top N is -0.843, which shows a significant corre-
lation between the two variables (with p-value 0.01
under t-test).

Figure 3 shows the impact of the extra post num-
ber for the context expansion in CEMEL. We can see
that the accuracies of VSM and LTR are improved

3See https://github.com/parthatalukdar/junto
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Figure 5: Label entropy of GMEL with different rate of
extra post nodes

Figure 6: Accuracy of the systems

by CEMEL. The improvements peak with 5-10 ex-
tra posts. Then more extra posts will pull down the
accuracy.

Figure 4 shows the accuracy of GMEL. The x-axis
is the rate of the extra post number over the evalu-
ation post number. We can see that the accuracy of
MAD increases with the number of extra post nodes
at first and then turns to be stable. The accuracy of
LP increases at first and drops when more extra posts
are added into the graph.

Figure 5 shows the information entropy of the la-
bels in LP and MAD. The curves show that the pre-
diction of LP tends to converge into a small number
of labels. This is because LP prefers smoothing la-
belings over the graph (Talukdar and Pereira, 2010).

We also evaluate our baselines on TAC-KBP2009
data set (LTR is trained on TAC-KBP2010 data set).
The accuracy of VSM and LTR are 0.8338 and
0.8372 respectively, which are comparable with the
state-of-the-art result (Hachey et al., 2013).

Figure 6 shows the performances of the systems
on the microblog data. We set the optimal expansion
post number of CEMEL and use MAD algorithm for
GMEL with all searched extra post nodes. From this
figure we can see that the results of VSM and LTR
baselines are comparable and both of them are sig-
nificantly lower than that on TAC-KBP2009 data.
CEMEL improves the VSM and LTR baselines by
4.3% and 2.7% respectively. GMEL improves VSM
and LTR by 8.3% and 7.5% respectively. The results
of GMEL are also significantly better than CEMEL.
All of the improvements are significant under Z-test
with p < 0.05.

5 Conclusion

In this paper we approach microblog entity linking
by leveraging extra posts. We propose a context-
expansion-based and a graph-based method. Exper-
imental results on our data set show that the per-
formance of traditional method drops on the mi-
croblog data. The graph-based method outperform-
s the context-expansion-based method and both of
them significantly improve the accuracy of tradition-
al methods. In the graph-based method the modified
adsorption algorithm performs better than the label
propagation algorithm.
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Abstract

Multi-Domain learning (MDL) assumes that
the domain labels in the dataset are known.
However, when there are multiple metadata at-
tributes available, it is not always straightfor-
ward to select a single best attribute for do-
main partition, and it is possible that combin-
ing more than one metadata attributes (includ-
ing continuous attributes) can lead to better
MDL performance. In this work, we propose
an automatic domain partitioning approach
that aims at providing better domain identi-
ties for MDL. We use a supervised clustering
approach that learns the domain distance be-
tween data instances , and then cluster the data
into better domains for MDL. Our experiment
on real multi-domain datasets shows that us-
ing our automatically generated domain parti-
tion improves over popular MDL methods.

1 Introduction

Instead of assuming data are i.i.d, Multi-domain
learning (MDL) methods assumes that data come
from several domains and make use of domain la-
bels to improve modeling performance (Daumé III,
2007). The motivation of using MDL is that datasets
from different domains could be different, in two
ways. First, the feature distribution p(x) could be
domain specific, meaning that the importance of
each feature is different across domains. Second,
the distribution of label Y given X , p(y|x), of dif-
ferent domains could be different. These differ-
ences could create problems for traditional machine
learning methods: models learned from one domain

might not be generalizable to other domains (Ben-
David et al., 2006; Ben-David et al., 2010).

One common assumption of MDL methods is that
the domain identities are pre-defined. For example,
in the multi-domain Amazon product review dataset
(Finkel and Manning, 2009), the product categories
are typically used as the domain identities. How-
ever, a question raised by Joshi et al. (2012) is that,
in real-world data sets, there could be many ways to
split data into domains, and it is hard to decide which
one to use. Consider the Amazon product reviews,
where we have multiple attributes attached to each
review: for example, product category, reviewer lo-
cation, price, and number of feedback. Which at-
tribute is the most informative domain label? Or we
should use all of these meta-data and partition the
data into many small domains?

In this paper, we investigate the problem of au-
tomatic domain partitioning. We propose an em-
pirical domain difference testing method to exam-
ine whether two groups of data are i.i.d, or gener-
ated from different distributions, and how different
they are. Using this approach, we generate data pairs
that belong to the same distribution, and data pairs
that should be partitioned into different domains.
These pairs are then used as training data for a super-
vised clustering algorithm, which automatically par-
titions the dataset into several domains. In the eval-
uation, we show that our automatically-partitioned
domains improve the performances of two popular
MDL methods on real sentiment analysis data sets.

Note that Joshi et al. (2013) proposed a Multi-
Attribute Multi-Domain learning (MAMD) method,
which also exploited multiple dimensions of meta-
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data and provided extensions to two traditional MDL
methods. However, extensions to the MAMD set-
ting may not be trivial for every MDL algorithm,
while our method serves as a pre-processing step and
can be easily used for all MDL approaches. In ad-
dition to this, MAMD only works with categorical
metadata, and can not fully utilize information in the
form of continuous metadata values.

2 Automatic Domain Partitioning

In this section, we introduce the Automatic Domain
Partitioning (ADP) problem: given data X , meta-
data M and label Y , find a function g : M 7→ I such
that the common MDL methods perform better with
data X and domain identity I in the prediction of Y .
For example, on Amazon sentiment analysis data, X
is the feature matrix extracted from reviews, Y is the
positive or negative label vector, and M is the meta-
data matrix associated with reviews (e.g. product
price and category).

Our approach works as follows: in training, we
first use an empirical domain difference testing
method to detect whether two groups of data should
be considered as different domains; after that we ap-
ply supervised clustering to learn the distance met-
ric between two data points, i.e. how different thay
are in MDL view, from training data generated by
our domain difference test method; finally, based on
the distance metric learned, we cluster our data into
several clusters, and train MDL models with those
clusters as domain labels; in testing, we assign data
instance to its nearest cluster and use that cluster as
its domain identity, and then apply the trained MDL
models for prediction.

2.1 Empirical Domain Difference Test

The key motivation of MDL is that a model fits for
one domain may not fit well for other domains. Fol-
lowing the same motivation, we propose an empiri-
cal method for domain difference test called Domain
Model Loss (DML) that provides us the domain dif-
ference score d(G1, G2) between two groups of data
G1 = {X1, Y1} and G2 = {X2, Y2}.

Domain Model Loss If the mapping functions f1 :
X1 7→ Y1 and f2 : X2 7→ Y2 are different for
two data groups, we could directly use the disagree-
ment of f1 and f2 as domain difference score. More

specifically, if we train two classifiers f̂1 : X1 7→
Y1, f̂2 : X2 7→ Y2 individually on G1 and G2, we
could have the K-fold empirical loss:

l̂(f1, G1) =
1

K

∑
i

Error of f1 on i-th fold of G1,

l̂(f2, G2) =
1

K

∑
i

Error of f2 on i-th fold of G2.

And we could also apply the trained model f1 on
G2, and f2 on G1 to get:

l̂(f1, G2) = Error of f1 on G2,

l̂(f2, G1) = Error of f2 on G1.

Then, if G1 and G2 are actually the same with each
other, then both models will have same empirical
loss on either data set, but if they are not, we will
have a positive DML score:

DML(G1, G2) =
1

2
(L̂(f1, G2) + L̂(f2, G1)),

where:

L̂(f1, G2) =
l̂(f1, G2)− l̂(f1, G1)

l̂(f1, G1)
,

L̂(f2, G1) =
l̂(f2, G1)− l̂(f2, G2)

l̂(f2, G2)
.

2.2 Supervised Clustering for Domain
Partitioning

Our domain difference test method calculates the
distance between two partitioned data groups. How-
ever, to directly use it for domain partitioning, we
must go through all possible combinations of do-
main assignments in exponential time, which is in-
feasible. Our solution is to use a polynomial-time
supervised clustering method developed by Xing et
al. (2002) to learn a distance function that calculates
the distance between any two data points. Formally,
given a set of data pairs D, which belong to different
domains, and a set of data pairs S, which belong to
the same domain, it learns a distance metric A by:

max
A

g(A) =
∑

(i,j)∈D

√
(mi −mj)T A(mi −mj)

s.t.f(A) =
∑

(i,j)∈S

(mi −mj)
T A(mi −mj) ≤ 1

A � 0,
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where mi, mj are meta data of i and j.
The metadata M are preprocessed as follows: 1)

Each categorical attribute was converted to several
binary questions, one per category, and each bi-
nary question was considered as one metadata di-
mension in ADP method. For example, if categor-
ical attribute “Product Type” has two values “Mu-
sic” and “Electronics”, then there will be two dimen-
sions of metadata corresponding to “Product Type”
in ADP. Two metadata dimensions correspond to bi-
nary questions: “Is Product Type Music” and “Is
Product Type Electronics”. 2) Each continuous at-
tribute was normalized by scaling between 0 and 1.

The training data S, D for metric learning are gen-
erated as follows:

1. For each dimension Mk of M , split data at
value 0.5, sample two equally sized groups, ap-
ply our domain difference testing method and
find the difference between these data groups.

2. Assign distance to each pair of instances by the
average distance of all partitions that partitions
the pair into different groups.

3. Select top n similar pairs as S and top n differ-
ent pairs as D.

The learned distance metric A now conveys the
domain difference information obtained from our
domain distance test results: which meta attributes
are important for domain partitioning and which are
not as important. Following Xing et al. (2002), we
transfer the instance’s metadata feature M by MBT ,
where BT B = A. Then we use a clustering method
on MBT , and the output is our domain partitioning
result.

3 Experiment Methodology

Datasets To evaluate our methods, we used two
subsets of Amazon review corpus (Jindal and Liu,
2008), which originally contain 5.8 million reviews
with a variety of metadata about products and users.
The first subset (BOOK) contains 20,000 reviews on
books published by eleven most popular publishers,
while the second (PROD) is reviews about products
within seven most common product categories. We
randomly split each dataset into training and testing
sets with equal size. The task is to predict a positive
or negative label for each review. Case insensitive

unigrams excluding stop words are used as features,
and all features appear less than 500 times are re-
moved for efficient experiment processing. Reviews
of 4 or 5 stars are considered positive and 1 or 2 stars
are considered negative, while 3 stars reviews are ex-
cluded. Each review has multiple metadata such as
book’s publisher, product’s type, user’s state loca-
tion, product price, review year, and number of other
user feedback. Reviews with missing metadata are
filtered out.

MDL Methods Our first MDL algorithm is the
Frustratingly Easy Domain Adaptation (FEDA)
(Daumé III, 2007) which is easy to implement and
achieved competitive performance on many applica-
tions. It creates an augmented feature space as the
Cartesian product of the input features and the orig-
inal domains plus a shared domain. Then it uses a
SVM classifier over the augmented feature space to
obtain classification result. Specifically, our FEDA
methods use L2-regularized SVM with linear ker-
nel by LIBLINEAR package1. The parameters C =
0.01 was selected using five-fold cross-validation on
training set.

Our second MDL algorithm is Multi-Domain
Regularization (MDR) (Dredze and Crammer,
2008), which is a classifier combination ap-
proach based on Confidence-Weighted (CW) learn-
ing (Dredze et al., 2008). The CW learning is an on-
line update method that maintains probabilistic con-
fidence for each parameter by keeping track of its
variance. In our experiments, we use the CW im-
plementation provided by its authors and choose the
best performing configurations described in (Dredze
and Crammer, 2008).

Domain Partition Methods We evaluated the do-
main partition results provided by our ADP on the
two MDL methods (FEDA & MDR). For simplic-
ity and efficiency, we use Naive Bayes as our base
prediction model f1 and f2 to generate the domain
model loss score, described in section 2.1. In train-
ing data generation, we choose top 10% similar pairs
as S and top 10% different pairs as D. And given
the learnt distance metric A, we use K-means to do
the clustering. The number of clusters is selected by
five-fold cross-validation on training set.

1http://www.csie.ntu.edu.tw/∼cjlin/liblinear
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We compare our domain partition quality with
three other methods: 1) 1-Best chooses best per-
forming categorical metadata on a validation set as
domain indicators, where the original training set
was splitted equally to train and validate the per-
formance of each categorical attribute; 2) Random
partition that assigns domain identities to instances
randomly with same number of domains as 1-Best.
We run each random partition ten times and took the
average; 3) MAMD proposed by Joshi et al. (2013).
However, the original version of MAMD does not
support continuous attribute such as price. So we
made an extension that sorts these values to ten bins
and then treats them as categorical values.

4 Results and Discussions

Partition + MDL PROD BOOK
ADP + FEDA 82.02 ∗ 86.22 ‡∗
MAMD + FEDA 81.04 86.08
1-Best + FEDA 82.00 85.85
Random + FEDA 79.36 84.72
ADP + MDR 82.10 ] ‡ ∗ 86.62 ] ‡ ∗
MAMD + MDR 80.17 84.37
1-Best + MDR 79.79 83.68
Random + MDR 74.65 81.16

Table 1: Overall accuracies on PROD and BOOK
datasets. ADP results that are statistically significantly
better than MAMD are marked with ], and better than 1-
Best and Random are indicated by ‡ and ∗ respectively,
using a paired t-test, with p < 0.05.

Table 1 shows the overall experimental results
of four domain partition methods with two MDL
methods on PROD and BOOK datasets. One could
see that when using MDR method, ADP could
significantly outperform all baselines on both data
sets, with relatively more than 2% gains. For
FEDA, on PROD data, ADP performs the same with
MAMD and 1-Best; on BOOK data, ADP outper-
forms 1-Best significantly, but is just slightly better
than MAMD. One possible reason is that the best
numbers of cluster selected by cross-validation are
around 150. With such large number of none-perfect
domains, FEDA will generate huge dimension of
features and perhaps require more training data to
provide better performances. Another possible rea-
son is that FEDA and the SVM underlying FEDA

are very robust against bad domain partition results.
This might be the reason of high FEDA baselines.
In general, our ADP method helps existing MDL
approaches achieve better performance, while bad
(Random) partitioning does hurt.

Figure 1(a) and 1(b) shows the performances of
applying FEDA on different domain partitioning
methods on PROD and BOOK, while Figure 1(c)
and 1(d) shows experiment results with MDR. The
x-axis is the size of the output domains (the K in
our K-means clustering), and y-axis is the accuracy
of models. With our domain partitioning approach,
MDR can perform consistently higher than all the
three baselines on both dataset when k > 50. As
we discussed for Table 1, FEDA might be less sen-
sitive to domain partition results, which causes high
baseline performance and high ADP+FEDA perfor-
mance with small K. Since the performance trends
to increase along with k until 50 in three figures
(1(b), 1(c) and 1(d)), we believe that the ground-
truth domain size is likely larger than 50. These
results clearly indicate ADP does provide more de-
sirable domain assignments for MDL. The domain
selected by 1-Best such as publishers has only 11
domains, which limits the ability of 1-Best to com-
pletely express domain information. And our gener-
ated domains integrate multiple metadata attributes,
lead to more detailed domain partitions, and enhance
the ability of MDL methods to capture the difference
between different groups of data. Although accu-
racies are growing with k in general, we also see
that there are fluctuations on curves especially when
curves are zoomed to a small range. To get smoother
results, we can sample more data to calculate do-
main similarity and repeat the K-means clustering
with more different initializations.

5 Conclusions

In this paper, we propose an Automatic Domain Par-
tition (ADP) method that provides better domain
identities for multi-domain learning methods. We
first propose a new approach to identify whether two
data groups should be considered as different do-
mains, by comparing the differences using Domain
Model Loss. We use a supervised clustering ap-
proach to train our model with labels generated by
domain difference tests, and cluster the re-weighted
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metadata as our domain partition by K-means. Ex-
periments on real world multi-domain data show
that the domain identities generated by our method
can improve the performance of MDL models.
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Figure 1: Accuracies over different size of the output do-
mains (K)

References
Shai Ben-David, John Blitzer, Koby Crammer, and Fer-

nando Pereira. 2006. Analysis of representations for
domain adaptation. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 137–144.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. 2010. A theory of learning from different
domains. Machine Learning, 79(1-2):151–175.

Mark Dredze and Koby Crammer. 2008. Online methods
for multi-domain learning and adaptation. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 689–697.

Mark Dredze, Koby Crammer, and Fernando Pereira.
2008. Confidence-weighted linear classification. In
Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML), pages 264–271.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Hierarchical bayesian domain adaptation. In Proceed-
ings of the 2009 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT),
pages 602–610.
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Abstract

This paper investigates the utility and effect of
running numerous random restarts when us-
ing EM to attack decipherment problems. We
find that simple decipherment models are able
to crack homophonic substitution ciphers with
high accuracy if a large number of random
restarts are used but almost completely fail
with only a few random restarts. For partic-
ularly difficult homophonic ciphers, we find
that big gains in accuracy are to be had by run-
ning upwards of 100K random restarts, which
we accomplish efficiently using a GPU-based
parallel implementation. We run a series of
experiments using millions of random restarts
in order to investigate other empirical proper-
ties of decipherment problems, including the
famously uncracked Zodiac 340.

1 Introduction

What can a million restarts do for decipherment?
EM frequently gets stuck in local optima, so running
between ten and a hundred random restarts is com-
mon practice (Knight et al., 2006; Ravi and Knight,
2011; Berg-Kirkpatrick and Klein, 2011). But, how
important are random restarts and how many random
restarts does it take to saturate gains in accuracy?

We find that the answer depends on the cipher. We
look at both Zodiac 408, a famous homophonic sub-
stitution cipher, and a more difficult homophonic ci-
pher constructed to match properties of the famously
unsolved Zodiac 340. Gains in accuracy saturate af-
ter only a hundred random restarts for Zodiac 408,
but for the constructed cipher we see large gains

in accuracy even as we scale the number of ran-
dom restarts up into the hundred thousands. In both
cases the difference between few and many random
restarts is the difference between almost complete
failure and successful decipherment.

We also find that millions of random restarts can
be helpful for performing exploratory analysis. We
look at some empirical properties of decipherment
problems, visualizing the distribution of local op-
tima encountered by EM both in a successful deci-
pherment of a homophonic cipher and in an unsuc-
cessful attempt to decipher Zodiac 340. Finally, we
attack a series of ciphers generated to match proper-
ties of Zodiac 340 and use the results to argue that
Zodiac 340 is likely not a homophonic cipher under
the commonly assumed linearization order.

2 Decipherment Model

Various types of ciphers have been tackled by the
NLP community with great success (Knight et al.,
2006; Snyder et al., 2010; Ravi and Knight, 2011).
Many of these approaches learn an encryption key
by maximizing the score of the decrypted message
under a language model. We focus on homophonic
substitution ciphers, where the encryption key is a
1-to-many mapping from a plaintext alphabet to a
cipher alphabet. We use a simple method introduced
by Knight et al. (2006): the EM algorithm (Demp-
ster et al., 1977) is used to learn the emission pa-
rameters of an HMM that has a character trigram
language model as a backbone and the ciphertext
as the observed sequence of emissions. This means
that we learn a multinomial over cipher symbols for
each plaintext character, but do not learn transition
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parameters, which are fixed by the language model.
We predict the deciphered text using posterior de-
coding in the learned HMM.

2.1 Implementation

Running multiple random restarts means running
EM to convergence multiple times, which can be
computationally intensive; luckily, restarts can be
run in parallel. This kind of parallelism is a good
fit for the Same Instruction Multiple Thread (SIMT)
hardware paradigm implemented by modern GPUs.
We implemented EM with parallel random restarts
using the CUDA API (Nickolls et al., 2008). With a
GPU workstation,1 we can complete a million ran-
dom restarts roughly a thousand times more quickly
than we can complete the same computation with a
serial implementation on a CPU.

3 Experiments

We ran experiments on several homophonic sub-
stitution ciphers: some produced by the infamous
Zodiac killer and others that were automatically
generated to be similar to the Zodiac ciphers. In
each of these experiments, we ran numerous random
restarts; and in all cases we chose the random restart
that attained the highest model score in order to pro-
duce the final decode.

3.1 Experimental Setup

The specifics of how random restarts are produced
is usually considered a detail; however, in this work
it is important to describe the process precisely. In
order to generate random restarts, we sampled emis-
sion parameters by drawing uniformly at random
from the interval [0, 1] and then normalizing. The
corresponding distribution on the multinomial emis-
sion parameters is mildly concentrated at the center
of the simplex.2

For each random restart, we ran EM for 200 itera-

1We used a single workstation with three NVIDIA GTX 580
GPUs. These are consumer graphics cards introduced in 2011.

2We also ran experiments where emission parameters were
drawn from Dirichlet distributions with various concentration
parameter settings. We noticed little effect so long as the distri-
bution did not favor the corners of the simplex. If the distribu-
tion did favor the corners of the simplex, decipherment results
deteriorated sharply.
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Figure 1: Zodiac 408 cipher. Accuracy by best model score and
best model score vs. number of random restarts. Bootstrapped
from 1M random restarts.

tions.3 We found that smoothing EM was important
for good performance. We added a smoothing con-
stant of 0.1 to the expected emission counts before
each M-step. We tuned this value on a small held
out set of automatically generated ciphers.

In all experiments we used a trigram character
language model that was linearly interpolated from
character unigram, bigram, and trigram counts ex-
tracted from both the Google N-gram dataset (Brants
and Franz, 2006) and a small corpus (about 2K
words) of plaintext messages authored by the Zodiac
killer.4

3.2 An Easy Cipher: Zodiac 408

Zodiac 408 is a homophonic cipher that is 408 char-
acters long and contains 54 different cipher sym-
bols. Produced by the Zodiac killer, this cipher was
solved, manually, by two amateur code-breakers a
week after its release to the public in 1969. Ravi and
Knight (2011) were the first to crack Zodiac 408 us-
ing completely automatic methods.

In our first experiment, we compare a decode of
Zodiac 408 using one random restart to a decode us-
ing 100 random restarts. Random restarts have high

3While this does not guarantee convergence, in practice 200
iterations seems to be sufficient for the problems we looked at.

4The interpolation between n-gram orders is uniform, and
the interpolation between corpora favors the Zodiac corpus with
weight 0.9.
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variance, so when we present the accuracy corre-
sponding to a given number of restarts we present an
average over many bootstrap samples, drawn from
a set of one million random restarts. If we attack
Zodiac 408 with a single random restart, on aver-
age we achieve an accuracy of 18%. If we instead
use 100 random restarts we achieve a much better
average accuracy of 90%. The accuracies for vari-
ous numbers of random restarts are plotted in Fig-
ure 1. Based on these results, we expect accuracy
to increase by about 72% when using 100 random
restarts instead of a single random restart; however,
using more than 100 random restarts for this partic-
ular cipher does not appear to be useful.

Also in Figure 1, we plot a related graph, this time
showing the effect that random restarts have on the
achieved model score. By construction, the (maxi-
mum) model score must increase as we increase the
number of random restarts. We see that it quickly
saturates in the same way that accuracy did.

This raises the question: have we actually
achieved the globally optimal model score or have
we only saturated the usefulness of random restarts?
We can’t prove that we have achieved the global op-
timum,5 but we can at least check that we have sur-
passed the model score achieved by EM when it is
initialized with the gold encryption key. On Zodiac
408, if we initialize with the gold key, EM finds
a local optimum with a model score of −1467.4.
The best model score over 1M random restarts is
−1466.5, which means we have surpassed the gold
initialization.

The accuracy after gold initialization was 92%,
while the accuracy of the best local optimum was
only 89%. This suggests that the global optimum
may not be worth finding if we haven’t already
found it. From Figure 1, it appears that large in-
creases in likelihood are correlated with increases
in accuracy, but small improvements to high like-
lihoods (e.g. the best local optimum versus the gold
initialization) may not to be.

5ILP solvers can be used to globally optimize objectives
corresponding to short 1-to-1 substitution ciphers (Ravi and
Knight, 2008) (though these objectives are slightly different
from the likelihood objectives faced by EM), but we find that
ILP encodings for even the shortest homophonic ciphers cannot
be optimized in any reasonable amount of time.

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 1  10  100  1000  10000  100000  1e+06

-1310

-1305

-1300

-1295

-1290

-1285

-1280

A
cc

u
ra

cy

L
o
g
 lik

elih
o
o
d

Number of random restarts

Log likelihood
Accuracy

Figure 2: Synth 340 cipher. Accuracy by best model score and
best model score vs. number of random restarts. Bootstrapped
from 1M random restarts.

3.3 A Hard Cipher: Synth 340

What do these graphs look like for a harder cipher?
Zodiac 340 is the second cipher released by the Zo-
diac killer, and it remains unsolved to this day. How-
ever, it is unknown whether Zodiac 340 is actually a
homophonic cipher. If it were a homophonic cipher
we would certainly expect it to be harder than Zo-
diac 408 because Zodiac 340 is shorter (only 340
characters long) and at the same time has more ci-
pher symbols: 63. For our next experiment we gen-
erate a cipher, which we call Synth 340, to match
properties of Zodiac 340; later we will generate mul-
tiple such ciphers.

We sample a random consecutive sequence of 340
characters from our small Zodiac corpus and use
this as our message (and, of course, remove this se-
quence from our language model training data). We
then generate an encryption key by assigning each
of 63 cipher symbols to a single plain text charac-
ter so that the number of cipher symbols mapped to
each plaintext character is proportional to the fre-
quency of that character in the message (this bal-
ancing makes the cipher more difficult). Finally, we
generate the actual ciphertext by randomly sampling
a cipher token for each plain text token uniformly at
random from the cipher symbols allowed for that to-
ken under our generated key.

In Figure 2, we display the same type of plot, this
time for Synth 340. For this cipher, there is an abso-
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snippet of a decode. The gold snippet is “beautiful.”

lute gain in accuracy of about 9% between 100 ran-
dom restarts and 100K random restarts. A similarly
large gain is seen for model score as we scale up the
number of restarts. This means that, even after tens
of thousands of random restarts, EM is still finding
new local optima with better likelihoods. It also ap-
pears that, even for a short cipher like Synth 340,
likelihood and accuracy are reasonably coupled.

We can visualize the distribution of local optima
encountered by EM across 1M random restarts by
plotting a histogram. Figure 3 shows, for each range
of likelihood, the number of random restarts that
led to a local optimum with a model score in that
range. It is quickly visible that a few model scores
are substantially more likely than all the rest. This
kind of sparsity might be expected if there were
a small number of local optima that EM was ex-
tremely likely to find. We can check whether the
peaks of this histogram each correspond to a single
local optimum or whether each is composed of mul-
tiple local optima that happen to have the same like-
lihood. For the histogram bucket corresponding to a
particular peak, we compute the average relative dif-
ference between each multinomial parameter and its
mean. The average relative difference for the highest
peak in Figure 3 is 0.8%, and for the second highest
peak is 0.3%. These values are much smaller than
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Figure 4: Zodiac 340 cipher. Histogram of the likelihoods of the
local optima encountered by EM across 1M random restarts.

the average relative difference between the means of
these two peaks, 40%, indicating that the peaks do
correspond to single local optima or collections of
extremely similar local optima.

There are several very small peaks that have the
highest model scores (the peak with the highest
model score has a frequency of 90 which is too
small to be visible in Figure 3). The fact that these
model scores are both high and rare is the reason we
continue to see improvements to both accuracy and
model score as we run numerous random restarts.
The two tallest peaks and the peak with highest
model score are labeled with their average accuracy
and a small snippet of a decode in Figure 3. The
gold snippet is the word “beautiful.”

3.4 An Unsolved Cipher: Zodiac 340

In a final experiment, we look at the Zodiac 340
cipher. As mentioned, this cipher has never been
cracked and may not be a homphonic cipher or even
a valid cipher of any kind. The reading order of
the cipher, which consists of a grid of symbols, is
unknown. We make two arguments supporting the
claim that Zodiac 340 is not a homophonic cipher
with row-major reading order: the first is statistical,
based on the success rate of attempts to crack similar
synthetic ciphers; the second is qualitative, compar-
ing distributions of local optimum likelihoods.

If Zodiac 340 is a homophonic cipher should we
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expect to crack it? In order to answer this question
we generate 100 more ciphers in the same way we
generated Synth 340. We use 10K random restarts to
attack each cipher, and compute accuracies by best
model score. The average accuracy across these 100
ciphers was 75% and the minimum accuracy was
36%. All but two of the ciphers were deciphered
with more than 51% accuracy, which is usually suf-
ficient for a human to identify a decode as partially
correct.

We attempted to crack Zodiac 340 using a row-
major reading order and 1M random restarts, but the
decode with best model score was nonsensical. This
outcome would be unlikely if Zodiac 340 were like
our synthetic ciphers, so Zodiac 340 is probably not
a homophonic cipher with a row-major order. Of
course, it could be a homophonic cipher with a dif-
ferent reading order. It could also be the case that
a large number of salt tokens were inserted, or that
some other assumption is incorrect.

In Figure 4, we show the histogram of model
scores for the attempt to crack Zodiac 340. We note
that this histogram is strikingly different from the
histogram for Synth 340. Zodiac 340’s histogram is
not as sparse, and the range of model scores is much
smaller. The sparsity of Synth 340’s histogram (but
not Zodiac 340’s histogram) is typical of histograms
corresponding to our set of 100 generated ciphers.

4 Conclusion

Random restarts, often considered a footnote of ex-
perimental design, can indeed be useful on scales
beyond that generally used in past work. In particu-
lar, we found that the initializations that lead to the
local optima with highest likelihoods are sometimes
very rare, but finding them can be worthwhile; for
the problems we looked at, local optima with high
likelihoods also achieved high accuracies. While the
present experiments are on a very specific unsuper-
vised learning problem, it is certainly reasonable to
think that large-scale random restarts have potential
more broadly.

In addition to improving search, large-scale
restarts can also provide a novel perspective when
performing exploratory analysis, here letting us ar-
gue in support for the hypothesis that Zodiac 340 is
not a row-major homophonic cipher.
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Abstract

We explore a model of stress prediction
in Russian using a combination of lo-
cal contextual features and linguistically-
motivated features associated with the
word’s stem and suffix. We frame this
as a ranking problem, where the objec-
tive is to rank the pronunciation with the
correct stress above those with incorrect
stress. We train our models using a simple
Maximum Entropy ranking framework al-
lowing for efficient prediction. An empir-
ical evaluation shows that a model com-
bining the local contextual features and
the linguistically-motivated non-local fea-
tures performs best in identifying both
primary and secondary stress.

1 Introduction

In many languages, one component of accu-
rate word pronunciation prediction is predict-
ing the placement of lexical stress. While in
some languages (e.g. Spanish) the lexical stress
system is relatively simple, in others (e.g. En-
glish, Russian) stress prediction is quite compli-
cated. Much as with other work on pronuncia-
tion prediction, previous work on stress assign-
ment has fallen into two camps, namely systems
based on linguistically motivated rules (Church,
1985, for example) and more recently data-
driven techniques where the models are derived
directly from labeled training data (Dou et al.,
2009). In this work, we present a machine-
learned system for predicting Russian stress

which incorporates both data-driven contextual
features as well as linguistically-motivated word
features.

2 Previous Work on Stress
Prediction

Pronunciation prediction, of which stress pre-
diction is a part, is important for many speech
applications including automatic speech recog-
nition, text-to-speech synthesis, and translit-
eration for, say, machine translation. While
there is by now a sizable literature on pro-
nunciation prediction from spelling (often
termed “grapheme-to-phoneme” conversion),
work that specifically focuses on stress predic-
tion is more limited. One of the best-known
early pieces of work is (Church, 1985), which
uses morphological rules and stress pattern
templates to predict stress in novel words. An-
other early piece of work is (Williams, 1987).

The work we present here is closer in spirit to
data-driven approaches such as (Webster, 2004;
Pearson et al., 2000) and particularly (Dou et
al., 2009), whose features we use in the work
described below.

3 Russian Stress Patterns

Russian stress preserves many features of Indo-
European accenting patterns (Halle, 1997). In
order to know the stress of a morphologically
complex word consisting of a stem plus a suf-
fix, one needs to know if the stem has an accent,
and if so on what syllable; and similarly for the
suffix. For words where the stem is accented,
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acc unacc postacc
Dat Sg гор'оху г'ороду корол'ю

gor’oxu g’orodu korolj’u
Dat Pl гор'охам город'ам корол'ям

gor’oxam gorod’am korolj’am
’pea’ ’town’ ’king’

Table 1: Examples of accented, unaccented and
postaccented nouns in Russian, for dative singular
and plural forms.

this accent overrides any accent that may oc-
cur on the suffix. With unaccented stems, if
the suffix has an accent, then stress for the
whole word will be on the suffix; if there is
also no stress on the suffix, then a default rule
places stress on the first syllable of the word.
In addition to these patterns, there are also
postaccented words, where accent is placed uni-
formly on the first syllable of the suffix — an
innovation of East and South Slavic languages
(Halle, 1997). These latter cases can be handled
by assigning an accent to the stem, indicating
that it is associated with the syllable after the
stem. Some examples of each of these classes,
from (Halle, 1997, example 11), are given in
Table 1. According to Halle (1997), consid-
ering just nouns, 91.6% are accented (on the
stem), 6.6% are postaccented and 0.8% are un-
accented, with about 1.0% falling into other
patterns.

Stress placement in Russian is important for
speech applications since over and above the
phonetic effects of stress itself (prominence, du-
ration, etc.), the position of stress strongly in-
fluences vowel quality. To take an example
of the lexically unaccented noun город gorod
‘city’, the genitive singular г'орода g’oroda
/g"Or@d@/ contrasts with the nominative plural
город'а gorod’a /g@r2d"a/. All non-stressed
/a/ are reduced to schwa — or by most ac-
counts if before the stressed syllable to /2/; see
(Wade, 1992).

The stress patterns of Russian suggest that
useful features for predicting stress might in-
clude (string) prefix and suffix features of the
word in order to capture properties of the stem,

since some stems are (un)accented, or of the
suffix, since some suffixes are accented.

4 Maximum Entropy Rankers

Similarly to Dou et al. (2009), we frame the
stress prediction problem as a ranking problem.
For each word, we identify stressable vowels and
generate a set of alternatives, each represent-
ing a different primary stress placement. Some
words also have secondary stress which, if it oc-
curs, always occurs before the primary stressed
syllable. For each primary stress alternative,
we generate all possible secondary stressed al-
ternatives, including an alternative that has no
secondary stress. (In the experiments reported
below we actually consider two conditions: one
where we ignore secondary stress in training
and evaluation; and one where we include it.)

Formally, we model the problem using a Max-
imum Entropy ranking framework similar to
that presented in Collins and Koo (2005). For
each example, xi, we generate the set of possible
stress patterns Yi. Our goal is to rank the items
in Yi such that all of the valid stress patterns
Y∗

i are above all of the invalid stress patterns.
Our objective function is the likelihood, L of
this conditional distribution:

L =
∏

i

p(Y∗
i |Yi, xi) (1)

logL =
∑

i

log p(Y∗
i |Yi, xi) (2)

=
∑

i

log

∑
y′∈Y∗

i
e
∑

k θkfk(y′,x)

Z
(3)

Z is defined as the sum of the conditional like-
lihood over all hypothesized stress predictions
for example xi:

Z =
∑

y′′∈Yi

e
∑

k θkfk(y′′,x) (4)

The objective function in Equation 3 can be
optimized using a gradient-based optimization.
In our case, we use a variety of stochastic gra-
dient descent (SGD) which can be parallelized
for efficient training.

During training, we provide all plausibly cor-
rect primary stress patterns as the positive set
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Y∗
i . At prediction-time, we evaluate all possi-

ble stress predictions and pick the one with the
highest score under the trained model Θ:

arg max
y′∈Yi

p(y′|Yi) = arg max
y′∈Yi

∑
k

θkfk(y
′, x) (5)

The primary motivation for using Maximum
Entropy rather the ranking-SVM is for efficient
training and inference. Under the above Max-
imum Entropy model, we apply a linear model
to each hypothesis (i.e., we compute the dot-
product) and sort according to this score. This
makes inference (prediction) fast in comparison
to the ranking SVM-based approach proposed
in Dou et al. (2009).

All experiments presented in this paper used
the Iterative Parameter Mixtures distributed
SGD training optimizer (Hall et al., 2010). Un-
der this training approach, per-iteration aver-
aging has a regularization-like effect for sparse
feature spaces. We also experimented with L1-
regularization, but it offered no additional im-
provements.

5 Features

The features used in (Dou et al., 2009) are
based on trigrams consisting of a vowel letter,
the preceding consonant letter (if any) and the
following consonant letter (if any). Attached
to each trigram is the stress level of the tri-
gram’s vowel — 1, 2 or 0 (for no stress). For
the English word overdo with the stress pattern
2-0-1, the basic features would be ov:2, ver:0,
and do:1. Notating these pairs as si : ti, where
si is the triple, ti is the stress pattern and i is
the position in the word, the complete feature
set is given in Table 2, where the stress pat-
tern for the whole word is given in the last row
as t1t2...tN . Dou and colleagues use an SVM-
based ranking approach, so they generated fea-
tures for all possible stress assignments for each
word, assigning the highest rank to the correct
assignment. The ranker was then trained to
associate feature combinations to the correct
ranking of alternative stress possibilities.

Given the discussion in Section 3, plausible
additional features are all prefixes and suffixes

Substring si, ti
si, i, ti

Context si1, ti
si1si, ti
si+1, ti
sisi+1, ti
si1sisi+1, ti

Stress Pattern t1t2...tN

Table 2: Features used in (Dou et al., 2009, Table 2).

vowel а,е,и,о,у,э,ю,я,ы
stop б,д,г,п,т,к
nasal м,н
fricative ф,с,ш,щ,х,з,ж
hard/soft ъ,ь
yo ё
semivowel й,в
liquid р,л
affricate ц,ч

Table 3: Abstract phonetic classes used for con-
structing “abstract” versions of a word. Note that
etymologically, and in some ways phonologically, в
v behaves like a semivowel in Russian.

of the word, which might be expected to better
capture some of the properties of Russian stress
patterns discussed above, than the much more
local features from (Dou et al., 2009). In this
case for all stress variants of the word we collect
prefixes of length 1 through the length of the
word, and similarly for suffixes, except that for
the stress symbol we treat that together with
the vowel it marks as a single symbol. Thus for
the word gorod’a, all prefixes of the word would
be g, go, gor, goro, gorod, gorod’a.

In addition, we include prefixes and suffixes
of an “abstract” version of the word where most
consonants and vowels have been replaced by
a phonetic class. The mappings for these are
shown in Table 3.

Note that in Russian the vowel ё /jO/ is al-
ways stressed, but is rarely written in text: it
is usually spelled as е, whose stressed pronun-
cation is /(j)E/. Since written е is in general
ambiguous between е and ё, when we compute
stress variants of a word for the purpose of rank-
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ing, we include both variants that have е and
ё.

6 Data

Our data were 2,004,044 fully inflected words
with assigned stress expanded from Zaliznyak’s
Grammatical Dictionary of the Russian Lan-
guage (Zaliznyak, 1977). These were split ran-
domly into 1,904,044 training examples and
100,000 test examples. The 100,000 test ex-
amples obviously contain no forms that were
found in the training data, but most of them
are word forms that derive from lemmata from
which some training data forms are also de-
rived. Given the fact that Russian stress is lex-
ically determined as outlined in Section 3, this
is perfectly reasonable: in order to know how
to stress a form, it is often necessary to have
seen other words that share the same lemma.
Nonetheless, it is also of interest to know how
well the system works on words that do not
share any lemmata with words in the training
data. To that end, we collected a set of 248
forms that shared no lemmata with the train-
ing data. The two sets will be referred to in the
next section as the “shared lemmata” and “no
shared lemmata” sets.

7 Results

Table 4 gives word accuracy results for the dif-
ferent feature combinations, as follows: Dou et
al’s features (Dou et al., 2009); our affix fea-
tures; our affix features plus affix features based
on the abstract phonetic class versions of words;
Dou et al’s features plus our affix features; Dou
et al’s features plus our affix features plus the
abstract affix features.

When we consider only primary stress (col-
umn 2 in Table 4, for the shared-lemmata test
data, Dou et al’s features performed the worst
at 97.2% accuracy, with all feature combina-
tions that include the affix features performing
at the same level, 98.7%. For the no-shared-
lemmata test data, using Dou et al’s features
alone achieved an accuracy of 80.6%. The affix
features alone performed worse, at 79.8%, pre-
sumably because it is harder for them to gener-

Features 1 stress 1+2 stress
shared lemmata

Dou et al 0.972 0.965
Aff 0.987 0.985
Aff+Abstr Aff 0.987 0.985
Dou et al+Aff 0.987 0.986
Dou et al+Aff+Abstr Aff 0.987 0.986

no shared lemmata
Dou et al 0.806 0.798
Aff 0.798 0.782
Aff+Abstr 0.810 0.790
Dou et al+Aff 0.823 0.810
Dou et al+Aff+Abstr Aff 0.839 0.815

Table 4: Word accuracies for various feature combi-
nations for both shared lemmata and no-shared lem-
mata conditions. The second column reports results
where we consider only primary stress, the third col-
umn results where we also predict secondary stress.

alize to unseen cases, but using the abstract af-
fix features increased the performance to 81.0%,
better than that of using Dou et al’s features
alone. As can be seen combining Dou et al’s
features with various combinations of the affix
features improved the performance further.

For primary and secondary stress prediction
(column 3 in the table), the results are over-
all degraded for most conditions but otherwise
very similar in terms of ranking of the fea-
tures to what we find with primary stress alone.
Note though that for the shared-lemmata con-
dition the results with affix features are almost
as good as for the primary-stress-only case,
whereas there is a significant drop in perfor-
mance for the Dou et al. features. For the
no-shared-lemmata condition, Dou et al.’s fea-
tures fare rather better compared to the affix
features. On the other hand there is a sub-
stantial benefit to combining the features, as
the results for “Dou et al+Aff” and “Dou et
al+Aff+Abstr Aff” show. Note that in the
no-shared-lemmata condition, there is only one
word that is marked with a secondary stress,
and that stress is actually correctly predicted
by all methods. Much of the difference between
the Dou et al. features and the affix condition
can be accounted for by three cases involving
the same root, which the affix condition misas-
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signs secondary stress to.

For the shared-lemmata task however there
were a substantial number of differences, as
one might expect given the nature of the fea-
tures. Comparing just the Dou et al. fea-
tures and the all-features condition, system-
atic benefit for the all-features condition was
found for secondary stress assignment for pro-
ductive prefixes where secondary stress is typ-
ically found. For example, the prefix аэро
(‘aero-’) as in а`эродина'мика (‘aerodynam-
ics’) typically has secondary stress. This is usu-
ally missed by the Dou et al. features, but is
uniformly correct for the all-features condition.

Since the no-shared-lemmata data set is
small, we tested significance using two permu-
tation tests. The first computed a distribu-
tion of scores for the test data where succes-
sive single test examples were removed. The
second randomly permuted the test data 248
times, after each random permutation, remov-
ing the first ten examples, and computing the
score. Pairwise t-tests between all conditions
for the primary-stress-only and for the primary
plus secondary stress predictions, were highly
significant in all cases.

We also experimented with a postaccent fea-
ture to model the postaccented class of nouns
described in Section 3. For each prefix of the
word, we record whether the following vowel
is stressed or unstressed. This feature yielded
only very slight improvements, and we do not
report these results here.

8 Discussion

In this paper we have presented a Maximum
Entropy ranking-based approach to Russian
stress prediction. The approach is similar in
spirit to the SVM-based ranking approach pre-
sented in (Dou et al., 2009), but incorporates
additional affix-based features, which are moti-
vated by linguistic analyses of the problem. We
have shown that these additional features gen-
eralize better than the Dou et al. features in
cases where we have seen a related form of the
test word, and that combing the additional fea-
tures with the Dou et al. features always yields

an improvement.

References

Kenneth Church. 1985. Stress assignment in letter
to sound rules for speech synthesis. In Associ-
ation for Computational Linguistics, pages 246–
253.

Michael Collins and Terry Koo. 2005. Discrim-
inative reranking for natural language parsing.
Computational Linguistics, 31:25–69, March.

Qing Dou, Shane Bergsma, Sittichai Jiampojamarn,
and Grzegorz Kondrak. 2009. A ranking ap-
proach to stress prediction for letter-to-phoneme
conversion. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP, pages
118–126, Suntec, Singapore, August. Association
for Computational Linguistics.

Keith B. Hall, Scott Gilpin, and Gideon Mann.
2010. Mapreduce/bigtable for distributed opti-
mization. In Neural Information Processing Sys-
tems Workshop on Leaning on Cores, Clusters,
and Clouds.

Morris Halle. 1997. On stress and accent in Indo-
European. Language, 73(2):275–313.

Steve Pearson, Roland Kuhn, Steven Fincke, and
Nick Kibre. 2000. Automatic methods for lexical
stress assignment and syllabification. In Interna-
tional Conference on Spoken Language Process-
ing, pages 423–426.

Terence Wade. 1992. A Comprehensive Russian
Grammar. Blackwell, Oxford.

Gabriel Webster. 2004. Improving letter-
to-pronunciation accuracy with automatic
morphologically-based stress prediction. In
International Conference on Spoken Language
Processing, pages 2573–2576.

Briony Williams. 1987. Word stress assignment
in a text-to-speech synthesis system for British
English. Computer Speech and Language, 2:235–
272.

Andrey Zaliznyak. 1977. Grammaticheskij slovar’
russkogo jazyka. Russkiy Yazik, Moscow.

883



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 884–890,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Scaling to Large3 Data: An efficient and effective method
to compute Distributional Thesauri

Martin Riedl and Chris Biemann
FG Language Technology

Computer Science Department, Technische Universität Darmstadt
Hochschulstrasse 10, D-64289 Darmstadt, Germany

{riedl,biem}@cs.tu-darmstadt.de

Abstract

We introduce a new highly scalable approach
for computing Distributional Thesauri (DTs).
By employing pruning techniques and a dis-
tributed framework, we make the computation
for very large corpora feasible on comparably
small computational resources. We demon-
strate this by releasing a DT for the whole vo-
cabulary of Google Books syntactic n-grams.
Evaluating against lexical resources using two
measures, we show that our approach pro-
duces higher quality DTs than previous ap-
proaches, and is thus preferable in terms of
speed and quality for large corpora.

1 Introduction

Using larger data to estimate models for machine
learning applications as well as for applications of
Natural Language Processing (NLP) has repeatedly
shown to be advantageous, see e.g. (Banko and
Brill, 2001; Brants et al., 2007). In this work, we
tackle the influence of corpus size for building a
distributional thesaurus (Lin, 1998). Especially, we
shed light on the interaction of similarity measures
and corpus size, as well as aspects of scalability.

We shortly introduce the JoBimText framework
for distributional semantics and show its scalability
for large corpora. For the computation of the data
we follow the MapReduce (Dean and Ghemawat,
2004) paradigm. The computation of similarities
between terms becomes challenging on large cor-
pora, as both the numbers of terms to be compared
and the number of context features increases. This
makes standard similarity calculations as proposed
in (Lin, 1998; Curran, 2002; Lund and Burgess,
1996; Weeds et al., 2004) computationally infeasi-

ble. These approaches first calculate an informa-
tion measure between each word and the accord-
ing context and then calculate the similarity between
all words, based on the information measure for all
shared contexts.

2 Related Work

A variety of approaches to compute DTs have been
proposed to tackle issues regarding size and run-
time. The reduction of the feature space seems to
be one possibility, but still requires the computation
of such reduction cf. (Blei et al., 2003; Golub and
Kahan, 1965). Other approaches use randomised in-
dexing for storing counts or hashing functions to ap-
proximate counts and measures (Gorman and Cur-
ran, 2006; Goyal et al., 2010; Sahlgren, 2006). An-
other possibility is the usage of distributed process-
ing like MapReduce. In (Pantel et al., 2009; Agirre
et al., 2009) a DT is computed using MapReduce
on 200 quad core nodes (for 5.2 billion sentences)
respectively 2000 cores (1.6 Terawords), an amount
of hardware only available to commercial search en-
gines. Whereas Agirre uses a χ2 test to measure the
information between terms and context, Pantel uses
the Pointwise Mutual Information (PMI). Then, both
approaches use the cosine similarity to calculate the
similarity between terms. Furthermore, Pantel de-
scribes an optimization for the calculation of the co-
sine similarity. Whereas Pantel and Lin (2002) de-
scribe a method for sense clustering, they also use
a method to calculate similarities between terms.
Here, they propose a pruning scheme similar to ours,
but do not explicitly evaluate its effect.

The evaluation of DTs has been performed in ex-
trinsic and intrinsic manner. Extrinsic evaluations
have been performed using e.g. DTs for automatic
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set expansion (Pantel et al., 2009) or phrase polar-
ity identification (Goyal and Daumé, 2011). In this
work we will concentrate on intrinsic evaluations:
Lin (1997; 1998) introduced two measures using
WordNet (Miller, 1995) and Roget’s Thesaurus. Us-
ing WordNet, he defines context features (synsets a
word occurs in Wordnet or subsets when using Ro-
get’s Thesaurus) and then builds a gold standard the-
saurus using a similarity measure. Then he evaluates
his generated Distributional Thesaurus (DT) with re-
spect to the gold standard thesauri. Weeds et al.
(2004) evaluate various similarity measures based
on 1000 frequent and 1000 infrequent words. Curran
(2004) created a gold standard thesaurus by manu-
ally extracting entries from several English thesauri
for 70 words. His automatically generated DTs are
evaluated against this gold standard thesaurus using
several measures. We will report on his measure and
additionally propose a measure based on WordNet
paths.

3 Building a Distributional Thesaurus

Here we present our scalable DT algorithm using
the MapReduce paradigm, which is divided into
two parts: The holing system and a computational
method to calculate distributional similarities. A
more detailed description, especially for the MapRe-
duce steps, can be found in (Biemann and Riedl,
2013).

3.1 Holing System

The holing operation splits an observation (e.g. a
dependency relation) into a pair of two parts: a
term and a context feature. This captures their first-
order relationship. These pairs are subsequently
used for the computation of the similarities between
terms, leading to a second-order relation. The rep-
resentation can be formalized by the pair <x,y>
where x is the term and y represents the context
feature. The position of x in y is denoted by the
hole symbol ’@’. As an example the dependency
relation (nsub;gave2;I1) could be transferred to
<gave2,(nsub;@;I1)> and <I1,(nsub;gave2;@)>.
This representation scheme is more generic then the
schemes introduced in (Lin, 1998; Curran, 2002),
as it allows to characterise pairs by several holes,
which could be used to learn analogies, cf. (Turney

and Littman, 2005).

3.2 Distributional Similarity
First, we count the frequency for each first-order
relation and remove all features that occur with
more than w terms, as these context features tend to
be too general to characterise the similarity between
other words (Rychlý and Kilgarriff, 2007; Goyal
et al., 2010, cmp.). From this. we calculate a sig-
nificance score for all first-order relations. For this
work, we implemented two different significance
measures: Pointwise Mutual Information (PMI):
PMI(term, feature) = log2(

f(term,feature)
f(term)f(feature))

(Church and Hanks, 1990) and Lexicographer’s Mu-
tual Information (LMI): LMI(term, feature) =
f(term, feature) log2(

f(term,feature)
f(term)f(feature)) (Evert,

2005).
We then prune all negatively correlated pairs

(s<0). The maximum number of context features
per term are defined with p, as we argue that it is
sufficient to keep only the p most salient (ordered
descending by their significance score) context fea-
tures per term. Features of low saliency generally
should not contribute much to the similarity of terms
and also could lead to spurious similarity scores. Af-
terwards, all terms are aggregated by their features,
which allows us to compute similarity scores be-
tween all terms that share at least one such feature.

Whereas the method introduced by (Pantel and
Lin, 2002) is very similar to the one proposed in
this paper (the similarity between terms is calculated
solely by the number of features two terms share),
they use PMI to rank features and do not use pruning
to scale to large corpora, as they use a rather small
corpus. Additionally, they do not evaluate the effect
of such pruning.

In contrast to the best measures proposed by Lin
(1998; Curran (2002; Pantel et al. (2009; Goyal et
al. (2010) we do not calculate any information mea-
sure using frequencies of features and terms (we use
significance ranking instead), as shown in Table 1.

Additionally, we avoid any similarity measure-
ment using the information measure, as also done in
these approaches, to calculate the similarity over the
feature counts of each term: we merely count how
many salient features two terms share. All these con-
straints makes this approach more scalable to larger
corpora, as we do not need to know the full list of
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Information Measures
Lin’s formula I(term, feature) = lin(term, feature) = log f(term,feature)∗f(relation(feature))P

(f(word,relation(feature))f(word)

Curran’s TTest I(term, feature) = ttest(term, feature) = p(term,feature)−p(feature)∗p(term)√
p(feature)∗p(term)

Similarity Measures

Lin’s formula sim(t1, t2) =
P

f∈features(t1)∩features(t2)(I(t1,f)+I(t2,f))P
f∈features(t1) I(t1,f)+

P
f∈features(w2) I(w2,f)

Curran’s Dice sim(t1, t2) =
P

f∈features(t1)∩features(t2) min(I(t1,f),I(t2,f))P
f∈features(t1)∩features(t2)(I(t1,f)+I(t2,f))

with I(t, f) > 0

Our Measure sim(t1, t2) =
∑

f∈features(t1)∩features(t2) 1 with s > 0

Table 1: Similarity measures used for computing the distributional similarity between terms.

features for a term pair at any time. While our com-
putations might seem simplistic, we demonstrate its
adequacy for large corpora in Section 5.

4 Evaluation

The evaluation is performed using a recent dump of
English Wikipedia, containing 36 million sentences
and a newspaper corpus, compiled from 120 million
sentences (about 2 Gigawords) from Leipzig Cor-
pora Collection (Richter et al., 2006) and the Giga-
word corpus (Parker et al., 2011). The DTs are based
on collapsed dependencies from the Stanford Parser
(Marneffe et al., 2006) in the holing operation. For
all DTs we use the pruning parameters s=0, p=1000
and w=1000. In a final evaluation, we use the syn-
tactic n-grams built from Google Books (Goldberg
and Orwant, 2013).

To show the impact of corpus size, we down-
sampled our corpora to 10 million, 1 million and
100,000 sentences. We compare our results against
DTs calculated using Lin’s (Lin, 1998) measure and
the best measure proposed by Curran (2002) (see Ta-
ble 1).

Our evaluation is performed using the same 1000
frequent and 1000 infrequent nouns as previously
employed by Weeds et al. (2004). We create a gold
standard, by extracting reasonable entries of these
2000 nouns using Roget’s 1911 thesaurus, Moby
Thesaurus, Merriam Webster’s Thesaurus, the Big
Huge Thesaurus and the OpenOffice Thesaurus and
employ the inverse ranking measure (Curran, 2002)
to evaluate the DTs.

Furthermore, we introduce a WordNet-based
method. To calculate the similarity between two
terms, we use the WordNet::Similarity path (Peder-
sen et al., 2004) measure. While its absolute scores
are hard to interpret due to inhomogenity in the gran-

ularity of WordNet, they are well-suited for relative
comparison. The score between two terms is in-
versely proportional to the shortest path between all
the synsets of both terms. The highest possible score
is one, if two terms share a synset. We compare the
average score of the top five (or ten) entries in the
DT for each of the 2000 selected words for our com-
parison.

5 Results

First, we inspect the results of Curran’s measure us-
ing the Wikipedia and newspaper corpus for the fre-
quent nouns, shown in Figure 1.

Both graphs show the inverse ranking score
against the size of the corpus. Our method scores
consistently higher when using LMI instead of PMI
for ranking the features per term. The PMI measure
declines when the corpus becomes larger. This can
be attributed to the fact that PMI favors term-context
pairs involving rare contexts (Bordag, 2008). Com-
puting similarities between terms should not be per-
formed on the basis of rare contexts, as these do not
generalize well because of their sparseness.

All other measures improve with larger corpora.
It is surprising that recent works use PMI to calcu-
late similarities between terms (Goyal et al., 2010;
Pantel et al., 2009), who, however evaluate their ap-
proach only with respect to their own implementa-
tion or extrinsically, and do not prune on saliency.
Apart from the PMI measure, Curran’s measure
leads to the weakest results. We could not confirm
that his measure outperforms Lin’s measure as stated
in (Curran, 2002)1. An explanation for this results

1Regarding Curran’s Dice formula, it is not clear whether to
use the intersection or the union of the features. We use an inter-
section, as it is unclear how to interpret the minimum function
otherwise, and the alternatives performed worse.
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Figure 1: Inverse ranking for 1000 frequent nouns (Wikipedia left, Newspaper right) for different sized corpora. The
4 lines represent the scores of following DTs: our method using LMI (dashed black line) and the PMI significance
measure (solid black line) and Curran’s (dash bray line) and Lin’s measure (solid tray line).

might be the use of a different parser, very few test
words and also a different gold standard thesaurus
in his evaluation. Comparing our method using LMI
to Lin’s method, we achieve lower scores with our
method using small corpora, but surpass Lin’s mea-
sure from 10 million sentences onwards.

Next, we show the results of the WordNet eval-
uation measure in Figure 2. Comparing the top 10
(upper) to the top 5 words (lower) used for the eval-
uation, we can observe higher scores for the top 5
words, which validates the ranking. These results
are highly correlated to the results achieved with the
inverse ranking measure. This is a positive result,
as the WordNet measure can be performed automat-
ically using a single public resource2. In Figure 3,
we show results for the 1000 infrequent nouns using
the inverse ranking (upper) and the WordNet mea-
sure (lower).

We can see that our method using PMI does not
decline for larger corpora, as the limit on first-order
features is not reached and frequent features are still
being used. Comparing our LMI DT is en par with
Lin’s measure for 10 million sentences, and makes
better use of large data when using the complete
dataset. Again, the inverse ranking and the Word-
Net Path measure are highly correlated.

2Building a gold standard thesaurus following Curran
(2002) needs access to all the used thesauri. Whereas for some,
programming interfaces exist, often with limited access and li-
cence restrictions, others have to be extracted manually.

Figure 2: Results, using the WordNet:Path measure for
frequent nouns using the newspaper corpus.
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Figure 3: WordNet::Path results for 1000 infrequent
nouns

The results shown here validate our pruning ap-
proach. Whereas Lin and Curran propose ap-
proaches to filter features that have low word feature
scores, they do not remove features that occur with
too many words, which is done in this work. Using
these pruning steps, a simplistic similarity measure
does not only lead to reduced computation times, but
also to better results, when using larger corpora.

5.1 Using a large3 corpus

We demonstrate the scalability of our method using
the very large Google Books dataset (Goldberg and
Orwant, 2013), consisting of dependencies extracted
from 17.6 billion sentences. The evaluation results,
using different measures, are given in Table 2.

Comparing the results for the Google Books DT
to the ones achieved using Wikipedia and the news-

Corpus Inv. P@1 Path@5 Path@10

frequent
nouns

Newspaper 2.0935 0.709 0.3277 0.2906
Wikipedia 2.1213 0.703 0.3365 0.2968
Google Books 2.3171 0.764 0.3712 0.3217

infrequent
nouns

Newspaper 1.4097 0.516 0.2577 0.2269
Wikipedia 1.3832 0.514 0.2565 0.2265
Google Books 1.8125 0.641 0.2989 0.2565

Table 2: Comparing results for different corpora.

paper, we can observe a boost in the performance,
both for the inverse ranking and the WordNet mea-
sures. Additionally, we show results for the P@1
measure, which indicates the percentage of entries,
whose first entry is in the gold standard thesaurus.
Remarkably, we get a P@1 against our gold stan-
dard thesaurus of 76% for frequent and 64% for in-
frequent nouns using the Google Books DT.

The most computation time was needed for the
dependency parsing and took two weeks on a small
cluster (64 cores on 8 nodes) for the 120 million
Newspaper sentences. The DT for the Google Books
was calculated in under 30 hours on a Hadoop clus-
ter (192 cores on 16 nodes) and could be calculated
within 10 hours for the Newspaper corpus. The com-
putation of a DT using this huge corpus would be in-
tractable with standard vector-based measurements.
Even computing Lin’s and Curran’s vector-based
similarity measure for the whole vocabulary of the
newspaper corpus was not possible with our Hadoop
cluster, as too much memory would have been re-
quired and thus we computed similarities only for
the 2000 test nouns on a server with 92GB of main
memory.

6 Conclusion

We have introduced a highly scalable approach
to DT computation and showed its adequacy for
very large corpora. Evaluating against thesauri and
WordNet, we demonstrated that our similarity mea-
sure yields better-quality DTs and scales to corpora
of billions of sentences, even on comparably small
compute clusters. We achieve this by a number of
pruning operations, and distributed processing. The
framework and the DTs for Google Books, News-
paper and Wikipedia are available online3 under the
ASL 2.0 licence.

3https://sf.net/projects/jobimtext/
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Abstract

Matrix and tensor factorization have been ap-
plied to a number of semantic relatedness
tasks, including paraphrase identification. The
key idea is that similarity in the latent space
implies semantic relatedness. We describe
three ways in which labeled data can im-
prove the accuracy of these approaches on
paraphrase classification. First, we design
a new discriminative term-weighting metric
called TF-KLD, which outperforms TF-IDF.
Next, we show that using the latent repre-
sentation from matrix factorization as features
in a classification algorithm substantially im-
proves accuracy. Finally, we combine latent
features with fine-grained n-gram overlap fea-
tures, yielding performance that is 3% more
accurate than the prior state-of-the-art.

1 Introduction

Measuring the semantic similarity of short units
of text is fundamental to many natural language
processing tasks, from evaluating machine transla-
tion (Kauchak and Barzilay, 2006) to grouping re-
dundant event mentions in social media (Petrović
et al., 2010). The task is challenging because of
the infinitely diverse set of possible linguistic real-
izations for any idea (Bhagat and Hovy, 2013), and
because of the short length of individual sentences,
which means that standard bag-of-words representa-
tions will be hopelessly sparse.

Distributional methods address this problem by
transforming the high-dimensional bag-of-words
representation into a lower-dimensional latent space.

This can be accomplished by factoring a matrix
or tensor of term-context counts (Turney and Pan-
tel, 2010); proximity in the induced latent space
has been shown to correlate with semantic similar-
ity (Mihalcea et al., 2006). However, factoring the
term-context matrix means throwing away a consid-
erable amount of information, as the original ma-
trix of size M ×N (number of instances by number
of features) is factored into two smaller matrices of
size M ×K and N ×K, with K � M, N . If the
factorization does not take into account labeled data
about semantic similarity, important information can
be lost.

In this paper, we show how labeled data can con-
siderably improve distributional methods for mea-
suring semantic similarity. First, we develop a
new discriminative term-weighting metric called
TF-KLD, which is applied to the term-context ma-
trix before factorization. On a standard paraphrase
identification task (Dolan et al., 2004), this method
improves on both traditional TF-IDF and Weighted
Textual Matrix Factorization (WTMF; Guo and
Diab, 2012). Next, we convert the latent repre-
sentations of each sentence pair into a feature vec-
tor, which is used as input to a linear SVM clas-
sifier. This yields further improvements and sub-
stantially outperforms the current state-of-the-art
on paraphrase classification. We then add “fine-
grained” features about the lexical similarity of the
sentence pair. The combination of latent and fine-
grained features yields further improvements in ac-
curacy, demonstrating that these feature sets provide
complementary information on semantic similarity.
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2 Related Work

Without attempting to do justice to the entire lit-
erature on paraphrase identification, we note three
high-level approaches: (1) string similarity metrics
such as n-gram overlap and BLEU score (Wan et
al., 2006; Madnani et al., 2012), as well as string
kernels (Bu et al., 2012); (2) syntactic operations
on the parse structure (Wu, 2005; Das and Smith,
2009); and (3) distributional methods, such as la-
tent semantic analysis (LSA; Landauer et al., 1998),
which are most relevant to our work. One appli-
cation of distributional techniques is to replace in-
dividual words with distributionally similar alterna-
tives (Kauchak and Barzilay, 2006). Alternatively,
Blacoe and Lapata (2012) show that latent word rep-
resentations can be combined with simple element-
wise operations to identify the semantic similarity
of larger units of text. Socher et al. (2011) pro-
pose a syntactically-informed approach to combine
word representations, using a recursive auto-encoder
to propagate meaning through the parse tree.

We take a different approach: rather than repre-
senting the meanings of individual words, we di-
rectly obtain a distributional representation for the
entire sentence. This is inspired by Mihalcea et al.
(2006) and Guo and Diab (2012), who treat sen-
tences as pseudo-documents in an LSA framework,
and identify paraphrases using similarity in the la-
tent space. We show that the performance of such
techniques can be improved dramatically by using
supervised information to (1) reweight the individ-
ual distributional features and (2) learn the impor-
tance of each latent dimension.

3 Discriminative feature weighting

Distributional representations (Turney and Pantel,
2010) can be induced from a co-occurrence ma-
trix W ∈ RM×N , where M is the number of in-
stances and N is the number of distributional fea-
tures. For paraphrase identification, each instance
is a sentence; features may be unigrams, or may
include higher-order n-grams or dependency pairs.
By decomposing the matrix W, we hope to obtain
a latent representation in which semantically-related
sentences are similar. Singular value decomposition
(SVD) is traditionally used to perform this factoriza-
tion. However, recent work has demonstrated the ro-

bustness of nonnegative matrix factorization (NMF;
Lee and Seung, 2001) for text mining tasks (Xu et
al., 2003; Arora et al., 2012); the difference from
SVD is the addition of a non-negativity constraint
in the latent representation based on non-orthogonal
basis.

While W may simply contain counts of distribu-
tional features, prior work has demonstrated the util-
ity of reweighting these counts (Turney and Pantel,
2010). TF-IDF is a standard approach, as the inverse
document frequency (IDF) term increases the impor-
tance of rare words, which may be more discrimi-
native. Guo and Diab (2012) show that applying a
special weight to unseen words can further improve-
ment performance on paraphrase identification.

We present a new weighting scheme, TF-KLD,
based on supervised information. The key idea is
to increase the weights of distributional features that
are discriminative, and to decrease the weights of
features that are not. Conceptually, this is similar
to Linear Discriminant Analysis, a supervised fea-
ture weighting scheme for continuous data (Murphy,
2012).

More formally, we assume labeled sentence pairs
of the form 〈~w(1)

i , ~w
(2)
i , ri〉, where ~w

(1)
i is the bi-

narized vector of distributional features for the first
sentence, ~w

(2)
i is the binarized vector of distribu-

tional features for the second sentence, and ri ∈
{0, 1} indicates whether they are labeled as a para-
phrase pair. Assuming the order of the sentences
within the pair is irrelevant, then for k-th distribu-
tional feature, we define two Bernoulli distributions:

• pk = P (w
(1)
ik |w

(2)
ik = 1, ri = 1). This is the

probability that sentence w
(1)
i contains feature

k, given that k appears in w
(2)
i and the two sen-

tences are labeled as paraphrases, ri = 1.

• qk = P (w
(1)
ik |w

(2)
ik = 1, ri = 0). This is the

probability that sentence w
(1)
i contains feature

k, given that k appears in w
(2)
i and the two sen-

tences are labeled as not paraphrases, ri = 0.

The Kullback-Leibler divergence KL(pk||qk) =∑
x pk(x) log pk(x)

qk(x) is then a measure of the discrim-
inability of feature k, and is guaranteed to be non-
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Figure 1: Conditional probabilities for a few hand-
selected unigram features, with lines showing contours
with identical KL-divergence. The probabilities are es-
timated based on the MSRPC training set (Dolan et al.,
2004).

negative.1 We use this divergence to reweight the
features in W before performing the matrix factor-
ization. This has the effect of increasing the weights
of features whose likelihood of appearing in a pair
of sentences is strongly influenced by the paraphrase
relationship between the two sentences. On the other
hand, if pk = qk, then the KL-divergence will be
zero, and the feature will be ignored in the ma-
trix factorization. We name this weighting scheme
TF-KLD, since it includes the term frequency and
the KL-divergence.

Taking the unigram feature not as an example, we
have pk = [0.66, 0.34] and qk = [0.31, 0.69], for a
KL-divergence of 0.25: the likelihood of this word
being shared between two sentence is strongly de-
pendent on whether the sentences are paraphrases.
In contrast, the feature then has pk = [0.33, 0.67]
and qk = [0.32, 0.68], for a KL-divergence of 3.9×
10−4. Figure 1 shows the distributions of these and
other unigram features with respect to pk and 1−qk.
The diagonal line running through the middle of the
plot indicates zero KL-divergence, so features on
this line will be ignored.

1We obtain very similar results with the opposite divergence
KL(qk||pk). However, the symmetric Jensen-Shannon diver-
gence performs poorly.

1 unigram recall
2 unigram precision
3 bigram recall
4 bigram precision
5 dependency relation recall
6 dependency relation precision
7 BLEU recall
8 BLEU precision
9 Difference of sentence length

10 Tree-editing distance

Table 1: Fine-grained features for paraphrase classifica-
tion, selected from prior work (Wan et al., 2006).

4 Supervised classification

While previous work has performed paraphrase clas-
sification using distance or similarity in the latent
space (Guo and Diab, 2012; Socher et al., 2011),
more direct supervision can be applied. Specifically,
we convert the latent representations of a pair of sen-
tences ~v1 and ~v2 into a sample vector,

~s(~v1, ~v2) =
[
~v1 + ~v2, |~v1 − ~v2|

]
, (1)

concatenating the element-wise sum ~v1 +~v2 and ab-
solute difference |~v1 − ~v2|. Note that ~s(·, ·) is sym-
metric, since ~s(~v1, ~v2) = ~s(~v2, ~v1). Given this rep-
resentation, we can use any supervised classification
algorithm.

A further advantage of treating paraphrase as a
supervised classification problem is that we can ap-
ply additional features besides the latent represen-
tation. We consider a subset of features identified
by Wan et al. (2006), listed in Table 1. These fea-
tures mainly capture fine-grained similarity between
sentences, for example by counting specific unigram
and bigram overlap.

5 Experiments

Our experiments test the utility of the TF-
KLD weighting towards paraphrase classification,
using the Microsoft Research Paraphrase Corpus
(Dolan et al., 2004). The training set contains 2753
true paraphrase pairs and 1323 false paraphrase
pairs; the test set contains 1147 and 578 pairs, re-
spectively.

The TF-KLD weights are constructed from only
the training set, while matrix factorizations are per-
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formed on the entire corpus. Matrix factorization on
both training and (unlabeled) test data can be viewed
as a form of transductive learning (Gammerman et
al., 1998), where we assume access to unlabeled test
set instances.2 We also consider an inductive setting,
where we construct the basis of the latent space from
only the training set, and then project the test set
onto this basis to find the corresponding latent rep-
resentation. The performance differences between
the transductive and inductive settings were gener-
ally between 0.5% and 1%, as noted in detail be-
low. We reiterate that the TF-KLD weights are never
computed from test set data.

Prior work on this dataset is described in sec-
tion 2. To our knowledge, the current state-of-the-
art is a supervised system that combines several ma-
chine translation metrics (Madnani et al., 2012), but
we also compare with state-of-the-art unsupervised
matrix factorization work (Guo and Diab, 2012).

5.1 Similarity-based classification

In the first experiment, we predict whether a pair
of sentences is a paraphrase by measuring their co-
sine similarity in latent space, using a threshold for
the classification boundary. As in prior work (Guo
and Diab, 2012), the threshold is tuned on held-out
training data. We consider two distributional feature
sets: FEAT1, which includes unigrams; and FEAT2,
which also includes bigrams and unlabeled depen-
dency pairs obtained from MaltParser (Nivre et al.,
2007). To compare with Guo and Diab (2012), we
set the latent dimensionality to K = 100, which was
the same in their paper. Both SVD and NMF factor-
ization are evaluated; in both cases, we minimize the
Frobenius norm of the reconstruction error.

Table 2 compares the accuracy of a num-
ber of different configurations. The transductive
TF-KLD weighting yields the best overall accu-
racy, achieving 72.75% when combined with non-
negative matrix factorization. While NMF performs
slightly better than SVD in both comparisons, the
major difference is the performance of discrimina-
tive TF-KLD weighting, which outperforms TF-IDF
regardless of the factorization technique. When we

2Another example of transductive learning in NLP is
when Turian et al. (2010) induced word representations from a
corpus that included both training and test data for their down-
stream named entity recognition task.
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Figure 2: Accuracy of feature and weighting combina-
tions in the classification framework.

perform the matrix factorization on only the training
data, the accuracy on the test set is 73.58%, with F1
score 80.55%.

5.2 Supervised classification

Next, we apply supervised classification, construct-
ing sample vectors from the latent representation as
shown in Equation 1. For classification, we choose
a Support Vector Machine with a linear kernel (Fan
et al., 2008), leaving a thorough comparison of clas-
sifiers for future work. The classifier parameter C is
tuned on a development set comprising 20% of the
original training set.

Figure 2 presents results for a range of latent di-
mensionalities. Supervised learning identifies the
important dimensions in the latent space, yielding
significantly better performance that the similarity-
based classification from the previous experiment.
In Table 3, we compare against prior published
work, using the held-out development set to select
the best value of K (again, K = 400). The best
result is from TF-KLD, with distributional features
FEAT2, achieving 79.76% accuracy and 85.87% F1.
This is well beyond all known prior results on this
task. When we induce the latent basis from only
the training data, we get 78.55% on accuracy and
84.59% F1, also better than the previous state-of-art.

Finally, we augment the distributional represen-
tation, concatenating the ten “fine-grained” fea-
tures in Table 1 to the sample vectors described
in Equation 1. As shown in Table 3, the accu-
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Factorization Feature set Weighting K Measure Accuracy (%) F1
SVD unigrams TF-IDF 100 cosine sim. 68.92 80.33
NMF unigrams TF-IDF 100 cosine sim. 68.96 80.14

WTMF unigrams TF-IDF 100 cosine sim. 71.51 not reported
SVD unigrams TF-KLD 100 cosine sim. 72.23 81.19
NMF unigrams TF-KLD 100 cosine sim. 72.75 81.48

Table 2: Similarity-based paraphrase identification accuracy. Results for WTMF are reprinted from the paper by Guo
and Diab (2012).

Acc. F1
Most common class 66.5 79.9
(Wan et al., 2006) 75.6 83.0
(Das and Smith, 2009) 73.9 82.3
(Das and Smith, 2009) with 18 features 76.1 82.7
(Bu et al., 2012) 76.3 not reported
(Socher et al., 2011) 76.8 83.6
(Madnani et al., 2012) 77.4 84.1
FEAT2, TF-KLD, SVM 79.76 85.87
FEAT2, TF-KLD, SVM, Fine-grained features 80.41 85.96

Table 3: Supervised classification. Results from prior work are reprinted.

racy now improves to 80.41%, with an F1 score of
85.96%. When the latent representation is induced
from only the training data, the corresponding re-
sults are 79.94% on accuracy and 85.36% F1, again
better than the previous state-of-the-art. These re-
sults show that the information captured by the dis-
tributional representation can still be augmented by
more fine-grained traditional features.

6 Conclusion

We have presented three ways in which labeled
data can improve distributional measures of seman-
tic similarity at the sentence level. The main innova-
tion is TF-KLD, which discriminatively reweights
the distributional features before factorization, so
that discriminability impacts the induction of the la-
tent representation. We then transform the latent
representation into a sample vector for supervised
learning, obtaining results that strongly outperform
the prior state-of-the-art; adding fine-grained lexi-
cal features further increases performance. These
ideas may have applicability in other semantic sim-
ilarity tasks, and we are also eager to apply them to
new, large-scale automatically-induced paraphrase
corpora (Ganitkevitch et al., 2013).
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Abstract

Extensive experiments have validated the ef-
fectiveness of the corpus-based method for
classifying the word’s sentiment polarity.
However, no work is done for comparing d-
ifferent corpora in the polarity classification
task. Nowadays, Twitter has aggregated huge
amount of data that are full of people’s senti-
ments. In this paper, we empirically evaluate
the performance of different corpora in sen-
timent similarity measurement, which is the
fundamental task for word polarity classifica-
tion. Experiment results show that the Twitter
data can achieve a much better performance
than the Google, Web1T and Wikipedia based
methods.

1 Introduction

Measuring semantic similarity for words and short
texts has long been a fundamental problem for many
applications such as word sense disambiguation,
query expansion, search advertising and so on.

Determining the word’s polarity plays a critical
role in opinion mining and sentiment analysis task.
Usually we can detect the word’s polarity by mea-
suring it’s semantic similarity with a positive seed
word sep and a negative seed word sen respectively,
as shown in Formula (1):

SO(w) = sim(w, sep)− sim(w, sen) (1)

where sim(wi, wj) is the semantic similarity mea-
surement method for the given word wi and wj . A
lot of papers have been published for designing ap-
propriate similarity measurements. One direction is

to learn similarity from the knowledge base or con-
cept taxonomy (Lin, 1998; Resnik, 1999). Anoth-
er direction is to learn semantic similarity with the
help of large corpus such as Web or Wikipedia da-
ta (Sahami and Heilman, 2006; Yih and Meek, 2007;
Bollegala et al., 2011; Gabrilovich and Markovitch,
2007). The basic assumption of this kind of methods
is that the word with similar semantic meanings of-
ten co-occur in the given corpus. Extensive experi-
ments have validated the effectiveness of the corpus-
based method in polarity classification task (Turney,
2002; Kaji and Kitsuregawa, 2007; Velikovich et al.,
2010). For example, PMI is a well-known similari-
ty measurement (Turney, 2002), which makes use of
the whole Web as the corpus, and utilizes the search
engine hits number to estimate the co-occurrence
probability of the give word pairs. The PMI based
method has achieved promising results. However,
according to Kanayama’s investigation, only 60%
co-occurrences in the same window in Web pages
reflect the same sentiment orientation (Kanayama
and Nasukawa, 2006). Therefore, we may ask the
question whether the choosing of corpus can change
the performance of sim and is there any better cor-
pus than the Web page data for measuring the senti-
ment similarity?

Everyday, enormous numbers of tweets that con-
tain people’s rich sentiments are published in Twit-
ter. The Twitter may be a good source for measuring
the sentiment similarity. Compared with the Web
page data, the tweets have a higher rate of subjective
text posts. The length limitation can guarantee the
polarity consistency of each tweet. Moreover, the
tweets contain graphical emoticons, which can be
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considered as natural sentiment labels for the corre-
sponding tweets in Twitter. In this paper, we attempt
to empirically evaluate the performance of differen-
t corpora in sentiment similarity measurement task.
As far as we know, no work is done on this topic.

2 The Characteristics of Twitter Data

As the world’s second largest SNS website, at the
end of 2012 Twitter had aggregated more than 500
million registered users, among which 200 million
were active users . More than 400 million tweets are
posted every day.

Several examples of typical posts from Twitter are
shown below.

(1) She had a headache and feeling light headed
with no energy. :(

(2) @username Nice work! Looks like you had a
fun day. I’m headed there Sat or Sun. :)

(3) I seen the movie on Direc Tv. I ordered it and
I really liked it. I can’t wait to get it for blu ray!
Excellent work Rob!

We observe that comparing with the other corpus,
the Twitter data has several advantages in measuring
the sentiment similarity.

Large. Users like to record their personal feelings
and talk about the trend topics in Twitter (Java et al.,
2007; Kwak et al., 2010). So there are huge amount
of subjective texts with various topics generated in
the millions of tweets everyday. Further more, the
flexible Twitter API makes these data easy to access
and collect.

Length Limitation. Twitter has a length limita-
tion of 140 characters. Users have limited space to
express their feelings. So the sentiments in tweet-
s are usually concise, straightforward and polarity
consistent.

Emoticons. Users tend to utilize emoticons to
emphasize their sentiment feelings. According to
the statistics, about 8.1% tweets contain at least one
emoticon (Yang and Leskovec, 2011). Since the
tweets have the length limitation, the sentiments ex-
pressed in these short texts are usually consistent
with the embedded emoticons, such as the word fun
and headache in above examples.

In addition to the above advantages, there are al-
so some disadvantages for measuring sentiment sim-
ilarity using Twitter data. The spam tweets that

caused by advertisements may add noise and bias
during the similarity measurement. The short length
may also bring in lower co-occurrence probability
of words. Some words may not co-occur with each
other when the corpus is small. These disadvantages
set obstacles for measuring sentiment similarity by
using Twitter data as corpus. In the experiment sec-
tion, we will see if we can overcome these draw-
backs and get benefit from the advantages of Twitter
data.

3 The Corpus-based Sentiment Similarity
Measurements

The intuition behind the corpus-based semantic sim-
ilarity measuring method is that the words with sim-
ilar meanings tend to co-occur in the corpus. Given
the word wi, wj , we use the notation P (wi) to de-
note the occurrence counts of word wi in the corpus
C. P (wi, wj) denotes the co-occurrence counts of
word wi and wj in C. In this paper we employ the
corpus-based version of the three well-known simi-
larity measurements: Jaccard, Dice and PMI.

CorpusJaccard(wi, wj)

=
P (wi,wj)

P (wi)+P (wj)−P (wi,wj)

(2)

CorpusDice(wi, wj) =
2× P (wi, wj)

P (wi) + P (wj)
(3)

CorpusPMI(wi, wj) = log2(
P (wi,wj)

N
P (wi)

N
P (wj)

N

) (4)

In Formula (4), N is the number of documents in
the corpus C. The above similarity measurements
may have their own strengths and weaknesses. In
this paper, we utilize these classical measurements
to evaluate the quality of the corpus in polarity clas-
sification task.

Google is the world’s largest search engine, which
has indexed a huge number of Web pages. Us-
ing the extreme large indexed Web pages as cor-
pus, Cilibrasi and Vitanyi (2007) presented a method
for measuring similarity between words and phras-
es based on information distance and Kolmogorov
complexity. The search result page counts of Google
were utilized to estimate the occurrence frequencies
of the words in the corpus. Suppose wi, wj rep-
resent the candidate words, the Normalized Google
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Distance is defined as:

NGD(wi, wj) =
max{log P (wi),log P (wj)}−log P (wi,wj)

log N−min{log P (wi),log P (wj)} (5)

where P (wi) denotes page counts returned by
Google using wi as keyword; P (wi, wj) denotes the
page counts by using wi and wj as joint keywords;
N is the number of Web pages indexed by Google.
Cilibrasi and Vitanyi have validated the effective-
ness of Google distance in measuring the semantic
similarity between concept words.

Based on the above formulas, we compare the
Twitter data with the Web and Wikipedia data as the
similarity measurement corpus. Given a candidate
word w, we firstly measure its sentiment similar-
ity with a positive seed word and a negative seed
word respectively in Formula (1), and the difference
of sim is used to further detect the polarity of w.
The above four similarity measurements serve as
sim with Web, Wikipedia and Twitter data as cor-
pus. Turney (2002) chose excellent and poor as
seed words. However, using isolated seed word-
s may cause the bias problem. Therefore, we fur-
ther select two groups of seed words that are lack
of sensitivity to context and form a positive seed set
PS and a negative seed set NS (Turney, 2003). The
Formula (1) can be rewritten as:

SO(w) =
∑

sep∈PS

sim(w, sep)−
∑

sen∈NS

sim(w, sen) (6)

Based on the Formula(6) and the sentiment seed
words, we can measure the sentiment polarity of the
given candidate words.

4 Experiment

4.1 Experiment Setup
Corpus Preparing. The Twitter corpus corre-
sponds to the 476 million Twitter tweets (Yang and
Leskovec, 2011), which includes over 476 million
Twitter posts from 20 million users, covering a 7
month period from June 1, 2009 to December 31,
2009. We filter out the non-English tweets and the
spam tweets that have only few words with URLs.
The tweets that contain three or more trending topics

are also removed. Finally, we construct the Twitter
corpus that consists of 266.8 million English tweets.
For calculating page counts in Web data, the candi-
date words were launched to Google from February
2013 to April 2013. We also conduct the experi-
ments on the Google Web 1T data that consists of
Google n-gram counts (frequency of occurrence of
each n-gram) for 1 ≤ n ≤ 5 (Brants and Franz,
2006). The Web 1T data provides a nice approxi-
mation to the word co-occurrence statistics in Web
pages in a predefined window size (1 ≤ n ≤ 5).
For example, the 5 gram Web1T data means the co-
occurrence window size is 5. The English Wikipedia
dump 1 we used was extracted at the end of March
2013, which contained more than 13 million articles.
We extracted the plain texts of the Wikipedia data as
the training corpus for the Formula (6).
Evaluation Method. Two well-know sentiment lex-
icons are utilized as gold standard for polarity clas-
sification task. The statistics of Liu’s sentiment lex-
icon (Liu et al., 2005) and MPQA subjectivity lexi-
con (Wilson et al., 2005) are shown in Table 1. For
each word w in the lexicons, we employ the Formu-
la (6) to calculate the word’s polarity using different
corpora. If SO(w) > 0, the word w is classified in-
to the positive category. Otherwise if SO(w) < 0, it
is classified into the negative category. The accura-
cy of the classification result is used to measure the
quality of the corpus.

Positive# Negative#
Liu 2,006 4,783

MPQA 2,304 4,153

Table 1: Lexicon size

4.2 Experiment Results

Firstly, we chose the seed words excellent and poor
as Turney’s (2002) settings. The polarity classifica-
tion accuracies are shown in Table 2.

In Table 2, Google, Web1T, Wikipedia, Twitter
represent the corpora that used in the experiment;
CJ, CD, CP, GD represent the Formula (2) to For-
mula (5) respectively. We can see from the Table 2
that the Twitter based method can achieve the best
performance. The rich sentiment information and

1http://en.wikipedia.org/
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Lexicon Corpus CJ CD CP GD

Liu

Google 0.5116 0.5117 0.5064 0.5076
Web1T-5gram 0.3903 0.3903 0.3897 0.3864
Web1T-4gram 0.3771 0.3771 0.3772 0.3227
Wikipedia 0.5280 0.5280 0.5350 0.5412
Twitter 0.5567 0.5567 0.5635 0.5635

MPQA

Google 0.4897 0.4890 0.4891 0.4864
Web1T-5gram 0.3843 0.3843 0.3837 0.3783
Web1T-4gram 0.3729 0.3729 0.3714 0.3225
Wikipedia 0.5181 0.5181 0.5380 0.5344
Twitter 0.5421 0.5421 0.5493 0.5494

Table 2: Polarity classification accuracies using excellent
and poor as seed words

natural window size (140 characters) have a posi-
tive impact on determining the word’s polarity. The
Google based method gets a lower accuracy, this
may be due to the length of Web documents which
can not usually guarantee the semantic consistency
in the returned data. Even though two words appear
in one page (returned by Google), they might not be
semantically related. Furthermore, the Google based
method is time-consuming, because we have to peri-
odically send queries in order to avoid being blocked
by Google. The Web1T based method gets a much
worse accuracy. After detailed analysis, we find that
although the small window size (4 or 5) can guar-
antee the semantic consistency, the short length also
brings in lower co-occurrence probability. Statistics
show that about 38% SO values are zero when using
Web1T corpus. Due to the short length, the Twitter
data also suffers from the low co-occurrence prob-
lem.

To tackle the low co-occurrence problem, the seed
word sets are selected as Turney’s (2003) settings.
The positive word set PS={good, nice, excellent,
positive, fortunate, correct, superior} and negative
word set NS = {bad, nasty, poor, negative, unfortu-
nate, wrong, inferior} for the Formula (6). These
seed words have been verified to be effective in Tur-
ney’s paper for polarity classification. The experi-
ment results are shown in Table 3.

Table 3 shows that the performance of Twitter cor-
pus is much improved since the multiple seed words
alleviate the problem of low co-occurrence probabil-
ity in tweets. Generally, when using the seed word
groups the Twitter can achieve a much better per-
formance than all the other corpora. The improve-
ments are statistically significant (p-value < 0.05).

Lexicon Corpus CJ CD CP GD

Liu

Google 0.4859 0.4936 0.4884 0.5060
Web1T-5gram 0.5785 0.5785 0.3963 0.5782
Web1T-4gram 0.5766 0.5766 0.3872 0.5775
Wikipedia 0.6226 0.6225 0.5957 0.6145
Twitter 0.6678 0.6678 0.6917 0.6457
Twitter+ 0.6921 0.6921 0.7273 0.6599

MPQA

Google 0.5108 0.5225 0.5735 0.5763
Web1T-5gram 0.5737 0.5737 0.4225 0.5718
Web1T-4gram 0.5749 0.5749 0.3329 0.4797
Wikipedia 0.6086 0.6085 0.5773 0.5985
Twitter 0.6431 0.6431 0.6671 0.6253
Twitter+ 0.6665 0.6665 0.7001 0.6383

Table 3: Polarity classification accuracies using the seed
word groups

We further add the emoticons ‘:)’ and ‘:(’ into the
seed word groups, denoted by Twitter+ in Table 3.
The emoticons are natural sentiment labels. We can
see that the performances are further improved by
considering emoticons as seed words. The above
experiment results have validated the effectiveness
of Twitter data as a better corpus for measuring the
sentiment similarity. The results also reveal the po-
tential usefulness of Twitter corpus in semantic sim-
ilarity measurement.

5 Related Work

Detecting the polarity of words is the fundamental
problem for most of sentiment analysis tasks (Hatzi-
vassiloglou and McKeown, 1997; Pang and Lee,
2007; Feldman, 2013).

Many methods have been proposed to measure
the words’ or short texts similarity based on large
corpus (Sahami and Heilman, 2006; Yih and Meek,
2007; Gabrilovich and Markovitch, 2007). Bolle-
gala et al. (2011) submitted the word to the search
engine, and the related result pages were employed
to represent the meaning of the original word. Mi-
halcea et al. (2006) proposed a method to measure
the semantic similarity of words or short texts, con-
sidering both corpus-based and knowledge-based in-
formation. Although the previous algorithms have
achieved promising results, there are no work done
on evaluating the quality of different corpora.

Mohtarami et al. (2012; 2013a; 2013b) intro-
duced the concept of sentiment similarity, which
was considered as different from the traditional se-
mantic similarity, and more focused on revealing the
underlying sentiment relations between words. Mo-
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htarami et al. (2013b) proposed a hidden emotion-
al model to calculating the sentiment similarity of
word pairs. However, the impact of the different cor-
pora is not considered for this task.

Mohammad et al. (2013) generated word-
sentiment association lexicons from Tweets with the
help of hashtags and emoticons. Pak and Paroubek
(2010) collected tweets with happy and sad emoti-
cons as training corpus, and built sentiment classi-
fier based on traditional machine learning methods.
Brody and Diakopoulos (2011) showed that length-
ening was strongly associated with subjectivity and
sentiment in tweets. Davidov et al. (2010) treated 50
Twitter tags and 15 smileys as sentiment labels and
a supervised sentiment classification framework was
proposed to classify the tweets. The previous litera-
tures have showed that the emoticons can be treated
as natural sentiment labels of the tweets.

6 Conclusion and Future Work

The quality of corpus may affect the performance
of sentiment similarity measurement. In this pa-
per, we compare the Twitter data with the Google,
Web1T and Wikipedia data in polarity classification
task. The experiment results validate that when us-
ing the seed word groups the Twitter can achieve a
much better performance than the other corpora and
adding emoticons as seed words can further improve
the performance. It is observed that the twitter cor-
pus is a potential good source for measuring senti-
ment similarity between words. In future work, we
intend to design new similarity measurements that
can make best of the advantages of Twitter data.
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Abstract

Implicit feature detection, also known as im-
plicit feature identification, is an essential as-
pect of feature-specific opinion mining but
previous works have often ignored it. We
think, based on the explicit sentences, sever-
al Support Vector Machine (SVM) classifier-
s can be established to do this task. Never-
theless, we believe it is possible to do bet-
ter by using a constrained topic model instead
of traditional attribute selection methods. Ex-
periments show that this method outperforms
the traditional attribute selection methods by
a large margin and the detection task can be
completed better.

1 Introduction

Feature-specific opinion mining has been well de-
fined by Ding and Liu(2008). Example 1 is a cell
phone review in which two features are mentioned.

Example 1 This cell phone is fashion in appear-
ance, and it is also very cheap.

If a feature appears in a review directly, it is called
an explicit feature. If a feature is only implied, it is
called an implicit feature. In Example 1, appearance
is an explicit feature while price is an implicit fea-
ture, which is implied by cheap. Furthermore, an ex-
plicit sentence is defined as a sentence containing at
least one explicit feature, and an implicit sentence is
the sentence only containing implicit features. Thus,
the first sentence is an explicit sentence, while the
second is an implicit one.

This paper proposes an approach for implicit fea-
ture detection based on SVM and Topic Model(TM).

The Topic Model, which incorporated into con-
straints based on the pre-defined product feature,
is established to extract the training attributes for
SVM. In the end, several SVM classifiers are con-
structed to train the selected attributes and utilized
to detect the implicit features.

2 Related Work

The definition of implicit feature comes from Liu
et al. (2005)’s work. Su et al. (2006) used Point-
wise Mutual Information (PMI) based semantic as-
sociation analysis to identify implicit features, but
no quantitative experimental results were provided.
Hai et al. (2011) used co-occurrence association rule
mining to identify implicit features. However, they
only dealt with opinion words and neglected the
facts. Therefore, in this paper, both the opinions and
facts will be taken into account.

Blei et al. (2003) proposed the original LDA us-
ing EM estimation. Griffiths and Steyvers (2004)
applied Gibbs sampling to estimate LDA’s parame-
ters. Since the inception of these works, many vari-
ations have been proposed. For example, LDA has
previously been used to construct attributes for clas-
sification; it often acts to reduce data dimension(Blei
and Jordan, 2003; Fei-Fei and Perona, 2005; Quel-
has et al., 2005). Here, we modify LDA and adopt it
to select the training attributes for SVM.

3 Model Design

3.1 Introduction to LDA

We briefly introduce LDA, following the notation
of Griffiths(Griffiths and Steyvers, 2004). Given D
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documents expressed over W unique words and T
topics, LDA outputs the document-topic distribution
θ and topic-word distribution φ, both of which can
be obtained with Gibbs Sampling. For this scheme,
the core process is the topic updating for each word
in each document according to Equation 1.

P (zi = j|z−i,w, α, β) =

(
n

(wi)
−i,j + β∑W

w′ n
(w′)
−i,j + Wβ

)(
n

(di)
−i,j + α∑T

j n
(di)
−i,j + Tα

)
(1)

where zi = j represents the assignment of the ith

word in a document to topic j, z−i represents all
the topic assignments excluding the ith word. n

(w′)
j

is the number of instances of word w′ assigned to
topic j and n

(di)
j is the number of words from doc-

ument di assigned to topic j, the −i notation sig-
nifies that the counts are taken omitting the value
of zi. Furthermore, α and β are hyper-parameters
for the document-topic and topic-word Dirichlet dis-
tributions, respectively. After N iterations of Gibbs
sampling for all words in all documents, the distri-
bution θ and φ are finally estimated using Equations
2 and 3.

ϕ
(wi)
j =

n
(wi)
j + β∑W

w′ n
(w′)
j + Wβ

(2)

θ
(di)
j =

n
(di)
j + α∑T

j n
(di)
j + Tα

(3)

3.2 Framework

Algorithm 1 summarizes the main steps. When a
specific product and the reviews are provided, the
explicit sentences and corresponding features are
extracted(Line 1) by word segmentation, part-of-
speech(POS) tagging and synonyms feature cluster-
ing. Then the prior knowledge are drawn from the
explicit sentences automatically and integrated in-
to the constrained topic model((Line 3 - Line 5).
The word clusters are chosen as the training at-
tributes(Line 6). Finally, several SVM classifier-
s are generated and applied to detect implicit fea-
tures(Line 7 - Line 12).

Algorithm 1 Implicit Feature Detection
1: ES ← extract explicit sentence set
2: NES ← non-explicit sentence set
3: CS ← constraint set from ES
4: CPK ← correlation prior knowledge from ES
5: ETM←ConstrainedTopicModel(T ,ES,CS,CPK)
6: TA← select training attributes from ETM
7: for each fi in feature clusters do
8: TDi ← GenerateTrainingData(TAi,ES)
9: Ci← BuildClassificationModelBySVM(TDi)

10: PRi← positive result of Classify(Ci,NES)
11: the feature of sentence in PRi ← fi

12: end for

3.3 Prior Knowledge Extraction and
Incorporation

It is obvious that the pre-existing knowledge can as-
sist to produce better and more significant clusters.
In our work, we use a constrained topic model to s-
elect attributes for each product features. Each topic
is first pre-defined a product feature. Then two type-
s of prior knowledge, which are derived from the
pre-defined product features, are extracted automat-
ically and incorporated: must-link/cannot-link and
correlation prior knowledge.

3.3.1 Must-link and Cannot-link
Must-link: It specifies that two data instances

must be in the same cluster. Here is the must-link
from an observation: as ”cheap” to ”price”, some
words must be associated with a feature. In order
to mine these words, we compute the co-occurrence
degree by frequency*PMI(f,w), whose formula is as
following: Pf&w ∗ log2

Pf&w

Pf Pw
, where P is the proba-

bility of subscript occurrence in explicit sentences,
f is the feature, w is the word, and f&w means
the co-occurrence of f and w. A higher value of
frequency*PMI signifies that w often indicates f .
For a feature fi, the top five words and fi consti-
tute must-links. For example, the co-occurrence of
”price” and ”cheap” is very high, then the must-link
between ”price” and ”cheap” can be identified.

Cannot-link: It specifies that two data instances
cannot be in the same cluster. If a word and a fea-
ture never co-occur in our corpus, we assume them
to form a cannot-link. For example, the word low-
cost has never co-occurred with the product feature
screen, so they constitute a cannot-link in our cor-
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pus.
In this paper, the pre-defined process, must-link,

and cannot-link are derived from Andrzejewski and
Zhu (2009)’s work, all must-links and cannot-links
are incorporated our constrained topic model. We
multiply an indicator function δ(wi, zj), which rep-
resents a hard constraint, to the Equation 1 as the
final probability for topic updating (see Equation 4).

P (zi = j|z−i,w, α, β) =

δ(wi, zj)(
n

(wi)
−i,j + β∑W

w′ n
(w′)
−i,j + Wβ

)(
n

(di)
−i,j + α∑T

j n
(di)
−i,j + Tα

)

(4)

As illustrated by Equations 1 and 4, δ(wi, zj),
which represents intervention or help from pre-
existing knowledge of must-links and cannot-links,
plays a key role in this study. In the topic updating
for each word in each document, we assume that the
current word is wi and its linked feature topic set is
Z(wi), then for the current topic zj , δ(wi, zj) is cal-
culated as follows:

1. If wi is constrained by must-links and the
linked feature belongs to Z(wi), δ(wi, zj |zj ∈
Z(wi)) = 1 and δ(wi, zj |zj /∈ Z(wi)) = 0.

2. If wi is constrained by cannot-links and the
linked feature belongs to Z(wi), δ(wi, zj |zj ∈
Z(wi)) = 0 and δ(wi, zj |zj /∈ Z(wi)) = 1.

3. In other cases, δ(wi, zj |j = 1, . . . , T ) = 1.

3.3.2 Correlation Prior Knowledge
In view of the explicit product feature of each top-

ic, the association of the word and the feature to
topic-word distribution should be taken into accoun-
t. Therefore, Equation 2 is revised as the following:

ϕ
(wi)
j =

(1 + Cwi,j)(n
(wi)
j ) + β∑W

w′(1 + Cw′,j)(n
(w′)
j ) + Wβ

(5)

where Cw′,j reflects the correlation of w′ with the
topic j, which is centered on the product feature fzj .
The basic idea is to determine the association of w′

and fzj , if they have the high relevance, Cw′,j should
be set as a positive number. Otherwise, if we can
determine w′ and fzj are irrelevant, Cw′,j should be

set as a positive number. In this paper, we attempt
to using PMI or dependency relation to judge the
relevance. For word w′ and feature fzj :

1. Dependency relation judgement: If w′ as par-
ent node in the syntax tree mainly co-occurs
with fzj , Cw′,j will be set positive. If w′ mainly
co-occurs with several features including fzj ,
Cw′,j will be set negative. Otherwise, Cw′,j

will be set 0.

2. PMI judgement: If w′ mainly co-occurs with
fzj and PMI(w′, fzj ) is greater than the giv-
en value, Cw′,j will be set positive. Otherwise,
Cw′,j will be set negative.

3.4 Attribute Selection

Some words, such as ”good”, can modify sever-
al product features and should be removed. In the
result of run once, if a word appears in the topics
which relates to different features, it is defined as a
conflicting word. If a term is thought to describe
several features or indicate no features, it is defined
as a noise word .

When each topic has been pre-allocated, we run
the explicit topic model 100 times. If a word turns
into a conflicting word Tcw times(Tcw is set to 20),
we assume that it is a noise word. Then the noise
word collection is obtained and applied to filter the
explicit sentences. Actually, here 100 is just an esti-
mated number. And for Tcw, when it is between 15
and 25, the result is same, and when it exceeds 25,
the result does not change a lot. The most important
part to filter noise words is the correlation compu-
tation. So the experiment can work well with only
estimated parameters.

Next, By integrating pre-existing knowledge, the
explicit topic model, which runs Titer times, sever-
s as attribute selection for SVM. In every result for
each topic cluster, we remove the least four prob-
able of word groups and merge the results by the
pre-defined product feature. For a feature, if a word
appears in its topic words more than Titer ∗ tratio

times, it is selected as one of the training attributes
for the feature. In the end, if an attribute associates
with different features, it is deleted.
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Figure 1: Performance of different cases

3.5 Implicit Feature Detection via SVM

After completing attribute selection, vector space
model(VSM) is applied to the selected attributes on
the explicit sentences. For each feature fi, a SVM
classifier Ci is adopted. In train-set, the positive cas-
es are the explicit sentences of fi, and the negative
cases are the other explicit sentences. For a non-
explicit sentence, if the classification result of Ci is
positive, it is an implicit sentence which implies fi.

4 Evaluation of Experimental Results

4.1 Data Sets

There has no standard data set yet, we crawled the
experiment data, which included reviews about a
cellphone, from a famous Chinese shopping web-
site1. The data contains 14218 sentences. The fea-
ture of each sentence was manually annotated by
two research assistants. A handful of sentences
which were annotated inconsistently were deleted.
Table 1 depicts the data set which is evaluated. Other
features were ignored because of their rare appear-
ance.

Here are some explanations: (1)The sentences
containing several explicit features were not added
to the train-set. (2) A tiny number of sentences con-
tain both explicit and implicit features, and they can
only be regarded as explicit sentences. (3) The train-
ing set contains 3140 explicit sentences, the test set
contains 7043 non-explicit sentences and more than
5500 sentences have no feature. (4) According to
the ratio among the explicit sentences(6:1:2:3:1:2),
it is reasonable that the most suitable number of top-
ics should be 14. For example, the ratio of the prod-

1http://www.360buy.com/

Table 1: Experiment data

Features Explicit Implicit Total

screen 1165 244 1409

quality 199 83 282

battery 456 205 661

price 627 561 1188

appearance 224 167 391

software 469 129 598

uct feature screen is 6, so we can assign the feature
to topic 0,1,2,3,4,5. In our experiment, the perfor-
mance of algorithm 1 is evaluated using F-measure.
(5) Although the size of dataset is limited, out pro-
posed is based on the constraint-based topic model,
which has been widely used in different NLP field-
s. So, our approach can generalize well in different
datasets. Of course, more high quality data will be
collected to do the experiment in the future.

4.2 Experimental Results

Figure 1a depicts the performance of using tradi-
tional attribute selection methods on SVM. Using
χ2 test on SVM can achieve the best performance,
which is about 66.7%. In our constrained topic
model, we use different Titer and tratio. We con-
ducted experiments by incorporating different types
prior knowledge. From Figure 1b and 1c, we con-
clude that: (1)All these methods perform much bet-
ter than the traditional feature selection methods, the
improvements are more than 6%. (2)The reason for
the little improvement of must-links is that the top-
ic clusters have already obtained these linked word-
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s. (3)All the pre-existing knowledge performs best
and shows 3% improvement over non prior knowl-
edge. (4)Different types of prior knowledge have
different impact on the stabilities of different pa-
rameters. (5)As we have expected, by combing al-
l prior knowledge, the best performance can reach
77.78%. Furthermore, as tratio or Titer changes,
our constrained topic model incorporating all prior
knowledge look like very stable.

5 Conclusions

In this paper, we adopt a constrained topic model
incorporating prior knowledge to select attribute for
SVM classifiers to detect implicit features. Exper-
iments show this method outperforms the attribute
feature selection methods and detect implicit fea-
tures better.
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Abstract

Online learning algorithms like the percep-

tron are widely used for structured predic-

tion tasks. For sequential search problems,

like left-to-right tagging and parsing, beam

search has been successfully combined with

perceptron variants that accommodate search

errors (Collins and Roark, 2004; Huang et

al., 2012). However, perceptron training with

inexact search is less studied for bottom-up

parsing and, more generally, inference over

hypergraphs. In this paper, we generalize

the violation-fixing perceptron of Huang et

al. (2012) to hypergraphs and apply it to the

cube-pruning parser of Zhang and McDonald

(2012). This results in the highest reported

scores on WSJ evaluation set (UAS 93.50%

and LAS 92.41% respectively) without the aid

of additional resources.

1 Introduction

Structured prediction problems generally deal with

exponentially many outputs, often making exact

search infeasible. For sequential search problems,

such as tagging and incremental parsing, beam

search coupled with perceptron algorithms that ac-

count for potential search errors have been shown

to be a powerful combination (Collins and Roark,

2004; Daumé and Marcu, 2005; Zhang and Clark,

2008; Huang et al., 2012). However, sequen-

tial search algorithms, and in particular left-to-right

beam search (Collins and Roark, 2004; Zhang and

Clark, 2008), squeeze inference into a very narrow

space. To address this, Huang (2008) formulated

constituency parsing as approximate bottom-up in-

ference in order to compactly represent an exponen-

tial number of outputs while scoring features of ar-

bitrary scope. This idea was adapted to graph-based

dependency parsers by Zhang and McDonald (2012)

and shown to outperform left-to-right beam search.

Both these examples, bottom-up approximate de-

pendency and constituency parsing, can be viewed

as specific instances of inexact hypergraph search.

Typically, the approximation is accomplished by

cube-pruning throughout the hypergraph (Chiang,

2007). Unfortunately, as the scope of features at

each node increases, the inexactness of search and

its negative impact on learning can potentially be ex-

acerbated. Unlike sequential search, the impact on

learning of approximate hypergraph search – as well

as methods to mitigate any ill effects – has not been

studied. Motivated by this, we develop online learn-

ing algorithms for inexact hypergraph search by gen-

eralizing the violation-fixing percepron of Huang et

al. (2012). We empirically validate the benefit of

this approach within the cube-pruning dependency

parser of Zhang and McDonald (2012).

2 Structured Perceptron for Inexact

Hypergraph Search

The structured perceptron algorithm (Collins, 2002)

is a general learning algorithm. Given training in-

stances (x, ŷ), the algorithm first solves the decod-

ing problem y′ = argmax
y∈Y(x)w · f(x, y) given

the weight vector w for the high-dimensional fea-

ture representation f of the mapping (x, y), where

y′ is the prediction under the current model, ŷ is the

gold output and Y(x) is the space of all valid outputs

for input x. The perceptron update rule is simply:

w′ = w + f(x, ŷ)− f(x, y′).

The convergence of original perceptron algorithm

relies on the argmax function being exact so that

the condition w ·f(x, y′) > w ·f(x, ŷ) (modulo ties)

always holds. This condition is called a violation

because the prediction y′ scores higher than the cor-

rect label ŷ. Each perceptron update moves weights
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Figure 1: A hypergraph showing the union of the gold

and Viterbi subtrees. The hyperedges in bold and dashed

are from the gold and Viterbi trees, respectively.

away from y′ and towards ŷ to fix such violations.

But when search is inexact, y′ could be suboptimal

so that sometimes w · f(x, y′) < w · f(x, ŷ). Huang

et al. (2012) named such instances non-violations

and showed that perceptron model updates for non-

violations nullify guarantees of convergence. To ac-

count for this, they generalized the original update

rule to select an output y′ within the pruned search

space that scores higher than ŷ, but is not necessar-

ily the highest among all possibilities, which repre-

sents a true violation of the model on that training

instance. This violation fixing perceptron thus re-

laxes the argmax function to accommodate inexact

search and becomes provably convergent as a result.

In the sequential cases where ŷ has a linear struc-

ture such as tagging and incremental parsing, the

violation fixing perceptron boils down to finding

and updating along a certain prefix of ŷ. Collins

and Roark (2004) locate the earliest position in a

chain structure where ŷpref is worse than y′pref by

a margin large enough to cause ŷ to be dropped

from the beam. Huang et al. (2012) locate the po-

sition where the violation is largest among all pre-

fixes of ŷ, where size of a violation is defined as

w · f(x, y′pref)−w · f(x, ŷpref).

For hypergraphs, the notion of prefix must be gen-

eralized to subtrees. Figure 1 shows the packed-

forest representation of the union of gold subtrees

and highest-scoring (Viterbi) subtrees at every gold

node for an input. At each gold node, there are

two incoming hyperedges: one for the gold subtree

and the other for the Viterbi subtree. After bottom-

up parsing, we can compute the scores for the gold

subtrees as well as extract the corresponding Viterbi

subtrees by following backpointers. These Viterbi

subtrees need not necessarily to belong to the full

Viterbi path (i.e., the Viterbi tree rooted at node N ).

An update strategy must choose a subtree or a set of

subtrees at gold nodes. This is to ensure that the

model is updating its weights relative to the inter-

section of the search space and the gold path.

Our first update strategy is called single-node

max-violation (s-max). Given a gold tree ŷ, it tra-

verses the gold tree and finds the node n on which

the violation between the Viterbi subtree and the

gold subtree is the largest over all gold nodes. The

violation is guaranteed to be greater than or equal to

zero because the lower bound for the max-violation

on any hypergraph is 0 which happens at the leaf

nodes. Then we choose the subtree pair (ŷn, y
′
n
) and

do the update similar to the prefix update for the se-

quential case. For example, in Figure 1, suppose the

max-violation happens at node K , which covers the

left half of the input x, then the perceptron update

would move parameters to the subtree represented

by nodes B , C , H and K and away from A ,

B , G and K .

Our second update strategy is called parallel max-

violation (p-max). It is based on the observation that

violations on non-overlapping nodes can be fixed

in parallel. We define a set of frontiers as a set

of nodes that are non-overlapping and the union of

which covers the entire input string x. The frontier

set can include up to |x| nodes, in the case where the

frontier is equivalent to the set of leaves. We traverse

ŷ bottom-up to compute the set of frontiers such

that each has the max-violation in the span it cov-

ers. Concretely, for each node n, the max-violation

frontier set can be defined recursively,

ft(n) =

{

n, if n = maxv(n)
⋃

ni∈children(n) ft(ni), otherwise

where maxv(n) is the function that returns the node

with the absolute maximum violation in the subtree

rooted at n and can easily be computed recursively

over the hypergraph. To make a perceptron update,

we generate the max-violation frontier set for the en-

tire hypergraph and use it to choose subtree pairs
⋃

n∈ft(root(x))(ŷn, y
′
n
), where root(x) is the root of

the hypergraph for input x. For example, in Figure 1,

if the union of K and L satisfies the definition of

ft, then the perceptron update would move feature
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weights away from the union of the two Viterbi sub-

trees and towards their gold counterparts.

In our experiments, we compare the performance

of the two violation-fixing update strategies against

two baselines. The first baseline is the standard up-

date, where updates always happen at the root node

of a gold tree, even if the Viterbi tree at the root node

leads to a non-violation update. The second baseline

is the skip update, which also always updates at the

root nodes but skips any non-violations. This is the

strategy used by Zhang and McDonald (2012).

3 Experiments

We ran a number of experiments on the cube-

pruning dependency parser of Zhang and McDonald

(2012), whose search space can be represented as a

hypergraph in which the nodes are the complete and

incomplete states and the hyperedges are the instan-

tiations of the two parsing rules in the Eisner algo-

rithm (Eisner, 1996).

The feature templates we used are a superset of

Zhang and McDonald (2012). These features in-

clude first-, second-, and third-order features and

their labeled counterparts, as well as valency fea-

tures. In addition, we also included a feature tem-

plate from Bohnet and Kuhn (2012). This tem-

plate examines the leftmost child and the rightmost

child of a modifier simultaneously. All other high-

order features of Zhang and McDonald (2012) only

look at arcs on the same side of their head. We

trained the parser with hamming-loss-augmented

MIRA (Crammer et al., 2006), following Martins et

al. (2010). Based on results on the English valida-

tion data, in all the experiments, we trained MIRA

with 8 epochs and used a beam of size 6 per node.

To speed up the parser, we used an unlabeled

first-order model to prune unlikely dependency arcs

at both training and testing time (Koo and Collins,

2010; Martins et al., 2013). We followed Rush and

Petrov (2012) to train the first-order model to min-

imize filter loss with respect to max-marginal filter-

ing. On the English validation corpus, the filtering

model pruned 80% of arcs while keeping the oracle

unlabeled attachment score above 99.50%. During

training only, we insert the gold tree into the hy-

pergraph if it was mistakenly pruned. This ensures

that the gold nodes are always available, which is

required for model updates.

3.1 English and Chinese Results

We report dependency parsing results on the Penn

WSJ Treebank and the Chinese CTB-5 Treebank.

Both treebanks are constituency treebanks. We gen-

erated two versions of dependency treebanks by ap-

plying commonly-used conversion procedures. For

the first English version (PTB-YM), we used the

Penn2Malt1 software to apply the head rules of Ya-

mada and Matsumoto and the Malt label set. For

the second English version (PTB-S), we used the

Stanford dependency framework (De Marneffe et

al., 2006) by applying version 2.0.5 of the Stan-

ford parser. We split the data in the standard way:

sections 2-21 for training; section 22 for validation;

and section 23 for evaluation. We utilized a linear

chain CRF tagger which has an accuracy of 96.9%

on the validation data and 97.3% on the evaluation

data2. For Chinese, we use the Chinese Penn Tree-

bank converted to dependencies and split into train/-

validation/evaluation according to Zhang and Nivre

(2011). We report both unlabeled attachment scores

(UAS) and labeled attachment scores (LAS), ignor-

ing punctuations (Buchholz and Marsi, 2006).

Table 1 displays the results. Our improved

cube-pruned parser represents a significant improve-

ment over the feature-rich transition-based parser of

Zhang and Nivre (2011) with a large beam size. It

also improves over the baseline cube-pruning parser

without max-violation update strategies (Zhang and

McDonald, 2012), showing the importance of up-

date strategies in inexact hypergraph search. The

UAS score on Penn-YM is slightly higher than the

best result known in the literature which was re-

ported by the fourth-order unlabeled dependency

parser of Ma and Zhao (2012), although we did

not utilize fourth-order features. The LAS score on

Penn-YM is on par with the best reported by Bohnet

and Kuhn (2012). On Penn-S, there are not many

existing results to compare with, due to the tradition

of reporting results on Penn-YM in the past. Never-

theless, our result is higher than the second best by

a large margin. Our Chinese parsing scores are the

highest reported results.

1http://stp.lingfil.uu.se//∼nivre/research/Penn2Malt.html
2The data was prepared by André F. T. Martins as was done

in Martins et al. (2013).
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Penn-YM Penn-S CTB-5

Parser UAS LAS Toks/Sec UAS LAS Toks/Sec UAS LAS Toks/Sec

Zhang and Nivre (2011) 92.9- 91.8- †680 - - - 86.0- 84.4- -

Zhang and Nivre (reimpl.) (beam=64) 93.00 91.98 800 92.96 90.74 500 85.93 84.42 700

Zhang and Nivre (reimpl.) (beam=128) 92.94 91.91 400 93.11 90.84 250 86.05 84.50 360

Koo and Collins (2010) 93.04 - - - - - - - -

Zhang and McDonald (2012) 93.06 91.86 220 - - - 86.87 85.19 -

Rush and Petrov (2012) - - - 92.7- - 4460 - - -

Martins et al. (2013) 93.07 - 740 92.82 - 600 - - -

Qian and Liu (2013) 93.17 - 180 - - - 87.25 - 100

Bohnet and Kuhn (2012) 93.39 92.38 †120 - - - 87.5- 85.9- -

Ma and Zhao (2012) 93.4- - - - - - 87.4- - -

cube-pruning w/ skip 93.21 92.07 300 92.92 90.35 200 86.95 85.23 200

w/ s-max 93.50 92.41 300 93.59 91.17 200 87.78 86.13 200

w/ p-max 93.44 92.33 300 93.64 91.28 200 87.87 86.24 200

Table 1: Parsing results on test sets of the Penn Treebank and CTB-5. UAS and LAS are measured on all tokens except

punctuations. We also include the tokens per second numbers for different parsers whenever available, although the

numbers from other papers were obtained on different machines. Speed numbers marked with † were converted from

sentences per second.

The speed of our parser is around 200-300 tokens

per second for English. This is faster than the parser

of Bohnet and Kuhn (2012) which has roughly the

same level of accuracy, but is slower than the parser

of Martins et al. (2013) and Rush and Petrov (2012),

both of which only do unlabeled dependency pars-

ing and are less accurate. Given that predicting la-

bels on arcs can slow down a parser by a constant

factor proportional to the size of the label set, the

speed of our parser is competitive. We also tried to

prune away arc labels based on observed labels for

each POS tag pair in the training data. By doing so,

we could speed up our parser to 500-600 tokens per

second with less than a 0.2% drop in both UAS and

LAS.

3.2 Importance of Update Strategies

The lower portion of Table 1 compares cube-pruning

parsing with different online update strategies in or-

der to show the importance of choosing an update

strategy that accommodates search errors. The max-

violation update strategies (s-max and p-max) im-

proved results on both versions of the Penn Treebank

as well as the CTB-5 Chinese treebank. It made

a larger difference on Penn-S relative to Penn-YM,

improving as much as 0.93% in LAS against the skip

update strategy. Additionally, we measured the per-

centage of non-violation updates at root nodes. In

the last epoch of training, on Penn-YM, there was

24% non-violations if we used the skip update strat-

egy; on Penn-S, there was 36% non-violations. The

portion of non-violations indicates the inexactness

 92
 92.2
 92.4
 92.6
 92.8

 93
 93.2
 93.4
 93.6
 93.8

 94

 1  2  3  4  5  6  7  8

U
A

S
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UAS on Penn-YM dev

s-max
p-max

skip
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Figure 2: Constrast of different update strategies on the

validation data set of Penn-YM. The x-axis is the number

of training epochs. The y-axis is the UAS score. s-max

stands for single-node max-violation. p-max stands for

parallel max-violation.

of the underlying search. Search is harder on Penn-S

due to the larger label set. Thus, as expected, max-

violation update strategies improve most where the

search is the hardest and least exact.

Figure 2 shows accuracy per training epoch on the

validation data. It can be seen that bad update strate-

gies are not simply slow learners. More iterations

of training cannot close the gap between strategies.

Forcing invalid updates on non-violations (standard

update) or simply ignoring them (skip update) pro-

duces less accurate models overall.
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ZN 2011 (reimpl.) skip s-max p-max Best Published†

Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

SPANISH 86.76 83.81 87.34 84.15 87.96 84.95 87.68 84.75 87.48 84.05

CATALAN 94.00 88.65 94.54 89.14 94.58 89.05 94.98 89.56 94.07 89.09

JAPANESE 93.10 91.57 93.40 91.65 93.26 91.67 93.20 91.49 93.72 91.7-

BULGARIAN 93.08 89.23 93.52 89.25 94.02 89.87 93.80 89.65 93.50 88.23

ITALIAN 87.31 82.88 87.75 83.41 87.57 83.22 87.79 83.59 87.47 83.50

SWEDISH 90.98 85.66 90.64 83.89 91.62 85.08 91.62 85.00 91.44 85.42

ARABIC 78.26 67.09 80.42 69.46 80.48 69.68 80.60 70.12 81.12 66.9-

TURKISH 76.62 66.00 76.18 65.90 76.94 66.80 76.86 66.56 77.55 65.7-

DANISH 90.84 86.65 91.40 86.59 91.88 86.95 92.00 87.07 91.86 84.8-

PORTUGUESE 91.18 87.66 91.69 88.04 92.07 88.30 92.19 88.40 93.03 87.70

GREEK 85.63 78.41 86.37 78.29 86.14 78.20 86.46 78.55 86.05 77.87

SLOVENE 84.63 76.06 85.01 75.92 86.01 77.14 85.77 76.62 86.95 73.4-

CZECH 87.78 82.38 86.92 80.36 88.36 82.16 88.48 82.38 90.32 80.2-

BASQUE 79.65 71.03 79.57 71.43 79.59 71.52 79.61 71.65 80.23 73.18

HUNGARIAN 84.71 80.16 85.67 80.84 85.85 81.02 86.49 81.67 86.81 81.86

GERMAN 91.57 89.48 91.23 88.34 92.03 89.44 91.79 89.28 92.41 88.42

DUTCH 82.49 79.71 83.01 79.79 83.57 80.29 83.35 80.09 86.19 79.2-

AVG 86.98 81.55 87.33 81.56 87.76 82.08 87.80 82.14

Table 2: Parsing Results for languages from CoNLL 2006/2007 shared tasks. When a language is in both years,

we use the 2006 data set. The best results with † are the maximum in the following papers: Buchholz and Marsi

(2006), Nivre et al. (2007), Zhang and McDonald (2012), Bohnet and Kuhn (2012), and Martins et al. (2013), For

consistency, we scored the CoNLL 2007 best systems with the CoNLL 2006 evaluation script. ZN 2011 (reimpl.) is

our reimplementation of Zhang and Nivre (2011), with a beam of 64. Results in bold are the best among ZN 2011

reimplementation and different update strategies from this paper.

3.3 CoNLL Results

We also report parsing results for 17 languages from

the CoNLL 2006/2007 shared-task (Buchholz and

Marsi, 2006; Nivre et al., 2007). The parser in

our experiments can only produce projective depen-

dency trees as it uses an Eisner algorithm backbone

to generate the hypergraph (Eisner, 1996). So, at

training time, we convert non-projective trees – of

which there are many in the CoNLL data – to projec-

tive ones through flattening, i.e., attaching words to

the lowest ancestor that results in projective trees. At

testing time, our parser can only predict projective

trees, though we evaluate on the true non-projective

trees.

Table 2 shows the full results. We sort the

languages according to the percentage of non-

projective trees in increasing order. The Spanish

treebank is 98% projective, while the Dutch tree-

bank is only 64% projective. With respect to the

Zhang and Nivre (2011) baseline, we improved UAS

in 16 languages and LAS in 15 languages. The im-

provements are stronger for the projective languages

in the top rows. We achieved the best published

UAS results for 7 languages: Spanish, Catalan, Bul-

garain, Italian, Swedish, Danish, and Greek. As

these languages are typically from the more projec-

tive data sets, we speculate that extending the parser

used in this study to handle non-projectivity will

lead to state-of-the-art models for the majority of

languages.

4 Conclusions

We proposed perceptron update strategies for in-

exact hypergraph search and experimented with

a cube-pruning dependency parser. Both single-

node max-violation and parallel max-violation up-

date strategies signficantly improved parsing results

over the strategy that ignores any invalid udpates

caused by inexactness of search. The update strate-

gies are applicable to any bottom-up parsing prob-

lems such as constituent parsing (Huang, 2008) and

syntax-based machine translation with online learn-

ing (Chiang et al., 2008).
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Abstract

We present a classification model that predicts
the presence or omission of a lexical connec-
tive between two clauses, based upon linguis-
tic features of the clauses and the type of dis-
course relation holding between them. The
model is trained on a set of high frequency
relations extracted from the Penn Discourse
Treebank and achieves an accuracy of 86.6%.
Analysis of the results reveals that the most in-
formative features relate to the discourse de-
pendencies between sequences of coherence
relations in the text. We also present results
of an experiment that provides insight into the
nature and difficulty of the task.

1 Introduction

A central goal of natural language generation and
summarization systems is to produce interpretable,
coherent text that rivals material a human would pro-
duce. Doing so requires that systems not only have
the ability to generate clauses that are grammatical
and easy for people to process, but also the ability
to employ the appropriate discourse structuring de-
vices needed to yield fluid transitions between these
clauses. This is a tricky issue in that it requires that
a balance be achieved between the opposing goals
of communicative expressiveness and economy. On
the one hand, insufficient cueing of inter-clausal re-
lationships can lead to a discourse that is at best dif-
ficult to process, and at worst misunderstood. On the
other hand, too much explicit marking can result in
a clunky and even redundant sounding discourse.

Here we consider the question of when to ex-
plicitly mark the COHERENCE RELATIONS in dis-
course, that is, the inter-clausal relationships that

the language producer intends the interpreter to in-
fer between the meanings of clauses (Hobbs, 1979;
Mann and Thompson, 1988; Kehler, 2002; Asher
and Lascarides, 2003). Consider, for example, the
EXPLANATION coherence relation that holds in (1),
in which the second clause provides a cause or rea-
son for the eventuality described in the first:

(1) a. Max will visit Australia this summer be-
cause his father is turning 65.

b. Max will visit Australia this summer. His
father is turning 65.

As example (1) shows, coherence relations can
be marked explicitly—by using lexical connectives
such as coordinating or subordinating conjunctions
(e.g., because in 1a) or certain types of prepositional
or adverbial phrases—or left implicit as in (1b). Ei-
ther way, establishing the relation itself requires the
reader to go through a complex inferential process
necessitating that a variety of assumptions be made,
typically supported by context and/or world knowl-
edge, that are not explicitly asserted by the actual
linguistic material. In (1), for instance, such infer-
ences would include that Max intends to see his fa-
ther when he travels to Australia, that his father re-
sides in that country, and that the birthday will tak-
ing place during the time of the visit. Importantly,
the role of the connective in (1a) is therefore not to
establish that an EXPLANATION relation holds. In-
stead, connectives serve the function of directing the
addressee’s inference processes toward a smaller set
of coherence relations than might otherwise be avail-
able, among other possible roles.

The fact that both (1a) and (1b) are felicitous may
lead us to believe that the choice to insert a connec-
tive between clauses is simply optional. This is not
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always the case, however. Sometimes the use of a
connective is required, since omitting it would likely
result in incorrect inferences being drawn by the ad-
dressee. For example, the use of when in (2a) im-
plies a backward temporal ordering of events, which
is reversed if the connective is left out, as in (2b).

(2) a. Maggie fell over in shock when Saul of-
fered to help her.

b. Maggie fell over in shock. Saul offered to
help her.

On the other hand, a connective can seem unnec-
essary if the relation between the two clauses is suf-
ficiently implied by other cues in the text. For in-
stance, since the act of throwing a vase against a
concrete wall would normally be expected to cause
the vase to break, the adverbial phrase as a result
in (3a), while felicitous, seems overly verbose and
perhaps even redundant.

(3) a. Susan threw the fragile vase against the
concrete wall. As a result, it broke.

b. Susan threw the fragile vase against the
concrete wall. It broke.

The foregoing examples suggest that the appropri-
ateness of including an explicit connective is inher-
ently gradient, and is in fact correlated with ease of
inference: the more difficult recovering the correct
relation would be without a connective, the more
necessary it is to include one. This characterization
in turn suggests that predicting whether a connec-
tive should be included might be a difficult problem
for an NLP system to address, since current-day sys-
tems lack the requisite world knowledge and capac-
ity for inference that would be necessary to evaluate
the ease with which coherence relations can be es-
tablished on arbitrary examples. However, it is also
possible that the decision to include a connective de-
pends in part on stylistic and other types of factors as
well, such that there might be predictive information
in the kinds of shallow linguistic and textual features
that systems do have access to. This is the question
taken up in this work: Given two adjacent clauses
in a text, the type of coherence relation holding be-
tween them and a candidate connective that could be
used to signal the relation, we ask how well a sys-
tem can predict whether or not that connective was
used by the author of the text. This capability would

be useful to generation systems as a post-cursor to
discourse-level message planning and sentence real-
ization processes, as well as summarization systems
that take existing sentences and have to reconsider
connective placement upon reassembling them.

To our knowledge, there is no work in the lit-
erature that addresses this issue directly. There is
a growing body of research (Sporleder and Las-
carides, 2008; Pitler et al., 2009; Lin et al., 2009;
Zhou et al., 2010) that focuses on building super-
vised models for classifying implicit relations using
a variety of contextual features, such as the polar-
ity of clauses, the semantic class and tense/aspect of
verbs, and information from syntactic parses. With
respect to explicit relations, Elhadad and McKe-
own (1990) sketch a procedure to select an appro-
priate connective to link two propositions as part of
a larger text generation system, using linguistic fea-
tures derived from the sentences. The procedure se-
lects the best connective from a given set of candi-
dates, but does not allow for the option of leaving
the relation implicit. More recently, Asr and Dem-
berg (2012a) look at both explicit and implicit re-
lations, and make the observation that certain rela-
tion types are more likely to be realized explicitly
than others. Relatedly, Asr and Demberg (2012b)
discuss which connectives are the strongest predic-
tors of which relation types. However, there is no
work of which we are aware that specifically pre-
dicts whether connectives should be used or omitted.

2 Classification Model

Our model is a binary classifier trained on data ex-
tracted from the Penn Discourse Treebank (PDTB;
Prasad et al. (2008)), a large-scale corpus of an-
notated discourse coherence relations covering the
one-million-word Wall Street Journal corpus of the
Penn Treebank (Marcus et al., 1993).

2.1 Data

For every relation in the PDTB, the following com-
ponents are annotated: (i) the connective used to
signal the relation; (ii) the textual spans of the two
clausal arguments that constitute the relation; (iii)
the semantic sense of the relation, according to a hi-
erarchical tagset of senses; and (iv) the attribution of
the assertions and beliefs expressed in the text to the

915



relevant individuals. Crucially for our purposes, for
the implicit relations the corpus indicates the most
suitable connective if the relation were instead sig-
naled explicitly. For example, the annotators de-
cided that the best connective to signal the REASON

relation in (4) would be because, rather than other
plausible candidates, such as as or since.

(4) It’s a shame their meeting never took place.
[IMPLICIT=because] Mr. Katzenstein certainly
would have learned something. (WSJ0037)

In total, there are 18,459 explicit and 16,053 im-
plicit relations annotated in the PDTB. We excluded
a subset of these cases in training our model based
on two criteria. First, whereas explicit relations in
the PDTB can hold between spans of text that ei-
ther are or are not adjacent, we excluded the non-
adjacent cases. This was done to ensure consistency
in discourse structure between the relations consid-
ered in the model, since only the implicit relations
between adjacent clauses were annotated. Second,
we excluded relations that have lower frequency se-
mantic senses or use low frequency connectives. As
a result, the model considers only the eight most
common semantic senses of relations, which in to-
tal account for just less than 90% of the relations
in the corpus.1 Further, for each relation, we only
consider the connectives that account for more than
5% of the instances of that relation. After applying
these filters, the resulting corpus comprised 10,039
explicit and 11,690 implicit relations.

Table 1 shows the eight relations that were mod-
eled. The majority of these relations exist at the
middle layer of the three-level hierarchy of seman-
tic senses annotated in the PDTB.2 Relations at the
highest level – representing the four major semantic
categories COMPARISON, CONTINGENCY, EXPAN-
SION and TEMPORAL – were deemed too broad to
be of practical use in a generation system, whereas
the lowest-level senses were considered either un-
necessarily fine-grained or have too few tokens in
the corpus to allow for meaningful statistical model-
ing. Two exceptions were made for REASON and
RESULT relations, which do appear at the lowest

1The next most common relation type, CONDITION, was ex-
cluded because it is always marked explicitly in the corpus.

2For more details of the PDTB sense hierarchy, see Prasad
et al. (2008).

level in the PDTB hierarchy (beneath the CAUSE cat-
egory). These were included because they are both
attested frequently in the corpus and are undeniably
contrastive: with REASON, the second clause pro-
vides an explanation for the proposition expressed
in the first clause, whereas with RESULT, the sec-
ond clause describes a consequence of the first. It
is reasonable to want these relations to be modeled
separately.

Sections 2-22 of the corpus were used as the train-
ing set, and sections 23 and 24 were used as the test
set. Sections 0 and 1 of the corpus were set aside
as a development set for feature design and parame-
ter optimization. The training set comprised 18,218
tokens, distributed as shown in Table 1.

Relation Type Explicit Implicit
Asynchronous 1,120 (70%) 469 (30%)
Conjunction 2,940 (61%) 1,906 (39%)
Contrast 2,044 (66%) 1,054 (34%)
Instantiation 203 (16%) 1,093 (84%)
Reason 771 (28%) 1,938 (72%)
Restatement 76 (4%) 2,081 (96%)
Result 354 (21%) 1,295 (79%)
Synchronous 748 (86%) 126 (14%)
Total 8,256 (45%) 9,962 (55%)

Table 1: Distribution of Training Set

As Table 1 shows, the preference for an overt
connective varies significantly according to the type
of relation. The ASYNCHRONOUS, CONJUNCTION,
CONTRAST and SYNCHRONOUS relations are real-
ized explicitly the majority of the time, whereas IN-
STANTIATION, REASON, RESTATEMENT and RE-
SULT relations are more often left implicit. We can
also see that some relation types (such as RESTATE-
MENT, INSTANTIATION and SYNCHRONOUS) ex-
hibit a strong preference to be realized in a particular
form, whereas other types show more variability in
whether they are realized explicitly or implicitly.

The distribution of tokens in Table 1 can be used
to determine a baseline accuracy against which the
performance of our model is evaluated. A naive
model that uses the semantic type of the coherence
relation as the sole predictive feature makes a bi-
nary classification based simply on the majority cat-
egory for that relation type. A baseline model using
this methodology results in classification accuracy
of 77.0% over the held-out test set.
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2.2 Model

We built a composite model containing binary logis-
tic regression classifiers for each coherence relation,
trained on a set of linguistic features extracted from
each token in the training set. Logistic regression
was chosen because it produces a model with high
performance and results that are easily interpretable.
The features included in the model fall into the fol-
lowing three broad classes: relation-level, argument-
level, and discourse-level.

Relation-level features
In addition to the semantic type of the relation, we
include as a feature the connective used to signal the
relation in the text (or, for the implicit relations, the
connective indicated by the annotators as most ap-
propriate). This feature (Connect) is included based
upon the observation that connectives vary as to their
rates of being realized explicitly—even for connec-
tives that signal relations with the same semantic
sense. Consequently, given a relation of a partic-
ular semantic type, an indication of the best fitting
connective may be a consistent predictor of whether
or not this relation is realized explicitly.

We also include a feature reflecting the attribution
of the relation. As mentioned above, the PDTB is
annotated to describe the attribution of the proposi-
tions expressed within a relation to individuals or en-
tities in the text. For example, in the relation shown
in (5), the first clause contains a direct quotation,
clearly attributing the proposition expressed to the
individual Rep. Stark. However, the second clause
contains no such indication of attribution to an entity
in the text, and so the proposition is instead assumed
to be asserted by the writer of the article.

(5) “No magic bullet will be discovered next year,
an election year,” says Rep. Stark. But 1991
could be a window for action. (WSJ0314)

Inspection of the corpus data suggests that when one
argument of a relation contains a proposition that is
attributable to an individual in the text (either by di-
rect or indirect quotation) but the other is assumed
by default to be attributed to the author, this rela-
tion is more likely to be realized explicitly. This
may well have an explanation based on sentence
processing: the intervening attribution phrase ‘says
Rep. Stark’ may serve as a distraction, with the re-

sult that the intended coherence relation is harder to
infer without a connective. Consequently, we in-
clude a factor (AttMismatch) indicating if the two
arguments are not attributed to the perspective of the
same individual.

Finally, in any particular genre there may be for-
mulaic prose whose systematic features can be ex-
ploited by a system tasked with generating text
within that same genre. In this case, the genre rep-
resented by the corpus data comprises copy-edited
articles from the Wall Street Journal, many of which
refer to company earnings reports or other financial
events, and are written in a highly prescribed style.
Accordingly, we may suspect that there is a greater
prevalence of implicit relations in these cases, since
the reader is assumed to be habituated to the way
in which the information in this type of article is
presented. Consequently, for the domain at hand
we include a binary feature (Financial) indicating
whether the relation pertains to financial informa-
tion. This feature takes the value 1 if the textual
spans of both arguments in the relation contain per-
centage amounts or dollar figures.

Argument-level features
For each relation, the model includes features cap-
turing the size or complexity of each of its two argu-
ments. The arguments were identified by the annota-
tors according to a principle of minimality, whereby
the annotations indicate the shortest text spans nec-
essary for the appropriate coherence relation to be
interpreted. However, the annotators also indicated
other text that is in some way relevant to the interpre-
tation of the arguments. This supplementary mate-
rial can include unrestricted relative clauses, apposi-
tives, or other parenthetical information. Our obser-
vation of the data indicates that relations which have
supplementary material annotated alongside one or
both of their arguments are more often than not re-
alized explicitly with connectives. As a result, we
include binary features (Supp1, Supp2) indicating
whether the first and second arguments of the rela-
tion include such supplementary information. We
also include features (Length1, Length2) reflecting a
simple measure of the length of each argument, cal-
culated as the log transformed count of the number
of words in the arguments’ minimal text spans.

One measure of the complexity of an argument
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is the number of clauses it contains. It might be
thought that the greater the syntactic complexity of
an argument, the more likely it is that the relation
containing it is marked explicitly, so as to give the
reader more help in drawing the correct intended
inference between the arguments. As a proxy for
the number of clauses in each argument, we include
features (NPSbj1, NPSbj2) equal to the total num-
ber of main, subordinate, or complement clause sub-
jects included within the textual spans of the re-
spective arguments, determined using the syntactic
parses available in the corpus data.

We also consider whether the underlying richness
of the informational content expressed by the ar-
gument may influence the presence or omission of
a connective. Considering the way in which read-
ers process text in real time, it would intuitively
be more difficult to infer the intended relation be-
tween two clauses without the aid of a connective if
the arguments themselves had greater processing de-
mands owing to increased lexical retrieval, reference
and anaphor resolution requirements, and so forth.
Given this intuition, we may expect that arguments
with higher density of information are correlated
with the increased use of connectives as a means
of facilitating the inference of the relation type and
thereby easing the overall processing burden. Con-
sequently, our model includes features (ContDen-
sity1, ContDensity2) calculated as the ratio of the
count of words in each argument that are content
words (i.e. ignoring articles, prepositions and pro-
nouns), divided by the total number of words, as
well as features (PronDensity1, PronDensity2) cal-
culated as the ratio of pronouns in each argument to
the number of noun phrases.

Finally, the accessibility of the subject of the sec-
ond argument in a relation may play a role in de-
termining whether the relation is explicitly marked.
Specifically, informal observation of the data sug-
gests that there is a tendency for the second ar-
gument of an implicit relation to begin with a
longer, contentful noun phrase, rather than a pro-
noun. Consequently, our model includes a binary
feature (FirstA2Pron) indicating whether the first
word in the second argument is a pronoun.

Discourse-level features
The final class of features takes account of the way

in which a relation fits into the broader discourse
structure in the text. In their work on implicit re-
lation classification, Pitler et al. (2008) identified
various dependencies between bigram sequences of
explicitly- and implicitly-realized relations of differ-
ent semantic types. These results suggest that the
semantic type and the presence of a connective in
one relation may be predictive of whether or not
the following relation in the text is marked with a
connective. Consequently, we include features in-
dicating the semantic type of the relation occurring
immediately prior in the text (PrevSemType), and
whether this relation was marked implicitly or ex-
plicitly (PrevForm).

The other discourse-level features take account of
the dependencies between the relation in question
and its neighboring relations in the text. As part of
a supervised learning model developed to classify
the semantic class of implicit relations in the PDTB,
Lin et al. (2009) found features based on the two
main types of discourse dependency pattern in the
corpus (‘shared’ and ‘fully embedded’ arguments) to
be highly predictive. We speculatively include simi-
lar features in our model to see if they are helpful in
predicting the presence of connectives.

The first type of dependency between adjacent re-
lations is one where the second argument of one re-
lation is also the first argument of the following re-
lation, as in Figure 1. Accordingly, we include two
binary features indicating whether an argument is
shared with the preceding relation (Arg1isPrevArg2)
or the following relation (Arg2isNextArg1) in the
corpus.

Figure 1: Shared argument

The other main type of discourse dependency, a
‘fully embedded’ dependency, is one where an entire
relation (including both of its arguments) is com-
pletely embedded within one argument of an adja-
cent relation in the text, as in Figure 2. To capture
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this type of dependency structure, we include two
binary features (EmbedNext, EmbedPrev) indicating
whether the current relation is embedded within ei-
ther one of its adjacent relations. We also include
two binary features (Arg1Embed, Arg2Embed) to in-
dicate whether either argument of the current rela-
tion completely contains an embedded relation.

Figure 2: Fully embedded argument

The two relations in (6) exemplify a typical in-
stantiation of this embedded dependency structure.

(6) It is an overwhelming job. [IMPLICIT= be-
cause] There are so many possible proportions
when you consider how many things are made
out of eggs and butter and milk. (WSJ0261)

In this example, there is an implicit REASON relation
holding between the two complete sentences, and
an explicit SYNCHRONOUS relation signaled by the
connective when holding between the two clauses
of the second sentence. Since the REASON relation
fully embeds another relation within its second argu-
ment, the feature Arg2Embed for this relation takes
the value 1. For the SYNCHRONOUS relation, the
feature EmbedPrev takes the value 1 since the entire
relation is fully contained within the second argu-
ment of the preceding relation in the text.

3 Results and Evaluation

3.1 Classification accuracy
The model was evaluated by assessing the accuracy
of its predictions against the unseen test set. The
model achieved an overall accuracy of 86.6%, an im-
provement of 9.6% above baseline.3 Table 2 shows
the model accuracy for each relation type, together
with the baseline performance based on the majority
category for that type.

3During the preparation of the final version of this paper,
a model was trained with an SVM using the same set of fea-
tures, which resulted in a modest improvement in performance
(87.3%). The ensuing discussion of results, however, will con-
tinue to pertain to the regression model.

Relation Type Accuracy Baseline
Asynchronous 91.7% 79.7%
Conjunction 84.5% 78.2%

Contrast 81.1% 65.0%
Instantiation 83.3% 82.5%

Reason 88.2% 68.3%
Restatement 95.2% 95.2%

Result 84.4% 76.9%
Synchronous 96.5% 92.9%

Total 86.6% 77.0%

Table 2: Classification Accuracy by Relation Type

The model achieved an improvement in accuracy
across all relation types but one: RESTATEMENT re-
lations, for which the baseline accuracy was already
close to 100%. The greatest improvement in accu-
racy was seen for REASON relations, for which the
model accuracy was 19.9% above baseline. We now
discuss which of the factors in each of the feature
classes turned out to be the most predictive.

3.2 Significant predictors

We trained the model on subsets of the features to
investigate the predictive power of the different fea-
ture classes. The accuracy assessed against the test
set is shown in Table 3.

Feature Class # Features Accuracy
Relation Level 4 80.4%

Argument Level 11 77.2%
Discourse Level 8 80.9%
Rel + Arg Levels 15 82.8%
Rel + Disc Levels 12 85.1%
Arg + Disc Levels 19 82.4%

All Features 23 86.6%

Table 3: Classification Accuracy by Feature Class

The classes of Relation-level and Discourse-level
features each separately yielded significantly better
performance over baseline (one-sided tests of pro-
portion, z=2.50 and z=2.92, respectively; p<0.01
for both), whereas the Argument-level features alone
performed only marginally better than baseline.
However, all three classes of features are needed to
attain the highest model performance.

Across all relation types, we found that the fea-
tures relating to the discourse dependencies between
a relation and its neighbors were the strongest and
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most consistent predictors of whether that relation
is explicit or implicit. A relation that is fully em-
bedded within a single argument of an adjacent re-
lation in the text (indicated by the features Em-
bedPrev and EmbedNext) has a much higher like-
lihood of being signaled explicitly. Conversely, a
relation that fully contains another relation within
one of its arguments (indicated by Arg1Embed and
Arg2Embed) has a significantly higher likelihood of
being implicit. The result is consistent with the em-
bedded discourse dependency shown in (6), in which
the implicit REASON relation fully contains an ex-
plicit SYNCHRONOUS relation within its second ar-
gument.

The model also found that the features which in-
dicate whether a relation has shared arguments with
either the preceding or following relations in the text
(Arg1isPrevArg2, Arg2isNextArg1) are both predic-
tors of an implicit outcome. In other words, if a
clause in the text serves as the argument for two ad-
jacent relations, then both of these relations are more
likely to be realized implicitly.

The next most predictive feature was the connec-
tive used to signal the relation (Connect). This fea-
ture was a significant predictor for every relation
type. Eliminating this feature from the final model
reduces the overall accuracy by 2.5%. The other
features in the model were less significantly predic-
tive, and generally worked in the expected direction.
Longer arguments (Length1, Length2) and the in-
dication of a financial genre (Financial) were gen-
erally associated with predicted implicit outcomes,
whereas the presence of supplementary material
(Supp1, Supp2), a mismatch of attribution (AttMis-
match), more ‘content rich’ arguments (ContDen-
sity1, ContDensity2), and a pronoun appearing as
the first word of the second argument (FirstA2Pron)
all tended to increase the odds in favor of a predicted
explicit outcome.

The features indexing syntactic complexity
(NPSbj1 and NPSbj2) were found to be marginally
predictive of an explicit outcome for most relation
types, but the overall effect in the model was rel-
atively small—resulting in only a 0.2% improve-
ment—meaning that the level of performance re-
ported on this task depends very little on the model
having access to full syntactic parses. Somewhat un-
expectedly, the factors indicating the semantic type

of the previous relation in the text (PrevSemType)
and whether or not this relation was explicitly sig-
naled by a connective (PrevForm) were found not to
be significant predictors. Our analysis of the training
data confirmed the findings of Pitler et al. (2008) in
that certain bigrams of coherence relation types are
significantly more prevalent than others. However,
the differences in the frequencies were evidently not
sufficiently correlated with the explicit/implicit dis-
tinction as to make the type or form of the previous
relation a significant feature in the model.

3.3 Error analysis

We analyzed a sample of cases incorrectly predicted
by the model to see if there were any consistent
traits. We focus our attention here on the CONTRAST

relations, which is the type with the lowest model
accuracy. The majority of these errors were cases
where the model predicted that the relation would be
explicit—the most likely outcome for a CONTRAST

relation—whereas in the corpus the intended rela-
tion was signaled by linguistic cues other than an
overt connective. For instance, the strong syntactic
parallelism of the two arguments in (7), and the op-
posite polarity of the lexical items delight and detri-
ment, combine to induce a contrastive relationship
without the need for a connective.

(7) To the delight of some doctors, the bill dropped
a plan passed by the Finance Committee.
[IMPLICIT=but] To the detriment of many low-
income people, efforts to boost Medicaid fund-
ing were also stricken. (WSJ2372)

Other ways that the contrast relation is signaled
implicitly include contrasting temporal modifiers (It
wasn’t so long ago X. Now, Y), repetition of the
predicate in the argument (. . . it could only happen
once. . . . it’s happening again), or even by the use
of punctuation such as a semicolon. Previous work
(Sporleder and Lascarides, 2008; Lin et al., 2009)
has sought to make use of such cues to identify and
classify implicit relations in the text. The results
of this brief error analysis suggest that such indi-
rect cues could also be useful factors in determining
whether to choose to use a connective for a given
relation type when generating text.
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4 Judgment Study

The system described in the last section outper-
formed a baseline majority-category classifier on the
task of deciding whether a relation should be made
explicit or left implicit. This result might be con-
sidered surprising, for two reasons that we have
previously discussed. First, the system was able
to make this improvement using relatively shallow
features extracted from the text, without access to
the richer types of contextual information and world
knowledge required for establishing coherence rela-
tions during actual discourse comprehension. Sec-
ond, the data suggest that the appropriateness of in-
cluding a connective is not as cut-and-dried as a bi-
nary classification task may suggest, but is instead
gradient, with many cases for which the inclusion
of a connective appears to be optional. Obviously,
the PDTB does not avail us of the opportunity to
evaluate this gradience directly (or even use a 3-
way required/optional/redundant distinction), since
the producer of the actual text samples in the corpus
had to ultimately decide whether or not to use a con-
nective. The apparent optionality of many examples
thus puts limits on how well we can expect a system
to perform, since there is no way to reliably predict
cases in which the decision is made arbitrarily.

This observation leads us to ask how well humans
perform on this same task. Do they make highly
accurate predictions, or does optionality limit their
performance? In order to shed light on this question,
we carried out an experiment to see how consistently
humans choose to use lexical connectives to signal
intended coherence relations between clauses.

4.1 Methodology

We selected a balanced sample of 100 clause-pair
tokens from the test set, reflecting the distribution of
the different major relation types (six relations were
represented in the sample). This sample comprised
44 explicit and 56 implicit tokens, consistent with
the distribution in the overall corpus. The experi-
mental stimulus for each item consisted of two ver-
sions of the same clause pair, one including a con-
nective between the clauses, and the other without.
For relations that were realized explicitly in the cor-
pus, as in (8a), the alternative implicit stimulus omit-
ted the connective and showed the second argument

as a separate sentence, as in (8b).

(8) a. Mr. Nesbit also said the FDA has asked
Bolar Pharmaceutical Co. to recall at the
retail level its urinary tract antibiotic, but
so far the company hasn’t complied with
that request.

b. Mr. Nesbit also said the FDA has asked
Bolar Pharmaceutical Co. to recall at the
retail level its urinary tract antibiotic. So
far the company hasn’t complied with that
request.

For the implicit relations, the alternative explicit
stimulus for the experiment used the connective an-
notated in the PDTB as the one being most appro-
priate. For each item, a short passage was created
including the preceding and following sentences in
the text to serve as context. The relative ordering
of the presentation of the explicit and implicit forms
was randomized, without regard to the actual corpus
outcome for that stimulus.

Using Amazon’s Mechanical Turk, judges were
presented with the two passages for each item. They
were told to assume that the passages had the same
intended meaning, and were asked to judge which
of the two sounded more natural. We collected 30
responses for each item.4

4.2 Results

We classified each experimental item as either ex-
plicit or implicit, based on the majority response of
the judges. Using this classification, the judges’ re-
sponses matched the actual outcomes in 68 of the
100 cases.5 The distribution of correctly-judged
items across relation types is shown in Table 4.
The judgments for REASON relations most closely
matched the corpus outcomes, with 9 out of the 12
explicit tokens and all 6 implicit tokens in the cor-

4The data from a small number of judges were discarded
due to an unreasonably fast response time or because their judg-
ments showed a unanimous preference across every experimen-
tal item. This left a total of 2,925 judgments over the 100 ex-
perimental items, from 113 different judges.

5Using the majority response of judges for each item to
measure classification accuracy is consistent with the statisti-
cal model, whereby probabilities are rounded up or down to ar-
rive at a binary classification. If accuracy is instead calculated
in terms of average correctness over the individual responses,
performance drops to 60.4%.
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pus correctly identified by the judges. The lowest
scoring relation type was CONTRAST, for which 9
of the 10 explicit tokens were judged correctly but
only 4 out of the 11 implicit tokens were correctly
identified.

Relation Type Items Correct Accuracy
Conjunction 22 15 68.2%

Contrast 21 13 61.9%
Instantiation 9 6 66.7%

Reason 18 15 83.3%
Restatement 16 9 62.5%

Result 14 10 64.2%
Total 100 68 68.0%

Table 4: Results of Mechanical Turk study

There were hence 32 experimental items for
which the majority response by the judges did not
match the actual corpus outcome. In two-thirds
(21) of these cases, the judges indicated a prefer-
ence for a connective when the relation in the corpus
was implicit. These mismatches occurred across the
range of relation types. This suggests that the judges
tended to err on the side on inserting a connective,
even when it may not have been strictly necessary.
While the reason for this is not clear, one possibility
is that the texts reflected the genre and the highly-
prescribed editing guidelines for the newspaper arti-
cles that comprise the corpus, under which unneces-
sary or redundant words are excised. Without such
pressures to edit the copy down to a minimal form,
the judges may have preferred to see the relations
signaled explicitly in cases in which either decision
would result in a felicitous passage.

In the remaining 11 cases, for which the relations
in the corpus were explicitly signaled with a connec-
tive, the judges on average indicated a preference to
leave the relation implicit. Interestingly, all of these
cases were either CONJUNCTION or CONTRAST re-
lations, semantic types which are usually signaled
explicitly with a connective. We inspected these
cases to ascertain why judges may have preferred
an outcome opposite to that actually seen in the text.
We found that all 7 of the CONTRAST mismatches
were instances where the second argument of the re-
lation in the corpus was a sentence beginning with
the coordinating conjunction but, as in (9).
Similarly, three of the mismatched CONJUNCTION

(9) At those levels stocks are set up to be ham-
mered by index arbitragers. But nobody knows
at what level the futures and stocks will open
today. (WSJ2300)

relations had a sentential second argument begin-
ning with the conjunction and. The responses of
the judges to these cases may simply reflect a dis-
preference for sentence-initial conjunctions, a prac-
tice which is frowned upon in prescriptive grammar
books, but apparently allowed by the Wall Street
Journal style sheet.

For this sample of 100 relations, the model
achieves a classification accuracy of 84%. This may
seem at first blush to be an odd result, since it ap-
pears that the model is surpassing human perfor-
mance. As we have suggested, however, this could
be the result of our experimental judges having dif-
ferent preferences than the writers and editors at the
Wall Street Journal for cases in which connective
placement is truly optional. We therefore sought to
evaluate the effect of optionality on these results.

If inaccurate predictions are associated with op-
tionality of connective use, we might expect that
both human judges and the classification model
would be less certain about their categorizations of
these examples than for the cases that were cor-
rectly classified. This was indeed the case. First,
there was a significant difference in the variability
of judges’ responses between items that were incor-
rectly classified and those that were correct (66% vs.
73%, respectively; two-sample t test: t=2.60, df =73,
p<0.02). Thus, as a group the judges were less sure
of themselves in those cases in which they incor-
rectly decided to use or omit the connective, sug-
gesting that either option may have been acceptable.
Second, we analyzed the levels of confidence our
model had for its judgments on correctly and incor-
rectly categorized cases, measured in terms of the
probability of the predicted outcome assigned by
the model. The analysis revealed that the average
model confidence for the relations that were incor-
rectly classified was significantly lower than the av-
erage model confidence for the correctly-classified
items (71% vs. 88%, respectively; t=5.65, df =25,
p<0.001). Taken together, these results are consis-
tent with the idea that, at least for a significant por-
tion of the data, the incorrect judgments made by
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both the judges and the model may have occurred
on passages for which either including or omitting
the connective would have been acceptable.

5 Conclusion

We have presented a model that predicts whether the
coherence relation holding between two clauses is
marked explicitly with a lexical connective or left
implicit. Whereas there is reason to think that an
author’s decision to use a connective is in part in-
fluenced by properties of the extra-linguistic con-
text that are inaccessible to NLP systems (such as
semantics and world knowledge), we find that rel-
atively simple linguistic features derivable from the
clauses and from local discourse dependencies can
be exploited to reach a level of performance signifi-
cantly greater than that achieved by a baseline. The
variability in the judgments of native speakers when
presented with these data suggests that the use of a
connective is in many cases simply optional; in such
cases the decision may reflect lower-level stylistic
choices on the part of the author. This in turn in-
dicates that there may be an inherent upper bound
to the performance of computational systems on this
task.
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Abstract

In Japanese, zero references often occur and
many of them are categorized into zero ex-
ophora, in which a referent is not mentioned in
the document. However, previous studies have
focused on only zero endophora, in which
a referent explicitly appears. We present a
zero reference resolution model considering
zero exophora and author/reader of a docu-
ment. To deal with zero exophora, our model
adds pseudo entities corresponding to zero
exophora to candidate referents of zero pro-
nouns. In addition, we automatically detect
mentions that refer to the author and reader of
a document by using lexico-syntactic patterns.
We represent their particular behavior in a dis-
course as a feature vector of a machine learn-
ing model. The experimental results demon-
strate the effectiveness of our model for not
only zero exophora but also zero endophora.

1 Introduction

Zero reference resolution is the task of detecting and
identifying omitted arguments of a predicate. Since
the arguments are often omitted in Japanese, zero
reference resolution is essential in a wide range of
Japanese natural language processing (NLP) appli-
cations such as information retrieval and machine
translation.

(1) パスタが
pasta-NOM

好きで
like

毎日
everyday

(φガ)
(φ-NOM)

(φヲ)
(φ-ACC)

食べます。
eat

(Liking pasta, (φ) eats (φ) every day)

For example, in example (1) , the accusative argu-
ment of the predicate “食べます” (eat) is omitted .1

The omitted argument is called a zero pronoun. In
this example, the zero pronoun refers to “パスタ”
(pasta).

Zero reference resolution is divided into two sub-
tasks: zero pronoun detection and referent identifi-
cation. Zero pronoun detection is the task that de-
tects omitted zero pronouns from a document. In
example (1), this task detects that there are the zero
pronouns in the accusative and nominative cases of
“食べます” (eat) and there is no zero pronoun in
the dative case of “食べます”. Referent identifica-
tion is the task that identifies the referent of a zero
pronoun. In example (1), this task identifies that the
referent of the zero pronoun in the accusative case of
“食べます” is “パスタ” (pasta). These two subtasks
are often resolved simultaneously and our proposed
model is a unified model.

Many previous studies (Imamura et al., 2009;
Sasano et al., 2008; Sasano and Kurohashi, 2011)
have treated onlyzero endophora, which is a phe-
nomenon that a referent is mentioned in a document,
such as “パスタ” (pasta) in example (1). However,
zero exophora, which is a phenomenon that a ref-
erent does not appear in a document, often occurs in
Japanese when a referent is an author or reader of a
document or an indefinite pronoun. For example, in
example (1), the referent of the zero pronoun of the
nominative case of “食べます” (eat) is the author of

1In this paper, we use the following abbreviations: NOM
(nominative), ABL(ablative), ACC (accusative), DAT (dative),
ALL (allative), GEN (genitive), CMI (comitative), CNJ (con-
junction), INS(instrumental) and TOP (topic marker).
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Zero pronoun
Referent

Example
in the document

Zero endophora Exist Exist
僕はカフェが好きで毎日 (カフェニ)通っている。
(I like cafes and go (to a cafe) everyday.)

Zero exophora Exist
Not exist

私がメリットを ([reader] ニ)
説明させていただきます。
(I would like to explain the advantage (to [reader]).)

No zero reference Not exist
Not exist

あなたはリラックスタイムが (×ニ)過ごせる。
(You can have a relaxing time.)
*There is no dative case.

Table 1: Examples of zero endophora, zero exophora and no zero reference.

the document, but the author is not mentioned ex-
plicitly.

(2) 最近は
recently

パソコンで
PC-INS

動画を
movie-ACC

([unspecified:person] ガ)
([unspecified:person]-NOM)

見れる。
can see

(Recently, (people) can see movies by a PC.)

Similarly, in example (2), the referent of the zero
pronoun of the nominative case of “見れる” (can
see) is an unspecified person.2

Most previous studies have neglected zero ex-
ophora, as though a zero pronoun does not exist in
a sentence. However, such a rough approximation
has impeded the zero reference resolution research.
In Table 1, in “zero exophora,” the dative case of
the predicate has the zero pronoun, but in “no zero
reference,” the dative case of the predicate does not
have a zero pronoun. Treating them with no dis-
tinction causes a decrease in accuracy of machine
learning-based zero pronoun detection due to a gap
between the valency of a predicate and observed ar-
guments of the predicate. In this work, to deal with
zero exophora explicitly, we provide pseudo entities
such as [author], [reader] and [unspecified:person]
as candidate referents of zero pronouns.

In the referent identification, selectional prefer-
ences of a predicate (Sasano et al., 2008; Sasano and
Kurohashi, 2011) and contextual information (Iida
et al., 2006) have been widely used. The author and
reader (A/R) of a document have not been used for
contextual clues because the A/R rarely appear in
the discourse in corpora based on newspaper arti-
cles, which are main targets of the previous studies.
However, in other domain documents such as blog

2In the following examples, omitted arguments are put in
parentheses and exophoric referents are put in square brackets.

articles and shopping sites, the A/R often appear in
the discourse. The A/R tend to be omitted and there
are many clues for the referent identification about
the A/R such as honorific expressions and modal-
ity expressions. Therefore, it is important to deal
with the A/R of a document explicitly for the refer-
ent identification.

The A/R appear as not only the exophora but also
the endophora.

(3) 僕 author は
I-TOP

京都に
Kyoto-DAT

(僕ガ)
(I-NOM)

行こうと
will go

思っています。
have thought

(I have thought (I) will go to Kyoto.)

皆さん reader は
you all-TOP

どこに
where-DAT

行きたいか
want to go

(皆さんガ)
(you all-NOM)

(僕ニ)
(I-DAT)

教えてください。
let me know

(Please let (me) know where do you want to go.)

In example (3), “僕” (I), which is explicitly men-
tioned in the document, is the author of the docu-
ment and “皆さん” (you all) is the reader. In this pa-
per, we call these expressions, which refer to the au-
thor and reader,author mention andreader men-
tion. We treat them explicitly to improve the per-
formance of zero reference resolution. Since the
A/R are mentioned as various expressions besides
personal pronouns in Japanese, it is difficult to de-
tect the A/R mentions based merely on lexical in-
formation. In this work, we automatically detect
the A/R mentions by using a learning-to-rank al-
gorithm(Herbrich et al., 1998; Joachims, 2002) that
uses lexico-syntactic patterns as features.

Once the A/R mentions can be detected, their in-
formation is useful for the referent identification.
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The A/R mentions have both a property of the dis-
course element mentioned in a document and a prop-
erty of the zero exophoric A/R. In the first sentence
of example (3), it can be estimated that the referent
of the zero pronoun of the nominative case of “行こ
う” (will go) from a contextual clue that “僕” (I) is
the topic of this sentence and a syntactic clues that “
僕” (I) depends on “思っています” (have thought)
over the predicate “行こう” (will go). 3 Such con-
textual clues can be available only for the discourse
entities that are mentioned explicitly. On the other
hand, in the second sentence, since “教えてくださ
い” (let me know) is a request form, it can be as-
sumed that the referent of the zero pronoun of the
nominative case is “僕” (I), which is the author,
and the one of the dative case is “皆様” (you all),
which is the reader. The clues such as request forms,
honorific expressions and modality expressions are
available for the author and reader. In this work, to
represent such aspect of the A/R mentions, both the
endophora and exophora features are given to them.

In this paper, we propose a zero reference reso-
lution model considering the zero exophora and the
author/reader mentions, which resolves the zero ref-
erence as a part of a predicate-argument structure
analysis.

2 Related Work

Several approaches to Japanese zero reference reso-
lution have been proposed.

Iida et al. (2006) proposed a zero reference resolu-
tion model that uses the syntactic relations between
a zero pronoun and a candidate referent as a feature.
They deal with zero exophora by judging that a zero
pronoun does not have anaphoricity. However, the
information of zero pronoun existences is given and
thus they did not address zero pronoun detection.

Zero reference resolution has been tackled as a
part of predicate-argument structure analysis. Ima-
mura et al. (2009) proposed a predicate-argument
structure analysis model based on a log-linear model
that simultaneously conducts zero endophora resolu-
tion. They assumed a particular candidate referent,
NULL, and when the analyzer selected this refer-
ent, the analyzer outputs “zero exophora or no zero

3Since “僕” (I) depends on “思っています” (have thought),
the relation between “僕” (I) and “行こう” (will go) is the zero
reference.

pronoun,” in which they are treated without distinc-
tion. Sasano et al. (2008) proposed a probabilis-
tic predicate-argument structure analysis model in-
cluding zero endophora resolution by using wide-
coverage case frames constructed from a web cor-
pus. Sasano and Kurohashi (2011) extended the
Sasano et al. (2008)’s model by focusing on zero en-
dophora. Their model is based on a log-linear model
that uses case frame information and the location of
a candidate referent as features. In their work, zero
exophora is not treated and they assumed that a zero
pronoun is absent when there is no referent in a doc-
ument.

For languages other than Japanese, zero pronoun
resolution methods have been proposed for Chinese,
Portuguese, Spanish and other languages. In Chi-
nese, Kong and Zhou (2010) proposed tree-kernel
based models for three subtasks: zero pronoun de-
tection, anaphoricity decision and referent selection.
In Portuguese and Spanish, only a subject word is
omitted and zero pronoun resolution has been tack-
led as a part of coreference resolution. Poesio et
al. (2010) and Rello et al. (2012) detected omitted
subjects and made a decision whether the omitted
subject has anaphoricity or not as preprocessing of
coreference resolution systems.

3 Baseline Model

In this section, we describe a baseline zero refer-
ence resolution system. In our model, the zero refer-
ence resolution is conducted as a part of predicate-
argument structure (PAS) analysis. The PAS con-
sists of a case frame and an alignment between case
slots and referents. The case frames are constructed
for each meaning of a predicate. Each case frame
describes surface cases that each predicate has (case
slot) and words that can fill each case slot (exam-
ple). In this study, the case frames are constructed
from 6.9 billion Web sentences by using Kawahara
and Kurohashi (2006a)’s method.

The baseline model does not treat zero exophora
as the previous studies. The baseline model analyzes
a document in the following procedure in the same
way as the previous study (Sasano and Kurohashi,
2011).4

4For learning, the previous study used a log-linear model,
but we use a learning-to-rank model. In our preliminary exper-
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� �
京都駅に
Kyoto station-DAT

ある
stand

カレー屋が
curry shop-NOM

好きで、
like

その店に
the shop

よく
often

行きます。
go

(I like a curry shop in Kyoto station and often go to the shop.)

今日は
Today-TOP

皆さんに
you all-DAT

(カレー屋ヲ)
(curry shop-ACC)

紹介します。
will introduce

(Today, I will introduce (the shop) to you.)

Discourse entities� �
{京都駅 (Kyoto station)}, {カレー屋 (curry shop),その店 (the shop)}, {今日 (today)},
{皆さん (you all)}� �

Candidate predicate-argument structures of “紹介します” in the baseline model� �
[1-1] case frame:[紹介する (1)], { NOM:Null, ACC:Null, DAT:皆さん, TIME:今日 }
[1-2] case frame:[紹介する (1)], { NOM:Null, ACC:カレー屋, DAT:皆さん, TIME:今日 }
[1-3] case frame:[紹介する (1)], { NOM:京都駅, ACC:カレー屋, DAT:皆さん, TIME:今日 }

...
[2-1] case frame:[紹介する (2)], { NOM:Null, ACC:Null, DAT:皆さん, TIME:今日 }
[2-2] case frame:[紹介する (2)], { NOM:Null, ACC:カレー屋, DAT:皆さん, TIME:今日 }

...� �� �
Figure 1: Examples of discourse entities and predicate-argument structures

1. Parse the input document and recognize named
entities.

2. Resolve coreferential relations and set dis-
course entities.

3. Analyze the predicate-argument structure for
each predicate using the following steps:
(a) Generate candidate predicate-argument

structures.
(b) Calculate the score of each predicate-

argument structure and select the one with
the highest score.

We illustrate the details of the above procedure.
First, we describe how to set the discourse entities
in step 2. In our model, we treat referents of a zero
pronoun using a unit calleddiscourse entity, which
is what mentions in a coreference chain are bound
into. In Figure 1, we treat “カレー屋” (curry shop)
and “その店” (the shop), which are in a coreference
chain, as one discourse entity. In Figure 1, the dis-
course entity{カレー屋, その店 } is selected for
the referent of the accusative case of the predicate “
紹介します” (will introduce).

Next, we illustrate the PAS analysis in step 3. In
step 3a, possible combinations of the case frame
(cf ) and the alignment (a) between case slots and

iment of the baseline model, there is little difference between
the results of these methods.

discourse entities are listed. First, one case frame is
selected from case frames for the predicate. Next,
overt arguments, which have dependency relations
with the predicate, are aligned to a case slot of the
case frame. Finally, each of zero pronouns of re-
maining case slots is assigned to a discourse entity
or is not assigned to any discourse entities. The case
slot whose zero pronoun is not assigned to any dis-
course entities corresponds to the case that does not
have a zero pronoun. In Figure 1, we show the ex-
amples of candidate PASs. In these examples, [紹介
する (1)] and [紹介する (2)] are case frames corre-
sponding to each meaning of “紹介する”. Referents
of each case slot are actually selected from discourse
entities but are explained as a representative word
for illustration. “Null” indicates that a case slot is
not assigned to any discourse entities. Since align-
ments between case slots and discourse entities of
the PAS [1-2] and [2-2] are the same but their case
frames are different, we deal with them as discrete
PASs. In this case, however, the results of zero ref-
erence resolution are the same.

We represent each PAS as a feature vector, which
is described in section 3.1, and calculate a score of
each PAS with the learned weights. Finally, the sys-
tem outputs the PAS with the highest score.
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Type Value Description

Log Probabilities that{words, categories and named entity types} of e is assigned toc of cf
Log Generative probabilities of{words, categories and named entity types} of e
Log PMIs between{words, categories and named entity types} of e andc of cf

Case Log Max of PMIs between{words, categories and named entity types} of e andc of cf
frame Log Probability thatc of cf is assigned to any words

Log Ratio of examples ofc to ones ofcf
Binary c of cf is {adjacent and obligate} case

Predicate

Binary Modality types ofp
Binary Honorific expressions ofp
Binary Tenses ofp
Binary p is potential form
Binary Modifier ofp (predicate, noun and end of sentence)
Binary p is {dynamic and stative} verb

Context

Binary Named entity types ofe
Integer Number of mentions aboute in t
Integer Number of mentions aboute {before and after} p in t
Binary e is mentioned with post position “は” in a target sentence
Binary Sentence distances betweene andp
Binary Location categories ofe (Sasano and Kurohashi, 2011)
Binary e is mentioned at head of a target sentence
Binary e is mentioned with post position{“は” and “が” } at head of a target sentence
Binary e is mentioned at head of the first sentence
Binary e is mentioned with post position “は” at head of the first sentence
Binary e is mentioned at end of the first sentence
Binary e is mentioned with copula at end of the first sentence
Binary e is mentioned with noun phrase stop at end of the first sentence
Binary Salience score ofe is larger than 1 (Sasano and Kurohashi, 2011)

other Binary c is assigned

Table 2: The features ofφassigned(cf, c← e, p, t)

3.1 Feature Representation of
Predicate-Argument Structure

When textt and target predicatep are given and PAS
(cf, a) is chosen, we represent a feature vector of the
PAS asφ(cf, a, p, t). φ(cf, a, p, t) consists of a fea-
ture vectorφovert-PAS(cf, a, p, t) and feature vec-
tors φ(cf, c/e, p, t). Whereφovert-PAS(cf, a, p, t)
corresponds to alignment between case slots and
overt (not omitted) arguments andφ(cf, c/e, p, t)
represents that a case slotc is assigned to a discourse
entity e. If a case slot is assigned to an overt entity,
φ(cf, c/e, p, t) is set to a zero vector.

Each feature vectorφ(cf, c/e, p, t) consists
of φA(cf, c/e, p, t) and φNA(cf, c/Null, p, t).
φA(cf, c/e, p, t) becomes active when the case
slot c is assigned to the discourse entitye and
φNA(cf, c/Null, p, t) becomes active when the
case slotc is not assigned to any discourse entities.
For example, the PAS [1-2] in Figure 1 is repre-

sented as:
(φovert-PAS(紹介する (1), {NOM:Null, ACC:Null,
NOM:皆さん, TIME:今日 }),0φA

,
φNA(紹介する (1), NOM/Null),
φA(紹介する (1), ACC/カレー屋),
0φNA

,0φA
,0φNA

). 5

In our feature representation, the second and third
terms correspond to the nominative case, the forth
and fifth ones correspond to the accusative and the
sixth and seventh ones correspond to the dative
case.

We present the details ofφovert-PAS(cf, a, p, t),
φA(cf, c/e, p, t) andφNA(cf, c/Null, p, t). We use
a score of the probabilistic PAS analysis (Kawahara
and Kurohashi, 2006b) toφovert-PAS(cf, a, p, t).
We list the features ofφA(cf, c/e, p, t) in Table 2
and the features ofφNA(cf, c/Null, p, t) in Table

5In the following example,p and t are sometimes omitted
and0φis 0 vector that has the same dimension asφ.
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Type Value Description

Case frame

Log
Probability thatc of cf is
not assigned

Log
Ratio of number of examples
of c to ones ofcf

Binary
c of cf is
{adjacent and obligate} case

Table 3: The features ofφNA(cf, c/Null, p, t)

3.

3.2 Weight Learning

In the previous section, we defined the feature vec-
tor φ(cf, a, p, t), which represents a PAS. In this
section, we illustrate the learning method of the
weight vector corresponding to the feature vector.
The weight vector is learned by using a learning-to-
rank algorithm.

In a corpus, gold-standard alignmentsa∗ are man-
ually annotated but case frames are not annotated.
Since the case frames are constructed for each mean-
ing, some of them are unsuitable for a usage of a
prdicate in a context. If training data includes PASs
(cf, a∗) whosecf is such case a frame as correct
instances, these are harmful for training. Hence,
we treat a case framecf∗ which is selected by a
heuristic method as a correct case frame and remove
(cf, a∗) which has othercf .

In particular, we make ranking data for the learn-
ing for each target predicatep in the following steps.

1. List possible PASs(cf, a) for predicatep.
2. Calculate a probabilistic zero reference resolu-

tion score for each(cf, a∗) and define the one
with highest score as(cf∗, a∗).

3. Remove(cf, a∗) except (cf∗, a∗) from the
learning instance.

4. Make ranking data that(cf∗, a∗) has a higher
rank than other(cf, a).

In the above steps, we make ranking data for each
predicate and use the ranking data collected from all
target predicates as training data.

4 Corpus

In this work, we use Diverse Document Leads Cor-
pus (DDLC) (Hangyo et al., 2012) for experiments.
In DDLC, documents collected from the web are
annotated with morpheme, syntax, named entity,
coreference, PAS and A/R mention. Morpheme,

syntax, named entity, coreference and PAS are an-
notated on the basis of Kyoto University Text Cor-
pus (Kawahara et al., 2002). The PAS annotation in-
cludes zero reference information and the exophora
referents are defined as five elements, [author],
[reader], [US(unspecified):person], [US:matter] and
[US:situation]. The A/R mentions are annotated
to head phrases of compound nouns when the A/R
mentions consist of compound nouns. If the A/R
is mentioned by multiple expressions, only one of
them is annotated with the A/R mention tag and all
of these mentions are linked by a coreference chain.
In other words, the A/R mentions are annotated to
discourse entities. In the web site of an organiza-
tion such as a company, the site administrator often
writes the document on behalf of the organization.
In such a case, the organization is annotated as the
author.

5 Author/Reader Mention Detection

A/R mentions, which refer to A/R of a document,
have different properties from other discourse enti-
ties. The A/R are mentioned as very various expres-
sions such as personal pronouns, proper expressions
and role expressions.

(4) こんにちは、
Hello

企画チームの
project team-GEN

梅辻 author です。
am Umetsuji
(Hello, I’m Umetsuji on the project team.)

(5) 問題が
problem-NOM

あれば
exist

管理人 author まで
to moderator

お知らせください。
let me know
(Please let me know if there are any problems.)

In example (4), the author is mentioned as “梅辻”
(Umetsuji), which is the name of the author, and in
example (5), the author is mentioned as “管理人”
(moderator), which expresses the status of the au-
thor. Likewise, the reader is sometimes mentioned
as “お客様” (customer) and others. However, since
such expressions often refer to someone other than
the A/R, whether an expression indicates the A/R of
a document depends on the context of the document.

In English and other languages, the A/R mentions
can be detected from coreference information be-
cause it can be assumed that the expression that has
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a coreference relation with first or second personal
pronoun is the A/R mention. However, since the
A/R tend to be omitted and personal pronouns are
rarely used in Japanese, it is difficult to detect the
A/R mentions from coreference information. Be-
cause of these reasons, it is difficult to detect which
discourse entity is the A/R mention from lexical in-
formation of the entities. In this study, the A/R men-
tions are detected from lexico-syntactic (LS) pat-
terns in the document. We use a learning-to-rank
algorithm to detect A/R mentions by using the LS
patterns as features.

5.1 Author/Reader Detection Model

We use a learning-to-rank method for detecting A/R
mentions. This method learns the ranking that en-
tities of the A/R mentions have a higher rank than
other discourse entities. Here, it is an important
point that there are no A/R mentions in some doc-
uments. The documents in which the A/R mentions
do not appear are classified into two types. The first
type is a document that the A/R do not appear in
the discourse of the document such as newspaper ar-
ticles and novels. The second type is a document
that the A/R appear in the discourse but all of their
mentions are omitted. For example, in Figure 1, the
author appears in the discourse (e.g. the nominative
argument of “like”) but is not mentioned explicitly.
We introduce two pseudo entities corresponding to
these types. The first pseudo entity “no A/R men-
tion (discourse)” represents the document that the
A/R do not appear in the discourse. It is considered
that the document that the A/R do not appear have
characteristics of writing style such that honorific
expressions and request expressions are rarely used.
This pseudo entity is represented as a document vec-
tor that consists of LS pattern features of the whole
document, which reflect a writing style of a doc-
ument. The second pseudo entity “no A/R men-
tion (omitted)” represents the document in which all
mentions of the A/R are omitted and this pseudo en-
tity is represented as 0 vector. Since a decision score
of this pseudo entity is allways 0, discourse entities
whose score is lower than the score of this pseudo
entity can be treated as a negative example in a bi-
nary classification.

When there are A/R mentions in a document, we
make ranking data where the discourse entity of

the A/R mention has a higher rank than other dis-
course entities and “no A/R mention” pseudo enti-
ties. When the A/R do not appear in the discourse,
we make ranking data where “no A/R mention (dis-
course)” has a higher rank than all discourse enti-
ties and “no A/R mention (omitted)”. When the A/R
appear in the discourse but all mentions are omit-
ted, we make ranking data where “no A/R mention
(omitted)” has a higher rank than all discourse en-
tities and “no A/R mention (discourse)”. We judge
that the A/R appear in the discourse if the A/R ap-
pear as a referent of zero reference in gold-standard
PASs and this judgment is used only in the training
phase. After making the ranking data for each doc-
ument, all of the ranking data are merged and the
merged data is fed into the learning-to-rank model.

For the A/R mention detection, we calculate the
score of all discourse entities and the pseudo entities
and select the discourse entity with the highest score
to the A/R mention. If any “no A/R mention” have
the highest score, we decide that there are no A/R
mentions in the document.

5.2 Lexico-Syntactic Patterns

For each discourse entity, phrases of the discourse
entity, its parent and their dependency relations are
used to make LS patterns that represent the discourse
entity. When a discourse entity is mentioned multi-
ple times, the phrases of all mentions are used to
make the LS patterns. LS patterns of phrases are
made by generalizing these phrases on various lev-
els (types). LS patterns of dependencies are made
from combining the LS patterns of phrases.

Table 4 lists generalization types. On theword
type, we make a phrase LS pattern by generalizing
each content word and jointing them. For example, a
LS pattern of the phrase “ぼくは” generalized on the
<representative form> is “僕は”. The word+ type
is the same aswordexcept all content words are gen-
eralized on the<part of speech and conjugation>.
For example, a LS pattern of the dependency rela-
tion “太郎は→走った” generalized on the<named
entity> is “NE:PERSON+は→ verb:past”. We also
use the LS patterns of generalized individual mor-
phemes. On thephrasetype, each phrase is gener-
alized according to the information assigned to the
phrase and all content words are generalized on the
<part of speech and conjugation> if the information
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Unit Type Example (original phrase)

word

<no generalization> 僕は (僕は)
<original form> 走った (走る)

<representative form> 僕は (ぼくは)
<part of speech and conjugation> verb:past (走った)

word+

<category> Category:PERSON+は (僕は)
<named entity> NE:PERSON+は (太郎は)

<first person pronoun> FirstPersonPronoun+は (僕は)
<second person pronoun> SecondPersonPronoun+に (あなたに)

phrase
<modality> modality:request (お問い合わせください)

<honorific expression> honorific:modest (お送りします)
<attached words> ください (お問い合わせください)

Table 4: Generalization types of the LS patterns

is not assigned to the phrase.
For “no A/R mention (discourse)” instance, the

above features of all mentions, including verbs and
adjectives, and their dependencies in the document
are gathered and used as the features representing
the instance.

6 Zero Reference Resolution Considering
Exophora and Author/Reader Mentions

In this section, we describe the zero reference reso-
lution system that considers the zero exophora and
the A/R mentions. The proposed model resolves
zero reference as a part of the PAS analysis based
on the baseline model.

The proposed model analyzes the PASs in the fol-
lowing steps:

1. Parse the input document and recognize named
entities.

2. Resolve coreferential relations and set dis-
course entities.

3. Detect the A/R mentions of the document.
4. Set pseudo entities from the estimated A/R

mentions.
5. Analyze the PAS for each predicate using the

same procedure as the baseline model.

The differences form baseline model are the estima-
tion of the A/R mentions in step 3 and the setting of
pseudo entities in step 4.

6.1 Pseudo Entities and Author/Reader
Mentions for Zero Exophora

In the baseline model, referents of zero pronouns
are selected form discourse entities. The proposed

model adds pseudo entities([author], [reader],
[US:person] (unspecified:person) and [US:others]
(unspecified:others)6) to deal with zero exophora.

When the A/R mentions appear in a document,
the A/R pseudo entities raise an issue. The zero en-
dophora are given priority to zero exophora. In other
words, the A/R mentions are selected to the referents
in preference to pseudo entities when there are A/R
mentions. Therefore, when the system estimates that
A/R mentions appear, the A/R pseudo entities are
not created.

In the PAS analysis, referents are selected from
discourse entities and the pseudo entities. A zero
reference is the zero exophora when a case slot is
assigned to pseudo entities. Candidate PASs of “紹
介します” in Figure 1 are shown in Figure 2.

6.2 Feature Representation of Predicate
Argument Structure

In the same way as the baseline model, the
proposed model represents a PAS as a fea-
ture vector that consists of the feature vector
φovert-PAS(cf, a, p, t) and the feature vectors
φ(cf, c/e, p, t). The difference from the baseline
model is a composition ofφA(cf, c/e, p, t). In the
proposed model, eachφA(cf, c/e) is composed of
vectors, φdiscourse(cf, c/e), φ[author ](cf, c/e),
φ[reader ](cf, c/e), φ[US :person](cf, c/e),
φ[US :others](cf, c/e) and φmax(cf, c/e). Their
contents and dimensions are the same and similar to
φA(cf, c/e) of the baseline model the except for the

6We merge [US:matter] and [US:situation] because of the
small amount of [US:situation] in the corpus.
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� �
[1-1] case frame:[紹介する (1)], { NOM:[author], ACC:Null, DAT:皆さん reader, TIME:今日 }
[1-2] case frame:[紹介する (1)], { NOM:[US:person], ACC:Null, DAT:皆さん reader, TIME:今日 }
[1-3] case frame:[紹介する (1)], { NOM:[author], ACC:カレー屋, DAT:皆さん reader, TIME:今日 }
[1-4] case frame:[紹介する (1)], { NOM:京都駅, ACC:カレー屋, DAT:皆さん reader, TIME:今日 }
[1-5] case frame:[紹介する (1)], { NOM:[author], ACC:[US:others], DAT:皆さん reader, TIME:今日 }

...
[2-1] case frame:[紹介する (2)], { NOM:[author], ACC:Null, DAT:皆さん reader, TIME:今日 }
[2-2] case frame:[紹介する (2)], { NOM:[US:person], ACC:Null, DAT:皆さん reader, TIME:今日 }

...� �
Figure 2: Candidate predicate-argument structures of “紹介します” in the proposed model

Expressions Categories

author
私 (I),我々 (we),俺 (I),僕 (I),

PERSON, ORGANIZATION
当社 (our company),弊社 (our company),当店 (our shop)

reader
あなた (you),客 (customer),君 (you),皆様 (you all),

PERSON
皆さん (you all),方 (person),方々 (people)

US:person 人 (person),人々 (people) PERSON

US:others もの (thing)，状況 (situation)
all categories except
PERSON and ORGANIZATION

Table 5: Expressions and categories for pseudo entities

addition of a few features described in section 6.3.

φdiscourse corresponds to the discourse entities,
which are mentioned explicitly and becomes active
whene is a discourse entity including the A/R men-
tions. φdiscourse is the same asφA of the base-
line model and the difference is explained in section
6.3. φ[author ] andφ[reader ] become active whene is
[author]/[ reader] or the discourse entity correspond-
ing to the A/R mention. In particular, whene is
the discourse entity corresponding to the A/R men-
tion, bothφdiscourse andφ[author ]/φ[reader ] become
active. This representation gives the A/R mentions
the properties of the discourse entity and the A/R.
φ[US :person] andφ[US :others] become active whene
is [US:person] and [US:others].

Because φ[author ], φ[reader ], φ[US :person] and
φ[US :others] correspond to the pseudo entities, which
are not mentioned explicitly, we cannot use word in-
formation such as expressions and categories. We
assume that the pseudo entities have expressions and
categories shown in Table 5 and use these to cal-
culate case frame features. Finally,φmax consists
of the highest value of correspondent feature of the
above feature vectors.

6.3 Author/Reader Mention Score

We add A/R mention score features to the feature
vector φA(cf, c/e, p, t) described in Table 2. The
A/R mention scores are the discriminant function
scores of the A/R mention detection. Whene is the
A/R mention, we set the A/R mention score to the
feature.

7 Experiments
7.1 Experimental Settings

We used 1,000 documents from DDLC and per-
formed 5-fold cross-validation. 1,440 zero en-
dophora and 1,935 zero exophora are annotated in
these documents. 258 documens are annotated with
author mentions and 105 documens are annotated
with reader mentions. We used gold-standard (man-
ually annotated) morphemes, named entities, depen-
dency structures and coreference relations to focus
on the A/R detection and the zero reference resolu-
tion. We usedSV M rank7 for the learning-to-rank
method of the A/R detection and the PAS analysis.
The categories of words are given by the morpho-
logical analyzer JUMAN8. Named entities and pred-
icate features (e.g., honorific expressions, modality)

7http://www.cs.cornell.edu/people/tj/svmlight/svm rank.html
8http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN
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System output
Exist

None
Correct Wrong

Gold Exist 140 6 112
-standard None - 38 704

Table 6: Result of the author mention detection

System output
Exist

None
Correct Wrong

Gold Exist 56 2 47
-standard None - 23 872

Table 7: Result of the reader mention detection

are given by the syntactic parser KNP.9

7.2 Results of Author/Reader Mention
Detection

We show the results of the author and reader men-
tion detection in Table 6 and Table 7. In these tables,
“exist” indicates numbers of documents in which the
A/R mentions are manually annotated or our system
estimated that some discourse entities are A/R men-
tions. From these results, the A/R mentions includ-
ing “none” can be predicted to accuracies of approx-
imately 80%. On the other hand, the recalls are not
particularly high: the recall of author is 140/258 and
the recall of reader is 56/105. This is because the
documents in which the A/R do not appear are more
than the ones in which the A/R appear and the sys-
tem prefers to output “no author/reader mention” as
the result of training.

7.3 Results of Zero Reference Resolution

We show the results of zero reference resolution
in Table 8 and Table 9. The difference between
the baseline and the proposed model is statistically
significant (p < 0.05) from the McNemar’s test.
In Table 8, we evaluate only the zero endophora
for comparison to the baseline model, which deals
with only the zero endophora. “Proposed model
(estimate)” shows the result of the proposed model
which estimated the A/R mentions and “Proposed
model (gold-standard)” shows the result of the pro-
posed model which is given the A/R mentions of
gold-standard from the corpus.

From Table 8, considering the zero exophora and

9http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP

Recall Precision F1
Baseline 0.269 0.377 0.314

Proposed model 0.282 0.448 0.346(estimate)
Proposed model 0.388 0.522 0.445(gold-standard)

Table 8: Results of zero endophora resolution

Recall Precision F1
Baseline 0.115 0.377 0.176

Proposed model 0.317 0.411 0.358(estimate)
Proposed model 0.377 0.485 0.424(gold-standard)

Table 9: Results of zero reference resolution

the A/R mentions improves accuracy of zero en-
dophora resolution as well as zero reference reso-
lution including zero exophora.

From Table 8 and Table 9, the proposed model
given the gold-standard A/R mentions achieves ex-
traordinarily high accuracies. This result indicates
that improvement of the A/R mention detection im-
proves the accuracy of zero reference resolution in
the proposed model.

8 Conclusion
This paper presented a zero reference resolution
model considering exophora and author/reader men-
tions. In the experiments, our proposed model
achieves higher accuracy than the baseline model.
As future work, we plan to improve the au-
thor/reader detection model to improve the zero ref-
erence resolution.
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Abstract

Natural language conversation is widely re-
garded as a highly difficult problem, which
is usually attacked with either rule-based or
learning-based models. In this paper we
propose a retrieval-based automatic response
model for short-text conversation, to exploit
the vast amount of short conversation in-
stances available on social media. For this
purpose we introduce a dataset of short-text
conversation based on the real-world instances
from Sina Weibo (a popular Chinese mi-
croblog service), which will be soon released
to public. This dataset provides rich collec-
tion of instances for the research on finding
natural and relevant short responses to a given
short text, and useful for both training and test-
ing of conversation models. This dataset con-
sists of both naturally formed conversation-
s, manually labeled data, and a large repos-
itory of candidate responses. Our prelimi-
nary experiments demonstrate that the simple
retrieval-based conversation model performs
reasonably well when combined with the rich
instances in our dataset.

1 Introduction

Natural language conversation is one of the holy
grail of artificial intelligence, and has been taken as
the original form of the celebrated Turing test. Pre-
vious effort in this direction has largely focused on
analyzing the text and modeling the state of the con-
versation through dialogue models, while in this pa-

∗The work is done when the first author worked as intern at
Noah’s Ark Lab, Huawei Techologies.

per we take one step back and focus on a much easi-
er task of finding the response for a given short text.
This task is in clear contrast with previous effort in
dialogue modeling in the following two aspects

• we do not consider the context or history of
conversations, and assume that the given short
text is self-contained;

• we only require the response to be natural, rel-
evant, and human-like, and do not require it to
contain particular opinion, content, or to be of
particular style.

This task is much simpler than modeling a complete
dialogue session (e.g., as proposed in Turing test),
and probably not enough for real conversation sce-
nario which requires often several rounds of interac-
tions (e.g., automatic question answering system as
in (Litman et al., 2000)). However it can shed impor-
tant light on understanding the complicated mecha-
nism of the interaction between an utterance and it-
s response. The research in this direction will not
only instantly help the applications of short session
dialogue such as automatic message replying on mo-
bile phone and the chatbot employed in voice assis-
tant like Siri1, but also it will eventually benefit the
modeling of dialogues in a more general setting.

Previous effort in modeling lengthy dialogues fo-
cused either on rule-based or learning-based models
(Carpenter, 1997; Litman et al., 2000; Williams and
Young, 2007; Schatzmann et al., 2006; Misu et al.,
2012). This category of approaches require relative-
ly less data (e.g. reinforcement learning based) for

1http://en.wikipedia.org/wiki/Siri
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training or no training at all, but much manual ef-
fort in designing the rules or the particular learning
algorithms. In this paper, we propose to attack this
problem using an alternative approach, by leverag-
ing the vast amount of training data available from
the social media. Similar ideas have appeared in (Ja-
farpour and Burges, 2010; Leuski and Traum, 2011)
as an initial step for training a chatbot.

With the emergence of social media, especially
microblogs such as Twitter, in the past decade, they
have become an important form of communication
for many people. As the result, it has collected con-
versation history with volume previously unthink-
able, which brings opportunity for attacking the con-
versation problem from a whole new angle. More
specifically, instead of generating a response to an
utterance, we pick a massive suitable one from the
candidate set. The hope is, with a reasonable re-
trieval model and a large enough candidate set, the
system can produce fairly natural and appropriate re-
sponses.

This retrieval-based model is somewhat like non-
parametric model in machine learning communities,
which performs well only when we have abundan-
t data. In our model, it needs only a relatively s-
mall labeled dataset for training the retrieval model,
but requires a rather large unlabeled set (e.g., one
million instances) for candidate responses. To fur-
ther promote the research in similar direction, we
create a dataset for training and testing the retrieval
model, with a candidate responses set of reason-
able size. Sina Weibo is the most popular Twitter-
like microblog service in China, hosting over 500
million registered users and generating over 100
million messages per day 2. As almost all mi-
croblog services, Sina Weibo allows users to com-
ment on a published post3, which forms a natural
one-round conversation. Due to the great abundance
of those (post, response) pairs, it provides an ideal
data source and test bed for one-round conversation.
We will make this dataset publicly available in the
near future.

2http://en.wikipedia.org/wiki/Sina_Weibo
3Actually it also allows users to comment on other users’

comments, but we will not consider that in the dataset.

2 The Dialogues on Sina Weibo

Sina Weibo is a Twitter-like microblog service, on
which a user can publish short messages (will be re-
ferred to as post in the remainder of the paper) visi-
ble to public or a group specified by the user. Simi-
lar to Twitter, Sina Weibo has the word limit of 140
Chinese characters. Other users can comment on a
published post, with the same length limit, as shown
in the real example given in Figure 6 (in Chinese).
Those comments will be referred to as responses in
the remainder of the paper.

Figure 1: An example of Sina Weibo post and the com-
ments it received.

We argue that the (post, response) pairs on Sina
Weibo provide rather valuable resource for studying
one round dialogue between users. The comments
to a post can be of rather flexible forms and diverse
topics, as illustrated in the example in Table 1. With
a post stating the user’s status (traveling to Hawaii),
the comments can be of quite different styles and
contents, but apparently all appropriate.

In many cases, the (post, response) pair is self-
contained, which means one does not need any back-
ground and contextual information to get the main
point of the conversation (Examples of that include
the responses from B, D, G and H). In some cas-
es, one may need extra knowledge to understand the
conversation. For example, the response from user
E will be fairly elusive if taken out of the context
that A’s Hawaii trip is for an international confer-
ence and he is going to give a talk there. We argue
that the number of self-contained (post, response)
pairs is vast, and therefore the extracted (post, re-
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Post
User A: The first day at Hawaii. Watching sunset at the balcony with a big glass of wine in hand.
Responses
User B: Enjoy it & don’t forget to share your photos!
User C: Please take me with you next time!
User D: How long are you going to stay there?
User E: When will be your talk?
User F: Haha, I am doing the same thing right now. Which hotel are you staying in?
User G: Stop showing-off, buddy. We are still coding crazily right now in the lab.
User H: Lucky you! Our flight to Honolulu is delayed and I am stuck in the airport. Chewing French

fries in MacDonald’s right now.

Table 1: A typical example of Sina Weibo post and the comments it received. The original text is in Chinese, and we
translated it into English for easy access of readers. We did the same thing for all the examples throughout this paper.

sponse) pairs can serve as a rich resource for ex-
ploring rather sophisticated patterns and structures
in natural language conversation.

3 Content of the Dataset
The dataset consists of three parts, as illustrated in
Figure 2. Part 1 contains the original (post, re-
sponse) pairs, indicated by the dark-grey section in
Figure 2. Part 2, indicated by the light-gray section
in Figure 2, consists labeled (post, response) pairs
for some Weibo posts, including positive and nega-
tive examples. Part 3 collects all the responses, in-
cluding but not limited to the responses in Part 1 and
2. Some of the basic statistics are summarized in
Table 2.

# posts # responses vocab. # labeled pairs
4,6345 1,534,874 105,732 12,427

Table 2: Some statistics of the dataset

Original (Post, Response) Pairs This part of
dataset gives (post, response) pairs naturally pre-
sented in the microblog service. In other words,
we create a (post, response) pair there when the re-
sponse is actually given to the post in Sina Weibo.
The part of data is noisy since the responses given
to a Weibo post could still be inappropriate for d-
ifferent reasons, for example, they could be spams
or targeting some responses given earlier. We have
628, 833 pairs.

Labeled Pairs This part of data contains the (post,
response) pairs that are labeled by human. Note that

1) the labeling is only on a small subset of posts,
and 2) for each selected post, the labeled responses
are not originally given to it. The labeling is done
in an active manner (see Section 4 for more detail-
s), so the obtained labels are much more informative
than the those on randomly selected pairs (over 98%
of which are negative). This part of data can be di-
rectly used for training and testing of retrieval-based
response models. We have labeled 422 posts and for
each of them, about 30 candidate responses.

Responses This part of dataset contains only re-
sponses, but they are not necessarily for a certain
post. These extra responses are mainly filtered out
by our data cleaning strategy (see Section 4.2) for
original (post, response) pairs, including those from
filtered-out Weibo posts and those addressing oth-
er responses. Nevertheless, those responses are still
valid candidate for responses. We have about 1.5
million responses in the dataset.

3.1 Using the Dataset for Retrieval-based
Response Models

Our data can be used for training and testing of
retrieval-based response model, or just as a bank of
responses. More specifically, it can be used in at
least the following three ways.

Training Low-level Matching Features The
rather abundant original (post, response) pairs pro-
vide rather rich supervision signal for learning dif-
ferent matching patterns between a post and a re-
sponse. These matching patterns could be of dif-
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Figure 2: Content of the dataset.

ferent levels. For example, one may discover from
the data that when the word “Hawaii” occurs in the
post, the response are more likely to contain word-
s like “trip”, “flight”, or “Honolulu”. On a slight-
ly more abstract level, one may learn that when an
entity name is mentioned in the post, it tends to be
mentioned again in the response. More complicated
matching pattern could also be learned. For exam-
ple, the response to a post asking “how to” is statisti-
cally longer than average responses. As a particular
case, Ritter et al. (2011) applied translation model
(Brown et al., 1993) on similar parallel data extract-
ed from Twitter in order to extract the word-to-word
correlation. Please note that with more sophisticat-
ed natural language processing, we can go beyond
bag-of-words for more complicated correspondence
between post and response.

Training Automatic Response Models Although
the original (post, response) pairs are rather abun-
dant, they are not enough for discriminative training
and testing of retrieval models, for the following rea-
sons. In the labeled pairs, both positive and negative
ones are ranked high by some baseline models, and
hence more difficult to tell apart. This supervision
will naturally tune the model parameters to find the
real good responses from the seemingly good ones.
Please note that without the labeled negative pairs,
we need to generate negative pairs with randomly
chosen responses, which in most of the cases are too
easy to differentiate by the ranking model and can-
not fully tune the model parameters. This intuition
has been empirically verified by our experiments.

Testing Automatic Response Models In testing a
retrieval-based system, although we can simply use
the original responses associated with the query post
as positive and treat all the others as negative, this
strategy suffers from the problem of spurious neg-
ative examples. In other words, with a reasonably
good model, the retrieved responses are often good
even if they are not the original ones, which brings
significant bias to the evaluation. With the labeled
pairs, this problem can be solved if we limit the test-
ing only in the small pool of labeled responses.

3.2 Using the Dataset for Other Purposes

Our dataset can also be used for other researches re-
lated to short-text conversations, namely anaphora
resolution, sentiment analysis, and speech act anal-
ysis, based on the large collection of original (post,
response) pairs. For example, to determine the sen-
timent of a response, one needs to consider both
the original post as well as the observed interaction
between the two. In Figure 3, if we want to un-
derstand user’s sentiment towards the “invited talk”
mentioned in the post, the two responses should be
taken as positive, although the sentiment in the mere
responses is either negative or neutral.

4 Creation of the Dataset
The (post, comment) pairs are sampled from the
Sina Weibo posts published by users in a loosely
connected community and the comments they re-
ceived (may not be from this community). This
community is mainly posed of professors, re-
searchers, and students of natural language process-
ing (NLP) and related areas in China, and the users
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Figure 3: An example (original Chinese and the English
translation) on the difficulty of sentiment analysis on re-
sponses.

commonly followed them.
The creation process of the dataset, as illustrated

in Figure 4, consists of three consecutive steps: 1)
crawling the community of users, 2) crawling their
Weibo posts and their responses, 3) cleaning the da-
ta, with more details described in the remainder of
this section.

4.1 Sampling Strategy

We take the following sampling strategy for collect-
ing the (post, response) pairs to make the topic rel-
atively focused. We first locate 3,200 users from a
loosely connected community of Natural Language
Processing (NLP) and Machine Learning (ML) in
China. This is done through crawling followees4 of
ten manually selected seed users who are NLP re-
searchers active on Sina Weibo (with no less than 2
posts per day on average) and popular enough (with
no less than 100 followers).

We crawl the posts and the responses they re-
ceived (not necessarily from the crawled communi-
ty) for two months (from April 5th, 2013, to June
5th, 2013). The topics are relatively limited due to
our choice of the users, with the most saliently ones
being:

• Research: discussion on research ideas, paper-
s, books, tutorials, conferences, and researchers
in NLP and machine learning, etc;

• General Arts and Science: mathematics,
physics, biology, music, painting, etc;

4When user A follows user B, A is called B’s follower, and
B is called A’s followee.

• IT Technology: Mobile phones, IT companies,
jobs opportunities, etc;

• Life: traveling (both touring or conference trip-
s), food, photography, etc.

4.2 Processing, Filtering, and Data Cleaning

On the crawled posts and responses, we first perform
a four-step filtering on the post and responses

• We first remove the Weibo posts and their re-
sponses if the length of post is less than 10 Chi-
nese characters or the length of the response is
less than 5 characters. The reason for that is
two-fold: 1) if the text is too short, it can bare-
ly contain information that can be reliably cap-
tured, e.g. the following example

P: Three down, two to go.

and 2) some of the posts or responses are too
general to be interesting for other cases, e.g. the
response in the example below,

P: Nice restaurant. I’d strong recommend it.
Everything here is good except the long
waiting line

R: wow.

• In the remained posts, we only keep the first
100 responses in the original (post, response)
pairs, since we observe that after the first 100
responses there will be a non-negligible propor-
tion of responses addressing things other than
the original Weibo post (e.g., the responses giv-
en earlier). We however will still keep the re-
sponses in the bank of responses.

• The last step is to filter out the potential adver-
tisements. We will find the long responses that
have been posted more than twice on different
posts and scrub them out of both original (post,
response) pairs and the response repository.

For the remained posts and responses, we remove
the punctuation marks and emoticons, and use ICT-
CLAS (Zhang et al., 2003) for Chinese word seg-
mentation.
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Figure 4: Diagram of the process for creating the dataset.

4.3 Labeling

We employ a pooling strategy widely used in in-
formation retrieval for getting the instance to label
(Voorhees, 2002). More specifically, for a given
post, we use three baseline retrieval models to each
select 10 responses (see Section 5 for the descrip-
tion of the baselines), and merge them to form a
much reduced candidate set with size ≤ 30. Then
we label the reduced candidate set into “suitable”
and “unsuitable” categories. Basically we consider
a response suitable for a given post if we cannot tell
whether it is an original response. More specifically
the suitability of a response is judged based on the
following three criteria5:

Semantic Relevance: This requires the content of
the response to be semantically relevant to the post.
As shown in the example right below, the post P is
about soccer, and so is response R1 (hence seman-
tically relevant), whereas response R2 is about food
(hence semantically irrelevant).

P: There are always 8 English players in their
own penalty area. Unbelievable!

R1: Haha, it is still 0:0, no goal so far.
R2: The food in England is horrible.

Another important aspect of semantic relevance is
the entity association. This requires the entities in
the response to be correctly aligned with those in
the post. In other words, if the post is about entity

5Note that although our criteria in general favor short and
general answers like “Well said!” or “Nice”, most of these gen-
eral answers have already been filtered out due to their length
(see Section 4.2).

A, while the response is about entity B, they are very
likely to be mismatched. As shown in the following
example, where the original post is about Paris, and
the response R2 talks about London:

P: It is my last day in Paris. So hard to say
goodbye.

R1: Enjoy your time in Paris.
R2: Man, I wish I am in London right now.

This is however not absolute, since a response con-
taining a different entity could still be sound, as
demonstrated by the following two responses to the
post above

R1: Enjoy your time in France.
R2: The fall of London is nice too.

Logic Consistency: This requires the content of
the response to be logically consistent with the post.
For example, in the table right below, post P states
that the Huawei mobile phone “Honor” is already in
the market of mainland China. Response R1 talk-
s about a personal preference over the same phone
model (hence logically consistent), whereas R2 asks
the question the answer to which is already clear
from P (hence logically inconsistent).

P: HUAWEI’s mobile phone, Honor, sells
well in Chinese Mainland.

R1: HUAWEI Honor is my favorite phone
R2: When will HUAWEI Honor get to the

market in mainland China?

Speech Act Alignment: Another important factor
in determining the suitability of a response is the
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speech act. For example, when a question is posed in
the Weibo post, a certain act (e.g., answering or for-
warding it) is expected. In the example below, post
P asks a special question about location. Response
R1 and R2 either forwards or answers the question,
whereas R3 is a negative sentence and therefore does
not align well in speech act.

P: Any one knows where KDD will be held the
year after next?

R1: co-ask. Hopefully Europe
R2: New York, as I heard
R3: No, it is still in New York City

5 Retrieval-based Response Model

In a retrieval-based response model, for a given post
x we pick from the candidate set the response with
the highest ranking score, where the score is the en-
semble of several individual matching features

score(x, y) =
∑
i∈Ω

wiΦi(x, y). (1)

with y stands for a candidate response.
We perform a two-stage retrieval to handle the s-

calability associated with the massive candidate set,
as illustrated in Figure 5. In Stage I, the system em-
ploys several fast baseline matching models to re-
trieve a number of candidate responses for the giv-
en post x, forming a much reduced candidate set
C(reduced)
x . In Stage II, the system uses a ranking

function with more and sophisticated features to fur-
ther evaluate all the responses in C(reduced)

x , return-
ing a matching score for each response. Our re-
sponse model then decides whether to respond and
which candidate response to choose.

In Stage II, we use the linear score function de-
fined in Equation 1 with 15 features, trained with
RankSVM (Joachims, 2002). The training and test-
ing are both performed on the 422 labeled posts,
with about 12,000 labeled (post, response) pairs. We
use a 5-fold cross validation with a fixed penalty pa-
rameter for slack variable. 6

5.1 Baseline Matching Models
We use the following matching models as the base-
line model for Stage I fast retrieval. Moreover, the

6The performance is fairly insensitive to the choice of the
penalty, so we only report the result with a typical choice of it.

matching features used in the ranking function in
Stage II are generated, directly or indirectly, from
the those matching models:

POST-RESPONSE SEMANTIC MATCHING:
This particular matching function relies on a learned
mapping from the original sparse representation for
text to a low-dimensional but dense representation
for both Weibo posts and responses. The level of
matching score between a post and a response can
be measured as the inner product between their
images in the low-dimensional space

SemMatch(x, y) = x>LXL
>
Yy. (2)

where x and y are respectively the 1-in-N represen-
tations of x and y. This is to capture the seman-
tic matching between a Weibo post and a response,
which may not be well captured by a word-by-word
matching. More specifically, we find LX and LY
through a large margin variant of (Wu et al., 2013)

arg minLX ,LY

∑
i

max(1−
∑

i

x>i LXL
>
Yyi, 0)

s.t. ‖Ln,X ‖1 ≤ µ1, n = 1, 2, · · · , Nx

‖Lm,Y‖1 ≤ µ1, m = 1, 2, · · · , Ny

‖Ln,X ‖2 = µ2, n = 1, 2, · · · , Nx

‖Lm,Y‖2 = µ2m = 1, 2, · · · , Ny.

where i indices the original (post, response) pairs.
Our experiments (Section 6) indicate that this sim-
ple linear model can learn meaningful patterns, due
to the massive training set. For example, the im-
age of the word “Italy” in the post in the latent s-
pace matches well word “Sicily”, “Mediterranean
sea” and “travel”. Once the mapping LX and LY
are learned, the semantic matching score x>LXL

>
Yy

will be treated as a feature for modeling the overall
suitability of y as a response to post x.

POST-RESPONSE SIMILARITY: Here we use a
simple vector-space model for measuring the simi-
larity between a post and a response

simPR(x,y) =
x>y

‖x‖‖y‖
. (3)

Although it is not necessarily true that a good re-
sponse has many common words as the post, but this
measurement is often helpful in finding relevant re-
sponses. For example, when the post and response
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Figure 5: Diagram of the retrieval-based automatic response system.

both have “National Palace Museum in Taipei”, it
is a strong signal that they are about similar topic-
s. Unlike the semantic matching feature, this simple
similarity requires no learning and works on infre-
quent words. Our empirical results show that it can
often capture the Post-Response relation failed with
semantic matching feature.

POST-POST SIMILARITY: The basic idea here is
to find posts similar to x and use their responses as
the candidates. Again we use the vector space model
for measuring the post-post similarity

simPP (x, x′) =
x>x′

‖x‖‖x′‖
. (4)

The intuition here is that if a post x′ is similar to x its
responses might be appropriate for x. It however of-
ten fails, especially when a response to x′ addresses
parts of x not contained by x, which fortunately can
be alleviated when combined with other measures.

5.2 Learning to Rank with Labeled Data
With all the matching features, we can learn a rank-
ing model with the labeled (post, response) pairs,
e.g., through off-the-shelf ranking algorithms. From
the labeled data, we can extract triples (x, y+, y−)
to ensure that score(x, y+) > score(x, y−). Appar-
ently y+ can be selected from labeled positive re-
sponse of x, while y− can be sampled either from
labeled negative negative or randomly selected ones.
Since the manually labeled negative instances are
top-ranked candidates according to some individual
retrieval model (see Section 5.1) and therefore gen-
erally yield slightly better results.

The matching features are mostly constructed by
combining the individual matching models, for ex-
ample the following two

• Φ7(x, y): this feature measures the length of
the longest common string in the post and the
response;

• Φ12(x, y): this feature considers both seman-
tic matching score between query post x and
candidate response y, as well as the similarity
between x and y’s original post x′:

Φ12(x, y) = SemMatch(x, y)simPP (x, x′).

In addition to the matching features, we also have
simple features describing responses only, such as
the length of it.

6 Experimental Evaluation

We perform experiments on the proposed dataset to
test our retrieval-based model as an algorithm for au-
tomatically generating response.

6.1 Performance of Models
We evaluate the retrieved models based on the fol-
lowing two metrics:

MAP This one measures the mean average preci-
sion (MAP)(Manning et al., 2008) associated
with the ranked list on C(reduced)

x .

P@1 This one simply measures the precision of the
top one response in the ranked list:

P@1 =
#good top-1 responses

#posts
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We perform a 5-fold cross-validation on the 422 la-
beled posts, with the results reported in Table 1. As
it shows, the semantic matching helps slightly im-
prove the overall performance on P@1.

Model MAP P@1
P2R 0.565 0.489
P2R + P2P 0.621 0.567

P2R + MATCH 0.575 0.513
P2R + P2P + MATCH 0.621 0.574

Table 3: Comparison of different choices of features,
where P2R stands for the features based on post-response
similarity, P2P stands for the features based on post-post
similarity, and MATCH stands for the semantic match fea-
ture.

To mimic a more realistic scenario on automatic
response model on Sina Weibo, we allow the system
to choose which post to respond to. Here we simply
set the response algorithm to respond only when the
highest score of the candidate response passes a cer-
tain threshold. Our experiments show that when we
choose to respond only to 50% of the posts, the P@1
increases to 0.76, while if the system only respond
to 25% of the posts, P@1 keeps increasing to 81%.

6.2 Case Study

Although our preliminary retrieval model does not
consider more complicated syntax, it is still able to
capture some useful coupling structure between the
appropriate (post, response) pairs, as well as the sim-
ilar (post, post) pairs.

Figure 6: An actual instance (the original Chinese text
and its English translation) of response returned by our
retrieval-based system.

Case study shows that our retrieval is fairly ef-
fective at capturing the semantic relevance (Section
6.2.1), but relative weak on modeling the logic con-

sistency (Section 6.2.2). Also it is clear that the se-
mantic matching feature (described in Section 5.1)
helps find matched responses that do not share any
words with the post (Section 6.2.3).

6.2.1 On Semantic Relevance
The features employed in our retrieval model are

mostly vector-space based, which are fairly good at
capturing the semantic relevance, as illustrated by
Example 1 & 2.

EXAMPLE 1:
P: It is a small town on an Spanish with 500

population, and guess what, they even
have a casino!

R: If you travel to Spain, you need to spend
some time there.

EXAMPLE 2:
P: One quote from Benjamin Franklin: “We

are all born ignorant, but one must
work hard to remain stupid.”

R: Benjamin Franklin is a wise man, and
one of the founding fathers of USA.

However our retrieval model also makes bad
choice, especially when either the query post or the
response is long, as shown in Example 3. Here the
response is picked up because 1) the correspondence
between the word “IT” in the post and the word
“mobile phone” in the candidate, and 2) the Chinese
word for “lay off” in the post and the word for “out-
dated” in the response are the same.

EXAMPLE 3:
P: As to the laying-off, I haven’t heard anything

about it. ”Elimination of the least competent”
is kind-off conventional in IT, but the ratio is
actually quite small.

R: Please don’t speak that way, otherwise you can
get outdated. Mobile phones are very expensive
when they were just out, but now they are fairly
cheap. Look forward, or you will be outdated.

The entity association is only partially addressed
with features like post-response cosine similarity,
treating entity name just as a word, which is appar-
ently not enough for preventing the following type
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of mistakes (see Example 4 & 5) when the post and
response match well on other parts

EXAMPLE 4:
P: Professor Wang will give a curse on natural

language processing, starting next semester.
R: Jealous.. I wish I can attend Prof. Li’s

course too some time in the future.

EXAMPLE 5:
P: The fine China from Exhibition at the National

Palace Museum in Taipei
R: This drawing looks so nice. National Palace

Museum in Taipei is full of national treasures

6.2.2 On Logic Consistency
Our current model does not explicitly maintain

the logic consistency between the response and the
post, since Logic consistency requires a deeper anal-
ysis of the text, and therefore hard to capture with
just a vector space model. Below are two examples
which are semantically relevant, and correct with re-
spect to speech act, but logically inappropriate.

EXAMPLE 1:
P: I checked. Wang Fengyi is not my great grand-

father, although they’ve done similar deeds
and both were called “Wang the Well-doer”.

R: wow, Wang Fengyi is your great grand-father

EXAMPLE 2:
P: We are looking for summer interns. We provide

books and lunch. If you are in Wu Han and
interested, drop us an email. Sorry we don’t
take any students outside Wu Han.

R: Are you looking for summer intern?

6.2.3 The Effect of Semantic Matching
The experiments also show that we may find inter-

esting and appropriate responses that have no com-
mon words as the post, as shown in the example be-
low. Our bi-linear semantic matching model how-
ever performs relatively poorly on long posts, where
the topics of the sentence cannot be well captured
by the sum of the latent vectors associated with each
word.

P: Eight England players stand in the penalty
area.

R1: What a classic match
R2: Haha, it is still 0:0, no goal so far

7 Summary

In this paper we propose a retrieval-based response
model for short-text based conversation, to leverage
the massive instances collected from social media.
For research in similar directions, we create a dataset
based on the posts and comments from Sina Weibo.
Our preliminary experiments show that our retrieval-
based response model, when combined with a large
candidate set, can achieve fairly good performance.
This dataset will be valuable for both training and
testing automatic response models for short texts.

References

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer. 1993. The mathematic-
s of statistical machine translation: parameter estima-
tion. Comput. Linguist., 19(2).

Rollo Carpenter. 1997. Cleverbot.
Sina Jafarpour and Christopher J. C. Burges. 2010. Fil-

ter, rank, and transfer the knowledge: Learning to chat.
Thorsten Joachims. 2002. Optimizing search engines

using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, KDD ’02, pages 133–
142, New York, NY, USA. ACM.

Anton Leuski and David R. Traum. 2011. Npceditor:
Creating virtual human dialogue using information re-
trieval techniques. AI Magazine, 32(2):42–56.

Diane Litman, Satinder Singh, Michael Kearns, and Mar-
ilyn Walker. 2000. Njfun: a reinforcement learning
spoken dialogue system. In Proceedings of the 2000
ANLP/NAACL Workshop on Conversational systems -
Volume 3, ANLP/NAACL-ConvSyst ’00, pages 17–
20, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Christopher D. Manning, Prabhakar Raghavan, and Hin-
rich Schütze. 2008. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY,
USA.

Teruhisa Misu, Kallirroi Georgila, Anton Leuski, and
David Traum. 2012. Reinforcement learning of
question-answering dialogue policies for virtual muse-
um guides. In Proceedings of the 13th Annual Meeting

944



of the Special Interest Group on Discourse and Dia-
logue, SIGDIAL ’12, pages 84–93.

Alan Ritter, Colin Cherry, and William B. Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’11,
pages 583–593, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and
Steve Young. 2006. A survey of statistical user sim-
ulation techniques for reinforcement-learning of dia-
logue management strategies. Knowl. Eng. Rev., pages
97–126.

Ellen M Voorhees. 2002. The philosophy of infor-
mation retrieval evaluation. In Evaluation of cross-
language information retrieval systems, pages 355–
370. Springer.

Jason D. Williams and Steve Young. 2007. Partially ob-
servable markov decision processes for spoken dialog
systems. Comput. Speech Lang., 21(2):393–422.

Wei Wu, Zhengdong Lu, and Hang Li. 2013. Learning
bilinear model for matching queries and documents.
Journal of Machine Learning Research (2013 to ap-
pear).

Hua-Ping Zhang, Hong-Kui Yu, De-Yi Xiong, and Qun
Liu. 2003. Hhmm-based chinese lexical analyzer ict-
clas. SIGHAN ’03.

945



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 946–957,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Discourse Level Explanatory Relation Extraction from Product Reviews
Using First-order Logic

Qi Zhang, Jin Qian, Huan Chen, Jihua Kang, Xuanjing Huang
School of Computer Science

Fudan University
Shanghai, P.R. China

{qz, 12110240030, 12210240054, 12210240059, xjhuang}@fudan.edu.cn

Abstract

Explanatory sentences are employed to clarify
reasons, details, facts, and so on. High quality
online product reviews usually include not
only positive or negative opinions, but also a
variety of explanations of why these opinions
were given. These explanations can help
readers get easily comprehensible informa-
tion of the discussed products and aspect-
s. Moreover, explanatory relations can also
benefit sentiment analysis applications. In
this work, we focus on the task of identi-
fying subjective text segments and extracting
their corresponding explanations from prod-
uct reviews in discourse level. We propose
a novel joint extraction method using first-
order logic to model rich linguistic features
and long distance constraints. Experimental
results demonstrate the effectiveness of the
proposed method.

1 Introduction

Through analyzing product reviews with high help-
fulness ratings assigned by readers, we find that a
large number of explanatory sentences are used to
clarify the causes, details, or consequences of opin-
ions. According to the statistic based on the dataset
we crawled from a popular product review website,
more than 56.1% opinion expressions are further
explained by other sentences. Since most consumers
are not experts, these explanations would bring lots
of helpful and easy comprehension information for
them. Suggestions about writing a product review
also advise authors to include not only whether they
like or dislike a product, but also why.1

1http://www.reviewpips.com/
http://www.amazon.com/gp/community-help/customer-

For example, let us consider the following snip-
pets extracted from online reviews:

Example 1: TVs with lower refresh rates may
suffer from motion blur. If you’re watching
a fast-paced football game, for example, you
may notice a bit of blurring as the players run
around the field.

Example 2: The LED screen is highly reflec-
tive. The reflection of my own face makes it very
hard to see the subject I am trying to shoot.

The first sentence of example 1 expresses negative
opinion about refresh rate, which is one of the most
important attributes of TV. The second sentence
describes the consequence of it through an example.
In example 2, detail descriptions are used to explain
the reflection problem of the camera screen.

Although, explanations provide valuable infor-
mation, to the best of our knowledge, there is no
existing work that deals with explanation extraction
for opinions in discourse level. We think that if
explanatory relations can be automatically identified
from reviews, sentiment analysis applications may
benefit from it. Existing opinion mining approaches
mainly focus on subjective text. They try to de-
termine the subjectivity and polarity of fragments
of documents (e.g. a paragraph, a sentence, a
phrase and a word) (Pang et al., 2002; Riloff et
al., 2003; Takamura et al., 2005; Mihalcea et al.,
2007; Dasgupta and Ng, ; Hassan and Radev, 2010;
Meng et al., 2012; Dragut et al., 2012). Fine-grained
methods were also introduced to extract opinion
holder, opinion expression, opinion target, and other
opinion elements (Kobayashi et al., 2007; Wu et al.,

reviews-guidelines
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2011; Xu et al., 2013; Yang and Cardie, 2013). Ma-
jor research directions and challenges of sentiment
analysis can also be found in surveys (Pang and Lee,
2008; Liu, 2012).

In this work, we aim to identify subjective tex-
t segments and extract their corresponding expla-
nations from product reviews in discourse level.
We propose to use Markov Logic Networks (ML-
N) (Richardson and Domingos, 2006) to learn the
joint model for subjective classification and explana-
tory relation extraction. MLN has been applied in
several natural language processing tasks (Singla
and Domingos, 2006; Poon and Domingos, 2008;
Yoshikawa et al., 2009; Andrzejewski et al., 2011;
Song et al., 2012) and demonstrated its advantages.
It can easily incorporate rich linguistic features and
global constraints by designing various logic for-
mulas, which can also be viewed as templates or
rules. Logic formulas are combined in a proba-
bilistic framework to model soft constraints. Hence,
the proposed approach can benefit a lot from this
framework.

To evaluate the proposed method, we crawled a
large number of product reviews and constructed a
labeled corpus through Amazon’s Mechanical Turk.
Two tasks were deployed for labeling the corpus.
We compared the proposed method with state-of-
the-art methods on the dataset. Experimental results
demonstrate that the proposed approach can achieve
better performance than state-of-the-art methods.

The remaining part of this paper is organized as
follows: In Section 2, we define the problem and
give some examples to show the challenges of this
task. Section 3 describes the proposed MLN based
method. Dataset construction, experimental results
and analyses are given in Section 4. In Section 5, we
present the related work and Section 6 concludes the
paper.

2 Problem Statement

Motivated by the argument structure of discourse
relations used in Penn Discourse Treebank (Rash-
mi Prasad and Webber, 2008), in this work, we
adopt the clause unit-based definition. It means that
clauses are treated as the basic units of opinion ex-
pressions and explanations. Let d = {c1, c2, ...cn}
be the clauses of document d. Directed graph

G = (V, E) is used to represent the subjectivity
of clauses and explanatory relationships between
them. In the graph, vertices represent clauses,
whose categories are specified by the vertex at-
tributes. Directed edges describe the explanatory
relationships between them, of which the heads are
explanatory clauses. If clause ca describes a set of
facts which clarify the causes, context, situation, or
consequences of another clause cb, ca −→ cb is used
to indicate that clause ca explains cb.

Adopting clause unit-based definition is based
on the following reasons: 1) clause is normally
considered as the smallest grammatical unit which
can express a complete proposition (Kroeger, 2005);
2) from analyzing online reviews, we observe that
a clause can express a complete opinion about one
aspect in most of cases; 3) in Penn Discourse
Treebank, the basic unit of discourse relations (with
a few exceptions) is also taken to be a clause (Rash-
mi Prasad and Webber, 2008).

Figure 1(a) illustrates a sample document. Figure
1(b) is the corresponding output of the given docu-
ment. In the graph, vertices whose color are black
stand for subjective clauses. The other clauses are
represented by white vertices. Edges describe the
explanatory relationships between them, of which
the heads are explanatory clauses.

Although the explanatory relation extraction task
has been studied from the view of linguistic and
discourse representation by existing works (Carston,
1993; Lascarides and Asher, 1993), the automatic
extraction task is still an open question. Consider the
following examples extracting from online reviews:

Example 3: It takes great pictures. Color ren-
ditions, skin tones, exposure levels are all first rate.
From the example, we can observe that the second
sentence explains the first one. However, the second
sentence itself also expresses opinion on various
opinion targets. In other words, both subjective and
objective sentences can be used as explanations.

Example 4: When we called their service center
they made us wait for them the whole day and no
one turned up. This level of service is simply not
acceptable. The first sentence in example 4 explains
the second one. Hence, the feature of relative
location between two sentences does not always
work well in all cases.

Example 5: This backpack is great! its very big
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(c1) I have both the Panasonic LX3 and the Canon

S90. (c2) Both cameras are quite different but truly

excellent. (c3) The S90 is a true pocket camera.

(c4) It is very compact. (c5) The build quality is

also top notch. (c6) It feels solid and it is easy to

grip. (c7) It is so small and convenient, (c8) you

will find that you will always carry it with you.

C5

C3

C2

C4

C6

C7

C1

(a) Example Review (b) Directed Graph Representation

C8

Figure 1: Directed graph representation of a sample document.

and fits more than enough stuff. Many sentences,
which express explanatory relation, do not contain
any connectives (e.g. “because”, “the reason is”,
and so on). Lin et al.(2009) generalized four chal-
lenges (include ambiguity, inference, context, and
world knowledge) to automated implicit discourse
relation recognition. In this task, we also need to
address those challenges.

From the these examples, we can observe that ex-
tracting explanatory relations from product reviews
is a challenging task. Both linguistic and global
constraints should be carefully studied.

3 The Proposed Approach

In this section, we present our method for jointly
classifying the subjectivity of text segments and
extracting explanatory relations. Firstly, we briefly
describe the framework of Markov Logic Networks.
Then, we introduce the clause extraction method
based on the definition described in the Section 2.
Finally, we present the first-order logic formulas
including local formulas and global formulas used
for joint modeling in this work.

3.1 Markov Logic Networks

A MLN consists of a set of logic formulas that
describe first-order knowledge base. Each formula
consists of a set of first-order predicates, logical
connectors and variables. Different with first-order
logic, these hard logic formulas are softened and
can be violated with some penalty (the weight of

formula) in MLN.
We use M to represent a MLN and {(ϕi, wi)}

to represent formula ϕi and its weight wi. These
weighted formulas define a probability distribution
over sets of possible worlds. Let y denote a possible
world, the p(y) is defined as follows (Richardson
and Domingos, 2006):

p(y) =
1

Z
exp

 ∑
(ϕi,wi)∈M

wi

∑
c∈C

nϕi

fϕi
c (y)

 ,

where each c is a binding of free variable in ϕi to
constraints; fϕi

c (y) is a binary feature function that
returns 1 if the true value is obtained in the ground
formula we get by replacing the free variables in
ϕi with the constants in c under the given possible
world y, and 0 otherwise; Cnϕi is all possible
bindings of variables to constants, and Z is a nor-
malization constant.

Many methods have been proposed to learn the
weights of MLN using both generative and dis-
criminative approaches (Richardson and Domingos,
2006; Singla and Domingos, 2006). There are
also several MLN learning packages available online
such as thebeast2, Tuffy3, PyMLNs4, Alchemy5, and
so on.

2http://code.google.com/p/thebeast
3http://hazy.cs.wisc.edu/hazy/tuffy/
4http://www9-old.in.tum.de/people/jain/mlns/
5http://alchemy.cs.washington.edu/
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Describing the attributes of words
subjLexicon(w) The word w belongs to the subjective lexicon (Baccianella et al.,

2010).

relationLexicon(w) The word w belongs to the lexicon of explanation relation
connectives (Pitler and Nenkova, 2009).

Describing the attributes of the clause ci

word(i, w) The clause ci has word w.

firstWord(i, w) The first word of clause ci is word w.

pos(i, w, t) The POS tag of word w is t in clause ci.

dep(i, h,m) Word m and h are governor and dependent of a dependency
relation in clause ci.

Describing the attributes of relations between clause ci and clause cj

clauseDistance(i, j, m) Distance between clause ci and clause cj in clauses is m.

sentenceDistance(i, j, n) Distance between clause ci and clause cj in sentences is n.

Table 1: Descriptions of observed predicates.

3.2 Clause Identification
We model the clause boundary identification prob-
lem through sequence labeling and use Conditional
Random Fields (CRFs) to identify clause bound-
aries. Words and part-of-speech (POS) tags are used
as feature sets. Since we do not allow embedded
segments, the performance of our method is promis-
ing, which achieves the F1 score of 92.8%. The
result is comparable with the best results obtained
during the CoNLL-2001 campaign (Tjong et al.,
2001).

3.3 Formulas
In this work, we propose to use predicate subj(i)
to indicate that the ith clause is subjective and
explain(i, j) to indicate that the jth clause explains
the ith clause. Both subj and explain are hidden
predicates and jointly modeled by MLN. We use
local and global formulas to model rich linguistic
features and long distance constraints.

3.3.1 Local Formulas
The local formulas relate one or more observed

predicates to exactly one hidden predicate. In this
work, we define a list of observed predicates to
describe the properties of individual clauses and
attributes of relations between two clauses. The
observed predicates and descriptions are shown in

Table 1. The observed predicates can be categorized
into 3 groups: words, clauses, and relations between
clauses. We use two lexicons to capture background
knowledge of words. Lexical, part-of-speech tag,
and dependency relation are used to describe a single
clause. We also propose two predicates to model
distance between clauses.

Table 2 lists the local formulas used in this work.
The “+” notation in the formulas indicates that each
constant of the logic variable should be weighted
separately. For subjective classification and relation
extraction, we construct a number of formulas re-
spectively.

For subjective classification, the first two formu-
las model the influence of lexical and POS tag. It
is similar as the bag-of-words model, which is a
simplifying representation and has been successfully
used for various natural language processing tasks.
Since words which provide positive or negative
opinions may provide important information for
subjectivity classification, we combine predicates of
words and lexicon of opinion words. Bigrams are
also proved to be useful for textual classification in
several NLP tasks. Hence, we also combine predi-
cates about individual word and POS tag to capture
this kind of information. Word-level relations are
explicitly presented at the dependency trees, we
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Formulas for subjective classification
word(i,w+) ⇒ subj(i)
pos(i,w+,t+) ⇒ subj(i)
word(i,w+) ∧ subjLexicon(w) ⇒ subj(i)
pos(i,w+,t+) ∧ subjLexicon(w) ⇒ subj(i)
word(i,w1+) ∧ word(i,w2+) ⇒ subj(i)
pos(i,w1+,t+) ∧ pos(i,w2+,t+) ⇒ subj(i)
word(i,w1+) ∧ word(i,w2+) ∧ subjLexicon(w1) ⇒ subj(i)
word(i,w1+) ∧ word(i,w2+) ∧ subjLexicon(w2) ⇒ subj(i)
dep(i,w1+,w2+) ⇒ subj(i)
dep(i,w1+,w2+) ∧ subjLexicon(w1) ⇒ subj(i)
dep(i,w1+,w2+) ∧ subjLexicon(w2) ⇒ subj(i)

Formulas for explanatory relation extraction
word(i,w1+) ∧ word(j,w2+) ∧ j ̸=i ⇒ explain(i,j)
pos(i,w1+,t+) ∧ pos(j,w2+,t+) ∧ j̸=i ⇒ explain(i,j)
dep(i,h1+,m1+) ∧ dep(j,h2+,m2+)∧ j̸=i ⇒ explain(i,j)
word(i,w1+) ∧ word(j,w2+) ∧ clauseDistance(i,j,m+) ∧ j̸=i ⇒ explain(i,j)
pos(i,w1+,t+) ∧ pos(j,w2+,t+) ∧ clauseDistance(i,j,m+) ∧ j̸=i ⇒ explain(i,j)
dep(i,h1+,m1+) ∧ dep(j,h2+,m2+) ∧ clauseDistance(i,j,m+) ∧ j̸=i ⇒ explain(i,j)
word(i,w1+) ∧ word(j,w2+) ∧ sentenceDistance(i,j,n+) ∧ j ̸=i ⇒ explain(i,j)
pos(i,w1+,t+) ∧ pos(j,w2+,t+) ∧ sentenceDistance(i,j,n+) ∧ j ̸=i ⇒ explain(i,j)
dep(i,h1+,m1+) ∧ dep(j,h2+,m2+) ∧ sentenceDistance(i,j,n+) ∧ j̸=i ⇒ explain(i,j)
word(i,w1+) ∧ word(j,w2+) ∧ firstWord(j,w+) ∧ j̸=i ⇒ explain(i,j)
pos(i,w1+,t+) ∧ pos(j,w2+,t+) ∧ firstWord(j,w+) ∧ j̸=i ⇒ explain(i,j)
dep(i,h1+,m1+) ∧ dep(j,h2+,m2+) ∧ firstWord(j,w+) ∧ j̸=i ⇒ explain(i,j)
word(i,w1+) ∧ word(j,w2+) ∧ subjLexicon(w1) ∧ j̸=i ⇒ explain(i,j)
pos(i,w1+,t+) ∧ pos(j,w2+,t+) ∧ subjLexicon(w1) ∧ j̸=i ⇒ explain(i,j)
dep(i,h1+,m1+) ∧ dep(j,h2+,m2+) ∧ subjLexicon(m1) ∧ j̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ clauseDistance(i,j,m+) ∧ j̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ sentenceDistance(i,j,n+) ∧ j ̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ pos(j,w,t+) ∧ clauseDistance(i,j,m+) ∧ j ̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ pos(j,w,t+) ∧ sentenceDistance(i,j,n+) ∧ j̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ word(i,w1+) ∧ clauseDistance(i,j,m+) ∧ j ̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ word(i,w1+) ∧ sentenceDistance(i,j,n+) ∧ j̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ word(j,w1+) ∧ clauseDistance(i,j,m+) ∧ j ̸=i ⇒ explain(i,j)
firstWord(j,w+) ∧ relationLexicon(w) ∧ word(j,w1+) ∧ sentenceDistance(i,j,n+) ∧ j̸=i ⇒ explain(i,j)

Table 2: Descriptions of local formulas.
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also construct local formulas based on predicates
extracted from dependency trees of clauses.

For explanatory relation extraction, we firstly use
formulas to capture lexical and syntactic information
from both of the clauses. Since distances between
clauses are helpful in determining the relation, we
incorporate two kinds of distance features with lex-
ical and syntactic predicates. Connective words
such as for example, since, explicitly signal the
presence of the explanation relation. Although some
connective words are ambiguous in terms of relation
they mark (Pitler and Nenkova, 2009), they may still
be useful for explanation relation extraction. Hence,
we construct local formulas with relation lexicon
and other predicates.

3.3.2 Global Formulas
Local formulas are designed to deal with sub-

jective classification of a single clause or relation
determination of a single pair of clauses. Global
formulas are designed to handle global constraints
of multiple clauses. From the definition of explana-
tory relation and corpus statistics, we observe the
following properties:

Property 1: One clause can only serve as the
explanation of one subjective clause.

Property 2: Explanatory clauses occur immedi-
ately before or after their corresponding subjective
clauses.

Property 3: The positions of explanatory clauses
are consecutive. In other words, if clause ck and
ck+2 explain clause cj , the clause ck+1 would also
be explanatory clause of cj .

For property 1, we use the following global for-
mula to make sure that one clause only explains at
most one another clause.

explain(i, j) ⇒ ¬explain(k, j) ∀k ̸= i, j (1)

Based on the property 2 and 3, explanatory claus-
es are consecutive and immediately before or after
their corresponding subjective clauses. We use the
following formulas to guarantee the property:

explain(i, i + k) ⇒ explain(i, i + m),

1 ≤ m ≤ k − 1 (2)

explain(i, i− k) ⇒ explain(i, i−m),

1 ≤ m ≤ k − 1 (3)

Since our aim is to extract explanatory for subjec-
tive clauses, we also use the following formulas to
make sure that the clauses which are explained are
subjective ones.

explain(i, j) ⇒ subj(i) (4)

4 Experiments

4.1 Data Set
We crawled a number of reviews about digital cam-
eras from Buzzillions6, which is a product review
site and contains more than 16 million reviews.
We randomly select 100 reviews whose usefulness
ratings are 5 on a 5-point scale. They contain 1137
sentences, which are composed by 1665 clauses.
Amazon’s Mechanical Turk is used to deploy two
tasks for labeling the corpus. 694 clauses are labeled
subjective and 478 clauses explain other ones. More
than 56.1% opinion expressions are explained by
their corresponding explanatory sentences.

The two projects we deployed on Amazon’s Me-
chanical Turk are: 1) Determine whether a clause
contains opinion expressions or not; 2) Determine
whether a clause clarifies causes, reasons, or conse-
quences of another given clause. In order to control
the labeling quality, we configured parameters of
the project to make sure that all the tasks should
be judged by at least 20 annotators. Most of the
annotators can complete a task within 25 seconds.
Figure 2 shows the screenshots of the two projects.

Over all, 127 workers participated in the project.
About 72% of them submitted more than 5 tasks.
Although we listed several examples on the project
descriptions, different people may have their own
understanding and criteria for those tasks. In order
to measure the quality of the labeling task, we use
perplexity to evaluate each task. If the perplexity
of a task is below 0.51, which means that more than
80% of the workers submitted the same decision, the
result of the task will be used as training or testing
data. From the statistic of the corpus, we observe
that only 6.2% of the clauses’ subjectiveness and
15.6% of explanation relations can not be certainly
decided. For the first project, we treated those claus-
es as objective one. And, those clause pairs in the
second project were not considered as explanation
relations.

6www.buzzillions.com
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Task2: Help us check whether a sentence is an 
explanation of the opinion sentence. 

The opinion sentence (red one) is extracted from product reviews and 
express opinion towards some attributes/parts of a product. Please 
help us check whether the following blue sentences describe a set of 
facts which clarifies the causes, reason, and consequences of the 
opinion given in the opinion sentence. 
 
click "yes" if there is an explanation relation between them, "no" 
otherwise. 
 
     The battery life is something I come to expect from this line of camera. 
     I can leave the camera on for better than 8 hours shooting  
     ()YES 
     ()NO 
 
     The battery life is something I come to expect from this line of camera. 
     and I have the camera set to shut off the sensor after about 30 seconds   
     ()YES 
     ()NO 

Task1: Help us determine whether a sentence is 
subjective or objective. 

The following sentences are extracted from product reviews. Please 
help us check whether the following sentences  expressing opinion 
towards some attributes/parts of a product. 
 
     The battery life is something I come to expect from this line of camera. 
     ()Subjective 
     ()Objective 
 
     I have the camera set to shut off the sensor after about 30 seconds   
     ()Subjective 
     ()Objective 

Figure 2: Screenshots of the two tasks on Amazon
Mechanical Turk.

4.2 Experiments Configurations

Stanford parser (Klein and Manning, 2003) is used
for extracting features from dependency parse trees.
For resolving Markov logic network, we use the
toolkit thebeast 7. The detailed setting of thebeast
engine is as follows: The inference algorithm is
the MAP inference with a cutting plane approach.
For parameter learning, the weights for formulas are
updated by an online learning algorithm with MIRA
update rule. All the initial weights are set to zeros.
The number of iterations is set to 10 epochs.

Evaluation metrics used for subjectivity classifi-
cation and relation extraction throughout the experi-
ments include: Precision, Recall, and F1-score. We
randomly select 80% reviews as training set and the
others as testing set.

Since the dataset is newly created for this task, to
compare the performance of the proposed method to
other models, we also reimplemented several state-

7http://code.google.com/p/thebeast

of-the-art methods for comparison.

• CRF-Subj: We follow the method proposed by
Zhao et al. (2008), which regard the subjec-
tivity of all clauses throughout a paragraph as
a sequential flow of sentiments and use CRFs
to model it. The feature sets are similar as
the local formulas for MLN including words,
POS tags, dependency relations, and opinion
lexicon.

• RAE-Subj: Socher et al. (2011) proposed to
use recursive autoencoders for sentence-level
predication of sentiment label distributions. To
compare with it, we also reimplement their
method without any hand designed lexicon.

• PDTB-Rel: For discourse relation extraction,
we use “PDTB-Styled End-to-End Discourse
Parser” (Lin et al., 2010) to extract discourse
level relations as baseline. Since it is a gener-
al discourse relations identification algorithms,
“Cause”, “Pragmatic Cause”, “Instantiation”,
and “Restatement” relation types are treated as
explanatory relation in this work.

• SVM-Rel: We also use LibSVM (Chang and
Lin, 2011) to classify the relations between
clauses. Following the configurations reported
by Feng and Hirst (2012), we use linear kernel
and probability estimation to model it.

4.3 Results

Table 3 shows the comparisons of the proposed
method with the state-of-the-art systems on subjec-
tivity classification and explanatory relation extrac-
tion. From the results, we can observe that recur-
sive autoencoders based subjectivity classification
method achieves slightly better performance than
our method and conditional random fields based
method. The performances of the proposed method
are similar as CRFs’. We think that the main reason
is that only lexical features are used in MLN models
for subjective classification. However, conditional
random fields consider not only lexical information
but also inference of the contexts of sentences.
RAE method learns vector space representations for
multi-word phrases and uses compositional seman-
tics to understand sentiment.
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Methods
Subjective Classification

P R F1

CRF-Subj 83.5% 76.9% 80.1%
RAE-Subj 85.3% 79.1% 82.1%
MLN 79.2% 80.6% 79.9%

Methods
Relation Extraction
P R F1

RAE-Subj + PDTB-Rel 28.5% 38.6% 32.8%
RAE-Subj + SVM-Rel 32.4% 89.7% 47.6%
MLN 56.2% 72.9% 63.5%

Table 3: Performance comparisons between the proposed
method and state-of-the-art methods. “MLN” represents
the method proposed in this work.

For evaluating the performance of relation extrac-
tion, we combine the results of RAE with PDTB-
Rel and SVM-Rel. For all the subjective clauses
identified by RAE, PDTB-Rel and SVM-Rel are
used to extract corresponding explanatory clauses.
The results are shown in the last three rows in
the Table 3. From the results, we can observe
that the proposed joint model achieves best F1
score and precision among all methods. Although
the proposed method achieve slightly worse result
in processing subjectivity classification. We think
that the error propagation is the main reason for
worse results of cascaded methods. The relative
improvement of MLN over SVM-Rel is more than
33.4%.

To show the effectiveness of different observed
predicates, we evaluate the performances of the
proposed method with different predicate sets. We
subtract one observed predicate and its correspond-
ing local formulas from the original sets at a time.
The results of both subjectivity classification and
relation extraction are shown in Table 4. The first
row shows the result of the MLN based method with
all observed predicates and local formulas. From the
results we can observe that the observed predicates
which are not used in the local formulas for sub-
jectivity classification also impact the performance
of subjectivity classification. We think that the per-
formance is effected by the global formulas, which
combine the procedure of subjectivity classification

and relation extraction. Among all predicates, we
observe that words and dependency relations play
the most important roles. Without word predicate,
the F1 score of subjectivity classification and re-
lation extraction significantly drop to 51.2% and
42.9% respectively. For subjectivity classification,
subjective lexicon contributes a lot for recall. For
relation extraction, the impacts of clause distance
and sentence distance are not as significant as the
other features.

5 Related Work

Our work relates to three research areas: sentiment
analysis/opinion mining, discourse-level relation ex-
traction, and Markov logic networks. Along with the
increasing requirement, subjectivity classification
has recently received considerable attention from
both the industry and researchers. A variety of
approaches and methods have been proposed for
this task from different aspects. Among them, a
number of approaches focus on classifying senti-
ments of text in different levels (e.g. words (Kim
and Hovy, 2004), phrases (Wilson et al., 2005),
sentences (Zhao et al., 2008), documents (Pang et
al., 2002) and so on.), and detecting the overall
polarity of them.

Another research direction tries to convert the
sentiment analysis task into entity identification and
relation extraction. Hu and Liu (2004) proposed
to use a set of methods to produce feature-based
summary of a large number of customer reviews.
Kobayashi et al. (2007) assumed that evaluative
opinions could be structured as a frame which is
composed by opinion holder, subject, aspect, and
evaluation. They converted the task to two kinds
of relation extraction tasks and proposed a machine
learning-based method which used both contextual
and statistical clues.

Analysis of some special types of sentences were
also introduced in recent years. Jindal and Li-
u (2006) studied the problem of identifying com-
parative sentences. They analyzed different types
of comparative sentences and proposed learning
approaches to identify them. Conditional sentences
were studied by Narayanan et al (2009). They
analyzed the conditional sentences in both linguistic
and computitional perspectives and used learning
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Subjective Classification Relation Extraction
P R F1 P R F1

MLN 79.2% 80.6% 79.9% 56.2% 72.9% 63.5%

−subjLexicon(w) 76.6% 70.4% 73.4 % 52.3% 68.6% 59.4%

−relationLexicon(w) 78.2% 79.4% 78.8% 53.6% 70.8% 61.0%

−word(i, w) 52.8% 49.6% 51.2 % 36.4% 52.1% 42.9%

−firstWord(i, w) 76.3% 80.1% 78.2% 56.9% 69.8% 62.7%

−pos(i, w, t) 72.6% 76.8% 74.6 % 52.4% 60.2% 56.0%

−dep(i, h,m) 57.6% 70.6% 63.4% 41.2% 56.8% 47.8%

−clauseDistance(i, j, m) 78.9% 80.2% 79.5% 52.6% 70.6% 60.3%

−sentenceDistance(i, j, n) 78.6% 80.3% 79.4% 52.4% 70.8% 60.2%

Table 4: Performance comparisons of different observed predicates

method to do it. They followed the feature-based
sentiment analysis model (Hu and Liu, 2004), which
also use flat frames to represent evaluations.

Since the cross sentences relations are considered
in this work, the discourse-level relation extrac-
tion methods are also related to ours. Marcu and
Echihabi (2002) proposed to use an unsupervised
approach to recognizing discourse relations. Lin et
al.(2009) analyzed the impacts of features extracted
from contextual information, constituent parse trees,
dependency parse trees, and word pairs. Asher
et al.(2009) studied discourse segments containing
opinion expressions from the perspective of linguis-
tics. Chen et al. (2010) introduced a multi-label
model to detect emotion causes. They developed
two sets of linguistic features for this task base on
linguistic cues. Zirn et al. (2011) proposed to use
MLN framework to capture the context information
in analysing (sub-)sentences.

The most similar work to ours was proposed by
Somasundaran et al.(2009). They proposed to use it-
erative classification algorithm to capture discourse-
level associations. However different to us, they
focused on pairwise relationships between opinion
expressions. In this paper, we used MLN framework
to capture another different discourse-level relation,
which exists between subject clauses or subject
clause and objective clause.

Richardson and Domingos (2006) proposed
Markov Logic Networks, which combines first-
order logic and probabilistic graphical models. In

recent years, MLN has been adopted for several
natural language processing tasks and achieved
a certain level of success (Singla and Domingos,
2006; Riedel and Meza-Ruiz, 2008; Yoshikawa
et al., 2009; Andrzejewski et al., 2011; Jiang
et al., 2012; Huang et al., 2012). Singla and
Domingos (2006) modeled the entity resolution
problem with MLN. They demonstrated the
capability of MLN to seamlessly combine a number
of previous approaches. Poon and Domingos (2008)
proposed to use MLN for joint unsupervised
coreference resolution. Yoshikawa et al. (2009)
proposed to use Markov logic to incorporate both
local features and global constraints that hold
between temporal relations. Andrzejewski et
al. (2011) introduced a framework for incorporating
general domain knowledge, which is represented by
First-Order Logic (FOL) rules, into LDA inference
to produce topics shaped by both the data and the
rules.

6 Conclusions

In this paper, we propose to use Markov logic
networks to identify subjective text segments and ex-
tract their corresponding explanations in discourse
level. We use MLN to jointly model subjectivity
classification and explanatory relation extraction.
Rich linguistic features and global constraints are
incorporated by various logic formulas and global
formulas. To evaluate the proposed method, we
collected a large number of product reviews and
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constructed a labeled corpus through Amazon’s Me-
chanical Turk. Experimental results demonstrate
that the proposed approach achieve better perfor-
mance than state-of-the-art methods.
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Abstract

We present an approach for building multi-
document event threads from a large corpus
of newswire articles. An event thread is basi-
cally a succession of events belonging to the
same story. It helps the reader to contextual-
ize the information contained in a single arti-
cle, by navigating backward or forward in the
thread from this article. A specific effort is
also made on the detection of reactions to a
particular event.

In order to build these event threads, we use a
cascade of classifiers and other modules, tak-
ing advantage of the redundancy of informa-
tion in the newswire corpus.

We also share interesting comments con-
cerning our manual annotation procedure for
building a training and testing set1.

1 Introduction

In this paper, we explore a new way of dealing
with temporal relations between events. Our task
is somewhat between multidocument summariza-
tion and classification of temporal relations between
events. We work with a large collection of En-
glish newswire articles, where each article relates
an event: the main topic of the article is a specific
event, and other older events are mentioned in order
to put it into perspective. Thus, we consider that an
event is associated with an article and that defining
temporal relations between articles is a way to define
temporal relations between events.

1This work has been partially funded by French National
Research Agency (ANR) under project Chronolines (ANR-10-
CORD-010). We would like to thank the French News Agency
(AFP) for providing us with the corpus.

The task is to build a temporal graph of arti-
cles, linked between each other by the following re-
lations:

• Same event, when two documents relate the
same event, or when a document is an update
of another one.

• Continuation, when an event is the continua-
tion or the consequence of a previous one.

We also define a subset of continuation, called
reaction, concerning a document relating the reac-
tion of someone to another event.

Some examples of these three classes will be
given in Section 3.

These relations can be represented by a directed
graph where documents are vertices and relations
are edges (as illustrated in all figures of this article).
Figure 1 shows an example of such a graph.

Press articles, and especially newswire articles,
are characterized by an important redundancy of re-
lated events. An important event2 is likely to be
treated by several successive articles, which will
give more and more details and update some num-
bers (mainly, tragedy casualty updates, as shown in
Figure 2). On the one hand, this redundancy is an
issue since a system must not show duplicate infor-
mation to the user; on the other hand, we show in
this article that it can also be of great help in the
process of extracting temporal graphs.

In what follows, we first review some of the re-
lated work in Section 2. Section 3 presents the anno-
tation procedure and the resulting annotated corpus

2Note that we do not focus intentionally on “important”
events. However, the fact is that minor events do hardly lead
to dense temporal graphs.
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Figure 1: Example of “temporal graph”: around the
Pope’s death. The associated text is the title of each ar-
ticle. Relations that can be obtained by transitivity have
been hidden for clarity’s sake.

used for developing, learning and evaluating the sys-
tem. The simple modules used to predict the same
event, continuation and, possibly, reaction relations
are described in Section 4, and results are given in
Section 5.

We also propose an end-user application to this
work. When a user reads an article, the system will
then be able to provide her with a thread of events
having occurred before or after, helping her to con-
textualize the information she is reading. This appli-
cation is described in Section 6.

2 Related work

The identification of temporal relations between
events in texts has been the focus of increasing atten-
tion because of its importance in NLP applications
such as information extraction, question-answering
or summarization. The evaluation campaigns Tem-
pEval 2007 (Verhagen et al., 2007) and TempEval
2010 (Verhagen et al., 2010) focused on temporal
relation identification, mainly on temporal relations
between events and times in the same sentence or
in consecutive sentences and between events and the
creation time of documents. In this context, the goal
is to identify the type of a temporal relation which is

Figure 2: Example of “temporal graph”: Madrid attacks,
with many updates of the initial information. Note that
articles gathered in this main pool of articles can be pos-
terior to the continuations and reactions to the described
event.

known to be present. Systems having the best results
(accuracy about 0.6) use statistical learning based
on temporal features (modality, tense, aspect, etc.)
(Mani et al., 2006; Chambers et al., 2007). More re-
cently, Mirroshandel and Ghassem-Sani (2012) pro-
posed a new method for temporal relation extraction
by using a bootstrapping method on annotated data
and have a better accuracy than state-of-the-art sys-
tems. Their method is based on the assumption that
similar event pairs in topically related documents
are likely to have the same temporal relations. For
this work, the authors had already some collections
of topically related documents and did not need to
identify them.

In the 2012 i2b2 challenge (i2b, 2012), the
problem was not only to identify the type of tempo-
ral relations, but also to decide whether a temporal
relation existed or not between two elements, either
clinical concepts or temporal expressions. But, as
in TempEval, the temporal analysis were only to be
performed within a single document.

Other works focus on event ordering. For ex-
ample, Fujiki et al. (2003) and Talukdar et al. (2012)
proposed methods for automatic acquisition of event
sequences from texts. They did not use tempo-
ral information present in texts and extracted se-
quences of events (e.g. arrest/escape) from sen-
tences which were already arranged in chronologi-
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cal order. Chambers and Jurafsky (2008) proposed
a method to learn narrative chains of events related
to a protagonist in a single document. The first
step consists in detecting narrative relations between
events sharing coreferring arguments. Then, a tem-
poral classifier orders partially the connected events
with the before relation.

Concerning the identification of the reaction re-
lation, to our knowledge, there is no work on the
detection of reaction between several documents.
Pouliquen et al. (2007), Krestel et al. (2008) and
Balahur et al. (2009) focused on the identification of
reported speech or opinions in quotations in a docu-
ment, but not on the identification of an event which
is the source of a reaction and which can possibly be
in another document.

As we can see, all these approaches, as well as
traditional information extraction approaches, lean
on information contained by a single document, and
consider an event as a word or a phrase. However,
Ahmed et al. (2011) proposed a framework to group
temporally and tocipally related news articles into
same story clusters in order to reveal the temporal
evolution of stories. But in these topically related
clusters of documents, no temporal relation is de-
tected between articles or events except chronologi-
cal order. On this point of view, our task is closer
to what is done in multidocument summarization,
where a system has to detect redundant excerpts
from various texts on the same topic and present
results in a relevant chronological order. For ex-
ample, Barzilay et al. (2002) propose a system for
multidocument summarization from newswire arti-
cles describing the same event. First, similar text
units from different documents are identified using
statistical techniques and shallow text analysis and
grouped into thematic clusters. Then, in each theme,
sentences which are selected as part of the summary
are ordered using the publication date of the first oc-
currence of events to order sentences.

3 Resources

We built an annotated collection of English articles,
taken from newswire texts provided by the French
news agency (AFP), spreading over the period 2004-
2012. The entire collection contains about 1.5 mil-
lion articles. Each document is an XML file contain-

ing a title, a creation time (DCT), a set of keywords
and textual content split into paragraphs.

3.1 Selection of Article Pairs
Pairs of documents were automatically selected ac-
cording to the following constraints:

• The article describes an event. Articles such
as timelines, fact files, agendas or summaries
were discarded (all these kinds of articles were
tagged by specific keywords, making the filter-
ing easy).

• The distance between the two DCTs does not
exceed 7 days.

• There are at least 2 words in common in the set
of keywords and/or 2 proper nouns in common
in the first paragraph of each article.

These last two restrictions are important, but
necessary, in order to give annotators a chance to
find some related articles. Pure random selection of
pairs over a collection of 1.5 million articles would
be impractical.

We assume that the title and the first paragraph
describe the event associated with the document.
This is a realistic hypothesis, since the basic rules
of journalism impose that the first sentence should
summarize the event by informing on the “5 Ws”
(What, Who, When, Where, Why). However, reading
more than the first paragraph is sometimes necessary
to determine whether a relation exists between two
events.

3.2 Relation Annotation
Two annotators were asked to attribute the following
relations between each pair of articles presented by
the annotation interface system.

In a first annotation round, 7 types of relations
were annotated:

• Three relations concerning cases where the two
articles relate the same event or an update:

– number update, when a document is an
update of numerical data (see top of Fig-
ure 5),

– form update, when the second document
brings only minor corrections,
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Figure 3: Examples of relation continuation between two
documents.

Figure 4: Examples of relation continuation-reaction be-
tween two documents.

– details, when the second document gives
more details about the events (see bottom
of Figure 5).

• development of same story, when the two docu-
ments relate two events which are included into
a third one;

• continuation, when an event is the continuation
or the consequence of a previous one. Figure 3
shows two examples of such a relation. It is
important to make clear that a continuation re-
lation is more than a simple thematic relation,
it implies a natural prolongation between two
events. For example, two sport events of the
same Olympic Games, or two different attacks
in Iraq, shall not be linked together unless a di-
rect link between both is specified in the arti-
cles.

• reaction, a subset of continuation, when a doc-
ument relates the reaction of someone to an-
other event, as illustrated by the example in
Figure 4.

Figure 5: Example of relations same-event between two
documents: update on casualties (top) or details (bottom).

• nil, when no relation can be identified between
the two documents.

The inter-annotator agreement was calculated
with Cohen’s Kappa measure (Cohen, 1960) across
150 pairs: κ “ 0.68. The agreement was low for
the first 4 types of relations mostly because the dif-
ference between relations was not clear enough. We
therefore aggregated the number update, form up-
date and details relations into a more generic and
consensual same-event relation (see Figure 5). We
also discarded the development of same story rela-
tion, leaving only same-event, continuation and re-
action.

Annotation guidelines were modified and a sec-
ond annotation round was carried out: only the
same-event, continuation, reaction and nil relations
were annotated. Inter-annotator agreement across
150 pairs was then κ “ 0.83, which is a good agree-
ment.

3.3 Relation Set Extension
This manual annotation would have led to very
sparse temporal graphs without the two following
additional processes:

• When the annotator attributed a “non-nil” rela-
tion to a pair of documents, the annotation sys-
tem suggested other pairs to annotate around
the concerned articles.

• Same-event and continuation relations are tran-
sitive: if A same-event B and B same-event
C, then A same-event C (and respectively for
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Pair number Learning Evaluation
Same event 762 458 304
Continuation 1134 748 386
Reaction 182 123 59
Nil 918 614 304
TOTAL 2996 1943 1053

Table 1: Characteristics of the corpus.

continuation). Then, when the annotation was
done, a transitive closure was performed on the
entire graph, in order to get more relations with
low effort (and to detect and correct some in-
consistencies in the annotations).

Finally, almost 3,000 relations were annotated.
2{3 of the annotated pairs were used for development
and learning phases, while 1{3 were kept for evalua-
tion purpose (cf. Table 1).

4 Building Temporal Graphs

As we explained in the introduction, the main pur-
pose of this paper is to show that it is possible to ex-
tract temporal graphs of events from multiple docu-
ments in a news corpus. This is achieved with the
help of redundancy of information in this corpus.
Therefore, we will use a cascade of classifiers and
other modules, each of them using the relations de-
duced by the previous one. All modules predict a
relation between two documents (i.e., two events).

We did not focus on complex algorithms or
classifiers for tuning our results, and most of our fea-
tures are very simple. The idea here is to show that
good results can be obtained in this original and use-
ful task. The process can be separated into 3 main
stages, illustrated in Figure 6:

A. Filtering out pairs that have no relation at all, i.e.
classifying between nil and non-nil relations;

B. Classifying between same-event and continua-
tion relations;

C. Extracting reactions from the set of continuation
relations.

All described classifiers use SMO (Platt, 1998),
the SVM optimization implemented into Weka (Hall
et al., 2009), with logistic models fitting (option “-
M”). With this option, the confidence score of each

Figure 6: A 3-step classification.

prediction can be used, while SMO alone provides a
constant probability for all instances.

From now on, when considering a pair of doc-
uments, we will refer to the older document as doc-
ument 1, and to the more recent one as document 2.
The relations found between documents will be rep-
resented by a directed graph where documents are
vertices and relations are edges.

4.1 A. Nils versus non-nils

We first aim at separating nil relations (no relation
between two events) from other relations. This step
is achieved by two successive classifiers: the first
one (A.1) uses mainly similarity measures between
documents, while the second one (A.2) uses the re-
lations obtained by the first one.

4.1.1 Step A.1: Nil classifier, level 1

Features provided to the SMO classifier at this
first step are based on 3 different similarity measures
applied to pairs of titles, pairs of first sentences,
and pairs of entire documents: cosine similarity (as
implemented by Lucene search engine3), inclusion
similarity (rate of words from element 1 present in
element 2) and overlap similarity (number of words
present in both elements). This classifier is therefore
based on only 9 features.

4.1.2 Step A.2: Nil classifier, level 2

Finding relations on a document implies that the
described event is important enough to be addressed
by several articles (same-event) or to have conse-
quences (continuation). Consequently, if we find
such relations concerning a document, we are more
likely to find more of them, because this means that

3http://lucene.apache.org
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the document has some importance. A typical exam-
ple is shown in Figure 7, where an event described
by several documents (on the left) has many contin-
uations. For this reason, we build a second classifier
A.2 using additional features related to the relations
found at step A.1:

• Number of non-nil edges, incoming to or out-
going from document 1 (2 features); the sum of
both numbers (1 extra feature);

• Number of non-nil edges, incoming to or out-
going from document 2 (2 features); the sum of
both numbers (1 extra feature);

• Number of non-nil edges found involving one
of the two documents (i.e., the sum of all edges
described above – 1 feature).

These figures have been computed on training
set for training, and on result of step A.1 classifier
for testing. This new information will basically help
the classifier to be more optimistic toward non-nil
relations for documents having already non-nil rela-
tions.

4.2 B. Same-event versus Continuation
We are now working only with non-nil relations
(even if some relations may switch between nil and
non-nil during the transitive closure).

4.2.1 Step B.1: Relation classifier, level 1
Distinction between same-event and continua-

tion is made by the following sets of features:

• Date features:

– Difference between the two document cre-
ation times (DCTs): difference in days, in
hours, in minutes (3 features);

– Whether the creation time of doc. 1 is
mentioned in doc. 2. For this purpose,
we use the date normalization system de-
scribed in Kessler et al. (2012).

– Cosine similarity between the first sen-
tence of doc. 1 and sentences of doc. 2
containing the DCT of doc. 1.

– Cosine similarity between the first sen-
tence of doc. 1 and the most similar sen-
tence of doc. 2.

Figure 7: An example of highly-connected subgraph,
corresponding to the development of an important story.
Same events are grouped by cliques (see Section 4.2.3)
and some redundant relations are not shown for clarity’s
sake.

These last three features come from the
idea that a continuation relation can be
made explicit in text by mentioning the
first event in the second document.

• Temporal features: whether words introducing
temporal relations occur in document 1 or doc-
ument 2. These manually-collected words can
be prepositions (after, before, etc.) or verbs
(follow, confirm, prove, etc.).

• Reaction features: whether verbs introducing
reactions occur in document 1 or document 2
(25 manually-collected verbs as approve, ac-
cept, welcome, vow, etc.).

• Opinion features: whether opinion words occur
in document 1 or document 2. The list of opin-
ion words comes from the MPQA subjectivity
lexicon (Wilson et al., 2005).

Only same-event relations classified with more
than 90% confidence by the classifier are kept, in
order to ensure a high precision (recall will be im-
proved at next step). This threshold has been set up
on development set.

4.2.2 Step B.2: Relation classifier, level 2
As for step A.2, a second classifier is im-

plemented, using the results of step B.1 with the
same manner as A.2 uses A.1 (collecting numbers
of same-event and continuation relations that have
been found by the previous classifier).

4.2.3 Steps B.3 and B.4: Transitive closure by
vote

As already stated, same-event and continuation
relations are transitive. Same-event is also symmet-
ric (A same-event B ñ B same-event A). In the
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graph formed by documents (vertices) and relations
(edges), it is then possible to find all cliques, i.e. sub-
sets of vertices such that every two vertices in the
subset are connected by a same-event relation, as il-
lustrated by Figure 7.

This step does not involve any learning phase.
Starting from the result of last step, we find all same-
event cliques in the graph by using the Bron and
Kerbosch (1973) algorithm. The transitive closure
process is then illustrated by Figure 8. If the classi-
fier proposed a relation between some documents of
a clique and some other documents (as D1, D2 and
D3), then a vote is necessary:

• If the document is linked to half or more of the
clique, then all missing links are created (Fig-
ure 8.a);

• Otherwise, the document is entirely discon-
nected from the clique (Figure 8.b).

This vote is done for same-event and contin-
uation relations (resp. steps B.3 and B.4). Only
cliques containing at least 3 nodes are used. A draw-
back of this voting procedure is that the final result
may not be independent of the voting order, in some
cases. However, it is assured that the result is con-
sistent, i.e. that no document will sit in two different
cliques, or that two documents from the same clique
will not have two different relations toward a third
document.

Note that this vote leads to improvements only
if the precision of the initial classifier is sufficiently
good. As we will see in Section 5.2, this is the case
in our situation, but one must keep in mind that a
vote leaning on too imprecise material would lead to
even worse results. Some experiments on the devel-
opment set show us that at least 70% precision was
necessary. Another way to ensure robustness of the
vote would be to apply the transitive closure only
on bigger cliques (e.g., containing more than 3 or
4 nodes).

4.3 C. Continuation versus Reaction
The approach for reaction extraction is different. We
first try to determine which documents describe re-
actions, regardless of which event it is a reaction to.
In the training set, all documents having at least one
incoming reaction edge are considered as reaction

ñ

ñ

Figure 8: Vote for same-event transitive closure. At the
top (a.), four nodes from the 5-node clique are linked to
document D1, which is enough to add D1 to the clique.
At the bottom (b.), only two nodes from the clique are
linked to documents D2 and D3, which is not enough to
add them into the clique. All edges from the clique to D2

and D3 are then deleted.

documents, all others are not. This distinction is
then learned with the same model and features as
for step B.1 (Section 4.2.1).

Once reaction documents have been selected,
the question is how to decide to which other doc-
ument(s) it must be linked. For example, in Fig-
ure 1, “Queen Elizabeth expresses deep sorrow” is
a reaction to pope’s death, not to other documents in
the temporal thread (for example, not to other reac-
tions or to “Pope in serious condition”). We did not
manage to build any classifier leading to satisfying
results at this point. We then proposed the two fol-
lowing basic heuristics, applied on all continuation
relations found after step B:

• A reaction reacts to only one event.

• A reaction reacts to an important event. Then,
among all continuation edges incoming to
the reaction document, we choose the biggest
same-event clique and create reaction edges
instead of continuations. If there is no
clique (only single nodes) or several same-size
cliques, all of them are tagged as reactions.

This module is called step C.1. Finally, a transitive
closure is performed for reactions (C.2).
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Relation Precision Recall F1
NIL 0.754 0.821 0.786

same-event 0.832 0.812 0.822
continuation 0.736 0.696 0.715

ë reaction 0.273 0.077 0.120

Table 2: Results obtained by the baseline system. Con-
tinuation scores do not consider reactions, only the last
row makes the distinction.

5 Results

5.1 Baseline
As a baseline, we propose a single classifier deter-
mining all classes at once, based on the same SMO
classifier with the exact same parameters and all
similarity-based features (on titles, first sentences
and entire documents) described in Section 4.1.1.

Table 2 shows results for this baseline. Unsur-
prisingly, same-event relations are quite well clas-
sified by this baseline, since similarity is the major
clue for this class. Continuation is much lower and
only 3 reactions are well detected.

5.2 System Evaluation
Results for all successive steps described in previous
section are shown in Figure 3. The final result of the
entire system is the last one. The first observation
is that redundancy-based steps improve performance
in a significant manner:

• Classifiers A.2 and B.2, using the number of
incoming or outgoing edges found at previous
steps, lead to very significant improvement.

• Among transitivity closure algorithms (B.3,
B.4, C.2), only same-event transitivity B.3
leads to significant improvement. Furthermore,
as we already noticed, these algorithms must be
used only when a good precision is guaranteed
at previous step. Otherwise, there is a risk of
inferring mostly bad relations. This is why we
biased classifier at step B.1 towards precision.
Finally, if this condition on precision is true,
transitivity closure is a robust way to get new
relations for free.

Results also tell that classification of relations
same-event and continuation is encouraging. Reac-
tion level gets a fair precision but a bad recall. This

Step Relation Precision Recall F1
A. NIL vs non-NIL classifier
A.1 NIL 0.764 0.815 0.788

non-NIL 0.921 0.896 0.910
A.2 NIL 0.907 0.811 0.857
˚˚˚ non-NIL 0.925 0.966 0.945
B. Same-event vs continuation classifier
B.1 NIL 0.907 0.811 0.857

same-event 0.870 0.553 0.676
continuation 0.664 0.867 0.752

B.2 NIL 0.947 0.831 0.885
˚˚˚ same-event 0.894 0.724 0.800

continuation 0.744 0.911 0.819
B.3 NIL 0.884 0.831 0.857
˚˚ same-event 0.943 0.819 0.877

continuation 0.797 0.906 0.848
B.4 NIL 0.890 0.831 0.860

˚ same-event 0.943 0.819 0.877
continuation 0.798 0.911 0.851

C. Reaction vs continuation
C.1 NIL 0.890 0.831 0.860
C.2 same-event 0.943 0.819 0.877

continuation 0.798 0.911 0.851
ë reaction 0.778 0.359 0.491

Table 3: Results obtained at each step of the classifica-
tion process. The significance of the improvement wrt
previous step (when relevant) is indicated by the Student
t-test (˚: non significant; ˚˚: p ă 0.05 (significant); ˚˚˚:
p ă 0.01 (highly significant)). Steps C.1 and C.2 are
aggregated, since their results are exactly the same.

is not catastrophic since most of the missed reactions
are tagged as continuation, which is still true (only
10% of the reaction relations are mistagged as same-
event). However, there is big room for improvement
on this point.

6 Application

As we showed in previous section, results for classi-
fication of same-event and continuation relations be-
tween documents are good enough to use this system
in an application that builds “event threads” around
an input document. The use case is the following:

• The reader reads an article (let’s say, about the
death of John Paul II, article published on Feb.
4th, 2005 (UT) – see Figure 1).

• A link in the page suggests the user to visualize
the event thread around this article.
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Figure 9: An example of temporal thread obtained on the death of John Paul II for user visualization (see corresponding
relation graph in Figure 1).

• All articles within a period of 7 days around
the event, sharing at least two keywords with
the current document, are collected. All pairs
are given to the system4.

• When same-event cliques are found, only the
longest article (often, the most recent one) of
each clique is presented to the user. However,
the date and time presented to the user are those
of the first article relating the event.

• This leads to a graph with only continuation
and reaction relations. Edges are “cleaned” so
that a unique thread is visible: relations that can
be obtained by transitivity are removed, edges
between two documents are kept only if no doc-
ument can be inserted in-between.

• Nodes are presented in chronological order.
The user can visualize and navigate through
this graph (the event thread shows only titles
but full articles can be accessed by clicking on
the node).

• When found, reactions are isolated from the
main thread.

• Such a temporal thread is potentially infinite. If
the user navigates through the end of the 7-day
window, the system must be run again on the
next time span.

4In case of very important events where “all pairs” would be
too much, the temporal window is restrained. However, there is
no real time performance issue in this system.

Figure 9 presents the result of this process on
the partial temporal graph shown in Figure 1.

7 Conclusion

This article presents a task of multidocument tem-
poral graph building. We make the assumption that
each news article (after filtering) relates an event,
and we present a system extracting relations be-
tween articles. This system uses simple features and
algorithms but takes advantage of the important re-
dundancy of information in a news corpus, by in-
corporating redundancy information in a cascade of
classifiers, and by using transitivity of relations to
infer new links.

Finally, we present an application presenting
“event threads” to the user, in order to contextual-
ize the information and recomposing the story of an
event.

Now that the task is well defined and that en-
couraging results have been obtained, we envisage to
enrich classifiers by more fine-grained temporal and
lexical information, such as narrative chains (Cham-
bers and Jurafsky, 2008) for continuation relation
or event clustering (Barzilay et al., 2002) for same-
event relation. There is no doubt that reaction de-
tection can be improved a lot, by going beyond sim-
ple lexical features and discovering specific patterns.
We also intend to adapt the described system to other
languages than English.
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Abstract 

Scope detection is a key task in information ex-
traction. This paper proposes a new approach for 
tree kernel-based scope detection by using the 
structured syntactic parse information. In addi-
tion, we have explored the way of selecting 
compatible features for different part-of-speech 
cues. Experiments on the BioScope corpus show 
that both constituent and dependency structured 
syntactic parse features have the advantage in 
capturing the potential relationships between 
cues and their scopes. Compared with the state 
of the art scope detection systems, our system 
achieves substantial improvement.* 

1 Introduction 

The task of scope detection is to detect the linguis-
tic scope dominated by a specific cue. Current re-
searches in this field focus on two semantic as-
pects: negation and speculation. The negative 
scope detection is to detect the linguistic scope 
which is repudiated by a negative word (viz., nega-
tive cue, e.g., “not”). In other side, the speculative 
scope detection is to detect the uncertain part in a 
sentence corresponding to the speculative word 
(viz., speculative cue, e.g., “seems”). See the sen-
tence 1) below, the negative cue “not” dominates 
the scope of “not expensive”. Similarly, the specu-
lative cue “possible” in sentence 2) dominates the 
uncertain scope “the possible future scenarios”. 

1) The chair is [not expensive] but comfortable.  
2) Considering all that we have seen, what are now 

[the possible future scenarios]? 

                                                 
*	Corresponding	author	

The negative and speculative scope detection 
task consists of two basic stages. The first one is to 
identify the sentences involving negative or specu-
lative meaning. The second stage is to detect the 
linguistic scope of the cue in sentences (Velldal et 
al, 2012). In this paper, we focus on the second 
stage. That is, by given golden cues, we detect 
their linguistic scopes. 

We propose a tree kernel-based negation and 
speculation scope detection with structured syntac-
tic parse features. In detail, we regard the scope 
detection task as a binary classification issue, 
which is to classify the tokens in a sentence as be-
ing inside or outside the scope. In the basic 
framework, we focus on the analysis and applica-
tion of structured syntactic parse features as fol-
lows: 

Both constituent and dependency syntactic fea-
tures have been proved to be effective in scope 
detection (Özgür et al, 2009; Øvrelid et al, 2010). 
However, these flat features are hardly to reflect 
the information implicit in syntactic parse tree 
structures. Our intuition is that the segments of the 
syntactic parse tree around a negative or specula-
tive cue is effective for scope detection. The relat-
ed structures normally underlay the indirect clues 
to identify the relations between cues and their 
scopes, e.g., in sentence 1), “but something”, as a 
frequently co-occurred syntactic structure with 
“not something”, is an effective clue to determine 
the linguistic scope of “not”. 

The tree kernel classifier (Moschitti, 2006) 
based on support vector machines uses a kernel 
function between two trees, affording a compari-
son between their substructures. Therefore, a tree 
kernel-based scope detection approach with struc-
tured syntactic parse tree is employed. The tree 
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kernel has been already proved to be effective in 
semantic role labeling (Che et al, 2006) and rela-
tion extraction (Zhou et al, 2007). 

In addition, the empirical observation shows 
that features have imbalanced efficiency for scope 
classification, which is normally affected by the 
part-of-speech (abbr., POS) of cues. Hence, we 
build the discriminative classifiers for each kind of 
POS of cues, then explore and select the most 
compatible features for them. 

We construct a scope detection system by using 
the structured syntactic parse features based tree 
kernel classification. Compared with the state of 
the art scope detection systems, our system 
achieves the performance of accuracy 76.90% on 
negation and 84.21% on speculation (on Abstracts 
sub-corpus). Additionally, we test our system on 
different sub-corpus (Clinical Reports and Full 
Papers). The results show that our approach has 
better cross-domain performance. 

The rest of this paper is organized as follows: 
Section 2 reviews related work. Section 3 intro-
duces the corpus and corresponding usage in our 
experiments. Section 4 describes our approach and 
the experiments are presented in Section 5. Finally, 
there is a conclusion in Section 6. 

2 Related Work 

Most of the previous studies on negation and spec-
ulation scope detection task can be divided into 
two main aspects: the heuristic rule based methods 
and the machine learning based methods. We re-
spectively introduce the aspects in below. 

2.1 Heuristic Rule based Methods 

The initial studies for scope detection are to com-
pile effective heuristic rules (Chapman et al, 2001; 
Goldin et al, 2003). Recently, the heuristic rule 
based methods have further involved the syntactic 
features. 

Huang et al (2007) implemented a hybrid ap-
proach to automated negation scope detection. 
They combined the regular expression matching 
with grammatical parsing: negations are classified 
on the basis of syntactic categories and located in 
parse trees. Their hybrid approach is able to identi-
fy negated concepts in radiology reports even 
when they are located at some distance from the 
negative term. 

Özgür et al (2009) hypothesized that the scope 
of a speculation cue can be characterized by its 
part-of-speech and the syntactic structure of the 
sentence and developed rules to map the scope of a 
cue to the nodes in the syntactic parse tree. By 
given golden speculation cues, their rule-based 
method achieves the accuracies of 79.89% and 
61.13% on the Abstracts and the Full-Papers sub-
corpus, respectively. 

Øvrelid et al (2010) constructed a small set of 
heuristic rules which define the scope for each cue. 
In developing these rules, they made use of the 
information provided by the guidelines for scope 
annotation in the BioScope corpus, combined with 
manual inspection of the training data in order to 
further generalize over the phenomena discussed 
by Vincze et al (2008) and work out interactions of 
constructions for various types of cues. 

Apostolova et al (2011) presented a linguistical-
ly motivated rule-based system for the detection of 
negation and speculation scopes that performs on 
par with state-of-the-art machine learning systems. 
The rules are automatically extracted from the Bi-
oScope corpus and encode lexico-syntactic pat-
terns in a user-friendly format. While their system 
was developed and tested using a biomedical cor-
pus, the rule extraction mechanism is not domain-
specific. 

The heuristic rule based methods have bad ro-
bustness in detecting scopes crossing different 
meaning aspects (e.g., negative vs. speculative) 
and crossing different linguistic resources (e.g., 
Technical Papers vs. Clinical Reports). 

2.2 Machine Learning based Methods 

The machine learning based methods have been 
ignored until the release of the BioScope corpus 
(Szarvas et al, 2008), where the large-scale data of 
manually annotated cues and corresponding scopes 
can support machine learning well. 

Morante et al (2008) formulated scope detection 
as a chunk classification problem. It is worth not-
ing that they also proposed an effective proper 
post-processing approach to ensure the consecu-
tiveness of scope. Then, for further improving the 
scope detection, Morante et al (2009a) applied a 
meta-learner that uses the predictions of the three 
classifiers (TiMBL/SVM/CRF) to predict the 
scope. 

For the competitive task in CoNLL’2010 (Far-
kas et al, 2010), Morante et al (2010) used a 

969



memory-based classifier based on the k-nearest 
neighbor rule to determine if a token is the first 
token in a scope sequence, the last, or neither. 
Therefore, in order to guarantee that all scopes are 
continuous sequences of tokens they apply a first 
post-processing step that builds the sequence of 
scope. 

The existing machine learning based approaches 
substantially improve the robustness of scope de-
tection, and have nearly 80% accuracy. However, 
the approaches ignore the availability of the struc-
tured syntactic parse information. This information 
involves more clues which can well reflect the re-
lations between cues and scopes. Sánchez et al 
(2010) employed a tree kernel based classifier with 
CCG structures to identify speculative sentences 
on Wikipedia dataset. However, in Sánchez’s ap-
proach, not all sentences are covered by the classi-
fier. 

3 Corpus 

We have employed the BioScope corpus (Szarvas 
et al, 2008; Vincze et al, 2008)1, an open resource 
from the biomedical domain, as the benchmark 
corpus. The corpus contains annotations at the to-
ken level for negative and speculative cues and at 
the sentence level for their linguistic scope (as 
shown in Figure 1). 

 
(Note: <Sentence> denotes one sentence and the tag “id” denotes its 
serial number; <xcope> denotes the scope of a cue; <cue> denotes the 
cue, the tag “type” denotes the specific kind of cues and the tag “ref” 
is the cue’s serial number.) 

Figure 1. An annotated sentence in BioScope. 

The BioScope corpus consists of three sub-
corpora: biological Full Papers from FlyBase and 
BMC Bioinformatics, biological paper Abstracts 
from the GENIA corpus (Collier et al, 1999), and 
Clinical Reports. Among them, the Full Papers 
sub-corpus and the Abstracts sub-corpus come 
from the same genre. In comparison, the Clinical 
Reports sub-corpus consists of clinical radiology 
reports with short sentences. 

                                                 
1 http://www.inf.u-szeged.hu/rgai/bioscope 

In our experiments, if there is more than one cue 
in a sentence, we treat them as different cue and 
scope (two independent instances). The statistical 
data for our corpus is presented in Table 1 in be-
low. 

The average length of sentences in the negation 
portion is almost as long as that in speculation, 
while the average length of scope in negation is 
shorter than that in speculation. In addition, the 
length of sentence and scope in both Abstracts and 
Full Papers sub-corpora is comparative. But in 
Clinical Reports sub-corpus, it is shorter than that 
in Abstracts and Full Papers. Thus, looking for the 
effective features in short sentences is especially 
important for improving the robustness for scope 
detection. 

(Note: “Av. Len” stands for average length.) 

Table 1. Statistics for our corpus in BioScope. 

4 Methodology 

We regard the scope detection task as a binary 
classification problem, which is to classify each 
token in sentence as being the element of the scope 
or not. Under this framework, we describe the flat 
syntactic features and employ them in our bench-
mark system. Then, we propose a tree kernel-
based scope detection approach using the struc-
tured syntactic parse features. Finally, we con-
struct the discriminative classifier for each kind of 
POS of cues, and select the most compatible fea-
tures for each classifier. 

4.1 Flat Syntactic Features 

In our benchmark classification system, the fea-
tures relevant to the cues or tokens are selected. 
Then, we have explored the constituent and de-
pendency syntactic features for scope detection. 
These features are all flat ones which reflect the 
characteristic of tokens, cues, scopes, and the rela-
tion between them. 

 Abstract Paper Clinical

Nega-
tion 

Sentences 1594 336 441 
Words 46849 10246 3613 
Scopes 1667 359 442 
Av. Len Sentence 29.39 30.49 8.19 
Av. Len Scope 9.62 9.36 5.28 

Specu-
lation

Sentences 2084 519 854 
Words 62449 16248 10241
Scopes 2693 682 1137 
Av. Len Sentence 29.97 31.31 11.99
Av. Len Scope 17.24 15.58 6.99 

<sentence id=”S26.8”> These findings <xcope id=”X26.8.2”> 
<cue type=”speculation” ref=”X26.8.2”> indicate that </cue> 
<xcope id=”X26.8.1”> corticosteroid resistance in bronchial 
asthma <cue type=”negation” ref=”X26.8.1”> can not </cue> 
be explained by abnormalities in corticosteroid receptor char-
acteristics </xcope></xcope> . </sentence> 
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Basic Features: Table 2 shows the basic fea-
tures which directly relate to the characteristic of 
cues or tokens in our basic classification. 

Feature Remark 

B1 Cue. 
B2 Candidate token. 
B3 Part-of-speech of candidate token. 
B4 Left token of candidate token. 
B5 Right token of candidate token. 
B6 Positional relation between cue and token.

   Table 2. Basic features. 

Constituent Syntactic Features: For improv-
ing the basic classification, we employ 10 constit-
uent features belonging to two aspects. On the one 
hand, we regard the linguistic information of the 
neighbor locating around the candidate tokens as 
the coherent features (CS1~CS6 in Table 3). These 
features are used for detecting the close coopera-
tion of a candidate token co-occurring with its 
neighbors in a scope. On the other hand, we regard 
the linguistic characteristics of the candidate to-
kens themselves in a syntactic tree as the inherent 
features (CS7~CS10 in Table 3). These features 
are used for determining whether the token has the 
direct relationship with the cue or not. 

Features Remarks 

CS1 POS of left token. 
CS2 POS of right token. 
CS3 Syntactic category of left token. 
CS4 Syntactic category of right token. 
CS5 Syntactic path from left token to the cue. 
CS6 Syntactic path from right token to the cue. 
CS7 Syntactic category of the token. 
CS8 Syntactic path from the token to the cue. 
CS9 Whether the syntactic category of the token is 

the ancestor of the cue. 
CS10 Whether the syntactic category of the cue is the 

ancestor of the token. 

Table 3. Constituent syntactic features. 

Features Remarks 

DS1 Dependency direction (“head”or “dependent”). 
DS2 Dependency syntactic path from the token to cue. 
DS3 The kind of dependency relation between the token 

and cue. 
DS4 Whether the token is the ancestor of the cue. 
DS5 Whether the cue is the ancestor of the token. 

Table 4. Dependency syntactic features. 

Dependency Syntactic Features: For the effec-
tiveness to obtain the syntactic information far 
apart from cues, we use 5 dependency syntactic 
features which emphasize the dominant relation-

ship between cues and tokens by dependency arcs 
as shown in Table 4. 

The features in Table 2, 3, and 4 have imbal-
anced classification for the scope classification. 
Therefore, we adopt the greedy feature selection 
algorithm as described in Jiang et al (2006) to pick 
up positive features incrementally according to 
their contributions. The algorithm repeatedly se-
lects one feature each time, which contributes most, 
and stops when adding any of the remaining fea-
tures fails to improve the performance. 

4.2 Structured Syntactic Features 

Syntactic trees involve not only the direct bridge 
(e.g., syntactic path) between cue and its scope but 
also the related structures to support the bridge 
(e.g., sub-tree). The related structures normally 
involve implicit clues which underlay the relation 
between cue and its scope. Therefore, we use the 
constituent and dependency syntactic structures as 
the supplementary features to further improve the 
benchmark system. 

Furthermore, we employ the tree kernel-based 
classifier to capture the structured information 
both in constituent and dependency parsing trees. 
The results of the constituent syntactic parser are 
typical trees which always consist of the syntactic 
category nodes and the terminal nodes. Thus, the 
constituent syntactic tree structures could be used 
in tree kernel-based classifier directly, but not for 
the dependency syntactic tree structures. As Figure 
2 shows, in sentence “The chair is not expensive 
but comfortable.” the tree kernels cannot represent 
the relations on the arcs (e.g., “CONJ” between 
“expensive” and “comfortable”). It is hard to use 
the relations between tokens and cues in tree ker-
nels. 

 
Figure 2: The dependency tree of sentence “The 

chair is not expensive but comfortable.” 

971



 
Figure 3. Two transformational rules. 

To solve the problem, we transform the depend-
ency tree into other two forms capable of being 
used directly as the compatible features in tree-
kernel based classification. The transformational 
rules are described as below: 

(1) Extracting the dependency relations to gen-
erate a tree of pure relations (named dependency 
relational frame), where the tokens on the nodes of 
original dependency tree are ignored and only the 
relation labels are used. E.g., the tokens “chair”, 
“is”, etc in Figure 2 are all deleted and replaced by 
the corresponding relation labels. E.g., “NSUBJ”, 
“COP”, etc are used as nodes in the dependency 
relational frame, see (1a) & (1b) in Figure 3. 

(2) Inserting the tokens which have been deleted 
in step (1) into the dependency relational frame 
and making them follow and link with their origi-
nal dependency relations. E.g., the tokens “chair”, 
“is”, etc are added below the nodes “NSUBJ”, 
“COP”, etc, see (2a) & (2b) in Figure 3. 

 
Figure 4. Two transformations for tree-kernel. 

Within the constituent and dependency syntactic 
trees, we have employed both the Completed Sub-
Tree and the Critical Path as the syntactic structure 

features for our classification. The former is a min-
imum sub-tree that involves the cues and the to-
kens, while the latter is the path from the cues to 
the tokens in the completed tree containing the 
primary structural information. Figure 4 shows 
them. 

4.3 Part-of-Speech Based Classification Op-
timization 

Motivating in part by the rule-based approach of 
Özgür et al (2009), we infer that features have im-
balanced efficiency for scope classification, nor-
mally affected by the part-of-speech (POS) of cues.  

POS of Cues Number POS of Cues Number
CC 157 VB 31 
IN 115 VBD 131 
JJ 238 VBG 225 

MD 733 VBN 112 
NN 43 VBP 561 
RB 137 VBZ 207 

Table 5. Distribution of different POSs of specula-
tive cues in Abstracts sub-corpus. 

Table 5 shows the distribution for different 
POSs of cues in the Abstracts sub-corpus of Bio-
Scope for speculation detection task. The cues of 
different POS usually undertake different syntactic 
roles. Thus, there are different characteristics in 
triggering linguistic scopes. See the two examples 
below: 

3) TCF-1 contained a single DNA box in the [putative 
mammalian sex-determining gene SRY]. 

4) The circadian rhythm of plasma cortisol [either 
disappeared or was inverted]. 

The speculative cue “putative” in sentence 3) is 
an adjective. The corresponding scope is its modi-
ficatory structure (“putative mammalian sex-
determining gene SRY”). In sentence 4), “ei-
ther…or…” is a conjunction speculation cue. Its 
scope is the two connected components (“either 
disappeared or was inverted”). Thus, the effective 
features for the adjectival cue are normally the de-
pendency features, e.g., the features of DS1 and 
DS5 in Table 4, while the features for the conjunc-
tion cue are normally the constituent information, 
e.g., the features of CS9 in Table 3.  

In Table 5, considering the different function of 
verb voice, we cannot combine the “VB(*)” POS. 
For instance, the POS of “suggest” in sentence 5) 
is “VBP” (the verb present tense). The correspond-
ing scope does not involve the sentence subject. 
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The POS of “suggested” in sentence 6) is “VBN” 
(the past participle). The scope involves the sub-
ject “An age-related decrease”. 

5) These results [suggest that the genes might be in-
volved in terminal granulocyte differentiation]. 

6) [An age-related decrease was suggested between 
subjects younger than 20 years]. 

As a result, we have built a discriminative clas-
sifier for each kind of POS of cues, and then ex-
plored and selected the most compatible features 
for each classifier. 

5 Experiments and Results 

5.1 Experimental Setting 

Considering the effectiveness of different features, 
we have split the Abstracts sub-corpus into 5 equal 
parts, within which 2 parts are used for feature 
selection (Feature Selection Data) and the rest for 
the scope detection experiments (Scope Detection 
Data). The Feature Selection Data are divided into 
5 equal parts, within which 4 parts for training and 
the rest for developing. In our scope detection ex-
periments, we divide the Scope Detection Data 
into 10 folds randomly, so as to perform 10-fold 
cross validation. As the experiment data is easily 
confusable, Figure 5 illustrates the allocation. 

Checking the validity of our method, we use the 
Abstracts sub-corpus in Section 5.2, 5.3 and 5.4, 
while in Section 5.5 we use all of the three sub-
corpora (Abstracts, Full Papers, and Clinical Re-
ports) to test the robustness of our system when 
applied to different text types within the same do-
main. 

 
Figure 5. The allocation for experiment data. 

The evaluation is made using the precision, re-
call and their harmonic mean, F1-score. Addition-
ally, we report the accuracy in PCS (Percentage of 
Correct Scopes) applied in CoNLL’2010, within 
which a scope is fully correct if all tokens in a sen-

tence have been assigned to the correct scope class 
for a given cue. The evaluation in terms of preci-
sion and recall measures takes a token as a unit, 
whereas the evaluation in terms of PCS takes a 
scope as a unit. The key toolkits for scope classifi-
cation include: 

Constituent and Dependency Parser: All the 
sentences in BioScope corpus are tokenized and 
parsed using the Berkeley Parser (Petrov et al, 
2007) 2  which have been trained on the GENIA 
TreeBank 1.0 (Tateisi et al, 2005)3, a bracketed 
corpus in PTB style. 10-fold cross-validation on 
GTB1.0 shows that the parser achieves 87.12% in 
F1-score. On the other hand, we obtain the de-
pendency relations by the Stanford Dependencies 
Parser4. 

Support Vector Machine Classifier: SVMLight5 
is selected as our classifier, which provides a way 
to combine the tree kernels with the default and 
custom SVMLight kernels. We use the default pa-
rameter computed by SVMLight. 

Besides, according to the guideline of the Bio-
Scope corpus, scope must be a continuous chunk. 
The scope classifier may result in discontinuous 
blocks, as each token may be classified inside or 
outside the scope. Therefore, we perform the rule 
based post-processing algorithm proposed by Mo-
rante et al (2008) to obtain continuous scopes. 

5.2 Results on Flat Syntactic Features 

Relying on the results of the greedy feature selec-
tion algorithm (described in Section 4.1), we ob-
tain 9 effective features {B1, B3, B6, CS3, CS4, 
CS9, DS1, DS3, DS5} (see Table 2, 3 and 4) for 
negation scope detection and 13 effective features 
{B3, B4, B5, B6, CS1, CS5, CS6, CS8, CS9, CS10, 
DS1, DS4, DS5} for speculation. Table 6 lists the 
performances on the Scope Detection Data by per-
forming 10-fold cross validation. It shows that flat 
constituent and dependency syntactic features sig-
nificantly improve the basic scope detection by 
13.48% PCS for negation and 30.46% for specula-
tion (χ2; p < 0.01). It demonstrates that the selected 
syntactic features are effective for scope detection. 

 

 

                                                 
2 http://code.google.com/p/berkeleyparser 
3 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA 
4 http://nlp.stanford.edu/software/lex-parser.shtml 
5 http://svmlight.joachims.org 
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Negation 

Features P R F PCS
Basic 89.89 68.72 77.86 39.50
Con.  85.72 67.80 75.66 41.81
Dep.  90.31 69.01 78.19 40.08
Bas.&Con.  88.86 79.07 83.61 51.64
Bas.&Dep. 90.44 73.62 81.17 49.36
All 91.21 76.57 83.25 52.98

Speculation 

Features P R F PCS
Basic 89.67 86.86 88.24 40.09
Con.  96.43 87.46 91.72 66.57
Dep.  90.84 87.04 88.89 44.45
Bas.&Con.  95.66 92.08 93.83 69.59
Bas.&Dep. 92.39 88.27 90.28 67.49
All 95.71 92.09 93.86 70.55

(Note: “Bas.” denotes basic features; “Con.” denotes Constituent 
features; “Dep.” denotes Dependency features; “All” contains Basic, 
Constituent, and Dependency features being selected.) 

Table 6. Performance of flat syntactic features. 

The results also show that the speculative scope 
detection achieves higher performance (16.98% 
higher in PCS) (χ2; p < 0.01) than the negation 
scope detection. The main reason is that although 
the average sentence length of negation and specu-
lation are comparable (29.97 vs. 29.39 words, in 
Table 1), the average length of speculation scopes 
is much longer than the negation (17.24 vs. 9.62 
words, in Table 1) in Abstracts sub-corpus. With 
the shorter scopes in training data, the classifier 
inevitably have more negative samples. Thus, by 
using a token as the basic unit in our classification, 
the imbalanced samples will seriously mislead the 
classifier and result in bias on the negative samples. 

In addition, both constituent and dependency 
flat features can improve the scope classification, 
for the reason that the constituent features usually 
provide the nearer syntactic information of the 
cues, and that the further syntactic information 
between cues and scopes have been obtained by 
the dependency features. 

5.3 Results on Structured Syntactic Parse 
Features 

Table 7 and Table 8 give the scope detection per-
formance using the different structured syntactic 
parse features on negation and speculation respec-
tively. Compared to the optimal system (using all 
of the selected flat features in Table 6) in Section 
5.2, the structured syntactic parse features at best 
improve the scope classification nearly 17.29% on 
negation (PCS=70.27%) and 12.32% on specula-
tion (PCS=82.87%) (χ2; p < 0.01). It indicates that 
the structured syntactic parse features can provide 
more implicit linguistic information, as supple-
mentary clues, to support scope classification. 

The improvements also show that both the com-
pleted syntactic sub-trees and critical paths in con-
stituent and dependency parsing trees are effective. 
The reason is that the completed syntactic sub-
trees contain the surrounding information related 
to cues and tokens, while there are more direct 
syntactic information in the critical paths between 
cue and its scope. 

Features P R F PCS 
Con. CT 91.12 83.25 86.89 54.57 
Con. CT&CP 93.31 89.32 91.20 66.58 
Dep. T1 CT 87.29 84.37 85.81 53.07 
Dep. T1 CT&CP 90.03 86.77 88.37 59.53 
Dep. T2 CT 88.17 84.58 86.34 53.76 
Dep. T2 CT&CP 91.09 87.31 89.16 60.11 
All 93.84 91.94 92.88 70.27 

(Note: “Con.” denotes Constituent features; “Dep.” denotes Depend-
ency features; “T1” use the transformational rule (1) in Section 4.2 to 
get the dependency tree; “T2” use the transformational rule (2) in 
Section 4.2 to get the dependency tree; CT-“Completed syntactic sub-
Tree”; CP-“Critical Path”; “All” contains Con CT&CP, Dep T1 
CT&CP and Dep T2 CT&CP) 
Table 7. Performance of structured syntactic parse 

features on negation. 

Features P R F PCS 
Con. CT 95.89 93.37 94.61 75.17 
Con. CT&CP 96.05 94.36 95.20 76.73 
Dep. T1 CT 93.24 90.77 91.99 72.31 
Dep. T1 CT&CP 94.28 92.30 93.28 73.75 
Dep. T2 CT 93.76 89.68 91.67 73.06 
Dep. T2 CT&CP 95.29 94.55 94.92 75.69 
All 96.93 96.86 96.89 82.87 

Table 8. Performance of structured syntactic parse 
features on speculation. 

5.4 Results on Part-of-Speech Based Classifi-
cation 

To confirm the assumption in Section 4.3, we have 
built a discriminative classifier for each kind of 
POS of cues. Considering that the features involv-
ing the global structured syntactic parse infor-
mation in Section 4.2 are almost effective to all 
instances, we only use the flat syntactic features in 
Section 4.1. 

Negation
System P R F PCS

All Features 91.21 76.57 83.25 52.98
POS Classifier 91.79 78.29 84.50 56.77

Specula-
tion 

System P R F PCS
All Features  95.71 92.09 93.86 70.55
POS Classifier 95.79 93.13 94.44 71.68

(Note: “All Features” System is the optimal system in Section 5.2) 
Table 9. Performances of POS based classification. 

Table 9 shows the performance of POS based 
classification. Compared with the system which 
only uses one classifier for all cues in Section 5.2, 
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the POS based classification improves 1.13% on 
PCS (χ2; p < 0.01), as different POS kinds of cues 
involve respectively effective features with more 
related clues between cue and its scope. 

Table 10 lists the performance of each POS kind 
of cues in speculation scope classification. There 
are still some low performances in some kinds of 
POS of cues. We consider it caused by two reasons. 
Firstly, some kinds of POS of cues  (e.g. NN etc.) 
have fewer samples (just 43 samples shown in Ta-
ble 5). For this reason, the training for classifier is 
limited. Then, for these low performance kinds of 
POS of cues, we may have not found the effective 
features for them. Although there are some kinds 
of cues with low performance, the whole perfor-
mance of part-of-speech based classification is 
improved. 
Cue’s 
POS 

B1~B6 
  1   2   3   4   5   6 

CS1~CS10 
1   2   3   4    5   6   7   8   9 10 

DS1~DS5 
1   2   3   4   5

PCS 

CC √    √ √    √ √   √ √ √ √ √ 38.45

IN √    √ √    √ √ √  √ √  √ √ √ 87.99

JJ √     √    √  √  √    √ 31.83

MD    √ √ √  √  √  √ √ √ √ √  √ √ 79.84

NN √     √ √ √   √   √  √  √ 65.83

RB      √ √ √   √ √    √    √ 37.03

VB      √ √       √ √   44.29

VBD    √ √    √ √ √ √ √ √ √ √  √ 63.57

VBG    √ √    √ √ √  √ √ √ √  √ √ 82.89

VBN    √ √    √  √  √ √ √ √  √ 66.38

VBP    √ √ √ √   √ √  √ √ √ √ √  √ 81.91

VBZ    √ √ √ √   √ √  √ √ √ √ √  √ 77.16

Table 10. Performance of each POS kind of cues 
in speculation scope classification. 

5.5 Results of Comparison Experiments 

To get the final performance of our approach, we 
train the classifiers respectively by different effec-
tive features in Section 4.1 for POS kinds of cues, 
and use the structured syntactic parse features in 
Section 4.2 on Abstracts sub-corpus by performing 
10-fold cross validation. 

Negation 

System Abstract Paper Clinical
Morante (2008) 57.33 N/A N/A 
Morante (2009a) 73.36 50.26 87.27 
Ours 76.90 61.19 85.31 

Specula-
tion 

System Abstract Paper Clinical
Morante (2009b) 77.13 47.94 60.59 
Özgür (2009) 79.89 61.13 N/A 
Ours 84.21 67.24 72.92 

Table 11. Performance comparison of our system 
with the state-of-the-art ones in PCS. 

The results in Table 11 show that our system 
outperforms the state of the art ones both on nega-

tion and speculation scope detection. Results also 
show that the system is portable to different types 
of documents, although performance varies de-
pending on the characteristics of the corpus. 

In addition, on both negation and speculation, 
the results on Clinical Reports sub-corpus are bet-
ter than those on Full Papers sub-corpus. It is 
mainly due to that the clinical reports are easier to 
process than full papers and abstracts. The average 
length of sentence for negative clinical reports is 
8.19 tokens, whereas for abstracts it is 29.39 and 
for full papers 30.49. Shorter sentences imply 
shorter scopes. The more unambiguous sentence 
structure of short sentence can make the structured 
constituent and dependency syntactic features eas-
ier to be processed. 

6 Conclusion 

This paper proposes a new approach for tree ker-
nel-based scope detection by using the structured 
syntactic parse information. In particular, we have 
explored the way of selecting compatible features 
for different part-of-speech cues. Experiments 
show substantial improvements of our scope clas-
sification and better robustness. 

However, the results on the Full Papers and the 
Clinical Reports sub-corpora are lower than those 
on the Abstracts sub-corpus for both negation and 
speculation. That is because the structured syntac-
tic parse features contain some complicated and 
lengthy components, and the flat features cross 
corpus are sparse. Our future work will focus on 
the pruning algorithm for the syntactic structures 
and analyzing errors in depth in order to get more 
effective features for the scope detection on differ-
ent corpora. 
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Abstract

Temporal variations of text are usually ig-
nored in NLP applications. However, text use
changes with time, which can affect many
applications. In this paper we model peri-
odic distributions of words over time. Focus-
ing on hashtag frequency in Twitter, we first
automatically identify the periodic patterns.
We use this for regression in order to fore-
cast the volume of a hashtag based on past
data. We use Gaussian Processes, a state-of-
the-art bayesian non-parametric model, with
a novel periodic kernel. We demonstrate this
in a text classification setting, assigning the
tweet hashtag based on the rest of its text. This
method shows significant improvements over
competitive baselines.

1 Introduction

Temporal changes in text corpora are central to our
understanding of many linguistic and social phe-
nomena. Social Media platforms and the digital-
ization of libraries provides a vast body of times-
tamped data. This allows studying of the complex
temporal patterns exhibited by text usage includ-
ing highly non-stationary distributions and period-
icities. However, temporal effects have been mostly
ignored by previous work on text analysis or at best
dealt with by making strong assumptions such as
smoothly varying parameters with time (Yogatama
et al., 2011) or modelled using a simple uni-modal
distri bution (Wang and McCallum, 2006). This pa-
per develops a temporal model for classifying mi-
croblog posts which explicitly incorporates mul-
timodal periodic behaviours using Gaussian Pro-
cesses (GPs).

We expect text usage to follow multiple period-
icities at different scales. For example, people on
Social Media might talk about different topics dur-
ing and after work on weekdays, talk every Friday
about the weekend ahead, or comment about their
favorite weekly TV show during its air time. Given
this, text frequencies will display periodic patterns.
This applies to other text related quantities like co-
occurrence values or topic distributions over time,
as well as applications outside NLP like user be-
haviour (Preoţiuc-Pietro and Cohn, 2013).

Modelling temporal patterns and periodicities can
be useful to tasks like text classification. For exam-
ple a tweet containing ‘music’ is normally attributed
to a general hashtag about music like #np (now play-
ing). However, knowing time, if it occurs during the
(weekly periodic) air time of ‘American Idol’ it is
more likely for it to belong to #americanidol or if
its mentioned in the days building up to the Video
Music Awards to be assigned to #VMA.

In NLP, temporal models have treated time in
overly simplistic ways and without regard to period-
icities. We propose a model that first broadly iden-
tifies several types of temporal patterns: a) periodic,
b) constant in time, c) falling out of use after enjoy-
ing a brief spell of popularity (e.g. internet memes,
news). This is performed automatically only using
training data and makes no assumptions on the exis-
tence or the length of the periods we aim to model.
We demonstrate the approach by modelling frequen-
cies of hashtag occurrences in Twitter. Hashtags are
user-generated labels included in tweets by their au-
thors in order to assign them to a conversation and
can be considered as a proxy for topics.

To this end, we make use of Gaussian Pro-
cesses (GP) (Rasmussen and Williams, 2005), a
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Bayesian non-parametric model for regression. Us-
ing the Bayesian evidence we automatically perform
model selection to classify temporal patterns. We
aim to use the most suitable model for extrapolation,
i.e. predicting future values from past observations.
The GP is fully defined by the covariance structure
assumed between the observed points, and its hy-
perparameters, which can be automatically learned
from data. We also introduce a new kernel suitable
to model the periodic behaviour we observe in text:
periods of low frequency followed by bursts at reg-
ular time intervals. We demonstrate that the GP ap-
proach is more general and gives better results than
frequentist models (e.g. autoregressive models) be-
cause it incorporates uncertainty explicitly and ele-
gantly, in addition to automatic model selection and
parameter fitting.

To demonstrate the practical importance of our
approach, we use our GP prediction as a prior in a
Naı̈ve Bayes model for text classification showing
improvements over baselines which do not account
for temporal periodicities. Our approach extends to
more general uses, e.g. to discriminative text regres-
sion and classification. More broadly, we aim to es-
tablish GPs as a state-of-the-art model for regression
and classification in NLP. To our knowledge, this is
the first paper to use GP regression for forecasting
and model selection within a NLP task.

All the hashtag time series data and the imple-
mentation of the PS kernel in the popular open-
source Gaussian Processes packages GPML1 and
GPy2 are available on the author’s website3.

2 Related Work

Time varying text patterns have been of particular
interest in topic modelling. Griffiths and Steyvers
(2004) analyse evolution of topics over time, but
without modelling time explicitly. Extensions that
model time make different assumptions, usually re-
garding smoothing proprieties in (Wang and McCal-
lum, 2006; Blei and Lafferty, 2006; Wang et al.,
2008; Hennig et al., 2012). Yogatama et al. (2011)
proposed a regulariser for generalised linear models
that encourages local temporal smoothness.

1http://www.gaussianprocess.org/gpml/
code

2https://github.com/SheffieldML/GPy
3http://www.preotiuc.ro

Modelling periodicities is one of the standard ap-
plications of Gaussian Processes (Rasmussen and
Williams, 2005). Recent work by Wilson and Adams
(2013) and Durrande et al. (2013) show how differ-
ent periods can be identified from data. In general,
methods that assume certain periodicities at daily or
weekly levels were proposed e.g. in (McInerney et
al., 2013). GPs were used with text by Polajnar et
al. (2011) and for Quality Estimation regression in
(Cohn and Specia, 2013; Shah et al., 2013).

Temporal patterns for short, distinctive lexical
items such as hashtags and memes were quanti-
tatively studied (Leskovec et al., 2009) and clus-
tered (Yang and Leskovec, 2011) in Social Media.
(Yang et al., 2012) studies the dual role of hashtags,
of bookmarks of content and symbols of commu-
nity membership, in the context of hashtag adoption.
(Romero et al., 2011) analyses the patterns of tem-
poral diffusion in Social Media finding that hashtags
have also a persistence factor.

For predicting future popularity of hashtags, Tsur
and Rappoport (2012) use linear regression with a
wide range of features. (Ma et al., 2012; Ma et
al., 2013) frame the problem as classification into
a number of fixed intervals and applies all the stan-
dard classifiers. None of these studies model period-
icities, although the former stresses their importance
for accurate predictions. For predicting the hashtag
given the tweet text, Mazzia and Juett (2011) uses
the Naı̈ve Bayes classifier with the uniform and em-
pirical prior or TF-IDF weighting.

3 Gaussian Processes

In this paper we consider Gaussian Process (GP)
models of regression (Rasmussen and Williams,
2005). GP is a probabilistic machine learning
framework incorporating kernels and Bayesian non-
parametrics which is widely considered as state-of-
the-art for regression. The GP defines a prior over
functions which applied at each input point gives a
response value. Given data, we can analytically infer
the posterior distribution of these functions assum-
ing Gaussian noise. The kernel of the GP defines the
covariance in response values as a function of its in-
puts.

We can identify two different set-ups for a regres-
sion problem. If the range of values to be predicted
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lies within the bounds of the training set we call the
prediction task as interpolation. If the range of the
prediction is outside the bounds, then our problem
that of extrapolation. In this respect, extrapolation is
considered a more difficult task and the covariance
kernel which incorporates our prior knowledge plays
a major role in the prediction.

There is the case when multiple covariance ker-
nels can describe our data. For choosing the right
kernel and its hyperparameters only using the train-
ing data we employ Bayesian model selection which
makes a trade-off between the fit of the training
data and model complexity. We now briefly give an
overview of GP regression, kernel choice and model
selection. We refer the interested reader to (Ras-
mussen and Williams, 2005) for a detailed introduc-
tion to GPs.

3.1 Gaussian Process Regression
Consider a time series regression task where we only
have one feature, the value xt at time t. Our training
data consists of n pairs D = {(t, xt)}. The model
will need to predict values xt for values of t greater
than those in the dataset.

GP regression assumes a latent function f that
is drawn from a GP prior f(t) ∼ GP(m, k(t, t′))
where m is the mean and k a kernel. The predic-
tion value is obtained by the function evaluated at
the corresponding data point, xt = f(t) + ε, where
ε ∼ N (0, σ2) is white-noise. The GP is defined by
the mean m, here 0, and the covariance kernel func-
tion, k(t, t′).

The posterior at a test point t∗ is given by:

p(x∗|t∗,D) =

∫
f
p(x∗|t∗, f) · p(f |D) (1)

where x∗ and t∗ are the test value and time. The pos-
terior p(f |D) shows our belief over possible func-
tions after observing the training set D. The predic-
tive posterior can be solved analytically with solu-
tion:

x∗ ∼ N (kT
∗ (K + σ2

nI)−1t,

k(t∗, t∗)− kT
∗ (K + σ2

nI)−1k∗)
(2)

where k∗ = [k(t∗, t1)...k(t∗, tn)]T are the kernel
evaluations between the test point and all the train-
ing points,K = {k(ti, tj)}i=1..n

j=1..n is the Gram matrix

3/1 4/1 5/1 6/1 

 
Gold
SE
PS(24)

Figure 1: Interpolation for #goodmorning over 3 days
with SE and PS(p=24,s=3) kernels. Prediction variance
shown in grey for PS(24). Crosses represent training
points.

over the training points and t is the vector of train-
ing points. The posterior of x∗ includes the mean
response as well as its variance, thus expressing the
uncertainty of the prediction. In this paper, we will
consider the forecast as the expected value. Due to
the matrix inversion in 2, inference takesO(n3) time
where n is the number of training points.

3.2 Kernels

The covariance kernel together with its parameters
fully define the GP (we assume 0 mean). The kernel
induces similarities in the response between pairs of
data points. Intuitively, if we want a smooth func-
tion, closer points should have high covariance com-
pared to points that are further apart. If we want a
periodic behaviour points at period length intervals
should have the highest covariance. Usually, this is
defined by an isotropic kernel, which means its in-
variant to all rigid motions.

For interpolation, a standard kernel (e.g. squared
exponential) that encourages smooth functions is
normally used. Figure 1 shows regression over 3
days for #goodmorning when only a random third
of the values of the function are observed. We see
that both the SE kernel and a periodic kernel (PS,
see below) give good results.

However, for extrapolation, the choice of the ker-
nel is paramount. The kernel encodes our prior belief
about the type of function wish to learn. To illustrate
this, in Figure 3, we show the time series for #good-
morning over 2 weeks and plot the regression for the

979



future week learned by using different kernels.
In this study we will use multiple kernels, each

most suitable for a specific category of temporal pat-
terns in our data. This includes a new kernel inspired
by observed word occurrence patterns. The kernels
we use are:

Constant (C): The constant kernel is kC(t, t′) =
c. Its mean prediction will always be the value c and
its assumption is that the signal is modeled only by
Gaussian noise centred around this value. This de-
scribes the data best when we have a noisy signal
around a stationary mean value.

Squared exponential (SE): The SE kernel or the
Radial Basis Function (RBF) is the standard kernel
used in most interpolation settings.

kSE(t, t′) = s2 · exp−(t− t′)2

2l2
(3)

This gives a smooth transition between neighbour-
ing points and best describes time series with a
smooth shape e.g. a uni-modal burst with a steady
decrease. However, its uncertainty grows with for
predictions well into the future. Its two parameters
s and l are the characteristic lengthscales along the
two axes. Intuitively, they control the distance of in-
puts on a particular axis from which the function
values become uncorrelated. Using the SE kernel
corresponds to Bayesian linear regression with an
infinite number of basis functions (Rasmussen and
Williams, 2005).

Linear (Lin): The linear kernel describes a linear
relationship between outputs.

kLin(t, t′) = s2 + ‖t · t′‖ (4)

This can be obtained from linear regression by hav-
ing N (0, 1) priors on the corresponding regression
weights and a prior of N (0, s2) on the bias.

Periodic (PER): The periodic kernel represents a
SE kernel in polar coordinates.

kPER(t, t′) = s2 · exp−2 ·

(
sin2(2π(t− t′)2/p)

l2

)
(5)

It has a sinusoidal shape and is good at modelling
periodically patterns that oscillate between low and
high frequency. s and l are characteristic length-
scales as in the SE kernel and p is the period.
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Figure 2: Behaviour of the PS kernel (p=50) with varying
s. Values normalized in [0,1] interval.

Periodic spikes (PS): For textual time series, like
word frequencies, we identify the following periodic
behaviour: abrupt rise in usage, usually with a peak,
followed by periods of low occurrence, which can
be short (e.g. during the night) or long lived (e.g. the
entire week except for a few hours). For modelling
we introduce the following kernel:

kPS(t, t′) = cos

(
sin

(
2π · (t− t′)2

p

))

· exp

(
s cos(2π · (t− t′)2)

p
− s

)
(6)

The kernel is parameterised by its period p and a
shape parameter s. The period indicates the time in-
terval between the peaks of the function, while the
shape parameter controls the width of the spike. The
behaviour of the kernel is illustrated in Figure 2. We
constrain s ≥ 1.

In Figure 3 we see that the forecast is highly de-
pendent on the kernel choice. We expect that for
periodic data the PER and PS kernels will forecast
best, maybe with the PS kernel doing a better job
because it captures multiple modes of the daily in-
crease in volume. We use for both kernels a period
of 168 hours. This is because although a daily pat-
tern exists, the weekly is stronger, with the day of
the week influencing the volume of the hashtag. The
NRMSE (Normalized Root Mean Square Error) in
Table 1 on the held out data confirms this finding,
with PS showing the lowest error.
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Figure 3: Extrapolation for #goodmorning over 3 weeks with GPs using different kernels.

Const Lin SE PER PS
NLML -41 -34 -176 -180 -192
NRMSE 0.213 0.214 0.262 0.119 0.107

Table 1: Negative Log Marginal Likelihood (NLML)
shows the best fitted model for the time series in Figure 3.
NRMSE computed on the third unobserved week. Lower
values are better in both cases.

3.3 Model selection and optimisation
We now briefly discuss the concepts of model se-
lection in the GP framework, by which we refer to
choosing the model (kernel) from a set Hi and op-
timising the model hyperparameters θ. In our GP
Bayesian inference scheme, we can compute the
probability of the data given the model which in-
volves the integral over the parameter space. This
is called the marginal likelihood or evidence and is
useful for model selection using only the training
set:

p(x|D, θ,Hi) =

∫
f
p(x|D, f,Hi)p(f |θ,Hi) (7)

Our first goal is to fit the kernel by minimizing
the negative log marginal likelihood (NLML) with
respect to the kernel parameters θ. This approxima-
tion is also known as type II maximum likelihood
(ML-II). Conditioned on kernel parameters, the evi-
dence of a GP can be computed analytically.

Our second goal is to use the evidence for
model selection because it balances the data fit and
the model complexity by automatically incorporat-
ing Occam’s Razor (Rasmussen and Ghahramani,
2000). Because the evidence must normalise, com-
plex models which can account for many datasets
achieve low evidence. One can think of the evidence
as the probability that a random draw of the param-
eter values from the model class would generate the

dataset D. This way, complex models are penalised
because they can describe many datasets, while the
simple models can describe only a few datasets, thus
the chance of a good data fit being very low. This is
for example the case of the periodic bursts in Fig-
ure 3. Although the periodic kernel can fit the data,
it will incur a high model complexity penalty. The
PS kernel in this respect is a simpler model and can
fit the data and is thus chosen as the right model.

When the dataset is observed, the evidence can se-
lect between the models. More generally, the model
choice actually gives us an implicit classification of
the temporal patterns into classes: a steady signal
with noise (C kernel), a signal with local temporal
patterns (SE kernel), an oscilating periodic pattern
(PER kernel) or a pattern with abrupt periodic peaks
(PS kernel).

We use the NLML for optimising the hyperpa-
rameters only using training data. For optimising the
hyperparameters of the kernel defined in Equation 6,
it is important to first identify the right period. We
consider as possible periods all integer values less
than half the size of the training set, and then tune
the shape parameter using gradient descent to min-
imise NLML. We then take the argmin value of
those considered. We show the NLML for a sample
regression in Figure 4.

The likelihood shows that there are multiple
canyons in the likelihood, which can lead a convex
optimisation method to local optima. These appear
when p is equal or an integer multiple of the main
period of the data, in this case 24. The lowest val-
ues are obtained when p = 168, allowing the model
to accommodate the day of week effect. Our proce-
dure is not guaranteed to reach a global optima, but
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Figure 4: NLML for #goodmorning on the training set as
a function of the 2 kernel parameters.

is a relatively standard technique for fitting periodic
kernels (Duvenaud et al., 2013).

The flexibility of the GP framework allows us to
combine kernels (e.g. SE ·PS or PS+Lin) in order
to identify a combination of trends (Duvenaud et al.,
2013; Gönen and Alpaydin, 2011). Experiments on a
subset of data showed no major benefits of combin-
ing kernels, but the computational time and model
complexity increased drastically due to the extra hy-
perparameters. Because we will model a proportion
of words within a limited time frame, there are few
linear trends in the data. It might seem limiting that
we only learn a single period, although we could
combine periodic kernels with different periods to-
gether. But, as we have seen in the #goodmorning
example (with overlapping weekly and daily pat-
terns), if there is a combination of periods the model
will select a single period which is the least common
multiple.

4 Data

For our experiments we used data collected from
Twitter using the public Gardenhose stream (10%
representative sample of the entire Twitter stream).
The data collection interval was 1 January – 28
February 2011. For simplicity in the classification
task, we filtered the stream to include only tweets
that have exactly one hashtag. These represent ap-
proximately 7.8% of our stream.

As text processing steps, we have tokenised all the
tweets and filtered them to be written in English us-
ing the Trendminer pipeline (Preoţiuc-Pietro et al.,
2012). We also remove duplicate tweets (retweets

and tweets that had the same first 6 content tokens)
because they likely represent duplicate content, au-
tomated messages or spam which would bias the
dataset, as also stated by Tsur and Rappoport (2012).
In our experiments we use the first month of data
as training and the second month as testing. Note
the challenging nature of this testing configuration
where predictions must be made for up to 28 days
into the future. We keep a total 1176 of hashtags
which appear at least 500 times in both splits of
the data. The vocabulary consists of all the tokens
that occur more than 100 times in the dataset and
start with an alphabetic letter. After processing, our
dataset consists of 6,416,591 tweets with each hav-
ing on average 9.55 tokens.

5 Forecasting hashtag frequency

We treat our task of forecasting the volume of a
Twitter hashtag as a regression problem. Because the
total number of tweets varies depending on the day
and hour of day, we chose to model the proportion of
tweets with the given tag in that hour. Given a time
series of these values as the training set for a hash-
tag, we aim to predict the values in the testing set,
extrapolating to the subsequent month.

Hashtags represent free-form text labels that au-
thors add to a tweet in order to enable other users to
search them to participate in a conversation. Some
users use hashtags as regular words that are integral
to the tweet text, some hashtags are general and re-
fer to the same thing or emotion (#news, #usa, #fail),
others are Twitter games or memes (#2010diss-
apointments, #musicmonday). Other hashtags re-
fer to events which might be short lived (#world-
cup2022), long lived (#25jan) or periodic (#raw,
#americanidol). We chose to model hashtags be-
cause they group similar tweets (like topics), reflect
real world events (some of which are periodic) and
present direct means of evaluation. Note that this
approach could be applied to many other temporal
problems in NLP or other domains. We treat each
regression problem independently, learning for each
hashtag its specific model and set of parameters.

5.1 Methods

We choose multiple baselines for our prediction task
in order to compare the effectiveness of our ap-
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Figure 5: Sample regressions and their fit using different methods.

proach. These are:

Mean value (M): We use as prediction the mean
of the values in the training set. Note that this is the
same as using a GP model with a constant kernel (+
noise) with a mean equal to the training set mean.

Lag model with GP determined period (Lag+):
The prediction is the mean value in the training set of
the values at lag ∆ where ∆ is the period rounded to
the closest integer as determined by our GP model.
This is somewhat similar to an autoregressive (AR)
model with all the coefficients except ∆ set to 0.
We highlight that given the period ∆ this is a very
strong model as it gives a mean estimate at each

point. Comparing to this model we can see if the GP
model can recover the underlying function that de-
scribed the periodic variation and filter out the noise
in the observations. Correctly identifying the period
is very challenging as we discuss below.

GP regression: Gaussian Process regression us-
ing only the SE kernel (GP-SE), the periodic ker-
nel (GP-PER), the PS kernel (GP-PS). The method
that chooses between kernels using model selection
as described in Section 3.3 is denoted as GP+. We
will also compare to GP regression the linear kernel
(GP-Lin), but we will not use this as a candidate for
model selection due the poor results shown below.
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Hashtag Lag(p) Const SE PER PS
NRMSE NLML NRMSE NLML NRMSE NLML NRMSE NLML NRMSE

#fyi 0.1578 -322 0.1404 -320 0.1898 -321 0.1405 -293 0.1456
#confessionhour 0.0404 -85 0.0107 -186 0.0012 -90 0.0327 -88 0.0440

#fail 0.1431 -376 0.1473 -395 0.4695 -444 0.1387 -424 0.1390
#breakfast 0.1363 -293 0.1508 -333 0.1773 -293 0.1514 -367 0.1276

#raw 0.0464 -1208 0.0863 -1208 0.0863 -1323 0.0668 -1412 0.0454
Table 2: NRMSE shows the best performance for forecasting and NLML shows the best model for all the regressions
in Figure 5. Lower is better.

5.2 Results

We start by qualitatively analysing a few sample re-
gressions that are representative of each category of
time series under study. These are shown in Figure 5.
For clarity, we only plotted a few kernels on each fig-
ure. The full evaluation statistics in NRMSE and the
Bayesian evidence are show in Table 2.

For the hashtag #fyi there is no clear pattern. For
this reason the model that uses the constant kernel
performs best, being the simplest one that can de-
scribe the data, although the others give similar re-
sults in terms of NRMSE on the held-out testing
set. While functions learned using this kernel never
clearly outperform others on NRMSE on held-out
data, this is very useful for interpretation of the time
series, separating noisy time series from those that
have an underlying periodic behaviour.

The #confessionhour example illustrates a be-
haviour best suited for modelling using the SE ker-
nel. We notice a sudden burst in volume which
decays over the next 2 days. This is actually
the behaviour typical of ‘internet memes’ (this
hashtag tags tweets of people posting things they
would never tell anyone) as presented in Yang and
Leskovec (2011). These cannot be modelled with a
constant kernel or a periodic one as shown by the re-
sults on held-out data and the time series plot. The
periodic kernels will fail in trying to match the large
burst with others in the training data and will at-
tribute to noise the lack of a similar peak, thus dis-
covering wrong periods and making bad predictions.
In this example, forecasts will be very close to 0 un-
der the SE kernel, which is what we would desire
from the model.

The periodic kernel best models hashtags that ex-
hibit an oscillating pattern. For example, this best
fits words that are used frequently during the day
and less so during the night, like #fail. Here, the pe-

riod is chosen to be one week (168) rather than one
day (24) because of the weekly effect superimposed
on the daily one. Our model recovers that there is
a daily pattern with people tweeting about their or
others’ failures during the day. On weekends how-
ever, and especially on Friday evenings, people have
better things to do.

The PS kernel introduced in this paper models
best hashtags that have a large and short lived burst
in usage. We show this by two examples. First, we
choose #breakfast which has a daily and weekly pat-
tern. As we would expect, a big rise in usage oc-
curs during the early hours of the day, with very
few occurrences at other times. Our model discov-
ers a weekly pattern as well. This is used mainly
for modelling the difference between weekends and
weekdays. On weekends, the breakfast tag is more
evenly spread during the hours of the morning, be-
cause people do not have to wake up for work and
can have breakfast at a more flexible time than dur-
ing the week. In the second example, we present a
hashtag that is associated to a weekly event: #raw
is used to discuss a wrestling show that airs ev-
ery week for 2 hours on Monday evenings in the
U.S.. With the exception of these 2 hours and the
hour building up to it, the hashtag is rarely used.
This behaviour is modelled very well using our ker-
nel, with a very high value for the shape parame-
ter (s = 200) compared to the previous example
(s = 11) which captures the abrupt trend in usage. In
all cases, our GP model chosen by the evidence per-
forms better than the Lag+ model, which is a very
strong method if presented with the correct period.
This further demonstrates the power of the Gaussian
Process framework to deal with noise in the training
data and to find the underlying function of the time
variation of words.

In Table 3 we present sample tags identified as
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Const SE PER PS
#funny #2011 #brb #ff
#lego #backintheday #coffee #followfriday

#likeaboss #confessionhour #facebook #goodnight
#money #februarywish #facepalm #jobs

#nbd #haiti #funny #news
#nf #makeachange #love #nowplaying

#notetoself #questionsidontlike #rock #tgif
#priorities #savelibraries #running #twitterafterdark

#social #snow #xbox #twitteroff
#true #snowday #youtube #ww

49 268 493 366
Table 3: Sample hashtags for each category. The last line
shows the total number of hashtags of each type.

Lag+ GP-Lin GP-SE GP-PER GP-PS GP+
7.29% -3.99% -34.5% 0.22% 7.37% 9.22%

Table 4: Average relative gain over mean (M) prediction
for forecasting on the entire month using the different
models

being part of the 4 hashtag categories, and the total
number of hashtags in each.

As a means of quantitative evaluation we com-
pute the relative NRMSE compared to the Mean (M)
method for forecasting. We choose this, because we
consider that NRMSE is not comparable between re-
gression tasks due to the presence of large peaks in
many time series, which distort the NRMSE values.
The results are presented in Table 4 and show that
our Gaussian Process model using model selection
is best. Remarkably, it consistently outperforms the
Lag+ model, which shows the effectiveness of the
GP models to incorporate uncertainty. The GP-PS
model does very well on its own. Although chosen in
the model selection phase in only a third of the tasks,
it performs consistently well across tasks because of
its ability to model well all the periodic hashtags,
be they smooth or abrupt. The GP-Lin model does
worse than the average, mostly due to uni-modal
time series which don’t have high occurrences in the
testing part of the data.

5.3 Discussion

Let us now turn to why the GP model is better
for discovering periodicities than classic time series
modelling methods. Measuring autocorrelation be-
tween points in the time series is used to discover
the hidden periodicities in the data and in building
AR models. However, the downsides of this method
are: a) the incapacity of accurately finding the cor-
rect periods, because all integer multiples of the cor-
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Figure 7: Power spectral density for #raw

rect period will be feasible candidates and b) it leads
to incorrect conclusions when there is autocorre-
lated noise. The second case is illustrated in Fig-
ure 6 where #confessionhour shows autocorrelation
but, as seen in Figure 5, lacks a periodic component.

Another approach to discovering periods in data
is by computing the power spectral density. This
has been used in the GP framework by Wilson and
Adams (2013). For some time series, this gives a
good indication of the period, as represented by a
peak in the periodogram at that value. This fails to
discover the correct period when dealing with large
bursts like those exhibited by the #raw time series
as shown in Figure 7. The lowest frequency spike
corresponds to the correct period of 168, but also
other candidate periods are shown as possible. The
reason for this is its reliance on the Fourier Trans-
form which decomposes the time series into a sum
of oscillating patterns. These cannot model step-
functions and other non-smoothly varying signals.
A further discussion falls out of the scope and space
constraints of this paper.
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Tweet Time Prior Rank Prediction

Bruins Goal!!! Patrice Bergeron makes it 3-1 Boston 2-3am, 2 Feb 2011
E: 0.00017 7 #fb
P: 0.00086 1 #bruins

i need some of Malik people 3-4am, 2 Feb 2011
E: 0.00021 7 #ff
P: 0.00420 1 #thegame

Alfie u doughnut! U didn’t confront Kay? SMH 7-8pm, 3 Feb 2011
E: 0.00027 8 #nowplaying
P: 0.00360 1 #eastenders

Table 5: Example of tweet classification using the Naı̈ve Bayes model with the two different priors (E - empirical, P -
GP forecast). Rank shows the rank in probability of the correct class (hashtag) under the model. Time is G.M.T.

6 Text based prediction

In this section we demonstrate the usefulness of
our method of modelling in an NLP task: predict-
ing the hashtag of a tweet based on its text. In con-
trast to this classification approach for suggesting a
tweet’s hashtag, information retrieval methods based
on computing similarities between tweets are very
hard to scale to large data (Zangerle et al., 2011).

We choose a simple model for prediction, the
Naı̈ve Bayes Classifier. This method provides us
with a straightforward way to incorporate our prior
knowledge of how frequent a hashtag is in a certain
time frame. This Naı̈ve Bayes model (NB-P) uses
the forecasted values for the respective hour as the
prior on the hashtags.

For comparison we use the Most Frequent (MF)
baseline and the Naı̈ve Bayes with empirical prior
(NB-E) which doesn’t use any temporal forecasting
information. Because there are more than 1000 pos-
sible classes we show the accuracy of the correct
hashtag being amongst the top 1,5 or 50 hashtags
as well as the Mean Reciprocal Rank (MRR). The
results are shown in Table 6.

The results show that incorporating the forecasted
values as a more informative prior for classification
we obtain better predictions. The improvements are
consistent in all the Match values. Also, we high-
light that a 9% improvement in the forecasting task
carries over to about a 2% improvement in classifi-
cation. We show a few examples in which the GP
learned prior makes a difference in classification in
Table 5 together with the values for both priors.

With these experiments, we highlighted that there
are performance gains even with only adding a more
informative prior that uses periodicity information.
This motivates future work to add this information
to discriminative classifiers thus avoiding the need

MF NB-E NB-P
Match@1 7.28% 16.04% 17.39%
Match@5 19.90% 29.51% 31.91%

Match@50 44.92% 59.17% 60.85%
MRR 0.144 0.237 0.252

Table 6: Results for hashtag classification.

for the Naı̈ve Bayes decomposition. The modelling
framework offered by the GPs can accommodate
classification, although scaling issues arise when us-
ing a large number of features or output classes. Ef-
forts to scale GPs to a large number of variables
are well understood (Candela and Rasmussen, 2005)
and we will try to incorporate this in future work.

7 Conclusion

Periodicities play an important role when analysing
the temporal dimension of text. We have presented
a framework based on Gaussian Process regression
for identifying periodic patterns and their parame-
ters using only training data. We divided the periodic
patterns into 2 categories: oscillating and periodic
bursts by performing model selection using bayesian
evidence. The periodicities we have discovered have
proven useful in an NLP classification task.

In future work, we aim to model time continu-
ously and to perform discriminative clustering in or-
der to make better use of the learned periodicites.
We will consider incorporating periodicities in other
applications, such as topic models.
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Joaquin Quiñonero Candela and Carl Edward Ras-
mussen. 2005. A Unifying View of Sparse Approx-
imate Gaussian Process Regression. Journal of Ma-
chine Learning Research (JMLR), 6:1939–1959, De-
cember.

Trevor Cohn and Lucia Specia. 2013. Modelling An-
notator Bias with Multi-task Gaussian Processes: An
Application to Machine Translation Quality Estima-
tion. In Proceedings of the Association of Computa-
tional Linguistics, ACL ’13.

Nicolas Durrande, James Hensman, Magnus Rattray, and
Neil Lawrence. 2013. Gaussian Process models
for periodicity detection. In Submitted to JRSSb,
http://arxiv.org/abs/1303.7090.

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, and Zoubin Ghahramani.
2013. Structure discovery in nonparametric regression
through compositional kernel search. In Proceedings
of the International Conference on Machine Learning,
ICML ’13.

Mehmet Gönen and Ethem Alpaydin. 2011. Multi-
ple Kernel Learning Algorithms. Journal of Machine
Learning Research (JMLR), 12:2211–2268, July.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences of the United States of America,
(Suppl 1):5228–5235, April.

Philipp Hennig, David H. Stern, Ralf Herbrich, and Thore
Graepel. 2012. Kernel topic models. Journal of Ma-
chine Learning Research (JMLR) - Proceedings Track,
22:511–519.

Jure Leskovec, Lars Backstrom, and Jon Kleinberg.
2009. Meme-tracking and the dynamics of the news
cycle. In Proceedings of the 15th ACM SIGKDD Inter-
national conference on Knowledge discovery and data
mining, KDD ’09.

Zongyang Ma, Aixin Sun, and Gao Cong. 2012. Will
this #hashtag be popular tomorrow? In Proceedings of
the 35th International ACM SIGIR conference on Re-
search and development in information retrieval, SI-
GIR ’12.

Zongyang Ma, Aixin Sun, and Gao Cong. 2013. On pre-
dicting the popularity of newly emerging hashtags in
Twitter. Journal of the American Society for Informa-
tion Science and Technology, 64(7):1399–1410.

Allie Mazzia and James Juett. 2011. Sug-
gesting hashtags on Twitter. In http://www-
personal.umich.edu/ amazzia/pubs/545-final.pdf.

James McInerney, Alex Rogers, and Nicholas R Jennings.
2013. Learning periodic human behaviour models
from sparse data for crowdsourcing aid delivery in
developing countries. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelli-
gence, UAI ’13.

Tamara Polajnar, Simon Rogers, and Mark Girolami.
2011. Protein interaction detection in sentences via
Gaussian Processes: a preliminary evaluation. In-
ternational Journal Data Mining and Bioinformatics,
5(1):52–72, February.

Daniel Preoţiuc-Pietro and Trevor Cohn. 2013. Mining
User Behaviours: A Study of Check-in Patterns in Lo-
cation Based Social Networks. In Proceedings of the
ACM Web Science Conference, Web Science ’13.

Daniel Preoţiuc-Pietro, Sina Samangooei, Trevor Cohn,
Nicholas Gibbins, and Mahesan Niranjan. 2012.
Trendminer: An architecture for real time analysis of
social media text. Proceedings of the Sixth Interna-
tional AAAI Conference on Weblogs and Social Media,
Workshop on Real-Time Analysis and Mining of Social
Streams.

Carl Edward Rasmussen and Zoubin Ghahramani. 2000.
Occam’s razor. In Advances in Neural Information
Processing Systems, NIPS 13.

Carl Edward Rasmussen and Christopher K. I. Williams.
2005. Gaussian Processes for Machine Learning.
MIT Press.

Daniel M. Romero, Brendan Meeder, and Jon Klein-
berg. 2011. Differences in the mechanics of informa-
tion diffusion across topics: idioms, political hashtags,
and complex contagion on Twitter. In Proceedings of
the 20th International conference on World wide web,
WWW ’11.

Kashif Shah, Trevor Cohn, and Lucia Specia. 2013.
An Investigation on the Effectiveness of Features for
Translation Quality Estimation. In MT Summit ’13.

Oren Tsur and Ari Rappoport. 2012. What’s in a hash-
tag? Content based prediction of the spread of ideas
in microblogging communities. In Proceedings of the
fifth ACM International conference on Web search and
data mining, WSDM ’12.

Xuerui Wang and Andrew McCallum. 2006. Topics over
time: a non-Markov continuous-time model of topi-
cal trends. In Proceedings of the 12th ACM SIGKDD
International conference on Knowledge discovery and
data mining, KDD ’06.

Chong Wang, David M. Blei, and David Heckerman.
2008. Continuous time Dynamic topic models. In
Proceedings of the Twenty-Fourth Conference on Un-
certainty in Artificial Intelligence, UAI ’08.

Andrew Gordon Wilson and Ryan Prescott Adams. 2013.
Gaussian Process covariance kernels for pattern dis-

987



covery and extrapolation. In Proceedings of the Inter-
national Conference on Machine Learning, ICML ’13.

Jaewon Yang and Jure Leskovec. 2011. Patterns of tem-
poral variation in online media. In Proceedings of the
fourth ACM International conference on Web search
and data mining, WSDM ’11.

Lei Yang, Tao Sun, Ming Zhang, and Qiaozhu Mei. 2012.
We know what @you #tag: does the dual role affect
hashtag adoption? In Proceedings of the 21st Interna-
tional conference on World Wide Web, WWW ’12.

Dani Yogatama, Michael Heilman, Brendan O’Connor,
Chris Dyer, Bryan R. Routledge, and Noah A. Smith.
2011. Predicting a scientific community’s response
to an article. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
EMNLP ’11.

Eva Zangerle, Wolfgang Gassler, and Gunther Specht.
2011. Recommending #-tags in twitter. In Proceed-
ings of the Workshop on Semantic Adaptive Social
Web, UMAP ’11.

988



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 989–999,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Automatically Detecting and Attributing Indirect Quotations

Silvia Pareti�∗ Tim O’Keefe†∗ Ioannis Konstas� James R. Curran† Irena Koprinska†

�ILCC, School of Informatics † e-lab, School of IT
University of Edinburgh University of Sydney

United Kingdom NSW 2006, Australia
{s.pareti,i.konstas}@sms.ed.ac.uk {tokeefe,james,irena}@it.usyd.edu.au

Abstract

Direct quotations are used for opinion min-
ing and information extraction as they have an
easy to extract span and they can be attributed
to a speaker with high accuracy. However,
simply focusing on direct quotations ignores
around half of all reported speech, which is
in the form of indirect or mixed speech. This
work presents the first large-scale experiments
in indirect and mixed quotation extraction and
attribution. We propose two methods of ex-
tracting all quote types from news articles and
evaluate them on two large annotated corpora,
one of which is a contribution of this work.
We further show that direct quotation attribu-
tion methods can be successfully applied to in-
direct and mixed quotation attribution.

1 Introduction

Quotations are crucial carriers of information, par-
ticularly in news texts, with up to 90% of sentences
in some articles being reported speech (Bergler
et al., 2004). Reported speech is a carrier of evi-
dence and factuality (Bergler, 1992; Saurı́ and Puste-
jovsky, 2009), and as such, text mining applications
use quotations to summarise, organise and validate
information. Extraction of quotations is also rele-
vant to researchers interested in media monitoring.

Most quotation attribution studies (Pouliquen
et al., 2007; Glass and Bangay, 2007; Elson and
McKeown, 2010) thus far have limited their scope
to direct quotations (Ex.1a), as they are delimited

∗*These authors contributed equally to this work.

by quotation marks, which makes them easy to ex-
tract. However, annotated resources suggest that di-
rect quotations represent only a limited portion of all
quotations, i.e., around 30% in the Penn Attribution
Relation Corpus (PARC), which covers Wall Street
Journal articles, and 52% in the Sydney Morning
Herald Corpus (SMHC), with the remainder being in-
direct (Ex.1c) or mixed (Ex.1b) quotations. Retriev-
ing only direct quotations can miss key content that
can change the interpretation of the quotation (Ex.
1b) and will entirely miss indirect quotations.

(1) a. “For 10 million, you can move $100 mil-
lion of stocks,” a specialist on the Big Board
gripes. “That gives futures traders a lot
more power.”

b. Police would only apply for the restrictions
when “we have a lot of evidence that late-
night noise. . . is disturbing the residents of
that neighbourhood”, Superintendent Tony
Cooke said.

c. Mr Walsh said Rio was continuing to hold
discussions with its customers to arrive at a
mutually agreed price.

Previous work on extracting indirect and mixed
quotations has suffered from a lack of large-scale
data, and has instead used hand-crafted lexica of re-
porting verbs with rule-based approaches. The lack
of data has also made comparing the relative merit
of these approaches difficult, as existing evaluations
are small-scale and do not compare multiple meth-
ods on the same data.

In this work we address this lack of clear, com-
parable results by evaluating two baseline meth-
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Method Language Test Size Results
(quotations) P R

Krestel et al. (2008) hand-built grammar English 133 74% 99%
Sarmento and Nunes (2009) patterns over text Portuguese 570 88% 5%1

Fernandes et al. (2011) ML and regex Portuguese 205 64%2 67%2

de La Clergerie et al. (2011) patterns over parse French 40 87% 70%
Schneider et al. (2010) hand-built grammar English N/D 56%2 52%2

Table 1: Related work on direct, indirect and mixed quotation extraction. Note that they are not directly comparable
as they apply to different languages and greatly differ in evaluation style and size of test set. 1 Figure estimated by the
authors for extracting 570 quotations from 26k articles. 2 Results are for quotation extraction and attribution jointly.

ods against both a token-based approach that uses a
Conditional Random Field (CRF) to predict IOB la-
bels, and a maximum entropy classifier that predicts
whether parse nodes are quotations or not. We eval-
uate these approaches on two large-scale corpora
from the news domain that together include over
18,000 quotations. One of these corpora (SMHC) is a
a contribution of this work, while our results are the
first presented on the other corpus (PARC). Instead
of relying on a lexicon of reporting verbs, we de-
velop a classifier to detect verbs introducing a quo-
tation. To inform future research we present results
for direct, indirect, and mixed quotations, as well as
overall results.

Finally, we use the direct quotation attribution
methods described in O’Keefe et al. (2012) and
show that they can be successfully applied to indi-
rect and mixed quotations, albeit with lower accu-
racy. This leads us to conclude that attributing indi-
rect and mixed quotations to speakers is harder than
attributing direct quotations.

With this work, we set a new state of the art in
quotation extraction. We expect that the main con-
tribution of this work will be that future methods can
be evaluated in a comparable way, so that the relative
merit of various approaches can be determined.

2 Background

Pareti (2012) defines an attribution as having a
source span, a cue span, and a content span:

Source is the span of text that indicates who the
content is attributed to, e.g. ‘president Obama’,
‘analysts’, ‘China’, ‘she’.

Cue is the lexical anchor of the attribution relation,

usually a verb, e.g. ‘say’, ‘add’, ‘quip’.

Content is the span of text that is attributed.

Based on the type of attitude the source expresses
towards a proposition or eventuality, attributions are
subcategorised (Prasad et al., 2006) into assertions
(Ex.2a) and beliefs (Ex.2b), which imply different
degrees of commitment, facts (Ex.2c), expressing
evaluation or knowledge, and eventualities (Ex.2d),
expressing intention or attitude.

(2) a. Mr Abbott said that he will win the election.
b. Mr Abbott thinks he will win the election.
c. Mr Abbott knew that Gillard was in Sydney.
d. Mr Abbott agreed to the public sector cuts.

Only assertion attributions necessarily imply a
speech act. Their content corresponds to a quotation
span and their source is generally referred to in the
literature as the speaker. Direct, indirect and mixed
quotations differ in the degree of factuality they en-
tail, since the former are by convention interpreted
as a verbatim transcription of an utterance whereas
indirect and the non-quoted portion of mixed quota-
tions can be paraphrased forms of the original word-
ing, and are thus filtered by the writer’s perspective.

The first speaker attribution systems (Zhang et al.,
2003; Mamede and Chaleira, 2004; Glass and Ban-
gay, 2007) originate from the narrative domain and
were concerned with the identification of different
characters for speech synthesis applications. Direct
quotation attribution, with direct quotations being
given or extracted heuristically, has been the focus
of further studies in both the narrative (Elson and
McKeown, 2010) and news (Pouliquen et al., 2007;
Liang et al., 2010) domains. The few studies that
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have addressed the extraction and attribution of in-
direct and mixed quotations are discussed below.

Krestel et al. (2008) developed a quotation ex-
traction and attribution system that combines a lexi-
con of 53 common reporting verbs and a hand-built
grammar to detect constructions that match 6 gen-
eral lexical patterns. They evaluate their work on 7
articles from the Wall Street Journal, which contain
133 quotations, achieving macro-averaged Precision
(P ) of 99% and Recall (R) of 74% for quotation
span detection. PICTOR (Schneider et al., 2010) re-
lies instead on a context-free grammar for the extrac-
tion and attribution of quotations. PICTOR yielded
75% P and 86% R in terms of words correctly as-
cribed to a quotation or speaker, while it achieved
56% P and 52% R when measured in terms of com-
pletely correct quotation-speaker pairs.

SAPIENS (de La Clergerie et al., 2011) extracts
quotations from French news, by using a lexicon
of reporting verbs and syntactic patterns to extract
the complement of a reporting verb as the quota-
tion span and its subject as the source. They eval-
uated 40 randomly sampled quotations and found
that their system made 32 predictions and correctly
identified the span in 28 of the 40 cases. Verba-
tim (Sarmento and Nunes, 2009) extracts quotations
from Portuguese news feeds by first finding one of
35 speech verbs and then matching the sentence to
one of 19 patterns. Their manual evaluation shows
that 11.9% of the quotations Verbatim finds are er-
rors and that the system identifies approximately one
distinct quotation for every 46 news articles.

The system presented by Fernandes et al. (2011)
also works over Portuguese news. Their work is the
closest to ours as they partially apply supervised ma-
chine learning to quotation extraction. Their work
introduces GloboQuotes, a corpus of 685 news items
containing 1,007 quotations of which 802 were used
to train an Entropy Guided Transformation Learn-
ing (ETL) algorithm (dos Santos and Milidiú, 2009).
They treat quotation extraction as an IOB labelling
task, where they use ETL with POS and NE features
to identify the beginning of a quotation, while the
inside and outside labels are found using regular ex-
pressions. Finally they use ETL to attribute quota-
tions to their source. The overall system achieves
64% P and 67% R.

We have summarised these approaches in Table 1,

SMHC PARC

Corpus Doc Corpus Doc
Docs 965 - 2,280 -
Tokens 601k 623.3 1,139k 499.9
Quotations 7,991 8.3 10,526 4.6

Direct 4,204 4.4 3,262 1.4
Indirect 2,930 3.0 5,715 2.5
Mixed 857 0.9 1,549 0.6

Table 2: Comparison of the SMHC and PARC corpora, re-
porting their document and token size and per-type occur-
rence of quotations overall and per document (average).

which shows that the majority of evaluations thus far
have been small-scale. Furthermore, the published
results do not include any comparisons with previ-
ous work, which prevents a quantitative comparison
of the approaches, and they do not include results
broken down by whether the quotation is direct, in-
direct, or mixed. It is these issues that motivate our
work.

3 Corpora

We perform our experiments over two large corpora
from the news domain.

3.1 Penn Attribution Relations Corpus (PARC)

Our first corpus (Pareti, 2012), which we will re-
fer to as PARC, is a semi-automatically built ex-
tension to the attribution annotations included in
the PDTB (Prasad et al., 2008). The corpus covers
2,280 Wall Street Journal articles and contains an-
notations of assertions, beliefs, facts, and eventual-
ities, which are altogether referred to as attribution
relations (ARs). For this work we use only the asser-
tions, as they correspond to quotations (direct, indi-
rect and mixed). The drawback of this corpus is that
it is not yet fully annotated, i.e., it comprises positive
and unlabelled data.

The corpus includes a test set of 14 articles that
are fully annotated, which enables us to properly
evaluate our work and estimate that a proportion of
30-50% of ARs are unlabelled in the rest of the cor-
pus. The test set was manually annotated by two ex-
pert annotators. The annotators identified 491 ARs,
of which 22% were nested within another AR, with
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an agreement score of 87%1. The agreement for the
selection of the content and source spans of com-
monly annotated ARs was 95% and 94% respec-
tively. In this work we address only non-embedded
assertions, so the final test-set includes 267 quotes,
totalling 321 non-discontinuous gold spans.

3.2 Sydney Morning Herald Corpus (SMHC)

We based our second corpus on the existing anno-
tations of direct quotations within Sydney Morning
Herald articles presented in O’Keefe et al. (2012).
In that work we defined direct quotations as any
text between quotation marks, which included the
directly-quoted portion of mixed quotations, as well
as scare quotes. Under that definition direct quo-
tations could be automatically extracted with very
high accuracy, so annotations in that work were
over the automatically extracted direct quotations.
As part of this work one annotator removed scare
quotes, updated mixed quotations to include both
the directly and indirectly quoted portions, and
added whole new indirect quotations. The anno-
tation scheme was developed to be comparable to
the scheme used in the PARC corpus (Pareti, 2012),
although the SMHC corpus only includes assertions
and does not annotate the lexical cue.

The resulting corpus contains 7,991 quotations
taken from 965 articles from the 2009 Sydney Morn-
ing Herald (we refer to this corpus as SMHC). The
annotations in this corpus also include the speakers
of the quotations, as well as gold standard Named
Entities (NEs). We use 60% of this corpus as train-
ing data (4,872 quotations), 10% as development
data (759 quotations), and 30% as test data (2,360
quotations). Early experiments were conducted over
the development data, while the final results were
trained on both the training and development sets
and were tested on the unseen test data.

3.3 Comparison

Table 2 shows a comparison of the two corpora and
the quotations annotated within them. SMHC has a
higher density of quotations per document, 8.3 vs.
4.6 in PARC, since articles are fully annotated and

1The agreement was calculated using the agr metric de-
scribed in Wiebe and Riloff (2005) as the proportion of com-
monly annotated ARs with respect to the ARs identified overall
by Annotator A and Annotator B respectively

P R F

Bsay 94.4 43.5 59.5
Blist 75.4 71.1 73.2
k-NN 88.9 72.6 79.9

Table 3: Results for the k-NN verb-cue classifier. Bsay

classifies as verb-cue all instances of say while Blist

marks as verb-cues all verbs from a pre-compiled list in
Krestel et al. (2008).

were selected to contain at least one quotation. PARC

is instead only partially annotated and comprises ar-
ticles with no quotations. Excluding null-quotation
articles from PARC, the average incidence of anno-
tated quotations per article raises to 7.1. The corpora
also differ in quotation type distribution, with di-
rect quotations being largely predominant in SMHC

while indirect are more common in PARC.

4 Experimental Setup

4.1 Quotation Extraction

Quotation extraction is the task of extracting the
content span of all of the direct, indirect, and mixed
quotations within a given document. More pre-
cisely, we consider quotations to be acts of com-
munication, which correspond to assertions in Pareti
(2012). Some quotations have content spans that are
split into separate, non-adjacent spans, as in exam-
ple (1a). Ideally the latter span should be marked as
a continuation of a quotation, however we consider
this to be out of scope for this work, so we treat each
span as a separate quotation.

4.2 Preprocessing

As a pre-processing step, both corpora were to-
kenised and POS tagged, and the potential speak-
ers anonymised to prevent over-fitting. We used the
Stanford factored parser (Klein and Manning, 2002)
to retrieve both the Stanford dependencies and the
phrase structure parse. Quotation marks were nor-
malised to a single character, as the quotation di-
rection is often incorrect for multi-paragraph quo-
tations.

4.3 Verb-cue Classifier

Verbs are by far the most common introducer of a
quotation. In PARC verbs account for 96% of all
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cues, the prepositional phrase according to for 3%,
with the remaining 1% being nouns, adverbials and
prepositional groups. Attributional verbs are not a
closed set, they can vary across styles and genres,
and their attributional use is highly dependent on the
context in which they occur. It is therefore not possi-
ble to simply rely on a pre-compiled list of common
speech verbs. Quotations in PARC are introduced by
232 verb types, 87 of which are unique occurrences.
Not all of the verbs are speech verbs, for example
add, which is the second most frequent after say, or
the manner verb gripe (Ex.1a).

We used the attributional cues in the PARC cor-
pus to develop a separate component of our system
to identify attribution verb-cues. The classifier pre-
dicts whether the head of each verb group is a verb-
cue using the k-nearest neighbour (k-NN) algorithm,
with k equal to 3. The classifier uses 20 feature
types, including:

• Lexical (e.g. token, lemma, adjacent tokens)

• VerbNet classes membership

• Syntactic (e.g. node-depth in the sentence, par-
ent and sibling nodes)

• Sentence features (e.g. distance from sentence
start/end, within quotation markers).

We compared the system to one baseline, Bsay,
that marks every instance of say as a verb-cue, and
another, Blist, that marks every instance of a verb
that is on the list of 53 verbs presented in Krestel
et al. (2008). We tested the system on the test set for
PARC, which contains 1809 potential verb-cues, of
which 354 are positive and 1455 are negative.

The results in Table 3 show that the verb-cue
classifier can outperform expert-derived knowledge.
The classifier was able to identify verb-cues with P
of 88.9% and R of 72.6%. While frequently oc-
curring verbs are highly predictive, the inclusion of
VerbNet classes (Schuler, 2005) and contextual fea-
tures allows for a more accurate classification of pol-
ysemous and unseen verbs.

Since PARC contains labelled and unlabelled attri-
butions, which is detrimental for training, we used
the verb-cue classifier to identify in the corpus sen-
tences that we suspected contained an unlabelled at-
tribution. Sentences containing a verb classified as a

cue that do not contain a quotation were removed
from the training set for the quotation extraction
model.

4.4 Evaluation

We use two metrics, listed below, for evaluating the
quotation spans predicted by our model against the
gold spans from the annotation.

Strict The first is a strict metric where a predicted
span is only considered to be correct if it exactly
matches a span from the gold standard. The stan-
dard precision, recall, and F -score can be calculated
using this definition of correctness. The drawback of
this strict score is that if a prediction is incorrect by
as little as one token it will be considered completely
incorrect.

Partial We also consider an overlap metric
(Hollingsworth and Teufel, 2005), which allows
partially correct predictions to be proportionally
counted. Precision (P ), recall (R), and F -score for
this method are:

P =

∑
g∈gold

∑
p∈pred overlap(g, p)

|pred|
(1)

R =

∑
g∈gold

∑
p∈pred overlap(p, g)

|gold|
(2)

F =
2PR

(P + R)
(3)

Where overlap(x, y) returns the proportion of to-
kens of y that are overlapped by x. For each of these
metrics we report the micro-average, as the number
of quotations in each document varies significantly.
When reporting P for the typewise results we re-
strict the set of predicted quotations to only those
with the requisite type, while still considering the
full set of gold quotations. Similarly, when calculat-
ing R we restrict the set of gold quotations to only
those with the required type.

4.5 Baselines

We have developed two baselines inspired by the
current lexical/syntactic pattern-based approaches
in the literature, which combine speech verbs and
hand-crafted rules.
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Blex Lexical: cue verb + the longest of the spans be-
fore or after it until the sentence boundary.

Bsyn Syntactic: cue verb + verb syntactic object.
Bsyn is close to the model in de La Clergerie
et al. (2011).

Instead of relying on a lexicon of verbs, our base-
lines use those identified by the verb-cue classifier.
As direct quotations are not always explicitly intro-
duced by a cue-verb, we defined a separate baseline
with a rule-based approach (Brule) that returns text
between quotation marks that has at least 3 tokens,
and where the non-stopword and non-proper noun
tokens are not all title cased. In our full results we
apply each method along with Brule and greedily
take the longest predicted spans that do not overlap.

5 Supervised Approaches

We present two supervised approaches to quotation
extraction, which operate over the tokens and the
phrase-structure parse nodes respectively. Despite
the difference in the item being classified, these ap-
proaches have some common features:

Lexical: unigram and bigram versions of the token,
lemma, and POS tags within a window of 5 to-
kens either side of the target, all indexed by po-
sition.

Sentence: features indicating whether the sentence
contains a quotation mark, a NE, a verb-cue, a
pronoun, or any combination of these. There is
also a sentence length feature.

Dependency: relation with parent, relations with
any dependants, as well as versions of these
that include the head and dependent tokens.

External knowledge: position-indexed features for
whether any of the tokens in the sentence match
a known role, organisation, or title. The titles
come from a small hand-built list, while the
role and organisation lists were built by recur-
sively following the WordNet (Fellbaum, 1998)
hyponyms of person and organization respec-
tively.

Other: features for whether the target is within quo-
tation marks, and whether there is a verb-cue
near the end of the sentence.

Strict Partial
P R F P R F

PARC Brule 75 94 83 96 94 95
Token 97 91 94 98 97 97

SMHC Brule 87 93 90 98 94 96
Token 94 90 92 99 97 98

Table 4: PARC and SMHC results on direct quotations.
The token based approach is trained and tested on all quo-
tations.

5.1 Token-based Approach

The token-based approach treats quotation extrac-
tion as analogous to NE tagging, where there are a
sequence of tokens that need to be individually la-
belled. Each token is given either an I, an O, or a B

label, where B denotes the first token in a quotation,
I denotes the token is inside a quotation, and O indi-
cates that the token is not part of a quotation. For NE

tagging it is common to use a sentence as a single
sequence, as NEs do not cross sentence boundaries.
This does not work for quotations, as they can cross
sentence and even paragraph boundaries. As such,
we treat the entire document as a single sequence,
which allows the predicted quotations to span both
sentence and paragraph bounds.

We use a linear chain Conditional Random Field
(CRF)2 as the learning algorithm, with the common
features listed above, as well as the following fea-
tures:

Verb: features indicating whether the current token
is a (possibly indirect) dependent of a verb-cue,
and another for whether the token is at the start
of a constituent that is a dependent of a verb-
cue.

Ancestor: the labels of all constituents that contain
the current token in their span, indexed by their
depth in the parse tree.

Syntactic: the label, depth, and token span size of
the highest constituent where the current token
is the left-most token in the constituent, as well
as its parent, and whether either of those con-
tains a verb-cue.

2http://www.chokkan.org/software/crfsuite/
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Indirect Mixed All1

Strict P R F P R F P R F

Blex 34 32 33 17 26 20 46 44 45
Bsyn 78 46 58 61 40 49 80 63 70
Token 66 54 59 55 58 56 76 70 73
Constituent 61 50 55 50 38 43 70 64 67
ConstituentG 66 42 51 68 49 57 76 62 68
Partial P R F P R F P R F

Blex 56 66 61 78 79 78 73 79 76
Bsyn 89 58 70 88 75 81 92 74 82
Token 79 74 76 85 90 87 87 86 87
Constituent 78 67 72 84 82 83 86 80 83
ConstituentG 80 54 65 90 80 85 90 74 81

Table 5: Results on PARC. 1All reports the results over all quotations (direct, indirect and mixed). For the baselines,
this is a combination of the strategy in Blex or Bsyn with the rules for direct quotations. ConstituentG shows the
results for the constituent model using the gold parse.

5.2 Constituent-based Approach

The constituent approach classifies whole phrase
structure nodes as either quotation or not a quota-
tion. Ideally each quotation would match exactly
one constituent, however this is not always the case
in our data. In cases without an exact match we la-
bel every constituent that is a subspan of the quo-
tation as a quotation as long as it has a parent that
is not a subspan of the quotation. In these cases
multiple nodes will be labelled quotation, so a post-
processing step is introduced that rebuilds quota-
tions by merging predicted spans that are adjacent or
overlapping within a sentence. Restricting the merg-
ing process this way loses the ability to predict quo-
tations that cover more than a sentence, but without
this restriction too many predicted quotations are er-
roneously merged.

This approach uses a maximum entropy classi-
fier3 with L1 regularisation. In early experiments
we found that the constituent-based approach per-
formed poorly when trained on all quotations, so for
these experiments the constituent classifier is trained
only on indirect and mixed quotations. The classifier
uses the common features listed above as well as the
following features:

Span: length of the span, features for whether there
is a verb or a NE.

3http://scikit-learn.org/

Node: the label, number of descendants, number of
ancestors, and number of children of the target.

Context: dependency, node, and span features for
the parent and siblings of the target.

In addition the lexical features described earlier
are applied to both the start and end tokens of the
node’s span, as well as the highest token in the de-
pendency parse that is within the span.

6 Results

6.1 Direct Quotations

Table 4 shows the results for predicting direct quota-
tions on PARC and SMHC. In both corpora and with
both metrics the token-based approach outperforms
Brule. Although direct quotations should be trivial
to extract, and a simple system that returns the con-
tent between quotation marks should be hard to beat,
there are two main factors that confound the rule-
based system.

The first is the presence of mixed quotations,
which is most clearly demonstrated in the difference
between the strict precision scores and the partial
precision scores for Brule. Brule will find all of
the directly-quoted portions of mixed quotes, which
do not exactly match a quotation, and so will re-
ceive a low precision score with the strict metric.
However the partial overlap score will reward these
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Indirect Mixed All1

Strict P R F P R F P R F

Blex 37 42 40 15 36 21 50 50 50
Bsyn 63 49 55 67 36 47 82 72 76
Token 69 53 60 80 91 85 82 75 78
Constituent 54 49 51 64 42 51 77 72 75
Partial P R F P R F P R F

Blex 52 68 59 87 77 82 77 84 81
Bsyn 75 59 66 89 66 76 91 80 85
Token 82 67 74 88 84 86 92 86 89
Constituent 77 63 69 91 75 82 91 82 86

Table 6: Results on SMHC. 1All reports the results over all quotations (direct, indirect and mixed). For the baselines,
this is a combination of the strategy in Blex or Bsyn with the rules for direct quotations.

predictions, as they do partially match a quote, so
there is a large difference in those scores. Note that
the reduced strict score does not occur for the token
method, which correctly identifies mixed quotations.

The other main issue is the presence of quotation
marks around items such as book titles and scare
quotes (i.e. text that is in quotation marks to distance
the author from a particular wording or claim). In
Section 4.5 we described the methods that we use to
avoid scare quotes and titles, which are rule-based
and imperfect. While these methods increase the
overall F -score of Brule, they do have a negative
impact on recall, which is why the recall is lower
than might be expected. These results demonstrate
that although direct quotations can be accurately ex-
tracted with rules, the accuracy will be lower than
might be anticipated and the returned spans will in-
clude a number of mixed quotations, which will be
missing some content.

6.2 Indirect and Mixed Quotations

The token approach was also the most effective
method for extracting indirect and mixed quotations
as Tables 5 and 6 show. Indirect quotations were
extracted with strict F -scores of 59% and 60% and
partial F -scores of 76% and 74% in PARC and SMHC

respectively, while mixed quotes were found with
strict F -scores of 56% and 85% and partial F -scores
of 87% and 86%.

Although there is a strong interconnection be-
tween syntax and attribution, results for Bsyn show
that merely considering attribution as a syntactic re-

lation (Skadhauge and Hardt, 2005) has a large im-
pact on recall: only a subset of inter-sentential quo-
tations can be effectively matched by verb comple-
ment boundaries.

The constituent model yielded lower results than
the token one, and in particular it greatly lowered
the recall of mixed quotations in both corpora. Since
the model heavily relies on syntax, it is particularly
affected by errors made by the parser. The conjunc-
tion and in Example 3 is incorrectly attached by the
parser to the cue said, leading the classifier to iden-
tify two separate spans. In order to verify the impact
of incorrect parsing on the model, we ran the con-
stituent model using gold standard parses for PARC.
This resulted in an increase in strict P and increased
the F -score for mixed quotations to 57%, similarly
to the score achieved by the token model. However,
it surprisingly negatively affected R for indirect quo-
tations.

(3) Graeme Hugo, said strong links between Aus-
tralia’s 700,000 ethnic Chinese and China
could benefit both countries and were unlikely
to pose a threat.

The tables also report results for the extraction of
all quotations, irrespective of their type. For this
score, the baseline models for indirect and mixed
quotations are combined with Brule for direct quo-
tations.

6.3 Model Comparison
We designed the features for the token and con-
stituent models to be largely similar. This al-
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lows us to conclude that the difference in perfor-
mance between the token and constituent models
is largely driven by the class labelling and learn-
ing method. Overall, the token-based approach out-
performed both the baselines and the constituent
method. Qualitatively we found that the token-based
approach was making reasonable predictions most
of the time, but would often fail when a quotation
was attributed to a speaker through a parenthetical
clause, as in Example 4.

(4) Finding lunar ice, said Tidbinbilla’s
spokesman, Glen Nagle, would give a
major boost to NASA’s hopes of returning
humans to the moon by 2020.

The token-based approach has a reasonable bal-
ance of the various label types, and benefits from a
decoding step that allows it to make trade-offs be-
tween good local decisions and a good overall so-
lution. By comparison, the constituent-based ap-
proach has a large class imbalance, as there are many
more negative (i.e. not quotation) parse nodes than
there are positive, which makes finding a good deci-
sion boundary difficult. We experimented with re-
ducing the number of negative nodes to consider,
but found that the overall F -score was equivalent or
worse, largely driven by a drop in recall. We also
found that in many cases the constituent-approach
predicted quotes that were too short, or that were
only the second half of a conjunction, without the
first half being labelled. We expect that these issues
would be corrected with the addition of a decoding
step, that forces the classifier to make a good global
decision.

7 Speaker Attribution

While the focus of this paper is on extracting quota-
tions, we also present results on finding the speaker
of each quotation. As discussed in Section 2, quo-
tation attribution has been addressed in the litera-
ture before, including some work that includes large-
scale data (Elson and McKeown, 2010). However,
the large-scale evaluations that exist cover only di-
rect quotations, whereas we present results for di-
rect, indirect, and mixed quotations.

For this evaluation we use four of the methods that
were introduced in O’Keefe et al. (2012). The first
is a simple rule-based approach (Rule) that returns

the entity closest to the speech verb nearest the quo-
tation, or if there is no such speech verb then the
entity nearest the end of the quotation. The second
method uses a CRF which is able to choose between
up to 15 entities that are in the paragraph containing
the quotation or any preceding it. The third method
(No seq.) is a binary MaxEnt classifier that predicts
whether each entity is the speaker or not the speaker,
with the entity achieving the highest speaker proba-
bility predicted. In O’Keefe et al. (2012) this model
achieved the best results on the direct quotations in
SMHC, despite not using the sequence features or de-
coding methods that were available to other models.
The final method that we evaluate (Gold) is the ap-
proach that uses sequence features that use the gold-
standard labels from previous decisions. As noted
by O’Keefe et al., this method is not realisable in
practise, however we include these results so that
we can reassess the claims of O’Keefe et al. when
direct, indirect, and mixed quotations are included.
For our results to be comparable we use the list of
speech verbs that was presented in Elson and McK-
eown (2010) and used in O’Keefe et al. (2012).

Table 7 shows the accuracy of the two meth-
ods on both PARC and SMHC, broken down by the
type of the quotation. The first observation that
we make about these results in comparison to the
O’Keefe et al. results, is that the accuracy is gener-
ally lower, even for direct quotations. This discrep-
ancy is caused by differences in our data compared
to theirs, notably that the sequence of quotations is
altered in ours by the introduction of indirect quota-
tions, and that some of the direct quotations that they
evaluated would be considered mixed quotations in
our corpora. The rule based method performs par-
ticularly poorly on PARC, which is likely caused by
the relative scarcity of direct quotations and the fact
that it was designed for direct quotations only. Di-
rect quotations are much more frequent in SMHC, so
the rules that rely on the sequence of speakers would
likely perform relatively better than on PARC.

While the approach using gold-standard sequence
features unsurprisingly performed the best, the most
straightforward learned model (No seq.), trained
without any sequence information, equalled or out-
performed the two other non-gold approaches for all
quotation types on both corpora. This indicates that
the CRF model evaluated here was not able to effec-
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Corpus Method Dir. Ind. Mix. All
PARC Rule 70 60 47 62

CRF 82 68 65 73
No seq. 85 74 65 77
Gold 88 79 74 82

SMHC Rule 89 76 78 84
CRF 83 72 71 78
No seq. 91 79 81 87
Gold 93 81 83 89

Table 7: Speaker attribution accuracy results for both cor-
pora over gold standard quotations.

tively use the sequence information that is present.

8 Conclusion

In this work we have presented the first large-scale
experiments on the entire quotation extraction and
attribution task: evaluating the extraction and at-
tribution of direct, indirect and mixed quotations
over two large news corpora. One of these corpora
(SMHC) is a novel contribution of this work, while
our results are the first presented for the other cor-
pus (PARC). This work has shown that while rule-
based approaches that return the object of a speech
verb are indeed effective, they are outperformed by
supervised systems that can take advantage of addi-
tional evidence. We also show that state-of-the-art
quotation attribution methods are less accurate on
indirect and mixed quotations than they are on di-
rect quotations.

Future work will include extending these methods
to extract all attributions, i.e. beliefs, eventualities,
and facts, as well as the source spans. We will also
evaluate the effect of adding a decoding step to the
constituent approach. This work provides an accu-
rate and complete quotation extraction and attribu-
tion system that can be used for a wide range of tasks
in information extraction and opinion mining.
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Abstract
Web search users frequently modify their
queries in hope of receiving better results.
This process is referred to as “Query Refor-
mulation”. Previous research has mainly fo-
cused on proposing query reformulations in
the form of suggested queries for users. Some
research has studied the problem of predicting
whether the current query is a reformulation
of the previous query or not. However, this
work has been limited to bag-of-words models
where the main signals being used are word
overlap, character level edit distance and word
level edit distance. In this work, we show
that relying solely on surface level text sim-
ilarity results in many false positives where
queries with different intents yet similar top-
ics are mistakenly predicted as query reformu-
lations. We propose a new representation for
Web search queries based on identifying the
concepts in queries and show that we can sig-
nificantly improve query reformulation perfor-
mance using features of query concepts.

1 Introduction

Web search is a process of querying, learning and
reformulating queries to satisfy certain information
needs. When a user submits a search query, the
search engine attempts to return the best results to
that query. Oftentimes, users modify their search
queries in hope of getting better results. Typical
search users have low tolerance to viewing lowly
ranked search results and they prefer to reformu-
late the query rather than wade through result list-
ings (Jansen and Spink, 2006). Previous stud-
ies have also shown that 37% of search queries

are reformulations to previous queries (Jansen et
al., 2007) and that 52% of users reformulate their
queries (Jansen et al., 2005).

Understanding query reformulation behavior and
being able to accurately identify reformulation
queries have several benefits. One of these benefits
is learning from user behavior to better suggest au-
tomatic query refinements or query alterations. An-
other benefit is using query reformulation predic-
tion to identify boundaries between search tasks and
hence segmenting user activities into topically co-
herent units. Also, if we are able to accurately iden-
tify query reformulations, then we will be in a bet-
ter position to evaluate the satisfaction of users with
query results. For example, search satisfaction is
typically evaluated using clickthrough information
by assuming that if a user clicks on a result, and
possibly dwells for a certain amount of time, then
the user is satisfied. Identifying query reformulation
can be very useful for finding cases where the users
are not satisfied even after a click on a result that
may have seemed relevant given its title and sum-
mary but then turned out to be not relevant to the
user’s information need.

Previous work on query reformulation has either
focused on automatic query refinement by the search
system, e.g. (Jones et al., 2006; Boldi et al.,
2008) or on defining taxonomies for query refor-
mulation strategies, e.g. (Lau and Horvitz, 1999;
Anick, 2003). Other work has proposed solutions
for the query reformulation prediction problem or
for the similar problem of task boundary identifi-
cation (Radlinski and Joachims, 2005; Jones and
Klinkner, 2008). These solutions have adopted the

1000



bag-of-words approach for representing queries and
mostly used features of word overlap or character
and word level edit distances. Take the queries “ho-
tels in New York City” and “weather in New York
City” as an example. The two queries are very likely
to have been issued by a user who is planning to
travel to New York City. The two queries have 5
words each, 4 of them are shared by the two queries.
Hence, most of the solutions proposed in previous
work for this problem will incorrectly assume that
the second query is a reformulation of the first due
to the high word overlap ratio and the small edit dis-
tance. In this work, we propose a method that goes
beyond the bag-of-words method by identifying the
concepts underlying these queries. In the previous
example, we would like our method to realize that
in the first query, the user is searching for “hotels”
while for in the second query, she is searching for the
“weather” in New York City. Hence, despite similar
in terms of shared terms, the two queries have differ-
ent intents and are not reformulations of one another.

To this end, we conducted a study where we col-
lected thousands of consecutive queries and trained
judges to label them as either reformulations or
not. We then built a classifier to identify query
reformulation pairs and showed that the proposed
classifier outperforms the state-of-the-art methods
on identifying query reformulations. The proposed
method significantly reduces false positives (non-
reformulation pairs incorrectly classified as refor-
mulation) while achieving high recall and precision.

2 Related Work

There are three areas of work related to the research
presented in this paper: (i) query reformulation tax-
onomies, (ii) automatic query refinement, and (iii)
search tasks boundary identification. We cover each
of these areas in turn.

2.1 Query Reformulation Taxonomies

Existing research has studied how web search en-
gines can propose reformulations, but has given less
attention to how people perform query reformula-
tions. Most of the research on manual query re-
formulation has focused on building taxonomies of
query reformulation. These taxonomies are gener-
ally constructed by examining a small set of query

logs. Anick (2003) classified a random sample of
100 reformulations by hand into eleven categories.
Jensen et al. (2007) identified 6 different kinds
of reformulation states (New, Assistance, Content
Change, Generalization, Reformulation, and Spe-
cialization) and provided heuristics for identifying
them. They also used them to predict when a user
is most receptive to automatic query suggestions.
The same categories were used in several other stud-
ies (Guo et al., 2008; Lau and Horvitz, 1999).
Huang and Efthimis (2010) proposed another re-
formulation taxonomy. Their taxonomy was lexi-
cal in nature (e.g., word reorder, adding words, re-
moving words, etc.). They also proposed the use of
regular expressions to identify them. While study-
ing re-finding behavior, Teevan et al. (2006) con-
structed a taxonomy of query re-finding by manu-
ally examining query logs, and implemented algo-
rithms to identify repeat queries, equal click queries
and overlapping click queries. None of this work
has built an automatic classifier distinguishing refor-
mulation queries from other queries. Heuristics and
regular expressions have been used in (Huang et al.,
2010) and (Jansen et al., 2007) to identify different
types of reformulations. This line of work is relevant
to our work because it studies query reformulation
strategies. Our work is different because we build a
machine-learned predictive model to identify query
reformulation while this line of work mainly focuses
on defining taxonomies for reformulation strategies.

2.2 Automatic Query Refinement

A close problem that has received most of the re-
search attention in this area is the problem of auto-
matically generating query refinements. These re-
finements are typically offered as query suggestions
to the users or used to alter the user query before
submitting it to the search engine.

Boldi et al. (2008) introduced the concept of
the query-flow graph where every query is repre-
sented by a node and edges connect queries if it is
likely for users to move from one query to another.
Mei et al. (2008) used random walks over a bipar-
tite graph of queries and URLs to find query refine-
ments. Query logs were used to suggest query re-
finements in (Baeza-Yates et al., 2005). Hierarchi-
cal agglomerative clustering was used to group sim-
ilar queries that can be used as suggestions for one
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another. Other research has adopted methods based
on query expansion (Mitra et al., 1998) or query
substitution (Jones et al., 2006). This line of work
is different from our work because it focuses on au-
tomatically generating query refinements while this
work focuses on identifying cases of manual query
reformulations.

2.3 Search Task Boundary Identification

The problem of classifying the boundaries of the
user search tasks within sessions in web search logs
has been widely addressed before. This problem is
closely related to the problem of identifying query
reformulation. A search task has been defined in
(Jones and Klinkner, 2008) as a single information
need that may result in one or more queries. Sim-
ilarly , Jansen et al. (2007) defined a session as
a series of interactions by the user toward address-
ing a single information need. On the other hand, a
query reformulation is intended to modify a previ-
ous query in hope of getting better results to satisfy
the same information need. From these definitions,
it is clear how query reformulation and task bound-
ary detection are two sides of the same problem.

Boldi et al. (2008) presented the concept of the
query-flow graph. A query-flow graph represents
chains of related queries in query logs. They use
this model for finding logical session boundaries and
query recommendation. Ozmutlu (2006) proposed
a method for identifying new topics in search logs.
He demonstrated that time interval, search pattern
and position of a query in a user session, are ef-
fective for shifting to a new topic. Radlinski and
Joachims (2005) study sequences of related queries
(query chains). They used that to generate new types
of preference judgments from search engine logs to
learn better ranked retrieval functions.

Arlitt (2000) found session boundaries using a
calculated timeout threshold. Murray et al. (2006)
extended this work by using hierarchical clustering
to find better timeout values to detect session bound-
aries. Jones and Klinkner (2008) also addressed
the problem of classifying the boundaries of the
goals and missions in search logs. They showed
that using features like edit distance and common
words achieves considerably better results compared
to timeouts. Lucchese et al. (Lucchese et al., 20011)
uses a similar set of features as (Jones and Klinkner,

2008), but uses clustering to group queries in the
same task together as opposed to identifying task
boundary as in (Jones and Klinkner, 2008). This
line of work is perhaps the closest to our work. Our
work is different because it goes beyond the bag of
words approach and tries to assess query similarity
based on the concepts represented in each query. We
compare our work to the state-of-the-art work in this
area later in this paper.

3 Problem Definition

We start by defining some terms that will be used
throughout the paper:

Definition: Query Reformulation is the act of
submitting a query Q2 to modify a previous search
query Q1 in hope of retrieving better results to sat-
isfy the same information need.

Definition: A Search Session is group of queries
and clicks demarcated with a 30-minute inactiv-
ity timeout, such as that used in previous work
(Downey et al., 2007; Radlinski and Joachims,
2005).

Search engines receive streams of queries from
users. In response to each query, the engine returns a
set of search results. Depending on these results, the
user may decide to click on one or more results, sub-
mit another query, or end the search session. In this
work, we focus on cases where the user submits an-
other query. Our objective is to solve the following
problem: Given a queryQ1, and the following query
Q2, predict whether Q2 is reformulation of Q1.

4 Approach

In this section, we propose methods for predicting
whether the current query has been issued by the
user to reformulate the previous query.

4.1 Query Normalization

We perform standard normalization where we re-
place all letters with their corresponding lower case
representation. We also replace all runs of whites-
pace characters with a single space and remove any
leading or trailing spaces. In addition to the stan-
dard normalization, we also break queries that do not
respect word boundaries into words. Word break-
ing is a well-studied topic that has proved to be
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Table 1 : Examples of queries, the corresponding segmentation, and the concept representation.
Phrases are separated by “|” and different tokens in a keyword are separated by “ ”

Query Phrases and Keywords Concept Representation
hotels in new york city hotels in new york city Concept1 {head=“hotels”,

modifiers = “new york city”}
hyundai roadside assistance hyundai roadside assistance Concept1 {head = “roadside
phone number | phone number assistance”, modifiers = “hyundai”},

Concept2{“phone number”}
kodak easyshare recharger chord kodak easyshare recharger cord Concept1{head =“recharger cord”,

modifiers ‘̄‘kodak easyshare”}
user reviews for apple iphone user reviews for apple iphone Concept1{head=“user reviews”

, modifiers = “apple iphone”}
user reviews for apple ipad user reviews for apple ipad Concept1{head =“user reviews”,

modifiers = “apple ipad”}
tommy bhama rug tommy bhama rug Concept1{head =“rug”,

modifiers ‘̄‘tommy bhama”}
tommy bhama perfume tommy bhama perfume Concept1{head =”perfume”,

modifiers ‘̄‘tommy bhama”}

useful for many natural language processing appli-
cations. This becomes a frequent problems with
queries when users do not observe the correct word
boundaries (for example: “southjerseycraigslist” for
“south jersey craiglist”) or when users are searching
for a part of a URL (for example “quincycollege”
for “quincy college”). We used a freely available
word breaker Web service that has been described at
(Wang et al., 2011).

4.2 Queries to Concepts

Lexical similarity between queries has been often
used to identify related queries (Jansen et al., 2007).
The problem with lexical similarity is that it intro-
duces many false negatives (e.g. synonyms) , but
this can be handled by other features as we will de-
scribe later. More seriously, it introduces many false
positives. Take the following query pair as an exam-
ple Q1: weather in new york city and Q2: “hotels in
new york city”. Out of 5 words, 4 words are shared
between Q1 and Q2. Hence, any lexical similarity
feature would predict that the user submitted Q2 as
a reformulation of Q1. What we would like to do
is to have a query representation that recognizes the
difference between Q1 and Q2.

If we look closely at the two queries, we will no-
tice that in the first query, the user is looking for

the “weather”, while in the second query the user
is looking for “hotels”. We would like to recog-
nize “weather”, and “hotels” as the head keywords
of Q1 and Q2 respectively, while “new york city” is
a modifier of the head keyword in both cases. To
build such a representation, we start by segmenting
each query into phrases. Query segmentation is the
process of taking a users search query and divid-
ing the tokens into individual phrases or semantic
units (Bergsma and Wang, 2007). Many approaches
to query segmentation have been presented in recent
research. Some of them pose the problem as a super-
vised learning problem (Bergsma and Wang, 2007;
Yu and Shi, 2009). Many of the supervised methods
though use expensive features that are difficult to re-
implement.

On the other hand, many unsupervised methods
for query segmentation have also been proposed
(Hagen et al., 2011; Hagen et al., 2010). Most
of these methods use only raw web n-gram fre-
quencies and are very easy to re-implement. Ad-
ditionally, Hagen et al. (2010) have shown that
these methods can achieve segmentation accuracy
comparable to current state-of-the-art techniques us-
ing supervised learning. We opt for the unsuper-
vised techniques to perform query segmentation.
More specifically, we adopt the mutual information
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method (MI) used throughout the literature. A seg-
mentation for a query is obtained by computing the
pointwise mutual information score for each pair
of consecutive words. More formally, for a query
x = {x1, x2, ..., xn}

PMI(xi, xi+1) = log
p(xi, xi+1)

p(xi)p(xi+1)
(1)

where p(xi, xi+1) is the joint probability of occur-
rence of the bigram (xi, xi+1) and p(xi) and p(xi+1)
are the individual occurrence probabilities of the two
tokens xi and xi+1 .

A segment break is introduced whenever the point
wise mutual information between two consecutive
words drops below a certain threshold τ . The thresh-
old we used, τ = 0.895 , was selected to max-
imize the break accuracy (Jones et al., 2006) on
the Bergsma-Wang-Corpus (Bergsma and Wang,
2007). Furthermore, we do not allow a break to hap-
pen between a noun and a proposition (e.g. no break
can be introduced between “hotels” and “in” or “in”
and “new York” in the query “hotels in new york
city”). We will shorty explain how we obtained the
part-of-speech tags.

In addition to breaking the query into phrases, we
were also interested in grouping multi-word key-
words together (e.g. “new york”, “Michael Jack-
son”, etc.). The intuition behind that is that a
query containing the keyword “new york” and an-
other containing the keyword “new mexico” should
not be awarded because they share the word “new”.
We do that by adopting a hierarchical segmentation
technique where the same segmentation method de-
scribed above is reapplied to every resulting phrase
with a new threshold τs < τ . We selected the
new threshold, τ = 1.91 , to maximize the break
accuracy over a set of a random sample of 10,000
Wikipedia title of persons, cities, countries and or-
ganizations and a random sample of bigrams and tri-
grams from Wikipedia text.

In our implementation, the probabilities for all
words and n-grams have been computed using the
freely available Microsoft Web N-Gram Service
(Huang et al., 2010).

Now that we have the phrases and keywords in
each query, we assume that every phrase corre-
sponds to a semantic unit. Every semantic unit

has a head and a zero or more modifiers. Depen-
dency parsing could be used to identify the head
and modifiers from every phrase. However, because
queries are typical short and not always well-formed
sentences, this may pose a challenge to the depen-
dency parser. But as we are mainly interested in
short noun phrases, we can apply a simple set of
rules to identify the head keyword of each phrase
using the part of speech tags of the words in the
phrase. A part-of-speech (POS) tagger assigns parts
of speech to each word in an input text, such as noun,
verb, adjective, etc. We used the Stanford POS tag-
ger, using Stanford CoreNLP, to assign POS tags to
queries (Toutanova et al., 2003). To identify the head
and attributes of every noun phrase, we use the fol-
lowing rules:

• For phrases with of the form: “NNX+” (i.e. one
more nouns, where NNX could be NN: noun,
singular, NNS: noun, plural, NNP: proper
noun, singular or NNPS: proper noun, plural),
the head is the last noun keyword and all other
keywords are treated as attributes/modifiers.

• For the phrases of the form “NNX+ IN NNX+”,
where IN denotes a preposition or a subordinat-
ing conjunction (e.g. “in”, “of”, etc.), the head
is the last noun keyword before the preposition.

Table 1 shows different examples of queries,
the corresponding phrases, keywords, and con-
cepts. For example the query “kodak easyshare
recharger chord” consists of a single semantic
unit (phrase) and two keywords “Kodak easyshare”
and “recharger cord”. The head of this semantic
unit is the keyword “recharger cord” and “kodak
easyshare” is regarded as an attribute/modifier. An-
other example is the two queries “tommy bhama
rug” and “tommy bhama perfume”. The head of the
former is “rug”, while the head of the latter is “per-
fume”. Both share the attribute “tommy bhama”.
This shows that the user had two different intents
even though most of the words in the two queries
are shared.

4.3 Matching Concepts
Phrases in two concepts may have full term over-
lap, partial term overlap, or no direct overlap yet are
semantically similar. To capture concept similarity,
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we define four different ways of matching concepts
ranked from the most to the least strict:

• Exact Match: The head and the attributes of the
two concepts match exactly.

• Approximate Match: To capture spelling vari-
ants and misspelling, we allow two keywords to
match if the Levenshtein edit distance between
them is less than 2.

• Lemma Match: Lemmatization is the process
of reducing an inflected spelling to its lexical
root or lemma form. We match two concepts if
the lemmas of their keywords can be matched.

• Semantic Match: We compute the concept sim-
ilarity by measuring the semantic similarity be-
tween the two phrases from which the concepts
where extracted. Let Q = {q1, ..., qI} be one
phrase and S = {s1, ..., sJ} be another, the
semantic similarity between these two phrases
can be measured by estimating the probabil-
ity of one of them being a translation of an-
other. The translation probabilities can be es-
timated using the IBM Model 1 (Brown et al.,
1993; Berger and Lafferty, 1999). The model
was originally proposed to model the probabil-
ity of translating from one sequence of words
in one language to another. It has been also
used in different IR applications to estimate the
probability of translating from one sequence
of words to another sequence in the same lan-
guage (e.g. (Gao et al., 2012), (Gao et al.,
2010) and (White et al., 2013)). More for-
mally, the similarity between two sequences of
words, Q = {q1, ..., qI} and S = {s1, ..., sJ},
can be defined as:

P (S|Q) =
I∏
i=1

J∑
j=1

P (si|qj)P (qj |Q) (2)

where P (q|Q) is the unigram probability of
word q in query Q. The word translation prob-
abilities P (s|q) are estimated using the query-
title pairs derived from the clickthrough search
logs, assuming that the title terms are likely to
be the desired alternation of the paired query.

The word translation probabilities P (s|q) (i.e.
the model parameters θ) are optimized by max-
imizing the probability of generating document
titles from queries over the entire training cor-
pus:

θ∗ = argmaxθ

M∏
i=1

P (S|Q, θ) (3)

where P (S|Q, θ) is defined as:

P (S|Q, θ) =
ε

(J+!)I

I∏
i=1

J∑
j=1

P (si|qj) (4)

where ε is a constant, I is the token length of S,
and J is the token length of Q. The query-title pairs
used for model training are sampled from one year
worth of search logs from a commercial search en-
gine. The search logs do not intersect with the search
logs where the data described in Section5.1 has been
sampled from. S and Q are considered a match if
P (S|Q, θ) > 0.5.

4.4 Features
4.4.1 Textual Features

Jones and Klinkner (2008) showed that word and
character edit features are very useful for identifying
same task queries. The intuition behind this is that
consecutive queries which have many words and/or
characters in common tend to be related. The fea-
tures they used are:

• normalized Levenshtein edit distance

• 1 if lev > 2, 0 otherwise

• Number of characters in common starting from
the left

• Number of characters in common starting from
the right

• Number of words in common starting from the
left

• Number of words in common starting from the
right

• Number of words in common

• Jaccard distance between sets of words
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4.4.2 Concept Features
As we explained earlier the word and character

edit features capture similarity between many pairs
of queries. However, they also tend to mis-classify
many other pairs especially when the two queries
share many words yet have different intents. We
used the conceptual representation of queries de-
scribed in the previous subsection to compute the
following set of features, notice that every feature
has two variants one at the concept level and the
other at the keyword (head or attribute) level:

• Number of “exact match” concepts in common

• Number of “approximate match” concepts in
common

• Number of “lemma match” concepts in com-
mon

• Number of “semantic match” concepts in com-
mon

• Number of concepts in Q1

• Number of concepts in Q2

• Number of concepts in Q1 but not in Q2

• Number of concepts in Q1 but not in Q2

• 1 if Q1 contains all Q2s concepts

• 1 if Q2 contains all Q1s concepts

• all above features recomputed for keywords in-
stead of concepts

4.4.3 Other Features
Other features, that have been also used in (Jones

and Klinkner, 2008), include temporal features:

• time between queries in seconds

• time between queries as a binary feature (5
mins, 10 mins, 20 mins, 30 mins, 60 mins, 120
mins)

and search results feature:

• cosine distance between vectors derived from
the first 10 search results for the query terms.

4.5 Predicting Reformulation Type
There are different strategies users use to reformu-
late a query which results in different types of query
reformulations:

• Generalization: A generalization reformula-
tion occurs when the second query is intended
to seek more general information compared to
the first query

• Specification: A specification reformulation
occurs when the second query is intended to
seek more specific information compared to the
first query

• Spelling: A spelling reformulation occurs
when the second query is intended to correct
one or more misspelled words in the first query

• Same Intent: A same intent reformulation oc-
curs when the second query is intended to ex-
press the same intent as the first query. This
can be the result of word substitution or word
reorder.

We used the following features to predict the
query reformulation type:

• Length (num. characters and num. words) of
Q1, Q2 and difference between them

• Number of out-of-vocabulary words in Q1, Q2

and the difference between them

• num. of “exact match” concepts in common

• num. of “approximate match” concepts in com-
mon

• num. of “lemma match” concepts in common

• num. of “semantic match” concepts in common

• num. of concepts in Q1, Q2 and the difference
between them

• num. of concepts in Q1 but not in Q2

• num. of concepts in Q1 but not in Q2

• 1 if Q1 contains all Q2s concepts

• 1 if Q2 contains all Q1s concepts

• all concept features above recomputed for key-
words instead of concepts
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5 Experiments and Results

5.1 Data

Our data consists of query pairs randomly sampled
from the queries submitted to a commercial search
engine during a week in mid-2012. Every record
in our data consisted of a consecutive query pair
(Qi,Qi+1) submitted to the search engine by the
same user and in the same session (i.e. within less
than 30 minutes of idle time, the 30 minutes thresh-
old has been frequently used in previous work, e.g.
(White and Drucker, 2007)). Identical queries were
excluded from the data because they are always la-
beled as reformulation and their label is very easy to
predict. Hence, when included, they result in unre-
alistically high estimates of the performance of the
proposed methods. All data in the session to which
the sampled query pair belongs were recorded. In
addition to queries, the data contained a timestamp
for each page view, all elements shown in response
to that query (e.g. Web results, answers, etc.), and
visited Web page or clicked answers. Intranet and
secure URL visits were excluded. Any personally
identifiable information was removed from the data
prior to analysis.

Annotators were instructed to exhaustively exam-
ine each session and “re-enact” the user’s experi-
ence. The annotators inspected the entire search
results page for each of Qi and Qi+1, including
URLs, page titles, relevant snippets, and other fea-
tures. They were also shown clicks to aid them in
their judgments. Additionally, they were also shown
queries and clicks before and after the query pair of
interest. They were asked to then use their assess-
ment of the user’s objectives to determine whether
Qi+1 is a reformulation of Qi. Each query pair was
labeled by three judges and the majority vote among
judges was used. Because the number of positive
instances is much smaller than the number of neg-
ative instances, we used all positive instances and
an equal number of randomly selected negative in-
stances leaving us with approximately 6000 query
pairs.

Judges were also asked to classify reformulations
into one of four different categories: Generalization
(second query is intended to seek more general in-
formation), Specification (second query is intended
to seek more specific information), Spelling (second
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query is intended to correct spelling mistakes), and
Same Intent (second query is intended to express the
same intent in a different way).

5.2 Predicting Query Reformulation
In this section we describe the experiments we con-
ducted to evaluate the reformulation prediction clas-
sifier. We perform experiments using the data de-
scribed in the previous section. We compare the per-
formance of four different systems:

• The first one, Heuristic, simply computes the
similarity between two queries as the percent-
age of common words to the length of the
longer query in terms of the number of words.
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Table 2 : Heuristics vs. Textual vs. Concept Features for Reformulation Prediction

Accuracy Reform. F1 No-Reform. F1
Heuristics 77.10% 75.60% 69.07%
Textual 82.90% 71.75% 87.75%
Concepts 87.60% 81.20% 90.78%
All 89.02% 83.63% 91.75%
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Figure 3 Precision and Recall for Query Reformu-
lation Type Prediction

When finding common words, it allows two
words to be matched if their Levenshtein edit
distance is less than or equals 2. The second
query is predicted to be a reformulation of the
first if similarity≥ τsim and the time difference
≤ τtime minutes. The two thresholds were set
to 0.35 and 5 minutes respectively using grid
search to maximize accuracy over the training
data.

• The second system, Textual, uses the textual
features from previous work that have been de-
scribed in Section 4.4.1 and the temporal and
results features described in Section 4.4.3.

• The third system, Concepts, uses the concept
features that we presented in Section 4.4.2 and
the temporal and results features described in
Section 4.4.3.

• Finally, the last system, All, uses both the tex-
tual features, the conceptual features and the
temporal and results features.

For all methods, we used gradient boosted regres-
sion trees as a classifier with 10-fold cross valida-
tion. We also tried other classifiers like SVM and
logistic regression but we got the best performance
using the gradient boosted regression trees. All re-
ported differences are statistically significant at the
0.05 level according to a two-tailed student t-test.

The accuracy, positive (reformulation) F1, and
negative (non-reformulation) F1 for the four meth-
ods are shown in Table 2. The precision recall
curves for all methods are shown in Figure 1; the
heuristic method uses fixed thresholds resulting in
a single operating point. The results show that
the concept features outperform the textual features.
Combining them together results in a small gain
over using the concept features only. The concept
features were able to achieve higher precision rates
while not sacrificing recall because they were more
effective in eliminating false reformulation cases.

We examined the cases where the classifier failed
to predict the correct label to understand when the
classifier fails to work properly. We identified sev-
eral cases where this happens. For example, the
classifier failed to match some terms that have the
same semantic meaning. Many of these cases were
acronyms (e.g. “AR” and “Accelerated Reader”,
”GE” and ”General Electric”). These cases can
be handled by using a semantic matching method
that yields higher coverage especially in cases of
acronyms.

The classifier also failed in cases where the key-
word extractor and/or the POS tagger failed to cor-
rectly parse the queries (e.g. “last to know”was
not recognized as a song name). These cases can
be handled by identifying named entities as a pre-
processing step and treating them accordingly when
identifying keywords or assigning POS tags to key-
words.

1008



Another dominant class of cases where the classi-
fier failed were cases where the dependency rules
failed to correctly identify the head keyword in a
query. In many such cases, the query was a non well-
formed sequence of words (e.g. “dresses Christmas
toddler”). This is the hardest class to handle. Since
it is hard to correctly parse short text and it is even
harder when the text it is not well-formed.

5.3 Predicting Reformulation Type

We conducted another experiment to evaluate the
performance of the reformulation type classifier. We
performed experiments using the data described ear-
lier where judges were asked to select the type of
reformulation for every reformulation query. The
distribution of reformulations across types is shown
in Figure 2. The figure shows that most popular re-
formulations types are those where users move to
a more specific intent or express the same intent in
a different way. Reformulations with spelling sug-
gestions and query generalizations are less popular.
We conducted a one-vs-all experiment using gradi-
ent boosted regression trees with 10-fold cross val-
idation. The precision and recall of every type are
shown in Figure 3. The micro-averaged and macro-
averaged accuracy was 78.13% and 72.52% respec-
tively.

6 Conclusions

Identifying query reformulations is an interesting
and useful application in Information Retrieval. Re-
formulation identification is useful for automatic
query refinements, task boundary identification and
satisfaction prediction. Previous work on this prob-
lem has adopted a bag-of-words approach where
lexical similarity and word overlap are the key fea-
tures for identifying query reformulation. We pro-
posed a method for identifying concepts in search
queries and using them to identify query reformula-
tions. The proposed method outperforms previous
work because it can better represent the information
intent underlying the query and hence can better as-
sess query similarity. We showed that the proposed
method significantly outperforms the other methods.
We also showed that we can reliably predict the type
of the reformulation with high accuracy.
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Abstract

Passage retrieval is a crucial first step of au-
tomatic Question Answering (QA). While ex-
isting passage retrieval algorithms are effec-
tive at selecting document passages most sim-
ilar to the question, or those that contain
the expected answer types, they do not take
into account which parts of the document the
searchers actually found useful. We propose,
to the best of our knowledge, the first success-
ful attempt to incorporate searcher examina-
tion data into passage retrieval for question an-
swering. Specifically, we exploit detailed ex-
amination data, such as mouse cursor move-
ments and scrolling, to infer the parts of the
document the searcher found interesting, and
then incorporate this signal into passage re-
trieval for QA. Our extensive experiments and
analysis demonstrate that our method signif-
icantly improves passage retrieval, compared
to using textual features alone. As an addi-
tional contribution, we make available to the
research community the code and the search
behavior data used in this study, with the hope
of encouraging further research in this area.

1 Introduction
Automated Question Answering (QA), is an attrac-
tive variation of search where the QA system auto-
matically returns an answer to a user’s question, in-
stead of a list of document results. Passage retrieval
is a first critical step of QA system, where candi-
date passages are identified and scored as likely to
contain an answer. While significant progress has
been made recently on incorporating syntactic and
semantic analysis for improving the QA system per-
formance, this analysis is typically applied only on
the (limited) set of candidate passages retrieved. The
main reason is that it is generally not practical to
perform deep analysis on all documents in a large
collection, and not yet feasible for the Web at large.

∗Work done at Emory University.

In the web search setting, automated question
answering presents additional challenges and op-
portunities. On the downside, the questions and
queries from real users are often not grammatical
or well-formed, differing from the questions used
in the traditional TREC Question Answering evalua-
tions (Kelly and Lin, 2007; Sun et al., 2005). On the
upside, by interacting with a search engine, the mil-
lions of searchers implicitly provide additional clues
about usefulness of documents, result ranking, and
other aspects of the search process. In this paper,
we explore making use of the search behavior data
to improve passage retrieval for automated Question
Answering on the web.

Our basic observation is that when a user is at-
tempting to answer a question, he or she will more
carefully examine the parts of the document that
contain an answer. This observation is intuitive,
and is strongly supported by numerous eye track-
ing studies (e.g., Buscher et al. (2008) and Buscher
et al. (2009a)). Based on this, we hypothesize that
the passages containing the answers can be automat-
ically identified from the naturalistic searcher behav-
ior, and this prediction can be subsequently used to
improve passage ranking. To the best of our knowl-
edge, our work is the first to successfully incorporate
searcher examination into passage ranking for Ques-
tion Answering.

Our approach is primarily aimed at recurring (re-
peated) questions, which comprise a large fraction
of the search volume (while the exact statistics vary,
over 50% of search queries are submitted by multi-
ple users). For such questions, a system would track
the clicked result URLs, as well as the user interac-
tions on the landing pages. Then the system would
use this information to present the improved results
to new users who ask the same (or similar) ques-
tion. Intuitively, our method uses the same general
idea of result click data mining, used by the major
search engines to improve result ranking, but takes
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it a step further to exploit user interactions on the ac-
tual landing pages. A key point to emphasize is that
our approach exploits the natural browsing behavior
of the users, not requiring any additional effort from
the searchers.

Specifically, our contributions include:

• A novel approach to passage retrieval for ques-
tion answering, that naturally integrates textual
and behavioral evidence.

• A robust infrastructure for connecting fine-
grained searcher behavior to precise page con-
tents.

• Thorough experiments over hundreds of search
sessions and thousands of page views, demon-
strating significant improvements to passage
retrieval by harnessing the user’s page exami-
nation data.

Next we describe related work, to place our contri-
bution in context.

2 Related Work
Our work brings together two areas of research: pas-
sage retrieval for question answering, and mining
searcher behavior data.

Passage retrieval has long been recognized as
the first crucial step of automatic question answer-
ing. In some cases, passage retrieval can even serve
as the final product of a Question Answering sys-
tem (Clarke et al., 2000). As another example, re-
dundancy in the retrieved passages has been used by
the AskMSR system (Brill et al., 2002) to select an-
swers. Tellex et al. (2003) report a thorough com-
parison of passage retrieval methods for QA, up to
2003. Additional improvements have been achieved
by using deeper analysis of the text. For exam-
ple, Cui et al. (2005) exploited dependency relations
between the question terms, Aktolga et al. (2011)
incorporated syntactic structure and answer typing,
while Harabagiu et al. (2005) used semantic analy-
sis at all stages of the question answering process. In
this paper, we pursue a complementary direction, by
exploiting searcher examination behavior, with the
assumption that human searchers can easily zoom in
on relevant passages as part of normal searching.

It has been previously recognized that searcher in-
teractions could be valuable for question answering,

and a task on Complex Interactive QA has been ran
as part of TREC 2007 (Kelly and Lin, 2007). Our
work goes much further by considering not only ex-
plicit interactions, but also the searcher examination
behavior (i.e., detailed information on which text
passages were examined) – which, as we show, pro-
vides additional valuable information for passage re-
trieval. Furthermore, it has been recognized that the
questions used in traditional TREC QA evaluation
may not be reflective of the “real” questions, posed
by users (Bernardi and Kirschner, 2010). Our paper
uses a subset of the real questions posted by users on
Community Question Answering (CQA) sites, and
searches and interactions from real users – which
makes our task unique and more challenging than
the previous settings.

In particular, our work builds on the rich his-
tory of using eye tracking technology to identify
areas of interest and attention, and to study read-
ing behavior. In the context of web search docu-
ment examination, Buscher et al. (2008) extracted
sub-documents by tracking eye movements as im-
plicit feedback and expanded search queries to im-
prove the search result ranking. Buscher et al. also
studied the prediction of salient Web page regions
using eye-tracking (Buscher et al., 2009a). This
work, and others, have shown that user attention can
help identify regions of documents of particular rel-
evance or usefulness for the query. While eye track-
ing equipment limits the applicability of these find-
ings to lab studies, these studies served as inspira-
tion to our work to detect the inferred areas of in-
terest. Specifically, we use mouse cursor tracking
as a natural proxy for user’s attention, to replace the
requirement for eye tracking equipment. As origi-
nally reported by Rodden et al. (2008), the authors
discovered the coordination between a user’s eye
movements and mouse movements when scanning
a web search results page. This work was further
extended by Huang et al. (2012) to predict the gaze
position from mouse cursor movement, with mean
error of about 150 px. In summary, there is mount-
ing evidence that the user’s attention in web search
can be approximated using mouse cursor, scrolling,
and other interaction data. In particular, Hijikata
(2004) proposed a method to extract text passages
of Web pages based on the user’s mouse activity and
found that extracted passages based on mouse ac-

1012



tivity such as text tracing, link pointing, link clicking
and text selection enable more accurate extraction of
key words of interest than using the whole text of the
page. Recently, White and Buscher (2012) proposed
a method that uses text selections as implicit feed-
back for document ranking. Most closely related to
this work is a contemporaneous effort on improv-
ing web search result summaries, or snippets, by
exploiting searcher behavior on the examined doc-
uments, described by Ageev et al. (2013). How-
ever, to the best of our knowledge, there has been
no prior work on modeling searcher interaction on
result documents to improve Question Answering
performance, and in particular the passage retrieval
step.

3 Problem Statement and Approach
This section first states the problem we are address-
ing more precisely. Then, we describe the key parts
of our approach (Section 3.2), and the required in-
frastructure we had to develop to accomplish the re-
quired data collection (Section 3.4).

3.1 Problem Statement
Our goal is to incorporate the searcher behavior (in
particular, page examination) into passage retrieval.
That is, by analyzing the searcher behavior data, we
aim to identify the parts of the page that contain rel-
evant passages for answering a question. Specifi-
cally, given a question, a set of queries generated
by searchers attempting to answer this question, and
a set of documents retrieved by a search engine for
each of the queries, our goal to retrieve a set of pas-
sages that contain correct answers for the question.

That is, our goal is to identify, from searcher be-
havior, the passages in the documents most likely to
contain correct answers to a question, which could
then be incorporated into a fully automated question
answering system, or returned to the user directly,
for example, by incorporating these passages into
the result abstracts or “snippets”.

3.2 Approach
Our approach accomplishes the goal above by in-
corporating both textual and behavioral evidence.
Specifically, we combine together traditional text-
based passage retrieval features, and the inferred
user interest in specific parts of a document based
on searcher behavior.

First, a passage score is obtained from the QA-
SYS system (Ng and Kan, 2010), resulting in a
strong text-only baseline that generates candidate
passages. Separately, examination behavior data is
collected over the landing pages, using our logging
infrastructure described in the next section. Then, a
behavior model is trained to identify the passages
of interest to the user, based on user examination
data (Section 4.2). Finally, the behavior-based pre-
diction of interest in each candidate passage is com-
bined with the original (text-based) passage score,
in order to generate the final behavior-biased pas-
sage ranking (Section 4.3). Note that by decoupling
the behavior modeling from the candidate genera-
tion method, our approach can be used with any
other passage retrieval approach that provides scores
for the candidate passages (that could be combined
with the behavior scores for the final ranking step).

While general and flexible, our approach makes
two key assumptions, resulting in potential limi-
tations. First, our approach is primarily targeted
(and evaluated for) informational questions – that
is, questions for which the user expects to find an
answer in the text of the page. For other question
classes (e.g., opinion), passage retrieval might have
to be optimized differently. We also assume that
the user interactions on landing pages can be col-
lected by a search engine or a third party. This is
not far-fetched: already, browser plug-ins and tool-
bars collect some form of user interactions on web
pages, major organizations can (and sometimes do)
use proxies, and common page widgets like banner
ads and visit counters commonly inject JavaScript to
monitor basic user interactions – and can be easily
extended to collect the examination data described
in this paper. The privacy and security of these meth-
ods are beyond the scope of this paper, we merely
point out that these behavior gathering tools, as-
sumed by our approach, already exist and are al-
ready widely deployed. The interested reader can
obtain an overview of the relevant privacy issues
and proposed solutions in references (Mayer and
Mitchell, 2012; Krishnamurthy and Wills, 2009).

3.3 Acquiring Search Behavior Data
Our infrastructure for acquiring search behavior was
developed with two goals in mind: (1) to obtain be-
havior data similar to real-world search, with the
ability to track fine-grained search behavior such as
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a mouse cursor movement (as there are no publicly
available data of this kind); (2) to create a controlled
and clean ground truth set, to train our system and
evaluate the effectiveness of our approach.

To collect sufficient amount of search behavior
data, we adapted for our task the publicly available
UFindIt architecture, described in reference Ageev
et al. (2011). The participants played several search
contests, or “games”, each consisting of 12 search
tasks (questions) to solve. The stated goal of the
game was to submit the highest possible number of
correct answers within the allotted time. After the
searcher decided that they found the answer, they
were instructed to type the answer together with the
supporting URL into the corresponding fields in the
game interface. Each search session (for one ques-
tion) was completed by either submitting an answer
or clicking the “skip question” button to pass to the
next question.

Participants were recruited through the Amazon
Mechanical Turk (MTurk) service. As a first step,
the workers had to solve a ReCaptcha puzzle to
verify that they are human and not an automated
“bot”. A browser verification check was performed
to confirm that the browser was compatible with our
JavaScript tracking code. During the data postpro-
cessing stage, we filtered out the users who did not
answer even the easy, trivial questions, as it indi-
cated either poor understanding of the game rules,
or an attempt to make a quick buck without effort.

In order to capture all of the participants’ search
actions, they were instructed to use only our search
interface (and not a separate browser window). The
search interface performed the web searches using
the public API of a popular web search engine, and
showed result pages to the users using the original
page design, layout and stylesheets, so the user’s
search experience is not affected.

3.4 Page Examination Behavior Logging
A key part of our system is a mechanism for collect-
ing searcher interactions on web pages, and tying
them precisely to the page content at the word level.
As the HTML page passed through the proxy, a
JavaScript code is embedded to track the user’s inter-
actions, including mouse movements and scrolling,
as well as the properties of the visited page. The be-
havioral (interaction) events are logged by the search
interface proxy and written to the server log.

To connect the tracked mouse cursor positions
to exact text passages we employed the following
trick. After the HTML page is rendered in the
browser window, our JavaScript code modifies the
page DOM tree so that each word is wrapped by a
separate DOM Element. Then for each DOM El-
ement, the window coordinates of that element are
evaluated and saved in an Element’s attribute. The
processed HTML page is then saved to the server by
an asynchronous request. The saved coordinates are
updated if the page layout is changed due to resize
window event or AJAX action.

As a result of this instrumentation, for each page
visit we know the searcher’s intent (question), a
search engine query that the user issued, a URL
and HTML page, the bounding boxes of each word
in the HTML text, and all of the searcher actions,
e.g., mouse movement coordinates, mouse clicks,
and scrolling.

4 Behavior-Biased Passage Retrieval
We now present the details of our behavior-biased
passage retrieval algorithm (BePR). First, we de-
scribe the text-only retrieval system. Then, we in-
troduce our method for inferring the most interesting
or useful parts of the document from user behavior
(Section 4.2).

4.1 Text-Based Passage Retrieval
We adopt an open-source question answering frame-
work QANUS (Ng and Kan, 2010) (version
v29Nov2012). The QANUS distribution contains
the fully functional factoid QA system QA-SYS that
we use as a baseline for our experiments. QA-
SYS implements many of the state-of-the-art ques-
tion answering techniques, and is similar to a top-
performing QA system from TREC (Sun et al.,
2005). The QA-SYS distribution is configured for
processing documents and questions in TREC QA
format, and we adopted QA-SYS for answer extrac-
tion from web documents. QA-SYS takes a set of
documents and a question as an input, and processes
the input in three stages: (1) information source
preparation, (2) question processing, and (3) answer
retrieval.

In the first stage, the downloaded HTML pages
are pre-processed with Natural Language Tool Kit
(NLTK, Bird (2006)). Extracted text is divided into
sentences using Punkt unsupervised sentence split-
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ter (Kiss and Strunk, 2006). The QA-SYS performs
Part of Speech tagging using Stanford POS tagger
(Toutanova et al., 2003), and Named Entity Recog-
nition using Stanford NER (Finkel et al., 2005), and
then builds a Lucene index over the set of input
documents. In the second stage the QA-SYS per-
forms POS tagging, NE recognition, and question
type classification for an input question.

To answer a question, QA-SYS creates a query
from the question, performs the search over the in-
dexed text collection, and retrieves top 50 docu-
ments. Each document is split by sentences, and
for each sentence a QA-SYS Passage Retrieval Score
(TextScore) is computed as a linear combination
of term frequency score, proximity score, and term
coverage score. After that 40 passages with the high-
est TextScore are retrieved, for each passage QA-
SYS performs pattern based answer extraction based
on the identified expected answer type of the ques-
tion.

As the focus of this paper is to improve Passage
Retrieval performance, we use the TextScore sen-
tence ranking as a baseline, and improve on it by
adding the new search behavioral features indicating
the passage relevance, as described next.

4.2 Inferring Relevant Passages from Search
Behavior

To rank passages by their “interestingness” – that is,
to identify the passages that have been carefully ex-
amined by the searcher, we use a learning-to-rank
approach, and apply regression algorithms to predict
the probability that a specific passage is interesting
for a user. A passage is labeled as “interesting”, if
the user submitted an answer in the current session,
and both the passage and the answer have at least
one common word, after stemming and stop-word
removal.

For each passage, a set of behavior features that
could represent passage interestingness is created.
To associate behavioral features with a given doc-
ument passage, we match the sequence of behav-
ior events and the set of bounding boxes for each
word and DOM Element of a page. For efficiency,
we build a spatial R-Tree index of these bounding
boxes, which allows us to quickly find the matching
DOM Elements for each event.

One key feature is the duration of the time in-
terval when a mouse cursor was hovering over the

Feature Description
MouseOverTime Time duration when the mouse

cursor was over the text passage
MouseNearTime Time duration when the mouse

cursor was close to the text
passage in the window
(x± 100px, y ± 70px)

MouseOverEvents The number of mouse events
during MouseOverTime

MouseNearEvents The number of mouse events
during MouseNearTime

DispTime Time duration when the text
passage has been visible in
the browser window
(depends on scrollbar position)

DispMiddleTime Time duration when the text
passage was visible in the middle
part of the browser window

Table 1: Behavior features for text passages

specific text passage, or very close to the passage.
We also take a scrollbar and event count features
from papers (Buscher et al., 2009b), and (Guo and
Agichtein, 2012) to detect evidence of “reading” vs.
“skimming” behavior, and adopt those features to
represent the behavior near the specific location of
a page. The full set of our passage behavior features
are reported in Table 1.

To implement the passage ranker, we experi-
mented with a variety of learning-to-rank (LTR) al-
gorithms, and chose two implementations of Regres-
sion Trees, due to their strong performance for gen-
eral web search ranking tasks. The first algorithm
is Regression Tree (Friedman et al., 2001), and the
second is Gradient Boosting Regression Tree algo-
rithm (Friedman, 2001). They are named BePR-
BTree, and BePR-GBM respectively.

The dataset consists of a set of questions, with as-
sociated search behavior data collected from all the
users who tried to find an answer to this question,
the answers submitted by the users, and a set of val-
idated answers. These sets are divided into train-
ing, validation, and test, so that the training and val-
idation set URLs are disjoint, and the test set have
no intersection with training and validation set by
URLs, questions, and users. The training set is cre-
ated from only those page visits where the document
text has non-empty intersection with the user’s an-
swer, and the answer is correct. The trained regres-
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sion algorithm is applied to all page visits in the test
set. When the trained model is applied at test time,
it has no information about the user’s intent, the cor-
rect answer, or the current query, but rather uses only
the behavioral features of the current page visit to
identify the “interesting” passages.

The predicted probability of passage interesting-
ness is averaged over all the users and page visits,
and the resulting passage interestingness is then used
as the BScore of the passage. Note that BScore
is defined for only visited pages; to incorporate the
overall clickthrough information (i.e., the fraction of
the time a page was visited, indicating relevance),
we introduce a generalized version, designated as
BSscoreAll, defined as: γ ·CTR+(1−γ)·BScore,
where CTR is the clickthrough rate for the page,
defined as the fraction of time the result was clicked
for all searches. Intuitively, this version reduces the
weight of the behavior score for the pages with in-
sufficient behavior data by “backing off” to the doc-
ument clickthrough rate, according to the parame-
ter γ. For the cases where only the visited pages
are considered (ignoring the searches when the page
was not visited), γ is set to 0, reverting the score
to the original BScore definition. The resulting
behavior-based passage score is then used as the ag-
gregate value of searcher interest in the passage for
the combined passage retrieval step, described next.

4.3 Combining Textual and Behavioral
Evidence

The final step in our approach is to combine the
text-based score TextScore(f) for a sentence (Sec-
tion 4.1) with the interestingness score BScore(f)
(Section 4.2), inferred from the examination data. In
our current implementation we combine these scores
by linear combination:

FScore(f) =λ ·BScore(f)

+ (1− λ) · TextScore(f)

Other more sophisticated ways to combine text
and behavior evidence are possible, such as jointly
learning over both text and behavior features. How-
ever, we chose to follow the simpler linear approach
for interpretability of the results (e.g., by varying the
λ parameter).

5 Data Collection and Experimental Setup
This section presents the methodology used for se-
lecting the questions (Section 5.1), the correspond-
ing search behavior data (Section 5.2), and the ex-
perimental collections and metrics (Section 5.3).

5.1 Questions
The search tasks were selected from community
question answering sites such as wiki.answers.com
and Yahoo! Answers by the researchers. The cri-
teria used were that the question should be clearly
stated, had a clear answer, and that finding this an-
swer was not a trivial task, that is, the answer was
not retrieved simply by submitting the question ver-
batim to Google, Bing, or Yahoo! Search engines.
Overall, 36 such questions were selected, posing (as
it turned out) greatly varying levels of difficulty for
participants. These questions were randomly split
into three game rounds of 12 questions each.

5.2 Browsing Behavior Dataset
The search behavior data for each of the questions
above was acquired as described in Section 3.3. A
total of 270 participants finished the game. Af-
ter filtering out users who did not follow the game
rules, we have 3047 search sessions performed by
265 users. Our data for these users consists of 7800
queries, 3910 unique queries, 8574 SERP clicks on
1544 distinct URLs. For 5683 page visits (66%)
and 883 distinct URLs the on-page behavioral data
is collected. For the rest 34% of page visits the be-
havioral data were not collected due to conflicts be-
tween our JavaScript tracking code and other code
presented on the page. For each page view there
are about 400 atomic browsing events (mouse move-
ments, scrolling, key pressing) on average. All the
source and derived data are available at http://
ir.mathcs.emory.edu/intent.

The dataset is divided into training, validation,
and test set in the following way. The behavior
dataset for the first game is divided randomly into
equal-sized training and validation sets that are dis-
joint by URLs. The training set was used to train
the regression algorithm for predicting passage at-
tractiveness, and the validation set was used to ex-
plore the influence of behavior weight λ on passage
retrieval performance, and to select the parameter λ
for using on a test set. The validation set consists
of 254 different URLs spread over 11 questions, and
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for each of them there is a collected browsing be-
havior.

The test set consists of 441 URLs spread over 24
questions, and the test set has no intersection with
training and validation set by URLs, questions, and
users.

5.3 Candidate Document Selection Strategies
The first step for question answering is a selection
of a candidate document set. In our settings, we
may select a subset of web documents in a differ-
ent way. We explore passage retrieval effectiveness
using three different strategies of document set se-
lection.

• For each question select All documents that
are in top 10 documents returned by a search
engine for any query that was issued during
search for the specific question. For our dataset
this gives around 500 candidate documents per
question on average.

• For each question select only documents that
were Clicked by a user. This restricts a can-
didate document set to set of most promising
documents. For our dataset this gives around
25 candidate documents per question on aver-
age.

• For each pair of question and Relevant docu-
ment apply passage retrieval to the specific doc-
ument. In this experiment we label a document
“Relevant” if a correct answer was extracted
from it. In a real-world scenario, while doc-
ument relevance could be estimated by a va-
riety of click-based methods, we address the
challenge of how to actually extract the cor-
rect answer from the document, automatically,
with the help of the natural behavior data. We
perform this experiment to estimate the perfor-
mance of passage retrieval for the case when
relevant documents are known with high confi-
dence.

Evaluation Metrics: We evaluate passage retrieval
performance by standard Mean Reciprocal Rank
(MRR), and Mean Average Precision (MAP) met-
rics for top 20 retrieved sentences (Voorhees and
Tice, 1999). We also evaluate ROUGE-1 met-
ric (Lin, 2004) for the first retrieved passage.
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Figure 1: The actual passage interestingness, measured
by intersection with user’s answer, vs. the passage rele-
vance score BScore predicted from behavior data

6 Results
We now present the empirical results. First, we re-
port the intermediate result of using behavior data to
infer the interesting (useful) passages in the docu-
ment. Then, we report the main results of the paper
where the quality of the generated snippets with and
without using behavior data is compared using hu-
man judgments.

6.1 Prediction of Passage Interestingness
This experiment evaluates how well we can predict
interesting passages by observing a user’s on-page
behavior. We suppose that the passage is interesting
if it is related to the answer for the question. For
each visited page, we collect the user’s answer (if
submitted), and all correct answers from all users
who answered this question. Then, we compare
those answers to each text passage in the document
using ROUGE metrics (Lin, 2004).

Figure 1 shows the relationship between the in-
terestingness of a passage and behavior score. The
graph shows that when the score is high (≥ 0.5),
then average intersection between the passage and
user’s answer is much higher than those when the
passage score is low. All ROUGE-N metrics sig-
nificantly grow when the behavior score grows, al-
though ROUGE-2 over all correct answers are al-
ways very small (it grows from 0.003 to 0.007).
ROUGE-1 is much greater than ROUGE-2 for high
scores, as the interesting passage might contain use-
ful information for the answer, but the user reformu-
lates the obtained information and submits reformu-
lated answer. The ROUGE-N metrics for a user’s
answer are much greater than those for all correct
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Feature Feature Importance
DispMiddleTime 0.51
MouseOverTime 0.34
DispTime 0.12
MouseNearTime 0.02
MouseOverEvents 0.01
MouseNearEvents 0.01

Table 2: Feature importance for behavioral features, as
measured by Gini coefficient

answers, as other users might obtain valuable infor-
mation from other documents, and some questions
have distinct correct answers.

Behavior Feature Importance Analysis: To esti-
mate relative importance of behavior features we
evaluated the Gini importance index (Breiman,
1996) for each behavior feature from the Table 1.
The Table 2 shows that the most important features
are the time duration when the text passage was vis-
ible in the middle part of the scrolling window, and
the time duration when the mouse cursor was over
the text passage. The first feature has been shown
to be a good feature for re-ranking search results
in reference (Buscher et al., 2009b), and we have
shown that it is also useful for passage retrieval. The
MouseOverTime feature has been previously shown
to be correlated with examination time, measured
by eye-tracking experiments (Guo and Agichtein,
2010), and it helps us detect local behavior in the
neighborhood of a specific text passage.

Analysis of Searcher Attention: In order to better
understand what characteristics of the textual pas-
sages attract the searcher’s attention, we explored
21 linguistic features for each sentence. Our fea-
tures were designed to estimate text readability, and
the overlap of a passage with the query that was
used to find the document. We implemented the
readability features from (Kanungo and Orr, 2009),
and query matching features from (Metzler and Ka-
nungo, 2008). Table 3 reports the top 10 features
with the highest absolute value of the correlation co-
efficient with passage interestingness scoreBScore.
Interestingly, the most highly correlated features are
related to readability, while query matching features
are less important.

Feature description corr
Number of distinct words in the passage 0.31
Total number of words in the passage 0.28
Number of letter ([a-zA-z]) characters 0.27
Relative location of the passage in the document -0.25
Number of unique words in the passage -0.24
divided by total number of words
Number of punctuation characters -0.20
Number of words with first letter capitalized -0.17
Overlap of query terms expanded 0.15
with synonyms and the passage
Absolute count of query terms 0.15
matched in the passage
Average position of query term within the passage -0.14

Table 3: Correlation of passage interestingness BScore
with linguistic properties of a sentence

Figure 2: MRR for passage retrieval for varying behav-
ior weight λ and interestingness prediction algorithms
BePR-DTree, and BePR-GBM

6.2 Passage Retrieval with Behavior Data
This section reports the main results of the paper.
First, we describe the parameter tuning, followed by
the main performance results.
Parameter Tuning: To tune the passage retrieval
performance, we use the validation set to find the
optimal value for λ. Figure 2 reports the passage
retrieval MRR for varying λ, for two learning al-
gorithms BePR-GBM and BePR-DTree. The figure
shows that both BePR-GBM and BePR-BTree im-
prove over the QA-SYS baseline. BePR-GBM algo-
rithm achieves the best performance with λ = 0.8,
and also exhibits more robust behavior compared to
BePR-BTree, so we use BePR-GBM with λ = 0.8
for the main experiments described next. Similarly,
using the training and validation sets, we optimized
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Figure 3: Passage retrieval MRR (a), ROUGE1 (b), and MAP (c) for the BePR and QA-SYS systems, on the test set.

the value of the clickthrough rate weight γ = 0.05
(used for the BScoreAll score) for the All document
set only (as for the Clicked and Relevant document
sets, γ is always set to 0 by construction).
Main retrieval results: We now compare the base-
line algorithm for passage retrieval implemented in
QA-SYS system and described in section 4.1 with
the BePR algorithm (section 4.2-4.3) that combines
the textual passage score and the behavior score us-
ing the λ parameter for the relative weight of the
behavior evidence.

Figure 3 reports the main results of the paper,
namely the MRR, ROUGE-1@1 and MAP pas-
sage retrieval metrics for the baseline QA-SYS al-
gorithm, and BePR-GBM, on the test set. As the
figure shows, BePR achieves higher performance
on all metrics, and for all document sets. The im-
provements are statistically significant (p < 0.01)
for experiments with Clicked and Relevant docu-
ment sets. Not surprisingly, the improvements are
smallest when All documents are considered, as un-
clicked documents do not provide any associated be-
havior data. As the results show, our simple back-off
strategy (using the document clickthrough rate with
the γ parameter) is moderately successful, but could
be further refined in the future.

Finally, we illustrate how behavior features affect
passage ranking. Let’s consider a question “How
many Swedes speak English as a percentage?”. The
perfect relevant page for this question is a Wikipedia
page “Languages of Sweden”. A sentence ”Main
foreign language(s): English 89%, German 30%,
French 11%.” contains an answer to the question, but
it has only a small intersection with question terms,
and QA-SYS ranks this question in the 13th place.
Other sentences that contain a country name, a num-

ber, or have more terms that match the question are
ranked higher. In contrast, as searchers examined
this sentence carefully to find the answer, BePR is
able to promote this sentence to the second place in
the ranking.

7 Resources and Data
All the code and the collected data used in this
research are available at http://ir.mathcs.
emory.edu/intent/. The dataset contains the
set of questions used for the experiments, and user’s
behavior: queries submitted by users to search
engine, result pages, visited URLs, downloaded
landing pages, on-page browsing behavior (mouse
movements, scrollbar events, resize actions, clicks).
By sharing our code and data, we hope to encourage
further research in this area.

8 Conclusions and Future Work
We presented the first successful approach to incor-
porating naturalistic searcher behavior data into pas-
sage retrieval for question answering. Specifically,
we developed a robust method to infer searcher in-
terest in specific parts of the document, which could
then be combined with more traditional textual fea-
tures used for passage retrieval. Our results show
significant improvements over a strong baseline, de-
rived from a competitive Question Answering sys-
tem.

To implement the proposed method in a real-
world search engine for Web QA, the proposed in-
frastructure and/or the released data could be used
as a training set for the algorithm that predicts frag-
ment interestingness from user behavior. Such a
system would need to track document examination
data. This can already be done by incorporating our
released tracking code or a similar method into a

1019



browser toolbar, banner ad system, visit counters or
other JavaScript widgets that already track user vis-
its. While we acknowledge user privacy as an im-
portant concern, it is beyond the scope of this work.

In the future, we plan to extend this work to more
precisely pinpoint the answer location on a page,
and consequently incorporate searcher behavior into
subsequent answer extraction and ranking stages of
question answering. We also plan to further investi-
gate the examination data to better understand how
searchers find correct (and incorrect) answers using
both general web search engines and QA systems –
in order to inform and further improve query sug-
gestion, result snippet generation, and result ranking
algorithms.
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Abstract

This paper presents the Kazakh Language Corpus
(KLC), which is one of the first attempts made
within a local research community to assemble a
Kazakh corpus. KLC is designed to be a large scale
corpus containing over 135 million words and con-
veying five stylistic genres: literary, publicistic, of-
ficial, scientific and informal. Along with its pri-
mary part KLC comprises such parts as: (i) anno-
tated sub-corpus, containing segmented documents
encoded in the eXtensible Markup Language (XML)
that marks complete morphological, syntactic, and
structural characteristics of texts; (ii) as well as a
sub-corpus with the annotated speech data. KLC has
a web-based corpus management system that helps
to navigate the data and retrieve necessary informa-
tion. KLC is also open for contributors, who are
willing to make suggestions, donate texts and help
with annotation of existing materials.

1 Introduction

This article describes theoretical and practical issues ex-
perienced during the construction of the Kazakh Lan-
guage Corpus. Kazakh is an agglutinative and highly in-
flected language which belongs to the Turkic group. It is
official state language of Kazakhstan and a mother tongue
for more than 10 million people all around the world.
However, up until the early 90’s of 20th century, due to
historical reasons of the Soviet era, Russian language was
the predominant language in spoken and written commu-
nication in Kazakhstan. This fact in turn caused the prob-
lem of underrepresentation of Kazakh language in var-
ious fields such as science, entertainment, official doc-
umentation, etc. For this reason, while assembling the
corpus, we had to group categories that are generally pre-
sented as separate in other corpora into five stylistic gen-
res. Also, in contrast to other corpora (Aksan et al., 2012;
Chen, 1996), we included texts as they were available,
i.e we did not try to fill a predefined set of categories.

Substantial part of materials was collected using source-
customized web crawlers and donated texts.

KLC also contains a manually annotated sub-corpus
with morpho-syntactic and structural markups encoded
in XML following general notions outlined in CES (Ide,
1998). Our syntactic tagset comprises a set of syntactic
categories well-defined in a classical Kazakh grammar,
and the part of speech (POS) tagset is based on a posi-
tional system in which the tags are formed by concatena-
tion of POS of a word form and a chain of encoded lin-
guistic properties, such as number, case, voice etc. The
annotations have been carried out manually by philology
students specializing in morphology and syntax. Trying
to make the annotation process as comfortable as possi-
ble, we have designed a web-based annotation tool with
a user-friendly interface. We took a great care for the an-
notation quality, and to do that we (i) arranged the valida-
tion process, and (ii) equipped the tool with a recommen-
dation system that, as we will show, improves the inter-
annotator agreement.

As a part of KLC we have also compiled the annotated
read-speech corpus (RSC), which includes audio record-
ings of words, phrases, sentences (from all genres), news
articles and excerpts from books, that were carefully cho-
sen from the primary part of the corpus. All text materials
were read by volunteers who represented different age,
gender, region and education backgrounds in a balanced
way. Each audio file is accompanied with a label file and
a corresponding text transcript. Moreover, some of the
transcripts have been grammatically annotated, i.e. in ad-
dition to a word-level segmentation of audio information
a portion of our data has lexical, and morpho-syntactic
annotations. In total RSC contains 10GB or more than 40
hours of speech.

This paper is organized as follows. Section 2 reviews
the existing work. Section 3 provides detailed informa-
tion about the primary corpus. Sections 4 and 5 thor-
oughly describe annotated text and speech sub-corpora
respectively. Finally, we draw conclusions and discuss
future work in Section 6.
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2 Related Work

Since the pioneering corpus of Brown University was
completed in 1964 by Francis and Kučera (1979), cor-
pus linguistics has become a thriving research field. Over
the past two decades researchers all around the world
released many corpora, including well known British
National Corpus (BNC) (Burnard, 2007) developed be-
tween 1991 and 1994, and containing more than 100
million words of written and spoken language from a
wide range of sources (Ide and Macleod, 2001; Al-Sulaiti
and Atwell, 2006). All materials were selected on a ba-
sis of three independent criteria (medium, domain and
time), where each criterion had predefined target propor-
tions. The spoken part (remaining 10%) consists of or-
thographic transcriptions of unscripted informal conver-
sations and spoken language collected in different con-
texts. BNC is tagged for part of speech (POS) using
the CLAWS4 (Constituent Likelihood Automatic Word-
tagging System) (Leech et al., 1994) tagging system de-
veloped at Lancaster University. BNC is generally ac-
cepted as a balanced corpus, and many researchers, such
as the creators of Turkish National Corpus (Aksan et al.,
2012), Korean National Corpus (Kim, 2006) etc., adopted
it as a model for compiling their own corpora.

The Russian National Corpus (RNC) has been re-
leased by the group of specialists from different organi-
zations led by the Institute of Russian language, Russian
Academy of Sciences (Ruscorpora, 2003). The corpus
covers primarily a period from the middle of the XVIII
to the early XXI centuries. It includes both written texts
(fiction, memoirs, science, religious literature and others)
and recorded spoken data (public speeches and private
conversations). Currently RNC contains over 350 mil-
lion word forms that are automatically POS-tagged and
lemmatized. The corpus also includes semantic tags for
words and texts (Apresjan et al., 2006). Along with its
main part, RNC contains such subcorpora as: Deeply
Annotated Corpus, that contains sentences with a com-
plete morphological and syntax structure markup, where
the syntax structure is largely based on the Meaning-
Text Theory introduced by Aleksandr Žolkovskij and
Igor Mel’čuk; English – Russian, German – Russian,
Ukrainian – Russian, Belorussian – Russian parallel cor-
pora; Dialect corpus; Poetry corpus and others.

Unfortunately, up until now, not too much work has
been accomplished in developing a corpus that will rep-
resent Kazakh language. To the best of our knowledge
there has been a limited number of attempts to compile
one, but resulting corpora are too small in size and scope,
or not available to the public. A Kazakh corpus has been
initiated by the Committee on Languages of the Ministry
of Culture of the Republic of Kazakhstan (CLMCRK,
2009). This corpus is small in size and not annotated, as it

remains in its very early stage of development. The new
sub-corpus for Kazakh has been recently built by Baisa et
al. as a part of larger corpus of Turkic languages (Baisa
and Suchomel, 2012). This corpus was compiled using
a web crawler that selected texts based on a language
model trained on Wikipedia texts. Although the obtained
corpus is relatively large in size, the data was not cate-
gorized by genres. Also, since a crawler was not source-
customized, the corpus may contain some noise coming
in the form of text in Russian or other languages. We also
could not find enough information about a Kazakh corpus
that has been developed at Xinjiang University and used
in their research (Altenbek and Xiao-long, 2010). The ab-
sence of an available corpus that will be large enough to
represent Kazakh language decelerates many research ac-
tivities (Mukan, 2012). We believe that building an open
Kazakh corpus will have a significant impact and it will
be very useful tool in the analysis of Kazakh.

3 KLC Primary Corpus
KLC is one of the first attempts to build a large scale,
general purpose corpus that represents the present state
of Kazakh language. Currently, the size of the primary
corpus is more than 135 million words and it contains
approximately more than 400 000 documents classified
by genres into the following five sections: (1) literary
section contains Kazakh literary texts that were pub-
lished in the range from the beginning of the XX cen-
tury till present; (2) official section includes mainly of-
ficial statutes, orders, acts and other materials produced
by the governmental organizations within the period of
2009-2012; (3) scientific section includes books, research
monographs, dissertations, articles and essays from vari-
ous fields (informatics, biology, chemistry, etc.); (4) pub-
licistic section contains periodicals and articles from on-
line sources, i.e. newspapers and magazines published
over the last ten years; (5) informal language section in-
cludes documents with colloquial Kazakh texts extracted
from the popular blog platforms starting from 2009. We
have to note that while compiling this corpus we inten-
tionally relaxed the document selection criteria by not re-
stricting the collected data to particular domains, media,
and time. This was mainly dictated by the lack of ma-
terials, and partially due to the reasons mentioned in the
introduction.

Our main sources of data were Internet websites as
well as digitized forms of books, dissertations and arti-
cles from public and personal libraries. For each website
we designed a source-specific crawler, thereby increas-
ing the precision of the meta data (e.g. authors, news
categories, etc.) extraction. Additionally, we filtered out
documents with a high consistency of Russian texts by
aligning them to a language model trained on pure Rus-
sian texts. We also filtered out all documents with the size
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Genre # docs # all words # unique words
Literary 8 255 7 733 456 423 445
Publicistic 404 884 79 302 154 951 659
Official 25 302 44 670 856 335 264
Scientific 527 2 227 878 153 877
Informal 6 110 1 337 953 162 074
TOTAL 445 078 135 272 297 1 365 202

Table 1: A quantitative description of the corpus.

less than 1kB. It took about 7 months to grow the corpus
to its current size. Table 1 provides a general quantitative
description of the corpus.

We release the data under a license that in accordance
with Kazakhstan‘s law allows distribution of some ma-
terials in whole (official documents, news articles) and
some only in part (literature, scientific texts, analytics)
provided that sources are properly cited. This license
does not allow printed or electronic publications or simi-
lar use of substantial portions of text drawn from the cor-
pus without the permission of its original publisher(s) or
copyright holder(s).

3.1 Text Documents Description

Each document is stored in a plain text format in the UTF-
8 encoding. Documents contain both the content and the
meta-data in a single file, and have the following simple
structure:

• TITLE – the title of a document;
• SOURCE – the source of a document
• AUTHOR – the author(s) of a document;
• DATE – the date when a document was published;
• META – additional information;
• TEXT – the content of a document.

Provided that the corresponding information is present
in a source, the <META> tag contains both the name of
the section of the corpus to which a document belongs
and a further categorical sub-division, such as the type of
a literary work, e.g. a poem. That is, whenever possi-
ble such categories are assigned automatically, e.g. some
websites provide this information. For sources that lack
meta data, such as the digitized books, dissertations and
scientific papers, the corresponding categories (informat-
ics, biology, chemistry, etc.) are assigned manually.

3.2 Writing System of Kazakh language

Kazakh adopts different writing systems depending on
the regions where it is spoken (Cyrillic alphabet in Kaza-
khstan, Arabic and Latin graphics in other countries).
Recently the government of Kazakhstan has decided to
adopt Kazakh alphabet to a Latin graphic. In this regard
we believe that KLC could become a valuable tool. In-

documents, total 1213
documents, % 0.3
all words, total 613 511
all words, % 0.4
unique words, total 80 368
unique words, % 5.9
lemmata, total 42 901

Table 2: A quantitative description of the annotated data

deed, we have already provided a group working on this
problem with statistical information about letter distribu-
tions in Kazakh texts. This information could also aid
in designing various speech corpora as well as a proper
Kazakh keyboard layout. It can be stated that the latter
was done rather carelessly just as a simple adjustment to
a Russian keyboard (Wikipedia, 2012). Current Kazakh
Cyrillic alphabet consists of 42 letters, whereas 9 of them
are pure Kazakh letters and the others adopt the Russian
symbolic. Figure 1 shows the distribution of Kazakh let-
ters in the corpus. It can be seen that there is a small
non-zero distribution of pure Russian letters (underlined).
This can be explained by the ineluctable use of Russian
words due to the lack of a proper translation or inheri-
tance of Russian vocabulary.

4 The Annotated Sub-corpus

In order to enhance the effectiveness of the corpus as a
research tool, we have annotated a portion of the data
for syntactic and POS tags, lemmata, and for morpheme
types and boundaries. Table 2 provides net amount and
the percentages (with respect to the current size of the
corpus) of the annotated data in terms of documents,
words, unique words, and lemmata.

The annotation process has been carried out com-
pletely manually. We favored a manual annotation over
a semi-automatic one, for the following two reasons:
(i) finding language independent tools (not to mention
Kazakh-specific) which support a fine grained level of
annotation that we employ turned out to be rather chal-
lenging; (ii) though we refused and partially could not af-
ford a semi-automatic annotation we provided the anno-
tators with a semi-automatic-like annotation experience
by equipping our annotation tool with a fairly advanced
recommendation system. The annotation was performed
mainly by the undergraduate students majoring in Kazakh
philology. As a quality control measure, two validators (a
graduate student majoring in Kazakh philology and one
of the authors) were assigned to check a random sam-
ple of about 10% of the annotated data. Validators did
not just fix errors, we also held regular “work-through-
errors” sessions in an attempt to synchronize annotations.
Our analysis of validated data suggest that the annotation
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Figure 1: The distribution of letters across the corpus, in %.

Tag Description PTB
equivalents

S Simple declarative clause S
BSS Independent clause S
BGS Dependent clause SBAR(Q)
BAS Subject NP
BND Predicate VP
TOL Object (WH)NP
ANT Modifier ADJP
PYS Adverbial (WH)ADVP

(WH)PP
X Void, unknown, uncertain X

Table 3: The syntactic tagset description

quality was fairly high, as roughly only 6% of annotated
tokens were fixed.

To the best of our knowledge this is the first attempt
to annotate Kazakh texts with various linguistic markups.
Given this, in the following subsections we would like to
describe the tagsets (syntactic and POS), the annotation
scheme (the format in which the annotated data is stored
and distributed), and the annotation tool itself.

4.1 Designing the Tagsets
The syntactic tagset. At the initial stage of the corpus
development we did not plan to build a detailed treebank,
leaving this task for the future work. Therefore, our syn-
tactic tagset comprises a compact set of syntactic cate-
gories well-defined in a classical grammar. Table 3 con-
tains the tagset description along with the equivalent tags
defined in a widely used Penn Treebank (Marcus et al.,
1993) tagset1. In addition to that, we also label prover-
bials which are rather common elements of Kazakh lan-
guage. We do not treat them as a separate syntactic cat-

1For ease of presentation we used bracketing instead of listing, i.e.
SBAR(Q) should be read as SBARQ, SBAR; (WH)NP as WHNP, NP;
etc.

# Linguistic property Code Cardinality
1 Animacy A 2
2 Number N 2
3 Possessiveness S 10
4 Person P 8
5 Case C 7
6 Negation G 2
7 Tense T 3
8 Mood M 4
9 Voice V 5

Table 4: Linguistic properties considered in the POS tagset de-
sign

egory, for they typically serve as a single syntactic unit
(e.g. predicate, adverbial, clause, etc.) Instead each syn-
tactic tag has a corresponding binary property that marks
the proverbial case.

The POS tagset. Kazakh is an agglutinative Turkic
language, in which word forms are generated by means
of the affix inflection. Different affix types mark different
linguistic properties. For instance, consider a translation
of a simple Kazakh sentence:

Mektepke bardym. - school.Dat go.Past.1sg - I went to
school.

In this example pronoun “I” and preposition “to” are
“hidden” in the affixes of case and person, i.e.:

Mektep(NN = a school) + ke (dative case = to school)
bar(VB, imperative = go) + dy (past tense = he/she

went) + m (1st person = I went)
As the example shows, inflected affix chains contain

important information that is not always present in the
context, hence a tagset should be designed in a way to
capture this information to the extent possible. For this
reason, we design a positional tagset (Oflazer et al., 2003;
Hajič and Hladká, 1998; Hana and Feldman, 2010), in
which the final tags are constructed by the concatenation
of the basic tag (often POS of a word form) and the en-
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# Tag Description LPs Cap. # Tag Description LPs Cap.
Noun: Pronoun:

1 ZEP non-personal ANSPC 314 20 SIMZ personal3 NSPC 229
2 ZEQ personal ANSPC 314 21 SIMU demonstrative NSPC 157

Verb: 22 SIMS interrogative NSPC 157
3 ET regular GTMVP 840 23 SIMD reflexive NSPC 157
4 ETU infinitive GSC 196 24 SIMB indefinite NSPC 157
5 ETK auxiliary P 8 25 SIMY indefinite, negative NSPC 157
6 ETB auxiliary, negative P 8 26 SIMP indefinite, universal NSPC 157
7 KEL auxiliary, desiderative GT 6 Adposition:
8 ESM present participle GNSPC 314 27 KOM auxiliary nominal C 7
9 KSE past participle G 2 28 SHS preposition - 1

Adjective: 29 SHZ conjunction - 1
10 SE regular P 8 30 SHD particle - 1
11 SES comparative P 8 Interjection:
12 SEA superlative P 8 31 OSP vocative - 1

Numeral: 32 OSQ thought - 1
13 SN cardinal NSPC 157 33 OSO emotion - 1
14 SNR ordinal NSPC 157
15 SNZ collective NSPC 157 34 ELK Onomatopoeia - 1
16 SNB fraction NSPC 157 35 MOD Modal word - 1

Adverb:
17 US regular - 1 36 BOS foreign word - 1
18 USS comparative - 1
19 USA superlative - 1 Total capacity: - 3844

Table 5: The POS tagset description

coded chains of linguistic properties (LPs). Table 4 con-
tains main LPs defined in Kazakh grammar along with
their codes and cardinalities, i.e. a number of values they
accept. Although integrating a rich set of LPs may con-
siderably enlarge the size of a tagset, we tried to con-
sider as many LPs as possible for the following two rea-
sons: (i) previous research shows that increasing the size
of a tagset does not necessarily decrease the tagging ac-
curacy (Elworthy, 1995) and that for agglutinative lan-
guages omitting grammatical aspects may hurt the accu-
racy of n-gram tagging (Feldman, 2008); (ii) it is easier
to reduce a detailed tagset than to re-annotate data for the
missed information. Table 5 provides a detailed descrip-
tion of the designed tagset (not including punctuation)
both qualitatively and quantitatively. The table contains a
list of tags grouped by the ten major POS (in bold). For
each tag we provide a set of LPs it accepts and generative
capacities, i.e. the upper bound on a number of possible
tags that can be generated from a given basic tag and the
different combinations of the corresponding LPs2. The

2The multiplication of cardinalities of LPs does not always give the
exact number of possible tags, for there are rules that restrict certain
combinations of LPs. Moreover, some LP combinations may be techni-
cally valid but semantically incorrect as they would make no sense, e.g.
bala + m + myn - I am a son of my son. Where possible we tried to
account for such exceptions, checking the combinations and providing

list of 36 basic tags was compiled following the best prac-
tices of Penn tagset design (Marcus et al., 1993), and
bearing in mind the specifics of Kazakh grammar. Par-
ticularly, we broke down the major POS categories in
sub-categories, in order to capture semantic distinctions
and various usage patterns. For instance, negative (tag
#6) and desiderative (tag #7) auxiliary verbs in conjunc-
tion with main verbs are used to mark uninflected nega-
tion (via no and not) and desiderative mood construction
(via usage of to come in the meaning of to want) respec-
tively. Similarly, auxiliary nominals (tag #27) are used
as prepositional phrases such as, in front of, at the top of,
etc. Also, apart from the ordinal and cardinal numerals
we distinguish collectives (tag #15), that are used to em-
phasize completeness of quantities as in both, all three,
etc.; and fractions (tag #16) as in half, quarter, etc. Fi-
nally, following classical Kazakh grammar, we treat ono-
matopoeias (tag #34), i.e. sound imitations as in tic-tac
or knock-knock, as a distinct part of speech.

The maximum size of the tagset equals to the total gen-
erative capacity, or 3844 tags. However, depending on the

exact numbers.
3Unlike any other part of speech that accepts the NSPC LP chain and

must be in the third person (singular or plural) to be in any case other
than nominative, personal pronouns can be in any case for any person,
thus having a larger capacity.
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morpheme→ token direct speech→ sentence
token→ syntactic unit sentence→ direct speech
syntactic unit→ sentence list item→ sentence
sentence→ paragraph sentence→ list item
paragraph→ chapter dialog→ sentence
chapter→ document sentence→ dialog

Figure 2: Structural markup hierarchy

level of granularity required for an application, some or
even all LPs may be dropped or added back in, providing
additional flexibility. Even the minimal tagset of 36 basic
tags can be further reduced to a universal tagset (Petrov
et al., 2011) that consists of 11 tags, with the first seven
major POS groups being mapped to their direct equiv-
alents, and the latter four (Interjection through Foreign
word) being mapped to the catch all category.

Lastly, given the designed tagset the aforementioned
Kazakh sentence can be tagged as follows:

Mektepke/ZEP A0N0S0P3C3 (ZEP - non-personal
noun; A0 - inanimate; N0 - singular; S0 - no
possessor; P3 - 3rd person; C3 - dative case)
bardym/ET G0T3M1V0P1 (ET - regular verb; G0 - not
negated; T3 - past tense; M1 - indicative mood; V0 - ac-
tive voice; P1 - 1st person) ./.

4.2 The Annotation Scheme
We have developed an XML-based annotation scheme
that follows paradigms of the CES (Ide, 1998) and is
convertible into the XCES standard (Ide et al., 2000).
The main difference with the latter is that in our scheme
the raw text and all markup types (i.e. lexical, syntac-
tic and structural annotation; cf. Section 4) are stored in
a single document. For the morpho-lexical and syntac-
tic markups we have corresponding tags, i.e. <TOK> -
token and <SU> - syntactic unit, respectively. Main lin-
guistic characteristics, such as POS, lemmata, morpheme
segmentation and syntactic labels are marked through the
corresponding sub-tags and properties. All the afore-
mentioned tags have their place in the global hierarchy
of the structural markup. In turn, this hierarchy is in-
tegrated into the structure of an XML document itself.
Figure 2 shows the schematic representation of the devel-
oped structural markup. A statement A → B represents
“A is contained by B” relation.

4.3 The Annotation Tool
To ease the process of annotation we have developed a
special tool that was designed as a web application with
a logging and a document management system. The tool
allows for (auto)saving current work and reviewing and
revising the already annotated documents.

Functionality-wise the tool consists of the following
three modules: (1) the syntactic module is designed

Before After
inter-annotator agreement 0.81 0.84
average MAE 0.08 0.07
average speed, words/hour 212.1 322.6

Table 6: Various characteristics of the annotation process before
and after introducing the recommendation system

to parse sentences using the syntactic tagset described
in subsection 4.1, and to simultaneously mark sentence
boundaries; (2) the morpho-lexical module is designed to
perform a morphological analysis, and to comprise such
functionalities as morpheme segmentation, POS tagging
and lemma identification; (3) finally, the structural mod-
ule is designed to mark up the logical structure of a docu-
ment, i.e. paragraphs, dialogues, direct speech, lists, etc.
Annotation of a given document is performed in the order
in which we described the modules. The decision on such
an order, as many other major design decisions, was made
accounting for the annotators’ feedback, suggestions and
requests, thus making the annotation experience as con-
venient as possible. The validators have almost identical
interface with additional functionality, such as a quick
look up and correction of word-level (morphology) and
sentence-level (syntax) markups. Also, both the valida-
tors and the annotators have means to correct orthography
and punctuation. However, the originals of each and ev-
ery annotated document are kept. In fact we have already
collected data on misspellings to use in our ongoing re-
search in spelling correction.

We have also developed a recommendation system for
morphological analysis based on the already annotated
data. For a given word or a given morpheme, the system
generates a list of recommended markups ordered by the
decreasing frequency of the previous usage. While this
approach arguably has a potential to propagate errors, our
experiments suggest the opposite. We have measured the
inter-annotator agreement, average mean absolute error
(MAE), and the annotation speed with and without the
recommendation system. All measurements were taken
for five annotators, who had been working with the tool
for two weeks. For the experiments the annotators were
given a randomly chosen news article containing about
300 words. The agreement was calculated using Fleiss’
kappa (Fleiss and others, 1971). The average MAE was
calculated as

∆MAE =
1

|A|
∑
a∈A

W − Ca

W

where A is a set of annotators, W is a number of words in
a test document, and Ca is a number of words correctly
annotated by the annotator a. The golden truth annota-
tion was provided by the validators. The comparison of
the measurements is given in Table 6. As we can see
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Age group I II III IV

Region F1 M1 F2 M2 F3 M3 F4 M4 Sum
1 3 3 2 1 2 1 2 1 15
2 2 3 2 1 2 1 11
3 1 1 2 3 2 1 1 11
4 3 2 1 1 7
5 2 2 2 1 2 2 2 1 14
6 2 2 2 2 2 1 2 13
7 2 2 1 2 2 2 1 12
8 2 1 1 2 1 1 2 1 11
9 3 2 2 1 3 1 1 1 14
10 1 1 2 2 1 1 2 1 11
11 2 1 2 1 1 2 9
12 2 2 2 2 1 2 1 12
13 2 2 2 1 1 1 1 1 11
14 2 1 1 1 1 2 1 2 11
15 1 3 1 2 7

Total 30 28 23 20 22 12 21 13 169
Age group, % 35% 25% 20% 20%

Table 7: The distribution of the speakers.

the inter-annotator agreement improves with the incorpo-
ration of the recommendations, while, in contrast to the
error propagation assumption, the error rate slightly de-
creases. Moreover, we get more than 100 words/hour in-
crease in the labeling speed. Thus, we conclude that as
long as the quality of the already annotated data is high,
the recommendation system will help to produce quality
annotations at a higher speed. One can argue that we used
a rather small sample of data to evaluate our recommen-
dation system. However, we drew conclusions not only
from the experimental results but also from opinions of
validators, who confirmed that they noticed that after in-
tegrating the recommendation system annotations grew
more coherent and synchronized.

Finally, let us provide a brief technical descrip-
tion of the tool. The design and structure of
the front end is based on HTML5 and CSS3.
We also use JQuery for HTML elements manipu-
lation and various event handling. The tool can
be tried out at http://kazcorpus.kz/klcweb/
annotated/#annotsample, and the detailed infor-
mation about it can be found at http://kazcorpus.
kz/klcweb/annotated/#annotdemo.

5 Read Speech Corpus
Most of the modern speech processing systems require a
large amount of audio and text data for training acoustic
and language models. Depending on the type of an appli-
cation required data varies from high quality microphone
read speech (Garofalo et al., 2007) to conversational tele-

phone speech (Godfrey and Holliman, 1997; Canavan
and Zipperlen, 1996), from continuous speech (Garo-
folo et al., 1993) to connected (Leonard and Doddington,
1993) and isolated words (Pitrelli et al., 1995). In our cur-
rent work, we collected a corpus of more than 40 hours of
high quality microphone read Kazakh speech of 169 na-
tive speakers for the large vocabulary continuous speech
recognition tasks.

5.1 Text Materials

The text materials to be uttered were carefully selected
from the primary section of the corpus and divided into
two parts: sentences and stories. The “sentences” part
has more than 12 000 different sentences randomly and
equally extracted from all of the five genre specific sec-
tions of the corpus. The sentences are chosen so that in
total they contain more than 120 000 words which be-
long to the set of the most frequent words that cover the
95% of all the texts in the corpus. Additionally, the sen-
tences were grouped according to their length in words.
Thus, we have ten groups of sentences, so that the first
group contains the sentences of length six, the second –
of length seven, and so on up until the length of 15.

The “stories” part contains short online news extracted
from publicistic genre section of the corpus. Each story
consists of up to 300 words. All the materials were
subdivided into non-intersecting sets of texts and dis-
tributed among the speakers in the following manner.
Each speaker was assigned exactly 75 sentences and one
story. Of the 75 sentences 50 belonged to the first five
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“short-sentenced” groups (10 sentences per each group),
and the remaining 25 belonged to the last five “long-
sentenced” groups (5 sentences per each group).

5.2 Speakers

The main criteria of a speaker selection were the follow-
ing: a region where (s)he learned Kazakh or spent most of
his/her life; age; gender; and the ability to read Kazakh.

The first criterion helped us to capture various accents
attributed to speakers’ settlement both local and exter-
nal. From the regional perspective we divide the speakers
into 15 groups: 14 domestic (one per each administra-
tive region, i.e. “oblast”, of Kazakhstan) and one abroad
(all foreign countries). Furthermore, the speakers are di-
vided into the following four age groups (not including
children and school students): (i) 18-27 years, (ii) 28-37
years, (iii) 38-47 years, (iv) 48 years and above. We did
not strictly balance the speakers by their gender due to
the difficulties in finding the volunteers, but still tried to
choose no more than three speakers of the same gender
per one age-regional group. A female-to-male distribu-
tion of speakers is 57% to 43%, respectively.

The other important criterion is the ability to read
Kazakh, since not all of the interviewees could read in
Kazakh sufficiently fluent, which is a common issue in a
bilingual country such as Kazakhstan. Additionally, we
kept a record of the speakers’ education, i.e. whether they
attended and graduated from a university, or graduated
from a school or a college without attending any univer-
sities.

The speakers were encoded using the fol-
lowing scheme: <Region><Gender><Year of
birth><Initials><Education>, where “Region” holds
the values in the range of [1-15], “Gender” – F or M,
“Year of birth” – the last two digits of a year of birth,
”Initials” – initials of a name followed by a surname,
“Education” – 1 for school, 2 for college, and 3 for
university, e.g. 06F70ZK3.

In total, we have recorded 169 speakers. Table 7
presents a distribution of the speakers across the age,
gender and regional groups. The blank spots show the
speaker profiles that we could not recruit. Mostly, these
cases correspond to the distant regions and elder male
groups.

5.3 Recording Setup

The actual recording sessions took place in a sound-proof
studio of the university with the assistance of a sound
operator. Before the recordings, the speakers were in-
structed, documented and given some time to prepare, as
well as asked to fill in the copyright transfer form for the
audio data with their voice. They were not constrained
on the manner, speed or time except for the correctness
of reading. The average time for a recording session

Figure 3: ASCII version of the Kazakh letters.

per speaker was about 40-45 minutes, though there were
cases that lasted for two hours. Audio data was captured
using a professional vocal microphone Neumann TLM
49 and digitized by LEXICON I-ONIX U82S sound card.
The format of the recorded audio files is 44.1 kHz 16-bit
PCM-encoded mono WAVE file format. All the recorded
audio files were manually post-processed to have each ut-
terance (sentences and stories) in a separate file and in the
corresponding directories. The size of the speech corpus
is about 8.5 GB on disk. A collective duration of the au-
dio files is more than 40 hours long.

5.4 Transcription and Annotation

Each audio file is provided with its corresponding or-
thographic transcription and TIMIT-style word-level seg-
mentation, as well as morpho-syntactic annotation files.
Both the transcript generation and the annotation were
performed manually by trained linguists. The transcrip-
tion files contain the exact orthographic transcriptions
of the utterances, which may differ from the original
text. For example, the numbers, abbreviation, foreign
words and dates are expanded depending on how they
were uttered by the speakers. In addition, the transcrip-
tion of the stories have the sentence boundaries labeled
with <s> and </s> tags. For the segmentation we
used WaveSurfer (2013), an open-source tool for sound
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visualization and manipulation, which supports TIMIT
word-level transcription format. Although, it supports
Unicode, it does provide a proper support for Kazakh
symbols. Therefore, we used an ASCII version of the
Kazakh letters depicted on Figure 3. Also, we used the #
symbol for the pauses and silence, and ˆ symbol for other
non-speech events.

6 Conclusion and Future Work

In this work we have described the design and compila-
tion process of the Kazakh Language Corpus. KLC is
oriented for a wide range of users and we believe that it
will be a valuable tool for research communities, espe-
cially given that a portion of the data has been labeled
with multiple levels of annotation, including word-level
segmentation of audio information. We are already using
the annotated data in our initial experiments in morpheme
segmentation and error correction.

One can explore the corpus through the website
(http://kazcorpus.kz) that was designed to pro-
vide the best experience in the analysis of data.

For the future work we plan to use the corpus as a re-
search tool to tackle the following problems: (i) auto-
matic part of speech tagging, (ii) morphological disam-
biguation, (iii) statistical machine translation. For the
latter we have already started collecting parallel text in
Russian and English.
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Abstract

We present a method for automatically learn-
ing inflectional classes and associated lem-
mas from morphologically annotated corpora.
The method consists of a core language-
independent algorithm, which can be opti-
mized for specific languages. The method is
demonstrated on Egyptian Arabic and Ger-
man, two morphologically rich languages.
Our best method for Egyptian Arabic pro-
vides an error reduction of 55.6% over a sim-
ple baseline; our best method for German
achieves a 66.7% error reduction.

1 Introduction

Morphological lexicons specify all inflected forms
for each lexeme; in a language with rich morphol-
ogy, such a resource can be important for natural lan-
guage processing (NLP) tasks in order to limit data
sparseness. For example, a morphological lexicon is
an important component of a morphological tagger
or of a part-of-speech (POS) tagger for languages
with rich morphology.1 Traditionally, a morpholog-
ical lexicon has been created through painstaking
lexicographic and morphological analysis of the lan-
guage, drawing on unannotated corpora. Recently,
new approaches have emerged. Fully or largely un-
supervised approaches cannot link surface forms to
morphosyntactic features and are thus not suited for
building morphological lexicons. This problem is
overcome by approaches that use explicit linguistic
knowledge. In this paper, we investigate using exist-
ing morphologically annotated corpora. In a mor-
phologically annotated corpus, the words in natu-
rally occurring texts or transcribed speech are anno-
tated for the correct morphological analysis (includ-

1Note that a full-form morphological lexicon is functionally
equivalent to a morphological analyzer-generator, since one can
be used to create the other.

ing, of course, core POS) in context. While there
has been much work on computational morphology,
to our knowledge this is the first paper to study the
question of how to extract morphological lexicons
from morphologically annotated corpora, and how
to determine how much annotation is needed. In
this paper, we assume a corpus with each word an-
notated with morphosyntactic features and with a
lemma which tells us what lexeme the word form
is part of. The task is to predict the correspondence
between a word form and its lemma and morpholog-
ical features.

This paper makes two contributions. First, we
introduce an algorithm that learns unseen forms by
analogy. This algorithm is language-independent. It
incrementally merges complementary paradigm in-
formation about different lexemes into more abstract
and more informative inflectional classes. Second,
we explore how to model stems, and we propose
a generalization of the Semitic root-and-template
modeling. We use Egyptian Arabic (EGY), and Ger-
man (GER) as our test languages. We test on corpus
data, in order to simulate a standard real-world ap-
plication. The baseline just uses the word forms seen
in training and does not predict any unseen forms.
Our language-independent algorithm improves the
performance for both EGY and GER, with error re-
ductions over the baseline of 44.4% for EGY and of
66.7% for GER. By adding language-specific mod-
eling of the stem using templates, we obtain further
error reductions for EGY (up to 55.6%) but not for
GER.

Next, we review related work (Section 2) and
introduce the key linguistic concepts we use (Sec-
tion 3). We present our basic language-independent
method in Section 4, and our language-specific mod-
eling of stem variation in Section 5.
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2 Related Work

Approaches to Morphological Modeling Much
work has been done in the area of computational
morphology ranging from systems painstakingly de-
signed by hand (Koskenniemi, 1983; Buckwalter,
2004; Habash and Rambow, 2006; Détrez and
Ranta, 2012) to unsupervised methods that learn
morphology models from unannotated data (Creutz
and Lagus, 2007; Monson et al., 2008; Ham-
marström and Borin, 2011; Dreyer and Eisner,
2011). There is a large continuum between these two
approaches. Closer to one end, we find work on min-
imally supervised methods for morphology learning
that make use of available resources such as paral-
lel data, dictionaries or some additional morpholog-
ical annotations (Yarowsky and Wicentowski, 2000;
Cucerzan and Yarowsky, 2002; Neuvel and Fulop,
2002; Snyder and Barzilay, 2008). Closer to the
other end, we find work that focuses on defining
morphological models with limited lexicons that are
then extended using raw text (Clément et al., 2004;
Forsberg et al., 2006). The work presented in this
paper falls in the middle of this continuum: we are
interested in learning complete morphological mod-
els using rich morphological annotations and, op-
tionally, limited linguistic knowledge. We compare
the value of different amounts of annotation and how
they relate to additional linguistic knowledge.

Morphological Paradigms Many traditional and
modern theories of inflectional morphology orga-
nize natural language morphology by paradigms
(Stump, 2001; Walther, 2011; Camilleri, 2011).
Within the continuum we discussed above, we find
hierarchical representations of paradigm knowledge
that have been used in manually constructed mor-
phological models (Finkel and Stump, 2002; Habash
et al., 2005). Furthermore, Détrez and Ranta (2012)
introduce an implementation of Smart Paradigms
– heuristically organized paradigms minimizing the
number of forms needed to predict the full paradigm
of a particular lexeme.

Both Forsberg et al. (2006) and Clément et al.
(2004) describe methods for automatically populat-
ing a lexicon from raw data given a set of morpho-
logical inflectional classes in a language. Our work
differs in that we use annotated data, but do not start
with a complete set of inflectional classes; thus, our
work is exactly complementary to this work.

The concept of a paradigm is also used in many
published efforts on unsupervised learning of mor-
phology, although not always in a way consistent
with its use in linguistics. For instance, Snover et
al. (2002) (and later on Can and Manandhar (2012))
define a paradigm as “a set of suffixes and the stems
that attach to those suffixes and no others”. This
definition is quite limited since it is not modeling
the notion of lexeme. Chan (2006) defines a simpler
concept of paradigms in his probabilistic paradigm
model, which has many limitations, such as not han-
dling syncretism or irregular morphology, nor dis-
tinguishing inflection and derivation.

Dreyer and Eisner (2011) learn complete Ger-
man verb paradigms from a small set of complete
seed paradigms (50 or 100), which they choose ran-
domly from all verbs in the language. They model
stem changes using letter-based models, and use
a large unannotated corpus in addition to the seed
paradigms. Durrett and DeNero (2013) attack the
same problem as Dreyer and Eisner (2011). Instead
of using unannotated text, they model explicit rules
for affixes and stem changes. The major difference
between these two efforts and our work is that the
problem is defined differently: we assume that the
training and test data is defined by a corpus, not
by complete paradigms. Our methods therefore are
more sensitive to frequency effects of tokens. We
believe that our way of stating the problem is more
relevant to actual computational challenges for lan-
guages with limited morphological resources. We
empirically compare our approach to that of Durrett
and DeNero (2013) in Section 5.

None of the unsupervised approaches mentioned
model inflectional classes, i.e., meta-paradigmatic
representation that cluster the various paradigms of
different lexemes into a set of general classes of
paradigms. There is no explicit notion of mor-
phosyntactic features. In this paper we target the
learning and completion of inflectional classes from
morphologically annotated data. Our approach does
not sacrifice details of what paradigms should in-
clude: we handle syncretism and stem changes, and
allow for the prediction of new word forms from
morphosyntactic features and lemmas, unlike the
largely unsupervised work. Our work also differs
from most previous work in that we investigate how
to model stem change explicitly. Whereas other
approaches model stem syncretism through letter-
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based models (Yarowsky and Wicentowski, 2000;
Neuvel and Fulop, 2002; Dreyer and Eisner, 2011),
we explore the use of abstract stems.

In our previous work on the EGY morphological
analyzer CALIMA, we similarly used a lexicon of
annotated morphological forms and extended it au-
tomatically using a simpler approach to paradigm
completion (Habash et al., 2012).

3 Linguistic Terminology

In this section, we review key concepts from mor-
phology, and introduce the terminology we will use
in this paper.2 We then introduce our own formal-
ization of stems using vocalic templates.

Morphology is the study of word forms and their
decomposition into elementary morphemes, which
are the smallest meaning-bearing units of a lan-
guage. There are two types of morphological pro-
cesses: inflectional and derivational morphology. In
inflectional morphology, a core meaning is retained
and different word forms reflect different types of
morphosyntactic features such as person, number, or
tense. In derivational morphology, the core meaning
of a word is changed, and perhaps even its part-of-
speech (POS). In this paper, we restrict our interest
to inflectional morphology. Furthermore, we take
the written form of the word to be primary, and base
all morphological analyses on the written form.

We will refer to the set of all word forms that
are related through inflectional morphology alone as
lexeme. We can refer to a lexeme with a lemma,
which we take to be a language-specific and conven-
tionalized choice of one of the inflected forms. For
example, in English the verb is conventionally cited
in the infinitive (often with to, which can be omit-
ted), while in Arabic it is conventionally cited in per-
fective third person masculine singular. The lemma
is sometimes referred to as a “citation form”. A
paradigm of a lexeme is a list of cells, where a cell
is a combination of a complete set of morphosyn-
tactic features (properties) and the corresponding in-
flected form of the lexeme. A paradigm is com-
plete if there are cells for all possible morphosyn-
tactic features (the list of possible morphosyntactic
features is of course language-dependent).

We can divide the word forms into affixes (i.e.,
prefixes and suffixes) and the stem. There is no sin-

2We (roughly) base our terminology and our conceptualiza-
tion on the inferential-realizational theory of Stump (2001).

gle correct way to do this for the words of a lan-
guage. Each lexeme has its own paradigm. We
can abstract from paradigms by grouping together
paradigms which share the same affixes in corre-
sponding cells, and where stems in corresponding
cells differ in some restricted manner. We can de-
fine the inflectional class (IC) more formally as a
set of abstract cells, where an abstract cell is a com-
bination of a complete set of morphosyntactic fea-
tures (properties) and an abstract representation of a
stem (an abstract stem) along with fully specified
affixes. The abstract stems (and thus the abstract
cells) must have the property that, given a single in-
stantiated word form of a lexeme along with its as-
sociated IC, we can derive the complete paradigm
of the lexeme deterministically. In the first results
we present, we simply assume that the stem is ei-
ther shared entirely with other abstract cells, or it is
entirely lexically instantiated. We explore language-
specific approaches to defining an abstract stem in
Section 5, where we also discuss relevant morpho-
logical facts of EGY and GER.

Prefixes, suffixes, and stems can be the same for
different cells of a single paradigm or IC. This is
called syncretism. We will refer to the cells which
share a stem as a stem syncretism zone or “zone”
for short.

4 Language-Independent Inflectional
Class Construction Algorithm

In this section, we present our language-independent
IC construction algorithm (LICA). LICA consists of
a core algorithm for building ICs from seen data and
models of soft-stem syncretism and affix prediction.

4.1 Problem Definition

Starting with a corpus of words annotated as triples
of 〈prefix+stem+suffix, lemma, features〉, we want
to create a lexicon of complete ICs, with each
IC having an associated set of lemmas. The
following is an input example specifying the in-
flected form of the 3rd person plural imperfec-
tive inflection for the EGY lemma katab3 ‘write’:
〈y+iktib+uwA, katab, I3UP〉.

3Arabic transliteration throughout the paper is presented in
the Habash-Soudi-Buckwalter scheme (Habash et al., 2007).
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Figure 1: This graph illustrates two merges that result in combining three ICs in two steps. The IC cells are represented
as solid (filled cells) or blank (empty cells) circles. CS is the compatibility score marking the number of matching
filled cells in an IC. The boxes to the right of the graph represent the lexicon which associates lemmas (L*) with ICs.
IC4 is not connected with any of the other ICs, because it has cell values that are incompatible with them.

4.2 Core Algorithm
Building the Initial Inflectional Classes An ini-
tial IC is constructed for each lemma found in the
input corpus using all the triplets involving said
lemma. Since the lemma itself is an inflected form
with an a priori fixed feature combination, we also
use the lemma to construct the initial IC, even if it
did not occur as a word form in the corpus. If all
inflected forms of a lemma appear in the training
data, the IC will be complete. However, typically
there are many unseen forms. If all seen forms re-
lated to one lexeme have the same stem, the abstract
stem chosen for the IC is a single stem variable;
the abstract cells of the new IC can of course dif-
fer in terms of affixes (which are always fully spec-
ified rather than represented as variables). In cases
when the seen forms of one lemma have more than
one stem, the IC created will simply be the same as
the paradigm, i.e., we have fully instantiated stems
as our abstract stems. We call such ICs suppletive
ICs. At this point, we have a repository of numerous
incomplete ICs and a lexicon consisting of a one-to-
one mapping between lemmas and these new ICs.
We then identify all ICs that are exactly the same (by
definition, these are not suppletive ICs), and merge
the associated sets of lemmas. We now have a new
lexicon in which some ICs are associated with more
than one lemma.

Constructing the Inflectional Class Graph We
construct an IC graph that connects all mergeable
ICs. Two ICs are mergeable if neither of the ICs
is suppletive, if they share at least one abstract cell
for some morphological feature, and if no morpho-
logical features are associated with different abstract
cells, i.e., there are no incompatibilities. Each point

in the graph represents a specific IC, while the edges
carry the following four scores that we use to deter-
mine mergeability order:

• The compatibility score is the number of non-
empty intersections between the two ICs.
• The originality score is the larger number of

previous merges of the two ICs. At the begin-
ning, this number is 0 for all edges.
• The completeness score is the size of the union

of non-empty rows from the two ICs
• The lexical size score is the sum of the number

of lemmas associated with the two ICs.

The edges of the graph are ranked according to the
compatibility score first (more is better). Any ties
are broken using the originality score (lower is bet-
ter), any remaining ties by the completeness score
(more is better) and then by the lexical size score
(more is better). We explored all possible orders of
tie breaking using EGY data, and determined the or-
der of the listing above to be best. We use it in all
experiments reported in this paper.

Merging the Inflectional Classes While the IC
graph is still connected, we repeat the following
merging procedure. Starting with the highest ranked
edge in the graph, we merge the two ICs connected
by the edge. In case of multiple edges that are
equally highly ranked (after tie breaking), we select
randomly among them. The merge creates a new IC
that has the union of the cells in the two ICs. The
lexicon is adjusted accordingly by associating with
the new IC the union of all the lemmas originally as-
sociated with the two ICs. The new IC inherits the
union of all the IC graph connections of its prede-
cessors. The IC graph edge scores between the new
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IC and other ICs are recalculated. Graph edges that
become incompatible after the merge are removed.
The two original ICs are removed from the graph
and lexicon. See Figure 1 for an illustration of the
merge process.

4.3 Completing Stems and Affixes

Soft Stem Syncretism Zones We extend the con-
cept of stem-syncretism zones into a statistical
model that computes the probability that the abstract
stems in two abstract cells are the same given their
feature combinations, i.e., that they belong to the
same syncretism zone. We refer to this approach
as “soft” stem-syncretism zones or “soft zones” for
short. The probabilities are computed for each
feature-combination pair as the ratio of the times the
abstract stem for the feature-combination pair are
equal divided by the times the abstract stem for the
feature-combination pair are not empty. The prob-
abilities can be computed after the initial IC graph
construction or after the merging process has con-
cluded; they can also be based on IC type counts
or weighted by the number of associated lemmas.
Applying soft zones to fully complete the ICs can
only be done after merging is completed. We try all
the possible alternatives for learning the SZs on the
EGY data, including experiments with small train-
ing data sizes. The best accuracy is obtained using
IC type weights learned after the merge. We use this
setting for all experiments.

When applying the soft zones to determine the
abstract stems of empty cells, we consider all filled
cells in the same IC and select the abstract stem from
the cell of the feature combination that has the high-
est soft-zone probability with the feature combina-
tion of the empty cell. Note that the copied abstract
stem can be either a stem variable, or, for a supple-
tive IC, a lexical form.

Predicting Affixes In building the ICs mentioned
above, some feature combinations and their corre-
sponding affixes (prefixes and suffixes) are missing
since they were not in the training data. We fill the
missing affixes in a particular IC i by copying them
from other ICs that we rank by overall seen affix
similarity to IC i. ICs with conflicting affixes for
any feature combinations are excluded completely.
For any remaining missing affix-feature combina-
tion, we use the most common affix for that feature
combination over all ICs.

4.4 Model Application

The complete ICs produced by the completion algo-
rithm, associated with their lemmas in the lexicon,
can now be used to predict the surface form of a
given lemma and morphological features. We use
the following procedure: If the given features are
the same as those used to define the lemma, then the
surface form is the same as the lemma form. If the
lemma was seen in training, we select its IC from the
model and generate the inflection associated with the
features. This may require instantiating a stem vari-
able (in case the IC is not suppletive), but this can be
done deterministically from the lemma.

If the lemma has not been seen, then we build
an IC on the fly using the lemma, i.e., an IC with
a single cell. We then pick an IC from the model
that does not conflict with that IC. The priority is
given to the IC with the largest lexicon size, which
is likely to be a result of several merges. If such an
IC does not exist, a backup mode returns the stem of
the lemma associated with the most frequent affixes
of the queried features.

4.5 Results on Egyptian Arabic

Data and Metrics We use a morphologically an-
notated EGY corpus based on the CALLHOME
EGY (CHE) corpus (Gadalla et al., 1997).4 We di-
vide the corpus into three parts: training, develop-
ment and test, of about 75K, 36K and 41K words,
respectively. We conduct our experiments on verbs
only since they have a large number of possible mor-
phosyntactic feature combinations. The verbs in
these experiments are uncliticized. Clitics are eas-
ily handled using a few orthographic rules (El Kholy
and Habash, 2010). On average, uncliticized verbs
are about 12% of all words in our corpus. The data
is represented in triplets as described in Section 4.1.
There is a total of 19 feature combinations of as-
pect/mood (perfective,imperfective and imperative),
person (first, second and third), gender (masculine,
feminine and neutral) and number (singular and plu-
ral). Some combinations are invalid such as the first
and third persons with the imperative form. The
lemma we use is the Arabic citation form for verbs,
which is the perfective third person masculine sin-

4The corpus was automatically annotated using information
from the CHE transcripts (Gadalla et al., 1997) and the Egyp-
tian Colloquial Arabic Lexicon (Kilany et al., 2002). For more
details, see Habash et al. (2012) and Eskander et al. (2013).
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gular (P3MS) inflection. We use this fact to fill the
P3MS cells when building the initial ICs.

We evaluate the accuracy of the automatically
generated bidirectional lexicon by generating sur-
face forms from lemmas and morphosyntactic fea-
tures. We use the model application method de-
scribed in Section 4.4.

Baseline Our baseline system consists of two
steps. First, we check the features. All cases of cita-
tion form features (in the case of EGY, P3MS) return
the lemma as the inflected form. Otherwise, we look
up the lemma and feature pair among all triplets in
the training data and return the inflected form if such
a triplet was found. If not, the baseline does not re-
turn an answer.

Results The results on tokens are summarized in
Table 2 under the column heading BL (baseline) and
NOTMP (LICA with no stem template). Our sys-
tem consistently improves over the baseline for all
training data sizes explored.

Error Analysis We performed an error analysis
using the best settings found on the development
set. We found that in 46% of the error types the
lemma is unseen. Additional 35% of the cases are
due to stem templates that are unseen in the com-
plete ICs although their corresponding lemmas are
seen. About one tenth of the cases are because of
the existence of multiple forms of the same lemma
and feature combinations, where our system assigns
a form that is different from the gold form. Finally,
gold errors contribute to about 9% of all errors.

4.6 Results on German
Data and Metrics For our experiments, we use
the TIGER corpus (Brants and Hansen, 2002). We
divide the corpus into three parts: training, develop-
ment and test, of about 709K, 143K and 37K words,
respectively. However, we use the first 75K words
in training and the first 36K words in development
to have the results comparable to EGY. We conduct
our experiments on verbs only. We disregard any
verbs with separable prefixes (as is common in work
in morphology learning). On average, verbs with-
out separable prefixes are about 9% of all words in
our corpus. The data is represented in triplets as de-
scribed in Section 4.1. There are 28 feature com-
binations of tense (present, past), person (first, sec-
ond and third), number (singular, plural), and mood

(indicative, subjunctive, imperative, past participle,
infinitive). Some combinations are invalid such as
any tense with the non-tensed participle or infinitive.
The infinitive is the lemma. We use the same metrics
as for EGY (Section 4.5).

Results The results are summarized in Table 5,
with the relevant results in the column NOTMP. We
see that our algorithm performs substantially better
than the baseline at all training set sizes, with greater
relative error reductions at smaller training sizes.

Error Analysis We inspected all error types in the
development set and found that nearly 8% of all er-
ror types are errors in the gold annotation of the de-
velopment set, and in 4% of cases, our predicted
form is correct because a lemma is shared by two
verbal paradigms (for example, werden has different
past participles depending on whether it is the pas-
sive auxiliary or the verb for ‘become’).

5 Language-Specific Modeling of Stems

5.1 General Approach
We model the abstract stems using the notions of or-
thographic template and orthographic root. To
meet our definition of IC given above, we define
these two notions so that the root and template can
always be extracted deterministically. We define
them simply in terms of sets of letters: the set of
letters of the alphabet used to write the language
we are modeling is partitioned into the root let-
ters and the pattern letters. The orthographic tem-
plate is a string that specifies the template letters and
that has placeholders for the root letters, which we
write as ‘2’. The orthographic root is a sequence
of strings that specifies the root letters that can fill
a vocalic template’s placeholders, in the order spec-
ified. Note that an IC along with a root is equiv-
alent to a paradigm, since the root can be inserted
deterministically into the abstract stem. This gives
us another way to specify a lexeme: since a com-
plete paradigm enumerates all inflected forms of a
lexeme, and since a complete IC along with a root
defines a complete paradigm, we can specify a lex-
eme to be a pair consisting of an IC along with a
root. This pair determines a complete mapping from
morphosyntactic features to surface word forms for
the lexeme.

The basic algorithm discussed earlier is modified
as follows: when we read in the training data, the
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EGY Inflectional Class (IC) Repository
IC-1 IC-2 IC-3

P1US 2a2a2+t 2a2∼+ayt 2u2+t
P1UP 2a2a2+nA 2a2∼+aynA 2u2+nA
P2MS 2a2a2+t 2a2∼+ayt 2u2+t
P2FS 2a2a2+tiy 2a2∼+aytiy 2u2+tiy
P2UP 2a2a2+tuwA 2a2∼+aytuwA 2u2+tuwA
P3MS 2a2a2 2a2∼ 2A2

P3FS 2a2a2+it 2a2∼+it 2A2+it
P3UP 2a2a2+uwA 2a2∼+uwA 2A2+uwA
I1US Aa+22i2 Aa+2i2∼ Aa+2uw2

I1UP ni+22i2 ni+2i2∼ ni+2uw2

I2MS ti+22i2 ti+2i2∼ ti+2uw2

I2FS ti+22i2+iy ti+2i2∼+iy ti+2uw2+iy
I2UP ti+22i2+uwA ti+2i2∼+uwA ti+2uw2+uwA
I3MS yi+22i2 yi+2i2∼ yi+2uw2

I3FS ti+22i2 ti+2i2∼ ti+2uw2

I3UP yi+22i2+uwA yi+2i2∼+uwA yi+2uw2+uwA
C2MS Ai22i2 2i2∼ 2uw2

C2FS Ai22i2+iy 2i2∼+iy 2uw2+iy
C2UP Ai22i2+uwA 2i2∼+uwA 2uw2+uwA

EGY Lexicon
IC-1 IC-2 IC-3

katab faraD mad∼ Hal∼ šAf qAl
‖k,t,b‖ ‖f,r,D‖ ‖m,d‖ ‖H,l‖ ‖š,f‖ ‖q,l‖
‘write’ ‘suppose’ ‘extend’ ‘solve’ ‘see’ ‘say’

Table 1: Example of three inflectional classes and associ-
ated lemmas with their roots in EGY. The various blocks
in the IC table specify different syncretism zones.

root of the lemma is used to decompose the stem of
the inflected form into a root and a template.

5.2 Choosing Root and Pattern Letters
Determining which letters count as root letters and
which count as pattern letters is language-specific.
In this paper, we use three approaches to choosing
root and pattern letters.

No Template (NOTMP) In this approach, we do
not model the stem at all, i.e., there are no pattern
letters. As a result, the ICs cannot express stem
changes; any verb with a stem change will be an
irregular verb and it will be modeled with a sup-
pletive IC. Note that in EGY, every verb manifests
a stem change between the perfective and imperfec-
tive forms, while in GER many verbs in fact do have
the same stem for all inflected forms. The results of
the NOTMP approach are the same basic approach
results already presented in Section 4.

Scholar (SCHLR) In this approach, we use lin-
guistic scholarship and intuition to choose a set of
letters to be the pattern letters. These are letters

which we know can change in stems within the
same IC. We discuss this approach for EGY in Sec-
tion 5.3.1 and for GER Section 5.4.1.

Empirical (EMPR) In this approach, we obtain
the set of pattern letters empirically. We align the
letters of all the stems in the development corpus
with the stem letters of their corresponding lemmas.
This allows us to identify which letters change be-
tween lemma stem and inflected stem. We order the
letters by the probability that a letter changes given
all occurrences of that letter, and by the probabil-
ity that a letter changes given all changes that oc-
cur. This gives us two rankings. For both rank-
ings and for each letter that changes, we construct
a set of letters by including all letters from the most
highly ranked letter down to the letter under con-
sideration. This gives us per ranking as many sets
as there are letters that change. We then choose the
best performing set among all sets generated by both
rankings. We present the results of this approach for
EGY in Section 5.3.1 and for GER in Section 5.4.1.

5.3 Egyptian Arabic

5.3.1 Choice of Pattern Letters
Scholar-based Pattern Letters For the EGY
SCHLR approach, we selected the following pattern
letters: ����

�� ��Z 
øøø





ðð

�
@ @





@ @ AÂǍĀwŵyýŷ’aui∼. These

letters cover all the so-called weak root radicals,
Hamzated forms and diacritics that are often used
to discuss different verbal paradigms in Arabic
(Gadalla, 2000). Table 1 shows three EGY inflec-
tional classes. We follow the standard practice in
modeling Arabic morphology of assuming that each
placeholder in an orthographic template corresponds
to exactly one letter from the orthographic root (i.e.,
the root is a sequence of strings each of length one).
We would like to stress that our orthographic tem-
plate and root differ from the notions of pattern and
root in Semitic morphology (for an overview, see
(Habash, 2010)): while for katab ‘write’ the or-
thographic root as well as the “real” root is ‖k,t,b‖,
the orthographic root for xal∼aý ‘let’ is ‖x,l‖ (as
opposed to the real root ‖x,l,y‖). Henceforth, we
will omit the adjective “orthographic”, since we will
not talk about the “real” root. To inflect a lemma
for a particular set of features, we combine the root
with the 2 slots in the corresponding inflectional
class feature row, e.g., Hal∼ + P2FS ⇒ ‖H,l‖ +
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2a2∼+aytiy⇒ Hal∼aytiy. Note that in this paper,
we do not use any rules; all regular phonological and
orthographic variation is “compiled” into the ICs.
We also see examples of stem syncretism zones in
Table 1; they are marked with horizontal lines. The
stems associated with P3MS, P3FS and P3UP hap-
pen to be the same within each IC (although differ-
ent across ICs). Different ICs have different zones:
e.g., IC-1 has one zone for the P*** features, while
IC-2 and IC-3 have two identical zones for P3** and
P[12]**.

Empirically Determined Pattern Letters For
EGY, the EMPR approach, using the algorithm
described in Section 5.2, yields the following
optimal set of pattern letters: ��

�� ��
�

HZ 
øøø



ð@





@ @

AÂǍwyýŷ’θaui. This set is very similar to the
SCHLR set except in that it omits the lexically
constant (per lexeme) Shadda diacrtic �� ∼ (ortho-
graphic gemination marker), and some very infre-
quent Hamzated forms; and it also adds one letter
�

H θ as a result of orthographic inconsistency in the
training data.

Corpus Verb BL NOTMP SCHLR EMPR EMPR
Size Count IIC+HZ
0K 0 19.3 20.0 20.0 20.0 58.8
1K 95 51.8 64.2 68.3 68.1 83.3
5K 630 64.2 77.0 83.9 83.9 91.1
10K 1,201 70.4 84.3 89.4 89.1 92.4
25K 2,994 79.6 91.5 94.4 94.8 95.6
50K 5,966 84.5 94.2 96.9 96.7 97.2
75K 8,690 85.6 94.9 97.5 97.6 97.2

Table 2: Learning curve comparing system performance
for EGY on tokens (development set).

Results The template approaches SCHLR and
EMPR consistently beat NOTMP which does not
make use of any templatic stem modeling (see Ta-
ble 2). However, SCHLR and EMPR perform about
equally. This is not surprising since the two sets of
pattern letters are quite similar.

Error Analysis We conducted an error analysis of
EMPR using the best settings found on the develop-
ment set. About 86% of the error types in NOTMP
where the lemma is unseen are solved after intro-
ducing EMPR. Additionally, 71% of the cases in
NOTMP where the stem template is unseen and the
lemma is seen are solved. However, 7% of the error

types in EMPR are not present in NOTMP, and they
are all cases where the stem template is unseen while
the lemma is seen. Errors due to multiple stem forms
and gold errors remain the same in both NOTMP and
EMPR, contributing to 26% and 23%, respectively,
of all the error types in EMPR.

5.3.2 Other Enhancements with Linguistic
Knowledge

Other linguistic knowledge can also help enrich
the process of IC learning, especially under limited
annotation conditions. We use the following two
types of linguistic knowledge, which seamlessly in-
tegrate into the core merging algorithm described
above.

Iconic Inflectional Classes (IICs) are ICs that are
manually fully annotated, i.e., they have all the tem-
plate cells for all morphosyntactic features specified.
IICs are treated like any other ICs when constructing
the initial IC graph. They are different from other
ICs in that they initially have no lemmas associated
with them in the lexicon.

Hard Stem-Syncretism Zones (HZ) are stem-
syncretism zones determined manually by linguists
to hold for all ICs. As such they can be more fine-
grained than is needed to describe individual ICs. A
hard zone is not applied in case of any partial dis-
agreement within it. Unlike soft zones, they could
be applied before or after the merge process, and
they do not guarantee that the ICs will be completely
filled.

We conducted experiments where we added
external linguistic knowledge to our training data.
We added 112 IICs which are extracted from all
EGY verb inflections listed in a reference grammar
of EGY (Gadalla, 2000). Also we added the
following eight HZs for EGY (with reference to
features <tense, person, gender, number>):
(P1US-P1UP-P2MS-P2FS-P2UP), (I1UP-I2MS-
I3MS-I3FS), (I2FS-I2UP-I3UP), (P3FS-P3UP),
(C2FS-C2UP), (P3MS), (I1US), and (C2MS).
Applying the HZs on the completed ICs (before soft
zone application) gives higher results than applying
them on initial ICs. We only report below on the
setting of applying HZs after IC merge completion.
We present the accuracies of IC learning for the
baseline, and for the best setup with and without
IICs and HZs, for different training sizes in Table 2.
The baseline with no training data is at 19.3%
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because of all the cases with verbs appearing in
the citation form. As expected, IICs always help
improve accuracy, especially under limited (and
no) data conditions. However the benefits diminish
rapidly for larger training sets. When evaluating on
types only (results not presented in this paper), we
find that using IICs in our system with no data is
better than using the baseline with 75K words.

5.3.3 Blind Test Set
Table 3 shows the accuracies the different sys-

tems on our blind test set. The results for the test
set are lower than those of the development set, but
the trends are the same. We also compare our re-
sults to those obtained using the system of Durrett
and DeNero (2013) on the same test data. Note that
we apply their system to our problem – predicting
unseen forms from annotated corpora (i.e., incom-
plete paradigms), not to the problem for which they
created their system – predicting unseen forms from
complete paradigms. Our best system outperforms
theirs by 2.8% absolute in accuracy.

System Accuracy Error Reduction
Baseline 84.7
NOTMP 91.5 44.4
SCHLR 93.2 55.6
EMPR 93.2 55.6

Durrett & DeNero 90.4 37.3

Table 3: Results for EGY on tokens using a blind test set.

5.4 German
5.4.1 Choice of Pattern Letters
Scholar-based Pattern Letters We now discuss
our scholarship-based choice of pattern letters for
German. Like Arabic, German verb paradigms
can show stem changes which are typically vowel
changes. Furthermore, like Arabic, German has
prefixes, suffixes, and circumfixes. However, un-
like Arabic, German has many verbs (called “weak
verbs”) which are regular in the sense that they
show no stem change at all. The irregular verbs,
or “strong verbs”, show many different patterns of
stem changes. Another difference to Arabic is that
the affixes are not the same for all verb paradigms.
In particular, the weak verbs form several inflec-
tional classes (which, of course, differ only in af-
fixes). Finally, unlike Arabic, in the strong verbs
the orthographic root does not necessarily consist

GER Inflectional Class (IC) Repository
IC-1 IC-2 IC-3

PI1S 2o2 +e 2e2 +e 2e2 +e
PI2S 2o2 +st 2ie2 +st 2i2 +st
PI3S 2o2 +t 2ie2 +t 2i2 +t
PI1P 2o2 +en 2e2 +en 2e2 +en
PI2P 2o2 +t 2e2 +t 2e2 +t
PI3P 2o2 +en 2e2 +en 2e2 +en
PS1S 2o2 +e 2e2 +e 2e2 +e
PS2S 2o2 +est 2e2 +est 2e2 +est
XI1S 2o2 +te 2a2 + 2a2 +
XI2S 2o2 +est 2a2 +st 2a2 +st
XS1S 2o2 +te 2ä2 +e 2ä2 +e
XS2S 2o2 +test 2ä2 +est 2ä2 +est

PP ge+ 2o2 +t ge+ 2e2 +en 2e2 +en
INF 2o2 +en 2e2 +en 2e2 +en

GER Lexicon
IC-1 IC-2 IC-3

holen sohlen sehen lesen vergeben begeben
‖h,l‖ ‖s,hl‖ ‖s,h‖ ‖l,s‖ ‖verg,b‖ ‖beg,b‖

‘fetch’ ‘sole’ ‘see’ ‘read’ ‘forgive’ ‘occur’

Table 4: Example of three inflectional classes (some cells
omitted in the interest of space economy) and associated
lemmas with their roots in German (“X” stands for past
tense). The different blocks in the IC table specify differ-
ent stem syncretism zones.

of sequences of single letters: the strong verbs have
monosyllabic stems (plus perhaps derivational mor-
phology), with the vowel in this stem potentially un-
dergoing changes. However, the onset and coda of
the stem syllable can be any consonant cluster al-
lowed by German phonology. Thus, in German, we
model roots as pairs of strings of any length (which
represent the onset and coda of the stem syllable).
Table 4 shows a weak IC and two strong ICs.

Since German strong verbs can have any stem
vowel, we assume that all eight vowel letters of Ger-
man (aeiouäöü) are pattern letters, and all other con-
sonant letters are root letters. German weak verbs
show no stem changes at all; if we tailored our tem-
plates to them, we would define all letters to be root
letters, and there would be no pattern letters at all.
This is in fact the experiment we reported on in Sec-
tion 4.6, and whose results are shown as NOTMP
in Table 5. However, since we do not know dur-
ing training time whether a verb is weak or strong,
all verbs will be modeled with an orthographic tem-
plate, even though there is no stem change at all.

Empirically Determined Pattern Letters For
GER, the EMPR approach, using the algorithm de-
scribed in Section 5.2, yields oaäß as the optimal
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set of pattern letters. The EMPR pattern letters dif-
fer from the SCHLR pattern letters by omitting five
vowels, but including the ß variant of the s.

Results In table 5 we see that using all eight vow-
els as pattern letters (SCHLR column) in fact de-
creases performance at every training size (and rel-
atively more at smaller training sizes). However,
if we use the empirically obtained pattern letter set
oaäß, we see that we perform better than SCHLR
at almost all training sizes, and slightly better than
NOTMP at larger training sizes.

Error Analysis A manual inspection of all devel-
opment error types again revealed 8% development
set annotation errors and 4% acceptable variations.
To investigate why NOTMP outperforms SCHLR
for German on the development set, we performed
an oracle experiment: we assumed we knew for each
seen verb in training whether it is a weak or a strong
verb. If it is weak, we model it using NOTMP, and if
it is strong, using SCHLR. We observe as expected
that the performance on weak verbs is very similar to
that obtained using NOTMP on all verbs. However,
for the strong verbs, it is only when we have more
than 75,000 words of training data that the oracle
outperforms NOTMP. We assume that the reason is
that the highly frequent verbs are strong, but occur
frequently enough so that their IC can be learned di-
rectly from the training data. Using SCHLR simply
adds noise for these very frequent verbs. It is only
for the less frequent strong verbs that SCHLR can
contribute, and then only when a large amount of
training data is available.

5.4.2 Blind Test Set
Table 6 shows the accuracies the different sys-

tems on our blind test set. The results for the test
set are lower than those of the development set, and
NOTMP, SCHLR,and EMPR produce very simi-
lar accuracy results. We also compare our results
to those obtained by running the system of Durrett
and DeNero (2013) on the same training and test
data. Our system outperforms Durrett and DeNero
(2013)’s system reducing the error of by 5%.5

5We also tested our system on Durrett and DeNero (2013)’s
problem definition and data, training on 200 GER paradigms,
and testing on 200 unseen paradigms. This is the case of testing
for unseen lemmas in our system. Our system gives an accu-
racy of 88.4% as opposed to 91.8% as reported by Durrett and
DeNero (2013). Our system was not designed for this task.

Corpus Verb BL NOTMP SCHLR EMPRSize Count
0K 0 13.7 25.2 25.2 25.2
1K 81 43.3 72.0 67.0 69.4
5K 461 64.8 83.5 83.0 83.1
10K 929 72.1 89.0 87.4 88.6
25K 2,362.0 79.5 93.6 93.0 92.4
50K 4,527 86.2 95.6 95.1 95.6
75K 6,728 88.9 96.8 96.2 97.0

Table 5: Learning curve comparing system performance
for GER on tokens on DEV corpus. BL=Baseline

System Accuracy Error Reduction
Baseline 89.5
NOTMP 96.5 66.7
SCHLR 96.5 66.7
EMPR 96.5 66.7
Durrett 96.3 64.8

Table 6: Results for GER on tokens using a blind test set.

6 Conclusion and Future Work

We presented a method for automatically learn-
ing inflectional classes and associated lemmas from
morphologically annotated corpora. In the future,
we plan to improve several aspects of our mod-
els, in particular, using more powerful language-
independent template transformations to automati-
cally optimize for stem and affix modeling. We
plan to take the insights from this paper and ap-
ply them to new dialects and languages with lim-
ited resources. We are interested in extending our
approach to languages with different morphological
systems, e.g., agglutinative or reduplicative. We will
explore ideas from unsupervised morphology learn-
ing to minimize the need for morphological annota-
tions.
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Abstract

We present a joint language and transla-
tion model based on a recurrent neural net-
work which predicts target words based on
an unbounded history of both source and tar-
get words. The weaker independence as-
sumptions of this model result in a vastly
larger search space compared to related feed-
forward-based language or translation models.
We tackle this issue with a new lattice rescor-
ing algorithm and demonstrate its effective-
ness empirically. Our joint model builds on a
well known recurrent neural network language
model (Mikolov, 2012) augmented by a layer
of additional inputs from the source language.
We show competitive accuracy compared to
the traditional channel model features. Our
best results improve the output of a system
trained on WMT 2012 French-English data by
up to 1.5 BLEU, and by 1.1 BLEU on average
across several test sets.

1 Introduction

Recently, several feed-forward neural network-
based language and translation models have
achieved impressive accuracy improvements on sta-
tistical machine translation tasks (Allauzen et al.,
2011; Le et al., 2012b; Schwenk et al., 2012). In this
paper we focus on recurrent neural network archi-
tectures, which have recently advanced the state of
the art in language modeling (Mikolov et al., 2010;
Mikolov et al., 2011a; Mikolov, 2012), outperform-
ing multi-layer feed-forward based networks in both
perplexity and word error rate in speech recognition
(Arisoy et al., 2012; Sundermeyer et al., 2013). The
major attraction of recurrent architectures is their
potential to capture long-span dependencies since

predictions are based on an unbounded history of
previous words. This is in contrast to feed-forward
networks as well as conventional n-gram models,
both of which are limited to fixed-length contexts.
Building on the success of recurrent architectures,
we base our joint language and translation model
on an extension of the recurrent neural network lan-
guage model (Mikolov and Zweig, 2012) that intro-
duces a layer of additional inputs (§2).

Most previous work on neural networks for
speech recognition or machine translation used a
rescoring setup based on n-best lists (Arisoy et al.,
2012; Mikolov, 2012) for evaluation, thereby side
stepping the algorithmic and engineering challenges
of direct decoder-integration.1 Instead, we exploit
lattices, which offer a much richer representation
of the decoder output, since they compactly encode
an exponential number of translation hypotheses in
polynomial space. In contrast, n-best lists are typi-
cally very redundant, representing only a few com-
binations of top scoring arcs in the lattice. A major
challenge in lattice rescoring with a recurrent neural
network model is the effect of the unbounded history
on search since the usual dynamic programming as-
sumptions which are exploited for efficiency do not
hold up anymore. We apply a novel algorithm to the
task of rescoring with an unbounded language model
and empirically demonstrate its effectiveness (§3).

The algorithm proves robust, leading to signif-
icant improvements with the recurrent neural net-
work language model over a competitive n-gram
baseline across several language pairs. We even ob-
serve consistent gains when pairing the model with a
large n-gram model trained on up to 575 times more
1One notable exception is Le et al. (2012a) who rescore reorder-
ing lattices with a feed-forward network-based model.
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data, demonstrating that the model provides comple-
mentary information (§4).

Our joint modeling approach is based on adding a
continuous space representation of the foreign sen-
tence as an additional input to the recurrent neu-
ral network language model. With this extension,
the language model can measure the consistency
between the source and target words in a context-
sensitive way. The model effectively combines the
functionality of both the traditional channel and lan-
guage model features. We test the power of this
new model by using it as the only source of tradi-
tional channel information. Overall, we find that the
model achieves accuracy competitive with the older
channel model features and that it can improve over
the gains observed with the recurrent neural network
language model (§5).

2 Model Structure

We base our model on the recurrent neural network
language model of Mikolov et al. (2010) which is
factored into an input layer, a hidden layer with re-
current connections, and an output layer (Figure 1).
The input layer encodes the target language word at
time t as a 1-of-N vector et, where |V | is the size
of the vocabulary, and the output layer yt represents
a probability distribution over target words; both of
size |V |. The hidden layer state ht encodes the his-
tory of all words observed in the sequence up to time
step t. This model is extended by an auxiliary input
layer ft which provides complementary information
to the input layer (Mikolov and Zweig, 2012). While
the auxiliary input layer can be used to feed in arbi-
trary additional information, we focus on encodings
of the foreign sentence (§5).

The state of the hidden layer is determined by the
input layer, the auxiliary input layer and the hidden
layer configuration of the previous time step ht−1.
The weights of the connections between the layers
are summarized in a number of matrices: U, F and
W, represent weights from the input layer to the hid-
den layer, from the auxiliary input layer to the hid-
den layer, and from the previous hidden layer to the
current hidden layer, respectively. Matrix V repre-
sents connections between the current hidden layer
and the output layer; G represents direct weights be-
tween the auxiliary input and output layers.

et

ht-1

ft

ht

yt

V

G

F

W

U

D

Figure 1: Structure of the recurrent neural network
model, including the auxiliary input layer ft.

The hidden and output layers are computed via a
series of matrix-vector products and non-linearities:

ht = s(Uet + Wht−1 + Ff t)

yt = g(Vht + Gf t)

where

s(z) =
1

1 + exp {−z}
, g(zm) =

exp {zm}∑
k exp {zk}

are sigmoid and softmax functions, respectively.
Additionally, the network is interpolated with a
maximum entropy model of sparse n-gram features
over input words (Mikolov et al., 2011a).2 The max-
imum entropy weights are added to the output acti-
vations before computing the softmax.

The model is optimized via a maximum likeli-
hood objective function using stochastic gradient
descent. Training is based on the back propaga-
tion through time algorithm, which unrolls the net-
work and then computes error gradients over mul-
tiple time steps (Rumelhart et al., 1986). Af-
ter training, the output layer represents posteriors
p(et+1|ett−n+1,ht, ft); the probabilities of words in
the output vocabulary given the n previous input
words ett−n+1, the hidden layer configuration ht as
well as the auxiliary input layer configuration ft.
2While these features depend on multiple input words, we de-
picted them for simplicity as a connection between the current
input word vector et and the output layer (D).

1045



Naı̈ve computation of the probability distribution
over the next word is very expensive for large vo-
cabularies. A well established efficiency trick uses
word-classing to create a more efficient two-step
process (Goodman, 2001; Emami and Jelinek, 2005;
Mikolov et al., 2011b) where each word is assigned
a unique class. To compute the probability of a
word, we first compute the probability of its class,
and then multiply it by the probability of the word
conditioned on the class:

p(et+1|ett−n+1,ht, ft) =

p(ci|ett−n+1,ht, ft)× p(et+1|ci, ett−n+1,ht, ft)

This factorization reduces the complexity of com-
puting the output probabilities from O(|V |) to
O(|C| + maxi |ci|) where |C| is the number of
classes and |ci| is the number of words in class
ci. The best case complexity O(

√
|V |) requires the

number of classes and words to be evenly balanced,
i.e., each class contains exactly as many words as
there are classes.

3 Lattice Rescoring with an Unbounded
Language Model

We evaluate our joint language and translation
model in a lattice rescoring setup, allowing us to
search over a much larger space of translations than
would be possible with n-best lists. While very
space efficient, lattices also impose restrictions on
the context available to features, a particularly chal-
lenging setting for our model which depends on the
entire prefix of a translation. In the ensuing de-
scription we introduce a new algorithm to efficiently
tackle this issue.

Phrase-based decoders operate by maintaining a
set of states representing competing translations, ei-
ther partial or complete. Each state is scored by a
number of features including the n-gram language
model. The independence assumptions of the fea-
tures determine the amount of context each state
needs to maintain in order for it to be possible to
assign a score to it. For example, a trigram language
model is indifferent to any context other than the
two immediately preceding words. Assuming the
trigram model dominates the Markov assumptions
of all other features, which is typically the case, then

we have to maintain at least two words at each state,
also known as the n-gram context.

1: function RESCORELATTICE(k, V , E, s, T )
2: Q← TOPOLOGICALLY-SORT(V )
3: for all v in V do . Heaps of split-states
4: Hv ← MINHEAP()
5: end for
6: h0 ← ~0 . Initialize start-state
7: Hs.ADD(h0)
8: for all v in Q do . Examine outgoing arcs
9: for 〈v, x〉 in E do

10: for h in Hv do . Extend LM states
11: h′ ← SCORERNN(h, phrase(h))
12: parent(h′)← h . Backpointers
13: if Hx.size() ≥ k∧ . Beam width
14: Hx.MIN()<score(h′) then
15: Hx.REMOVEMIN()
16: if Hx.size()<k then
17: Hx.ADD(h′)
18: end for
19: end for
20: end for
21: I = MAXHEAP()
22: for all t in T do . Find best final split-state
23: I.MERGE(Ht)
24: end for
25: return I.MAX()
26: end function

Figure 2: Push-forward rescoring with a recurrent neu-
ral network language model given a beam-width for lan-
guage model split-states k, decoder states V , edges E, a
start state s and final states T .

However, a recurrent neural network language
model makes much weaker independence assump-
tions. In fact, the predictions of such a model depend
on all previous words in the sentence, which would
imply a potentially very large context. But storing
all words is an inefficient solution from a dynamic
programming point of view. Fortunately, we do not
need to maintain entire translations as context in the
states: the recurrent model compactly encodes the
entire history of previous words in the hidden layer
configuration hi. It is therefore sufficient to add hi
as context, instead of the entire translation. The lan-
guage model can then simply score any new words
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based on hi from the previous state when a new state
is created.

A much larger problem is that items, that were
previously equivalent from a dynamic programming
perspective, may now be different. Standard phrase-
based decoders (Koehn et al., 2007) recombine de-
coder states with the same context into a single
state because they are equivalent to the model fea-
tures; usually recombination retains only the high-
est scoring candidate.3 However, if the context is
large, then the amount of recombination will de-
crease significantly, leading to less variety in the de-
coder beam. This was confirmed in preliminary ex-
periments where we simulated context sizes of up to
100 words but found that accuracy dropped by be-
tween 0.5-1.0 BLEU.

Integrating a long-span language model naı̈vely
requires to keep context equivalent to the entire left
prefix of the translation, a setting which would per-
mit very little recombination. Instead of using ineffi-
cient long-span contexts, we propose to maintain the
usual n-gram context and to keep a fixed number of
hidden layer configurations k at each decoder state.
This leads to a new split-state dynamic program
which splits each decoder state into at most k new
items, each with a separate hidden layer configura-
tion representing an unbounded history (Figure 2).
This maintains diversity in the explored translation
hypothesis space and preserves high-scoring hidden
layer configurations.

What is the effect of this strategy? To answer
this question we measured translation accuracy for
various settings of k on our lattice rescoring setup
(see §4 for details). In the same experiment, we
compare lattices to n-best lists in terms of accuracy,
model score and wall time impact.4 The results (Ta-
ble 1 and Figure 3) show that reranking accuracy on
lattices is not significantly better, however, rescor-
ing lattices with k = 1 is much faster than n-best
lists. Similar observations have been made in previ-
ous work on minimum error-rate training (Macherey

3Assuming a max-translation decision rule. In a minimum-risk
setting, we may assign the sum of the scores of all candidates
to the retained item.

4We measured running times on an HP z800 workstation
equipped with 24 GB main memory and two Xeon E5640
CPUs with four cores each, clocked at 2.66 GHz. All experi-
ments were run single-threaded.

BLEU oracle sec/sent
Baseline 28.25 - 0.173
100-best 28.90 37.22 0.470
1000-best 28.99 40.06 3.920
lattice (k = 1) 29.00 43.50 0.093
lattice (k = 10) 29.04 43.50 0.599
lattice (k = 100) 29.03 43.50 4.531

Table 1: Rescoring n-best lists and lattices with various
language model beam widths k. Accuracy is based on
the news2011 French-English task. Timing results are in
addition to the baseline.

Figure 3: BLEU vs. log probabilities of 1-best transla-
tions when rescoring n-best lists and lattices (cf. Table 1).

et al., 2008). The recurrent language model adds an
overhead of about 54% at k = 1 on top of the time
to produce the baseline 1-best output, a consider-
able but not necessarily prohibitive overhead. Larger
values of k return higher probability solutions, but
there is little impact on accuracy: the BLEU score
is nearly identical when retaining up to 100 histories
compared to keeping only the highest scoring.

While surprising at first, we believe that this ef-
fect is due to the high similarity of the translations
represented by the histories in the beam. Each his-
tory represents a different translation but all transla-
tion hypothesis share the same n-gram context, and,
more importantly, they are translations of the same
foreign words, since they have exactly the same cov-
erage vector. These commonalities are likely to re-
sult in similar recurrent histories, which in turn re-
duces the effect of aggressive pruning.

4 Language Model Experiments

Recurrent neural network language models have
previously only been used in n-best rescoring
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settings and on small-scale tasks with baseline
language models trained on only 17.5m words
(Mikolov, 2012). We extend this work by experi-
menting on lattices using strong baselines with n-
gram models trained on over one billion words and
by evaluating on a number of language pairs.

4.1 Experimental Setup

Baseline. We experiment with an in-house phrase-
based system similar to Moses (Koehn et al.,
2003), scoring translations by a set of common fea-
tures including maximum likelihood estimates of
source given target mappings pMLE(e|f) and vice
versa pMLE(f |e), as well as lexical weighting es-
timates pLW (e|f) and pLW (f |e), word and phrase-
penalties, a linear distortion feature and a lexicalized
reordering feature. Log-linear weights are estimated
with minimum error rate training (Och, 2003).
Evaluation. We use training and test data
from the WMT 2012 campaign and report results
on French-English, German-English and English-
German. Translation models are estimated on 102m
words of parallel data for French-English, 91m
words for German-English and English-German; be-
tween 3.5-5m words are newswire, depending on the
language pair, and the remainder are parliamentary
proceedings. The baseline systems use two 5-gram
modified Kneser-Ney language models; the first is
estimated on the target-side of the parallel data,
while the second is based on a large newswire corpus
released as part of the WMT campaign. For French-
English and German-English we use a language
model based on 1.15bn words, and for English-
German we train a model on 327m words. We eval-
uate on the newswire test sets from 2010-2011 con-
taining between 2034-3003 sentences. Log-linear
weights are estimated on the 2009 data set compris-
ing 2525 sentences. We rescore the lattices produced
by the baseline systems with an aggressive but effec-
tive context beam of k = 1 that did not harm accu-
racy in preliminary experiments (§3).
Neural Network Language Model. The vocab-
ularies of the language models are comprised of
the words in the training set after removing single-
tons. We obtain word-classes using a version of
Brown-Clustering with an additional regularization
term to optimize the runtime of the language model
(Brown et al., 1992; Zweig and Makarychev, 2013).

Direct connections use maximum entropy features
over unigrams, bigrams and trigrams (Mikolov et al.,
2011a). We use the standard settings for the model
with the default learning rate α = 0.1 that decays
exponentially if the validation set entropy does not
increase after each epoch. Back propagation through
time computes error gradients over the past twenty
time steps. Training is stopped after 20 epochs or
when the validation entropy does not decrease over
two epochs. We experiment with varying training
data sizes and randomly draw the data from the same
corpora used for the baseline systems. Throughout,
we use a hidden layer size of 100 which provided a
good trade-off between time and accuracy in initial
experiments.

4.2 Results

Training times for neural networks can be a major
bottleneck. Recurrent architectures are particularly
hard to parallelize due to their inherent dependence
on the previous hidden layer configuration. One
straightforward way to influence training time is to
change the size of the training corpus.

Our results (Table 2, Table 3 and Table 4) show
that even small models trained on only two million
words significantly improve over the 1-best decoder
output (Baseline); this represents only 0.6 percent
of the data available to the n-gram model used by
the baseline. Models of this size can be trained in
only about 3.5 hours. A model trained on 50m words
took 63 hours to train. When paired with an n-gram
model trained on 25 times more data, accuracy im-
proved by up to 0.7 BLEU on French-English.

5 Joint Model Experiments

In the next set of experiments, we turn to the joint
language and translation model, an extension of the
recurrent neural network language model with ad-
ditional inputs for the foreign sentence. We first
introduce two continuous space representations of
the foreign sentence (§5.1). Using these represen-
tations we evaluate the accuracy of the joint model
in the lattice rescoring setup and compare against the
traditional translation channel model features (§5.2).
Next, we establish an upper bound on accuracy for
the joint model via an oracle experiment (§5.3). In-
spired by the results of the oracle experiment we
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dev news2010 news2011 newssyscomb2011 Avg(test)
Baseline 26.6 27.6 28.3 27.5 27.8
+RNNLM (2m) 27.5 28.1 28.6 28.1 28.3
+RNNLM (50m) 27.7 28.2 29.0 28.1 28.5

Table 2: French-English results when rescoring with the recurrent neural network language model; the baseline relies
on an n-gram model trained on 1.15bn words.

dev news2010 news2011 newssyscomb2011 Avg(test)
Baseline 21.2 20.7 19.2 20.6 20.0
+RNNLM (2m) 21.8 20.9 19.4 20.9 20.3
+RNNLM (50m) 22.1 21.1 19.7 21.0 20.5

Table 3: German-English results when rescoring with the recurrent neural network language model.

dev news2010 news2011 newssyscomb2011 Avg(test)
Baseline 15.2 15.6 14.3 15.7 15.1
+RNNLM (2m) 15.7 15.9 14.6 16.0 15.4
+RNNLM (50m) 15.8 15.9 14.7 16.1 15.5

Table 4: English-German results when rescoring with the recurrent neural network language model; the baseline relies
on an n-gram model trained on 327m words.

train a transform between the source words and the
reference representations. This leads to the best re-
sults improving 1.5 BLEU over the 1-best decoder
output and adding 0.2 BLEU on average to the gains
achieved by the recurrent language model (§5.4).
Setup. Conventional language models can be
trained on monolingual or bilingual data; however,
the joint model can only be trained on the latter.
In order to control for data size effects, we restrict
training of all models, including the baseline n-gram
model, to the target side of the parallel corpus, about
102m words for French-English. Furthermore we
train recurrent models only on the newswire portion
(about 3.5m words for training and 250k words for
validation) since initial experiments showed compa-
rable results to using the full parallel corpus, avail-
able to the baseline. This is reasonable since the test
data is newswire. Also, it allows for more rapid ex-
perimentation.

5.1 Foreign Sentence Representations

We represent foreign sentences either by latent se-
mantic analysis (LSA; Deerwester et al. 1990) or by
word encodings produced as a by-product of train-
ing the recurrent neural network language model on

the source words.
LSA is widely used for representing words and

documents in low-dimensional vector space. The
method applies reduced singular value decomposi-
tion (SVD) to a matrix M of word counts; in our
setting, rows represent sentences and columns rep-
resent foreign words. SVD reduces the number
of columns while preserving similarity among the
rows, effectively mapping from a high-dimensional
representation of a sentence, as a set of words, to a
low-dimensional set of concepts. The output of SVD
is an approximation of M by three matrices: T con-
tains single word representations, R represents full
sentences, and S is a diagonal scaling matrix:

M ≈ TSRT

Given vocabulary V and n sentences, we construct
M as a matrix of size |V ×n|. The ij-th entry is the
number of times word i occurs in sentence j, also
known as the term frequency value; the entry is also
weighted by the inverse document frequency, the rel-
ative importance of word i among all sentences, ex-
pressed as the negative logarithm of the fraction of
sentences in which word i occurs.

As a second representation we use single word
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embeddings implicitly learned by the input layer
weights U of the recurrent neural network language
model (§2), denoted as RNN. Each word is repre-
sented by a vector of size |hi|, the number of neu-
rons in the hidden layer; in our experiments, we
consider concatenations of individual word vectors
to represent foreign word contexts. These encodings
have previously been found to capture syntactic and
semantic regularities (Mikolov et al., 2013) and are
readily available in our experimental framework via
training a recurrent neural network language model
on the source-side of the parallel corpus.

5.2 Results

We first experiment with the two previously intro-
duced representations of the source-side sentence.
Table 5 shows the results compared to the 1-best de-
coder output and an RNN language model (target-
only). We first try LSA encodings of the entire
foreign sentence as 80 or 240 dimensional vectors
(sent-lsa-dim80, sent-lsa-dim240). Next, we experi-
ment with single-word RNN representations of slid-
ing word-windows in the hope of representing rel-
evant context more precisely. Word-windows are
constructed relative to the source words aligned to
the current target word, and individual word vec-
tors are concatenated into a single vector. We
first try contexts which do not include the aligned
source words, in the hope of capturing information
not already modeled by the channel models, start-
ing with the next five words (ww-rnn-dim50.n5),
the five previous and the next five words (ww-rnn-
dim50.p5n5) as well as the previous three words
(ww-rnn-dim50.p3). Next, we experiment with
word-windows of up to five aligned source words
(ww-rnn-dim50.c5). Finally, we try contexts based
on LSA word vectors (ww-lsa-dim50.n5, ww-lsa-
dim50.p3).5

While all models improve over the baseline, none
significantly outperforms the recurrent neural net-
work language model in terms of BLEU. However,
the perplexity results suggest that the models uti-
lize the foreign representations since all joint mod-
els improve vastly over the target-only language

5We ignore the coverage vector when determining word-
windows which risks including already translated words.
Building word-windows based on the coverage vector requires
additional state in a rescoring setting meant to be light-weight.

−p(f |e)
−p(e|f) −p(e|f)

Baseline without CM 24.0 22.5
+ target-only 24.5 22.6
+ sent-lsa-dim240 24.9 23.3
+ ww-rnn-dim50.n5 24.9 24.0
+ ww-rnn-dim50.p5n5 24.6 23.7
+ ww-rnn-dim50.p3 24.6 22.3
+ ww-rnn-dim50.c5 24.9 24.0
+ ww-lsa-dim50.n5 24.8 23.9
+ ww-lsa-dim50.p3 23.8 23.2

Table 6: Comparison of the joint model and the chan-
nel model features (CM) by removing channel features
corresponding to −p(e|f) from the lattices, or both di-
rections −p(e|f),−p(f |e) and replacing them by vari-
ous joint models. We re-tuned the log-linear weights for
different feature-sets. Accuracy is based on the average
BLEU over news2010, newssyscomb2010, news2011.

model. The lowest perplexity is achieved by the
context covering the aligned source words (ww-rnn-
dim50.c5) since the source words are a better pre-
dictor of the target words than outside context.

The experiments so far measured if the joint
model can improve in addition to the four channel
model features used by the baseline, that is, the max-
imum likelihood and lexical translation features in
both translation directions. The joint model clearly
overlaps with these features, but how well does
the recurrent model perform compared against the
channel model features? To answer this question,
we removed channel model features corresponding
to the same translation direction as the joint model,
specifically pMLE(e|f) and pLW (e|f), from the lat-
tices and measured the effect of adding the joint
models.

The results (Table 6, column −p(e|f)) clearly
show that our joint models are competitive with the
channel model features by outperforming the orig-
inal baseline with all channel model features (24.7
BLEU) by 0.2 BLEU (ww-rnn-dim50.n5, ww-rnn-
dim50.c5). As a second experiment, we removed all
channel model features (column −p(e|f), p(f |e)),
diminishing baseline accuracy to 22.5 BLEU. In this
setting, the best joint model is able to make up 1.5
of the 2.2 BLEU lost due to removal of the channel
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dev news2010 news2011 newssyscomb2010 Avg(test) PPL
Baseline 24.3 24.4 25.1 24.3 24.7 341
target-only 25.1 25.1 26.4 25.0 25.6 218
sent-lsa-dim80 25.2 25.2 26.3 25.1 25.6 147
sent-lsa-dim240 25.1 25.0 26.2 24.9 25.4 126
ww-rnn-dim50.n5 24.9 25.0 26.3 24.8 25.4 61
ww-rnn-dim50.p5n5 25.0 24.8 26.2 24.7 25.3 59
ww-rnn-dim50.p3 25.1 25.1 26.5 24.9 25.6 143
ww-rnn-dim50.c5 24.8 24.9 26.0 24.8 25.3 16
ww-lsa-dim50.n5 25.0 25.0 26.2 24.8 25.4 76
ww-lsa-dim50.p3 25.1 25.1 26.5 24.9 25.6 151

Table 5: Translation accuracy of the joint model with various encodings of the foreign sentence measured on the
French-English task. Perplexity (PPL) is based on news2011.

model features, while modeling only a single trans-
lation direction. This setup also shows the negligible
effect of the target-only language model in the ab-
sence of translation scores, whereas the joint models
are much more effective since they do model transla-
tion. Overall, the best joint models prove very com-
petitive to the traditional channel features.

5.3 Oracle Experiment
The previous section examined the effect of a set
of basic foreign sentence representations. Although
we find some benefit from these representations, the
differences are not large. One might naturally ask
whether there is greater potential upside from this
channel model. Therefore we turn to measuring the
upper bound on accuracy for the joint approach as a
whole.

Specifically, we would like to find a bound on ac-
curacy given an ideal representation of the source
sentence. To answer this question, we conducted an
experiment where the joint model has access to an
LSA representation of the reference translation.

Table 7 shows that the joint approach has an ora-
cle accuracy of up to 4.3 BLEU above the baseline.
This clearly confirms that the joint approach can ex-
ploit the additional information to improve BLEU,
given a good enough representation of the foreign
sentence. In terms of perplexity, we see an improve-
ment of up to 65% over the target-only model. It
should be noted that since LSA representations are
computed on reference words, perplexity no longer
has its standard meaning.

BLEU PPL
Baseline 25.2 341
target-only 26.4 218
oracle (sent-lsa-dim40) 27.7 124
oracle (sent-lsa-dim80) 28.5 103
oracle (sent-lsa-dim160) 29.0 86
oracle (sent-lsa-dim240) 29.5 76

Table 7: Oracle accuracy of the joint model when us-
ing an LSA encoding of the references, measured on the
news2011 French-English task.

5.4 Target Language Projections

Our experiments so far showed that joint models
based on direct representations of the source words
are very competitive to the traditional channel mod-
els (§5.2). However, these experiments have not
shown any improvements over the normal recurrent
neural network language model. The previous sec-
tion demonstrated that good representations can lead
to substantial gains (§5.3). In order to bridge the gap,
we propose to learn a separate transform from the
foreign words to an encoding of the reference target
words, thus making the source-side representations
look more like the target-side encodings used in the
oracle experiment.

Specifically, we learn a linear transform
dθ : x→ r mapping directly from a vector en-
coding of the foreign sentence x to an l-dimensional
LSA representation r of the reference sentence. At
test and training time we apply dθ to the foreign
words and use the transformation instead of a direct
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dev news2010 news2011 newssyscomb2010 Avg(test) PPL
Baseline 24.3 24.4 25.1 24.3 24.7 341
target-only 25.1 25.1 26.4 25.0 25.6 218
proj-lsa-dim40 25.1 25.3 26.5 25.2 25.8 145
proj-lsa-dim80 25.1 25.3 26.6 25.2 25.8 134

Table 8: Translation accuracy of the joint model with a source-target transform, measured on the French-English task.
Perplexity (PPL) is based on news2011; differences to target-only are significant at the p < 0.001 level.

source-side representation.
The transform models all foreign words in the par-

allel corpus except singletons, which are collapsed
into a unique class, similar to the recurrent neural
network language model. We train the transform to
minimize the squared error with respect to the ref-
erence LSA vector using an SGD online learner:

θ∗ = arg min
θ

n∑
i=1

(
ri − dθ(xi)

)2
(1)

We found a simple constant learning rate, tuned
on the validation data, to be as effective as sched-
ules based on constant decay, or reducing the learn-
ing rate when the validation error increased. Our
feature-set includes unigram and bigram word fea-
tures. The value of unigram features is simply the
unigram count in that sentence; bigram features re-
ceive a weight of the bigram count divided by two
to help prevent overfitting. Then the vector for each
sentence was divided by its L2 norm. Both weight-
ing and normalization led to substantial improve-
ments in test set error. More complex features such
as skip-bigrams, trigrams and character n-grams did
not yield any significant improvements. Even this
representation of sentences is composed of a large
number of instances, and so we resorted to feature
hashing by computing feature ids as the least signif-
icant 20 bits of each feature name. Our best trans-
form achieved a cosine similarity of 0.816 on the
training data, 0.757 on the validation data, and 0.749
on news2011.

The results (Table 8) show that the transform im-
proves over the recurrent neural network language
model on all test sets and by 0.2 BLEU on average.
We verified significance over the target-only model
using paired bootstrap resampling (Koehn, 2004)
over all test sets (7526 sentences) at the p < 0.001
level. Overall, we improve accuracy by up to 1.5

BLEU and by 1.1 BLEU on average across all test
sets over the decoder 1-best with our joint language
and translation model.

6 Related Work

Our approach of combining language and translation
modeling is very much in line with recent work on
n-gram-based translation models (Crego and Yvon,
2010), and more recently continuous space-based
translation models (Le et al., 2012a; Gao et al.,
2013). The joint model presented in this paper dif-
fers in a number of key aspects: we use a recur-
rent architecture representing an unbounded history
of both source and target words, rather than a feed-
forward style network. Feed-forward networks and
n-gram models have a finite history which makes
predictions independent of anything but a small his-
tory of words. Furthermore, we only model the
target-side which is different to previous work mod-
eling both sides.

We introduced a new algorithm to tackle lattice
rescoring with an unbounded model. The auto-
matic speech recognition community has previously
addressed this issue by either approximating long-
span language models via simpler but more tractable
models (Deoras et al., 2011b), or by identifying con-
fusable subsets of the lattice from which n-best lists
are constructed and rescored (Deoras et al., 2011a).
We extend their work by directly mapping a recur-
rent neural network model onto the structure of the
lattice, rescoring all states instead of focusing only
on subsets.

7 Conclusion and Future Work

Joint language and translation modeling with recur-
rent neural networks leads to substantial gains over
the 1-best decoder output, raising accuracy by up
to 1.5 BLEU and by 1.1 BLEU on average across
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several test sets. The joint approach also improves
over the gains of the recurrent neural network lan-
guage model, adding 0.2 BLEU on average across
several test sets. Our models are competitive to the
traditional channel models, outperforming them in a
head-to-head comparison.

Furthermore, we tackled the issue of lattice
rescoring with an unbounded recurrent model by
means of a novel algorithm that keeps a beam of re-
current histories. Finally, we have shown that the
recurrent neural network language model can sig-
nificantly improve over n-gram baselines across a
range of language-pairs, even when the baselines
were trained on 575 times more data.

In future work we plan to directly learn represen-
tations of the source-side during training of the joint
model. Thus, the model itself can decide which en-
coding is best for the task. We also plan to change
the cross entropy objective to a BLEU-inspired ob-
jective in a discriminative training regime, which we
hope to be more effective. We would also like to ap-
ply recent advances in tackling the vanishing gradi-
ent problem (Pascanu et al., 2013) using a regular-
ization term to maintain the magnitude of the gradi-
ents during back propagation through time. Finally,
we would like to integrate the recurrent model di-
rectly into first-pass decoding, a straightforward ex-
tension of lattice rescoring using the algorithm we
developed.
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Tomáš Mikolov, Anoop Deoras, Daniel Povey, Lukáš
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Abstract

Domain adaptation for SMT usually adapts
models to an individual specific domain.
However, it often lacks some correlation
among different domains where common
knowledge could be shared to improve the
overall translation quality. In this paper, we
propose a novel multi-domain adaptation ap-
proach for SMT using Multi-Task Learning
(MTL), with in-domain models tailored for
each specific domain and a general-domain
model shared by different domains. The pa-
rameters of these models are tuned jointly via
MTL so that they can learn general knowledge
more accurately and exploit domain knowl-
edge better. Our experiments on a large-
scale English-to-Chinese translation task val-
idate that the MTL-based adaptation approach
significantly and consistently improves the
translation quality compared to a non-adapted
baseline. Furthermore, it also outperforms the
individual adaptation of each specific domain.

1 Introduction

Domain adaptation is an active topic in statisti-
cal machine learning and aims to alleviate the do-
main mismatch between training and testing data.
Like many machine learning tasks, Statistical Ma-
chine Translation (SMT) assumes that the data dis-
tributions of training and testing domains are sim-
ilar. However, this assumption does not hold for
real world SMT systems since training data for
SMT models may come from a variety of domains.
The translation quality is often unsatisfactory when

∗This work was done while the first and second authors were
visiting Microsoft Research Asia.

translating texts from a specific domain using a gen-
eral model that is trained over a hotchpotch of bilin-
gual corpora. Therefore, domain adaptation is cru-
cial for SMT systems to achieve better performance.

Previous research on domain adaptation for SMT
includes data selection and weighting (Eck et al.,
2004; Lü et al., 2007; Foster et al., 2010; Moore and
Lewis, 2010; Axelrod et al., 2011), mixture mod-
els (Foster and Kuhn, 2007; Koehn and Schroeder,
2007; Sennrich, 2012; Razmara et al., 2012), and
semi-supervised transductive learning (Ueffing et
al., 2007), etc. Most of these methods adapt SMT
models to a specific domain according to testing data
and have achieved good performance. It is natural
that real world SMT systems should adapt the mod-
els to multiple domains because the input may be
heterogeneous, so that the overall translation qual-
ity can be improved. Although we can easily ap-
ply these methods to multiple domains individually,
it is difficult to use the common knowledge across
different domains. To leverage the common knowl-
edge, we need to devise a multi-domain adaptation
approach that jointly adapts the SMT models.

Multi-domain adaptation has been proved quite
effective in sentiment analysis (Dredze and Cram-
mer, 2008) and web ranking (Chapelle et al., 2011),
where the commonalities and differences across
multiple domains are explicitly addressed by Multi-
task Learning (MTL). MTL is an approach that
learns one target problem with other related prob-
lems at the same time, using a shared feature repre-
sentation. The key advantage of MTL is to enable
implicit data sharing and regularization. Therefore,
it often leads to a better model for each task. Anal-
ogously, we expect that the overall translation qual-
ity can be further improved by using an MTL-based
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Figure 1: An example with N pre-defined domains, where T is the entire training corpus. Ti is the in-domain training
data for the i-th domain selected from T using the bilingual cross-entropy based method (Axelrod et al., 2011). The
in-domain TMi and LMi are trained using the in-domain training data Ti. The general-domain models TM-G and LM-
G are trained using the entire training corpus T . Si is the domain-specific SMT system for the i-th domain, leveraging
the in-domain models and the general-domain models as features.

multi-domain adaptation approach.

In this paper, we use MTL to jointly adapt SMT
models to multiple domains. Specifically, we de-
velop multiple SMT systems based on mixture mod-
els, where each system is tailored for one specific
domain with an in-domain Translation Model (TM)
and an in-domain Language Model (LM). Mean-
while, all the systems share a same general-domain
TM and LM. These SMT systems are considered as
several related tasks with a shared feature represen-
tation, which fits well into a unified MTL frame-
work. With the MTL-based joint tuning, general
knowledge can be better learned by the general-
domain models, while domain knowledge can be
better exploited by the in-domain models as well.
By using a distributed stochastic learning approach
(Simianer et al., 2012), we can estimate the fea-
ture weights of multiple SMT systems at the same
time. Furthermore, we modify the algorithm to treat
in-domain and general-domain features separately,
which brings regularization to multiple SMT sys-
tems in an efficient way. Experimental results have
shown that our method can significantly improve the
translation quality on multiple domains over a non-
adapted baseline. Moreover, the MTL-based adap-
tation also outperforms the conventional individual

adaptation approach towards each domain.
The rest of the paper is organized as follows: The

proposed approach is explained in Section 2. Exper-
imental results are presented in Section 3. Section 4
introduces some related work. Section 5 concludes
the paper and suggests future research directions.

2 The Proposed Approach

Figure 1 gives an example with N pre-defined do-
mains to illustrate the main idea. There are three
steps in the training phase. First, in-domain train-
ing data is selected according to the pre-defined do-
mains (Section 2.1). Second, in-domain models and
general-domain models are trained to develop the
domain-specific SMT systems (Section 2.2). Third,
multiple domain-specific SMT systems are tuned
jointly by using an MTL-based approach (Section
2.3).

2.1 In-domain Data Selection

In the first step, in-domain bilingual data is selected
from all the bilingual data to train in-domain TMs.
We use the bilingual cross-entropy based approach
(Axelrod et al., 2011) to obtain the in-domain data:

[HI−src(s)−HG−src(s)]+[HI−tgt(t)−HG−tgt(t)] (1)
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where {s,t} is a bilingual sentence pair in the entire
bilingual corpus. HI−xxx(·) and HG−xxx(·) repre-
sent the cross-entropy of a string according to an in-
domain LM and a general-domain LM, respectively.
”xxx” denotes either the source language (src) or the
target language (tgt). HI−src(s)−HG−src(s) is the
cross-entropy difference of string s between the in-
domain and general-domain source-side LMs, and
HI−tgt(t) − HG−tgt(t) is the cross-entropy differ-
ence of string t between the in-domain and general-
domain target-side LMs. This criterion biases to-
wards sentence pairs that are like the in-domain cor-
pus but unlike the general-domain corpus. There-
fore, the sentence pairs with lower scores (larger dif-
ferences) are presumed to be better.

Now, the question is how to find sufficient mono-
lingual data to train in-domain LMs. A straight-
forward solution is to collect the data from the in-
ternet. There are a large number of monolingual
webpages with domain information from web por-
tal sites1, which can be collected to train in-domain
LMs. In large-scale real world SMT systems, practi-
cal domain adaptation techniques should target more
domains rather than just one due to heterogeneous
input. Therefore, we use a web crawler to collect
monolingual webpages ofN domains from web por-
tal sites, for both the source language and the tar-
get language. The statistics of web-crawled data is
given in Section 3.1. We use the web-crawled mono-
lingual documents to train N in-domain source-side
LMs and N in-domain target-side LMs. Addition-
ally, we also train the source-side and target-side
general-domain LMs with all the web-crawled doc-
uments from different domains. Finally, these in-
domain and general-domain LMs are used to select
in-domain bilingual data for different domains ac-
cording to Formula (1).

2.2 SMT Systems with Mixture Models

In the second step, with the selected in-domain train-
ing data, we develop SMT systems based on mix-
ture models. In particular, we use the mixture model
based approach proposed by Koehn and Schroeder

1Many web portal sites contain domain information
for webpages, such as ”www.yahoo.com” in English and
”www.sina.com.cn” in Chinese and etc. The webpages are of-
ten categorized by human editors into different domains, such
as politics, sports, business, etc.

(2007). Specifically, we have developed N SMT
systems for N domains respectively, where each
system is a typical log-linear model. For each sys-
tem, the best translation candidate f̂ is given by:

f̂ = arg max
f

{P (f |e)} (2)

where the translation probability P (f |e) is given by:

P (f |e) ∝
∑

i

wi · log φi(f, e)

=
∑
j∈I

wj · log φj(f, e)︸ ︷︷ ︸
In-domain

+
∑
k∈G

wk · log φk(f, e)︸ ︷︷ ︸
General domain

(3)

where φj(f, e) is the in-domain feature function and
wj is the corresponding feature weight. φk(f, e) is
the general-domain feature function and wk is the
feature weight. The detailed feature description is
as follows:

In-domain features

• An in-domain TM, including phrase translation
probabilities and lexical weights for both direc-
tions (4 features)

• An in-domain target-side LM (1 feature)

• word count (1 feature)

• phrase count (1 feature)

• NULL penalty (1 feature)

• Number of hierarchical rules used (1 feature)

General-domain features

• A general-domain TM, including phrase trans-
lation probabilities and lexical weights for both
directions (4 features)

• A general-domain target-side LM (1 feature)

The feature description indicates that each SMT
system contains two TMs and two LMs. The in-
domain TMs are trained using the selected bilin-
gual training data according to Formula (1), and the
general-domain TM is trained using the entire bilin-
gual training data. For the LMs, we re-use the target-
side in-domain LMs and general-domain LM trained
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for data selection (Section 2.1). Compared with a
normal single-model system, the system with mix-
ture models can balance the contributions from the
general-domain and in-domain knowledge. Hence it
potentially benefits from both.

2.3 MTL-based Tuning

In the third step, the feature weights in multiple
domain-specific SMT systems are estimated. In-
stead of tuning each domain-specific system sepa-
rately, we treat different systems as related tasks and
tune them jointly in an MTL framework. There are
two main reasons for MTL-based tuning:

1. Domain-specific translation tasks share the
same general-domain LM and TM. MTL often
leads to better performance by leveraging com-
monalities among different tasks.

2. By enforcing that the general-domain LM and
TM perform equally across different domains,
MTL provides a kind of regularization to pre-
vent over-fitting.

Formally, the objective function of the proposed
MTL-based approach is described as follows:

min
W

{
N∑

i=1

Loss(Ei, ê(Fi,wi))

}
(4)

where N is the number of pre-defined domains.
{Fi,Ei} is the in-domain development dataset for the
i-th domain. Fi denotes the source sentences and Ei

denotes the reference translations. wi is a D-length
feature weight column vector for the i-th domain,
where D is the dimension of the feature space. W is
a N -by-D matrix, representing [w1|w2| . . . |wN ]T .
ê(Fi,wi) are the best translations obtained for Fi

with parameters wi. Loss(·, ·) denotes the loss be-
tween the system’s output and the reference trans-
lations. The basic idea of the objective function is
to minimize the sum of loss functions for all the do-
mains, rather than one domain at a time. Therefore,
by adjusting the in-domain and general-domain fea-
ture weights, the translation quality is expected to be
good across different domains.

To effectively tune SMT systems jointly, we mod-
ify the asynchronous Stochastic Gradient Descend
(SGD) Algorithm (Simianer et al., 2012) to optimize

objective function (4). We follow the pairwise rank-
ing approach with the perceptron algorithm (Shen
and Joshi, 2005) to update feature weights. Let a
translation candidate be denoted by its feature vector
v ∈ RD, the pairwise preference for training is con-
structed by ranking two candidates according to the
smoothed sentence-level BLEU (Liang et al., 2006).
For a preference pair v[j]=(v(1), v(2)) where v(1) is
preferred, a hinge loss is used:

L(wi) = (−〈wi, v(1) − v(2)〉)+ (5)

where (x)+ = max(0, x) and 〈·, ·〉 denotes the in-
ner product of two vectors. With the perceptron al-
gorithm (Shen and Joshi, 2005), the gradient of the
hinge loss is:

∇L(wi) =

{
v(2) − v(1) if〈wi, v(1) − v(2)〉 ≤ 0

0 otherwise
(6)

The training instances for the discriminative
learning in pairwise ranking are made by comparing
the N-best list of the translation candidates scored
by the smoothed sentence-level BLEU (Liang et al.,
2006). Following Simianer et al. (2012), the N-best
list is divided into three bins: the top 10% (High),
the middle 80% (Middle), and the last 10% (Low).
These bins are used for pairwise ranking where the
translation preference pairs are built between the
candidates in High-Middle, Middle-Low, and High-
Low, but not the candidates within the same bin,
which is shown in Figure 2. The idea is to guar-
antee that the ranker is more discriminative to prefer
the good translations to the bad ones.

High: 10%

Middle: 80%

Low: 10%

N-best list

Figure 2: Training instances for pairwise ranking.
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Algorithm 1 Modified Asynchronous SGD
1: Distribute N domain-specific decoders to N ma-

chines
2: Initialize w1,w2, . . . ,wN ← 0
3: for epochs t← 0 . . . T − 1 do
4: for all domains d ∈ {1 . . . N}: parallel do
5: ud,t,0,0 = wd

6: S = |Fd|
7: for all i ∈ {0 . . . S − 1} do
8: Decode i-th sentence with ud,t,i,0

9: P = No. of pairs built from the N-best list
10: for all pairs v[j], j ∈ {0 . . . P − 1} do
11: ud,t,i,j+1 ← ud,t,i,j − η∇L(ud,t,i,j)
12: end for
13: ud,t,i+1,0 ← ud,t,i,P

14: end for
15: end for
16: for all domains d ∈ {1 . . . N} do
17: wd = ud,t,S,0

18: end for
19: WG ← [wG

1 | . . . |wG
N ]T

20: for all domains d ∈ {1 . . . N} do
21: for k ← 1 . . . |wG

d | do
22: wG

d [k] = 1
N

∑N
n=1 WG[n][k]

23: end for
24: wd ←

[wI
d

wG
d

]
25: end for
26: end for
27: return w1,w2, . . . ,wN

Our modified algorithm is illustrated in Algorithm
1. Each column vector wi is further split into two
parts wI

i and wG
i , representing the In-domain and

General-domain feature weights respectively. In Al-
gorithm 1, we first distribute the domain-specific
SMT decoders to different machines and initialize
the feature weights (line 1-2). Typically, the SGD al-
gorithm runs in several iterations (In this study, we
set the number of epochs T to 20) (line 3). Multi-
ple SMT decoders run in parallel and each decoder
updates its feature weights individually using its in-
domain development data (line 4-15). For each do-
main, the domain-specific decoder translates each
in-domain development sentence and determines the
N-best translations (line 4-8). The preference pairs
are built and used to update the parameters by gra-
dient descent with η = 0.0001 (line 9-13). Each
domain-specific decoder translates its in-domain de-
velopment data multiple times. After each itera-
tion, feature weights from all decoders are collected

(line 16-19). In contrast to the original algorithm
(Simianer et al., 2012), we only average the general-
domain feature weights wG

1 , . . . ,wG
N , but do not av-

erage the in-domain feature weights (line 20-25).
The reason is we hope to leverage the commonalities
among these systems. Meanwhile, general knowl-
edge is enforced to be conveyed equally across dif-
ferent domains. Finally, the algorithm returns all
the domain-specific feature weights w1,w2, . . . ,wN

that are used for testing (line 27).
After the joint MTL-based tuning, the feature

weights tailored for domain-specific SMT systems
are used to translate the testing data. We collect in-
domain testing data for each domain to evaluate the
domain-specific systems. Although this is not al-
ways the case in real applications where the testing
domain is known, this study mainly focuses on the
effectiveness of the MTL-based tuning approach.

3 Experiments

3.1 Data

We evaluated our MTL-based domain adaptation
approach on a large-scale English-to-Chinese ma-
chine translation task. The training data consisted
of two parts: monolingual data and bilingual data.
The monolingual data was used to train the source-
side and target-side LMs, both of which were used
for data selection in Section 2.1. In addition, the
target-side LMs were re-used in the SMT systems
as features. As mentioned in Section 2.1, we built a
web crawler to collect a large number of webpages
from web portal sites in English and Chinese respec-
tively. In the experiments, we mainly focused on six
popular domains, namely Business, Entertainment,
Health, Science & Technology, Sports, and Politics.
For both English and Chinese webpages, the HTML
tags were removed and the main content was ex-
tracted. The data statistics are shown in Table 1.

The bilingual data we used was mainly mined
from the web using the method proposed by Jiang
et al. (2009), with a post-processing step using our
bilingual data cleaning method (Cui et al., 2013).
Therefore, the data quality is pretty good. In addi-
tion, we also used the English-Chinese parallel cor-
pus released by LDC2. In total, the bilingual data

2LDC2003E07, LDC2003E14, LDC2004E12,
LDC2005T06, LDC2005T10, LDC2005E83, LDC2006E26,
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Domain English Chinese
Docs Words Docs Words

Business 21M 10.4B 7.91M 2.73B
Ent. 18.3M 8.29B 4.16M 1.31B
Health 8.7M 4.73B 0.9M 0.42B
Sci&Tech 10.9M 5.33B 5.28M 1.6B
Sports 18.9M 9.58B 2.49M 0.59B
Politics 10.3M 5.56B 1.67M 0.39B

Table 1: Statistics of web-crawled monolingual data, in
numbers of documents and words (main content). ”M”
refers to million and ”B” refers to billion.

contained around 30 million sentence pairs, with
404M words in English and 329M words in Chi-
nese. For each domain, we used the cross-entropy
based method in Section 2.1 to rank the entire bilin-
gual data, and the top 10% sentence pairs from the
ranked bilingual data were selected as the in-domain
data to train the in-domain TM. Moreover, we pre-
pared 2,000 in-domain sentences for development
and 1,000 in-domain sentences for testing in each
domain. The details are shown in Table 2.

Domain Train Dev Test
En Ch En Ch En Ch

Business 30M 28M 36K 35K 19K 19K
Ent. 25M 22M 21K 18K 13K 12K
Health 23M 20M 33K 33K 21K 22K
Sci&Tech 28M 26M 46K 45K 27K 27K
Sports 19M 16M 18K 14K 10K 9K
Politics 28M 24M 19K 17K 13K 12K

Table 2: Statistics of in-domain training, development
and testing data, in number of words.

3.2 Setup

An in-house hierarchical phrase-based SMT de-
coder was implemented for our experiments. The
CKY decoding algorithm was used and cube prun-
ing was performed with the same default parameter
settings as in Chiang (2007). We used a 100-best
list from the decoder for the pairwise ranking al-
gorithm. Translation models were trained over the
bilingual data that was automatically word-aligned
using GIZA++ (Och and Ney, 2003) in both direc-
tions, and the diag-grow-final heuristic was used to

LDC2006E34, LDC2006E85, LDC2006E92.

refine the symmetric word alignment. The phrase
tables were filtered to retain top-20 translation can-
didates for each source phrase for efficiency. An
in-house language modeling toolkit was used to
train the 4-gram language models with modified
Kneser-Ney smoothing (Kneser and Ney, 1995) over
the web-crawled data. The evaluation metric for
the overall translation quality was case-insensitive
BLEU4 (Papineni et al., 2002). A statistical sig-
nificance test was performed using the bootstrap re-
sampling method (Koehn, 2004).

3.3 Baseline

We have two baselines. The first baseline is a non-
adapted Hiero using our implementation. It con-
tained the general-domain TM and LM, as well as
other standard features. In addition, the fix-discount
method (Foster et al., 2006) for phrase table smooth-
ing was also used. The system was general-domain
oriented and it was tuned by using MERT (Och,
2003) with a combination of six in-domain develop-
ment datasets. The second baseline is Google Online
Translation Service3. We obtained the English-to-
Chinese translations of the testing data from Google
Translation to have a more solid comparison.

Moreover, we also compared our method with the
adapted systems towards each domain individually
(Koehn and Schroeder, 2007). This is to demon-
strate the superiority of our MTL-based tuning ap-
proach across different domains.

3.4 Results

The end-to-end translation performance is shown in
Table 3. We found that the baseline has a similar
performance to Google Translation, with certain do-
mains performed even better (Business, Sci&Tech,
Sports, Politics). This demonstrates that the transla-
tion quality of our baseline is state-of-the-art. More-
over, we can answer three questions according to the
experimental results as follow:

First, is domain mismatch a significant prob-
lem for a real world SMT system? We used the
same system only with general-domain TM and LM,
but tuned towards each domain individually using
in-domain dev data. Table 3 shows that the setting
”[A] G-TM + G-LM” performs much better than

3http://translate.google.com
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Business Ent. Health Sci&Tech Sports Politics
[N] Baseline (G-TM + G-LM) 27.19 17.87 25.79 25.34 25.53 23.01
Google Translation 26.01 18.44 27.71 25.07 24.08 22.97
[A] G-TM + G-LM 29.58 19.08 28.80 26.84 30.28 25.64
[A] I-TM + I-LM 28.20 17.25 27.20 25.41 30.12 22.97
[A] (G+I)-TM + G-LM 29.45 19.22 28.93 27.01 31.01 25.40
[A] (G+I)-TM + I-LM 29.60 19.43 28.94 27.05 34.36 25.98
[A] (G+I)-LM + G-TM 29.66 19.50 29.00 27.10 33.60 26.03
[A] (G+I)-LM + I-TM 28.50 17.66 27.58 25.99 30.44 23.30
[A] (G+I)-TM + (G+I)-LM 29.82 19.53 29.03 26.94 33.77 26.09
[A,MTL] (G+I)-TM + (G+I)-LM 30.26 19.94 29.08 27.17 34.11 26.50

Table 3: End-to-end experimental results (BLEU4%) with large-scale training data (p < 0.05). ”[N]” means the system
is non-adapted and tuned using MERT on general-domain dev data. ”[A]” denotes that the system is adapted towards
each domain individually using MERT on in-domain dev data. ”[A,MTL]” indicates that the system was tuned using
our MTL-based approach on in-domain dev data. ”I-TM” and ”G-TM” denote the in-domain and general-domain
translation model. ”I-LM” and ”G-LM” denote the in-domain and general-domain language model. We also obtained
translations of the testing data using Google Translation for comparison.

the non-adapted baseline across all domains with at
least 1.2 BLEU points. In addition, the setting ”[A]
G-TM + G-LM” also outperforms Google Transla-
tion on all domains. Analogous to previous research,
this confirms that the domain mismatch indeed ex-
ists and the parameter estimation using in-domain
dev data is quite useful.

Second, does the mixture models based adap-
tation work for a variety of domains? We experi-
mented with different settings with multiple TMs or
LMs, or both. It is interesting to note that for large-
scale SMT systems, using in-domain models alone
is inferior to using the general models alone. The
setting ”[A] G-TM + G-LM” is better than the set-
ting ”[A] I-TM + I-LM” across different domains.
The reason is the data for general models has already
included the in-domain data and the data coverage is
much larger, thus the probability estimation is more
reliable and the translation quality is much better.

For the LM, the in-domain LM performs better
than the general-domain LM because our mono-
lingual data (Table 1) for each domain is already
sufficient for training an in-domain LM with good
performance. From Table 3, we observed that the
setting ”[A] (G+I)-TM + I-LM” outperforms ”[A]
(G+I)-TM + G-LM”, with the ”Sports” domain be-
ing the most significant. For the TM, the per-
formance of the in-domain TM is inferior to the
general-domain TM. The results show that the set-

ting ”[A] (G+I)-LM + G-TM” is significantly better
than ”[A] (G+I)-LM + I-TM”. The main reason is
the data coverage for in-domain TM is much smaller
than the general model. When each system uses two
TMs and two LMs, it consistently results in better
performance, indicating that mixture models are cru-
cial for domain adaptation in SMT.

Third, can MTL further improve the transla-
tion quality? We used the MTL-based approach to
jointly tune multiple domain-specific systems, lever-
aging the commonalities among different but related
tasks. From Table 3, the MTL-based approach sig-
nificantly improve the translation quality over the
non-adapted baseline, and also outperforms conven-
tional mixture models based methods. In particular,
the ”Sports” domain benefits the most from the in-
domain knowledge, which confirms that domain dis-
crepancy should be addressed and may bring large
improvements on certain domains.

3.5 Discussion

According to our experiments, only averaging over
the out-of-domain feature weights returned robust
and converged results. We do not have theoreti-
cally grounded guarantee. However, we observed
that the BLEU score of our method on DEV data
was slightly lower than that in the baseline system,
which indicates the out-of-domain features are less
over-fitting on the domain-specific DEV data since
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SOURSE A point begins with a player serving the ball. This means one player hits
the ball towards the other player. (The serve must be played from behind the

baseline and must
::::
land in the service box . Players get two attempts to make

a good serve.)
REF 得 分 由 一 个球球球员员员发 球 开 始 ， 这 是 指 一 个球球球员员员向 另 一 个球球球员员员击

球。(发发发球球球时选手必须站在底线之外，球必须要
::::
落落落在在在对方的 发发发球球球区区区 内，

每次发发发球球球允许有一次失误。)
[N] Baseline (G-TM + G-LM) 舞会始于玩玩玩家家家服务的一个点。这意味着玩玩玩家家家对其他玩玩玩家家家的击球。

(该服服服务务务必须从背后打的基线和必须
:::::::
降降降落落落在在在 服服服务务务框框框 。球员两次试图成

为一个好的服服服务务务。)
[A] (G+I)-TM + (G+I)-LM 一开始球的球球球员员员，这意味着一名球球球员员员 球打向其他球球球员员员。(必须从

底线发发发球球球，必须在 发发发球球球区区区 的
:::::
区区区域域域。球员只有两次尝试去做一个好

的发发发球球球。)
[A,MTL](G+I)-TM + (G+I)-LM 第一球的球球球员员员，这意味着一名 球球球员员员对另一个球球球员员员击球。(必须在底

线后面发发发球球球，并且必须
:::::::
降降降落落落在在在 发发发球球球区区区 。球员两次试图成为一个好

的发发发球球球。)

Table 4: Examples illustrating some different translations, where the Chinese phrases are translated from the English
phrases with the same symbols (e.g., underline, wavy-line, and box). The details are explained in Section 3.5.

we enforced them to play the same role across dif-
ferent domains. It seems that averaging the out-of-
domain feature weights can be considered as a kind
of regularization.

An example sentence from the Sports domain
with translations from different methods is shown
in Table 4. In this sentence, the baseline always
translates ”player” to ”玩家” (game player), which
should be ”球员” (ball player). And, the base-
line translates ”serve” to ”服务” (work for), which
should be ”发球” (put the ball into play). The phrase
”service box” here means ”发球区”, which denotes
the zone where the ball is to be served. However, the
baseline incorrectly splits them into two words, then
translates ”service” to ”服务” and ”box” to ”框”.
In contrast, the approaches with adapted models are
able to translate these words very well.

Both our MTL-based approach and the conven-
tional adaptation methods leverage the mixture mod-
els. A natural question is why our MTL-based ap-
proach performs better than the individual adapta-
tion. To answer this question, we looked into the
details of the tuning and decoding procedures in the
MTL-based approach. We observed that the BLEU
score on the development data for each system was
lower than the score when conducting individual
adaptation. Considering that the algorithm enforc-

ing the general features play the same role across
different domains, we suspect that MTL-based ap-
proach introduces a kind of regularization for each
domain-specific system. The regularization prevents
the general features from biasing towards certain do-
mains to the extreme. This property is quite impor-
tant for real world SMT systems. Usually, a sen-
tence is composed of some domain-specific words
and some general words, so it is often improper to
translate every word in the sentence using the in-
domain knowledge. For the example in Table 4,
the individual adaptation method ”[A] (G+I)-TM +
(G+I)-LM” translates ”land” to ”区域” (zone) im-
properly, because ”区域” appears more often in the
Sports text than the general-domain text. This shows
that the individual adaptation methods tend to over-
fit the in-domain development data. In contrast, the
MTL-based approach ”[A,MTL](G+I)-TM + (G+I)-
LM” just translates ”land” to ”降落在” (fall on),
which is more appropriate.

4 Related Work

4.1 Domain Adaptation

One direction of domain adaptation explored the
data selection and weighting approach to improve
the performance of SMT on specific domains. Eck
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et al. (2004) first decoded the testing data with a
general TM, and then used the translation results
to train an adapted LM, which was in turn used to
re-decode the testing data. Lü et al. (2007) tried
to weight the training data according to the similar-
ity with test data using information retrieval mod-
els, while Foster et al. (2010) trained a discrimina-
tive model to estimate a weight for each sentence
in the training corpus. Other methods conducted
data selection based on cross-entropy (Moore and
Lewis, 2010), and Axelrod et al. (2011) further ex-
tended their cross-entropy based method to the se-
lection of bilingual corpus in the hope that more rel-
evant corpus to the target domain could yield smaller
models with better performance. Other methods
included using semi-supervised transductive learn-
ing techniques to exploit the monolingual in-domain
data (Ueffing et al., 2007).

Adaptation methods also involved the utiliza-
tion of mixture models. Foster and Kuhn (2007)
explored a number of variants of utilizing multi-
ple TMs and LMs by interpolation. Koehn and
Schroeder (2007) used MERT to simultaneously
tune two TMs or LMs. Sennrich (2012) investi-
gated the TM perplexity minimization as a method
to set model weights in mixture modeling. In ad-
dition, inspired by system combination approaches,
Razmara et al. (2012) used the ensemble decoding
method to mix multiple translation models, which
outperformed a variety of strong baselines.

Generally, most previous methods merely con-
ducted domain adaption for a single domain, rather
than multiple domains at the same time. One could
also simply build multiple SMT systems that were
adapted to multiple domains, but they were often
separated and not tuned together. So far, there has
been little research into the multi-domain adaptation
problem over mixture models for SMT systems, as
proposed in this paper.

4.2 Multi-task Learning

In machine learning, MTL is an approach to learn
one target problem with other related problems at
the same time. This often leads to a better model for
the main task because it allows the learner to use the
commonality among the tasks. MTL is performed
by learning tasks in parallel while using a shared
representation. Therefore, what is learned for each

task can help other tasks be learned better.
MTL was successfully applied in some Natu-

ral Language Processing (NLP) tasks. For exam-
ple, Blitzer et al. (2006) extended the MTL ap-
proach (Ando and Zhang, 2005) to domain adapta-
tion tasks in part-of-speech tagging. Collobert and
Weston (2008) proposed using deep neural networks
to train a set of tasks, including part-of-speech tag-
ging, chunking, named entity recognition, and se-
mantic roles labeling. They reported that jointly
learning these tasks led to superior performance.
MTL was also applied in sentiment analysis (Dredze
and Crammer, 2008) and web ranking (Chapelle
et al., 2011) to address the multi-domain learning
and adaptation. In SMT, Duh et al. (2010) pro-
posed using MTL for N-best re-ranking on sparse
feature sets, where each N-best list corresponded to
a distinct task. Simianer et al. (2012) proposed dis-
tributed stochastic learning with feature selection in-
spired by MTL. The distributed learning approach
outperformed several other training methods includ-
ing MIRA and SGD.

Inspired by these methods, we used MTL to tune
multiple SMT systems at the same time, where each
system was composed of in-domain and general-
domain models. Through a shared feature represen-
tation, the commonalities among the SMT systems
were better learned by the general models. In ad-
dition, domain-specific translation knowledge was
also better characterized by the in-domain models.

5 Conclusion and Future Work

In this paper, we propose an MTL-based approach to
address multi-domain adaptation for SMT. We first
use the cross-entropy based data selection method
to obtain in-domain bilingual data. After that, in-
domain TMs and LMs are trained for each domain-
specific SMT system. In addition, the general-
domain TM and LM are also trained and shared
across different systems. Finally, MTL is lever-
aged to tune multiple systems jointly. Experimen-
tal results have shown that our approach is quite
promising for the multi-domain adaptation problem,
and it brings significant improvement over both the
non-adapted baselines and the conventional domain
adaptation methods with mixture models.

We assume the domain information for testing
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data is known beforehand in this study. However,
this is not always the case for real world SMT sys-
tems. Therefore, to apply our approach in real appli-
cations, the domain information needs to be identi-
fied automatically. In the future, we will pre-define
more popular domains and develop automatic do-
main classifiers. For those domains that are iden-
tified with high confidence, we use the domain-
specific system to translate the texts. For other texts,
we use the general system to translate them. Fur-
thermore, since our approach is a general training
method, we may also combine this approach with
other domain adaptation methods to get more per-
formance improvement.
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Abstract

We present a novel translation model, which
simultaneously exploits the constituency and
dependency trees on the source side, to com-
bine the advantages of two types of trees. We
take head-dependents relations of dependency
trees as backbone and incorporate phrasal n-
odes of constituency trees as the source side
of our translation rules, and the target side as
strings. Our rules hold the property of long
distance reorderings and the compatibility
with phrases. Large-scale experimental result-
s show that our model achieves significantly
improvements over the constituency-to-string
(+2.45 BLEU on average) and dependency-
to-string (+0.91 BLEU on average) model-
s, which only employ single type of trees,
and significantly outperforms the state-of-the-
art hierarchical phrase-based model (+1.12
BLEU on average), on three Chinese-English
NIST test sets.

1 Introduction

In recent years, syntax-based models have become a
hot topic in statistical machine translation. Accord-
ing to the linguistic structures, these models can be
broadly divided into two categories: constituency-
based models (Yamada and Knight, 2001; Graehl
and Knight, 2004; Liu et al., 2006; Huang et al.,
2006), and dependency-based models (Lin, 2004;
Ding and Palmer, 2005; Quirk et al., 2005; Xiong
et al., 2007; Shen et al., 2008; Xie et al., 2011).
These two kinds of models have their own advan-
tages, as they capture different linguistic phenome-
na. Constituency trees describe how words and se-

quences of words combine to form constituents, and
constituency-based models show better compatibil-
ity with phrases. However, dependency trees de-
scribe the grammatical relation between words of
the sentence, and represent long distance dependen-
cies in a concise manner. Dependency-based mod-
els, such as dependency-to-string model (Xie et al.,
2011), exhibit better capability of long distance re-
orderings.

In this paper, we propose to combine the advan-
tages of source side constituency and dependency
trees. Since the dependency tree is structurally sim-
pler and directly represents long distance depen-
dencies, we take dependency trees as the backbone
and incorporate constituents to them. Our mod-
el employs rules that represent the source side as
head-dependents relations which are incorporated
with constituency phrasal nodes, and the target side
as strings. A head-dependents relation (Xie et al.,
2011) is composed of a head and all its dependents in
dependency trees, and it encodes phrase pattern and
sentence pattern (typically long distance reordering
relations). With the advantages of head-dependents
relations, the translation rules of our model hold the
property of long distance reorderings and the com-
patibility with phrases.

Our new model (Section 2) extracts rules from
word-aligned pairs of source trees (constituency
and dependency) and target strings (Section 3), and
translate source trees into target strings by employ-
ing a bottom-up chart-based algorithm (Section 4).
Compared with the constituency-to-string (Liu et al.,
2006) and dependency-to-string (Xie et al., 2011)
models that only employ a single type of trees, our
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/VV

/NR /AD /NN

/NR /M /JJ

/OD

NP1

VP2

VP3

NR AD VV NR OD M JJ NN

NP1

CLP

QP

NP

NP

VP2

ADVP

VP3

NP

IP

(a)

(c)

Intel         will   launch  Asia     first              super     laptop

Chinese: 

English:  Intel will launch the first Ultrabook in Asia

ADVP NP

(b)

Figure 1: Illustration of phrases that can not be captured bya dependency tree (b) while captured by a constituency tree
(a), where the bold phrasal nodes NP1,VP2,VP3 indicate the phrases which can not be captured by dependencysyn-
tactic phrases. (c) is the corresponding bilingual sentences. The subscripts of phrasal nodes are used for distinguishing
the nodes with same phrasal categories.

approach yields encouraging results by exploiting t-
wo types of trees. Large-scale experiments (Sec-
tion 5) on Chinese-English translation show that
our model significantly outperforms the state-of-
the-art single constituency-to-string model by av-
eraged +2.45 BLEU points, dependency-to-string
model by averaged +0.91 BLEU points, and hierar-
chical phrase-based model (Chiang, 2005) by aver-
aged +1.12 BLEU points, on three Chinese-English
NIST test sets.

2 Grammar

We take head-dependents relations of dependency
trees as backbone and incorporate phrasal nodes of
constituency trees as the source side of our transla-
tion rules, and the target side as strings. A head-
dependents relation consists of a head and all its de-
pendents in dependency trees, and it can represent
long distance dependencies. Incorporating phrasal
nodes of constituency trees into head-dependents
relations further enhances the compatibility with
phrases of our rules. Figure 1 shows an example of
phrases which can not be captured by a dependen-
cy tree while captured by a constituency tree, such
as the bold phrasal nodes NP1,VP2 and VP3. The

phrasal node NP1 in the constituency tree indicates
that “�? )P�” is a noun phrase and it should
be translated as a basic unit, while in the depen-
dency tree it is a non-syntactic phrase. The head-
dependents relation in the top level of the dependen-
cy tree presents long distance dependencies of the
words “=A�”, “ò”, “íÑ”, and “)P�” in a
concise manner, which is useful for long distance re-
ordering. We adopt this kind of rule representation
to hold the property of long distance reorderings and
the compatibility with phrases.

Figure 2 shows two examples of our translation
rules corresponding to the top level of Figure 1-(b).
We can see thatr1 captures a head-dependents rela-
tion, while r2 extendsr1 by incorporating a phrasal
node VP2 to replace the two nodes “íÑ/VV” and
“)P�/NN”. As shown in Figure 1-(b), VP2 con-
sists of two parts, a head node “íÑ/VV” and a
subtree rooted at the dependent node “)P�/NN”.
Therefore, we use VP2 and the POS tags of the t-
wo nodes VV and NN to denote the part covered
by VP2 in r2, to indicate that the source sequence
covered by VP2 can be translated by a bilingual
phrase. Since VP2 covers a head node “íÑ/VV”,
we representr2 by constructing a new head node
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1

1

1

2
1 2

1

Figure 2: Two examples of our translation rules corre-
sponding to the top level of Figure 1-(b).r1 captures a
head-dependents relation, andr2 extendsr1 by incorpo-
rating a phrasal node VP2. “x1:NN” indicates a substitu-
tion site which can be replaced by a subtree whose root
has POS tag “NN”. “x1:VP2|||VV NN” indicates a sub-
stitution site which can be replaced by a source phrase
covered by a phrasal node VP (the phrasal node consist-
s of two dependency nodes with POS tag VV and NN,
respectively). The underline denotes a leaf node.

VP2|||VV NN. For simplicity, we use a shorten for-
m CHDR to represent the head-dependents relations
with/without constituency phrasal nodes.

Formally, our grammarG is defined as a 5-tuple
G = 〈Σ, Nc, Nd,∆, R〉, whereΣ is a set of source
language terminals,Nc is a set of constituency
phrasal categories,Nd is a set of categories (POS
tags) for the terminals inΣ, ∆ is a set of target lan-
guage terminals, andR is a set of translation rules
that include bilingual phrases for translating source
language terminals and CHDR rules for translation
and reordering. A CHDR rule is represented as a
triple 〈t, s,∼〉, where:

• t is CHDR with each node labeled by a ter-
minal from Σ or a variable from a setX =
{x1, x2, · · · } constrained by a terminal fromΣ
or a category fromNd or a joint category (con-
structed by the categories fromNc andNd);

• s ∈ (X ∪∆) denotes the target side string;

• ∼ denotes one-to-one links between nontermi-
nals int and variables ins.

We use the lexicon dependency grammar (Hellwig,
2006) which adopts a bracket representation to ex-
press the head-dependents relation and CHDR. For
example, the left-hand sides ofr1 andr2 in Figure 2
can be respectively represented as follows:

(=A�) (ò)íÑ (x1:NN)
(=A�) (ò) x1:VP2|||VV NN

/VV

/NR /AD /NN

/NR /M /JJ

/OD

NP1

VP2

VP3

Parseing      Labelling

/NR /AD launch

Intel will launch in Asia

Intel will launch in Asia

(a)

(b)

(c)

(d)

(e)

NP1

/M

/OD

Intel will launch in Asiathe    first(f)

Ultrabook

Ultrabook

/NN

/NR /M /JJ

/OD

NP1

r3

r4 r5

r6

r7

/M

/OD

r8

(x1:NR) (x2:AD) (x3: ) x1 x2 launch x3

Intel

will

( )(x1:M)x2:NP1|||JJ_NN x1 x2 in Aisa 

Ultrabook

( ) the first

Translation Rules

r3

r4

r5

r6

r7

r8

(g)

Figure 3: An example derivation of translation. (g) lists
all the translation rules.r3, r6 andr8 are CHDR rules,
while r4, r5 andr7 are bilingual phrases, which are used
for translating source terminals. The dash lines indicate
the reordering when employing a translation rule.

The formalized presentation ofr2 in Figure 2-(b):
t = (=A�) (ò) x1:VP2|||VV NN
s = Intel will x1

∼= x1:VP2|||VV NN ↔ x1
where the underline indicates a leaf node.

Figure 3 gives an example of the translation
derivation in our model, with the translation rules
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listed in (g). r3, r6 andr8 are CHDR rules, while
r4, r5 andr7 are bilingual phrases, which are used
for translating source language terminals. Given a
sentence to translate in (a), we first parse it into a
constituency tree and a dependency tree, then label
the phrasal nodes from the constituency tree to the
dependency tree, and yield (b). Then, we translate
it into a target string by the following steps. At the
root node, we apply ruler3 to translate the top level
head-dependents relation and results in four unfin-
ished substructures and target strings in (c). From
(c) to (d), there are three steps (one rule for one step).
We user4 to translate “=A�” to “Intel”, r5 to
translate “ò” to “will”, and r6 to translate the right-
most unfinished part. Then, we applyr7 to translate
the phrase “�?)P�” to “Ultrabook”, and yield
(e). Finally, we applyr8 to translate the last frag-
ment to “the first”, and get the final result (f).

3 Rule Extraction

In this section, we describe how to extract rules from
a set of 4-tuples〈C, T, S,A〉, whereC is a source
constituency tree,T is a source dependency tree,S
is a target side sentence, andA is an word alignmen-
t relation betweenT /C andS. We extract CHDR
rules from each 4-tuple〈C, T, S,A〉 based on GHK-
M algorithm (Galley et al., 2004) with three steps:

1. Label the dependency tree with phrasal nodes
from the constituency tree, and annotate align-
ment information to the phrasal nodes labeled
dependency tree (Section 3.1).

2. Identify acceptable CHDR fragments from the
annotated dependency tree for rule induction
(Section 3.2).

3. Induce a set of lexicalized and generalized
CHDR rules from the acceptable fragments
(Section 3.3).

3.1 Annotation

Given a 4-tuple〈C, T, S,A〉, we first label phrasal
nodes from the constituency treeC to the depen-
dency treeT , which can be easily accomplished by
phrases mapping according to the common covered
source sequences. As dependency trees can capture
some phrasal information by dependency syntactic

/VV

{3-3}{1-8}

/NR

{1-1}{1-1}

/AD

{2-2}{2-2}

/NN

{6-6}{4-8}

/NR

{7-8}{7-8}

/M

{null}{4-5}

/JJ

{6-6}{6-6}

/OD

{4-5}{4-5}

NP1

<6-6>

VP2

<3-8>

VP3

<2-8>

Figure 4: An annotated dependency tree. Each node is
annotated with two spans, the former is node span and
the latter subtree span. The fragments covered by phrasal
nodes are annotated with phrasal spans. The nodes de-
noted by the solid line box are notnsp consistent.

phrases, in order to complement the information that
dependency trees can not capture, we only label the
phrasal nodes that cover dependency non-syntactic
phrases.

Then, we annotate alignment information to the
phrasal nodes labeled dependency treeT , as shown
in Figure 4. For description convenience, we make
use of the notion of spans (Fox, 2002; Lin, 2004).
Given a noden in the source phrasal nodes labeled
T with word alignment information, the spans ofn
induced by the word alignment are consecutive se-
quences of words in the target sentence. As shown
in Figure 4, we annotate each noden of phrasal n-
odes labeledT with two attributes:node span and
subtree span; besides, we annotatephrasal span to
the parts covered by phrasal nodes in each subtree
rooted atn. The three types of spans are defined as
follows:

Definition 1 Given a node n, its node span nsp(n)
is the consecutive target word sequence aligned with
the node n.

Take the node “æ³/NR” in Figure 4 for example,
nsp(æ³/NR)={7-8}, which corresponds to the tar-
get words “in” and “Asia”.

Definition 2 Given a subtree T
′

rooted at n, the
subtree span tsp(n) of n is the consecutive target
word sequence from the lower bound of the nsp of
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all nodes in T
′

to the upper bound of the same set of
spans.

For instance,tsp()P�/NN)={4-8}, which corre-
sponds to the target words “the first Ultrabook in A-
sia”, whose indexes are from 4 to 8.

Definition 3 Given a fragment f covered by a
phrasal node, the phrasal span psp(f) of f is
the consecutive target word sequence aligned with
source string covered by f .

For example,psp(VP2)=〈3-8〉, which corresponds
to the target word sequence “launch the first Ultra-
book in Asia”.

We saynsp, tsp andpsp areconsistent according
to the notion in the phrase-based model (Koehn et
al., 2003). For example,nsp(æ³/NR), tsp()P�/NN) andpsp(NP1) are consistent whilensp(�?/JJ) andnsp()P�/NN) are not consistent.

The annotation can be achieved by a single pos-
torder transversal of the phrasal nodes labeled de-
pendency tree. For simplicity, we call the annotat-
ed phrasal nodes labeled dependency treeannotated
dependency tree. The extraction of bilingual phrases
(including the translation of head node, dependen-
cy syntactic phrases and the fragment covered by a
phrasal node) can be readily achieved by the algo-
rithm described in Koehn et al., (2003). In the fol-
lowing, we focus on CHDR rules extraction.

3.2 Acceptable Fragments Identification

Before present the method of acceptable fragments
identification, we give a brief description of CHDR
fragments. A CHDR fragment is an annotated frag-
ment that consists of a source head-dependents rela-
tion with/without constituency phrasal nodes, a tar-
get string and the word alignment information be-
tween the source and target side. We identify the ac-
ceptable CHDR fragments that are suitable for rule
induction from the annotated dependency tree. We
divide the acceptable CHDR fragments into two cat-
egories depending on whether the fragments con-
tain phrasal nodes. If an acceptable CHDR frag-
ment does not contain phrasal nodes, we call it
CHDR-normal fragment, otherwiseCHDR-phrasal
fragment. Given a CHDR fragmentF rooted atn,
we sayF is acceptable if it satisfies any one of the
following properties:

CHDR-phrasal Rules

r9: ( )( )x1:VP2|||VV_NN Intel will x1

r10: (x1:NR)(x2:AD)x3:VP2|||VV_NN x1 x2 x3

r11: ( )x1:VP3|||AD_VV_NN Intel x1

r12: (x1:NR)x2:VP3|||AD_VV_NN x1 x2

CHDR-normal Rules

r4: (x1:NR) (x2:AD) (x3:NN) x1 x2 launch x3

Intel will launch x1r3: ( ) ( ) (x1:NN)

r2: (x1:NR) (x2:AD) (x3: ) x1 x2 launch x3

r1: ( ) ( ) (x1: ) Intel will launch x1

r5: ( ) ( ) x1:VV (x2: ) Intel will x1 x2

r8: (x1:NR) (x2:AD) x3:VV (x4:NN) x1 x2 x3 x4

r6: (x1:NR) (x2:AD) x3:VV (x4: ) x1 x2 x3 x4

Intel will x1 x2r7: ( ) ( ) x1:VV (x2:NN)

(d)

/VV

/NR /AD /NN

Intel

1

will

2

launch

3

the first Ultrabook in Asia

4-8

(a)

Intel

1

will

2

launch the first Ultrabook in Asia

3-8

VP2

/VV

/NR /AD /NN(b)

(c)

Intel

1

will launch the first Ultrabook in Asia

2-8

VP3

/VV

/NR /AD /NN

VP2|||VV_NN

VP3|||AD_VV_NN

Figure 5: Examples of a CHDR-normal fragment (a), two
CHDR-phrasal fragments (b) and (c) that are identified
from the top level of the annotated dependency tree in
Figure 4, and the corresponding CHDR rules (d) induced
from (a), (b) and (c). The underline denotes a leaf node.

1. Without phrasal nodes, the node span of the
root n is consistent and the subtree spans of
n’s all dependents are consistent. For example,
Figure 5-(a) shows a CHDR-normal fragmen-
t that identified from the top level of the an-
notated dependency tree in Figure 4, since the
nsp(íÑ/VV), tsp(=A�/NR), tsp(ò/AD)
andtsp()P�/NN) are consistent.
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2. With phrasal nodes, the phrasal spans of
phrasal nodes are consistent; and for the other
nodes, the node span of head (if it is not cov-
ered by any phrasal node) is consistent, and the
subtree spans of dependents are consistent. For
instance, Figure 5-(b) and (c) show two CHDR-
phrasal fragments identified from the top level
of Figure 4. In Figure 5-(b),psp(VP2), tsp(=A�/NR) and tsp(ò/AD) are consistent. In
Figure 5-(c),psp(VP3) and tsp(=A�/NR)
are consistent.

The identification of acceptable fragments can be
achieved by a single postorder transversal of the an-
notated dependency tree. Typically, each acceptable
fragment contains at most three types of nodes: head
node, head of the related CHDR; internal nodes, in-
ternal nodes of the related CHDR except head node;
leaf nodes, leaf nodes of the related CHDR.

3.3 Rule Induction

From each acceptable CHDR fragment, we induce
a set of lexicalized and generalized CHDR rules.
We induce CHDR-normal rules and CHDR-phrasal
rules from CHDR-normal fragments and CHDR-
phrasal fragments, respectively.

We first induce a lexicalized form of CHDR rule
from an acceptable CHDR fragment:

1. For a CHDR-normal fragment, we first mark
the internal nodes as substitution sites. This
forms the input of a CHDR-normal rule. Then
we generate the target string according to the
node span of the head and the subtree spans of
the dependents, and turn the word sequences
covered by the internal nodes into variables.
This forms the output of a lexicalized CHDR-
normal rule.

2. For a CHDR-phrasal fragment, we first mark
the internal nodes and the phrasal nodes as sub-
stitution sites. This forms the input of a CHDR-
phrasal rule. Then we construct the output of
the CHDR-phrasal rule in almost the same way
with constructing CHDR-normal rules, except
that we replace the target sequences covered by
the internal nodes and the phrasal nodes with
variables.

For example, ruler1 in Figure 5-(d) is a lexicalized
CHDR-normal rule induced from the CHDR-normal
fragment in Figure 5-(a).r9 and r11 are CHDR-
phrasal rules induced from the CHDR-phrasal frag-
ment in Figure 5-(b) and Figure 5-(c) respectively.
As we can see, these CHDR-phrasal rules are par-
tially unlexicalized.

To alleviate the sparseness problem, we gener-
alize the lexicalized CHDR-normal rules and par-
tially unlexicalized CHDR-phrasal rules with un-
lexicalized nodes by the method proposed in Xie
et al., (2011). As the modification relations be-
tween head and dependents are determined by the
edges, we can replace the lexical word of each n-
ode with its category (POS tag) and obtain new
head-dependents relations with unlexicalized nodes
keeping the same modification relations. We gen-
eralize the rule by simultaneously turn the nodes of
the same type (head, internal, leaf) into their cate-
gories. For example, CHDR-normal rulesr2 ∼ r7
are generalized fromr1 in Figure 5-(d). Besides,r10
and r12 are the corresponding generalized CHDR-
phrasal rules. Actually, our CHDR rules are the su-
perset of head-dependents relation rules in Xie et
al., (2011). CHDR-normal rules are equivalent with
the head-dependents relation rules and the CHDR-
phrasal rules are the extension of these rules. For
convenience of description, we use the subscript to
distinguish the phrasal nodes with the same catego-
ry, such as VP2 and VP3. In actual operation, we use
VP instead of VP2 and VP3.

We handle the unaligned words of the target side
by extending the node spans of the lexicalized head
and leaf nodes, and the subtree spans of the lexical-
ized dependents, on both left and right directions.
This procedure is similar with the method of Och
and Ney, (2004). During this process, we might ob-
tain m(m ≥ 1) CHDR rules from an acceptable
fragment. Each of these rules is assigned with a frac-
tional count1/m. We take the extracted rule set as
observed data and make use of relative frequency es-
timator to obtain the translation probabilitiesP (t|s)
andP (s|t).

4 Decoding and the Model

Following Och and Ney, (2002), we adopt a general
loglinear model. Letd be a derivation that convert a
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source phrasal nodes labeled dependency tree into a
target stringe. The probability ofd is defined as:

P (d) ∝
∏

i

φi(d)
λi (1)

whereφi are features defined on derivations andλi

are feature weights. In our experiments of this paper,
the features are used as follows:

• CHDR rules translation probabilitiesP (t|s)
andP (s|t), and CHDR rules lexical translation
probabilitiesPlex(t|s) andPlex(s|t);

• bilingual phrases translation probabilities
Pbp(t|s) and Pbp(s|t), and bilingual phrases
lexical translation probabilitiesPbplex(t|s) and
Pbplex(s|t);

• rule penaltyexp(−1);

• pseudo translation rule penaltyexp(−1);

• target word penaltyexp(|e|);

• language modelPlm(e).

We have twelve features in our model. The values of
the first four features are accumulated on the CHDR
rules and the next four features are accumulated on
the bilingual phrases. We also use a pseudo transla-
tion rule (constructed according to the word order of
head-dependents relation) as a feature to guarantee
the complete translation when no matched rules can
be found during decoding.

Our decoder is based on bottom-up chart-based
algorithm. It finds the best derivation that convert
the input phrasal nodes labeled dependency tree into
a target string among all possible derivations. Giv-
en the source constituency tree and dependency tree,
we first generate phrasal nodes labeled dependency
treeT as described in Section 3.1, then the decoder
transverses each node inT by postorder. For each
noden, it enumerates all instances of CHDR rooted
atn, and checks the rule set for matched translation
rules. A larger translation is generated by substitut-
ing the variables in the target side of a translation
rule with the translations of the corresponding de-
pendents. Cube pruning (Chiang, 2007; Huang and
Chiang, 2007) is used to find the k-best items with
integrated language model for each node.

To balance the performance and speed of the de-
coder, we limit the search space by reducing the

number of translation rules used for each node.
There are two ways to limit the rule table size: by
a fixed limit (rule-limit) of how many rules are re-
trieved for each input node, and by a threshold (rule-
threshold) to specify that the rule with a score low-
er thanβ times of the best score should be discard-
ed. On the other hand, instead of keeping the full
list of candidates for a given node, we keep a top-
scoring subset of the candidates. This can also be
done by a fixed limit (stack-limit) and a threshold
(stack-threshold).

5 Experiments

We evaluated the performance of our model by com-
paring with hierarchical phrase-based model (Chi-
ang, 2007), constituency-to-string model (Liu et al.,
2006) and dependency-to-string model (Xie et al.,
2011) on Chinese-English translation. First, we de-
scribe data preparation (Section 5.1) and systems
(Section 5.2). Then, we validate that our model sig-
nificantly outperforms all the other baseline models
(Section 5.3). Finally, we give detail analysis (Sec-
tion 5.4).

5.1 Data Preparation

Our training data consists of 1.25M sentence pairs
extracted from LDC1 data. We choose NIST MT
Evaluation test set 2002 as our development set,
NIST MT Evaluation test sets 2003 (MT03), 2004
(MT04) and 2005 (MT05) as our test sets. The qual-
ity of translations is evaluated by the case insensitive
NIST BLEU-4 metric2.

We parse the source sentences to constituency
trees (without binarization) and projective depen-
dency trees with Stanford Parser (Klein and Man-
ning, 2002). The word alignments are obtained by
running GIZA++ (Och and Ney, 2003) on the corpus
in both directions and using the “grow-diag-final-
and” balance strategy (Koehn et al., 2003). We get
bilingual phrases from word-aligned data with algo-
rithm described in Koehn et al. (2003) by running
Moses Toolkit3. We apply SRI Language Modeling
Toolkit (Stolcke and others, 2002) to train a 4-gram

1Including LDC2002E18, LDC2003E07, LDC2003E14,
Hansards portion of LDC2004T07, LDC2004T08 and LD-
C2005T06.

2ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl
3http://www.statmt.org/moses/
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System Rule # MT03 MT04 MT05 Average
Moses-chart 116.4M 34.65 36.47 34.39 35.17
cons2str 25.4M+32.5M 33.14 35.12 33.27 33.84
dep2str 19.6M+32.5M 34.85 36.57 34.72 35.38
consdep2str 23.3M+32.5M 35.57* 37.68* 35.62* 36.29

Table 1: Statistics of the extracted rules on training data and the BLEU scores (%) on the test sets of different systems.
The “+” denotes that the rules are composed of syntactic translation rules and bilingual phrases (32.5M). The “*”
denotes that the results are significantly better than all the other systems (p<0.01).

language model with modified Kneser-Ney smooth-
ing on the Xinhua portion of the English Gigaword
corpus. We make use of the standard MERT (Och,
2003) to tune the feature weights in order to maxi-
mize the system’s BLEU score on the development
set. The statistical significance test is performed by
sign-test (Collins et al., 2005).

5.2 Systems

We take the open source hierarchical phrase-based
system Moses-chart (with default configuration),
our in-house constituency-to-string systemcons2str
and dependency-to-string systemdep2str as our
baseline systems.

For cons2str, we follow Liu et al., (Liu et al.,
2006) to strict that the height of a rule tree is no
greater than 3 and phrase length is no greater than
7. To keep consistent with our proposed model,
we implement the dependency-to-string model (X-
ie et al., 2011) with GHKM (Galley et al., 2004)
rule extraction algorithm and utilize bilingual phras-
es to translate source head node and dependency
syntactic phrases. Ourdep2str shows comparable
performance with Xie et al., (2011), which can be
seen by comparing with the results of hierarchical
phrase-based model in our experiments. Fordep2str
and our proposed modelconsdep2str, we set rule-
threshold and stack-threshold to10−3, rule-limit to
100, stack-limit to 300, and phrase length limit to 7.

5.3 Experimental Results

Table 1 illustrates the translation results of our ex-
periments. As we can see, ourconsdep2str sys-
tem has gained the best results on all test sets, with
+1.12 BLEU points higher thanMoses-chart, +2.45
BLEU points higher thancons2str, and +0.91 BLEU
points higher thandep2str, averagely on MT03,
MT04 and MT05. Our model significantly outper-

forms all the other baseline models, with p<0.01
on statistical significance testsign-test (Collins et
al., 2005). By exploiting two types of trees on
source side, our model gains significant improve-
ments over constituency-to-string and dependency-
to-string models, which employ single type of trees.

Table 1 also lists the statistical results of rules ex-
tracted from training data by different systems. Ac-
cording to our statistics, the number of rules extract-
ed by ourconsdep2str system is about 18.88% larger
thandep2str, without regard to the 32.5M bilingual
phrases. The extra rules are CHDR-phrasal rules,
which can bring in BLEU improvements by enhanc-
ing the compatibility with phrases. We will conduct
a deep analysis in the next sub-section.

5.4 Analysis

In this section, we first illustrate the influence of
CHDR-phrasal rules in ourconsdep2str model. We
calculate the proportion of 1-best translations in test
sets that employ CHDR-phrasal rules, and we cal-
l this proportion “CHDR-phrasal Sent.”. Besides,
the proportion of CHDR-phrasal rules in all CHDR
rules is calculated in these translations, and we cal-
l this proportion “CHDR-phrasal Rule”. Table 2
lists the using of CHDR-phrasal rules on test sets,
showing thatCHDR-phrasal Sent. on all test sets
are higher than 50%, andCHDR-phrasal Rule on al-
l three test sets are higher than 10%. These results
indicate that CHDR-phrasal rules do play a role in
decoding.

Furthermore, we compare some actual transla-
tions of our test sets generated bycons2str, de-
p2str and consdep2str systems, as shown in Fig-
ure 6. In the first example, the Chinese input hold-
s long distance dependencies “éÜI ®² é
... \�u ... L« '�”, which correspond
to the sentence pattern “noun+adverb+prepositional
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System MT03 MT04 MT05
CHDR-phrasal Sent. 50.71 61.80 56.19
CHDR-phrasal Rule 10.53 13.55 10.83

Table 2: The proportion (%) of 1-best translations that
employs CHDR-phrasal rules (CHDR-phrasal Sent.) and
the proportion (%) of CHDR-phrasal rules in all CHDR
rules in these translations (CHDR-phrasal Rule).

phrase+verb+noun”. Cons2str gives a bad result
with wrong global reordering, while ourconsdep2str
system gains an almost correct result since we cap-
ture this pattern by CHDR-normal rules. In the sec-
ond example, we can see that the Chinese phrase
“2gÑy” is a non-syntactic phrase in the depen-
dency tree, and this phrase can not be captured by
head-dependents relation rules in Xie et al., (2011),
thus can not be translated as one unit. Since we en-
code constituency phrasal nodes to the dependency
tree, “2gÑy” is labeled by a phrasal node “VP”
(means verb phrase), which can be captured by our
CHDR-phrasal rules and translated into the correct
result “reemergence” with bilingual phrases.

By combining the merits of constituency and
dependency trees, ourconsdep2str model learns
CHDR-normal rules to acquire the property of long
distance reorderings and CHDR-phrasal rules to ob-
tain good compatibility with phrases.

6 Related Work

In recent years, syntax-based models have witnessed
promising improvements. Some researchers make
efforts on constituency-based models (Graehl and
Knight, 2004; Liu et al., 2006; Huang et al., 2006;
Zhang et al., 2007; Mi et al., 2008; Liu et al., 2009;
Liu et al., 2011; Zhai et al., 2012). Some works pay
attention to dependency-based models (Lin, 2004;
Ding and Palmer, 2005; Quirk et al., 2005; Xiong et
al., 2007; Shen et al., 2008; Xie et al., 2011). These
models are based on single type of trees.

There are also some approaches combining mer-
its of different structures. Marton and Resnik (2008)
took the source constituency tree into account and
added soft constraints to the hierarchical phrase-
based model (Chiang, 2005). Cherry (2008) u-
tilized dependency tree to add syntactic cohesion
to the phrased-based model. Mi and Liu, (2010)

proposed a constituency-to-dependency translation
model, which utilizes constituency forests on the
source side to direct the translation, and depen-
dency trees on the target side to ensure grammati-
cality. Feng et al. (2012) presented a hierarchical
chunk-to-string translation model, which is a com-
promise between the hierarchical phrase-based mod-
el and the constituency-to-string model. Most work-
s make effort to introduce linguistic knowledge in-
to the phrase-based model and hierarchical phrase-
based model with constituency trees. Only the work
proposed by Mi and Liu, (2010) utilized constituen-
cy and dependency trees, while their work applied
two types of trees on two sides.

Instead, our model simultaneously utilizes con-
stituency and dependency trees on the source side to
direct the translation, which is concerned with com-
bining the advantages of two types of trees in trans-
lation rules to advance the state-of-the-art machine
translation.

7 Conclusion

In this paper, we present a novel model that si-
multaneously utilizes constituency and dependency
trees on the source side to direct the translation. To
combine the merits of constituency and dependen-
cy trees, our model employs head-dependents rela-
tions incorporating with constituency phrasal nodes.
Experimental results show that our model exhibits
good performance and significantly outperforms the
state-of-the-art constituency-to-string, dependency-
to-string and hierarchical phrase-based models. For
the first time, source side constituency and depen-
dency trees are simultaneously utilized to direct the
translation, and the model surpasses the state-of-the-
art translation models.

Since constituency tree binarization can lead
to more constituency-to-string rules and syntactic
phrases in rule extraction and decoding, which im-
prove the performance of constituency-to-string sys-
tems, for future work, we would like to do research
on encoding binarized constituency trees to depen-
dency trees to improve translation performance.
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MT05 ---- segment 448

cons2srt: united nations with the indonesian government have expressed concern over the time limit for foreign troops .

consdep2srt: the united nations has expressed concern over the deadline of the indonesian government on foreign troops .

reference: The United Nations has expressed concern over the deadline the Indonesian government imposed on foreign troops.

dobjpobj

prep

advmod

nsubj

pnuct

the united nations has the deadline of the indonesian government on foreign troopsexpressed concern over .

dep2srt: again severe acute respiratory syndrome ( SARS ) case 

consdep2srt: reemergence of a severe acute respiratory syndrome ( SARS ) case

reference: the reemergence of a severe acute respiratory syndrome (SARS) case 

MT04 ---- segment 194

dep cons & dep

/VV

/AD /DEG

VP

reemergence

/NN

/JJ /JJ/VV

/AD /DEG

again

/NN

/JJ /JJ

Figure 6: Actual examples translated by thecons2str, dep2str andconsdep2str systems.
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Abstract

When using a machine translation (MT)
model trained on OLD-domain parallel data to
translate NEW-domain text, one major chal-
lenge is the large number of out-of-vocabulary
(OOV) and new-translation-sense words. We
present a method to identify new translations
of both known and unknown source language
words that uses NEW-domain comparable doc-
ument pairs. Starting with a joint distribution
of source-target word pairs derived from the
OLD-domain parallel corpus, our method re-
covers a new joint distribution that matches
the marginal distributions of the NEW-domain
comparable document pairs, while minimiz-
ing the divergence from the OLD-domain dis-
tribution. Adding learned translations to our
French-English MT model results in gains of
about 2 BLEU points over strong baselines.

1 Introduction

When a statistical machine translation (SMT) model
trained on OLD-domain (e.g. parliamentary proceed-
ings) parallel text is used to translate text in a NEW-
domain (e.g. medical or scientific), performance de-
grades drastically. One of the major causes is the
large number of NEW-domain words that are out-of-
vocabulary (OOV) with respect to the OLD-domain
text. Figure 1 shows the OOV rate for text in several
NEW-domains, with respect to OLD-domain parlia-
mentary proceedings. Even more challenging are
the difficult-to-detect new-translation-sense (NTS)
words: French words that are present in both the
OLD and NEW domains but that are translated dif-
ferently in each domain. For example, the French
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Figure 1: Percent of test set word types by domain that
are OOV with respect to five million tokens of OLD-
domain French parliamentary proceedings data.

word enceinte is mostly translated in parliamentary
proceedings as place, house, or chamber; in medical
text, the translation is mostly pregnant; in scientific
text, enclosures.

One potential remedy is to collect parallel data in
the NEW-domain, from which we can train a new
SMT model. Smith et al. (2010), for example, mine
parallel text from comparable corpora. Parallel sen-
tences are informative but also rare: in the data re-
leased by Smith et al. (2010), only 21% of the for-
eign sentences have a near-parallel counterpart in the
English article.1 Furthermore, these sentences do
not capture all terms. In that same dataset, we find
that on average only 20% of foreign and 28% of En-
glish word types in a given article are represented in
the parallel sentence pairs.

In this work, we seek to learn a joint distribu-

1Only 12% of sentences from generally longer English arti-
cles have a near-parallel counterpart in the foreign language.
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tion of translation probabilities over all source and
target word pairs in the NEW-domain. We begin
with a maximum likelihood estimate of the joint
based on a word aligned OLD-domain corpus and
update this distribution using NEW-domain compa-
rable data. We define a model based on a single com-
parable corpus and then extend it to learn from doc-
ument aligned comparable corpora with any number
of comparable document pairs. This approach al-
lows us to identify translations for OOV words in the
OLD-domain (e.g. French cisaillement and perçage,
which translate as shear and drilling, in the scien-
tific domain) as well as new translations for previ-
ously observed NTS words (e.g. enceinte translates
as enclosures, not place, in the scientific domain).
In our MT experiments, we use the learned NEW-
domain joint distribution to update our SMT model
with translations of OOV and low frequency words;
we leave the integration of new translations for NTS
words to future work.

Our approach crucially depends on finding com-
parable document pairs relevant to the NEW-domain.
Such pairs could be derived from a number of
sources, with document pairings inferred from
timestamps (e.g. news articles) or topics (inferred or
manually labeled). We use Wikipedia2 as a source
of comparable pairs. So-called “interwiki links”
(which link Wikipedia articles written on the same
topic but in different languages) act as rough guid-
ance that pages may contain similar information.
Our approach does not exploit any Wikipedia struc-
ture beyond this signal, and thus is portable to alter-
nate sources of comparable articles, such as multi-
lingual news articles covering the same event.

Our model also relies on the assumption that each
comparable document pair describes generally the
same concepts, though the order and structure of
presentation may differ significantly. The efficacy
of this method likely depends on the degree of com-
parability of the data; exploring the correlation be-
tween comparability and MT performance is an in-
teresting question for future work.

2 Previous Work

In prior work (Irvine et al., 2013), we presented a
systematic analysis of errors that occur when shift-

2www.wikipedia.org

ing domains in machine translation. That work con-
cludes that errors resulting from unseen (OOV) and
new translation sense words cause the majority of
the degradation in translation performance that oc-
curs when an MT model trained on OLD-domain
data is used to translate data in a NEW-domain. Here,
we target OOV errors, though our marginal match-
ing method is also applicable to learning translations
for NTS words.

A plethora of prior work learns bilingual lex-
icons from monolingual and comparable corpora
with many signals including distributional, tempo-
ral, and topic similarity (Rapp, 1995; Fung and Yee,
1998; Rapp, 1999; Schafer and Yarowsky, 2002;
Schafer, 2006; Klementiev and Roth, 2006; Koehn
and Knight, 2002; Haghighi et al., 2008; Mimno
et al., 2009; Mausam et al., 2010; Prochasson
and Fung, 2011; Irvine and Callison-Burch, 2013).
However, this prior work stops short of using these
lexicons in translation. We augment a baseline MT
system with learned translations.

Our approach bears some similarity to Ravi and
Knight (2011), Dou and Knight (2012), and Nuhn
et al. (2012); we learn a translation distribution de-
spite a lack of parallel data. However, we focus on
the domain adaptation setting. Parallel data in an
OLD-domain acts as a starting point (prior) for this
translation distribution. It is reasonable to assume an
initial bilingual dictionary can be obtained even in
low resource settings, for example by crowdsourc-
ing (Callison-Burch and Dredze, 2010) or pivoting
through related languages (Schafer and Yarowsky,
2002; Nakov and Ng, 2009).

Daumé III and Jagarlamudi (2011) mine trans-
lations for high frequency OOV words in NEW-
domain text in order to do domain adaptation. Al-
though that work shows significant MT improve-
ments, it is based primarily on distributional simi-
larity, thus making it difficult to learn translations for
low frequency source words with sparse word con-
text counts. Additionally, that work reports results
using artificially created monolingual corpora taken
from separate source and target halves of a NEW-
domain parallel corpus, which may have more lexi-
cal overlap with the corresponding test set than we
could expect from true monolingual corpora. Our
work mines NEW-domain-like document pairs from
Wikipedia. In this work, we show that, keeping
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data resources constant, our model drastically out-
performs this previous approach. Razmara et al.
(2013) take a fundamentally different approach and
construct a graph using source language monolin-
gual text and identify translations for source lan-
guage OOV words by pivoting through paraphrases.

Della Pietra et al. (1992) and Federico (1999) ex-
plore models for combining foreground and back-
ground distributions for the purpose of language
modeling, and their approaches are somewhat simi-
lar to ours. However, our focus is on translation.

3 Model

Our goal is to recover a probabilistic translation dic-
tionary in a NEW-domain, represented as a joint
probability distribution pnew(s, t) over source/target
word pairs. At our disposal, we have access to a joint
distribution pold(s, t) from the OLD-domain (com-
puted from word alignments), plus comparable doc-
ument pairs in the NEW-domain. From these com-
parable documents, we can extract raw word fre-
quencies on both the source and target side, repre-
sented as marginal distributions q(s) and q(t). The
key idea is to estimate this NEW-domain joint dis-
tribution to be as similar to the OLD-domain distri-
bution as possible, subject to the constraint that its
marginals match those of q.

To illustrate our goal, consider an example. Imag-
ine in the OLD-domain parallel data we find that ac-
corder translates as grant 10 times and as tune 1
time. In the NEW-domain comparable data, we find
that accorder occurs 5 times, but grant occurs only
once, and tune occurs 4 times. Clearly accorder no
longer translates as grant most of the time; perhaps
we should shift much of its mass onto the translation
tune instead. Figure 2 shows the intuition.

First, we present an objective function and set of
constraints over joint distributions to minimize the
divergence from the OLD-domain distribution while
matching both the source and target NEW-domain
marginal distributions. Next, we augment the objec-
tive with information about word string similarity,
which is particularly useful for the French-English
language pair. Optimizing this objective with a sin-
gle pair of source and target marginals can be per-
formed using an off-the-shelf solver. In practice,
though, we have a large set of document pairs, each

of which can induce a pair of marginals. Using
these per-document marginals provides additional
information to the learning function but would over-
whelm a common solver. Therefore, we present a se-
quential learning method for approximately match-
ing the large set of document pair marginal distribu-
tions. Finally, we describe how we identify compa-
rable document pairs relevant to the NEW-domain.

3.1 Marginal Matching Objective
Given word-aligned parallel data in the OLD-domain
and source and target comparable corpora in the
NEW-domain, we first estimate a joint distribution
pold(s, t) over word pairs (s, t) in the OLD-domain,
where s and t range over source and target lan-
guage words, respectively. For the OLD-domain
joint distribution, we use a simple maximum like-
lihood estimate based on non-null automatic word
alignments (using grow-diag-final GIZA++ align-
ments (Och and Ney, 2003)). Next, we find source
and target marginal distributions, q(s) and q(t), by
relative frequency estimates over the source and tar-
get comparable corpora. Our goal is to recover a
joint distribution pnew(s, t) for the new domain that
matches the marginals, q(s) and q(t), but is mini-
mally different from the original joint distribution,
pold(s, t).

We cast this as a linear programming problem:

pnew = arg min
p

∥∥∥p− pold
∥∥∥

1
(1)

subject to:
∑
s,t

p(s, t) = 1, p(s, t) ≥ 0

∑
s

p(s, t) = q(t),
∑

t

p(s, t) = q(s)

In the objective function, the joint probability matri-
ces p and pold are interpreted as large vectors over
all word pairs (s, t). The first two constraints force
the result to be a well-formed distribution, and the
final two force the marginals to match.

Following prior work (Ravi and Knight, 2011),
we would like the matrix to remain as sparse as pos-
sible; that is, introduce the smallest number of new
translation pairs necessary. A regularization term
captures this goal:

Ω(p) =
∑
s,t:

pold(s,t)=0

λr × p(s, t) (2)
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house place pregnant dress qold(s)

enceinte 0.30 0.40 0.10 0 0.80

habiller 0 0 0 0.20 0.20

qold(t) 0.30 0.40 0.10 0.20

(a) OLD-Domain Joint (b) NEW-Domain Marginals

house place pregnant dress girl q(s)

enceinte

?????
0.60

habiller ????? 0.20

fille
?????

0.20

q(t) 0.12 0.08 0.40 0.20 0.20

(c) Inferred NEW-Domain Joint

house place pregnant dress girl qnew(s)

enceinte 0.12 0.08 0.40 0 0 0.60

habiller 0 0 0 0.20 0 0.20

fille 0 0 0 0 0.20 0.20

qnew(t) 0.12 0.08 0.40 0.20 0.20

=

Matched 
Marginals

Figure 2: Starting with a joint distribution derived from OLD-domain data, we infer a NEW-domain joint distribution
based on the intuition that the new joint should match the marginals that we observe in NEW-domain comparable
corpora. In this example, a translation is learned for the previously OOV word fille, and pregnant becomes a preferred
translation for enceinte.

If the old domain joint probability pold(s, t) was
nonzero, there is no penalty. Otherwise, the penalty
is λr times the new joint probability p(s, t). To dis-
courage the addition of translation pairs that are un-
necessary in the new domain, we use a value of λr

greater than one. Thus, the benefit of a more sparse
matrix overwhelms the desire for preventing change.
Any value greater than one seems to suffice; we use
λr = 1.1 in our experiments.

Inspired by the preference for sparse matrices
captured by Ω(p), we include another orthogonal
cue that words are translations of one another: their
string similarity. In prior work, string similarity was
a valuable signal for inducing translations, particu-
larly for closely related languages such as French
and English (Daumé III and Jagarlamudi, 2011). We
define a penalty function f(p) as follows: if the nor-
malized Levenshtein edit distance between swithout
accents and t is less than 0.2, no penalty is applied;
a penalty of 1 is applied otherwise. We chose the
0.2 threshold manually by inspecting results on our
development sets.

f(p) =
∑
s,t

p(s, t) ·

{
0 if lev(t,strip(s))

len(s)+len(t) < 0.2

1 otherwise

The objective function including this penalty is:

pnew = arg min
p

∥∥∥p− pold
∥∥∥

1
+ Ω(p) + f(p)

In principle, additional penalties could be encoded
in a similar way.3 This objective can be optimized
by any standard LP solver; we use the Gurobi pack-
age (Gurobi Optimization Inc., 2013).

3.2 Document Pair Modification

The above formulation applies whenever we have
access to comparable corpora. However, often we
have access to comparable documents, such as those
given by Wikipedia inter-language links. We modify
our approach to take advantage of the document cor-
respondences within our comparable corpus. In par-
ticular, we would like to match the marginals for all
document pairs.4 By maintaining separate marginal
distributions, our algorithm is presented with more

3We experimented with penalties measuring document-pair
co-occurrence and monolingual frequency differences but did
not see gains on our development sets.

4This situation is not unique to our application; multiple
marginals are likely to exist in many cases.
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information. For example, imagine that one doc-
ument pair uses “dog” and “chien”, where another
document pair uses “cat” and “chat”, each with sim-
ilar frequency. If we sum these marginals to produce
a single marginal distribution, it is now difficult to
identify that “dog” should correspond to “chien” and
not “chat.” Document pair alignments add informa-
tion at the cost of additional constraints.

An initial formulation of our problem with mul-
tiple comparable document pairs might require
the pnew marginals to match all of the document
marginals. In general, this constraint set is likely
to result in an infeasible problem. Instead, we take
an incremental, online solution, considering a sin-
gle comparable document pair at a time. For docu-
ment pair k, we solve the optimization problem in
Eq (1) to find the joint distribution minimally dif-
ferent from pk-1, while matching the marginals of
this pair only. This gives a new joint distribution,
tuned specifically for this pair. We then update our
current guess of the new domain joint toward this
document-pair-specific distribution, much like a step
in stochastic gradient ascent.

More formally, suppose that before processing the
kth document we have a guess at the NEW-domain
joint distribution, pnew

1:k−1 (the subscript indicates that
it includes all document pairs up to and including
document k − 1). We first solve Eq (1) solely on
the basis of this document pair, finding a joint dis-
tribution pnew

k that matches the marginals of the kth
document pair only and is minimally different from
pnew
1:k−1. Finally, we form a new estimate of the joint

distribution by moving pnew
1:k−1 in the direction of

pnew
k , via:

pnew
1:k = pnew

1:k−1 + ηu

[
pnew

k − pnew
1:k−1

]
The learning rate ηu is set to 0.001.5

This incremental update of parameters is simi-
lar to the margin infused relaxed algorithm (MIRA)
(Crammer et al., 2006). Like MIRA and the percep-
tron, there is not an overall “objective” function that
we are attempting to optimize (as one would in many
stochastic gradient steps). Instead, we’re aiming for

5We tuned ηu on semi-extrinsic results on the development
set. Note that although 0.001 seems small, the values we are
moving are joint probabilities, which are tiny and so small
learning rates make sense.

a solution that makes a small amount of progress
on each example, in such a way if it received that
example again, it would “do better” (in this case:
have a closer match of marginals). Also like MIRA,
our learning rate is constant. We parallelize learning
with mini-batches for increased speed. Eight paral-
lel learners update an initial joint distribution based
on 100 document pairs (i.e. each learner makes 100
incremental updates), and then we merge results us-
ing an average over the 8 learned joint distributions.

3.3 Comparable Data Selection

It remains to select comparable document pairs. We
assume that we have enough monolingual NEW-
domain data in one language to rank comparable
document pairs (here, Wikipedia pages) according
to how NEW-domain-like they are. In particular, we
estimate the similarity to a source language (here,
French) corpus in the NEW domain. For our experi-
ments, we use the French side of a NEW-domain par-
allel corpus.6 We could have targeted our learning
even more by using our NEW-domain MT test sets.
Doing so would increase the chances that our source
language words of interest appear in the comparable
corpus. However, to avoid overfitting any particular
test set, we use the French side of the training data.

For each Wikipedia document pair, we com-
pute the percent of French phrases up to length
four that are observed in the French monolingual
NEW-domain corpus and rank document pairs by
the geometric mean of the four overlap measures.
More sophisticated ways to identify NEW-domain-
like Wikipedia pages (e.g. Moore and Lewis (2010))
may yield additional performance gains, but, quali-
tatively, the ranked Wikipedia pages seemed reason-
able to the authors.

4 Experimental setup

4.1 Data

We use French-English Hansard parliamentary pro-
ceedings7 as our OLD-domain parallel corpus. With
over 8 million parallel lines of text, it is one of the
largest freely available parallel corpora for any lan-

6We could have, analogously, used the target language (En-
glish) side of the parallel corpus and measure overlap with the
English Wikipedia documents, or even used both.

7http://www.parl.gc.ca
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guage pair. In order to simulate more typical data
settings, we sample every 32nd line, using the result-
ing parallel corpus of 253, 387 lines and 5, 051, 016
tokens to train our baseline model.

We test our model using three NEW-domain cor-
pora: (1) the EMEA medical corpus (Tiedemann,
2009), (2) a corpus of scientific abstracts (Carpuat
et al., 2013a), and (3) a corpus of translated movie
subtitles (Tiedemann, 2009). We use development
and test sets to tune and evaluate our MT mod-
els. We use the NEW-domain parallel training cor-
pora only for language modeling and for identifying
NEW-domain-like comparable documents.

4.2 Machine translation

We use the Moses MT framework (Koehn et al.,
2007) to build a standard statistical phrase-based
MT model using our OLD-domain training data. Us-
ing Moses, we extract a phrase table with a phrase
limit of five words and estimate the standard set of
five feature functions (phrase and lexical translation
probabilities in each direction and a constant phrase
penalty feature). We also use a standard lexicalized
reordering model and two language models based on
the English side of the Hansard data and the given
NEW-domain training corpora. Features are com-
bined using a log-linear model optimized for BLEU,
using the n-best batch MIRA algorithm (Cherry and
Foster, 2012). We call this the “simple baseline.” In
Section 5.2 we describe several other baseline ap-
proaches.

4.3 Experiments

For each domain, we use the marginal matching
method described in Section 3 to learn a new,
domain-adapted joint distribution, pnew

k (s, t), over
all French and English words. We use the learned
joint to compute conditional probabilities, pnew

k (t|s),
for each French word s and rank English translations
t accordingly. First, we evaluate the learned joint
directly using the distribution based on the word-
aligned NEW-domain development set as a gold
standard. Then, we perform end-to-end MT exper-
iments. We supplement phrase tables with transla-
tions for OOV and low frequency words (we ex-
periment with training data frequencies less than
101, 11, and 1) and include pnew

k (t|s) and pnew
k (s|t)

as new translation features for those supplemental

translations. For these new phrase pairs, we use the
average lexicalized reordering values from the ex-
isting reordering tables. For phrase pairs extracted
bilingually, we use the bilingually estimated trans-
lation probabilities and uniform scores for the new
translation features. We experimented with using
pnew

k (t|s) and pnew
k (s|t) to estimate additional lex-

ical translation probabilities for the bilingually ex-
tracted phrase pairs but did not observe any gains
(experimental details omitted due to space con-
straints). We re-run tuning in all experiments.

We also perform oracle experiments in which
we identify translations for French words in word-
aligned development and test sets and append these
translations to baseline phrase tables.

5 Results

5.1 Semi-extrinsic evaluation

Before doing end-to-end MT experiments, we eval-
uate our learned joint distribution, pnew

k (s, t), by
comparing it to the joint distribution taken from a
word aligned NEW-domain parallel development set,
pgold(s, t). We call this evaluation semi-extrinsic
because it involves neither end-to-end MT (our ex-
trinsic task) nor an intrinsic evaluation based on our
training objective (L1 norm). We find it informa-
tive to evaluate the models using bilingual lexicon
induction metrics before integrating our output into
full MT. That is, we do not compare the full joint dis-
tributions, but, rather, for a given French word, how
our learned model ranks the word’s most probable
translation under the gold distribution. In particular,
because we are primarily concerned with learning
translations for previously unseen words, we eval-
uate over OOV French word types. In some cases,
the correct translation for OOV words is the identi-
cal string (e.g. na+, lycium). Because it is trivial
to produce these translations,8 we evaluate over the
subset of OOV development set French words for
which the correct translation is not the same string.

Figure 3 shows the mean reciprocal rank for the
learned distribution, pnew

k (s, t), for each domains as
a function of the number of comparable document
pairs used in learning. In all domains, the compara-
ble document pairs are sorted according to their sim-

8And, indeed, by default our decoder copies OOV strings
into its output directly.
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Figure 3: Semi-extrinsic bilingual lexicon induction results. Mean reciprocal rank is computed over all OOV devel-
opment set words for which identity is not the correct translation.

ilarity with the NEW-domain. Figure 3 also shows
the performance of baseline models and our learner
without the edit distance penalty. For each source
word s, the edit distance (ED) baseline ranks all En-
glish words t in our monolingual data by their edit
distance with s.9 The Canonical Correlation Analy-
sis (CCA) baseline uses the approach of Daumé III
and Jagarlamudi (2011) and the top 25, 000 ranked
document pairs as a comparable corpus. That model
performs poorly largely because of sparse word con-
text counts. Interestingly, for Science and EMEA,
the performance of our full model at 50, 000 doc-
ument pairs is higher than the sum of the edit dis-
tance baseline and the model without the edit dis-
tance penalty, indicating that our approach effec-
tively combines the marginal matching and edit dis-
tance signals.

The learning curves for the three domains vary
substantially. For Science, learning is gradual and
it appears that additional gains could be made by
iterating over even more document pairs. In con-
trast, the model learns quickly for the EMEA do-
main; performance is stable after 20, 000 document
pairs. Given these results and our experience with
the two domains, we hypothesize that the difference
is due to the fact that the Science data is much more
heterogenous than the EMEA data. The Science data

9In particular, for each domain and each OOV French word,
we ranked the set of all English words that appeared at least five
times in the set of 50,000 most NEW-domain like Wikipedia
pages. Using a frequency threshold of five helped eliminate
French words and improperly tokenized English words from the
set of candidates.

includes physics, chemistry, and biology abstracts,
among others. The drug labels that make up most of
the EMEA data are more homogeneous. In Section
6 we comment on the poor Subtitles performance,
which persists in our MT experiments.

We experimented with making multiple learning
passes over the document pairs and observed rela-
tively small gains from doing so. In all experiments,
learning from some number of additional new doc-
ument pairs resulted in higher semi-extrinsic per-
formance gains than passing over document pairs
which were already observed.

In the case of OOV words, it’s clear that learning
something about how to translate a previously un-
observed French word is beneficial. However, our
learning method also learns domain-specific new-
translation senses (NTS). Table 1 shows some exam-
ples of what the marginal matching method learns
for different types of source words (OOVs, low fre-
quency, and NTS).

5.2 MT evaluation

By default, the Moses decoder copies OOV words
directly into its translated output. In some cases,
this is correct (e.g. ensembles, blumeria, google).
In other cases, French words can be translated into
English correctly by simply stripping accent marks
off of the OOV word and then copying it to the out-
put (e.g. caméra, éléments, molécules). In the Sci-
ence and EMEA domains, we found that our base-
line BLEU scores improved from 21.91 to 22.20
and 23.67 to 24.45, respectively, when we changed
the default handling of OOVs to strip accents before
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French OLD top pold(t|s) NEW top pgold(t|s) MM-learned top pnew(t|s)
OOV words
cisaillement - shear strength shearing shear viscous newtonian

courbure - curvature bending curvatures curvature curved manifold
Low frequency words

linéaires linear linear nonlinear non-linear linear linearly nonlinear
récepteur receiver receptor receiver y1 receptor receiver receptors

New translation sense words
champ field jurisdiction scope field magnetic near-field field magnetic fields
marche working march work walk step walking march walk walking

Table 1: Hand-picked examples of Science-domain French words and their top English translations in the OLD-
domain, NEW-domain, and marginal matching distributions. The first two are OOVs. The next two only appeared four
and one time, respectively, in the training data and only aligned to a single English word. The last two are NTS French
words: words that appeared frequently in the training data but for which the word’s sense in the new domain shifts.

copying into the output. Interestingly, performance
on the Subtitles domain text did not change at all
with this baseline modification. This is likely due
to the fact that there are fewer technical OOVs (the
terms typically captured by this accent-stripping pat-
tern) in the subtitles domain.

Throughout our experiments, we found it criti-
cal to retain correct ‘freebie’ OOV translations. In
the results presented below, including the baselines,
we supplement phrase tables with a new candidate
translation but also include accent-stripped identity,
or ‘freebie,’ translations in the table for all OOV
words. We experimented with classifying French
words as freebies or needing a new translation, but
oracle experiments showed very little improvement
(about 0.2 BLEU improvement in the Science do-
main), so instead we simply include both types of
translations in the phrase tables.

In addition to the strip-accents baseline, we com-
pare results with four other baselines. First, we
drop OOVs from the output translations. Second,
like our semi-extrinsic baseline, we rank English
words by their edit distance away from each French
OOV word (ED baseline). Third, we rank En-
glish words by their document-pair co-occurrence
score with each French OOV word. That is, for
all words w, we compute D(w), the vector indicat-
ing the document pairs in which w occurs, over the
set of 50,000 document-pairs which are most NEW-
domain-like. For French and English words s and t,
ifD(s) andD(t) are dissimilar, it is less likely (s, t)
is a valid translation pair. We weight D(w) entries

with BM25 (Robertson et al., 1994). For all French
OOVs, we rank all English translations according to
the cosine similarity between the pair of D(w) vec-
tors. The fourth baseline uses the CCA model de-
scribed in Daumé III and Jagarlamudi (2011) to rank
English words according to their distributional sim-
ilarity with each French word. For the CCA base-
line comparison, we only learned translations using
25,000 Science-domain document pairs, rather than
the full 50,000 and for all domains. However, it’s
unlikely that learning over more data would over-
come the low performance observed so far. For the
final three baselines, we append French OOV words
and their highest ranked English translation to the
phrase table. Along with each new translation pair,
we include one new phrase table feature with the
relevant translation score (edit distance, document
similarity, or CCA distributional similarity). For all
baselines other than drop-OOVs, we also include
accent-stripped translation pairs with an additional
indicator feature.

Table 3 shows results appending the top ranked
English translation for each OOV French word using
each baseline method. None of the alternate base-
lines outperform the simplest baseline on the subti-
tles data. Using document pair co-occurrences is the
strongest baseline for the Science and EMEA do-
mains. This confirms our intuition that taking ad-
vantage of document pair alignments is worthwhile.
For Science and EMEA, supplementing a model
with OOV translations learned through our marginal
matching method drastically outperforms all base-
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OOVs translated correctly and incorrectly
Input les résistances au cisaillement par poinçonnement ...
Ref the punching shear strengths...
Baseline the resistances in cisaillement by poinconnement ...
MM the resistances in shear reinforcement...
OOV translated incorrectly
Input présentation d’ un logiciel permettant de gérer les données temporelles .
Ref presentation of software which makes it possible to manage temporal data .
Baseline introduction of a software to manage temporelles data .
MM introduction of a software to manage data plugged .

Low frequency French words
Input ...limite est liée à la décroissance très rapide du couplage électron-phonon avec la température .
Ref ...limit is linked to the rapid decrease of the electron-phonon coupling with temperature .
Baseline ...limit is linked to the decline very rapid electron-phonon linkage with the temperature .
MM ...limit is linked to the linear very rapid electron-phonon coupling with the temperature .

Table 2: Example MT outputs for Science domain. The baseline strips accents (Table 3). In the first example, the
previously OOV word cisaillement is translated correctly by an MM-supplemented model. The OOV poinçonnement
is translated as reinforcement instead of strengths, which is incorrect with respect to the reference but arguably not
bad. In the second example, temporelles is not translated correctly in the MM output. In the third example, the MM-
hypothesized correct translation of low frequency word couplage, coupling, is chosen instead of incorrect linkage. Also
in the third example, the low frequency word décroissance is translated as the MM-hypothesized incorrect translation
linear. In the case of décroissance, the baseline’s translation, decline, is much better than the MM translation linear.

lines. Using our model to translate OOV words
yields scores of 23.62 and 26.97 in the Science and
EMEA domains, or 1.19 and 1.94 BLEU points, re-
spectively, above the strongest baseline. We observe
additional gains by also supplementing the model
with translations for low frequency French words.
For example, when we use our approach to translate
source words in the Science domain which appear
ten or fewer times in our OLD-domain training data,
the BLEU score increases to 24.28.

We tried appending top-k translations, varying k.
However, we found that for the baselines as well as
our MM translations, using only the top-1 English
translations outperformed using more.

Table 3 also shows the result of supplementing a
baseline phrase table with oracle OOV translations.
Using the marginal matching learned OOV transla-
tions takes us 30% and 40% of the way from the
baseline to the oracle upper bound for Science and
EMEA, respectively.

We have focused on supplementing an SMT
model trained on a sample of the Hansard parallel
corpus in order to mimic typical data conditions, but
we have also performed experiments supplementing

Science EMEA Subs
Simple Baseline 21.91 23.67 13.18
Drop OOVs 20.22 18.95 11.86
Accent-Stripped 22.20 24.45 13.13
ED Baseline 22.10 24.35 12.95
Doc Sim Baseline. 22.43 25.03 13.02
CCA Baseline 21.41 - -
MM Freq<1 (OOV) 23.62 26.97 13.07
MM Freq<11 24.28 27.26 12.97
MM Freq<101 23.96 26.82 12.92
Oracle OOV 26.38 29.99 15.06

Table 3: BLEU results using: (1) baselines, (2) phrase
tables augmented with top-1 translations for French
words with indicated OLD training data frequencies, (3)
phrase tables augmented with OOV oracle translations.

a model trained on the full dataset.10 Beginning with
the larger model, we observe performance gains of
0.8 BLEU points for both the EMEA and the Sci-
ence domains over the strongest baselines, which are
based on document similarity, when we add OOV

10We still use the joint that was learned starting with the one
estimated over the sample; we may observe greater gains over
the full Hansard baseline with a stronger initial joint.
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translations. As expected, these gains are less than
what we observe when our baseline model is esti-
mated over less data, but they are still substantial.

In all experiments, we have assumed that we have
no NEW-domain parallel training data, which is the
case for the vast majority of language pairs and do-
mains. However, In the case that we do have some
NEW-domain parallel data, OOV rates will be some-
what lower, but our method is still applicable. For
example, we would need 2.3 million words of Sci-
ence (NEW-domain) parallel data to cover just 50%
of the OOVs in our Science test set, and 4.3 million
words to cover 70%.

6 Discussion

BLEU score performance gains are substantial for
the Science and EMEA domains, but we don’t ob-
serve gains on the subtitles text. We believe this dif-
ference relates to the difference between a corpus
domain and a corpus register. As Lee (2002) ex-
plains, a text’s domain is most related to its topic,
while a text’s register is related to its type and pur-
pose. For example, religious, scientific, and dia-
logue texts may be classified as separate registers,
while political and scientific expositions may have a
single register but different domains. Our science
and EMEA corpora are certainly different in do-
main from the OLD-domain parliamentary proceed-
ings, and our success in boosting MT performance
with our methods indicates that the Wikipedia com-
parable corpora that we mined match those domains
well. In contrast, the subtitles data differs from the
OLD-domain parliamentary proceedings in both do-
main and register. Although the Wikipedia data that
we mined may be closer in domain to the subtitles
data than the parliamentary proceedings,11 its regis-
ter is certainly not film dialogues.

Although the use of marginal matching is, to the
best of our knowledge, novel in MT, there are related
threads of research that might inspire future work.
The intuition that we should match marginal distri-
butions is similar to work using no example labels
but only label proportions to estimate labels, for ex-
ample in Quadrianto et al. (2008). Unlike that work,

11In fact, we believe that it is. Wikipedia pages that ranked
very high in our subtitles-like list included, for example, the
movie The Other Side of Heaven and actor Frank Sutton.

our label set corresponds to entire vocabularies, and
we have multiple observed label proportions. Also,
while the marginal matching objective seems effec-
tive in practice, it is difficult to optimize. A number
of recently developed approximate inference meth-
ods use a decomposition that bears a strong resem-
blance to this objective function. Considering the
marginal distributions from each document pair to
be a separate subproblem, we could approach the
global objective of satisfying all subproblems as an
instance of dual decomposition (Sontag et al., 2010)
or ADMM (Gabay and Mercier, 1976; Glowinski
and Marrocco, 1975).

We experiment with French-English because tun-
ing and test sets are available in several domains for
that language pair. However, our techniques are di-
rectly applicable to other language pairs, including
those that are less related. We have observed that
many domain-specific terms, particularly in medi-
cal and science domains, are borrowed across lan-
guages, whether or not the languages are related.
Even for languages with different character sets,
one could do transliteration before measuring ortho-
graphical similarity.

Although we were able to identify translations for
some NTS words (Table 1), we did not make use of
them in our MT experiments. Recent work has iden-
tified NTS words in NEW-domain corpora (Carpuat
et al., 2013b), and in future work we plan to incorpo-
rate discovered translations for such words into MT.

7 Conclusions

We proposed a model for learning a joint distribu-
tion of source-target word pairs based on the idea
that its marginals should match those observed in
NEW-domain comparable corpora. Supplementing
a baseline phrase-based SMT model with learned
translations results in BLEU score gains of about
two points in the medical and science domains.
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support from the Johns Hopkins University Human
Language Technology Center of Excellence for Ann
Irvine. The views and conclusions contained in this
publication are those of the authors and should not
be interpreted as representing official policies or en-
dorsements of DARPA or the U.S. Government.

References

Chris Callison-Burch and Mark Dredze. 2010. Creating
speech and language data with Amazon’s Mechanical
Turk. In Proceedings of the NAACL Workshop on Cre-
ating Speech and Language Data with Amazon’s Me-
chanical Turk.
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Marine Carpuat, Hal Daumé III, Katharine Henry, Ann
Irvine, Jagadeesh Jagarlamudi, and Rachel Rudinger.
2013b. Sensespotting: Never let your parallel data tie
you to an old domain. In Proceedings of the Confer-
ence of the Association for Computational Linguistics
(ACL).

Colin Cherry and George Foster. 2012. Batch tun-
ing strategies for statistical machine translation. In
Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL).

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. J. Mach. Learn. Res., 7:551–
585, December.
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Abstract

Left-to-right (LR) decoding (Watanabe et al.,
2006b) is a promising decoding algorithm for
hierarchical phrase-based translation (Hiero).
It generates the target sentence by extending
the hypotheses only on the right edge. LR de-
coding has complexity O(n2b) for input of n
words and beam size b, compared toO(n3) for
the CKY algorithm. It requires a single lan-
guage model (LM) history for each target hy-
pothesis rather than two LM histories per hy-
pothesis as in CKY. In this paper we present an
augmented LR decoding algorithm that builds
on the original algorithm in (Watanabe et al.,
2006b). Unlike that algorithm, using experi-
ments over multiple language pairs we show
two new results: our LR decoding algorithm
provides demonstrably more efficient decod-
ing than CKY Hiero, four times faster; and by
introducing new distortion and reordering fea-
tures for LR decoding, it maintains the same
translation quality (as in BLEU scores) ob-
tained phrase-based and CKY Hiero with the
same translation model.

1 Introduction
Hiero (Chiang, 2007) models translation using a lex-
icalized synchronous context-free grammar (SCFG)
extracted from word aligned bitexts. Typically,
CKY-style decoding is used for Hiero with time
complexity O(n3) for source input with n words.
Scoring the target language output using a lan-
guage model within CKY-style decoding requires
two histories per hypothesis, one on the left edge
of each span and one on the right, due to the fact
that the target side is not generated in left to right
order, but rather built bottom-up from sub-spans.
This leads to complex problems in efficient lan-
guage model integration and requires state reduc-
tion techniques (Heafield et al., 2011; Heafield et
al., 2013). The size of a Hiero SCFG grammar is
typically larger than phrase-based models extracted

from the same data creating challenges in rule ex-
traction and decoding time especially for larger
datasets (Sankaran et al., 2012).

In contrast, the LR-decoding algorithm could
avoid these shortcomings such as faster time com-
plexity, reduction in the grammar size and the sim-
plified left-to-right language model scoring. It
means LR decoding has the potential to replace
CKY decoding for Hiero. Despite these attractive
properties, we show that the original LR-Hiero de-
coding proposed by (Watanabe et al., 2006b) does
not perform to the same level of the standard CKY
Hiero with cube pruning (see Table 3). In addition,
the current LR decoding algorithm does not obtain
BLEU scores comparable to phrase-based or CKY-
based Hiero models for different language pairs (see
Table 4). In this paper we propose modifications to
the LR decoding algorithm that addresses these limi-
tations and provides, for the first time, a true alterna-
tive to the standard CKY Hiero algorithm that uses
left-to-right decoding.

We introduce a new extended version of the LR
decoding algorithm presented in (Watanabe et al.,
2006b) which is demonstrably more efficient than
the CKY Hiero algorithm. We measure the effi-
ciency of the LR Hiero decoder in a way that is
independent of the choice of system and program-
ming language by measuring the number of lan-
guage model queries. Although more efficient, the
new LR decoding algorithm suffered from lower
BLEU scores compared to CKY Hiero. Our anal-
ysis of left to right decoding showed that it has more
potential for search errors due to early pruning of
good hypotheses. This is unlike bottom-up decoding
(CKY) which keeps best hypotheses for each span.
To address this issue, we introduce two novel fea-
tures into the Hiero SMT model that deal with re-
ordering and distortion. Our experiments show that
LR decoding with these features using prefix lexi-
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calized target side rules equals the scores obtained
by CKY decoding with prefix lexicalized target side
rules and phrase-based translation system. It per-
forms four times fewer language model queries on
average, compare to CKY Hiero decoding with un-
restricted Hiero rules: 6466.7 LM queries for CKY
Hiero (with cube pruning) compared to 1500.45 LM
queries in LR Hiero (with cube pruning). While
translation quality suffers by only about 0.67 in
BLEU score on average, across two different lan-
guage pairs.

2 Left-to-Right Decoding for Hiero

Hierarchical phrase-based SMT (Chiang, 2005; Chi-
ang, 2007) uses a synchronous context free gram-
mar (SCFG), where the rules are of the form X →
〈γ, α〉, where X is a non-terminal, γ and α are
strings of terminals and non-terminals.

Chiang (2007) places certain constraints on the
extracted rules in order to simplify decoding. This
includes limiting the maximum number of non-
terminals (rule arity) to two and disallowing any rule
with consecutive non-terminals on the foreign lan-
guage side. It further limits the length of the initial
phrase-pair as well as the number of terminals and
non-terminals in the rule. For translating sentences
longer than the maximum phrase-pair length, the de-
coder relies on additional glue rules S → 〈X,X〉
and S → 〈SX,SX〉 that allows monotone combi-
nation of phrases. The glue rules are used when no
rules could match or the span length is larger than
the maximum phrase-pair length.

2.1 Rule Extraction for LR Decoding

Left-to-right Hiero (Watanabe et al., 2006b) gener-
ates the target hypotheses left to right, but for syn-
chronous context-free grammar (SCFG) as used in
Hiero. The target-side rules are constrained to be
prefix lexicalized. These constrained SCFG rules
are defined as:

X → 〈γ, b̄ β〉 (1)

where γ is a mixed string of terminals and non-
terminals. b̄ is a terminal sequence prefixed to the
possibly empty non-terminal sequence β. For the
sake of simplicity, We refer to these type of rules as

their work

students

X1

X2

X6

X4 X5

X3have

not yet

done

.

schuler ihre noch nicht gemacht haben .arbeit

students have done their workyet .not

(b)

(a)

gemacht

schuler

X1

X2

X6

X5 X4

X3 haben

noch nicht

ihre arbeit

.

1

2

3 6

45

Figure 1: (a): A word-aligned German-English sentence
pair. The bars above the source words indicate phrase-
pairs having at least two words. (b): its corresponding
left-to-right target derivation tree. Superscripts on the
source non-terminals show the indices of the rules (see
Fig 2) used in derivation.

GNF rules1 in this paper.
Rule extraction is similar to Hiero, except any

rules violating GNF form on the target side are
excluded. Rule extraction considers each smaller
source-target phrase pair within a larger phrase pair
and replaces the spans with non-terminal X , yield-
ing hierarchical rules. Figure 1(a) shows a word-
aligned German-English sentence with a phrase
pair 〈ihre arbeit noch nicht gemacht haben,
have not yet done their work〉 that will lead to a
SCFG rule. Given other smaller phrases (marked by
bars above the source side), we extract a GNF rule2:

X →
〈X1 noch nicht X2 haben, have not yet X2 X1〉

(2)

In order to avoid data sparsity and for better gen-
eralization, Watanabe et al. (2006b) adds four glue
rules for each lexical rule 〈f̄ , ē〉 which are analo-
gous to the glue rules defined in (Chiang, 2007) (see
above) except that these glue rules for LR decoding

1Griebach Normal Form (GNF), although the synchronous
grammar is not in this normal form, rather only the target side
is prefix lexicalized as if it were in GNF form.

2 LR-Hiero rule extraction excludes non-GNF rules such as
X → 〈X1 noch nicht gemacht X2, X2 not yet done X1〉.
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allow reordering as well.

X → 〈f̄X1, ēX1〉 X → 〈X1f̄X2, ēX1X2〉
X → 〈X1f̄ , ēX1〉 X → 〈X1f̄X2, ēX2X1〉

(3)

It might appear that the restriction that target-side
rules be GNF is a severe restriction on the cover-
age of possible hypotheses compared to the full set
of rules permitted by the Hiero extraction heuris-
tic. However there is some evidence in the liter-
ature that discontinuous spans on the source side
in translation rules is a lot more useful than dis-
continuous spans in the target side (which is disal-
lowed in the GNF). For instance, (Galley and Man-
ning, 2010) do an extensive study of discontinuous
spans on source and target side and show that source
side discontinuous spans are very useful but remov-
ing discontinuous spans on the target side only low-
ers the BLEU score by 0.2 points (using the Joshua
SMT system on Chinese-English). Removing dis-
continuous spans means that the target side rules
have the form: uX,Xu,XuX,XXu, or uXX of
which we disallow Xu,XuX,XXu. Zhang and
Zong (2012) also conduct a study on discontinuous
spans on source and target side of Hiero rules and
conclude that source discontinuous spans are always
more useful than discontinuities on the target side
with experiments on four language pairs (zh-en, fr-
en, de-en and es-en). As we shall also see in our
experimental results (see Table 4) we can get close
to the BLEU scores obtained using the full set of Hi-
ero rules by using only target lexicalized rules in our
LR decoder.

2.2 LR-Hiero Decoding

LR-Hiero decoding uses a top-down depth-first
search, which strictly grows the hypotheses in target
surface ordering. Search on the source side follows
an Earley-style search (Earley, 1970), the dot jumps
around on the source side of the rules based on the
order of nonterminals on the target side. This search
is integrated with beam search or cube pruning to
efficiently find the k-best translations.

Several important details about the algorithm of
LR-Hiero decoding are implicit and unexplained
in (Watanabe et al., 2006b). In this section we de-
scribe the LR-Hiero decoding algorithm in more de-
tail than the original description in (Watanabe et al.,

Algorithm 1: LR-Hiero Decoding
1: Input sentence: f = f0f1 . . . fn

2: F = FutureCost(f) (Precompute future cost for
spans)

3: for i = 0, . . . , n do
4: Si = {} (Create empty stacks)
5: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) (Initial hypothesis

4-tuple)
6: Add h0 to S0 (Push initial hyp into first Stack)
7: for i = 0, . . . , n− 1 do
8: for each h in Si do
9: [u, v] = pop(hs) (Pop first uncovered span

from list)
10: R = GetSpanRules([u, v]) (Extract rules

matching the entire span [u, v])
11: for r ∈ R do
12: h′ = GrowHypothesis(h, r, [u, v],F) (New

hypothesis)
13: Add h′ to Sl, where l = |h′cov| (Add new

hyp to stack)
14: return arg max(Sn)

15: GrowHypothesis(h, r, [u, v],F)
16: h′ = (h′t = ∅, h′s = hs, h

′
cov = ∅, h′c = 0)

17: rX = {Xj , Xk, . . . |j C k C . . .} (Get NTs in
surface order)

18: for each X in reverse(rX) do
19: push(h′s, span(X)) (Push uncovered spans to

LIFO list)
20: h′t = Concatenate(ht, rt)
21: h′cov = UpdateCoverage(hcov, rs)
22: h′c = ComputeCost(g(h′),F¬h′

cov
)

23: return h′

2006b). We explain our own modified algorithm for
LR decoding with cube pruning in Section 2.3.

Algorithm 1 shows the pseudocode for LR de-
coding. Decoding the example in Figure 1(b)
is explained using a walk-through shown in Fig-
ure 2. Each partial hypothesis h is a 4-tuple
(ht, hs, hcov, hc): consisting of a translation prefix
ht, a (LIFO-ordered) list hs of uncovered spans,
source words coverage set hcov and the hypothesis
cost hc. The initial hypothesis is a null string with
just a sentence-initial marker 〈s〉 and the list hs con-
taining a span of the whole sentence, [0, n]. The hy-
potheses are stored in stacks S0, . . . , Sn, where each
stack corresponds to a coverage vector of same size,
covering same number of source words (Koehn et
al., 2003).

At the beginning of beam search the initial hy-
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 X ⟦ schuler ihre arbeit nochnicht gemacht haben .⟧
schuler  X1

1
⟦ihrearbeit nochnicht gemacht haben .⟧

schuler  X1
2
⟦ihre arbeit nochnicht gemacht ⟧ haben X 2

2
⟦.⟧

schuler X 1
3
⟦ihrearbeit ⟧ nochnicht  X2

3
⟦gemacht⟧ haben X 2

2
⟦.⟧

schuler  X1
3
⟦ihre arbeit⟧ nochnicht gemacht haben X 2

2
⟦.⟧

schuler ihre arbeit nochnicht gemacht haben X 2
2
⟦.⟧

schuler ihre arbeit nochnicht gemacht haben .

1)X→〈schuler X1/ students X1〉

2)X→〈X1heban X 2/have X 1X 2〉

3 )X→〈X 1nochnicht X2/not yet X 2X 1〉

4 )X→〈gemacht /done 〉

5 )X→〈 ihre arbeit / their work 〉

6 )X→〈 ./ . 〉

[0,8]
students [1,8 ]
students have [1,6 ][7,8]
students have not yet [5,6] [1,3 ][7,8]
students have not yet done [1,3 ][7,8]
students have not yet done their work [7,8]
students have not yet done their work .

rules source side coverage hypothesis

G

G <s>

<s>

<s>

<s>

<s>

<s>

<s>

</s>

Figure 2: Illustration of the LR-Hiero decoding process in Figure 1. (a) Rules pane show the rules used in the derivation
(glue rules are marked byG) (b) Decoder state using Earley dot notation (superscripts show rule#) (c) Hypotheses pane
showing translation prefix and ordered list of yet-to-be-covered spans.

pothesis h0 is added to the decoder stack S0 (line 6
in Algoorithm 1). Hypotheses in each decoder stack
are expanded iteratively, generating new hypotheses,
which are added to the latter stacks corresponding to
the number of source words covered. In each step it
pops from the LIFO list hs, the span [u, v] of the
next hypothesis h to be processed.

All rules that match the entire span [u, v] are then
obtained efficiently via pattern matching (Lopez,
2007). GetSpanRules addresses possible ambigui-
ties in matched rules to the given span [u, v]. For
example, given a rule r, with source side rs :
〈X1 the X2〉 and source phrase p : 〈ok, the more
the better〉. There is ambiguity in matching r to
p. GetSpanRules returns a distinct matched rule for
each possible matching.

The GrowHypothesis routine creates a new can-
didate by expanding given hypothesis h using rule
r and computes the complete hypothesis score in-
cluding language model score. Since the target-side
rules are in GNF, the translation prefix of the new
hypothesis is obtained by simply concatenating the
terminal prefixes of h and r in same order (line 20).
UpdateCoverage updates source word coverage set
using the source side of r. The hs list is built by
pushing the non-terminal spans of rule r in a reverse
order (lines 17 and 18). The reverse ordering main-
tains the left-to-right generation of the target side.

In the walk-through in Figure 2, the derivation
process starts by expanding the initial hypothesis h0

(first item in the right pane of Fig 2) with the rule
(rule #1 in left pane) to generate a new partial candi-
date having a terminal prefix of 〈s〉 students (second
item in right pane). The second item in the middle
pane shows the current position of the parser em-
ploying Earley’s dot notation, indicating that the first
word has already been translated. Now the decoder

considers the second hypothesis and pops the span
[1, 8]. It then matches the rule (#2) and pushes the
spans [1, 6] and [7, 8] into the list hs in the reverse
order of their appearance in the target-side rule. At
each step the new hypothesis is added to the decoder
stack Sl depending on the number of covered words
in the new hypothesis (line 13 in Algorithm 1).

For pruning we use an estimate of the future cost3

of the spans uncovered by current hypothesis to-
gether with the hypothesis cost. The future cost is
precomputed (line 2 Algorithm 1) in a way simi-
lar to the phrase-based models (Koehn et al., 2007)
using only the terminal rules of the grammar. The
ComputeCost method (line 22 in Algorithm 1) uses
the usual log-linear model and scores a hypothesis
based on its different feature scores g(h′) and the
future cost of the yet to be covered spans (F¬h′cov

).
Time complexity of left to right Hiero decoding with
beam search is O(n2b) in practice where n is the
length of source sentence and b is the size of beam
(Huang and Mi, 2010).

2.3 LR-Hiero Decoding with Cube Pruning

The Algorithm 1 presented earlier does an ex-
haustive search as it generates all possible partial
translations for a given stack that are reachable from
the hypotheses in previous stacks. However only a
few of these hypotheses are retained, while majority
of them are pruned away. The cube pruning tech-
nique (Chiang, 2007) avoids the wasteful generation
of poor hypotheses that are likely to be pruned away
by efficiently restricting the generation to only high
scoring partial translations.

We modify the cube pruning for LR-decoding
that takes into account the next uncovered span to

3 Watanabe et al. (2006b) also use a similar future cost, even
though it is not discussed in the paper (p.c.).
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Algorithm 2: LR-Hiero Decoding with Cube Pruning
1: Input sentence: f = f0f1 . . . fn

2: F = FutureCost(f) (Precompute future cost for
spans)

3: S0 = {} (Create empty initial stack)
4: h0 = (〈s〉, [[0, n]], ∅,F[0,n]) (Initial hypothesis

4-tuple)
5: Add h0 to S0 (Push initial hyp into first Stack)
6: for i = 1, . . . , n do
7: cubeList = {} (MRL is max rule length)
8: for p = max(i− MRL, 0), . . . , i− 1 do
9: {G} = Grouped(Sp) (Group based on the first

uncovered span)
10: for g ∈ {G} do
11: [u, v] = gspan

12: R = GetSpanRules([u, v])
13: for Rs ∈ R do
14: cube = [ghyps, Rs]
15: Add cube to cubeList
16: Si = Merge(cubeList,F) (Create stack Si and

add new hypotheses to it, see Figure 3)
17: return arg max(Sn)

18: Merge(CubeList,F)
19: heapQ = {}
20: for each (H,R) in cubeList do
21: [u, v] = span of rule R
22: h′ = GrowHypothesis(h1, r1, [u, v],F) (from

Algorithm 1)
23: push(heapQ, (h′c, h

′, [H,R])
24: hypList = {}
25: while |heapQ| > 0 and |hypList| < K do
26: (h′c, h

′, [H,R]) = pop(heapQ)
27: push(heapQ,GetNeighbours([H,R])
28: Add h′ to hypList
29: return hypList

be translated indicated by the Earley’s dot nota-
tion. The Algorithm 2 shows the pseudocode for
LR-decoding using cube pruning. The structure of
stacks and hypotheses and computing the future cost
is similar to Algorithm 1 (lines 1-5). To fill stack
Si, it iterates over previous stacks (line 8 in Algo-
rithm 2) 4. All hypotheses in each stack Sp (cov-
ering p words on the source-side) are first parti-
tioned into a set of groups, {G}, based on their
first uncovered span (line 9) 5. Each group g is a

4As the length of rules are limited (at most MRL), we can
ignore stacks with index less than i− MRL

5The beam search decoder in Phrase-based system (Huang
and Chiang, 2007; Koehn et al., 2007; Sankaran et al., 2010)

2-tuple (gspan, ghyps), where ghyps is a list of hy-
potheses which share the same first uncovered span
gspan. Rules matching the span gspan are obtained
from routine GetSpanRules, which are then grouped
based on unique source side rules (i.e. each Rs con-
tains rules that share the same source side s but have
different target sides). Each ghyps and possible Rs

6

create a cube which is added to cubeList.

In LR-Hiero, each hypothesis is developed with
only one uncovered span, therefore each cube al-
ways has just two dimensions: (1) hypotheses with
the same number of covered words and similar first
uncovered span, (2) rules sharing the same source
side. In Figure 3(a), each group of hypotheses,
ghyps, is shown in a green box (in stacks), and each
rectangle on the top is a cube. Figure 3 is using the
example in Figure 2.

The Merge routine is the core function of cube
pruning which generates the best hypotheses from
all cubes (Chiang, 2007). For each possible cube,
(H,R), the best hypothesis is generated by calling
GrowHypothesis(h1, r1, span,F) where h1 and
r1 are the best hypothesis and rule in H and R re-
spectively (line 22). Figure 3 (b) shows a more de-
tailed view of a cube (shaded cube in Figure 3(a)).
Rows are hypotheses and columns are rules which
are sorted based on their scores.

The first best hypotheses, h′, along with their
score, h′c and corresponding cube, (H,R) are
placed in a priority queue, heapQ (triangle in Fig-
ure 3). Iteratively the best hypothesis is popped
from the queue (line 26) and its neighbours in
the cube are added to the priority queue (using
GetNeighbours([H,Q])). It continues to generate
all K best hypotheses. Using cube pruning tech-
nique, each stack is filled with K best hypotheses
without generating all possible hypotheses in each
cube.

groups the hypotheses in a given stack based on their coverage
vector. But this idea does not work in LRHiero decoding in
which the expansion of each hypothesis is restricted to its first
uncovered span. We have also tried another way of grouping
hypotheses: group by all uncovered spans, hs. Our experiments
did not show any significant difference between the final results
(BLEU score), therefore we decided to stick to the simpler idea:
using first uncovered span for grouping.

6Note that, just rules whose number of terminals in their
source side is equal to i− p can be used.
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Figure 3: Example of generating hypotheses in cube pruning using Figure 2: (a) Hypotheses in previous stacks are
grouped based on their first uncovered span, and build cubes (grids on top). Cubes are in different sizes because
of different number of rules and group sizes. Cubes are fed to a priority queue (triangle) and new hypotheses are
iteratively popped from the queue and added to the current stack, S5. (b) Generating hypotheses from a cube. The top
side of the grid denotes the target side of rules sharing the same source side (Rs) along with their scores. Left side of
the grid shows the hypotheses in a same group, their first uncovered span and their scores. Hypothesis generated from
row 1 and column 1 is added to the queue at first. Once it is popped from the queue, its neighbours (in the grid) are
subsequently added to the queue.

Figure 3 (b) shows the derivation of the two best
hypotheses from the cube. The best hypothesis of
this cube which is likely created from the best hy-
pothesis and rule (left top most entry) is popped
at first step. Then, GetNeighbours calls GrowHy-
pothesis to generate next potential best hypotheses
of this cube (neighbours of the popped entry which
are shaded in Figure 3(b)). These hypotheses are
added to the priority queue. In the next iteration, the
best hypothesis is popped from all candidates in the
queue and algorithm continues.

3 Features

We use the following standard SMT features for the
log-linear model of LR-Hiero: relative-frequency
translation probabilities p(f |e) and p(e|f), lexical
translation probabilities pl(f |e) and pl(e|f), a lan-
guage model probability, word count and phrase
count. In addition we also use the glue rule count
and the two reordering penalty features employed
by Watanabe et al. (2006b; 2006a). These features
compute the height and width (span size of the en-
tire subtree) of all subtrees which are backtraced in
the derivation of a hypothesis. A non-terminal Xi

is pushed into the LIFO list of a partial hypothesis;

it’s backtrace refers to the set of NTs that must be
popped before Xi.

In Figure 1(b), X2 has two subtrees X3 and X6,
where X3 should be processed before X6. The sub-
tree rooted atX3 in Figure 1(b) has a height of 2 and
span [1, 6] having a width of 5. Similarly, X4 should
be backtraced beforeX5 and has height and width of
1. Backtracing applies only for rules having at least
two non-terminals. Thus the total height and width
penalty for this derivation are 3 and 6 respectively.

However, the height and width features do not
distinguish between a rule that reorders the non-
terminals in source and target from one that pre-
serves the ordering. Rules #2 and #3 in Figure 2
are treated equally although they have different or-
derings. The decoder is thus agnostic to this dif-
ference and would not be able to exploit this ef-
fectively to control reordering and instead would
rely on the partial LM score. This issue is exac-
erbated for glue rules, where the decoder has to
choose from different possibilities without any way
to favour one over the others. Instead of the rule
#2, the decoder could use its reordered version
〈X1 haben X2, have X2 X1〉 leading to a poor
translation.
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The features we introduce can be used to learn
if the model should favour monotone translations at
the cost of re-orderings or vice versa and hence can
easily adapt to different language pairs. Further, our
experiments (see Section 4) suggest that the features
h andw are not sufficient by themselves to model re-
ordering for language pairs exhibiting very different
syntactic structure.

3.1 Distortion Features

Our distortion features are inspired by their name-
sake in phrase-based system, with some modifica-
tions to adapt the idea for the discontiguous phrases
in LR-Hiero grammar.

r : hf1X1f2X2f3, tX2X1i I = [`, f1, f2, f3, X2, X1,a]

f2 f3 X1 f1 X2 

(a)

r : 〈X1noch nicht X 2/not yet X2 X1〉

I=[(1,1) ,(3,5) ,(5,6) ,(1,3) ,(6,6)]

.1ihre2arbeit3noch4nicht5gemacht 6
(b)

Figure 4: (a) Distortion feature computation using a rule
r. (b) Example of distortion computation for applying r3
on phrase 〈ihre arbeit noch nicht gemacht haben〉. sub-
scripts between words show the indices which are used to
build I . Distortion would be: d = 2 + 0 + 5 + 3.

Consider a rule r = 〈γ, b̄ β〉, with the source
term γ being a mixed string of terminals and non-
terminals. Representing the non-terminal spans and
each sequence of terminals in γ as distinct items, our
distortion feature counts the total length of jumps be-
tween the items during Earley parsing.

Figure 4 (a) explains the computation of our dis-
tortion feature for an example rule r. Let I =
[I0, . . . , Ik] be the items denoting the terminal se-
quences and non-terminal spans with I0 and Ik be-
ing dummy items (` and a in Fig) marking the left
and right indices of the rule r in input sentence f .
Other items are arranged by their realization order
on the target-side with the terminal sequences pre-
ceding non-terminal spans. The items for the exam-
ple rule are shown in Figure 4 (a). The distortion

feature is computed as follows:

d(r) =
k∑

j=1

|IL
j − IR

j−1| (4)

where superscripts refer to position of left (L) and
right (R) edge of each item in the source sentence
f . These are then aggregated across the rules of a
derivation D as: d =

∑
r∈D d(r). For each item

Ij , we count the jump from the end of previous item
to the beginning of the current. In Figure 4 (a) the
jumps are indicated by the arrows above the rule.
Figure 4 (b) shows an example of distortion com-
putation for r3 and phrase 〈ihre arbeit noch nicht
gemacht haben〉 from Figure 2.

Since the glue rules are likely to be used in the top
levels (possibly with large distortion) of the deriva-
tion, we would want the decoder to learn the distor-
tion for regular and glue rules separately. We thus
use two distortion features for the two rule types and
we call them dp and dg.

These features do not directly model the source-
target reordering, but only capture the source-side
jumps. Furthermore they apply for both monotone
and reordering rules. We now introduce a new fea-
ture for exclusively modelling the reordering.

3.2 Reordering Feature

This feature simply counts the number of reordering
rules, where the non-terminals in source and target
sides are reordered. Thus r〈〉 = rule(D, 〈〉), where
rule(D, 〈〉) is the number of reordering rules in D.
Similar to width and height, this feature is applied
for rule having at least two non-terminals. This fea-
ture is applied to regular and glue rules.

4 Experiments

We conduct different types of experiments to evalu-
ate LR-Hiero decoding developed by cube pruning
and integrating new features into LR-Hiero system
for two language pairs: German-English (de-en) and
Czech-English (cs-en).Table 1 shows the dataset de-
tails.

4.1 System Setup

In our experiments we use four baselines as well
as our implementation of LR-Hiero (written in
Python):
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Corpus Train/Dev/Test
cs-en Europarl(v7), CzEng(v0.9);

News commentary
7.95M/3000/3003

de-en Europarl(v7); News
commentary

1.5M/2000/2000

Table 1: Corpus statistics in number of sentences

Model cs-en de-en
Phrase-based 233.0 77.2
Hiero 1,961.6 858.5
LR-Hiero 230.5 101.3

Table 2: Model sizes (millions of rules). We do not count
glue rules for LR-Hiero which are created at runtime as
needed.

• Hiero: we used Kriya, our open-source im-
plementation of Hiero in Python, which per-
forms comparably to other open-source Hiero
systems (Sankaran et al., 2012). Kriya can
obtain statistically significantly equal BLEU
scores when compared with Moses (Koehn et
al., 2007) for several language pairs (Razmara
et al., 2012; Callison-Burch et al., 2012).

• Hiero-GNF: where we use Hiero decoder with
the restricted LR-Hiero grammar (GNF rules).

• LR-Hiero: our implementation of LR-Hiero
(Watanabe et al., 2006b) in Python.

• phrase-based: Moses (Koehn et al., 2007)

• LR-Hiero+CP: LR-Hiero decoding with cube
pruning.

We use a 5-gram LM trained on the Gigaword cor-
pus and use KenLM (Heafield, 2011) for LM scor-
ing during decoding. We tune weights by minimiz-
ing BLEU loss on the dev set through MERT (Och,
2003) and report BLEU scores on the test set. We
use comparable pop limits in each of the decoders:
1000 for Moses and LR-Hiero and 500 with cube
pruning for CKY Hiero and LR-Hiero+CP. Other
extraction and decoder settings such as maximum
phrase length, etc. were identical across settings so
that the results are comparable.

Table 2 shows how the LR-Hiero grammar is
much smaller than CKY-based Hiero.

Model cs-en de-en
#queries / time(ms) #queries / time(ms)

Hiero 5,679.7 / 16.12 7,231.62 / 20.33
Hiero-GNF 4,952.5 / 14.71 5,858.74 / 18.23
LR-Hiero (1000) 46,333.21 / 163.6 83,518.63 / 328.11
LR-Hiero (500) 24,141.03 / 97.61 42,783.12 / 192.23
LR-Hiero+CP 1,303.2 / 4.2 1,697.7 / 5.67

Table 3: Comparing average number and time of lan-
guage model queries.

4.2 Time Efficiency Comparison

To evaluate the performance of LR-Hiero decod-
ing with cube pruning (LR-Hiero+CP), we compare
it with three baselines: (i) CKY Hiero, (ii) CKY
Hiero-GNF, and (iii) LR-Hiero (without cube prun-
ing) with two different beam size 500 and 1000.
When it comes to instrument timing results, there are
lots of system level details that we wish to abstract
away from, and focus only on the number of “edges”
processed by the decoder. In comparison of parsing
algorithms, the common practice is to measure the
number of edges processed by different algorithms
for the same reason (Moore and Dowding, 1991).
By analogy to parsing algorithm comparisons, we
compare the different decoding algorithms with re-
spect to the number of calls made to the language
model (LM) since that directly corresponds to the
number of hypotheses considered by the decoder.
A decoder is more time efficient if it can consider
fewer translation hypotheses while maintaining the
same BLEU score. All of the baselines use the same
wrapper to query the language model, and we have
instrumented the wrapper to count the statistics we
need and thus we can say this is a fair comparison.
For this experiment we use a sample set of 50 sen-
tences taken from the test sets.

Table 3 shows the results in terms of average num-
ber of language model queries and times in millisec-
onds.

4.3 Reordering Features

To evaluate the new reordering features proposed
to LR-Hiero (Section 3.2), LR-Hiero+CP with new
features is compared to all baselines. Table 4 shows
the BLEU scores of different models in two lan-
guage pairs. The baseline (Watanabe et al., 2006b)
model uses all the features mentioned therein but is
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Model cs-en de-en
Phrase-based 20.32 24.71
CKY Hiero 20.64 25.52
CKY Hiero-GNF 20.04 24.84
LR-Hiero 18.30 23.47
LR-Hiero + reordering feats 20.20 24.90
LR-Hiero + CP + reordering feats 20.15 24.83

CKY Hiero-GNF + reordering feats 20.52 25.09
CKY Hiero + reordering feats 20.77 25.72

Table 4: BLEU scores. The rows are grouped such that
each group use the same model. The last row in part 2 of
table shows LR-Hiero+CP using our new features in ad-
dition to the baseline Watanabe features (line LR-Hiero
baseline). The last part shows CKY Hiero using new re-
ordering features. The reordering features used are dp, dg

and r〈〉. LR-Hiero+CP has a beam size of 500 while LR-
Hiero has a beam size of 1000, c.f. with the LM calls
shown in Table 3.

worse than both phrase-based and CKY-Hiero base-
lines by up to 2.3 BLEU points.

All the reported results are obtained from a single
optimizer run. However we observed insignificant
changes in different tuning runs in our experiments.
We find a gain of about 1 BLEU point when we add
a single distortion feature d and a further gain of
0.3 BLEU (not shown due to lack of space) when
we split the distortion feature for the two rule types
(dp and dg). The last line in part two of Table 4
shows a consistent gain of 1.6 BLEU over the LR-
Hiero baseline for both language pairs. It shows that
LR-Hiero maintains the BLEU scores obtained by
“phrase-based” and “CKY Hiero-GNF”.

We performed statistical significance tests us-
ing two different tools: Moses bootstrap resam-
pling and MultEval (Clark et al., 2011). The dif-
ference between “LR-Hiero+CP+reordering feat”
and three baselines: “phrase-based”, “CKY Hiero-
GNF”, “LR-Hiero+reordering feat” are not statis-
tically significant even for p-value of 0.1 for both
tools.

To investigate the impact of proposed reordering
features with other decoder or models. We add these
features to both Hiero and Hiero-GNF7. The last
part of Table 4 shows the performance CKY decoder

7Feature r〈〉 is defined for SCFG rules and cannot be
adopted to phrase-based translation systems; and Moses uses
distortion feature therefore we omit Moses from this experi-
ment.

with different models (full Hiero and GNF) with the
new reordering features in terms of BLEU score.
The results show that these features are helpful in
both models. Although, they do not make a big dif-
ference in Hiero with full model, they can alleviate
the lack of non-GNF rules in Hiero-GNF.

Nguyen and Vogel (2013) integrate traditional
phrase-based features: distortion and lexicalized re-
ordering into Hiero as well. They show that such
features can be useful to boost the translation quality
of CKY Hiero with the full rule set. Nguyen and Vo-
gel (2013) compute the distortion feature in a differ-
ent way, only applicable to CKY. The distortion for
each cell is computed after the translation for non-
terminal sub-spans is complete. In LR-decoding,
we compute distortion for rules even though we are
yet to translate some of the sub-spans. Thus our ap-
proach computes the distortion incrementally for the
untranslated sub-spans which are later added. Un-
like (Nguyen and Vogel, 2013), our distortion fea-
ture can be applied to both LR and CKY-decoding
(Table 4). We have also introduced another reorder-
ing feature (Section 3.2) not proposed previously.

5 Conclusion and Future Work
We provided a detailed description of left-to-right
Hiero decoding, many details of which were only
implicit in (Watanabe et al., 2006b). We presented
an augmented LR decoding algorithm that builds on
the original algorithm in (Watanabe et al., 2006b)
but unlike that algorithm, using experiments over
multiple language pairs we showed two new results:
(i) Our LR decoding algorithm provides demonstra-
bly more efficient decoding than CKY Hiero and the
original LR decoding algorithm in (Watanabe et al.,
2006b). And, (ii) by introducing new distortion and
reordering features for LR decoding we show that
it maintains the BLEU scores obtained by phrase-
based and CKY Hiero-GNF.

CKY Hiero uses standard Hiero-style translation
rules capturing better reordering model than prefix
lexicalized target-side translation rules used in LR-
Hiero. Our LR-decoding algorithm is 4 times faster
in terms of LM calls while translation quality suffers
by about 0.67 in BLEU score on average.

Unlike Watanabe et al. (2006b), our new features
can easily adapt to the reordering requirements of
different language pairs. We also introduce the use
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of future cost in decoding algorithm which is an es-
sential part in decoding. We have shown in this pa-
per that left-to-right (LR) decoding can be consid-
ered as a potential faster alternative to CKY decod-
ing for Hiero-style machine translation systems.

In future work, we plan to apply lexicalized re-
ordering models to LR-Hiero. It has been shown to
be useful for Hiero in some languages therefore it
is promising to improve translation quality in LR-
Hiero which suffers from lack of modeling power
of non-GNF target side rules. We also plan to ex-
tend the glue rules in LR-Hiero to provide a bet-
ter reordering model. We believe such an exten-
sion would be very effective in reducing search er-
rors and capturing better reordering models in lan-
guage pairs involving complex reordering require-
ments like Chinese-English.
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Abstract

This paper addresses the problem of produc-
ing a diverse set of plausible translations. We
present a simple procedure that can be used
with any statistical machine translation (MT)
system. We explore three ways of using di-
verse translations: (1) system combination,
(2) discriminative reranking with rich features,
and (3) a novel post-editing scenario in which
multiple translations are presented to users.
We find that diversity can improve perfor-
mance on these tasks, especially for sentences
that are difficult for MT.

1 Introduction

From the perspective of user interaction, the ideal
machine translator is an agent that reads documents
in one language and produces accurate, high qual-
ity translations in another. This interaction ideal
has been implicit in machine translation (MT) re-
search since the field’s inception. It is the way
we interact with commercial MT services (such as
Google Translate and Microsoft Translator), and the
way MT systems are evaluated (Bojar et al., 2013).
Unfortunately, when a real, imperfect MT system
makes an error, the user is left trying to guess what
the original sentence means.

Multiple Hypotheses. In contrast, when we look
at the way other computer systems consume out-
put from MT systems (or similarly unreliable tools),
we see a different pattern. In a pipeline setting
it is commonplace to propagate not just a single-
best output but the M -best hypotheses (Venugopal
et al., 2008). Multiple solutions are also used for
reranking (Collins, 2000; Shen and Joshi, 2003;

Collins and Koo, 2005; Charniak and Johnson,
2005), tuning (Och, 2003), minimum Bayes risk de-
coding (Kumar and Byrne, 2004), and system com-
bination (Rosti et al., 2007). When dealing with
error-prone systems, knowing about alternatives has
benefits over relying on only a single output (Finkel
et al., 2006; Dyer, 2010).

Need for Diversity. Unfortunately, M -best lists are
a poor surrogate for structured output spaces (Finkel
et al., 2006; Huang, 2008). In MT, for exam-
ple, many translations on M -best lists are extremely
similar, often differing only by a single punctua-
tion mark or minor morphological variation. Re-
cent work has explored reasoning about sets using
packed representations such as lattices and hyper-
graphs (Macherey et al., 2008; Tromble et al., 2008;
Kumar et al., 2009), or sampling translations propor-
tional to their probability (Chatterjee and Cancedda,
2010). We argue that the implicit goal behind these
techniques is to better explore the output space by
introducing diversity into the surrogate set.

Overview and Contributions. In this work, we el-
evate diversity to a first-class status and directly ad-
dress the problem of generating a set of diverse,
plausible translations. We use the recently pro-
posed technique of Batra et al. (2012), which pro-
duces diverse M -best solutions from a probabilistic
model using a generic dissimilarity function ∆(·, ·)
that specifies how two solutions differ. Our first con-
tribution is a family of dissimilarity functions for
MT that admit simple algorithms for generating di-
verse translations. Other contributions are empiri-
cal: we show that diverse translations can lead to
improvements for system combination and discrim-
inative reranking. We also perform a novel human
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post-editing evaluation in order to measure whether
diverse translations can help users make sense of
noisy MT output. We find that diverse translations
can help post-editors produce better outputs for sen-
tences that are the most difficult for MT. While we
focus on machine translation in this paper, we note
that our approach is applicable to other structure pre-
diction problems in NLP.

2 Preliminaries and Notation

Let X denote the set of all strings in a source lan-
guage. For an x ∈ X, let Yx denote the set of its pos-
sible translations y in the target language. MT mod-
els typically include a latent variable that captures
the derivational structure of the translation process.
Regardless of its specific form, we refer to this vari-
able as a derivation h ∈ Hx, where Hx is the set of
possible values of h for x. Derivations are coupled
with translations and we define Tx ⊆ Yx × Hx as
the set of possible 〈y,h〉 pairs for x.

We use a linear model with a parameter vector w
and a vector φ(x,y,h) of feature functions on x, y,
and h (Och and Ney, 2002). The translation of x is
selected using a simple decision rule:

〈ŷ, ĥ〉 = argmax
〈y,h〉∈Tx

wᵀφ(x,y,h) (1)

where we also maximize over the latent variable h
for efficiency. Translation models differ in the form
of Tx and the choice of the feature functions φ. In
this paper we focus on phrase-based (Koehn et al.,
2003) and hierarchical phrase-based (Chiang, 2007)
models, which include several bilingual and mono-
lingual features, including n-gram language models.

3 Diversity in Machine Translation

We now address the task of producing a set of di-
verse high-scoring translations.

3.1 Generating Diverse Translations
We use a recently proposed technique (Batra et al.,
2012) that constructs diverse lists via a greedy itera-
tive procedure as follows. Let y1 be the model-best
translation (Eq. 1). On the m-th iteration, the m-th
best (diverse) translation is obtained as 〈ym,hm〉 =

argmax
〈y,h〉∈Tx

wᵀφ(x,y,h) +
m−1∑
j=1

λj∆(yj ,y) (2)

where ∆ is a dissimilarity function and λj is the
weight placed on dissimilarity to previous trans-
lation j relative to the model score. Intuitively,
we seek a translation that is highly-scoring under
the model while being different (as measured by
∆) from all previous translations. The λ param-
eters determine the trade-off between model score
and diversity. We refer to Eq. (2) as dissimilarity-
augmented decoding.

The objective in Eq. (2) is a Lagrangian relax-
ation for an intractable constrained objective speci-
fying a minimum dissimilarity ∆min between trans-
lations in the list, i.e., ∆(yj ,y) ≥ ∆min (Batra et
al., 2012). Instead of setting the dissimilarity thresh-
old ∆min , we set the weights λj . While the formu-
lation allows for a different λj for each previous so-
lution j, we simply use a single λ = λj for all j.
This was also done in the experiments in (Batra et
al., 2012).

Note that if the dissimilarity function factors
across the parts of the output variables 〈y,h〉 in the
same way as the features φ, then the same decod-
ing algorithm can be used as for Eq. (1). We discuss
design choices for ∆ next.

3.2 Dissimilarity Functions for MT
When designing a dissimilarity function ∆(·, ·) for
MT, we want to consider variation both in individ-
ual word choice and longer-range sentence structure.
We also want a function that can be easily incorpo-
rated into extant statistical MT systems. We propose
a dissimilarity function that simply counts the num-
ber of times any n-gram is present in both transla-
tions, then negates. Letting q = n− 1:

∆n(y,y′) = −
|y|−q∑
i=1

|y′|−q∑
j=1

[[yi:i+q = y′j:j+q]] (3)

where [[·]] is the Iverson bracket (1 if input condition
is true, 0 otherwise) and yi:j is the subsequence of y
from word i to word j (inclusive).

Importantly, Eq. (2) can be solved with no change
to the decoding algorithm. The dissimilarity terms
can simply be incorporated as an additional lan-
guage model in ARPA format that sets the log-
probability to the negated count for each n-gram
in previous diverse translations, and sets to zero
all other n-grams’ log-probabilities and back-off
weights.
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The advantage of this dissimilarity function is its
simplicity. It can be easily used with any transla-
tion system that uses n-gram language models with-
out any change to the decoder. Indeed, we use both
phrase-based and hierarchical phrase-based models
in our experiments below.

4 Related Work

MT researchers have recently started to con-
sider diversity in the context of system combina-
tion (Macherey and Och, 2007). Most closely-
related is work by Devlin and Matsoukas (2012),
who proposed a way to generate diverse transla-
tions by varying particular “traits,” such as transla-
tion length, number of rules applied, etc. Their ap-
proach can be viewed as solving Eq. (2) with a richer
dissimilarity function that requires a special-purpose
decoding algorithm. We chose our n-gram dissimi-
larity function due to its simplicity and applicability
to most MT systems without requiring any change
to decoders.

Among other work, Xiao et al. (2013) used bag-
ging and boosting to get diverse system outputs for
system combination and Cer et al. (2013) used mul-
tiple identical systems trained jointly with an objec-
tive function that encourages the systems to generate
complementary translations.

There is also similarity between our approach and
minimum Bayes risk decoding (Kumar and Byrne,
2004), variational decoding (Li et al., 2009), and
other “consensus” decoding algorithms (DeNero et
al., 2009). These all seek a single translation that
is most similar on average to the model’s preferred
translations. In this way, they try to capture the
model’s range of beliefs in a single translation. We
instead seek a set of translations that, when consid-
ered as a whole, similarly express the full range of
the model’s beliefs about plausible translations for
the input.

Also related is work on determinantal point pro-
cesses (DPPs; Kulesza and Taskar, 2010), an ele-
gant probabilistic model over sets of items that nat-
urally prefers diverse sets. DPPs have been ap-
plied to summarization (Kulesza and Taskar, 2011)
and discovery of topical threads in document collec-
tions (Gillenwater et al., 2012). Unfortunately, in
the structured setting, DPPs make severely restric-

tive assumptions on the scoring function, while our
framework does not.

5 Experimental Setup

We now embark on an extensive empirical evalua-
tion of the framework presented above. We begin
by analyzing our diverse sets of translations, show-
ing how they differ from standard M -best lists (Sec-
tion 6), followed by three tasks that illustrate how di-
versity can be exploited to improve translation qual-
ity: system combination (Section 7), discrimina-
tive reranking (Section 8), and a novel human post-
editing task (Section 9). In the remainder of this sec-
tion, we describe details of our experimental setup.

5.1 Language Pairs and Datasets

We use three language pairs: Arabic-to-English
(AR→EN), Chinese-to-English (ZH→EN), and
German-to-English (DE→EN). For AR→EN and
DE→EN, we used a phrase-based model (Koehn et
al., 2003) and for ZH→EN we used a hierarchical
phrase-based model (Chiang, 2007).

Each language pair has two tuning and one test
set: TUNE1 is used for tuning the baseline sys-
tems with minimum error rate training (MERT; Och,
2003), TUNE2 is used for training system combin-
ers and rerankers, and TEST is used for evaluation.
There are four references for AR→EN and ZH→EN

and one for DE→EN.
For AR→EN, we used data provided by the LDC

for the NIST evaluations, which includes 3.3M sen-
tences of UN data and 982K sentences from other
(mostly news) sources. Arabic text was prepro-
cessed using an HMM segmenter that splits attached
prepositional phrases, personal pronouns, and the
future marker (Lee et al., 2003). The common stylis-
tic sentence-initial w+ (and) clitic was removed.
The resulting corpus contained 130M Arabic tokens
and 130M English tokens. We used the NIST MT06
test set as TUNE1, a 764-sentence subset of MT05 as
TUNE2, and MT08 as TEST.

For ZH→EN, we used 303k sentence pairs from
the FBIS corpus (LDC2003E14). We segmented
the Chinese data using the Stanford Chinese seg-
menter (Chang et al., 2008) in “CTB” mode, giving
us 7.9M Chinese tokens and 9.4M English tokens.
We used the NIST MT02 test set as TUNE1, MT05
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as TUNE2, and MT03 as TEST.
For DE→EN, we used data released for the

WMT2011 shared task (Callison-Burch et al., 2011).
German compound words were split using a CRF
segmenter (Dyer, 2009). We used the WMT2010
test set as TUNE1, the 2009 test set as TUNE2, and
the 2011 test set as TEST.

5.2 Baseline Systems

We used the Moses MT toolkit (Koehn et al.,
2007; Hoang et al., 2009) with default settings
and features for both phrase-based and hierarchi-
cal systems. Word alignment was done using
GIZA++ (Och and Ney, 2003) in both directions,
with the grow-diag-final-and heuristic used
to symmetrize the alignments and a max phrase
length of 7 used for phrase extraction.

Language models used the target side of the paral-
lel corpus in each case augmented with 24.8M lines
(601M tokens) of randomly-selected sentences from
the Gigaword v4 corpus (excluding the NY Times
and LA Times). We used 5-gram models, estimated
using the SRI Language Modeling toolkit (Stolcke,
2002) with modified Kneser-Ney smoothing (Chen
and Goodman, 1998). The minimum count cut-off
for unigrams, bigrams, and trigrams was 1 and the
cut-off for 4-grams and 5-grams was 3. Language
model inference used KenLM (Heafield, 2011).

Uncased IBM BLEU was used for evaluation (Pa-
pineni et al., 2002). MERT was used to train the fea-
ture weights for the baseline systems on TUNE1. We
used the learned parameters to generate M -best and
diverse lists for TUNE2 and TEST to use for subse-
quent experiments.

5.3 Diverse List Generation

Generating diverse translations depends on two hy-
perparameters: the n-gram order used by the dissim-
ilarity function ∆n (§3.2) and the λj weights on the
dissimilarity terms in Eq. (2). Though our frame-
work permits different λj for each j, we use a sin-
gle λ value for simplicity, as was also done in (Ba-
tra et al., 2012). The values of n and λ were tuned
on a 200 sentence subset of TUNE1 separately for
each language pair (which we call TUNE200), so as
to maximize the oracle BLEU score of the diverse

AR→EN ZH→EN DE→EN

1 best 50.1 36.9 21.8
20 best 54.0 40.3 24.7

200 best 57.5 43.8 27.7
1000 best 59.8 46.4 29.8

unique 20 best 56.6 44.1 26.7
unique 200 best 59.6 46.4 29.5

20 diverse 58.5 46.4 28.6
20 div × 10 best 61.3 48.7 30.3
20 div × 50 best 63.2 50.6 31.6

Table 1: Oracle BLEU scores on TEST for various sizes
of M -best and diverse lists. Unique lists were obtained
from 1,000-best lists and therefore may not contain the
target number of unique translations for all sentences.

lists.1 We considered n values in {2, 3, . . . , 9} and
λ values in {0.005, 0.01, 0.05, 0.1}. We give details
on optimal values for these hyperparameters when
discussing particular tasks below.

Though simple, our approach is computationally
expensive as M grows because it requires decoding
M times for each sentence. So, we assumeM ≤ 20.
But we also extract an N -best list for each of the M
diverse translations.2 Many MT decoders, including
the phrase-based and hierarchical implementations
in Moses, permit efficient extraction of N -best lists,
so we exploit this to obtain larger lists that still ex-
hibit diversity. But we note that these N -best lists
for each diverse solution are not in themselves di-
verse; with more computational power or more effi-
cient algorithms (Devlin and Matsoukas, 2012) we
could potentially generate larger, more diverse lists.

6 Analysis of Diverse Lists

We now characterize our diverse lists by compar-
ing them to M -best lists. Table 1 shows oracle
BLEU scores on TEST for M -best lists, unique M -
best lists, and diverse lists of several sizes. To get
unique lists, we first generated 1000-best lists, then
retained only the highest-scoring derivation for each
unique translation. When comparingM -best and di-
verse lists of comparable size, the diverse lists al-

1Since BLEU does not decompose additively across seg-
ments, we chose translations for individual sentences that max-
imized BLEU+1 (Lin and Och, 2004), then computed “oracle”
corpus BLEU of these translations.

2We did not consider n-grams from previous N -best lists
when computing the dissimilarity function, but only those from
the previous diverse translations.
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Figure 1: Median, min, and max BLEU+1 of 20-best
and 20-diverse lists for the ZH→EN test set, divided into
quartiles according to the BLEU+1 score of the 1-best
translation, and averaged across sentences in each quar-
tile. Heights of the bars show median and “error bars”
indicate max and min.

ways have higher oracle BLEU. The differences are
largest when comparing 20-best lists and 20-diverse
lists, where they range from 4 to 6 BLEU points.

When generating these diverse lists, we used the
n and λ values that were tuned for each language
pair to maximize oracle BLEU on TUNE200 for the
“20 div × 50 best” configuration. The optimal val-
ues of n were 6 for ZH→EN and AR→EN and 7 for
DE→EN.3 When instead tuning to maximize oracle
BLEU for 20-diverse lists, the optimal n stayed at
7 for DE→EN, but increased to 7 for AR→EN and 9
for ZH→EN. These values are noticeably larger than
n-gram sizes typically used in language modeling
and evaluation. They suggest that for optimal ora-
cle BLEU, translations with long-spanning amounts
of repeated material should be avoided, while short
overlapping n-grams are permitted.

Figure 1 shows other statistics on TEST for
ZH→EN. Plots for AR→EN and DE→EN are quali-
tatively similar. We divided the TEST sentences into
quartiles based on BLEU+1 of the 1-best transla-
tions from the baseline system. We computed the
median, min, and max BLEU+1 on each list and av-
eraged over the sentences in each quartile. As shown
in the plot, the ranges of 20-diverse lists subsume
those of 20-best lists, though the medians of diverse

3The optimal values of λ were 0.005 for AR→EN and 0.01
for ZH→EN and DE→EN. Since these values depend on the
scale of the weights learned by MERT, they are difficult to in-
terpret in isolation.

lists drop when the baseline system has high BLEU
score. This matches intuition: when the baseline
system is performing well, forcing it to find different
translations is likely to result in worse translations.
So we may expect diverse lists to be most helpful for
more difficult sentences, a point we return to in our
experiments below.

7 System Combination Experiments

One way to evaluate the quality of our diverse lists
is to use them in system combination, as was sim-
ilarly done by Devlin and Matsoukas (2012) and
Cer et al. (2013). We use the system combination
framework of Heafield and Lavie (2010b), which
has an open-source implementation (Heafield and
Lavie, 2010a).4

We use our baseline systems (trained on TUNE1)
to generate lists for system combination on TUNE2
and TEST. We compareM -best lists, uniqueM -best
lists, and M -diverse lists, with M ∈ {10, 15, 20}.5
For each choice of list type and M , we trained the
system combiner on TUNE2 and tested on TEST with
the learned parameters. System combination hyper-
parameters (whether to use feature length normal-
ization; the size of the k-best lists generated by the
system combiner during tuning, k ∈ {300, 600})
were chosen to maximize BLEU on TUNE200. Also,
we removed the individual features from the
default feature set because they correspond to in-
dividual systems in the combination; they did not
seem appropriate for us since our hypotheses all
come from the same system.

The results are shown in Table 2. Like Devlin and
Matsoukas (2012), we see no gain from system com-
bination using M -best lists. We see some improve-
ment with unique lists, particularly for AR→EN, al-
though it is not consistent across M values. But
we see larger improvements with diverse lists for
AR→EN and ZH→EN. For these language pairs, our

4The implementation uses MERT to tune parameters, but we
found this to be time-consuming and noisy for the larger feature
sets. So we used a structured support vector machine learning
framework instead (described in Section 8), using multiple it-
erations of learning interleaved with (system combiner) N -best
list generation, and accumulating N -best lists across iterations.

5Dissimilarity hyperparameters n and λ were again chosen
to maximize oracle BLEU on TUNE200, separately for each M
and for each language pair.
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AR→EN ZH→EN DE→EN
10 15 20 10 15 20 10 15 20

baseline (no system combination) 50.1 36.9 21.8
M -best 50.2 50.1 50.0 36.7 36.9 37.0 21.7 21.7 21.8

unique M -best (from 1000-best list) 50.6 50.0 50.8 37.1 36.9 37.1 21.8 21.9 21.9
M -diverse 51.4 51.2 51.2 37.6 37.6 37.5 22.0 21.8 21.6

Table 2: System combination results (%BLEU on TEST). Size of lists is M ∈ {10, 15, 20}. Highest score in each
column is bold.

AR→EN ZH→EN DE→EN
q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4

baseline 30.1 44.1 55.1 70.0 15.2 28.9 41.0 57.5 5.3 14.4 23.7 40.9
15-best 30.1 44.6 55.5 68.8 15.9 29.2 40.5 56.8 6.0 15.0 23.6 40.0

unique 15-best 30.4 44.7 55.2 68.4 16.7 29.0 41.2 56.6 5.9 14.9 23.8 40.6
15-diverse 31.3 45.3 57.8 69.1 17.7 30.6 41.7 56.9 7.6 15.2 23.4 39.6

Table 3: System combination results (%BLEU on quartiles of TEST, M = 15). Source sentences were divided into
quartiles (numbered “qn”) according to BLEU+1 of the 1-best translations of the baseline system. Highest score in
each column is bold.

gains are similar to those seen by Devlin and Mat-
soukas, but use our simpler dissimilarity function.6

For DE→EN, results are similar for all settings and
do not show much improvement from system com-
bination.

In Table 3, we break down the scores according
to 1-best BLEU+1 quartiles, as done in Figure 1.7

In general, we find the largest gains for the low-
BLEU translations. For the two worst BLEU quar-
tiles, we see gains of 1.2 to 2.5 BLEU points, while
the gains shrink or disappear entirely for the best
quartile. This may be a worthwhile trade-off: a
large improvement in the worst translations may be
more significant to users than a smaller degredation
on sentences that are already being translated well.
In addition, quality estimation (Specia et al., 2011;
Bach et al., 2011) could be used to automatically de-
termine the BLEU quartile for each sentence. Then
system combination of diverse translations might be
used only when the 1-best translation is predicted to
be of low quality.

8 Reranking Experiments

We now turn to discriminative reranking, which has
frequently been used to easily add rich features to
a model. It has been used for MT with varying de-

6They reported +0.8 BLEU from system combination for
AR→EN, and saw a further +0.5–0.7 from their new features.

7Quartile points are: 39, 49, 61 for AR→EN; 25, 36, and 47
for ZH→EN; and 14.5, 21.1, and 30.3 for DE→EN.

gree of success (Och et al., 2004; Shen et al., 2004;
Hildebrand and Vogel, 2008); some have attributed
its mixed results to a lack of diversity in the M -best
lists traditionally used. We propose diverse lists as a
way to address this concern.

8.1 Learning Framework
Several learning formulations have been proposed
for M -best reranking. One commonly-used ap-
proach in MT is MERT, used in the reranking ex-
periments of Och et al. (2004) and Hildebrand and
Vogel (2008), among others. We experimented with
MERT and other algorithms, including pairwise
ranking optimization (Hopkins and May, 2011), but
we found best results using the approach of Yadol-
lahpour et al. (2013), who used a slack-rescaled
structured support vector machine (Tsochantaridis
et al., 2005) with L2 regularization. As a sentence-
level loss, we used negated BLEU+1. We used the
1-slack cutting-plane algorithm of Joachims et al.
(2009) for optimization during learning.8 A more
detailed description of the reranker is provided in the
supplementary material.

We used 5-fold cross-validation on TUNE2 to
choose the regularization parameter C from the set
{0.01, 0.1, 1, 10}. We selected the value yielding
the highest average BLEU score across the held-out

8Our implementation uses OOQP (Gertz and Wright, 2003)
to solve the quadratic program in the inner loop, which uses
HSL, a collection of Fortran codes for large-scale scientific
computation (www.hsl.rl.ac.uk).
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folds. This value was then used for one final round
of training on the entirety of TUNE2. Additionally,
we tuned the decision to return the parameters at
convergence or those that produced the highest train-
ing corpus BLEU score. Since we use a sentence-
level metric during training (BLEU+1) and a corpus-
level metric for final evaluation (BLEU), we found
that it was often better to return parameters that pro-
duced the highest training BLEU score.

This tuning procedure was repeated for each fea-
ture set and for each list type (M -best or diverse).
The test set was not used for any of this tuning.

8.2 Features
In addition to the features from the baseline models
(14 for phrase-based, 8 for hierarchical), we add 36
more for reranking:

Inverse Model 1 (INVMOD1): We added the “in-
verse” versions of the three IBM Model 1 features
described in Section 2.2 of Hildebrand and Vogel
(2008). The first is the probability of the source sen-
tence given the translation under IBM Model 1, the
second replaces the

∑
with a max in the first fea-

ture, and the third computes the percentage of words
whose lexical translation probability falls below a
threshold. We also include versions of the first 2
features normalized by the translation length, for a
total of 5 INVMOD1 features.

Large LM (LLM): We created a large 4-gram LM
by interpolating LMs from the WMT news data, Gi-
gaword, Europarl, and the DE→EN news commen-
tary (NC) corpus to maximize likelihood of a held-
out development set (WMT08 test set). We used the
average per-word log-probability as the single fea-
ture function in this category.

Syntactic LM (SYN): We used the syntactic treelet
language model of Pauls and Klein (2012) to com-
pute two features: the translation log probability and
the length-normalized log probability.

Finite/Non-Finite Verbs (VERB): We ran the Stan-
ford part-of-speech (POS) tagger (Toutanova et al.,
2003) on each translation and added four features:
the fraction of words tagged as finite/non-finite
verbs, and the fraction of verbs that are finite/non-
finite.9

9Words tagged as MD, VBP, VBZ, and VBD were counted

Reranking AR→EN ZH→EN DE→EN
features best div best div best div

N/A (baseline) 50.1 36.9 21.8
None 50.5 50.7 37.3 37.1 21.9 21.6

+ INVMOD1 50.3 50.8 37.6 37.1 22.0 21.8
+ LLM, SYN 50.5 51.1 37.4 37.3 21.7 21.7

+ VERB, DISC 50.4 51.3 37.3 37.3 21.9 22.2
+ GOOG 50.7 51.3 36.8 37.1 21.9 22.2

+ WCLM 51.2 51.8 37.3 37.4 22.2 22.3

Table 4: Reranking results (%BLEU on TEST).

Discriminative Word/Tag LMs (DISC): For each
language pair, we generated 10,000-best lists for
TUNE1 and computed BLEU+1 for each. From
these lists, we estimated 3- and 5-gram LMs,
weighting the n-gram counts by the BLEU+1
scores.10 We repeated this procedure except using
1 minus BLEU+1 as the weight (learning a language
model of “bad” translations). This yielded 4 fea-
tures. The procedure was then repeated using POS
tags instead of words, for 8 features in total.

Google 5-Grams (GOOG): Translations were com-
pared to the Google 5-gram corpus (LDC2006T13)
to compute: the number of 5-grams that matched,
the number of 5-grams that missed, and a set of
indicator features that fire if the fraction of 5-
grams that matched in the sentence was greater than
{0.05, 0.1, 0.2, . . . , 0.9}, for a total of 12 features.

Word Cluster LMs (WCLM): Using an imple-
mentation provided by Liang (2005), we performed
Brown clustering (Brown et al., 1992) on 900k En-
glish sentences, including the NC corpus and ran-
dom sentences from Gigaword. We clustered words
that appeared at least twice, once with 300 clus-
ters and again with 1000. We then replaced words
with their clusters in a large corpus consisting of
the WMT news data, Gigaword, and the NC data.
An additional cluster label was used for unknown
words. For each of the clusterings (300 and 1000),
we estimated 5- and 7-gram LMs with Witten-Bell
smoothing (Witten and Bell, 1991). We added 4 fea-
tures to the reranker, one for the log-probability of
the translation under each of the word cluster LMs.

as finite verbs, and VB, VBG, and VBN were non-finite verbs.
10Before estimating LMs, we projected the sentence weights

so that the min and max per source sentence were 0 and 1.
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List type Features
None All

20 best 50.3 50.6
100 best 50.6 50.8
200 best 50.4 51.2

1000 best 50.5 51.2
unique 20 best 50.5 51.2
unique 100 best 50.6 51.2
unique 200 best 50.4 51.3

20 diverse 50.5 51.1
20 div × 5 best 50.6 51.4

20 div × 10 best 50.7 51.3
20 div × 50 best 50.7 51.8

Table 5: List comparison for AR→EN reranking.

8.3 Results

Our results are shown in Table 4. We report results
using the baseline system alone (labeled “N/A (base-
line)”), and reranking standard M -best lists and our
diverse lists. For diverse lists, we use the “20 div ×
50 best” lists described in Section 5.3, with the tuned
dissimilarity hyperparameters reported in Section 6.
In the reranking settings, we also report results with-
out adding any additional features (the row labeled
“None”).11

The remaining rows add features. For AR→EN,
we see the largest gains, both over the baseline as
well as differences betweenM -best lists and diverse
lists. When using all features, we achieve a gain
of 0.6 BLEU over M -best reranking and 1.7 BLEU
points over the baseline system. The difference of
0.6 BLEU is consistent across feature subsets. We
found the WCLM features to give the largest in-
dividual improvement, with the remaining feature
sets each contributing a small amount. For Chinese
and German, the gains and individual differences are
smaller. Nonetheless, diverse lists appear to be more
robust for these language pairs as features are added.

In Table 5, we compare several sizes and types of
lists for AR→EN reranking both with no additional
features and with the full set. We see that using 20-
diverse lists nearly matches the performance of 200-
best lists. Also, retaining 50-best lists for each di-
verse solution improves BLEU by 0.7.

11Though such results have not always been reported in prior
work on reranking, we generally found them to improve over
the baseline, presumably because seeing more data improves
generalization ability.

Train
best div

Te
st best 51.2 51.7

div 50.5 51.8

Table 6: Comparing M -best and diverse lists for train-
ing/testing (AR→EN, all features).

Thus far, when training the reranker on M -best
lists, we tested it on M -best lists, and similarly for
diverse lists. Table 6 shows what happens with the
other two pairings for AR→EN with the full feature
set. When training on diverse lists, we see very lit-
tle difference in BLEU whether testing on M -best
or diverse lists. This has a practical benefit: we can
use (computationally-expensive) diverse lists during
offline training and then use fast M -best lists at test
time. When training on M -best lists and testing
on diverse lists, we see a substantial drop (51.2 vs
50.5). The reranker may be overfitting to the limited
scope of translations present in typical M -best lists,
thereby hindering its ability to correctly rank diverse
lists at test time. These results suggest that part of
the benefit of using diverse lists comes from seeing
a larger portion of the output space during training.

9 Human Post-Editing Experiments

We wanted to determine whether diverse translations
could be helpful to users struggling to understand
the output of an imperfect MT system. We con-
sider a post-editing task in which users are presented
with translation output without the source sentence,
and are asked to improve it. This setting has been
studied; e.g., Koehn (2010) presented evidence that
monolingual speakers could often produce improved
translations for this task, occasionally reaching the
level of an expert translator.

Here, we use a novel variation of this task in
which multiple translations are shown to editors. We
compare the use of entries from an M -best list and
entries from a diverse list. Again, the original source
sentence is not provided. Our goal is to determine
whether multiple, diverse translations can help users
to more accurately guess the meaning of the original
sentence than entries from a standard M -best list. If
so, commercial MT systems might permit users to
request additional diverse translations for those sen-
tences whose model-best translations are difficult to
understand.
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9.1 Translation List Post-Editing

We use Amazon Mechanical Turk (MTurk) for this
experiment. Workers are shown 3 outputs from an
MT system. They are not shown the original sen-
tence, nor are they shown a reference. Based on
the 3 imperfect translations, they are asked to write
a single fluent English translation that best cap-
tures the understood meaning. Half of the time, the
worker is shown 3 entries from an M -best list, and
the other half of the time 3 entries from a diverse
list. We then compare the outputs produced under
the two conditions. The goal is to measure whether
workers are able to produce translations that are
closer in meaning to the (unseen) references when
shown diverse translations. We refer to this task as
the EDITING task.

To evaluate the outputs, we use a second task in
which users are shown a reference translation along
with two outputs from the first task: one created
from M -best lists and one from diverse lists. Work-
ers in this task are asked to choose which translation
is a better match to the reference in terms of mean-
ing, or they can indicate that the translations are of
the same quality. We refer to this second task as the
EVAL task.

9.2 Dissimilarity Functions

To generate diverse lists for the EDITING task, we
use the same dissimilarity function as in reranking,
but we tune the hyperparameters n and λ differently.
Since our expectation here is that workers may com-
bine information from multiple translations to pro-
duce a superior output, we are interested in the cov-
erage of the translations in the diverse list, rather
than the oracle BLEU score.

We designed a metric based on coverage of entire
lists of translations. It is similar to BLEU+1, except
(1) it uses n-gram recalls instead of n-gram preci-
sions, (2) there is no brevity penalty term, and (3) it
compares a list to a set of references and any trans-
lation in the list can contribute a match of an n-gram
in any reference. Like BLEU, counts are clipped
based on those in the references. We maximized
this metric over diverse lists of length 5, for n ∈
{2, 3, . . . , 9} and λ ∈ {0.005, 0.01, 0.05, 0.1, 0.2}.
The optimal values for AR→EN were n = 4 and
λ = 0.1, while for ZH→EN they were n = 4 and

λ = 0.2. These n values are smaller than for rerank-
ing, and the λ values are larger. This suggests that,
when maximizing coverage of a small diverse list,
more dissimilarity is desired among the translations.

9.3 Detailed Procedure
We focused on AR→EN and ZH→EN for this study.
We sampled 200 sentences from their test sets, cho-
sen from among those whose reference translation
was between 5 and 25 words. We generated a unique
5-best list for each sentence using our baseline sys-
tem (described in Section 5.2) and also generated a
diverse list of length 5 using the dissimilarity func-
tion ∆ with hyperparameters tuned using the proce-
dure from the previous section. We untokenized and
truecased the translations. We dropped non-ASCII
characters because we feared they would confuse
our workers. As a result, workers must contend with
missing words in the output, often proper nouns.

Given the 2 lists for each sentence, we sampled
two integers i, j ∈ {2, 3, 4, 5} without replacement.
The indices i and j indicate two entries from the
lists. We took translations 1, i, and j from the 5-best
list and created an EDITING task from them. We did
the same using entries 1, i, and j from the diverse
list. We repeated this process 3 times for each sen-
tence, obtaining 3× 2 = 6 tasks for each, giving us
a total of 1,200 EDITING tasks per language pair.

The outputs of the EDITING tasks were evaluated
with EVAL tasks. For each sentence, we had 3 post-
edited outputs generated using entries in 5-best lists
and 3 post-edited outputs from diverse lists. We cre-
ated EVAL tasks for all 9 output pairs, for all 200
sentences per language pair. We additionally gave
each task to three MTurk workers. This gave us
10,800 evaluation judgments for the EVAL task.

9.4 Results
Figure 2 shows the quartile breakdown for judg-
ments collected from the EVAL task. The Y axis
represents the percentage of judgments for which
best/diverse outputs were preferred; the missing per-
centage for each bin is accounted for by “same”
judgments.

We observe an interesting phenomenon. Overall,
there is a slight preference for the post-edited out-
puts of M -best entries (“best”) over those from di-
verse translations (“div”); this preference is clearest
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Figure 2: Percentages in which post-edited output given
M -best entries (“best”) was preferred by human eval-
uators as compared to post-edited output given diverse
translations (“div”), broken down by the BLEU+1 score
of the 1-best translation for the sentences. When the base-
line system is doing poorly, diversity helps post-editors to
produce better translations.

when the baseline system’s 1-best translation had a
high BLEU score. However, we see this trend re-
versed for sentences in which the baseline system’s
1-best translation had a low BLEU score. In general,
when the BLEU score of the baseline system is be-
low 35, it is preferable to give diverse translations to
users for post-editing. But when the baseline system
does very well, diverse translations do not contribute
anything, and in fact hurt because they may distract
users from the high-quality (and typically very sim-
ilar) translations from the 5-best lists.

Estimation of the quality of the output (“confi-
dence estimation”) has recently gained interest in
the MT community (Specia et al., 2011; Bach et
al., 2011; Callison-Burch et al., 2012; Bojar et al.,
2013), including specifically for post-editing (Tat-
sumi, 2009; Specia, 2011; Koponen, 2012). Future
work could investigate whether such automatic con-
fidence estimation could be used to identify situa-
tions in which diverse translations can be helpful for
aiding user understanding.

10 Future Work

Our dissimilarity function captures diversity in the
particular phrases used by an MT system, but for
certain applications we may prefer other types of di-
versity. Defining the dissimilarity function on POS
tags or word clusters would help us to capture stylis-
tic patterns in sentence structure, as would targeting
syntactic structures in syntax-based translation.

A weakness of our approach is its computational
expense; by contrast, the method of Devlin and Mat-
soukas (2012) obtains diverse translations more ef-
ficiently by extracting them from a single decoding
of an input sentence (albeit with a wide beam). We
expect their ideas to be directly applicable to our set-
ting in order to get diverse solutions more cheaply.
We also plan to explore methods of explicitly target-
ing multiple, diverse solutions as part of the search
algorithm.

Finally, M -best lists are currently used to ap-
proximate structured spaces for many areas of MT,
including tuning (Och, 2003), minimum Bayes
risk decoding (Kumar and Byrne, 2004), and
pipelines (Venugopal et al., 2008). Future work
could replace M -best lists with diverse lists in these
and related tasks, whether for MT or other areas of
structured NLP.
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Abstract

While large-scale discriminative training has
triumphed in many NLP problems, its defi-
nite success on machine translation has been
largely elusive. Most recent efforts along this
line are not scalable (training on the small
dev set with features from top ∼100 most fre-
quent words) and overly complicated. We in-
stead present a very simple yet theoretically
motivated approach by extending the recent
framework of “violation-fixing perceptron”,
using forced decoding to compute the target
derivations. Extensive phrase-based transla-
tion experiments on both Chinese-to-English
and Spanish-to-English tasks show substantial
gains in BLEU by up to +2.3/+2.0 on dev/test
over MERT, thanks to 20M+ sparse features.
This is the first successful effort of large-scale
online discriminative training for MT.

1 Introduction

Large-scale discriminative training has witnessed
great success in many NLP problems such as pars-
ing (McDonald et al., 2005) and tagging (Collins,
2002), but not yet for machine translation (MT) de-
spite numerous recent efforts. Due to scalability is-
sues, most of these recent methods can only train
on a small dev set of about a thousand sentences
rather than on the full training set, and only with
2,000–10,000 rather “dense-like” features (either
unlexicalized or only considering highest-frequency
words), as in MIRA (Watanabe et al., 2007; Chiang
et al., 2008; Chiang, 2012), PRO (Hopkins and May,
2011), and RAMP (Gimpel and Smith, 2012). How-
ever, it is well-known that the most important fea-
tures for NLP are lexicalized, most of which can not

∗Work done while visiting City University of New York.
†Corresponding author.

be seen on a small dataset. Furthermore, these meth-
ods often involve complicated loss functions and
intricate choices of the “target” derivations to up-
date towards or against (e.g. k-best/forest oracles, or
hope/fear derivations), and are thus hard to replicate.
As a result, the classical method of MERT (Och,
2003) remains the default training algorithm for MT
even though it can only tune a handful of dense fea-
tures. See also Section 6 for other related work.

As a notable exception, Liang et al. (2006) do
train a structured perceptron model on the train-
ing data with sparse features, but fail to outperform
MERT. We argue this is because structured percep-
tron, like many structured learning algorithms such
as CRF and MIRA, assumes exact search, and search
errors inevitably break theoretical properties such as
convergence (Huang et al., 2012). Empirically, it
is now well accepted that standard perceptron per-
forms poorly when search error is severe (Collins
and Roark, 2004; Zhang et al., 2013).

To address the search error problem we propose a
very simple approach based on the recent framework
of “violation-fixing perceptron” (Huang et al., 2012)
which is designed specifically for inexact search,
with a theoretical convergence guarantee and excel-
lent empirical performance on beam search pars-
ing and tagging. The basic idea is to update when
search error happens, rather than at the end of the
search. To adapt it to MT, we extend this framework
to handle latent variables corresponding to the hid-
den derivations. We update towards “gold-standard”
derivations computed by forced decoding so that
each derivation leads to the exact reference transla-
tion. Forced decoding is also used as a way of data
selection, since those reachable sentence pairs are
generally more literal and of higher quality, which
the training should focus on. When the reachable
subset is small for some language pairs, we augment
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it by including reachable prefix-pairs when the full
sentence pair is not.

We make the following contributions:

1. Our work is the first successful effort to scale
online structured learning to a large portion of
the training data (as opposed to the dev set).

2. Our work is the first to use a principled learning
method customized for inexact search which
updates on partial derivations rather than full
ones in order to fix search errors. We adapt it
to MT using latent variables for derivations.

3. Contrary to the common wisdom, we show that
simply updating towards the exact reference
translation is helpful, which is much simpler
than k-best/forest oracles or loss-augmented
(e.g. hope/fear) derivations, avoiding sentence-
level BLEU scores or other loss functions.

4. We present a convincing analysis that it is the
search errors and standard perceptron’s inabil-
ity to deal with them that prevent previous
work, esp. Liang et al. (2006), from succeed-
ing.

5. Scaling to the training data enables us to engi-
neer a very rich feature set of sparse, lexical-
ized, and non-local features, and we propose
various ways to alleviate overfitting.

For simplicity and efficiency reasons, in this paper
we use phrase-based translation, but our method has
the potential to be applicable to other translation
paradigms. Extensive experiments on both Chinese-
to-English and Spanish-to-English tasks show statis-
tically significant gains in BLEU by up to +2.3/+2.0
on dev/test over MERT, and up to +1.5/+1.5 over
PRO, thanks to 20M+ sparse features.

2 Phrase-Based MT and Forced Decoding

We first review the basic phrase-based decoding al-
gorithm (Koehn, 2004), which will be adapted for
forced decoding.

2.1 Background: Phrase-based Decoding

We will use the following running example from
Chinese to English from Mi et al. (2008):

0 1 2 3 4 5 6

Figure 1: Standard beam-search phrase-based decoding.

Bùshı́
Bush

yǔ
with

Shālóng
Sharon

jǔxı́ng
hold

le
-ed

huı̀tán
meeting

‘Bush held a meeting with Sharon’

Phrase-based decoders generate partial target-
language outputs in left-to-right order in the form
of hypotheses (or states) (Koehn, 2004). Each hy-
pothesis has a coverage vector capturing the source-
language words translated so far, and can be ex-
tended into a longer hypothesis by a phrase-pair
translating an uncovered segment. For example, the
following is one possible derivation:

(0 ) : (0, “”)

(•1 ) : (s1, “Bush”)
r1

(• •••6) : (s2, “Bush held talks”)
r2

(•••3•••) : (s3, “Bush held talks with Sharon”)
r3

where a • in the coverage vector indicates the source
word at this position is “covered” and where each
si is the score of each state, each adding the rule
score and the distortion cost (dc) to the score of the
previous state. To compute the distortion cost we
also need to maintain the ending position of the last
phrase (e.g., the 3 and 6 in the coverage vectors).
In phrase-based translation there is also a distortion-
limit which prohibits long-distance reorderings.

The above states are called−LM states since they
do not involve language model costs. To add a bi-
gram model, we split each −LM state into a series
of +LM states; each +LM state has the form (v,a)
where a is the last word of the hypothesis. Thus a
+LM version of the above derivation might be:

(0 ,<s>) : (0, “<s>”)

(•1 ,Bush) : (s′1, “<s> Bush”)
r1

(• •••6,talks) : (s′2, “<s> Bush held talks”)
r2

(•••3•••,Sharon) : (s′3, “<s> Bush held ... with Sharon”)
r3
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0 1 2 3 4 5 6

Bush held

held talks

talks with

with Sharon

Sharon

Figure 2: Forced decoding and y-good derivation lattice.

where the score of applying each rule now also in-
cludes a combination cost due to the bigrams formed
when applying the phrase-pair, e.g.

s′3 = s′2 + s(r3) +dc(|6−3|)− logPlm(with | talk)

To make this exponential-time algorithm practi-
cal, beam search is the standard approximate search
method (Koehn, 2004). Here we group +LM states
into n bins, with each bin Bi hosting at most b states
that cover exactly i Chinese words (see Figure 1).

2.2 Forced Decoding

The idea of forced decoding is to consider only those
(partial) derivations that can produce (a prefix of)
the exact reference translation (assuming single ref-
erence). We call these partial derivations “y-good”
derivations (Daumé, III and Marcu, 2005), and those
that deviate from the reference translation “y-bad”
derivations. The forced decoding algorithm is very
similar to +LM decoding introduced above, with the
new “forced decoding LM” to be defined as only
accepting two consecutive words on the reference
translation, ruling out any y-bad hypothesis:

Pforced (b | a) =

{
1 if ∃j, s.t. a = yj and b = yj+1

0 otherwise

In the +LM state, we can simply replace the
boundary word by the index on the reference trans-
lation:

(0 ,0) : (0, “<s>”)

(•1 ,1) : (w′1, “<s> Bush”)
r1

(• •••6,3) : (w′2, “<s> Bush held talks”)
r2

(•••3•••,5) : (w′3, “<s> Bush held talks with Sharon”)
r3

The complexity of this forced decoding algorithm
is reduced to O(2nn3) where n is the source sen-
tence length, without the expensive bookkeeping for
English boundary words.

Li
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ǎn
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ū
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wéiy
à
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hǔ

zh
èn
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           PP

election

         P   
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     P       
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      P      
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       PP    

democracy

5

3
3
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Figure 3: Example of unreachable sentence pair and
reachable prefix-pair. The first big jump is disallowed for
a distortion limit of 4, but we can still extract the top-left
box as a reachable prefix-pair. Note that this example is
perfectly reachable in syntax-based MT.

2.3 Reachable Prefix-Pairs
In practice, many sentence pairs in the parallel text
fail in forced decoding due to two reasons:

1. distortion limit: long-distance reorderings are
disallowed but are very common between lan-
guages with very different word orders such as
English and Chinese.

2. noisy alignment and phrase limit: the word-
alignment quality (typically from GIZA++) are
usually very noisy, which leads to unnecessar-
ily big chunks of rules beyond the phrase limit.

If we only rely on the reachable whole sentence
pairs, we will not be able to use much of the training
set for Chinese-English. So we propose to augment
the set of reachable examples by considering reach-
able prefix-pairs (see Figure 3 for an example).

3 Violation-Fixing Perceptron for MT

Huang et al. (2012) establish a theoretical frame-
work called “violation-fixing perceptron” which is
tailored for structured learning with inexact search
and has provable convergence properties. The high-
level idea is that standard full update does not fix
search errors; to do that we should instead up-
date when search error occurs, e.g., when the gold-
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standard derivation falls below the beam. Huang et
al. (2012) show dramatic improvements in the qual-
ity of the learned model using violation-fixing per-
ceptron (compared to standard perceptron) on incre-
mental parsing and part-of-speech tagging.

Since phrase-based decoding is also an incremen-
tal search problem which closely resembles beam-
search incremental parsing, it is very natural to em-
ploy violation-fixing perceptron here for MT train-
ing. Our goal is to produce the exact reference trans-
lation, or in other words, we want at least one y-good
derivation to survive in the beam search.

To adapt the violation-fixing perceptron frame-
work to MT we need to extend the framework
to handle latent variables since the gold-standard
derivation is not observed. This is done in a way
similar to the latent variable structured perceptron
(Zettlemoyer and Collins, 2005; Liang et al., 2006;
Sun et al., 2009) where each update is from the best
(y-bad) derivation towards the best y-good deriva-
tion in the current model; the latter is a constrained
search which is exactly forced decoding in MT.

3.1 Notations
We first establish some necessary notations. Let
〈x, y〉 be a sentence pair in the training data, and

d = r1 ◦ r2 ◦ . . . ◦ r|d|

be a (partial) derivation, where each ri =
〈c(ri), e(ri)〉 is a rule, i.e., a Chinese-English

phrase-pair. Let |c(d)| ∆
=

∑
i |c(ri)| be the num-

ber of Chinese words covered by this derivation, and
e(d)

∆
= e(r1) ◦ e(r2) . . . ◦ e(r|d|) be the English pre-

fix generated so far. Let D(x) be the set of all pos-
sible partial derivations translating part of the input
sentence x. Let pre(y)

∆
= {y[0:j] | 0 ≤ j ≤ |y|}

be the set of prefixes of the reference translation y,
and good i(x, y) be the set of partial y-good deriva-
tions whose English side is a prefix of the reference
translation y, and whose Chinese projection covers
exactly i words on the input sentence x, i.e.,

good i(x, y)
∆
= {d ∈ D(x) | e(d)∈pre(y), |c(d)|= i}.

Conversely, we define the set of y-bad partial deriva-
tions covering i Chinese words to be:

bad i(x, y)
∆
= {d ∈ D(x) | e(d) /∈pre(y), |c(d)|= i}.

Basically, at each bin Bi, y-good derivations
good i(x, y) and y-bad ones bad i(x, y) compete for
the b slots in the bin:

B0 = {ε} (1)

Bi = topb
⋃

j=1..l

{d ◦ r | d ∈ Bi−j , |c(r)| = j} (2)

where r is a rule covering j Chinese words, l is
the phrase-limit, and topb S is a shorthand for
argtopb

d∈S w · Φ(x, d) which selects the top b
derivations according to the current model w.

3.2 Algorithm 1: Early Update
As a special case of violation-fixing perceptron,
early update (Collins and Roark, 2004) stops decod-
ing whenever the gold derivation falls off the beam,
makes an update on the prefix so far and move on
to the next example. We adapt it to MT as fol-
lows: if at a certain bin Bi, all y-good derivations
in good i(x, y) have fallen off the bin, then we stop
and update, rewarding the best y-good derivation in
good i(x, y) (with respect to current model w), and
penalizing the best y-bad derivation in the same step:

d+
i (x, y)

∆
= argmax

d∈goodi(x,y)
w ·Φ(x, d) (3)

d−i (x, y)
∆
= argmax

d∈badi(x,y)∩Bi

w ·Φ(x, d) (4)

w← w + ∆Φ(x, d+
i (x, y), d−i (x, y)) (5)

where ∆Φ(x, d, d′)
∆
= Φ(x, d)−Φ(x, d′) is a short-

hand notation for the difference of feature vectors.
Note that the set good i(x, y) is independent of the
beam search and current model and is instead pre-
computed in the forced decoding phase, whereas the
negative signal d−i (x, y) depends on the beam.

In practice, however, there are exponentially
many y-good derivations for each reachable sen-
tence pair, and our goal is just to make sure (at least)
one y-good derivation triumphs at the end. So it
is possible that at a certain bin, all y-good partial
derivations fall off the bin, but the search can still
continue and produce the exact reference translation
through some other y-good path that avoids that bin.
For example, in Figure 1, the y-good states in steps
3 and 5 are not critical; it is totally fine to miss them
in the search as long as we save the y-good states
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Figure 4: Illustration of four update methods. The blue
paths denote (possibly lots of) gold-standard derivations
from forced decoding. Standard update in this case is
invalid as it reinforces the error of w (Huang et al., 2012).

in bins 1, 4 and 6. So we actually use a “softer”
version of the early update algorithm: only stop and
update when there is no hope to continue. To be
more concrete, let l denote the phrase-limit then we
stop where there are l consecutive bins without any
y-good states, and update on the first among them.

3.3 Algorithm 2: Max-Violation Update
While early update learns substantially better mod-
els than standard perceptron in the midst of inex-
act search, it is also well-known to be converging
much slower than the latter, since each update is
on a (short) prefix. Huang et al. (2012) propose an
improved method “max-violation” which updates at
the worst mistake instead of the first, and converges
much faster than early update with similar or better
accuracy. We adopt this idea here as follows: decode
the whole sentence, and find the step i∗ where the
difference between the best y-good derivation and
the best y-bad one is the biggest. This amount of dif-
ference is called the amount of “violation” in Huang
et al. (2012), and the place of maximum violation is
intuitively the site of the biggest mistake during the
search. More formally, the update rule is:

i∗
∆
= argmin

i
w ·∆Φ(x, d+

i (x, y), d−i (x, y)) (6)

w← w + ∆Φ(x, d+
i∗(x, y), d−i∗(x, y)) (7)

3.4 Previous Work: Standard and Local Updates
We compare the above new update methods with the
two existing ones from Liang et al. (2006).

Standard update (also known as “bold update”
in Liang et al. (2006)) simply updates at the very
end, from the best derivation in the beam towards the
best gold-standard derivation (regardless of whether

it survives the beam search):

w← w + ∆Φ(x, d+
|x|(x, y), d−|x|(x, y)) (8)

Local update, however, updates towards the
derivation in the final bin that is most similar to the
reference y, denoted dy

|x|(x, y):

dy
|x|(x, y) = argmax

d∈B|x|

Bleu+1(y, e(d)) (9)

w← w + ∆Φ(x, dy
|x|(x, y), d−|x|(x, y))

(10)

where Bleu+1(·, ·) returns the sentence-level BLEU.
Liang et al. (2006) observe that standard update

performs worse than local update, which they at-
tribute to the fact that the former often update to-
wards a gold derivation made up of “unreasonable”
rules. Here we give a very different but theoreti-
cally more reasonable explanation based on the the-
ory of Huang et al. (2012), who define an update
∆Φ(x, d+, d−) to be invalid if d+ scores higher
than d− (i.e., w · ∆Φ(x, d+, d−) > 0, or update
∆w points to the same direction as w in Fig. 4), in
which case there is no “violation” or mistake to fix.
Perceptron is guaranteed to converge if all updates
are valid. Clearly, early and max-violation updates
are valid. But standard update is not: it is possible
that at the end of search, the best y-good derivation
d+
|x|(x, y), though pruned earlier in the search, ranks

even higher in the current model than anything in the
final bin (see Figure 4). In other words, there is no
mistake at the final step, while there must be some
search error in earlier steps which expels the y-good
subderivation. We will see in Section 5.3 that invalid
updates due to search errors are indeed the main rea-
son why standard update fails. Local update, how-
ever, is always valid in that definition.

Finally, it is worth noting that in terms of imple-
mentation, standard and max-violation are the easi-
est, while early update is more involved.

4 Feature Design

Our feature set includes the following 11 dense fea-
tures: LM, four conditional and lexical translation
probabilities (pc(e|f), pc(f |e), pl(e|f), pl(f |e)),
length and phrase penalties, distortion cost, and
three lexicalized reordering features. All these fea-
tures are inherited from Moses (Koehn et al., 2007).
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(•1 ,Bush) : (s′1, “<s> Bush”)

(• •••6,talks) : (s′2, “<s> Bush held talks”)
r2

</s>jǔxı́ng le huı̀tányǔ ShālóngBùshı́<s>

held talksBush<s>

r1 r2

features for applying r2 on span x[3:6]

WordEdges

c(r2)[0] = jǔxı́ng, c(r2)[−1] = huı̀tán
e(r2)[0] = held, e(r2)[−1] = talks

x[2:3] = Shālóng, x[6:7] = </s>, |c(r2)| = 3

... (combos of the above atomic features) ...

non-local e(r0 ◦ r1)[−2:] ◦ id(r2)
id(r1) ◦ id(r2)

Figure 5: Examples of WordEdges and non-local features. The notation uses the Python style subscript syntax.

4.1 Local Sparse Features: Ruleid & WordEdges
We first add the rule identification feature for each
rule: id(ri). We also introduce lexicalized Word-
Edges features, which are shown to be very effec-
tive in parsing (Charniak and Johnson, 2005) and
MT (Liu et al., 2008; He et al., 2008) literatures.
We use the following atomic features when apply-
ing a rule ri = 〈c(ri), e(ri)〉: the source-side length
|c(ri)|, the boundary words of both c(ri) and e(ri),
and the surrounding words of c(ri) on the input sen-
tence x. See Figure 5 for examples. These atomic
features are concatenated to generate all kinds of
combo features.

Chinese English class size budget
word 52.9k 64.2k 5

characters - 3.7k - 3
Brown cluster, full string 200 3
Brown cluster, prefix 6 6 8 2
Brown cluster, prefix 4 4 4 2

POS tag 52 36 2
word type - 4 - 1

Table 1: Various levels of backoff for WordEdges fea-
tures. Class size is estimated on the small Chinese-
English dataset (Sec. 5.3). The POS tagsets are ICT-
CLAS for Chinese (Zhang et al., 2003) and Penn Tree-
bank for English (Marcus et al., 1993).

4.2 Addressing Overfitting
With large numbers of lexicalized combo features
we will face the overfitting problem, where some
combo features found in the training data are too
rare to be seen in the test data. Thus we propose
three ways to alleviate this problem.

First, we introduce various levels of backoffs for
each word w (see Table 1). We include w’s Brown
cluster and its prefixes of lengths 4 and 6 (Brown et

al., 1992), and w’s part-of-speech tag. If w is Chi-
nese we also include its word type (punctuations,
digits, alpha, or otherwise) and (leftmost or right-
most) character. In such a way, we significantly in-
crease the feature coverage on unseen data.

However, if we allow arbitrary combinations, we
can extract a hexalexical feature (4 Chinese + 2 En-
glish words) for a local window in Figure 5, which
is unlikely to be seen at test time. To control model
complexity we introduce a feature budget for each
level of backoffs, shown in the last column in Ta-
ble 1. The total budget for a combo feature is the
sum of the budgets of all atomic features. In our ex-
periments, we only use the combo features with a
total budget of 10 or less, i.e., we can only include
bilexical but not trilexical features, and we can in-
clude for example combo features with one Chinese
word plus two English tags (total budget: 9).

Finally, we use two methods to alleviate overfit-
ting due to one-count rules: for large datasets, we
simply remove all one-count rules, but for small
datasets where out-of-vocabulary words (OOVs)
abound, we use a simple leave-one-out method:
when training on a sentence pair (x, y), do not use
the one-count rules extracted from (x, y) itself.

4.3 Non-Local Features

Following the success of non-local features in pars-
ing (Huang, 2008) and MT (Vaswani et al., 2011),
we also introduce them to capture the contextual in-
formation in MT. Our non-local features, shown in
Figure 5, include bigram rule-ids and the concatena-
tion of a rule id with the translation history, i.e. the
last two English words. Note that we also use back-
offs (Table 1) for the words included. Experiments
(Section 5.3) show that although the set of non-local
features is just a tiny fraction of all features, it con-
tributes substantially to the improvement in BLEU.
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Scale
Language Training Data Reachability ∆BLEU

Sections
Pair # sent. # words sent. words # feats # refs dev/test

small
CH-EN

30K 0.8M/1.0M 21.4% 8.8% 7M
4

+2.2/2.0 5.2, 5.3
large 230K 6.9M/8.9M 32.1% 12.7% 23M +2.3/2.0 5.2, 5.4
large SP-EN 174K 4.9M/4.3M 55.0% 43.9% 21M 1 +1.3/1.1 5.5

Table 2: Overview of all experiments. The ∆BLEU column shows the absolute improvements of our method MAX-
FORCE on dev/test sets over MERT. The Chinese datasets also use prefix-pairs in training (see Table 3).

5 Experiments

In order to test our approach in different language
pairs, we conduct three experiments, shown in Ta-
ble 2, on two significantly different language pairs
(long vs. short distance reorderings), Chinese-to-
English (CH-EN) and Spanish-to-English (SP-EN).

5.1 System Preparation and Data
We base our experiments on Cubit, a state-of-art
phrase-based system in Python (Huang and Chiang,
2007).1 We set phrase-limit to 7 in rule extraction,
and beam size to 30 and distortion limit 6 in de-
coding. We compare our violation-fixing percep-
tron with two popular tuning methods: MERT (Och,
2003) and PRO (Hopkins and May, 2011).

For word alignments we use GIZA++-`0
(Vaswani et al., 2012) which produces sparser align-
ments, alleviating the garbage collection problem.
We use the SRILM toolkit (Stolcke, 2002) to train a
trigram language model with modified Kneser-Ney
smoothing on 1.5M English sentences.

Our dev and test sets for CH-EN task are from the
newswire portion of 2006 and 2008 NIST MT Eval-
uations (616/691 sentences, 18575/18875 words),
with four references.2 The dev and test sets for SP-
EN task are from newstest2012 and newstest2013,
with only one reference. Below both MERT and PRO

tune weights on the dev set, while our method on the
training set. Specifically, our method only uses the
dev set to know when to stop training.

5.2 Forced Decoding Reachability on Chinese
As mentioned in Section 2.2, we perform forced de-
coding to select reachable sentences from the train-

1http://www.cis.upenn.edu/˜lhuang3/cubit/. We
will release the new version at http://acl.cs.qc.edu.

2We use the “average” reference length to compute the
brevity penalty factor, which does not decrease with more ref-
erences unlike the “shortest” heuristic.
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Figure 6: Reachability ratio vs. sentence length on the
small CH-EN training set.

small large
sent. words sent. words

full 21.4% 8.8% 32.1% 12.7%
+prefix 61.3% 24.6% 67.3% 32.8%

Table 3: Ratio of sentence reachability and word cover-
age on the two CH-EN training data (distortion limit: 6).

ing data; this part is done with exact search with-
out any beam pruning. Figure 6 shows the reacha-
bility ratio vs. sentence length on the small CH-EN

training data, where the ratio decreases sharply with
sentence length, and increases with distortion limit.
We can see that there are a lot of long distance re-
orderings beyond small distortion limits. In the ex-
treme case of unlimited distortion, a large amount of
sentences will be reachable, but at the cost of much
slower decoding (O(n2V 2) in beam search decod-
ing, andO(2nn3) in forced decoding). In fact forced
decoding is too slow in the unlimited mode that we
only plot reachability for sentences up to 30 words.

Table 3 shows the statistics of forced decoding on
both small and large CH-EN training sets. In the

1118



 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 5  10  15  20  25  30  35  40  45  50

A
v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
d

e
ri
v
a

ti
o

n
s

Sentence length

dist-6
dist-4
dist-2
dist-0

Figure 7: Average number of derivations in gold lattices.

small data-set, 21.4% sentences are fully reachable
which only contains 8.8% words (since shorter sen-
tences are more likely to be reachable). Larger data
improves reachable ratios significantly thanks to bet-
ter alignment quality, but still only 12.7% words can
be used. In order to add more examples for per-
ceptron training, we pick all non-trivial reachable
prefix-pairs (with 5 or more Chinese words) as addi-
tional training examples (see Section 2.2). As shown
in Table 3, with prefix-pairs we can use about 1/4 of
small data and 1/3 of large data for training, which is
10x and 120x bigger than the 616-sentence dev set.

After running forced decoding, we obtain gold
translation lattice for each reachable sentence (or
prefix) pair. Figure 7 shows, as expected, the av-
erage number of gold derivations in these lattices
grows exponentially with sentence length.

5.3 Analysis on Small Chinese-English Data

Figure 8 shows the BLEU scores of different learn-
ing algorithms on the dev set. MAXFORCE3 per-
forms the best, peaking at iteration 13 while early
update learns much slower (the first few iterations
are faster than other methods due to early stopping
but this difference is immaterial later). The local and
standard updates, however, underperform MERT; in
particular, the latter gets worse as training goes on.

As analysized in Section 3.4, the reason why stan-
dard update (or “bold update” in Liang et al. (2006))
fails is that inexact search leads to many invalid up-
dates. This is confirmed by Figure 9, where more

3Stands for Max-Violation Perceptron w/ Forced Decoding
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Figure 8: BLEU scores on the heldout dev set for different
update methods (trained on small CH-EN data).
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Figure 9: Ratio of invalid updates in standard update.

than half of the updates remain invalid even at a
beam of 30. These analyses provide an alternative
but theoretically more reasonable explanation to the
findings of Liang et al. (2006): while they blame
“unreasonable” gold derivations for the failure of
standard update, we observe that it is the search er-
rors that make the real difference, and that an up-
date that respects search errors towards a gold sub-
derivation is indeed helpful, even if that subderiva-
tion might be “unreasonable”.

In order to speedup training, we use mini-batch
parallelization of Zhao and Huang (2013) which has
been shown to be much faster than previous paral-
lelization methods. We set the mini-batch size to
24 and train MAXFORCE with 1, 6, and 24 cores
on a small subset of the our original reachable sen-
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Figure 11: Comparison between different training meth-
ods. Ours trains the training set while others on dev set.

tences. The number of sentence pairs in this subset
is 1,032, which contains similar number of words to
our 616-sentence dev set (since reachable sentences
are much shorter). Thus, it is reasonable to compare
different learning algorithms in terms of speed and
performance. Figure 10 shows that first of all, mini-
batch improves BLEU even in the serial setting, and
when run on 24 cores, it leads to a speedup of about
7x. It is also interesting to know that on 1 CPU,
minibatch perceptron takes similar amount of time
to reach the same performance as MERT and PRO.

Figure 11 compares the learning curves of MAX-
FORCE, MERT, and PRO. We test PRO in three
different ways: PRO-dense (dense features only),
PRO-medium (dense features plus top 3K most fre-
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Figure 12: Incremental contributions of different feature
sets (dense features, ruleid, WordEdges, and non-local).

type count % BLEU

dense 11 - 22.3
+ruleid +9,264 +0.1% +0.8

+WordEdges +7,046,238 +99.5% +2.0
+non-local +22,536 +0.3% +0.7

all 7,074,049 100% 25.8

Table 4: Feature counts and incremental BLEU improve-
ments. MAXFORCE with all features is +2.2 over MERT.

quent sparse features4), and PRO-large (dense fea-
tures plus all sparse features). The results show that
PRO-dense performs almost the same as MERT but
with a stabler learning curve while PRO-medium im-
proves by +0.6. However, PRO-large decreases the
performance significantly, which indicates PRO is
not scalable to truly sparse features. By contrast,
our method handles large-scale sparse features well
and outperforms all other methods by a large margin
and with a stable learning curve.

We also investigate the individual contribution
from each group of features (ruleid, WordEdges, and
non-local features). So we perform experiments by
adding each group incrementally. Figure 12 shows
the learning curves and Table 4 lists the counts and
incremental contributions of different feature sets.
With dense features alone MAXFORCE does not do

4To prevent overfitting we remove all lexicalized features
and only use Brown clusters. It is difficult to engineer the right
feature set for PRO, whereas MAXFORCE is much more robust.
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system algorithm # feat. dev test
Moses MERT 11 25.5 22.5

Cubit

MERT 11 25.4 22.5

PRO

11 25.6 22.6
3K 26.3 23.0
36K 17.7 14.3

MAXFORCE 23M 27.8 24.5

Table 5: BLEU scores (with four references) using the
large CH-EN data. Our approach is +2.3/2.0 over MERT.

well because perceptron is known to suffer from fea-
tures of vastly different scales. Adding ruleid helps,
but still not enough. WordEdges (which is the vast
majority of features) improves BLEU by +2.0 points
and outperforms MERT, when sparse features totally
dominate dense features. Finally, the 0.3% non-local
features contribute a final +0.7 in BLEU.

5.4 Results on Large Chinese-English Data

Table 5 shows all BLEU scores for different learn-
ing algorithms on the large CH-EN data. The MERT

baseline on Cubit is essentially the same as Moses.
Our MAXFORCE activates 23M features on reach-
able sentences and prefixes in the training data, and
takes 35 hours to finish 15 iterations on 24 cores,
peaking at iteration 13. It achieves significant im-
provements over other approaches: +2.3/+2.0 points
over MERT and +1.5/+1.5 over PRO-medium on de-
v/test sets, respectively.

5.5 Results on Large Spanish-English Data

In SP-EN translation, we first run forced decod-
ing on the training set, and achieve a very high
reachability of 55% (with the same distortion limit
of 6), which is expected since the word order be-
tween Spanish and English are more similar than
than between Chinese and English, and most SP-
EN reorderings are local. Table 6 shows that MAX-
FORCE improves the translation quality over MERT

by +1.3/+1.1 BLEU on dev/test. These gains are
comparable to the improvements on the CH-EN task,
since it is well accepted in MT literature that a
change of δ in 1-reference BLEU is roughly equiva-
lent to a change of 2δ with 4 references.

system algorithm # feat. dev test
Moses MERT 11 27.4 24.4
Cubit MAXFORCE 21M 28.7 25.5

Table 6: BLEU scores (with one reference) on SP-EN.

6 Related Work

Besides those discussed in Section 1, there are also
some research on tuning sparse features on the train-
ing data, but they integrate those sparse features into
the MT log-linear model as a single feature weight,
and tune its weight on the dev set (e.g. (Liu et al.,
2008; He et al., 2008; Wuebker et al., 2010; Simi-
aner et al., 2012; Flanigan et al., 2013; Setiawan
and Zhou, 2013; He and Deng, 2012; Gao and He,
2013)). By contrast, our approach learns sparse fea-
tures only on the training set, and use dev set as held-
out to know when to stop.

Forced decoding has been used in the MT litera-
ture. For example, open source MT systems Moses
and cdec have implemented it. Liang et al. (2012)
also use the it to boost the MERT tuning by adding
more y-good derivations to the standard k-best list.

7 Conclusions and Future Work

We have presented a simple yet effective approach
of structured learning for machine translation which
scales, for the first time, to a large portion of the
whole training data, and enables us to tune a rich set
of sparse, lexical, and non-local features. Our ap-
proach results in very significant BLEU gains over
MERT and PRO baselines. For future work, we will
consider other translation paradigms such as hierar-
chical phrase-based or syntax-based MT.
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Abstract 

This paper studies the problem of identifying 

users who use multiple userids to post in so-

cial media. Since multiple userids may belong 

to the same author, it is hard to directly apply 

supervised learning to solve the problem. This 

paper proposes a new method, which still uses 

supervised learning but does not require train-

ing documents from the involved userids. In-

stead, it uses documents from other userids 

for classifier building. The classifier can be 

applied to documents of the involved userids. 

This is possible because we transform the 

document space to a similarity space and 

learning is performed in this new space. Our 

evaluation is done in the online review do-

main. The experimental results using a large 

number of userids and their reviews show that 

the proposed method is highly effective. 

1 Introduction 

It is common knowledge that some users in social 

media register multiple accounts/userids to post 

articles, blogs, reviews, etc. There are many rea-

sons for doing this. For example, due to past post-

ings, a user may become despised by others. 

He/she then registers another userid in order to 

regain his/her status. A user may also use multiple 

userids to instigate controversy or debates to popu-

larize a topic to make it “hot” or even just to pro-

mote activities at a website. Yet, a user may also 

use multiple userids to post fake or deceptive opin-

ions to promote or demote some products (Liu, 

2012). It is thus important to develop technologies 

to identify such multi-id users. This paper deals 

with this problem based on writing style and other 

linguistic clues.  

Problem definition: Given a set of userids ID = 

{id1, …, idn} and each idi has a set of documents 

Di, we want to identify userids that belong to the 

same physical author.  

The main related works to ours are in the area of 

authorship attribution (AA), which aims to identify 

authors of documents. AA is often solved using 

supervised learning. Let A = {a1, …, ak} be a set of 

authors (or classes) and each author ai  A has a 

set of training documents Di. A classifier is then 

built to decide the author a of each test document 

d, where a  A. We will discuss this and other re-

lated works in Section 2.  

This supervised AA formulation, however, is 

not suitable for our task because we only have 

userids but not real authors. Since some of the 

userids may belong to the same author, we cannot 

treat each userid as a class because in that case, we 

will be classifying based on userids, which won’t 

help us find authors with multiple userids (see Sec-

tion 7 also).  

This paper proposes a novel algorithm. To sim-

plify the presentation, we assume that at most two 

userids can belong to a single author, but the algo-

rithm can be extended to handle more than two 

userids from the same author. Using this assump-

tion, the algorithm works in two steps:  

1.  Candidate identification: For each userid idi, 

we first find the most likely userid idj (i ≠ j) that 

may have the same author as idi. We call idj the 

candidate of idi. We also call this function can-

did-iden, i.e., idj = candid-iden(idi). For easy 

presentation, here we only use one argument for 
*  The work was mainly done when the first author was visit-

ing the University of Illinois at Chicago.  
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candid-iden. In the computation, it needs more 

arguments (see Section 4).  

2.  Candidate confirmation: In the reverse order, 

we apply the function candid-iden on idj, which 

produces idk, i.e., idk = candid-iden(idj). 

Decision making: If k = i, we conclude that idi 

and idj are from the same author. Otherwise, idi 

and idj are not from the same author.   

The key of the algorithm is candid-iden. An ob-

vious approach for candid-iden is to use an infor-

mation retrieval method. We can first split the 

documents Di of each idi into two subsets, a query 

set Qi and a sample set Si. We then compare each 

query document in Qi with each sample document 

in Sj from other userids idj ( ID – {idi}). Cosine 

can be used here for similarity comparison. All the 

similarity scores are then aggregated and used to 

rank the userids in ID – {idi}. The top ranked 

userid is the candidate for idi. Note that partition-

ing the documents of a userid idi into the query set 

Qi and the sample set Si is crucial here. We cannot 

use all documents in Di to compare with all docu-

ments in Dj. If so and we get candid-iden(idi) = idj, 

we will definitely get candid-iden(idj) = idi since 

the similarity function is symmetric.  

This cosine similarity based method, however, 

does not work well (see Section 7). We propose a 

supervised learning method to compute the scores. 

For this, we need to reformulate the problem.  

The idea of this reformulation is to learn in a 

similarity space rather than in the original docu-

ment space as in traditional AA. In the new formu-

lation, each document d is still represented as a 

feature vector, but the vector no longer represents 

the document d itself. Instead, it represents a set of 

similarities between the document d and a query q. 

We call this method learning in the similarity 

space (LSS).  

Specifically, in LSS, each document d is first 

represented with a document space vector (called a 

d-vector) based on the document itself as in the 

traditional classification learning of AA. Each fea-

ture in the d-vector is called a d-feature (docu-

ment-feature). A query document q is represented 

in the same way. We then produce a similarity vec-

tor sv (called s-vector) for d. sv consists of a set of 

similarity values between document d (in a d-

vector) and query q (in a d-vector):  

sv =Sim(d, q), 

where Sim is a similarity function consists of a set 

of similarity measures. Thus, the d-vector for doc-

ument d in the document space is transformed to 

an s-vector sv for d in the similarity space. Each 

feature in sv is called an s-feature. For example, 

we have the following d-vector for query q:  

 q: 1:1 2:1 6:2 

where x:z represents a d-feature x (a word) and its 

frequency z in q. We also have two non-query 

documents, one is d1 which is written by the author 

of query q and the other is d2 which is not written 

by query author q. Their d-vectors are: 

 d1:  1:2 2:1 3:1  d2:  2:2 3:1 5:2   

If we use cosine as the first similarity measure in 

Sim, we can generate an s-feature 1:0.50 for d1 

(cosine(q, d1) = 0.50) and an s-feature 1:0.27 for d2 

(cosine(q, d2) = 0.27). If we have more similarity 

measures more s-features can be produced. The 

resulting two s-vectors for d1 and d2 with their 

class labels, 1 and -1, are as follows:  

 d1: 1 1:0.50 … d2:  -1  1:0.27 … 

Class 1 means “written by author of query q”, also 

called q-positive, and class -1 means “not written 

by author of query q”, also called q-negative.  

LSS gives us a two-class classification problem. 

In this formulation, a test userid and his/her docu-

ments do not have to be seen in training as long as 

a set of known documents from this userid is 

available. Any supervised learning method can be 

used to build a classifier. We use SVM. The result-

ing classifier is employed to compute a score for 

each review to be used in the two-step algorithm 

above to find the candidate for each userid and 

then the userids with the same authors.  

Due to the use of query documents, the LSS 

formulation has some resemblance to document 

ranking based on learning to rank (Li, 2011; Liu, 

2011). However, LSS is very different because we 

turn the problem into a supervised classification 

problem. The key difference between learning to 

rank and classification is that ranking will always 

put some documents at the top even if the desired 

documents do not exist. However, classification 

will not return any document if the desired docu-

ments do not exist in the test data (unless there are 

classification errors). Our Type II experiments in 

Section 7 were specifically designed for testing 

such non-existence situations. 
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Using online review as the application domain, 

we conduct experiments on a large number of re-

views and their author/reviewer userids from Am-

azon.com. The results show that the proposed 

algorithm is highly accurate and outperforms three 

strong baselines markedly. 

2 Related Work 

A similar problem was attempted in (Chen et al., 

2004) in the context of open forums where users 

interact with each other in their discussions. Their 

method is based on post relationships and intervals 

between posts. It does not use any linguistic clues. 

It is thus not applicable to domains like online re-

views. Reviews do not involve user interactions 

since each review is independent of other reviews. 

Novak et al. also solved the same problem under 

the name of “Anti-aliasing” (Novak et al., 2004). 

They used a clustering based method which as-

sumed the number of actual authors is known. This 

is unrealistic in practice as there is no way to know 

which author has and does not have multiple ids. 

Our work is also related to authorship attribu-

tion (AA). However, to our knowledge, our prob-

lem has not been attempted in AA. Existing works 

focused on two main themes: finding good writing 

style features, and developing effective classifica-

tion methods. On finding good features (d-features 

in our case), it was found that the most promising 

features are function words (Mosteller, 1964; Ar-

gamon and Levitan, 2004; Argamon et al., 2007) 

and rewrite rules (Halteren et al., 1996). Length 

(Gamon 2004; Graham et al., 2005), richness (Hal-

teren et al., 1996; Koppel and Schler, 2004), punc-

tuations (Graham et al., 2005), character n-grams 

(Grieve, 2007; Hedegaard and Simonsen, 2011), 

word n-grams (Burrows, 1992; Sanderson and 

Guenter 2006), POS n-grams (Gamon, 2004; Hirst 

and Feiguina, 2007), syntactic category pairs (Na-

rayanan et al., 2012) are also useful.  

On classification, numerous methods have been 

tried, e.g., Bayesian analysis (Mosteller, 1964), 

discriminant analysis (Stamatatos et al., 2000), 

PCA (Hoover, 2001), neural networks (Graham et 

al., 2005; Zheng et al., 2006; Graham et al., 2005), 

clustering (Sanderson and Guenter, 2006), decision 

trees (Uzuner and Katz, 2005; Zhao and Zobel, 

2005), regularized least squares classification 

(Narayanan et al., 2012),   and SVM (Diederich et 

al., 2000; Gamon 2004; Koppel and Schler, 2004; 

Hedegaard and Simonsen, 2011). Among them, 

SVM was found to be most accurate (Li et al., 

2006; Kim et al., 2011). Although we also use 

supervised learning, we do not learn in the original 

document space as these existing methods do. The 

transformation is important because it enables us 

to use documents from other authors in training. 

The traditional supervised learning (TSL) cannot 

do that. In our case, the only documents that TSL 

can use for training are the queries in the testing 

set. However, as we will see in our experiments, 

such a method performs poorly.  

Since we use online reviews as our experiment 

domain, our work is related to fake review detec-

tion (Jindal and Liu, 2008) as imposters can use 

multiple userids to post fake reviews. Existing re-

search has proposed many methods to detect fake 

reviewers (Lim et al., 2010; Wang et al., 2011; 

Mukherjee et al., 2012) and fake reviews (Jindal 

and Liu, 2008; Ott et al., 2011, 2012; Li et al., 

2011; Feng et al., 2012). However, none of them 

identifies userids belonging to the same person. 

3 Learning in the Similarity Space 

We now formulate the proposed supervised 

learning in the similarity space (LSS), which will 

be used in the candid-iden function in our algo-

rithm to be discussed in Section 4.  

The key difference between LSS and the classic 

document space learning is in the document repre-

sentation. Another difference is in the testing 

phase. We discuss testing first.  

Test data: We are given: 

 A query q from query author (userid) aq 

 A set of test documents DT = {dt1, …, dtm}. 

Goal: classify the test documents into those au-

thored by aq and those not authored by aq.  

We note the following points:  

i)  This is like a retrieval scenario, but we use su-

pervised learning to perform the task.  

ii) Unlike traditional supervised classification, 

here the test query author aq does not have to 

be used in training. But we are given a query 

document q from aq. Clearly, in practice, we 

can have multiple query documents from aq, 

which we will discuss in Section 4.  

Training document representation: As noted 

earlier, each document is represented with a simi-

larity vector (s-vector) computed using a similarity 
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function Sim. Sim takes a query document and a 

non-query document and produces a vector of sim-

ilarity values or s-features to represent the non-

query document. We present the detail below:  

Let the set of training authors be AR = {ar1, .., 

arn}. Each author ari has a set of documents DRi. 

Each document in DRi is first represented with a 

document vector (or d-vector). The algorithm for 

producing the training set, called s-training set, is 

given in Figure 1.  

We randomly select a small set of queries Qi 

from documents DRi of each author ari (lines 1, 

and 2). For each query qij  Qi (line 3), it selects a 

set of documents DRij also from DRi (excluding qij) 

of the same author (line 4) to be the positive doc-

uments for qij, called q-positive and labeled 1. 

Then, for each document drijk in DRij, a q-positive 

s-training example with the label 1 is generated for 

drijk by computing the similarities of qij and drijk 

using the similarity function Sim (lines 5, 6). In 

line 7, it selects a set of documents DRij,rest from 

other authors to be the negative documents for qij, 

called q-negative and labeled -1. For each docu-

ment drijk,rest in DRij,rest (line 8), a q-negative s-

training example with label -1 is generated for drijk 

by computing the similarities of qij and drijk,rest us-

ing Sim (line 9). How to select Qi, DRij and DRij,rest 

(lines 2, 4 and 7) is left open intentionally to give 

flexibility in implementation.  

This formulation gives us a two-class classifica-

tion problem. The classes are 1 (q-positive mean-

ing “written by author of query qij”) and -1 (q-

negative meaning “not written by author of query 

qij.”  Figure 2 shows what the s-training data looks 

like. For easy presentation, we assume that there 

are k queries in every Qi, and p documents in every 

DRij and u documents in every DRij,rest. The num-

ber of authors is n. Each author ari generates 

k×(p+u) s-training examples. As we will see in 

Section 7, k can be very small, even 1. 

Complexity: In the worst case, every document 

1. For each document set Di of idi  ID do 
2.  partition Di into two subsets:    
 (1) query set Qi and (2) sample set Si;   

3. For each document set Di of idi  ID do 
 // step 1: candidate identification 
4. idj = candid-iden(idi, ID), i < j; 
 // step 2: candidate confirmation  
5. idk = candid-iden(idj, ID), k ≠ j; 

6. If k = i then idi and idj are from the same author 
8. else  idi and idj are not from the same author  

Figure 3: Identifying userids from the same authors 

Function candidate-iden(idi, ID) 

1. For each sample document set Sj of idj  ID-{idi} do 
2.  pcount[idj],  psum[idj], psqsum[idj], max[idj] = 0; 

3.  For each query qi  Qi do 

4. For each sample sjf  Sj do 
5.  ssjf = <(idi, qi), (Sim(sjf, qi), ?)>;   
6.  Classify ssjf  using the classifier built earlier; 
7. If ssjf is classified positive, i.e., 1 then 
8.  pcount[idj] = pcount[idj] + 1; 
9.  psum[idj] = psum[idj] + ssjf.score 
10 psqsum[idj] = psqsum[idj] + (ssjf.score)2 
11. If ssif.score > max[idj] then 
12. max[idj] = srjf.score 

// Four methods to decide which idj is the candidate for idi 

13. If for all idj  ID-{idi}, pcount[idi] = 0 then 

14.  ])(max[maxarg
}{

j
idIDid

idcid
ij 

  

15. Else )
||

][
(maxarg

}{ j

j

idIDid S

idpcount
cid

ij 

  // 1. Voting 

16. )
||

][
(maxarg

}{ j

j

idIDid S

idpsum
cid

ij 

  // 2. ScoreSum 

17. )
||

])[(
(maxarg

2

}{ j

j

idIDid S

idpsum
cid

ij 

  // 3. ScoreSqSum 

18.         ])(max[maxarg
}{

j
idIDid

idcid
ij 

  // 4. ScoreMax 

19. return cid; 

Figure 4: Identifying the candidate 

1. For each author ari  AR 

2. select a set of query documents Qi   DRi  

3.  For each query qij  Qi  

 // produce positive s-training examples 

4. select a set of documents from author ari  

 DRij  DRi – {qij} 

5. For each document drijk  DRij  

6. produce an s-training example for drijk,  

 (Sim(drijk, qij), 1) 

 // produce negative s-training examples 

7. select a set of documents from the rest of authors  

 DRij,rest  (DR1  …  DRn) – DRi  

8. For each document drijk,rest  DRij,rest  

9. produce an s-training example for drijk,rest,  

 (Sim(drijk,rest, qij), -1) 

Figure 1: Generating s-training examples 

//  Author ar1 –  

// positive (1) s-training examples 

(Sim(dr111, q11), 1),  …,  (Sim(dr11p, q11), 1)  

… 

(Sim(dr1k1, q1k), 1),   …,   (Sim(dr1kp, q1k), 1)  

// negative (-1) s-training examples 

(Sim(dr111.rest, q11), -1),  …,  (Sim(dr11u.rest, q11), -1)  

… 

(Sim(dr1k1.rest, q1k), -1),  …,   (Sim(dr1ku.rest, q1k), -1)  

… 

Figure 2: s-training examples 
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can serve as a query or a non-query document. 

Then we need to compute all pairwise document 

similarities. If the number of training documents is 

m, the complexity is O(m2), which is both space 

and computation expensive. However, in practice, 

we don’t need all pairwise comparisons. Only a 

small subset is sufficient (see Section 7).  

Test document representation: Like training 

documents, test documents are represented as s-

vectors as well in the similarity space.  

Given a query q from author aq and a set of test 

documents DT, each test document dti is converted 

to a s-vector svi = Sim(dti, q). To reflect svi is com-

puted based on query q from author aq, a s-test 

case is thus represented as <(aq, q), (svi, ?)>.  

Training: A binary classifier is learned using the 

s-training data. Each s-training example is repre-

sented with (sv, y), where sv is an s-vector and y 

( {1, -1}) is its class. Any supervised learning 

algorithm, e.g., SVM, can be applied.  

Testing: The classifier is applied to each s-test 

case <(aq, q), (svi, ?)> (where svi = S(dti, q)) to 

give it a class q-positive or q-negative. Note that 

the classifier is only applied on svi.  

In most cases, classification based on a single que-

ry is inaccurate. Using multiple queries of an au-

thor can classify much more accurately.   

4 Identify Userids of the Same Author 

We now expand the sketch of the two-step algo-

rithm in Section 1 based on the problem statement 

in Section 1. The algorithm is given in Figure 3.   

Lines 1-2 partitions the documents set Di of 

each idi in ID = {id1, id2, …, idn}, the set of userids 

that we are working on. How to do the partition is 

flexible (see Section 7). Line 4 is the step 1 of 

candidate identification, and line 5 is the step2 of 

candidate confirmation. Lines 6-8 is the decision 

making of step 2 (see Section 1). Line 6 produced 

a classification score using the classifier described 

in Section 3. The key function here is candid-iden. 

Its algorithm is in Figure 4.  

The candid-iden function takes two arguments: 

the query userid idi and the whole set of userids 

ID. It classifies each sample ssjf in sample set Sj of 

idj  ID-{idi} to positive (qi-positive) or negative 

(qi-negative) (lines 4, 5, 6). We then aggregate the 

classification results to determine which userid is 

likely to have the same author as idi.   

One simple aggregation method is voting. We 

count the total number of positive classifications of 

the sample documents of each userid in ID-{idi}. 

The userid idj with the highest count is the candi-

date cid which may share the same author as query 

idi. cid is returned as the candidate.  

There are also other methods, which can depend 

on what output value the classifier produces. Here 

we propose four methods including the voting 

method above. The other three methods requires 

the classifier to produces a prediction score, which 

reflects the positive and negative certainty. Many 

classification algorithms produce such a score. 

Here we use SVM. For each classification, SVM 

outputs a positive or negative score indicating the 

certainty that the test case is positive or negative.  

To save space, all four alternative methods are 

given in Figure 4. Line 2 initializes some variables 

for recording the aggregated values for the final 

decision making. The four methods are as follows:  

1). Voting: For each sample from userid idj, if it is 

classified as positive, one vote/count is added 

to pcount[idj]. The userid with the highest 

pcount is regarded as the candidate userid, cid 

(line 15). Note that the normalization is ap-

plied because the sizes of the sample sets Sj 

can be different for different userids. Lines 13 

and 14 mean that if all documents of all 

userids are classified as negative (pcount[idj] = 

0, which also implies psum[idj] = psqsum[idj] 

= 0), we use method 4).  

2). ScoreSum: This method works similarly to the 

voting method above except that instead of 

counting positive classifications, this method 

sums up all scores of positive classifications in 

psum[idj] for each userid (line 9). The decision 

is also made similarly (line 16). 

3). ScoreSqSum: This method works similarly to 

ScoreSum above except that it sums up the 

squared scores of positive classifications in 

psqsum[idj] for each userid (line 10). The deci-

sion is also made similarly (line 17). 

4). ScoreMax: This method works similarly to the 

voting method as well except that it finds the 

maximum classification score for the docu-

ments of each userid (lines 11 and 12). The 

decision is made in line 18. 

5 D-features 

We now compute s-features (similarity features) 
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for each non-query document based on a query 

document. Since s-features are calculated using d-

features of a non-query document and a query 

document, we thus discuss d-features first, which 

are extracted from each document itself. We em-

ploy 26 d-features in four categories: length d-

features, frequency based d-features, tf.idf based d-

features, and richness d-features. Although many 

features below have been used in various tasks 

before, our key contribution is solving a new prob-

lem based on a new learning formulation (LSS).  

Length d-feature: We derive three length d-

features from each raw document: (1) average 

sentence length (in terms of word count); (2) 

average word length (in terms of character count 

in one word); (3) average document length (in 

terms of word count in one document). 

Frequency based d-features: We extract lexical, 

syntactic, and stylistic tokens from the raw docu-

ments and the parsed syntactic trees to produce the 

following features:   

 Lexical tokens: word unigrams 

 Syntactic tokens: content-independent struc-

tures: POS n-grams (1 ≤ n ≤ 3) and rewrite rules 

(Halteren et al., 1996; Hirst and Feiguina, 2007). 

A rewrite rule is a combination of a node and 

its immediate constituents in a syntactic tree. 

For example, the rewrite rule for "the best 

book" is NP->DT+JJS+NN. 

 Common stylistic token: K-length word (1 ≤ K ≤ 

15), punctuations, and 157 function words 

(www.flesl.net/Vocabulary/SinglewordLists/fun

ctionwordlist.php). 

 Review specific stylistic tokens: These tokens 

reflect styles of reviews: all cap words, pairs of 

quotation marks, pairs of brackets, exclamatory 

marks, contractions, two or more consecutive 

non-alphanumeric characters, model auxilia-

ries (e.g., should, must), word “recommend” or 

“recommended”, sentences with the first letter 

capitalized, sentences starting with This is (this 

is) or This was (this was). We then treat these 

tokens as pseudo-words and count their fre-

quency to form frequency d-features.  

TF-IDF based d-feature: For the tokens listed in 

the frequency based features above, we also com-

pute their tf.idf values. We list these two kinds of 

d-features separately because they will be used for 

different s-features later.  

Richness d-features: This is a set of vocabulary 

richness functions used to quantify the diversity of 

vocabulary in text (Holmes and Forsyth, 1995). In 

this paper, we apply them to the counts of word 

unigrams, POS n-grams (1 ≤ n ≤ 3), and rewrite 

rules. Here POS n-grams and rewrite rules are 

treated as pseudo-words. Let T be the total number 

of tokens (words or pseudo-words), and V(T) be 

the number of different tokens in a document, v be 

the highest frequency of occurrence of a token, and 

V(m, T) be the number of tokens which occur m 

times in the document. We use the following six 

richness measures (Yule, 1944; Burrows, 1992; 

Halteren et al., 1996) given in Table 1: Yule’s 

characteristic (K), Hapax dislegomena (S), Simp-

son’s index (D), Honorës measure (R), Brunet’s 

measure (W), and Hapax legomena (H). They give 

us a set of richness d-features about word uni-

grams, POS n-grams, and rewrite rules. 

Table 1. Richness metrics 
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6 S-Features  

The extracted d-features are transformed into s-

features, which are a set of similarity functions on 

two documents. We adopt five types of s-features.  

Sim4 Length s-features: This is a set of four simi-

larity functions defined by us. They are used for d-

feature vectors of length. The four formulae are 

given in Table 2, where lwq. (lwd), lsq. (lsd), and  lrq. 

(lrd) denote the average word, sentence, and docu-

ment length respectively, either in query q or non-

query document d. They produce four s-features.  

Table 2. Sim4 for computing length s-features 

1/ (1 log(1 | |))wq wdl l    

1/ (1 log(1 | |))sq sdl l    

1/ (1 log(1 | |))rq rdl l  
 

{ , , } { , , } { , , }

22( * ) / ( ) * ( )
m w s r m w s r m w s r

mq md mq mdl l l l
  

    
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Sim3 Sentence s-features: This is a set of three 

sentence similarity functions (Metzler et al., 2005). 

We apply them (called Sim3) to documents. Sim3 

s-features are used for frequency based d-features. 

The three formulae are given in Table 3, where f(t, 

s) is the frequency count of token t in a document s, 

and lq and ld are the average document length of 

the query and non-query document, respectively. 

Table 3. Sim3 for computing sentence s-features 

( , ) / ( ( , ) ( , ) ( , ))
t q d t q t d t q d

f t d f t q f t d f t d
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  
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Sim7 Retrieval s-features: This is a set of seven 

similarity functions (Table 4) applicable to all fre-

quency based d-features. These functions were 

used in information retrieval (Cao et al., 2006).  

Table 4. Sim7 for computing retrieval s-features 
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In Table 4, f(t, d) denotes the frequency count of 

token t in a non-query document d, q denotes the 

query, D is the entire collection, |.| is the size of a 

set, and idf is the inverse document frequency. 

These 7 formulae can produce 7 s-features. 

SimC tf-idf s-feature: This is the cosine similarity 

used for d-vectors represented by the tf.idf based 

d-features. SimC tf-idf produces one s-feature. 

SimC Richness s-feature: This is also cosine sim-

ilarity. However, it is applied to the richness d-

feature vectors, and produces one s-feature. 

7 Experimental Evaluation  

We now evaluate the proposed approach and com-

pare it with baselines. All our experiments use the 

SVMperf classifier (Joachims, 2006). 

7.1  Experiment Setup 

Experiment Data: We use a set of reviews and 

their authors/reviewers from Amazon.com as our 

experiment data. We select the authors who have 

posted more than 30 reviews in the book category. 

After cleaning, we have 831 authors, 731 authors 

for training and 100 authors for testing. The num-

bers of reviews in the training and test author set 

are 59256 and 14308, respectively. We use the 

Stanford parser (Klein and Manning, 2003) to gen-

erate the grammar structure of review sentences 

for extracting syntactic d-features. Note that the 

authors here are in fact userids. However, since 

they are randomly selected from a large number of 

userids, the probability that two sampled userids 

belong to the same person is very small. Thus, it 

should be safe to assume that each userid here rep-

resents a unique author.  

Training data: We randomly choose 1 (one) re-

view for each author as the query and all of his/her 

other reviews as q-positive reviews. The q-

negative reviews consist of reviews randomly se-

lected from the other 730 authors, two reviews per 

author. We also tried to use more queries from 

each author, but they make little difference.  

Test data: The test authors are all unseen, i.e., 

their reviews have not been used in training. We 

prepare the test case for each author as follows.  

We first divide the reviews of each author into 

two equal subsets. The purpose is to simulate the 

situation where there are two userids idia and idib 

from the same author ai. Our objective is that giv-

en one userid idia and its query set, we want to find 

the other userid idib from the same author.   

For the review subset of idia (or idib), we ran-

domly select 9 reviews as the query set and anoth-

er 10 reviews as the sample set for the userid. The 

two sets are disjoint. We don’t use more queries or 

sample reviews from each author since in the re-

view domain most authors do not have many re-

views (Jindal and Liu, 2008). In the experiments, 

we will vary the number of test userids, the num-

ber of queries, and the number of samples. We use 

the following format to describe each test data: 

T<n>_Q<n>S<n>, where T denotes the total num-

ber of test userids, Q the query set and S the sam-

ple set, and <n> a number. For example, 

T50_Q9S10 stands for a test data with 50 userids, 

and for each userid, 9 reviews are selected as que-

ries and 10 reviews are selected as samples. * rep-
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resents a wildcard whose value we can vary. 

Note that we use this “artificial” data rather than 

manually labeled data for our experiments because 

it is very hard to reliably label any gold-standard 

data manually in this case. The problem is similar 

to labeling fake reviews. In the fake review detec-

tion research, researchers have manually label fake 

reviews and reviewers (Yoo and Gretzel 2009; 

Lim et al., 2010; Li et al., 2011; Wang et al., 2011). 

However, based on the actual fake reviews written 

using Amazon Mechanical Turk, Ott et al. (2011) 

have showed that the accuracy of human labeling 

of fake reviews is very poor. We also believe that 

our test data is realistic for evaluation as we can 

image that the two sets of reviews are from two 

accounts (userids) of the same author (reviewer).   

Two types of experiments: For each author with 

two userids, we conduct two types of tests.   

 Type I: Identify two userids belong to the same 

author. The experiment runs iteratively to test 

every userid. In each iteration, we plant one 

userid of an author in the test set and use the 

other userid of the same author as the query 

userid. That is, in the ith run, the test data con-

sist of the following two components: 

1.  Query userid idia and its query set Qia 

2. Test userids {id1a, …, id(i-1)a, idib, …, idma} 

and their corresponding sample review sets 

{S1a, …, S(i-1)a, Sib, …, Sma}.  

Note that the query userid idia and the test 

userid idib are from the same author. Our objec-

tive is to use Qia to find idib through Sib. 

Evaluation measure: We use precision, recall, 

and F1 score to evaluate Type I experiments as 

we want to identify all matching pairs. The er-

rors are “no pair” and “wrong pair” found.  

 Type II: Type II experiments test the cases 

when no pair exists. That is, we do not plant 

any matching userid for the query userid. Then, 

the algorithm should not find anything. For the 

ith run, the test data has these components: 

1.  Query userid idia and its query set Qia 

2.Test userids {id1a, …, id(i-1)a, id(i+1)a, …, idma} 

and their sample review sets {S1a, …, S(i-1)a, 

S(i+1)a, …, Sma}. idib is not planted.  

Evaluation measure: Here we cannot use pre-

cision and recall because we are not trying to 

find any pairs. We thus use accuracy as our 

measure. For each idi, if no pair is found, it is 

correct. If a pair is found, it is wrong.  

Baseline methods:  As mentioned eariler, there 

are  only two works that tried to identify multi-id 

users. The first is that in (Chen et al., 2004). 

However, as we discussed in related work, their 

approach is not applicable to reviews. The other is 

that in (Novak et al., 2004), which used clustering 

but assumed that the number of actual authors (or 

clusters) is known. This is unrealistic in practice. 

Thus we designed three new baselines:  

TSL: This baseline is based on the traditional su-

pervised learning (TSL). We use it to evaluate 

how the traditional approach performs in the 

original feature space. In this case, each docu-

ment in TSL has to be represented as a vector of 

d-features or traditional n-gram features. For 

each test userid id, we build a SVM classifier 

based on the one vs. all strategy. That is, for 

training we use id’s queries in T*_Q*S10 as the 

positive documents, and all queries of the other 

test userids (e.g., 99 userids if the test data has 

100 userids) as the negative documents. Note 

that TSL cannot use the 731 userids for training 

as in LSS because they do not appear in the test 

data. In testing, userid id’s sample (non-query) 

documents in T*_Q*S10 are used as positive 

documents, and the sample documents of all oth-

er test userids are used as negative documents. 

SimUG: It uses the word unigrams to compare the 

cosine similarity of queries and samples. Cosine 

similarity with unigrams is the most widely used 

document similarity measure.  

SimAD: It uses all d-features to compare the cosine 

similarity of queries and samples.  

For both SimUG and SimAD, their cosine simi-

larity values are used in place of SVM scores of 

LSS or TSL. We then apply the same 4 strategies 

to decide the final author attribution except voting 

as cosine similarity cannot classify.  

7.2  Results and analysis 

1) Effects of positive/total ratio in training set: 

Since our data is highly skewed and too many neg-

ative cases may not be good for classification, we 

thus performed this experiment to find a good ratio.  

Table 5 shows the results for Type I experiments. 

From Table 5, we can see that the results are high-

ly accurate. Even for 100 userids, our method can 

correctly identify 85% cases. Here we use the data 

sets T*_Q9S10 and the decision method is 

ScoreSqSum, which produces the best result. The 
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results for Type II experiments (Table 6) are also 

accurate. In most cases, the values of accuracy are 

higher than 90%. For all our experiments below, 

we use the model/classifier trained with 0.4 ratio. 

Table 5. Positive(p)/total(t) ratio in training (Type I) 

 

F1 

 

p/t 10 30 50 80 100 
0.3 100.00 84.62 86.36 88.89 83.72 

0.4 100.00 91.91 90.11 88.89 85.71 

0.5 100.00 90.91 91.30 88.89 87.01 

0.6 94.74 82.35 87.64 85.71 86.36 

0.7 94.74 84.62 86.36 86.53 87.64 

Table 6. Positive(p)/total(t) ratio in training (Type II) 

 

Accuracy 

 

p/t 10 30 50 80 100 
0.3 90.00 90.00 92.00 97.50 94.00 

0.4 90.00 90.00 94.00 98.75 95.00 

0.5 80.00 86.67 94.00 97.75 95.00 

0.6 80.00 86.67 90.00 93.75 92.00 

0.7 80.00 86.67 90.00 95.00 92.00 

(2) Effects of different decision methods: We 

show the results of the four proposed decision 

methods: Voting, ScoreSum, ScoreSqSum, and 

ScoreMax, using our basic data of T*_Q9S10 with 

varied number of test userids. Figure 5(a) shows 

that ScoreSqSum is the best for Type I experi-

ments. Figure 5(b) shows ScoreMax is the best for 

Type II, but ScoreSqSum also does very well. Be-

low, ScoreSqSum is used as our default method 

because Type I is more important than Type II.  

 

              (a)  Type I                   (b) Type II 

Figure 5: Effect of different decision methods 

(3) Effects of number of queries per userid: 

Figure 6 shows the results of different numbers of 

queries. We see that more queries give better re-

sults, which is easy to understand because more 

queries give more information. We use 9 queries 

per userid in all other experiments. 

 

 (a)  Type I                   (b) Type II 

Figure 6: Effect of different numbers of queries 

(4) Effects of number of samples per userid: We 

tried 2, 4, 6, 8, 10 samples per userid. Although 

there are some fluctuations for Type II (Fig.7(b)), 

we can see an upward trend for Type I in Fig. 7(a). 

This indicates that more sample documents give 

better results in general. The main reason again is 

that more samples from a userid give more identi-

fying information about the userid. We use 10 test 

documents (samples) per userid in all experiments. 

 

 (a)  Type I                   (b) Type II 

Figure 7: Effect of different number of samples 

(5) Impact of individual s-feature sets: Here we 

show the effectiveness of individual s-feature sets. 

From Table 7, we see that Sim7Retrieval s-

features are extremely important for Type I test. 

Removing Sim7Retrieval causes about 10% to 

20% F1 score drop on different datasets. SimCT-

fidf s-features are also useful. The impacts of other 

s-features are small. The same applies to Type II 

test (Table 8). On average, using all features is the 

best. Hence we use all features in all other experi-

ments above.  

Table 7. Using different s-features (Type I) 

T*_Q9S10 F1 

10  

F1 

30 

F1 

50  

F1 

80 

F1 

100  

All features 100.00 90.91 90.11 88.89 85.71 

No Sim4Len 100.00 88.89 86.36 87.32 85.06 

No SimCRichness 100.00 88.89 91.30 88.89 85.71 

No SimCTfidf 100.00 80.00 86.36 86.53 83.72 

No Sim7Retrieval 82.35 72.34 75.80 78.79 77.30 

No Sim3Sent 94.74 84.62 86.36 88.11 87.64 

Table 8. Using different s-features (Type II) 

T*_Q9S10 Acc. 

10  

Acc 

30 

Acc. 

50  

Acc 

80 

Acc. 

100  

All features 90.00 90.00 94.00 98.75 99.00 

No Sim4Len 90.00 93.33 96.00 96.25 96.00 

No SimCRichness 90.00 90.00 94.00 96.25 96.00 

No SimCTfidf 90.00 86.67 94.00 93.75 97.00 

No Sim7Retrieval 80.00 90.00 94.00 94.00 96.00 

No Sim3Sent 90.00 93.33 92.00 98.75 93.00 

(6) Comparing with the three baselines: Similar 

to our method, the training data for TSL is highly 

skewed as it uses a one-vs.-all strategy. Hence we 

also investigate the effect of p/t ratio in training for 

TSL. Results show that 0.4 ratio is the best setting. 
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Thus this setting is adopted for TSL in the follow-

ing experiments. Note that we cannot conduct p/t 

ratio experiments for SimAD and SimUG as they 

are unsupervised methods. We use ScoreMax for 

TSL, ScoreSqSum for SimUG and SimAD, re-

spectively, since they perform the best for their 

corresponding approaches. Tables 9 and 10 show 

the results of our LSS method and the baseline 

methods for Type I and II tests respectively. For 

TSL, we use all d-features. Unigram features gave 

TSL much worse results and are thus not included 

here.  

Table 9: Comparison with baselines (Type I) 

 10 30 50 80 100 

LSS Pre 100.00 100.00 100.00 100.00 98.68 

Rec 100.00 83.33 82.00 80.00 75.76 

F1 100.00 90.91 90.11 88.89 85.71 

TSL Pre 50.00 50.00 33.33 0.00 0.00 

Rec 11.11 3.45 2.08 0.00 0.00 

F1 18.18 6.45 3.92 0.00 0.00 

SimUG Pre 100.00 100.00 100.00 100.00 100.00 

Rec 70.00 46.67 48.00 48.75 43.00 

F1 82.35 63.64 64.86 65.55 60.14 

SimAD Pre 100.00 75.00 100.00 33.33 0.00 

Rec 20.00 10.35 2.00 1.28 0.00 

F1 33.33 18.18 3.92 2.47 0.00 

Table 10: Comparison with baselines (Type II) 

Accuracy 10 30 50 80 100 

LSS 90.00 90.00 94.00 98.75 95.00 

TSL 90.00 96.67 98.00 98.75 99.00 

SimUG 96.00 93.33 96.00 96.25 97.00 

SimAD 90.00 96.67 98.00 98.75 99.00 

From Tables 9 and 10, we can make the follow-

ing observations. 

 For Type I, F1 scores of LSS are markedly bet-

ter than those of the three baselines. The results 

of SimUG also drop more quickly than LSS 

with the increased number of userids. SimAD’s 

results are extremely poor. These show that 

LSS is much more superior to the unsupervised 

methods. TSL performed the worst, indicating 

that traditional supervised learning is inappro-

priate for this task. There are two main reasons: 

First, for one vs. all learning, the negative train-

ing data actually contain positive documents 

which are written by the same author using an-

other userid as the positive data, which confus-

es the classifier. Second, TSL is unable to build 

an accurate classifier using the small number of 

queries (which are training data). In contrast, 

our LSS method can exploit a large number of 

other authors who do not have to appear in test-

ing and thus achieves the huge improvements.  

 For Type II, LSS also performs very well. The 

baselines perform well too and even better, 

which is not surprising because they have diffi-

culty in finding matching pairs for Type I. 

Since Type II datasets have no author with mul-

tiple userids, naturally the baselines will do 

well for Type II. But that is useless because 

when there are authors with multiple usersids 

(Type I), they are unable to find them well.  

In summary, we can conclude that for Type I tests 

(there are authors with multiple userids), LSS is 

dramatically better than all baseline methods. For 

Type II tests (there is no author with multiple 

userids), it also performs very well.   

8 Conclusion  

This paper proposed a novel method to identify 

userids that may be from the same author. The 

core of the method is a supervised learning method 

which learns in a similarity space rather than the 

document space. This learning method is able to 

better determine whether a document may be writ-

ten by a known author, although no document 

from the author has been used in training (as long 

as we have some documents from the author to 

serve as queries). To the best of our knowledge, 

there is no existing method based on linguistic 

analysis for solving the problem. Our experimental 

results based on a large number of reviewers and 

their reviews show that the proposed algorithm is 

highly accurate. It outperforms three baselines 

markedly.  
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Abstract

While much work has considered the problem
of latent attribute inference for users of social
media such as Twitter, little has been done on
non-English-based content and users. Here,
we conduct the first assessment of latent at-
tribute inference in languages beyond English,
focusing on gender inference. We find that
the gender inference problem in quite diverse
languages can be addressed using existing ma-
chinery. Further, accuracy gains can be made
by taking language-specific features into ac-
count. We identify languages with complex
orthography, such as Japanese, as difficult for
existing methods, suggesting a valuable direc-
tion for future research.

1 Introduction

A 2012 study reported that US-based Twitter users
now account for only 28% of all active accounts on
the platform (Semiocast, 2012). Brazil, Japan, India,
and Indonesia all rank in the top 10, each with over
5% of all users. These and other findings confirm
that Twitter enjoys widespread international popu-
larity and usage. This is also reflected in the multi-
national community of researchers who study hu-
man behavior on Twitter and related platforms, e.g.
(Sakaki et al., 2010; Tumasjan et al., 2010; Kim and
Park, 2012).

It is remarkable, then, that advances in la-
tent attribute inference on social media have been
largely confined to English content, e.g. (Liu and
Ruths, 2013; Zamal et al., 2012; Pennacchiotti and
Popescu, 2011; Conover et al., 2011a). This bias
may be partially explained in the context of the re-
search being conducted largely by anglophone re-

searchers. Nonetheless, it has created a notable
silence in the literature concerning the large-scale
analysis of languages, cultures, and people on social
media who do not employ English.

In this paper, we examine the problem of latent at-
tribute inference outside the English-language con-
text. To our knowledge, this is the first such study
ever conducted. Here we specifically focus on gen-
der inference, as it has been the basis for significant
work in recent years (Liu et al., 2012; Zamal et al.,
2012; Pennacchiotti and Popescu, 2011; Rao et al.,
2010; Burger et al., 2011). Our work makes two
contributions. First, we quantify the extent to which
established gender inference methods can be used
with non-English Twitter content. Second, we ex-
plore the capacity for unique features of other lan-
guages (besides English) to improve inference ac-
curacy. This second aspect, in particular, acknowl-
edges the fact that latent attribute inference may be
easier in some languages due not to conventions in
word usage, but to syntactic structure.

In order to assess the extent to which existing gen-
der inference machinery works for users who use
languages other than English, we assembled Twit-
ter datasets for languages that are both prevalent on
Twitter and representative of diverse language fam-
ilies: Japanese, Indonesian, Turkish, and French.
Each dataset consisted of approximately 1000 users
who tweeted primarily in a given language. We used
Amazon Mechanical Turk to manually label each
user with their gender, using a language-agnostic la-
beling strategy (Liu and Ruths, 2013). For classi-
fication, we employed a performant support vector
machine-based (SVM) technique that has been used
in a range of studies, e.g. (Rao et al., 2010; Burger
et al., 2011; Zamal et al., 2012).
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We found that, without any modification to the
types of features given to the SVM, the classifier ac-
curacy was comparable on English, French, and In-
donesian. Turkish actually performed much better,
achieving 87% on average. Gender in Japanese, in
contrast, could not be reliably inferred with any rea-
sonable accuracy (61% on average) despite numer-
ous attempts to preprocess the tweets and tune the
classifier to accommodate the language’s complex
orthography. This indicates that existing approaches
may not generalize well to language systems with
thousands of distinct unigrams (as opposed to tens
or hundreds in the other languages considered).1

To evaluate the extent to which language-specific
features might be used to boost the accuracy of
the SVM classifier further, we focused on French.
French is a valuable case study because, unlike En-
glish, it has a number of syntax-based mechanisms
that can encode the gender of the speaker. The
most common instantiation of gender marking is the
modification of adjective and some past participle
endings to match the gender of the subject in con-
structions beginning with “je suis” (trans. “I am”)
constructions. A classifier based on this insight
achieved average accuracy of 90% on the vast ma-
jority of French users, surpassing the accuracy of
standard techniques on English or French.

Overall, our results show that, with little modifi-
cation, existing gender inference machinery can per-
form comparably to English on several other lan-
guages. There are clear areas for substantial im-
provement: incorporating language-specific features
and, in the case of Japanese, finding better ways
of accommodating the complex orthography. These
findings identify promising directions for future re-
search and will, hopefully, call attention to an im-
portant area in the latent attribute inference domain
in need of further work.

2 Background

Non-English Twitter data mining and studies.
Existing work on non-English Twitter content can
been divided into two groups: surveys of the use of
several languages on the platform and studies of a
social phenomenon in a non-English body of tweets.

1In this work, unigram, bigram, and k-gram refer to one,
two, and k-character sequences in a language’s written form.

To our knowledge, only a handful of the former va-
riety exist. One recent paper characterized the re-
lationship between language and geography (Mo-
canu et al., 2012). Another measured how high-level
tweet features (i.e., link, mention, and hashtag fre-
quencies) vary across languages (Weerkamp et al.,
2011). These papers show that tweet structure and
content can differ widely across languages.

More work has been done in the latter category:
analysis of social phenomena in a non-English con-
text. A well-known study evaluated usage of Twit-
ter in the aftermath of the 2010 earthquake in Japan
(Sakaki et al., 2010). Another Japanese-oriented
study evaluated the impact of television on tweeted
content (Akioka et al., 2010). Within this cate-
gory, another recurring research topic is the anal-
ysis of political discussion and elections. Outside
of English-based analysis, some attention has been
given to European and East Asian elections, e.g.
(Tumasjan et al., 2010; Giglietto, 2012; Kim and
Park, 2012). However, few of these studies have
considered measures beyond simple hashtag fre-
quencies, relative mention counts among politicians,
and retweet counts. The only study using more
complex features for computational text analysis in-
volved sentiment analysis of a set of German tweets
(Tumasjan et al., 2010). However, the tweets in
this study (conducted at a German university) were
translated into English prior to analysis, a step which
underscores the significant bias towards English in
the literature on analyzing microtext, and the tools
available to researchers in this domain.

Gender inference methods. Gender inference is a
field of research situated with the broader area of la-
tent attribute inference. The majority of recent work
in this area has focused on Twitter users (Rao et al.,
2010; Pennacchiotti and Popescu, 2011; Conover et
al., 2011b; Burger et al., 2011; Rao and Yarowsky,
2010; Liu and Ruths, 2013; Liu et al., 2012; Zamal
et al., 2012). Classifiers have been built, predomi-
nantly, using support vector machines, e.g. (Rao et
al., 2010; Pennacchiotti and Popescu, 2011; Burger
et al., 2011; Zamal et al., 2012), though boosted de-
cision trees and latent dirichlet allocation systems
have also been evaluated, e.g. (Pennacchiotti and
Popescu, 2011; Conover et al., 2011b). With one
exception, gender inference accuracy has been re-
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ported between 80% and 85%. The one study which
reported 90% accuracy involved the use of a dataset
which has been shown to be quite different from typ-
ical anglophone Twitter users (Burger et al., 2011).
This same study did involve non-English Twitter
users, but did not analyze the performance of the
classifier on different languages (e.g. break down
performance by language, examine to what extent
its results were due to better performance on some
languages), or indeed discuss fully which languages
were present in their sample. Thus, little can be in-
ferred from Burger et al.’s study about the relative
performance of attribute inference methods on dif-
ferent languages, which is the focus of our paper.

Language families. Human languages can be
classified into different language families, defined
as a set of languages which are all descended from a
single, ancient parent language. Languages which
are genetically related (in the same family), how-
ever distantly, tend to share many more character-
istics than languages from different families.

Each language considered in this paper belongs
to a different language family: French to Indo-
European, Turkish to Altaic, Japanese to Japonic,
and Indonesian to Austronesian. Thus, these lan-
guages are completely genetically unrelated, by def-
inition. Further, they are both geographically and
culturally dispersed. While they all have some loan-
words from English, these constitute a tiny fraction
of each language’s vocabulary. This selection of lan-
guages allows us to conduct the most far-reaching
survey of non-English latent attribute inference per-
formance to date.

A variety of features make each language se-
lected interesting within the gender inference con-
text. French is noteworthy for its grammatical gen-
der. All nouns, including people, are grammati-
cally “male” or “female.” English, in contrast, has
separate pronouns for people of different genders
(e.g., “he”, “she”), but does not have grammati-
cal gender. (Besides a handful of exceptions like
“waiter”/“waitress”, there are no words besides pro-
nouns which have different “masculine” and “femi-
nine” forms.) Indonesian, Turkish, and Japanese are
all so-called genderless languages. Like many lan-
guages of the world, they do not have distinct male
and female pronouns (like English and French), or

grammatical gender (like French).

3 General Gender Inference

In order to evaluate the extent to which existing gen-
der inference machinery can be used on users whose
tweets are in languages other than English, we de-
veloped gender-labeled datasets of Twitter users for
each language and then evaluated the performance
of a classifier on each.

3.1 Data
The core data for this project consisted of four
datasets of content from Twitter users who tweeted
predominantly in one of four languages—French,
Indonesian, Turkish, and Japanese—collected using
the methods described below.

Data collection. In order to identify users for can-
didate inclusion in a particular language’s (hereafter
the target language) dataset, we walked the stream-
ing output of the Twitter firehose and evaluated the
language of each tweet using the language mod-
els provided by the Natural Language Toolkit (Bird,
2006). Users associated with tweets written in the
target language were added to a list. 5000 such users
were identified for each language. The latest 1000
tweets for each user were downloaded. This com-
prised the base for the target language dataset.

Assigning gender labels. In prior work, e.g. (Rao
et al., 2010; Pennacchiotti and Popescu, 2011; Za-
mal et al., 2012), the dominant way of obtain-
ing datasets consisting of Twitter users with high-
confidence gender-labels is to use gender-name as-
sociations. The use of name-gender associations are
problematic when non-English content is considered
because databases of anglophone name-gender asso-
ciations are no longer useful (Mislove et al., 2011).
We instead used Amazon Mechanical Turk workers
to identify the gender of the person shown in the pro-
file picture associated with a user’s account (Liu and
Ruths, 2013). In our datasets, each user’s profile pic-
ture was coded by 5 separate workers. Users with
non-photographic or celebrity-based profile pictures
was discarded, as well as any users with profile pic-
tures where the gender could not be confidently as-
sessed (less than 4 out of 5 votes for one gender).

Table 1 shows the final composition of each
dataset. In Japanese and Indonesian, we observed
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Table 1: The composition of the different language
datasets used in this study.

Language # Males # Females Total Size
French 437 506 943
Indonesian 977 2260 3237
Turkish 1672 1937 3609
Japanese 309 520 829

a notable difference in the number of males and fe-
males in the dataset. Measures were taken to ensure
that classifier results were not biased by these differ-
ences within the datasets.

3.2 Methods
The majority of prior work in gender inference (and
latent inference in general) has used support vector
machines (SVMs). We followed prior work in this
regard, particularly since our intent here is to eval-
uate the relevance of existing gender inference ma-
chinery on other languages. For the present study,
we adopted an SVM-based classifier, described in
(Zamal et al., 2012), that incorporated nearly all fea-
tures used in prior work and showed comparable
(and sometimes better) accuracy than other methods.
Parameter values and kernel choices for the SVM
are discussed in the source paper.

Feature set. SVM classifiers require that
each object to be classified be represented by
a fixed-length feature vector. The features we
employed were: k-top words, k-top digrams
and trigrams, k-top hashtags, k-top mentions,
tweet/retweet/hashtag/link/mention frequencies,
and out/in-neighborhood size. Note that “k-top X
features” (e.g., k-top hashtags) refers to the k most
discriminating items of that type for each label (i.e.,
Male/Female). Thus, k-top words is actually 2k
features: the k words most associated with males
and the k words most associated with females.

This list of features is the same set of features used
in (Zamal et al., 2012), except that k-top stems and
k-top co-stems were both dropped in our version.
Both of these feature types are specific to English.
Of course, word stems do exist in other languages,
however we found that stemmers (the algorithms
that identify and extract the appropriate stem from
a word) were not available across the whole bank
of languages. Therefore, we omitted these stem and

co-stem features. We also added features for the us-
age frequencies of Eastern-style and Western-style
emoticons but saw no discernible change in accu-
racy; thus, these features are not discussed further.

It is important to note that all features included
in our classifier are language-agnostic. An n-gram
is simply an n-character sequence drawn from the
alphabet and additional symbols (numbers, punctu-
ation, etc.) present in tweets written in the target
language. Words are sequences of characters that
are bounded by whitespace or punctuation. Hash-
tags are words proceeded by a pound (“#”) character,
mentions by an “@” symbol. A system that properly
supports unicode strings can implement all of these
notions without knowing anything about the target
language it is operating on.

Tokenization of Japanese. While all the defini-
tions provided above for the SVM features are op-
erational, there is a glaring disconnect between the
whitespace-border definition of a word and written
conventions in Japanese. Specifically, in Japanese
words are generally not separated by whitespace.

We used a tokenizer to insert whitespace into
Japanese text to break up words. Tokenization
was done using Kuromoji, the software Japanese
morphological analyzer used and supported by the
Apache software Foundation (Atilika, 2012). No-
tably, this tool tokenizes the mixed character sets
that are often used in informal Japanese writing.

As tokenization does involves some language-
specific processing, its use here somewhat under-
mines the objective set out for this project. Thus, we
report the accuracy achieved for both untokenized
and tokenized Japanese tweets. Curiously, tokeniza-
tion was found to not make a difference in overall
average accuracy.

3.3 Results

For each dataset, 5-fold cross validation was used
to assess the classifier’s performance. The value of
k = 20 was used for all k-top features, though the
results reported are robust to changes of this value
within reason (between 10 and 30). If the num-
bers of male and female users were unbalanced in
a dataset, the larger set was subsampled randomly
to obtain a set of users the same size as the smaller
labeled set. During the training process, the actual
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Table 2: The accuracy of the SVM-based classifier on
each of the language datasets. In the case of Japanese,
the performance is given for both the tokenized and un-
tokenized versions of the dataset. (Note that tokenization
did not affect overall accuracy.)

Language Male Female Overall
French 0.79 0.73 0.76
Indonesian 0.87 0.80 0.83
Turkish 0.89 0.85 0.87
Japanese (t) 0.50 0.76 0.63
Japanese (u) 0.58 0.68 0.63

values of the features were extracted from the train-
ing users (e.g., the k-top differentiating words for
males and females were identified). In this way,
the gender model implemented by the SVM was
language-specific, in the sense that a particular lan-
guage’s gender model contained a different set of
features. We call our method language-agnostic on
the grounds that, given a labeled set of users and
tweets drawn from a particular language, a model
can be built without any knowledge of the structure
or content of the language itself.

Tables in Supplementary Material show the fea-
tures for the classifier built over each language’s en-
tire dataset. Note that to conduct the cross-fold eval-
uation, new models (and hence different features)
were recomputed for each fold. As a result, the fea-
tures reported are slightly different from those that
might have appeared in the models for a given fold.
Manual inspection, however, revealed that differ-
ences were slight. The features reported in the Sup-
plementary Material can be safely considered a con-
sensus among the models for the individual folds.

The accuracy of the classifier for each language
is shown in Table 2. Overall, the classifier demon-
strated good performance on all languages ex-
cept for Japanese. Below, we consider the re-
sults for each of the four languages in turn. In
each case we discuss language-specific trends in
which words were most informative for inferring
user gender, and thus help explain the classifier’s
performance. Throughout, we omit discussion of
non-alphanumeric “words” (such as punctuation or
emoticons), and call the k-top discriminating words
for male and female users the k-top male words and
k-top female words.

French. The k-top words for men and women are
of very different grammatical types. Most male
words are prepositions or articles (16/25; e.g. de
‘of’, un ‘a/one’); a few others are basic grammati-
cal words (ne ‘[part of] not’, et ‘and’), or pronouns
or verb forms referring to a single person or object
(he/she/it), as well as one noun (France). In con-
trast, many female words (11/25) are pronouns or
basic verb forms referring to the speaker or a single
addressee (je ‘I’, mon/mes/ma ‘my’, tu ‘you’, j’ai
‘I have’). Others are pronouns or basic verbs re-
fer to a single person or object (elle, ‘she/it’, c’est
‘it’s’), as well as a few other frequent words (trop
‘too much’, pas ‘[part of] not’, oui ‘yes’). The most
salient pattern is that use of words (pronouns, basic
verbs) associated with talking about the speaker or
addressee indicates a tweet is more likely to be from
a female user. Heavy use of other common function
words, specifically prepositions and articles, sug-
gests a male user. These patterns reflect known gen-
der differences in word usage by male and female
French speakers (Witsen, 1981).

Indonesian. Indonesian achieved performance
closest to the inference accuracy for English re-
ported in the literature. The k-top lists for men and
women give some justification for why the classifier
performed well. Some differences can be tentatively
linked to general trends in how men and women use
language differently across cultures. 5/25 of men’s
k-top words are nouns which are either related to
soccer (vs ‘versus’, chelsea ‘[name of UK soccer
team]’, pemain ‘player’) or which could be related
to soccer (jakarta, indonesia, malam ‘night’); in
contrast, no women’s words are nouns. It seems
plausible that men tweet about soccer significantly
more than women. In such a situation, a reasonable
concern is that our classifier discriminated soccer
from non-soccer enthusiasts rather than males from
females. To address this, we confirmed that these
topic-based words were not required for accurate
classification: a classifier in which soccer words
were explicitly removed performed just as well
(83.8% vs. 83.3%).

More interestingly, many of the k-top words cor-
respond to men and women using different terms
of address and self-reference. Among the k-top
words, 7/25 for men and 4/25 for women are terms

1140



of address or self-reference. The terms men use are
mostly highly informal, including the slang term lu
(you) and the English borrowing bro; the address
terms women use are mostly medium-formality,
such as aku (I) and kamu (you). Thus, women seem
to be using “more polite” self-reference and address
terms than men on average on Indonesian Twitter,
in line with the more general tendency for women
to use polite forms more frequently than men cross-
culturally (Holmes, 1995).

Turkish. Turkish achieved notably high accuracy:
the highest of all four languages considered. In
fact, to our knowledge, this is the highest accuracy
achieved in the entire Twitter gender inference lit-
erature on a dataset drawn from the Twitter gen-
eral population. The k-top lists of male and female
words again give some justification for the classi-
fier’s performance. Many differences between the
male and female lists can be linked to men and
women talking about different topics, or to differ-
ent people. Several of the male words refer to soc-
cer (gol ‘goal’, galatasaray ‘popular Istanbul team’,
maç ‘match’, at ‘[part of imperative for] score’),
which men plausibly tweet about more. As with In-
donesian, a concern is that topics represent a biased
sample of the population. Thus, we tested a classi-
fier with soccer-specific terms removed, and again
found no difference in accuracy (86% vs. 87%).
Many other k-top words are familiar terms of ad-
dress for men (lan, abi, karde sim, adam, kanka) or
a greeting used mainly between men (eyvallah), sug-
gesting that male users are addressing or discussing
men more often than female users are. In contrast,
9/25 of the k-top female words are pronouns refer-
ring to the speaker, a familiar addressee, or a third
party (he/she/it), while none of the k-top male words
are, suggesting female users are more often talking
directly about themselves or to others. Finally, 2/25
of the k-top male words are profanity (amk, ulan),
while none of the female k-top words are, suggest-
ing male users swear more.

Japanese. Beyond the Japanese classifier’s gener-
ally poor accuracy, it is striking that tokenization
did not improve overall accuracy. This indicates
that once words were properly tokenized, no ad-
ditional gender-distinguishing signal could be ex-
tracted. This may be an indication that word-based

features carry little information in languages with
complex orthography, such as Japanese (with many
thousands of unigrams).

Despite the classifier’s poor performance, the k-
top discriminating words for male and female users
differ in interesting ways. Some differences can be
understood as resulting from known general trends
in how Japanese men and women’s use language.
Japanese speakers have a choice of many first-
person singular pronouns (equivalent to “I”), which
signal different levels of politeness and of male ver-
sus female speech. The pronoun boku (僕) is asso-
ciated with informal male speech; accordingly, it is
among the k-top male words. Japanese also uses an
extensive system of verb forms corresponding to dif-
ferent levels of politeness, and honorifics (affixes for
names used when referring to others). Women tend
to use polite verb forms and honorifics more fre-
quently than men in Japanese speech (Peng, 1981).
In agreement with this pattern, several polite verb
forms (-masu, -mashi) and a polite honorific (o-) are
among the k-top female words, as is a diminutive
honorific often used to refer to women (-chan).

4 Language-specific Features and
Inference

While the classifier performed well across a diverse
set of languages, recall that all features used by the
SVM were language-agnostic. A natural question
concerns the extent to which language-specific fea-
tures relevant to the attribute of interest (e.g., gen-
der) might improve the classifier’s performance.

We examine this question within the context of
French. Where gender inference is concerned,
French is quite interesting because information
about the gender of nouns (including the speaker) is
often obligatorily marked in the syntax: many words
have different ‘masculine’ and ‘feminine’ forms for
referring to male and female nouns, including the
speaker. Thus, it is in principle often possible to in-
fer the gender of the speaker by which form they use,
although it is not clear a priori that this method will
work for Twitter data.

4.1 Method

French grammar dictates that which forms of words
are used often reflects the gender of the speaker.
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Adjectives and past participles all have masculine
and feminine forms, which are often spelled dif-
ferently, and in addition often pronounced differ-
ently.Adjectives must agree in gender with the noun
they refer to. For example, “I am happy” would
be je suis heureuse for a female speaker and je suis
heureux for a male speaker (literally “I-am-happy”);
heureuse and heureux are the feminine and mascu-
line singular forms of the adjective, and are pro-
nounced differently. Past participles of verbs also
agree with the gender of the subject or object of the
verb, for certain verbs and constructions. For ex-
ample, “I went” would be je suis allée for a female
speaker and je suis allé for a male speaker (here suis
is used to form the simple past of the verb aller,
‘to go’); allé and allée are the masculine and fem-
inine forms of the past participle of aller, and are
pronounced the same.

Note that the phrase je suis (“I am”) occurs in both
the adjectival and verbal constructions referring to
the speaker; however, the function of suis differs be-
tween the two. suis is the first-person singular form
of the verb être (“to be”), and functions as a cop-
ula when followed by an adjective (“I am happy”)
but as an auxiliary verb to mark the past tense, when
followed by the past participle of certain verbs (“I
went”). For our purposes, what is important is that,
in both cases, a following adjective or past participle
will take on the gender of the speaker.

When this construction occurs in a tweet, it is
likely that je is referring to the author of the tweet,
and the rules of French grammar dictate that the
gender of the associated adjective or past partici-
ple should reflect the gender of the tweet’s author.
We implemented a classifier that used this logic to
classify the gender of francophone Twitter users. It
is worth emphasizing that the existence of adjec-
tives and participles which reflect the speaker’s gen-
der does not automatically make gender identifica-
tion in French tweets a trivial task. First, given the
prevalence of non-standard spelling and grammar
on Twitter and other online platforms, French users
may sometimes not use the ‘correct’ gender marked
form reflecting their actual gender—especially given
that the male and female forms for a given adjective
or participle are often pronounced the same. Sec-
ond, even if gender-marked constructions are used
correctly, they may not occur sufficiently often in

Table 3: The set of patterns that were considered to be
suis-constructions when encountered in a tweet.

jn suis pas, jm suis, jmsuis, jnmsuis pas, jnsuis pas,
je ne suis pas, je suis pas, jsuis, jensuis pas, jemsuis,
jnesuis pas, jmesuis, je me suis, je ne me suis pas

tweets to be a reliably used for speaker gender iden-
tification. Both of these concerns are borne out in
our French dataset, as described further below; the
question addressed in the experiment is how useful
the signal provided by gender-marked forms is, de-
spite these two sources of noise.

Unlike the probabilistic SVM classifier, the suis-
construction classifier can be made entirely deter-
ministic. For a given user, the set of tweets con-
taining a suis-construction are identified, Tsuis(u).
Of these, we can identify the number of those tweets
that involve an adjective or past participle with a fe-
male ending TF

suis(u) ⊆ Tsuis(u). Labeling a user
involves selecting a threshold based on TF

suis(u) and
Tsuis(u) below which a user receives one label and
above which the user receives the other label.

Detecting suis-constructions. As expected, cur-
sory inspection of tweets revealed that Twitter
users often employed shorthand forms of the suis-
construction. We accounted for this by conduct-
ing a manual survey of the shorthand forms of
the suis-construction. A catalog of regular expres-
sions was drawn up that matched the different suis-
construction forms we identified, shown in Table 3.

Recognizing the gender of the adjective or past
participle involved in a suis-construction required
a second processing stage. The Lexique lexical
database was used to tag the word trailing the suis-
construction (New and Landing, 2012). If the tag
was not an adjective or verb, the construction was
discarded as it would not contain a gender indica-
tion. If the word was recognized as an adjective or
verb, Lexique would also return the gender, which
would be returned as the gender indication for that
particular suis-construction.

Threshold selection. We evaluated a number of
policies for assigning the user’s gender based on
the relative values of TF

suis(u) and Tsuis(u). In the
end, however, the best performing threshold was
TF

suis(u) > 1: simply labeling as female any user
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Table 4: The component-wise and overall accuracy of the
combined suis-construction and SVM classifier.

Component # Male Female Overall
users Acc Acc Acc

suis-const. 723 0.91 0.90 0.90
SVM 220 0.70 0.54 0.62
Overall 943 0.86 0.82 0.83

who employed the female construction even once.
This threshold makes sense given the plausible intu-
ition that females will (almost always) be the only
users to employ a female suis-construction; how-
ever, it is quite sensitive to uses of female suis-
constructions by males.

Mixed classifier. Since not all users had tweets
which contained suis-constructions, we combined
the SVM-based classifier used previously with the
suis-construction-based classifier. The SVM com-
ponent was applied to any users who lacked suis-
constructions entirely in their tweet history. Any
user who used even one suis-construction would be
labeled according to the TF

suis(u) > 1 threshold.

4.2 Results

We ran our classifier on the French dataset, obtain-
ing the results shown in Table 4.

Coverage of the suis-construction. In spite of
our concerns over the occurrence frequency and de-
tectability of the suis-construction in tweets, our
results show that suis-constructions were found in
tweets belonging to nearly 75% of all users in the
dataset. This suggests that the suis-construction
classifier has quite broad coverage of the popula-
tion. Of course, given the essential role of the verb
“être” in French (like the role of “to be” in En-
glish), its frequent use is expected. Nonetheless,
the flexible use of grammar and spelling in Twitter
and other online contexts raised a genuine concern
that occurrences of the suis-construction might not
be detected. In fact, when we looked through the
tweets of users who were flagged as not having use-
ful suis-constructions in their tweets, we discovered
that many actually did. The issue was that they em-
ployed highly irregular spellings that our implemen-
tation was not able to pick up. Thus, with additional
refinement, it may be possible to improve the suis-

construction coverage further, well beyond 80%.

Performance of the suis-construction classifier.
On the set of users for which the suis-construction
was detected, the classifier did very well, achiev-
ing an average accuracy of 90%. Recall that the
threshold used to generate the results in Table 4 was
TF

suis(u) > 1. We tested other (larger) thresholds
and found that the performance of the method dra-
matically and monotonically decreased. This was
largely due to female users being misclassified as
males, indicating that females do not exclusively
use female suis-constructions (this was confirmed
via manual inspection of a number of female tweet
histories). This is different from males, most of
whom are quite strict about using only male suis-
constructions. Since forming the female form of
an adjective or participle typically requires adding
an additional character (or more) to the base of the
word, this may reflect a tendency towards dropping
gender modifiers in favor of typing less.

Performance of the SVM classifier. While the
suis-construction classifier performed well, the
SVM component did not do nearly as well on the
Twitter users that could not be labeled using the suis-
construction, achieving an average performance of
62%. At this level of accuracy, the classifier is per-
forming barely better than a random classifier, which
would have achieved around 50% accuracy on the
label-balanced testing data. This result stands in
opposition to our earlier finding that French users
could be labeled with 75% accuracy. This disparity
suggests that the non-suis-construction users com-
prise a particularly difficult-to-classify group.

The suis-construction as a filter. The finding that
the SVM classifier performed poorly in the com-
bined classification setting suggests that the suis-
construction classifier is acting as a very effective fil-
ter for users that are hard for it to classify. While we
might have preferred better classification accuracy
all around, this result is still interesting and useful.
Such filters can decrease classification error by sim-
ply flagging those users who cannot be easily clas-
sified, leaving them to be handled more carefully by
more powerful classifiers or human coding. This is
precisely the function that the suis-construction clas-
sifier appears to play (in addition to classifying the
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other users).
This result suggests a question for future work:

whether it is possible to build classifiers that accu-
rately label the sets of users that are discarded by
the suis-construction classifier.

Performance of the combined classifier. Despite
the relatively poor performance of the SVM com-
ponent, the accuracy of the combined classifier im-
proved on the original SVM-only classifier by 8%,
which is a substantial increase in accuracy. With
some additional focus on classifying the difficult
users who could not be labeled by suis-construction
usage, we feel that this accuracy can be increased
upwards of 90%.

5 Discussion

In this project, we have extended, for the first time,
the latent attribute inference problem to users who
tweet primarily in languages other than English. Our
study offers several notable insights.

Existing approaches generalize. While accuracy
levels certainly vary across languages, overall an ex-
isting SVM-based classifier, when trained on users
from a given language, can classify the gender of
other users from that same language with accuracy
comparable to performance reported for English.
We suspect that this result will generalize to the in-
ference of other demographic characteristics (e.g.,
age and political orientation), though this must be
explored in future work.

Complex orthography creates unique issues.
Japanese stands out as being utterly unclassifiable
using existing SVM-based approaches and feature
sets. Even efforts to bridge some of the orthographic
disconnects between the Japanese language and the
assumptions made by the SVM failed to improve
performance. This stands out as a clear direction for
future work, particularly since apparent issues with
the large number of unigrams used by Japanese will
create issues for handling (Mandarin) Chinese, the
world’s most-spoken language.

Language-specific features boost performance.
While unsurprising that customizing a classifier to
the peculiarities of a given language boosts perfor-
mance, our use of the suis-construction in French

highlights how particular linguistic features may be
uniquely well suited to the inference of particular
attributes. The results obtained for French stand in
contrast to various, relatively unsuccessful attempts
to boost gender inference by incorporating syntac-
tic features of English into the classifier (e.g., us-
ing stems and co-stems). It seems that some lan-
guages have features better suited for certain classi-
fication tasks. Identifying and leveraging such fea-
tures will be an interesting and fruitful direction for
future work.

Classifiers as a linguist’s tool. In each language,
a number of the k-top words align with or sug-
gest gender-specific conventions in that particular
language. That a language-agnostic classifier pro-
vided such insights highlights its potential for ex-
ploring language-specific word usage patterns and
nuances. For example, sociolinguistics (a subfield of
linguistics) has long studied the different ways men
and women use language, especially in spontaneous
speech (Eckert and McConnell-Ginet, 2003); recent
work has begun to examine how language is used
differently by men and women online as well (Bam-
man et al., 2012). Such studies could be radically
scaled up in terms of the number of languages con-
sidered using a language-agnostic gender classifier.

6 Conclusion

Though there has been relatively little investigation
into latent attribute inference outside of English-
language content, we consider it both a fruitful
and important area for future research. Here, we
have evaluated the capacity for existing inference
methods to be used outside their intended English-
language context. Furthermore, we have shown how
language-specific features might be incorporated in
order to boost classifier accuracy further. The posi-
tive results suggest that latent attribute inference in
the non-English context as a research direction wor-
thy of further attention.
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Abstract

Recent investigations into grounded models of
language have shown that holistic views of
language and perception can provide higher
performance than independent views. In this
work, we improve a two-dimensional multi-
modal version of Latent Dirichlet Allocation
(Andrews et al., 2009) in various ways. (1) We
outperform text-only models in two different
evaluations, and demonstrate that low-level
visual features are directly compatible with
the existing model. (2) We present a novel
way to integrate visual features into the LDA
model using unsupervised clusters of images.
The clusters are directly interpretable and im-
prove on our evaluation tasks. (3) We provide
two novel ways to extend the bimodal mod-
els to support three or more modalities. We
find that the three-, four-, and five-dimensional
models significantly outperform models using
only one or two modalities, and that nontex-
tual modalities each provide separate, disjoint
knowledge that cannot be forced into a shared,
latent structure.

1 Introduction

In recent years, an increasing body of work has been
devoted to multimodal or “grounded” models of lan-
guage where semantic representations of words are
extended to include perceptual information. The un-
derlying hypothesis is that the meanings of words
are explicitly tied to our perception and understand-
ing of the world around us, and textual-information
alone is insufficient for a complete understanding of
language.

The language grounding problem has come in
many different flavors with just as many different ap-
proaches. Some approaches apply semantic parsing,
where words and sentences are mapped to logical
structure meaning (Kate and Mooney, 2007). Oth-
ers provide automatic mappings of natural language
instructions to executable actions, such as interpret-
ing navigation directions (Chen and Mooney, 2011)
or robot commands (Tellex et al., 2011; Matuszek et
al., 2012). Some efforts have tackled tasks such as
automatic image caption generation (Feng and La-
pata, 2010a; Ordonez et al., 2011), text illustration
(Joshi et al., 2006), or automatic location identifica-
tion of Twitter users (Eisenstein et al., 2010; Wing
and Baldridge, 2011; Roller et al., 2012).

Another line of research approaches grounded
language knowledge by augmenting distributional
approaches of word meaning with perceptual infor-
mation (Andrews et al., 2009; Steyvers, 2010; Feng
and Lapata, 2010b; Bruni et al., 2011; Silberer and
Lapata, 2012; Johns and Jones, 2012; Bruni et al.,
2012a; Bruni et al., 2012b; Silberer et al., 2013).
Although these approaches have differed in model
definition, the general goal in this line of research
has been to enhance word meaning with perceptual
information in order to address one of the most com-
mon criticisms of distributional semantics: that the
“meaning of words is entirely given by other words”
(Bruni et al., 2012b).

In this paper, we explore various ways to integrate
new perceptual information through novel computa-
tional modeling of this grounded knowledge into a
multimodal distributional model of word meaning.
The model we rely on was originally developed by
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Andrews et al. (2009) and is based on a general-
ization of Latent Dirichlet Allocation. This model
has previously been shown to provide excellent per-
formance on multiple tasks, including prediction of
association norms, word substitution errors, seman-
tic inferences, and word similarity (Andrews et al.,
2009; Silberer and Lapata, 2012). While prior work
has used the model only with feature norms and vi-
sual attributes, we show that low-level image fea-
tures are directly compatible with the model and
provide improved representations of word meaning.
We also show how simple, unsupervised clusters of
images can act as a semantically useful and qualita-
tively interesting set of features. Finally, we describe
two ways to extend the model by incorporating three
or more modalities. We find that each modality pro-
vides useful but disjoint information for describing
word meaning, and that a hybrid integration of mul-
tiple modalities provides significant improvements
in the representations of word meaning. We release
both our code and data to the community for future
research.1

2 Related Work

The language grounding problem has received sig-
nificant attention in recent years, owed in part to the
wide availability of data sets (e.g. Flickr, Von Ahn
(2006)), computing power, improved computer vi-
sion models (Oliva and Torralba, 2001; Lowe, 2004;
Farhadi et al., 2009; Parikh and Grauman, 2011)
and neurological evidence of ties between the lan-
guage, perceptual and motor systems in the brain
(Pulvermüller et al., 2005; Tettamanti et al., 2005;
Aziz-Zadeh et al., 2006).

Many approaches to multimodal research have
succeeded by abstracting away raw perceptual in-
formation and using high-level representations in-
stead. Some works abstract perception via the us-
age of symbolic logic representations (Chen et al.,
2010; Chen and Mooney, 2011; Matuszek et al.,
2012; Artzi and Zettlemoyer, 2013), while others
choose to employ concepts elicited from psycholin-
guistic and cognition studies. Within the latter cat-
egory, the two most common representations have
been association norms, where subjects are given a

1http://stephenroller.com/research/
emnlp13

cue word and name the first (or several) associated
words that come to mind (e.g., Nelson et al. (2004)),
and feature norms, where subjects are given a cue
word and asked to describe typical properties of the
cue concept (e.g., McRae et al. (2005)).

Griffiths et al. (2007) helped pave the path for
cognitive-linguistic multimodal research, showing
that Latent Dirichlet Allocation outperformed La-
tent Semantic Analysis (Deerwester et al., 1990) in
the prediction of association norms. Andrews et al.
(2009) furthered this work by showing that a bi-
modal topic model, consisting of both text and fea-
ture norms, outperformed models using only one
modality on the prediction of association norms,
word substitution errors, and semantic interference
tasks. In a similar vein, Steyvers (2010) showed that
a different feature-topic model improved predictions
on a fill-in-the-blank task. Johns and Jones (2012)
take an entirely different approach by showing that
one can successfully infer held out feature norms
from weighted mixtures based on textual similarity.
Silberer and Lapata (2012) introduce a new method
of multimodal integration based on Canonical Cor-
relation Analysis, and performs a systematic com-
parison between their CCA-based model and others
on association norm prediction, held out feature pre-
diction, and word similarity.

As computer vision techniques have improved
over the past decade, other research has begun di-
rectly using visual information in place of feature
norms. The first work to do this with topic models is
Feng and Lapata (2010b). They use a Bag of Visual
Words (BoVW) model (Lowe, 2004) to create a bi-
modal vocabulary describing documents. The topic
model using the bimodal vocabulary outperforms a
purely textual based model in word association and
word similarity prediction. Bruni et al. (2012a) show
how a BoVW model may be easily combined with
a distributional vector space model of language us-
ing only vector concatenation. Bruni et al. (2012b)
show that the contextual visual words (i.e. the visual
features around an object, rather than of the object
itself) are even more useful at times, suggesting the
plausibility of a sort of distributional hypothesis for
images. More recently, Silberer et al. (2013) show
that visual attribute classifiers, which have been im-
mensely successful in object recognition (Farhadi
et al., 2009), act as excellent substitutes for feature
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norms. Other work on modeling the meanings of
verbs using video recognition has also begun show-
ing great promise (Mathe et al., 2008; Regneri et al.,
2013).

The Computer Vision community has also bene-
fited greatly from efforts to unify the two modalities.
To name a few examples, Rohrbach et al. (2010)
and Socher et al. (2013) show how semantic infor-
mation from text can be used to improve zero-shot
classification (i.e., classifying never-before-seen ob-
jects), and Motwani and Mooney (2012) show that
verb clusters can be used to improve activity recog-
nition in videos.

3 Data

Our experiments use several existing and new data
sets for each of our modalities. We employ a large
web corpus and a large set of association norms. We
also introduce two new overlapping data sets: a col-
lection of feature norms and a collection of images
for a number of German nouns.

3.1 Textual Modality
For our Text modality, we use deWaC, a large Ger-
man web corpus created by the WaCKy group (Ba-
roni et al., 2009) containing approximately 1.7B
word tokens. We filtered the corpus by: removing
words with unprintable characters or encoding trou-
bles; removing all stopwords; removing word types
with a total frequency of less than 500; and remov-
ing documents with a length shorter than 100. The
resulting corpus has 1,038,883 documents consist-
ing of 75,678 word types and 466M word tokens.

3.2 Cognitive Modalities
Association Norms (AN) is a collection of asso-
ciation norms collected by Schulte im Walde et al.
(2012). In association norm experiments, subjects
are presented with a cue word and asked to list the
first few words that come to mind. With enough sub-
jects and responses, association norms can provide a
common and detailed view of the meaning compo-
nents of cue words. After removing responses given
only once in the entire study, the data set contains
a total of 95,214 cue-response pairs for 1,012 nouns
and 5,716 response types.

Feature Norms (FN) is our new collection of fea-
ture norms for a group of 569 German nouns. We

present subjects on Amazon Mechanical Turk with
a cue noun and ask them to give between 4 and 8
typical descriptive features of the noun. Subjects
are given ten example responses; one such exam-
ple is a cue of Tisch ‘table’ and a response of hat
Beine ‘has legs’. After collection, subjects who
are obvious spammers or did not follow instructions
are manually filtered. Responses are manually cor-
rected for spelling mistakes and semantically nor-
malized.2 Finally, responses which are only given
once in the study are removed. The final data set
contains 11,714 cue-response pairs for 569 nouns
and 2,589 response types.

Note that the difference between association
norms and feature norms is subtle, but important. In
AN collection, subjects simply name related words
as fast as possible, while in FN collection, subjects
must carefully describe the cue.

3.3 Visual Modalities
BilderNetle (“little ImageNet” in Swabian German)
is our new data set of German noun-to-ImageNet
synset mappings. ImageNet is a large-scale and
widely used image database, built on top of Word-
Net, which maps words into groups of images,
called synsets (Deng et al., 2009). Multiple synsets
exist for each meaning of a word. For example, Im-
ageNet contains two different synsets for the word
mouse: one contains images of the animal, while
the other contains images of the computer periph-
eral. This BilderNetle data set provides mappings
from German noun types to images of the nouns via
ImageNet.

Starting with a set of noun compounds and their
nominal constituents von der Heide and Borgwaldt
(2009), five native German speakers and one native
English speaker (including the authors of this paper)
work together to map German nouns to ImageNet
synsets. With the assistance of a German-English
dictionary, the participants annotate each word with
all its possible meanings. After discussing the an-
notations with the German speakers, the English
speaker manually map the word meanings to synset
senses in ImageNet. Finally, the German speakers
review samples of the images for each word to en-

2For brevity, we include the full details of the spammer iden-
tification, cleansing process and normalization techniques in the
Supplementary Materials.
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sure the pictures accurately reflect the original noun
in question. Not all words or meanings are mapped
to ImageNet, as there are a number of words with-
out entries in ImageNet, but the resulting data set
contains a considerable amount of polysemy. The fi-
nal data set contains 2022 word-synset mappings for
just 309 words. All but three of these words overlap
with our data set of feature norms. After extract-
ing sections of images using bounding boxes when
available by ImageNet (and using the entire image
when bounding boxes are unavailable), the data set
contains 1,305,602 images.

3.3.1 Image Processing
After the collection of all the images, we extracted

simple, low-level computer vision features to use as
modalities in our experiments.

First, we compute a simple Bag of Visual Words
(BoVW) model for our images using SURF key-
points (Bay et al., 2008). SURF is a method
for selecting points-of-interest within an image. It
is faster and more forgiving than the commonly
known SIFT algorithm. We compute SURF key-
points for every image in our data set using Sim-
pleCV3 and randomly sample 1% of the keypoints.
The keypoints are clustered into 5,000 visual code-
words (centroids) using k-means clustering (Sculley,
2010), and images are then quantized over the 5,000
codewords. All images for a given word are summed
together to provide an average representation for the
word. We refer to this representation as the SURF
modality.

While this is a standard, basic BoVW model,
each individual codeword on its own may not pro-
vide a large degree of semantic information; typi-
cally a BoVW representation acts predominantly as
a feature space for a classifier, and objects can only
be recognize using collections of codewords. To
test that similar concepts should share similar vi-
sual codewords, we cluster the BoVW representa-
tions for all our images into 500 clusters with k-
means clustering, and represent each word as mem-
bership over the image clusters, forming the SURF
Clusters modality. The number of clusters is chosen
arbitrarily. Ideally, each cluster should have a com-
mon object or clear visual attribute, and words are
express in terms of these visual commonalities.

3http://simplecv.org

We also compute GIST vectors (Oliva and Tor-
ralba, 2001) for every image using LearGIST
(Douze et al., 2009). Unlike SURF descriptors,
GIST produces a single vector representation for an
image. The vector does not find points of interest
in the image, but rather attempts to provide a rep-
resentation for the overall “gist” of the whole im-
age. It is frequently used in tasks like scene iden-
tification, and Deselaers and Ferrari (2011) shows
that distance in GIST space correlates well with se-
mantic distance in WordNet. After computing the
GIST vectors, each textual word is represented as
the centroid GIST vector of all its images, forming
the GIST modality.

Finally, as with the SURF features, we clustered
the GIST representations for our images into 500
clusters, and represented words as membership in
the clusters, forming the GIST Clusters modality.

4 Model Definition

Our experiments are based on the multimodal ex-
tension of Latent Dirichlet Allocation developed by
Andrews et al. (2009). Previously LDA has been
successfully used to infer unsupervised joint topic
distributions over words and feature norms together
(Andrews et al., 2009; Silberer and Lapata, 2012).
It has also been shown to be useful in joint infer-
ence of text with visual attributes obtained using vi-
sual classifiers (Silberer et al., 2013). These mul-
timodal LDA models (hereafter, mLDA) have been
shown to be qualitatively sensible and highly pre-
dictive of several psycholinguistic tasks (Andrews et
al., 2009). However, prior work using mLDA is lim-
ited to two modalities at a time. In this section, we
describe bimodal mLDA and define two methods for
extending it to three or more modalities.

4.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (Blei et al., 2003), or
LDA, is an unsupervised Bayesian probabilistic
model of text documents. It assumes that all docu-
ments are probabilistically generated from a shared
set ofK common topics, where each topic is a multi-
nomial distribution over the vocabulary (notated as
β), and documents are modeled as mixtures of these
shared topics (notated as θ). LDA assumes every
document in the corpus is generated using the fol-
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lowing generative process:

1. A document-specific topic distribution, θd ∼
Dir(α) is drawn.

2. For the ith word in the document,
(a) A topic assignment zi ∼ θd is drawn,
(b) and a word wi ∼ βzi is drawn and ob-

served.

The task of Latent Dirichlet Allocation is then to
automatically infer the latent document distribution
θd for each document d ∈ D, and the topic distri-
bution βk for each of the k = {1, . . . ,K} topics,
given the data. The probability that the ith word of
document d is

p(wi, θd) =
∑

k

p(wi|βk)p(zi = k|θd).

4.2 Multimodal LDA
Andrews et al. (2009) extend LDA to allow for the
inference of document and topic distributions in a
multimodal corpus. In their model, a document con-
sists of a set of (word, feature) pairs,4 rather than just
words, and documents are still modeled as mixtures
of shared topics. Topics consist of multinomial dis-
tributions over words, βk, but are extended to also
include multinomial distributions over features, ψk.
The generative process is amended to include these
feature distributions:

1. A document-specific topic distribution, θd ∼
Dir(α) is drawn.

2. For the ith (word, feature) pair in the document,
(a) A topic assignment zi ∼ θd is drawn;
(b) a word wi ∼ βzi is drawn;
(c) a feature fi ∼ ψzi is drawn;
(d) the pair (wi, fi) is observed.

The conditional probability of the ith pair (wi, fi)
is updated appropriately:

p(wi, fi, θd) =
∑

k

p(wi|βk)p(fi|ψk)p(zi = k|θd).

The key aspect to notice is that the observed
word wi and feature fi are conditionally indepen-
dent given the topic selection, zi. This powerful ex-
tension allows for joint inference over both words

4Here, and elsewhere, feature and f simply refer to a token
from a nontextual modality and should not be confused with the
machine learning sense of feature.

and features, and topics become the key link be-
tween the text and feature modalities.

4.3 3D Multimodal LDA
We can easily extend the bimodal LDA model to in-
corporate three or more modalities by simply per-
forming inference over n-tuples instead of pairs, and
still mandating that each modality is conditionally
independent given the topic. We consider the ith tu-
ple (wi, fi, f

′
i , . . .) in document d to have a condi-

tional probability of:

p(wi, fi, f
′
i , . . . , θd) =∑

k

p(wi|βi)p(fi|ψk)p(f
′
i |ψ′i) · · · p(zi = k|θd)

That is, we simply take the original mLDA model
of Andrews et al. (2009) and generalize it in the
same way they generalize LDA. At first glance, it
seems that the inference task should become more
difficult as the number of modalities increases and
observed tuples become sparser, but the task remains
roughly the same difficulty, as all of the observed
elements of a tuple are conditionally independent
given the topic assignment zi.

4.4 Hybrid Multimodal LDA
3D Multimodal LDA assumes that all modalities
share the same latent topic structure, θd. It is pos-
sible, however, that all modalities do not share some
latent structure, but the modalities can still combine
in order to enhance word meaning. The intuition
here is that language usage is guided by all informa-
tion gained in all modalities, but knowledge gained
from one modality may not always relate to another
modality. For example, the color red and the feature
“is sweet” both enhance our understanding of straw-
berries. However, one cannot see that strawberries
are sweet, so one should not correlate the color red
with the feature “is sweet.”

To this end, we define Hybrid Multimodal LDA.
In this setting, we perform separate, bimodal mLDA
inference according to Section 4.2 for each of the
different modalities, and then concatenate the topic
distributions for the words. In this way, Hybrid
mLDA assumes that every modality shares some la-
tent structure with the text in the corpus, but the la-
tent structures are not shared between non-textual
modalities.
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For example, to generate a hybrid model for text,
feature norms and SURF, we separately perform bi-
modal mLDA for the text/feature norms modalities
and the text/SURF modalities. This provides us with
two topic-word distributions: βFN

k,w and βS
k′,w, and

the hybrid model is simply the concatenation of the
two distributions,

βFN&S
j,w =

{
βFN

j,w 1 ≤ j ≤ KFN ,

βS
j−KFN ,w KFN < j ≤ KFN +KS ,

where KFN indicates the number of topics for the
Feature Norm modality, and likewise for KS .

4.5 Inference

Analytical inference of the posterior distribution of
mLDA is intractable, and must be approximated.
Prior work using mLDA has used Gibbs Sampling to
approximate the posterior, but we found this method
did not scale with larger values of K, especially
when applied to the relatively large deWaC corpus.

To solve these scaling issues, we implement On-
line Variational Bayesian Inference (Hoffman et al.,
2010; Hoffman et al., 2012) for our models. In
Variational Bayesian Inference (VBI), one approx-
imates the true posterior using simpler distributions
with free variables. The free variables are then op-
timized in an EM-like algorithm to minimize differ-
ence between the true and approximate posteriors.
Online VBI differs from normal VBI by using ran-
domly sampled minibatches in each EM step rather
than the entire data set. Online VBI easily scales
and quickly converges in all of our experiments. A
listing of the inference algorithm may be found in
the Supplementary Materials and the source code is
available as open source.

5 Experimental Setup

5.1 Generating Multimodal Corpora

In order to evaluate our algorithms, we first need to
generate multimodal corpora for each of our non-
textual modalities. We use the same method as An-
drews et al. (2009) for generating our multimodal
corpora: for each word token in the text corpus,
a feature is selected stochastically from the word’s
feature distribution, creating a word-feature pair.
Words without grounded features are all given the

same placeholder feature, also resulting in a word-
feature pair.5 That is, for the feature norm modal-
ity, we generate (word, feature norm) pairs; for
the SURF modality, we generate (word, codeword)
pairs, etc. The resulting stochastically generated
corpus is used in its corresponding experiments.

The 3D text-feature-association norm corpus is
generated slightly differently: for each word in
the original text corpus, we check the existence
of multimodal features in either modality. If a
word had no features, it is represented as a triple
(word, placeholderFN , placeholderAN ). If the
word had only feature norms, but no associations,
it is generated as (word, feature, placeholderAN ),
and similarly for association norms without feature
norms. In the case of words with presence in both
modalities, we generate two triples: (word, feature,
placeholderAN ) and (word, placeholderFN , associ-
ation). This allows association norms and feature
norms to influence each other via the document mix-
tures θ, but avoids falsely labeling explicit relation-
ships between randomly selected feature norms and
associations.6 Other 3D corpora are generated using
the same general procedure.

5.2 Evaluation

We evaluate each of our models with two data sets: a
set of compositionality ratings for a number of Ger-
man noun-noun compounds, and the same associa-
tion norm data set used as one of our training modal-
ities in some settings.

Compositionality Ratings is a data set of com-
positionality ratings originally collected by von der
Heide and Borgwaldt (2009). The data set con-
sists of 450 concrete, depictable German noun com-
pounds along with compositionality ratings with re-
gard to their constituents. For each compound, 30
native German speakers are asked to rate how re-
lated the meaning of the compound is to each of
its constituents on a scale from 1 (highly opaque;
entirely noncompositional) to 7 (highly transparent;
very compositional). The mean of the 30 judgments

5Placeholder features must be hardcoded to have equal prob-
ability over all topics to prevent all placeholder pairs from ag-
gregating into a single topic.

6We did try generating the random triples without placehold-
ers, but the generated explicit relationships are overwhelmingly
detrimental in the settings we attempted.
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is taken as the gold compositionality rating for each
of the compound-constituent pairs. For example,
Ahornblatt ‘maple leaf’ is rated highly transparent
with respect to its constituents, Ahorn ‘maple’ and
Blatt ‘leaf’, but Löwenzahn ‘dandelion’ is rated non-
compositional with respect to its constituents, Löwe
‘lion’ and Zahn ‘tooth’.

We use a subset of the original data, compris-
ing of all two-part noun-noun compounds and their
constituents. This data set consists of 488 com-
positionality ratings (244 compound-head and 244
compound-modifier ratings) for 571 words. 309 of
the targets have images (the entire image data set);
563 have feature norms; and all 571 of have associ-
ation norms.

In order to predict compositional-
ity, for each compound-constituent pair
(wcompound, wconstituent), we compute nega-
tive symmetric KL divergence between the two
words’ topic distributions, where symmetric KL
divergence is defined as

sKL(w1||w2) = KL(w1||w2) +KL(w2||w1),

and KL divergence is defined as

KL(w1||w2) =
∑

k

ln

(
p(t = k|w1)

p(t = k|w2)

)
p(t = k|w1).

The values of −sKL for all compound-
constituent word pairs are correlated with the human
judgments of compositionality using Spearman’s ρ,
a rank-order correlation coefficient. Note that, since
KL divergence is a measure of dissimilarity, we
use negative symmetric KL divergence so that our
ρ correlation coefficient is positive. For exam-
ple, we compute both −sKL(Ahornblatt, Ahorn)
and −sKL(Ahornblatt, Blatt), and so on for all
488 compound-constituent pairs, and then correlate
these values with the human judgments.

Additionally, we also evaluate using the Associa-
tion Norms data set described in Section 3. Since
it is not sensible to evaluate association norm pre-
diction when they are also used as training data,
we omit this evaluation for this modality. Follow-
ing Andrews et al. (2009), we measure association
norm prediction as an average of percentile ranks.
For all possible pairs of words in our vocabulary,
we compute the negative symmetric KL divergence

between the two words. We then compute the per-
centile ranks of similarity for each word pair, e.g.,
“cat” is more similar to “dog” than 97.3% of the
rest of the vocabulary. We report the weighted mean
percentile ranks for all cue-association pairs, i.e.,
if a cue-association is given more than once, it is
counted more than once.

5.3 Model Selection and Hyperparameter
Optimization

In all settings, we fix all Dirichlet priors at 0.1, use
a learning rate 0.7, and use minibatch sizes of 1024
documents. We do not optimize these hyperparame-
ters or vary them over time. The high Dirichlet pri-
ors are chosen to prevent sparsity in topic distribu-
tions, while the other parameters are selected as the
best from Hoffman et al. (2010).

In order to optimize the number of topics K, we
run five trials of each modality for 2000 iterations
for K = {50, 100, 150, 200, 250} (a total of 25
runs per setup). We select the value or K for each
model which minimizes the average perplexity esti-
mate over the five trials.

6 Results

6.1 Predicting Compositionality Ratings

Table 1 shows our results for each of our selected
models with our compositionality evaluation. The
2D models employing feature norms and associa-
tion norms do significantly better than the text-only
model (two-tailed t-test). This result is consistent
with other works using this model with these fea-
tures (Andrews et al., 2009; Silberer and Lapata,
2012).

We also see that the SURF visual words are able
to provide notable, albeit not significant, improve-
ments over the text-only modality. This confirms
that the low-level BoVW features do carry semantic
information, and are useful to consider individually.
The GIST vectors, on the other hand, perform al-
most exactly the same as the text-only model. These
features, which are usually more useful for compar-
ing overall image likeness than object likeness, do
not individually contain semantic information useful
for compositionality prediction.

The performance of the visual modalities reverses
when we look at our cluster-based models. Text
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Modality K ρ

Text Only
Text Only (LDA) 200 .204

Bimodal mLDA
Text + Feature Norms 150 .310 ***
Text + Assoc. Norms 200 .328 **
Text + SURF 50 .251
Text + GIST 100 .204
Text + SURF Clusters 200 .159
Text + GIST Clusters 150 .233

3D mLDA
Text + FN + AN 250 .259
Text + FN + SURF 100 .286 *
Text + FN + GC 200 .261 *

Hybrid mLDA
FN, AN 150+200 .390 ***
FN, SURF 150+50 .350 ***
FN, GC 150+150 .340 ***
FN, AN, GC 150+200+150 .395 ***
FN, AN, SURF 150+200+50 .404 ***
FN, AN, SURF, GC 150+200+50+150 .406 ***

Table 1: Average rank correlations between
−sKL(wcompound, wconstituent) and our Composi-
tionality gold standard. The Hybrid models are the
concatenation of the corresponding Bimodal mLDA
models. Stars indicate statistical significance compared
to the text-only setting at the .05, .01 and .001 levels
using a two-tailed t-test.

combined with SURF clusters is our worst perform-
ing system, indicating our clusters of images with
common visual words are actively working against
us. The clusters based on GIST, on the other hand,
provide a minor improvement in compositionality
prediction.

All of our 3D models are better than the text-only
model, but they show a performance drop relative
to one or both of their comparable bimodal models.
The model combining text, feature norms, and as-
sociation norms is especially surprising: despite the
excellent performance of each of the bimodal mod-
els, the 3D model performs significantly worse than
either of its components (p < .05). This indicates
that these modalities provide new insight into word
meaning, but cannot be forced into the same latent
structure.

The hybrid models show massive performance in-

Modality K Assoc.
Text Only

Text Only (LDA) 200 .679
Bimodal mLDA

Text + Feature Norms 150 .676
Text + SURF 50 .789 ***
Text + GIST 100 .739 ***
Text + SURF Clusters 200 .618 ***
Text + GIST Clusters 150 .690

3D mLDA
Text + FN + SURF 100 .722 ***
Text + FN + GC 200 .601 ***

Hybrid mLDA
FN, SURF 150+50 .800 ***
FN, GC 150+150 .742 ***
FN, GC, SURF 150+150+50 .804 ***

Table 2: Average predicted rank similarity between cue
words and their associates. Stars indicate statistical sig-
nificance compared to the text-only modality, with gray
stars indicating the model is statistically worse than the
text model. The Hybrid models are the concatenation of
the corresponding Bimodal mLDA models.

creases across the board. Indeed, our 5 modality
hybrid model obtains a performance nearly twice
that of the text-only model. Not only do all 6 hy-
brid models do significantly better than the text-only
models, they show a highly significant improvement
over their individual components (p < .001 for all
16 comparisons). Furthermore, improvements gen-
erally continue to grow significantly with each addi-
tional modality we incorporate into the hybrid model
(p < .001 for all but the .404 to .406 compari-
son, which is not significant). Clearly, there is a
great deal to learn from combining three, four and
even five modalities, but the modalities are learn-
ing disjoint knowledge which cannot be forced into
a shared, latent structure.

6.2 Predicting Association Norms

Table 2 shows the average weighted predicted rank
similarity between all cue words and associates and
trials. Here we see that feature norms do not seem to
be improving performance on the association norms.
This is slightly unexpected, but consistent with the
result that feature norms seem to provide helpful, but
disjoint semantic information as association norms.
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We see that the image modalities are much more
useful than they are in compositionality prediction.
The SURF modality does extremely well in partic-
ular, but the GIST features also provide statistically
significant improvements over the text-only model.
Since the SURF and GIST image features tend to
capture object-likeness and scene-likeness respec-
tively, it is possible that words which share asso-
ciates are likely related through common settings
and objects that appear with them. This seems to
provide additional evidence of Bruni et al. (2012b)’s
suggestion that something like a distributional hy-
pothesis of images is plausible.

Once again, the clusters of images using SURF
causes a dramatic drop in performance. Combined
with the evidence from the compositionality assess-
ment, this shows that the SURF clusters are actively
confusing the models and not providing semantic in-
formation. GIST clusters, on the other hand, are pro-
viding a marginal improvement over the text-only
model, but the result is not significant. We take a
qualitative look into the GIST clusters in the next
section.

Once again, we see that the 3D models are inef-
fective compared to their bimodal components, but
the hybrid models provide at least as much informa-
tion as their components. The Feature Norms and
GIST Clusters hybrid model significantly improves
over both components.7 The final four-modality hy-
brid significantly outperforms all comparable mod-
els. As with the compositionality evaluation, we
conclude that the image and and feature norm mod-
els are providing disjoint semantic information that
cannot be forced into a shared latent structure, but
still augment each other when combined.

7 Qualitative Analysis of Image Clusters

In all research connecting word meaning with per-
ceptual information, it is desirable that the inferred
representations be directly interpretable. One nice
property of the cluster-based modalities is that we
may represent each cluster as its prototypical im-
ages, and examine whether the prototypes are re-
lated to the topics.

We chose to limit our analysis to the GIST clus-

7The gain is smaller than compared to SURF Hybrid, but
there is much less variance in the trials.

ters for two primary reasons: first, the SURF clusters
did not perform well in our evaluations, and sec-
ond, preliminary investigation into the SURF clus-
ters show that the majority of SURF clusters are
nearly identical. This indicates our SURF clusters
are likely hindered by poor initialization or param-
eter selection, and may partially explain their poor
performance in evaluations.

We select our single best Text + GIST Clusters
trial from the Compositionality evaluation and look
at the topic distributions for words and image clus-
ters. For each topic, we select the three clusters with
the highest weight for the topic, p(c|ψk). We extract
the five images closest to the cluster centroids, and
select two topics whose prototypical images are the
most interesting and informative. Figure 1 shows
these selected topics.

The first example topic contains almost exclu-
sively water-related terms. The first image, extracted
from the most probable cluster, does not at first seem
related to water. Upon further inspection, we find
that many of the water-related pictures are scenic
views of lakes and mountains, often containing a
cloudy sky. It seems that the GIST cluster does
not tend to group images of water, but rather nature
scenes that may contain water. This relationship is
more obvious in the second picture, especially when
one considers the water itself contains reflections of
the trees and mountain.

The second topic contains time-related terms. The
“@card@” term is a special token for all non-zero
and non-one numbers. The second word, “Uhr”, is
polysemous: it can mean clock, an object which tells
the time, or o’clock, as in We meet at 2 o’clock (“Wir
treffen uns um 2 Uhr.”) The three prototypical pic-
tures are not pictures of clocks, but round, detailed
objects similar to clocks. We see GIST has a prefer-
ence toward clustering images based on the predom-
inant shape of the image. Here we see the clusters
of GIST images are not providing a definite seman-
tic relationship, but an overwhelming visual one.

8 Conclusions

In this paper, we evaluated the role of low-level im-
age features, SURF and GIST, for their compatibil-
ity with the multimodal Latent Dirichlet Allocation
model of Andrews et al. (2009). We found both fea-
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Most Probable Words Translations Prototypical Images
Wasser water
Schiff ship
See lake
Meer sea
Meter meter
Fluß river
@card@ (number)
Uhr clock
Freitag Friday
Sonntag Sunday
Samstag Saturday
Montag Monday

Figure 1: Example topics with prototypical images for the Text + GIST Cluster modality. The first topic shows water-
related words, as well scenes which often appear with water. The second shows clock-like objects, but not clocks.

ture sets were directly compatible with multimodal
LDA and provided significant gains in their ability to
predict association norms over traditional text-only
LDA. SURF features also provided significant gains
over text-only LDA in predicting the compositional-
ity of noun compounds.

We also showed that words may be represented
in terms of membership of image clusters based on
the low-level image features. Image clusters based
on GIST features were qualitatively interesting, and
were able to give improvements over the text-only
model.

Finally, we showed two methods for extending
multimodal LDA to three or more modalities: the
first as a 3D model with a shared latent structure
between all modalities, and the second where latent
structures were inferred separately for each modal-
ity and joined together into a hybrid model. Al-
though the 3D model was unable to compete with
its bimodal components, we found the hybrid model
consistently improved performance over its compo-
nent modalities. We conclude that the combination
of many modalities provides the best representation
of word meaning, and that each nontextual modal-
ity is discovering disjoint information about word
meaning that cannot be forced into a global latent
structure.
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Abstract

It has recently been shown that different NLP
models can be effectively combined using
dual decomposition. In this paper we demon-
strate that PCFG-LA parsing models are suit-
able for combination in this way. We exper-
iment with the different models which result
from alternative methods of extracting a gram-
mar from a treebank (retaining or discarding
function labels, left binarization versus right
binarization) and achieve a labeled Parseval
F-score of 92.4 on Wall Street Journal Sec-
tion 23 – this represents an absolute improve-
ment of 0.7 and an error reduction rate of 7%
over a strong PCFG-LA product-model base-
line. Although we experiment only with bina-
rization and function labels in this study, there
is much scope for applying this approach to
other grammar extraction strategies.

1 Introduction

Because of the large amount of possibly contra-
dictory information contained in a treebank, learn-
ing a phrase-structure-based parser implies making
several choices regarding the prevalent annotations
which have to be kept – or discarded – in order to
guide the learning algorithm. These choices, which
include whether to keep function labels and empty
nodes, how to binarize the trees and whether to alter
the granularity of the tagset, are often motivated em-
pirically by parsing performance rather than by the
different aspects of the language they may be able to
capture.

Recently Rush et al. (2010), Martins et al. (2011)
and Koo et al. (2010) have shown that Dual De-
composition or Lagrangian Relaxation is an elegant

S

fedcb
(a) Original example

S

〈S〉

〈S〉

〈S〉

fe

d

c

b

(b) Left Binarized example

S

f〈S〉

e〈S〉

d〈S〉

cb
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Figure 1: Binarization with markovization

framework for combining different types of NLP
tasks or for building parsers from simple slave pro-
cesses that only check partial well-formedness. Here
we propose to follow this idea, but with a different
objective. We want to mix different parsers trained
on different versions of a treebank each of which
makes some annotation choices in order to learn
more specific or richer information. We will use
state-of-the-art unlexicalized probabilistic context-
free grammars with latent annotations (PCFG-LA)
in order to compare our approach with a strong base-
line of high-quality parses. Dual Decomposition is
used to mix several systems (between two and four)
that may in turn be combinations of grammars, here
products of PCFG-LAs (Petrov, 2010). The systems
being combined make different choices with regard
to i) function labels and ii) grammar binarization.

Common sense would suggest that information in
the form of function labels – syntactic labels such as
SBJ and PRD and semantic labels such as TMP and
LOC – might help in obtaining a fine-grained anal-
ysis. On the other hand, the independence hypothe-
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sis on which CFGs rely and on which most popular
parsers are based may be too strong to learn the de-
pendencies between functions across the parse trees.
Also, the number of parameters increases with the
use of function labels and this can affect the learn-
ing process.

At first glance, binarization need not be an is-
sue, as CFGs admit a binarized form recognizing
exactly the same language. But binarization can be
associated with horizontal markovization and in this
case the recognized language will differ. Further-
more this can impose an unwanted emphasis on what
frontier information is more relevant to learning (be-
ginning or end of constituents). In the toy exam-
ple of Figure 1, the original grammar consisting of a
unique rule extracted from one tree only recognizes
the string bcdef, while the grammar learned from
the left binarized and markovized tree recognizes
(among others) bcdef and bdcef and the gram-
mar learned from the right binarized and markovized
tree recognizes (among others) bcdef and bcedf.

We find that i) retaining the function labels in non-
terminal categories loses its negative impact on pars-
ing as the number of grammars increases in PCFG-
LA product models, ii) the function labels them-
selves can be recovered with near state-of-the-art-
accuracy, iii) combining grammars with and without
function labels using dual decomposition is bene-
ficial, iv) combining left and right-binarized gram-
mars using dual decomposition also leads to bet-
ter trees and, v) our best results (a Parseval la-
beled F-score of 92.4, a Stanford labeled attach-
ment score (LAS) of 93.0 and a penn2malt unla-
beled attachment score (UAS) of 94.3 on Section 23
of the Wall Street Journal) are obtained by combin-
ing three grammars which encode different function
label/binarization decisions.

The paper is organized as follows. § 2 reviews
related work. § 3 presents approximate PCFG-LA
parsers as linear models, while § 4 shows how we
can use dual decomposition to derive an algorithm
for combining these models. Experimental results
are presented and discussed in § 5.

2 Related Work

Parser Model Combination It is well known that
improved parsing performance can be achieved by

leveraging the alternative perspectives provided by
several parsing models rather than relying on just
one. Examples are parser co-training (Steedman
et al., 2003; Sagae and Tsujii, 2007), voting over
phrase structure constituents or dependency arcs
(Henderson and Brill, 1999; Sagae and Tsujii, 2007;
Surdeanu and Manning, 2010), dependency pars-
ing stacking (Nivre and McDonald, 2008), product
model PCFG-LA parsing (Petrov, 2010), using dual
decomposition to combine dependency and phrase
structure models (Rush et al., 2010) or several non-
projective dependency parsing models (Koo et al.,
2010; Martins et al., 2011), and using expecta-
tion propagation, a related approach to dual decom-
position, to combine lexicalized, unlexicalized and
PCFG-LA models (Hall and Klein, 2012). In this
last example, the models must factor in the same
way: in other words, the grammars must use the
same binarization scheme. In our study, we employ
PCFG-LA product models with dual decomposition,
and we relax the constraints on factorization, as we
require only a loose coupling of the models.

Function Label Parsing Although function labels
have been available in the Penn Treebank (PTB) for
almost twenty years (Marcus et al., 1994), they have
been to a large extent overlooked in English parsing
research — most studies that report parsing results
on Section 23 of the Wall Street Journal (WSJ) use
parsing models that are trained on a version of the
WSJ trees where the function labels have been re-
moved. Notable exceptions are Merlo and Musillo
(2005) and Gabbard et al. (2006) who each trained
a parsing model on a version of the PTB with func-
tion labels intact. Gabbard et al. (2006) found that
parsing accuracy was not affected by keeping the
function labels. There have also been attempts to
use machine learning to recover the function labels
post-parsing (Blaheta and Charniak, 2000; Chrupala
et al., 2007). We recover function labels as part of
the parsing process, and use dual decomposition to
combine parsing models with and without function
labels. We are not aware of any other work that
leverages the benefits of both types of models.

Grammar Binarization Matsuzaki et al. (2005)
compare binarization strategies for PCFG-LA pars-
ing, and conclude that the differences between them
have a minor effect on parsing accuracy as the num-
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ber of latent annotations increases beyond two. Hall
and Klein (2012) are forced to use head binarization
when combining their lexicalized and unlexicalized
parsers. Dual decomposition allows us to combine
models with different binarization schemes.

3 Approximation of PCFG-LAs as Linear
Models

In this section, we explain how we can use PCFG-
LAs to devise linear models suitable for the dual de-
composition framework.

3.1 PCFG-LA

Let us recall that PCFG-LAs are defined as tuples
G = (N , T ,H,RH, S, p) where:

• N is a set of observed non-terminals, among
which S is the distinguished initial symbol,

• T is a set of terminals (words),

• H is a set of latent annotations or hidden states,

• RH is a set of annotated rules, of the form
a[h1] → b[h2] c[h3] for internal rules1 and
a[h1] → w for lexical rules. Here a, b, c ∈ N
are non-terminals, w ∈ T is a terminal and
h1, h2, h3 ∈ H are latent annotations. Follow-
ing Cohen et al. (2012) we also define the set of
skeletal rules R, in other words, rules without
hidden states, of the form a→ b c or a→ w.

• p : RH → R≥0 defines the probabilities asso-
ciated with rules conditioned on their left-hand
side. Like Petrov and Klein (2007), we impose
that the initial symbol S has only one latent an-
notation. In other words, among rules with S
on the left-hand side, only those of the form
S[0]→ γ are inRH.

With such a grammar G we can define probabil-
ities over trees in the following way. We will con-
sider two types of trees, annotated trees and skeletal
trees. An annotated tree is a sequence of rules from
RH, while a skeletal tree is a sequence of skeletal
rules from R. An annotated tree TH is obtained by
left-most derivation from S[0]. Its probability is:

1For brevity and without loss of generality, we omit unary
and n-ary rules, as PCFG-LA admit a Chomsky normal form.

p(TH) =
∏
r∈TH

p(r) (1)

We define a projection ρ from annotated trees to
skeletal trees. ρ(TH) is a tree T isomorphic to TH
with the same terminal and non-terminal symbols la-
beling nodes, without hidden states. The probability
of a skeletal tree T is a sum of the probabilities of
all annotated trees that admit T as their projection.

p(T ) =
∑

TH∈ρ−1(T )

∏
r∈TH

p(r) (2)

PCFG-LA parsing amounts to, given a sequence
of words, finding the most probable skeletal tree
with this sequence as its yield according to a gram-
mar G:

T ∗ = arg max
T

∑
TH∈ρ−1(T )

∏
r∈TH

p(r) (3)

Because of this alternation of sum and products,
the parsing problem is intractable. Moreover, the
PCFG-LAs do not belong to the family of linear
models that are assumed in the Lagrangian frame-
work of (Rush and Collins, 2012). We now turn to
approximations for the parsing problem in order to
address both issues.

3.2 Variational Inference and MaxRule
Variational inference is a common technique to ap-
proximate a probability distribution p with a cruder
one q, as close as possible to the original one,
by minimizing the Kullback-Liebler divergence be-
tween the two – see for instance (Smith, 2011),
chapter 5 for an introduction. Matsuzaki et al.
(2005) showed that one can easily find such a cruder
distribution for PCFG-LAs and demonstrated exper-
imentally that this approximation gives good results.
More precisely, they find a PCFG that only rec-
ognizes the input sentence where the probabilities
q(rs) of the rules are set according to their marginal
probabilities in the original PCFG-LA parse forest.
The parameters rs are skeletal rules with span infor-
mation. Distribution q is defined in Figure 2.

Other approximations are possible. In particu-
lar, Petrov and Klein (2007) found that normaliz-
ing by the forest probability (in other words the in-
side probability of the root node) give better exper-
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score(a→ b c, i, j, k) =
∑

x,y,z∈H

P i,kout

(
a[x]

)
· p
(
a[x]→ b[y] c[z]

)
· P i,jin

(
b[y]
)
· P j,kin

(
c[z]
)

norm(a→ b c, i, j, k) =
∑
x∈H

P i,kin

(
a[x]

)
· P i,kout

(
a[x]

)
score(a→ w, i) =

∑
x∈H

P i,iout

(
a[x]

)
· p
(
a[x]→ w

)
norm(a→ w, i) =

∑
x∈H

P i,iin

(
a[x]

)
· P i,iout

(
a[x]

)
q(rs) =

[
score(rs)

norm(rs)
(Variational Inference)

]
or
[
score(rs)

P 0,n
in (S[0])

(MaxRule-Product)
]

Figure 2: Variational Inference for PCFG-LA. Pin and Pout denote inside and outside probabilities.

imental results although its interpretation as varia-
tional inference is still unclear. This approximation
is called MaxRule-Product and amounts to replacing
the norm function (see Figure 2).

In both cases, the probability of a skeletal tree
now becomes a simple product of parameters asso-
ciated with anchored skeletal rules. For our purpose,
the consequence is twofold:

1. The parsing problem becomes tractable by ap-
plying standard PCFG algorithms relying on
dynamic programming (CKY for example).

2. Equivalent to probability, a score σ can be de-
fined as the logarithm of the probability. The
parsing problem becomes2:

T ∗ = arg max
T

∏
rs∈T

q(rs)

= arg max
T

∑
rs∈T

log q(rs)

= arg max
T

∑
rs∈F

wrs · 1{rs ∈ T}

= arg max
T

σ(T )

Thus, from a PCFG-LA we are able to de-
fine a linear model whose parameters are the log-
probabilities of the rules in distribution q.

2We denote the parse forest of a sentence by F and the char-
acteristic function of a set by 1.

3.3 Products of PCFG-LAs

Although PCFG-LA training is beyond the scope
of this paper, it is worthwhile mentioning that the
most common way to learn their parameters relies
on Expectation-Maximization which is not guaran-
teed to find the optimal estimation. Fortunately, this
can be partly overcome by combining grammars that
only differ on the initial parameterization of the EM
algorithm. The probability of a skeletal tree is the
product of the probabilities assigned by each single
grammar Gi.

T ∗ = arg max
T

n∏
i=1

qGi(T ) (4)

Since grammars only differ by their numerical pa-
rameters (i.e. skeletal rules are the same), inference
can be efficiently implemented using dynamic pro-
gramming (Petrov, 2010).

Scoring with n such grammars now becomes:

T ∗ = arg max
T

n∑
i=1

∑
r∈T

log qGi(r) (5)

= arg max
T

∑
r∈T

n∑
i=1

log qGi(r) (6)

The distributions qGi still have to be computed in-
dependently – and possibly in parallel – but the final
decoding can be performed jointly. This is still a
linear model for PCFG-LA parsing, but restricted to
grammars that share the same skeletal rules.
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4 Dual Decomposition

In this section, we show how we derive an algorithm
to work out the best parse according to a set of n
grammars that do not share the exact same skele-
tal rules. As such, the grammars’ product cannot
be easily conducted inside the parser to produce and
score a same and unique best tree, and we now con-
sider a c(ompound)-parse as a tuple (T1 . . . Tn) of
n compatible trees. Each grammar Gi is responsi-
ble for scoring tree Ti, and we seek to obtain the
c-parse that maximizes the sum of the scores of its
different trees. For a c-parse to be consistent, we
have to precisely define the parts on which the trees
must agree to be compatible with each other, so that
we can model these as agreement constraints.

4.1 Compound Parse Consistency
Let us suppose we have a set of phrase-structure
parsers trained on different versions of the same
treebank. Hence, some elements in the charts will
either be the same or can be mapped to each other
provided an equivalence relation and we define con-
sensus between parsers on these elements.

When the grammar is not functionally annotated,
phrase-structure trees can be decomposed into a set
of anchored (syntactical) categories Xs, asserting
that a category X is in the tree at position3 s. Thus,
such a tree T can be described by means of a boolean
vector z(T ) indexed by anchored labels Xs, where
z(T )Xs = 1 if Xs is in T and 0 otherwise.

We will differentiate the set of natural non-
terminals that occur in the treebanks from the set
of artificial non-terminals that do not occur in the
treebank and are the results of a binarization with
markovization. As these artificial non-terminals dis-
appear after reversing binarization in solution trees,
they do not play any role in the consensus between
parsers, and we only consider natural non-terminals
in the set of anchored labels.

When the grammar is functionally annotated,
each label X̄ in a tree is a pair (X,F ), where X
is a syntactical category and F is a function label.
In this case, in order to manage the consensus with

3The anchor s of a label is composed of the span (i, j), de-
noting that the label covers terminals of the input sentence from
index i to index j. In case the grammar contains unary non-
lexical rules, the anchor also discriminates the different posi-
tions in a sequence of unary rules.

non-functional grammars, we decompose such a tree
into two sets: a set of anchored categories Xs and a
set of anchored function labels Fs. Thus, a tree T
can be described by means of two boolean vectors:

• z(T ) indexed by anchored categories Xs,
z(T )Xs = 1 if there exists a function label F
so that (X,F )s is in T , and 0 otherwise;

• ζ(T ) indexed by anchored function labels Fs,
ζ(T )Fs = 1 if there exists a category X so that
(X,F )s is in T , and 0 otherwise.

In the present work, a compound parse (T1 . . . Tn)
is said to be consistent iff every tree shares the same
set of anchored categories, i.e. iff:

∀(i, j) ∈ J1, nK2, z(Ti) = z(Tj)

4.2 Combining Parsers through Dual
Decomposition

Like previous applications, we base our reasoning
on the assumption that computing the optimal score
with each grammar Gi can be efficiently calculated,
which is the case for approximate PCFG-LA pars-
ing. We follow the presentation of the decomposi-
tion from (Martins et al., 2011) to explain how we
can combine several PCFG-LA parsers together.

For a sentence s, we want to obtain the best con-
sistent compound parse from a set of n parsers:

(P ) : find arg max
(T1...Tn)∈C

n∑
p=1

σp(Tp) (7)

s.t. ∀(i, j) ∈ J1, nK2, z(Ti) = z(Tj) (8)

where C = F1(s) × ... × Fn(s) is the product of
parse forests F i(s), and F i(s) is the set of trees in
grammar Gi whose yields are the input sentence s.

Solving this problem with an exact algorithm is
intractable. While artificial nodes could be inferred
using a traditional parsing algorithm based on dy-
namic programming (i.e. CKY), the natural nodes
require a coupling of the parsers’ items to enforce
the fact that natural daughter nodes must be identical
(or equivalent) with the same spans for all parsers.
Since the debinarization of markovized rules enables
the creation of arbitrarily long n-ary rules, in the
worst case the number of natural daughters to check
is exponential in the size of the span to infer. Even if
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we bound the length of debinarized rules, the prob-
lem is hardly tractable.

As this problem is intractable, even for approxi-
mate PCFG-LA parsing, we apply the iterate method
presented in (Komodakis et al., 2007) for MRFs,
also applied for joint tasks in NLP such as combined
parsing and POS tagging in (Rush et al., 2010).

First, we introduce a witness vector u in order to
simplify constraints in (8). Problem (P ) can then be
written in an equivalent form :

(P ) : find oP = max
(T1...Tn)∈C

n∑
i=1

σi(Ti) (9)

s.t. ∀i ∈ J1, nK, z(Ti) = u (10)

Next, we proceed to a Lagrangian decomposition.
This decomposition is a two-step process:
Step 1 (Relaxation): the coupling constraints (10)
are removed by introducing a vector of Lagrange
multipliers Λi = (λi,Xs)Xs for each parser i, in-
dexed by anchored categories Xs, and writing the
equivalent problem:

(RP ) : oRP = max
u, T1...n

min
Λ
f(u, T1...n,Λ)

where:

f(u, T1...n,Λ) =
∑
i

σi(Ti) +
∑
i

(z(Ti)− u) · Λi

Intuitively, we can see the equivalence of (RP )
and (P ) with the following reasoning:

• whenever all constraints (10) are met, the sec-
ond sum in f is nullified and f(u, T1...n,Λ) =∑

i σi(Ti), which is a finite value and precisely
the objective function maximized in (P );

• if there is at least one (i,X, s) such that
z(Ti)Xs 6= uXs , then the value of

∑
i(z(Ti) −

u) · Λi can be made arbitrarily small by
an appropriate choice of λi,Xs ; in this case,
minΛ f(u, T1...n,Λ) = −∞. Thus, (RP ) can
not reach its maximum at a point where con-
straints (10) are not satisfied.

Step 2 (dualization): the dual problem (LP ) is ob-
tained by permuting max and min in (RP ):

(LP1) : oLP = min
Λ

max
u, T1...n

f(u, T1...n,Λ)

Finally, u can be removed from (LP1) by adding
the constraint:

∑
i Λi = 0. As a matter of fact,

one can see that if this constraint is not matched,
maxu,T1...n f(u, T1...n,Λ) = +∞ and (LP1) can
not reach its minimum on such a point. We can now
find the maximum of f by maxing each Ti indepen-
dently of each other. The dual problem becomes:

(LP ) : oLP = min
Λ

n∑
i=1

max
Ti∈Fi

(σi(Ti) + z(Ti) · Λi)

s.t.
∑
i

Λi = 0

Minimization in (LP ) can be solved iteratively
using the projected subgradient method. Finding a
subgradient amounts to computing the optimal so-
lution (Rush and Collins, 2012) for each of the n
subproblems (the slave problems in the terminol-
ogy of (Martins et al., 2011) and (Komodakis et al.,
2007)) which can be done efficiently, by incorpo-
rating the calculation of the penalties in the parsing
algorithm, and in parallel. Until the agreement con-
straints are met (or a maximal number of iterations
τ ), the Lagrangian multipliers are updated according
to the deviations from the average solutions (i.e. up-
dates are zeros for a natural span if the parsers agree
on it). This leads to Algorithm 1.

It should be noted that the DP charts are built and
pruned during the first iteration only (t = 0); fur-
ther iterations do not require recreating the DP chart,
which is memory intensive and time consuming, nor
recomputing the approximate distribution for varia-
tional inference. As DP on the pruned charts is a fast
process, the bottleneck of the algorithm still is in the
first calculation of slave solutions.

The stepsize sequence (αt)0≤t must be diminish-
ing and non-summable, that is to say: ∀t, αt ≥ 0,
limt→∞ αt = 0 and

∑∞
t=0 αt = ∞. In practice, we

set αt = 1
1+c(t) where c(t) is the number of times the

objective function oP has increased since iterations
began.
Solving (P): it is easy to see that oLP is an up-
per bound of oP , but we do not necessarily have
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Algorithm 1 Find best compound parse with con-
straints on natural spans
Require: n parsers {pi}1≤i≤n

for all i, syntactical category X , anchor s do
λ

(0)
i,Xs

= 0
end for
for t = 0→ τ do

for all parsers pi do
T

(t)
i ← arg maxT∈Fi

(
σi(T ) + z(T ) · Λ(t)

i

)
end for
for all parsers pi do

∆
(t)
i ← αt

(
z
(
T

(t)
i

)
−
∑

1≤j≤n z
(
T

(t)
j

)
n

)
Λ

(t+1)
i ← Λ

(t)
i + ∆

(t)
i

end for
if ∆

(t)
i = 0 for all i then
Exit loop

end if
end for
return (T

(τ)
1 , · · · , T (τ)

n )

strong duality (i.e. oLP = oP ) due to the facts that
parse forests are discrete sets. Furthermore, they get
pruned independently of each other. Thus, the algo-
rithm is not guaranteed to find a t such that z(T (t)

i )
is the same for every parser i. However – see (Koo
et al., 2010) – if it does reach such a state, then we
have the guarantee of having found an exact solution
of the primal problem (P ). We show in the experi-
ments that this occurs very frequently.

5 Experiments

5.1 Experimental Setup

We perform our experiments on the WSJ sections of
the PTB with the usual split: sections 2 to 21 for
training, section 23 for testing, and we run bench-
marks on section 22. evalb is used for evaluation.

We use the LORG parser modified with Algo-
rithm 1. 4 All grammars are trained using 6
split/merge EM cycles. For the handling of unknown
words, we removed all words occurring once in the
training set and replaced them by their morpholog-
ical signature (Attia et al., 2010). Grammars for
products are obtained by training with 16 random
seeds for each setting. We use the approximate al-

4The LORG parser is available at https://github.
com/CNGLdlab/LORG-Release and the modification at
https://github.com/jihelhere/LORG-Release/
tree/functional_c11.

gorithm MaxRule-Product (Petrov and Klein, 2007).
The basic settings are a combination of the two

following parameters:

left or right binarization: we conjecture that this
affects the quality of the parsers by impacting the
recognition of left and right constituent frontiers.
We set vertical markovization to 1 (no parent anno-
tation) and horizontal markovization to 0 (we drop
all left/right annotations).

with or without functional annotations: in par-
ticular when non-terminals are annotated with mul-
tiple functions, all are kept.

5.2 Products of Grammars
We first evaluate each setting on its own before com-
bining them. We test the 4 different settings on the
development set, using a single grammar or a prod-
uct of n grammars. Results are reported on Figure 3.
We can see that right binarization performs better
than left binarization. Contrary to the results of Gab-
bard et al. (2006), function labels are detrimental for
parsing performance for one grammar only. How-
ever, they do not penalize performance when using
the product model with 8 grammars or more.

n

F

1 2 4 8 16
89

90

91

92

93
Func Right

No Func Right
No Func Left

Func Left

Figure 3: F1 for products of n grammars on the dev. set

EM is not guaranteed to find the optimal model
and the problem is made harder by the increased
number of parameters. Product models effectively
alleviate this curse of dimensionality by letting some
models compensate for the errors made by others.

On the other hand, as differences between left
and right binarization settings remain over all prod-
uct sizes, right binarization seems more useful on
its own. The first part of Table 1 gives F-score and
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Exact Match results of the product models with 16
grammars on the development set.

5.3 Combinations with Dual Decomposition

We now turn to a series of experiments combining
product models of 16 grammars. In all these experi-
ments, we set the maximum number of iterations in
Algorithm 1 to 1000. The system then returns the
first element of the c-parse. We first try to combine
two settings in four different combinations:

DD Right Bin the two right-binarized systems –
with and without functions – the system returns
the function-labeled parse;

DD Left Bin the two left-binarized systems – with
and without functions – the system returns the
function-labeled parse;

DD Func the two systems with functions – left and
right binarization – the system returns the right-
binarized parse;

DD No Func the two systems without functions –
left and right binarization – the system returns
the right-binarized parse;

Results are in the second part of Table 1. Un-
surprisingly, the best configuration is the one com-
bining the two best product systems (with right bi-
narization) but all combined systems perform better
than their single components.

Setting F EX
No Func Right 92.26 42.97
No Func Left 91.92 42.91
Func Right 92.37 43.35
Func Left 91.95 43.15
DD Right Bin 92.71 44.44
DD Left Bin 92.23 43.97
DD Func 92.51 44.79
DD No Func 92.52 44.08
DD3 92.86 45.03
DD4 92.82 45.14

Table 1: Parse evaluation on development set.

We also combine 3 and 4 parsers to see if combin-
ing the above DD Right Bin setting with informa-
tion that could improve the recognition of beginning
of constituents can be helpful. We have 2 settings:

DD3 The 2 right-binarized parsers combined with
the left binarized parser without functions,

DD4 The 4 parsers together.

In both cases the system returns the right-
binarized function annotated parse. The results are
shown in the last part of Table 1. These 2 new con-
figurations give similar F-scores, better than all 2-
parser configurations.

We conclude from these results that left-
binarization and right-binarization capture different
linguistic aspects, even in the case of heavy horizon-
tal markovization, and that the method we propose
enables a practical integration of these models.

Table 2 shows for each setting how often the sys-
tems agree before 1000 iterations of Algorithm 1.
As one might expect, the more diverse the systems
are, the lower the rate of agreement.

Setting Rate
DD Right Bin 99.24
DD Left Bin 99.12
DD Func 98.53
DD No Func 99.12
DD3 96.18
DD4 94.53

Table 2: Rate of certificates of optimality on the dev set.

5.4 Evaluation of Function Labeling

We also evaluate the quality of the function labels.
We compare the results obtained directly from the
parser output with results obtained with Funtag, a
state-of-the-art functional tagger that is applied on
parser output, using a gold model trained on sections
02 to 21 of the WSJ (Chrupala et al., 2007).

Setting SYSTEM FUN FUNTAG
No Func Right – 90.41
No Func Left – 90.26
Func Right 89.61 90.37
Func Left 89.29 90.40
DD Right Bin 89.50 90.38
DD Left Bin 89.11 90.31
DD Func 89.54 90.49
DD No Func – 90.36
DD3 89.48 90.42
DD4 89.57 90.45

Table 3: Function labeling F1 on development set.

The results are shown in Table 3. First, we can
see that the parser output is always outperformed by
Funtag. This is expected from a context-free parser
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that has a limited domain of locality with strong in-
dependence constraints, compared to a voted-SVM
classifier that can rely on arbitrarily rich features.
Second, the quality of the Funtag prediction seems
to be influenced by the fact that parser already han-
dle functions and by the accuracy of the parser (Par-
seval F-score). This is because we use a model
trained on the gold reference and so the closer the
parser output is from the reference, the better the
prediction. On the other hand, this is not the case
with parser predicted functions, where the best sys-
tem is the right-binarized product model with func-
tions, with very similar performance obtained by the
combinations consisting of 2 function parsers, set-
tings DD Func and DD4. This tends to indicate
that the constraints we have set to define consisten-
cies in c-parses, focusing on syntactical categories,
do not help in retrieving better function labels. This
suggests some possible further improvements where
parsers with functional annotations should be forced
to agree on these too.

5.5 Evaluation of Dependencies

Setting Stanford LTH p2m
LAS UAS LAS UAS UAS

Func Right 92.18 94.32 89.51 93.92 94.2
No Func Right 92.03 94.47 65.31 92.22 94.2
Func Left 91.86 94.06 89.28 93.75 93.9
No Func Left 91.83 94.29 65.33 92.18 94.1
DD Right Bin 92.56 94.60 89.81 94.17 94.5
DD Left Bin 92.01 94.38 89.62 94.05 94.2
DD Func 92.19 94.36 89.67 94.06 94.2
DD No Func 92.19 94.57 65.44 92.37 94.3
DD3 92.77 94.79 90.04 94.33 94.5
DD4 92.59 94.62 89.95 94.24 94.4

Table 4: Dependency accuracies on the dev set

Dependency-based evaluation of phrase structure
parser output has been used in recent years to pro-
vide a more rounded view on parser performance
and to compare with direct dependency parsers (Cer
et al., 2010; Petrov et al., 2010; Nivre et al., 2010;
Foster et al., 2011; Petrov and McDonald, 2012).
We evaluate our various parsing models on their
ability to recover three types of dependencies: basic
Stanford dependencies (de Marneffe and Manning,
2008)5, LTH dependencies (Johansson and Nugues,

5We used the latest version at the time of writing, i.e. 3.20.

2007)6 and penn2malt dependencies.7 The latter
are a simpler version of the LTH dependencies but
are still used when reporting unlabeled attachment
scores for dependency parsing.

The results, shown in Table 4, mirror the con-
stituency evaluation results in that the dual decom-
position results tend to outperform the basic product
model results, and combining three or four gram-
mars using dual decomposition yields the highest
scores. The differences between the Func and No
Func results highlight an important difference be-
tween the Stanford and LTH dependency schemes.
The tool used to produce Stanford dependencies has
been designed to work with phrase structure trees
that do not contain function labels. In contrast, the
LTH tool makes use of function label information
in phrase structure trees. Thus, their availability re-
sults in only a moderate improvement in LAS for the
Stanford dependencies and a very striking improve-
ment for the LTH dependencies. By retaining func-
tion labels during parsing, we have shown that LTH
dependencies can be recovered with a high level of
accuracy without having to resort to a post-parsing
function labeling step.

5.6 Test Set Results

We now evaluate our various systems on the test set
(the first half of Table 5) and compare these results
with state-of-the-art systems (the second half of Ta-
ble 5). We present parser accuracy results, measured
using Parseval F-score and penn2malt UAS, and, for
our systems, function label accuracy for labels pro-
duced during parsing and after parsing using Funtag.
We also carried out statistical significance testing8

on the F-score differences between our various sys-
tems on the development and test sets. The results

6nlp.cs.lth.se/software/treebank_converter. It
is recommended that LTH is used with the version of the Penn
Treebank which contains the more detailed NP bracketing pro-
vided by Vadas and Curran (2007). However, to facilitate com-
parison with other parsers and dependency schemes, we did not
use it in our experiments. We ran the converter with the right-
Branching=false option to indicate that we are using the version
without extra noun phrase bracketing.

7stp.lingfil.uu.se/˜nivre/research/Penn2Malt.
The English head-finding rules of Yamada and Mat-
sumoto (2003), supplied on the website, are employed.

8We used Dan Bikel’s compare.pl script which uses
stratified shuffling to compute significance. We consider a p
value < 0.05 to indicate a statistically significant difference.

1166



Setting F UAS Fun Funtag
Func Right 91.73 93.9 91.02 91.88
No Func Right 91.76 93.8 – 91.80
Func Left 91.45 93.7 90.41 91.80
No Func Left 91.57 93.7 – 91.74
DD Right Bin 92.16 94.1 90.85 91.86
DD Left Bin 91.89 93.9 90.10 91.85
DD Func 92.23 94.1 91.02 91.91
DD No Func 92.09 94.0 – 91.86
DD3 92.45 94.3 90.86 91.98
DD4 92.44 94.3 90.97 92.04
(Shindo et al., 2012) 92.4
(Zhang et al., 2009) 92.3
(Petrov, 2010) 91.8
(Huang, 2008) 91.7
(Bohnet and Nivre, 2012) 93.7

Table 5: Test Set Results: Parseval F-score, penn2malt
UAS, Function Label Accuracy and Funtag Function La-
bel Accuracy

are shown in Table 6.

Comparison Dev Test
Func Right vs. No Func Right 7 7

Func Left vs. No Func Left 7 7

Func Right vs. Func Left X 7

No Func Right vs. No Func Left 7 7

DD Right Bin vs. Func Right X X
DD Right Bin vs. No Func Right X X
DD Left Bin vs. Func Left X X
DD Left Bin vs. No Func Left X X
DD Right Bin vs DD Left Bin X X
DD Func vs. Func Right 7 X
DD Func vs. Func Left X X
DD No Func vs. No Func Right X X
DD No Func vs. No Func Left X X
DD Func vs. DD No Func 7 7

DD3 vs. DD Right Bin 7 X
DD3 vs. No Func Left X X
DD3 vs. DD Func X X
DD4 vs. DD. Right Bin 7 X
DD4 vs. DD. Left Bin X X
DD4 vs. DD Func X X
DD4 vs. DD3 7 7

Table 6: Statistical Significance Testing

We measured the performance of DD4 on the test
set. It is approximately 3 times slower than the
slowest product model (left binarization with func-
tion labels) and 7 slower than the fastest one (right
binarization without function labels). This system
performs on average 85.5 iterations of the DD al-
gorithm. If we exclude the non-converging cases
(5.1% of the cases), this drops to 39.4.

Finally we compare our results with systems
trained and evaluated on the PTB, see the lower half
of Table 5. Our product models are not different
from those presented in (Petrov, 2010) and it is not
surprising to see that the F-scores are similar. More
interestingly our DD4 setting improves on these re-
sults and compares favorably with systems relying
on richer syntactic information, such as the discrim-
inative parser of (Huang, 2008) that makes use of
non-local features to score trees and the TSG parser
of (Shindo et al., 2012) that can take into account
larger tree fragments: this would indicate that by
combining our parsers we extend the domain of lo-
cality, horizontally with binarization schemes and
vertically with function labels. Our system also per-
forms better than the combination system presented
in (Zhang et al., 2009) that only relies on material
from the PTB9 but a more detailed comparison is
difficult: this system does not use products of la-
tent models and more generally their method is or-
thogonal to ours. We also include for comparison
state-of-the-art dependency parsing results (Bohnet
and Nivre, 2012).

6 Conclusion

We presented an algorithm and a set of experiments
showing that grammar extraction strategies can be
combined in an elegant way and give state-of-the-art
results when applied to high-quality phrase-based
parsers. As well as repeating these experiments for
languages which rely more on function annotation,
we also plan to apply our method to other types of
annotations, e.g. more linguistically motivated bina-
rization strategies or – of particular interest to us –
annotation of empty elements.
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Abstract

NLP models have many and sparse features,
and regularization is key for balancing model
overfitting versus underfitting. A recently re-
popularized form of regularization is to gen-
erate fake training data by repeatedly adding
noise to real data. We reinterpret this noising
as an explicit regularizer, and approximate it
with a second-order formula that can be used
during training without actually generating
fake data. We show how to apply this method
to structured prediction using multinomial lo-
gistic regression and linear-chain CRFs. We
tackle the key challenge of developing a dy-
namic program to compute the gradient of the
regularizer efficiently. The regularizer is a
sum over inputs, so we can estimate it more
accurately via a semi-supervised or transduc-
tive extension. Applied to text classification
and NER, our method provides a >1% abso-
lute performance gain over use of standard L2

regularization.

1 Introduction

NLP models often have millions of mainly sparsely
attested features. As a result, balancing overfitting
versus underfitting through good weight regulariza-
tion remains a key issue for achieving optimal per-
formance. Traditionally, L2 or L1 regularization is
employed, but these simple types of regularization
penalize all features in a uniform way without tak-
ing into account the properties of the actual model.

An alternative approach to regularization is to
generate fake training data by adding random noise
to the input features of the original training data. In-
tuitively, this can be thought of as simulating miss-

∗Both authors contributed equally to the paper

ing features, whether due to typos or use of a pre-
viously unseen synonym. The effectiveness of this
technique is well-known in machine learning (Abu-
Mostafa, 1990; Burges and Schölkopf, 1997; Simard
et al., 2000; Rifai et al., 2011a; van der Maaten
et al., 2013), but working directly with many cor-
rupted copies of a dataset can be computationally
prohibitive. Fortunately, feature noising ideas often
lead to tractable deterministic objectives that can be
optimized directly. Sometimes, training with cor-
rupted features reduces to a special form of reg-
ularization (Matsuoka, 1992; Bishop, 1995; Rifai
et al., 2011b; Wager et al., 2013). For example,
Bishop (1995) showed that training with features
that have been corrupted with additive Gaussian
noise is equivalent to a form of L2 regularization in
the low noise limit. In other cases it is possible to
develop a new objective function by marginalizing
over the artificial noise (Wang and Manning, 2013;
van der Maaten et al., 2013).

The central contribution of this paper is to show
how to efficiently simulate training with artificially
noised features in the context of log-linear struc-
tured prediction, without actually having to gener-
ate noised data. We focus on dropout noise (Hinton
et al., 2012), a recently popularized form of artifi-
cial feature noise where a random subset of features
is omitted independently for each training example.
Dropout and its variants have been shown to out-
perform L2 regularization on various tasks (Hinton
et al., 2012; Wang and Manning, 2013; Wan et al.,
2013). Dropout is is similar in spirit to feature bag-
ging in the deliberate removal of features, but per-
forms the removal in a preset way rather than ran-
domly (Bryll et al., 2003; Sutton et al., 2005; Smith
et al., 2005).
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Our approach is based on a second-order approx-
imation to feature noising developed among others
by Bishop (1995) and Wager et al. (2013), which al-
lows us to convert dropout noise into a form of adap-
tive regularization. This method is suitable for struc-
tured prediction in log-linear models where second
derivatives are computable. In particular, it can be
used for multiclass classification with maximum en-
tropy models (a.k.a., softmax or multinomial logis-
tic regression) and for the sequence models that are
ubiquitous in NLP, via linear chain Conditional Ran-
dom Fields (CRFs).

For linear chain CRFs, we additionally show how
we can use a noising scheme that takes advantage
of the clique structure so that the resulting noising
regularizer can be computed in terms of the pair-
wise marginals. A simple forward-backward-type
dynamic program can then be used to compute the
gradient tractably. For ease of implementation and
scalability to semi-supervised learning, we also out-
line an even faster approximation to the regularizer.
The general approach also works in other clique
structures in addition to the linear chain when the
clique marginals can be computed efficiently.

Finally, we extend feature noising for structured
prediction to a transductive or semi-supervised set-
ting. The regularizer induced by feature noising
is label-independent for log-linear models, and so
we can use unlabeled data to learn a better regu-
larizer. NLP sequence labeling tasks are especially
well suited to a semi-supervised approach, as input
features are numerous but sparse, and labeled data
is expensive to obtain but unlabeled data is abundant
(Li and McCallum, 2005; Jiao et al., 2006).

Wager et al. (2013) showed that semi-supervised
dropout training for logistic regression captures a
similar intuition to techniques such as entropy regu-
larization (Grandvalet and Bengio, 2005) and trans-
ductive SVMs (Joachims, 1999), which encourage
confident predictions on the unlabeled data. Semi-
supervised dropout has the advantage of only us-
ing the predicted label probabilities on the unlabeled
data to modulate an L2 regularizer, rather than re-
quiring more heavy-handed modeling of the unla-
beled data as in entropy regularization or expecta-
tion regularization (Mann and McCallum, 2007).

In experimental results, we show that simulated
feature noising gives more than a 1% absolute boost

yt yt+1yt−1

f (yt, xt )

f (yt−1, yt ) f (yt, yt+1)

yt yt+1yt−1

f (yt, xt )

f (yt−1, yt ) f (yt, yt+1)

Figure 1: An illustration of dropout feature noising
in linear-chain CRFs with only transition features
and node features. The green squares are node fea-
tures f(yt, xt), and the orange squares are edge fea-
tures f(yt−1, yt). Conceptually, given a training ex-
ample, we sample some features to ignore (generate
fake data) and make a parameter update. Our goal is
to train with a roughly equivalent objective, without
actually sampling.

in performance over L2 regularization, on both text
classification and an NER sequence labeling task.

2 Feature Noising Log-linear Models

Consider the standard structured prediction problem
of mapping some input x ∈ X (e.g., a sentence)
to an output y ∈ Y (e.g., a tag sequence). Let
f(y, x) ∈ Rd be the feature vector, θ ∈ Rd be the
weight vector, and s = (s1, . . . , s|Y|) be a vector of
scores for each output, with sy = f(y, x) · θ. Now
define a log-linear model:

p(y | x; θ) = exp{sy −A(s)}, (1)

where A(s) = log
∑

y exp{sy} is the log-partition
function. Given an example (x,y), parameter esti-
mation corresponds to choosing θ to maximize p(y |
x; θ).

The key idea behind feature noising is to artifi-
cially corrupt the feature vector f(y, x) randomly
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into some f̃(y, x) and then maximize the average
log-likelihood of y given these corrupted features—
the motivation is to choose predictors θ that are ro-
bust to noise (missing words for example). Let s̃,
p̃(y | x; θ) be the randomly perturbed versions cor-
responding to f̃(y, x). We will also assume the
feature noising preserves the mean: E[f̃(y, x)] =
f(y, x), so that E[s̃] = s. This can always be done
by scaling the noised features as described in the list
of noising schemes.

It is useful to view feature noising as a form of
regularization. Since feature noising preserves the
mean, the feature noising objective can be written as
the sum of the original log-likelihood plus the dif-
ference in log-normalization constants:

E[log p̃(y | x; θ)] = E[s̃y −A(s̃)] (2)

= log p(y | x; θ)−R(θ, x), (3)

R(θ, x)
def
= E[A(s̃)]−A(s). (4)

Since A(·) is convex, R(θ, x) is always positive by
Jensen’s inequality and can therefore be interpreted
as a regularizer. Note that R(θ, x) is in general non-
convex.

Computing the regularizer (4) requires summing
over all possible noised feature vectors, which can
imply exponential effort in the number of features.
This is intractable even for flat classification. Fol-
lowing Bishop (1995) and Wager et al. (2013), we
approximate R(θ, x) using a second-order Taylor
expansion, which will allow us to work with only
means and covariances of the noised features. We
take a quadratic approximation of the log-partition
function A(·) of the noised score vector s̃ around
the the unnoised score vector s:

A(s̃) u A(s) +∇A(s)>(s̃− s) (5)

+
1

2
(s̃− s)>∇2A(s)(s̃− s).

Plugging (5) into (4), we obtain a new regularizer
Rq(θ, x), which we will use as an approximation to
R(θ, x):

Rq(θ, x) =
1

2
E[(s̃− s)>∇2A(s)(s̃− s)] (6)

=
1

2
tr(∇2A(s) Cov(s̃)). (7)

This expression still has two sources of potential in-
tractability, a sum over an exponential number of
noised score vectors s̃ and a sum over the |Y| com-
ponents of s̃.

Multiclass classification If we assume that the
components of s̃ are independent, then Cov(s̃) ∈
R|Y|×|Y| is diagonal, and we have

Rq(θ, x) =
1

2

∑
y∈Y

µy(1− µy) Var[s̃y], (8)

where the mean µy
def
= pθ(y | x) is the model prob-

ability, the variance µy(1−µy) measures model un-
certainty, and

Var[s̃y] = θ>Cov[f̃(y, x)]θ (9)

measures the uncertainty caused by feature noising.1

The regularizerRq(θ, x) involves the product of two
variance terms, the first is non-convex in θ and the
second is quadratic in θ. Note that to reduce the reg-
ularization, we will favor models that (i) predict con-
fidently and (ii) have stable scores in the presence of
feature noise.

For multiclass classification, we can explicitly
sum over each y ∈ Y to compute the regularizer,
but this will be intractable for structured prediction.

To specialize to multiclass classification for the
moment, let us assume that we have a separate
weight vector for each output y applied to the same
feature vector g(x); that is, the score sy = θy · g(x).
Further, assume that the components of the noised
feature vector g̃(x) are independent. Then we can
simplify (9) to the following:

Var[s̃y] =
∑
j

Var[gj(x)]θ
2
yj . (10)

Noising schemes We now give some examples of
possible noise schemes for generating f̃(y, x) given
the original features f(y, x). This distribution af-
fects the regularization through the variance term
Var[s̃y].

• Additive Gaussian:

f̃(y, x) = f(y, x) + ε, where ε ∼
N (0, σ2Id×d).

1Here, we are using the fact that first and second derivatives
of the log-partition function are the mean and variance.
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In this case, the contribution to the regularizer
from noising is Var[s̃y] =

∑
j σ

2θ2
yj .

• Dropout:

f̃(y, x) = f(y, x) � z, where � takes the el-
ementwise product of two vectors. Here, z is
a vector with independent components which
has zi = 0 with probability δ, zi = 1

1−δ with
probability 1 − δ. In this case, Var[s̃y] =∑

j
gj(x)

2δ
1−δ θ2

yj .

• Multiplicative Gaussian:

f̃(y, x) = f(y, x) � (1 + ε), where
ε ∼ N (0, σ2Id×d). Here, Var[s̃y] =∑

j gj(x)
2σ2θ2

yj . Note that under our second-
order approximation Rq(θ, x), the multiplica-
tive Gaussian and dropout schemes are equiva-
lent, but they differ under the original regular-
izer R(θ, x).

2.1 Semi-supervised learning

A key observation (Wager et al., 2013) is that
the noising regularizer R (8), while involving a
sum over examples, is independent of the output
y. This suggests estimating R using unlabeled
data. Specifically, if we have n labeled examples
D = {x1, x2, . . . , xn} and m unlabeled examples
Dunlabeled = {u1, u2, . . . , un}, then we can define a
regularizer that is a linear combination the regular-
izer estimated on both datasets, with α tuning the
tradeoff between the two:

R∗(θ,D,Dunlabeled) (11)

def
=

n

n+ αm

( n∑
i=1

R(θ, xi) + α
m∑
i=1

R(θ, ui)
)
.

3 Feature Noising in Linear-Chain CRFs

So far, we have developed a regularizer that works
for all log-linear models, but—in its current form—
is only practical for multiclass classification. We
now exploit the decomposable structure in CRFs to
define a new noising scheme which does not require
us to explicitly sum over all possible outputs y ∈ Y .
The key idea will be to noise each local feature vec-
tor (which implicitly affects many y) rather than
noise each y independently.

Assume that the output y = (y1, . . . , yT ) is a se-
quence of T tags. In linear chain CRFs, the feature
vector f decomposes into a sum of local feature vec-
tors gt:

f(y, x) =
T∑
t=1

gt(yt−1, yt, x), (12)

where gt(a, b, x) is defined on a pair of consecutive
tags a, b for positions t− 1 and t.

Rather than working with a score sy for each
y ∈ Y , we define a collection of local scores
s = {sa,b,t}, for each tag pair (a, b) and posi-
tion t = 1, . . . , T . We consider noising schemes
which independently set g̃t(a, b, x) for each a, b, t.
Let s̃ = {s̃a,b,t} be the corresponding collection of
noised scores.

We can write the log-partition function of these
local scores as follows:

A(s) = log
∑
y∈Y

exp

{
T∑
t=1

syt−1,yt,t

}
. (13)

The first derivative yields the edge marginals under
the model, µa,b,t = pθ(yt−1 = a, yt = b | x), and
the diagonal elements of the Hessian ∇2A(s) yield
the marginal variances.

Now, following (7) and (8), we obtain the follow-
ing regularizer:

Rq(θ, x) =
1

2

∑
a,b,t

µa,b,t(1− µa,b,t) Var[s̃a,b,t],

(14)

where µa,b,t(1− µa,b,t) measures model uncertainty
about edge marginals, and Var[s̃a,b,t] is simply the
uncertainty due to noising. Again, minimizing the
regularizer means making confident predictions and
having stable scores under feature noise.

Computing partial derivatives So far, we have
defined the regularizer Rq(θ, x) based on feature
noising. In order to minimize Rq(θ, x), we need to
take its derivative.

First, note that logµa,b,t is the difference of a re-
stricted log-partition function and the log-partition
function. So again by properties of its first deriva-
tive, we have:

∇ logµa,b,t = Epθ(y|x,yt−1=a,yt=b)[f(y, x)] (15)

− Epθ(y|x)[f(y, x)].
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Using the fact that ∇µa,b,t = µa,b,t∇ logµa,b,t and
the fact that Var[s̃a,b,t] is a quadratic function in θ,
we can simply apply the product rule to derive the
final gradient∇Rq(θ, x).

3.1 A Dynamic Program for the Conditional
Expectation

A naive computation of the gradient ∇Rq(θ, x) re-
quires a full forward-backward pass to compute
Epθ(y|yt−1=a,yt=b,x)[f(y, x)] for each tag pair (a, b)
and position t, resulting in a O(K4T 2) time algo-
rithm.

In this section, we reduce the running time to
O(K2T ) using a more intricate dynamic program.
By the Markov property of the CRF, y1:t−2 only de-
pends on (yt−1, yt) through yt−1 and yt+1:T only
depends on (yt−1, yt) through yt.

First, it will be convenient to define the partial
sum of the local feature vector from positions i to
j as follows:

Gi:j =

j∑
t=i

gt(yt−1, yt, x). (16)

Consider the task of computing the feature expecta-
tion Epθ(y|yt−1=a,yt=b)[f(y, x)] for a fixed (a, b, t).
We can expand this quantity into∑
y:yt−1=a,yt=b

pθ(y−(t−1:t) | yt−1 = a, yt = b)G1:T .

Conditioning on yt−1, yt decomposes the sum into
three pieces:∑
y:yt−1=a,yt=b

[gt(yt−1 = a, yt = b, x) + F at +Bb
t ],

where

F at =
∑

y1:t−2

pθ(y1:t−2 | yt−1 = a)G1:t−1, (17)

Bb
t =

∑
yt+1:T

pθ(yt+1:T | yt = b)Gt+1:T , (18)

are the expected feature vectors summed over the
prefix and suffix of the tag sequence, respectively.
Note that F at and Bb

t are analogous to the forward
and backward messages of standard CRF inference,
with the exception that they are vectors rather than
scalars.

We can compute these messages recursively in the
standard way. The forward recurrence is

F at =
∑
b

pθ(yt−2 = b | yt−1 = a)[
gt(yt−2 = b, yt−1 = a, x) + F bt−1

]
,

and a similar recurrence holds for the backward mes-
sages Bb

t .
Running the resulting dynamic program takes
O(K2Tq) time and requires O(KTq) storage,
where K is the number of tags, T is the sequence
length and q is the number of active features. Note
that this is the same order of dependence as normal
CRF training, but there is an additional dependence
on the number of active features q, which makes
training slower.

4 Fast Gradient Computations

In this section, we provide two ways to further im-
prove the efficiency of the gradient calculation based
on ignoring long-range interactions and based on ex-
ploiting feature sparsity.

4.1 Exploiting Feature Sparsity and
Co-occurrence

In each forward-backward pass over a training ex-
ample, we need to compute the conditional ex-
pectations for all features active in that example.
Naively applying the dynamic program in Section 3
is O(K2T ) for each active feature. The total com-
plexity has to factor in the number of active fea-
tures, q. Although q only scales linearly with sen-
tence length, in practice this number could get large
pretty quickly. For example, in the NER tagging ex-
periments (cf. Section 5), the average number of
active features per token is about 20, which means
q ' 20T ; this term quickly dominates the compu-
tational costs. Fortunately, in sequence tagging and
other NLP tasks, the majority of features are sparse
and they often co-occur. That is, some of the ac-
tive features would fire and only fire at the same lo-
cations in a given sequence. This happens when a
particular token triggers multiple rare features.

We observe that all indicator features that only
fired once at position t have the same conditional ex-
pectations (and model expectations). As a result, we
can collapse such a group of features into a single
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feature as a preprocessing step to avoid computing
identical expectations for each of the features. Do-
ing so on the same NER tagging experiments cuts
down q/T from 20 to less than 5, and gives us a 4
times speed up at no loss of accuracy. The exact
same trick is applicable to the general CRF gradient
computation as well and gives similar speedup.

4.2 Short-range interactions
It is also possible to speed up the method by re-
sorting to approximate gradients. In our case, the
dynamic program from Section 3 together with the
trick described above ran in a manageable amount
of time. The techniques developed here, however,
could prove to be useful on larger tasks.

Let us rewrite the quantity we want to compute
slightly differently (again, for all a, b, t):

T∑
i=1

Epθ(y|x,yt−1=a,yt=b)[gi(yi−1, yi, x)]. (19)

The intuition is that conditioned on yt−1, yt, the
terms gi(yi−1, yi, x) where i is far from t will be
close to Epθ(y|x)[gi(yi−1, yi, x)].

This motivates replacing the former with the latter
whenever |i− k| ≥ r where r is some window size.
This approximation results in an expression which
only has to consider the sum of the local feature vec-
tors from i−r to i+r, which is captured byGi−r:i+r:

Epθ(y|yt−1=a,yt=b,x)[f(y, x)]− Epθ(y|x)[f(y, x)]

≈ Epθ(y|yt−1=a,yt=b,x)[Gt−r:t+r] (20)

− Epθ(y|x)[Gt−r:t+r].

We can further approximate this last expression by
letting r = 0, obtaining:

gt(a, b, x)− Epθ(y|x)[gt(yt−1, yt, x)]. (21)

The second expectation can be computed from the
edge marginals.

The accuracy of this approximation hinges on the
lack of long range dependencies. Equation (21)
shows the case of r = 0; this takes almost no addi-
tional effort to compute. However, for some of our
experiments, we observed a 20% difference with the
real derivative. For r > 0, the computational savings
are more limited, but the bounded-window method
is easier to implement.

Dataset q d K Ntrain Ntest

CoNLL 20 437906 5 204567 46666
SANCL 5 679959 12 761738 82405
20news 81 62061 20 15935 3993
RCV14 76 29992 4 9625/2 9625/2
R21578 47 18933 65 5946 2347

TDT2 130 36771 30 9394/2 9394/2

Table 1: Description of datasets. q: average number
of non-zero features per example, d: total number
of features, K: number of classes to predict, Ntrain:
number of training examples, Ntest: number of test
examples.

5 Experiments

We show experimental results on the CoNLL-2003
Named Entity Recognition (NER) task, the SANCL
Part-of-speech (POS) tagging task, and several doc-
ument classification tasks.2 The datasets used are
described in Table 1. We used standard splits when-
ever available; otherwise we split the data at ran-
dom into a test set and a train set of equal sizes
(RCV14, TDT2). CoNLL has a development set
of size 51578, which we used to tune regulariza-
tion parameters. The SANCL test set is divided into
3 genres, namely answers, newsgroups, and
reviews, each of which has a corresponding de-
velopment set.3

5.1 Multiclass Classification

We begin by testing our regularizer in the simple
case of classification where Y = {1, 2, . . . ,K} for
K classes. We examine the performance of the nois-
ing regularizer in both the fully supervised setting as
well as the transductive learning setting.

In the transductive learning setting, the learner
is allowed to inspect the test features at train time
(without the labels). We used the method described
in Section 2.1 for transductive dropout.

2The document classification data are available
at http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets and http://www.cad.
zju.edu.cn/home/dengcai/Data/TextData.html

3The SANCL dataset has two additional genres—emails and
weblogs—that we did not use, as we did not have access to
development sets for these genres.
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Dataset K None L2 Drop +Test
CoNLL 5 78.03 80.12 80.90 81.66
20news 20 81.44 82.19 83.37 84.71
RCV14 4 95.76 95.90 96.03 96.11
R21578 65 92.24 92.24 92.24 92.58

TDT2 30 97.74 97.91 98.00 98.12

Table 2: Classification performance and transduc-
tive learning results on some standard datasets.
None: use no regularization, Drop: quadratic ap-
proximation to the dropout noise (8), +Test: also use
the test set to estimate the noising regularizer (11).

5.1.1 Semi-supervised Learning with Feature
Noising

In the transductive setting, we used test data
(without labels) to learn a better regularizer. As an
alternative, we could also use unlabeled data in place
of the test data to accomplish a similar goal; this
leads to a semi-supervised setting.

To test the semi-supervised idea, we use the same
datasets as above. We split each dataset evenly into
3 thirds that we use as a training set, a test set and an
unlabeled dataset. Results are given in Table 3.

In most cases, our semi-supervised accuracies are
lower than the transductive accuracies given in Table
2; this is normal in our setup, because we used less
labeled data to train the semi-supervised classifier
than the transductive one.4

5.1.2 The Second-Order Approximation
The results reported above all rely on the ap-

proximate dropout regularizer (8) that is based on a
second-order Taylor expansion. To test the validity
of this approximation we compare it to the Gaussian
method developed by Wang and Manning (2013) on
a two-class classification task.

We use the 20-newsgroups alt.atheism vs
soc.religion.christian classification task;
results are shown in Figure 2. There are 1427 exam-

4The CoNNL results look somewhat surprising, as the semi-
supervised results are better than the transductive ones. The
reason for this is that the original CoNLL test set came from a
different distributions than the training set, and this made the
task more difficult. Meanwhile, in our semi-supervised experi-
ment, the test and train sets are drawn from the same distribu-
tion and so our semi-supervised task is actually easier than the
original one.

Dataset K L2 Drop +Unlabeled
CoNLL 5 91.46 91.81 92.02
20news 20 76.55 79.07 80.47
RCV14 4 94.76 94.79 95.16
R21578 65 90.67 91.24 90.30

TDT2 30 97.34 97.54 97.89

Table 3: Semisupervised learning results on some
standard datasets. A third (33%) of the full dataset
was used for training, a third for testing, and the rest
as unlabeled.
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Figure 2: Effect of λ in λ‖θ‖22 on the testset perfor-
mance. Plotted is the test set accuracy with logis-
tic regression as a function of λ for the L2 regular-
izer, Gaussian dropout (Wang and Manning, 2013)
+ additional L2, and quadratic dropout (8) + L2 de-
scribed in this paper. The default noising regularizer
is quite good, and additional L2 does not help. No-
tice that no choice of λ in L2 can help us combat
overfitting as effectively as (8) without underfitting.

ples with 22178 features, split evenly and randomly
into a training set and a test set.

Over a broad range of λ values, we find that
dropout plus L2 regularization performs far better
than using just L2 regularization for any value of
λ. We see that Gaussian dropout appears to per-
form slightly better than the quadratic approxima-
tion discussed in this paper. However, our quadratic
approximation extends easily to the multiclass case
and to structured prediction in general, while Gaus-
sian dropout does not. Thus, it appears that our ap-
proximation presents a reasonable trade-off between
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computational efficiency and prediction accuracy.

5.2 CRF Experiments
We evaluate the quadratic dropout regularizer in
linear-chain CRFs on two sequence tagging tasks:
the CoNLL 2003 NER shared task (Tjong Kim Sang
and De Meulder, 2003) and the SANCL 2012 POS
tagging task (Petrov and McDonald, 2012) .

The standard CoNLL-2003 English shared task
benchmark dataset (Tjong Kim Sang and De Meul-
der, 2003) is a collection of documents from
Reuters newswire articles, annotated with four en-
tity types: Person, Location, Organization, and
Miscellaneous. We predicted the label sequence
Y = {LOC, MISC, ORG, PER, O}T without con-
sidering the BIO tags.

For training the CRF model, we used a compre-
hensive set of features from Finkel et al. (2005) that
gives state-of-the-art results on this task. A total
number of 437906 features were generated on the
CoNLL-2003 training dataset. The most important
features are:
• The word, word shape, and letter n-grams (up to

6gram) at current position
• The prediction, word, and word shape of the pre-

vious and next position
• Previous word shape in conjunction with current

word shape
• Disjunctive word set of the previous and next 4

positions
• Capitalization pattern in a 3 word window
• Previous two words in conjunction with the word

shape of the previous word
• The current word matched against a list of name

titles (e.g., Mr., Mrs.)
The Fβ=1 results are summarized in Table 4. We

obtain a 1.6% and 1.1% absolute gain on the test
and dev set, respectively. Detailed results are bro-
ken down by precision and recall for each tag and are
shown in Table 6. These improvements are signifi-
cant at the 0.1% level according to the paired boot-
strap resampling method of 2000 iterations (Efron
and Tibshirani, 1993).

For the SANCL (Petrov and McDonald, 2012)
POS tagging task, we used the same CRF framework
with a much simpler set of features
• word unigrams: w−1, w0, w1

• word bigram: (w−1, w0) and (w0, w1)

Fβ=1 None L2 Drop
Dev 89.40 90.73 91.86
Test 84.67 85.82 87.42

Table 4: CoNLL summary of results. None: no reg-
ularization, Drop: quadratic dropout regularization
(14) described in this paper.

Fβ=1 None L2 Drop
newsgroups

Dev 91.34 91.34 91.47
Test 91.44 91.44 91.81

reviews
Dev 91.97 91.95 92.10
Test 90.70 90.67 91.07

answers
Dev 90.78 90.79 90.70
Test 91.00 90.99 91.09

Table 5: SANCL POS tagging Fβ=1 scores for the 3
official evaluation sets.

We obtained a small but consistent improvement
using the quadratic dropout regularizer in (14) over
the L2-regularized CRFs baseline.

Although the difference on SANCL is small,
the performance differences on the test sets of
reviews and newsgroups are statistically sig-
nificant at the 0.1% level. This is also interesting
because here is a situation where the features are ex-
tremely sparse, L2 regularization gave no improve-
ment, and where regularization overall matters less.

6 Conclusion

We have presented a new regularizer for learning
log-linear models such as multiclass logistic regres-
sion and conditional random fields. This regularizer
is based on a second-order approximation of fea-
ture noising schemes, and attempts to favor mod-
els that predict confidently and are robust to noise
in the data. In order to apply our method to CRFs,
we tackle the key challenge of dealing with feature
correlations that arise in the structured prediction
setting in several ways. In addition, we show that
the regularizer can be applied naturally in the semi-
supervised setting. Finally, we applied our method
to a range of different datasets and demonstrate con-
sistent gains over standard L2 regularization. Inves-
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Precision Recall Fβ=1

LOC 91.47% 91.12% 91.29
MISC 88.77% 81.07% 84.75
ORG 85.22% 84.08% 84.65
PER 92.12% 93.97% 93.04

Overall 89.84% 88.97% 89.40

(a) CoNLL dev. set with no regularization

Precision Recall Fβ=1

92.05% 92.84% 92.44
90.51% 83.52% 86.87
88.35% 85.23% 86.76
93.12% 94.19% 93.65
91.36% 90.11% 90.73

(b) CoNLL dev. set with L2 reg-
ularization

Precision Recall Fβ=1

93.59% 92.69% 93.14
93.99% 81.47% 87.28
92.48% 84.61% 88.37
94.81% 95.11% 94.96
93.85% 89.96% 91.86

(c) CoNLL dev. set with dropout
regularization

Tag Precision Recall Fβ=1

LOC 87.33% 84.47% 85.87
MISC 78.93% 77.12% 78.02
ORG 78.70% 79.49% 79.09
PER 88.82% 93.11% 90.92

Overall 84.28% 85.06% 84.67

(d) CoNLL test set with no regularization

Precision Recall Fβ=1

87.96% 86.13% 87.03
77.53% 79.30% 78.41
81.30% 80.49% 80.89
90.30% 93.33% 91.79
85.57% 86.08% 85.82

(e) CoNLL test set with L2 reg-
ularization

Precision Recall Fβ=1

86.26% 87.74% 86.99
81.52% 77.34% 79.37
88.29% 81.89% 84.97
92.15% 92.68% 92.41
88.40% 86.45% 87.42

(f) CoNLL test set with dropout
regularization

Table 6: CoNLL NER results broken down by tags and by precision, recall, and Fβ=1. Top: development
set, bottom: test set performance.

tigating how to better optimize this non-convex reg-
ularizer online and convincingly scale it to the semi-
supervised setting seem to be promising future di-
rections.
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Abstract
One of the language phenomena that n-gram
language model fails to capture is the topic in-
formation of a given situation. We advance the
previous study of the Bayesian topic language
model by Wallach (2006) in two directions:
one, investigating new priors to alleviate the
sparseness problem caused by dividing all n-
grams into exclusive topics, and two, develop-
ing a novel Gibbs sampler that enables moving
multiple n-grams across different documents
to another topic. Our blocked sampler can
efficiently search for higher probability space
even with higher order n-grams. In terms of
modeling assumption, we found it is effective
to assign a topic to only some parts of a docu-
ment.

1 Introduction

N -gram language model is still ubiquitous in NLP,
but due to its simplicity it fails to capture some im-
portant aspects of language, such as difference of
word usage in different situations, sentence level
syntactic correctness, and so on. Toward language
model that can consider such a more global con-
text, many extensions have been proposed from
lexical pattern adaptation, e.g., adding cache (Je-
linek et al., 1991) or topic information (Gildea and
Hofmann, 1999; Wallach, 2006), to grammaticality
aware models (Pauls and Klein, 2012).

Topic language models are important for use in
e.g., unsupervised language model adaptation: we
want a language model that can adapt to the do-
main or topic of the current situation (e.g., a doc-
ument in SMT or a conversation in ASR) automat-
ically and select the appropriate words using both
topic and syntactic context. Wallach (2006) is one
such model, which generate each word based on lo-
cal context and global topic information to capture

the difference of lexical usage among different top-
ics.

However, Wallach’s experiments were limited to
bigrams, a toy setting for language models, and ex-
periments with higher-order n-grams have not yet
been sufficiently studied, which we investigate in
this paper. In particular, we point out the two funda-
mental problems caused when extending Wallach’s
model to a higher-order: sparseness caused by di-
viding all n-grams into exclusive topics, and local
minima caused by the deep hierarchy of the model.
On resolving these problems, we make several con-
tributions to both computational linguistics and ma-
chine learning.

To address the first problem, we investigate incor-
porating a global language model for ease of sparse-
ness, along with some priors on a suffix tree to cap-
ture the difference of topicality for each context,
which include an unsupervised extension of the dou-
bly hierarchical Pitman-Yor language model (Wood
and Teh, 2009), a Bayesian generative model for su-
pervised language model adaptation. For the sec-
ond inference problem, we develop a novel blocked
Gibbs sampler. When the number of topics is K
and vocabulary size is V , n-gram topic model has
O(KV n) parameters, which grow exponentially to
n, making the local minima problem even more se-
vere. Our sampler resolves this problem by moving
many customers in the hierarchical Chinese restau-
rant process at a time.

We evaluate various models by incremental cal-
culation of test document perplexity on 3 types of
corpora having different size and diversity. By com-
bining the proposed prior and the sampling method,
our Bayesian model achieve much higher accura-
cies than the naive extension of Wallach (2006) and
shows results competitive with the unigram rescal-
ing (Gildea and Hofmann, 1999), which require
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huge computational cost at prediction, with much
faster prediction time.

2 Basic Models

All models presented in this paper are based on the
Bayesian n-gram language model, the hierarchical
Pitman-Yor process language model (HPYLM). In
the following, we first introduce the HPYLM, and
then discuss the topic model extension of Wallach
(2006) with HPYLM.

2.1 HPYLM

Let us first define some notations. W is a vocabulary
set, V = |W | is the size of that set, and u, v, w ∈W
represent the word type.

The HPYLM is a Bayesian treatment of the n-
gram language model. The generative story starts
with the unigram word distribution Gφ, which is
a V -dimensional multinomial where Gφ(w) repre-
sents the probability of word w. The model first
generates this distribution from the PYP as Gφ ∼
PYP(a, b,G0), where G0 is a V -dimensional uni-
form distribution (G0(u) = 1

V ;∀u ∈ W ) and
acts as a prior for Gφ and a, b are hyperparameters
called discount and concentration, respectively. It
then generates all bigram distributions {Gu}u∈W as
Gu ∼ PYP(a, b,Gφ). Given this distributions, it
successively generates 3-gram distributions Guv ∼
PYP(a, b,Gu) for all (u, v) ∈ W 2 pairs, which
encode a natural assumption that contexts having
common suffix have similar word distributions. For
example, two contexts “he is” and “she is”, which
share the suffix “is”, are generated from the same
(bigram) distribution Gis, so they would have simi-
lar word distributions. This process continues until
the context length reaches n − 1 where n is a pre-
specified n-gram order (if n = 3, the above example
is a complete process). We often generalize this pro-
cess using two contexts h and h′ as

Gh ∼ PYP(a, b,Gh′), (1)

where h = ah′, in which a is a leftmost word of h.
We are interested in the posterior word distribu-

tion following a context h. Our training corpus w
is a collection of n-grams, from which we can cal-
culate the posterior p(w|h,w), which is often ex-

plained with the Chinese restaurant process (CRP):

p(w|h,w) =
chw − athw
ch· + b

+
ath· + b

ch· + b
p(w|h′,w),

(2)
where chw is an observed count of n-gram hw called
customers, while thw is a hidden variable called ta-
bles. ch· and th· represents marginal counts: ch· =∑

w chw and th· =
∑

w thw. This form is very
similar to the well-known Kneser-Ney smoothing,
and actually the Kneser-Ney can be understood as a
heuristic approximation of the HPYLM. This char-
acteristic enables us to build the state-of-the-art lan-
guage model into a more complex generative model.

2.2 Wallach (2006) with HPYLM

Wallach (2006) is a generative model for a docu-
ment collection that combines the topic model with
a Bayesian n-gram language model. The latent
Dirichlet allocation (LDA) (Blei et al., 2003) is the
most basic topic model, which generates each word
in a document based on a unigram word distribution
defined by a topic allocated to that word. The bi-
gram topic model of Wallach (2006) simply replaces
this unigram word distribution (a multinomial) for
each topic with a bigram word distribution 1. In
other words, ordinary LDA generates word condi-
tioning only on the latent topic, whereas the bigram
topic model generates conditioning on both the la-
tent topic and the previous word, as in the bigram
language model. Extending this model with a higher
order n-gram is trivial; all we have to do is to replace
the bigram language model for each topic with an n-
gram language model.

The formal description of the generative story of
this n-gram topic model is as follows. First, for
each topic k ∈ 1, · · · ,K, where K is the num-
ber of topics, the model generates an n-gram lan-
guage model Gkh.2 These n-gram models are gen-
erated by the PYP, so Gkh ∼ PYP(a, b,Gkh′) holds.
The model then generate a document collection. For
each document j ∈ 1, · · · , D, it generates a K-

1This is the model called prior 2 in Wallach (2006); it con-
sistently outperformed the other prior. Wallach used the Dirich-
let language model as each topic, but we only explore the model
with HPYLM because its superiority to the Dirichlet language
model has been well studied (Teh, 2006b).

2We sometimes denote Gk
h to represent a language model of

topic k, not a specific multinomial for some context h, depend-
ing on the context.
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dimensional topic distribution θj by a Dirichlet dis-
tribution Dir(α) where α = (α1, α2, · · · , αK) is a
prior. Finally, for each word position i ∈ 1, · · · , Nj

where Nj is the number of words in document j, i-
th word’s topic assignment zji is chosen according
to θj , then a word type wji is generated from G

zji

hji

where hji is the last n− 1 words preceding wji. We
can summarize this process as follows:

1. Generate topics:
For each h ∈ φ, {W}, · · · , {W}n−1:

For each k ∈ 1, · · · ,K:
Gkh ∼ PYP(a, b,Gkh′)

2. Generate corpora:
For each document j ∈ 1, · · ·D:
θj ∼ Dir(α)
For each word position i ∈ 1, · · · , Nj :
zji ∼ θj
wji ∼ G

zji

hji

3 Extended Models

One serious drawback of the n-gram topic model
presented in the previous section is sparseness. At
inference, as in LDA, we assign each n-gram a topic,
resulting in an exclusive clustering of n-grams in
the corpora. Roughly speaking, when the number
of topics is K and the number of all n-grams in the
training corpus is N , a language model of topic k,
Gkh is learned using only about O(N/K) instances
of the n-grams assigned the topic k, making each
Gkh much sparser and unreliable distribution.

One way to alleviate this problem is to place an-
other n-gram model, say G0

h, which is shared with
all topic-specific n-gram models {Gkh}Kk=1. How-
ever, what is the best way to use this special distribu-
tion? We explore two different approaches to incor-
porate this distribution in the model presented in the
previous section. In one model, the HIERARCHICAL

model, G0
h is used as a prior for all other n-gram

models, where G0
h exploits global statistics across

all topics {Gkh}. In the other model, the SWITCH-
ING model, no statistics are shared across G0

h and
{Gkh}, but some words are directly generated from
G0
h regardless of the topic distribution.

3.1 HIERARCHICAL Model

Informally, what we want to do is to establish hier-
archies among the global G0

h and other topics {Gkh}.
In Bayesian formalism, we can explain this using an

・・・
・・・

・・・
・・・

・・・
・・・

Figure 1: Variable dependencies of the HIERARCHICAL
model. {u, v} are word types, k is a topic and each Gkh
is a multinomial word distribution. For example, G2

uv

represents a word distribution following the context uv
in topic 2.

abstract distribution F as Gkh ∼ F(G0
h). The prob-

lem here is making the appropriate choice for the
distribution F . Each topic word distribution already
has hierarchies among n− 1-gram and n-gram con-
texts as Gkh ∼ PYP(a, b,Gkh′). A natural solution
to this problem is the doubly hierarchical Pitman-
Yor process (DHPYP) proposed in Wood and Teh
(2009). Using this distribution, the new generative
process of Gkh is

Gkh ∼ PYP(a, b, λGkh′ + (1− λ)G0
h), (3)

where λ is a new hyperparameter that determines
mixture weight. The dependencies among G0

h and
{Gkh} are shown in Figure 1. Note that the genera-
tive process of G0

h is the same as the HPYLM (1).
Let us clarify the DHPYP usage differences be-

tween our model and the previous work of Wood and
Teh (2009). A key difference is the problem setting:
Wood and Teh (2009) is aimed at the supervised
adaptation of a language model for a specific do-
main, whereas our goal is unsupervised adaptation.
In Wood and Teh (2009), each Gkh for k ∈ 1, 2, · · ·
corresponds to a language model of a specific do-
main and the training corpus for each k is pre-
specified and fixed. For ease of data sparseness of
domain-specific corpora, latent model G0

h exploits
shared statistics amongGkh for k = 1, 2, · · · . In con-
trast, with our model, each Gkh is a topic, so it must
perform the clustering of n-grams in addition to ex-
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ploiting the latent G0
h. This makes inference harder

and requires more careful design of λ.

Modeling of λ We can better understand the role
of λ in (3) by considering the posterior predictive
form corresponds to (2), which is written as

p(w|h, k,w) =
ckhw − atkhw
ckh· + b

+
atkh· + b

ckh· + b
q(w|h, k,w),

(4)

q(w|h, k,w) = λp(w|h′, k,w) + (1− λ)p(w|h, 0,w),

where c, t with superscript k corresponds to the
count existing in topic k. This shows us that λ de-
termines the back-off behavior: which probability
we should take into account: the shorter context of
the same topic Gkh′ or the full context of the global
model G0

h. Wood and Teh (2009) shares this vari-
able across all contexts of the same length, for each
k, but this assumption may not be the best. For ex-
ample, after the context “in order”, we can predict
the word “to” or “that”, and this tendency is unaf-
fected by the topic. We call this property of context
the topicality and say that “in order” has weak topi-
cality. Therefore, we place λ as a distinct value for
each context h, which we share across all topics. We
designate this λ determined by h λh in the follow-
ing. Moreover, similar contexts may have similar
values of λh. For example, the two contexts “of the”
and “in the”, which share the suffix “the”, both have
a strong topicality3. We encode this assumption by
placing hierarchical Beta distributions on the suffix
tree across all topics:

λh ∼ Beta(γλh′ , γ(1− λh′)) = DP(γ, λh′), (5)

where DP is the hierarchical Dirichlet process (Teh
et al., 2006), which has only two atoms in {0,1} and
γ is a concentration parameter. As in HPYLM, we
place a uniform prior λ0 = 1/2 on the base distribu-
tion of the top node (λφ ∼ DP(γ, λ0)).

Having generated the topic component of the
model, the corpus generating process is the same as
the previous model because we only change the gen-
erating process of Gkh for k = 1, · · · ,K.

3These words can be used very differently depending on the
context. For example, in a teen story, “in the room” or “in the
school” seems more dominant than “in the corpora” or “in the
topic”, which is likely to appear in this paper.

3.2 SWITCHING Model
Our second extension also exploits the globalG0

h, al-
beit differently than the HIERARCHICAL model. In
this model, the relationship of G0

h to the other {Gkh}
is flat, not hierarchical: G0

h is a special topic that can
generate a word. The model first generates each lan-
guage model of k = 0, 1, 2, · · · ,K independently
as Gkh ∼ PYP(a, b,Gkh′). When generating a word,
it first determines whether to use global model G0

h

or topic model {Gkh}Kk=1. Here, we use the λh in-
troduced above in a similar way: the probability of
selecting k = 0 for the next word is determined by
the previous context. This assumption seems natu-
ral; we expect theG0

h to mainly generate common n-
grams, and the topicality of each context determines
how common that n-gram might be. The complete
generative process of this model is written as fol-
lows:

1. Generate topics:
For each h ∈ φ, {V }, · · · , {V }n−1:
λh ∼ DP(γ, λ′h)
For each k ∈ 0, · · · ,K:
Gkh ∼ PYP(a, b,Gkh′)

2. Generate corpora:
For each document j ∈ 1, · · ·D:
θj ∼ Dir(α)
For each word position i ∈ 1, · · · , Nj :
lji ∼ Bern(λhji)
If lji = 0: zji = 0
If lji = 1: zji ∼ θj
wji ∼ G

zji

hji

The difference between the two models is their
usage of the global model G0

h. For a better under-
standing of this, we provide a comparison of their
graphical models in Figure 2.

4 Inference

For posterior inference, we use the collapsed Gibbs
sampler. In our models, all the latent variables are
{Gkh, λh, θj , z,Θ}, where z is the set of topic assign-
ments and Θ = {a, b, γ,α} are hyperparameters,
which are treated later. We collapse all multinomials
in the model, i.e., {Gkh, λh, θj}, in which Gkh and λh
are replaced with the Chinese restaurant process of
PYP and DP respectively. Given the training corpus
w, the target posterior distribution is p(z,S|w,Θ),
where S is the set of seating arrangements of all
restaurants. To distinguish the two types of restau-
rant, in the following, we refer the restaurant to indi-
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(a) HIERARCHICAL (b) SWITCHING

Figure 2: Graphical model representations of our two models in the case of a 3-gram model. Edges that only exist in
one model are colored.

cate the collapsed state of Gkh (PYP), while we refer
the restaurant of λh to indicates the collapsed state
of λh (DP). We present two different types of sam-
pler: a token-based sampler and a table-based sam-
pler. For both samplers, we first explain in the case
of our basic model (Section 2.2), and later discuss
some notes on our extended models.

4.1 Token-based Sampler
The token-based sampler is almost identical to
the collapsed sampler of the LDA (Griffiths and
Steyvers, 2004). At each iteration, we consider the
following conditional distribution of zji given all
other topic assignments z−ji and S−ji, which is the
set of seating arrangements with a customer corre-
sponds to wji removed, as

p(zji|z−ji,S−ji) ∝ p(zji|z−ji)p(wji|zji, hji,S−ji),
(6)

where p(wji|zji, hji,S−ji) =

ckhw − atkhw
ckh· + b

+
atkh· + b

ckh· + b
p(wji|zji, hji,S−ji) (7)

is a predictive word probability under the topic zji,
and

p(zji|z−ji) =
n−jijk + αk

Nj − 1 +
∑

k′ αk′
, (8)

where n−jijk is the number of words that is assigned
topic k in document j excluding wji, which is the
same as the LDA. Given the sampled topic zji, we
update the language model of topic zji, by adding

customer wji to the restaurant specified by zji and
context hji. See Teh (2006a) for details of these cus-
tomer operations.

HIERARCHICAL Adding customer operation is
slightly changed: When a new table is added to a
restaurant, we must track the label l ∈ {0, 1} indi-
cating the parent restaurant of that table, and add the
customer corresponding to l to the restaurant of λh.
See Wood and Teh (2009) for details of this opera-
tion.

SWITCHING We replace p(zji|z−ji) with

p(zji|z−ji) = p(lji = 0|hji) (zji = 0)

p(lji = 1|hji) ·
n−ji

jk +αk∑
k 6=0 n

−ji
jk +

∑
k′ αk′

(zji 6= 0),

(9)

where p(lji|hji) is a predictive of lji given by the
CRP of λhji

. We need not assign a label to a new
table, but rather we always add a customer to the
restaurant of λh according to whether the sampled
topic is 0 or not.

4.2 Table-based Sampler

One problem with the token-based sampler is that
the seating arrangement of the internal restaurant
would never be changed unless a new table is cre-
ated (or an old table is removed) in its child restau-
rant. This probability is very low, particularly in
the restaurants of shallow depth (e.g., unigram or
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v

Construct a block

Move the block to the sampled topic

: customer
: table

Figure 3: Transition of the state of restaurants in the
table-based sampler when the number of topics is 2.
{u, v, w} are word types. Each box represents a restau-
rant where the type in the upper-right corner indicates the
context. In this case, we can change the topic of the three
3-grams (vvw, vvw, uvw) in some documents from 1 to
2 at the same time.

bigram restaurants) because these restaurants have
a larger number of customers and tables than those
of deep depth, leading to get stack in undesirable
local minima. For example, imagine a table in
the restaurant of context “hidden” (depth is 2) and
some topic, served “unit”. This table is connected
to tables in its child restaurants corresponding to
some 3-grams (e.g., “of hidden unit” or “train hid-
den unit”), whereas similar n-grams, such as those
of “of hidden units” or “train hidden units” might
be gathered in another topic, but collecting these n-
grams into the same topic might be difficult under
the token-based sampler. The table-based sampler
moves those different n-grams having common suf-
fixes jointly into another topic.

Figure 3 shows a transition of state by the table-
based sampler and Algorithm 4.2 depicts a high-
level description of one iteration. First, we select
a table in a restaurant, which is shown with a dotted
line in the figure. Next, we descend the tree to col-
lect the tables connected to the selected table, which
are pointed by arrows. Because this connection can-
not be preserved in common data structures for a
restaurant described in Teh (2006a) or Blunsom et
al. (2009), we select the child tables randomly. This
is correct because customers in CRP are exchange-

Algorithm 1 Table-based sampler
for all table in all restaurants do

Remove a customer from the parent restaurant.
Construct a block of seating arrangement S by de-
scending the tree recursively.
Sample topic assignment zS ∼ p(zS |S,S−S , z−S).
Move S to sampled topic, and add a customer to the
parent restaurant of the first selected table.

end for

able, so we can restore the parent-child relations ar-
bitrarily. We continue this process recursively until
reaching the leaf nodes, obtaining a block of seat-
ing arrangement S. After calculating the conditional
distribution, we sample new topic assignment for
this block. Finally, we move this block to the sam-
pled topic, which potentially changes the topic of
many words across different documents, which are
connected to customers in a block at leaf nodes (this
connection is also arbitrary).

Conditional distribution Let zS be the block of
topic assignments connected to S and zS be a vari-
able indicating the topic assignment. Thanks to the
exchangeability of all customers and tables in one
restaurant (Teh, 2006a), we can imagine that cus-
tomers and tables in S have been added to the restau-
rants last. We are interested in the following condi-
tional distribution: (conditioning Θ is omitted)

p(zS = k′|S,S−S , z−S) ∝ p(S|S−S , k′)p(zS = k′|z−S),

where p(S|S−S , k′) is a product of customers’ ac-
tions moving to another topic, which can be decom-
posed as:

p(S|S−S , k′) = p(w|k′, h)
∏
s∈S

p(s|k′) (10)

p(s|k′) =
∏ts−1

i=0 (b+a(t
k′(−s)
hsw +i))

∏csi
j=1(j−a)

(b+c
k′(−s)
hsw· )cs·

(11)

∝
∏ts−1

i=0 (b+a(t
k′(−s)
hsw +i))

(b+c
k′(−s)
hsw· )cs·

. (12)

Let us define some notations used above. Each
s ∈ S is a part of seating arrangements in a restau-
rant, there being ts tables, i-th of which with csi
customers, with hs as the corresponding context. A
restaurant of context h and topic k has tkhw tables
served dish w, i-th of which with ckhwi customers.
Superscripts −s indicate excluding the contribution
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of customers in s, and xn = x(x+1) · · · (x+n−1)
is the ascending factorial. In (10) p(w|k′, h) is the
parent distribution of the first selected table, and
the other p(s|k′) is the seating arrangement of cus-
tomers. The likelihood for changing topic assign-
ments across documents must also be considered,
which is p(zS = k′|z−S) and decomposed as:

p(zS = k′|z−S) =
∏
j

(n−S
jk′+αk′ )

nj(S)

(N−S
j +

∑
k αk)nj(S)

, (13)

where nj(S) is the number of word tokens con-
nected with S in document j.

HIERARCHICAL We skip tables on restaurants of
k = 0, because these tables are all from other topics
and we cannot construct a block. The effects of λ
can be ignored because these are shared by all topics.

SWITCHING In the SWITCHING, p(zS = k′|z−S)
cannot be calculated in a closed form because
p(lji|hji) in (9) would be changed dynamically
when adding customers. This problem is the same
one addressed by Blunsom and Cohn (2011), and we
follow the same approximation in which, when we
calculate the probability, we fractionally add tables
and customers recursively.

4.3 Inference of Hyperparameters
We also place a prior on each hyperparameter and
sample value from the posterior distribution for ev-
ery iteration. As in Teh (2006a), we set different
values of a and b for each depth of PYP, but share
across all topics and sample values with an auxiliary
variable method. We also set different value of γ for
each depth, on which we place Gamma(1, 1). We
make the topic prior α asymmetric: α = βα0;β ∼
Gamma(1, 1),α0 ∼ Dir(1).

5 Related Work

HMM-LDA (Griffiths et al., 2005) is a composite
model of HMM and LDA that assumes the words
in a document are generated by HMM, where only
one state has a document-specific topic distribution.
Our SWITCHING model can be understood as a lex-
ical extension of HMM-LDA. It models the topical-
ity by context-specific binary random variables, not
by hidden states. Other n-gram topic models have
focused mainly on information retrieval. Wang et

min. training set test set
Corpus appear # types # docs # tokens # docs # tokens
Brown 4 19,759 470 1,157,225 30 70,795
NIPS 4 22,705 1500 5,088,786 50 167,730
BNC 10 33,071 6,162 12,783,130 100 202,994

Table 1: Corpus statistics after the pre-processing: We
replace words appearing less than min.appear times in
training + test documents, or appearing only in a test set
with an unknown token. All numbers are replaced with
#, while punctuations are remained.

al. (2007) is a topic model on automatically seg-
mented chunks. Lindsey et al. (2012) extended this
model with the hierarchical Pitman-Yor prior. They
also used switching variables, but for a different pur-
pose: to determine the segmenting points. They treat
these variables completely independently, while our
model employs a hierarchical prior to share statisti-
cal strength among similar contexts.

Our primary interest is language model adapta-
tion, which has been studied mainly in the area of
speech processing. Conventionally, this adaptation
has relied on a heuristic combination of two sep-
arately trained models: an n-gram model p(w|h)
and a topic model p(w|d). The unigram rescal-
ing, which is a product model of these two mod-
els, perform better than more simpler models such
as linear interpolation (Gildea and Hofmann, 1999).
There are also some extensions to this method (Tam
and Schultz, 2009; Huang and Renals, 2008), but
these methods have one major drawback: at predic-
tion, the rescaling-based method requires normaliza-
tion across vocabulary at each word, which prohibits
use on applications requiring dynamic (incremental)
adaptation, e.g., settings where we have to update
the topic distribution as new inputs come in. Tam
and Schultz (2005) studied on this incremental set-
tings, but they employ an interpolation. The practi-
cal interest here is whether our Bayesian models can
rival the rescaling-based method in terms of predic-
tion power. We evaluate this in the next section.

6 Experiments

6.1 Settings

We test the effectiveness of presented models and
the blocked sampling method on unsupervised lan-
guage model adaptation settings. Specifically we
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Figure 4: (a)–(c): Comparison of negative log-likelihoods at training of HPYTM (K = 50). Lower is better. HPYTM
is trained on both token- and table-based samplers, while HPYTMtoken is trained only on the token-based sampler.
(d)–(f): Test perplexity of various 3-gram models as a function of number of topics on each corpus.

concentrate on the dynamic adaptation: We update
the posterior of language model given previously ob-
served contexts, which might be decoded transcripts
at that point in ASR or MT.

We use three corpora: the Brown, BNC and NIPS.
The Brown and BNC are balanced corpora that con-
sist of documents of several genres from news to
romance. The Brown corpus comprises 15 cate-
gories. We selected two documents from each cate-
gory for the test set, and use other 470 documents for
the training set. For the NIPS, we randomly select
1,500 papers for training and 50 papers for testing.
For BNC, we first randomly selected 400 documents
from a written corpus and then split each document
into smaller documents every 100 sentences, leading
to 6,262 documents, from which we randomly se-
lected 100 documents for testing, and other are used
for training. See Table 1 for the pre-processing of
unknown types and the resulting corpus statistics.

For comparison, besides our proposed HIERAR-
CHICAL and SWITCHING models, we prepare vari-
ous models for baseline. HPYLM is a n-gram lan-

guage model without any topics. We call the model
without the global G0

h introduced in Section 2.2
HPYTM. To see the effect of the table-based sam-
pler, we also prepare HPYTMtoken, which is trained
only on the token-based sampler. RESCALING is
the unigram rescaling. This is a product model of
an n-gram model p(w|h) and a topic model p(w|d),
where we learn each model separately and then com-
bine them by:

p(w|h, d) ∝
(
p(w|d)

p(w)

)β
p(w|h). (14)

We set β in (14) to 0.7, which we tuned with the
Brown corpus.

6.2 Effects of Table-based Sampler

We first evaluate the effects of our blocked sam-
pler at training. For simplicity, we concentrate on
the HPYTM with K = 50. Table 4(a)–(c) shows
negative likelihoods of the model during training.
On all corpora, the model with the table-based sam-
pler reached the higher probability space with much
faster speed on both 3-gram and 4-gram models.
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6.3 Perplexity Results
Training For burn-in, we ran the sampler as fol-
lows: For HPYLM, we ran 100 Gibbs iterations. For
RESCALING, we ran 900 iterations on LDA and 100
iterations on HPYLM. For all other models, we ran
500 iterations of the Gibbs; HPYTMtoken is trained
only on the token-based sampler, while for other
models, the table-based sampler is performed after
the token-based sampler.

Evaluation We have to adapt to the topic dis-
tribution of unseen documents incrementally. Al-
though previous works have employed incremental
EM (Gildea and Hofmann, 1999; Tam and Schultz,
2005) because their inference is EM/VB-based, we
use the left-to-right method (Wallach et al., 2009),
which is a kind of particle filter updating the poste-
rior topic distribution of a test document. We set the
number of particles to 10 and resampled each parti-
cle every 10 words for all experiments. To get the
final perplexity, after burn-in, we sampled 10 sam-
ples every 10 iterations of Gibbs, calculated a test
perplexity for each sample, and averaged the results.

Comparison of 3-grams Figure 4(d)–(f) shows
perplexities when varying the number of top-
ics. Generally, compared to the HPYTMtoken, the
HPYTM got much perplexity gains, which again
confirm the effectiveness of our blocked sampler.
Both our proposed models, the HIERARCHICAL and
the SWITCHING, got better performances than the
HPYTM, which does not place the global model
G0
h. Our SWITCHING model consistently performed

the best. The HIERARCHICAL performed somewhat
worse than the RESCALING when K become large,
but the SWITCHING outperformed that.

Comparison of 4-grams and beyond We sum-
marize the results with higher order n-grams in Ta-
ble 2, where we also show the time for prediction.
We fixed the number of topics K = 100 because
we saw that all models but HPYTMtoken performed
best at K = 100 when n = 3. Generally, the
results are consistent with those of n = 3. The
models with n = ∞ indicate a model extension
using the Bayesian variable-order language model
(Mochihashi and Sumita, 2008), which can naturally
be integrated with our generative models. By this
extension, we can prune unnecessary nodes stochas-

NIPS BNC
Model n PPL time PPL time
HPYLM 4 117.2 59 169.2 74
HPYLM ∞ 117.9 61 173.1 59
RESCALING 4 101.4 19009 130.3 36323
HPYTM 4 107.0 1004 133.1 980
HPYTM ∞ 107.2 1346 133.6 1232
HIERARCHICAL 4 106.3 1038 129.0 993
HIERARCHICAL ∞ 105.7 1337 129.3 1001
SWITCHING 4 100.0 1059 125.5 991
SWITCHING ∞ 100.4 1369 125.7 1006

Table 2: Comparison of perplexity and the time require
for prediction (in seconds). The number of topics is fixed
to 100 on all topic-based models.

tically during training. We can see that this ∞-
gram did not hurt performances, but the sampled
model get much more compact; in BNC, the number
of nodes of the SWITCHING with 4-gram is about
7.9M, while the one with ∞-gram is about 3.9M.
Note that our models require no explicit normaliza-
tion, thereby drastically reducing the time for pre-
diction compared to the RESCALING. This differ-
ence is especially remarkable when the vocabulary
size becomes large.

We can see that our SWITCHING performed con-
sistently better than the HIERARCHICAL. One rea-
son for this result might be the mismatch of pre-
diction of the topic distribution in the HIERARCHI-
CAL. The HIERARCHICAL must allocate some (not
global) topics to every word in a document, so even
the words to which the SWITCHING might allocate
the global topic (mainly function words; see below)
must be allocated to some other topics, causing a
mismatch of allocations of topic.

6.4 Qualitative Results

To observe the behavior in which the SWITCHING

allocates some words to the global topic, in Figure
5, we show the posterior of allocating the topic 0
or not at each word in a part of the NIPS training
corpus. We can see that the model elegantly identi-
fied content and function words, learning the topic
distribution appropriately using only semantic con-
texts. These same results in the HIERARCHICAL are
presented in Table 3, where we show some relations
between λh and context h. Contexts that might be
likely to precede nouns have a higher value of λh,
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there has been much recent work on measuring image statistics
and on learning probability distributions on images . we observe
that the mapping from images to statistics is many-to-one and
show it can be quantified by a phase space factor .

Figure 5: The posterior for assigning topic 0 or not in
NIPS by the ∞-gram SWITCHING. Darker words indi-
cate a higher probability of not being assigned topic 0.

λh h

0.0–0.1 in spite, were unable, a sort, on behalf, . regardless
0.5–0.6 assumed it, rand mines, plans was, other excersises
0.9–1.0 that the, the existing, the new, their own, and spatial

Table 3: Some contexts h for various values of λh in-
duced by the 3-gram HIERARCHICAL in BNC.

while prefixes of idioms have a lower value. The∞-
gram extension gives us the posterior of n-gram or-
der p(n|h), which can be used to calculate the proba-
bility of a word ordering composing a phrase in topic
k as p(w, n|k, h) ∝ p(n|h)p(w|k, n, h). In Table
4, we show some higher probability topic-specific
phrases from the model trained on the NIPS.

7 Conclusion

We have presented modeling and algorithmic con-
tributions to the existing Bayesian n-gram topic
model. We explored two different priors to incor-
porate a global model, and found the effectiveness
of the flat structured model. We developed a novel
blocked Gibbs move for these types of models to ac-
celerate inference. We believe that this Gibbs op-
eration can be incorporated with other models hav-
ing a similar hierarchical structure. Empirically, we
demonstrate that by a careful model design and effi-
cient inference, a well-defined Bayesian model can
rival the conventional heuristics.
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Abstract

In this paper we report an empirical study
on semi-supervised Chinese word segmenta-
tion using co-training. We utilize two seg-
menters: 1) a word-based segmenter lever-
aging a word-level language model, and 2)
a character-based segmenter using character-
level features within a CRF-based sequence
labeler. These two segmenters are initially
trained with a small amount of segmented
data, and then iteratively improve each other
using the large amount of unlabelled data.
Our experimental results show that co-training
captures 20% and 31% of the performance
improvement achieved by supervised training
with an order of magnitude more data for the
SIGHAN Bakeoff 2005 PKU and CU corpora
respectively.

1 Introduction

In the literature there exist two general models for
supervised Chinese word segmentation, the word-
based approach and the character-based approach.
The word-based approach searches for all possible
segmentations, usually created using a dictionary,
for the optimal one that maximizes a certain util-
ity. The character-based approach treats segmenta-
tion as a character sequence labeling problem, indi-
cating whether a character is located at the bound-
ary of a word. Typically the word-based approach
uses word level features, such as word n-grams and
word length; while the character-based approach
uses character level information, such as character n-
grams. Both approaches have their own advantages

and disadvantages, and there has been some research
in combining the two approaches to improve the per-
formance of supervised word segmentation.

In this research we are trying to take advantage of
the word-based and the character-based approaches
in the semi-supervised setting for Chinese word seg-
mentation, where there is only a limited amount
of human-segmented data available, but there ex-
ists a relatively large amount of in-domain unseg-
mented data. The goal is to make use of the in-
domain unsegmented data to improve the ultimate
performance of word segmentation. According to
Sun et al. (2009), “the two approaches [word-based
and character-based approaches] are either based on
a particular view of segmentation.” This naturally
motivates the use of co-training, which utilizes two
models trained on different views of the input la-
beled data which then iteratively educate each other
with the unlabelled data. At the end of the co-
training iterations, the initially weak models achieve
improved performance. Co-training has been suc-
cessfully applied in many natural language process-
ing tasks. In this paper we describe an empiri-
cal study of applying co-training to semi-supervised
Chinese word segmentation. Our experimental re-
sults show that co-training captures 20% and 31%
of the performance improvement achieved by super-
vised training with an order of magnitude more data
for the SIGHAN Bakeoff 2005 PKU and CU corpora
respectively.

In section 2 we review the two supervised ap-
proaches and co-training algorithm in more detail.
In section 3 we describe our implementation of the
co-training word segmentation. In section 4 we de-
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Figure 1: A search space for word segmenter

scribe our co-training experiments. In section 5 we
conclude the paper.

2 Related Work

In this section, we first review the related research on
the word-based and the character-based approaches
for Chinese word segmentation, and comparatively
analyze these two supervised approaches. We then
review the related research on co-training.

2.1 Supervised Word Segmentation

2.1.1 Word-Based Segmenter
Given a character sequence c1c2...cn, the word-

based approach searches in all possible segmenta-
tions for one that maximizes a pre-defined utility
function, formally represented as in Equation 1. The
search space, GEN(c1c2...cn), can be represented
as a lattice, where each vertex represents a charac-
ter boundary index and each arc represents a word
candidate which is the sequence of characters within
the index range. A dictionary1 can be used to gener-
ate such a lattice. For example, given the character
sequence “发展中国家” and a dictionary that con-
tains the words {发展，中国，国家} and all single
Chinese characters, the search space is illustrated in
Figure 1.

Ŵ = arg max
W∈GEN(c1c2...cn)

Util(W ) (1)

Dynamic programming such as Viterbi decoding
is usually used to search for the optimized segmen-
tation. The utility can be as simple as the negation
of number of words (i.e. Util(W ) = − | W |),

1A dictionary is not a must to create the search space but
it could shrink the search space and also lead to improved seg-
mentation performance.

which gives a reasonable performance if the dictio-
nary used for generating the search space has a good
coverage. Alternatively one can search for the seg-
mentation that maximizes the word sequence prob-
ability P (W ) (i.e. Util(W ) = P (W )). With a
Markov assumption, P (W ) can be calculated using
a language model as in Equation 2.

P (W ) = P (w1w2...wm)

= P (w1).P (w2|w1)...P (wn|w1w2...wn1)

= P (w1)P (w2|w1)...P (wn|wn−1)

(2)

More generally, the utility can be formulated as
a semi-Markov linear model, defined as Equation 3,
in which Φ is the feature function vector, and Θ is
the parameter vector that can be learned from train-
ing data using different techniques: Liang (2005),
Gao et al. (2005), and Zhang and Clark (2007) use
averaged perceptron; Nakagawa (2004) uses general
iterative scaling; Andrew (2006) uses semi-Markov
CRF; and Sun (2010) uses a passive-aggressive
learning algorithm.

Util(W ) = ΘT Φ(c1c2...cn,W ) (3)

2.1.2 Character-Based Segmenter
The character-based approach treats word seg-

mentation as a character sequence labeling problem,
to label each character with its location in a word,
first proposed by Xue (2003).2 The basic label-
ing scheme is to use two tags: ‘B’ for the begin-
ning character of a word and ‘O’ for other charac-
ters (Peng et al., 2004). Xue (2003) use a four-tag
scheme based on some linguistic intuitions: ‘B’ for
the beginning character, ‘I’ for the internal charac-
ters, ‘E’ for the ending character, and ‘S’ for single-
character word. For example, the word sequence “洽
谈会 很 成功” can be labelled as 洽\B 谈\I 会\E
很\S 成\B 功\E. Zhao et al. (2010) further extend
this scheme by using six tags.

Training and decoding of the character labeling
problem is similar to part-of-speech tagging, which

2Teahan et al. (2000) use a character language model to de-
termine whether a word boundary should be inserted after each
character, which can also be considered as a character-based
approach as well.
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is also generally formulated as a linear model. Many
machine learning techniques have been explored:
Xue (2003) use a maximum entropy model; Peng et
al. (2004) use linear-chain CRF; Liang (2005) uses
averaged perceptron; Sun et al. (2009) use a discrim-
inative latent variable approach.

2.1.3 Comparison and Combination
It is more natural to use word-level informa-

tion, such as word n-grams and word length, in a
word-based segmenter; while it is more natural to
use character-level information, such as character n-
grams, in a character-based segmenter. Sun (2010)
gives a detailed comparison of the two approaches
from both the theoretical and empirical perspec-
tives. Word-level information has greater represen-
tational power in terms of contextual dependency,
while character-level information is better at mor-
phological analysis in terms of word internal struc-
tures.

On one hand, features in a character-based model
are usually defined in the neighboring n-character
window; and an order-K CRF can only look at the
labels of the previous K characters. Given that many
words contain more than one character, a word-
based model can examine a wider context. Thus
the contextual dependency information encoded in
a character-based model is generally weaker than in
a word-based model. Andrew (2006) also shows
that semi-Markov CRF makes strictly weaker in-
dependence assumptions than linear CRF and so
a word-based segmenter using an order-K semi-
Markov model is more expressive than a character-
based model using an order-K CRF.

On the other hand, Chinese words have internal
structures. Chinese characters can serve some mor-
phological functions in a word. For example, the
character们 usually works as a suffix to signal plu-
ral; the character 者 can also be a suffix meaning a
group of people; and 阿 generally works as a pre-
fix before a person’s nickname that has one charac-
ter. Such morphological information is extremely
useful for identifying unknown words. For exam-
ple, a character-based model can learn that 阿 is
usually tagged as ‘B’ and the next character is usu-
ally tagged as ‘E’. Thus even when 阿甘 is not an
existing word in the training data, a character-based
model might still be able to correctly label it as阿\B

甘\E.
Recent advanced Chinese word segmenters, either

word-based or character-based, have been trying to
make use of both word-level and character-level in-
formation. For example, Nakagawa (2004) inte-
grates the search space of a character-based model
into a word-based model; Andrew (2006) converts
CRF-type features into semi-CRF features in his
semi-Markov CRF segmenter; Sun et al. (2009) add
word identify information into their character-based
model; and Sun (2010) combine the two approaches
at the system level using bootstrap aggregating.

2.2 Co-Training
The co-training approach was first introduced by
Blum and Mitchell (1998). Theoretical analysis of
its effectiveness is given in (Blum and Mitchell,
1998; Dasgupta et al., 2001; Abney, 2002). Co-
training works by partitioning the feature set into
two conditionally independent views (given the true
output). On each view a statistical model can be
trained. The presence of multiple distinct views of
the data can be used to train separate models, and
then each model’s predictions on the unlabeled data
are used to augment the training set of the other
model.

Figure 2 depicts a general co-training framework.
The inputs are two sets of data, a labelled set S and
an unlabelled set U. Generally S is small and U is
large. Two statistical models M1 and M2 are used,
which are built on two sets of data L1 and L2 initial-
ized as S but then incrementally increased in each
iteration. C is a cache holding a small subset of U
to be labelled by both models (Blum and Mitchell,
1998; Abney, 2002). In some applications, C is
not used and both models label the whole set of U
(i.e. C==U) (Collins and Singer, 1999; Nigam and
Ghani, 2000; Pierce and Cardie, 2001). The stop-
ping criteria can be, for example, when U is empty,
or when a certain number of iterations are executed.

In step 5 and 6 during each iteration, some data
labelled by M1 are selected and added to the train-
ing set L2, and vice versa. Several selection algo-
rithms have been proposed. Dasgupta et al. (2001)
and Abney (2002) use a selection algorithm that tries
to maximize the agreement rate between the two
models. The more popular selection algorithm is to
choose the K examples that have the highest con-
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Input:
S is the labelled data
U is the unlabelled data

Variables:
L1 is the training data for View One
L2 is the training data for View Two
C is a cache holding a small subset of U

Initialization:
L1 <- S
L2 <- S
C <- randomly sample a subset of U
U <- U - C

REPEAT:
1. Train M1 using L1
2. Train M2 using L2
3. Use M1 to label C
4. Use M2 to label C
5. Select examples labelled by M1, add to L2
6. Select examples labelled by M2, add to L1
7. Randomly move samples from U to C

so that C maintains its size
UNTIL stopping criteria

Figure 2: A generic co-training framework

fidence score (Nigam and Ghani, 2000; Pierce and
Cardie, 2001). In order to balance the class distri-
butions in the training data L1 and L2, Blum and
Mitchell (1998) select P positive examples and Q
negative examples that have the highest confidence
scores respectively. Wang et al. (2007) and Guz et
al. (2007) use disagreement-based selection, which
adds to L2, data that is labeled by M1 and M2 with
high and low confidence respectively, with the in-
tuition that such data are more useful and compen-
satory to M2. Finally, instead of adding the selected
data to the training data, Tur (2009) propose the co-
adaptation approach which linearly interpolates the
existing model with the new model built with the
new selected data.

3 Segmentation With Co-Training

3.1 Design of Two Segmenters

The use of co-training needs two statistical models
that satisfy the following three conditions. First, in
theory these two models need to be built on two con-
ditionally independent views. However this is a very
strong assumption and many large-scale NLP prob-
lems do not have a natural split of features to satisfy
this assumption. In practice it has been shown that
co-training can still achieve improved performance
when this assumption is violated, but conforming to
the conditionally independent assumption leads to

a bigger gain (Nigam and Ghani, 2000; Pierce and
Cardie, 2001). Thus we should strive to have the two
models less correlated. Second, the two models both
need to be effective for the task, that is, each of the
models itself can perform the task reasonably well.
Third, the decoding and training of the two models
need to be efficient, as in co-training we need to seg-
ment the unlabelled data and re-train the models in
each iteration. In the following we describe our de-
sign of the two segmenters.

Word-based segmenter In the word-based seg-
menter, we utilize a statistical n-gram lan-
guage model and try to optimize the language
modeling score together with a word insertion
penalty, as show in Equation 4. K is a per-
word penalty that is pre-determined with 10
fold cross-validation on the SIGhan PKU train-
ing set. We train a Kneser-Ney backoff lan-
guage model from the training data, and extract
a dictionary of words from the training data for
generating the search space. Our pilot study
suggested that a bigram language model is suf-
ficient for this task.

Util(W ) = ln(P (W )) − |W | ∗ K (4)

Character-based segmenter We use an order-1
linear conditional random field to label a char-
acter sequence. Following Xue (2003), we use
the four-tag scheme “BIES”. We use the tool
CRF++3. The features that we use are charac-
ter n-grams within the neighboring 5-character
window and tag bigrams. Given a character c0

in the character sequence c−2c−1c0c1c2, we ex-
tract the following features: character unigrams
c−2, c−1, c0, c1, c2, bigrams c−1c0 and c0c1. L2
regularization is applied in learning.

As can be seen, we build a word-based segmenter
that uses only word level features, and a character-
based segmenter that uses only character level fea-
tures. These two segmenters by no means satisfy
the conditionally independence assumption, but we
have the hope that they are not too correlated as
they use different levels of information and these

3http://crfpp.googlecode.com/svn/trunk/
doc/index.html
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different levels of information have been shown to
be complementary in literature. Also the effective-
ness of these two segmenters has been demonstrated
in literature and will be shown again in our results
in Section 4. Finally, both segmenters can decode
and be trained pretty quickly. In our implemen-
tation, running on a Xeon 2.93GHz CPU with 4G
of memory, it takes less than 30 seconds to build a
word-based segmenter and less than 1 hour to build
a character-based segmenter with the SIGhan PKU
training data, and it takes less than 20 seconds to ap-
ply the word-based segmenter or less than 5 seconds
to apply the character-based segmenter to the PKU
testing data.

3.2 Co-Training

We follow the framework in Figure 2 for the co-
training setup. We do not use the cache C, but di-
rectly label the whole unlabelled data set U, because
in our experiment setup (see Section 4) U is not
huge and computationally we can afford to label the
whole set. The stopping criteria we use is when U is
empty. Following Wang et al. (2007) and Guz et al.
(2007), we use disagreement-based data selection.
In every iteration, we pick some sentences that are
segmented by the character-based model with high
confidence but are segmented by the word-based
model with low confidence to add to the training
data of the word-based model, and vice versa. Con-
fidence score is normalized with regard to the length
of the sentence (i.e. number of characters) to avoid
biasing towards short sentences. Confidence scores
between the two segmenters, however, are not di-
rectly comparable. Thus we rank the sentences by
their confidence scores in each segmenter respec-
tively, and calculate the rank difference between the
two segmenters. This rank difference is used as the
indication of the gap of the confidence between the
two segmenters. The sentences of highest rank dif-
ference are assigned to the training data of the word-
based segmenter, with the segmentations from the
character-based model; and the sentences of lowest
rank difference are assigned to the training data of
the character-based model, with segmentations from
the word-based model.

4 Experiments

4.1 Data and Experiment Setup

We conduct a set of experiments to evaluate the per-
formance of our co-training on semi-supervised Chi-
nese word segmentation. Two corpora, the PKU cor-
pus and the CU corpus, from the SIGhan Bakeoff
2005 are used. The PKU corpus contains texts of
simplified Chinese characters, which include 19056
sentences in the training data and 1945 sentences in
the testing data. The CU corpus contains texts of
traditional Chinese characters, which include 53019
sentences in the training data and 1493 sentences in
the testing data. The training data in each corpus is
randomly split into 10 subsets. In each run one set
is used as the labelled data S, and the other nine sets
are combined and used as the unlabelled data U with
segmentations removed. That is, 10% of the training
data is used as segmented data, and 90% are used
as unsegmented data in our semi-supervised train-
ing. This setup resembles our semi-supervised ap-
plication, where there is only a small limited amount
of segmented data but a relatively large amount of
in-domain unsegmented data available. The final
trained character-based and word-based segmenters
from co-training are then evaluated on the testing
data. Results we report in this paper are the aver-
age of the 10 runs. F-measure is used as the per-
formance measurement. A 99% confidence interval
is calculated as ±2.56

√
p(1− F )/N for statistical

significance evaluation, where F is the F-measure
and N is the number of words. Subsequent asser-
tions in this paper about statistical significance indi-
cate whether or not the p-value in question exceeds
1%.

4.2 Co-Training Results

For comparison, we measure the baseline as the
performance of a model trained with the 10%
segmented data only (referred to as BASIC base-
lines). The BASIC baselines, both for the word-
based model and the character-based model, how-
ever, use only the segmented data but leave out the
large amount of available unsegmented data. We
thus measure another baseline (referred to as FOLD-
IN), which naively uses the unsegmented data. In the
FOLD-IN baseline, a model is first trained with the
10% segmented data, and then this model is used

1195



Table 1: Co-training results
PKU CU

char word char word
BASIC 90.4 84.2 89.2 78.4
FOLD-IN 90.5 84.2 89.3 78.5
CEILING 94.5 93.0 94.2 88.9
CO-TRAINING 91.2 90.3 90.2 86.2

Figure 3: Gap filling with different split ratio

to label the unsegmented data. The automatic seg-
mentation is then combined with the segmented data
to build a new model. We also measure the CEIL-
ING as the performance of a model trained with all
the training data available, i.e. we use the true seg-
mentations of the 90% unsegmented data together
with the 10% segmented data to train a model. The
CEILING tells us the oracle performance when we
have all segmented data for training, while the BA-
SIC shows how much performance is dropped when
we only have 10% of the segmented data. The per-
formance of co-training will tell us how much we
can fill the gap by taking advantage of the other 90%
as unsegmented data in the semi-supervised training.
The FOLD-IN baseline further verifies the effective-
ness of co-training, i.e. co-training should perform
better than naively folding in the unsegmented data.

Table 1 presents the results. First, we see that
both the word-based and character-based models

are doing a decent job under the CEILING condi-
tion. This confirms the effectiveness of each in-
dividual model, which is generally a requirement
for running co-training. The character-based seg-
menter, although simple and with character-level
features only, achieves the performance that is close
to the state-of-the-art technologies that are much
more complicated (The best performance is 95.2%
for the PKU corpus and 95.1% for the CU corpus,
see (Sun et al., 2009)). Second, we see that under
all four conditions, the character-based segmenter
performs better than the word-based model. This
is not too surprising as these results are consistent
with those reported in the literature. The word-based
segmenter implemented in this work is less power-
ful, and it needs a good dictionary to achieve good
performance. In our implementation, a dictionary
is extracted from the segmented training set. Thus
the word-based model suffers a lot when the train-
ing data is small. Third, we see that both the word-
based model and the character-based model are im-
proved by co-training, and the improvements are all
statistically significant. It is not surprising for the
word-based model to learn from the more accurate
character-based model, which can also identify new
words to add to the dictionary. More interestingly,
the character-based segmenter is able to benefit from
the less powerful word-based segmenter. For the
character-based model, about 20% of the gap be-
tween BASIC and CEILING is filled by co-training,
consistently in both the PKU and CU corpora. Fi-
nally, comparing FOLD-IN and BASIC, we see that
naively using the unsegmented data does not lead to
a significant improvement. This suggests that co-
training provides a process that effectively makes
use of the unsegmented data.

For completeness, in Figure 3 we also show the
relative gap filling with different splits of the seg-
mented vs unsegmented data. With more data mov-
ing to the segmented set, the absolute improvement
of co-training over BASIC gets smaller, while the
gap between the BASIC and CEILING also becomes
smaller. The relative gap filled, i.e. the improve-
ment relative to the difference between BASIC and
CEILING, as can be seen, consistently falls inside
the section of 15% and 25%.
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4.3 Further Analysis

It is not surprising that the word-based segmenter
benefits from co-training since it learns from the
more accurate character-based segmenter. Our fo-
cus, however, is to better understand what benefit
the character-based segmenter gains from the co-
training procedure. The character-based segmenter
treats word segmentation as a character sequence
labelling problem with four tags “B I E S”. As-
suming that segmentation accuracy is proportional
to tag accuracy, we examine the tag accuracy of
the character-based segmenter before and after co-
training.

If a character is labelled with tag T0 initially be-
fore co-training and with tag T1 after co-training,
with the tag T1 different from T0, there can be one
of three cases: 1) T0 is correct; 2) T1 is correct; or
3) neither is correct. The absolute gain from co-
training of switching from tag T0 to T1 is defined
as the number of case 2 instances less case 1 in-
stances. Absolute gain indicates the gain of tag ac-
curacy where co-training learns to switch from T0 to
T1, and it contributes to the overall tag accuracy im-
provement. We also define relative gain of switch-
ing from tag T0 to T1 as the absolute gain divided
by the total number of cases switching from tag T0
to T1. Relative gain indicates how well co-training
learns to switch from T0 to T1.

Results are shown in Table 2. For both absolute
gain and relative gain, 12 ordered switching pairs
can be divided into two pools, a positive pool that
has higher gain including B → E, E → B, S → B,
S → E, E → I , B → I , B → S, and a neutral
pool that has lower or even negative gain including
I → E, I → S, I → B, E → S, S → I . The
S → B, S → E, B → I , E → I in the positive
pool actually suggest that the character-based seg-
menter learns from co-training to combine a single-
character word with it’s neighbour to create a new
longer word; whereas the I → E, I → S, I → B in
the neutral pool suggest that it does not really learn
how to separate a longer words into smaller units.

4.4 Feature Combination

We split the features into two sets, a character-level
feature set used by the character-based segmenter
and a word-level feature set used by the word-based

Table 2: Absolute Gain and Relative Gain
Absolute Gain Relative Gain

T0 T1 PKU CU PKU CU
B I 678 681 0.28 0.59
B E 2331 1727 0.41 0.46
B S 1025 686 0.07 0.08
I B 458 -283 0.07 -0.08
I E 61 -1117 0.01 -0.23
I S 323 -338 0.09 -0.34
E B 2163 1601 0.41 0.46
E I 963 819 0.36 0.62
E S 520 -13 0.03 0.00
S B 1847 892 0.27 0.30
S I 104 47 0.22 0.28
S E 1438 846 0.26 0.55

segmenter. We have shown that these two seg-
menters improve each other via co-training. How-
ever, as reviewed in Section 2.1, there is active re-
search in combining the character-level and word-
level features in a segmenter. When training with
the whole set of data (i.e. under the CEILING con-
dition), a segmenter with combined features tends to
perform better than only using one set of features.
Thus we need to address two problems. First, we
want to understand whether co-training, which splits
the features, can actually beat the BASIC and FOLD-
IN baselines of a segmenter with combined features.
Second, we want to explore whether we can further
improve the final co-training performance by feature
combination.

To address these two problems, we adopt Weiwei
Sun’s character-based segmenter4 in (Sun, 2010).
We use this segmenter because it is publicly avail-
able and it performs well on both the PKU corpus
and CU corpus. It models word segmentation as
a character labelling problem, and solves it with a
passive-aggressive optimization algorithm. It uses
the same feature set as in (Sun et al., 2009), in-
cluding both character-level features and word-level
features. Character-level features include character
uni-grams and bi-grams in the five character win-
dow, and whether the current character is the same
as the next or the one after the next character. Word-

4Available at http://www.coli.uni-
saarland.de/ wsun/ccws.tgz
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Table 3: Sun-Segmenter’s performance
PKU CU

BASIC 90.3 89.2
FOLD-IN 90.6 89.7
CEILING 94.8 95.0

Table 4: Results of feature combination
PKU CU

data combination 91.2 90.9
relabelling 91.2 91.0

level features include what word uni-grams or bi-
grams are anchored at the current character. Word
uni-grams and bi-grams are extracted from the la-
beled training data. For more details, please refer
to (Sun et al., 2009) and (Sun, 2010). For ease
of description, we will refer to Weiwei Sun’s seg-
menter with combined features as Sun-Segmenter,
and the character-based segmenter used in our co-
training which uses character-level features as Char-
Segmenter.

Table 3 shows the performance of the Sun-
Segmenter under the three conditions: BASIC,
FOLD-IN, and CEILING. We see that under
the CEILING condition, the Sun-Segmenter out-
performs the Char-Segmenter by 0.3% in the PKU
corpus and 0.8% in the CU corpus. However, un-
der the BASIC condition when there is only 10%
of training data available, the Sun-Segmenter gives
no gain. This probably is due to the fact that the
Sun-Segmenter uses a much larger feature set and
thus correspondingly a larger training set is needed
to avoid under-fitting. The Sun-Segmenter has more
gain when folding in the unsegmented data than the
Char-Segmenter, further suggesting that the Sun-
Segmenter is benefiting from the size of data. For
both corpora, however, the Char-Segmenter after co-
training beats the FOLD-IN baseline of the Sun-
Segmenter by at least 0.5%, and the improvement
is statistically significant. When there is only a
small amount of segmented data available, using a
more advanced segmenter with combined features
still under-performs compared to co-training. These
results justify the split of features for running co-
training.

Next we would like to explore whether we could

further improve the co-training performance, given
that we have a more advanced segmenter using com-
bined features. We try two approaches. In the first
approach, after all the iterations of co-training, the
data are split into two sets, one set for training the
word-based segmenter L1 and the other set for train-
ing the character-based segmenter L2. The segmen-
tations of these two sets of data are probably bet-
ter than the segmentations under the FOLD-IN con-
dition. We thus combine the two sets of data, and
use the combined data to train a new model with the
Sun-Segmenter. In the second approach, we use the
character-based segmenter after co-training, which
has an improved performance, to relabel the set of
unsegmented data U, and then combine it with the
segmented data set S. We then use the combined data
to train a new model with the Sun-Segmenter.

Results are shown in Table 4. In the PKU corpus,
we do not see a gain using either the data combina-
tion approach or the relabelling approach compared
to the performance of the Char-Segmenter after co-
training, probably because the Sun-Segmenter just
modestly improves over the Char-Segmenter under
the CEILING condition. However, in the CU cor-
pus, where under the CEILING condition the Sun-
Segmenter has a much bigger gain over the Char-
Segmenter, there is 0.7% improvement by using the
data combination approach and 0.8% by using the
relabelling approach, and the improvement is statis-
tically significant. Overall, using co-training with
feature combination we are able to cut the gap be-
tween the BASIC baseline and CEILING of the Sun-
Segmenter by 20% in the PKU corpus and 31% in
the CU corpus.

5 Discussion

There has been some research on semi-supervised
Chinese word segmentation. For example, Liang
(2005) derive word cluster features and mutual in-
formation features from unlabelled data, and add
them to supervised discriminative training; Li and
Sun (2009) use punctuation as implicit annotations
of a character starting a word (the character after a
punctation) or ending a word (the character before
a punctuation) in a large unlabelled data set to aug-
ment supervised data; Sun and Xu (2011) derive a
large set of features from unlabelled data, includ-
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ing mutual information, accessor variety and punc-
tuation variety to augment the character and word
features derived from labelled data. These research
works aim to use huge amount of unsegmented data
to further improve the performance of an already
well-trained supervised model.

In this paper, we assume a much limited amount
of segmented data available, and try to boost up the
performance by using in-domain unsegmented data.
Chinese word segmentation is domain-sensitive or
application sensitive. For example, a CRF seg-
menter trained on the SIGhan MSR training data,
which achieves an F-measure of 96.5% in the MSR
testing data, only has 83.8% when applied to the
PKU testing data; and the same CRF segmenter
trained on the PKU training data achieves 94.5% on
the PKU testing data. When one starts a new ap-
plication that requires word segmentation in a new
domain, it is likely that there is only a very small
amount of segmented data available.

We propose the approach of co-training for Chi-
nese word segmentation for the semi-supervised set-
ting where there is only a limited amount of human-
segmented data available, but there exists a relatively
large amount of in-domain unsegmented data. We
split the feature set into character-level features and
word-level features, and then build a character-based
segmenter with character-level features and a word-
based segmenter with word-level features, using the
limited amount of available segmented data. These
two segmenters then iteratively educate and improve
each other by making use of the large amount of
unsegmented data. Finally we combine the word-
level and character-level features with an advanced
segmenter to further improve the co-training perfor-
mance. Our experiments show that using 10% data
as segmented data and the other 90% data as unseg-
mented data, co-training reaches 20% performance
improvement achieved by supervised training with
all data in the SIGHAN 2005 PKU corpus and 31%
in the CU corpus.
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Abstract

A precise syntacto-semantic analysis of En-
glish requires a large detailed lexicon with the
possibility of treating multiple tokens as a sin-
gle meaning-bearing unit, a word-with-spaces.
However parsing with such a lexicon, as in-
cluded in the English Resource Grammar, can
be very slow. We show that we can apply
supertagging techniques over an ambiguous
token lattice without resorting to previously
used heuristics, a process we call ubertagging.
Our model achieves an ubertagging accuracy
that can lead to a four to eight fold speed up
while improving parser accuracy.

1 Introduction and Motivation

Over the last decade or so, supertagging has become
a standard method for increasing parser efficiency
for heavily lexicalised grammar formalisms such as
LTAG (Bangalore and Joshi, 1999), CCG (Clark and
Curran, 2007) and HPSG (Matsuzaki et al., 2007).
In each of these systems, fine-grained lexical cate-
gories, known as supertags, are used to prune the
parser search space prior to full syntactic parsing,
leading to faster parsing at the risk of removing nec-
essary lexical items. Various methods are used to
configure the degree of pruning in order to balance
this trade-off.

The English Resource Grammar (ERG;
Flickinger (2000)) is a large hand-written HPSG-
based grammar of English that produces fine-
grained syntacto-semantic analyses. Given the high
level of lexical ambiguity in its lexicon, parsing
with the ERG should therefore also benefit from
supertagging, but while various attempts have
shown possibilities (Blunsom, 2007; Dridan et
al., 2008; Dridan, 2009), supertagging is still not
a standard element in the ERG parsing pipeline.

There are two main reasons for this. The first is
that the ERG lexicon does not assign simple atomic
categories to words, but instead builds complex
structured signs from information about lemmas and
lexical rules, and hence the shape and integration
of the supertags is not straightforward. Bangalore
and Joshi (2010) define a supertag as a primitive
structure that contains all the information about
a lexical item, including argument structure, and
where the arguments should be found. Within
the ERG, that information is not all contained in
the lexicon, but comes from different places. The
choice, therefore, of what information may be
predicted prior to parsing and how it should be
integrated into parsing is an open question.

The second reason that supertagging is not stan-
dard with ERG processing is one that is rarely con-
sidered when processing English, namely ambigu-
ous segmentation. In most mainstream English pars-
ing, the segmentation of parser input into tokens that
will become the leaves of the parse tree is consid-
ered a fixed, unambiguous process. While recent
work (Dridan and Oepen, 2012) has shown that pro-
ducing even these tokens is not a solved problem,
the issue we focus on here is the ambiguous map-
ping from these tokens to meaning-bearing units that
we might call words. Within the ERG lexicon are
many multi-token lexical entries that are sometimes
referred to as words-with-spaces. These multi-token
entries are added to the lexicon where the grammar-
ian finds that the semantics of a fixed expression is
non-compositional and has the distributional prop-
erties of other single word entries. Some examples
include an adverb-like all of a sudden, a preposition-
like for example and an adjective-like over and done
with. Each of these entries create an segmentation
ambiguity between treating the whole expression as
a single unit, or allowing analyses comprising en-
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tries triggered by the individual tokens. Previous su-
pertagging research using the ERG has either used
the gold standard tokenisation, hence making the
task artificially easier, or else tagged the individual
tokens, using various heuristics to apply multi-token
tags to single tokens. Neither approach has been
wholly satisfactory.

In this work we avoid the heuristic approaches
and learn a sequential classification model that can
simultaneously determine the most likely segmen-
tation and supertag sequences, a process we dub
ubertagging. We also experiment with more fine-
grained tag sets than have been previously used, and
find that it is possible to achieve a level of ubertag-
ging accuracy that can improve both parser speed
and accuracy for a precise semantic parser.

2 Previous Work

As stated above, supertagging has become a stan-
dard tool for particular parsing paradigms, but the
definitions of a supertag, the methods used to learn
them, and the way they are used in parsing varies
across formalisms. The original supertags were 300
LTAG elementary trees, predicted using a fairly sim-
ple trigram tagger that provided a configurable num-
ber of tags per token, since the tagger was not ac-
curate enough to make assigning a single tree vi-
able parser input (Bangalore and Joshi, 1999). The
C&C CCG parser uses a more complex Maximum
Entropy tagger to assign tags from a set of 425 CCG
lexical categories (Clark and Curran, 2007). They
also found it necessary to supply more than one tag
per token, and hence assign all tags that have a prob-
ability within a percentage β of the most likely tag
for each token. Their standard parser configura-
tion uses a very restrictive β value initially, relax-
ing it when no parse can be found. Matsuzaki et al.
(2007) use a supertagger similar to the C&C tagger
alongside a CFG filter to improve the speed of their
HPSG parser, feeding sequences of single tags to the
parser until a parse is possible. As in the ERG, cate-
gory and inflectional information are separate in the
automatically-extracted ENJU grammar: their su-
pertag set consists of 1361 tags constructed by com-
bining lexical categories and lexical rules. Figure 1
shows examples of supertags from these three tag
sets, all describing the simple transitive use of lends.

S

NP0↓ VP

V

lends

NP1↓

(a) LTAG

(S[dcl]\NP)/NP

(b) CCG

[NP.nom<V.bse>NP.acc]-singular3rd verb rule

(c) ENJU HPSG

Figure 1: Examples of supertags from LTAG, CCG
and ENJU HPSG, for the word lends.

The ALPINO system for parsing Dutch is the
closest in spirit to our ERG parsing setup, since
it also uses a hand-written HPSG-based grammar,
including multi-token entries in its lexicon. Prins
and van Noord (2003) use a trigram HMM tagger
to calculate the likelihood of up to 2392 supertags,
and discard those that are not within τ of the most
likely tag. For their multi-token entries, they as-
sign a constructed category to each token, so that
instead of assigning preposition to the expres-
sion met betrekking tot (“with respect to”), they
use (1,preposition), (2,preposition),
(3,preposition). Without these constructed
categories, they would only have 1365 supertags.

Most previous supertagging attempts with the
ERG have used the grammar’s lexical types, which
describe the coarse-grained part of speech, and the
subcategorisation of a word, but not the inflection.
Hence both lends and lent have a possible lexical
type v np* pp* to le, which indicates a verb,
with optional noun phrase and prepositional phrase
arguments, where the preposition has the form to.
The number of lexical types changes as the gram-
mar grows, and is currently just over 1000. Dridan
(2009) and Fares (2013) experimented with other tag
types, but both found lexical types to be the opti-
mal balance between predictability and efficiency.
Both used a multi-tagging approach dubbed selec-
tive tagging to integrate the supertags into the parser.
This involved only applying the supertag filter when
the tag probability is above a configurable threshold,
and not pruning otherwise.

For multi-token entries, both Blunsom (2007) and
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adverb adverb adverb
adverb ditto ditto
1,adverb 2,adverb 3,adverb

all in all

Figure 2: Options for tagging parts of the multi-
token adverb all in all separately.

Dridan (2009) assigned separate tags to each token,
with Blunsom (2007) assigning a special ditto tag
all but the initial token of a multi-token entry, while
Dridan (2009) just assigned the same tag to each to-
ken (leading to example in the expression for exam-
ple receiving p np i le, a preposition-type cate-
gory). Both of these solutions (demonstrated in Fig-
ure 2), as well as that of Prins and van Noord (2003),
in some ways defeat one of the purposes of treating
these expressions as fixed units. The grammarian,
by assigning the same category to, for example, all
of a sudden and suddenly, is declaring that these two
expressions have the same distributional properties,
the properties that a sequential classifier is trying to
exploit. Separating the tokens loses that informa-
tion, and introduces extra noise into the sequence
model.

Ytrestøl (2012) and Fares (2013) treat the multi-
entry tokens as single expressions for tagging, but
with no ambiguity. Ytrestøl (2012) manages this
by using gold standard tokenisation, which is, as he
states, the standard practice for statistical parsing,
but is an artificially simplified setup. Fares (2013) is
the only work we know about that has tried to predict
the final segmentation that the ERG produces. We
compare segmentation accuracy between our joint
model and his stand-alone tokeniser in Section 6.

Looking at other instances of joint segmentation
and tagging leads to work in non-whitespace sepa-
rated languages such as Chinese (Zhang and Clark,
2010) and Japanese (Kudo et al., 2004). While at a
high level, this work is solving the same problem,
the shape of the problems are quite different from
a data point of view. Regular joint morphological
analysis and segmentation has much greater ambi-
guity in terms of possible segmentations but, in most
cases, less ambiguity in terms of labelling than our
situation. This also holds for other lemmatisation
and morphological research, such as Toutanova and
Cherry (2009). While we drew inspiration from this

aj - i le

Foreign

v nger-tr dlr

v prp olr

v np*-pp* to le

lending

v pst olr

v - unacc le

increased

w period plr

av - s-vp-po le

as well.

p vp i le

as

w period plr

av - dg-v le

well.

Figure 3: A selection from the 70 lexitems instanti-
ated for Foreign lending increased as well.

related area, as well as from the speech recognition
field, differences in the relative frequency of obser-
vations and labels, as well as in segmentation ambi-
guity mean that conclusions found in these areas did
not always hold true in our problem space.

3 The Parser

The parsing environment we work with is the PET
parser (Callmeier, 2000), a unification-based chart
parser that has been engineered for efficiency with
precision grammars, and incorporates subsumption-
based ambiguity packing (Oepen and Carroll, 2000)
and statistical model driven selective unpacking
(Zhang et al., 2007). Parsing in PET is divided in
two stages. The first stage, lexical parsing, covers
everything from tokenising the raw input string to
populating the base of the parse chart with the ap-
propriate lexical items, ready for the second — syn-
tactic parsing — stage. In this work, we embed our
ubertagging model between the two stages. By this
point, the input has been segmented into what we
call internal tokens, which broadly means
splitting at whitespace and hyphens, and making
’s a separate token. These tokens are subject to a
morphological analysis component which proposes
possible inflectional and derivational rules based on
word form, and then are used in retrieving possible
lexical entries from the lexicon. The results of ap-
plying the appropriate lexical rules, plus affixation
rules triggered by punctuation, to the lexical entries
form a lexical item object, that for this work we dub
a lexitem.

Figure 3 shows some examples of lexitems
instantiated after the lexical parsing stage when
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analysing Foreign lending increased as well. The
pre-terminal labels on these subtrees are the lexical
types that have previously been used as supertags
for the ERG. For uninflected words, with no punctu-
ation affixed, the lexical type is the only element in
the lexitem, other than the word form (e.g. Foreign,
as). In this example, we also see lexitems with in-
flectional rules (v prp olr, v pst olr), deriva-
tional rules (v nger-tr dlr) and punctuation af-
fixation rules (w period plr).

These lexitems are put in to a chart, forming a
lexical lattice, and it is over this lattice that we apply
our ubertagging model, removing unlikely lexitems
before they are seen by the syntactic parsing stage.

4 The Data

The primary data sets we use in these experiments
are from the 1.0 version of DeepBank (Flickinger et
al., 2012), an HPSG annotation of the Wall Street
Journal text used for the Penn Treebank (PTB; Mar-
cus et al. (1993)). The current version has gold stan-
dard annotations for approximately 85% of the first
22 sections. We follow the recommendations of the
DeepBank developers in using Sections 00–19 for
training, Section 20 (WSJ20) for development and
Section 21 (WSJ21) as test data.

In addition, we use two further sources of training
data: the training portions of the LinGO Redwoods
Treebank (Oepen et al., 2004), a steadily growing
collection of gold standard HPSG annotations in a
variety of domains; and the Wall Street Journal sec-
tion of the North American News Corpus (NANC),
which has been parsed, but not manually annotated.
This builds on observations by Prins and van Noord
(2003), Dridan (2009) and Ytrestøl (2012) that even
uncorrected parser output makes very good train-
ing data for a supertagger, since the constraints in
the parser lead to viable, if not entirely correct se-
quences. This allows us to use much larger training
sets than would be possible if we required manually
annotated data.

In final testing, we also include two further data
sets to observe how domain affects the contribution
of the ubertagging. These are both from the test
portion of the Redwoods Treebank: CatB, an es-
say about open-source software;1 and WeScience13,

1http://catb.org/esr/writings/

text from Wikipedia articles about Natural Language
Processing from the WeScience project (Ytrestøl et
al., 2009). Table 1 summarises the vital statistics of
the data we use.

With the focus on multi-token lexitems, it is in-
structive to see just how frequent they are. In terms
of type frequency, almost 10% of the approximately
38500 lexical entries in the current ERG lexicon
have more than one token in their canonical form.2

However, while this is a significant percentage of the
lexicon, they do not account for the same percentage
of tokens during parsing. An analysis of WSJ00:19

shows that approximately one third of the sentences
had at least one multi-token lexitem in the unpruned
lexical lattice, and in just under half of those, the
gold standard analysis included a multi-word entry.
That gives the multi-token lexitems the awkward
property of being rare enough to be difficult for a
statistical classifier to accurately detect (just under
1% of the leaves of gold parse trees contain multi-
ple tokens), but too frequent to ignore. In addition,
since these multi-token expressions have often been
distinguished because they are non-compositional,
failing to detect the multi-word usage can lead to
a disproportionately adverse effect on the semantic
analysis of the text.

5 Ubertagging Model

Our ubertagging model is very similar to a standard
trigram Hidden Markov Model (HMM), except that
the states are not all of the same length. Our states
are based on the lexitems in the lexical lattice pro-
duced by the lexical parsing stage of PET, and as
such, can be partially overlapping. We formalise this
be defining each state by its start position, end po-
sition, and tag. This turns out to make our model
equivalent to a type of Hidden semi-Markov Model
called a segmental HMM in Murphy (2002). In a
segmental HMM, the states are segments with a tag
(t) and a length in frames (l). In our setup, the
frames are the ERG internal tokens and the segments
are the lexitems, which are the potential candidates

cathedral-bazaar/ by Eric S. Raymond
2While the parser has mechanisms for handling words un-

known to the lexicon, with the current grammar these mecha-
nisms will never propose a multi-token lexitem, and so only the
multi-token entries explicitly in the lexicon will be recognised
as such.
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Lexitems
Data Set Source Use Gold? Trees All M-T
WSJ00:19 DeepBank 1.0 §00–19 train yes 33783 661451 6309
Redwoods Redwoods Treebank train yes 39478 432873 6568
NANC LDC2008T15 train no 2185323 42376523 399936
WSJ20 DeepBank 1.0 §20 dev yes 1721 34063 312
WSJ21 DeepBank 1.0 §21 test yes 1414 27515 253
WeScience13 Redwoods Treebank test yes 802 11844 153
CatB Redwoods Treebank test yes 608 11653 115

Table 1: Test, development and training data used in these experiments. The final two columns show the
total number of lexitems used for training (All), as well as how many of those were multi-token lexitems
(M-T).

to become leaves of the parse tree. As indicated
above, the majority of segments (over 99%) will be
one frame long, but segments of up to four frames
are regularly seen in the training data.

A standard trigram HMM has a transition proba-
bility matrix A, where the elements Aijk represent
the probability P (k|ij), and an emission probability
matrix B whose elements Bjo record the probabili-
ties P (o|j). Given these matrices and a vector of ob-
served frames, O, the posterior probabilities of each
state at frame v are calculated as:3

P (qv = qy|O) =
αv(qy)βv(qy)

P (O)
(1)

where αv(qy) is the forward probability at frame v,
given a current state qy (i.e. the probability of the
observation up to v, given the state):

αv(qy) ≡ P (O0:v|qv = qy) (2)

=
∑
qx

αv(qxqy) (3)

αv(qxqy) = Bqyov

∑
qw

αv−1(qwqx)Aqwqxqy (4)

βv(qy) is the backwards probability at frame v, given
a current state qy (the probability of the observation

3Since we will require per-state probabilities for integration
to the parser, we focus on the calculation of posterior probabil-
ities, rather than determing the single best path.

from v, given the state):

βv(qy) ≡ P (Ov+1:V |qv = qy) (5)

=
∑
qx

βv(qxqy) (6)

βv(qxqy) =
∑
qz

βv+1(qyqz)AqxqyqzBqzov+1 (7)

and the probability of the full observation sequence
is equal to the forward probability at the end of the
sequence, or the backwards probability at the start
of the sequence:

P (O) = αV (〈E〉) = β0(〈S〉) (8)

In implementation, our model varies only in what
we consider the previous or next states. While v still
indexes frames, qv now indicates a state that ends
with frame v, and we look forwards and backwards
to adjacent states, not frames, formally designated in
terms of l, the length of the state. Hence, we modify
equation (4):

αv(qxqy) = BqyOv−l+1:v

∑
qw

αv−l(qwqx)Aqwqxqy

(9)
where v−l indexes the frame before the current state
starts, and hence we are summing over all states
that lead directly to our current state. An equivalent
modification to equation (7) gives:

βv(qxqy) =
∑
qz
∈Qn

∑
l(qz)

βv+l(qyqz)AqxqyqzBqzOv+1:v+l

(10)
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Type Example #Tags
LTYPE v np-pp* to le 1028
INFL v np-pp* to le:v pas odlr 3626
FULL v np-pp* to le:v pas odlr:w period plr 21866

w period plr

v pas odlr

v np-pp* to le

recommended.

Figure 4: Possible tag types and their tag set size, with examples derived from the lexitem on the right.

where Qn is the set of states that start at v + 1 (i.e.,
the states immediately following the current state),
and l(qz) is the length of state qz .

We construct the transition and emission prob-
ability matrices using relative frequencies directly
observed from the training data, where we make
the simplifying assumption that P (qk|qiqj) ≡
P (t(qk)|t(qi)t(qk)). Which is to say, while lex-
items with the same tag, but different length will
trigger distinct states with distinct emission proba-
bilities, they will have the same transition probabili-
ties, given the same proceeding tag.4 Even with our
large training set, some tag trigrams are rare or un-
seen. To smooth these probabilities, we use deleted
interpolation to calculate a weighted sum of the tri-
gram, bigram and unigram probabilities, since it has
been successfully used in effective PoS taggers like
the TnT tagger (Brants, 2000). Future work will
look more closely at the effects of different smooth-
ing methods.

6 Intrinsic Ubertag Evaluation

In order to develop and tune the ubertagging model,
we first looked at segmentation and tagging per-
formance in isolation over the development set.
We looked at three tag granularities: lexical types
(LTYPE) which have previously been shown to be the
optimal granularity for supertagging with the ERG,
inflected types (INFL) which encompass inflectional
and derivational rules applied to the lexical type, and
the full lexical item (FULL), which also includes af-
fixation rules used for punctuation handling. Exam-
ples of each tag type are shown in Figure 4, along
with the number of tags of each type seen in the
training data.

4Since the multi-token lexical entries are defined because
they have the same properties as the single token variants, there
is no reason to think the length of a state should influence the
tag sequence probability.

Segmentation Tagging
Tag Type F1 Sent. F1 Sent.
FULL 99.55 94.48 93.92 42.13
INFL 99.45 93.55 93.74 41.49
LTYPE 99.40 93.03 93.27 38.12

Table 2: Segmentation and tagging performance of
the best path found for each model, measured per
segment in terms of F1, and also as complete sen-
tence accuracy.

Single sequence results Table 2 shows the results
when considering the best path through the lattice.
In terms of segmentation, our sentence accuracy is
comparable to that of the stand-alone segmentation
performance reported by Fares et al. (2013) over
similar data.5 In that work, the authors used a bi-
nary CRF classifier to label points between objects
they called micro-tokens as either SPLIT or NOS-
PLIT. The CRF classifier used a less informed in-
put (since it was external to the parser), but a much
more complex model, to produce a best single path
sentence accuracy of 94.06%. Encouragingly, this
level of segmentation performance was shown in
later work to produce a viable parser input (Fares,
2013).

Switching to the tagging results, we see that the
F1 numbers are quite good for tag sets of this size.6

The best tag accuracy seen for ERG LTYPE-style
tags was 95.55 in Ytrestøl (2012), using gold stan-
dard segmentation on a different data set. Dridan
(2009) experimented with a tag granularity similar
to our INFL (letype+morph) and saw a tag ac-
curacy of 91.51, but with much less training data.
From other formalisms, Kummerfeld et al. (2010)

5Fares et al. (2013) used a different section of an earlier ver-
sion of DeepBank, but with the same style of annotation.

6We need to measure F1 rather than tag accuracy here, since
the number of tokens tagged will vary according to the segmen-
tation.
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report a single tag accuracy of 95.91, with the
smaller CCG supertag set. Despite the promising
tag F1 numbers however, the sentence level accu-
racy still indicates a performance level unacceptable
for parser input. Comparing between tag types, we
see that, possibly surprisingly, the more fine-grained
tags are more accurately assigned, although the dif-
ferences are small. While instinctively a larger tag
set should present a more difficult problem, we find
that this is mitigated both by the sparse lexical lattice
provided by the parser, and by the extra constraints
provided by the more informative tags.

Multi-tagging results The multi-tagging methods
from previous supertagging work becomes more
complicated when dealing with ambiguous tokeni-
sation. Where, in other setups, one can compare
tag probabilities for all tags for a particular token,
that no longer holds directly when tokens can par-
tially overlap. Since ultimately, the parser uses lex-
items which encompass segmentation and tagging
information, we decided to use a simple integration
method, where we remove any lexitem which our
model assigns a probability below a certain thresh-
old (ρ). The effect of the different tag granular-
ities is now mediated by the relationship between
the states in the ubertagging lattice and the lexitems
in the parser’s lattice: for the FULL model, this is
a one-to-one relationship, but states from the mod-
els that use coarser-grained tags may affect multiple
lexitems. To illustrate this point, Figure 5 shows
some lexitems for the token forecast,, where there
are multiple possible analyses for the comma. A
FULL tag of v cp le:v pst olr:w comma plr
will select only lexitem (b), whereas an INFL tag
v cp le:v pst olr will select (b) and (c) and
the LTYPE tag v cp le picks out (a), (b) and (c).
On the other hand, where there is no ambiguity in
inflection or affixation, an LTYPE tag of n - mc le
may relate to only a single lexitem ((f) in this case).

Since we are using an absolute, rather than rel-
ative, threshold, the number needs to be tuned for
each model7 and comparisons between models can
only be made based on the effects (accuracy or prun-
ing power) of the threshold. Table 3 shows how
a selection of threshold values affect the accuracy

7A tag set size of 1028 will lead to higher probabilities in
general than a tag set size of 21866.

w comma-nf plr

v cp le

forecast,

(a)

w comma-nf plr

v pst olr

v cp le

forecast,

(b)

w comma plr

v pst olr

v cp le

forecast,

(c)
w comma plr

v pst olr

v np le

forecast,

(d)

w comma plr

v pas olr

v np le

forecast,

(e)

w comma plr

n - mc le

forecast,

(f)

Figure 5: Some of the lexitems triggered by fore-
cast, in Despite the gloomy forecast, profits were up.

Tag Lexitems
Type ρ Acc. Kept Ave.

FULL 0.00001 99.71 41.6 3.34
FULL 0.0001 99.44 33.1 2.66
FULL 0.001 98.92 25.5 2.05
FULL 0.01 97.75 19.4 1.56
INFL 0.0001 99.67 37.9 3.04
INFL 0.001 99.25 29.0 2.33
INFL 0.01 98.21 21.6 1.73
INFL 0.02 97.68 19.7 1.58
LTYPE 0.0002 99.75 66.3 5.33
LTYPE 0.002 99.43 55.0 4.42
LTYPE 0.02 98.41 43.5 3.50
LTYPE 0.05 97.54 39.4 3.17

Table 3: Accuracy and ambiguity after pruning lex-
items in WSJ20, at a selection of thresholds ρ for
each model. Accuracy is measured as the percent-
age of gold lexitems remaining after pruning, while
ambiguity is presented both as a percentage of lex-
items kept, and the average number of lexitems per
initial token still remaining.
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Figure 6: Accuracy over gold lexitems versus aver-
age lexitems per initial token over the development
set, for each of the different ubertagging models.

and pruning impact of our different disambiguation
models, where the accuracy is measured in terms
of percentage of gold lexitems retained. The prun-
ing effect is given both as percentage of lexitems
retained after pruning, and average number of lex-
items per initial token.8 Comparison between the
different models can be more easily made by exam-
ining Figure 6. Here we see clearly that the LTYPE

model provides much less pruning for any given
level of lexitem accuracy, while the performance of
the other models is almost indistinguishable.

Analysis The current state-of-the-art POS tagging
accuracy (using the 45 tags in the PTB) is approx-
imately 97.5%. The most restrictive ρ value we
report for each model was selected to demonstrate
that level of accuracy, which we can see would lead
to pruning over 80% of lexitems when using FULL

tags, an average of 1.56 tags per token. While
this level of accuracy has been sufficient for statisti-
cal treebank parsing, previous work (Dridan, 2009)
has shown that tag accuracy cannot directly predict
parser performance, since errors of different types
can have very different effects. This is hard to
quantify without parsing, but we made a qualitative
analysis at the lexitems that were incorrectly being

8The average number of lexitems per token for the unre-
stricted parser is 8.03, although the actual assignment is far from
uniform, with up to 70 lexitems per token seen for the very am-
biguous tokens.

pruned. For all models, the most difficult lexitems
to get correct were proper nouns, particular those
that are also used as common nouns (e.g. Bank, Air-
line, Report). While capitalisation provides a clue
here, it is not always deterministic, particularly since
the treebank incorporates detailed decisions regard-
ing the distinction between a name and a capitalised
common noun that require real world knowledge,
and are not necessarily always consistent. Almost
two thirds of the errors made by the FULL and INFL

models are related to these decisions, but only about
40% for the LTYPE model. The other errors are pre-
dominately over noun and verb type lexitems, as the
open classes, with the only difference between mod-
els being that the FULL model seems marginally bet-
ter at classifying verbs. The next section describes
the end-to-end setup and results when parsing the
development set.

7 Parsing

With encouraging ubertagging results, we now take
the next step and evaluate the effect on end-to-end
parsing. Apart from the issue of different error types
having unpredictable effects, there are two other
factors that make the isolated ubertagging results
only an approximate indication of parsing perfor-
mance. The first confounding factor is the statisti-
cal parsing disambiguation model. To show the ef-
fect of ubertagging in a realistic configuration, we
only evaluate the first analysis that the parser returns.
That means that when the unrestricted parser does
not rank the gold analysis first, errors made by our
model may not be visible, because we would never
see the gold analysis in any case. On the other hand,
it is possible to improve parser accuracy by pruning
incorrect lexitems that were in a top ranked, non-
gold analysis.

The second new factor that parser integration
brings to the picture is the effect of resource limi-
tations. For reasons of tractability, PET is run with
per sentence time and memory limits. For treebank
creation, these limits are quite high (up to four min-
utes), but for these experiments, we set the time-
out to a more practical 60 seconds and the memory
limit to 2048Mb. Without lexical pruning, this leads
to approximately 3% of sentences not receiving an
analysis. Since the main aim of ubertagging is to in-
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Tag F1

Type ρ Lexitem Bracket Time
No Pruning 94.06 88.58 6.58

FULL 0.00001 95.62 89.84 3.99
FULL 0.0001 95.95 90.09 2.69
FULL 0.001 95.81 89.88 1.34
FULL 0.01 94.19 88.29 0.64
INFL 0.0001 96.10 90.37 3.45
INFL 0.001 96.14 90.33 1.78
INFL 0.01 95.07 89.27 0.84
INFL 0.02 94.32 88.49 0.64
LTYPE 0.0002 95.37 89.63 4.73
LTYPE 0.002 96.03 90.20 2.89
LTYPE 0.02 95.04 89.04 1.23
LTYPE 0.05 93.36 87.26 0.88

Table 4: Lexitem and bracket F1over WSJ20, with
average per sentence parsing time in seconds.

crease efficiency, we would expect to regain at least
some of these unanalysed sentences, even when a
lexitem needed for the gold analysis has been re-
moved.

Table 4 shows the parsing results at the same
threshold values used in Table 3. Accuracy is cal-
culated in terms of F1 both over lexitems, and PAR-
SEVAL-style labelled brackets (Black et al., 1991),
while efficiency is represented by average parsing
time per sentence. We can see here that an ubertag-
ging F1 of below 98 (cf. Table 3) leads to a drop
in parser accuracy, but that an ubertagging perfor-
mance of between 98 and 99 can improve parser F1

while also achieving speed increases up to 8-fold.
From the table we confirm that, contrary to ear-

lier pipeline supertagging configurations, tags of a
finer granularity than LTYPE can deliver better per-
formance, both in terms of accuracy and efficiency.
Again, comparing graphically in Figure 7 gives a
clearer picture. Here we have graphed labelled
bracket F1 against parsing time for the full range of
threshold values explored, with the unpruned pars-
ing results indicated by a cross.

From this figure, we see that the INFL model, de-
spite being marginally less accurate when measured
in isolation, leads to slightly more accurate parse re-
sults than the FULL model at all levels of efficiency.

Looking at the same graph for different samples
of the development set (not shown) shows some

86
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88

89

90

 0  1  2  3  4  5  6  7

F1

Time per sentence

Parser accuracy versus efficiency

FULL
INFL

LTYPE
Unrestricted

Selected configuration

Figure 7: Labelled bracket F1 versus parsing time
per sentence over the development set, for each of
the different ubertagging models. The cross indi-
cates unpruned performance, while the circle pin-
points the configuration we chose for the final test
runs.

variance in which threshold value gives the best F1,
but the relative differences and basic curve shape re-
mains the same. From these different views, using
the guideline of maximum efficiency without harm-
ing accuracy we selected our final configuration: the
INFL model with a threshold value of 0.001 (marked
with a circle in Figure 7). On the development set,
this configuration leads to a 1.75 point improvement
in F1 in 27% of the parsing time.

8 Final Results

Table 5 shows the results obtained when parsing us-
ing the configuration selected on the development
set, over our three test sets. The first, WSJ21 is from
the same domain as the development set. Here we
see that the effect over the WSJ21 set fairly closely
mirrored that of the development set, with an F1 in-
crease of 1.81 in 29% of the parsing time.

The Wikipedia domain of our WeScience13 test
set, while very different to the newswire domain of
the development set could still be considered in do-
main for the parsing and ubertagging models, since
there is Wikipedia data in the training sets. With
an average sentence length of 15.18 (compared to
18.86 in WSJ21), the baseline parsing time is faster
than for WSJ21, and the speedup is not quite as large
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Baseline Pruned
Data Set F1 Time F1 Time

WSJ21 88.12 6.06 89.93 1.77
WeScience13 86.25 4.09 87.14 1.48
CatB 86.31 5.00 87.11 1.78

Table 5: Parsing accuracy in terms of labelled
bracket F1 and average time per sentence when pars-
ing the test sets, without pruning, and then with lex-
ical pruning using the INFL model with a threshold
of 0.001.

but still welcome, at 36% of the baseline time. The
increase is accuracy is likewise smaller (due to less
issues with resource exhaustion in the baseline), but
as our primary goal is to not harm accuracy, the re-
sults are pleasing.

The CatB test set is the standard out-of-domain
test for the parser, and is also out of domain for
the ubertagging model. The average sentence length
is not much below that of WSJ21, at 18.61, but
the baseline parsing speed is still noticeably faster,
which appears to be a reflection of greater structural
ambiguity in the newswire text. We still achieve a re-
duction in parsing time to 35% of the baseline, again
with a small improvement in accuracy.

The across-the-board performance improvement
on all our test sets suggests that, while tuning the
pruning threshold could help, it is a robust parame-
ter that can provide good performance across a va-
riety of domains. This means that we finally have a
robust supertagging setup for use with the ERG that
doesn’t require heuristic shortcuts and can be reli-
ably applied in general parsing.

9 Conclusions and Outlook

In this work we have demonstrated a lexical disam-
biguation process dubbed ubertagging that can as-
sign fine-grained supertags over an ambiguous to-
ken lattice, a setup previously ignored for English. It
is the first completely integrated supertagging setup
for use with the English Resource Grammar, which
avoids the previously necessary heuristics for deal-
ing with ambiguous tokenisation, and can be ro-
bustly configured for improved performance without
loss of accuracy. Indeed, by learning a joint segmen-
tation and supertagging model, we have been able
to achieve usefully high tagging accuracies for very

fine-grained tags, which leads to potential parser
speedups of between 4 and 8 fold.

Analysis of the tagging errors still being made
have suggested some possibly avoidable inconsis-
tencies in the grammar and treebank, which have
been fed back to the developers, hopefully leading
to even better results in the future.

In future work, we will investigate more advanced
smoothing methods to try and boost the ubertagging
accuracy. We also intend to more fully explore the
domain adaptation potentials of the lexical model
that have been seen in other parsing setups (see
Rimell and Clark (2008) for example), as well as ex-
amine the limits on the effects of more training data.
Finally, we would like to explore just how much the
statistic properties of our data dictate the success of
the model by looking at related problems like mor-
phological analysis of unsegmented languages such
as Japanese.
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Abstract

We present a method for automatically acquir-

ing knowledge for case alternation between

the passive and active voices in Japanese. By

leveraging several linguistic constraints on al-

ternation patterns and lexical case frames ob-

tained from a large Web corpus, our method

aligns a case frame in the passive voice to a

corresponding case frame in the active voice

and finds an alignment between their cases.

We then apply the acquired knowledge to a

case alternation task and prove its usefulness.

1 Introduction

Predicate-argument structure analysis is one of the

fundamental techniques for many natural language

applications such as recognition of textual entail-

ment, information retrieval, and machine transla-

tion. In Japanese, the relationship between a pred-

icate and its argument is usually represented by us-

ing case particles1 (Kawahara and Kurohashi, 2006;

Taira et al., 2008; Yoshikawa et al., 2011). However,

since case particles vary depending on the voices,

we have to take case alternation into account to rep-

resent predicate-argument structure. There are thus

two major types of representations: one uses surface

cases, and the other uses normalized-cases for the

base form of predicates. For example, while the Ky-

oto University Text Corpus (Kawahara et al., 2004),

one of the major Japanese corpora that contains an-

notations of predicate-argument structures, adopts

1Japanese is a head-final language. Word order does not

mark syntactic relations. Instead, postpositional case particles

function as case markers.

the former representation, the NAIST Text Corpora

(Iida et al., 2007), another major Japanese corpus,

adopts the latter representation.

Examples (1) and (2) describe the same event in

the passive and active voices, respectively. When

we use surface cases to represent the relationship be-

tween the predicate and its argument in Example (1),

the case of “女 (woman)” is ga2 and the case of “男
(man)” is ni.2 On the other hand, when we use the

normalized-cases for the base form, the case of “女
(woman)” is wo2 and the case of “男 (man)” is ga,

which are the same as the surface cases in the active

voice as in Example (2).

(1) 女が 男に 突き落とされた．
woman-ga man-ni was pushed down

(A woman was pushed down by a man.)

(2) 男が 女を 突き落とした．
man-ga woman-wo pushed down

(A man pushed down a woman.)

Both representations have their own advantages.

Surface case analysis is easier than normalized-case

analysis, especially when we consider omitted ar-

guments, which are also called zero anaphors (Na-

gao and Hasida, 1998). In Japanese, zero anaphora

frequently occurs, and the omitted unnormalized-

case of a zero anaphor is often the same as the

surface case of its antecedent (Sasano and Kuro-

hashi, 2011). Therefore, surface case analysis suits

zero anaphora resolution. On the other hand, when

2Ga, wo, and ni are typical Japanese postpositional case par-

ticles. In most cases, they indicate nominative, accusative, and

dative, respectively.
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we focus on the resulting predicate argument struc-

tures, the normalized-case structure is more useful.

Specifically, since a normalized-case structure rep-

resents the same meaning in the same representa-

tion, normalized-case analysis is useful for recog-

nizing textual entailment and information retrieval.

Therefore, we need a system that first analyzes

surface cases and then alternates the surface cases

with normalized-cases. In particular, we focus on

the transformation of the passive voice into the ac-

tive voice in this paper. Passive-to-active voice

transformation in English can be performed system-

atically, which does not depend on lexical infor-

mation in most cases. However, in Japanese, the

method of transformation depends on lexical infor-

mation. For example, while the case particle ni in

Example (1) is alternated with ga in the active voice,

the case particle ni in Example (3) is not alternated in

the active voice as in Example (4) even though both

their predicates are “突き落とされた (be pushed

down).”

(3) 女が 海に 突き落とされた．
woman-ga sea-ni was pushed down

(A woman was pushed down into the sea.)

(4) 女を 海に 突き落とした．
woman-wo sea-ni pushed down

(φ pushed down a woman into the sea.)

The ni case in Example (1) indicates agent. On

the other hand, the ni case in Example (3) indicates

direction. To determine the difference is important

for many NLP applications including machine trans-

lation. In fact, Google Translate (GT)3 translates

Examples (1) and (3) as “Woman was pushed down

in the man” and “Woman was pushed down in the

sea,” respectively, which may be because GT cannot

distinguish between the roles of ni in Examples (1)

and (3).

(5) 賞が 男に 贈られた．
prize-ga man-ni was awarded

(A prize was awarded to a man.)

In example (5), although the ni-case argument

“男 (man)” is the same as in Example (1), the case

particle ni indicates recipient and is not alternated

in the active voice. These examples show that case

3http://translate.google.com, accessed 2013-2-20.

alternation between the passive and active voices in

Japanese depends on not only predicates but also ar-

guments, and we have to consider their combina-

tions. Since it is impractical to manually describe

the case alternation rules for all combinations of

predicates and arguments, we have to acquire such

knowledge automatically.

Thus, in this paper, we present a method for ac-

quiring the knowledge for case alternation between

the passive and active voices in Japanese. Our

method leverages several linguistic constraints on al-

ternation patterns and lexical case frames obtained

from a large Web corpus, which are constructed for

each meaning and voice of each predicate.

2 Related Work

Levin (1993) grouped English verbs into classes on

the basis of their shared meaning components and

syntactic behavior, defined in terms of diathesis al-

ternations. Hence, diathesis alternations have been

the topic of interest for a number of researchers

in the field of automatic verb classification, which

aims to induce possible verb frames from corpora

(e.g., McCarthy 2000; Lapata and Brew 2004; Joa-

nis et al. 2008; Schulte im Walde et al. 2008; Li and

Brew 2008; Sun and Korhonen 2009; Theijssen et al.

2012). Baroni and Lenci (2010) used distributional

slot similarity to distinguish between verbs undergo-

ing the causative-inchoative alternations, and verbs

that do not alternate.

There is some work on passive-to-active voice

transformation in Japanese. Baldwin and Tanaka

(2000) empirically identified the range and fre-

quency of basic verb alternation, including active-

passive alternation, in Japanese. They automatically

extracted alternation types by using hand-crafted

case frames but did not evaluate the quality. Kondo

et al. (2001) dealt with case alternation between the

passive and active voices as a subtask of paraphras-

ing a simple sentence. They manually introduced

case alternation rules on the basis of verb types and

case patterns and transformed passive sentences into

active sentences.

Murata et al. (2006) developed a machine-

learning-based method for Japanese case alterna-

tion. They extracted 3,576 case particles in passive

sentences from the Kyoto University Text Corpus
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Case particle Grammatical function

ga nominative

wo accusative

ni dative

de locative, instrumental

kara ablative

no genitive

Table 1: Examples of Japanese postpositional case parti-

cles and their typical grammatical functions.

and tagged their cases in the active voice. Then,

they trained SVM classifiers using the tagged cor-

pus. Their features for training SVM were made

by using several lexical resources such as IPAL

(IPA, 1987), the Japanese thesaurus Bunrui Goi Hyo
(NLRI, 1993), and the output of Kondo et al.’s

method.

3 Lexicalized Case Frames

To acquire knowledge for case alternation, we ex-

ploit lexicalized case frames that are automatically

constructed from 6.9 billion Web sentences by using

Kawahara and Kurohashi (2002)’s method. In short,

their method first parses the input sentences, and

then constructs case frames by collecting reliable

modifier-head relations from the resulting parses.

These case frames are constructed for each predi-

cate like PropBank frames (Palmer et al., 2005), for

each meaning of the predicate like FrameNet frames

(Fillmore et al., 2003), and for each voice. However,

neither pseudo-semantic role labels such as Arg1 in

PropBank nor information about frames defined in

FrameNet are included in these case frames. Each

case frame describes surface cases that each predi-

cate has and instances that can fill a case slot, which

is fully lexicalized like the subcategorization lexicon

VALEX (Korhonen et al., 2006).

We list some Japanese postpositional case parti-

cles with their typical grammatical functions in Ta-

ble 1 and show examples of case frames in Table

2.4 Ideally, one case frame is constructed for each

meaning and voice of the target predicate. However,

since Kawahara and Kurohashi’s method is unsuper-

vised, several case frames are actually constructed

4Niyotte in Table 2 is a Japanese functional phrase that in-

dicates agent in this case. We treat niyotte as a case particle in

this paper for the sake of simplicity.

Case Frame: “突き落とされる-4 (be pushed down-4)”

{女性 (woman):5,僕 (I):2,女 (woman):2, · · · }-ga
{海 (sea):229,川 (bottom):115,池 (pond):51, · · · }-ni
{継母(stepmother):2,ペガサス(Pegasus):2, · · · }-niyotte

· · ·

Case Frame: “突き落とされる-5 (be pushed down-5)”

{京子 (Kyoko):3,監督 (manager):1, · · · }-ga
{誰か (someone):143,何者か (somebody):85, · · · }-ni
{階段 (stair):20,船 (ship):7,崖 (cliff):7, · · · }-kara

· · ·

Case Frame: “突き落とす-2 (push down-2)”

{男 (man):14,獅子 (lion):5,虎 (tiger):3, · · · }-ga
{子(child):316,子供(child):81,人(person):51, · · · }-wo
{海 (sea):580,谷 (ravine):576,川 (river):352 · · · }-ni

· · ·

Case Frame: “突き落とす-4 (push down-4)”

{誰か (someone):14,ライオン (lion):5, · · · }-ga
{人 (person):257,私 (I):214,子 (child):137, · · · }-wo
{崖 (cliff):53,階段 (stair):28, · · · }-kara

· · ·

Table 2: Examples of case frames for “突き落とされ
る (be pushed down)” and “突き落とす (push down).”

Words in curly braces denote instances that can fill cor-

responding cases and the numbers following these words

denote their frequency in the corpus.

for each meaning and voice. For example, 59 and

eight case frames were respectively constructed for

the predicate in the passive voice “突き落とされる
(be pushed down)” and in the active voice “突き落
とす (push down)” from 6.9 billion Web sentences.

Table 2 shows the 4th and 5th case frames for “突き
落とされる (be pushed down)” and the 2nd and 4th

case frames for “突き落とす (push down).”

Table 3 shows an example of case frames for

“殴る (hit),” which includes no-case. Here, the

Japanese postpositional case particle “no” roughly

corresponds to “of,” that is, “X no Y” means “Y of

X,” and thus no-case is not an argument of the target

predicate. While Kawahara and Kurohashi’s method

basically collects arguments of the target predicate,

the phrase of no-case that modifies the direct object

of the predicate is also collected as no-case. This

is because, as we will show in the next section, this

phrase can be represented as ga-case in the passive

voice.
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Case Frame: “殴る-2 (hit-2)”

{男 (man):51,拳 (fist):30,誰か (someone):23, · · · }-ga
{自分 (myself):360,私 (I):223, · · · }-no
{頭 (head):5424,顔 (face):3215, · · · }-wo
{拳 (fist):316,平手 (palm):157,拳骨 (fist):126, · · · }-de

· · ·

Table 3: An example of case frames for “殴る (hit).”

4 Passive-Active Transformation in
Japanese

Morphologically speaking, the passive voice in

Japanese is expressed by using the auxiliary verbs

“れる (reru)” and “られる (rareru),” whose past

forms are “れた (reta)” and “られた (rareta),” re-

spectively. For example, the verb in the base form

“突き落とす (tsukiotosu, push down)” is trans-

formed into the past passive form “突き落とされ
た (tsukiotosa-reta, was pushed down).” Case al-

ternations accompany passive-active transformation

in Japanese. There are only two case alternations

at most in passive-active transformation. One is the

case represented as ga in the passive voice, and the

other is the case represented as ga in the active voice.

Japanese passive sentences can be classified into

three types in accordance with what is represented

as ga-case in the passive voice: direct passive, in-
direct passive, and possessor passive.

In direct passive sentence, the object of the pred-

icate in the active voice is represented as ga-case.

Examples (1), (3), and (5) are all direct passive sen-

tences. The case that is represented as ga in the ac-

tive voice is usually represented as ni, niyotte, kara,

or de in the passive sentence. In the first sentence of

Examples (6) and (7),5 ga-cases in the active voice

are represented as niyotte and kara, respectively. On

the other hand, ga-case in the passive sentence is al-

ternated with wo or ni as shown with broken lines in

the second sentence of Examples (6) and (7).

(6) P: 原因が...... 男によって 特定された．
cause-ga..... man-niyotte was identified

(The cause was identified by a man.)

A: 男が 原因を...... 特定した．
man-ga cause-wo...... identified

(A man identified the cause.)

5“P” denotes a passive sentence and “A” denotes the corre-

sponding active sentence in these examples.

(7) P: 男が...... 女から 話しかけられた．
man-ga..... woman-kara was talked to

(A man was talked to by a woman.)

A: 女が 男に...... 話しかけた．
woman-ga man-ni.... talked to

(A woman talked to a man.)

Indirect passive is also called adversative pas-

sive, in which an indirectly influenced agent is repre-

sented with ga. For example, “私 (I),” the argument

represented with ga in the first sentence of Exam-

ple (8), does not appear in the active voice, i.e. the

second sentence of Example (8). In the case of in-

direct passive, ga-case in the active sentence is al-

ways alternated with ni-case in the passive sentence

as shown with solid lines in Examples (8).

(8) P: 私が...... 子供に 泣かれた．
I-ga..... child-ni was cried

(I’ve got a child crying.)

A: 子供が 泣いた．(A child cried.)
child-ga cried

Possessor passive is similar to indirect passive in

that the argument represented with ga-case does not

appear as an argument of the predicate in the ac-

tive voice. Therefore, possessor passive is some-

times treated as a kind of indirect passive. How-

ever, in the case of possessor passive, the argument

appears in the active sentence as a possessor of the

direct object. For example, the ga-case argument

“女 (woman)” in the passive sentence of Example

(9) does not appear as an argument of the predicate

“殴った (hit)” in the active sentence but appears in

the phrase that modifies the direct object “頭 (head)”

with the case particle no, which indicates that “女
(woman)” is the possessor of “頭 (head).”

(9) P: 女が...... 男に 頭を 殴られた．
woman-ga..... man-ni head-wo was hit

(A woman was hit on the head by a man.)

A:男が 女の...... 頭を 殴った．
man-ga woman-no..... head-wo hit

(A man hit the head of a woman.)

In conclusion, the number of case alternation pat-

terns accompanying passive-active transformation in

Japanese is limited. Ga-case in the passive voice can
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be alternated only with either wo, ni, or no, or does

not appear in the active voice. Ga-case in the active

voice can be represented only by ni, niyotte, kara,

or de in the passive voice. Hence, it is sufficient to

consider only their combinations.

5 Knowledge Acquisition for Case
Alternation

5.1 Task Definition
Our objective is to acquire knowledge for case al-

ternation between the passive and active voices in

Japanese. We leverage lexical case frames obtained

from a large Web corpus by using Kawahara and

Kurohashi (2002)’s method and align cases of a case

frame in the passive voice and cases of a case frame

in the active voice. As described in Section 2, sev-

eral case frames are constructed for each voice of

each predicate. Our task consists of the following

two subtasks:

1. Identify a corresponding case frame in the ac-

tive voice.

2. Find an alignment between cases of case

frames in the passive and active voice.

Figure 1 shows the overview of our task. If a case

frame in the passive voice is input, we identify a cor-

responding case frame in the active voice, and find

an alignment between cases by using the algorithm

described in Section 5.3. In this example, an active

case frame “突き落とす-4 (push down-4)” is iden-

tified as a corresponding case frame for the input

passive case frame “突き落とされる-5 (be pushed

down-5)” and ga, ni, and kara-cases in the passive

case frame are aligned to wo, ga, and kara-cases in

the active case frame, respectively.

5.2 Clues for Knowledge Acquisition
We exploit three clues for corresponding case frame

identification and case alignment as follows:

1. Semantic similarity between the instances of

the aligned cases: simSEM .

2. Case distribution similarity between the corre-

sponding case frames: simDIST .

3. Preference of alternation patterns: fPP .
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Figure 1: The overview of our task.

Semantic similarity The instances of the aligned

cases should be similar. For example, the instances

of the ga-case of the case frame “突き落とされ
る-5 (be pushed down-5)” and the wo-case of the

case frame “突き落とす-4 (push down-4),” which

are considered to be aligned and represent patient,
are similar. Thus, we exploit semantic similarity

simSEM between the instances of the corresponding

cases.

We first define an asymmetric similarity measure

between C1 and C2, each of which is a set of case

slot instances, as follows:

sima(C1, C2) =
1
|C1|

∑

i1∈C1

max
i2∈C2

(sim(i1, i2)),

where sim(i1, i2) is the similarity between instances.

In this study, we apply a distributional similarity

measure (Lin, 1998), which was computed from

the Web corpus used to construct the case frames.

We next define a symmetric similarity measure be-

tween C1 and C2 as an average of sima(C1, C2) and

sima(C2, C1).

sims(C1, C2)=
1
2
(sima(C1, C2)+sima(C2, C1)).

Then we define semantic similarity of a case

alignment A between case frames CF1 and CF2.

simSEM (A) =
1
N

N∑

i=1

sims(C1,i, C2,a(i)),
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where N denotes the number of case slots of CF1,

C1,i denotes a set of instances of the i-th case slot of

CF1, and C2,a(i) denotes the set of the aligned case

instances of CF2. A denotes the alignment {c1,1→
c2,a(1), c1,2→c2,a(2), . . . , c1,N→c2,a(N)} where cn,i

denotes the case name that corresponds to Cn,i.

Case distribution similarity Although arguments

are often omitted in Japanese, arguments that are

usually mentioned explicitly in the passive voice

will be also explicitly mentioned in the active voice.

Hence, the frequency distribution of cases can be a

clue for case alignment. In this study, we exploit the

following cosine similarity of frequency distribution

as case distribution similarity:

simDIST (A)=cos((|C1,1|, . . . , |C1,N |),
(|C2,a(1)|, . . . , |C2,a(N)|)).

As an example, consider the alignment between a

passive case6 “選ばれる-1 (be selected-1)” and the

corresponding active case frame “選ぶ-13 (select-

13)” in Table 4. The alignment A1 = {ga →
wo, ni→ni, NIL→ga} is considered to be correct.

However, if we consider only the semantic similar-

ity, an alignment A2 = {ga → ni, ni → ga, wo →
wo} is selected, because the alignment A2 has the

highest semantic similarity. On the other hand, the

case distribution similarity

simDIST (A1) = cos((17722, 122273, 0),
(33338, 800, 382))≈ 0.167

is much larger than

simDIST (A2) = cos((17722, 122273, 96),
(800, 382, 33338))≈ 0.016.

Thus, the alignment A1 would be selected by con-

sidering the case distribution similarity.

Preference of alternation patterns Some alter-

nation patterns often appear, and others do not.

For example, as Murata et al. (2006) reported,

whereas 96.47% of ga-case is alternated with wo-

case in passive-active transformation in Japanese,

6This case frame should not have wo-case. However, since

we constructed case frames automatically, some case frames

have improper cases.

Case Frame: “選ばれる-1 (be selected-1)”

{選手 (player):1119,作品 (work):983, · · · }-ga:17722

{代表 (representative):18295, · · · }-ni:122273

{作品 (work):5,市長 (mayor):3, · · · }-wo:96
· · ·

Case Frame: “選ぶ-13 (select-13)”

{私 (I):14,先生 (teacher):18, · · · }-ga:382

{優秀賞 (award):42,シングル (single):17, · · · }-ni:800

{曲 (tune):16666,作品 (work):9967, · · · }-wo:33338
· · ·

Table 4: Case frames “選ばれる-1 (be selected-1)”

and “選ぶ-13 (select-13).” The numbers following case

names denote the total numbers of case slot instances.

only 27.38% of ni-case is alternated with ga-case.

Therefore, when we can use development data, we

exploit a weighting factor fPP (A) that is deter-

mined on the development data and takes into ac-

count the preference of alternation patterns. We de-

fine fPP (A) as follows:

fPP (A)=w(ga→cga to)×w(cto ga→ga), (i)

where cga to is the case in the active voice to which

ga-case in the passive voice is aligned, cto ga is the

case in the passive voice which is aligned to ga-

case in the active voice, and w(c1→ c2) denotes the

weight of the case alternation “c1→c2.”

5.3 Algorithm

Algorithm 1 presents our algorithm for identifying

a corresponding case frame and finding an align-

ment between cases in pseudo-code. Our algo-

rithm first makes all possible combinations of a

case frame in the active voice (cfactive), a case in

the active voice to which ga-case in the passive

voice is aligned (cga to), and a case in the passive

voice which is aligned to ga-case in the active voice

(cto ga) on the basis of the linguistic constraints,

and then evaluates the score for the combinations

{cfactive, cga to, cto ga} by the following equation:

score=simSEM (A)×simDIST (A)α×fPP (A), (ii)

where α is a parameter that controls the impact of

the case distribution similarity.7 When we can use

7Since fP P (A) is defined with a set of weights of case alter-

nation patterns, fP P (A) contains these weights implicitly, and

thus there is only a single explicit weight in equation (ii).
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Algorithm 1: Identifying a corresponding case

frame and finding an alignment between cases.

Input: a case frame in the passive voice: cfpassive, and

a set of case frames in the active voice: CFSactive

Output: a case frame and an alignment between cases: A
1: max score = 0, A = ()
2: for each cfactive ∈ CFSactive

3: for each cga to ∈ {wo, ni, no, NIL}
4: for each cto ga ∈ {ni, niyotte, kara, de, NIL}
5: if (!occur(cga to, cto ga)) then continue
6: A′ = (cfactive, cga to, cto ga)
7: score=simSEM (A′)×simDIST (A′)α×fP P (A′)
8: if (score > max score) then
9: (max score, A) = (score, A′)
10: end for
11: end for
12: end for

development data, we tune α on the development

data; otherwise we set α = 1. Since some combi-

nations of cga to and cto ga never occur, our algo-

rithm filters them out in line 5 of the algorithm. Af-

ter checking all combinations, the combination with

the highest score is output.

6 Evaluation of the Acquired Knowledge

We applied our algorithm to the case frames that

are automatically constructed from a corpus consist-

ing of about 6.9 billion Japanese sentences from the

Web. Of course, these case frames contain improper

ones, that is, several frames mix several meanings

or usages of the predicates. Thus, it is difficult to

evaluate the acquired knowledge itself. Instead, we

evaluate the usefulness of the acquired knowledge

on a case alternation task between the passive and

active voices.

6.1 Setting and Algorithm for Case Alternation

We basically used the same data as Murata et

al. (2006). As mentioned in Section 2, they extracted

3,576 case particles in passive sentences from the

Kyoto University Text Corpus, and tagged their

cases in the active voice. Since they treated posses-

sor passive as a kind of indirect passive, they did not

adopt the case alternation between ga and no. In ad-

dition, their data included some annotation errors.

We thus modified 21 annotations,8 five of which

8The modified version of the data is publicly available at

http://alaginrc.nict.go.jp/case/src/kaku1.1.tar.gz.

were changed to the case alternation between ga and

no. Note that there were some cases where multiple

possible case particles were tagged to one instance.

We adopted evaluation metrics called “Eval. B” by

Murata et al., that is, we judged the output to be cor-

rect when the output was included in possible an-

swers. We performed experiments on the following

three types of data settings.

1. Experiments without either development or

training data.

2. Experiments with development data.

3. Experiments with training data.

Experiments without either development or
training data In the first setting, we aligned the

input passive case frame to one of the active case

frames of the same predicate only by using simSEM

and simDIST with the parameter α = 1. Therefore,

this setting is fully unsupervised. In this setting, the

input surface cases are alternated as follows:

1. If a passive sentence is input, perform syntac-

tic and surface case structure analysis by us-

ing Kawahara and Kurohashi (2006)’s model.9

Their model identified a proper case frame for

each predicate, and assigned arguments in the

input sentence to case slots of the case frame.

2. By using the acquired knowledge for case alter-

nation, alternate input surface cases with cases

in the active voice.

We call this model Model 1. For example, if Ex-

ample (10) is input, the ga-case argument is assigned

to the ga-case of the case frame “突き落とされる-5

(be pushed down-5).” Since this case is aligned to

the wo-case of the case frame “突き落とす-4 (push

down-4)” as shown in Figure 1, this ga-case is alter-

nated with wo-case.

(10) 女が 突き落とされた．
woman-ga was pushed down

(A woman was pushed down.)

9KNP: http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?KNP
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Algorithm 2: Pseudo-code of the hill-climbing

algorithm for tuning the parameter vector x.

1: x = (1.0, 1.0, . . . , 1.0)
2: acc = faccuracy(x), pre acc = 0
3: while acc > pre acc
4: pre acc = acc
5: for i ∈ {0, . . . , |x| − 1}
6: acc+ = faccuracy(x0, . . . , xi + 0.1, . . . , x|x|−1)
7: acc− = faccuracy(x0, . . . , xi − 0.1, . . . , x|x|−1)
8: if acc+ >acc and acc+ >acc− then xi =xi+0.1
8: else if acc− > acc then xi = xi − 0.1
9: acc = faccuracy(x)
10: end for
11: end while

Experiments with development data In the sec-

ond setting, we aligned the input passive case frame

to one of the active case frames of the same pred-

icate by using simSEM , simDIST , and fPP with α
tuned on the development data. In advance, we di-

vided the tagged data into two parts just as Murata

et al. (2006) did, both of which contained 1,788 case

particles, and performed 2-fold cross-validation. We

used one part for development and the other for test-

ing, and vice versa.

We tuned w(ga → cga to), w(cto ga → ga) in

Equation (i), and α in Equation (ii) by a simple

hill-climbing strategy. Since the candidate cases for

cga to are ni, niyotte, kara, de, and NIL, and the can-

didate cases for cto ga are wo, ni, no, and NIL, we

defined parameter vector x as follows:

x=(w(ga→ni),w(ga→niyotte),w(ga→kara),
w(ga→de),w(ga→NIL),w(wo→ga),
w(ni→ga),w(wo→no),w(NIL→ga), α).

Algorithm 2 shows the hill-climbing algorithm for

tuning the parameter vector x, where faccuracy(x) is

a function that returns the case alternation accuracy

on the development data with parameter x. This al-

gorithm varies one parameter at a time with a step-

size of 0.1 until there is no accuracy improvement

in the development data. After acquiring knowledge

for case alternation with the tuned parameter, we ap-

plied the same method for case alternation as the first

setting. We call this model Model 2.

Experiments with training data In the third set-

ting, we also performed 2-fold cross validation, that

is, we used one part of the divided tagged corpus

Model Accuracy

sim
SEM

sim
DIST

Parameter
tuning

Model 1S � 0.902 (3,224/3,576)

Model 1D � 0.857 (3,063/3,576)

Model 1 � � 0.906 (3,239/3,576)

Model 2S � � 0.928 (3,320/3,576)

Model 2D � � 0.927 (3,314/3,576)

Model 2 � � � 0.938 (3,353/3,576)

Baseline 0.883 (3,159/3,576)

Table 5: Experimental results of case alternation without

training data.

for training and the other for testing, and vice versa.

Although we basically applied Murata et al. (2006)’s

method, which is based on SVMs, we added the out-

put of Model 2 as a new feature.

Specifically, we first tuned the parameter vector x
on the training data and acquired the knowledge for

case alternation with the tuned parameter. By us-

ing the acquired knowledge, we alternated the input

cases in both the training and test data and obtained

the resulting case of Model 2. Note that, we did not

use any annotations for the test data in this process.

We then trained the SVMs on the training data and

applied them to the test data using the resulting case

as a new feature. We call this model Model 3.

6.2 Results and Discussion

Table 5 shows the results of the experiments without

training data. Baseline is a system that outputs the

most frequently alternated cases in the development

data, which was also used by Murata et al. (2006).

The baseline score was higher than that reported by

Murata et al. because we modified 21 annotations.

We also performed experiments without using case

distribution similarity or semantic similarity. We

call these models in the first setting Model 1S and

Model 1D, and these models in the second setting

Model 2S and Model 2D, respectively.

Although Models 1S , 1D, and 1 were fully un-

supervised models, Models 1S and 1 significantly10

outperformed the baseline model (p-values of Mc-

Nemar (1947)’s test were smaller than 0.00001). On

the other hand, the difference between Models 1S

10In this paper, we call a difference significant if the p-value

of McNemar (1947)’s test is less than 0.01.
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Model Accuracy

(Murata et al., 2006) 0.944 (3,376/3,576)

Model 3 0.956 (3,417/3,576)

Table 6: Comparison between Murata et al. (2006)’s

method and our method with training data.

and 1 is not statistically significant, and thus the ef-

fect of the case distribution similarity was not con-

firmed by these experiments.

Models 2S , 2D, and 2 were models with parame-

ter tuning. Parameter tuning significantly improved

the performance. In addition, the difference between

Models 2S and 2 and the difference between Models

2D and 2 were both significant (p-values of McNe-

mar’s test were 0.00032 and 0.00039, respectively),

and thus we confirmed the usefulness of the two sim-

ilarity measures. The parameter α that controls the

impact of the case distribution similarity was tuned

to 0.3, which means semantic similarity between the

instances of the aligned cases is more important than

case distribution similarity for this task.

Table 6 compares Murata et al.’s method and our

method with training data. We used Murata et al.’s

method without feature selection because it achieved

the highest performance on this setting. Their

method’s score was higher than that they reported,

again due to the corpus modification. The difference

between their method and our method was signifi-

cant (p-value of McNemar’s test was 0.00011), and

we confirmed the usefulness of the acquired knowl-

edge for case alternation.

Table 7 shows an example of case alternation be-

tween the passive and active voices. When the pas-

sive sentence was input, the argument “松樹さん
が......(Mr. Matsuki-ga......)” was first assigned to ga-case

of the case frame “殴られる-2 (be hit-2).” Since this

case was aligned to no-case of the case frame “殴
る-2 (hit-2),” the input ga-case was alternated with

no-case. On the other hand, the cases of the other ar-

guments “バットで (bat-de)” and “頭を (head-wo)”

were output as they were in the passive sentence.

We now list three error causes observed in our ex-

periments of the case alternation task:

1) The passive voice in Japanese is expressed by us-

ing the auxiliary verbs “れる (reru)” and “られる
(rareru).” However, these auxiliary verbs can rep-

Input Text:

· · · 松樹さんが..... 金属バットで 頭を 殴られ、· · ·
Mr. Matsuki-ga..... metal bat-de head-wo was hit

(. . . Mr. Matsuki was hit on the head with a metal bat . . . )

Identified passive case frame:

Case Frame: “殴られる-2 (be hit-2)”

{何者か (someone):2,部員 (member):1, · · · }-niyotte
{女性 (woman):5,女児 (girl)):4, · · · }-ga.....
{頭 (head):3944,顔 (face):1186, · · · }-wo
{鈍器 (blunt weapon):84,バット (bat):45, · · · }-de

· · ·

Corresponding active case frame and case alignment:

Case alignment: {niyotte→ga, ga →no, wo→wo, de→de}
Case Frame: “殴る-2 (hit-2)”

{男 (man):51,拳 (fist):30,誰か (someone):23, · · · }-ga
{自分 (myself):360,私 (I):223, · · · }-no.....
{頭 (head):5424,顔 (face):3215, · · · }-wo
{拳 (fist):316,平手 (palm):157,拳 (fist):43, · · · }-de

· · ·

Table 7: An example of case alternation. The input ga-

case was alternated with no-case.

resent several other meanings, such as honorific and

possibility. Since Kawahara and Kurohashi (2002)’s

method does not distinguish between these mean-

ings, our case frames sometimes contain improper

cases such as wo-case in case frame “選ばれる-1

(be selected-1)” in Table 4.

2) In some passive sentences, there are two surface

ni-cases as in Example (11). However, our method

does not assume such sentences, and thus cannot

deal with them properly.

(11) 男に オフィスに 派遣された．
man-ni office-ni was sent

(φ was sent to the office by a man.)

3) Agent of a predicate can be represented by us-

ing several types of case particles in the passive

voice. For example, “会社 (company)” in Exam-

ple (12) is the agent of “雇用した (employed),”

which can be represented by either of ni, niyotte,

and kara in the passive voice. Since Kawahara and

Kurohashi (2002)’s method can not recognize the

exchangeablity of case particles, some case frames

contain several cases of the same semantic role.

However, since our method enforces a one-to-one

alignments, only one of these cases is properly

aligned to the corresponding case in the active voice.
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(12) 会社が 男を 雇用した．
company-ga man-wo employed

(The company employed a man.)

6.3 Application to Alternation between the
Causative and Active Voices

To confirm the applicability of our framework to

other types of alternation than the active-passive al-

ternation, we applied our framework to case alter-

nation between the causative and active voices. The

causative voice in Japanese is a grammatical voice

and is expressed by using the auxiliary verbs “せる
(seru)” and “させる (saseru).” We basically used

the same algorithm as Algorithm 1 for acquiring

the knowledge for case alternation, but used differ-

ent constraints on case alternation patterns because

possible case alternation patterns are different from

those of active-passive alternation. Specifically, we

replaced the third and fourth lines of Algorithm 1

with “for each cto ga ∈ {NIL, ni}” and “for each

cga to ∈ {wo, ni},” respectively, based on linguistic

analysis of active-causative alternation in Japanese.

We used a part of the data created by Murata and

Isahara (2003) to evaluate the usefulness of the ac-

quired knowledge. Their data consists of 4,671 case

particles in passive or causative sentences from the

Kyoto University Text Corpus with their cases in

the active voice. We first extracted 524 case par-

ticles that were extracted from causative sentences.

Since the annotation quality was not very high, we

manually checked all tags and modified inappropri-

ate ones. We then performed 2-fold cross valida-

tion experiments. Table 8 shows experimental re-

sults. Baseline is a system that outputs the most fre-

quently alternated cases in the training data. The dif-

ference between Murata et al. (2006)’s model11 and

our method was significant (p-value of McNemar’s

test was 0.0019), and we confirmed the applicability

of our framework to active-causative alternation.

7 Conclusions and Future Directions

We have presented a method for automatically ac-

quiring knowledge for case alternation between the

passive and active voices in Japanese. Our method

11In this experiment, we used the same features as those used

by Murata and Isahara (2003).

Model Accuracy

Baseline 0.781 (409/524)

Murata et al. (2006)’s model 0.836 (438/524)

Our method with training data 0.872 (457/524)

Table 8: Experimental results of case alternation between

the causative and active voices.

aligned an input case frame in the passive voice to

a corresponding case frame in the active voice and

found an alignment between their cases. We then

applied the acquired knowledge to a case alternation

task and proved its usefulness.

The knowledge we have to manually construct is

only the knowledge of linguistic constraints on case

alternation patterns. The other types of knowledge

are automatically acquired from a large raw cor-

pus. Thus, although this paper focused on the active-

passive alternation in Japanese, our framework is ap-

plicable to the other types of case alternation and to

other languages, especially similar languages such

as Korean. We plan to apply our framework to other

types of case alternation such as case alternation be-

tween intransitive and transitive verbs.
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Abstract

Hypernym discovery aims to extract such
noun pairs that one noun is a hypernym of
the other. Most previous methods are based
on lexical patterns but perform badly on open-
domain data. Other work extracts hypernym
relations from encyclopedias but has limited
coverage. This paper proposes a simple yet ef-
fective distant supervision framework for Chi-
nese open-domain hypernym discovery. Giv-
en an entity name, we try to discover its hy-
pernyms by leveraging knowledge from mul-
tiple sources, i.e., search engine results, ency-
clopedias, and morphology of the entity name.
First, we extract candidate hypernyms from
the above sources. Then, we apply a statistical
ranking model to select correct hypernyms. A
set of novel features is proposed for the rank-
ing model. We also present a heuristic strate-
gy to build a large-scale noisy training data for
the model without human annotation. Exper-
imental results demonstrate that our approach
outperforms the state-of-the-art methods on a
manually labeled test dataset.

1 Introduction

Hypernym discovery is a task to extract such noun
pairs that one noun is a hypernym of the other (S-
now et al., 2005). A noun H is a hypernym of an-
other noun E if E is an instance or subclass of H. In
other word, H is a semantic class of E. For instance,
“actor” is a hypernym of “Mel Gibson”; “dog” is a
hypernym of “Caucasian sheepdog”; “medicine” is
a hypernym of “Aspirin”. Hypernym discovery is
an important subtask of semantic relation extraction

∗Email correspondence.

and has many applications in ontology construction
(Suchanek et al., 2008), machine reading (Etzion-
i et al., 2006), question answering (McNamee et al.,
2008), and so on.

Some manually constructed thesauri such as
WordNet can also provide some semantic relations
such as hypernyms. However, these thesauri are lim-
ited in its scope and domain, and manual construc-
tion is knowledge-intensive and time-consuming.
Therefore, many researchers try to automatically ex-
tract semantic relations or to construct taxonomies.

Most previous methods on automatic hypernym
discovery are based on lexical patterns and suffer
from the problem that such patterns can only cov-
er a small part of complex linguistic circumstances
(Hearst, 1992; Turney et al., 2003; Zhang et al.,
2011). Other work tries to extract hypernym rela-
tions from large-scale encyclopedias like Wikipedia
and achieves high precision (Suchanek et al., 2008;
Hoffart et al., 2012). However, the coverage is limit-
ed since there exist many infrequent and new entities
that are missing in encyclopedias (Lin et al., 2012).
We made similar observation that more than a half
of entities in our data set have no entries in the en-
cyclopedias.

This paper proposes a simple yet effective distan-
t supervision framework for Chinese open-domain
hypernym discovery. Given an entity name, our goal
is to discover its hypernyms by leveraging knowl-
edge from multiple sources. Considering the case
where a person wants to know the meaning of an un-
known entity, he/she may search it in a search engine
and then finds out the answer after going through the
search results. Furthermore, if he/she finds an en-
try about the entity in an authentic web site, such as
Wikipedia, the information will help him/her under-
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stand the entity. Also, the morphology of the enti-
ty name can provide supplementary information. In
this paper, we imitate the process. The evidences
from the above sources are integrated in our hyper-
nym discovery model.

Our approach is composed of two major steps:
hypernym candidate extraction and ranking. In the
first step, we collect hypernym candidates from mul-
tiple sources. Given an entity name, we search it in
a search engine and extract high-frequency nouns as
its main candidate hypernyms from the search re-
sults. We also collect the category tags for the entity
from two Chinese encyclopedias and the head word
of the entity as the candidates.

In the second step, we identify correct hypernyms
from the candidates. We view this task as a rank-
ing problem and propose a set of effective features
to build a statistical ranking model. For the param-
eter learning of the model, we also present a heuris-
tic strategy to build a large-scale noisy training data
without human annotation.

Our contributions are as follows:

• We are the first to discover hypernym for Chi-
nese open-domain entities by exploiting mul-
tiple sources. The evidences from different
sources can authenticate and complement each
other to improve both precision and recall.

• We manually annotate a dataset containing
1,879 Chinese entities and their hypernyms,
which will be made publicly available. To the
best of our knowledge, this is the first dataset
for Chinese hypernyms.

• We propose a set of novel and effective fea-
tures for hypernym ranking. Experimental re-
sults show that our method achieves the best
performance.

Furthermore, our approach can be easily ported
from Chinese to English and other languages, except
that a few language dependent features need to be
changed.

The remainder of the paper is organized as fol-
lows: Section 2 discusses the related work. Section
3 introduces our method in detail. Section 4 de-
scribes the experimental setup. Section 5 shows the
experimental results. Conclusion and future work
are presented in Section 6.

2 Related Work

Previous methods for hypernym discovery can be
summarized into two major categories, i.e., pattern-
based methods and encyclopedia-based methods.

Pattern-based methods make use of manually
or automatically constructed patterns to mine hyper-
nym relations from text corpora. The pioneer work
by Hearst (1992) finds that linking two noun phras-
es (NPs) via certain lexical constructions often im-
plies hypernym relations. For example, NP1 is a hy-
pernym of NP2 in the lexical pattern “such NP1 as
NP2”. Similarly, succeeding researchers follow her
work and use handcrafted patterns to extract hyper-
nym pairs from corpora (Caraballo, 1999; Scott and
Dominic, 2003; Ciaramita and Johnson, 2003; Tur-
ney et al., 2003; Pasca, 2004; Etzioni et al., 2005;
Ritter et al., 2009; Zhang et al., 2011).

Evans (2004) considers the web data as a large
corpus and uses search engines to identify hyper-
nyms based on lexical patterns. Given an arbitrary
document, he takes each capitalized word sequence
as an entity and aims to find its potential hypernyms
through pattern-based web searching. Suppose X is
a capitalized word sequence. Some pattern queries
like “such as X” are threw into the search engine.
Then, in the retrieved documents, the nouns that im-
mediately precede the pattern are recognized as the
hypernyms of X. This work is most related to ours.
However, the patterns used in his work are too strict
to cover many low-frequency entities, and our ex-
periments show the weakness of the method.

Snow et al. (2005) for the first time propose to au-
tomatically extract large numbers of lexico-syntactic
patterns and then detect hypernym relations from
a large newswire corpus. First, they use some
known hypernym-hyponym pairs from WordNet as
seeds and collect many patterns from a syntactical-
ly parsed corpus in a bootstrapping way. Then, they
consider all noun pairs in the same sentence as po-
tential hypernym-hyponym pairs and use a statistical
classifier to recognize the correct ones. All patterns
corresponding to the noun pairs in the corpus are
fed into the classifier as features. Their method re-
lies on accurate syntactic parsers and it is difficult to
guarantee the quality of the automatically extracted
patterns. Our experiments show that their method is
inferior to ours.
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Encyclopedia-based methods extract hyper-
nym relations from encyclopedias like Wikipedia
(Suchanek et al., 2008; Hoffart et al., 2012). The
user-labeled information in encyclopedias, such as
category tags in Wikipedia, is often used to derive
hypernym relations.

In the construction of the famous ontology YA-
GO, Suchanek et al. (2008) consider the title of each
Wikipedia page as an entity and the corresponding
category tags as its potential hypernyms. They ap-
ply a shallow semantic parser and some rules to dis-
tinguish the correct hypernyms. Heuristically, they
find that if the head of the category tag is a plural
word, the tag is most likely to be a correct hyper-
nym. However, this method cannot be used in Chi-
nese because of the lack of plurality information.

The method of Suchanek et al. (2008) cannot han-
dle the case when the entity is absent in Wikipedia.
To solve this problem, Lin et al. (2012) connect the
absent entities with the entities present in Wikipedia
sharing common contexts. They utilize the Freebase
semantic types to label the present entities and then
propagate the types to the absent entities. The Free-
base contains most of entities in Wikipedia and as-
signs them semantic types defined in advance. But
there are no such resources in Chinese.

Compared with previous work, our approach tries
to identify hypernyms from multiple sources. The
evidences from different sources can authenticate
and complement each other to improve both preci-
sion and recall. Our experimental results show the
effectiveness of our method.

3 Method

Our method is composed of two steps. First, we col-
lect candidate hypernyms from multiple sources for
a given entity. Then, a statistical model is built for
hypernym ranking based on a set of effective fea-
tures. Besides, we also present a heuristic strategy
to build a large-scale training data.

3.1 Candidate Hypernym Collection from
Multiple Sources

In this work, we collect potential hypernyms from
four sources, i.e., search engine results, two ency-
clopedias, and morphology of the entity name.

We count the co-occurrence frequency between

the target entities and other words in the returned
snippets and titles, and select top N nouns (or noun
phrases) as the main candidates. As the experiments
show, this method can find at least one hypernym
for 86.91% entities when N equals 10 (see Section
5.1). This roughly explains why people often can in-
fer semantic meaning of unknown entities after go-
ing through several search results.

Furthermore, the user-generated encyclopedia
category tags are important clues if the entity exist-
s in a encyclopedia. Thus we add these tags into
the candidates. In this work, we consider two Chi-
nese encyclopedias, Baidubaike and Hudongbaike1,
as hypernym sources.

In addition, the head words of entities are also
their hypernyms sometimes. For example, the head
word of “�2è� (Emperor Penguin)” indicates
that it’s a kind of “è� (penguins)”. Thus we put
head words into the hypernym candidates. In Chi-
nese, head words are often laid after their modifiers.
Therefore, we try to segment a given entity. If it can
be segmented and the last word is a noun, we take
the last word as the head word. In our data set, the
head words of 41.35% entities are real hypernyms
(see Section 5.1).

We combine all of these hypernym candidates to-
gether as the input of the second stage. The final
coverage rate reaches 93.24%.

3.2 Hypernym Ranking

After getting the candidate hypernyms, we then
adopt a ranking model to determine the correct hy-
pernym. In this section, we propose several effective
features for the model. The model needs training da-
ta for learning how to rank the data in addition to
parameter setting. Considering that manually anno-
tating a large-scale hypernym dataset is costly and
time-consuming, we present a heuristic strategy to
collect training data. We compare three hypernym
ranking models on this data set, including Support
Vector Machine (SVM) with a linear kernel, SVM
with a radial basis function (RBF) kernel and Logis-
tic Regression (LR).

1Baidubaike (http://baike.baidu.com) and
Hudongbaike (http://www.baike.com) are two largest
Chinese encyclopedias containing more than 6.26 million and
7.87 million entries respectively, while Chinese Wikipedia
contains about 0.72 million entries until September, 2013.
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Feature Comment Value Range
Prior the prior probability of a candidate being a potential hypernym [0, 1]

Is Tag
whether a candidate is a category tag in the encyclopedia
page of the entity if it exists

0 or 1

Is Head whether a candidate is the head word of the entity 0 or 1

In Titles
some binary features based on the frequency of occurrence of
a candidate in the document titles in the search results

0 or 1

Synonyms
the ratio of the synonyms of the candidate in the candidate
list of the entity

[0, 1]

Radicals
the ratio of the radicals of characters in a candidate matched
with the last character of the entity

[0, 1]

Source Num the number of sources where the candidate is extracted 1, 2, 3, or 4
Lexicon the hypernym candidate itself and its head word 0 or 1

Table 1: The features for ranking

3.2.1 Features for Ranking
The features for hypernym ranking are shown in

Table 1. We illustrate them in detail in the following.
Hypernym Prior: Intuitively, different words

have different probabilities as hypernyms of some
other words. Some are more probable as hypernyms,
such as animal, plant and fruit. Some other words
such as sun, nature and alias, are not usually used
as hypernyms. Thus we use a prior probability to
express this phenomenon. The assumption is that if
the more frequent that a noun appears as category
tags, the more likely it is a hypernym. We extract
category tags from 2.4 million pages in Baidubaike,
and compute the prior probabilities prior(w) for a
word w being a potential hypernym using Equation
1. countCT (w) denotes the times a word appeared
as a category tag in the encyclopedia pages.

prior(w) =
countCT (w)∑
w′ countCT (w′)

(1)

In Titles: When we enter a query into a search
engine, the engine returns a search result list, which
contains document titles and their snippet text. The
distributions of hypernyms and non-hypernyms in ti-
tles are compared with that in snippets respectively
in our training data. We discover that the average
frequency of occurrence of hypernyms in titles is
15.60 while this number of non-hypernyms is only
5.18, while the difference in snippets is very small
(Table 2). Thus the frequency of candidates in titles
can be used as features. In this work the frequency

Avg. Frequency in
titles snippets

Hypernym 15.60 33.69
Non-Hypernym 5.18 30.61

Table 2: Distributions of candidate hypernyms in titles
and snippets

is divided into three cases: greater than 15.60, less
than 5.18, and between 5.18 and 15.60. Three binary
features are used to represent these cases.

Synonyms: If there exist synonyms of a candi-
date hypernym in the candidate list, the candidate is
probably correct answer. For example, when “�¬
(medicine)” and “�Ô (medicine)” both appear in
the candidate list of an entity, the entity is probably
a kind of medicine. We get synonyms of a candidate
from a Chinese semantic thesaurus – Tongyi Cilin
(Extended) (CilinE for short)2 and compute the s-
core as a feature using Equation 2.

ratiosyn(h, le) =
countsyn(h, le)

len(le)
(2)

Given a hypernym candidate h of an entity e and
the list of all candidates le, we compute the ratio of
the synonyms of h in le. countsyn(h, le) denotes the
count of the synonyms of h in le. len(le) is the total
count of candidates.

2CilinE contains synonym and hypernym relations among
77 thousand words, which is manually organized as a hierarchy
of five levels.
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Radicals: Chinese characters are a form of
ideogram. By far, the bulk of Chinese characters
were created by linking together a character with a
related meaning and another character to indicate its
pronunciation. The character with a related meaning
is called radical. Sometimes, it is a important clue to
indicate the semantic class of the whole character.
For example, the radical “Á” means insects, so it
hints “|n (dragonfly)” is a kind of insects. Simi-
larly “û” hints “�nJ (lymphoma)” is a kind of
diseases. Thus we use radicals as a feature the value
of which is computed by using Equation 3.

radical(e, h) =
countRM (e, h)

len(h)
(3)

Here radical(e, h) denotes the ratio of characters
radical-matched with the last character of the entity
e in the hypernym h. countRM (e, h) denotes the
count of the radical-matched characters in h. len(h)
denotes the total count of the characters in h.

3.2.2 Training Data Collection
Now training data is imperative to learn the

weights of the features in Section 3.2.1. Hence, we
propose a heuristic strategy to collect training data
from encyclopedias.

Firstly, we extract a number of open-domain enti-
ties from encyclopedias randomly. Then their hyper-
nym candidates are collected by using the method
proposed in Section 3.1. We select positive training
instances following two principles:

• Principle 1: Among the four sources used for
candidate collection, the more sources from
which the hypernym candidate is extracted, the
more likely it is a correct one.

• Principle 2: The higher the prior of the candi-
date being a hypernym is, the more likely it is a
correct one.

We select the best candidates following Principle
1 and then select the best one in them as a positive
instance following Principle 2. And we select a can-
didate as a negative training instance when it is from
only one source and its prior is the lowest. If there
are synonyms of training instances in the candidates
list, the synonyms are also extended into the training
set.

Domain # of entities
Dev. Test

Biology 72 351
Health Care 61 291
Food 75 303
Movie 51 204
Industry 56 224
Others 35 136
Total 350 1529

Table 3: The evaluation data

In this way, we collect training data automatically,
which are used to learn the feature weights of the
ranking models.

4 Experimental Setup

In this work, we use Baidu3 search engine, the most
popular search engine for Chinese, and get the top
100 search results for each entity. The Chinese seg-
mentation, POS tagging and dependency parsing is
provided by an open-source Chinese language pro-
cessing platform LTP4 (Che et al., 2010).

4.1 Experimental Data

In our experiments, we prepare open-domain enti-
ties from dictionaries in wide domains, which are
published by a Chinese input method editor soft-
ware Sogou Pinyin5. The domains include biology,
health care, food, movie, industry, and so on. We
sample 1,879 entities from these domain dictionaries
and randomly split them into 1/5 for developmen-
t and 4/5 for test (Table 3). We find that only 865
(46.04%) entities exist in Baidubaike or Hudong-
baike. Then we extract candidate hypernyms for the
entities and ask two annotators to judge each hyper-
nym relation pair true or false manually. A pair (E,
H) is annotated as true if the annotators judge “E is a
(or a kind of) H” is true. Finally, we get 12.53 candi-
date hypernyms for each entity on average in which
about 2.09 hypernyms are correct. 4,330 hypernym
relation pairs are judged by both the annotators. We
measure the agreement of the judges using the Kap-
pa coefficient (Siegel and Castellan Jr, 1988). The

3http://www.baidu.com
4http://ir.hit.edu.cn/demo/ltp/
5http://pinyin.sogou.com/dict/
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Figure 1: Effect of candidate hypernym coverage rate
while varying N

Kappa value is 0.79.
Our training data, containing 11,481 positive in-

stances and 18,378 negative ones, is extracted from
Baidubaike and Hudongbaike using the heuristic s-
trategy proposed in Section 3.2.2.

4.2 Experimental Metrics

The evaluation metrics for our task include:
Coverage Rate: We evaluate coverage rate of the

candidate hypernyms. Coverage rate is the number
of entities for which at least one correct hypernym is
found divided by the total number of all entities.

Precision@1: Our method returns a ranked list
of hypernyms for each entity. We evaluate precision
of top-1 hypernyms (the most probable ones) in the
ranked lists, which is the number of correct top-1
hypernyms divided by the number of all entities.

R-precision: It is equivalent to Precision@R
where R is the total number of candidates labeled
as true hypernyms of an entity.

Precision, Recall, and F-score: Besides, we can
convert our ranking models to classification models
by setting thresholds. Varying the thresholds, we can
get different precisions, recalls, and F-scores.

5 Results and Analysis

5.1 The Coverage of Candidate Hypernyms

In this section, we evaluate the coverage rate of the
candidate hypernyms. We check the candidate hy-
pernyms of the whole 1,879 entities in the develop-
ment and test sets and see how many entities we can
collect at least one correct hypernym for.

Source Coverage
Rate Avg. #

SR10 0.8691 9.44∗

ET 0.3938 3.07
HW 0.4135 0.87†

SR10 + ET 0.8909 12.02
SR10 + HW 0.9117 9.75
ET + HW 0.7073 3.92
SR10 + ET + HW 0.9324 12.53

Table 4: Coverage evaluation of the candidate hypernym
extraction

There are four different sources to collect candi-
dates as described in Section 3.1, which can be di-
vided into three kinds: search results (SR for short),
encyclopedia tags (ET) and head words (HW). For
SR, we select top N frequent nouns (SRN ) in the
search results of an entity as its hypernym candi-
dates. The effect of coverage rate while varying N
is shown in Figure 1. As we can see from the fig-
ure, the coverage rate is improved significantly by
increasing N until N reaches 10. After that, the
improvement becomes slight. When the candidates
from all sources are merged, the coverage rate is fur-
ther improved.

Thus we set N as 10 in the remaining experi-
ments. The detail evaluation is shown in Table 4.
We can see that top 10 frequent nouns in the search
results contain at least one correct hypernym for
86.91% entities in our data set. This coincides with
the intuition that people usually can infer the seman-
tic classes of unknown entities by searching them in
web search engines.

The coverage rate of ET merely reaches 39.38%.
We find the reason is that more than half of the enti-
ties have no encyclopedia pages. The average num-
ber of candidate hypernyms from ET is 3.07. Note
that the number is calculated among all the enti-
ties. We also calculate the average number only for
the present entities in encyclopedias. The number
reaches 6.68. The reason is that for many present en-
tities, the category tags include not only hypernyms
∗For some of entities are rare, there may be less than 10

nouns in the search results. So the average count of candidates
is less than 10.
†Not all of the entities can be segmented. We cannot get the

head words of the ones that cannot be segmented.
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Method Present Entities Absent Entities All Entities
P@1 R-Prec P@1 R-Prec P@1 R-Prec

MPattern 0.5542 0.4937 0.4306 0.3638 0.5229 0.4608
MSnow 0.3199 0.2592 0.2827 0.2610 0.3092 0.2597
MPrior 0.7339 0.5483 0.3940 0.3531 0.5494 0.4423
MSV M−linear 0.8569 0.6899 0.6157 0.5837 0.7260 0.6322
MSV M−rbf 0.8484 0.6940 0.6241 0.5901 0.7266 0.6376
MLR 0.8612 0.7052 0.6807 0.6258 0.7632 0.6621

Table 5: Precision@1 and R-Precision results on the test set. Here the present entities mean the entities existing in the
encyclopedias. The absent entities mean the ones not existing in the encyclopedias.

but also related words. For example, “Ù.�|¥
% (Bradley Center)” in Baidubaike have 5 tags, i.e.,
“NBA”, “N� (sports)”, “N�$Ä (sports)”, “;
¥ (basketball)”, and “|, (arena)”. Among them,
only “|, (arena)” is a proper hypernym whereas
the others are some related words indicating mere-
ly thematic vicinity. Comparing the results of SR10

and SR10 + ET, we can see that collecting candidates
from ET can improve coverage, although many in-
correct candidates are added in at the same time.

The HW source provides 0.87 candidates on av-
erage with 41.35% coverage rate. That is to say, for
these entities, people can infer the semantic classes
when they see the surface lexicon.

At last, we combine the candidates from all of the
three sources as the input of the ranking methods.
The coverage rate reaches 93.24%.

We also compare with the manually construct-
ed semantic thesaurus CilinE mentioned in Section
3.2.1. Only 29 entities exist in CilinE (coverage rate
is only 1.54%). That is why we try to automatically
extract hypernym relations.

5.2 Evaluation of the Ranking

5.2.1 Overall Performance Comparison

In this section, we compare our proposed methods
with other methods. Table 5 lists the performance
measured by precision at rank 1 and R-precision of
some key methods. The precision-recall curves of
all the methods are shown in Figure 2. Table 7 lists
the maximum F-scores.

MPattern refers to the pattern-based method of
Hearst (1992). We craft Chinese Hearst-style
patterns (Table 6), in which E represents an entity
and H represents one of its hypernyms. Following

Pattern Translation
E´(��/�«) H E is a (a kind of) H
E (!)� H E(,) and other H
H (§)�(�) E H(,) called E
H (§)(�)X E H(,) such as E
H (§)AO´ E H(,) especially E

Table 6: Chinese Hearst-style lexical patterns

Evans (2004), we combine each pattern and each en-
tity and submit them into the Baidu search engine.
For example, for an entity E, we search “E ´�
� (E is a)”, “E � (E and other)”, and so on. We
select top 100 search results of each query and get
1,285,209 results in all for the entities in the test set.
Then we use the patterns to extract hypernyms from
the search results. The result shows that 508 cor-
rect hypernyms are extracted for 568 entities (1,529
entities in total). Only a small part of the entities
can be extracted hypernyms for. This is mainly be-
cause only a few hypernym relations are expressed
in these fixed patterns in the web, and many ones are
expressed in more flexible manners. The hypernyms
are ranked based on the count of evidences where
the hypernyms are extracted.

MSnow is the method originally proposed by S-
now et al. (2005) for English but we adapt it for Chi-
nese. We consider the top 100 search results for each
known hypernym-hyponym pairs as a corpus to ex-
tract lexico-syntactic patterns. Then, an LR classi-
fier is built based on this patterns to recognize hy-
pernym relations. This method considers all noun-
s co-occurred with the focused entity in the same
sentences as candidate hypernyms. So the number
of candidates is huge, which causes inefficiency. In
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Figure 2: Precision-Recall curves on the test set

our corpus, there are 652,181 candidates for 1,529
entities (426.54 for each entity on average), most of
which are not hypernyms. One possible reason is
that this method relies on an accurate syntactic pars-
er and it is difficult to guarantee the quality of the
automatically extracted patterns. Even worse, the
low quality of the language in the search results may
make this problem more serious.

MPrior refers to the ranking method based on on-
ly the prior of a candidate being a hypernym. As
Table 5 shows, it outperforms MSnow and achieves
comparable results with MPattern on Precision@1
and R-Precision.

Based on the features proposed in Section 3.2.1,
we train several statistical models based on SVM
and LR on the training data. MSV M−linear and
MSV M−rbf refer to the SVM models based on linear
kernels and RBF kernels respectively. MLR refers
to the LR model. The probabilities6 output by the
models are used to rank the candidate hypernyms.
All of the parameters which need to be set in the
models are selected on the development set. Table
5 shows the best models based on each algorithm.
These supervised models outperform the previous
methods. MLR achieves the best performance.

The precision-recall plot of the methods on the
test set is presented in Figure 2. MHeuristic refers
to the heuristic approach, proposed in Section 3.2.2,
to collect training data. Because this method cannot

6The output of an SVM is the distance from the decision
hyper-plane. Sigmoid functions can be used to convert this un-
calibrated distance into a calibrated posterior probability (Platt,
1999).

Method Max. F-score
MPattern 0.2061
MSnow 0.1514
MHeuristic 0.2803
MPrior 0.5591
MSV M−linear 0.5868
MSV M−rbf 0.6014
MLR 0.5998

Table 7: Summary of maximum F-score on the test set

Feature P@1 R-Prec Max.
F-score

All 0.7632 0.6621 0.5998
− Prior 0.7534 0.6546 0.5837
− Is Tag 0.6965 0.6039 0.5605
− Is Head 0.7018 0.6036 0.5694
− In Titles 0.7436 0.6513 0.5868
− Synonyms 0.7495 0.6493 0.5831
− Radicals 0.7593 0.6584 0.5890
− Source Num 0.7364 0.6556 0.5984
− Lexicon 0.7377 0.6422 0.5851
− Source Info 0.6128 0.5221 0.5459

Table 8: Performance of LR models with different fea-
tures on the test set

provide ranking information, it is not listed in Ta-
ble 5. For fair comparison of R-precision and recall,
we add the extra correct hypernyms from MPattern

and MSnow to the test data set. The models based
on SVM and LR still perform better than the other
methods. MPattern and MSnow suffer from low re-
call and precision. MHeuristic get a high precision
but a low recall, because it can only deal with a part
of entities appearing in encyclopedias. The preci-
sion of MHeuristic reflects the quality of our training
data. We summarize the maximum F-score of dif-
ferent methods in Table 7.

5.2.2 Feature Effect
Table 8 shows the impact of each feature on the

performance of LR models. When we remove any
one of the features, the performance is degraded
more or less. The most effective features are Is Tag
and Is Head. The last line in Table 8 shows the
performance when we remove all features about
the source information, i.e., Is Tag, Is Head, and

1231



Entity Top-1
Hypernym Entity Top-1

Hypernym
Þ�bÑ?(cefoperazone sodium) �¬(drug) �ûy(bullet tuna) ~a(fish)
ÃÃò(finger citron rolls) �¯(snack) �=�(zirconite) ¶�(ore)
EËöé�(The Avengers) >K(movie) ¤|�d÷(Felixstowe) l�(port)
@U=(mastigium) ÄO(datum) Ä!Ï(coxal cavity) �Ô(plant)
¯UX��=£s
(Ethanolamine phosphotransferase)

)Ô
(organism)

Þu
(coma)

�£
(knowledge)

Table 10: Examples of entity-hypernym pairs extracted by MLR

Domain P@1 R-Prec Max.
F-score

Biology 0.8165 0.7203 0.6424
Health Care 0.7354 0.5962 0.6061
Food 0.7450 0.6634 0.6938
Movie 0.9310 0.8069 0.7031
Industry 0.6286 0.5841 0.4624
Others 0.6324 0.4936 0.4318

Table 9: Performance of MLR in various domains

Source Num. The performance is degraded sharply.
This indicates the importance of the source informa-
tion for hypernym ranking.

5.2.3 The Performance in Each Domain
In this section, we evaluate the performance of

MLR method in various domains. We can see from
Table 9 that the performance in movie domain is best
while the performance in industry domain is worst.
That is because the information about movies is
abundant on the web. Furthermore, most of movies
have encyclopedia pages. It is easy to get the hy-
pernyms. In contrast, the entities in industry domain
are more uncommon. On the whole, our method is
robust for different domains. In Table 10, some in-
stances in various domains are presented.

5.3 Error Analysis

The uncovered entities7 and the false positives8 are
analyzed after the experiments. Some error exam-
ples are shown in Table 10 (in red font).

7Uncovered entities are entities which we do not collect any
correct hypernyms for in the first step.

8False positives are hypernyms ranked at the first places, but
actually are not correct hypernyms.

Uncovered entities: About 34% of the errors are
caused by uncovered entities. It is found that many
of the uncovered entities are rare entities. Nearly
36% of them are very rare and have only less than
100 search results in all. When we can’t get enough
information of an unknown entity from the search
engine, it’s difficult to know its semantic meaning,
such as “@U= (mastigium)”, “Ä!Ï (coxal cav-
ity)”, “Þu (coma)”. The identification of their hy-
pernyms requires more human-crafted knowledge.
The ranking models we used are unable to select
them, as the true synonyms are often below rank 10.

False positives: The remained 66% errors are
false positives. They are mainly owing to the
fact that some other related words in the candi-
date lists are more likely hypernyms. For exam-
ple, “)Ô (organism)” is wrongly recognized as
the most probable hypernym of “¯UX��=
£s (Ethanolamine phosphotransferase)”, because
the entity often co-occurs with word “)Ô (organ-
ism)” and the latter is often used as a hypernym of
some other entities. The correct hypernyms actu-
ally are “s (enzyme)”, “zÆÔ� (chemical sub-
stance)”, and so on.

6 Conclusion

This paper proposes a novel method for finding
hypernyms of Chinese open-domain entities from
multiple sources. We collect candidate hypernyms
with wide coverage from search results, encyclope-
dia category tags and the head word of the entity.
Then, we propose a set of features to build statisti-
cal models to rank the candidate hypernyms on the
training data collected automatically. In our exper-
iments, we show that our method outperforms the
state-of-the-art methods and achieves the best preci-
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sion of 76.32% on a manually labeled test dataset.
All of the features which we propose are effective,
especially the features of source information. More-
over, our method works well in various domains, e-
specially in the movie and biology domains. We al-
so conduct detailed analysis to give more insights
on the error distribution. Except some language de-
pendent features, our approach can be easily trans-
fered from Chinese to other languages. For future
work, we would like to explore knowledge from
more sources to enhance our model, such as seman-
tic thesauri and infoboxes in encyclopedias.
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Abstract

This paper presents a novel approach to deter-
mine textual similarity. A layered methodol-
ogy to transform text into logic forms is pro-
posed, and semantic features are derived from
a logic prover. Experimental results show that
incorporating the semantic structure of sen-
tences is beneficial. When training data is
unavailable, scores obtained from the logic
prover in an unsupervised manner outperform
supervised methods.

1 Introduction

The task of Semantic Textual Similarity (Agirre et
al., 2012) measures the degree of semantic equiv-
alence between two sentences. Unlike textual en-
tailment (Giampiccolo et al., 2007), textual similar-
ity is symmetric, and unlike both textual entailment
and paraphrasing (Dolan and Brockett, 2005), tex-
tual similarity is modeled using a graded score rather
than a binary decision. For example, sentence pair
(1) below is very similar [5 out of 5], (2) is some-
what similar [3 out of 5] and (3) is not similar at all
[0 out of 5]:

1. Someone is removing the scales from the fish.
A person is descaling a fish.

2. A woman is chopping an herb.
A man is finely chopping a green substance.

3. A cat is playing with a watermelon on a floor.
A man is pouring oil into a pan.

State-of-the-art systems to determine textual sim-
ilarity (Bär et al., 2012; Šarić et al., 2012; Banea
et al., 2012) do not account for the semantic struc-
ture of sentences, and mostly rely on word pair-
ings and knowledge derived from large corpora, e.g.,

man holding
AGENT

aa
THEME

==leaf

(a)

monkey fighting
AGENT

dd
THEME

==man

(b)

Figure 1: Semantic representation of 1(a) A man is hold-
ing a leaf and 1(b) A monkey is fighting a man.

Wikipedia. Regardless of details, each word in sent1
is paired with the word in sent2 that is most simi-
lar according to some similarity measure. Then, all
similarities are added and normalized by the length
of sent1 to obtain the similarity score from sent1 to
sent2. The process is repeated to obtain the simi-
larity score from sent2 to sent1, and both scores are
then averaged to determine the overall textual sim-
ilarity. Several word-to-word similarity measures
are often combined with other shallow features, e.g.,
n-gram overlap, syntactic dependencies, to obtain
the final similarity score.

Consider sentences 1(a) A man is holding a leaf
and 1(b) A monkey is fighting a man. These two
sentences are very dissimilar, the only commonal-
ity is the concept ‘man’. Any approach that blindly
searches for the word in 1(b) that is the most similar
to word ‘man’ in 1(a) will find ‘man’ from 1(b) to
be a perfect match. One of three content words is a
match and thus the estimated similarity will be much
higher than it actually is.

Consider now the semantic representations for
sentences 1(a) and 1(b) in Figure 1. ‘man’ plays the
role of AGENT in 1(a), and THEME in 1(b). While
in both sentences the word ‘man’ encodes the same
concept, their semantic functions with respect to
other concepts are different. Intuitively, it seems rea-
sonable to penalize the similarity score based on the
role discrepancy.
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man used
AGENT

[[
THEME

AA

PURPOSE
&&

sword slice
THEME

88
INSTRUMENT

]]

AGENT

}} plastic bottle
VALUE

��

(a)

man sliced
AGENT

\\
THEME

77

INSTRUMENT

%%plastic bottle
VALUE

��
sword

(b)

woman

PART

%%applying
AGENT

``
THEME

;;

LOCATION
((

cosmetics face

(c)

woman putting
AGENT

__
THEME

==makeup

(d)

woman dancing
AGENT

__
LOCATION

@@rain

(e)

woman dances
AGENT

__
LOCATION

AArain
LOCATION

@@outside

(f)

Figure 2: Semantic representations of 2(a) The man used a sword to slice a plastic bottle, 2(b) A man sliced a plastic
bottle with a sword, 2(c) A woman is applying cosmetics to her face, 2(d) A woman is putting on makeup, 2(e) A
woman is dancing in the rain, and 2(f) A woman dances in the rain outside. Pairs (a, b), (c, d) and (e, f) are highly
similar even though concepts and relations only match partially.

This paper proposes a novel approach to deter-
mine textual similarity. Semantic representations
of sentences are exploited, syntactic features omit-
ted and the only external resource used in WordNet
(Miller, 1995). The main novelties of our approach
are: it (1) derives semantic features from a logic
prover to be used in a machine learning framework;
(2) uses three logic form transformations capturing
different levels of knowledge; and (3) incorporates
semantic representations extracted automatically.

1.1 Matching Semantic Representations and
Determining Textual Similarity

Throughout this paper, the semantic representation
of a sentence comprises the concepts in it, semantic
relations linking those concepts and named entities
qualifying them. First, we note that existing tools to
extract semantic relations and named entities are not
perfect, thus any system relying on them will suffer
from incomplete and incorrect representations. Sec-
ond, even if flawless representations were readily
available, the problem of determining textual simi-
larity cannot be reduced to matching semantic repre-
sentations: partial matches may correspond to com-
pletely similar sentences. The rest of this section
illustrates this point with the examples in Figure 2.
Our approach (Section 3) copes with the inherent er-
rors made by tools used to obtain semantic represen-
tations and learns which parts of a representation are
important to determine textual similarity.

Consider sentences 2(a) The man used a sword to
slice a plastic bottle and 2(b) A man sliced a plastic

bottle with a sword. Both sentences have high simi-
larity [5 out of 5], and yet their semantic representa-
tions only match partially. In this example, the verb
‘used ’ in 2(a) and its semantic links are somewhat
semantically superfluous. Note that in other cases,
missing a semantic relation signals lower similarity,
e.g., I had fun [at the party]LOCATION and I had fun,
while similar, do not convey the same meaning.

Sentence 2(c) A woman is applying cosmetics to
her face and 2(d) A woman is putting on makeup are
highly similar even though the latter specifies neither
the LOCATION where the ‘makeup’ is applied nor
the fact that a PART of the ‘woman’ is her ‘face’.
Similarly, sentences 2(e) A woman is dancing in the
rain and 2(f) A woman dances in the rain outside
are semantically equivalent since ‘rain’ always has
LOCATION ‘outside’: missing this information does
not carry loss of meaning.

2 Related Work

Determining similarity between text snippets is rele-
vant to information retrieval (Hatzivassiloglou et al.,
1999), paraphrase recognition (Madnani and Dorr,
2010), grading answers to questions (Mohler et al.,
2011) and many others. We focus on recent work
and emphasize the differences from our approach.

The SemEval 2012 Task 6: A Pilot on Semantic
Textual Similarity (Agirre et al., 2012) brought to-
gether 35 teams that competed against each other.
The top 3 performers (Bär et al., 2012; Šarić et
al., 2012; Banea et al., 2012), followed a ma-
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Sentences
Logic Form

Transfor-
mation

Logic
Prover

Machine
Learning

Pairwise
Similarity
Measures

pairwise word similarity scores

logic forms
LFT-based scores

features
score

Figure 3: Main components of our system to determine textual similarity.

chine learning approach with features that do not
take into account the semantic structure of sen-
tences, e.g., n-grams, word overlap, evaluation mea-
sures for machine translation, pairwise word similar-
ities, syntactic dependencies. All three used Word-
Net, Wikipedia and other large corpora. In partic-
ular, Banea et al. (2012) obtained models from 6
million Wikipedia articles and more than 9.5 mil-
lion hyperlinks; Bär et al. (2012) used Wiktionary1,
which contains over 3 million entries; and Šarić et
al. (2012) used The New York Times Annotated
Corpus (Sandhaus, 2008), which contains over 1.8
million news articles, and Google n-grams (Lin et
al., 2012), which consists of approximately 24GB
of compressed text files. Our approach only uses
WordNet, by far the smallest external resource with
less than 120,000 synsets.

Participants that incorporated information about
the semantic structure of sentences (Glinos, 2012;
Rios et al., 2012)2 did not perform at the top. Out
of 88 runs, they were ranked 16, 36 and 64. We be-
lieve this is because they use semantic relations to
calculate some ad-hoc similarity score. In contrast,
our approach derives features from semantic repre-
sentations encoded using logic, and combine these
features using machine learning. Moreover, we use
three logic form transformations capturing different
levels of knowledge, from only content words to se-
mantic structure. In turn, this allows us to boost
performance by relying on semantics when simpler
shallow methods fail.

A few logic-based approaches to recognize tex-
tual entailment are similar to the work presented
here. Bos and Markert (2006) extract semantic rep-
resentations with Boxer (Bos et al., 2004) and in-
corporate background knowledge from external re-

1http://www.wiktionary.org/
2A third team, spirin2, submitted results but a description

paper could not be found in the ACL anthology.

sources. They use a standard theorem prover and
extract 8 features that are later combined using ma-
chine learning. Raina et al. (2005) use a logic form
transformation derived from dependency parses and
named entities. They use abductive reasoning and
define an assumption cost model to account for par-
tial entailments. Unlike them, we define three logic
from transformations, use a modified resolution step
and extract hundreds of features from the proofs.
Tatu and Moldovan (2005) use a modified logic
prover that drops predicates when a proof cannot
be found. Unlike us, they do not drop unbound
predicates and use a single logic form transforma-
tion. Another key difference is that they assign fixed
weights to predicates a priori instead of using ma-
chine learning to determine them.

3 Approach

Our approach to determine textual similarity (Fig-
ure 3) is grounded on using semantic features de-
rived from a logic prover that are later combined
in a standard supervised machine learning frame-
work. First, sentences are transformed into logic
forms (lft1, lft2). Then, a modified logic prover is
used to find a proof in both directions (lft1 to lft2
and lft2 to lft1). The prover yields similarity scores
based on the number of predicates dropped and fea-
tures characterizing the proofs. Additional similar-
ity scores are obtained using standard pairwise word
similarity measures. Finally, all scores and features
are combined using machine learning to yield the fi-
nal textual similarity score.

If training data is unavailable, only the LFT-based
and individual pairwise word similarity scores ap-
ply, the machine learning component is the only one
supervised. The rest of this section details each
component and exemplifies it with 2(e) A woman is
dancing in the rain and 2(f) A woman dances in the
rain outside.
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sent1: A woman is dancing in the rain.
semantic relations extracted: AGENT(dancing, woman), LOCATION(dancing, rain)

Basic woman N(x1) & dance V(x2) & rain N(x3)

SemRels woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

Full woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

sent2: A woman dances in the rain outside.
semantic relations extracted: AGENT(dances, woman), LOCATION(dances, rain)

Basic woman N(x1) & dance V(x2) & rain N(x3) & outside M(x4)

SemRels woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

Full woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3) &

outside M(x4)

Table 1: Examples of logic from transformation using modes Basic, SemRels and Full.

3.1 Logic Form Transformation
The logic form transformation (LFT) of a sentence
is derived from the concepts in it, the semantic
relations linking them and named entities. Un-
like other LFT proposals (Zettlemoyer and Collins,
2005; Poon and Domingos, 2009), transforming
sentences into logic forms is a straightforward step,
the quality of the logic forms is determined by the
output of standard NLP tools.

We distinguish six types of predicates:

• N for nouns, e.g., woman: woman N(x1).
• V for verbs, e.g., dances: dance V(x2).
• M for adjectives and adverbs, e.g., outside:
outside M(x3).
• O for concepts encoded by other POS tags.
• NE for named entities, e.g., guitar:
guitar N(x4) & instrument NE(x4).
• SR for semantic relations, e.g., A woman

dances: woman N(x1) & dance V(x2) &

AGENT SR(x2, x1).

In order to overcome semantic relation extraction
errors, we have experimented with three logic form
transformation modes. Each mode captures different
levels of knowledge:

Basic generates predicates for all nouns, verbs,
modifiers and named entities. This logic form
is parallel to accounting for content words,
their POS tags and named entity types.

SemRels generates predicates for all semantic rela-
tions, concepts that are arguments of relations
and named entities qualifying those concepts.
This mode ignores concepts not linked to other
concepts through a relation and might miss key

concepts if some relations are missing. If no
semantic relations are found, this mode backs
off to Basic to avoid empty logic forms.

Full generates predicates for all concepts, all se-
mantic relations and all named entities. It is
equivalent to SemRels after adding predicates
for concepts that are not arguments of a seman-
tic relation.

Table 1 exemplifies the three logic form modes.
If perfect semantic relations were always available,
SemRels would be the preferred mode. However,
this is often not the case and combining the three
logic forms yields better performance (Section 4).
Note that since relation LOCATION(rain, outside) is
not extracted from sent2, predicate outside M(x4)

is not present in mode SemRels.

3.2 Modified Logic Prover
Textual similarity is symmetric and therefore we
find proofs in both directions (from lft1 to lft2 and
from lft2 to lft1). The logic prover uses a modified
resolution procedure to calculate a similarity score
and features derived from the proof. The rest of this
section exemplifies one direction, lft1 to lft2. The
logic prover is a modification of OTTER3 (McCune
and Wos, 1997), an automated theorem prover for
first-order logic. For the textual similarity task, we
load lft1 and ¬lft2 to the set of support and lexical
chain axioms to the usable list. Then, the logic
prover begins its search for a proof. Two scenar-
ios are possible: (1) a contradiction is found, i.e.,
a proof is found; or (2) a contradiction cannot be
found. The modifications to the standard resolution

3http://www.cs.unm.edu/˜mccune/otter/
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sent1: A woman plays an electric guitar sent2: A man is cutting a potato
lft1: woman N(x1) & play V(x2) & AGENT SR(x2, x1) & electric M(x3) & guitar N(x4) &

instrument NE(x4) & VALUE SR(x4, x3) & THEME SR(x2, x4)

¬lft2: ¬man N(x1) ∨ ¬cut V(x2) ∨ ¬AGENT SR(x2, x1) ∨ ¬potato N(x3) ∨ ¬THEME SR(x2, x3)

Step Predicate dropped (regular) Score Predicate dropped (unbound) Score
1 woman N(x1) 0.875 n/a 0.875
2 play V(x2) 0.750 AGENT SR(x2, x1) 0.625
3 electric M(x3) 0.500 n/a 0.500
4 guitar N(x4) 0.375 instrument NE(x4), VALUE SR(x4, x3),

THEME SR(x2, x4)

0.000

Table 2: Example of predicate dropping step by step. Predicates AGENT SR(x2, x1) and THEME SR(x2, x4) would not
be dropped if unbound predicates were not dropped, yielding a score of 0.250 instead of 0.000.

procedure are used in scenario (2), when a proof
cannot be found. In this case, predicates from lft1 are
dropped until a proof is found. The worst case oc-
curs when all predicates in lft1 are dropped. The goal
of the dropping mechanism is to force the prover to
always find a proof, and penalize partial proofs ac-
cordingly.

Lexical chain axioms are extracted from WordNet.
Assuming each word w in sent1 has the first sense,
axioms w → c, where c is at most distance 2 in
the WordNet hierarchy are generated. For exam-
ple, axioms derived from woman include woman→
female, woman → mistress, woman → widow and
woman→ madam. Although simple, this WordNet
expansion proved useful in our experiments.

3.2.1 Predicate Dropping Criteria

When a proof cannot be found, individual predi-
cates from lft1 not present in lft2 are dropped. A
greedy algorithm was implemented for this step: out
of all predicates from lft1 not present in lft2, drop
whichever occurs first.

Dropping a predicate is not done in isolation. Af-
ter dropping a predicate, all predicates that become
unbound are dropped as well. With our current logic
form transformation, dropping a noun, verb or modi-
fier may make a semantic relation ( SR) or named en-
tity ( NE) predicate unbound. To avoid determining
high similarity between sentences with a common
semantic structure but unrelated concepts instantiat-
ing this structure, predicates encoding semantic rela-
tions and named entities are automatically dropped
when they become unbound.

3.2.2 Proof Scoring Criterion
The score assigned to the proof from lft1 to lft2

is calculated as the ratio of number of predicates in
lft1 not dropped to find the proof over the original
number of predicates in lft1.

Note that the dropping mechanism, and in par-
ticular whether predicates that become unbound
are automatically dropped, greatly impact the proof
obtained and its score (Table 2). If predi-
cates that become unbound were not automati-
cally dropped in each step, instrument NE(x4) and
VALUE SR(x4, x3) would be dropped in steps 5 and
6, AGENT SR(x2, x1) and THEME SR(x2, x4) would not
be dropped, and the final score would be 0.250 in-
stead of 0.000. In plain English, dropping unbound
predicates avoids matching semantic structures in-
stantiated by unrelated concepts.

3.2.3 Feature Selection
While the proof score can be used directly as an es-
timator of the similarity between lft1 and lft2, ad-
ditional features are extracted from the proof itself.
Namely, for each predicate type (N, V, M, O, SR,
NE), we count the number of predicates present in
lft1, the number of predicates dropped to find a proof
for lft2 and the ratio of the two counts. These three
counts are also calculated for each specific seman-
tic relation predicate (AGENT SR, LOCATION SR, etc.).
An example of score and feature calculation in both
directions is shown in Table 3.

The LFT-based scores and features are fed to a
machine learning algorithm. Specifically, there are
477 features derived from the logic prover:
• 9 LFT-based scores (3 × 3; three scores (2 di-

rections and average), three LFT modes)
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lft1: woman N(x1) & dance V(x2) & AGENT SR(x2, x1) & rain N(x3) & LOCATION SR(x2, x3)

lft2: woman N(x1)&dance V(x2)&AGENT SR(x2, x1)&rain N(x3)&LOCATION SR(x2, x3)&outside M(x4)

lft1 to lft2

pred. dropped none
score 1

features nt nd nr vt vd vr mt md mr net ned ner srt srd srr

2 0 0 1 0 0 0 0 0 0 0 0 2 0 0

lft2 to lft1

pred. dropped outside M(x4)

score 5/6 = 0.833

features nt nd nr vt vd vr mt md mr net ned ner srt srd srr

2 0 0 1 0 0 1 1 1 0 0 0 2 0 0

Table 3: Two logic forms and output of logic prover in both directions. For each predicate type (n, v, m, o, ne, sr)
and semantic relation type (AGENT, LOCATION, etc.) features indicate the total number of predicates, the number of
predicates dropped until a proof is found and ratio of the two counts (t, d and r respectively). We omit the features for
predicate O and individual semantic relations because of space constraints.

• 108 features for predicates (3 × 6 × 3 × 2 =
108; three features for each of the six predicate
types, three LFT modes, two directions)

• 360 features specific to a semantic relation (3×
20×3×2 = 360; three features for each of the
20 semantic relations types, three LFT modes,
two directions)

3.3 Pairwise Word Similarities

Pairwise word similarity measures between con-
cepts have been long studied, and they have been
used for the task of textual similarity before (Mihal-
cea et al., 2006). We incorporate scores derived us-
ing these measures for comparison purposes and to
improve robustness in our approach.

Basically, each open-class word in sent1 is paired
with the open-class word in sent2 that is most sim-
ilar according to some similarity measure. All these
individual similarities are summed and normalized
by the length of sent1 to find the similarity be-
tween sent1 and sent2. The process is repeated
from sent2 to sent1 to obtain the similarity between
sent2 and sent1, and both overall similarities are av-
eraged to determine the final similarity score.

We have experimented with measures Path
(distance in a taxonomy), LCH (Leacock and
Chodorow, 1998), Lesk (Lesk, 1986), WUP (Wu
and Palmer, 1994), Resnik (Resnik, 1995), Lin (Lin,
1998) and JCN (Jiang and Conrath, 1997), and use
the WordNet::Similarity package4.

4http://wn-similarity.sourceforge.net/

3.4 Machine Learning Algorithm

We follow a standard supervised machine learning
framework. Instances from the training split are
used to create a model that is later tested with test
instances not seen during training. The model was
tuned using 10-fold cross-validation over the train-
ing instances. As a learning algorithm, we use bag-
ging with M5P decision trees (Quinlan, 1992; Wang
and Witten, 1997) as implemented in the Weka soft-
ware package (Hall et al., 2009).

4 Experiments and Results

Logic forms are derived from the output of state-
of-the-art NLP tools developed previously and not
tuned in any way to the current task or corpora. Our
approach is not tied to any tool, set of named enti-
ties or relations. Any other semantic representation
could be used; the only required modification would
be the LFT component (Figure 3) so that it accounts
for the subtleties of the representation of choice.

The named entity recognizer extracts 35 fine-
grained types organized in a taxonomy (date, lan-
guage, city, instrument, etc.) and was first developed
for a question answering system (Moldovan et al.,
2002). The implementation uses publicly available
gazetteers as well as machine learning.

Semantic relations are extracted with Polaris
(Moldovan and Blanco, 2012), a semantic parser
that given text extracts semantic relations. Polaris
is trained using FrameNet (Baker et al., 1998), Prop-
Bank (Palmer et al., 2005), NomBank (Meyers et al.,
2004), several SemEval corpora (Girju et al., 2007;
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Score Sentence Pair Notes
MSRpar
(36/35) [750/750]

2.600 The unions also staged a five-day strike in March
that forced all but one of Yale’s dining halls to close.

Long sentences, difficult to
parse; often several details
are missing in one sentence
but the pair is similar

The unions also staged a five-day strike in March;
strikes have preceded eight of the last 10 contracts.

MSRvid 0.000 A woman is swimming underwater. Short sentences, easy to
parse(13/13), [750/750] A man is slicing some carrots.

SMTeuroparl 4.250 Then perhaps we could have avoided a catastrophe. One sentence often
ungrammatical (SMT)(56/21), [734/459] We would perhaps then able prevent a disaster.

surprise.OnWN 1.500 the alleviation of distress WN glosses, difficult to
parse with standard tools(–/16), [–/750] a change for the better.

surprise.SMTnews 3.000 He did, but the initiative did not get very far One sentence often
ungrammatical (SMT)(–/24), [–/399] What he has done without the initiative goes too far.

Table 4: Examples of sentence pairs belonging to the five sources. The numbers between round (square) parenthesis
indicate the average number of tokens per sentence pair (number of instances) in the train and test splits.

Pustejovsky and Verhagen, 2009; Hendrickx et al.,
2010) and in-house annotations.

4.1 Corpora
We use the corpora released by SemEval 2012
Task 06: A Pilot on Semantic Textual Similarity5

(Agirre et al., 2012). These corpora consist of pairs
of sentences labeled with their semantic similar-
ity score, ranging from 0.0 to 5.0. Sentence pairs
come from five sources: (1) MSRpar, a corpus of
paraphrases; (2) MSRvid, short video descriptions;
(3) SMTeuroparl, output of machine translation sys-
tems and reference translations; (4) surprise.OnWN,
OntoNotes (Hovy et al., 2006) and WordNet (Miller,
1995) glosses; and (5) surprise.SMTnews, output of
machine translation systems in the news domain and
gold translations. Examples can be found in Table 4,
for more details refer to the aforementioned citation.

4.2 Results and Error Analysis
Results are reported using the same train and test
splits provided by the organization of SemEval 2012
Task 6. For surprise.OnWn and surprise.SMTnews,
only test data is available and supervised machine
learning is not an option.

Table 5 shows results obtained with the test split
not dropping and dropping unbound predicates. For
comparison purposes, results of the top-3 perform-
ers and participants using the semantic structure of
sentences are also shown. LFT-score systems output

5http://www.cs.york.ac.uk/semeval-2012/
task6/

the score (average of both directions) obtained with
the corresponding logic form transformation (Basic,
SemRels or Full) and are unsupervised: training data
with textual similarity scores is not used. The other
three systems presented are supervised. LFT-scores
+ features combines the 9 LFT-scores and 468 fea-
tures derived from the logic proof. WN-scores uses
as features the 7 scores derived using pairwise word
similarity measures. Finally, All combines the full
set of 484 features. We indicate that the performance
of one of our systems with respect to LFT score Ba-
sic not dropping unbound predicates is significant
with ∗ (confidence 99%) and † (confidence 95%).

Overall, systems that drop unbound predicates
perform better than systems that do not drop them.
The only noticeable exception is LFT-score with
sentences from SMTeuroparl. However, best results
for SMTeuroparl are obtained dropping unbound
predicates and using All features. Henceforth, we
comment on results dropping unbound predicates as
they are higher.

Regarding logic form transformations, one can
see a trend depending on the source of sen-
tences. Polaris, the semantic parser, and the syn-
tactic parser Polaris relies on are mostly trained in
the news domain, and thus semantic representations
have higher quality in that domain. For SMTeu-
roparl and SMTnews, the two corpora closest to the
news domain, Full obtains better results than Ba-
sic and SemRels. The difference is most noticeable
in SMTnews, where Basic yields 0.4616, SemRels
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System MSRpar MSRvid SMTeuroparl OnWN SMTnews

not
dropping
unbound
predicates

no
M

L

LFT score
Basic 0.4963 0.8198 0.5101 0.6103 0.4588
SemRels ∗0.3952 ∗0.6753 0.4920 ∗0.5055 0.4477
Full 0.4525 ∗0.7024 0.5183 0.5895 0.4956

M
L

LFT scores + features ∗0.5750 0.8466 0.4725 n/a n/a
WN scores 0.4978 0.8495 0.5217 n/a n/a
All ∗0.5992 †0.8660 0.5194 n/a n/a

dropping
unbound
predicates

no
M

L

LFT score
Basic †0.5552 0.8234 0.4994 0.6120 0.4616
SemRels 0.4556 ∗0.7388 0.4871 ∗0.5113 0.4796
Full 0.5250 ∗0.7672 0.5130 0.5895 †0.5291

M
L

LFT scores + features ∗0.5770 0.8440 0.5277 n/a n/a
WN scores 0.4977 0.8495 0.5217 n/a n/a
All ∗0.6157 ∗0.8709 †0.5745 n/a n/a

Top
performer

(Bär et al., 2012) 0.6830 0.8739 0.5280 0.6641 0.4937
(Šarić et al., 2012) 0.6985 0.8620 0.3612 0.7049 0.4683
(Banea et al., 2012) 0.5353 0.8750 0.4203 0.6715 0.4033

Team w/
semantic
structure

spirin2 0.5769 0.8203 0.4667 0.5835 0.4945
(Rios et al., 2012) 0.3628 0.6426 0.3074 0.2806 0.2082
(Glinos, 2012) 0.2312 0.6595 0.1504 0.2735 0.1426

Table 5: Correlations obtained with the test split using our approach (not dropping and dropping unbound predicates),
and results obtained by the top-3 performers and teams that included in their models features derived from the semantic
structure of sentences. Statistically significant differences in performance between our systems and LFT score Basic
not dropping unbound predicates are indicated with ∗ (confidence 99%) and † (confidence 95%).

0.4796 (+0.0180) and Full 0.5291 (+0.0675 and
+0.0495 respectively).

Outside the news domain (MSRpar, MSRvid,
OnWN), Basic performs better than SemRels and
Full, and Full performs better than SemRels. This
leads to the conclusion that several semantic rela-
tions are often missing, and thus considering con-
cepts even if they are not linked to other concepts
via a semantic relation (Full) is more sound than ig-
noring them (SemRels).

When training data is available (MSRpar,
MSRvid, SMTeuroparl), LFT-scores + features al-
ways outperforms the scores obtained with a single
logic form transformation in an unsupervised man-
ner. In other words, combining the scores obtained
with the three logic form transformations and in-
corporating the additional features derived from the
proofs improves performance. These results demon-
strate that while a shallow logic form transforma-
tion (Basic) offers a strong baseline, it can be suc-
cessfully complemented with logic form transfor-
mations that consider the semantic structure of sen-

tences (SemRels, Full) and additional features char-
acterizing the proofs. The improvements LFT-scores
+ features brings over the LFT-score obtained with
Basic are substantial: 0.0218 (3.9%) for MSRpar,
0.0206 (2.5%) for MSRvid and 0.0283 (5.7%) for
SMTeuroparl.

WN scores, which only uses as features the
scores derived from pairwise word similarity mea-
sures, performs astonishingly well for some cor-
pora. Namely, the differences in performance be-
tween LFT scores + features and WN scores in
MSRvid and SMTeuroparl are minimal (−0.0055
and +0.0060). We believe this is due to the charac-
teristics of these two corpora. Sentence pairs from
MSRvid are very short with 13 tokens on average
(Table 4), i.e., 6.5 tokens per sentence, and SMTeu-
roparl pairs are hard to parse: at least one comes
from a machine translation system and is often un-
grammatical.

Finally, dropping unbound predicates and using
All features outperforms any other system. While
both LFT scores + features and WN scores yield
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good performance, the combination of the two out-
performs them. Features extracted successfully
complement each other for all corpora.

4.2.1 A Look at the ML Model
A benefit of decision trees is that one can inspect
them. This section briefly gives insight about the
most predictive features for All system.

The best features, i.e., features used in decisions
closer to the root, are the LFT-scores calculated us-
ing Basic and Full. The LFT-score obtained us-
ing SemRels is used only when the other two can-
not discriminate. Sorted by impact, the features ex-
tracted for verbs, nouns, semantic relations, named
entities and modifiers follow. Towards the bottom
of the tree, features for specific semantic relations
(AGENT SR, LOCATION SR, etc.) are used. All three
sources (MSRpar, MSRvid and SMTeuroparl) use
features for THEME, LOCATION, AGENT and QUAN-
TIFICATION. MSRpar also benefits from features for
TIME and only SMTeuroparl benefits from TOPIC

and MANNER.

4.2.2 Comparison with Previous Work
The semantic logic-based approach presented in this
paper either outperforms other systems or performs
in the top-3 (Table 5). Moreover, it clearly outper-
forms any other proposal that takes into account the
semantic structure of sentences. These results lead
to the conclusion that the semantic structure of sen-
tences is worth considering and more effort should
be devoted to deeper approaches.

When using sentences in the news domain (SM-
Teuroparl and SMTnews), i.e., when text is closer
to the domain in which the NLP tools are trained,
our semantic approach yields the best results known
to date. For MSRvid, the system presented here
performs as well as systems that use external
knowledge (Section 2), the differences are mini-
mal (+0.0030, −0.0089, +0.0041) and not statis-
tically significant (confidence 99%). For MSRpar,
the system performs amongst the top-3 even though
two of these systems clearly obtained better results
(+0.0673, +0.0828); both differences are statisti-
cally significant (confidence 99%).

Performance using surprise.OnWN deserves spe-
cial comment. This corpus contains definitions, not
sentences (Table 4). Lin’s similarity measure alone

yields a correlation of 0.6787, beating all systems in
Table 5 except one of the top-3 performers (Šarić et
al., 2012). Our semantic approach is not success-
ful because we cannot extract valid representations,
glosses are rarely a full sentence and are hard to
parse with generic NLP tools like the ones we use.

5 Conclusions

This paper presents a novel approach to determine
textual similarity that employs a logic prover to ex-
tract semantic features. A layered methodology to
transform text into logic forms using three logic
form transformations modes is presented. Each
mode captures different levels of knowledge, from
only content words to semantic representations auto-
matically extracted. Best results are obtained when
features derived from the logic prover are comple-
mented with simpler pairwise word similarity mea-
sures. Features that account for the semantic struc-
ture of sentences are incorporated when needed, as
the results obtained with systems All, LFT scores
and WN scores show.

Our approach is heavily dependent on the qual-
ity of semantic representations, and unlike current
top performers, does not require knowledge derived
from Wikipedia or other large corpora. State-of-
the-art NLP tools to extract semantic representations
from text, which are far from perfect, yield promis-
ing results. Indeed, the approach outperforms previ-
ous work when the source text is relatively familiar
to the tools, i.e., within the news domain, and per-
forms in the top-3 otherwise.
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Abstract

Why do certain combinations of words such
as “disadvantageous peace” or “metal to the
petal” appeal to our minds as interesting ex-
pressions with a sense of creativity, while
other phrases such as “quiet teenager”, or
“geometrical base” not as much? We present
statistical explorations to understand the char-
acteristics of lexical compositions that give
rise to the perception of being original, inter-
esting, and at times even artistic. We first ex-
amine various correlates of perceived creativ-
ity based on information theoretic measures
and the connotation of words, then present ex-
periments based on supervised learning that
give us further insights on how different as-
pects of lexical composition collectively con-
tribute to the perceived creativity.

1 Introduction

An essential property of natural language is the gen-
erative capacity that makes it possible for people to
express indefinitely many thoughts through indef-
initely many different ways of composing phrases
and sentences (Chomsky, 1965). The possibility of
novel, creative expressions never seems to exhaust.
Various types of writers, such as novelists, journal-
ists, movie script writers, and creatives in adver-
tising, continue creating novel phrases and expres-
sions that are original while befitting in expressing
the desired meaning in the given situation. Consider
unique phrases such as “geological split personal-
ity”, or “intoxicating Shangri-La of shoes”,1 that

1Examples from New York Times articles in 2013.

continue flowing into the online text drawing atten-
tion from readers.

Writers put significant effort in choosing the per-
fect words in completing their compositions, as a
well-chosen combination of words is impactful in
readers’ minds for rendering the precise intended
meaning, as well as stimulating an increased level
of cognitive responses and attention. Metaphors in
particular, one of the quintessential forms of lin-
guistic creativity, have been discussed extensively
by studies across multiple disciplines, e.g., Cog-
nitive Science, Psychology, Linguistics, and Liter-
ature (e.g., Lakoff and Johnson (1980), McCurry
and Hayes (1992), Goatly (1997)). Moreover, re-
cent studies based on fMRI begin to discover bio-
logical evidences that support the impact of creative
phrases on people’s minds. These studies report that
unconventional metaphoric expressions elicit signif-
icantly increased involvement of brain processing
when compared against the effect of conventional
metaphors or literal expressions (e.g., Mashal et al.
(2007), Mashal et al. (2009)).

Several linguistic elements, e.g., syntax, seman-
tics, and pragmatics, are likely to be working to-
gether in order to lead to the perception of creativ-
ity. However, their underlying mechanisms by and
large are yet to be investigated. In this paper, as a
small step toward quantitative understanding of lin-
guistic creativity, we present a focused study on lex-
ical composition two content words.

Being creative, by definition, implies qualities
such as being unique, novel, unfamiliar or uncon-
ventional. But not every unfamiliar combination of
words would appeal as creative. For example, unfa-
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miliar biomedical terms, e.g., “cardiac glycosides”,
are only informative without appreciable creativity.
Similarly, less frequent combinations of words, e.g.,
“rotten detergent” or “quiet teenager”, though de-
scribing situations that are certainly uncommon, do
not bring about the sense of creativity. Finally, some
unique combinations of words can be just nonsensi-
cal , e.g., “elegant glycosides”.

Different studies assumed different definitions of
linguistic creativity depending on their context and
end goals (e.g., Chomsky (1976), Zhu et al. (2009),
Gervás (2010), Maybin and Swann (2007), Carter
and McCarthy (2004)). In this paper, as an opera-
tional definition, we consider a phrase creative if it
is (a) unconventional or uncommon, and (b) expres-
sive in an interesting, imaginative, or inspirational
way.

A system that can recognize creative expressions
could be of practical use for many aspiring writers
who are often in need of inspirational help in search-
ing for the optimal choice of words. Such a system
can also be integrated into automatic assessment of
writing styles and quality, and utilized to automat-
ically construct a collection of interesting expres-
sions from the web, which may be potentially useful
for enriching natural language generation systems.

With these practical goals in mind, we aim to un-
derstand phrases with linguistic creativity in a broad
scope. Similarly as the work of Zhu et al. (2009),
our study encompasses phrases that evoke the sense
of interestingness and creativity in readers’ minds,
rather than focusing exclusively on clearly but nar-
rowly defined figure of speeches such as metaphors
(e.g., Shutova (2010)), similes (e.g., Veale et al.
(2008), Hao and Veale (2010)), and humors (e.g.,
Mihalcea and Strapparava (2005), Purandare and
Litman (2006)). Unlike the study of Zhu et al.
(2009), however, we concentrate specifically on how
combinations of different words give rise to the
sense of creativity, as this is an angle that has not
been directly studied before. We leave the roles of
syntactic elements as future research.

We first examine various correlates of perceived
creativity based on information theoretic measures
and the connotation of words, then present experi-
ments based on supervised learning that give us fur-
ther insights on how different aspects of lexical com-
position collectively contribute to the perceived cre-

ativity.

2 Theories of Creativity and Hypotheses

Many researchers, from the ancient philosophers to
the modern time scientists, have proposed theories
that attempt to explain the mechanism of creative
process. In this section, we draw connections from
some of these theories developed for general human
creativity to the problem of quantitatively interpret-
ing linguistic creativity in lexical composition.

2.1 Divergent Thinking and Composition

Divergent thinking (e.g., McCrae (1987)), which
seeks to generate multiple unstereotypical solutions
to an open ended problem has been considered as
the key element in creative process, which contrasts
with convergent thinking that find a single, cor-
rect solution (e.g., Cropley (2006)). Applying the
same high-level idea to lexical composition, diver-
gent composition that explores an unusual, uncon-
ventional set of words is more likely to be creative.

Note that the key novelty then lies in the composi-
tional operation itself, i.e., the act of putting together
a set of words in an unexpected way, rather than the
rareness of individual words being used. In recent
years there has been a swell of work on composi-
tional distributional semantics that captures the com-
positional aspects of language understanding, such
as sentiment analysis (e.g., Yessenalina and Cardie
(2011), Socher et al. (2011)) and language model-
ing (e.g., Mitchell and Lapata (2009), Baroni and
Zamparelli (2010), Guevara (2011), Clarke (2012),
Rudolph and Giesbrecht (2010)). However, none
has examined the compositional nature in quantify-
ing creativity in lexical composition.

We consider two computational approaches to
capture the notion of creative composition. The first
is via various information theoretic measures, e.g.,
relative entropy reduction, to measure the surprisal
of seeing the next word given the previous word.
The second is via supervised learning, where we ex-
plore different modeling techniques to capture the
statistical regularities in creative compositional op-
erations. In particular, we will explore (1) compo-
sitional operations of vector space models, (2) ker-
nels capturing the non-linear composition of differ-
ent dimensions in the meaning space, (3) the use of
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neural networks as an alternative to incorporate non-
linearity in vector composition. (See §5).

2.2 Latent Memory and Creative Semantic
Subspace

Although we expect that unconventional composi-
tion has a connection to creativeness of resulting
phrases, that alone does not explain many counter
examples where the composition itself is uncommon
but the resulting expression is not creative due to
lack of interestingness or imagination, e.g., “room
and water”.2 Therefore, we must consider addi-
tional conditions that give rise to creative phrases.

Let S represent the semantic space, i.e., the set of
all possible semantic representation that can be ex-
pressed by a phrase that is composed of two content
words.3 Then we hypothesize that some subsets of
semantic space {Si|Si ⊂ S} are semantically futile
regions for appreciable linguistic creativity, regard-
less of how novel the composition in itself might be.
Such regions may include technical domains such as
law or pharmacology. Similarly, we expect seman-
tically fruitful subsets of semantic space where cre-
ative expressions are more frequently found. For in-
stance, phrases such as “guns and roses” and “metal
to the petal” are semantically close to each other and
yet both can be considered as interesting and cre-
ative (as opposed to one of them losing the sense of
creativity due to its semantic proximity to the other).

This notion of creative semantic subspace con-
nects to theories that suggest that latent memories
serve as motives for creative ideas and that one’s
creativity is largely depending on prior experience
and knowledge one has been exposed to (e.g., Freud
(1908), Necka (1999), Glaskin (2011), Cohen and
Levinthal (1990), Amabile (1997)), a point also
made by Einstein: “The secret to creativity is know-
ing how to hide your sources.”

Figure 5 presents visualized supports for creative
semantic subspace,4 where we observe that phrases
in the neighborhood of legal terms are generally
not creative, while the semantic neighborhood of

2With additional context this example may turn into a cre-
ative one, but for simplicity we focus on phrases with two con-
tent words considered out of context.

3Investigation on recursive composition of more than two
content words and the influence of syntactic packaging is left as
future research.

4See §6 for more detailed discussion.

Source # of # of Avg
uniq sent sent Entropy

words len
QUOTESraw 29498 49402 28 173.05
GLOSSESraw 20869 7745 53 96.79

Table 1: Entropy of word distribution in datasets

Dataset
# of word pairs percentage

total #(-) #(+) #(+)/total %
GLOSSES 1912 149 18 0.94
QUOTES 3298 204 35 1.06

Table 2: Distribution of creative(+)/common(-) word
pairs over GLOSSES and QUOTES dataset.

“kingdom” and “power” is relatively more fruitful
for composing creative (i.e., unique and uncommon
while being imaginative and interesting, per our op-
erational definition of creativity given in §1) word
pairs, e.g., invisible empire”. In our empirical in-
vestigation, this notion of semantically fruitful and
futile semantic subspaces are captured using dis-
tributional semantic space models under supervised
learning framework (§5).

2.3 Affective Language
Another angle we probe is the connection between
creative expressions and the use of affective lan-
guage. This idea is supported in part by previ-
ous research that explored the connection between
figurative languages such as metaphors and senti-
ment (e.g., Fussell and Moss (1998), Rumbell et
al. (2008), Rentoumi et al. (2012)). The focus of
previous work was either on interpretation of the
sentiment in metaphors, or the use of metaphors
in the description of affect. In contrast, we aim
to quantify the correlation between creative expres-
sions (beyond metaphors) and the use of sentiment-
laden words in a more systematic way. This explo-
ration has a connection to the creative semantic sub-
space discussed earlier (§2.2), but pays a more direct
attention to the aspect of sentiment and connotation.

3 Creative Language Dataset

We start our investigation by considering two types
of naturally existing collection of sentences: (1)
quotes and (2) dictionary glosses. We expect that
quotes are likely to be rich in creative expressions,
while dictionary glosses stand in the opposite spec-
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Figure 1: Distribution of creative (double lines in blue) versus common (single lines in red) word pairs with varying
ranges of frequencies (x-axis) for GLOSSES, QUOTES and both datasets combined.
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Figure 2: Distribution of creative (double lines in blue) versus common (single lines in red) word pairs with varying
ranges of PMI values (x-axis) for GLOSSES, QUOTES and both datasets combined.

trum of being creative.
QUOTESraw: We crawled inspirational quotes
from “Brainy Quote”.5

GLOSSESraw: We collected glosses from Ox-
ford Dictionary and Merriam-Webster Dictionary.6

Overall we crawled about 8K definitions. Table 1
shows statistics of the dataset.7

Entropy of word distribution We conjecture that
QUOTES and GLOSSES are different in terms of
word variety, which can be quantified by the entropy

5http://www.brainyquote.com/
6http://oxforddictionaries.com/ and http://www.merriam-

webster.com/. We only consider words appearing in both dic-
tionaries to avoid unusual words such as compound words, e.g.,
“zero-base”.

7QUOTESraw contain 30K unique words and GLOSSESraw

has 20K unique words. QUOTESraw have much arger number
of sentences, while its average sentence is shorter.

of word distributions. To compute the entropy for
each dataset, we use ngram statistics from the corre-
sponding dataset to measure the probability of each
word. As expected, QUOTES dataset has higher
entropy than GLOSSES in Table 1.

3.1 Creative Word Pairs
We extract word pairs corresponding to the follow-
ing syntactic patterns: [NN NN], [JJ NN], [NN JJ]
and [JJ JJ]. Not all pairs from QUOTESraw are cre-
ative, and likewise, not all pairs from GLOSSESraw

are uncreative. Therefore, we perform manual an-
notations to a subset of the collected pairs as fol-
lows. We obtain a small subset of pairs by apply-
ing stratified sampling based on bigram frequency
buckets: first we sort word pairs by their bigram
frequencies obtained from Web 1T corpus (Brants
and Franz (2006)), group them into consecutive fre-
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quency buckets each of which containing 400 word
pairs, then sample 40 word pairs from each bucket.

We label word pairs using Amazon Mechnical
Turk (AMT) (e.g., Snow et al. (2008)). We ask three
turkers to score each pair in 1-5 scale, where 1 is the
least creative and 5 is the most creative. We then
obtain the final creativity scale score by averaging
the scores over 3 users. In addition, we ask turkers
a series of yes/no questions to help turkers to deter-
mine whether the given pair is creative or not.8 We
determine the final label of a word pair based on two
scores, creativity scale score and yes/no question-
based score. If creativity scale score is 4 or 5 and
question-based score is positive, we label the pair as
creative. Similarly, if creativity scale score is 1 or
2 and question-based score is negative, we label the
pair as common. We discard the rest from the final
dataset. This filtering process is akin to the removal
of neural sentiment in the early work of sentiment
analysis (e.g., Pang et al. (2002)).9 Table 2 shows
the statistics of the resulting dataset.
Creative Pairs and their Frequencies: To gain
insights on the stratified sample of word pairs, we
plot the label (∈ {creative, common}) distribution
of word pairs as a function of simple statistics, such
as a range (bucket) of bigram frequencies or PMI
values of the given pair of words. Both bigram fre-
quencies and PMI scores are computed based on
Google Web 1T corpus Brants and Franz (2006).
Figure 1 shows the results for word frequencies. As
expected, word pairs with high frequencies are much
more likely to be common, while word pairs with
low frequencies can be either of the two. Also as ex-
pected, pairs extracted from QUOTES are relatively
more likely to be creative than those from GLOSSES.
In any case, it is clear that not all rare pairs are cre-
ative.
Creative Pairs and their PMI Scores: Similarly
as above, Figure 2 plots the relation between the
distribution of labels of word pairs and their corre-
sponding PMI. As expected, pairs with high PMI are
more likely to be common, though the trend is not as

8E.g., “is this word combination boring and not original?”
or “does it provoke unusual imagination?”.

9Cohen’s Kappa and Pearson Correlation on the filtered data
are 0.69 and 0.72 respectively. Corresponding scores for the un-
filtered data drop to 0.26 and 0.29 respectively. All the experi-
ments are performed on the filtered data.

Common Creative
quiet teenager inglorious success

constant longitude thorny existence
watery juice relaxed symmetry

noble political sardonic destiny
diet cooking dispassionate history

verbal interpretation poetical enthusiasm
unwelcome situation verbal beauty

migratory tuna earth breathe
lousy businessman disadvantageous peace

terrific marriage alchemical marriage
solved issue deep nonsense

Table 3: Sample Creative / Common Word Pairs

skewed as before.

Final Dataset: From our initial annotation study,
it became apparent to us that creative pairs are very
rare, perhaps not surprisingly, even among infre-
quent pairs. In order to build the word pair corpus
with as many creative pairs as possible, we focus on
infrequent word pairs for further annotation, from
which we construct a larger and balanced set of cre-
ative and common word pairs, with 394 word pairs
for each class. The specific construction procedure
is as follows: first combine all of the word pairs
extracted from both QUOTESraw and GLOSSESraw

as a single dataset, sort them by bigram frequency,
group them into consecutive frequency buckets each
of which has 40 word pairs; finally balance each fre-
quency bucket, by discarding word pairs with higher
frequency value from the larger class in that bucket.
Examples of labeled word pairs are shown in Ta-
ble 3. Hereafter we use this balanced dataset of word
pairs for all experiments.10

4 Creativity Measures

4.1 Information Measures
In this section we explore information theoretic
measures to quantify the surprisal aspect of creative
word pairs, relating to the divergent, compositional
nature of creativity discussed in §2.1.

Entropy of Context Seeing a word w changes our
expectation on what might follow next. Some words
have stronger selective preference (higher entropy)
than others.

10The resulting dataset is available at http://www.cs.
stonybrook.edu/˜pkuznetsova/creativity/
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Figure 3: Distribution of creative (double lines in blue) versus common (single lines in red) word pairs with varying
ranges of information or polarity measures (x-axis).
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Figure 4: Conditional probability of neighboring words
for “inglorious” (filled / red) and “very” (unfilled / blue).

For instance, the entropy after seeing “very”
would be higher than that after seeing “inglorious”,
as the former can be used in a wider variety of con-
text than the later. Figure 4 visualizes relatively
more skewed distribution of “inglorious”. We com-
pute the entropy of future context conditioning on
w1, w2 and w1w2, which we denote as H(w1),
H(w2), H(w1w2) respectively, latter is shown in
Figure 3 – a.11

11As before, language models are drawn from Google Web

Relative Entropy Transformation In order to fo-
cus more directly on the relative change of entropy
as a result of composition, we compute Relative En-
tropy Transformation:

RH(w1, w2) =
|H(w1)−H(w1w2)|
H(w1) +H(w1w2)

(1)

As expected (Figure 3 – b and Table 4), this relative
quantity captures creativity better than the absolute
measure H(w1w2) computed above. The idea be-
hind this measure has a connection to uncertainty
reduction in psycholinguistic literature (e.g., Frank
(2010), Hale (2003), Hale (2006)).
KL divergence To capture unusual combinations
of words, we compare the difference between the
distributional contexts of w1 and w1w2 so that

KL(w1w2, w1) =
∑

wi∈V

P (wi|w1, w2) log
P (wi|w1, w2)

P (wi|w1)

(2)

Figure (3 – c) shows thatKL(w1w2, w1)
12 is among

1T corpus Brants and Franz (2006).
12We also compute KL(w1, w2) in a similar manner as

KL(w1w2, w1)
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the effective measures in capturing creative pairs.

Mutual Information Finally, we consider mutual
information (Figure 3 – d):

MI(w1, w2) =
∑

wi∈V

P (wi|w1, w2)×

log
P (wi|w1, w2)

P (wi|w1) · P (wi|w2)
(3)

Correlation coefficients Pearson coefficients for
all measures are shown in Table 4. Interestingly, in-
formation theoretic measures that compare the dis-
tribution of word’s context, such as RH(w1, w2),
KL(w1w2, w1) and MI(w1, w2), capture the sur-
prisal aspect of creativity better than simple frequen-
cies or PMI scores that do not consider contextual
changes. But even for those cases when the corre-
lation is statistically significant, the values are not
too high. We conjecture that there are two reasons
for this. First, Pearson assumes linear correlations,
hence not sensitive enough to capture non-linear cor-
relations that are evident in graphs shown in Fig-
ure 3. Second, these measures only capture the sur-
prisal aspect of creativity, missing the other impor-
tant qualities: interestingness or imaginativeness.

4.2 Sentiment and Connotation
Next we investigate the connection between creativ-
ity and sentiment, as illustrated in §2.3. We con-
sider both sentiment (more explicit) and connotation
(more implicit) words,13 and consider them with
or without distinguishing the polarity (i.e., positive,
negative). To determine sentiment and connotation,
we use lexicons provided by OpinionFinder (Wilson
et al. (2005)) and Feng et al. (2013) respectively. We
denote polarity of a word wi as L(wi).14 When wi

has a negative polarity L(wi) is assigned a value of
-1, and when wi is positive L(wi) is equal to 1. We
assume that a word is neutral when it is not in the
lexicon, assigning 0 to L(wi). For a word pair w1w2

we compute absolute difference Ldiff (w1, w2) be-
tween polarities of tokens in a word pair in order to
catch examples such as “inglorious success”.

13E.g., expressions such as “blue sky” or “white sand” are
not sentiment-laden, but do have positive connotation.

14We denote polarity from OpinionFinder as Lsubj and con-
notation as Lconn

Measure Corr Coeff p-value∗ adj p-value∗∗

pointwise, noncontextual
Freq(w1w2) 0.014 0.67 0.86
PMI(w1, w2) 0.011 0.75 0.86

information theoretic, contextual
E(w1) -0.038 0.26 0.49
E(w2) -0.126 0.00019 0.00083

E(w1, w2) 0.013 0.71 0.86
RH(w1, w2) 0.113 0.00081 0.0024

KL(w1w2, w1) 0.134 7.152-05 0.00054
KL(w1, w2) -0.080 0.018 0.039
MI(w1, w2) 0.125 0.00022 0.00083

sentiment & connotation
Lsubj(w1) 0.006 0.87 0.87
Lsubj(w2) 0.031 0.36 0.60

Ldiff
subj (w1, w2) 0.168 6.67e-07 1.00e-05
Lconn(w1) 0.023 0.49 0.74
Lconn(w2) 0.008 0.80 0.86

Ldiff
conn(w1, w2) 0.082 0.015 0.038

Table 4: Pearson correlation between various measures
and creativity of word pairs. Boldface denotes statistical
significance (p ≤ 0.05).
note *: Two-tailed p-value, 394 word pairs per class
note **: We used Benjamini-Hochberg method to adjust
p-values for multiple tests

Table 4 shows Pearson coefficient for sentiment
and connotation based measures. It turns out that
polarity of each word on its own does not have a
high impact on the creativity of a word pair. Rather,
it is the difference between the two words that gives
rise the sense of creativity.

4.3 Learning to Recognize Creativity
Now we put together all measures explored in §4.1
and 4.2 in a supervised-learning framework. As ex-
pected, rather than either one alone, the combination
of various measures leads to the best performance:

~F12 = [RH(w1, w2);KL(w1, w2);H(w1w2);

Ldiff
conn(w1, w2);PMI(w1, w2);

H(w2);KL(w1w2, w1);KL(w2, w1);

Ldiff
subj (w1, w2);MI(w1, w2);

Freq(w1w2);H(w1)]

Table 5 shows the performance of the above fea-
ture vector with 12 features using libsvm (Chang and
Lin, 2011). We use C-Support Vector Classification
(C-SVC). Performance is reported in accuracy using
5-fold cross validation.15

15Among these 12 features, the feature selection algorithm
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5 Learning Creative Pairs with
Distributional Semantic Vectors

The measures explored in §4 were largely unin-
formed of distributional semantic dimensions of
each word. However, in order to pursue the concep-
tual aspect of creativity illustrated in §2.2, that is, the
notion of semantic subspaces that are inherently fu-
tile or fruitful for creativity, we need to incorporate
semantic representations more directly. We there-
fore explore the use of distributional vector space
models. Another goal of this section will be addi-
tional learning-based investigation to the composi-
tional nature of creative word pairs, complementing
the investigation in §4, which focused on the com-
positional aspect of creativity described in §2.1.

With above goals in mind, in what follows, we ex-
plore three different ways to learn compositional as-
pect of creative word pairs: (1) learning with explicit
compositional vector operations (§5.1), (2) learning
nonlinear composition via kernels (§5.2), (3) learn-
ing nonlinear composition via deep learning (§5.3).
Note that in all these approaches, the notion of cre-
ative semantic subspace is integrated indirectly, as
the feature representation always incorporates the
resulting (composed) vector representations.

Baseline & Configuration We consider the con-
catenation of two word vectors [~w1; ~w2] as the base-
line, since it can be viewed as what simple bag-of-
word features would be. Since the size of creative
pair dataset is not at scale yet, we choose to work
with vector space models that are in reduced dimen-
sions. We experimented with both Non-Negative
Sparse Embedding (Murphy et al. (2012)) and neu-
ral semantic vectors of Huang et al. (2012), but re-
port experiments with the latter only as those gave
us slightly better results.

5.1 Compositional Vector Operations
We consider the following compositional vector op-
erations inspired by recent studies for composi-
tional distributional semantics (e.g., Guevara (2011),
Clarke (2012), Mitchell and Lapata (2008), Wid-
dows (2008)).

• ADD: ~w1 + ~w2

• DIFF: abs(~w1 − ~w2)

of Chen and Lin (2005) determines that the most two important
ones are RH(w1, w2) and KL(w1, w2).

• MULT: ~w1 .∗ ~w2

• MIN: min{~w1, ~w2}
• MAX: max{~w1, ~w2}

All operations take two input vectors ∈ Rn, and
output a vector ∈ Rn. Each operation is applied
element-wise. We then perform binary classifica-
tion over the composed vectors using linear SVM.
Besides using features based on the composed vec-
tors, we also experiment with features based on con-
catenating multiple composed vectors, in the hope to
capture more diverse compositional operations. See
Table 5 for more details and experimental results.

5.2 Learning Nonlinear Composition via
Kernels

As an alternative to explicit vector compositions, we
also probe implicit operations based on non-linear
combinations of semantic dimensions using kernels
(e.g., Schölkopf and Smola (2002), Shawe-Taylor
and Cristianini (2004)), in particular:

• Polynomial: K(x, y) = (γxT y + r)d, γ > 0

• RBF: K(x, y) = exp(−γ ‖x− y‖2), γ > 0
• Laplacian: K(x, y) = exp(−γ ‖x− y‖), γ > 0

5.3 Learning Non-linear Composition via Deep
Learning

Yet another alternative to model non-linear com-
position is deep learning. To learn the non-linear
transformation of a pair of semantic vectors, we ex-
plore the use of autoencoders (e.g., Pollack (1990),
Voegtlin and Dominey (2005)). We follow the for-
mulation of vector composition proposed by Socher
et al. (2011) except that we do not stack autoen-
coders for recursion. More specifically, given the
two input words ~w1, ~w2 ∈ Rn, we want to learn
a vector space representation of their combination
~p ∈ Rn. The recursive auto encoder (RAE) of
Socher et al. (2011) models the composition of a
word pair as a non-linear transformation of their
concatenation [~w1; ~w2]:

~p = f(M1[~w1; ~w2] +~b1) (4)

where M1 ∈ Rn×2n. After adding a bias term
~b1 ∈ Rn, a nonlinear element-wise function f such
as tanh is applied to the resulting vector. The repre-
sentation ~p of the word pair is then fed into a recon-
struction layer to reconstruct the two input vectors,
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Methods Accuracy
Creativity measures (§4.3)
~F12 62.30

Baseline: vector concatenation (no composition)
[~w1; ~w2] 67.51
Explicit vector composition (§5.1)
~w1 + ~w2 66.62

abs(~w1 − ~w2) 60.03
min{~w1, ~w2} 66.08
max{~w1, ~w2} 64.97
~w1 .∗ ~w2 56.34

[abs(~w1 − ~w2); ~w1; ~w2] 69.54
[max{~w1, ~w2}; ~w1; ~w2] 68.02

Non-linear composition via kernels (§5.2)
Polynomial 65.86

RBF 69.16
Laplacian 68.15

Non-linear composition via deep learning (§5.3)
f(M1[~w1; ~w2] +~b1) 67.25

Table 5: Performance comparison of creativity classifiers.

Incorrectly predicted y∗ Semantically close y∗

word pairs word pairs
CONFUSION DUE TO WORD SIMILARITY (20/42)

“entire carton” - “whole angst” +
“outdated tax” - “graconian tax” +

“dismissive way” - “amorous way” +
“insidious part” + “leather part” -

CONFUSION DUE TO SUBJECTIVE LABELING (8/42)
“independent + “wonderful -

religion” religion”
WORD SENSE DISAMBIGUATION PROBLEMS (2/42)

“fiscal cliff” - “winding lake” +
“opera window” + “work-shop floor” -

Table 6: Error analysis: y∗ denotes the true label. For
each incorrectly predicted word pair (left column), we
show an example of semantically close word pairs (right
column) with the opposite true label that might have con-
fused learning.

and a softmax layer to predict the probability of the
word pair being creative and not creative. We ini-
tialize the word vectors using the pre-learned vector
space representations in Huang et al. (2012).

5.4 Experimental Results

Table 5 shows the performance comparison of dif-
ferent features sets and algorithms. In all cases,
parameters are tuned from the training portion of
the data. We see that simple vector composition

alone does not perform better than vector concate-
nation [~w1; ~w2]. However, combining abs(~w1− ~w2)
or max{~w1; ~w2} with [~w1; ~w2] perform better than
concatenation. Kernels with non-linear transforma-
tion of feature space generally improve performance
over linear SVM, suggesting that kernels capture
some of the interesting compositional aspect of cre-
ativity that is not covered by some of the explicit
vector compositions considered in §5.1. We also ex-
perimented with additional features driven from the
creativity measures explored in §4, but we omit their
results as those did not help improving the perfor-
mance. Unfortunately learning nonlinear composi-
tion with deep learning did not yield better results.
We conjecture that it is due to the small dataset we
were able to obtain for this study, which may have
not been enough to learn the rich parameter space of
the nonlinear transformation matrix.

6 Analysis and Insight

Error analysis We manually inspected a ran-
domly chosen 42 error cases, and characterize the
potential causes of those errors. Examples of three
types of errors are shown in Table 6. For each incor-
rectly predicted word pair, we also show a seman-
tically close word pair with the opposite true label
that might have confused the learning algorithm.

Visualization To gain additional insight, we
project word pairs represented in their vec-
tor concatenations onto 2-dimensional space us-
ing t-Distributed Stochastic Neighbor Embedding
(van der Maaten and Hinton (2008)). Figure 5
shows some of the interesting regions of the pro-
jection: some regions are relatively futile in hav-
ing creative phrases (e.g., regions involving simple
adjectives such as “good”, “bad”, regions corre-
sponding to legal terms), while some regions are rel-
atively more fruitful (e.g., regions involving abstract
adjectives such as “infinite”, “universal”, “funda-
mental”). There are also many other regions (e.g., in
the vicinity of “true”, “perfect” or “intelligent” in
Figure 5) where the separation between creative and
noncreative phrases are not as prominent. In those
regions, compositional aspects would play a bigger
role in determining creativity than memorizing fruit-
ful semantic subspaces.
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Figure 5: Creative (blue bold) and not creative (red italic) word pairs graph.

7 Related Work

Among computational approaches that touch on lin-
guistic creativity, many focused on metaphor (e.g.,
Dunn (2013), Krishnakumaran and Zhu (2007),
Mashal et al. (2007), Rumbell et al. (2008), Ren-
toumi et al. (2012), Mashal et al. (2009)). Other lin-
guistic devices and phenomena related to creativity
include irony (e.g., Davidov et al. (2010), González-
Ibáñez et al. (2011), Filatova (2012)), neologism
(e.g., Cartoni (2008)), humor (e.g., Mihalcea and
Strapparava (2005), Purandare and Litman (2006)),
and similes (e.g., Hao and Veale (2010)).

Veale (2011) proposed the new task of creative
text retrieval to harvest expressions that potentially
convey the same meaning as the query phrase in
a fresh or unusual way. Our work contributes to
the retrieval process of recognizing more creative
phrases. Ozbal and Strapparava (2012) explored
automatic creative naming of commercial products
and services, focusing on the generation of creative
phrases within a specific domain. Costello (2002)
investigated the cognitive process that guides peo-
ple’s choice of words when making up a novel noun-
noun compound. In contrast, we present a data-
driven investigation to quantifying creativity in lex-
ical composition. Memorability is loosely related to

linguistic creativity (Danescu-Niculescu-Mizil et al.
(2012)) as some of the creative quotes may be more
memorable, but not all creative phrases are memo-
rable and vice versa.

8 Conclusion
We presented the first study that focuses on learn-
ing and quantifying creativity in lexical composi-
tions, exploring statistical techniques motivated by
three different theories and hypotheses of creativ-
ity, ranging from divergent thinking, compositional
structure, creative semantic subspace, and the con-
nection to sentiment and connotation. Our experi-
mental results suggest the viability of learning cre-
ative language, and point to promising directions for
future research.
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Abstract

Assigning a positive or negative score to a
word out of context (i.e. a word’s prior polar-
ity) is a challenging task for sentiment analy-
sis. In the literature, various approaches based
on SentiWordNet have been proposed. In this
paper, we compare the most often used tech-
niques together with newly proposed ones and
incorporate all of them in a learning frame-
work to see whether blending them can fur-
ther improve the estimation of prior polarity
scores. Using two different versions of Sen-
tiWordNet and testing regression and classifi-
cation models across tasks and datasets, our
learning approach consistently outperforms
the single metrics, providing a new state-of-
the-art approach in computing words’ prior
polarity for sentiment analysis. We conclude
our investigation showing interesting biases
in calculated prior polarity scores when word
Part of Speech and annotator gender are con-
sidered.

1 Introduction

Many approaches to sentiment analysis make use of
lexical resources – i.e. lists of positive and neg-
ative words – often deployed as baselines or as
features for other methods (usually machine learn-
ing based) for sentiment analysis research (Liu and
Zhang, 2012). In these lexica, words are associated
with their prior polarity, i.e. if that word out of con-
text evokes something positive or something nega-
tive. For example, wonderful has a positive connota-
tion – prior polarity – while horrible has a negative
one. These approaches have the advantage of not

needing deep semantic analysis or word sense dis-
ambiguation to assign an affective score to a word
and are domain independent (they are thus less pre-
cise but more portable).

SentiWordNet (henceforth SWN) is one of these
resources and has been widely adopted since it pro-
vides a broad-coverage lexicon – built in a semi-
automatic manner – for English (Esuli and Sebas-
tiani, 2006). Given that SWN provides polarities
scores for each word sense (also called ‘posterior
polarities’), it is necessary to derive prior polarities
from the posteriors. For example, the word cold has
a posterior polarity for the meaning “having a low
temperature” – like in “cold beer” – that is different
from the one in “cold person” which refers to “being
emotionless”. This information must be considered
when reconstructing the prior polarity of cold.

Several formulae to compute prior polarities start-
ing from posterior polarities scores have been used
in the literature. However, their performance varies
significantly depending on the adopted variant. We
show that researchers have not paid sufficient atten-
tion to this posterior-to-prior polarity issue. Indeed,
we show that some variants outperform others on
different datasets and can represent a fairer state-of-
the-art approach using SWN. On top of this, we at-
tempt to outperform the state-of-the-art formula us-
ing a learning framework that combines the various
formulae together.

In detail, we will address five main research
questions: (i) is there any relevant difference in
the posterior-to-prior polarity formulae performance
(both in regression and classification tasks), (ii) is
there any relevant variation in prior polarity values
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if we use different releases of SWN (i.e. SWN1 or
SWN3), (iii) can a learning framework boost per-
formance of such formulae, (iv) considering word
Part of Speech (PoS), is there any relevant difference
in formulae performance, (v) considering the gender
dimension of the annotators (male/female) and the
sentiment dimension (positive/negative), is there any
relevant difference in SWN performance.

In Section 2 we briefly describe our approach and
how it differentiates from similar sentiment analysis
tasks. Then, in Sections 3 and 4, we present Sen-
tiWordNet and overview various posterior-to-prior
polarity formulae based on this resource that ap-
peared in the literature (included some new ones
we identified as potentially relevant). In Section 5
we describe the learning approach adopted on prior-
polarity formulae. In Section 6 we introduce the
ANEW and General Inquirer resources that will be
used as gold standards. Finally, in the two last sec-
tions, we present a series of experiments, both in
regression and classification tasks, that give an an-
swer to the aforementioned research questions. The
results support the hypothesis that using a learning
framework we can improve on state-of-the-art per-
formance and that there are some interesting phe-
nomena connected to PoS and annotator gender.

2 Proposed Approach

In the broad field of Sentiment Analysis we will fo-
cus on the specific problem of posterior-to-prior po-
larity assessment, using both regression and classifi-
cation experiments. A general overview on the field
and possible approaches can be found in (Pang and
Lee, 2008) or (Liu and Zhang, 2012).

For the regression task, we tackled the problem
of assigning affective scores (along a continuum be-
tween -1 and 1) to words using the posterior-to-prior
polarity formulae. For the classification task (assess-
ing whether a word is either positive or negative) we
used the same formulae, but considering just the sign
of the result. In these experiments we will also use a
learning framework which combines the various for-
mulae together. The underlying hypothesis is that by
blending these formulae, and looking at the same in-
formation from different perspectives (i.e. the pos-
terior polarities provided by SWN combined in var-
ious ways), we can give a better prediction.

The regression task is harder than binary classifi-
cation, since we want to assess not only that pretty,
beautiful and gorgeous are positive words, but also
to define a partial or total order so that gorgeous
is more positive than beautiful which, in turn, is
more positive than pretty. This is fundamental for
tasks such as affective modification of existing texts,
where words’ polarity together with their score are
necessary for creating multiple graded variations of
the original text (Guerini et al., 2008). Some of
the work that addresses the problem of sentiment
strength are presented in (Wilson et al., 2004; Pal-
toglou et al., 2010), however, their approach is mod-
eled as a multi-class classification problem (neutral,
low, medium or high sentiment) at the sentence level,
rather than a regression problem at the word level.
Other works such as (Neviarouskaya et al., 2011)
use a fine grained classification approach too, but
they consider emotion categories (anger, joy, fear,
etc.), rather than sentiment strength categories. On
the other hand, even if approaches that go beyond
pure prior polarities – e.g. using word bigram fea-
tures (Wang and Manning, 2012) – are better for
sentiment analysis tasks, there are tasks that are in-
trinsically based on the notion of words’ prior polar-
ity. Consider copywriting, where evocative names
are a key element to a successful product (Özbal and
Strapparava, 2012; Özbal et al., 2012). In such cases
no context is given and the brand name alone, with
its perceived prior polarity, is responsible for stating
the area of competition and evoking semantic asso-
ciations. For example Mitsubishi changed the name
of one of its SUV for the Spanish market, since the
original name Pajero had a very negative prior po-
larity, as it meant ‘wanker’ in Spanish (Piller, 2003).

To our knowledge, the only work trying to address
the SWN posterior-to-prior polarity issue, compar-
ing some of the approaches appeared in the literature
is (Gatti and Guerini, 2012). However, in our previ-
ous study we only considered a regression frame-
work, we did not use machine learning and we only
tested SWN1. So, we took this work as a starting
point for our analysis and expanded on it.

3 SentiWordNet

SentiWordNet (Esuli and Sebastiani, 2006) is a
lexical resource in which each entry is a set of
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lemma-PoS pairs sharing the same meaning, called
“synset”. Each synset s is associated with the nu-
merical scores Pos(s) and Neg(s), which range
from 0 to 1. These scores – automatically as-
signed starting from a bunch of seed terms – rep-
resent the positive and negative valence (or pos-
terior polarity) of the synset and are inherited by
each lemma-PoS in the synset. According to the
structure of SentiWordNet, each pair can have more
than one sense and each of them takes the form of
lemma#PoS#sense-number, where the small-
est sense-number corresponds to the most frequent
sense.

Obviously, different senses can have different po-
larities. In Table 1, the first 5 senses of cold#a
present all possible combinations, included mixed
scores (cold#a#4), where positive and negative
valences are assigned to the same sense. Intuitively,
mixed scores for the same sense are acceptable, as
in “cold beer” (positive) vs. “cold pizza” (negative).

PoS Offset Pos(s) Neg(s) SynsetTerms
a 1207406 0.0 0.75 cold#a#1
a 1212558 0.0 0.75 cold#a#2
a 1024433 0.0 0.0 cold#a#3
a 2443231 0.125 0.375 cold#a#4
a 1695706 0.625 0.0 cold#a#5

Table 1: First five SentiWordNet entries for cold#a

In our experiments we use two different versions
of SWN: SentiWordNet 1.0 (SWN1), the first re-
lease of SWN, and its updated version SentiWord-
Net 3.0 (Baccianella et al., 2010) – SWN3. In
SWN3 the annotation algorithm used in SWN1

was revised, leading to an increase in the accuracy
of posterior polarities over the previous version.

4 Prior Polarities Formulae

In this section we review the main strategies for
computing prior polarities used in previous stud-
ies. All the proposed approaches try to estimate
the prior polarity score from the posterior polari-
ties of all the senses for a single lemma-PoS. Given
a lemma-PoS with n senses (lemma#PoS#n), ev-
ery formula f is independently applied to all the
Pos(s) and Neg(s) . This produces two scores,
f(posScore) and f(negScore), for each lemma-
PoS. To obtain a unique prior polarity for each
lemma-PoS, f(posScore) and f(negScore) can be

mapped according to different strategies:

fm =


f(posScore) if f(posScore) ≥

f(negScore)

−f(negScore) otherwise

fd = f(posScore)− f(negScore)

where fm computes the absolute maximum of
the two scores, while fd computes the difference
between them. It is worth noting that f(negScore)
is always positive by construction. To obtain
a final prior polarity that ranges from -1 to 1,
the negative sign is imposed. So, consider-
ing the first 5 senses of cold#a in Table 1,
f(posScore) will be derived from the Pos(s) val-
ues <0.0, 0.0, 0.0, 0.125, 0.625>, while f(negScore)
from <0.750, 0.750, 0.0, 0.375, 0.0>. Then, the fi-
nal polarity strength returned will be either fm or fd.

The formulae (f ) we tested are the following:
fs. In this formula only the first (and thus

most frequent) sense is considered for the given
lemma#PoS. This is equivalent to considering only
the SWN score for lemma#PoS#1. Based on
(Neviarouskaya et al., 2009; Agrawal and Siddiqui,
2009; Guerini et al., 2008; Chowdhury et al., 2013),
this is the most basic form of prior polarities.

mean. It calculates the mean of the positive
and negative scores for all the senses of the given
lemma#PoS. This formula has been used in (Thet
et al., 2009; Denecke, 2009; Devitt and Ahmad,
2007; Sing et al., 2012).

uni. Based on (Neviarouskaya et al., 2009), it
considers only those senses that have a Pos(s)
greater than or equal to the corresponding Neg(s),
and greater than 0 (the stronglyPos set). In case
posScore is equal to negScore, the one with the
highest weight is returned, where weights are de-
fined as the cardinality of stronglyPos divided by
the total number of senses. The same applies for the
negative senses. This is the only method, together
with rnd, for which we cannot apply fd, as it returns
a positive or negative score according to the weight.

uniw. Like uni but without the weighting system.
w1. This formula weighs each sense with a geo-

metric series of ratio 1/2. The rationale behind this
choice is based on the assumption that more frequent
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senses should bear more “affective weight” than rare
senses when computing the prior polarity of a word.
The system presented in (Chaumartin, 2007) uses a
similar approach of weighted mean.

w2. Similar to the previous one, this formula
weighs each lemma with a harmonic series, see for
example (Denecke, 2008).

On top of these formulae, we implemented some
new formulae that were relevant to our task and
have not been implemented before. These for-
mulae mimic the ones discussed previously, but
they are built under a different assumption: that
the saliency (Giora, 1997) of a word’s prior polar-
ity might be more related to its posterior polari-
ties score, rather than to sense frequencies. Thus
we ordered posScore and negScore by strength,
giving more relevance to ‘valenced’ senses. For
instance, in Table 1, posScore and negScore
for cold#a become<0.625, 0.125, 0.0, 0.0, 0.0> and
<0.750, 0.750, 0.375, 0.0, 0.0> respectively.

w1s and w1n. Like w1 and w2, but senses are
ordered by strength (sorting Pos(s) and Neg(s) in-
dependently).

w1n and w2n. Like w1 and w2 respectively, but
without considering senses that have a 0 score for
both Pos(s) and Neg(s). Our motivation is that
“empty” senses are mostly noise.

w1sn and w2sn. Like w1s and w2s, but with-
out considering senses that have a 0 score for both
Pos(s) and Neg(s).

median: return the median of the senses ordered
by polarity score.

All these prior polarities formulae are compared
against two gold standards (one for regression, one
for classification) both one by one, as in the works
mentioned above, and combined together in a learn-
ing framework (to see whether combining these fea-
tures – that capture different aspect of prior polari-
ties – can further improve the results).

Finally, we implemented two variants of a prior
polarity random baseline to asses possible advan-
tages of approaches using SWN:

rnd. This formula represents the basic baseline
random approach. It simply returns a random num-
ber between -1 and 1 for any given lemma#PoS.

swnrnd. This formula represents an advanced
random approach that incorporates some “knowl-

edge” from SWN. It takes the scores of a random
sense for the given lemma#PoS. We believe this
is a fairer baseline than rnd since SWN informa-
tion can possibly constrain the values. A similar ap-
proach has been used in (Qu et al., 2008).

5 Learning Algorithms

We used two non-parametric learning approaches,
Support Vector Machines (SVMs) (Shawe-Taylor
and Cristianini, 2004) and Gaussian Processes (GPs)
(Rasmussen and Williams, 2006), to test the perfor-
mance of all the metrics in conjunction. SVMs are
non-parametric deterministic algorithms that have
been widely used in several fields, in particular in
NLP where they are the state-of-the-art for various
tasks. GPs, on the other hand, are an extremely flex-
ible non-parametric probabilistic framework able to
explicitly model uncertainty, that, despite being con-
sidered state-of-the-art in regression, have rarely
been used in NLP. To our knowledge only two pre-
vious works did so (Polajnar et al., 2011; Cohn and
Specia, 2013).

Both methods take advantage of the kernel trick,
a technique used to embed the original feature space
into an alternative space where data may be linearly
separable. This is performed by the kernel func-
tion that transforms the input data in a new structure,
called kernel. How it is used to produce the predic-
tion is one of the main differences between SVMs
and GPs. In classification SVMs use the geomet-
ric mean to discriminate between the positive and
negative classes, while the GP model uses the pos-
terior probability distribution over each class. Both
frameworks support learning algorithms for regres-
sion and classification. An exhaustive explanation
of the two methodologies can be found in (Shawe-
Taylor and Cristianini, 2004) and (Rasmussen and
Williams, 2006).

In the SVM experiments, we use C-SVM and ε-
SVM implemented in the LIBSVM toolbox (Chang
and Lin, 2011). The selection of the kernel (linear,
polynomial, radial basis function and sigmoid) and
the optimization of the parameters are carried out
through grid search in 10-fold cross-validation.

GP regression models with Gaussian noise are a
rare exception where the exact inference with like-
lihood functions is tractable, see §2 in (Rasmussen
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and Williams, 2006). Unfortunately, this is not valid
for the classification task – see §3 in (Rasmussen and
Williams, 2006) – where an approximation method
is required. In this work, we use the Laplace ap-
proximation method proposed in (Williams and Bar-
ber, 1998). Different kernels are tested (covariance
for constant functions, linear with and without au-
tomatic relevance determination (ARD)1, Matern,
neural network, etc.2) and the linear logistic (lll)
and probit regression (prl) likelihood functions are
evaluated in classification. In our classification ex-
periments we tried all possible combinations of ker-
nels and likelihood functions, while in the regression
tests we ranged only on different kernels. All the GP
models were implemented using the GPML Matlab
toolbox3. Unlike SVMs, the optimization of the ker-
nel parameters can be performed without using grid
search, but the optimal parameters can be obtained
iteratively, by maximizing the marginal likelihood
(or in classification, the Laplace approximation of
the marginal likelihood). We fix at 100 the maxi-
mum number of iterations.

An interesting property of the GPs is their capa-
bility of weighting the features differently accord-
ing to their importance in the data. This is referred
to as the automatic variance determination kernel.
As demonstrated in (Weston et al., 2000), SVMs
can benefit from the application of feature selec-
tion techniques especially when there are highly re-
dundant features. Since the prior polarities formu-
lae tend to cluster in groups that provide similar re-
sults (Gatti and Guerini, 2012) – creating noise for
the learner – we want to understand whether feature
selection approaches can boost the performance of
SVMs. For this reason, we also test feature selection
prior to the SVM training. For that we used Ran-
domized Lasso, or stability selection (Meinshausen
and Bühlmann, 2010). Re-sampling of the training
data is performed several times and a Lasso regres-
sion model is fit on each sample. Features that ap-
pear in a given number of samples are retained. Both
the fraction of the data to be sampled and the thresh-
old to select the features can be configured. In our

1linone and linard in the result tables, respectively.
2More detailed information on the available kernels are in

§4 (Rasmussen and Williams, 2006)
3http://www.gaussianprocess.org/gpml/

code/matlab/doc/

experiments we set the sampling fraction to 75%,
the selection threshold to 25% and the number of re-
samples to 1,000. We refer to these as SVMfs.

6 Gold Standards

To assess how well prior polarity formulae perform,
a gold standard with word polarities provided by hu-
man annotators is needed. There are many such re-
sources in the literature, each with different cover-
age and annotation characteristics. ANEW (Bradley
and Lang, 1999) rates the valence score of 1,034
words, which were presented in isolation to anno-
tators. The SO-CAL entries (Taboada et al., 2011)
were collected from corpus data and then manu-
ally tagged by a small number of annotators with
a multi-class label. These ratings were further vali-
dated through crowdsourcing. Other resources, such
as the General Inquirer lexicon (Stone et al., 1966),
provide a binomial classification (either positive or
negative) of sentiment-bearing words. The resource
presented in (Wilson et al., 2005) uses a similar bi-
nomial annotation for single words; another inter-
esting resource is WordNetAffect (Strapparava and
Valitutti, 2004) but it labels words senses and it can-
not be used for the prior polarity validation task.

In the following we describe in detail the two
resources we used for our experiments, namely
ANEW for the regression experiments and the Gen-
eral Inquirer (GI) for the classification ones.

6.1 ANEW

ANEW (Bradley and Lang, 1999) is a resource de-
veloped to provide a set of normative emotional rat-
ings for a large number of words (roughly 1 thou-
sand) in the English language. It contains a set of
words that have been rated in terms of pleasure (af-
fective valence), arousal, and dominance. In par-
ticular for our task we considered the valence di-
mension. Since words were presented to subjects
in isolation (i.e. no context was provided) this re-
source represents a human validation of prior polar-
ities scores for the given words, and can be used as a
gold standard. For each word ANEW provides two
main metrics: anewµ, which correspond to the av-
erage of annotators votes, and anewσ, which gives
the variance in annotators scores for the given word.
In the same way these metrics are also provided for
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the male/female annotator groups.

6.2 General Inquirer

The Harvard General Inquirer dictionary is a widely
used resource, built for automatic text analysis
(Stone et al., 1966). Its latest revision4 contains
11789 words, tagged with 182 semantic and prag-
matic labels, as well as with their part of speech.
Words and their categories were initially taken
from the Harvard IV-4 Psychosociological Dictio-
nary (Dunphy et al., 1974) and the Lasswell Value
Dictionary (Lasswell and Namenwirth, 1969). For
this paper we consider the Positiv and Negativ
categories (1,915 words the former, 2,291 words the
latter, for a total of 4,206 affective words).

7 Experiments

In order to use the ANEW dataset to measure
prior polarities formulae performance, we had to
assign a PoS to all the words to obtain the SWN
lemma#PoS format. To do so, we proceeded as
follows: for each word, check if it is present among
both SWN1 and SWN3 lemmas; if not, lemmatize
the word with the TextPro tool suite (Pianta et al.,
2008) and check if the lemma is present instead5.
If it is not found (i.e., the word cannot be aligned
automatically), remove the word from the list (this
was the case for 30 words of the 1,034 present in
ANEW). The remaining 1,004 lemmas were then
associated with all the PoS present in SWN to get
the final lemma#PoS. Note that a lemma can have
more than one PoS, for example, writer is present
only as a noun (writer#n), while yellow is present
as a verb, a noun and an adjective (yellow#v,
yellow#n, yellow#a). This gave us a list of
1,484 words in the lemma#PoS format.

In a similar way we pre-processed the GI words
that uses the generic modif label to indicate ei-
ther adjective or adverb (noun and verb PoS were
instead consistently used). Finally, all the sense-
disambiguated words in the lemma#PoS#n format
were discarded (1,114 words out of the 4,206 words
with positive or negative valence).

4http://www.wjh.harvard.edu/˜inquirer/
5We did not lemmatize everything to avoid duplications (for

example, if we lemmatize the ANEW entry addicted, we obtain
addict, which is already present in ANEW).

After the two datasets were built this way, we
removed the words for which the posScore and
negScore contained all 0 in both SWN1 and
SWN3 (523 lemma#PoS for ANEW and 484 for
the GI dataset), since these words are not informa-
tive for our experiments. The final dataset included
961 entries for ANEW and 2,557 for GI. For each
lemma#PoS in GI and ANEW, we then applied the
prior polarity formulae described in Section 4, using
both SWN1 and SWN3 and annotated the results.

According to the nature of the human labels (real
numbers or -1/1), we ran several regression and clas-
sification experiments. In both cases, each dataset
was randomly split into 70% for training and the re-
maining for test. This process was repeated 5 times
to generate different splits. For each partition, opti-
mization of the learning algorithm parameters was
performed on the training data (in 10-fold cross-
validation for SVMs). Training and test sets were
normalized using the z-score.

To evaluate the performance of our regression ex-
periments on ANEW we used the Mean Absolute
Error (MAE), that averages the error over a given
test set. Accuracy was used for the classification ex-
periments on GI instead. We opted for accuracy –
rather than F1 – since for us True Negatives have
same importance as True Positives. For each experi-
ments we reported the average performance and the
standard deviation over the 5 random splits. In the
following sections, to check if there was a statisti-
cally significant difference in the results, we used
Student’s t-test for regression experiments, while
an approximate randomization test (Yeh, 2000) was
used for the classification experiments.

In Tables 2 and 3, the results of regression exper-
iments over the ANEW dataset, using SWN1 and
SWN3, are presented. The results of the classifica-
tion experiments over the GI dataset, using SWN1

and SWN3 are shown in Tables 4 and 5. For the
sake of interpretability, results are divided accord-
ing to the main approaches: randoms, posterior-to-
prior formulae, learning algorithms. Note that for
classification we report the generics f and not the
fm and fd variants. In fact, both versions always
return the same classification answer (we are clas-
sifying according to the sign of f result and not its
strength). For the GPs, we report the two best con-
figurations only.
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MAE µ MAE σ
rnd 0.652 0.026
swnrndm 0.427 0.011
swnrndd 0.426 0.009
uniwm 0.420 0.009
maxm 0.419 0.009
fsd 0.413 0.011
fsm 0.412 0.009
uni 0.410 0.010
uniwd 0.406 0.007
w1snm 0.405 0.011
maxd 0.404 0.005
w2snm 0.402 0.011
mediand 0.401 0.014
w1d 0.401 0.010
w1nd 0.399 0.008
meand 0.398 0.010
w2d 0.398 0.010
medianm 0.397 0.015
w1snd 0.397 0.008
w2snd 0.397 0.008
w2nd 0.397 0.008
w1sm 0.396 0.010
w1m 0.396 0.010
w1nm 0.394 0.009
meanm 0.393 0.011
w2sd 0.393 0.008
w1sd 0.393 0.009
w2sm 0.392 0.010
w2m 0.391 0.011
w2nm 0.391 0.012
GPlinard 0.398 0.014
GPlinone 0.398 0.014
SVM 0.367 0.010
SVMfs 0.366 0.011
AVERAGE 0.398 0.010

Table 2: MAE results for metrics using SWN1

8 General Discussion

In this section we sum up the main results of our
analysis, providing an answer to the various ques-
tions we introduced at the beginning of the paper:

SentiWordNet improves over random. One of
the first things worth noting – in Tables 2, 3, 4 and
5 – is that the random approach (rnd), as expected,
is the worst performing metric, while all other ap-
proaches, based on SWN, have statistically signif-
icant improvements both for MAE and for Accu-
racy (p < 0.001). So, using SWN for posterior-
to-prior polarity computation brings benefits, since
it increases the performance above the baseline in
words’ prior polarity assessment.

SWN3 is better than SWN1. With respect to

MAE µ MAE σ
rnd 0.652 0.026
swnrndd 0.404 0.013
swnrndm 0.402 0.010
maxm 0.393 0.009
fsd 0.382 0.008
uniwm 0.382 0.015
fsm 0.381 0.010
medianm 0.377 0.008
uniwd 0.377 0.012
mediand 0.377 0.011
uni 0.376 0.010
maxd 0.372 0.011
meand 0.371 0.010
w1snm 0.371 0.011
w2snm 0.369 0.010
w1d 0.368 0.010
w2d 0.367 0.010
meanm 0.367 0.010
w1m 0.365 0.010
w2snd 0.364 0.011
w1snd 0.364 0.010
w1sm 0.363 0.009
w1nd 0.362 0.009
w2sd 0.362 0.010
w2m 0.362 0.010
w1sd 0.362 0.009
w1nm 0.362 0.007
w2nd 0.361 0.010
w2sm 0.360 0.009
w2nm 0.359 0.009
GPlinone 0.356 0.008
GPlinard 0.355 0.008
SVM 0.333 0.004
SVMfs 0.333 0.003
AVERAGE 0.366 0.009

Table 3: MAE results for regression using SWN3

SWN1, using SWN3 enhances performance, both
in regression (MAE µ 0.398 vs. 0.366, p < 0.001)
and classification (Accuracy µ 0.710 vs. 0.771,
p < 0.001) tasks. Since many of the approaches
described in the literature use SWN1 their results
should be revised and SWN3 should be used as
standard. This difference in performance can be
partially explained by the fact that, even after pre-
processing, for the ANEW dataset 137 lemma#PoS
have all senses equal to 0 in SWN1, while in SWN3

they are just 48. In the GI lexicon the numbers are
233 for SWN1 and 69 for SWN3.

Not all formulae are created equal. The formu-
lae described in Section 4 have very different results,
along a continuum. While inspecting every differ-
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Acc. µ Acc. σ
rnd 0.447 0.019
swn rndm 0.639 0.026
swn rndd 0.646 0.021
fs m 0.659 0.020
uni 0.684 0.017
median 0.686 0.022
uniw 0.702 0.019
max 0.710 0.022
w1 0.712 0.021
w1n 0.713 0.022
w2n 0.714 0.023
w2 0.715 0.021
mean 0.718 0.023
w2s 0.719 0.023
w2sn 0.719 0.023
w1s 0.719 0.023
w1sn 0.719 0.023
GP lll

linard 0.721 0.026
GP prl

linard 0.722 0.025
SVM 0.733 0.021
SVMfs 0.743 0.021
Average 0.710 0.022

Table 4: Accuracy results for classification using SWN1

ence in performance is out of the scope of the present
paper, we can see that there is a strong difference be-
tween best and worst performing formulae both in
regression (in Table 2 w2nm is better than uniwm,
in Table 3 w2nm is better than maxm) and classifi-
cation (in Table 4 w1snm is better than fsm,in Ta-
ble 5 w2m is better than fsm) and these differences
are all statistically significant (p < 0.001). Again,
these results indicate that the previous experiments
in the literature that use SWN as a baseline should
be revised to take these results into account. Further-
more, the new formulae we introduced, based on the
“posterior polarities saliency” hypothesis, proved to
be among the best performing in all experiments.
This entails that there is room for inspecting new
formulae variants other than those already proposed
in the literature.

Selecting just one sense is not a good choice.
On a side note, the approaches that rely on only one
sense polarity (namely fs, median and max) have
similar results which do not differ significantly from
swnrnd (for maxm, fsd and fsm in Table 2, and
for maxm in Table 3). These same approaches are
also far from the best performing formulae: in Ta-
ble 3, mediand differs from w2nm (p < 0.05), as
do maxm, maxd, fsm and fsd (p < 0.001); in Ta-

Acc. µ Acc. σ
rnd 0.447 0.019
swn rndd 0.700 0.030
swn rndm 0.706 0.034
fs 0.723 0.014
medianm 0.742 0.016
uni 0.750 0.015
uniw 0.762 0.023
max 0.769 0.019
w2s 0.777 0.017
w2sn 0.777 0.017
w1s 0.777 0.017
w1sn 0.777 0.017
w1n 0.780 0.021
w2n 0.780 0.022
mean 0.781 0.018
w1 0.781 0.021
w2 0.781 0.021
SVM 0.779 0.016
GPl 0.779 0.018
GPg 0.781 0.018
SVMfs 0.792 0.014
Average 0.771 0.018

Table 5: Accuracy results for classification using SWN3

ble 3, fs, max and median in both their fm and fd
variants are significantly different from the best per-
forming w2nm (p < 0.001). For classification, in
Table 4 and 5 the difference between the correspond-
ing best performing formula and the single senses
formulae is always significant (at least p < 0.01).
Among other things, this finding entails, surpris-
ingly, that taking the first sense of a lemma#PoS in
some cases has no improvement over taking a ran-
dom sense, and that in all cases it is one of the worst
approaches with SWN . This is surprising since in
many NLP tasks, such as word sense disambigua-
tion, algorithms based on most frequent sense repre-
sent a very strong baseline6.

Learning improvements. Combining the formu-
lae in a learning framework further improves the
results over the best performing formulae, both in
regression (MAEµ with SWN1 0.366 vs. 0.391,
p < 0.001; MAEµ with SWN3 0.333 vs. 0.359,
p < 0.001) and in classification (Accuracyµ for
SWN1 is 0.743 vs. 0.719, p < 0.001; Accuracyµ
for SWN3 is 0.792 vs. 0.781, not significant p =
0.07). Another thing worth noting is that, in re-
gression, GPs are outperformed by both versions of

6In SemEval 2010, only 5 participants out of 29 performed
better than the most frequent threshold (Agirre et al., 2010).
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SVM (p < 0.001), see Tables 2 and 3. This is in
contrast with the results presented in (Cohn and Spe-
cia, 2013), where GPs on the single task are on av-
erage better than SVMs. In classification, GPs have
similar performance to SVM without feature selec-
tion, and in some cases (see Table 5) even slightly
better. Analyzing the selected kernels for GPs and
SVMs, we notice that in most of the splits SVMs
prefer the radial based function, while the best per-
formance with the GPs are obtained with linear ker-
nels with and without ARD. There is no significant
difference in using linear logistic and probit regres-
sion likelihoods. In all our experiments, SVM with
feature selection leads to the best performance. This
is not surprising due the high level of redundancy
in the formulae scores. Interestingly, inspecting the
most frequent selected features by SVMfs, we see
that features from different groups are selected, and
even the worst performing formulae can add infor-
mation, confirming the idea that viewing the same
information from different perspectives (i.e. the pos-
terior polarities provided by SWN combined in var-
ious ways) can give better predictions.

To sum up: the new state-of-the-art performance
level in prior-polarity computation is represented
by the SVMfs approach using SWN3, and this
should be used as the reference from now on.

9 PoS and Gender Experiments

Next, we wanted to understand if the performance of
our approach, using SWN3, was consistent across
word PoS. In Table 6 we report the results for the
best performing formulae and learning algorithm on
the GI PoS classes. In particular for ADJ there are
1,073 words, 922 for NOUN and 508 for VERB. We
discarded adverbs since the class was too small to
allow reliable evaluation and efficient learning (only
54 instances). The results show a greater accuracy
for adjectives (p < 0.01), while performance for
nouns and verbs are similar.

SVMfs best f
Acc. µ Acc. σ Acc. µ Acc. σ

ADJ 0.829 0.019 0.821 0.016
NOUN 0.784 0.021 0.765 0.023
VERBS 0.782 0.052 0.744 0.046

Table 6: Accuracy results for PoS using SWN3

Finally we test against the male and female ratings
provided by ANEW. As can be seen from Table 7,
SWN approaches are far more precise in predicting
Male judgments rather than Female ones (MAEµ
goes from 0.392 to 0.323 with the best formula and
from 0.369 to 0.292 with SVMfs, both differences
are significant p < 0.001). Instead, in Table 8 –
which displays the results along gender and polarity
dimensions – there is no statistically significant dif-
ference in MAE on positive words between male
and female, while there is a strong statistical signifi-
cance for negative words (p < 0.001).

Interestingly, there is also a large difference be-
tween positive and negative affective words (both
for male and female dimensions). This difference
is maximum for male scores on positive words com-
pared to female scores on negative words (0.283 vs.
0.399, p < 0.001). Recent work by Warriner et al.
(2013) inspected the differences in prior polarity as-
sessment due to gender.

At this stage we can only note that prior polari-
ties calculated with SWN are closer to ANEW male
annotations than female ones. Understanding why
this happens would require an accurate examination
of the methods used to create WordNet and SWN
(which will be the focus of our future work).

Male female
MAE µ MAE σ MAE µ MAE σ

SVMfs 0.292 0.020 0.369 0.008
best f 0.323 0.022 0.392 0.010

Table 7: MAE results for Male vs Female using SWN3

Male female
MAE µ MAE σ MAE µ MAE σ

Pos 0.283 0.022 0.340 0.009
Neg 0.301 0.029 0.399 0.013

Table 8: MAE for Male/Female - Pos/Neg using SWN3

10 Conclusions

We have presented a study on the posterior-to-prior
polarity issue, i.e. the problem of computing words’
prior polarity starting from their posterior polarities.
Using two different versions of SentiWordNet and
30 different approaches that have been proposed in
the literature, we have shown that researchers have
not paid sufficient attention to this issue. Indeed, we
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showed that the better variants outperform the oth-
ers on different datasets both in regression and clas-
sification tasks, and that they can represent a fairer
state-of-art baseline approach using SentiWordNet.
On top of this, we also showed that these state-of-
the-art formulae can be further outperformed using
a learning framework that combines the various for-
mulae together. We conclude our analysis with some
experiments investigating the impact of word PoS
and annotator gender in gold standards, showing in-
teresting phenomena that requires further investiga-
tion.

Acknowledgments
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Abstract

Building search engines that can respond to
spoken queries with spoken content requires
that the system not just be able to find useful
responses, but also that it know when it has
heard enough about what the user wants to be
able to do so. This paper describes a simula-
tion study with queries spoken by non-native
speakers that suggests that indicates that find-
ing relevant content is often possible within
a half minute, and that combining features
based on automatically recognized words with
features designed for automated prediction of
query difficulty can serve as a useful basis for
predicting when that useful content has been
found.

1 Introduction

Much of the early work on what has come to be
called “speech retrieval” has focused on the use of
text queries to rank segments that are automatically
extracted from spoken content. While such an ap-
proach can be useful in a desktop environment, half
of the world’s Internet users can access the global
information network only using a voice-only mobile
phone. This raises two challenges: 1) in such set-
tings, both the query and the content must be spo-
ken, and 2) the language being spoken will often be
one for which we lack accurate speech recognition.

The Web has taught us that the “ten blue links”
paradigm can be a useful response to short queries.
That works because typed queries are often fairly
precise, and tabular responses are easily skimmed.
However, spoken queries, and in particular open-

domain spoken queries for unrestricted spoken con-
tent, pose new challenges that call for new thinking
about interaction design. This paper explores the po-
tential of a recently proposed alternative, in which
the spoken queries are long, and only one response
can be played at a time by the system. This ap-
proach, which has been called Query by Babbling,
requires that the user ramble on about what they
are looking for, that the system be able to estimate
when it has found a good response, and that the user
be able to continue the search interaction by bab-
bling on if the first response does not fully meet their
needs (Oard, 2012).

One might question whether users actually will
“babble” for extended periods about their informa-
tion need. There are two reasons to believe that
some users might. First, we are particularly inter-
ested in ultimately serving users who search for in-
formation in languages for which we do not have us-
able speech recognition systems. Speech-to-speech
matching in such cases will be challenging, and we
would not expect short queries to work well. Sec-
ond, we seek to principally serve users who will be
new to search, and thus not yet conditioned to issue
short queries. As with Web searchers, we can ex-
pect them to explore initially, then to ultimately set-
tle on query strategies that work well enough to meet
their needs. If longer queries work better for them,
it seems reasonable to expect that they would use
longer queries. Likewise, if systems cannot effec-
tively use longer queries to produce useful results,
then people will not use them.

To get a sense for whether such an interaction
modality is feasible, we performed a simulation
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study for this paper in which we asked people to
babble on some topic for which we already have rel-
evance judgments results. We transcribe those bab-
bles using automatic speech recognition (ASR), then
note how many words must be babbled in each case
before an information retrieval system is first able to
place a relevant document in rank one. From this
perspective, our results show that people are indeed
often able to babble usefully; and, moreover, that
current information retrieval technology could of-
ten place relevant results at rank one within half a
minute or so of babbling even with contemporary
speech recognition technology.

The question then arises as to whether a system
can be built that would recognize when an answer
is available at rank one. Barging in with an answer
before that point wastes time and disrupts the user;
barging in long after that point also wastes time, but
also risks user abandonment. We therefore want a
“Goldilocks” system that can get it just about right.
To this end, we introduce an evaluation measure that
differentially penalizes early and late responses. Our
experiments using such a measure show that systems
can be built that, on average, do better than could be
achieved by any fixed response delay.

The remainder of this paper is organized as fol-
lows: We begin in Section 2 with a brief review of
related work. Section 3 then describes the design
of the ranking component of our experiment; Sec-
tion 4 follows with some exploratory analysis of the
ranking results using our test collection. Section 6
completes the description of our methods with an
explanation of how the stopping classifier is built;
Section 7 then presents end-to-end evaluation results
using a new measure designed for this task. Sec-
tion 8 concludes the paper with some remarks on
future work.

2 Background

The rapid adoption of remarkably inexpensive mo-
bile telephone services among low-literacy users
in developing and emerging markets has generated
considerable interest in so-called “spoken forum”
projects (Sherwani et al., 2009; Agarwal et al., 2010;
Medhi et al., 2011; Mudliar et al., 2012). It is rel-
atively straightforward to collect and store spoken
content regardless of the language in which it is spo-

ken; organizing and searching that content is, how-
ever, anything but straightforward. Indeed, the cur-
rent lack of effective search services is one of the
key inhibitors that has, to date, limited spoken fo-
rums to experimental settings with at most a few
hundred users. If a “spoken web” is to achieve the
same degree of impact on the lives of low-literacy
users in the developing world that the World Wide
Web has achieved over the past decade in the devel-
oped world, we will need to develop the same key
enabler: an effective search engine.

At present, spoken dialog systems of conventional
design, such as Siri, rely on complex and expen-
sive language-specific engineering, which can eas-
ily be justified for the “languages of wealth” such
as English, German, and Chinese; but perhaps not
for many of the almost 400 languages that are each
spoken by a million or more people.1 An alterna-
tive would be to adopt more of an “information re-
trieval” perspective by directly matching words spo-
ken in the query with words that had been spoken in
the content to be searched. Some progress has been
made on this task in the MediaEval benchmark eval-
uation, which has included a spoken content match-
ing task each year since 2011 (Metze et al., 2012).
Results for six low-resource Indian and African lan-
guages indicate that miss rates of about 0.5 can be
achieved on individual terms, with false alarm rates
below 0.01, by tuning acoustic components that had
originally been developed for languages with rea-
sonably similar phonetic inventories. Our goal in
this paper is to begin to explore how such capabil-
ities might be employed in a complete search en-
gine for spoken forum content, as will be evaluated
for the first time at MediaEval 2013.2 The princi-
pal impediment to development in this first year of
that evaluation is the need for relevance judgments,
which are not currently available for spoken content
of the type we wish to search. That consideration
has motivated our design of the simulation study re-
ported in this paper.

1http://www.ethnologue.com/statistics/
size

2http://www.multimediaeval.org/
mediaeval2013/qa4sw2013/
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Figure 1: Reciprocal ranks at for each query making up a given babble. When retrieving results, a babbler either
“latches” on to a relevant document (Babble 1), moves back-and-forth between relevant documents (Babble 3), or fails
to elicit a relevant document at all (Babble 2).

3 Setup and Method

The approach taken in this paper is to simulate, as
closely as possible, babbling about topics for which
we a) already have relevance judgments available,
and b) have the ability to match partial babbles with
potential answers in ways that reflect the errors in-
troduced by speech processing. To this end, we
chose to ask non-native English speakers to babble,
in English, about an information need that is stimu-
lated by an existing English Text Retrieval Confer-
ence (TREC) topic for which we already have rel-
evance judgments. An English Automatic Speech
Recognition (ASR) system was then used to gener-
ate recognized words for those babbles. Those rec-
ognized words, in turn, have been used to rank order
the (character-coded written text) news documents
that were originally used in TREC, the documents
for which we have relevance judgments. Our goal
then becomes twofold: to first rank the documents
in such a way as to get a relevant document into rank
one; and then to recognize when we have done so.

Figure 1 is a visual representation of retrieval re-
sults as a person babbles. For three different bab-
bles prompted by TREC Topic 274, it shows the re-
ciprocal rank for the query that is posed after each
additional word is recognized. We are primarily in-
terested in cases where the reciprocal rank is one.3

3A reciprocal rank of one indicates that a known relevant
document is in position one; a reciprocal rank of 0.5 indicates

In these three babbles we see all cases that the re-
trieval system must take into account: babbles that
never yield a relevant first-ranked document (Bab-
ble 2); babbles that eventually yield a relevant first-
rank document, and that continue to do so as the
person speaks (Babble 1); and babbles that alternate
between good and bad results as the speaker contin-
ues (Babble 3).

3.1 Acquiring Babbles
Ten TREC-5 Ad Hoc topics were selected for this
study: 255, 257, 258, 260, 266, 271, 274, 276, 287,
and 297 based on our expectation of which of the 50
TREC 5 topics would be most suitable for prompted
babbles. In making this choice, we avoided TREC
topics that we felt would require specialized do-
main knowledge, experience with a particular cul-
ture, or detailed knowledge of an earlier time period,
such as when the topics had been crafted. For each
topic, three babbles were created by people speak-
ing at length about the same information need that
the TREC topic reflected. For convenience, the peo-
ple who created the babbles were second-language
speakers of English selected from information tech-
nology companies. There were a total of ten bab-
blers; each recorded, in English, babbles for three
topics, yielding a total of thirty babbles. We main-
tained a balance across topics when assigning topic

that the most highly ranked known relevant document is in po-
sition two; 0.33 indicates position three; and so on.
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Transcribed babble Text from ASR

So long time back one of my friend had a Toyota
Pryus it uses electric and petrol to increase the to
reduce the consumption and increase the mileage
I would now want to get information about why
car operators manufacturers or what do they think
about electric vehicles in the US well this is what
the stories say that the car lobby made sure that the
electric vehicles do not get enough support and the
taxes are high by the government but has it changed
now are there new technologies that enable to lower
cost and also can increase speed for electric vehi-
cles I am sure something is being done because of
the rising prices of fuel these days

So long time at one of my friends headed towards
the previous accuses electric in petrol to increase
the to reduce the consumption and increase the
minutes and would now want to get information
about why car operator manufacturers on what to
think about electric vehicles in the us versus what
the story said that the car lobby make sure that the
electric vehicles to not get enough support to an
attack and I try to comment but has changed now
arctic new technologies that enabled to cover costs
and also can increase speak for electric vehicles I’m
sure some clinton gore carls junior chef

Table 1: Text from an example babble (274-1). The left is transcribed through human comprehension; the right is the
output from an automatic speech recognition engine.

numbers to babblers. All babblers had more than
sixteen years of formal education, had a strong com-
mand on the English language, and had some in-
formation about the topics that they selected. They
were all briefed about our motivation for collecting
this data, and about the concept of query by bab-
bling.

The babbles were created using a phone interface.
Each subject was asked to call an interactive voice
response (IVR) system. The system prompted the
user for a three digit topic ID. After obtaining the
topic ID, the system then prompted the user to start
speaking about what they were looking for. TREC
topics contain a short title, a description, and a nar-
rative. The title is generally something a user might
post as an initial Web query; the description is some-
thing one person might say to another person who
might then help them search; the narrative is a few
sentences meant to reflect what the user might jot
down as notes to themselves on what they were actu-
ally looking for. For easy reference, the system pro-
vided a short description—derived from the descrip-
tion and narrative of the TREC topics—that gave
the user the context around which to speak. The
user was expected to begin speaking after hearing
a system-generated cue, at which time their speech
was recorded. Two text files were produced from the
audio babbles: one produced via manual transcrip-

TREC Topic WER

ID Title Mean SD

255 Environmental protect. 0.434 0.203
257 Cigarette consumption 0.623 0.281
258 Computer security 0.549 0.289
260 Evidence of human life 0.391 0.051
266 Prof. scuba diving 0.576 0.117
271 Solar power 0.566 0.094
274 Electric automobiles 0.438 0.280
276 School unif./dress code 0.671 0.094
287 Electronic surveillance 0.519 0.246
297 Right to die pros/cons 0.498 0.181

Average 0.527 0.188

Table 2: Average ASR Word Error Rate over 3 babbles
per topic (SD=Standard Deviation).

tion,4 and one produced by an ASR system; Table 1
presents an example. The ASR transcripts of the
babbles were used by our system as a basis for rank-
ing, and as a basis for making the decision on when
to barge-in, what we call the “stopping point.” The
manual transcriptions were used only for scoring the
Word Error Rate (WER) of the ASR transcript for
each babble.

4The transcriber is the third author of this paper.
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Judgment at First Rank

Babble Words Relevant Not Relevant Unknown Scorable First Rel Last Rel WER

257-3 74 5 64 5 93% @13 @66 0.414
276-3 61 7 46 8 87% @36 @42 0.720
258-1 146 2 118 26 82% @28 @29 0.528
297-1 117 58 19 40 66% @56 @117 0.594
274-3 94 57 0 47 61% @22 @94 0.250
274-1 105 49 13 43 59% @57 @105 0.437
257-1 191 104 0 87 54% @52 @188 0.764
271-1 145 42 26 76 48% @38 @109 0.556
287-2 61 26 0 35 43% @33 @61 0.889
260-2 93 22 8 63 32% @69 @93 0.500
276-2 69 11 2 56 19% @47 @69 0.795
260-3 82 6 8 68 17% @17 @62 0.370
258-2 94 14 1 79 16% @24 @60 0.389
297-3 90 4 2 84 7% @52 @56 0.312
266-2 115 6 0 109 5% @47 @52 0.745

Table 3: Rank-1 relevance (“Rel”) judgments and position of first and last scorable guesses.

3.2 System Setup

The TREC-5 Associated Press (AP) and Wall Street
Journal (WSJ) news stories were indexed by In-
dri (Strohman et al., 2004) using the Krovetz stem-
mer (Krovetz, 1993), standard English stopword set-
tings, and language model matching. Each babble
was turned into a set of nested queries by sequen-
tially concatenating words. Specifically, the first
query contained only the first word from the bab-
ble, the second query only the first two words, and
so on. Thus, the number of queries presented to In-
dri for a given babble was equivalent to the num-
ber of words in the babble, with each query differ-
ing only by the number of words it contained. The
results were scored using trec eval version 9.0.
For evaluation, we were interested in the reciprocal
rank; in particular, where the reciprocal rank was
one. This measure tells us when Indri was able to
place a known relevant document at rank one.

4 Working with Babbles

Our experiment design presents three key chal-
lenges. The first is ranking well despite errors in
speech processing. Table 2 shows the average Word
Error Rate (WER) for each topic, over three babbles.

Averaging further over all thirty babbles, we see that
about half the words are correctly recognized. While
this may seem low, it is in line with observations
from other spoken content retrieval research: over
classroom lectures (Chelba et al., 2007), call center
recordings (Mamou et al., 2006), and conversational
telephone speech (Chia et al., 2010). Moreover, it is
broadly consistent with the reported term-matching
results for low density languages in MediaEval.

The second challenge lies in the scorability of the
system guesses. Table 3 provides an overview of
where relevance was found within our collection of
babbles. It includes only the subset of babbles for
which, during the babble, at least one known rele-
vant document was found at the top of the ranked
list. The table presents the number of recognized
words—a proxy for the number of potential stop-
ping points—and at how many of those potential
stopping points the document ranked in position 1
is known to be relevant, known not to be relevant, or
of unknown relevance. Because of the way in which
TREC relevance judgments were created, unknown
relevance indicates that no TREC system returned
the document near the top of their ranked list. At
TREC, documents with unknown relevance are typ-
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ically scored as if they are not relevant;5 we make
the same assumption.

Table 3 also shows how much we would need to
rely on that assumption: the “scorable” fraction for
which the relevance of the top-ranked document is
known, rather than assumed, ranges from 93 per cent
down to 5 per cent. In the averages that we report be-
low, we omit the five babbles with scorable fractions
of 30 per cent or less. On average, over the 10 top-
ics for which more than 30 per cent of the potential
stopping points are scorable, there are 37 stopping
points at which our system could have been scored
as successful based on a known relevant document
in position 1. In three of these cases, the challenge
for our stopping classifier is extreme, with only a
handful—between two and seven—of such opportu-
nities.

A third challenge is knowing when to interrupt
to present results. The ultimate goal of our work
is to predict when the system should interrupt the
babbler and barge-in to present an answer in which
they might be interested. Table 3 next presents
the word positions at which known relevant docu-
ments first and last appear in rank one (“First Rel”).
This are the earliest and latest scorable successful
stopping points. As can be seen, the first possi-
ble stopping point exhibits considerable variation,
as does the last. For some babbles—babble 274-3,
for example—almost any choice of stopping points
would be fine. In other cases—babble 258-1, for
example—a stopping point prediction would need to
be spot on to get any useful results at all. Moreover,
we can see both cases in different babbles for the
same topic despite the fact that both babblers were
prompted by the same topic; for example, babbles
257-1 and 257-3, which are, respectively, fairly easy
and fairly hard.

Finally, we can look for interaction effects be-
tween speech processing errors and scorability. The
rightmost column of Table 3 shows the measured
WER for each scorable babble. Of the 10 scorable
babbles for which more than 30 per cent of the po-
tential stopping points are scorable, three turned out
to be extremely challenging for ASR, with word er-
ror rates above 0.7. Overall, however, the WER for

5On the assumption that the TREC systems together span
the range of responses that are likely to be relevant.

the 10 babbles on which we focus is 0.56, which is
about the same as the average WER over all 30 bab-
bles.

In addition to the 15 babbles shown in Table 3,
there are another 15 babbles for which no relevant
document was retrievable. Of those, only a single
babble—babble 255-2, at 54 per cent scorable and
a WER of 0.402—had more than 30 per cent of the
potential stopping points scorable.

5 Learning to Stop

There are several ways in which we could pre-
dict when to stop the search and barge-in with an
answer—in this paper, we consider a machine learn-
ing approach. The idea is that by building a clas-
sifier with enough information about known good
and bad babbles, a learner can make such predic-
tions better than other methods. Our stopping pre-
diction models uses four types of features for each
potential stopping point: the number of words spo-
ken so far, the average word length so far, some
“surface characteristics” of those words, and some
query performance prediction metrics. The surface
characteristics that we used were originally devel-
oped to quantify writing style—they are particularly
useful for generating readability grades of a given
document. Although many metrics for readability
have been proposed, we choose a subset: Flesch
Reading Ease (Flesch, 1948), Flesch-Kincaid Grade
Level (Kincaid et al., 1975), Automated Readabil-
ity Index (Senter and Smith, 1967), Coleman-Liau
index (Coleman and Liau, 1975), Gunning fog in-
dex (Gunning, 1968), LIX (Brown and Eskenazi,
2005), and SMOG Grading (McLaughlin, 1969).
Our expectation was that a better readability value
should correspond to use of words that are more suc-
cinct and expressive, and that a larger number of
more expressive words should help the search en-
gine to get good responses highly ranked.

As post-retrieval query difficulty prediction mea-
sures, we choose three that have been prominent
in information retrieval research: clarity (Cronen-
Townsend et al., 2002), weighted information
gain (Zhou and Croft, 2007), and normalized query
commitment (Shtok et al., 2012). Although each
takes a distinct approach, the methods all compare
some aspect of the documents retrieved by a query

1275



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

R
e
ci

p
ro

ca
l 
R

a
n
k

Babble position (words)

Topic 274, Babble 1

True positive True negative False negative False positive
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Confusion Matrix

Class. Tn Fp Fn Tp F1 Acy.

Bayes 1288 1259 61 291 0.31 55%
Reg. 2522 25 253 99 0.42 90%
Trees 2499 48 70 282 0.83 96%

Table 4: Cross validation accuracy (“Acy.”) measures for
stop-prediction classifiers: naive Bayes, logistic regres-
sion, and Decision trees.

with the complete collection of documents in the
collection from which that retrieval was performed.
They seek to provide some measure of information
about how likely a query is to have ranked the docu-
ments well when relevance judgments are not avail-
able. Clarity measures the difference in the language
models induced by the retrieved results and the cor-
pus as a whole. Weighted information gain and nor-
malized query commitment look at the scores of
the retrieved documents, the former comparing the
mean score of the retrieved set with that of the entire
corpus; the latter measuring the standard deviation
of the scores for the retrieved set.

Features of all four types were were created for
each query that was run for each babble; that is after
receiving each new word. A separate classifier was
then trained for each topic by creating a binary ob-
jective function for all 27 babbles for the nine other

topics, then using every query for every one of those
babbles as training instances. The objective func-
tion produces 1 if the query actually retrieved a rel-
evant document at first rank, and 0 otherwise. Fig-
ure 2 shows an example of how this training data
was created for one babble, and Table 4 shows the
resulting hold-one-topic-out cross-validation results
for intrinsic measures of classifier accuracy for three
Weka classifiers6. As can be seen, the decision tree
classifier seems to be a good choice, so in Section 7
we compare the stopping prediction model based
on a decision tree classifier trained using hold-one-
topic-out cross-validation with three baseline mod-
els.

6 Evaluation Design

This section describes our evaluation measure and
the baselines to which we compared.

6.1 Evaluation Measure

To evaluate a stopping prediction model, the funda-
mental goal is to stop with a relevant document in
rank one, and to do so as close in time as possible
to the first such opportunity. If the first guess is bad,
it would be reasonable to score a second guess, with
some penalty.

Specifically, there are several things that we

6Naive Bayes, logistic regression, and decision trees (J48)
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would like our evaluation framework to describe.
Keeping in mind that ultimately the system will in-
terrupt the speaker to notify them of results, we first
want to avoid the interruption before we have found
a good answer. Our evaluation measure gives no
credit for such a guess. Second, we want to avoid
interrupting long after finding the first relevant an-
swer. Credit is reduced with increasing delays after
the first point where we could have barged in. Third,
when we do barge-in, there must indeed be a good
answer in rank one. This will be true if we barge-
in at the first opportunity, but if we barge-in later
the good answer we had found might have dropped
back out of the first position. No credit is given if
we barge-in such a case. Finally, if a bad position
for first barge-in is chosen, we would like at least to
get it right the second time. Thus, we limit ourselves
to two tries, awarding half the credit on the second
try that we could have received had we barged in at
the same point on the first try.

The delay penalty is modeled using an exponen-
tial distribution that declines with each new word
that arrives after the first opportunity. Let q0 be the
first point within a query where the reciprocal rank
is one. Let pi be the first “yes” guess of the predic-
tor after point q0. The score is thus eλ(q0−pi), where
λ is the half-life, or the number of words by which
the exponential decay has dropped to one-half. The
equation is scaled by 0.5 if i is the second element
(guess) of p, and by 0.25 if it is the third. From Fig-
ure 1, some cases the potential stopping points are
consecutive, while in others they are intermittent—
we penalize delays from the first good opportunity
even when there is no relevant document in position
one because we feel that best models the user ex-
perience. Unjudged documents in position one are
treated as non-relevant.

6.2 Stopping Prediction Baselines

We chose one deterministic and one random base-
line for comparison. The deterministic baseline
made its first guess at a calculated point in the bab-
ble, and continued to guess at each word thereafter.
The initial guess was determined by taking the aver-
age of the first scorable point of the other 27 out-of-
topic babbles.

The random baseline drew the first and second
words at which to guess “yes” as samples from a
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Figure 3: First guesses for various classifiers plotted
against the first instance of rank one documents within
a babble. Points below the diagonal are places where the
classifier guessed too early; points above are guesses too
late. All 11 babbles for which the decision tree classifier
made a guess are shown.

uniform distribution. Specifically, drawing samples
uniformly, without replacement, across the average
number of words in all other out-of-topic babbles.

7 Results

Figure 3 shows the extent to which each classifiers
first guess is early, on time, or late. These points
falls, respectively, below the main diagonal, on the
main diagonal, or above the main diagonal. Early
guesses result in large penalties from our scoring
function, dropping the maximum score from 1.0 to
0.5; for late guesses the penalty depends on how
late the guess is. As can be seen, our decision tree
classifier (“trees”) guesses early more often than it
guesses late. For an additional four cases (not plot-
ted), the decision tree classifier never makes a guess.

Figure 4 shows the results for scoring at most
three guesses. These results are averaged over all
eleven babbles for which the decision tree classi-
fier made at least one guess; no guess was made on
babbles 257-3, 266-2, 260-3, or 274-3. These re-
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sults are shown for a half-life of five words, which
is a relatively steep penalty function, essentially re-
moving all credit after about ten seconds at normal
speaking rates. The leftmost point in each figure,
plotted at a “window size” of one, shows the results
for the stopping prediction models as we have de-
scribed them. It is possible, and indeed not unusual,
for our decision tree classifier to make two or three
guesses in a row, however, in part because it has no
feature telling it how long is has been since its most
recent guess. To see whether adding a bit of patience
would help, we added a deterministic period follow-
ing each guess in which no additional guess would
be allowed. We call the point at which this delay ex-
pires, and a guess is again allowed, the delay “win-
dow.”

As can be seen, a window size of ten or eleven—
allowing the next guess no sooner than the tenth or
eleventh subsequent word—is optimal for the deci-
sion tree classifier when averaged over these eleven
babbles. The random classifier has an optimal point
between window sizes of 21 and 26, but is gener-
ally not as good as the other classifiers. The deter-
ministic classifier displays the most variability, but
for window sizes greater than 14, it is the best solu-
tion. Although it has fewer features available to it—
knowing only the mean number of words to the first
opportunity for other topics—it is able to outperform
the decision tree classifier for relatively large win-
dow sizes.

From this analysis we conclude that our decision

tree classifier shows promise; and that going for-
ward, it would likely be beneficial to integrate fea-
tures of the deterministic classifier. We can also
conclude that these results are, at best, suggestive—
a richer test collection will ultimately be required.
Moreover, we need some approach to accommodate
the four cases in which the decision tree classifier
never guesses. Setting a maximum point at which
the first guess will be tried could be a useful initial
heuristic, and one that would be reasonable to apply
in practice.

8 Conclusions and Future Work

We have used a simulation study to show that build-
ing a system for query by babbling is feasible. More-
over, we have suggested a reasonable evaluation
measure for this task, and we have shown that sev-
eral simple baselines for predicting stopping points
can be beaten by a decision tree classifier. Our next
step is to try these same techniques with spoken
questions and spoken answers in a low-resource lan-
guage using the test collection that is being devel-
oped for the MediaEval 2013 Question Answering
for the Spoken Web task.

Another potentially productive direction for fu-
ture work would be to somehow filter the queries
in ways that improve the rankings. Many potential
users of this technology in the actual developing re-
gion settings that we wish to ultimately serve will
likely have no experience with Internet search en-
gines, and thus they may be even less likely to fo-
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cus their babbles on useful terms to the same extent
that our babblers did in these experiments. There
has been some work on techniques for recognizing
useful query terms in long queries, but of course we
will need to do that with spoken queries, and more-
over with queries spoken in a language for which
we have at lest limited speech processing capabili-
ties available. How best to model such a situation
in a simulation study is not yet clear, so we have
deferred this question until the MediaEval speech-
to-speech test collection becomes available.

In the long term, many of the questions we are ex-
ploring will also has implications for open-domain
Web search in other hands- or eyes-free applications
such as driving a car or operating an aircraft.

Acknowledgments

We thank Anna Shtok for her assistance with the un-
derstanding and implementation of the various query
prediction metrics. We also thank the anonymous
babblers who provided data that was imperative to
this study. Finally, we would like to thank the re-
viewers, whose comments helped to improve the
work overall.

References
[Agarwal et al.2010] Sheetal K. Agarwal, Anupam Jain,

Arun Kumar, Amit A. Nanavati, and Nitendra Rajput.
2010. The spoken web: A web for the underprivi-
leged. SIGWEB Newsletter, pages 1:1–1:9, June.

[Brown and Eskenazi2005] Jonathan Brown and Maxine
Eskenazi. 2005. Student, text and curriculum mod-
eling for reader-specific document retrieval. In Pro-
ceedings of the IASTED International Conference on
Human-Computer Interaction. Phoenix, AZ.

[Chelba et al.2007] Ciprian Chelba, Jorge Silva, and Alex
Acero. 2007. Soft indexing of speech content for
search in spoken documents. Computer Speech and
Language, 21(3):458–478.

[Chia et al.2010] Tee Kiah Chia, Khe Chai Sim, Haizhou
Li, and Hwee Tou Ng. 2010. Statistical lattice-based
spoken document retrieval. ACM Transactions on In-
formation Systems, 28(1):2:1–2:30, January.

[Coleman and Liau1975] Meri Coleman and TL Liau.
1975. A computer readability formula designed for
machine scoring. Journal of Applied Psychology,
60(2):283.

[Cronen-Townsend et al.2002] Steve Cronen-Townsend,
Yun Zhou, and W. Bruce Croft. 2002. Predict-

ing query performance. In Proceedings of the 25th
annual international ACM SIGIR conference on Re-
search and development in information retrieval, SI-
GIR ’02, pages 299–306, New York, NY, USA. ACM.

[Flesch1948] Rudolf Flesch. 1948. A new readabil-
ity yardstick. The Journal of applied psychology,
32(3):221.

[Gunning1968] Robert Gunning. 1968. The technique of
clear writing. McGraw-Hill New York.

[Kincaid et al.1975] J Peter Kincaid, Robert P Fish-
burne Jr, Richard L Rogers, and Brad S Chissom.
1975. Derivation of new readability formulas (auto-
mated readability index, fog count and flesch reading
ease formula) for navy enlisted personnel. Technical
report, DTIC Document.

[Krovetz1993] Robert Krovetz. 1993. Viewing morphol-
ogy as an inference process. In Proceedings of the
16th annual international ACM SIGIR conference on
Research and development in information retrieval,
SIGIR ’93, pages 191–202, New York, NY, USA.
ACM.

[Mamou et al.2006] Jonathan Mamou, David Carmel, and
Ron Hoory. 2006. Spoken document retrieval from
call-center conversations. In Proceedings of the 29th
annual international ACM SIGIR conference on Re-
search and development in information retrieval, SI-
GIR ’06, pages 51–58, New York, NY, USA. ACM.

[McLaughlin1969] G Harry McLaughlin. 1969. Smog
grading: A new readability formula. Journal of read-
ing, 12(8):639–646.

[Medhi et al.2011] Indrani Medhi, Somani Patnaik,
Emma Brunskill, S.N. Nagasena Gautama, William
Thies, and Kentaro Toyama. 2011. Designing
mobile interfaces for novice and low-literacy users.
ACM Transactions on Computer-Human Interaction,
18(1):2:1–2:28.

[Metze et al.2012] Florian Metze, Etienne Barnard, Mare-
lie Davel, Charl Van Heerden, Xavier Anguera, Guil-
laume Gravier, Nitendra Rajput, et al. 2012. The spo-
ken web search task. In Working Notes Proceedings of
the MediaEval 2012 Workshop.

[Mudliar et al.2012] Preeti Mudliar, Jonathan Donner,
and William Thies. 2012. Emergent practices around
cgnet swara, voice forum for citizen journalism in ru-
ral india. In Proceedings of the Fifth International
Conference on Information and Communication Tech-
nologies and Development, ICTD ’12, pages 159–168,
New York, NY, USA. ACM.

[Oard2012] Douglas W. Oard. 2012. Query by babbling.
In CIKM Workshop on Information and Knowledge
Management for Developing Regions, October.

[Senter and Smith1967] RJ Senter and EA Smith. 1967.
Automated readability index. Technical report, DTIC
Document.

1279



[Sherwani et al.2009] Jahanzeb Sherwani, Sooraj Palijo,
Sarwat Mirza, Tanveer Ahmed, Nosheen Ali, and Roni
Rosenfeld. 2009. Speech vs. touch-tone: Tele-
phony interfaces for information access by low liter-
ate users. In International Conference on Information
and Communication Technologies and Development,
pages 447–457.

[Shtok et al.2012] Anna Shtok, Oren Kurland, David
Carmel, Fiana Raiber, and Gad Markovits. 2012.
Predicting query performance by query-drift estima-
tion. ACM Transactions on Information Systems,
30(2):11:1–11:35, May.

[Strohman et al.2004] T. Strohman, D. Metzler, H. Turtle,
and W. B. Croft. 2004. Indri: A language model-
based search engine for complex queries. In Interna-
tional Conference on Intelligence Analysis.

[Zhou and Croft2007] Yun Zhou and W. Bruce Croft.
2007. Query performance prediction in web search en-
vironments. In Proceedings of the 30th annual inter-
national ACM SIGIR conference on Research and de-
velopment in information retrieval, SIGIR ’07, pages
543–550, New York, NY, USA. ACM.

1280



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1281–1291,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Summarizing Complex Events: a Cross-modal Solution of Storylines
Extraction and Reconstruction

Shize Xu
xsz@pku.edu.cn

Shanshan Wang
cheers echo mch@163.com

Yan Zhang∗
zhy@cis.pku.edu.cn

Department of Machine Intelligence, Peking University, Beijing, China
Key Laboratory on Machine Perception, Ministry of Education, Beijing, China

Abstract

The rapid development of Web2.0 leads to
significant information redundancy. Espe-
cially for a complex news event, it is diffi-
cult to understand its general idea within a
single coherent picture. A complex event of-
ten contains branches, intertwining narratives
and side news which are all called storylines.
In this paper, we propose a novel solution to
tackle the challenging problem of storylines
extraction and reconstruction. Specifically, we
first investigate two requisite properties of an
ideal storyline. Then a unified algorithm is
devised to extract all effective storylines by
optimizing these properties at the same time.
Finally, we reconstruct all extracted lines and
generate the high-quality story map. Exper-
iments on real-world datasets show that our
method is quite efficient and highly compet-
itive, which can bring about quicker, clearer
and deeper comprehension to readers.

1 Introduction

News reports usually consist of various modalities
of tremendous information, especially all kinds of
textual information and visual information, which
make web users dazzled and lost. The situation gets
worse on complex news events. To help readers
quickly grasp the general information of the news,
a more concise and convenient system over multi-
modality information should be provided. For ex-
ample, given a large collection of texts and images
related to a specified news event (e.g., East Japan

∗Corresponding author

Earthquake), such a system should present a terse
and brief summarization about the event by showing
different clues of its development, and thus helping
readers to effectively find out “when, where, what,
how and why” at a glance.

The researches (Goldstein et al., 2000) on auto-
matic multi-document summarization (MDS) have
helped a lot when we generate a description for a
specific event. However, it traditionally exhibits in a
very simple style like a “0-dimensional” point. The
appearance of Timeline (Allan et al., 2001) brings
about a visual progress for massive documents anal-
yses. Readers can not only get the most important
ideas, but also browse the story evolution in chrono-
logical order. Previous news summarization systems
with structured output (Yan et al., 2011) have fo-
cused on timeline generation. Timeline becomes a
“1-dimensional” line. This style of summarization
only works for simple stories, which are linear in na-
ture. However, the structure of complex stories usu-
ally turns out to be non-linear. These stories branch
into storylines, dead ends, intertwining narratives
and side news. To explore these lines, we need a
map to reorganize all the information. Therefore,
a “2-dimensional” story map is in bad need. Fig-
ure 1 shows a part of the story map generated by our
system for representing East Japan Earthquake. We
notice that the whole event evolves into 4 branches.
Each of them focuses on a specific sub-topic and is
distinct from other lines. Figure 2 takes a close look
at the 4 nodes from different lines, and they differ a
lot from each other as expected.

Text information is more precise and exquisite
when compared with images. Nevertheless, as the
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 Japan's nuclear safety agency says the 

cooling system of a third nuclear reactor at 

Fukushima has failed. 

    A government spokesman says the blast 

destroyed a building which housed a nuclear 

reactor, but the reactor escaped unscathed. 

    Around 170,000 people have been 

evacuated from a 12-mile radius around the 

Fukushima number one nuclear plant. 

    …….. 

Mar 12 Mar 13 Mar 14 Mar 17, 2011 Mar 15 Mar 16 Mar 11 

    A 9.0 magnitude quake triggers a devastating tsunami off 

northeast Japan, leaving some 19,000 people dead or missing. 

    A massive earthquake, 8.9 on the Richter scale, unleashes a 

huge tsunami which crashes through Japan's eastern 

coastline, sweeping buildings, boats, cars and people miles 

inland. 

    Japan's most powerful earthquake since records began has 

struck the north-east coast, triggering a massive tsunami. 

     …….. 

    A Japanese rescue team member walks through the completely leveled village of Saito, in northeastern Japan. 

    Half a million people have been made homeless by the devastating quake. 

    Fire crews from Greater Manchester and Lancashire have flown out to Japan as part of the UK's International 

Search and Rescue team. 

     …….. 

 
    Japan's cabinet on Friday approved a 

$49 billion budget to help in the 

reconstruction of areas decimated by last 

month's earthquake and tsunami. 

    Japan faces a reconstruction bill of at 

least $180 billion,  or 3 percent of its 

annual economic output. 

    In an televised statement after the blast, 

prime minister Kan urges those within 19 

miles of the area to stay indoors. ···· 

···· 

···· 

             Nuclear Crisis                     Post-disaster                    Rescue                     Tsunamis Blue Green disaster                    Rescue                     TsunamisRed Black 

• Storyline 

• Story node 

• Candidate 

Figure 1: Four storylines are obtained in the story map of “East Japan Earthquake”. They focus on Tsunamis, Nuclear
Crisis, Rescue and Post-disaster respectively.

saying goes, “a picture paints a thousand words”,
an image could provide far more information than
words do. In fact, a summarization including both
texts and images will absolutely yield a more pow-
erful and intuitive description about the news event.
Under this motivation, we study on extracting and
reconstructing tracks with different sub-topics for a
complex event. To the best of our knowledge, the ex-
ploration and analysis of 2-dimensional cross-modal
summarization is academically novel.

We are faced with two main problems. The first
is how to select the most important sentences and
images to make up the final story map. The previ-
ous work by Shahaf et al. presents a 2-D story map
called “metro map”, which summarizes the com-
plex topics (Shahaf et al., 2012). They study on the
document-level, and use the entire news document
as one story node. But on real web, this may con-
front some difficulties. On one hand, news articles
may report the event from different perspectives, es-
pecially those reviews or retrospective reports. This
kind of documents contains many useful saliency in-
formation of different sub-topics, but they cannot
be further subdivided to help understand each bet-
ter. On the other hand, some documents, such as

Line of “Tsunamis” on Mar 11 Line of “Nuclear Explosion” on Mar 12 

Line of “Rescue” on Mar 13  Line “Post-disaster” on Mar 17  

Figure 2: Word distributions vary a lot among nodes in
different storylines

cover news and interviewing reports, contain one or
two famous remarks. Since these documents also in-
clude too much useless information, it’s inappropri-
ate to use the whole document as a story node. So
our work, the sentence-level story map extraction,
is just aimed at this brand new problem. The sec-
ond problem is the way to utilize the cross-modal
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information suitably. Our goal is not only to fuse
sentences and images together, but also to provide a
unified framework to improve them mutually.

In this paper, we introduce a novel solution for
the story map summarization problem. All the sen-
tences and images are the candidates for making up
the final map. The analysis of complicated infor-
mation usually requires a semantic-level knowledge
study. We address this in the pre-processing of data
in Section 3.1. The key task of our research is the
extraction of storylines. We reveal two fundamental
properties of an ideal storyline, and propose an op-
timization algorithm in Section 3.2. A highly com-
patible MDS sub-algorithm is also fused in and of-
fers help to the sentences/images selection. In Sec-
tion 3.3, the extracted storylines are reconstructed
as a final story map. The experimental results con-
ducted on four real datasets show that our approach
can perform effectively.

The rest of this paper is organized as follows.
Some related researches are demonstrated in Sec-
tion 2. We introduce our methodology in Section 3.
The experimental results in Section 4 prove the ef-
fectiveness of our approach. Finally, we conclude
this paper and present our future work in Section 5.

2 Related Work

Generally speaking, multi-document summarization
can be either extractive or abstractive. Researchers
mainly focus on the former which extracts the in-
formation deemed most important to the summary.
Various techniques have been used for this type of
MDS (Haghighi and Vanderwende, 2009; Contrac-
tor et al., 2012). Graph-based text summarization
techniques have been widely used for years. The
algorithms, used in TextRank (Mihalcea and Tarau,
2005) and LexPageRank (Radev et al., 2004), which
are meant to compute sentence importance, are sim-
ilar to those in PageRank and HITS.

Recently, timeline becomes a popular style to
present a schedule of events and attracts many re-
searchers consequently. For example, Yan et al.
make use of timestamps to generate an evolutionary
timeline (Yan et al., 2011). Shahaf et al. present a
2-D story map called “metro map” to summarize the
complex topic (Shahaf et al., 2012). But previous
work only studies on the document level, which in-

evitably brings about much information redundancy.
Previous studies show that the use of visual ma-

terials not only leads to the conservation of infor-
mation but also promotes comprehension (Panjwani
et al., 2009). Thus the cross-modal fusion is nec-
essary. Wu et al. propose a framework of multi-
modal information fusion for multimedia data anal-
ysis by learning the optimal combination of multi-
modal information with the superkernel fusion (Wu
et al., 2004). Borrowing the idea of recommendation
in heterogeneous network into the cross-modal news
summarization is also a convincing research. Xu et
al. tackle this task and bring out an 1-D cross-media
timeline generation framework (Xu et al., 2013).

Summarization of multimedia involves researches
on information retrieval of multimedia. Since tex-
tual and visual information are quite different from
each other, how to make a good transformation to
mine latent knowledge from unannotated images is
of great concern. Feng and Lapata (2010) use visual
words to describe visual features and then propose
a probabilistic model based on the assumption that
images and their co-occurring textual data are gen-
erated by mixtures of latent topics.

However, to the best of our knowledge, no exist-
ing research manages to generate a 2-dimensional
story map automatically and integrate images and
texts into a unified framework at the same time.

3 Methodology

The original data of one event is a collection of news
documents on different days, or in a finer granu-
larity, a set of sentences and images with different
timestamps. Each item in the data collection is a
candidate for selection to form the final map. We
denote the data collection as C, and C = Cs ∪ Cv,
where Cs is the subset containing all sentences and
Cv contains all images. In the following elaboration
of our method, dateset C is the important knowl-
edge base. As the ultimate goal for a specific event,
we would like to generate the “2-D” story mapM,
whose main component is a set of “1-D” storylines
L = {L1, L2, . . .}. Each storyline L ∈ L is made
up of a set of “0-D” story nodes, L = {I1, I2, . . .},
each of which is composed of a set of candidates
sharing the same timestamp I = {c1, c2, . . .}. For
more concise, our method can be scheduled with the
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following three steps:
1. Prepare semantic knowledge for each candi-

date, and then purify data collection C by eliminat-
ing the noisy candidates;

2. Conduct OPT-LSH algorithm to extract L that
contains all qualified storylines;

3. Reconstruct the storylines as the final mapM.

3.1 Pre-processing
Before we extract the storylines, we have to solve
two problems first. Since our work is cross-modal,
the semantic knowledge under the literal and visual
surface is basically required. Recall from Section 2,
there exist many effective ways to dig into the se-
mantic level of image and text. In this paper, we em-
ploy the approach proposed by Jiang and Tan (2006).
They present a convincing approach which employs
a multilingual retrieval model to apply knowledge
mining on semantic level. The first is the sentence
feature vector generation. With the preprocessing
such as stemming and stop words removal, they ex-
tract the textual TF-IDF feature V ecs of each sen-
tence. The second, also the challenging part, is
the image feature vector generation. In this step,
for each region they extract visual features that are
consisting of 6 color features and 60 gabor features
which have been proven to be useful in many ap-
plications. Color features are the means and vari-
ances of the RGB color spaces. Gabor features are
extracted by calculating the means and variations of
the filtered image regions on 6 orientations. After
the visual feature vectors of the image regions are
extracted, all image regions are clustered using the
k-means algorithm. The generated clusters, called
“visterms” or “visual words”, are treated as a vocab-
ulary for the images. Besides visual features, they
also utilize the context textual feature of each im-
age as the semantic supplement to generate to final
feature vector V ecv.

Based on these feature vector of each canti-
date, they further calculating the intra-modal sim-
ilarity with classical IR methods, they obtain the
inter-modal similarity through the vague transfor-
mation (Mandl T, 1998). We also note that trans-
lation tools such as VIPS (Cai et al., 2003) and We-
bKit1 can help us to segment web documents and

1http://www.webkit.org

pick those text blocks whose coordinates are neigh-
boring to each specified image. In this way we can
successfully obtain images, text contexts and con-
tent sentences. Three kinds of semantic similar-
ity are now ready. They are uniformly denoted as
sim(ci, cj), representing the similarity between two
candidates. ci and cj can be any type of modalities.

Another problem is the noise from irregular data.
We would like to utilize the sentences and images of
high quality. The intuitive assumption is that a good
candidate should have substance in speech, and be
coherent with other good candidates. Fortunately,
many useful measures are now available. They can
be used to choose better candidates. Inspired by the
analysis analogy to information retrieval, we extend
the idea of the classical PageRank algorithm to esti-
mate the authority for each candidate. The similarity
between two candidates is regarded as the weighted
“link” between them.

Inspired by the idea of classic “update summa-
rization” task, we try to avoid those chronologically
ordered documents sets focusing on a constant topic.
Therefore, given the particularity of our task, we
also have to develop the weighting function Γ with
the temporal factor before starting the ranking algo-
rithm. Our fundamental assumption is that the inter-
date and inter-modal “links” have different influence
comparing with the intra ones. Therefore the core
formula calculating the authority of ci is adapted as
follows to make it become weight-compatible:

Auth(ci) =
1− q

|C|
+ q · [ α

∑
cj∈C′

Γ(ci, cj) ·
Auth(cj)

O(cj)

+ (1− α)
∑

ck∈C′′

Γ(ci, ck) ·
Auth(ck)

O(ck)
]

C ′ is the subset of C which only includes the can-
didates of the same modality with ci, and C ′′ is the
cross-modal candidates subset. O(cj) denotes the
out-degree of cj , and smoothing parameter q is set
as the common value 0.85. Parameter α is used to
balance the biases of intra- and inter-modal impact.
If α is set to 1, it means the cross-modal information
is abandoned, and vice versa. Γ(ci, cj) contains two
terms as follows:

Γ(ci, cj) = sim(ci, cj) · e
−∥ci.t−cj .t∥

2σ2
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The second term of Γ’s formula is Gaussian Ker-
nel (Aliguliyev R, 2009), which is used to measure
the temporal gap between two candidates (∗.t de-
notes the date-based timestamp). Note that the simi-
larity metric is content-based and time-independent,
since the time decay function is only used to adjust
the ranking impact strength. In this way, we can
give higher authority to the more informative and
coherent candidates. The optimal value of σ, which
controls the spread of kernel curves, is sensitive to
datasets and will be discussed later.

We eliminate the candidates whose authority goes
under threshold. The data collection C is then sig-
nificantly downsized and purified for later work.
Authority is also used to determine the presentation
sequence inside each story node of final map.

3.2 Extraction: LSH-OPT Algorithm

Other traditional relative methods need to pre-decide
how many sub-topics are going to be obtained, like
clustering or other supervised models. They fail
in the unsupervised automatic storylines extraction
problem. In this Section, we propose a concrete al-
gorithm to extract storyline set L from C. Our pro-
posed LSH-based algorithm can automatically op-
timize the number of storylines according to their
self-evaluation.

3.2.1 Task Formalization
Let’s investigate the storyline first. We may think

of some basic attributes as well as many exten-
sion properties. The number of nodes in the sto-
ryline L (denoted as |L|) is intuitively one of its
basic attributes. We would like to define another
basic attribute called the SUPPORT of L. In de-
tail, Support(L) = minIk∈L |Ik|, which denotes
the smallest size among all the story nodes it has.

The most challenging part is to properly model
extension properties. We observe that an effective
storyline should meet three key requirements: (1)
Coherence. Within one storyline, news changes
gradually as time goes and the evolution indicates
consistency among component story nodes. We rely
on the notion of coherence developed in Connect-
the-Dots (Shahaf and Guestrin, 2010) and transform
it to what we exactly need in this research; (2) Di-
versity. According to MMR principle (Goldstein et
al., 1999), though the work is about summary, we

still can draw an analogy and derive that a good sto-
ryline should be concise and contain redundant in-
formation as few as possible, i.e., two sentences pro-
viding information of similar content should not be
presented in different storylines; (3) Coverage. The
extracted storyline set L should keep alignment with
the source collection C, which is intuitive and even
proved to be significant as proposed in (Li et al.,
2009). However, Coverage in some ways is tech-
nically redundant in front of Diversity. We decide
to use the first two criteria in extraction process and
use the last one to verify the effectiveness.

Since a storyline is composed of several nodes,
we can select or abandon nodes mainly according
to these two requirements. In fact, both of them in-
volve a measurement of similarity between two story
nodes, denoted by two word distributions (see Fig-
ure 2). Specifically, for story node Ii, its distribu-
tion probability of word w is estimated as p(w|Ii) =∑

c∈Ii
TF (w)∑

w

∑
c∈Ii

TF (w) where the denominator is used for

normalization. Then Kullback-Leibler divergence is
employed to denote the distance between two nodes
Ii and Ij :

DKL(Ii, Ij) =
∑
w

p(w|Ii) log
p(w|Ii)

p(w|Ij)

In addition, we introduce the decreasing and
increasing variants based on logistic functions,
D♭

KL = 1/(1 + eDKL) and D♯
KL = eDKL/(1 +

eDKL), to map the distance into [0, 1]. Given the
measurement, we can formulate the two properties.

For Coherence, a storyline Li consists of a series
of individual but correlated nodes, which do not nec-
essarily have the serial timestamps. We would like
to choose such a set of nodes {I1, I2, . . .}, and at the
same time guarantee this criterion:

Cor(Li) =
1

|Li|
∑

1≤k<|Li|
D♭

KL(Ik, Ik+1)

For Diversity, each storyline Li ∈ L should
demonstrate quite different subtopics with other sto-
rylines. This is the most essential motivation for us
to step into 2-dimensional field. This criterion can
be used to maximize the minimum diversity value
among all storylines:

Div(L) = min
Li,Lj∈L

{
∑

Ik∈Li

∑
Ik′∈Lj

D♯
KL(Ik, Ik′)

|Li| · |Lj |
}
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Then the problem can be transformed into the fol-
lowing optimization problem. Parameters θ1, θ2 and
θ3 denote the minimum number of nodes in each
line, the smallest size of candidates in each node and
the coherence lower bound respectively. The task is
to extract an optimal L out of C, such that:

∀L ∈ L, |L| ≥ θ1 & Support(L) ≥ θ2;

∀L ∈ L, Cor(L) ≥ θ3;

Div(L) is maximized.

3.2.2 Optimization Algorithm
It can be proved that finding the optimal set L is

an NP-Complete problem (not presented due to the
limited space). Thus the brute-force exhaustive ap-
proach is crashed. We develop a near-optimal al-
gorithm based on locality sensitive hashing (OPT-
LSH). The original LSH solution is a popular tech-
nique used to solve the nearest neighbor search
problems in high dimensions. Its basic idea is to
hash similar input items into the same bucket (i.e.,
uniquely definable hash signature) with high proba-
bility. All potential storylines can be targeted fast if
we make good use of this idea.

LSH performs probabilistic dimension reduction
of high dimensional data by projecting a higher d-
dimensional vector V ecc (recall from Section 3.1)
to a lower d′-dimensional vector (d′<<d), such that
the candidates which are in close proximity in the
higher dimension get mapped into the same item in
the lower dimensional space with high probability.
It guarantees a lower bound on the probability that
two similar input items fall into the same bucket in
the projected space and also the upper bound on the
probability that two dissimilar vectors fall into the
same bucket (Indyk and Motwani, 1998).

One of the key requirements for good perfor-
mance of LSH is the careful selection of the fam-
ily of hashing functions. In OPT-LSH, we use the
hashing scheme proposed by Charikar (Charikar M,
2002). In detail, d′ random unit d-dimensional vec-
tors r⃗1, r⃗2, . . . , r⃗d′ are generated first. Each of the
d entries of r⃗i is drawn from a standardized normal
distribution N(0,1). Then the d′ hashing functions
are defined as:

hi(c) =

{
1, if r⃗i · V ec(c) ≥ 0

0, if r⃗i · V ec(c) < 0
1 ≤ i ≤ d′

We represent the d′-dimensional bucket feature h
for c, h(c) := [h1(c), . . . , hd′(c)]. There are 2d′ dif-
ferent buckets at most. Each denotes a potential sto-
ryline, so we have to verify the probability of similar
candidates falling into the same bucket, whose lower
bound is given by Charikar (Charikar M, 2002).

Simply filtering and searching among all poten-
tial lines in single pass may lead to empty result
set if in post-processing no bucket satisfies all con-
straints. This could probably happen because the
input parameter d′ is set so large that the optimal
set of candidates is separated into different buck-
ets. However, we will get a suboptimal result in
turn when d′ is too small. We are then motivated
to tune LSH by iterative relaxation that varies d′ in
each iteration. Changing the value of d′ balances
the leverage between expected number of potential
storylines and their properties. We perform a binary
search between 1 and d′ to identify the ideal number
of hash functions to employ. Algorithm 1 shows the
pseudo code of our OPT-LSH algorithm. The LSH
time is bounded by O(d′|C| log |C|) since the binary
search relaxation iteration runs for log |C| times in
the worst case and the hashing time is O(d′|C|).

3.3 Storylines Reconstruction

At last, we manage to reconstruct all the storylines
in Lopt. A real-world storyline may sometimes in-
tertwine with another, educe other branches, and
end its own evolvement. The way to reconstruct a
more effective layout of the story map requires fur-
ther study and provides a good research direction in
the future. However, in this paper we order the sen-
tences/images in each story node according to their
authority scores. Next, all storylines are arranged to
proceed along the timestamps, thus a storyline never
turns back in the map. Then we adjust the structure
to make story nodes sharing the same timestamp stay
close, though they belong to different lines. Figure 1
shows the sample output of our system.

4 Experiments

4.1 Dataset

There is no existing standard evaluation data set for
2-dimensional cross-modal summarization methods.
We randomly choose 4 news topics from 4 selected
news websites: New York Times, BBC, CNN and
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Algorithm 1 OPT-LSH Algorithm
Input: Candidate set C, similarity function sim,

bucket dimensions d′

Output: A near-optimal storylines set Lopt

// Main Algorithm
1: Initialize left = 1, right = d′, max = −1
2: repeat
3: d′ = (left + right)/2
4: L ← LSH(C, d′)
5: Revise all word distributions p(w|I) in L
6: if ∀L∈L, |L|≥θ1 and Support(L)≥θ2 and

Cor(L)≥δ3 then
7: if Div(L) > max then
8: Lopt ← L, max← Div(L)
9: end if

10: left = d′ + 1
11: else
12: right = d′ − 1
13: end if
14: until left > right
15: return Lopt

// LSH(C, d′) : Buckets
16: Generate d′ unit vectors randomly
17: for j = 1 to |C| do
18: for i = 1 to d′ do
19: if r⃗i · V ec(cj) ≥ 0 then
20: hi(cj)← 1
21: else
22: hi(cj)← 0
23: end if
24: end for
25: h(cj) = [h1(cj), . . . , hd′(cj)]
26: end for
27: return Buckets← {h(cj)|cj ∈ C}

Reuters. We query each event confined to these sites
and crawl webpages’ html docs. Referring to Sec-
tion 3.1, timestamps, text contents, images and their
text contexts are extracted. Table 1 shows the de-
tails. These 4 datasets all contain massive informa-
tion and complex evolutions.

4.2 Analysis of Our System

Since there is no standard for us to verify the ef-
fectiveness of our solution, we have to utilize con-
vincing criteria based on manual evaluation of ex-

Table 1: Statistics of Datasets.
Event (Query) Document Time Span σ α

EJE 504 Mar 11-Apr 8, 2011 3 0.9

OWS 638 Sept 17-Dec 10, 2011 12 0.7

NBA 489 July 1-Dec 28, 2011 17 0.6

ME 437 June 21-Aug 31, 2011 9 0.7

* Abbreviations EJE, OWS, NBA, ME denote East Japan
Earthquake, Occupy Wall Street, NBA Lockout and Murdock’s
Eavesdropping respectively.

perts, and then we can compare them with other ap-
proaches. In order to setup the system, based on the
optimization problem shown in Section 3.2, we as-
sign the value of 1 to both θ1 and θ2, and empiri-
cally set θ3 as 0.6 which can balance the number of
potential lines and the quality of story map as well.
Then the problem can be re-interpreted in natural
language as follows. Given the data collection, we
manage to find out a set of storylines such that every
line in it contains at least one non-null story node
and keeps self-coherence not less than 0.6. What’s
more, the diversity of the whole set is maximized.
Before comparing OPT-LSH with other systems, we
do some further analysis of inherent properties first.

4.2.1 Compactness
The essential idea of summarization is to reduce

the data size, so that a more concise representation
will be generated and help users to fast grasp the
main points. Therefore the Compactness of a story
map needs to be guaranteed. In the pre-processing
module, we have already excluded significant num-
ber of inferior candidates with the extended PageR-
ank. Nevertheless what we really care is the com-
pactness that OPT-LSH brings about. In the candi-
dates and story nodes selection processes, only the
most saliency and coherent candidates can appear
in the final representation. We count the number of
sentences and images in Lopt, denoted as ||Lopt||,
and then we compare it with the collection size |C|
(both before and after pre-processing) to test the
compactness. Table 2 shows that OPT-LSH further
reduces the representation scale significantly.

4.2.2 Coverage
Obviously, only the verification of compactness

is far from enough. As mentioned in Section 3.2,
the storyline set L we extract should keep alignment
with the source collection, and contain informative
as well as comprehensive information in C. Thus we
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Table 2: The compactness of OPT-LSH

Dataset EJE OWS NBA ME
|C|-before 12049 22890 20403 10237
|C|-after 1454 2357 1187 1042
||L|| 87 168 113 92

Downsizing 94.0% 92.9% 90.5% 91.2%

need to verify another property of our summariza-
tion, the Coverage. Inspired by (Shannon C, 2001),
we employ the Information Entropy to represent the
information quantity based on solid mathematical
theory. The less information quantity decreases af-
ter summarizing, the more story comprehensiveness
is maintained. In this way we verify the property of
coverage. Particularly, Shannon denotes the entropy
H as follows of a discrete random variable X , which
in fact is a word distribution. The base knowledge
in our work is the global probability mass function
P (WC) based on the entire vocabulary of C, with
possible values {p(w1), . . . , p(w|WC |)}.

H(X) = E{− log (P (WC))∥X}

= −
∑

wi∈X

p(wi) log (p(wi))

Although different word distributions may have
the same H , we do not focus on the similarity of two
corpora, but the difference of information quantities
they are carrying. So H is an ideal criterion.

Besides the comparison of the entropies of C and
L, it gives us a chance to study different modules’
contributions in our solution. There are two places
that we may simplify the solution. One is the fea-
ture of temporal gap. If we set the parameter σ to
infinity, then we can remove the second term of
the calculation of Γ (i.e. σ←∞) and then bring out
a time-insensitive system. The other is the cross-
modal feature. We set parameter α as 1 to make
the system work in one single modality, and ignore
all images (only the textual sentences are available)
to make up story map. The work then becomes the
study with text-bias. We also implement the sim-
plest system that blocks images as well as tempo-
ral feature. Figure 3 highlights the good perfor-
mance of our system. We are maintaining infor-
mation by a larger proportion of the original data
collection. Considering the property of high com-
pactness, our solution tackles the information re-
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Figure 3: The y-axis denotes the entropy. And the larger
H is, the richer information it brings.

dundancy quite well, and promisingly delivers entire
knowledge with compact structure.

During our experiments on Coverage, we have
some interesting findings. Datasets perform differ-
ently when we take different values of σ and α,
which controls the temporal decaying rate and cross-
modal learning respectively. The events with short
life-cycles prefer a smaller value of σ to dominate
the influence from neighbors, as well as the intra-
modal bias. On the contrary, long-living events pre-
fer lager σ and more inter-modal bias to get informa-
tion replenishment from different dates and modal-
ity. Due to the limited space we don’t present the
tuning details, but the optimal values are shown in
Table 1. In fact, using the cross-modal mutual influ-
ence can, more or less, help to improve the effective-
ness of information extraction and summarization.

4.3 User Study

Before we introduce other existing methods that can
also tackle the cross-modal 2-dimensional summa-
rization problem, we have to setup the appropriate
standards to quantify users’ evaluation.

4.3.1 Metrics
In the user study, we evaluate the effectiveness of

our story maps in aiding users to integrate different
aspects of multi-faceted information. (Shahaf et al.,
2012) also focuses on story map generation and puts
forward two convincing metrics to answer the fol-
lowing questions:
• Micro-Knowledge: Can the maps help users re-
trieve information faster than other methods?
• Macro-Knowledge: Can the maps help users un-
derstand the big picture better than other methods?
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For micro-knowledge, we wish to see how maps
help users answer specific questions. We compare
the level of knowledge attained by users using our
method with two other systems: Google News and
TDT. Google News is a computer-generated site that
aggregates headlines from news sources worldwide.
News-viewing tools are dominated by portal and
search approaches, and Google News is a typical
representative of those tools. TDT (Nallapati et al.,
2004) is a successful system which captures the rich
structure and dependencies of news events.

We have noticed that making comparisons be-
tween different systems is not convincing, since the
output of Google News and TDT is different both in
content and in presentation (and in particular, can-
not be double-blind). In order to isolate the effects
of sentence selection vs. map organization, we in-
troduce a hybrid system into the study: the system
with structureless story map displays the same sen-
tences and images as our system but with none of the
structure. Its output is basically the same with our
full system but with a single storyline and merges
node content for each date. And each story nodes
are sorted chronologically and displayed similarly to
Google News. We implement TDT based on (Nalla-
pati et al., 2004) (cos + TD + SimpleThresholding),
and pick a representative article from each cluster.
The purpose of the study is to test a single query.
We also obtain the results from Google News using
the same queries.

We recruit 64 volunteers to browse all the four
events, and one of the four systems is assigned to
each person randomly. After browsing, users are
asked to answer a short questionnaire (8 questions),
composed by domain experts. Users answer as many
questions as possible in limited time (8 minutes).
The statistics of their answers are promised to eval-
uate the micro-knowledge on different systems. In
order to aid in comprehension, we give some exam-
ples about those asked questions. For the event of
EJE, we ask that
1. How many magnitude was initially reported by
the USGS, and what about the finally report?
2. List at least six countries that had dispatched
their rescue teams.
3. . . .

And for OWS, we ask that

Table 3: Macro-knowledge performance on four datasets

Dataset Our System Google News TDT
EJE 56.3% 23.2% 20.5%

OWS 62.2% 22.1% 15.7%
NBA 58.3% 18.9% 22.8%
ME 47.2% 26.3% 26.5%

1. What was the attitude of President Obama about
the protesters on October?
2. When did the protesters begin dressing “corpo-
rate zombies” in New York?
3. . . .

These questions can effectively help us to investi-
gate users’ micro-knowledge about the events.

As for macro-knowledge, unlike the retrieval
study that evaluates users’ ability to answer ques-
tions, we are interested in the use of story maps as
high-level overviews, allowing users to understand
the big picture. We believe that the ability to ex-
plain a certain issue is the only proof of understand-
ing. Therefore, the 64 volunteers are then asked to
write four paragraphs to summarize the four events
respectively. This time, all three systems’ (the struc-
tureless system presents the same content as our sys-
tem) results are provided and we let users choose the
sentences with complete freedom. Then we count
the number of sentences they employed from each
system and derive the average proportions. Accord-
ing to the results we can research on the macro-
knowledge that different systems deliver.

4.3.2 Results

We take the time cost and the average numbers of
correct answers of different systems to evaluate on
the micro-knowledge. Figure 4 shows the results.

We can find out that our system outperforms the
others significantly when users taking less time to
learn the knowledge. The failure of structureless
system proves that our work of storyline reconstruc-
tion makes lots of advantages to help reading.

On the other hand, Table 3 analyzes the statistics
of macro-knowledge. It’s also obvious that users
would like to refer to the sentences that our sys-
tem provides. A reasonable explanation is that the
story maps we generate can clarify users’ thoughts
and views on the complicated events.
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Figure 4: Micro-knowledge performance on four datasets

Table 4: Average runtime of different datasets

Dataset EJE OWS NBA ME
|C| 1454 2357 1187 1042

Iterations 3.5 4.7 5.4 3.7
Runtime (ms) 1582 3214 3089 1314

4.4 Runtime Analysis

At last, we analyze the time performance of our
OPT-LSH algorithm on a PC server (16G RAM,
2.67GHz 4-processors CPU). The average iterations
for different initial value of d′ and the runtime are
shown in Table 4. The results are acceptable.

5 Conclusions

In this paper, we study the feasibility of automati-
cally generating cross-modal story maps and present
a novel solution to this challenging problem. Our
works mainly tackle the problems of storylines ex-
traction and reconstruction. Specifically, we inves-
tigate two requisite properties of an ideal storyline,
Coherence and Diversity. Then the convincing cri-
teria are devised to model both. We formalize the
task as an optimization problem and design an al-
gorithm to solve it. Classical IR and text analyzing
techniques like PageRank are fused into the unified
framework, and a near-optimal solution is employed
to deal with the NP-complete problem. Experiments
on web datasets show that our method is quite effi-
cient and competitive. We also verify that it brings
quicker, clearer and deeper comprehension to users.

As a future work, we plan to adapt parame-
ters automatically on the basis of different types of
datasets. Improving the layout quality of story map
by concerning the interactivity of different media
(e.g. images order) is also significant. Furthermore,
our framework is universal, so that the media other
than text and image can be adopted as well.
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Abstract

Describing the main event of an image in-
volves identifying the objects depicted and
predicting the relationships between them.
Previous approaches have represented images
as unstructured bags of regions, which makes
it difficult to accurately predict meaningful
relationships between regions. In this pa-
per, we introduce visual dependency represen-
tations to capture the relationships between
the objects in an image, and hypothesize that
this representation can improve image de-
scription. We test this hypothesis using a
new data set of region-annotated images, as-
sociated with visual dependency representa-
tions and gold-standard descriptions. We de-
scribe two template-based description gener-
ation models that operate over visual depen-
dency representations. In an image descrip-
tion task, we find that these models outper-
form approaches that rely on object proxim-
ity or corpus information to generate descrip-
tions on both automatic measures and on hu-
man judgements.

1 Introduction

Humans are readily able to produce a description of
an image that correctly identifies the objects and ac-
tions depicted. Automating this process is useful for
applications such as image retrieval, where users can
go beyond keyword-search to describe their infor-
mation needs, caption generation for improving the
accessibility of existing image collections, story il-
lustration, and in assistive technology for blind and

partially sighted people. Automatic image descrip-
tion presents challenges on a number of levels: rec-
ognizing the objects in an image and their attributes
are difficult computer vision problems; while deter-
mining how the objects interact, which relationships
hold between them, and which events are depicted
requires considerable background knowledge.

Previous approaches to automatic description
generation have typically tackled the problem us-
ing an object recognition system in conjunction with
a natural language generation component based on
language models or templates (Kulkarni et al., 2011;
Li et al., 2011). Some approaches have utilised the
visual attributes of objects (Farhadi et al., 2010),
generated descriptions by retrieving the descriptions
of similar images (Ordonez et al., 2011; Kuznetsova
et al., 2012), relied on an external corpus to pre-
dict the relationships between objects (Yang et al.,
2011), or combined sentence fragments using a tree-
substitution grammar (Mitchell et al., 2012).

A common aspect of existing work is that an im-
age is represented as a bag of image regions. Bags
of regions encode which objects co-occur in an im-
age, but they are unable to express how the regions
relate to each other, which makes it hard to describe
what is happening. As an example, consider Fig-
ure 1a, which depicts a man riding a bike. If the
man was instead repairing the bike, then the bag-
of-regions representation would be the same, even
though the image would depict a different action and
would have to be described differently. This type
of co-occurrence of regions indicates the need for a
more structured image representation; an image de-
scription system that has access to structured repre-
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(a)

A man is riding a bike down the road.
A car and trees are in the background.

(b)

ROOT bike car man road trees
- -

-

on
above

A man is riding a bike down the road.

det

nsubj

aux

root

det

dobj

advmod

det

pobj

(c)

Figure 1: (a) Image with regions marked up: BIKE, CAR,
MAN, ROAD, TREES; (b) human-generated image de-
scription; (c) visual dependency representation express-
ing the relationships between MAN, BIKE, and ROAD
aligned to the syntactic dependency parse of the first sen-
tence in the human-generated description (b).

sentations would be able to correctly infer the action
that is taking place, such as the distinction between
repairing or riding a bike, which would greatly im-
prove the descriptions it is able to generate.

In this paper, we introduce visual dependency rep-
resentations (VDRs) to represent the structure of im-
ages. This representation encodes the geometric re-
lations between the regions of an image. An ex-
ample can be found in Figure 1c, which depicts the
VDR for Figure 1a. It encodes that the MAN is above
the BIKE, and that the BIKE is on the ROAD. These
relationships make it possible to infer that the man
is riding a bike down the road, which corresponds

to the first sentence of the human-generated image
description in Figure 1b.

In order to test the hypothesis that structured im-
age representations are useful for description gener-
ation, we present a series of template-based image
description models. Two of these models are based
on approaches in the literature that represent images
as bags of regions. The other two models use vi-
sual dependency representations, either on their own
or in conjunction with gold-standard image descrip-
tions at training time.

We find that descriptions generated using the
VDR-based models are significantly better than
those generated using bag-of-region models in au-
tomatic evaluations using smoothed BLEU scores
and in human judgements. The BLEU score im-
provements are found at bi-, tri-, and four-gram lev-
els, and humans rate VDR-based image descriptions
1.2 points above the next-best model on a 1–5 scale.

Finally, we also show that the benefit of the vi-
sual dependency representation is maintained when
image descriptions are generated from automatically
parsed VDRs. We use a modified version of the
edge-factored parser of McDonald et al. (2005) to
predict VDRs over a set of annotated object regions.
This result reaffirms the potential utility of this rep-
resentation as a means to describe events in images.
Note that throughout the paper, we work with gold-
standard region annotations; this makes it possible
to explore the effect of structured image representa-
tions independently of automatic object detection.

2 Visual Dependency Representation

In analogy to dependency grammar for natural lan-
guage syntax, we define Visual Dependency Gram-
mar to describe the spatial relations between pairs
of image regions. A directed arc between two re-
gions is labelled with the spatial relationship be-
tween those regions, defined in terms of three ge-
ometric properties: pixel overlap, the angle between
regions, and the distance between regions. Table 1
presents a detailed explanation of the spatial rela-
tionships defined in the grammar.

A visual dependency representation of an image
is constructed by creating a directed acyclic graph
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X −→on Y
More than 50% of the pixels of re-
gion X overlap with region Y.1

X
−−−−−−→
surrounds Y

The entirety of region X overlaps
with region Y.

X
−−−→
beside Y

The angle between the centroid of
X and the centroid of Y lies be-
tween 315◦ and 45◦ or 135◦ and
225◦.

X
−−−−−→
opposite Y

Similar to beside, but used when
there X and Y are at opposite sides
of the image.

X
−−−→
above Y

The angle between X and Y lies be-
tween 225◦ and 315◦.

X
−−−→
below Y

The angle between X and Y lies be-
tween 45◦ and 135◦.

X
−−−−→
infront Y

The Z-plane relationship between
the regions is dominant.

X
−−−−→
behind Y

Identical to infront except X is be-
hind Y in the Z-plane.

Table 1: Visual Dependency Grammar defines eight re-
lations between pairs of annotated regions. To simplify
explanation, all regions are circles, where X is the grey
region and Y is the white region. All relations are consid-
ered with respect to the centroid of a region and the angle
between those centroids. We follow the definition of the
unit circle, in which 0◦ lies to the right and a turn around
the circle is counter-clockwise.

over the set of regions in an image using the spa-
tial relationships in the Visual Dependency Gram-
mar. It is created from a region-annotated image and
a corresponding image description by first identify-
ing the central actor of the image. The central actor
is the person or object carrying out the depicted ac-
tion; this typically corresponds to the subject of the
sentence describing the image. The region corre-
sponding to the central actor is attached to the ROOT

node of the graph. The remaining regions are then
attached based on their relationship with either the
actor or the other regions in the image as they are

1As per the PASCAL VOC definition of overlap in the object
detection task (Everingham et al., 2011).

mentioned in the description. Each arc introduced
is labelled with one of the spatial relations defined
in the grammar, or with no label if the region is not
described in relation to anything else in the image.

As an example of the output of this annotation
process, consider Figure 1a, its description in 1b,
and its VDR in 1c. Here, the MAN is the central
actor in the image, as he is carrying out the depicted
action (riding a bike). The region corresponding to
MAN is therefore attached to ROOT without a spa-
tial relation. The BIKE region is then attached to the
MAN region using the

−−−→
above relation and BIKE is at-

tached to the ROAD with the −→on relation. In the sec-
ond sentence of the description, CAR and TREES are
mentioned without a relationship to anything else in
the image, so they are attached to the ROOT node. If
these regions were attached to other regions, such as
CAR

−−−→
above ROAD then this would imply structure in

the image that is not conveyed in the description.

2.1 Data

Our data set uses the images from the PASCAL
Visual Object Classification Challenge 2011 action
recognition taster competition (Everingham et al.,
2011). This is a closed-domain data set containing
images of people performing ten types of actions,
such as making a phone call, riding a bike, and tak-
ing a photo. We annotated the data set in a three-step
process: (1) collect a description for each image;
(2) annotate the regions in the image; and (3) create a
visual dependency representation of the image. Note
that Steps (2) and (3) are dependent on the image de-
scription, as both the region labels and the relations
between them are derived from the description.

2.2 Image Descriptions

We collected three descriptions of each image in our
data set from Amazon Mechanical Turk. Workers
were asked to describe an image in two sentences.
The first sentence describes the action in the image,
the person performing the action and the region in-
volved in the action; the second sentence describes
any other regions in the image not directly involved
in the action. An example description is given in
Figure 1b.

A total of 2,424 images were described by three
workers each, resulting in a total of 7,272 image de-

1294



m
an

w
om

an
pe

rs
on

pe
op

le
tr

ee
s

ho
rs

e
gi

rl
w

al
l

bo
y

co
m

pu
te

r
ch

ild
bo

ok
ph

on
e

ch
ai

r
w

in
do

w
gr

as
s

ca
m

er
a

bi
cy

cl
e

bi
ke

la
pt

op

F
re

qu
en

cy

0

100

200

300

400

500

Figure 2: Top 20 annotated regions.

scriptions. The workers, drawn from those regis-
tered in the US with a minimum HIT acceptance rate
of 95%, described an average of 145 ± 93 images;
they were encouraged to describe fewer than 300 im-
ages each to ensure a linguistically diverse data set.
They were paid $0.04 per image and it took on av-
erage 67 ± 123 seconds to describe a single image.
The average length of a description was 19.9 ± 6.5
words in a range of 8–50 words. Dependency parses
of the descriptions were produced using the MST-
Parser (McDonald et al., 2005) trained on sections
2-21 of the WSJ portion of the Penn Treebank.

2.3 Region Annotations

We trained two annotators to draw polygons around
the outlines of the regions in an image using the La-
belMe annotation tool (Russell et al., 2008). The
regions annotated for a given image were limited to
those mentioned in the description paired with the
image. Region annotation was performed on a sub-
set of 341 images and resulted in a total of 5,034
annotated regions with a mean of 4.19 ± 1.94 an-
notations per image. A total of 496 distinct labels
were used to label regions. Figure 2 shows the
distribution of the top 20 region annotations in the
data; people-type regions are the most commonly
annotated regions. Given the prevalence of labels
referring to the same types of regions, we defined
26 sets of equivalent labels to reduce label sparsity
(e.g., BIKE was considered equivalent to BICYCLE).
This normalization process reduced the size of the
region label vocabulary from 496 labels to 362 la-
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Figure 3: Distribution of the spatial relations.

bels. Inter-annotator agreement was 74.3% for re-
gion annotations, this was measured by computing
polygon overlap over the annotated regions.

2.4 Visual Dependency Representations

The same two annotators were trained to construct
gold-standard visual dependency representations for
annotated image–description pairs. The process for
creating a visual dependency representation of an
image is described earlier in this section of the pa-
per. The 341 region-annotated images resulted in a
set of 1,023 visual dependency representations. The
annotated data set comprised a total of 5,748 spatial
relations, corresponding to a mean of 4.79 ± 3.51
relations per image. Figure 3 shows the distribution
of spatial relation labels in the data set. It can be
seen that the majority of regions are attached to the
ROOT node, i.e., they have the relation label none.
Inter-annotator agreement on a subset of the data
was measured at 84% agreement for labelled de-
pendency accuracy and 95.1% for unlabelled depen-
dency accuracy. This suggests the task of generating
visual dependency representations can be performed
reliably by human annotators. We induced an align-
ment between the annotated region labels and words
in the image description using simple lexical match-
ing augmented with WordNet hyponym lookup. See
Figure 1c for an example of the alignments.

3 Image Description Models

We present four template-based models for gener-
ating image descriptions in this section. Table 2
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Regions VDR
External
Corpus

Parallel
text

PROXIMITY X
CORPUS X X

STRUCTURE X X
PARALLEL X X X

Table 2: The data available to each model at training time.

presents an overview of the amount of information
available to each model at training time, ranging
from only the annotated regions of an image to us-
ing visual dependency representation of an image
aligned with the syntactic dependency representa-
tion of its description. At test time, all models have
access to image regions and their labels, and use
these to generate image descriptions. Two of the
models also have access to VDRs at test time, al-
lowing us to test the hypothesis that image structure
is useful for generating good image descriptions.

The aim of each model is to determine what is
happening in the image, which regions are impor-
tant for describing it, and how these regions relate to
each other. Recall that all our images depict actions,
and that the gold-standard annotation was performed
with this in mind. A good description therefore is
one that relates the main actors depicted in the im-
age to each other, typically through a verb; a mere
enumeration of the regions in the image is not suffi-
cient. All models attempt to generate a two-sentence
description, as per the gold standard descriptions.

In the remainder of this section, we will use Fig-
ure 1 as a running example to demonstrate the type
of language each model is capable of generating. All
models share the set of templates in Table 3.

3.1 PROXIMITY

PROXIMITY is based on the assumption that people
describe the relationships between regions that are
near each other. It has access to only the annotated
image regions and their labels.

Region–region relationships that are potentially
relevant for the description are extracted by calculat-
ing the proximity of the annotated regions. Here, oi

is the subject region, o j is the object region, and si j

is the spatial relationship between the regions. Let

T1 DT Oi AUX REL DT O j. T5?

T2 There AUX also {DT Oi}
|unrelated|
i=1 in the image.

T3 DT Oi AUX REL DT O j REL DT Ok. T5?
T4 REL DT O j.

T5 PRP AUX {REL DT Oi}
|dependents|
i=1 .

Table 3: The language generation templates.

R = {(oi, si j, o j), . . .} be the set of possible region–
region relationships found by calculating the near-
est neighbour of each region in Euclidean space be-
tween the centroids of the polygons that mark the re-
gion boundaries. The tuple with the subject closest
to the centre of the image is used to describe what is
happening in the image, and the remaining regions
are used to describe the background.

The first sentence of the description is realised
with template T1 from Table 3. oi is the label of
the subject region and o j is the label of the object
region. DT is a simple determiner chosen from {the,
a}, depending on whether the region label is a plural
noun; AUX is either {is, are}, depending on the num-
ber of the region label; and REL is a word to describe
the relationship between the regions. For this model,
REL is the spatial relationship between the centroids
chosen from {above, below, beside}, depending on
the angle formed between the region centroids, us-
ing the definitions in Table 1. The second sentence
of the description is realised with template T2 over
the subjects oi in R that were not used in the first
sentence. An example of the language generated is:

(1) The man is beside the bike. There is also a
road, a car, and trees in the image.

With the exception of visual attributes to describe
size, colour, or texture, this model is based on the
approach described by Kulkarni et al. (2011).

3.2 CORPUS

The biggest limitation of PROXIMITY is that regions
that are near each other are not always in a rele-
vant relationship for a description. For example, in
Figure 1, the BIKE and the CAR regions are near-
est neighbours but they are unlikely to be described
as being in an relationship by a human annotator.
The model CORPUS addresses this issue by using an
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external text corpus to determine which pairs of re-
gions are likely to be in a describable relationship.
Furthermore, CORPUS can generate verbs instead of
spatial relations between regions, leading to more
human-like descriptions. CORPUS is based on Yang
et al. (2011), except we do not use scene type (in-
door, outdoor, etc.) as part of the model. At training
time, the model has access to the annotated image
regions and labels, and to the dependency-parsed
version of the English Gigaword Corpus (Napoles
et al., 2012). The corpus is used to extract subject–
verb–object subtrees, which are then used to predict
the best pairs of regions, as well as the verb that re-
lates the regions.

The set of region–region relationships
R = {(oi, vi j, o j), . . .} is determined by search-
ing for the most likely o∗j ,v

∗ given an oi over a set
of verbs V extracted from the corpus and the other
regions in the image. This is shown in Equation 1.

o∗j ,v
∗|oi = argmax

o j ,v
p(oi) · p(v|oi) · p(o j|v,oi) (1)

We can easily estimate p(oi), p(v|oi), and p(o j|v,oi)
directly from the corpus. If we cannot find an o∗j ,v

∗

for a region, we back-off to the spatial relationship
calculation as defined in PROXIMITY. When we
have found the best pairs of regions, we select the
most probable pair and generate the first sentence of
the description using that pair an template T1. The
second sentence is realised with template T2 over the
subjects in R not used in generating the first sen-
tence. An example of the language generated is:

(2) The man is riding the bike. There is also a
car, a road, and trees in the image.

In comparison to PROXIMITY, this model will only
describe pairs of regions that have observed rela-
tions in the external corpus. The corpus also pro-
vides a verb that relates the regions, which pro-
duces descriptions that are more in line with human-
generated text. However, since noun co-occurrence
in the corpus controls which regions can be men-
tioned in the description, this model will be prone
to relating regions simply because their labels occur
together frequently in the corpus.

3.3 STRUCTURE

The model STRUCTURE exploits the visual depen-
dency representation of an image to generate lan-
guage for only the relationships that hold between
pairs of regions. It has access to the image regions,
the region labels, and the visual dependency repre-
sentation of an image.

Region–region relationships are generated during
a depth-first traversal of the VDR using templates
T1, T3, T4, and T5. The VDR of an image is traversed
and language fragments are generated and then com-
bined depending on the number of children of a node
in the tree. If a node has only one child then we
use T1 to generate text for the head-child relation-
ship. If a node has more than one child, we need to
decide how to order the language generated by the
model. We generate sentence fragments using T4 for
each child independently and combine them later. In
STRUCTURE, the sentence fragments are sorted by
the Euclidean distance of the children from the par-
ent. In order to avoid problematic descriptions such
as “The woman is above the horse is above the field
is beside the house”, we include a special case for
when a node has more than one child. In these cases,
the nearest region is realized in direct relation to the
head using either T3 (two children) or T1 (more than
two children), and the remaining regions form a sep-
arate sentence using T5. This sorting and combing
process would result in “The woman is above the
horse. She is above field and beside the house” for
the case mentioned above.

An example of the type of description that can be
generated during a traversal is:

(3) The man is above the bike above the road.
There is also a car and trees in the image.

In comparison to PROXIMITY, this model can exploit
a representation of an image that encodes the rela-
tionships between regions in an image (the VDR).
However, it is limited to generating spatial relations,
because it cannot predict verbs to relate regions.

3.4 PARALLEL

The model PARALLEL is an extension of STRUC-
TURE that uses the image descriptions available to
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predict verbs that relate regions in parent-child re-
lationships in a VDR. At training time it has ac-
cess to the annotated regions and labels, the visual
dependency representations, and the gold-standard
image descriptions. Recall from Section 2.1 that
the descriptions were dependency-parsed using the
parser of McDonald et al. (2005) and alignments
were calculated between the nodes in the VDRs and
the words in the parsed image descriptions.

We estimate two distributions from
the image descriptions using the align-
ments: p(verb|ohead ,ochild ,relhead−child) and
p(verb|ohead ,ochild). The second distribution is used
as a backoff when we do not observe the arc label
between the regions in the training data. The gener-
ation process is similar to that used in STRUCTURE,
with two exceptions: (1) it can generate verbs
during the generation steps, and (2) when a node
has multiple dependents, the sentence fragments
are sorted by the probability of the verb associated
with them. This sorting step governs which child is
in a relationship with its parent. When the model
generates text, it only generates a verb for the
most probable sentence fragment. The remaining
fragments revert back to spatial relationships to
avoid generating language that places the subject
region in multiple relationships with other regions.
An example of the language generated is:

(4) The man is riding the bike on the road. There
is also a car and trees in the image.

In comparison to CORPUS, this model generates de-
scriptions in which the relations between the regions
determined by the image itself and not by an external
corpus. In comparison to PROXIMITY and STRUC-
TURE, this model generates descriptions that express
meaningful relations between the regions and not
simple spatial relationships.

4 Image Parsing

The STRUCTURE and PARALLEL models rely on vi-
sual dependency representations, but it is unreal-
istic to assume gold-standard representations will
always be available because they are expensive to
construct. In this section we describe an image
parser that can induce VDRs automatically from

region-annotated images, providing the input for
the STRUCTURE-PARSED and PARALLEL-PARSED

models at test time.

The parser is based on the arc-factored depen-
dency parsing model of McDonald et al. (2005).
This model generates a dependency representation
by maximizing the score s computed over all edges
of the representation. In our notation, xvis is the set
of annotated regions and yvis is a visual dependency
representation of the image; (i, j) is a directed arc
from node i to node j in xvis, f(i, j) is a feature rep-
resentation of the arc (i, j), and w is a vector of fea-
ture weights to be learned by the model. The overall
score of a visual dependency representation is:

s(xvis,yvis) = ∑
(i, j)∈yvis

w · f(i, j) (2)

The features in the model are defined over re-
gion labels in the visual dependency representation
as well as the relationship labels. As our depen-
dency representations are unordered, none of the
features encode the linear order of region labels,
unlike the feature set of the original model. Uni-
gram features describe how likely individual region
labels are to appear as either heads or arguments and
bigram feature captures which region labels are in
head-argument relationships. All features are con-
joined with the relationship label.

We evaluate our parser on the 1,023 visual depen-
dency representations from the data set. The evalu-
ation is run over 10 random splits into 80% train-
ing, 10% development, and 10% test data.2 Per-
formance is measured with labelled and unlabelled
directed dependency accuracy. The parser achieves
58.2%± 3.1 labelled accuracy and 65.5%± 3.3 un-
labelled accuracy, significantly better than the base-
line of 51.6% ± 2.5 for both labelled and unlabelled
accuracy (the baseline was calculated by attaching
all image regions to the root node; this is the most
frequent form of attachment in our data).

5 Language Generation Experiments

We evaluate the image description models in an au-
tomatic setting and with human judgements. In

2Different visual dependency representations of the same
image are never split between the training and test data.
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Automatic Evaluation Human Judgements

BLEU-1 BLEU-2 BLEU-3 BLEU-4 Grammar Action Scene

PARALLEL-PARSED 45.4 ± 2.0 16.1 ± 0.9 6.4 ± 0.7 2.7 ± 0.5 4.2 ± 1.3 3.3 ± 1.7 3.5 ± 1.3

PROXIMITY 45.1 ± 0.8 10.2 ± 1.0? 2.1 ± 0.6? 0.4 ± 0.2? 3.7 ± 1.5? 2.1 ± 0.3? 3.0 ± 1.4?

CORPUS 46.1 ± 1.1 12.4 ± 1.3? 3.1 ± 0.8? 0.7 ± 0.3? 4.4 ± 1.1 2.2 ± 1.3? 3.4 ± 1.3

STRUCTURE 40.2 ± 3.0? 11.5 ± 1.2? 3.5 ± 0.5? 0.3 ± 0.1? 4.1 ± 1.4 2.1 ± 1.4? 3.0 ± 1.4?

STRUCTURE-PARSED 41.1 ± 2.1? 12.2 ± 0.9? 3.6 ± 0.4? 0.4 ± 0.2? 4.0 ± 1.4 1.6 ± 1.3? 3.2 ± 1.3

PARALLEL 44.6 ± 3.1 16.0 ± 1.5 6.8 ± 1.0 2.9 ± 0.7 4.5 ± 1.0? 3.4 ± 1.6 3.7 ± 1.3

GOLD - - - - 4.8 ± 0.4? 4.8 ± 0.6? 4.6 ± 0.7?

Table 4: Automatic evaluation results averaged over 10 random test splits of the data, and human judgements on the
median scoring BLEU-4 test split for PARALLEL. We find significant differences (? p < 0.05) in the descriptions gener-
ated by PARALLEL-PARSED compared to models that operate over an unstructured bag of image regions representation.
Bold means PARALLEL-PARSED is significantly better than PROXIMITY, CORPUS, and STRUCTURE.

the automatic setting, we follow previous work and
measure how close the model-generated descrip-
tions are to the gold-standard descriptions using the
BLEU metric. Human judgements were collected
from Amazon Mechanical Turk.

5.1 Methodology

The task is to produce a description of an image.
The PROXIMITY and CORPUS models have access
to gold-standard region labels and region bound-
aries at test time. The STRUCTURE and PARALLEL

models have additional access to the visual depen-
dency representation of the image. These represen-
tations are either the gold-standard, or in the case of
STRUCTURE-PARSED and PARALLEL-PARSED, pro-
duced by the image parser described in Section 4.
Table 2 provides a reminder of the information the
different models have access to at training time.

Our data set of 1,023 image–description–VDR
tuples was randomly split into 10 folds of 80%
training data, 10% development data, and 10% test
data. The results we report are means computed
over the 10 splits. The image parser used for mod-
els STRUCTURE-PARSED and PARALLEL-PARSED

is trained on the gold-standard VDRs of the train-
ing splits, and then predicts VDRs on the develop-
ment and test splits. Significant differences were
measured using a one-way ANOVA with PARALLEL-

PARSED as the reference3, with differences between
pairs of mean checked with a Tukey HSD test.

5.2 Automatic Evaluation

The model-generated descriptions are compared
against the human-written gold-standard descrip-
tions using the smoothed BLEU measure (Lin and
Och, 2004). BLEU is commonly used in ma-
chine translation experiments to measure the effec-
tive overlap between a reference sentence and a pro-
posed translation sentence. Table 4 shows the re-
sults on the test data and Figure 4 shows sample out-
puts for two images. PARALLEL, the model with
access to both image structure and aligned image
descriptions at training time outperforms all other
models on higher-order BLEU measures. One rea-
son for this improvement is that PARALLEL can for-
mulate sentence fragments that relate the subject, a
verb, and an object without trying to predict the best
object, unlike CORPUS. The probability associated
with each fragment generated for nodes with mul-
tiple children also tends to lead to a more accurate
order of mentioning image regions. It can also be
seen that PARALLEL-PARSED remains significantly
better than the other models when the VDRs of im-
ages are predicted by an image parser, rather than
being gold-standard.

3Recall that PARALLEL uses gold-standard VDRs and
PARALLEL-PARSED uses the output of the image parser de-
scribed in Section 4.
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The weakest results are obtained from a model
that relies on the proximity of regions to generate de-
scriptions. PROXIMITY achieves competitive BLEU-
1 scores but this is mostly due to it correctly gener-
ating region names and determiners. CORPUS is bet-
ter than PROXIMITY at correctly producing higher-
order n-grams than because it has a better model of
the region–region relationships in an image. How-
ever, it has difficulties guessing the correct verb for
a description, as it relies on corpus co-occurrences
for this (see the second example in Table 4). STRUC-
TURE uses the VDR of an image to generate the de-
scription, which this leads to an improvement over
PROXIMITY on some of the BLEU metrics; however,
it is not sufficient to outperform CORPUS.

5.3 Human Judgements

We conducted a human judgement study on Me-
chanical Turk to complement the automatic evalu-
ation. Workers were paid $0.05 to rate the quality of
an image–description pair generated by one of the
models using three criteria on a scale from 1 to 5:

1. Grammaticality: give high scores if the de-
scription is correct English and doesn’t contain
any grammatical mistakes.

2. Action: give high scores if the description cor-
rectly describes what people are doing in the
image.

3. Scene: give high scores if the description cor-
rectly describes the rest of the image (back-
ground, other objects, etc).

A total of 101 images were used for this evalua-
tion and we obtained five judgments for each image-
description pair, resulting in a total of 3,535 judg-
ments. To ensure a fair evaluation, we chose the
images from the split of the data that gave median
BLEU-4 accuracy for PARALLEL, the best perform-
ing model in the automatic evaluations.

The right side of Table 4 shows the mean judge-
ments for each model for across the three evalua-
tion criteria. The gold-standard descriptions elicited
judgements around five, and were significantly bet-
ter than the model outputs on all aspects. Further-
more, all models produce highly grammatical out-
put, with mean ratings of between 3.7 and 4.5. This

can be explained by the fact that the models all relied
on templates to ensure grammatical output.

The ratings of the action descriptions reveal the
usefulness of structural information. PROXIMITY,
CORPUS, and STRUCTURE all perform badly with
mean judgements around two, PARALLEL, which
uses both image structure and aligned descriptions,
significantly outperforms all other models with the
exception of PARALLEL-PARSED, which has very
similar performance. The fact that PARALLEL and
PARALLEL-PARSED perform similarly on all three
human measures confirms that automatically parsed
VDRs are as useful for image description as gold-
standard VDRs.

When we compare the quality of the scene de-
scriptions, we notice that all models perform simi-
larly, around the middle of the scale. This is proba-
bly due to the fact that they all have access to gold-
standard region labels, which enables them to cor-
rectly refer to regions in the scene most of the time.
The additional information about the relationships
between regions that STRUCTURE and PARALLEL

have access to does not improve the quality of the
background scene description.

6 Related Work

Previous work on image description can be grouped
into three approaches: description-by-retrieval, de-
scription using language models, and template-
based description. Ordonez et al. (2011), Farhadi
et al. (2010), and Kuznetsova et al. (2012) gener-
ate descriptions by retrieving the most similar image
from a large data set of images paired with descrip-
tions. These approaches are restricted to generating
descriptions that are only present in the training set;
also, they typically require large amounts of training
data and assume images that share similar properties
(scene type, objects present) should be described in
a similar manner.

Kulkarni et al. (2011) and Li et al. (2011) generate
descriptions using n-gram language models trained
on a subset of Wikipedia. Both approaches first
determine the attributes and relationships between
regions in an image as region–preposition–region
triples. The disadvantage of relying on region–
preposition–region triples is that they cannot distin-
guish between the main event of the image and the
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PROXIMITY A man is beside a phone. There is also a wall and a sign in the image.
CORPUS A man is holding a sign. There is also a wall and a phone in the image.
STRUCTURE A wall is above a wall. A man is beside a sign.
PARALLEL A man is holding a phone. A wall is beside a sign.
GOLD A foreign man with sunglasses talking on a cell phone.

A large building and a mountain in the background.

PROXIMITY A beach is above a beach.
There are also horses, a woman, and a man in the image.

CORPUS A woman is outnumbering a man.
There are also horses and beaches in the image.

STRUCTURE A man is beside a woman above a horse.
A horse is beside a woman beside a beach.

PARALLEL A man is riding a horse above a beach.
A horse is beside a beach beside a woman.

GOLD There is a man and women both on horses.
They are on a beach during the day.

Figure 4: Some example descriptions produced by PROXIMITY, CORPUS, STRUCTURE and PARALLEL.

background regions. Kulkarni et al. (2011) is closely
related to our PROXIMITY baseline.

Yang et al. (2011) fill in a sentence template
by selecting the likely objects, verbs, prepositions,
and scene types based on a Hidden Markov Model.
Verbs are generated by finding the most likely pair-
ing of object labels in an external corpus. This
model is closely related to our CORPUS baseline.
Mitchell et al. (2012) over-generates syntactically
well-formed sentence fragments and then recom-
bines these using a tree-substitution grammar.

Previous research has relied extensively on auto-
matically detecting object regions in an image using
state-of-the art object detectors (Felzenszwalb et al.,
2010). We use gold-standard region annotations to
remove this noisy component from the description
generation pipeline, allowing us to focus on the util-
ity of image structure for description generation.

7 Conclusion

In this paper we introduced a novel representation
of an image as a set of dependencies over its an-
notated regions. This visual dependency represen-
tation encodes which regions are related to each
other in an image, and can be used to infer the ac-

tion or event that is depicted. We found that im-
age description models based on visual dependency
representations significantly outperform competing
models in both automatic and human evaluations.
We showed that visual dependency representations
can be induced automatically using a standard de-
pendency parser and that the descriptions generated
from the induced representations are as good as the
ones generated from gold-standard representations.
Future work will focus on improvements to the im-
age parser, on exploring this representation in open-
domain data sets, and on using the output of an ob-
ject detector to obtain a fully automated model.
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Abstract

In current dependency parsing models, con-
ventional features (i.e. base features) defined
over surface words and part-of-speech tags
in a relatively high-dimensional feature space
may suffer from the data sparseness problem
and thus exhibit less discriminative power on
unseen data. In this paper, we propose a
novel semi-supervised approach to address-
ing the problem by transforming the base fea-
tures into high-level features (i.e. meta fea-
tures) with the help of a large amount of au-
tomatically parsed data. The meta features are
used together with base features in our final
parser. Our studies indicate that our proposed
approach is very effective in processing un-
seen data and features. Experiments on Chi-
nese and English data sets show that the fi-
nal parser achieves the best-reported accuracy
on the Chinese data and comparable accuracy
with the best known parsers on the English
data.

1 Introduction

In recent years, supervised learning models have
achieved lots of progress in the dependency pars-
ing task, as can be found in the CoNLL shared
tasks (Buchholz and Marsi, 2006; Nivre et al.,
2007). The supervised models take annotated data
as training data, utilize features defined over surface
words, part-of-speech tags, and dependency trees,
and learn the preference of features via adjusting
feature weights.

∗Corresponding author

In the supervised learning scenarios, many previ-
ous studies explore rich feature representation that
leads to significant improvements. McDonald and
Pereira (2006) and Carreras (2007) define second-
order features over two adjacent arcs in second-
order graph-based models. Koo and Collins (2010)
use third-order features in a third-order graph-based
model. Bohnet (2010) considers information of
more surrounding words for the graph-based mod-
els, while Zhang and Nivre (2011) define a set
of rich features including the word valency and
the third-order context features for transition-based
models. All these models utilize richer and more
complex feature representations and achieve better
performance than the earlier models that utilize the
simpler features (McDonald et al., 2005; Yamada
and Matsumoto, 2003; Nivre and Scholz, 2004).
However, the richer feature representations result in
a high-dimensional feature space. Features in such a
space may suffer from the data sparseness problem
and thus have less discriminative power on unseen
data. If input sentences contain unknown features
that are not included in training data, the parsers can
usually give lower accuracy.

Several methods have been proposed to alleviate
this problem by using large amounts of unannotated
data, ranging from self-training and co-training (Mc-
Closky et al., 2006; Sagae and Tsujii, 2007) to more
complex methods that collect statistical information
from unannotated sentences and use them as addi-
tional features (Koo et al., 2008; Chen et al., 2009).

In this paper, we propose an alternative approach
to semi-supervised dependency parsing via feature
transformation (Ando and Zhang, 2005). More
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specifically, we transform base features to a higher-
level space. The base features defined over surface
words, part-of-speech tags, and dependency trees
are high dimensional and have been explored in the
above previous studies. The higher-level features,
which we call meta features, are low dimensional,
and newly defined in this paper. The key idea be-
hind is that we build connections between known
and unknown base features via the meta features.
From another viewpoint, we can also interpret the
meta features as a way of doing feature smoothing.

Our feature transfer method is simpler than that of
Ando and Zhang (2005), which is based on splitting
the original problem into multiple auxiliary prob-
lems. In our approach, the base features are grouped
and each group relates to a meta feature. In the first
step, we use a baseline parser to parse a large amount
of unannotated sentences. Then we collect the base
features from the parse trees. The collected features
are transformed into predefined discrete values via a
transformation function. Based on the transformed
values, we define a set of meta features. Finally, the
meta features are incorporated directly into parsing
models.

To demonstrate the effectiveness of the proposed
approach, we apply it to the graph-based parsing
models (McDonald and Nivre, 2007). We conduct
experiments on the standard data split of the Penn
English Treebank (Marcus et al., 1993) and the Chi-
nese Treebank Version 5.1 (Xue et al., 2005). The
results indicate that the approach significantly im-
proves the accuracy. In summary, we make the fol-
lowing contributions:

• We define a simple yet useful transformation
function to transform base features to meta fea-
tures automatically. The meta features build
connections between known and unknown base
features, and relieve the data sparseness prob-
lem.

• Compared to the base features, the number of
meta features is remarkably small.

• We build semi-supervised dependency parsers
that achieve the best accuracy on the Chinese
data and comparable accuracy with the best
known systems on the English data.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the graph-based parsing model.

Section 3 describes the meta features and meta
parser. Section 4 describes the experiment settings
and reports the experimental results on English and
Chinese data sets. Section 5 discusses related work.
Finally, in Section 6 we summarize the proposed ap-
proach.

2 Baseline parser

In this section, we introduce a graph-based pars-
ing model proposed by McDonald et al. (2005) and
build a baseline parser.

2.1 Graph-based parsing model
Given an input sentence, dependency parsing is
to build a dependency tree. We define X as
the set of possible input sentences, Y as the
set of possible dependency trees, and D =
(x1, y1), ..., (xi, yi), ..., (xn, yn) as a training set of
n pairs of xi ∈ X and yi ∈ Y . A sentence is de-
noted by x = (w0, w1, ..., wi, ..., wm), where w0 is
ROOT and does not depend on any other word and
wi refers to a word.

In the graph-based model, we define ordered pair
(wi, wj) ∈ y as a dependency relation in tree y from
word wi to word wj (wi is the head and wj is the
dependent), Gx as a graph that consists of a set of
nodes Vx = {w0, w1, ..., wi, ..., wm} and a set of
arcs (edges) Ex = {(wi, wj)|i ̸= j, wi ∈ Vx, wj ∈
(Vx−{w0})}. The parsing model of McDonald et al.
(2005) is to search for the maximum spanning tree
(MST) in graph Gx. We denote Y (Gx) as the set
of all the subgraphs of Gx that are valid dependency
trees (McDonald and Nivre, 2007) for sentence x.

We define the score of a dependency tree y ∈
Y (Gx) to be the sum of the subgraph scores,

score(x, y) =
∑
g∈y

score(x, g) (1)

where g is a spanning subgraph of y, which can be a
single arc or adjacent arcs. In this paper we assume
the dependency tree to be a spanning projective tree.
The model scores each subgraph using a linear rep-
resentation. Then scoring function score(x, g) is,

score(x, g) = f(x, g) · w (2)

where f(x, g) is a high-dimensional feature vector
based on features defined over g and x and w refers
to the weights for the features.
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The maximum spanning tree is the highest scoring
tree in Y (Gx). The task of decoding algorithms in
the parsing model for an input sentence x is to find
y∗, where

y∗ = arg max
y∈Y (Gx)

score(x, y)

= arg max
y∈Y (Gx)

∑
g∈y

score(x, g)

= arg max
y∈Y (Gx)

∑
g∈y

f(x, g) · w (3)

In our system, we use the decoding algorithm
proposed by Carreras (2007), which is a second-
order CKY-style algorithm (Eisner, 1996) and fea-
ture weights w are learned during training using the
Margin Infused Relaxed Algorithm (MIRA) (Cram-
mer and Singer, 2003; McDonald et al., 2005).

2.2 Base features
Previous studies have defined different sets of fea-
tures for the graph-based parsing models, such as
the first-order features defined in McDonald et al.
(2005), the second-order parent-siblings features de-
fined in McDonald and Pereira (2006), and the
second-order parent-child-grandchild features de-
fined in Carreras (2007). Bohnet (2010) explorers
a richer set of features than the above sets. We fur-
ther extend the features defined by Bohnet (2010)
by introducing more lexical features as the base fea-
tures. The base feature templates are listed in Table
1, where h, d refer to the head, the dependent re-
spectively, c refers to d’s sibling or child, b refers
to the word between h and d, +1 (−1) refers to the
next (previous) word, w and p refer to the surface
word and part-of-speech tag respectively, [wp] refers
to the surface word or part-of-speech tag, d(h, d) is
the direction of the dependency relation between h
and d, and d(h, d, c) is the directions of the relation
among h, d, and c. We generate the base features
based on the above templates.

2.3 Baseline parser
We train a parser with the base features as the Base-
line parser. We define fb(x, g) as the base features
and wb as the corresponding weights. The scoring
function becomes,

score(x, g) = fb(x, g) · wb (4)

3 Meta features

In this section, we propose a semi-supervised ap-
proach to transform the features in the base feature
space (FB) to features in a higher-level space (FM )
with the following properties:

• The features in FM are able to build connec-
tions between known and unknown features in
FB and therefore should be highly informative.

• The transformation should be learnable based
on a labeled training set and an automatically
parsed data set, and automatically computable
for the test sentences.

The features in FM are referred to as meta fea-
tures. In order to perform the feature transformation,
we choose to define a simple yet effective mapping
function. Based on the mapped values, we define
feature templates for generating the meta features.
Finally, we build a new parser with the base and
meta features.

3.1 Template-based mapping function
We define a template-based function for mapping
the base features to predefined discrete values. We
first put the base features into several groups and
then perform mapping.

We have a set of base feature templates TB . For
each template Ti ∈ TB , we can generate a set of
base features Fi from dependency trees in the parsed
data, which is automatically parsed by the Baseline
parser. We collect the features and count their fre-
quencies. The collected features are sorted in de-
creasing order of frequencies. The mapping function
for a base feature fb of Fi is defined as follows,

Φ(fb) =


Hi if R(fb) ≤ TOP10
Mi if TOP10 < R(fb) ≤ TOP30
Li if TOP30 < R(fb)
Oi Others

where R(fb) is the position number of fb in the
sorted list, “Others” is defined for the base features
that are not included in the list, and TOP10 and TOP
30 refer to the position numbers of top 10% and top
30% respectively. The numbers, 10% and 30%, are
tuned on the development sets in the experiments.
For a base feature generated from template Ti, we
have four possible values: Hi, Mi, Li, and Oi. In
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(a) First-order standard

h[wp], d[wp], d(h,d)
h[wp], d(h,d)
dw, dp, d(h,d)
d[wp], d(h,d)
hw, hp, dw, dp, d(h,d)
hp, hw, dp, d(h,d)
hw, dw, dp, d(h,d)
hw, hp, d[wp], d(h,d)

(b) First-order Linear

hp, bp, dp, d(h,d)
hp, h+1p, d−1p, dp, d(h,d)
h−1p, hp, d−1p, dp, d(h,d)
hp, h+1p, dp, d+1p, d(h,d)
h−1p, hp, dp, d+1p, d(h,d)

(c) Second-order standard

hp, dp, cp, d(h,d,c)
hw, dw, cw, d(h,d,c)
hp, c[wp], d(h,d,c)
dp, c[wp], d(h,d,c)
hw, c[wp], d(h,d,c)
dw, c[wp], d(h,d,c)

(d) Second-order Linear

h[wp], h+1[wp], c[wp], d(h,d,c)
h−1[wp], h[wp], c[wp], d(h,d,c)
h[wp], c−1[wp], c[wp], d(h,d,c)
h[wp], c[wp], c+1[wp], d(h,d,c)
h−1[wp], h[wp], c−1[wp], c[wp], d(h,d,c)
h[wp], h+1[wp], c−1[wp], c[wp], d(h,d,c)
h−1[wp], h[wp], c[wp], c+1[wp], d(h,d,c)
h[wp], h+1[wp], c[wp], c+1[wp], d(h,d,c)
d[wp], d+1[wp], c[wp], d(h,d,c)
d−1[wp], d[wp], c[wp], d(h,d,c)
d[wp], c−1[wp], c[wp], d(h,d,c)
d[wp], c[wp], c+1[wp], d(h,d,c)
d[wp], d+1[wp], c−1[wp], c[wp], d(h,d,c)
d[wp], d+1[wp], c[wp], c+1[wp], d(h,d,c)
d−1[wp], d[wp], c−1[wp], c[wp], d(h,d,c)
d−1[wp], d[wp], c[wp], c+1[wp], d(h,d,c)

Table 1: Base feature templates

total, we have 4×N(TB) possible values for all the
base features, where N(TB) refers to the number of
the base feature templates, which is usually small.
We can obtain the mapped values of all the collected
features via the mapping function.

3.2 Meta feature templates

Based on the mapped values, we define meta fea-
ture templates in FM for dependency parsing. The
meta feature templates are listed in Table 2, where
fb is a base feature of FB , hp refers to the part-
of-speech tag of the head and hw refers to the sur-
face word of the head. Of the table, the first tem-
plate uses the mapped value only, the second and
third templates combine the value with the head in-
formation. The number of the meta features is rel-
atively small. It has 4 × N(TB) for the first type,
4 × N(TB) × N(POS) for the second type, and
4 × N(TB) × N(WORD) for the third one, where
N(POS) refers to the number of part-of-speech
tags, N(WORD) refers to the number of words.
We remove any feature related to the surface form
if the word is not one of the Top-N most frequent
words in the training data. We used N=1000 for the
experiments for this paper. This method can reduce
the size of the feature sets. The empirical statistics
of the feature sizes at Section 4.2.2 shows that the

size of meta features is only 1.2% of base features.

[Φ(fb)]
[Φ(fb)], hp

[Φ(fb)], hw

Table 2: Meta feature templates

3.3 Generating meta features

We use an example to demonstrate how to gener-
ate the meta features based on the meta feature tem-
plates in practice. Suppose that we have sentence “I
ate the meat with a fork.” and want to generate the
meta features for the relation among “ate”, “meat”,
and “with”, where “ate” is the head, “meat” is the
dependent, and “with” is the closest left sibling of
“meat”. Figure 1 shows the example.

We demonstrate the generating procedure using
template Tk = “hw, dw, cw, d(h, d, c)” (the second
template of Table 1-(c) ), which contains the sur-
face forms of the head, the dependent, its sibling,
and the directions of the dependencies among h,
d, and c. We can have a base feature “ate, meat,
with, RIGHTSIB”, where “RIGHTSIB” refers to the
parent-siblings structure with the right direction. In
the auto-parsed data, this feature occurs 200 times
and ranks between TOP10 and TOP30. Accord-
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I ate the meat with a forkI!!!!ate!!!!the!!!!meat!!!!with!!!!a!!!!fork!!!!.

Tk:!hw,!dw,!cw,!d(h,d,c)

Fb:!ate,!meat,!with,!RIGHTSIB

" (fb)=Mk

[Mk];![Mk],!VV;![Mk],!ate

Figure 1: An example of generating meta features

ing to the mapping function, we obtain the mapped
value Mk. Finally, we have the three meta features
“[Mk]”, “[Mk], V V ”, and “[Mk], ate”, where V V is
the part-of-speech tag of word “ate”. In this way,
we can generate all the meta features for the graph-
based model.

3.4 Meta parser
We combine the base features with the meta features
by a new scoring function,

score(x, g) = fb(x, g) · wb + fm(x, g) · wm (5)

where fb(x, g) refers to the base features, fm(x, g)
refers to the meta features, and wb and wm are
their corresponding weights respectively. The fea-
ture weights are learned during training using MIRA
(Crammer and Singer, 2003; McDonald et al.,
2005). Note that wb is also retrained here.

We use the same decoding algorithm in the new
parser as in the Baseline parser. The new parser is
referred to as the meta parser.

4 Experiments

We evaluated the effect of the meta features for the
graph-based parsers on English and Chinese data.

4.1 Experimental settings
In our experiments, we used the Penn Treebank
(PTB) (Marcus et al., 1993) for English and the
Chinese Treebank version 5.1 (CTB5) (Xue et al.,
2005) for Chinese. The tool “Penn2Malt”1 was used

1http://w3.msi.vxu.se/˜nivre/research/Penn2Malt.html

to convert the data into dependency structures with
the English head rules of Yamada and Matsumoto
(2003) and the Chinese head rules of Zhang and
Clark (2008). We followed the standard data splits
as shown in Table 3. Following the work of Koo et
al. (2008), we used a tagger trained on training data
to provide part-of-speech (POS) tags for the devel-
opment and test sets, and used 10-way jackknifing to
generate part-of-speech tags for the training set. We
used the MXPOST (Ratnaparkhi, 1996) tagger for
English and the CRF-based tagger for Chinese. We
used gold standard segmentation in the CTB5. The
data partition of Chinese were chosen to match pre-
vious work (Duan et al., 2007; Li et al., 2011; Hatori
et al., 2011).

train dev test
PTB 2-21 22 23
(sections)
CTB5 001-815 886-931 816-885
(files) 1001-1136 1148-1151 1137-1147

Table 3: Standard data splits

For the unannotated data in English, we used the
BLLIP WSJ corpus (Charniak et al., 2000) contain-
ing about 43 million words.2 We used the MXPOST
tagger trained on the training data to assign part-of-
speech tags and used the Baseline parser to process
the sentences of the Brown corpus. For the unanno-
tated data in Chinese, we used the Xinhua portion
of Chinese Gigaword3 Version 2.0 (LDC2009T14)
(Huang, 2009), which has approximately 311 mil-
lion words. We used the MMA system (Kruengkrai
et al., 2009) trained on the training data to perform
word segmentation and POS tagging and used the
Baseline parser to parse the sentences in the Giga-
word data.

In collecting the base features, we removed the
features which occur only once in the English data
and less than four times in the Chinese data. The
feature occurrences of one time and four times are
based on the development data performance.

We measured the parser quality by the unlabeled
attachment score (UAS), i.e., the percentage of to-

2We ensured that the text used for building the meta features
did not include the sentences of the Penn Treebank.

3We excluded the sentences of the CTB data from the Giga-
word data.
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kens (excluding all punctuation tokens) with the cor-
rect HEAD. We also reported the scores on complete
dependency trees evaluation (COMP).

4.2 Feature selection on development sets

We evaluated the parsers with different settings on
the development sets to select the meta features.

4.2.1 Different models vs meta features
In this section, we investigated the effect of dif-

ferent types of meta features for the models trained
on different sizes of training data on English.

There are too many base feature templates to test
one by one. We divided the templates into several
categories. Of Table 1, some templates are only re-
lated to part-of-speech tags (P), some are only re-
lated to surface words (W), and the others contain
both part-of-speech tags and surfaces (M). Table 4
shows the categories, where numbers [1−4] refer to
the numbers of words involved in templates. For ex-
ample, the templates of N3WM are related to three
words and contain the templates of W and M. Based
on different categories of base templates, we have
different sets of meta features.4

Category Example
N1P hp, d(h, d)
N1WM hw, d(h, d); hw, hp, d(h, d)
N2P hp, dp, d(h, d)
N2WM hw, dw, d(h, d);

hw, dp, d(h, d)
N3P hp, dp, cp, d(h, d, c)
N3WM hw, dw, cw, d(h, d, c);

dw, d+1p, cp, d(h, d, c)
N4P hp, h+1p, cp, c+1p, d(h, d, c)
N4WM hw, h+1w, cw, c+1w, d(h, d, c);

hw, h+1p, cp, c+1p, d(h, d, c)

Table 4: Categories of base feature templates

We randomly selected 1% and 10% of the sen-
tences respectively from the training data. We
trained the POS taggers and Baseline parsers on
these small training data and used them to process
the unannotated data. Then, we generated the meta
features based on the newly auto-parsed data. The

4We also tested the settings of dividing WM into two sub-
types: W and M. The results showed that both two sub-types
provided positive results. To simplify, we merged W and M
into one category WM.

meta parsers were trained on the different subsets
of the training data with different sets of meta fea-
tures. Finally, we have three meta parsers: MP1,
MP10, MPFULL, which were trained on 1%, 10%
and 100% of the training data.

MP1 MP10 MPFULL
Baseline 82.22 89.50 93.01
+N1P 82.42 89.48 93.08
+N1WM 82.80 89.42 93.19
+N2P 81.29 89.01 93.02
+N2WM 82.69 90.10 93.23
+N3P 83.32 89.73 93.05
+N3WM 84.47 90.75 93.80
+N4P 82.73 89.48 93.01
+N4WM 84.07 90.42 93.67
OURS 85.11 91.14 93.91

Table 5: Effect of different categories of meta features

Table 5 shows the results, where we add each cat-
egory of Table 4 individually. From the table, we
found that the meta features that are only related to
part-of-speech tags did not always help, while the
ones related to the surface words were very helpful.
We also found that MP1 provided the largest relative
improvement among the three settings. These sug-
gested that the more sparse the base features were,
the more effective the corresponding meta features
were. Thus, we built the final parsers by adding
the meta features of N1WM, N2WM, N3WM, and
N4WM. The results showed that OURS achieved
better performance than the systems with individual
sets of meta features.

4.2.2 Different meta feature types

In Table 2, there are three types of meta feature
templates. Here, the results of the parsers with dif-
ferent settings are shown in Table 6, where CORE
refers to the first type, WithPOS refers to the sec-
ond one, and WithWORD refers to the third one.
The results showed that with all the types the parser
(OURS) achieved the best. We also counted the
numbers of the meta features. Only 327,864 (or
1.2%) features were added into OURS. Thus, we
used all the three types of meta features in our final
meta parsers.
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System NumOfFeat UAS
Baseline 27,119,354 93.01
+CORE +498 93.84
+WithPOS +14,993 93.82
+WithWORD +312,373 93.27
OURS +327,864 93.91

Table 6: Numbers of meta features

4.3 Main results on test sets

We then evaluated the meta parsers on the English
and Chinese test sets.

4.3.1 English
The results are shown in Table 7, where Meta-

Parser refers to the meta parser. We found that the
meta parser outperformed the baseline with an ab-
solute improvement of 1.01 points (UAS). The im-
provement was significant in McNemar’s Test (p
< 10−7 ).

UAS COMP
Baseline 92.76 48.05
MetaParser 93.77 51.36

Table 7: Main results on English

4.3.2 Chinese

UAS COMP
Baseline 81.01 29.71
MetaParser 83.08 32.21

Table 8: Main results on Chinese

The results are shown in Table 8. As in the ex-
periment on English, the meta parser outperformed
the baseline. We obtained an absolute improvement
of 2.07 points (UAS). The improvement was signif-
icant in McNemar’s Test (p < 10−8 ).

In summary, Tables 7 and 8 convincingly show
the effectiveness of our proposed approach.

4.4 Different sizes of unannotated data

Here, we considered the improvement relative to the
sizes of the unannotated data used to generate the
meta features. We randomly selected the 0.1%, 1%,
and 10% of the sentences from the full data. Table

English Chinese
Baseline 92.76 81.01
TrainData 91.93 80.40
P0.1 92.82 81.58
P1 93.14 82.23
P10 93.48 82.81
FULL 93.77 83.08

Table 9: Effect of different sizes of auto-parsed data

9 shows the results, where P0.1, P1, and P10 corre-
spond to 0.1%, 1%, and 10% respectively. From the
table, we found that the parsers obtained more ben-
efits as we used more raw sentences. We also tried
generating the meta features from the training data
only, shown as TrainData in Table 9. However, the
results shows that the parsers performed worse than
the baselines. This is not surprising because only
the known base features are included in the training
data.

4.5 Comparison with previous work

4.5.1 English

Table 10 shows the performance of the previ-
ous systems that were compared, where McDon-
ald06 refers to the second-order parser of McDon-
ald and Pereira (2006), Koo10 refers to the third-
order parser with model1 of Koo and Collins (2010),
Zhang11 refers to the parser of Zhang and Nivre
(2011), Li12 refers to the unlabeled parser of Li et
al. (2012), Koo08 refers to the parser of Koo et al.
(2008), Suzuki09 refers to the parser of Suzuki et al.
(2009), Chen09 refers to the parser of Chen et al.
(2009), Zhou11 refers to the parser of Zhou et al.
(2011), Suzuki11 refers to the parser of Suzuki et al.
(2011), and Chen12 refers to the parser of Chen et
al. (2012).

The results showed that our meta parser out-
performed most of the previous systems and ob-
tained the comparable accuracy with the best result
of Suzuki11 (Suzuki et al., 2011) which combined
the clustering-based word representations of Koo et
al. (2008) and a condensed feature representation.
However, our approach is much simpler than theirs
and we believe that our meta parser can be further
improved by combining their methods.
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Type System UAS COMP

Sup
McDonald06 91.5

Koo10 93.04 -
Zhang11 92.9 48.0

Li12 93.12 -
Our Baseline 92.76 48.05

Semi

Koo08 93.16
Suzuki09 93.79

Chen09 93.16 47.15
Zhou11 92.64 46.61

Suzuki11 94.22 -
Chen12 92.76 -

MetaParser 93.77 51.36

Table 10: Relevant results for English. Sup denotes the
supervised parsers, Semi denotes the parsers with semi-
supervised methods.

4.5.2 Chinese
Table 11 shows the comparative results, where

Li11 refers to the parser of Li et al. (2011), Hatori11
refers to the parser of Hatori et al. (2011), and Li12
refers to the unlabeled parser of Li et al. (2012). The
reported scores on this data were produced by the
supervised learning methods and our Baseline (su-
pervised) parser provided the comparable accuracy.
We found that the score of our meta parser for this
data was the best reported so far and significantly
higher than the previous scores. Note that we used
the auto-assigned POS tags in the test set to match
the above previous studies.

System UAS COMP
Li11 80.79 29.11

Hatori11 81.33 29.90
Li12 81.21 -

Our Baseline 81.01 29.71
MetaParser 83.08 32.21

Table 11: Relevant results for Chinese

4.6 Analysis
Here, we analyzed the effect of the meta features on
the data sparseness problem.

We first checked the effect of unknown features
on the parsing accuracy. We calculated the number
of unknown features in each sentence and computed
the average number per word. The average num-

bers were used to eliminate the influence of varied
sentence sizes. We sorted the test sentences in in-
creasing orders of these average numbers, and di-
vided equally into five bins. BIN 1 is assigned the
sentences with the smallest numbers and BIN 5 is
with the largest ones. Figure 2 shows the average
accuracy scores of the Baseline parsers against to
the bins. From the figure, we found that for both
two languages the Baseline parsers performed worse
while the sentences contained more unknown fea-
tures.
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Figure 2: Accuracies relative to numbers of unknown fea-
tures (average per word) by Baseline parsers

Then, we investigated the effect of the meta fea-
tures. We calculated the average number of ac-
tive meta features per word that were transformed
from the unknown features for each sentence. We
sorted the sentences in increasing order of the av-
erage numbers of active meta features and divided
them into five bins. BIN 1 is assigned the sen-
tences with the smallest numbers and BIN 5 is with
the largest ones. Figures 3 and 4 show the results,
where “Better” is for the sentences where the meta
parsers provided better results than the baselines and
“Worse” is for those where the meta parsers pro-
vided worse results. We found that the gap between
“Better” and “Worse” became larger while the sen-
tences contain more active meta features for the un-
known features. The gap means performance im-
provement. This indicates that the meta features are
very effective in processing the unknown features.

5 Related work

Our approach is to use unannotated data to generate
the meta features to improve dependency parsing.
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Figure 3: Improvement relative to numbers of active meta
features on English (average per word)
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Figure 4: Improvement relative to numbers of active meta
features on Chinese (average per word)

Several previous studies relevant to our approach
have been conducted.

Koo et al. (2008) used a word clusters trained on a
large amount of unannotated data and designed a set
of new features based on the clusters for dependency
parsing models. Chen et al. (2009) extracted sub-
tree structures from a large amount of data and rep-
resented them as the additional features to improve
dependency parsing. Suzuki et al. (2009) extended a
Semi-supervised Structured Conditional Model (SS-
SCM) of Suzuki and Isozaki (2008) to the depen-
dency parsing problem and combined their method
with the word clustering feature representation of
Koo et al. (2008). Chen et al. (2012) proposed an ap-
proach to representing high-order features for graph-
based dependency parsing models using a depen-
dency language model and beam search. In future
work, we may consider to combine their methods
with ours to improve performance.

Several previous studies used co-training/self-
training methods. McClosky et al. (2006) presented
a self-training method combined with a reranking al-
gorithm for constituency parsing. Sagae and Tsujii
(2007) applied the standard co-training method for
dependency parsing. In their approaches, some au-
tomatically parsed sentences were selected as new
training data, which was used together with the orig-
inal labeled data to retrain a new parser. We are able
to use their approaches on top of the output of our
parsers.

With regard to feature transformation, the work
of Ando and Zhang (2005) is similar in spirit to our
work. They studied semi-supervised text chunking
by using a large projection matrix to map sparse base
features into a small number of high level features.
Their project matrix was trained by transforming the
original problem into a large number of auxiliary
problems, obtaining training data for the auxiliary
problems by automatically labeling raw data and us-
ing alternating structure optimization to estimate the
matrix across all auxiliary tasks. In comparison with
their approach, our method is simpler in the sense
that we do not request any intermediate step of split-
ting the prediction problem, and obtain meta fea-
tures directly from self-annotated data. The training
of our meta feature values is highly efficient, requir-
ing the collection of simple statistics over base fea-
tures from huge amount of data. Hence our method
can potentially be useful to other tasks also.

6 Conclusion

In this paper, we have presented a simple but effec-
tive semi-supervised approach to learning the meta
features from the auto-parsed data for dependency
parsing. We build a meta parser by combining the
meta features with the base features in a graph-based
model. The experimental results show that the pro-
posed approach significantly improves the accuracy.
Our meta parser achieves comparable accuracy with
the best known parsers on the English data (Penn
English Treebank) and the best accuracy on the Chi-
nese data (Chinese Treebank Version 5.1) so far.
Further analysis indicate that the meta features are
very effective in processing the unknown features.
The idea described in this paper is general and can
be applied to other NLP applications, such as part-
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of-speech tagging and Chinese word segmentation,
in future work.
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Abstract

Topic segmentation classically relies on one
of two criteria, either finding areas with co-
herent vocabulary use or detecting discontinu-
ities. In this paper, we propose a segmenta-
tion criterion combining both lexical cohesion
and disruption, enabling a trade-off between
the two. We provide the mathematical formu-
lation of the criterion and an efficient graph
based decoding algorithm for topic segmenta-
tion. Experimental results on standard textual
data sets and on a more challenging corpus
of automatically transcribed broadcast news
shows demonstrate the benefit of such a com-
bination. Gains were observed in all condi-
tions, with segments of either regular or vary-
ing length and abrupt or smooth topic shifts.
Long segments benefit more than short seg-
ments. However the algorithm has proven ro-
bust on automatic transcripts with short seg-
ments and limited vocabulary reoccurrences.

1 Introduction

Topic segmentation consists in evidentiating the se-
mantic structure of a document: Algorithms devel-
oped for this task aim at automatically detecting
frontiers which define topically coherent segments
in a text.

Various methods for topic segmentation of tex-
tual data are described in the literature, e.g., (Rey-
nar, 1994; Hearst, 1997; Ferret et al., 1998; Choi,
2000; Moens and Busser, 2001; Utiyama and Isa-
hara, 2001), most of them relying on the notion of
lexical cohesion, i.e., identifying segments with a
consistent use of vocabulary, either based on words

or on semantic relations between words. Reoccur-
rences of words or related words and lexical chains
are two popular methods to evidence lexical cohe-
sion. This general principle of lexical cohesion is
further exploited for topic segmentation with two
radically different strategies. On the one hand, a
measure of the lexical cohesion can be used to deter-
mine coherent segments (Reynar, 1994; Moens and
Busser, 2001; Utiyama and Isahara, 2001). On the
other hand, shifts in the use of vocabulary can be
searched for to directly identify the segment fron-
tiers by measuring the lexical disruption (Hearst,
1997).

Techniques based on the first strategy yield more
accurate segmentation results, but face a problem of
over-segmentation which can, up to now, only be
solved by providing prior information regarding the
distribution of segment length or the expected num-
ber of segments. In this paper, we propose a segmen-
tation criterion combining both cohesion and dis-
ruption along with the corresponding algorithm for
topic segmentation. Such a criterion ensures a co-
herent use of vocabulary within each resulting seg-
ment, as well as a significant difference of vocabu-
lary between neighboring segments. Moreover, the
combination of these two strategies enables regular-
izing the number of segments found without resort-
ing to prior knowledge.

This piece of work uses the algorithm of Utiyama
and Isahara (2001) as a starting point, a versatile and
performing topic segmentation algorithm cast in a
statistical framework. Among the benefits of this al-
gorithm are its independency to any particular do-
main and its ability to cope with thematic segments
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of highly varying lengths, two interesting features
to obtain a generic solution to the problem of topic
segmentation. Moreover, the algorithm has proven
to be up to the state of the art in several studies, with
no need of a priori information about the number of
segments (contrary to algorithms in (Malioutov and
Barzilay, 2006; Eisenstein and Barzilay, 2008) that
can attain a higher segmentation accuracy). It also
provides an efficient graph based implementation of
which we take advantage.

To account both for cohesion and disruption, we
extend the formalism of Isahara and Utiyama using
a Markovian assumption between segments in place
of the independence assumption of the original algo-
rithm. Keeping unchanged their probabilistic mea-
sure of lexical cohesion, the Markovian assumption
enables to introduce the disruption between two con-
secutive segments. We propose an extended graph
based decoding strategy, which is both optimal and
efficient, exploiting the notion of generalized seg-
ment model or semi hidden Markov models. Tests
are performed on standard textual data sets and on
a more challenging corpus of automatically tran-
scribed broadcast news shows.

The seminal idea of this paper was partially pub-
lished in (Simon et al., 2013) in the French language.
The current paper significantly elaborates on the lat-
ter, with a more detailed description of the algo-
rithm and additional contrastive experiments includ-
ing more data sets. In particular, new experiments
clearly demonstrate the benefit of the method in a
realistic setting with statistically significant gains.

The organization of the article is as follows. Ex-
isting work on topic segmentation is presented in
Section 2, emphasizing the motivations of the model
we propose. Section 3 details the baseline method
of Utiyama and Isahara before introducing our algo-
rithm. Experimental protocol and results are given
in Section 4. Section 5 summarizes the finding and
concludes with a discussion of future work.

2 Related work

Defining the concept of theme precisely is not trivial
and a large number of definitions have been given by
linguists. Brown and Yule (1983) discuss at length
the difficulty of defining a topic and note: ”The
notion of ’topic’ is clearly an intuitively satisfac-

tory way of describing the unifying principle which
makes one stretch of discourse ’about’ something
and the next stretch ’about’ something else, for it
is appealed to very frequently in the discourse anal-
ysis literature. Yet the basis for the identification of
’topic’ is rarely made explicit”. To skirt the issue of
defining a topic, they suggest to focus on topic-shift
markers and to identify topic changes, what most
current topic segmentation methods do.

Various characteristics can be exploited to iden-
tify thematic changes in text data. The most popular
ones rely either on the lexical distribution informa-
tion to measure lexical cohesion (i.e., word reoccur-
rences, lexical chains) or on linguistic markers such
as discourse markers which indicate continuity or
discontinuity (Grosz and Sidner, 1986; Litman and
Passonneau, 1995). Linguistic markers are however
often specific to a type of text and cannot be consid-
ered in a versatile approach as the one we are target-
ing, where versatility is achieved relying on the sole
lexical cohesion.

The key point with lexical cohesion is that a sig-
nificant change in the use of vocabulary is consid-
ered to be a sign of topic shift. This general idea
translates into two families of methods, local ones
targeting a local detection of lexical disruptions and
global ones relying on a measure of the lexical cohe-
sion to globally find segments exhibiting coherence
in their lexical distribution.

Local methods (Hearst, 1997; Ferret et al., 1998;
Hernandez and Grau, 2002; Claveau and Lefèvre,
2011) locally compare adjacent fixed size regions,
claiming a boundary when the similarity between
the adjacent regions is small enough, thus identify-
ing points of high lexical disruption. In the seminal
work of Hearst (1997), a fixed size window divided
into two adjacent blocks is used, consecutively cen-
tered at each potential boundary. Similarity between
the adjacent blocks is computed at each point, the re-
sulting similarity profile being analyzed to find sig-
nificant valleys which are considered as topic bound-
aries.

On the contrary, global methods (Reynar, 1994;
Choi, 2000; Utiyama and Isahara, 2001; Ji and Zha,
2003; Malioutov and Barzilay, 2006; Misra et al.,
2009) seek to maximize the value of the lexical co-
hesion on each segment resulting from the segmen-
tation globally on the text. Several approaches have
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been taken relying on self-similarity matrices, such
as dot plots, or on graphs. A typical and state-of-the-
art algorithm is that of Utiyama and Isahara (2001)
whose principle is to search globally for the best
path in a graph representing all possible segmenta-
tions and where edges are valued according to the
lexical cohesion measured in a probabilistic way.

When the lengths of the respective topic segments
in a text (or between two texts) are very differ-
ent from one another, local methods are challenged.
Finding out an appropriate window size and extract-
ing boundaries become critical with segments of
varying length, in particular when short segments
are present. Short windows will render compari-
son of adjacent blocks difficult and unreliable while
long windows cannot handle short segments. The
lack of a global vision also makes it difficult to nor-
malize properly the similarities between blocks and
to deal with statistics on segment length. While
global methods override these drawbacks, they face
the problem of over-segmentation due to the fact that
they mainly rely on the sole lexical cohesion. Short
segments are therefore very likely to be coherent
which calls for regularization introduced as priors
on the segments length.

These considerations naturally lead to the idea of
methods combining lexical cohesion and disruption
to make the best of both worlds. While the two cri-
teria rely on the same underlying principle of lex-
ical coherence (Grosz et al., 1995) and might ap-
pear as redundant, the resulting algorithms are quite
different in their philosophy. A first (and, to the
best of our knowledge, unique) attempt at captur-
ing a global view of the local dissimilarities is de-
scribed in Malioutov and Barzilay (2006). However,
this method assumes that the number of segments to
find is known beforehand which makes it difficult
for real-world usage.

3 Combining lexical cohesion and
disruption

We extend the graph-based formalism of Utiyama
and Isahara to jointly account for lexical cohesion
and disruption in a global approach. Clearly, other
formalisms than the graph-based one could have
been considered. However, graph-based probabilis-
tic topic segmentation has proven very accurate and

versatile, relying on very minimal prior knowledge
on the texts to segment. Good results at the state-of-
the-art have also been reported in difficult conditions
with this approach (Misra et al., 2009; Claveau and
Lefèvre, 2011; Guinaudeau et al., 2012).

We briefly recall the principle of probabilistic
graph-based segmentation before detailing a Marko-
vian extension to account for disruption.

3.1 Probabilistic graph-based segmentation
The idea of the probabilistic graph-based segmen-
tation algorithm is to find the segmentation into the
most coherent segments constrained by a prior dis-
tribution on segments length. This problem is cast
into finding the most probable segmentation of a se-
quence of t basic units (i.e., sentences or utterances
composed of words) W = ut

1 among all possible
segmentations, i.e.,

Ŝ = arg max
S

P [W |S]P [S] . (1)

Assuming that segments are mutually independent
and assuming that basic units within a segment are
also independent, the probability of a text W for a
segmentation S = Sm

1 is given by

P [W |Sm
1 ] =

m∏
i=1

ni∏
j=1

P [wi
j |Si] , (2)

where ni is the number of words in the segment
Si, wi

j is the jth word in Si and m the number of
segments. The probability P [wi

j |Si] is given by a
Laplace law where the parameters are estimated on
Si, i.e.,

P [wi
j |Si] =

fi(wi
j) + 1

ni + k
, (3)

where fi(wi
j) is the number of occurrences of wi

j

in Si and k is the total number of distinct words in
W , i.e., the size of the vocabulary V . This probabil-
ity favors segments that are homogeneous, increas-
ing when words are repeated and decreasing consis-
tently when they are different. The prior distribu-
tion on segment length is given by a simple model,
P [Sm

1 ] = n−m, where n is the total number of
words, exhibiting a large value for a small number
of segments and conversely.

The optimization of Eq. 1 can be efficiently im-
plemented as the search for the best path in a
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weighted graph which represents all the possible
segmentations. Each node in the graph corresponds
to a possible frontier placed between two utterances
(i.e., we have a node between each pair of utter-
ances), the arc between nodes i and j representing a
segment containing utterances ui+1 to uj . The cor-
responding arc weight is the generalized probability
of the words within segment Si→j according to

v(i, j) =
j∑

k=i+1

ln(P [uk|Si→j ])− αln(n)

where the probability is given as in Eq. 3. The factor
α is introduced to control the trade-off between the
segments length and the lexical cohesion.

3.2 Introduction of the lexical disruption

Eq. 2 derives from the assumption that each segment
Si is independent from the others, which makes it
impossible to consider disruption between two con-
secutive segments. To do so, the weight of an arc
corresponding to a segment Si should take into ac-
count how different this segment is from Si−1. This
is typically handled using a Markovian assumption
of order 1. Under this assumption, Eq. 2 is reformu-
lated as

P [W |Sm
1 ] = P [W |S1]

m∏
i=2

P [W |Si, Si−1] ,

where the notion of disruption can be embedded in
the term P [W |Si, Si−1] which explicitly mentions
both segments. Formally, P [W |Si, Si−1] is defined
as a probability. However, arbitrary scores which do
not correspond to probabilities can be used instead
as the search for the best path in the graph of possi-
ble segmentations makes no use of probability the-
ory. In this study, we define the score of a segment
Si given Si−1 as

lnP [W |Si, Si−1] = lnP [Wi|Si]− λ∆(Wi,Wi−1)
(4)

where Wi designates the set of utterances in Si

and the rightmost part reflects the disruption be-
tween the content of Si and of Si−1. Eq. 4 clearly
combines the measure of lexical cohesion with a
measure of the disruption between consecutive seg-
ments: ∆(Wi,Wi−1) > 0 measures the coherence

between Si and Si−1, the substraction thus account-
ing for disruption by penalizing consecutive coher-
ent segments. The underlying assumption is that the
bigger ∆(Wi,Wi−1), the weaker the disruption be-
tween the two segments. Parameter λ controls the
respective contributions of cohesion and disruption.

We initially adopted a probabilistic measure
of disruption based on cross probabilities, i.e.,
P [Wi|Si−1] and P [Wi−1|Si], which proved to have
limited impact on the segmentation. We therefore
prefer to rely on a cosine similarity measure be-
tween the word vectors representing two adjacent
segments, building upon a classical strategy of lo-
cal methods such as TextTiling (Hearst, 1997). The
cosine similarity measure is calculated between vec-
tors representing the content of resp. Si and Si−1,
denoted vi and vi−1, where vi is a vector contain-
ing the (tf-idf) weight of each term of V in Si. The
cosine similarity is classically defined as

cos(vi−1,vi) =

∑
v∈V

vi−1(v) vi(v)√ ∑
v∈V

v2
i−1(v)

∑
v∈V

v2
i (v)

. (5)

∆(Wi,Wi−1) is calculated from the cosine similar-
ity measure as

∆(Wi,Wi−1) = (1− cos(vi−1,vi))
−1 , (6)

thus yielding a small penalty in Eq. 4 for highly dis-
rupting boundaries, i.e., corresponding to low simi-
larity measure.

Given the quantities defined above, the algorithm
boils down to finding the best scoring segmentation
as given by

Ŝ = arg max
S

m∑
i=1

ln(P [Wi|Si])−

λ

m∑
i=2

∆(Wi,Wi−1)− αmln(n) . (7)

3.3 Segmentation algorithm
Translating Eq. 7 into an efficient algorithm is not
straightforward since all possible combinations of
adjacent segments need be considered. To do so in a
graph based approach, one needs to keep separated
the paths of different lengths ending in a given node.
In other words, only paths of the same length ending
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at a given point, with different predecessors, should
be recombined so that disruption can be considered
properly in subsequent steps of the algorithm. Note
that, in standard decoding as in Utiyama and Isa-
hara’s algorithm, only one of such paths, the best
scoring one, would be retained. We employ a strat-
egy inspired from the decoding strategy of segment
models or semi-hidden Markov model with explicit
duration model (Ostendorf et al., 1996; Delakis et
al., 2008).

Search is performed through a lattice L =
{V,E}, with V the set of nodes representing poten-
tial boundaries and E the set of edges representing
segments, i.e., a set of consecutive utterances. The
set V is defined as

V = {nij |0 ≤ i, j ≤ N} ,

where nij represents a boundary after utterance ui

reached by a segment of length j utterances and
N = t+1. In the lattice example of Fig. 1, it is trivial
to see that for a given node, all incoming edges cover
the same segment. For example, the node n42 is po-
sitioned after u4 and all incoming segments contain
the two utterances u3 and u4. Edges are defined as

E = {eip,jl|0 ≤ i, p, j, l ≤ N ;
i < j; i = j − l;Lmin ≤ l ≤ Lmax} ,

where eip,jl connects nip and njl with the constraint
that l = j − i and Lmin ≤ l ≤ Lmax. Thus, an edge
eip,jl represents a segment of length l containing ut-
terances from ui+1 to uj , denoted Si→j . In Fig. 1,
e01,33 represents a segment of length 3 from n01 to
n33, covering utterances u1 to u3. To avoid explo-
sion of the lattice, a maximum segment length Lmax

is defined. Symmetrically, a minimum segment size
can be used.

The property of this lattice, where, by construc-
tion, all edges out of a node have the same segment
as a predecessor, makes it possible to weight each
edge in the lattice according to Eq. 4. Consider a
node nij for which all incoming edges encompass
utterances ui−j to ui. For each edge out of nij ,
whatever the target node (i.e., the edge length), one
can therefore easily determine the lexical cohesion
as defined by the generalized probability of Eq. 3
and the disruption with respect to the previous seg-
ment as defined by Eq. 6.

Algorithm 1 Maximum probability segmentation
Step 0. Initialization
q[0][j] = 0 ∀j ∈ [Lmin, Lmax]
q[i][j] = −∞ ∀i ∈ [1, N ], j ∈ [Lmin, Lmax]

Step 1. Assign best score to each node
for i = 0→ t do

for j = Lmin → Lmax do
for k = Lmin → Lmax do

/* extend path ending after ui with a
segment of length j with an arc of length k */

q[i+k][k] = max


q[i+ k][k],
q[i][j]+
Cohesion(ui+1 → ui+k)−
λ∆(ui−j → ui;ui+1 → ui+k)

end for
end for

end for

Step 2. Backtrack from nNj with best score
q[N ][j]

Given the weighted decoding graph, the solution
to Eq. 7 is obtained by finding out the best path in
the decoding lattice, which can be done straightfor-
wardly by scanning nodes in topological order. The
decoding algorithm is summarized in Algorithm 1
with an efficient implementation in o(NL2

max) which
does not require explicit construction of the lattice.

4 Experiments

Experiments are performed on three distinct corpora
which exhibit different characteristics, two contain-
ing textual data and one spoken data. We first
present the corpora before presenting and discussing
results on each.

4.1 Corpora
The artificial data set of Choi (2000) is widely used
in the literature and enables comparison of a new
segmentation method with existing ones. Choi’s
data set consist of 700 documents, each created by
concatenating the first z sentences of 10 articles ran-
domly chosen from the Brown corpus, assuming
each article is on a different topic. Table 1 provides
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Figure 1: An example of a lattice L.

z = 3–11 3–5 6–8 9–11
# samples 400 100 100 100

Table 1: Number of documents in Choi’s corpus (Choi,
2000).

the corpus statistics, where z=3–11 means z is ran-
domly chosen in the range [3, 11]. Hence, Choi’s
corpus is adapted to test the ability of our model
to deal with variable segments length, z=3–11 be-
ing the most difficult condition. Moreover, Choi’s
corpus provides a direct comparison with results re-
ported in the literature.

One of the main criticism of Choi’s data set is the
presence of abrupt topic changes due to the artifi-
cial construction of the corpus. We therefore re-
port results on a textual corpus with more natural
topic changes, also used in (Eisenstein and Barzi-
lay, 2008). The data set consists of 277 chapters
selected from (Walker et al., 1990), a medical text-
book, where each chapter—considered here as a
document—was divided by its author into themat-
ically coherent sections. The data set has a total of
1,136 segments with an average of 5 segments per
document and an average of 28 sentences per seg-
ment. This data set is used to study the impact of
smooth, natural, topic changes.

Finally, results are reported on a corpus of au-
tomatic transcripts of TV news spoken data. The
data set consists of 56 news programs (≈1/2 hour

each), broadcasted in February and March 2007 on
the French television channel France 2, and tran-
scribed by two different automatic speech recogni-
tion (ASR) systems, namely IRENE (Huet et al.,
2010) and LIMSI (Gauvain et al., 2002), with re-
spective word error rates (WER) around 36 % and
30 %. Each news program consists of successive
reports of short duration (2-3 min), possibly with
consecutive reports on different facets of the same
news. The reference segmentation was established
by associating a topic with each report, i.e., plac-
ing a boundary at the beginning of a report’s in-
troduction (and hence at the end of the closing re-
marks). The TV transcript data set, which corre-
sponds to some real-world use cases in the multi-
media field, is very challenging for several reasons.
On the one hand, segments are short, with a reduced
number of repetitions, synonyms being frequently
employed. Moreover, smooth topic shifts can be
found, in particular at the beginning of each pro-
gram with different reports dedicated to the head-
line. On the other hand, transcripts significantly dif-
fer from written texts: no punctuation signs or capi-
tal letters; no sentence structure but rather utterances
which are only loosely syntactically motivated; pres-
ence of transcription errors which may imply an ac-
centuated lack of word repetitions.

All data were preprocessed in the same way:
Words were tagged and lemmatized with TreeTag-
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ger1 and only the nouns, non modal verbs and adjec-
tives were retained for segmentation. Inverse docu-
ment frequencies used to measure similarity in Eq. 5
are obtained on a per document basis, referring to
the number of sentences in textual data and of utter-
ances in spoken data.

4.2 Results
Performance is measured by comparison of hypoth-
esized frontiers with reference ones. Alignment as-
sumes a tolerance of 1 sentence on texts and of 10
seconds on transcripts, which corresponds to stan-
dard values in the literature. Results are reported us-
ing recall, precision and F1-measure. Recall refers
to the proportion of reference frontiers correctly de-
tected; Precision corresponds to the ratio of hypoth-
esized frontiers that belong to the reference seg-
mentation; F1-measure combines recall and preci-
sion in a single value. These evaluation measures
were selected because recall and precision are not
sensitive to variations of segment length contrary
to the Pk measure (Beeferman et al., 1997) and
do not favor segmentations with a few number of
frontiers as WindowDiff (Pevzner and Hearst, 2002)
(see (Niekrasz and Moore, 2010) for a rigorous an-
alytical explanation of the biases of Pk and Win-
dowDiff ).

Several configurations were considered in the ex-
periments; due to space constraints, only the most
salient experiments are presented here. In Eq. 7, the
parameter α, which controls the contribution of the
prior model with respect to the lexical cohesion and
disruption, allows for different trade-offs between
precision and recall. For any given value of λ, α
is thus varied, providing the range of recall/precision
values attainable. Results are compared to a baseline
system corresponding to the application of the orig-
inal algorithm of Utiyama and Isahara (i.e., setting
λ = 0). This baseline has been shown to be a high-
performance algorithm, in particular with respect to
local methods that exploit lexical disruption. Differ-
ences in F1-measure between this baseline and our
system presented below are all statistically signifi-
cant at the level of p < 0.01 (paired t-test).

Choi’s corpus. Figure 2 reports results obtained
on Choi’s data set, each graphic corresponding to

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger

z τ
F1 Confidence interval 95 %

gain UI Combined
3-5 0 -0.2 [66.6,74.26] [75.23,78.08]
3-5 1 0.7 [72.25,83.4] [87.88,92.13]
3-11 1 0.23 [68.5,79.3] [86.6,87.43]
6-8 1 0.4 [68.48,80.99] [76.9,85.17]
9-11 0 1.6 [64.35,75.16] [81.31,84.86]
9-11 1 1.4 [68.39,80.39] [84.37,88.9]

Table 2: Gain in F1-measure for Choi’s corpus when us-
ing lexical cohesion and disruption, and the correspond-
ing 95 % confidence intervals for the F1-measure. Re-
sults are reported for different tolerance τ . UI denotes
the baseline and Combined the proposed model.

a specific variation in the size of the thematic seg-
ments forming the documents (e.g., 9 to 11 sen-
tences for the top left graphic). Results are provided
for different values of λ in terms of F1-measure
boxplots, i.e., variations of the F1-measure when α
varies (same range of variation for α considered for
each plot), where the leftmost boxplot, denoted by
UI , corresponds to the baseline. Box and whisker
plots graphically depicts the distribution of the F1-
measures that can be attained by varying α, plotting
the median value, the first and third quartile and the
extrema.

Figure 2 shows that, whatever the segments
length, results globally improve according to the im-
portance given to the disruption (λ variable). More-
over, the variation in F1-measure diminishes when
disruption is considered, thus indicating the influ-
ence of the prior model diminishes. When the seg-
ments size decreases (see Figs. 2(b), 2(c), 2(d)), the
difference in the maximum F1-measure between our
results and that of the baseline lowers, however still
in favor of our model. This can be explained by the
fact that our approach is based on the distribution of
words, thus more words better help discriminate be-
tween potential thematic frontiers. Finally, using too
large values for λ can lead to under-segmentation, as
can be seen in Fig. 2(d) where, for λ = 3, the varia-
tion of F1-measure increases and the distribution be-
comes negatively skewed (i.e., the median is closer
to the third quartile than to the first).

These results are confirmed by Table 2 which
presents the gain in F1-measure (i.e., the differ-
ence between the highest F1-measure obtained when
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(a) (b)

(c) (d)

Figure 2: F1-measure variation obtained on Choi’s corpus. In each graphic, the leftmost boxplot UI corresponds to
results obtained by using the sole lexical cohesion (baseline), while the λ value is the importance given to the lexical
disruption in our approach. Results are provided for the same range of variation of factor α, allowing a tolerance of 1
sentence between the hypothesized and reference frontiers.

combining lexical cohesion and disruption and the
highest value for the baseline) for each of the four
sets of documents in Choi’s corpus, together with
the 95 % confidence intervals: The effect of using
the disruption is higher when segment size is longer,
whether evaluation allows or not for a tolerance τ
between the hypothesized frontiers and the reference
ones. A qualitative analysis of the segmentations
obtained confirmed that employing disruption helps
eliminate wrong hypothesis and shift hypothesized
frontiers closer to the reference ones (explaining the
higher gain at tolerance 0 for 9-11 data set). When
smaller segments—thus few word repetitions—and
no tolerance are considered (e.g., 3–5), disruption
cannot improve segmentation. Our model is glob-
ally stable with respect to segment length, with rel-
atively similar gain for 3–11 and 6–8 data sets in
which the average number of words (distinct or re-
peated) is close.

Results discussed up to now are optimistic as they
correspond to the best F1 value attainable computed
a posteriori. Stability of the results was confirmed

z = 3–5 3–11 6–8 9–11
UI 91.9 87.0 93.1 92.8

Combined 92.9 87.5 93.5 94.0

Table 3: F1 results using cross-validation on Choi’s data
set.

using cross-validation with 5 folds (10 folds for
z=3–11): Parameters λ and α maximizing the F1-
measure are determined on all but one fold, this last
fold being used for evaluation. Results, averaged
over all folds, are reported in Tab. 3 for the baseline
and the method combining cohesion and disruption.

Medical textbook corpus. The medical textbook
corpus was previously used for topic segmentation
by Eisenstein and Barzilay (2008) with their algo-
rithm BayesSeg2. We thus compare our results with
those obtained by BayesSeg and by the baseline.
When considering the best F1-measure (i.e., the best
F1-measure which can be achieved by varying α and

2The code and the data set are available at
http://groups.csail.mit.edu/rbg/code/bayesseg/
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(a) (b)

Figure 3: Boxplots showing F1-measure variation on transcripts obtained using IRENE and LIMSI automatic speech
recognition systems.

λ), we achieved an improvement of 2.2 with respect
to BayesSeg when no tolerance is allowed, and of
0.5 when the tolerance is of 1 sentence. The corre-
sponding figures with respect to the baseline are 0.6
and 0.4. When considering the F1-measure value
for which the number of hypothesized frontiers is
the closest to the number of reference boundaries,
improvement is of resp. 1.5 and 0.5 with respect to
BayesSeg, -0.1 and 0.4 with respect to the baseline.
These results show that our model combining lexi-
cal cohesion and disruption is also able to deal with
topic segmentation of corpora from a homogeneous
domain, with smooth topic changes and segments of
regular size.

One can argue that the higher number of free pa-
rameters in our method explains most of the gain
with respect to BayesSeg. While BayesSeg has only
one free parameter (as opposed to two in our case),
the number of segments is assumed to be provided
as prior knowledge. This assumption can be seen
as an additional free parameter, i.e., the number of
segments, and is a much stronger constraint than we
are using. Moreover, cross-validation experiments
on the Choi data set show that improvement is not
due to over-fitting of the development data thanks to
an additional parameter. Gains on development set
with parameters tuned on the development set itself
and with parameters tuned on a held-out set in cross-
validation experiments are in the same range.

TV news transcripts corpus Figure 3 provides
results, in terms of F1-measure variation, for TV
news transcripts obtained with the two ASR sys-

tems. On this highly challenging corpus, with short
segments, wrongly transcribed spoken words, and
thus few word repetitions, the capabilities of our
model to overcome the baseline system are reduced.
Yet, an improvement of the quality of the segmen-
tation of these noisy data is still observed, and
general conclusions are quite similar—though a bit
weaker—to those already made for Choi’s corpus.
Results are confirmed in Table 4 which presents the
gain in F1-measure of our model together with the
95 % confidence interval, where F1-measure values
correspond to that of segmentations with a num-
ber of hypothesized frontiers the closest to the ref-
erence. The two first lines show that the gain is
smaller for IRENE transcripts which have a higher
WER, thus fewer words available to discriminate be-
tween segments belonging to different topics. The
impact of transcription errors is illustrated in the
last three lines, when segmenting six TV news for
which manual reference transcripts were available
(line 3), where the higher the WER, the smaller the
F1-measure gain.

5 Conclusions

We have proposed a method to combine lexical co-
hesion and disruption for topic segmentation. Ex-
perimental results on various data sets with various
characteristics demonstrate the impact of taking into
account disruption in addition to lexical cohesion.
We observed gains both on data sets with segments
of regular length and on data sets exhibiting seg-
ments of highly varying length within a document.
Unsurprisingly, bigger gains were observed on doc-
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Corpus
F1 Confidence interval 95 %

gain UI Combined
IRENE 0.3 [54.4,57.6] [56.92,59]
LIMSI 0.86 [56.7,60.2] [59.44,61.95]
MANUAL (6) 0.77 [70.39,72.29] [71.7,73.29]
IRENE (6) 0.2 [56.81,60.94] [59.51,63.43]
LIMSI (6) 0.5 [64.27,68.64] [67.7,71.56]

Table 4: Gain in F1-measure for TV news corpus auto-
matic and manual transcripts when using lexical cohesion
and disruption, and the corresponding 95 % confidence
intervals. Last three rows report results on only 6 shows
for which manual reference transcripts are available.

uments containing relatively long segments. How-
ever the segmentation algorithm has proven to be
robust on automatic transcripts with short segments
and limited vocabulary reoccurrences. Finally, we
tested both abrupt topic changes and smooth ones
with good results on both. Further work can be con-
sidered to improve segmentation of documents char-
acterized by small segments and few words repe-
titions, such as using semantic relations or vector-
ization techniques to better exploit implicit relations
not considered by lexical reoccurrence.
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Abstract

We propose a Laplacian structured sparsity
model to study computational branding ana-
lytics. To do this, we collected customer re-
views from Starbucks, Dunkin’ Donuts, and
other coffee shops across 38 major cities
in the Midwest and Northeastern regions of
USA. We study the brand related language
use through these reviews, with focuses on
the brand satisfaction and gender factors. In
particular, we perform three tasks: auto-
matic brand identification from raw text, joint
brand-satisfaction prediction, and joint brand-
gender-satisfaction prediction. This work ex-
tends previous studies in text classification by
incorporating the dependency and interaction
among local features in the form of structured
sparsity in a log-linear model. Our quantita-
tive evaluation shows that our approach which
combines the advantages of graphical model-
ing and sparsity modeling techniques signifi-
cantly outperforms various standard and state-
of-the-art text classification algorithms. In ad-
dition, qualitative analysis of our model re-
veals important features of the language uses
associated with the specific brands.

1 Introduction

In marketing science, branding is a modern market-
ing strategy of creating a unique image for a prod-
uct in the customers’ mind. Establishing the brand
in the broad social context is just as important as
building a good product (Makens, 1965; Lederer
and Hill, 2001; Kim et al., 2013). In fact, blind
taste test experiments have frequently shown how
branding directly leads to the success of products

and companies. Most notably is a continued study
sponsored by Pepsi, known as the Pepsi Challenge1,
where Pepsi demonstrates how even though people
preferred the taste of Pepsi, Coca-Cola’s branding
has made it more popular. Even now, Microsoft
uses similar blind taste tests2 to compare search en-
gines, Bing and Google, showing that although par-
ticipants prefer Bing’s results, Google’s brand might
have strengthened over the years. These studies all
suggest that brand and its associations play impor-
tant roles in the customers’ perceptions and deci-
sions.

To accommodate the market change, companies
frequently adjust branding strategies by analyzing
how their customers receive and respond to brand-
ing messages. So far, such analysis is often done
by using surveys and focus groups (Moon and
Quelch, 2006), which is expensive and not time-
efficient. Recently, with the advance of machine
learning techniques, researchers from the chemistry
and vision communities started to pay attention to
the problem of automatic brand identification from
smell (Luo et al., 2004) and images (Pelisson et al.,
2003). In contrast, even though textual data that
contains hidden branding information is abundantly
available in many forms over the Web, automatic
discovery and computational analysis on such data
are not well studied in the past.

Computational branding analytics (CBA) seeks to
extract information, trends, and demographics about
a brand on the basis of free-form text, e.g. from
blogs, Twitter comments, reviews, or forum posts.
As described in Section 3, in this study we use a sub-

1http://en.wikipedia.org/wiki/Pepsi Challenge
2http://www.bingiton.com/
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set of online Yelp reviews that discuss coffee shops.
The main reason is that this source has the advan-
tage of providing ground truth of multi-labeled data:
each review has meta-information defining a 5-star
rating, the object of the review, and the reviewer’s
name (from which we infer gender). For the pur-
pose of this paper we decompose CBA into three
sub-problems.

• How well can the brand being discussed be
identified by the raw text?

• How well can the joint value of brand and rat-
ing be predicted?

• How well can the joint value of brand, rating,
and gender be predicted?

There are two reasons why one may want to con-
struct text-based classifiers of brand, rating, and gen-
der, when such information is present in the review
header. The first is that trained classifiers can then be
applied to other data sources, such as blogs, where
what is available is only the review itself. The sec-
ond is that by “opening the hood” to the classifier
one can examine which words exhibit high affilia-
tion with the predicted variables. This can be done,
for example, to contrast the preferences of males and
females with respect to evaluating the qualities of a
coffee shop. Examples of such insights are provided
in Section 5.5.

In this paper, we propose a Laplacian structured
sparsity model for computational branding analyt-
ics. Our main contributions are two-fold: first, in
the novel task of automatic brand identification from
text, we show that by incorporating the dependency
structure and graphical interactions among local
features, our model significantly outperforms vari-
ous text classification algorithms such as the stan-
dard logistic regression, principle component anal-
ysis (PCA), linear kernel support vector machine
(SVM), sparse, non-sparse, and mixed-penalty log-
linear models. These improvements could also be
seen from a joint brand-satisfaction prediction task
and a gender-specific joint brand-satisfaction predic-
tion task. In addition, our Laplacian augmented L1-
ball projection experiment shows that the advantage
of Laplacian structured sparsity is robust across dif-
ferent parameter settings in a L1-constrained prob-
lem. Secondly, the qualitative analysis of our ma-
chine learning model shows the interesting features

and language use that relate to brand and its associ-
ated pragmatics.

In the next section, we outline related work in
CBA, sparsity, and spectral graph learning. In Sec-
tion 3, we describe the corpus in this study. The
Laplacian structured sparsity model is introduced in
Section 4. The experimental setup and results are
presented in Section 5. A short discussion is fol-
lowed in Section 6 and we conclude in Section 7.

2 Related Work

Early work on statistical brand analysis in the
marketing community dates back to the work of
Kuehn (1962), where he first hypothesizes that
brand choice could be described as a learning pro-
cess. Guadagni and Little (1983) further empiri-
cally tested the hypothesis by building a calibrated
multinomial logistic regression model to predict the
purchase of ground coffee, using the data from the
optical scanning of product code in supermarkets.
Outside the marketing community, statistical brand
analysis is rarely seen. More recently, a study (Luo
et al., 2004) applies neural networks to identify
cigarette brands, with the hope of detecting illegal
cigarettes from smell features. In image process-
ing, researchers have studied the problem of brand
identification from image using histogram compar-
ison (Pelisson et al., 2003). However, to the best
of our knowledge, even though textual data is vastly
available, the problems of automatic brand identi-
fication from raw text and computational branding
analytics, are new.

Although the domain of our data is on branding,
our work also aligns with previous work in text and
language classification. Over the years, logistic re-
gression and linear kernel SVM have shown to be
very successful in various regression and classifi-
cation tasks in NLP (Chahuneau et al., 2012; Bi-
adsy et al., 2011). Recently, sparse discriminative
methods that model the sparse nature of text be-
come attractive, because unlike dense models, they
are less likely to overfit to the training data, easier
to interpret, and often lead to state-of-the-art results.
For example, Eisenstein et al. (2011b) use the L1,∞
sparsity model to discover sociolinguistic patterns.
Wang et al. (2012a) compare lasso, ridge, and elas-
tic net models to predict impoliteness behaviors in
teenager conversations. Martins et al. (2011) inves-
tigate the tree-structured overlapping group lasso for
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structured prediction problems. Chen et al. (2013)
study the use of element-wise, group-wise, and hi-
erarchical sparsity models for dialogue act classif-
cation. Sparse inducing priors are also investigated
and shown to be effective in generative models for
topic modeling (Eisenstein et al., 2011a; Wang et
al., 2012b; Paul and Dredze, 2012).

Besides lacking sparsity, since the traditional dis-
criminative methods in NLP often use interdepen-
dent features such as n-grams tokens, and part-of-
speech tags, they also suffer from the problem of not
explicitly modeling the complex dependency struc-
ture and interaction of local features from a global
perspective. To solve this problem, graph meth-
ods seem to be a good solution, because they are
simple, generalizable, and are often used to model
such complex dependency structures (Cohen, 2012).
However, combining the sparse modeling and spec-
tral graphical modeling approaches in a principled
way is challenging. Belkin et al. (2006) and Wein-
berger et al. (2007) are among the first to investi-
gate graph Laplacians as a manifold regularization
method for statistical learning. Recently, Gao et
al. (2012) propose a histogram intersection based
kNN method to construct a Laplacian matrix for a
least-square sparse coding problem in image pro-
cessing. Unfortunately, this method might be too
specific to the SIFT-based image coding tasks, thus
might not be applicable to the text classification
problem that utilizes n-gram lexical features.

3 Datasets

We collected Yelp reviews from 1,860 Starbucks,
Dunkin’ Donuts3, and other coffee shops all over
the Midwest and Northeast regions in the period of
2009. A detail statistics of our data can be found
in Table 1. The Midwest region includes 12 states4

and 19 major cities, and the Northeast region in-
cludes 9 states5 and 19 major cities. For each region,
we divide the coffee shops into 60% training, 20%
development, and 20% test, and there are no over-
laps of coffee shops among these subsets. There are
three values for the brand label: Starbucks, Dunkin’
Donuts, and all other coffee shop brands. The ma-

3We chose these two brands because they are reported as
the leading coffee shops by WSJ (Ovide, 2011) and Forbes (Di-
Carlo, 2004).

4IL, WI, SD, ND, MN, MO, OH, NE, KS, IA, IN, and MI.
5CT, ME, MA, NH, RI, VT, NJ, NY and PA.

Coffee Shops Reviews
Train Dev. Test Train Dev. Test

1 451 150 150 3,513 1,087 1,424
2 665 222 222 6,982 2,530 2,358

T. 1,116 372 372 10,495 3,617 3,782

Table 1: Dataset statistics. 1: midwest region. 2: north-
east region. T.: total.

jority class is “all other coffee shop brands”, and
the majority baseline is shown in Table 2. In the
task of joint brand-satisfaction prediction, we utilize
the review scores to approximate user satisfaction:
scores 1-2 as the unsatisfactory label, 3 as moder-
ate, and 4-5 as satisfactory. Since the Yelp reviews
do not reveal the reviewer’s gender, we use a similar
method that U.S. Census Bureau used (OConnell
and Gooding, 2006): we first automatically match
the first name of the reviewer with the prior name-
gender distributions in the census records, then man-
ually examine the no-match cases and a subsample
of the matched cases. For those who we cannot
determine the gender, the review will be dropped
from the gender-specific brand-satisfaction predic-
tion task. After filtering, there are 8,528 documents
for training, 2,928 for development, and, 3,046 for
testing. Since the focus of this paper is not on fea-
ture engineering, we use unigram features to repre-
sent each review. Below is an example of positive
review from a male Starbucks customer from Mid-
west.

My favorite place for my iced vanilla lattes.
They have screwed up my order before: instead
of a grande, I got a venti. Not a fan of their
pastries though. I got a donut once, and ended
up feeding it to a pigeon in city garden. Friendly
and fast service. Not open Sundays.

The coffee shop dataset is freely available6 for re-
search purposes.

4 Our Approach

4.1 Problem Formulation and Predictive Tasks
The automatic brand identification problem could
be considered as a traditional multiclass classifica-

6http://www.cs.cmu.edu/˜yww/data/emnlp2013.zip
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tion problem where the estimated label Ŷ could
be drawn from Mult(Γ), where Γ is the parame-
ter for the multinomial distribution. To solve this,
a simple but accurate solution is to decompose the
multiclass problem into multiple binary classifica-
tion problems (Rifkin and Klautau, 2004) by train-
ing k one-vs-all binary classifiers, and then use the
argmax criteria to select the best hypothesis from the
k posteriors. As for a binary classifier, we need to
infer the posterior from a Bernoulli distribution that
is parametrized by θ̂y. Similarly, we can derive k
binary classifiers:

θ̂(1)
y , θ̂(2)

y , ..., θ̂(k)
y . (1)

So, instead of drawing Ŷ from a multinomial distri-
bution Mult(Γ), we can draw the final label Ŷ that
has the largest posterior across all k classifiers:

Ŷ = argmax
Y,i=1,2,...,k

Pr(Y |θ̂(i)
y , ~Xt) (2)

where ~Xt is the testing vector, and Pr(Y |θ̂(i)
y , ~Xt) is

the posterior probability given the learned classifiers
and the testing vector.

In this paper, we investigate three multiclass clas-
sification tasks: first, we perform a 3-way classi-
fication task for automatic brand identification. In
the task of brand-satisfaction prediction, we model
the brand and the satisfaction label at the same
time (Chahuneau et al., 2012): we perform the task
of jointly predicting aggregate brand-satisfaction
score for a review using 9-way classification. Sim-
ilarly, we perform 18-way classification for the
gender-specific joint brand-satisfaction prediction
task.

4.2 The Log-Linear Framework and Its
Regularized Variants

If we consider the standard logistic regression model
as the binary classifier in this log-linear framework7,
then each classifier can be written as:

θ̂y =
exp

(
~W> ~Xj

)
1 + exp

(
~W> ~Xj

) (3)

here, ~Xj is the j-th observed feature vector, label
y ∈ {0, 1}, and ~W is a vector of the coefficients. To

7We thank Jacob Eisenstein for the initial derivation of the
logistic regression model.

estimate the model parameters in equation (3), we
only need to set the weights ~W . We can obtain the
following log likelihood, and its gradient function
by taking the first-order partial derivative of ~W :

` =
∑

j

yj log θ̂yj + (1− yj) log(1− θ̂yj ) (4)

∂`

∂ ~W
=
∑

j

(
∂θ̂yj

∂ ~W

)(
yj

θ̂yj

− 1− yj

1− θ̂yj

)
(5)

∂θ̂yj

∂ ~W
=
(
θ̂yj − (θ̂yj )2

)
~X, (6)

since the log likelihood objective function (4) is con-
cave, using standard gradient ascent with maximum
likelihood estimation can solve the problem. How-
ever, this model does not penalize the noisy features
and unreliable features that might overfit to the train-
ing data. To address this issue, we introduce the L1

norm from lasso technique (Tibshirani, 1996) to reg-
ularize the above likelihood function. Thus, instead
of maximizing the likelihood, we can minimize the
loss function of the negative log-likelihood with a
linear penalty:

min
(
− `+ λ1|| ~W ||

)
(7)

where λ1 is the regularization coefficient. The bene-
fit of L1 penalty in a discriminative model is sim-
ilar to the double exponential distribution of the
sparse priors in generative models (Eisenstein et al.,
2011a): they both push the weights of many noisy
features into zeros, revealing only the important fea-
tures. However, since the L1 penalty can intro-
duce discontinuities to the original convex function,
we can also consider an alternative non-sparse ridge
estimator (Le Cessie and Van Houwelingen, 1992)
with log loss and L2 norm, and has the convex prop-
erty:

min
(
− `+ λ2|| ~W ||2

)
(8)

Another option that balances the sparsity and
smoothness would be the elastic net model (Zou and
Hastie, 2005) that uses the composite penalty:

min
(
− `+ λ1|| ~W ||+ λ2|| ~W ||2

)
(9)

4.3 The Laplacian Structured Sparsity Model
So far, none of the above element-wise penalty mod-
els in the previous subsection takes into account the
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dependency structure of the local features. Inspired
by Gao et al.(2012), we group the local features that
have similar distributions together. The intuition is
that, for features that have very similar empirical dis-
tributions in the training set, their weights should not
be drastically different after the learning process in
the same task. In our new objective function, it is
desirable to introduce a new component that struc-
turally penalize these cases where features that are
very similar to each other, but have learned com-
pletely different weights, probably due to the noise
or the data sparsity issue in the training data.
The Objective Function: To do this, we first define
an inter-feature affinity matrix A, where A(p,q) mea-
sures the similarity between a pair of features p and
q. In the spectral graph theory, this affinity matrix
can be viewed as a weighted undirected graph G =
(V,E), where each node Vp denotes a feature p, and
each edge E(p,q) indicates the closeness among the
features p and q. We also introduce a weighted di-
agonal degree matrix D, of which each element in
the diagonal D(p,p) is the sum of all weighted con-
nections of node Vp: D(p,p) =

∑Q
q=1A(p,q). We

propose the following objective function:

min
(
− `+ λ1|| ~W ||+ λ2|| ~W ||2 (10)

+ α
∑
(p,q)

|| ~Wp − ~Wq||2A(p,q)

)
(11)

We then denote a graph Laplacian matrix L = D −
A (Belkin and Niyogi, 2001), and rewrite the objec-
tive function as:

min
(
− `+ λ1|| ~W ||+ λ2|| ~W ||2 (12)

+ α( ~W>L ~W )
)

(13)

where α is the regularization parameter for the
Laplacian structured sparsity term. Intuitively, the
objective function can be interpreted as the sum of
a negative log loss function, the sparsity-inducing
penalty, the quadratic penalty, and the Laplacian
structured penalty. Or, another view of this new
model could be seen as a Laplacian augmented elas-
tic net model where structured sparsity and feature
interaction are considered.
The Laplacian Matrix: In this model, a key aspect
is to derive the Laplacian matrix L. We propose the
following three steps to learn the Laplacian matrix:

Figure 1: An example of the graph G, the corresponding
affinity matrixA, and the corresponding Laplacian matrix
L.

1. Construct the distance matrix Dist. To con-
struct the distance matrix between each fea-
ture, we first transpose the instance-feature ma-
trix, I =

∑
j
~Xj , and assume that each feature

(e.g. unigram in our task) is a random variable
that has a multinomial distribution over the in-
stances in the training set. Then, we compare
each pair of features, and calculate the inter-
feature distance matrix Dist with Euclidean
distance as a measure, and use the k-nearest
neighbors (kNN) method (Beyer et al., 1999)
to select the top neighbors of each feature.

2. Derive the affinity matrix A. To assign the
weight on the edge E(p,q) for each connected
nodes (the kNN of V in Dist), we use the
cosine similarity cosine(Vp, Vq) metric (Wang
and Hirschberg, 2011).

3. Generate the degree matrix D and Lapla-
cian matrix L. As discussed earlier, we sum
up the symmetric affinity matrix by row, and
obtain a diagonal degree matrix D, and we fur-
ther define a Laplacian matrix L = D −A.

To calculate the above matrices in an efficient man-
ner, we partition the covariate into blocks, and pro-
cess each block in parallel (Chen et al., 2011). An
intuitive example of the graphG, its associated affin-
ity matrix A, and Laplacian matrix L, is shown in
Figure 1.
Parameter Estimation: Regarding the optimiza-
tion of objective function in (12-13), a notable prob-
lem is that the sparsity inducing L1 term is non-
differentiable, whereas this is not the case for the L2

norm and the Laplacian structured sparsity term. If
we first take the derivative of the latter two terms,
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and we can derive the following gradient compo-
nents:

∂(λ2|| ~W ||2 + α( ~W>L ~W ))

∂ ~W
(14)

= 2λ2
~W + α( ~W>L> + ~W>L) (15)

= 2λ2
~W + α(L> + L) ~W (16)

since our Laplacian matrix is symmetric, we can
rewrite (16) as

2(λ2
~W + αL ~W ) (17)

Then, we combine the gradient of the log loss func-
tion in (5) with (17), and apply a bound-constrained
re-formulation (Schmidt et al., 2007) and the lim-
ited memory BFGS (L-BFGS) method (Liu and No-
cedal, 1989) to solve the L1 regularized problem.
The L-BFGS method has relatively low space com-
plexity, and does not require the calculation of full
Hessian matrix, thus it is often used for L1 optimiza-
tion problems.
Augmented Laplacian for an L1-Constrained
Problem: Instead of formulating the L1-regularized
problem by adding the L1 norm, an alternative so-
lution is to formulate a L1-constrained problem by
fixing the sum of all weights τ in the weight vector
~W . The reason is because adding the L1 norm will
make the objective function not continuously differ-
entiable, where as the L1 constraint could be just a
simple linear constraint (Lee et al., 2006). Thus, the
alternative L1-constrained problem could be defined
as:

min(−`), s.t.
∑

p

~Wp ≤ τ (18)

To test the robustness of Laplacian structured spar-
sity term in the setup of a L1-constrained problem,
we can incorporate the Laplacian penalty term into
the above formula, and derive:

min
(
− `+ α( ~W>L ~W )

)
, s.t.

∑
p

~Wp ≤ τ (19)

Note that the Laplacian matrix is positive-
semidefinite,

~W>L ~W = ~W>
∑
(p,q)

L(p,q)
~W (20)

=
∑
(p,q)

~W>L(p,q)
~W (21)

=
∑
(p,q)

|| ~Wp − ~Wq||2A(p,q) (22)

because this graph Laplacian penalty can be viewed
as a quadratic term, and the objective function
in equation 19 is now convex differentiable and
will produce sparse estimates, so that we are able
to use a limited-memory projected quasi-Newton
method (Schmidt et al., 2009) to solve the dual form
of this problem. The Lagrangian dual form of the
problem in equation 19 can be written as:

L( ~W, ξ) = −`+ α( ~W>L ~W ) (23)

+ β

(∑
p

~Wp − τ

)
− ξ ~W (24)

where β ∈ R is a Lagrange multiplier, and ξ ∈ Rp
+

is a p-dimensional vector of non-negative Lagrange
multipliers. And then we can take first-order partial
derivative with regard to ~W , and set it to zero to de-
rive the optimality:

∂L
∂ ~W

= −
∑

j

(
θ̂yj − (θ̂yj )2

)
~X

(
yj

θ̂yj

− 1− yj

1− θ̂yj

)
(25)

+ 2αL ~W + β − ξ = 0 (26)

To speed up the training, we use the linear-time L1-
ball projection method from Duchi et al. (2008) in
our implementation.

5 Experiments

We first compare our model to various baselines in
the 3-way automatic brand identification task. Be-
sides the logistic regression, lasso, ridge and elas-
tic net model that we introduced in Section 4.2, we
also compare with a PCA-based logistic regression
model where the dimensions of the feature space is
reduced in half before the classification. A state-of-
the-art linear kernel SVM model (Chang and Lin,
2011) is also taken into the comparison. In the
second part, we perform 9-way joint classification
of the brand-satisfaction labels. Similarly, we also
perform a 18-way joint classification of the brand-
gender-satisfaction labels. To test the robustness
of our model, we vary the levels of sparsity of our
Laplacian augmented method in a L1-constrained
problem. Finally, we analyze the identified features
for CBA. Throughout this section, we use classifi-
cation accuracy to report the results. We tune the
regularization parameters of log-linear models and
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Method Dev. Test

Majority class 75.67 78.08
Logistic regression 91.98 91.06
Linear SVM 92.45 91.75
PCA 91.67 91.20
Lasso 92.81 91.96
Ridge 92.56 91.67
Elastic net 92.81 91.83
Laplacian structured sparsity 93.17* 92.44*

Table 2: The automatic brand identification (3-way) per-
formances. The best result is highlighted in bold. * indi-
cates p < .001 comparing to the second best result.

the cost parameter of the SVM on the development
set, and report results on both the development set
and the held-out test set. The parameter for kNN
was set to 5 according to previous literature (Gao et
al., 2012). A paired two-tailed t-test is used to test
the statistical differences among various models.

5.1 Automatic Brand Identification from Text

Given any piece of raw text from the Web (e.g.
blogs, tweets, news, or forum posts), the first task
for CBA is to identify which brand this text is re-
lated to. Our customer review data set is useful for
this task, because the ground truth of the brand label
is attached to each review. Table 2 shows the re-
sult of our model in this automatic brand identifica-
tion task. In this 3-way classification task, the over-
all results indicate that it is relatively easy to iden-
tify the related brand from customer reviews. When
evaluating our Laplacian structured sparsity model,
our proposed model obtains the best performances
of 93.17% and 92.44%, which are statistically bet-
ter than the second best results (p < .001) in both
datasets.

5.2 Joint Brand-Satisfaction Prediction

In our training data set, we observe a subtle correla-
tion between the brand and satisfaction labels (r =
0.09, p < .001), which suggests us that it might be
interesting to perform a joint prediction task for the
brand-satisfaction labels. This task is also attractive
from the business perspective, because it would be
very useful for the companies to directly identify
user’s level of satisfaction about their brands. Ta-
ble 3 shows that we achieve 69.56% accuracy on the

Method Dev. Test

Majority class 55.43 55.18
Logistic regression 65.80 65.80
Linear SVM 67.67 65.44
PCA 63.92 62.53
Lasso 68.37 66.84
Ridge 67.79 65.55
Elastic net 68.79 66.82
Laplacian structured sparsity 69.56* 67.32*

Table 3: The joint brand-satisfaction prediction (9-way)
performances. The best result is highlighted in bold. *
indicates p < .001 comparing to the second best result.

Method Dev. Test

Majority class 28.24 27.68
Logistic regression 36.03 35.16
Linear SVM 41.05 39.49
PCA 35.35 34.44
Lasso 40.74 39.53
Ridge 40.98 38.94
Elastic net 41.15 38.96
Laplacian structured sparsity 41.22* 40.22*

Table 4: The joint brand-gender-satisfaction prediction
(18-way) performances. The best result is highlighted in
bold. * indicates p < .001 comparing to the second best
result.

development set, and 67.32% accuracy on the test
set using our proposed Laplacian structured model
(p < .001 comparing to the second best results).

5.3 Joint Brand-Gender-Satisfaction
Prediction

Another big interest in the marketing community is
to predict subgroup preferences of specific brands.
In this direction, we perform a 18-way joint brand-
gender-satisfaction prediction using the gender la-
bels that we described in Section 3. Table 4
shows that our proposed Laplacian structured spar-
sity model obtains a test accuracy of 40.22%, signif-
icantly better than the second best result (p < .001).
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Figure 2: Automatic brand identification test perfor-
mance varying the level of sparsity τ in a L1 constrained
problem.

Figure 3: Joint brand-satisfaction prediction test perfor-
mance varying the level of sparsity τ in a L1 constrained
problem.

5.4 Varying the Level of Sparsity in a
L1-Constrained Problem

To test the robustness of the Laplacian structured
sparsity component, we exponentially increase the
sum of weights τ to vary the level of sparsity in a
L1-constrained setup. When τ increases, the non-
zero weights in the model also increases. Figures 2
and 3 show that the Laplacian augmented L1-ball
projection statistically outperform the L1-ball pro-
jection baseline in all levels of sparsity (p < .001).
In Figure 4, Laplacian augmented L1-ball projection
is also statistically better than the L1-ball projection
(p < .001), except when τ = 32 and τ = 64.

5.5 Exploratory Data Analysis

We outline the top 15 keywords from the Laplacian
structured sparsity model that are associated with the
Starbucks and Dunkin’ Donuts brands in the auto-
matic brand identification task in the Table 5. First
of all, it is observed that our model has discovered
synonyms for both brands: “sbux”, “dd”, “dds”.

Figure 4: Joint brand-gender-satisfaction prediction test
performance varying the level of sparsity τ in a L1 con-
strained problem.

Also, the results imply that Starbucks’ unique cup
size branding strategy, “venti”, “grande”, “tall”, has
resonated with their customers as the words promi-
nently show up as top features in reviews. Aligned
with previous study in marketing science (Moon and
Quelch, 2006), an informative set of features re-
lated to Starbucks store decorations showed up in
our model: “store”, “restroom”, “public”, “bath-
room”, and “spacious”. In contrast, these features
stopped to show up on the list of Dunkin’ Donuts.
Instead, TV and game (sports), which are indeed
important features of dining at Dunkin’ Donut, ap-
peared. Note that Baskin-Robbins, which is a sub-
brand of Dunkin’ Brands Group, Inc., also appeared
as informative features to predict Dunkin’ Donuts.

To understand the preferences of different gen-
der subgroups towards the two brands, we contrast
in Table 6 and Table 7 the top features that identify
the satisfied female and male customers in the joint
brand-gender-satisfaction prediction task.

Interestingly, it seems that the female customers
identify Starbucks as a place for “studying”, with
“fireplace” as the top preference of the spots in the
store, and “winter” is also a high-ranked feature.
Also, the adjective “super” was frequently men-
tioned by the female Starbucks customers (but not
the males). As for Dunkin’ Donuts, the top-ranked
keywords are still mainly associated with its names,
but it seems the snack “Munchkins” is highly pre-
ferred by the female customers. Not surprisingly,
the cue words that the male customers identify the
Starbucks brand do not always agree with those of
the females. For example, instead of “fireplace”,
they prefer staying at the “patio”, and drink the cof-
fee from the “clover” brewing system. Interestingly,
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Starbucks weight Dunkin’ weight

starbucks 1.9365 dd 2.4224
sbux 1.0152 dunkin 1.7781
venti 0.8216 donuts 1.6989

corporate 0.7032 dunks 1.6455
store 0.6580 dds 1.4936

particular 0.6512 donut 1.3979
tall 0.5496 dunkins 1.3729

restroom 0.5447 glazed 0.9975
tourists 0.5431 robbins 0.9402
public 0.5260 baskin 0.8578
lines 0.4956 sugar 0.6475
drink 0.4787 d 0.6327

bathroom 0.4721 ice 0.5835
spacious 0.4629 stale 0.5404
location 0.4611 game 0.5049
grande 0.4563 tv 0.5010

Table 5: Top features that identify the Starbucks and
Dunkin’ Donuts brands from the best model.

.

on the Dunkin’s side, “munchkins” also disappeared
and replaced by “glazed” (donuts). However, both
males and females agreed that “fast” or “quick” ser-
vice was an important feature of creating satisfac-
tion, which echoes with the result from self-reported
customer surveys (Moon and Quelch, 2006).

The word “name” is a prominent indicator for the
female customers of Starbucks: at first we were puz-
zled, but after we digged into the database, we found
reviews such as:
• “... and the baristas are one of the nicest they

always ask for your name, so you never end up
with coffee meant for the guy behind you.”
• “... she asked me my name and i told her and

she excidetly proclaimed melissa and wrote my
name on the cup. This place was probably one
of the better starbucks ive been to.”
• “... all of their employees are really friendly,

and embarrassingly enough most know me by
name and know my typical drink order grande
nonfat misto with a flavor shot of white mocha.
This is actually very helpful.”

The above examples show how our system effec-
tively serves as a salient keyword spotter. And that
as a keyword spotter one can use it to extract sur-
rounding context and feed that through to the next

Starbucks weight Dunkin’ weight

starbucks 0.5013 dd 0.6931
chain 0.4268 dds 0.5620
winter 0.3382 dunkin 0.5344

fireplace 0.3089 donuts 0.4270
studying 0.2972 donut 0.3732
particular 0.2967 dunks 0.3687

super 0.2786 morning 0.3077
name 0.2543 quick 0.3012
know 0.2443 how 0.2940

because 0.2263 munchkins 0.2758

Table 6: Top features that jointly identify the satisfied
female customers and the Starbucks and Dunkin’ Donuts
brands from the best model.

Starbucks weight Dunkin’ weight

starbucks 0.6632 dd 0.7491
throw 0.3514 dunkin 0.6075
know 0.2959 dds 0.5333
store 0.2885 donuts 0.5326
fix 0.2498 donut 0.3215

particular 0.2487 dunks 0.3158
sbux 0.2462 morning 0.3095
patio 0.2349 rush 0.3030
prefer 0.2324 fast 0.2979
clover 0.2215 moving 0.2520

corporate 0.2153 glazed 0.2326

Table 7: Top features that jointly identify the satisfied
male customers and the Starbucks and Dunkin’ Donuts
brands from the best model.

stage of analysis, including examination by humans.
This is extremely practical and useful, because it
provides actionable items. For example, analysts
can advise managers to revise their training manual
and tell store employees to remember the names of
your frequent female customers.

6 Discussions

In our preliminary experiments, we have also ex-
perimented with the setup where the two keywords
“starbucks” and “dunkin” were removed from the
list of features. This change resulted in a uniformed
2% decrease in performances across all the models
in Table 2, which did not affect the comparisons.
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However, we kept these two keywords in our final
experiments, because the reviewers sometimes men-
tion “Dunkin” in Starbucks reviews, and vice versa.
Removing the two keywords could be problematic,
since it changes the natural distribution of the data.

Regarding the alternative problem setups, our pre-
liminary experiments showed that instead of using
one-vs-all binary classifiers, a direct 9-way multi-
class classification of joint brand-satisfaction labels
using logistic regression only resulted an accuracy
of 62%. We also did not adopt the hierarchical clas-
sification pipeline, where instead of performing joint
classification, multiple layers of classifiers could be
trained to classify brand, gender, and satisfaction la-
bels incrementally. This is because the hierarchical
classifiers suffered from the error propagation prob-
lem, and the second/third layer classifier could not
correct the errors from the previous layers (Bennett
and Nguyen, 2009).

Our proposed method to generate inter-feature
affinity matrix captures interesting dependency of
features in this dataset. For example, although the
words “frappuccino” and “slurping”, “furniture” and
“mismatched’ are semantically very different, our
method actually group them together due to the sub-
tle interactions of these word pairs in our tasks. The
example in Figure 1 is also very specific to our
dataset. This is very useful, because the word se-
mantic similarity might be context-dependent, and
our method learns and adapts the semantic similar-
ity on the fly, hinges on the particular training set.
On the other end of the spectrum, even though our
method is desirable in our task, one might need to be
cautious when working on very small data sets with
only a handful of samples. This is because small
samples typically have large variances in feature dis-
tributions, and that the generated Laplacian matrix
might not be as reliable as in our study. To alleviate
this potential problem, one might consider building
the Laplacian matrix using external resources such
as WordNet or FrameNet, even though this approach
could also introduce biases due to the mismatched
task domains.

We also observed that the accuracy of the auto-
matic brand identification task was high, indicating
the promising future of CBA for hidden brand infor-
mation from other genres of text over the Web. Al-
though the performances of joint brand-satisfaction
and joint brand-gender-satisfaction predictions are

relatively lower, there is still much room for im-
provements: for example, using the syntactic, se-
mantic, and meta-data features could potentially en-
rich the proposed model. Also, it is possible to con-
sider the higher order n-gram features for better ex-
ploratory data analysis. However, since the focus of
this paper is a proof of concept for Laplacian struc-
tured sparsity models and computational branding
analytics, we have not yet explored various multi-
view representations to augment our model.

Why does Laplacian structured sparsity model
work better in these classication tasks? Similar to
the application in image classifcation (Gao et al.,
2010), one advantage of Laplacian regularization in
text classification is that our model can explicitly
model the dependency of local features. Another
reason is the expressiveness of our model: our model
allows one to express the feature interactions in a
structured manner. Thirdly, by embedding the struc-
ture in the regularization term, our model is more
flexible: one can now control the structured penalty
by tuning the regularization parameter on the devel-
opment set.

7 Conclusions
We introduce a Laplacian structured sparsity model
for computational branding analytics (CBA). In the
automatic brand identification, our model achieves
the best result, dominating many competitive base-
lines. We also introduce the tasks of joint brand-
satisfaction and brand-gender-satisfaction predic-
tions, and show that the Laplacian structured spar-
sity do well in these tasks. A closer evaluation that
varying the levels of sparsity in a L1 constrained
problem also indicates that the Laplacian augmented
L1-ball projection model can provide state-of-the-
art results. By examining the weights of the de-
rived Laplacian structured sparsity model, interest-
ing indicators of brands and theirs gender-specific
customer satisfaction associations are also discov-
ered. In the future, we would like to investigate other
methods for generating robust inter-feature Lapla-
cians that include deep syntactic and semantic fea-
tures.
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Abstract

Hot trends are likely to bring new business
opportunities. For example, “Air Pollution”
might lead to a significant increase of the sales
of related products, e.g., mouth mask. For e-
commerce companies, it is very important to
make rapid and correct response to these hot
trends in order to improve product sales. In
this paper, we take the initiative to study the
task of how to identify trend related products.
The major novelty of our work is that we au-
tomatically learn commercial intents revealed
from microblogs. We carefully construct a da-
ta collection for this task and present quite a
few insightful findings. In order to solve this
problem, we further propose a graph based
method, which jointly models relevance and
associativity. We perform extensive experi-
ments and the results showed that our methods
are very effective.

1 Introduction

A trend is a hot topic (e.g., the release of a popular
movie) which is being widely discussed by the pub-
lic. Hot trends usually attract much attention from
the public, and they are likely to bring new business
opportunities. Consider the following e-shopping s-
cenario. A user in Beijing would like to buy some-
thing to reduce the health impacts of Beijing air pol-
lution1. Different from traditional e-shopping sto-
ries, in this case the user may not have a clear idea of
what she should buy, and cannot even formulate the

1See http://www.nytimes.com/2013/04/04/world/asia/two-major-
air-pollutants-increase-in-china.html to find more details about the
trending topic “Beijing Air Pollution”.

purchase needs into a clear query. Faced with trend-
driven business opportunities, e-commerce compa-
nies typically ask workers to manually identify relat-
ed products and make heuristic rules to match user
queries (e.g., incorporating trending keywords into
related product titles).

To improve trend-driven e-commerce, in this pa-
per, we propose to study the novel task of automat-
ically identifying trend related products. Why is
it compelling to understand and study trend-driven
product purchase? Because hot trends are closely
related to business opportunities directly or indirect-
ly. As a case of direct causal relationship, the world-
wide popularity of the movie series “Harry Potter”
created the great success of the original novels of
“Harry Potter”. As a case of indirect causal rela-
tionship, the stock rise or salary increase might exert
positive effects on product sale. Based on our empir-
ical analysis (See Section 3), a considerable propor-
tion, i.e. 50%, of hot trends discussed on the largest
Chinese microblog (i.e. Sina Weibo) indeed have
corresponding product entries in the largest Chinese
C2C e-commerce website (i.e. Taobao), which in-
dicates a strong correlation between hot trends and
product sale.

Although the task is important and emergent, it
has at least two major challenges. First of all, how to
infer users’ trend-driven purchase intents promptly.
A trend usually happens unexpectedly. Without pri-
or knowledge and experiences, it is particularly diffi-
cult to make rapid response to relate the trend to can-
didate products. Our solution is to leverage trend-
related commercial intents from microblogs by min-
ing users’ real-time response to a trending topic. We
adopt the solution based on two key considerations:
(1) Microblogs are fast. As previous studies showed,
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the first story of a trending topic indeed was usu-
ally reported in microblogs rather than traditional
news media (Sakaki et al., 2010; Kwak et al., 2010;
Leskovec et al., 2009). (2) Microblogs contain user-
s’ commercial intents. The microblogging service
has become one of the most popular social network
platforms, where users may tweet about their needs
and desires (Hollerit et al., 2013). E.g., a microblog
user may complain about the air quality and evince
the desire to buy a mouth mask in a tweet. The ex-
ample indicates we can make use of tweet-level re-
latedness to capture the correlation between trends
and products.

Second, how to achieve a comprehensive cover-
age of related products but not hurting precision.
The above solution will miss the related products
which have not been discussed in microblogs. Our
idea is to take the associativity between products in-
to consideration. Our definition about associativity
is very general and can have different instantiation-
s in specific settings. For example, we can define
product associativity to be the similarity between
product descriptions, or the ratio of historical pur-
chase records in e-commerce companies. Howev-
er, one-step associativity may not fully discover the
underlying relatedness between products due to the
fact that the product associativity is indeed transi-
tive. Thus, a transitable associativity model is need-
ed.

To address these two challenges, we propose a u-
nified graph based ranking algorithm which jointly
models the above two aspects, i.e., relevance and
associativity. Given a trend, the algorithm runs in
an iterative way and seeks a trade-off between rel-
evance and associativity by propagating the scores
on the product graph. Our contribution can be sum-
marized as follows: (1) we introduce the novel task
of identifying trend related products, most of all, we
propose to leverage trend-related commercial intents
from microblogs; (2) we present insightful empiri-
cal analysis to illustrate the correlation between hot
trends and product sale (See Section 3); (3) we pro-
pose a novel graph based ranking algorithm which
jointly considers relevance and associativity; (4) we
carefully construct the test collection based on re-
al data of the largest microblog and the largest C2C
e-commerce website in China. (5) we perform ex-
tensive experiments and present some important im-

plications for practice.
To the best of our knowledge, our work was the

first to consider identifying trend related products by
leveraging commercial intents from microblogs. We
believe the current work will have important impact
on industry and inspire more follow-up research s-
tudies. The rest of this paper is organized as fol-
lows. We present the data collection and empiri-
cal analysis of the impact of hot trends on product
sale in Section 3. We present a novel graph-based
method in Section 4. Experimental setup and result-
s are discussed in Section 5 and Section 6. Finally,
the related work is discussed in Section 7. And the
conclusions and future work are given in Section 8.

2 Problem Definition

A trend is a hot topic widely discussed by the public,
e.g., the release of a hot movie. Usually, a trend e
can be described by a small set of keywords denoted
by Ke and a corresponding time span Te.

Trend-related Products Identification: Given a
trend e, we assume that the following inputs are
available: 1) tweets that contain trend keywords Ke

and 2) a product database which provides a set of
candidate products P = {p1, p2, ..., pn} with nec-
essary detailed information, e.g., titles and descrip-
tions. The objective of trend-related products iden-
tification is to identify products in P that are related
to trend e within the time span Te, denoted by PR.
For convenience, we will not explicitly mention the
time span unless needed.

To better understand the problem, we first present
an illustrative example in Table 1, which will be dis-
cussed as the running case throughout the paper. In
this example, we can see that a few users tweet their
product needs related to the trend “Air Pollution”.
We take Taobao as the product database and present
a few related products in it.

Table 1: An illustrative example for the studied task.
Trend keywords: Air Pollution
Tweets:
What bad air! We need to buy masks ASAP!!!
I am planing to buy an air purifier. Hoping it can defend air pollution.
#air pollution I will recommend to keep some houseplants at home.
Product database: Taobao2

Related products: Mouth Mask, Air Purifier, Houseplant

2The biggest C2C e-commerce site in China, similar to eBay.
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3 Data and Observations

As discussed earlier, hot trends may exert positive
effects on the sale of related products. In this sec-
tion, we will construct a deep analysis on this point
by presenting quantitative answers to the following
two problems:

• Q1: What is the proportion of hot trends that
potentially lead to business opportunities, and
how is their impact on related products?
• Q2: How is the associativity between related

products?

These findings are key and fundamental to develop
our models.

3.1 Data Collection

To perform the above analysis, the key is how to con-
struct an experimental data collection which relates
hot trends to corresponding related products. We
jointly consider microblogs and e-commerce plat-
forms: we obtain hot trends in microblogs and man-
ually identify trend-related products in e-commerce
websites. In this paper, we adopt Sina Weibo3

as the microbloging platform and Taobao4 as the
e-commerce platform, which are the biggest mi-
croblogging service and the largest C2C company in
China respectively. The analysis method is general
and can equally apply to other platforms. For both t-
wo data signals, we consider a two-month time span,
i.e. from May 2013 to June 2013.

Trend detection. Since trend detection is not our
focus, we directly obtained trends from “trending
topics” provided by the microblog platform. Our
work can be easily extended to incorporate a trend
detection component. Similar to “trending topic-
s” in Twitter, Sina Weibo provides a public list of
top searched keywords which can be obtained by
the Weibo search API5. In the list, top 50 keyword-
s are presented and ordered by the number of be-
ing searched. Weibo classifies these keywords in-
to five categories: China, movie, business, person
and sports. We consider these keywords to be trend
keywords. These keywords are dynamically updated
and we monitor the trend lists in the considered time

3http://www.weibo.com/
4http://www.taobao.com/
5http://s.weibo.com/top/summary

span. We define the start and end time of a trend to
be the first day and the last day on the trend list re-
spectively, which spans the active interval of a trend.
We only keep the trend which has an active interval
with more than one day. For each trend, we use the
trend keywords to retrieve all related tweets in the
active interval, and use the pattern based method in
(Hollerit et al., 2013) to extract all mentioned prod-
uct keywords. We present a few example patterns
used for extracting product keywords in Table 2. Af-
ter that we can obtain a set of product keywords for
each trend.

Table 2: Example patterns for extracting product key-
words.

Patterns Example segments of tweets
ï(buy) ï
�|ËSL
xI�

bought father a Philips PT720 (Electric Razor).
¦^(use) ¦^N95�íü$À/

use N95 (mouth mask) to reduce the impact of bad air
í� í�Galaxy S4

(recommend) recommend Galaxy S4 (cell phone)

Related product identification and annotation.
For each trend, we have the product keyword set to-
gether with the trend keywords as described above.
We use these keywords to retrieve candidate prod-
ucts in the product search engine of Taobao with-
in the active interval of the trend. For each can-
didate product, we further crawl its product page
and obtain corresponding related products suggest-
ed by Taobao, which are treated as candidate, too.
We invite two senior post-graduate students major
in economics as human judges. The judge is re-
quired to make a binary decision whether a product
is related to a trend by following a detailed guide-
line compiled by a senior officer of an e-commerce
company in Beijing. For each trend, we provide the
trend keywords, product keywords in tweets, relat-
ed tweets, related news articles from China Daily6.
Web access is available during the annotation pro-
cess. Due to space limit, we do not present the an-
notation guideline here. We use Cohen’s kappa to
measure the agreement of these two judges, which
has a high value of 0.75. To speed up the work,
we further group all products which have the same
lowest categorial label (e.g., leaf label) 7, and we

6http://www.chinadaily.com.cn
7Taobao has provided a category tree for products:

http://list.taobao.com/browse/cat-0.htm).
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will treat a group as a product in later experiments.
We only keep the products with the same judgments
and the trends with at least one related product. We
present the statistics of data set in Table 3 8. Since
current e-commerce search engines mainly adop-
t keyword matching based retrieval method, we fur-
ther examine the performance of simply using trend
keywords as queries. We compute the percentage
of related/unrelated products with at least one trend
keyword in their description. We can see that on-
ly 29.7% related products can be found on average.
These statistics indicate that more effective methods
are needed for the current task.

Table 3: Statitics of the data set.
# business-related trends 113

average candidate products per trend 55.1
average related products per trend 7.3

average perc. of rel. prod. with trend keywords 29.7%
average perc. of unrel. prod. with trend keywords 6.3%

3.2 Observations

Now we analyze the data collection and present our
observations.
A1: First of all, it is important to find out the pro-

portion of hot trends that potentially leads to busi-
ness opportunities. Recall that each trend has a cat-
egory label and possibly a set of related products i-
dentified by the judges. We refer to a trend with
related products as a business-related trend. We
present the statistics in Fig. 1. We can see that
about 36% of all trends have corresponding relat-
ed products in Taobao, which indicates that these
trends highly relate to business. Movies and Sport-
s have higher proportions of business-related trend-
s, i.e. 81% and 52% respectively, while the other
categories have lower proportions but still with a
substantial number of business related trends. It is
noteworthy that Business has the lowest proportion,
the major reason is that trends in Business are usual-
ly general events, i.e., the release of new economic
policy, which do not directly correspond to related
products. As we discussed earlier, these trends may
have indirect impact on product sales. Currently,
we only focus on direct impact, and indirect impacts
will be considered in future work.

8The data set can be downloaded at http://sewm.pku.
edu.cn/˜wjp.

Next we continue to examine the impact of hot
trends on the sale of related products. We obtain
product sales from Taobao product pages. As we can
see in Fig. 2, the average sale of related products in
all categories gradually increased with trends going
on. Interestingly, we can see that categories Movies
and China achieved very significant increase. Prod-
ucts related to Movies trends are usually related to
the movie itself, e.g., movie tickets; while prod-
ucts related to China tend to be commodities (e.g.,
the mouth masks for the trend of “Air Pollution”)
or trending products (e.g., Shenzhou-10 Spacecraft
Model for the trend of “the launch of Shenzhou-
10”).

business person sports China movie
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Figure 1: The proportion and volume of business-related
trends in five categories.

A2: Recall we have discussed that product asso-
ciativity is useful for improving the coverage of re-
lated products. Here we would like to quantitatively
examine the associativity between related products
given a trend. For a trend, we first compute the av-
erage pairwise similarity between related products
in terms of their descriptive texts (e.g. title and de-
scription). Since there are more unrelated products,
we randomly sample an equal number of unrelated
products from the candidate products we previously
generated. Then we compute the average similarity
between a related product and an unrelated product.
We further average these values over all the trends
of each category. The average similarity of related-
related product pairs is 0.112, while the average sim-
ilarities of unrelated-unrelated and related-unrelated
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Figure 2: An illustrative analysis of the impact on related
products in five categories. We measure the impact by
computing the average growth ratio of sale in Taobao.

product pairs are 0.039 and 0.058 respectively.9

In summary, A1 indicates that a large proportion
of hot trends are potentially related to products and
will exert positive effects on product sale; A2 in-
dicates that there is a strong associativity between
related products, which can be utilized to improve
both precision and recall of the algorithm.

4 The Proposed Method

In this section, we present a graph based ranking al-
gorithm jointly models the relevance of a product
and the associativity between products. Recall that
we have collected a set of product keywords and a
set of candidate products for each trend. Our aim is
to re-rank these candidate products to obtain a better
ranking of related products. We adopt a biased ran-
dom walk algorithm: 1) relevance is modeled as bi-
ased restart probability and 2) associativity is mod-
eled through random walk on the product graph.

4.1 Modeling the Product Relevance
Recall that in Section 2 we use the pattern based
method to extract product keywords from tweets re-
lated to a trend. However, to stimulate the real sce-
nario that we want to identify the related products at
the beginning of a trend, we only keep the keyword-
s which were contained in tweets published in the
first three days when a trend began. These extracted

9The difference was tested to be statistically significant.

product keywords directly reveal users’ commercial
intents on the trends. Instead of modeling person-
alized intents, we consider learning a unified trend-
driven intent by representing the intent as a weighted
vector over these product keywords. And the key is
how to set the keyword weight.

Keyword weighting. A good weighting method
should be able to leverage commercial interest-
s/intents of users well and emphasize the keyword-
s users really focus on. Thus we consider making
use of the retweeting (a.k.a. forwarding) mechanis-
m in microblogs. Retweet links are shown to be bet-
ter in revealing relevance and interests (Welch et al.,
2011). Formally, we use the following weighting
formula for a keyword k:

Weight(k) =
∑

t∈Ck

log10 (#rtt + 1), (1)

where Ck is the set of all originally-written tweets
(i.e., not a retweet) that contain the keyword k in
the considered time span, and #rtt is the retweet
number of a tweet t. We further normalize and build
the weight vector over all the considered keywords,
called as intent vector. We denote the intent vector
of a trend e by ~e.

Product relevance. Having the intent vector, now
we discuss about how to define the product rele-
vance. Given a product p, we extract all the words in
the title and description parts of a product. We rep-
resent it as a vector using the widely tf-idf weighting
method. We denote the weight vector of product p
by ~p. We measure the product relevance between e
and p as rel(e, p) = ~e·~p

|~e||~p| .

4.2 Modeling the Associativity between
Products

To start this part, we first present an illustrative ex-
ample in Fig. 3. We can see there are four relat-
ed products for the trend “Air Pollution”. We as-
sume that only “mouth mask” was mentioned in mi-
croblogs. Now we expect to mine more related prod-
ucts with “mouth mask” as a known related produc-
t. We can compute the similarity between a pair of
products. Intuitively, if the similarity between a can-
didate product and “mouth mask” is higher than a
predefined threshold, we can consider it to be relat-
ed, too. In this example, “air detector” and “air pu-
rifier” are similar to “mouth mask” in terms of prod-
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Figure 3: An example to illustrate the importance of as-
sociativity. Products which were mentioned in tweets related to “Air
Pollution” are marked in red circles while the others are marked in blue
circles. The link between products indicate the similarity between two
products. Links with weights lower than a predefined threshold are not
considered. Although “green plants” is related to this trend, it was not
mentioned in tweets and did not have a direct link to “mouth mask”.

uct descriptions and considered to be related, while
“Green plants” is determined to be unrelated since
it has very little overlap words with “mouth mask”
in the description. It indicates one-step similarity
method is not able to fully capture the real associa-
tivity between products.

Thus, we propose to use the random walk method
to propagate the relatedness score on the produc-
t graph. Let P denote the number of all the can-
didate products, and rP×1 denote the relatedness s-
core vector where ri denote the relatedness score of
product pi.

We first construct the product graph. We repre-
sent each candidate product as a vertex in the graph
and built the link with the cosine similarity between
the descriptive texts of two products as the link
weight.10 We denote the similarity matrix by MP×P

and Mi,j denotes the similarity between products pi

and pj . Formally, we formulate the problem in a s-
tandard PageRank form

r(n+1) = µ · r(n) ·M + (1− µ) · y, (2)

where y is the restart probability vector usually
set to be uniform. With this method, it is easy to
see that relatedness score can be propagated on the
product graph, which better captures underlying as-
sociativity between products.

10Other similarity methods can be used, e.g., co-purse history
record.

4.3 Jointly Modeling Relevance and
Associativity

Having discussed about how to model both rele-
vance and associativity, now we are ready to present
a joint model to capture these two factors. By fol-
lowing (Zhao et al., 2013), the main idea is that in-
stead of using a uniform restart distribution y, we
use an relevance biased restart distribution in E-
q. 2. We set the restart probability of a produc-
t to its corresponding relevance. Formally, we set
yi = rel(e, pi). Let us further explain the idea. At
the beginning of each iteration, each product is first
assigned to its relevance score: the more relevant it
is, the larger score it has. During the iteration, each
product begins to collect relevance evidence from its
neighbors on the product graph: the more relevan-
t neighbors it has, the larger score it obtains. And
the final score is indeed a trade-off between its own
relevance score and neighboring relevance scores it
receives. In order to obtain an ergodic walk, we add
a small value, i.e. 1e − 4, to each entry of y and
then normalize this vector. We denote our algorithm
as JMRA (Jointly Modeling Relevance and Associa-
tivity).

To have an intuitive understanding of our algo-
rithm, let us turn to the example in Fig. 3 again. At
the beginning, only “mouth mask” has a large rele-
vance score, with the iteration going on, the related-
ness score will be propagated between products on
the graph. Although “green plants” has not a direct
link with “mouth mask”, it can obtain relatedness s-
core from its neighbors, i.e. “air detector” and “air
purifier”. JMRA is able to discover such latent asso-
ciativity between products.

5 Experimental Setup

We use the test collection which have been described
in Section 3. The statistics of the data set is shown
in Table 3.

5.1 Evaluation Metrics

For a real product search engine, top results are par-
ticularly important, thus we adopt precision@5 and
precision@10 as the evaluation metrics. Similar to
Information Retrieval, we also consider using Mean
Average Precision (MAP) as metrics to measure the
overall quality of retrieved products.
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5.2 Methods to Compare
We compare the following methods for inferring re-
lating products:

SALES: we rank the candidate products by their
historical sales volume descendingly.

TREND: we use trend keywords as queries and rank
the products by their relevance.

TREND+fb: based on TREND, we further incorpo-
rate pseudo-relevance feedback (Salton, 1971;
Salton and Buckley, 1997). After some tun-
ing (See Section 6.5), top 3 search results were
used to update the query.

JMRAr: it is our method which only considers
product relevance in Section 4.1.

JMRAr + fb: we further apply pseudo-relevance
feedback to JMRAr.

JMRAr+a: it is our method which considers both
relevance and associativity in Section 4.3.

JMRAr+a +fb: we further apply pseudo-relevance
feedback to JMRAr+a.

6 Experimental Results and Analysis

In this section, we first evaluate the performance of
the proposed approach and the comparison method-
s. Next, we analyze a problem in real e-commerce
search engines, i.e., the cold start. Then, we give
a qualitative case study to further demonstrate the
effectiveness of the proposed approach. Finally,
we examine the parameter sensitivity to the perfor-
mance.

6.1 Comparison of Performance
We present the results of various methods in Table
4. We first examine the performance of baselines
SALES, TREND and TREND+fb. First, SALES has
the worst performance due to the fact that a trend
usually happen unexpectedly and historical records
may not predict it well. The second observation is
that the improvement of TREND+fb over TREND is
little. This is mainly because that very few related
products can be identified only based on trend key-
words so feedback method does not work very well
on it.

Then we compare our relevance based method-
s with the above three baselines. Note that the
major difference between JMRAr and TREND is
that JMRAr makes uses of both trend keywords

and product keywords extracted from microblogs.
We can see that JMRAr performs better than al-
l three baselines. It proves the effectiveness of lever-
aging commercial intents from microblogs. An-
other interesting point is that the relative improve-
ment JMRAr+fb over JMRAr is larger than that
TREND+fb over TREND. The reason is that pseudo
relevance feedback relies highly on top results and a
system with better search quality will benefit more
from it.

Finally, we consider evaluating our full models
which jointly consider relevance and associativity. It
is easy to see JMRAr+a yields a significant improve-
ment over JMRAr and even outperforms JMRAr+fb.
This observation supports our assumption that prod-
uct associativity is very important in this task. A-
gain, pseudo relevance feedback has also improved
JMRAr+a.

In summary, our results have shown some impor-
tant implications for trend-related product retrieval
on e-commerce search engines: 1) microblogs are
very good signals to learn users’ commercial intents;
2) product associativity is particularly important; 3)
other advanced retrieval methods are potentially use-
ful, e.g., pseudo relevance feedback.

Table 4: The overall performance of all the methods.
Models P@5 P@10 MAP
SALES 0.345 0.379 0.225
TREND 0.543 0.325 0.327

TREND+fb 0.550 0.325 0.328
JMRAr 0.611 0.527 0.336

JMRAr+fb 0.661 0.552 0.348
JMRAr+a 0.733 0.609 0.392

JMRAr+a+fb 0.734 0.624 0.404

6.2 Cold Start

It is noteworthy that we have considered all the can-
didate products within the entire active interval of a
trend when constructing the test collection. This is
mainly to obtain a good coverage of related product-
s since some e-commerce companies might release
new products as the response to a trend. During the
active interval of a trend, the e-commerce companies
may make some heuristic rules to enhance the re-
trieval of related products, e.g., incorporating trend
keywords into product titles and descriptions. In the
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real application scenario, an effective method is ex-
pected to identify related products at the beginning
of a trend when the e-commerce workers may not
make any response to the trend. How would it be
if we do not have the manually generated trend key-
words from workers in product titles and descrip-
tions?

To answer the question, in this part, we contin-
ue to examine the impact of cold start on different
methods. We select three methods as comparisons,
i.e., TREND+fb, JMRAr + fb and JMRAr+a + fb.
We first use keyword matching methods to obtain
all the products that related to trend keywords. The
descriptive text (i.e., title and description) of these
products has been refined to match trend queries by
sellers in e-commerce websites. We further removed
all the trend keywords in the desriptive text of these
products, and gradually add the trend keywords back
to original products. In such a process, we would
like to examine how cold start affects the perfor-
mance of different methods.
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Figure 4: The impact of cold start for different meth-
ods.

We present the results in Fig. 4. First, per-
formance of all these methods improve with the
increase of products with trend keywords. Sec-
ond, cold start does not affect the relative perfor-
mance order of different methods, i.e., TREND+fb
< JMRAr + fb < JMRAr+a + fb. Finally, all the
methods display similar impact patterns: “signifi-
cantli increasing” → “stable”. An interesting ob-
servation is that JMRAr + fb and JMRAr+a + fb
have much more stable performance compared to

TREND+fb. It indicates that our methods are very
robust to the cold start, and potentially applicable in
real e-commerce search engines.

6.3 Case Study
In order to have a intuitive understanding of how
different method perform, we present a case study
in this part. We select JMRAr, JMRAr+fb and
JMRAr+a+fb as comparisons. The results are shown
in Table 5. We can see that JMRAr+a+fb have iden-
tified the most related products. We further analyze
the contribution of different factors. Compared with
JMRAr, JMRAr+fb has got one more related prod-
uct “Houseplant” due to the reason pseudo feedback
can make use of top related search results to im-
prove the queries. In this case, “Houseplant” is i-
dentified to be related because it is very similar to
“Air Detector” (We have presented the correspond-
ing most associative products in brackets in Table 5).
Similarly, the comparison between JMRAr+fb and
JMRAr+a+fb shows the effectiveness of product as-
sociativity.

6.4 Error Analysis
To further understand the shortcomings of the pro-
posed methods, we use the example in Table 5 for er-
ror analysis. Based on our manual inspection, errors
may arise from two major sources for our method:

• Product keyword extraction errors: we use
a pattern-based product keyword extraction
method, and it tends to incorporate some irrel-
evant words. For example, given the topic “air
pollution”, users would talk about the impact
of “car exhaust” on air quality and advocate to
reduce automobile usage and sale. The current
keyword extraction method might mistake the
word “car” for a product related keyword.

• Search engine retrieval errors: in this paper,
we rely on the Taobao product search engine
for candidate product generation. It is high-
ly based on surface-form matching to retrieve
related products. Therefore, given a query
“mouth mask”, it might return some irrelevant
products, e.g., “party mask”. Clearly, pseudo-
relevance feedback will also bring additional ir-
relevant products if top search results contain
irrelevant ones.
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Table 5: A qualitative comparison of three methods on the topic of “Air Pollution”. We mark related products in bold.
Sample keywords learnt from microblogs:

air pollution, mouth mask, air, air purifier, respirator, house, mask,
warm, bus, car, purified water

JMRAr JMRAr+fb JMRAr+a+fb

Mouth Mask Mouth Mask Mouth Mask
Air Detector Air Detector Air Purifier
Air Purifier Air Purifier Air Detector
Toy House Humidifier Respirator
Respirator Respirator Oxygen Bag (Mouth Mask)

Toy Car Party Mask Humidifier
Environment-friendly Bags Toy Car Houseplant (Air Detector)

Humidifier Houseplant (Air Detector) Anti-pollution Medicine (Oxygen Bag)
Purified Water Environment-friendly bags Purified Water

Warmer Purified Water Party Mask

(a)
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Figure 5: Parameter sensitivity. a) The impact of the
damping factor µ and b) the impact of the number of top
products used for pseudo feedback.

To solve these problems, one promising way is to
leverage more context information about the candi-
date products and construct deep semantic analysis.
We will leave it as future work.

6.5 Parameter Sensitivity

The only parameter for JMRA is the damping fac-
tor in the random walk model, i.e., µ. Intuitively,
a larger value of µ emphasize the associativity more
while a smaller value emphasize the relevance more.
We tune this parameter at a step of 0.1 and present
the results in Fig. 5(a). We can see the performance
of JMRAr+a+fb is consistently better than that of
JMRAr+fb and peaks at around “0.8”. It indicates
the robustness of JMRAr+a+fb and the importance
of product associtivity.

We further examine the impact of the num-

ber of top products used for pseudo feedback for
JMRAr+fb and JMRAr+a+fb. In Fig. 5(b), we can
see that both JMRAr+a+fb and JMRAr+fb achieved
their best at “3”. It indicates that we only need to
consider very top results for pseudo feedback.

6.6 Title or Description?

In previous experiments, for each product, we used
the descriptive text in both title and description. In
this part, we consider examining the individual ef-
fect of title and description. We use JMRAr+a+fb as
the examined method since both relevance and asso-
ciativity relies on the text information.

Table 6: Evaluating the performance of JMRAr+a+fb
with different text sources.

sources P@5 P@10 MAP
title 0.690 0.591 0.364

description 0.711 0.602 0.387
title+description 0.734 0.624 0.404

As shown in Table 6, we can see that the perfor-
mance of only using description is better than that
of only using title and a combination of both parts
achieve the best. title is usually carefully compiled
by e-commerce sellers, thus it reveals the most high-
lights of the products but very short; while descrip-
tion contains more informative text but tends to in-
corporate noise. In future work, we will consider a
more principled way to combine title and descrip-
tion, e.g., weighted combination.
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6.7 Efficiency

Finally, we present a few discussions about the issue
of efficiency. All codes were implemented in Python
2.7, and all experiments were performed on a PC
with Intel(R) Core(TM)i5 CPU 760 @ 2.8GHz and
8GB memory.

Sicne we group products by the categorial label,
the number of candidate products is usually very s-
mall. Thus, our method JMRA runs very efficiently.
Even on an extremely large set of candidate product-
s, the iterative random walk algorithm can be easily
implemented in a distributed way (Bahmani et al.,
2011) and would have very good efficiency.

7 Related Work

Our work is mainly related to the following lines:
Mining the microblogs. Microblogs have been

one of the most popular social networking platform-
s, and they have recently attracted much attention
from research communities. The studies on trend
(or event) detection (Benson et al., 2011; Weng and
Lee, 2011; Sakaki et al., 2010; Zhao et al., 2012)
tried to make use of the rapid response of microblogs
users as the signal to automatically identify exter-
nal events. Another important aspect is the content
analysis of tweets, including the recommendation of
real-time topical news (Phelan et al., 2009), senti-
ment or opinions analysis (Meng et al., 2012), event
summarization using tweets (Chakrabarti and Puner-
a, 2011; Lin et al., 2012; Zhao et al., 2013), etc. Our
work do not explicitly incorporate a trend detection
component, instead we make use of the trending top-
ics provided by the microblogs platforms. It will be
easy to incorporate other trend detection methods as
our input.

Identifying online users’ commercial intents.
The identification of online users’ commercial in-
tents has been quite an important research prob-
lem in the past. Most researches focus on captur-
ing commercial intention from search queries (Dai
et al., 2006; Strohmaier and Kröll, 2012), click-
through behaviors (Ashkan and Clarke, 2009), user-
s’ mouse movements or scrolling behaviors (Guo
and Agichtein, 2010) and search logs (Strohmaier
and Kröll, 2012). The most related to our work is
the work in (Hollerit et al., 2013), which attempts to
detect commercial intent on twitter. But we have

very different focus. They aim to identify tweet-
level commercial intents while ours aim to identify
trend-driven commercial intents. In addition, we al-
so present how to make use of these identified intents
and our paper focuses on how to identify trend relat-
ed products for e-commerce companies to improve
service when faced with hot trends.

8 Conclusions

In this paper, we make the first attempt to identify
trend related products by leveraging commercial in-
tents from microblogs. We propose a way to con-
struct the evaluation set for this task and present
some insightful findings. We propose a graph based
method to joint model relevance and associativity.
We perform extensive experiments, including quan-
titative and qualitative analysis.

Currently, our approach is indeed a framework
to solve this task, and we may consider improving
the individual components in it, e.g. consider non-
product keywords in tweets. For future work, we
will consider incorporating a trend detection com-
ponent into our method, which can be more flexible
to adapt to various trend signals. We can also refine
the method of the product keyword extraction by us-
ing more principled solutions.
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Abstract

We investigate the value-add of topic model-
ing in text analysis for depression, and for neu-
roticism as a strongly associated personality
measure. Using Pennebaker’s Linguistic In-
quiry and Word Count (LIWC) lexicon to pro-
vide baseline features, we show that straight-
forward topic modeling using Latent Dirich-
let Allocation (LDA) yields interpretable, psy-
chologically relevant “themes” that add value
in prediction of clinical assessments.

1 Introduction

In the United States, where 25 million adults per
year suffer a major depressive episode (NAMI,
2013), identifying people with mental health prob-
lems is a key challenge. For clinical psychologists,
language plays a central role in diagnosis: many
clinical instruments fundamentally rely on what is,
in effect, manual coding of patient language. Au-
tomating language assessment in this domain poten-
tially has enormous impact, for two reasons. First,
conventional clinical assessments for affective dis-
orders (e.g. The Minnesota Multiphasic Personal-
ity Inventory, MMPI) are based on norm-referenced
self-report, and therefore depend on patients’ will-
ingness and ability to report symptoms. However,
some individuals are motivated to underreport symp-
toms to avoid negative consequences (e.g. active
duty soldiers, parents undergoing child custody eval-
uations), and others lack the self awareness to report
accurately.1 Second, many people – e.g. those with-
1As evidenced by the fact that assessments such as the MMPI-2-
RF include validity scales to detect, e.g., defensiveness, atyp-

out adequate insurance or in rural areas – cannot ac-
cess a clinician qualified to perform a psychological
evaluation (Sibelius, 2013; APA, 2013). There is
enormous value in inexpensive screening measures
that could be administered in primary care and by
social workers and other providers.

We take as a starting point the well known
lexicon-driven methods of Pennebaker and col-
leagues (LIWC, Pennebaker and King (1999)),
which relate language use to psychological vari-
ables, and improve on them straightforwardly using
topic modeling (LDA, Blei et al. (2003)). First, we
show that taking automatically derived topics into
account improves prediction of neuroticism (emo-
tional instability, John and Srivastava (1999)), as
measured by correlation with widely used clinical
instruments, when compared with lexically-based
prediction alone. Neuroticism is of particular inter-
est as a personality measure because higher scores
on neuroticism scales are consistent with increased
distress and more difficulty coping; individuals with
high levels of neuroticism may also be at higher risk
of psychiatric problems categorized as Axis I in the
DSM-IV (Association, 2000), including the inter-
nalizing disorders (depression, anxiety).2 Second,
we show a similar correlation improvement result
for prediction of depression, adding improvement

ical responses, and overly positive self-portrayals (Tellegen et
al., 2003).

2The Diagnostic and Statistical Manual of Mental Disorders is a
widely used organization of mental health conditions; it served
as the standard for diagnosis from 1994 until the release of
the (quite controversial) DSM-5 in May, 2013. Axis I in the
DSM-IV includes all the major diagnostic categories, exclud-
ing mental retardation and personality disorders.
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on precision (with no decrease in recall), as well
as comparison with human performance by clinical
psychologists. Third, we show that LDA has iden-
tified meaningful, population-specific themes that
go beyond the pre-defined LIWC categories and are
psychologically relevant.

2 Predicting neuroticism

2.1 Experimental framework
Data. We utilize a collection of 6,459 stream-of-
consciousness essays collected from college stu-
dents by Pennebaker and King (1999) between 1997
and 2008, averaging approximately 780 words each.
Students were asked to think about their thoughts,
sensations, and feelings in the moment and “write
your thoughts as they come to you”.

Each essay is accompanied by metadata for its
author, which includes scores for the Big-5 person-
ality traits (John and Srivastava, 1999): agreeable-
ness, conscientiousness, extraversion, neuroticism,
and openness. Because Big-5 assessment can be
done using a variety of different survey instruments
(John et al., 2008), and different instruments were
used from year to year, we treat the data from each
year as an independent dataset.

Any author missing any Big-5 attribute was ex-
cluded. Essays were tokenized using NLTK (Bird
et al., 2009) and lowercased, eliminating those that
failed tokenization because of encoding issues. This
resulted in a dataset containing 4,777 essays with as-
sociated Big-5 metadata.

LIWC features. For each document, we calcu-
late the number of observed words in each of Pen-
nebaker and King’s 64 LIWC categories. These in-
clude, among others, syntactic categories (e.g. pro-
nouns, verbs), affect categories (e.g. negative emo-
tion words, anger words), semantic categories (e.g.
causation words, cognitive words), and topical cat-
egories (e.g. health, religion). For instance, the
anger category contains 190 word patterns specify-
ing, for example, words descriptive of contexts in-
volving anger (e.g. brutal, hostile, shoot) and words
that would be used by someone when angry (e.g.
bullshit, hate, moron). We also explored includ-
ing essays’ average sentence length and total word-
count, as an initial proxy for language complexity,
which often figures into psychological assessments.

However, results adding these features to LIWC did
not differ significantly from LIWC alone, and for
brevity we do not report them.3

LDA features. We use vanilla LDA as imple-
mented in the Mallet toolkit (McCallum, 2002), de-
veloping a k-topic model on just training documents,
and using the posterior topic distribution for each
training and test document as a set of k features.
Mallet’s stoplist and default parameters were used
for burn-in, lag, number of iterations, priors, etc.
Details on train/test splits and number k of topics
appear below.

LIWC+LDA features. The union of the LIWC
features (one feature per category) and LDA features
(one feature per topic).

Prediction. We utilize linear regression in the
WEKA toolkit (Hall et al., 2009), estimated on train-
ing documents, to predict the neuroticism score as-
sociated with the author of each test document.4

2.2 Results
Table 1 shows the quality of prediction via linear
regression, averaged over the eleven datasets, 1997
through 2008, using Pearson correlation (r) as the
evaluation metric. For each year, we used 10-fold
cross-validation to ensure proper separation of train-
ing and test data. We experimented with LDA us-
ing 20, 30, 40, and 50 topics.5

A first thing to observe is that the multiple re-
gressions using all LIWC categories produce much
stronger correlations with neuroticism than the indi-
vidual category correlations reported by Pennebaker
and King.6 There the strongest individual corre-
lations with neuroticism for any LIWC categories
are .16 (negative emotion words) and -.13 (positive
emotion words), though it should be noted that their
goal was to validate their categories as a meaningful
3Using richer measures of complexity, e.g. Pakhomov et al.
(2011), is a topic for future work.

4In previous work we have found that multiple linear regression
is competitive with more complicated techniques such as SVM
regression, though we plan to explore the latter in future work.

5Full year-by-year data appears in supplemental materi-
als at http://umiacs.umd.edu/˜resnik/papers/
emnlp2013-supplemental/.

6The comparison is not perfect, since they used Big-5 data col-
lected between 1993 and 1998, and we also eliminated some
files during preprocessing.
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Feature set LIWC LDA20 LIWC+LDA20 LDA30 LIWC+LDA30 LDA40 LIWC+LDA40 LDA50 LIWC+LDA50
Average r 0.413 0.384 0.430 0.407 0.442* 0.420 0.459** 0.440 0.443*

Table 1: Prediction quality for neuroticism, for alternative feature sets (Pearson’s r). *p< .03, **p < .02

way to explore personality differences, not predic-
tion.

As noted in Table 1, paired t-tests (df=10, α =
.05) establish that, in comparing the cross-year av-
erages, augmenting LIWC with topic features im-
proves average correlation significantly over using
LIWC features alone for 30, 40, and 50 topics.
LDA features alone do not improve significantly
over LIWC.

3 Predicting Depression

3.1 Experimental framework

Data. We use essays collected by Rude et al.
(2004) similarly to §2.1; in this case, students were
asked to “describe your deepest thoughts and feel-
ings about being in college”. Each essay is accom-
panied by the author’s Beck Depression Inventory
score (BDI). BDI (Beck et al., 1961) is a widely
used 21-question instrument that correlates strongly
with ratings of depression by psychiatrists. Follow-
ing Rude et al., we treat BDI ≥ 14 as the threshold
for a positive instance of depression.7 Text prepro-
cessing was done as in §2.1, with 124 documents in
total averaging around 390 words each.

Training/test split. Because only 12 of 124 au-
thors met the BDI ≥ 14 threshold, we did not split
randomly, lest the test sample include too few pos-
itive instances to be useful. Instead we included a
random 6 of the 12 above-threshold cases, plus 24
more items sampled at random, to create a 30-item
test set. To form the training set from the comple-
mentary items, we added two more copies of each
positive instance to help address class imbalance
(Batista et al., 2004) and, following Rude et al., we
excluded items with with BDI of 0 or 1 as potentially
invalid.

Human comparison. We created a set of expert
human results for comparison by asking three prac-
ticing clinical psychologists to review the test doc-
uments and rate whether or not the author is suffer-
7Each question contributes a score value from 0 to 3, so BDI
scores range from 0 to 63.

ing depression.8 They were asked to “decide how
at-risk this person might be for depression”, assign-
ing 0 (no significant concerns), 1 (mild concerns, but
does not require futher evaluation), or 2 (requires at-
tention, refer for further evaluation). Following rec-
ommended practice for cases where different labels
are not equally distinct from each other (Artstein
and Poesio, 2008), we evaluate inter-coder agree-
ment using Krippendorff’s α; our α, computed for
ordinal data, is 0.722.

Features. We ran 50-topic LDA on the 4,777 es-
says from §2.1 plus the BDI training items, using the
posterior topic distributions as features as in §2.1.
As in §2.1, the LIWC features comprised one count
per LIWC category, and LIWC+LDA features were
the union of the two.

3.2 Results

Regression on LIWC features alone achieved r =
.288, and adding topic features improved this sub-
stantially to r = .416. Treating BDI ≥ 14 as the
threshold for positive instances (i.e. that an author is
depressed), Table 2 shows that adding topic features
improves precision without harming recall. Auto-
matic prediction is more conservative than human
ratings, trading recall for precision to achieve com-
parable F-measure on this test set.9

8These psychologists all have doctoral degrees, are licensed,
and spend significant time primarily in assessment and diag-
nosis of psychological disorders. None were familiar with the
specifics of this study.

9A reviewer observes, correctly, that in a scenario where a sys-
tem is providing preliminary screenings to aid psychologists,
the precision/recall tradeoff demonstrated here would poten-
tially be undesirable, since a presumed goal would be to not
miss any cases, even at the risk of some false positives. We
note, however, that the real world is unfortunately replete with
situations where there is significant cost or social/professional
stigma associated with interventions or follow-up testing; in
such situations it might be high precision that is desirable.
These are challenging questions, and the ability to trade off
precision versus recall more flexibly is a topic we are inter-
ested in investigating in future work.
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P R F1
LIWC .43 .50 .46

LIWC+LDA .50 .50 .50
Rater 1 .38 .83 .52
Rater 2 .33 .83 .47
Rater 3 .33 .66 .44

Table 2: Prediction quality for depression.

4 Qualitative themes

In order to explore the relevance of the themes
uncovered by LDA, the third author, a practicing
clinical psychologist, reviewed the 50 LDA cate-
gories created in §3.1. Each category, represented
by its 20 highest-probability words, was given a
readable description. Then, for each category, she
was asked: “If you were conducting a clinical in-
terview, would observing these themes in a patient’s
responses make you more (less) likely to feel that the
patient merited further evaluation for depression?”

Table 3 shows the seven topics selected as par-
ticularly indicative of further evaluation.10 These
capture population-specific properties in ways that
LIWC cannot — for example, although LIWC does
have a body category, it does not have a category
that corresponds to somatic complaints, which often
co-occur with depression. Similarly, some words re-
lated to energy level, e.g. tired, would be captured
in LIWC’s body, bio, and/or health category, but
the LDA theme corresponding to low energy or lack
of sleep, another potential depression cue, contains
words that make sense there only in context (e.g. to-
morrow, late). Other themes, such as the one labeled
HOMESICKNESS, are clearly relevant (potentially in-
dicative of an adjustment disorder), but even more
specific to the population and context.

5 Related Work

The application of NLP to psychological variables
has seen a recent uptick in community activity. One
recent shared task brings together research on the
Big-5 personality traits (Celli et al., 2013; Kosin-
ski et al., 2013), and another involved research on
identification of emotion in suicide notes (Pestian et
al., 2012). Other examples include NLP research on

10All 50 can be found in the supplemental materials at
http://umiacs.umd.edu/˜resnik/papers/
emnlp2013-supplemental/.

autistic spectrum disorders (Van Santen et al., 2010;
Prudhommeaux et al., 2011; Lehr et al., 2013) and
dementia (Pakhomov et al., 2011; Lehr et al., 2012;
Roark et al., 2011).

With regard to depression, Neuman et al. (2012)
develop a corpus-based “depression lexicon” and
produce promising screening results, and De Choud-
hury et al. (2013) predict social network behav-
ior changes related to post-partum depression. Nei-
ther, however, evaluates using formal instruments
for clinical assessment.

Related investigations involving LDA include
Zhai et al. (2012), who use LIWC to provide pri-
ors for corpus-specific emotion categories; Stark et
al. (2012), who combine LIWC and LDA-based
features in classification of social relationships; and
Schwartz et al. (2013), who use lexical and topic-
based features in Twitter to predict life satisfaction.

6 Conclusions

In this paper, we have aimed for a small, fo-
cused contribution, investigating the value-add of
topic modeling in text analysis for depression, and
for neuroticism as a strongly associated personal-
ity measure. Our contribution here is not techni-
cal: corpus-specific topics/themes are anticipated by
Zhai et al. (2012), and Stark et al. (2012) employ
topic-based features for prediction in a supervised
setting. Rather, our contribution here has been to
show that topic models can get us beyond the LIWC
categories to relevant, population-specific themes
related to neuroticism and depression, and to sup-
port that claim using evaluation against formal clin-
ical assessments. More data (e.g. Kosinski et al.
(2013)) and more sophisticated models (e.g. super-
vised LDA, Blei and McAuliffe (2008), and exten-
sions such as Nguyen et al. (2013)) will be the key
to further progress.
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VEGETATIVE/ENERGY LEVEL sleep tired night bed morning class early tomorrow wake late asleep long hours day sleeping nap today fall stay
time

SOMATIC hurts sick eyes hurt cold head tired back nose itches hate stop starting water neck hand stomach feels kind sore
NEGATIVE/TROUBLE COPING don(’t) hate doesn care didn(’t) understand anymore feel isn(’t) stupid make won(’t) wouldn talk scared wanted

wrong mad stop shouldn(’t)
ANGER/FRUSTRATION hate damn stupid sucks hell shit crap man ass god don blah thing bad suck doesn fucking fuck freaking real

HOMESICKNESS home miss friends back school family weekend austin parents college mom lot boyfriend left houston visit weeks
wait high homesick

EMOTIONAL STRESS feel feeling thinking makes make felt feels things nervous scared lonely feelings afraid moment happy worry
comfortable stress excited guilty

ANXIETY feel happy things lot sad good makes bad make hard mind happen crazy cry day worry times talk great wanted

Table 3: LDA-induced themes related to depression.
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Abstract

We present a statistical model for predicting
how the user of an interactive, situated NLP
system resolved a referring expression. The
model makes an initial prediction based on the
meaning of the utterance, and revises it con-
tinuously based on the user’s behavior. The
combined model outperforms its components
in predicting reference resolution and when to
give feedback.

1 Introduction

Speakers and listeners in natural communication are
engaged in a highly interactive process. In order to
achieve some communicative goal, the speaker will
perform an utterance which they believe has a high
chance of achieving that goal. They will then moni-
tor the listener’s behavior to see whether this goal is
actually being achieved. This process is a core part
of what is commonly called grounding in the dia-
logue literature (see e.g. (Clark, 1996; Traum, 1994;
Paek and Horvitz, 1999; Hirst et al., 1994)). Inter-
active computer systems that are to carry out an ef-
fective and efficient conversation with a user must
model this grounding process, and should ideally re-
spond to the user’s observed behavior in real time.
For instance, if the user of a pedestrian navigation
system takes a wrong turn, the system should inter-
pret this as evidence of misunderstanding and bring
the user back on track.

We focus here on the problem of predicting how
the user has resolved a referring expression (RE) that
was generated by the system, i.e. a noun phrase that
is intended to identify some object uniquely to the
listener. A number of authors have recently offered

statistical models for parts of this problem. Golland
et al. (2010) and Garoufi and Koller (2011) have
presented log-linear models for predicting how the
listener will resolve a given RE in a given scene;
however, these models do not update the probabil-
ity model based on observing the user’s reactions.
Nakano et al. (2007), Buschmeier and Kopp (2012),
and Koller et al. (2012) all predict what the listener
understood based on their behavior, but do not con-
sider the RE itself in the model. The models of
Frank and Goodman (2012) and Vogel et al. (2013)
aim at explaining the effect of implicatures on the
listener’s RE resolution process in terms of hypothe-
sized interactions, but do not actually support a real-
time interaction between a system and a user.

In this paper, we show how to predict how the
listener has resolved an RE by combining a statis-
tical model of RE resolution based on the RE itself
with a statistical model of RE resolution based on
the listener’s behavior. To our knowledge, this is
the first approach to combine two such models ex-
plicitly. We consider the RE grounding problem in
the context of interactive, situated natural language
generation (NLG) for the GIVE Challenge (Koller et
al., 2010a), where NLG systems must generate real-
time instructions in virtual 3D environments. Our
evaluation is based on interaction corpora from the
GIVE-2 and GIVE-2.5 Challenges, which contain
the systems’ utterances along with the behavior of
human hearers in response to these utterances. We
find that the combined model predicts RE resolu-
tion more accurately than each of the two compo-
nent models alone. We see this as a first step towards
implementing an actual interactive system that per-
forms human-like grounding based on our RE reso-
lution model.
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Figure 1: An example scene in the GIVE environment.

2 Problem definition

In the GIVE Challenge, an interactive NLG system
faces the task of guiding a human instruction fol-
lower (IF) through a treasure-hunt game in a vir-
tual 3D environment (see Fig. 1). To complete the
task, the IF must press a number of buttons in the
correct order; these buttons are the colored boxes in
Fig. 1, and are scattered all over the virtual environ-
ment. The IF can move around freely in the virtual
environment, but has no prior knowledge about the
world. The NLG system’s task is to guide the IF to-
wards the successful completion of the treasure-hunt
task. To this end, it is continuously being informed
about the IF’s movements and visual field, and can
generate written utterances at any time. As a com-
parative evaluation effort, the GIVE Challenges con-
nected NLG systems to thousands of users over the
Internet (see e.g. Koller et al. (2010a) for details).

Many system utterances are manipulation instruc-
tions, such as “press the blue button”, containing an
RE in the form of a definite NP. We call a given part
of an interaction between the system and the IF an
episode of that interaction if it starts with a manip-
ulation instruction, ends with the IF performing an
action (i.e., pressing a button), and contains only
IF movements and no further utterances in between.
Not all manipulation instructions initiate an episode,
because the system may decide to perform further
utterances (not containing REs) before the IF per-
forms their action. An NLG system will choose the
RE for an instruction at runtime out of potentially
many semantically valid alternatives (“the blue but-
ton”, “the button next to the chair”, “the button to
the right of the red button”, etc.). Ideally, it will pre-
dict which of these REs has the highest chance to be
understood by the IF, given the current scene, and
utter an instruction that uses this RE.

After uttering the manipulation instruction, the
system needs to ascertain whether the IF understood
the RE correctly, i.e. it must engage in grounding.
A naive grounding mechanism might wait until the
IF actually presses a button and check whether it was
the right one. This is what many NLG systems in the
GIVE Challenges actually did. However, this can
make the communication ineffective (IF performs
many useless actions) and risky (IF may press the
wrong button and lose). Thus, it is important that the
system updates its prediction of how the IF resolved
the RE continuously by observing the IF’s behavior,
before the actual button press. For instance, if the
IF walks towards the target, this might reinforce the
system’s belief in a correct understanding; turning
away or exiting the room could be strong evidence
of the opposite. The system can then exploit the up-
dated prediction to give the IF feedback (“no, the
blue button”) to prevent costly mistakes.

We address these challenges by estimating the
probability distribution over the possible objects to
which the IF may resolve the RE. We then update
this distribution in real time by observing the IF’s
movements. More specifically, assume that a sys-
tem tries to refer to some object a∗ among some set
A of available objects. Given an RE r generated for
a∗ at time t0, the state of the world s at t0, and the
observed behavior σ(t) of the user at t ≥ t0, we
estimate the probability p(a|r, s, σ(t)) that the user
resolved r to an object a ∈ A. When generating the
instruction, an optimal NLG system will use the RE
r that maximizes p(a∗|r, s, σ(t0)). It can then track
p(a|r, s, σ(t)) for time points t > t0 throughout the
episode, and generate feedback when p(a′|r, s, σ(t))
exceeds p(a∗|r, s, σ(t)) for some a′ 6= a∗; that is,
when the updated probability distribution predicts
that the IF resolved r to an incorrect button.

3 A model of RE resolution

In order to model the distribution over possible ob-
jects, we assume the following generative story:
when receiving an instruction containing an RE r at
a given world state s, the IF resolves it to an object
a; depending on the object a, the IF then moves to-
wards it, exhibiting behavior σ. These assumptions
correspond to the following factorization:

p(a, σ|r, s) = p(σ|a)p(a|r, s)
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The posterior probability distribution over objects a
can be obtained by applying the Bayes rule and us-
ing the above assumptions:

p(a|r, s, σ) ∝ p(a|r, s)p(a|σ)/p(a)

For simplicity, we assume a uniform p(a) over all
objects in a world. We can thus represent p(a|r, s, σ)
as the normalized product of a semantic model
psem(a|r, s) and an observational model pobs(a|σ).
We use log-linear models for both, and train them
separately. The feature functions we use only con-
sider general properties of objects (such as color and
distance), and not the identity of the objects them-
selves. This means that we can train a model on one
virtual environment (containing a certain set of ob-
jects), and then apply the model to another virtual
environment, containing a different set of objects.

Semantic model The semantic model estimates
for each object a in the environment the initial prob-
ability psem(a|r, s) that the IF will understand a
given RE r uttered in a scene s as referring to a. It
represents the meaning of r, contextualized to s, and
is only ever evaluated at the time t0 of the utterance.
The features used by this model are:
• Semantic features aim to encode whether r

is a good description of a. IsColorModifying
evaluates to 1 if a’s color appears as an adjec-
tive modifying the head noun of r, e.g. “the
blue button”. IsRelPosModifying evaluates to
1 if a’s relative position to the IF is mentioned
as an adjective in r, e.g. “the left button”.
• Confusion features capture the hypothesis that

the IF may be confused by the description of a
landmark when resolving the RE; e.g. an RE
like “the button next to the red button” might
confuse the IF into pressing a red button, rather
than the one meant by the system. These are
the same features as in the Semantic case, but
looking for modifier keywords in the entire RE,
including the head.
• Salience features account for the fact that an

IF is more likely to resolve r to a if a was visu-
ally salient in s. IsVisible evaluates to 1 if a is
visible to the IF in s. IsInRoom evaluates to 1
if the IF and a are in the same room. IsTarget-
InFront evaluates to 1 if the angular distance
towards a, i.e. the absolute angle between the

camera direction and the straight line from the
IF to a, is less than π

4 . VisualSalience approx-
imates the visual salience of Kelleher and van
Genabith (2004), a weighted count of the num-
ber of pixels on which a is rendered (pixels near
the center of the screen have higher weights).

Observational model The observational model
estimates for each object a the probability pobs(a|σ)
that the IF will interact with a, given the IF’s recent
behavior σ(t) = (σ1, . . . , σn), where σi is the state
of the world at time t− (i− 1) · 500ms, and n ≥ 1
is the length of the observed behavior. pobs is con-
stantly re-evaluated for times t > t0 as the IF moves
around. pobs uses the following features:
• Linear distance features assume that the clos-

est button is also the one the IF understood. In-
Room returns the number of frames σi in σ in
which the IF and a are in the same room. But-
tonDistance returns the distance between the IF
and a at σ1 divided by a constant such that the
result never exceeds 1. If a is neither in the
same room nor visible, the feature returns 1.
• Angular distance features analyze the direc-

tion in which the IF looks. TargetInFront re-
turns the angular distance towards a at σ1. An-
gleToTarget returns TargetInFront divided by
π, or 1 if a is neither in the same room nor
visible. LinearRegAngleTo applies linear re-
gression to a list of observed angular distances
towards a over all frames σi, and returns the
slope of the regression as a measure of varia-
tion. Negative values indicate that the IF turned
towards a, while positive values mean the op-
posite. If a is neither visible nor in the same
room as the IF at σi, the angle is set to π.
• Combined distance feature: a weighted sum

of linear and angular distance towards a, called
overall distance in Koller et al. (2012).
• Salience features capture visual salience and

its change over time. Defining VSi as the result
of applying the psem feature VisualSalience to
σi and a, LastVisualSalience returns VSn. Lin-
earRegVisualSalience applies linear regression
to all values VSi and returns the slope as a mea-
sure of change in salience. VisualSalienceSum
returns (Σn

i=1VSi) ∗VS1. This emphasizes the
contribution of VS1, which we assume is the
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most reliable predictor of the IF’s intentions.
• Binary features aim to detect concrete behav-

ior patterns: LastIsVisible applies the psem fea-
ture IsVisible to σ1, and IsClose evaluates to 1
if the IF is close enough and correctly oriented
to manipulate a in the GIVE environment at σ1.

4 Evaluation

Data We evaluated our model using data from the
GIVE-2 (Koller et al., 2010b) and the GIVE-2.5
Challenges (Striegnitz et al., 2011), obtained from
GIVE Organizers (2012). These datasets constitute
interaction corpora, in which the IF’s activities in
the virtual environment were recorded along with
the utterances automatically generated by the par-
ticipating NLG systems. The data consists of 1833
games for GIVE-2 and 687 games for GIVE-2.5.

To extract training data for our model from the
GIVE-2.5 data, we first identified moments in the
recorded data where the IF pressed a button. From
these, we discarded all instances from the tutorial
phase of the GIVE game and those that happened
within 200 ms after the previous utterance, as these
clearly didn’t happen in response to it. This yielded
6478 training instances for pobs, each consisting of
σ at 1 second before the action, and the button a
which the IF pressed. We chose n = 4 for rep-
resenting σ, except to ensure that the features only
considered IF behavior that happened in response to
an utterance. We achieved this by reducing n for the
first few frames after each utterance, such that the
time of σn was always after the time of the utter-
ance. Finally, we selected those instances which are
episodes in the sense of Section 2, i.e. those in which
the last utterance before the action contained an RE
r. This gave us 3414 training instances for psem,
each consisting of a, r, the time t0 of the utterance,
and the world state s at time t0.

We obtained test instances from the GIVE-2 data
in the same way. This yielded 5028 instances, each
representing an episode. We chose GIVE-2 for test-
ing because the mean episode length is higher (3.3s,
vs. 2.0s in GIVE-2.5), thus making the evaluation
more challenging. Feature selection was done using
the training data and a similar dataset from Koller et
al. (2012). Note that the test data and training data
are based on distinct sets of three virtual environ-
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Figure 2: Prediction accuracy for (a) all episodes, (b) un-
successful episodes as a function of time.

ments each, and were obtained with different NLG
systems and users. This demonstrates the ability of
our model to generalize to unseen environments.

An example video showing our models’ predic-
tions on some training episodes can be found at
http://tinyurl.com/re-demo-v.

Prediction accuracy We first evaluated the abil-
ity of our model to predict the button to which
the IF resolved each RE. For each test instance
〈r, s, σ, a〉, we compare the object returned by
arg maxa p(a|r, s, σ(t)) to the one manipulated by
the IF. We call the proportion of correctly classified
instances the prediction accuracy.

Fig. 2a compares our model’s prediction accuracy
to that of several baselines. We plot prediction ac-
curacy as a function of the time at which the model
is queried for a prediction, by evaluating at 3s, 2s,
1s, and 0s before the button press. The graph is
based on the 2094 test instances with an episode
length of at least three seconds, to ensure that re-
sults for different prediction times are comparable.
As expected, prediction accuracy increases as we ap-
proach the time of the action. Furthermore, the com-
bined model outperforms both psem and pobs reli-
ably. This indicates that the component models pro-
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vide complementary useful information. Our model
also outperforms two more baselines: KGSC pre-
dicts that the IF will press the button with the min-
imal overall distance, which is the distance metric
used by the “movement-based system” of Koller et
al. (2012); random visible selects a random button
from the ones that are currently visible to the IF.

The fact that this last baseline does not approach 1
at action time suggests that multiple buttons tend to
be visible when the IF presses one, confirming that
the prediction task is not trivial.

Correctly predicting the button that the IF will
press is especially useful, and challenging, in those
cases where the IF pressed a different button than
the one the NLG system intended. Fig. 2b shows
a closer look at the 125 unsuccessful episodes of at
least three seconds in the test data. These tend to
be hard instances, and thus as expected, prediction
accuracy drops for all systems. However, by inte-
grating semantic and observational information, the
combined model compensates better for this than all
other systems, with an accuracy of 37.6% against
31.2% for each individual component.

Feedback appropriateness Second, we evaluated
the ability of our model to predict whether the user
misunderstood the RE and requires feedback. For all
the above models, we assumed a simple feedback
mechanism which predicts that the user misunder-
stood the RE if p(a′) − p(a∗) > θ for some object
a′ 6= a∗, where θ is a confidence threshold; we used
θ = 0.1 here. We can thus test on recorded data in
which no actual feedback can be given anymore.

We evaluated the models on the 848 test episodes
of at least 3s in which the NLG systems logged the
button they tried to refer to. The results are shown
in Fig. 3 in terms of F1 measure. Here precision is
the proportion of instances in which the IF pressed
the wrong button (i.e., where feedback should have
been given) among the instances where the model
actually suggested feedback. Recall is the propor-
tion of instances in which the model suggested feed-
back among the instances where the IF pressed the
wrong button. Again, the combined model outper-
forms its components and the baselines, primarily
due to increased recall. The difference is particu-
larly pronounced early on, which would be useful in
giving timely feedback in an actual real-time system.
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Figure 3: Feedback F1-measure as a function of time.

5 Conclusion and future work

We presented a statistical model for predicting how
a user will resolve the REs generated by an interac-
tive, situated NLG system. The model continuously
updates an initial estimate based on the meaning of
the RE with a model of the user’s behavior. It out-
performs its components and two baselines on pre-
diction and feedback accuracy.

Our model captures a real-time grounding process
on the part of the interactive system. We thus believe
that it provides a solid foundation for detecting mis-
understandings and generating suitable feedback in
an end-to-end dialogue system. We have presented
our model in terms of a situated dialogue setting,
where clues about what the hearer understood can be
observed directly. However, we believe that the fun-
damental mechanism should apply to other domains
as well. This would amount to finding observable
linguistic and non-linguistic clues of hearer under-
standing that can be used as features of pobs.

The immediate next step for future research is
to extend our model to an implemented end-to-end
situated NLG system for the GIVE Challenge, and
evaluate whether this actually improves task perfor-
mance. This requires, in particular, to compute the
RE that is optimal with respect to psem. We will fur-
thermore improve pobs by switching to a more tem-
porally dynamic probability model.
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Abstract

We extend Zhao and Ng's (2007) Chinese
anaphoric zero pronoun resolver by (1) using
a richer set of features and (2) exploiting the
coreference links between zero pronouns dur-
ing resolution. Results on OntoNotes show
that our approach significantly outperforms
two state-of-the-art anaphoric zero pronoun re-
solvers. To our knowledge, this is the first
work to report results obtained by an end-to-
end Chinese zero pronoun resolver.

1 Introduction

A zero pronoun (ZP) is a gap in a sentence that is
found when a phonetically null form is used to refer
to a real-world entity. An anaphoric zero pronoun
(AZP) is a ZP that corefers with one or more preced-
ing noun phrases (NPs) in the associated text. Un-
like overt pronouns, ZPs lack grammatical attributes
that are useful for overt pronoun resolution such as
number and gender. This makes ZP resolution more
challenging than overt pronoun resolution.
We aim to improve the state of the art in Chinese

AZP resolution by proposing two extensions. First,
while previous approaches to this task have primarily
focused on employing positional and syntactic fea-
tures (e.g., Zhao and Ng (2007) [Z&N], Kong and
Zhou (2010) [K&Z]), we exploit a richer set of fea-
tures for capturing the context of an AZP and its
candidate antecedents. Second, to alleviate the diffi-
culty of resolving an AZP to an antecedent far away
from it, we break down the process into smaller, in-
termediate steps, where we allow coreference links
between AZPs to be established.
We apply our two extensions to a state-of-the-art

Chinese AZP resolver proposed by Z&N and eval-

uate the resulting resolver on the OntoNotes cor-
pus. Experimental results show that this resolver sig-
nificantly outperforms both Z&N's resolver and an-
other state-of-the-art resolver proposed by K&Z. It
is worth noting that while previous work on Chinese
ZP resolution has reported results obtained via gold
information (e.g., using gold AZPs and extracting
candidate antecedents and other features from gold
syntactic parse trees), this is the first work to report
the results of an end-to-end Chinese ZP resolver.
The rest of this paper is organized as follows. Sec-

tion 2 describes the two baselineAZP resolvers. Sec-
tions 3 and 4 discuss our two extensions. We present
our evaluation results in Section 5 and our conclu-
sions in Section 6.

2 Baseline AZP Resolution Systems

An AZP resolution algorithm takes as input a set
of AZPs produced by an AZP identification system.
Below we first describe the AZP identifier we em-
ploy, followed by our two baseline AZP resolvers.

2.1 Anaphoric Zero Pronoun Identification

We employ two steps to identifyAZPs. In the extrac-
tion step, we heuristically extract candidate ZPs. In
the classification step, we train a classifier to distin-
guish AZPs from non-AZPs.
To implement the extraction step, we use Z&N's

and K&Z's observation: ZPs can only occur before a
VP node in a syntactic parse tree. However, accord-
ing to K&Z, ZPs do not need to be extracted from
every VP: if a VP node occurs in a coordinate struc-
ture or is modified by an adverbial node, then only its
parent VP node needs to be considered. We extract
ZPs from all VPs that satisfy the above constraints.
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Syntactic
features
(13)

whether z is the first gap in an IP clause; whether z is the first gap in a subject-less IP clause, and if
so, POS(w1); whether POS(w1) is NT; whether t1 is a verb that appears in a NP or VP; whether Pl is
a NP node; whether Pr is a VP node; the phrasal label of the parent of the node containing POS(t1);
whether V has a NP, VP or CP ancestor; whether C is a VP node; whether there is a VP node whose
parent is an IP node in the path from t1 to C.

Lexical
features
(13)

the words surrounding z and/or their POS tags, including w1, w−1, POS(w1), POS(w−1)+POS(w1),
POS(w1)+POS(w2), POS(w−2)+POS(w−1), POS(w1)+POS(w2)+POS(w3), POS(w−1)+w1, and
w−1+POS(w1); whether w1 is a transitive verb, an intransitive verb or a preposition; whether w−1 is
a transitive verb without an object.

Other fea-
tures (6)

whether z is the first gap in a sentence; whether z is in the headline of the text; the type of the clause in
which z appears; the grammatical role of z; whether w−1 is a punctuation; whether w−1 is a comma.

Table 1: Features for AZP identification. z is a zero pronoun. V is the VP node following z. wi is the ith word to the
right of z (if i is positive) or the ith word to the left of z (if i is negative). C is lowest common ancestor of w−1 and
w1. Pl and Pr are the child nodes of C that are the ancestors of w−1 and w1 respectively.

Features
between a
and z (4)

the sentence distance between a and z; the segment distance between a and z, where segments are
separated by punctuations; whether a is the closest NP to z; whether a and z are siblings in the
associated parse tree.

Features
on a (12)

whether a has an ancestor NP, and if so, whether this NP is a descendent of a's lowest ancestor IP;
whether a has an ancestor VP, and if so, whether this VP is a descendent of a's lowest ancestor IP;
whether a has an ancestor CP; the grammatical role of a; the clause type in which a appears; whether
a is an adverbial NP, a temporal NP, a pronoun or a named entity; whether a is in the headline of the
text.

Features
on z (10)

whether V has an ancestor NP, and if so, whether this NP node is a descendent of V's lowest ancestor
IP; whether V has an ancestor VP, and if so, whether this VP is a descendent of V's lowest ancestor IP;
whether V has an ancestor CP; the grammatical role of z; the type of the clause in which V appears;
whether z is the first or last ZP of the sentence; whether z is in the headline of the text.

Table 2: Features for AZP resolution in the Zhao and Ng (2007) baseline system. z is a zero pronoun. a is a candidate
antecedent of z. V is the VP node following z in the parse tree.

To implement the classification step, we train a
classifier using SVMlight (Joachims, 1999) to distin-
guishAZPs from non-AZPs. We employ 32 features,
13 of which were proposed by Z&N and 19 of which
were proposed by Yang and Xue (2010). A brief de-
scription of these features can be found in Table 1.

2.2 Two Baseline AZP Resolvers

The Zhao and Ng (2007) [Z&N] baseline. In
our implementation of the Z&N baseline, we use
SVMlight to train amention-pairmodel for determin-
ing whether an AZP z and a candidate antecedent
of z are coreferent. We consider all NPs preced-
ing z that do not have the same head as its parent
NP in the parse tree to be z's candidate antecedents.
We use Soon et al.'s (2001) method to create train-
ing instances: we create a positive instance between
an AZP, z, and its closest overt antecedent, and we
create a negative instance between z and each of the

intervening candidates. Each instance is represented
by the 26 features employed by Z&N. A brief de-
scription of these features can be found in Table 2.
During testing, we adopt the closest-first resolution
strategy, resolving an AZP to the closest candidate
antecedent that is classified as coreferent with it.1

The Kong and Zhou (2010) [K&Z] baseline.
K&Z employ a tree kernel-based approach to AZP
resolution. Like Z&N, K&Z (1) train a mention-
pair model for determining whether an AZP z and
a candidate antecedent of z are coreferent, (2) use
Soon et al.'s method to create training instances, and
(3) resolve an AZP to its closest coreferent can-
didate antecedent. Unlike Z&N, however, K&Z
use the SVMlight−TK learning algorithm (Moschitti,

1When resolving a goldAZP z, if none of the preceding can-
didate antecedents is classified as coreferent with it, we resolve
it to the candidate that has the highest coreference likelihood
with it. Here, we employ the signed distance from the SVM
hyperplane to measure the coreference likelihood.
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2006) to train their model, employing a parse sub-
tree known as a dynamic expansion tree (Zhou et al.,
2008) as a structured feature to represent an instance.

3 Extension 1: Novel Features

We propose three kinds of features to better capture
the context of an AZP, as described below.
Antecedent compatibility. AZPs are omitted sub-
jects that precede VP nodes in a sentence's parse
tree. From the VP node, we can extract its head verb
(Predz) and the head of its object NP (Obj), if any.
Note that Predz and Obj contain important contex-
tual information for an AZP.
Next, observe that if a NP is coreferent with an

AZP, it should be able to fill the AZP's gap and be
compatible with the gap's context. Consider the fol-
lowing example:

E1: 他们೼䆩那个服务Ǆ那Мଞህᰃ ∗pro∗Ꮰᳯ
Ǆ׭б᳜៥们ⱘᮙᅶᴹⱘᯊࠄ
(They are trying that service. That means ∗pro∗
hope that our visitors can try it when they come in
September.)

The head of the VP following ∗pro∗ is Ꮰᳯ
(hope). There are two candidate antecedents, 他们
(They) and 那个服务 (that service). If we try us-
ing them to fill this AZP's gap, we know based on
selectional preferences that 他们Ꮰᳯ (They hope)
makes more sense than那个服务Ꮰᳯ (that service
hope). We supply the AZP resolver with the fol-
lowing information to help it make these decisions.
First, we find the head word of each candidate an-
tecedent, Headc. Then we form two strings, Headc

+ Predz and Headc + Predz + Obj (if the object
of the VP is present). Finally, we employ them as bi-
nary lexical features, setting their feature values to 1
if and only if they can be extracted from the instance
under consideration. The training data can be used
to determine which of these features are useful.2

Narrative event chains. A narrative event chain is
a partially ordered set of events related by a common
protagonist (Chambers and Jurafsky, 2008). For ex-
ample, we can infer from the chain "borrow-s invest-
s spend-s lend-s" that a person who borrows (pre-

2We tried to apply Kehler et al.'s (2004) and Yang et
al.'s (2005) methods to learn Chinese selectional preferences
from unlabeled data, but without success.

sumably money) can invest it, spend it, or lend it to
other people.3 Consider the following example:

E2: 国家㒭䪅њˈ∗pro∗ᦤկ䖭䚼ߚⱘ䪅䛑ᰃ㞾
Ꮕ᠔䞠᣷ⱘǄ
(The country gives our department money, but all
∗pro∗ provides is exactly what we worked for.)

In E2, ∗pro∗ is coreferent with 国家 (The coun-
try), and the presence of the narrative event chain㒭
−ᦤկ (gives−provides) suggests that the subjects
of the two events are likely to be coreferent.
However, given the unavailability of induced or

hand-crafted narrative chains in Chinese4, we make
the simplifying assumption that two verbs form a
lexical chain if they are lexically identical.5 We
create two features to exploit narrative event chains
for a candidate NP, c, if it serves as a subject or
object. Specifically, let the verb governing c be
Predc. The first feature, which encodes whether
narrative chains are present, has three possible val-
ues: 0 if Predc and Predz are not the same; 1 if
Predc and Predz are the same and c is a subject;
and 2 if Predc and Predz are the same and c is an
object. The second feature is a binary lexical fea-
ture, Predc+Predz+Subject/Object; its value is
1 if and only if Predc, Predz , and Subject/Object
can be found in the associated instance, where
Subject/Object denotes the grammatical role of c.
Final punctuation hint. We observe that the punc-
tuation (Punc) at the end of a sentence where an
AZP occurs also provides contextual information,
especially in conversation documents. In conversa-
tions, if a sentence containing an AZP ends with a

3"-s" denotes the fact that the protagonist serves as the gram-
matical subject in these events.

4We tried to construct narrative chains for Chinese using
both learning-based and dictionary-based methods. Specifi-
cally, we induced narrative chains using Chambers and Juraf-
sky's (2008) method, but were not successful owing to the lack
of an accurate Chinese coreference resolver. In addition, we
constructed narrative chains using both lexically identical verbs
and the synonyms obtained from a WordNet-like Chinese re-
source called Tongyicicilin, but they did not help improve reso-
lution performance.

5Experiments on the training data show that if an AZP and
a candidate antecedent are subjects of (different occurrences of)
the same verb, then the probability that the candidate antecedent
is coreferent with the AZP is 0.703. This result suggests that our
assumption, though somewhat simplistic, is useful as far as AZP
resolution is concerned.
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A:她⦄೼⫳⌏ᗢМḋ˛
(A: How is her life now? )
B: ∗pro1∗ᇍ⫳⌏ˈህᰃᕜᴈ㋴ˈᕜㅔऩǄ
(B: ∗pro1∗ attitude toward life is plain and simple.)
A:௃Ǆ
(A: Yes.)
A: ∗pro2∗ᰃ೼࣫Ҁ䖬ᰃ೼㕢国˛
(A: ∗pro2∗ is living in Beijing or the USA?)
B: ∗pro3∗೼㕢国Ǆ
(B: ∗pro3∗ is living in the USA.)

Figure 1: An illustrative example.

question mark, the mention this AZP refers to is less
likely to be the speaker himself6, as illustrated in the
following example:

E3: ໽ހ ∗pro∗ދ৫˛
(Are ∗pro∗ cold in the winter?)

Here, ∗pro∗ refers to the person the speaker talks
with. To capture this information, we create a binary
lexical feature, Headc+Punc, whose value is 1 if
and only if Headc and Punc appear in the instance
under consideration.

4 Extension 2: Zero Pronoun Links

4.1 Motivation
Like an overt pronoun, a ZP whose closest overt
antecedent is far away from it is harder to resolve
than one that has a nearby overt antecedent. How-
ever, a corpus study of our training data reveals that
only 55.2% of the AZPs appear in the same sentence
as their closest overt antecedent, and 22.7% of the
AZPs appear two or more sentences away from their
closest overt antecedent.
Fortunately, we found that some of the difficult-

to-resolve AZPs (i.e., AZPs whose closest overt an-
tecedents are far away from them) are coreferential
with nearby ZPs. Figure 1, which consists of a set of
sentences from a conversation, illustrates this phe-
nomenon. There are three AZPs (denoted by ∗proi∗,
where 1 ≤ i ≤ 3), all of which refer to the overt
pronoun 她 (She) in the first sentence. In this ex-
ample, it is fairly easy to resolve ∗pro1∗ correctly,

6One may wonder whether we can similarly identify con-
straints on the antecedents of a ZP from clause conjunctions.
Our preliminary analysis suggests that the answer is no.

Training Test
Documents 1,391 172
Sentences 36,487 6,083
Words 756,063 110,034
ZPs 23,065 3,658
AZPs 12,111 1,713

Table 3: Statistics on the training and test sets.

since its antecedent is the subject of previous sen-
tence. However, ∗pro3∗ and its closest overt an-
tecedent她 (She) are four sentences apart. Together
with the fact that there are many intervening candi-
date antecedents, it is not easy for a resolver to cor-
rectly resolve ∗pro3∗.
To facilitate the resolution of ∗pro3∗ and difficult-

to-resolve AZPs in general, we propose the follow-
ing idea. We allow an AZP resolver to (1) establish
coreferent links between two consecutive ZPs (i.e.,
∗pro1∗−∗pro2∗ and ∗pro2∗−∗pro3∗ in our exam-
ple), which are presumably easy to establish because
the two AZPs involved are close to each other; and
then (2) treat them as bridges and infer that ∗pro3∗'s
overt antecedent is她 (She).

4.2 Modified Resolution Algorithm

We implement the aforementioned idea by modify-
ing the AZP resolver as follows. Whenwe resolve an
AZP z during testing, we augment the set of candi-
date antecedents for z with the set of AZPs preceding
z. Since we have only specified how to compute fea-
tures for instances composed of an AZP and an overt
candidate antecedent thus far (see Section 2.2), the
question, then, is: how can we compute features for
instances composed of two AZPs?
To answer this question, we first note that the

AZPs in a test text are resolved in a left-to-right man-
ner. Hence, by the time we resolve an AZP z, all the
AZPs preceding z have been resolved. Hence, when
we create a test instance i between z and one of the
preceding AZPs (say y), we create i as if the gap y
was filled with the smallest tree embedding the NP
to which y was resolved.
By allowing coreference links between (presum-

ably nearby) ZPs to be established, we can reason
over the resulting coreference links, treating them as
bridges that can help us find an overt antecedent that
is far away from an AZP.
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Gold AZP System AZP System AZP
Gold Parse Tree Gold Parse Tree System Parse Tree

System Variation R P F R P F R P F
K&Z Baseline System 38.0 38.0 38.0 17.7 22.4 19.8 10.6 13.6 11.9
Z&N Baseline System 41.5 41.5 41.5 22.4 24.4 23.3 12.7 14.2 13.4
Z&N Baseline + Contextual Features 46.2 46.2 46.2 25.2 27.5 26.3 14.4 16.1 15.2
Z&N Baseline + Zero Pronoun Links 42.7 42.7 42.7 22.5 24.6 23.5 13.2 14.8 13.9
Full System 47.7 47.7 47.7 25.3 27.6 26.4 14.9 16.7 15.7

Table 4: Resolution results on the test set.

5 Evaluation

5.1 Experimental Setup

Dataset. For evaluation, we employ the portion of
theOntoNotes 4.0 corpus that was used in the official
CoNLL-2012 shared task. The shared task dataset is
composed of a training set, a development set, and
a test set. Since only the training set and the de-
velopment set are annotated with ZPs, we use the
training set for classifier training and reserve the de-
velopment set for testing purposes. Statistics on the
datasets are shown in Table 3. In these datasets, a ZP
is marked as ∗pro∗. We consider a ZP anaphoric if
it is coreferential with a preceding ZP or overt NP.
Evaluation measures. We express the results of
both AZP identification and AZP resolution in terms
of recall (R), precision (P) and F-score (F).

5.2 Results and Discussion

The three major columns of Table 4 show the re-
sults obtained in three settings, which differ in
terms of whether gold/system AZPs and manu-
ally/automatically constructed parse trees are used to
extract candidate antecedents and features.
In the first setting, the resolvers are provided with

gold AZPs and gold parse trees. Results are shown in
column 1. As we can see, the Z&N baseline signifi-
cantly outperforms the K&Z baseline by 3.5% in F-
score.7 Adding the contextual features, the ZP links,
and both extensions to Z&N increase its F-score sig-
nificantly by 4.7%, 1.2% and 6.2%, respectively.
In the next two settings, the resolvers operate on

the system AZPs provided by the AZP identification
component. When gold parse trees are employed,
the recall, precision and F-score of AZP identifica-
tion are 50.6%, 55.1% and 52.8% respectively. Col-
umn 2 shows the results of the resolvers obtained

7All significance tests are paired t-tests, with p < 0.05.

when these automatically identified AZPs are used.
As we can see, Z&N again significantly outperforms
K&Z by 3.5% in F-score. Adding the contextual fea-
tures, the ZP links, and both extensions to Z&N in-
crease its F-score by 3.0%, 0.2% and 3.1%, respec-
tively. The system with contextual features and the
full system both yield results that are significantly
better than those of the Z&N baseline. A closer ex-
amination of the results reveals why the ZP links are
not effective in improving performance: when em-
ploying systemAZPs, many erroneous ZP linkswere
introduced to the system.
Column 3 shows the results of the resolvers when

we employ system AZPs and the automatically gen-
erated parse trees provided by the CoNLL-2012
shared task organizers to compute candidate an-
tecedents and features. Hence, these are end-to-end
ZP resolution results. To our knowledge, these are
the first reported results on end-to-end Chinese ZP
resolution. Using automatic parse trees, the perfor-
mance on AZP identification drops to 30.8% (R),
34.4% (P) and 32.5% (F). In this setting, Z&N still
outperforms K&Z significantly, though by a smaller
margin when compared to the previous settings. In-
corporating the contextual features, the ZP links, and
both extensions increase the F-score by 1.8%, 0.5%
and 2.3%, respectively. The system with contextual
features and the full system both yield results that are
significantly better than those of the Z&N baseline.

6 Conclusions

We proposed two extensions to a state-of-the-
art Chinese AZP resolver proposed by Zhao and
Ng (2007). Experimental results on the OntoNotes
dataset showed that the resulting resolver signifi-
cantly improved both Zhao and Ng's and Kong and
Zhou's (2010) resolvers, regardless of whether gold
or system AZPs and syntactic parse trees are used.
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Abstract

This paper proposes a novel approach for rela-
tion extraction from free text which is trained
to jointly use information from the text and
from existing knowledge. Our model is based
on scoring functions that operate by learning
low-dimensional embeddings of words, enti-
ties and relationships from a knowledge base.
We empirically show on New York Times ar-
ticles aligned with Freebase relations that our
approach is able to efficiently use the extra in-
formation provided by a large subset of Free-
base data (4M entities, 23k relationships) to
improve over methods that rely on text fea-
tures alone.

1 Introduction

Information extraction (IE) aims at generating struc-
tured data from free text in order to populate Knowl-
edge Bases (KBs). Hence, one is given an incom-
plete KB composed of a set of triples of the form
(h, r , t); h is the left-hand side entity (or head), t
the right-hand side entity (or tail) and r the relation-
ship linking them. An example from the Freebase
KB1 is (/m/2d3rf ,<director-of>, /m/3/324), where
/m/2d3rf refers to the director “Alfred Hitchcock"
and /m/3/324 to the movie “The Birds".

This paper focuses on the problem of learning to
perform relation extraction (RE) under weak super-
vision from a KB. RE is sub-task of IE that consid-
ers that entities have already been detected by a dif-
ferent process, such as a named-entity recognizer.
RE then aims at assigning to a relation mention m

1www.freebase.com

(i.e. a sequence of text which states that some rela-
tion is true) the corresponding relationship from the
KB, given a pair of extracted entities (h, t) as con-
text. For example, given the triple (/m/2d3rf ,“wrote
and directed", /m/3/324), a system should predict
<director-of>. The task is said to be weakly super-
vised because for each pair of entities (h, t) detected
in the text, all relation mentions m associated with
them are labeled with all the relationships connect-
ing h and t in the KB, whether they are actually ex-
pressed by m or not.

Our key contribution is a novel model that em-
ploys not only weakly labeled text mention data, as
most approaches do, but also leverages triples from
the known KB. The model thus learns the plausi-
bility of new (h, r , t) triples by generalizing from
the KB, even though this triple is not present. A
ranking-based embedding framework is used to train
our model. Thereby, relation mentions, entities and
relationships are all embedded into a common low-
dimensional vector space, where scores are com-
puted. We show that our method can successfully
take into account information from a large-scale KB
(Freebase: 4M entities, 23k relationships) to im-
prove over systems that are only using text features.

This paper is organized as follows: Section 2
presents related work, Section 3 introduces our
model and its main influences, and experimental re-
sults are displayed in Section 4.

2 Previous Work

Learning under weak supervision is common in nat-
ural language processing, especially for tasks where
the annotation costs are significant such as in se-
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mantic parsing (Kate and Mooney, 2007; Liang et
al., 2009; Bordes et al., 2010; Matuszek et al.,
2012). This is also naturally used in IE, since it
allows to train large-scale systems without requir-
ing to label numerous texts. The idea was intro-
duced by (Craven et al., 1999), which matched the
Yeast Protein Database with PubMed abstracts. It
was also used to train open extractors based on
Wikipedia infoboxes and corresponding sentences
(Wu and Weld, 2007; Wu and Weld, 2010). Large-
scale open IE projects (e.g. (Banko et al., 2007))
also rely on weak supervision, since they learn mod-
els from a seed KB in order to extend it.

Weak supervision is also a popular option for RE:
Mintz et al. (2009) used Freebase to train weakly su-
pervised relational extractors on Wikipedia, an ap-
proach generalized by the multi-instance learning
frameworks (Riedel et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012). All these works only
use textual information to perform extraction.

Lao et al. (2012) proposed the first work aiming to
perform RE employing both KB data and text, using
a rule-based random walk method. Recently, Riedel
et al. (2013) proposed another joint approach based
on collaborative filtering for learning entity embed-
dings. This approach connects text with Freebase
by learning shared embeddings of entities through
weak supervision, in contrast to our method where
no joint learning is performed. We do not compare
to these two approaches since they use two different
evaluation protocols that greatly differ from those
used in all aforementioned previous works. Never-
theless, our method is easier to integrate into exist-
ing systems than those, since KB data is used via
the addition of a scoring term, which is trained sepa-
rately beforehand (with no shared embeddings). Be-
sides, we demonstrate in our experimental section
that our system can handle a large number of rela-
tionships, significantly larger than that presented in
(Lao et al., 2012; Riedel et al., 2013).

3 Embedding-based Framework

Our work concerns energy-based methods, which
learn low-dimensional vector representations (em-
beddings) of atomic symbols (words, entities, re-
lationships, etc.). In this framework, we learn two
models: one for predicting relationships given re-

lation mentions and another one to encode the in-
teractions among entities and relationships from the
KB. The joint action of both models in prediction
allows us to use the connection between the KB and
text to perform relation extraction. One could also
share parameters between models (via shared em-
beddings), but this is not implemented in this work.
This approach is inspired by previous work designed
to connect words and Wordnet (Bordes et al., 2012).

Both submodels end up learning vector embed-
dings of symbols, either for entities or relationships
in the KB, or for each word/feature of the vocabulary
(denoted V). The set of entities and relationships in
the KB are denoted by E and R, and nv , ne and nr

denote the size of V , E and R respectively. Given
a triple (h, r , t) the embeddings of the entities and
the relationship (vectors in Rk ) are denoted with the
same letter, in boldface characters (i.e. h, r, t).

3.1 Connecting Text and Relationships
The first part of the framework concerns the learn-
ing of a function Sm2r (m, r), based on embeddings,
that is designed to score the similarity of a relation
mention m and a relationship r .

Our scoring approach is inspired by previous
work for connecting word labels and images (We-
ston et al., 2010), which we adapted, replacing im-
ages by mentions and word labels by relationships.
Intuitively, it consists of first projecting words and
features into the embedding space and then comput-
ing a similarity measure (the dot product in this pa-
per) between this projection and a relationship em-
bedding. The scoring function is then:

Sm2r (m, r) = f(m)>r

with f a function mapping words and features into
Rk , f(m) = W>Φ(m). W is the matrix of Rnv×k

containing all word embeddings w, Φ(m) is the
(sparse) binary representation of m (∈ Rnv ) indi-
cating absence or presence of words/features, and
r ∈ Rk is the embedding of the relationship r .

This approach can be easily applied at test time to
score (mention, relationship) pairs. Since this type
of learning problem is weakly supervised, Bordes et
al. (2010) showed that a convenient way to train it
is by using a ranking loss. Hence, given a data set
D = {(mi , ri ), i = 1, ... , |D|} consisting of (men-
tion, relationship) training pairs, one could learn the
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embeddings using constraints of the form:

∀i , ∀r ′ 6= ri , f(mi )
>ri > 1 + f(mi )

>r′ , (1)

where 1 is the margin. That is, we want the re-
lation that (weakly) labels a given mention to be
scored higher than other relation by a margin of 1.
Then, given any mention m one can predict the cor-
responding relationship r̂(m) with:

r̂(m) = arg max
r ′∈R

Sm2r (m, r ′) = arg max
r ′∈R

(
f(m)>r′

)
.

Learning Sm2r (·) under constraints (1) is well
suited when one is interested in building a per-
mention prediction system. However, performance
metrics of relation extraction are sometimes mea-
sured using precision recall curves aggregated for
all mentions concerning the same pair of entities,
as in (Riedel et al., 2010). In that case the scores
across predictions for different mentions need to be
calibrated so that the most confident ones have the
higher scores. This can be better encoded with con-
straints of the following form:

∀i , j , ∀r ′ 6= ri , rj , f(mi )
>ri > 1 + f(mj)

>r′ .

In this setup, scores of pairs observed in the training
set should be larger than that of any other prediction
across all mentions. In practice, we use “soft” rank-
ing constraints (optimizing the hinge loss), i.e. we
minimize:

∀i , j , ∀r ′ 6= ri , rj , max(0, 1−f(mi )
>ri +f(mj)

>r′).

Finally, we also enforce a (hard) constraint on the
norms of the columns of W and r, i.e. ∀i , ||Wi ||2 ≤
1 and ∀j , ||rj ||2 ≤ 1. Training is carried out by
Stochastic Gradient Descent (SGD), updating W
and r at each step, following (Weston et al., 2010;
Bordes et al., 2013). That is, at the start of training
the parameters to be learnt (the nv × k word/feature
embeddings in W and the nr × k relation embed-
dings r ) are initialized to random weights. We ini-
tialize each k-dimensional embedding vector ran-
domly with mean 0, standard deviation 1

k . Then, we
iterate the following steps to train them:

1. Select at random a positive training pair
(mi , ri ).

2. Select at random a secondary training pair
(mj , rj), used to calibrate the scores.

3. Select at random a negative relation r ′ such that
r ′ 6= ri and r ′ 6= rj .

4. Make a stochastic gradient step to minimize
max(0, 1− f(mi )

>ri + f(mj)
>r′).

5. Enforce the constraint that each embedding
vector is normalized, i.e. if ||Wi ||2 > 1 then
Wi ←Wi/||Wi ||2.

3.2 Encoding Structured Data of KBs

Using only weakly labeled text mentions for train-
ing ignores much of the prior knowledge we can
leverage from a large KB such as Freebase. In or-
der to connect this relational data with our model,
we propose to encode its information into entity and
relationship embeddings. This allows us to build a
model which can score the plausibility of new en-
tity relationship triples which are missing from Free-
base. Several models have been recently developed
for that purpose (e.g. in (Nickel et al., 2011; Bor-
des et al., 2011; Bordes et al., 2012)): we chose in
this work to follow the approach of (Bordes et al.,
2013), which is simple, flexible and has shown very
promising results on Freebase data.

Given a training set S = {(hi , ri , ti ), i =
1, ... , |S|} of relations extracted from the KB, this
model learns vector embeddings of the entities and
of the relationships using the idea that the func-
tional relation induced by the r -labeled arcs of the
KB should correspond to a translation of the em-
beddings. That is, given a k-dimensional embed-
ding of the left-hand side (head) entity, adding the
k-dimensional embedding of a given relation should
yield the point (or close to the point) of the k-
dimensional embedding of the right-hand side (tail)
entity. Hence, this method enforces that h + r ≈ t
when (h, r , t) holds, while h + r should be far away
from t otherwise. The model thus gives the follow-
ing score for the plausibility of a relation:

Skb(h, r , t) = −||h + r − t||22 .

A ranking loss is also used for training Skb. The
ranking objective is designed to assign higher scores
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to existing relations versus any other possibility:

∀i ,∀h′ 6= hi , Skb(hi , ri , ti ) ≥ 1 + Skb(h′, ri , ti ),

∀i ,∀r ′ 6= ri , Skb(hi , ri , ti ) ≥ 1 + Skb(hi , r
′, ti ),

∀i ,∀t ′ 6= ti , Skb(hi , ri , ti ) ≥ 1 + Skb(hi , ri , t
′).

That is, for each known triple (h, r , t), if we re-
placed the (i) head, (ii) relation or (iii) tail with some
other possibility, the modified triple should have a
lower score (i.e. be less plausible) than the original
triple. The three sets of constraints defined above
encode the three types of modification. As in Sec-
tion 3.1 we use soft constraints via the hinge loss,
enforce constraints on the norm of embeddings, i.e.
∀h,r ,t , ||h||2 ≤ 1, ||r ||2 ≤ 1, ||t||2 ≤ 1, and training
is performed using SGD, as in (Bordes et al., 2013).

At test time, one may again need to calibrate the
scores Skb across entity pairs. We propose a sim-
ple approach: we convert the scores by ranking all
relationshipsR by Skb and instead output:

S̃kb(h, r , t)=Φ
(∑

r ′ 6=r

δ(Skb(h, r , t)>Skb(h, r ′, t))
)
,

i.e. a function of the rank of r . We chose the simpli-
fied model Φ(x) = 1 if x < τ and 0 otherwise; δ(·)
is the Kronecker function.

3.3 Implementation for Relation Extraction
Our framework can be used for relation extraction
in the following way. First, for each pair of entities
(h, t) that appear in the test set, all the correspond-
ing mentionsMh,t in the test set are collected and a
prediction is performed with:

r̂h,t = argmax
r∈R

∑
m∈Mh,t

Sm2r (m, r) .

The predicted relationship can either be a valid re-
lationship or NA – a marker that means that there is
no relation between h and t (NA is added to R dur-
ing training and is treated like other relationships).
If r̂h,t is a relationship, a composite score is defined:

Sm2r+kb(h, r̂h,t , t)=
∑

m∈Mh,t

Sm2r (m, r̂h,t)+S̃kb(h, r̂h,t , t)

That is, only the top scoring non-NA predictions are
re-scored. Hence, our final composite model favors
predictions that agree with both the mentions and the
KB. If r̂h,t is NA, the score is unchanged.

4 Experiments

We use the training and test data, evaluation frame-
work and baselines from (Riedel et al., 2010; Hoff-
mann et al., 2011; Surdeanu et al., 2012).

NYT+FB This dataset, developed by (Riedel et
al., 2010), aligns Freebase relations with the New
York Times corpus. Entities were found using the
Stanford named entity tagger (Finkel et al., 2005),
and were matched to their name in Freebase. For
each mention, sentence level features are extracted
which include part of speech, named entity and de-
pendency tree path properties. Unlike some of the
previous methods, we do not use features that aggre-
gate properties across multiple mentions. We kept
the 100,000 most frequent features.There are 52 pos-
sible relationships and 121,034 training mentions of
which most are labeled as no relation (labeled “NA”)
– there are 4700 Freebase relations mentioned in the
training set, and 1950 in the test set.

Freebase Freebase is a large-scale KB that has
around 80M entities, 23k relationships and 1.2B re-
lations. We used a subset restricted to the top 4M
entities for scalability reasons – where top is defined
as the ones with the largest number of relations to
other entities. We used all the 23k possible relation-
ships in Freebase. To make a realistic setting, we
did not choose the entity set using the NYT+FB data
set, so it may not overlap completely. For that rea-
son, we needed to keep the set rather large. Keeping
the top 4M entities gives an overlap of 80% with the
entities in the NYT+FB test set. Most importantly,
we then removed all the entity pairs present in the
NYT+FB test set from Freebase, i.e. all relations
they are involved in independent of the relationship.
This ensures that we cannot just memorize the true
relations for an entity pair – we have to learn to gen-
eralize from other entities and relations.

As the NYT+FB dataset was built on an earlier
version of Freebase we also had to translate the dep-
recated relationships into their new variants (e.g.
“/p/business/company/place_founded ” → “/orga-
nization/organization/place_founded”) to make the
two datasets link (then, the 52 relationships in
NYT+FB are now a subset of the 23k from Free-
base). We then trained the Skb model on the remain-
ing triples.

1369



recall

p
re

ci
si

o
n

0 0.1 0.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wsabie M2R+FB
MIMLRE
Hoffmann
Wsabie M2R
Riedel
Mintz

recall

p
re

ci
si

o
n

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10.4

0.5

0.6

0.7

0.8

0.9

Wsabie M2R+FB
MIMLRE
Hoffmann
Wsabie M2R
Riedel
Mintz

Figure 1: Top: Aggregate extraction precision/recall
curves for a variety of methods. Bottom: the
same plot zoomed to the recall [0-0.1] region.
WsabieM2R is our method trained only on mentions,
WsabieM2R+FB uses Freebase annotations as well.

Modeling Following (Bordes et al., 2013) we set
the embedding dimension k to 50. The learning rate
for SGD was selected using a validation set: we ob-
tained 0.001 for Sm2r , and 0.1 for Skb. For the cal-
ibration of Ŝkb, τ = 10 (note, here we are ranking
all 23k Freebase relationships). Training Sm2r took
5 minutes, whilst training Skb took 2 days due to the
large scale of the data set.

Results Figure 1 displays the aggregate precision
/ recall curves of our approach WSABIEM2R+FB

which uses the combination of Sm2r + Skb, as well
as WSABIEM2R , which only uses Sm2r , and existing
state-of-the-art approaches: HOFFMANN (Hoffmann

et al., 2011)2, MIMLRE (Surdeanu et al., 2012).
RIEDEL (Riedel et al., 2010) and MINTZ (Mintz et
al., 2009).

WSABIEM2R is comparable to, but slightly worse
than, the MIMLRE and HOFFMANN methods, possi-
bly due to its simplified assumptions (e.g. predict-
ing a single relationship per entity pair). However,
the addition of extra knowledge from other Freebase
entities in WSABIEM2R+FB provides superior per-
formance to all other methods, by a wide margin, at
least between 0 and 0.1 recall (see bottom plot).

Performance of WSABIEM2R and
WSABIEM2R+FB for recall > 0.1 degrades rapidly,
faster than that of other methods. This is also
caused by the simplifications of WSABIEM2R that
prevent it from reaching high precision when the
recall is greater than 0.1. We recall that Freebase
data is not used to detect relationships i.e. to
discriminate between NA and the rest, but only to
select the best relationship in case of detection.
That is WSABIEM2R+FB only improves precision,
not recall, so both versions of Wsabie are similar
w.r.t. recall. This could be improved by borrowing
ideas from HOFFMANN (Hoffmann et al., 2011) or
MIMLRE (Surdeanu et al., 2012) for dealing with
the multi-label case. Our approach, which uses
Freebase to increase precision, is general and could
improve any other method.

5 Conclusion

In this paper we described a framework for leverag-
ing large scale knowledge bases to improve relation
extraction by training not only on (mention, relation-
ship) pairs but using all other KB triples as well. We
empirically showed that it allows to significantly im-
prove precision on extracted relations. Our model-
ing approach is general and should apply to other
settings, e.g. for the task of entity linking.
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Abstract

In this paper, we present a recursive neural
network (RNN) model that works on a syn-
tactic tree. Our model differs from previous
RNN models in that the model allows for an
explicit weighting of important phrases for the
target task. We also propose to average param-
eters in training. Our experimental results on
semantic relation classification show that both
phrase categories and task-specific weighting
significantly improve the prediction accuracy
of the model. We also show that averaging the
model parameters is effective in stabilizing the
learning and improves generalization capacity.
The proposed model marks scores competitive
with state-of-the-art RNN-based models.

1 Introduction

Recursive Neural Network (RNN) models are
promising deep learning models which have been
applied to a variety of natural language processing
(NLP) tasks, such as sentiment classification, com-
pound similarity, relation classification and syntactic
parsing (Hermann and Blunsom, 2013; Socher et al.,
2012; Socher et al., 2013). RNN models can repre-
sent phrases of arbitrary length in a vector space of
a fixed dimension. Most of them use minimal syn-
tactic information (Socher et al., 2012).

Recently, Hermann and Blunsom (2013) pro-
posed a method for leveraging syntactic informa-
tion, namely CCG combinatory operators, to guide
composition of phrases in RNN models. While their
models were successfully applied to binary senti-
ment classification and compound similarity tasks,

there are questions yet to be answered, e.g., whether
such enhancement is beneficial in other NLP tasks
as well, and whether a similar improvement can
be achieved by using syntactic information of more
commonly available types such as phrase categories
and syntactic heads.

In this paper, we present a supervised RNN model
for a semantic relation classification task. Our model
is different from existing RNN models in that impor-
tant phrases can be explicitly weighted for the task.
Syntactic information used in our model includes
part-of-speech (POS) tags, phrase categories and
syntactic heads. POS tags are used to assign vec-
tor representations to word-POS pairs. Phrase cate-
gories are used to determine which weight matrices
are chosen to combine phrases. Syntactic heads are
used to determine which phrase is weighted during
combining phrases. To incorporate task-specific in-
formation, phrases on the path between entity pairs
are further weighted.

The second contribution of our work is the intro-
duction of parameter averaging into RNN models.
In our preliminary experiments, we observed that
the prediction performance of the model often fluc-
tuates significantly between training iterations. This
fluctuation not only leads to unstable performance
of the resulting models, but also makes it difficult to
fine-tune the hyperparameters of the model. Inspired
by Swersky et al. (2010), we propose to average the
model parameters in the course of training. A re-
cent technique for deep learning models of similar
vein is dropout(Hinton et al., 2012), but averaging
is simpler to implement.

Our experimental results show that our model per-
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Figure 1: A recursive representations of a phrase “a
word vector” with POS tags of the words (DT, NN and
NN respectively). For example, the two word-POS pairs
“word NN” and “vectorNN” with a syntactic category
N are combined to represent the phrase “word vector”.

forms better than standard RNN models. By av-
eraging the model parameters, our model achieves
performance competitive with the MV-RNN model
in Socher et al. (2012), without using computation-
ally expensive word-dependent matrices.

2 An Averaged RNN Model with Syntax

Our model is a supervised RNN that works on a bi-
nary syntactic tree. As our first step to leverage in-
formation available in the tree, we distinguish words
with the same spelling but POS tags in the vector
space. Our model also uses different weight ma-
trices dependent on the phrase categories of child
nodes (phrases or words) in combining phrases. Our
model further weights those nodes that appear to be
important.

Compositional functions of our model follow
those of the SU-RNN model in Socher et al. (2013).

2.1 Word-POS Vector Representations

Our model simply assigns vector representations to
word-POS pairs. For example, a word “caused”
can be represented in two ways: “causedVBD” and
“causedVBN”. The vectors are represented as col-
umn vectors in a matrixWe ∈ Rd×|V|, whered is
the dimension of a vector andV is a set of all word-
POS pairs we consider.

2.2 Compositional Functions with Syntax

In construction of parse trees, we associate each of
the tree node with itsd-dimensional vector represen-
tation computed from vector representations of its
subtrees. For leaf nodes, we look up word-POS vec-

tor representations inV. Figure 1 shows an example
of such recursive representations. A parent vector
p ∈ Rd×1 is computed from its direct child vectors
cl andcr∈ Rd×1:

p = tanh(αlW
Tcl

,Tcr

l cl+αrW
Tcl

,Tcr
r cr+bTcl

,Tcr ),

whereW
Tcl

,Tcr

l andW
Tcl

,Tcr
r ∈ Rd×d are weight

matrices that depend on the phrase categories ofcl

andcr. Here,cl andcr have phrase categoriesTcl

andTcr respectively (such asN, V, etc.). bTcl
,Tcr ∈

Rd×1 is a bias vector. To incorporate the impor-
tance of phrases into the model, two subtrees of a
node may have different weightsαl ∈ [0, 1] and
αr(= 1 − αl), taking phrase importance into ac-
count. The value ofαl is manually specified and
automatically applied to all nodes based on prior
knowledge about the task. In this way, we can com-
pute vector representations for phrases of arbitrary
length. We denote a set of such matrices asWlr and
bias vectors asb.

2.3 Objective Function and Learning

As with other RNN models, we add on the top of a
nodex a softmax classifier. The classifier is used to
predict aK-class distributiond(x) ∈ RK×1 over a
specific task to train our model:

d(x) = softmax(W labelx + blabel), (1)

where W label ∈ RK×d is a weight matrix and
blabel ∈ RK×1 is a bias vector. We denotet(x) ∈
RK×1 as the target distribution vector at nodex.
t(x) has a 0-1 encoding: the entry at the correct la-
bel of t(x) is 1, and the remaining entries are 0. We
then compute the cross entropy error betweend(x)
andt(x):

E(x) = −
K∑

k=1

tk(x)logdk(x),

and define an objective function as the sum ofE(x)
over all training data:

J(θ) =
∑
x

E(x) +
λ

2
∥θ∥2,

whereθ = (We,Wlr, b,W label, blabel) is the set of
our model parameters that should be learned.λ is a
vector of regularization parameters.
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To computed(x), we can directly leverage any
other nodes’ feature vectors in the same tree. We
denote such additional feature vectors asx′

i ∈ Rd×1,
and extend Eq. (1):

d(x) = softmax(W labelx+
∑

i

W add
i x′

i +blabel),

whereW add
i ∈ RK×d are weight matrices for addi-

tional features. We denote these matricesW add
i as

W add. We also addW add to θ:

θ = (We, Wlr, b, W label, W add, blabel).

The gradient ofJ(θ)

∂J(θ)

∂θ
=

∑
x

∂E(x)

∂θ
+ λθ

is efficiently computed via backpropagation through
structure (Goller and K̈uchler, 1996). To minimize
J(θ), we use batch L-BFGS1 (Hermann and Blun-
som, 2013; Socher et al., 2012).

2.4 Averaging

We use averaged model parameters

θ =
1

T + 1

T∑
t=0

θt

at test time, whereθt is the vector of model parame-
ters aftert iterations of the L-BFGS optimization.
Our preliminary experimental results suggest that
averagingθ exceptWe works well.

3 Experimental Settings

We used the Enju parser (Miyao and Tsujii, 2008)
for syntactic parsing. We used13 phrase categories
given by Enju.

3.1 Task: Semantic Relation Classification

We evaluated our model on a semantic relation clas-
sification task: SemEval 2010 Task 8 (Hendrickx et
al., 2010). Following Socher et al. (2012), we re-
garded the task as a 19-class classification problem.
There are 8,000 samples for training, and 2,717 for

1We used libLBFGS provided athttp://www.
chokkan.org/software/liblbfgs/ .

Figure 2: Classifying the relation between two entities.

test. For the validation set, we randomly sampled
2,182 samples from the training data.

To predict a class label, we first find the minimal
phrase that covers the target entities and then use the
vector representation of the phrase (Figure 2).

As explained in Section 2.3, we can directly con-
nect features on any other nodes to thesoftmax clas-
sifier. In this work, we used three such internal fea-
tures: two vector representations of target entities
and one averaged vector representation of words be-
tween the entities2.

3.2 Weights on Phrases

We tuned the weightαl (or αr) introduced in Sec-
tion 2.2 for this particular task. There are two fac-
tors: syntactic heads and syntactic path between tar-
get entities. Our model puts a weightβ ∈ [0.5, 1]
on head phrases, and1 − β on the others. For re-
lation classification tasks, syntactic paths between
target entities are important (Zhang et al., 2006), so
our model also puts another weightγ ∈ [0.5, 1] on
phrases on the path, and1 − γ on the others. When
both child nodes are on the path or neither of them
on the path, we setγ = 0.5. The two weight fac-
tors are summed up and divided by2 to be the final
weightsαl andαr to combine the phrases. For ex-
ample, we setαl = (1−β)+γ

2 and αr = β+(1−γ)
2

when the right child node is the head and the left
child node is on the path.

3.3 Initialization of Model Parameters and
Tuning of Hyperparameters

We initializedWe with 50-dimensional word vec-
tors3 trained with the model of Collobert et

2Socher et al. (2012) used richer features including words
around entity pairs in their implementation.

3The word vectors are provided athttp://ronan.
collobert.com/senna/ . We used the vectors without any
modifications such as normalization.
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Method F1 (%)

Our model 79.4
RNN 74.8
MV-RNN 79.1
RNN w/ POS, WordNet, NER 77.6
MV-RNN w/ POS, WordNet, NER 82.4
SVM w/ bag-of-words 73.1
SVM w/ lexical and semantic features 82.2

Table 1: Comparison of our model with other methods on
SemEval 2010 task 8.

Method F1 (%)

Our model 79.4
Our model w/o phrase categories (PC) 77.7
Our model w/o head weights (HW) 78.8
Our model w/o path weights (PW) 78.7
Our model w/o averaging (AVE) 76.9
Our model w/o PC, HW, PW, AVE 74.1

Table 2: Contributions of syntactic and task-specific in-
formation and averaging.

al. (2011), andWlr with I
2 + ε, whereI ∈ Rd×d

is an identity matrix. Here,ε is zero-mean gaussian
random variable with a variance of0.01. The ini-
tialization of Wlr is the same as that of Socher et
al. (2013). The remaining model parameters were
initialized with0.

We tuned hyperparameters in our model using the
validation set for each experimental setting. The hy-
perparameters include the regularization parameters
for We, Wlr, W label andW add, and the weightsβ
andγ. For example, the best performance for our
model with all the proposed methods was obtained
with the values:10−6, 10−4, 10−3, 10−3, 0.7 and
0.9 respectively.

4 Results and Discussion

Table 1 shows the performance of our model and that
of previously reported systems on the test set. The
performance of an SVM system with bag-of-words
features was reported in Rink and Harabagiu (2010),
and the performance of the RNN and MV-RNN
models was reported in Socher et al. (2012). Our
model achieves an F1 score of 79.4% and outper-
forms the RNN model (74.8% F1) as well as the
simple SVM-based system (73.1% F1). More no-

Figure 3: F1 vs Training iterations.

tably, the score of our model is competitive with that
of the MV-RNN model (79.1% F1), which is com-
putationally much more expensive. Readers are re-
ferred to Hermann and Blunsom (2013) for the dis-
cussion about the computational complexity of the
MV-RNN model. We improved the performance of
RNN models on the task without much increasing
the complexity. This is a significant practical advan-
tage of our model, although its expressive power is
not the same as that of the MV-RNN model.

Our model outperforms the RNN model with one
lexical and two semantic external features: POS
tags, WordNet hypernyms and named entity tags
(NER) of target word pairs (external features). The
MV-RNN model with external features shows bet-
ter performance than our model. An SVM with rich
lexical and semantic features (Rink and Harabagiu,
2010) also outperforms ours. Note, however, that
this is not a fair comparison because those mod-
els use rich external resources such as WordNet and
named entity tags.

4.1 Contributions of Proposed Methods

We conducted additional experiments to quantify the
contributions of phrase categories, heads, paths and
averaging to our classification score. As shown in
Table 2, our model without phrase categories, heads
or paths still outperforms the RNN model with ex-
ternal features. On the other hand, our model with-
out averaging yields a lower score than the RNN
model with external features, though it is still bet-
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ter than the RNN model alone. Without utiliz-
ing these four properties, our model obtained only
74.1% F1. These results indicate that syntactic and
task-specific information and averaging contribute
to the performance improvement. The improvement
is achieved by a simple modification of composi-
tional functions in RNN models.

4.2 Effects of Averaging in Training

Figure 3 shows the training curves in terms of F1
scores. These curves clearly demonstrate that pa-
rameter averaging helps to stabilize the learning and
improve generalization capacity.

5 Conclusion

We have presented an averaged RNN model for se-
mantic relation classification. Our experimental re-
sults show that syntactic information such as phrase
categories and heads improves the performance, and
the task-specific weighting is also beneficial. The
results also demonstrate that averaging the model
parameters not only stabilizes the learning but also
improves the generalization capacity of the model.
As future work, we plan to combine deep learning
models with richer information such as predicate-
argument structures.
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Abstract

Automatically clustering words from a mono-
lingual or bilingual training corpus into
classes is a widely used technique in statisti-
cal natural language processing. We present
a very simple and easy to implement method
for using these word classes to improve trans-
lation quality. It can be applied across differ-
ent machine translation paradigms and with
arbitrary types of models. We show its ef-
ficacy on a small German→English and a
larger French→German translation task with
both standard phrase-based and hierarchical
phrase-based translation systems for a com-
mon set of models. Our results show that with
word class models, the baseline can be im-
proved by up to 1.4% BLEU and 1.0% TER
on the French→German task and 0.3% BLEU
and 1.1% TER on the German→English task.

1 Introduction

Data sparsity is one of the major problems for statis-
tical learning methods in natural language process-
ing (NLP) today. Even with the huge training data
sets available in some tasks, for many phenomena
that need to be modeled only few training instances
can be observed. This is partly due to the large vo-
cabularies of natural languages. One possiblity to
reduce the sparsity for model estimation is to re-
duce the vocabulary size. By clustering the vocab-
ulary into a fixed number of word classes, it is pos-
sible to train models that are less prone to sparsity
issues. This work investigates the performance of
standard models used in statistical machine transla-

tion when they are trained on automatically learned
word classes rather than the actual word identities.

In the popular tooklit GIZA++ (Och and Ney,
2003), word classes are an essential ingredient to
model alignment probabilities with the HMM or
IBM translation models. It contains the mkcls tool
(Och, 1999), which can automatically cluster the vo-
cabulary into classes.

Using this tool, we propose to re-parameterize the
standard models used in statistical machine transla-
tion (SMT), which are usually conditioned on word
identities rather than word classes. The idea is that
this should lead to a smoother distribution, which
is more reliable due to less sparsity. Here, we fo-
cus on the phrase-based and lexical channel models
in both directions, simple count models identifying
frequency thresholds, lexicalized reordering models
and an n-gram language model. Although our re-
sults show that it is not a good idea to replace the
original models, we argue that adding them to the
log-linear feature combination can improve transla-
tion quality. They can easily be computed for dif-
ferent translation paradigms and arbitrary models.
Training and decoding is possible without or with
only little change to the code base.

Our experiments are conducted on a medium-
sized French→German task and a small
German→English task and with both phrase-
based and hierarchical phrase-based translation
decoders. By using word class models, we can
improve our respective baselines by 1.4% BLEU and
1.0% TER on the French→German task and 0.3%
BLEU and 1.1% TER on the German→English task.

Training an additional language model for trans-
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lation based on word classes has been proposed in
(Wuebker et al., 2012; Mediani et al., 2012; Koehn
and Hoang, 2007). In addition to the reduced spar-
sity, an advantage of the smaller vocabulary is that
longer n-gram context can be modeled efficiently.

Mathematically, our idea is equivalent to a special
case of the Factored Translation Models proposed
by Koehn and Hoang (2007). We will go into more
detail in Section 4. Also related to our work, Cherry
(2013) proposes to parameterize a hierarchical re-
ordering model with sparse features that are condi-
tioned on word classes trained with mkcls. How-
ever, the features are trained with MIRA rather than
estimated by relative frequencies.

2 Word Class Models

2.1 Standard Models

The translation model of most phrase-based and hi-
erarchical phrase-based SMT systems is parameter-
ized by two phrasal and two lexical channel models
(Koehn et al., 2003) which are estimated as relative
frequencies. Their counts are extracted heuristically
from a word aligned bilingual training corpus.

In addition to the four channel models, our base-
line contains binary count features that fire, if the
extraction count of the corresponding phrase pair is
greater or equal to a given threshold τ . We use the
thresholds τ = {2, 3, 4}.

Our phrase-based baseline contains the hierarchi-
cal reordering model (HRM) described by Galley
and Manning (2008). Similar to (Cherry et al.,
2012), we apply it in both translation directions
with separate scaling factors for the three orientation
classes, leading to a total of six feature weights.

An n-gram language model (LM) is another im-
portant feature of our translation systems. The
baselines apply 4-gram LMs trained by the SRILM
toolkit (Stolcke, 2002) with interpolated modified
Kneser-Ney smoothing (Chen and Goodman, 1998).
The smaller vocabulary size allows us to efficiently
model larger context, so in addition to the 4-gram
LM, we also train a 7-gram LM based on word
classes. In contrast to an LM of the same size trained
on word identities, the increase in computational re-
sources needed for translation is negligible for the
7-gram word class LM (wcLM).

2.2 Training
By replacing the words on both source and target
side of the training data with their respective word
classes and keeping the word alignment unchanged,
all of the above models can easily be trained con-
ditioned on word classes by using the same training
procedure as usual. We end up with two separate
model files, usually in the form of large tables, one
with word identities and one with classes. Next, we
sort both tables by their word classes. By walking
through both sorted tables simultaneously, we can
then efficiently augment the standard model file with
an additonal feature (or additional features) based on
word classes. The word class LM is directly passed
on to the decoder.

2.3 Decoding
The decoder searches for the best translation given
a set of models hm(eI1, s

K
1 , f

J
1 ) by maximizing the

log-linear feature score (Och and Ney, 2004):

êÎ1 = arg max
I,eI

1

{
M∑

m=1

λmhm(eI1, s
K
1 , f

J
1 )

}
, (1)

where fJ
1 = f1 . . . fJ is the source sentence, eI1 =

e1 . . . eI the target sentence and sK
1 = s1 . . . sK the

hidden alignment or derivation.
All the above mentioned models can easily be in-

tegrated into this framework as additional features
hm. The feature weights λm are tuned with mini-
mum error rate training (MERT) (Och, 2003).

3 Experiments

3.1 Data
Our experiments are performed on a
French→German task. In addition to some
project-internal data, we train the system on the data
provided for the WMT 2012 shared task1. Both the
dev and the test set are composed of a mixture
of broadcast news and broadcast conversations
crawled from the web and have two references.
Table 1 shows the data statistics.

To confirm our results we also run experiments
on the German→English task of the IWSLT 2012
evaluation campaign2.

1http://www.statmt.org/wmt12/
2http://hltc.cs.ust.hk/iwslt/
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French German
train Sentences 1.9M

Running Words 57M 50M
dev Sentences 1900

Running Words 61K 55K
test Sentences 2037

Running Words 60K 54K

Table 1: Corpus statistics for the French→German task.
The running word counts for the German side of dev and
test are averaged over both references.

3.2 Setup

In the French→German task, our baseline is a stan-
dard phrase-based system augmented with the hier-
archical reordering model (HRM) described in Sec-
tion 2.1. The language model is a 4-gram LM
trained on all German monolingual sources provided
for WMT 2012. For the class-based models, we
run mkcls on the source and target side of the
bilingual training data to cluster the vocabulary into
100 classes each. This clustering is used to train
the models described above for word classes on the
same training data as their counterparts based on
word identity. This also holds for the wcLM, which
is a 4-gram LM trained on the same data as the base-
line LM. Further, the smaller vocabulary allows us
to build an additional wcLM with a 7-gram context
length. On this task we also run additional experi-
ments with 200 and 500 classes.

On the German→English task, we evaluate our
method for both a standard phrase-based and the hi-
erarchical phrase-based baseline. Again, the phrase-
based baseline contains the HRM model. As bilin-
gual training data we use the TED talks, which we
cluster into 100 classes on both source and target
side. The 4-gram LM is trained on the TED, Eu-
roparl and news-commentary corpora. On this data
set, we directly use a 7-gram wcLM.

In all setups, the feature weights are optimized
with MERT. Results are reported in BLEU (Pap-
ineni et al., 2002) and TER (Snover et al., 2006),
confidence level computation is based on (Koehn,
2004). Our experiments are conducted with the open
source toolkit Jane (Wuebker et al., 2012; Vilar et
al., 2010).

dev test
BLEU TER BLEU TER

[%] [%] [%] [%]
-TM +wcTM 21.2 64.2 24.7 59.5
-LM +wcLM 22.2 62.9 25.9 58.9
-HRM +wcHRM 24.6 61.9 27.5 58.1
phrase-based 24.6 61.8 27.8 57.6

+ wcTM 24.7 61.4 28.1 57.1
+ wcLM 24.9 61.2 28.4 57.1

+ wcHRM 25.4‡ 60.9‡ 28.9‡ 56.9‡
+ wcLM7 25.5‡ 60.7‡ 29.2‡ 56.6‡

+ wcModels200 25.5‡ 60.8‡ 29.3‡ 56.4‡
+ wcModels500 25.2† 60.8‡ 29.0‡ 56.6‡

Table 2: BLEU and TER results on the French→German
task. Results marked with ‡ are statistically significant
with 95% confidence, results marked with † with 90%
confidence. -X +wcX denote the systems, where the
model X in the baseline is replaced by its word class
counterpart. The 7-gram word class LM is denoted
as wcLM7. wcModelsX denotes all word class models
trained on X classes.

3.3 Results

Results for the French→German task are given in
Table 2. In a first set of experiments we replaced one
of the standard TM, LM and HRM models by the
same model based on word classes. Unsurprisingly,
this degrades performance with different levels of
severity. The strongest degradation can be seen
when replacing the TM, while replacing the HRM
only leads to a small drop in performance. However,
when the word class models are added as additional
features to the baseline, we observe improvements.
The wcTM yields 0.3% BLEU and 0.5% TER on
test. By adding the 4-gram wcLM, we get another
0.3% BLEU and the wcHRM shows further improve-
ments of 0.5% BLEU and 0.2% TER. Extending the
context length of the wcLM to 7-grams gives an ad-
ditional boost, reaching a total gain over the baseline
of 1.4% BLEU and 1.0% TER. Using 200 classes
instead of 100 seems to perform slightly better on
test, but with 500 classes, translation quality de-
grades again.

On the German→English task, the results shown
in Table 3 are similar in TER, but less pronounced
in BLEU. Here we are able to improve over the
phrase-based baseline by 0.3% BLEU and 1.1% TER
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dev test
BLEU TER BLEU TER

[%] [%] [%] [%]
phrase-based 30.2 49.6 28.6 51.6

+ wcTM 30.2 49.2 28.9 51.3
+ wcLM7 30.5 48.3‡ 29.0 50.6†

+ wcHRM 30.8 48.3‡ 28.9 50.5‡
hiero 29.6 50.3 27.9 52.5

+ wcTM 29.8 50.3 28.1 52.3
+ wcLM7 30.0 49.8 28.2 51.7

Table 3: BLEU and TER results on the German→English
task. Results marked with ‡ are statistically significant
with 95% confidence, results marked with † with 90%
confidence.

by adding the wcTM, the 7-gram wcLM and the
wcHRM. With the hierarchical decoder we gain
0.3% BLEU and 0.8% TER by adding the wcTM and
the 7-gram wcLM.

4 Equivalence to Factored Translation

Koehn and Hoang (2007) propose to integrate differ-
ent levels of annotation (e.g. morphologial analysis)
as factors into the translation process. Here, the sur-
face form of the source word is analyzed to produce
the factors, which are then translated and finally the
surface form of the target word is generated from the
target factors. Although the translations of the fac-
tors operate on the same phrase segmentation, they
are assumed to be independent. In practice this is
done by phrase expansion, which generates a joint
phrase table as the cross product from the phrase ta-
bles of the individual factors.

In contrast, in this work each word is mapped to
a single class, which means that when we have se-
lected a translation option for the surface form, the
target side on the word class level is predetermined.
Thus, no phrase expansion or generation steps are
necessary to incorporate the word class information.
The phrase table can simply be extended with addi-
tional scores, keeping the set of phrases constant.

Although the implementation is simpler, our ap-
proach is mathematically equivalent to a special
case of the factored translation framework, which is
shown in Figure 1. The generation step from target
word e to its target class c(e) assigns all probability

Input Output

word f word e

class c(f) class c(e)

analysis

translation

translation

generation   

Figure 1: The factored translation model equivalent to
our approach. The generation step assigns all probability
mass to a single event: pgen(c(e)|e) = 1.

mass to a single event:

pgen(c|e) =

{
1, if c = c(e)

0, else
(2)

5 Conclusion

We have presented a simple and very easy to im-
plement method to make use of word clusters for
improving machine translation quality. It is appli-
cable across different paradigms and for arbitrary
types of models. Depending on the model type,
it requires little or no change to the training and
decoding software. We have shown the efficacy
of this method on two translation tasks and with
both the standard phrase-based and the hierarchi-
cal phrase-based translation paradigm. It was ap-
plied to relative frequency translation probabilities,
the n-gram language model and a hierarchical re-
ordering model. In our experiments, the baseline
is improved by 1.4% BLEU and 1.0% TER on the
French→German task and by 0.3% BLEU and 1.1%
TER on the German→English task.

In future work we plan to apply our method to a
wider range of languages. Intuitively, it should be
most effective for morphologically rich languages,
which naturally have stronger sparsity problems.
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Abstract

This paper presents a novel word reordering
model that employs a shift-reduce parser for
inversion transduction grammars. Our model
uses rich syntax parsing features for word re-
ordering and runs in linear time. We apply it to
postordering of phrase-based machine trans-
lation (PBMT) for Japanese-to-English patent
tasks. Our experimental results show that our
method achieves a significant improvement
of +3.1 BLEU scores against 30.15 BLEU
scores of the baseline PBMT system.

1 Introduction

Even though phrase-based machine translation
(PBMT) (Koehn et al., 2007) and tree-based MT
(Graehl and Knight, 2004; Chiang, 2005; Galley
et al., 2006) systems have achieved great success,
many problems remain for distinct language pairs,
including long-distant word reordering.

To improve such word reordering, one promis-
ing way is to separate it from the translation pro-
cess as preordering (Collins et al., 2005; DeNero
and Uszkoreit, 2011) or postordering (Sudoh et al.,
2011; Goto et al., 2012). Many studies utilize a rule-
based or a probabilistic model to perform a reorder-
ing decision at each node of a syntactic parse tree.

This paper presents a parser-based word reorder-
ing model that employs a shift-reduce parser for in-
version transduction grammars (ITG) (Wu, 1997).
To the best of our knowledge, this is the first study
on a shift-reduce parser for word reordering.

The parser-based reordering approach uses rich
syntax parsing features for reordering decisions.
Our propoesd method can also easily define such

....
Source-

ordered Target
Sentence (HFE)

.Source Sen-
tence (J)

. Target Sen-
tence (E)

...

reordering

Figure 1: A description of the postordering MT system.

non-local features as the N -gram words of reordered
strings. Even when using these non-local features,
the complexity of the shift-reduce parser does not
increase at all due to give up achieving an optimal
solution. Therefore, it works much more efficient.

In our experiments, we apply our proposed
method to postordering for J-to-E patent tasks be-
cause their training data for reordering have little
noise and they are ideal for evaluating reordering
methods. Although our used J-to-E setups need
a language-dependent scheme and we describe our
proposed method as a J-to-E postordering method,
the key algorithm is language-independent and it can
be applicable to preordering as well as postordering
if the training data for reordering are available.

2 Postordering by Parsing

As shown in Fig.1, postordering (Sudoh et al., 2011)
has two steps; the first is a translation step that trans-
lates an input sentence into source-ordered transla-
tions. The second is a reordering step in which the
translations are reordered in the target language or-
der. The key to postordering is the second step.

Goto et al. (2012) modeled the second step by
parsing and created training data for a postordering
parser using a language-dependent rule called head-
finalization. The rule moves syntactic heads of a
lexicalized parse tree of an English sentence to the
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....S(saw).

.... ..VP(saw).

.... ..PP(with).

.... ..NP(telescope).

.... ..N(telescope).

....telescope.

....D(a).

....a

.

....PR(with).

....with

.

....VP(saw).

.... ..NP(girl).

.... ..N(girl).

....girl.

....D(a).

....a

.

....V(saw).

....saw

.

....NP(I).

....N(I).

....I

.

..

.... ..mita. .... ..wo. .... ..shoujyo. .... ..de. .... ..bouenkyo. .... ..wa. ....watashi

. ..S(saw).

.... ..VP#(saw).

.... ..VP#(saw).

.... ..V(saw).

....saw

.

....NP(wo)“a/an”.

.... ..WO(wo).

....wo.

....N(girl).

....girl.

....PP#(with).

.... ..PR(with).

....with

.

....NP(telescope)“a/an”.

....N(telescope).

....telescope

.

....NP(wa)“no articles”.

.... ..WA(wa).

....wa.

....N(I).

....I

.

..

.... ..mita. .... ..wo. .... ..shoujyo. .... ..de. .... ..bouenkyo. .... ..wa. ....watashi

Figure 2: An example of the head-finzalizaton process for an English-Japanese sentence pair: the left-hand side tree
is the original English tree, and the right-hand side tree is its head-final English tree.

end of the corresponding syntactic constituents. As
a result, the terminal symbols of the English tree are
sorted in a Japanese-like order. In Fig.2, we show an
example of head-finalization and a tree on the right-
hand side is a head-finalized English (HFE) tree of
an English tree on the left-hand side. We annotate
each parent node of the swapped edge with # sym-
bol. For example, a nonterminal symbol PP#(with)
shows that a noun phrase “a/an telescope” and a
word “with” are inverted.

For better word alignments, Isozaki et al. (2012)
also deleted articles “the” “a” “an” from English be-
cause Japanese has no articles, and inserted Japanese
particles “ga” “wo” “wa” into English sentences.
We privilege the nonterminals of a phrase modified
by a deleted article to determine which “the” “a/an”
or “no articles” should be inserted at the front of the
phrase. Note that an original English sentence can
be recovered from its HFE tree by using # symbols
and annotated articles and deleting Japanese parti-
cles.

As well as Goto et al. (2012), we solve postorder-
ing by a parser whose model is trained with a set
of HFE trees. The main difference between Goto et
al. (2012)’s model and ours is that while the former
simply used the Berkeley parser (Petrov and Klein,
2007), our shift-reduce parsing model can use such
non-local task specific features as the N -gram words
of reordered strings without sacrificing efficiency.

Our method integrates postediting (Knight and
Chander, 1994) with reordering and inserts articles
into English translations by learning an additional
“insert” action of the parser. Goto et al. (2012)
solved the article generation problem by using an

N -gram language model, but this somewhat compli-
cates their approach. Compared with other parsers,
one advantage of the shift-reduce parser is to easily
define such additional operations as “insert”.

HFE trees can be defined as monolingual ITG
trees (DeNero and Uszkoreit, 2011). Our monolin-
gual ITG G is a tuple G = (V, T, P, I, S) where V
is a set of nonterminals, T is a set of terminals, P
is a set of production rules, I is a set of nontermi-
nals on which “the” “a/an” or “no articles” must be
determined, and S is the start symbol.

Set P consists of terminal production rules that
are responsible for generating word w(∈ T ):

X → w

and binary production rules in two forms:

X → Y Z

X# → Y Z

where X, X#, Y and Z are nonterminals. On
the right-hand side, the second rule generates two
phrases Y and Z in the reverse order. In our experi-
ments, we removed all unary production rules.

3 Shift-Reduce Parsing

Given an input sentence w1 . . . wn, the shift-reduce
parser uses a stack of partial derivations, a buffer of
input words, and a set of actions to build a parse tree.

The following is the parser’s configuration:

ℓ : ⟨i, j, S⟩ : π

where ℓ is the step size, S is a stack of elements
s0, s1, . . . , i is the leftmost span index of the stack
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top element s0, j is an index of the next input word
of the buffer, and π is a set of predictor states1.

Each stack element has at least the following com-
ponents of its partial derivation tree:

s = {H, h, wleft, wright, a}

where H is a root nonterminal or a part-of-speech tag
of the subtree, h is a head index of H, a is a variable
to which “the” “a/an” “no articles” or null are as-
signed, and wleft, wright are the leftmost and right-
most words of phrase H. When referring to compo-
nent ∗, we use a s.∗ notation.

Our proposed system has 4 actions shift-X, insert-
x, reduce-MR-X and reduce-SR-X.

The shift-X action pushes the next input word
onto the stack and assigns a part-of-speech tag X to
the word. The deduction step is as follows:

X → wj ∈ P
p︷ ︸︸ ︷

ℓ : ⟨i, j, S|s′
0⟩ : π

ℓ + 1 : ⟨j, j + 1, S|s′
0|s0)⟩ : {p}

where s0 is {X, j, wj , wj , null}.
The insert-x action determines whether to gener-

ate “the” “a/an” or “no articles” (= x):

s′
0.X ∈ I ∧ (s′

0.a ̸= “the” ∧ s′
0.a ̸= “a/an”)

ℓ : ⟨i, j, S|s′
0)⟩ : π

ℓ + 1 : ⟨i, j, S|s0⟩ : π

where s′
0 is {X, h, wleft, wright, a} and s0 is

{X, h, wleft, wright, x} (i ≤ h, left, right < j).
The side condition prevents the parser from inserting
articles into phrase X more than twice. During pars-
ing, articles are not explicitly inserted into the input
string: they are inserted into it when backtracking to
generate a reordered string after parsing.

The reduce-MR-X action has a deduction rule:

X → Y Z ∈ P ∧ q ∈ π
q︷ ︸︸ ︷

: ⟨k, i, S|s′
2|s′

1⟩ : π′ ℓ : ⟨i, j, S|s′
1|s′

0⟩ : π

ℓ + 1 : ⟨k, j, S|s′
2|s0⟩ : π′

1Since our notion of predictor states is identical to that in
(Huang and Sagae, 2010), we omit the details here.

s0.wh ◦ s0.th s0.H s0.H ◦ s0.th s0.wh ◦ s0.H
s1.wh ◦ s1.th s1.H s1.H ◦ s1.th s1.wh ◦ s1.H
s2.th ◦ s2.H s2.wh ◦ s2.H q0.w q1.w q2.w

s0.tl ◦ s0.L s0.wl ◦ s0.L s1.tl ◦ s1.L s1.wl ◦ s1.L

s0.wh ◦ s0.H ◦ s1.wh ◦ s1.H s0.H ◦ s1.wh s0.wh ◦ s1.H
s0.H ◦ s1.H s0.wh ◦ s0.H ◦ q0.w s0.H ◦ q0.w
s1.wh ◦ s1.H ◦ q0.w s1.H ◦ q0.w s1.th ◦ q0.w ◦ q1.w

s0.wh ◦ s0.H ◦ s1.H ◦ q0.w s0.H ◦ s1.wh ◦ s1.H ◦ q0.w
s0.H ◦ s1.H ◦ q0.w s0.th ◦ s1.th ◦ q0.w
s0.wh ◦ s1.H ◦ q0.w ◦ q1.w s0.H ◦ q0.w ◦ q1.w
s0.th ◦ q0.w ◦ q1.w s0.wh ◦ s0.H ◦ s1.H ◦ s2.H
s0.H ◦ s1.wh ◦ s1.H ◦ s2.H s0.H ◦ s1.H ◦ s2.wh ◦ s2.H
s0.H ◦ s1.H ◦ s2.H s0.th ◦ s1.th ◦ s2.th

s0.H ◦ s0.R ◦ s0.L s1.H ◦ s1.R ◦ s1.L s0.H ◦ s0.R ◦ q0.w
s0.H ◦ s0.L ◦ s1.H s0.H ◦ s0.L ◦ s1.wh s0.H ◦ s1.H ◦ s1.L
s0.wh ◦ s1.H ◦ s1.R

s0.wleft ◦ s1.wright s0.tleft ◦ s1.tright

s0.wright ◦ s1.wleft s0.tright ◦ s1.tleft

s0.a ◦ s0.wleft s0.a ◦ s0.tleft s0.a ◦ s0.wleft ◦ s1.wright

s0.a ◦ s0.tleft ◦ s1.tright s0.a ◦ s0.wh s0.a ◦ s0.th

Table 1: Feature templates: s.L and s.R denote the left
and right subnodes of s. l and r are head indices of L and
R. q denotes a buffer element. t is a part-of-speech tag.

where s′
0 is {Z, h0, wleft0, wright0, a0} and s′

1 is
{Y, h1, wleft1, wright1, a1}. The action generates s0

by combining s′
0 and s′

1 with binary rule X→Y Z:

s0 = {X, h0, wleft1, wright0, a1}.

New nonterminal X is lexicalized with head word
wh0 of right nonterminal Z. This action expands Y
and Z in a straight order. The leftmost word of
phrase X is set to leftmost word wleft1 of Y, and the
rightmost word of phrase X is set to rightmost word
wright0 of Z. Variable a is set to a1 of Y.

The difference between reduce-MR-X and
reduce-SR-X actions is new stack element s0. The
reduce-SR-X action generates s0 by combining s′

0

and s′
1 with binary rule X# →Y Z:

s0 = {X#, h0, wleft0, wright1, a0}.

This action expands Y and Z in a reverse order, and
the leftmost word of X# is set to wleft0 of Z, and the
rightmost word of X# is set to wright1 of Y. Variable
a is set to a0 of Z.

We use a linear model that is discriminatively
trained with the averaged perceptron (Collins and
Roark, 2004). Table 1 shows the feature templates
used in our experiments and we call the features in
the bottom two rows “non-local” features.
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train dev test9 test10
# of sent. 3,191,228 2,000 2,000 2,300
ave. leng. (J) 36.4 36.6 37.0 43.1
ave. leng. (E) 33.3 33.3 33.7 39.6

Table 2: NTCIR-9 and 10 data statistics.

4 Experiments

4.1 Experimental Setups

We conducted experiments for NTCIR-9 and 10
patent data using a Japanese-English language pair.
Mecab2 was used for the Japanese morphological
analysis. The data are summarized in Table 2.

We used Enju (Miyao and Tsujii, 2008) for pars-
ing the English training data and converted parse
trees into HFE trees by a head-finalization scheme.
We extracted grammar rules from all the HFE trees
and randomly selected 500,000 HFE trees to train
the shift-reduce parser.

We used Moses (Koehn et al., 2007) with lexical-
ized reordering and a 6-gram language model (LM)
trained using SRILM (Stolcke et al., 2011) to trans-
late the Japanese sentences into HFE sentences.

To recover the English sentences, our shift-reduce
parser reordered only the 1-best HFE sentence. Our
strategy is much simpler than Goto et al. (2012)’s
because they used a linear inteporation of MT cost,
parser cost and N -gram LM cost to generate the best
English sentence from the n-best HFE sentences.

4.2 Main Results

The main results in Table 3 indicate our method was
significantly better and faster than the conventional
PBMT system. Our method also ourperformed Goto
et al. (2012)’s reported systems as well as a tree-
based (moses-chart) system3. Our proposed model
with “non-local” features (w/ nf.) achieved gains
against that without the features (w/o nf.). Further
feature engineering may improve the accuracy more.

4.3 Analysis

We show N -gram precisions of PBMT (dist=6,
dist=20) and proposed systems in Table 5. The re-
sults clearly show that improvements of 1-gram pre-

2https://code.google.com/p/mecab/
3All the data and the MT toolkits used in our experiments

are the same as theirs.

test9 test10
BLEU RIBES BLEU RIBES

HFE w/ art. 28.86 73.45 29.9 73.52
proposed 32.93 76.68 33.25 76.74
w/o art. 19.86 75.62 20.17 75.63
N -gram 32.15 76.52 32.28 76.46

Table 4: The effects of article generation: “w/o art.” de-
notes evaluation scores for translations of the best system
(“proposed”) in Table 3 from which articles are removed.
“HFE w/ art.” system used HFE data with articles and
generated them by MT system and the shift-reduce parser
performed only reordering. “N -gram” system inserted
articles into the translations of “w/o art.” by Goto et al.
(2012)’s article generation method.

(1–4)-gram precision

moses (dist=6) 67.1 / 36.9 / 20.7 / 11.5
moses (dist=20) 67.7 / 38.9 / 23.0 / 13.7

proposed 68.9 / 40.6 / 25.7 / 16.7

Table 5: N -gram precisions of moses (dist=6, dist=20)
and proposed systems for test9 data.

cisions are the main factors that contribute to bet-
ter performance of our proposed system than PBMT
systems. It seems that the gains of 1-gram presicions
come from postediting (article generation).

In table 4, we show the effectiveness of our joint
reordering and postediting approach (“proposed”).
The “w/o art.” results clearly show that generating
articles has great effects on MT evaluations espe-
cially for BLEU metric. Comparing “proposed” and
“HFE w/ art.” systems, these results show that poste-
diting is much more effective than generating arti-
cles by MT. Our joint approach also outperformed
“N -gram” postediting system.

5 Conclusion

We proposed a shift-reduce word ordering model
and applied it to J-to-E postordering. Our experi-
mental results indicate our method can significantly
improve the performance of a PBMT system.

Future work will investigate our method’s use-
fulness on various language datasets. We plan to
study more general methods that use word align-
ments to embed swap information in trees (Galley
et al., 2006).
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test9 test10
BLEU RIBES time (sec.) BLEU RIBES time (sec.)

PBMT (dist=6) 27.1 67.76 2.66 27.92 68.13 3.18
PBMT (dist=12) 29.55 69.84 4.15 30.03 69.88 4.93
PBMT (dist=20) 29.98 69.87 6.22 30.15 69.43 7.19

Tree-based MT** (Goto et al., 2012) 29.53 69.22 – – – –
PBMT (dist=20)** (Goto et al., 2012) 30.13 68.86 – – – –

Goto et al. (2012)** 31.75 72.57 – – – –
PBMT (dist=0) + proposed w/o nf. (beam=12) 32.59 76.35 1.46 + 0.01 32.83 76.44 1.7 + 0.01
PBMT (dist=0) + proposed w/o nf. (beam=48) 32.61 76.58 1.46 + 0.06 32.86 76.6 1.7 + 0.06

PBMT (dist=0) + proposed w/ nf. (beam=12) 32.91 76.38 1.46 + 0.01 33.15 76.53 1.7 + 0.02
PBMT (dist=0) + proposed w/ nf. (beam=48) 32.93 76.68 1.46 + 0.07 33.25 76.74 1.7 + 0.07

Table 3: System comparison: time represents the average second per sentence. ** denotes “not our experiments”.
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Abstract

We explore the application of neural language
models to machine translation. We develop a
new model that combines the neural proba-
bilistic language model of Bengio et al., rec-
tified linear units, and noise-contrastive esti-
mation, and we incorporate it into a machine
translation system both by reranking k-best
lists and by direct integration into the decoder.
Our large-scale, large-vocabulary experiments
across four language pairs show that our neu-
ral language model improves translation qual-
ity by up to 1.1 Bleu.

1 Introduction

Machine translation (MT) systems rely upon lan-
guage models (LMs) during decoding to ensure flu-
ent output in the target language. Typically, these
LMs are n-gram models over discrete representa-
tions of words. Such models are susceptible to data
sparsity–that is, the probability of an n-gram ob-
served only few times is difficult to estimate reli-
ably, because these models do not use any informa-
tion about similarities between words.

To address this issue, Bengio et al. (2003) pro-
pose distributed word representations, in which each
word is represented as a real-valued vector in a
high-dimensional feature space. Bengio et al. (2003)
introduce a feed-forward neural probabilistic LM
(NPLM) that operates over these distributed repre-
sentations. During training, the NPLM learns both a
distributed representation for each word in the vo-

cabulary and an n-gram probability distribution over
words in terms of these distributed representations.

Although neural LMs have begun to rival or even
surpass traditional n-gram LMs (Mnih and Hin-
ton, 2009; Mikolov et al., 2011), they have not yet
been widely adopted in large-vocabulary applica-
tions such as MT, because standard maximum like-
lihood estimation (MLE) requires repeated summa-
tions over all words in the vocabulary. A variety of
strategies have been proposed to combat this issue,
many of which require severe restrictions on the size
of the network or the size of the data.

In this work, we extend the NPLM of Bengio et
al. (2003) in two ways. First, we use rectified lin-
ear units (Nair and Hinton, 2010), whose activa-
tions are cheaper to compute than sigmoid or tanh
units. There is also evidence that deep neural net-
works with rectified linear units can be trained suc-
cessfully without pre-training (Zeiler et al., 2013).
Second, we train using noise-contrastive estimation
or NCE (Gutmann and Hyvärinen, 2010; Mnih and
Teh, 2012), which does not require repeated summa-
tions over the whole vocabulary. This enables us to
efficiently build NPLMs on a larger scale than would
be possible otherwise.

We then apply this LM to MT in two ways. First,
we use it to rerank the k-best output of a hierarchi-
cal phrase-based decoder (Chiang, 2007). Second,
we integrate it directly into the decoder, allowing the
neural LM to more strongly influence the model. We
achieve gains of up to 0.6 Bleu translating French,
German, and Spanish to English, and up to 1.1 Bleu
on Chinese-English translation.
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Figure 1: Neural probabilistic language model (Bengio et
al., 2003).

2 Neural Language Models

Let V be the vocabulary, and n be the order of
the language model; let u range over contexts, i.e.,
strings of length (n−1), and w range over words. For
simplicity, we assume that the training data is a sin-
gle very long string, w1 · · ·wN , where wN is a special
stop symbol, </s>. We write ui for wi−n+1 · · ·wi−1,
where, for i ≤ 0, wi is a special start symbol, <s>.

2.1 Model

We use a feedforward neural network as shown in
Figure 1, following Bengio et al. (2003). The input
to the network is a sequence of one-hot represen-
tations of the words in context u, which we write
u j (1 ≤ j ≤ n − 1). The output is the probability
P(w | u) for each word w, which the network com-
putes as follows.

The hidden layers consist of rec-
tified linear units (Nair and Hinton,
2010), which use the activation func-
tion φ(x) = max(0, x) (see graph at
right).

The output of the first hidden layer h1 is

h1 = φ

n−1∑
j=1

C jDu j

 (1)

where D is a matrix of input word embeddings
which is shared across all positions, the C j are the

context matrices for each word in u, and φ is applied
elementwise. The output of the second layer h2 is

h2 = φ (Mh1) ,

where M is the matrix of connection weights be-
tween h1 and h2. Finally, the output layer is a soft-
max layer,

P(w | u) ∝ exp
(
D′h2 + b

)
(2)

where D′ is the output word embedding matrix and b
is a vector of biases for every word in the vocabulary.

2.2 Training

The typical way to train neural LMs is to maximize
the likelihood of the training data by gradient ascent.
But the softmax layer requires, at each iteration, a
summation over all the units in the output layer, that
is, all words in the whole vocabulary. If the vocabu-
lary is large, this can be prohibitively expensive.

Noise-contrastive estimation or NCE (Gutmann
and Hyvärinen, 2010) is an alternative estimation
principle that allows one to avoid these repeated
summations. It has been applied previously to log-
bilinear LMs (Mnih and Teh, 2012), and we apply it
here to the NPLM described above.

We can write the probability of a word w given a
context u under the NPLM as

P(w | u) =
1

Z(u)
p(w | u)

p(w | u) = exp
(
D′h2 + b

)
Z(u) =

∑
w′

p(w′ | u) (3)

where p(w | u) is the unnormalized output of the unit
corresponding to w, and Z(u) is the normalization
factor. Let θ stand for the parameters of the model.

One possibility would be to treat Z(u), instead of
being defined by (3), as an additional set of model
parameters which are learned along with θ. But it is
easy to see that we can make the likelihood arbitrar-
ily large by making the Z(u) arbitrarily small.

In NCE, we create a noise distribution q(w).
For each example uiwi, we add k noise samples
w̄i1, . . . , w̄ik into the data, and extend the model to
account for noise samples by introducing a random
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variable C which is 1 for training examples and 0 for
noise samples:

P(C = 1,w | u) =
1

1 + k
·

1
Z(u)

p(w | u)

P(C = 0,w | u) =
k

1 + k
· q(w).

We then train the model to classify examples as
training data or noise, that is, to maximize the con-
ditional likelihood,

L =

N∑
i=1

(
log P(C = 1 | uiwi) +

k∑
j=1

log P(C = 0 | uiw̄i j)
)

with respect to both θ and Z(u).
We do this by stochastic gradient ascent. The gra-

dient with respect to θ turns out to be

∂L
∂θ

=

N∑
i=1

(
P(C = 0 | uiwi)

∂

∂θ
log p(wi | ui) −

k∑
j=1

P(C = 1 | uiw̄i j)
∂

∂θ
log p(w̄i j | ui)

)
and similarly for the gradient with respect to Z(u).
These can be computed by backpropagation. Unlike
before, the Z(u) will converge to a value that normal-
izes the model, satisfying (3), and, under appropriate
conditions, the parameters will converge to a value
that maximizes the likelihood of the data.

3 Implementation

Both training and scoring of neural LMs are compu-
tationally expensive at the scale needed for machine
translation. In this section, we describe some of the
techniques used to make them practical for transla-
tion.

3.1 Training
During training, we compute gradients on an en-
tire minibatch at a time, allowing the use of matrix-
matrix multiplications instead of matrix-vector mul-
tiplications (Bengio, 2012). We represent the inputs
as a sparse matrix, allowing the computation of the
input layer (1) to use sparse matrix-matrix multi-
plications. The output activations (2) are computed

only for the word types that occur as the positive ex-
ample or one of the noise samples, yielding a sparse
matrix of outputs. Similarly, during backpropaga-
tion, sparse matrix multiplications are used at both
the output and input layer.

In most of these operations, the examples in a
minibatch can be processed in parallel. However, in
the sparse-dense products used when updating the
parameters D and D′, we found it was best to di-
vide the vocabulary into blocks (16 per thread) and
to process the blocks in parallel.

3.2 Translation

To incorporate this neural LM into a MT system, we
can use the LM to rerank k-best lists, as has been
done in previous work. But since the NPLM scores
n-grams, it can also be integrated into a phrase-based
or hierarchical phrase-based decoder just as a con-
ventional n-gram model can, unlike a RNN.

The most time-consuming step in computing n-
gram probabilities is the computation of the nor-
malization constants Z(u). Following Mnih and Teh
(2012), we set all the normalization constants to one
during training, so that the model learns to produce
approximately normalized probabilities. Then, when
applying the LM, we can simply ignore normaliza-
tion. A similar strategy was taken by Niehues and
Waibel (2012). We find that a single n-gram lookup
takes about 40 µs.

The technique, described above, of grouping ex-
amples into minibatches works for scoring of k-best
lists, but not while decoding. But caching n-gram
probabilities helps to reduce the cost of the many
lookups required during decoding.

A final issue when decoding with a neural LM
is that, in order to estimate future costs, we need
to be able to estimate probabilities of n′-grams for
n′ < n. In conventional LMs, this information is
readily available,1 but not in NPLMs. Therefore, we
defined a special word <null> whose embedding is
the weighted average of the (input) embeddings of
all the other words in the vocabulary. Then, to esti-
mate the probability of an n′-gram u′w, we used the
probability of P(w | <null>n−n′u′).

1However, in Kneser-Ney smoothed LMs, this information
is also incorrect (Heafield et al., 2012).
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setting dev 2004 2005 2006
baseline 38.2 38.4 37.7 34.3
reranking 38.5 38.6 37.8 34.7
decoding 39.1 39.5 38.8 34.9

Table 1: Results for Chinese-English experiments, with-
out neural LM (baseline) and with neural LM for rerank-
ing and integrated decoding. Reranking with the neural
LM improves translation quality, while integrating it into
the decoder improves even more.

4 Experiments

We ran experiments on four language pairs – Chi-
nese to English and French, German, and Spanish
to English – using a hierarchical phrase-based MT
system (Chiang, 2007) and GIZA++ (Och and Ney,
2003) for word alignments.

For all experiments, we used four LMs. The base-
lines used conventional 5-gram LMs, estimated with
modified Kneser-Ney smoothing (Chen and Good-
man, 1998) on the English side of the bitext and the
329M-word Xinhua portion of English Gigaword
(LDC2011T07). Against these baselines, we tested
systems that included the two conventional LMs as
well as two 5-gram NPLMs trained on the same
datasets. The Europarl bitext NPLMs had a vocab-
ulary size of 50k, while the other NPLMs had a vo-
cabulary size of 100k. We used 150 dimensions for
word embeddings, 750 units in hidden layer h1, and
150 units in hidden layer h2. We initialized the net-
work parameters uniformly from (−0.01, 0.01) and
the output biases to − log |V |, and optimized them by
10 epochs of stochastic gradient ascent, using mini-
batches of size 1000 and a learning rate of 1. We
drew 100 noise samples per training example from
the unigram distribution, using the alias method for
efficiency (Kronmal and Peterson, 1979).

We trained the discriminative models with MERT
(Och, 2003) and the discriminative rerankers on
1000-best lists with MERT. Except where noted, we
ran MERT three times and report the average score.
We evaluated using case-insensitive NIST Bleu.

4.1 NIST Chinese-English

For the Chinese-English task (Table 1), the training
data came from the NIST 2012 constrained track,
excluding sentences longer than 60 words. Rules

Fr-En De-En Es-En
setting dev test dev test dev test
baseline 33.5 25.5 28.8 21.5 33.5 32.0
reranking 33.9 26.0 29.1 21.5 34.1 32.2
decoding 34.12 26.12 29.3 21.9 34.22 32.12

Table 2: Results for Europarl MT experiments, without
neural LM (baseline) and with neural LM for reranking
and integrated decoding. The neural LM gives improve-
ments across three different language pairs. Superscript 2
indicates a score averaged between two runs; all other
scores were averaged over three runs.

without nonterminals were extracted from all train-
ing data, while rules with nonterminals were ex-
tracted from the FBIS corpus (LDC2003E14). We
ran MERT on the development data, which was the
NIST 2003 test data, and tested on the NIST 2004–
2006 test data.

Reranking using the neural LM yielded improve-
ments of 0.2–0.4 Bleu, while integrating the neural
LM yielded larger improvements, between 0.6 and
1.1 Bleu.

4.2 Europarl

For French, German, and Spanish translation, we
used a parallel text of about 50M words from Eu-
roparl v7. Rules without nonterminals were ex-
tracted from all the data, while rules with nonter-
minals were extracted from the first 200k words. We
ran MERT on the development data, which was the
WMT 2005 test data, and tested on the WMT 2006
news commentary test data (nc-test2006).

The improvements, shown in Table 2, were more
modest than on Chinese-English. Reranking with
the neural LM yielded improvements of up to 0.5
Bleu, and integrating the neural LM into the decoder
yielded improvements of up to 0.6 Bleu. In one
case (Spanish-English), integrated decoding scored
higher than reranking on the development data but
lower on the test data – perhaps due to the differ-
ence in domain between the two. On the other tasks,
integrated decoding outperformed reranking.

4.3 Speed comparison

We measured the speed of training a NPLM by NCE,
compared with MLE as implemented by the CSLM
toolkit (Schwenk, 2013). We used the first 200k
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Figure 2: Noise contrastive estimation (NCE) is much
faster, and much less dependent on vocabulary size, than
MLE as implemented by the CSLM toolkit (Schwenk,
2013).

lines (5.2M words) of the Xinhua portion of Giga-
word and timed one epoch of training, for various
values of k and |V |, on a dual hex-core 2.67 GHz
Xeon X5650 machine. For these experiments, we
used minibatches of 128 examples. The timings are
plotted in Figure 2. We see that NCE is considerably
faster than MLE; moreover, as expected, the MLE
training time is roughly linear in |V |, whereas the
NCE training time is basically constant.

5 Related Work

The problem of training with large vocabularies in
NPLMs has received much attention. One strategy
has been to restructure the network to be more hi-
erarchical (Morin and Bengio, 2005; Mnih and Hin-
ton, 2009) or to group words into classes (Le et al.,
2011). Other strategies include restricting the vocab-
ulary of the NPLM to a shortlist and reverting to a
traditional n-gram LM for other words (Schwenk,
2004), and limiting the number of training examples
using resampling (Schwenk and Gauvain, 2005) or
selecting a subset of the training data (Schwenk et
al., 2012). Our approach can be efficiently applied
to large-scale tasks without limiting either the model
or the data.

NPLMs have previously been applied to MT, most
notably feed-forward NPLMs (Schwenk, 2007;
Schwenk, 2010) and RNN-LMs (Mikolov, 2012).
However, their use in MT has largely been limited
to reranking k-best lists for MT tasks with restricted
vocabularies. Niehues and Waibel (2012) integrate a
RBM-based language model directly into a decoder,
but they only train the RBM LM on a small amount
of data. To our knowledge, our approach is the first
to integrate a large-vocabulary NPLM directly into a
decoder for a large-scale MT task.

6 Conclusion

We introduced a new variant of NPLMs that com-
bines the network architecture of Bengio et al.
(2003), rectified linear units (Nair and Hinton,
2010), and noise-contrastive estimation (Gutmann
and Hyvärinen, 2010). This model is dramatically
faster to train than previous neural LMs, and can be
trained on a large corpus with a large vocabulary and
directly integrated into the decoder of a MT system.
Our experiments across four language pairs demon-
strated improvements of up to 1.1 Bleu. Code for
training and using our NPLMs is available for down-
load.2
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Abstract

We introduce bilingual word embeddings: se-

mantic embeddings associated across two lan-

guages in the context of neural language mod-

els. We propose a method to learn bilingual

embeddings from a large unlabeled corpus,

while utilizing MT word alignments to con-

strain translational equivalence. The new em-

beddings significantly out-perform baselines

in word semantic similarity. A single semantic

similarity feature induced with bilingual em-

beddings adds near half a BLEU point to the

results of NIST08 Chinese-English machine

translation task.

1 Introduction

It is difficult to recognize and quantify semantic sim-

ilarities across languages. The Fr-En phrase-pair

{‘un cas de force majeure’, ‘case of absolute neces-

sity’}, Zh-En phrase pair {‘依然故我’,‘persist in a

stubborn manner’} are similar in semantics. If co-

occurrences of exact word combinations are rare in

the training parallel text, it can be difficult for classi-

cal statistical MT methods to identify this similarity,

or produce a reasonable translation given the source

phrase.

We introduce an unsupervised neural model

to learn bilingual semantic embedding for words

across two languages. As an extension to their

monolingual counter-part (Turian et al., 2010;

Huang et al., 2012; Bengio et al., 2003), bilin-

gual embeddings capture not only semantic infor-

mation of monolingual words, but also semantic re-

lationships across different languages. This prop-

erty allows them to define semantic similarity met-

rics across phrase-pairs, making them perfect fea-

tures for machine translation.

To learn bilingual embeddings, we use a new ob-

jective function which embodies both monolingual

semantics and bilingual translation equivalence. The

latter utilizes word alignments, a natural sub-task

in the machine translation pipeline. Through large-

scale curriculum training (Bengio et al., 2009), we

obtain bilingual distributed representations which

lie in the same feature space. Embeddings of di-

rect translations overlap, and semantic relationships

across bilingual embeddings were further improved

through unsupervised learning on a large unlabeled

corpus.

Consequently, we produce for the research com-

munity a first set of Mandarin Chinese word embed-

dings with 100,000 words trained on the Chinese

Gigaword corpus. We evaluate these embedding

on Chinese word semantic similarity from SemEval-

2012 (Jin and Wu, 2012). The embeddings sig-

nificantly out-perform prior work and pruned tf-idf

base-lines. In addition, the learned embeddings

give rise to 0.11 F1 improvement in Named Entity

Recognition on the OntoNotes dataset (Hovy et al.,

2006) with a neural network model.

We apply the bilingual embeddings in an end-to-

end phrase-based MT system by computing seman-

tic similarities between phrase pairs. On NIST08

Chinese-English translation task, we obtain an im-

provement of 0.48 BLEU from a competitive base-

line (30.01 BLEU to 30.49 BLEU) with the Stanford

Phrasal MT system.
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2 Review of prior work

Distributed word representations are useful in NLP

applications such as information retrieval (Paşca et

al., 2006; Manning et al., 2008), search query ex-

pansions (Jones et al., 2006), or representing se-

mantics of words (Reisinger et al., 2010). A num-

ber of methods have been explored to train and ap-

ply word embeddings using continuous models for

language. Collobert et al. (2008) learn embed-

dings in an unsupervised manner through a con-

trastive estimation technique. Mnih and Hinton (

2008), Morin and Bengio ( 2005) proposed efficient

hierarchical continuous-space models. To system-

atically compare embeddings, Turian et al. (2010)

evaluated improvements they bring to state-of-the-

art NLP benchmarks. Huang et al. (2012) intro-

duced global document context and multiple word

prototypes. Recently, morphology is explored to

learn better word representations through Recursive

Neural Networks (Luong et al., 2013).

Bilingual word representations have been ex-

plored with hand-designed vector space mod-

els (Peirsman and Padó , 2010; Sumita, 2000),

and with unsupervised algorithms such as LDA and

LSA (Boyd-Graber and Resnik, 2010; Tam et al.,

2007; Zhao and Xing, 2006). Only recently have

continuous space models been applied to machine

translation (Le et al., 2012). Despite growing in-

terest in these models, little work has been done

along the same lines to train bilingual distributioned

word represenations to improve machine translation.

In this paper, we learn bilingual word embeddings

which achieve competitive performance on seman-

tic word similarity, and apply them in a practical

phrase-based MT system.

3 Algorithm and methods

3.1 Unsupervised training with global context

Our method starts with embedding learning formu-

lations in Collobert et al. (2008). Given a context

window c in a document d, the optimization mini-

mizes the following Context Objective for a word w

in the vocabulary:

J
(c,d)
CO =

∑

wr∈VR

max(0, 1− f(cw, d) + f(cw
r

, d))

(1)

Here f is a function defined by a neural network.

wr is a word chosen in a random subset VR of the

vocabulary, and cw
r

is the context window contain-

ing word wr. This unsupervised objective func-

tion contrasts the score between when the correct

word is placed in context with when a random word

is placed in the same context. We incorporate the

global context information as in Huang et al. (2012),

shown to improve performance of word embed-

dings.

3.2 Bilingual initialization and training

In the joint semantic space of words across two lan-

guages, the Chinese word ‘政府’ is expected to be

close to its English translation ‘government’. At the

same time, when two words are not direct transla-

tions, e.g. ‘lake’ and the Chinese word ‘潭’ (deep

pond), their semantic proximity could be correctly

quantified.

We describe in the next sub-sections the methods

to intialize and train bilingual embeddings. These

methods ensure that bilingual embeddings retain

their translational equivalence while their distribu-

tional semantics are improved during online training

with a monolingual corpus.

3.2.1 Initialization by MT alignments

First, we use MT Alignment counts as weighting

to initialize Chinese word embeddings. In our ex-

periments, we use MT word alignments extracted

with the Berkeley Aligner (Liang et al., 2006) 1.

Specifically, we use the following equation to com-

pute starting word embeddings:

Wt-init =
S∑

s=1

Cts + 1

Ct + S
Ws (2)

In this equation, S is the number of possible tar-

get language words that are aligned with the source

word. Cts denotes the number of times when word t

in the target and word s in the source are aligned in

the training parallel text; Ct denotes the total num-

ber of counts of word t that appeared in the target

language. Finally, Laplace smoothing is applied to

this weighting function.

1On NIST08 Zh-En training data and data from GALE MT

evaluation in the past 5 years

1394



Single-prototype English embeddings by Huang

et al. (2012) are used to initialize Chinese em-

beddings. The initialization readily provides a set

(Align-Init) of benchmark embeddings in experi-

ments (Section 4), and ensures translation equiva-

lence in the embeddings at start of training.

3.2.2 Bilingual training

Using the alignment counts, we form alignment

matrices Aen→zh and Azh→en. For Aen→zh, each

row corresponds to a Chinese word, and each col-

umn an English word. An element aij is first as-

signed the counts of when the ith Chinese word is

aligned with the jth English word in parallel text.

After assignments, each row is normalized such that

it sums to one. The matrix Azh→en is defined sim-

ilarly. Denote the set of Chinese word embeddings

as Vzh, with each row a word embedding, and the

set of English word embeddings as Ven. With the

two alignment matrices, we define the Translation

Equivalence Objective:

JTEO-en→zh = ‖Vzh −Aen→zhVen‖
2 (3)

JTEO-zh→en = ‖Ven −Azh→enVzh‖
2 (4)

We optimize for a combined objective during train-

ing. For the Chinese embeddings we optimize for:

JCO-zh + λJTEO-en→zh (5)

For the English embeddings we optimize for:

JCO-en + λJTEO-zh→en (6)

During bilingual training, we chose the value of λ

such that convergence is achieved for both JCO and

JTEO. A small validation set of word similarities

from (Jin and Wu, 2012) is used to ensure the em-

beddings have reasonable semantics. 2

In the next sections, ‘bilingual trained’ embed-

dings refer to those initialized with MT alignments

and trained with the objective defined by Equa-

tion 5. ‘Monolingual trained’ embeddings refer to

those intialized by alignment but trained without

JTEO-en→zh.

2In our experiments, λ = 50.

3.3 Curriculum training

We train 100k-vocabulary word embeddings using

curriculum training (Turian et al., 2010) with Equa-

tion 5. For each curriculum, we sort the vocabu-

lary by frequency and segment the vocabulary by a

band-size taken from {5k, 10k, 25k, 50k}. Separate

bands of the vocabulary are trained in parallel using

minibatch L-BFGS on the Chinese Gigaword cor-

pus 3. We train 100,000 iterations for each curricu-

lum, and the entire 100k vocabulary is trained for

500,000 iterations. The process takes approximately

19 days on a eight-core machine. We show visual-

ization of learned embeddings overlaid with English

in Figure 1. The two-dimensional vectors for this vi-

sualization is obtained with t-SNE (van der Maaten

and Hinton, 2008). To make the figure comprehen-

sible, subsets of Chinese words are provided with

reference translations in boxes with green borders.

Words across the two languages are positioned by

the semantic relationships implied by their embed-

dings.

Figure 1: Overlaid bilingual embeddings: English words

are plotted in yellow boxes, and Chinese words in green;

reference translations to English are provided in boxes

with green borders directly below the original word.

4 Experiments

4.1 Semantic Similarity

We evaluate the Mandarin Chinese embeddings with

the semantic similarity test-set provided by the or-

3Fifth Edition. LDC catelog number LDC2011T13. We only

exclude cna cmn, the Traditional Chinese segment of the cor-

pus.
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Table 1: Results on Chinese Semantic Similarity

Method Sp. Corr. K. Tau

(×100) (×100)

Prior work (Jin and Wu, 2012) 5.0

Tf-idf

Naive tf-idf 41.5 28.7

Pruned tf-idf 46.7 32.3

Word Embeddings

Align-Init 52.9 37.6

Mono-trained 59.3 42.1

Biling-trained 60.8 43.3

ganizers of SemEval-2012 Task 4. This test-set con-

tains 297 Chinese word pairs with similarity scores

estimated by humans.

The results for semantic similarity are shown in

Table 1. We show two evaluation metrics: Spear-

man Correlation and Kendall’s Tau. For both, bilin-

gual embeddings trained with the combined objec-

tive defined by Equation 5 perform best. For pruned

tf-idf, we follow Reisinger et al. (2010; Huang et

al. (2012) and count word co-occurrences in a 10-

word window. We use the best results from a

range of pruning and feature thresholds to compare

against our method. The bilingual and monolingual

trained embeddings4 out-perform pruned tf-idf by

14.1 and 12.6 Spearman Correlation (×100), respec-

tively. Further, they out-perform embeddings initial-

ized from alignment by 7.9 and 6.4. Both our tf-idf

implementation and the word embeddings have sig-

nificantly higher Kendall’s Tau value compared to

Prior work (Jin and Wu, 2012). We verified Tau cal-

culations with original submissions provided by the

authors.

4.2 Named Entity Recognition

We perform NER experiments on OntoNotes (v4.0)

(Hovy et al., 2006) to validate the quality of the

Chinese word embeddings. Our experimental set-

up is the same as Wang et al. (2013). With em-

beddings, we build a naive feed-forward neural net-

work (Collobert et al., 2008) with 2000 hidden neu-

rons and a sliding window of five words. This naive

setting, without sequence modeling or sophisticated

4Due to variations caused by online minibatch L-BFGS, we

take embeddings from five random points out of last 105 mini-

batch iterations, and average their semantic similarity results.

Table 2: Results on Named Entity Recognition

Embeddings Prec. Rec. F1 Improve

Align-Init 0.34 0.52 0.41

Mono-trained 0.54 0.62 0.58 0.17

Biling-trained 0.48 0.55 0.52 0.11

Table 3: Vector Matching Alignment AER (lower is bet-

ter)

Embeddings Prec. Rec. AER

Mono-trained 0.27 0.32 0.71

Biling-trained 0.37 0.45 0.59

join optimization, is not competitive with state-of-

the-art (Wang et al., 2013). Table 2 shows that the

bilingual embeddings obtains 0.11 F1 improvement,

lagging monolingual, but significantly better than

Align-Init (as in Section3.2.1) on the NER task.

4.3 Vector matching alignment

Translation equivalence of the bilingual embeddings

is evaluated by naive word alignment to match word

embeddings by cosine distance.5 The Alignment Er-

ror Rates (AER) reported in Table 3 suggest that

bilingual training using Equation 5 produces embed-

dings with better translation equivalence compared

to those produced by monolingual training.

4.4 Phrase-based machine translation

Our experiments are performed using the Stan-

ford Phrasal phrase-based machine translation sys-

tem (Cer et al., 2010). In addition to NIST08 train-

ing data, we perform phrase extraction, filtering

and phrase table learning with additional data from

GALE MT evaluations in the past 5 years. In turn,

our baseline is established at 30.01 BLEU and rea-

sonably competitive relative to NIST08 results. We

use Minimum Error Rate Training (MERT) (Och,

2003) to tune the decoder.

In the phrase-based MT system, we add one fea-

ture to bilingual phrase-pairs. For each phrase, the

word embeddings are averaged to obtain a feature

vector. If a word is not found in the vocabulary, we

disregard and assume it is not in the phrase; if no

word is found in a phrase, a zero vector is assigned

5This is evaluated on 10,000 randomly selected sentence

pairs from the MT training set.
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Table 4: NIST08 Chinese-English translation BLEU

Method BLEU

Our baseline 30.01

Embeddings

Random-Init Mono-trained 30.09

Align-Init 30.31

Mono-trained 30.40

Biling-trained 30.49

to it. We then compute the cosine distance between

the feature vectors of a phrase pair to form a seman-

tic similarity feature for the decoder.

Results on NIST08 Chinese-English translation

task are reported in Table 46. An increase of

0.48 BLEU is obtained with semantic similarity

with bilingual embeddings. The increase is modest,

just surpassing a reference standard deviation 0.29

BLEU Cer et al. (2010)7 evaluated on a similar sys-

tem. We intend to publish further analysis on statis-

tical significance of this result as an appendix. From

these suggestive evidence in the MT results, random

initialized monolingual trained embeddings add lit-

tle gains to the baseline. Bilingual initialization and

training seem to be offering relatively more consis-

tent gains by introducing translational equivalence.

5 Conclusion

In this paper, we introduce bilingual word embed-

dings through initialization and optimization con-

straint using MT alignments The embeddings are

learned through curriculum training on the Chinese

Gigaword corpus. We show good performance on

Chinese semantic similarity with bilingual trained

embeddings. When used to compute semantic simi-

larity of phrase pairs, bilingual embeddings improve

NIST08 end-to-end machine translation results by

just below half a BLEU point. This implies that se-

mantic embeddings are useful features for improv-

ing MT systems. Further, our results offer sugges-

tive evidence that bilingual word embeddings act as

high-quality semantic features and embody bilingual

translation equivalence across languages.

6We report case-insensitive BLEU
7With 4-gram BLEU metric from Table 4
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Abstract

In this paper we present a novel approach to
automatic creation of anchor texts for hyper-
links in a document pointing to similar doc-
uments. Methods used in this approach rank
parts of a document based on the similarity
to a presumably related document. Ranks are
then used to automatically construct the best
anchor text for a link inside original document
to the compared document. A number of dif-
ferent methods from information retrieval and
natural language processing are adapted for
this task. Automatically constructed anchor
texts are manually evaluated in terms of relat-
edness to linked documents and compared to
baseline consisting of originally inserted an-
chor texts. Additionally we use crowdsourc-
ing for evaluation of original anchors and au-
tomatically constructed anchors. Results show
that our best adapted methods rival the preci-
sion of the baseline method.

1 Introduction

One of the features of hypertext documents are hy-
perlinks that point to other resources – pictures,
videos, tweets, or other hypertext documents. A
fairly familiar category of the latter is related arti-
cles; these usually appear at the end of a news article
or a blog post with the title of the target document as
anchor text. The target document is similar in con-
tent to original document; it may tell the story from
another point of view, it may be a more detailed ver-
sion of a part of the events in the original document,
etc. Another category are the in-text links; these ap-
pear inside the main body of text and use some of

the existing text as anchor. Ideally the anchor text is
selected in such a way that it conveys some informa-
tion about the target document; in reality sometimes
just an adverb (e.g. here, there) is used, or even the
destination URL may serve as anchor.

Our goal is to develop a system that automatically
constructs in-text links, i.e. for a query document
finds a target document and an appropriate part of
the text of the query document that serves as the an-
chor text for the hyperlink. We want the target docu-
ment to be similar in content to the query document
and the anchor text to indicate that content.

There are many potential uses for such a system,
especially for simplifying and streamlining docu-
ment creation. This includes authors of blogs that
may use the system for adding related content from
other sources without exhausting manual search for
such material. It may also be used when writing
a scientific paper, automatically adding citations to
other relevant papers inside the main body. This ac-
celerates the writing, again reducing the time spent
searching for possible existing research in the field.
A citation can be considered an in-text link without
a defined starting point.

We have addressed the problem in two steps, sep-
arately finding a similar document, and finding the
anchor text for it. Since the retrieval of similar doc-
uments was a research focus for many years and is
thus better researched, we have decided in this pa-
per to focus on the placement of the anchor text for
a link to a preselected document.

This paper is organized as follows: related work
is discussed in Section 2, the methods, corpus, and
evaluation are described in Section 3, followed by
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results and discussion in Section 4 and ending with
conclusions in Section 5.

2 Related Work

Semantic similarity of textual documents offers a
way to organize the increasing number of available
documents. It can be used in many applications such
as summarization, educational systems, finding du-
plicated bug reports in software testing (Lintean et
al., 2010), plagiarism detection (Kasprzak and Bran-
dejs, 2010), and research of a scientific field (Kober-
stein and Ng, 2006). Documents can vary in length
from microblogs (Twitter) and sentences (Li et al.,
2006; Koberstein and Ng, 2006) to paragraphs (Lin-
tean et al., 2010) and larger documents (Budanitsky
and Hirst, 2006).

There is also commercial software such as nRe-
late1, Zemanta2 and OpenCalais3 with functionality
that ranges from named entity recognition (NER)
and event detection to related content. Publishers
use in-house tools that offer automatic retrieval of
in-house similar documents.

Most of the methods for comparing documents fo-
cus on the query document as a whole. The calcu-
lated score therefore belongs to the whole document
and nothing can be said about more or less similar
parts of the document. Our goal is to localize the
similarity to a part of the query document, a para-
graph, sentence, or even a part of the sentence that is
most similar to another document. This part of the
query document can then serve as anchor text for a
hyperlink connection to the similar document.

Plagiarism detection methods (Alzahrani et al.,
2012; Monostori et al., 2002) have a task of veri-
fying the originality of the document. Extrinsic pla-
giarism detection methods compare two documents
to determine if some of the material in one is pla-
giarised from the other. Methods range from sim-
ple exact substring matching to more advanced ones
like semantic based methods that are able to recog-
nize paraphrasing and refactoring (Alzahrani et al.,
2012). These methods have localization of similarity
already built-in as they are searching for parts of the
text that seem to be plagiarised. We have focused on

1nRelate: http://www.nrelate.com/
2Zemanta: http://www.zemanta.com/
3OpenCalais: http://www.opencalais.com/

one such method, the winner of the PAN 2010 chal-
lenge (Kasprzak and Brandejs, 2010). This method
uses shared n-grams from the two documents in or-
der to determine if one of them is plagiarised.

Another similar research is automatic citation
placement for scientific papers. Most of the work
(Strohman et al., 2007; McNee et al., 2002) is con-
cerned with putting citations at the end of the paper
(non-localized), which is a task similar to inserting
related articles for a news article at the of the text.
There have been some attempts to place the citations
in the main body of text (Tang and Zhang, 2009; He
et al., 2011), typically used when referring to an idea
or method.

Tang and Zang (2009) used a placeholder con-
straint: the query document must contain placehold-
ers for citations, i.e. the places in text where citation
might be inserted. Their method then just ranks all
possible documents for a particular placeholder and
chooses the best ranked document as a result. Doc-
uments are ranked on the basis of a learned topic
model, obtained by a two-layer Restricted Boltz-
mann Machine.

He et al.(2011) made a step further towards gen-
erality of a citation location; they divide the text into
overlapping windows and then decide which win-
dows are viable citation context. The best method
for deciding which citation context to use was a de-
pendency feature model, an ensemble method using
17 different features and decision trees.

Named entity recognition (NER) also offers a use-
ful insight into document similarity. If two docu-
ments share a named entity (NE), it is more likely
they are similar. Detected NEs may also serve as an-
chor text for the link. NER is a fairly researched field
(Finkel et al., 2005; Ratinov et al., 2011; Bunescu
and Pasca, 2006; Kulkarni et al., 2009; Milne and
Witten, 2008) and is also used in several commer-
cial applications such as Zemanta, OpenCalais and
AlchemyAPI4, which are able to automatically in-
sert links for a NE pointing to a knowledge base such
as Wikipedia or IMDB. However, at this point they
are unable to link to arbitrary documents, but may
be useful in conjunction with other methods.

4AlchemyAPI: http://www.alchemyapi.com/
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3 Methodology

3.1 Corpus

We have chosen 100 web articles (posts) at ran-
dom from the end of January 2012. We extracted
the body and title of each document. All the
present in-text links were also extracted and filtered.
First, automatic filtering was applied to remove un-
wanted categories of links (videos, definition pages
on wikipedia and imdb, etc.), and articles that were
deemed too short for similarity comparison. The
threshold was set at 200 words of automatically
scraped body text of a linked document.

All the remaining links were manually checked
to ensure the integrity of link targets. This way we
collected 265 articles (hereinafter related articles -
RA). A number of different methods were then used
to calculate similarity rank and select the best part of
the post text to be used as anchor text for a hyperlink
pointing to the originally linked RA.

We have used CrowdFlower5, a crowdsourcing
platform, to evaluate how many of the 265 post–RA
pairs were really related; the final corpus thus con-
sisted of 236 pairs.

3.2 Evaluation

We have used each of the methods described in Sub-
section 3.3 to automatically construct anchor text for
each of the 236 pairs of documents in the final cor-
pus. If a method could not find a suitable anchor,
no result was returned; on average there were 147
anchors per method. All the automatically created
links were then manually scored by the authors with
an in-house evaluation tool using scores and guide-
lines summarized in Table 1. To calculate precision
and recall, we have counted scores 2 and 3 as posi-
tive result.

Additionally we crowdsourced the evaluation of
results for some of the methods. For this task we pre-
pared a special description of evaluation tasks and
defined a set of questions for collecting results. We
provided simplified guidelines for assigning scores
to automatically created anchors and set a confi-
dence threshold of 0.55 for an assignment to be con-
sidered valid. It is important to mention that the use
of crowdsourcing for such tasks has to be carefully

5CrowdFlower: http://crowdflower.com/

Score Description
0 Anchor does not signify anything about

RA or gets it wrong
1 Some connection can be established (an-

chor is a shared Named Entity, Noun
Phrase, Verb Phrase, etc.)

2 Anchor is a good estimation of RA top-
ics, but not wholly (anchor is a non-main
topic in RA)

3 RA topics can be directly inferred from
the anchor

Table 1: Scores used for internal evaluation of automati-
cally created anchors

planned, because many issues related to monetary
incentives, which are out of the scope of this paper,
may arise.

3.3 Methods for constructing anchor texts

We have adapted a number of methods from a vari-
ety of sources to test how they perform for our exact
purpose. Below is a short overview of the different
methods used in this work.

3.3.1 Longest chunk
This method is based on natural language pro-

cessing and extensively uses NLTK package (Bird
et al., 2009); the text is first tokenized with the de-
fault NLTK tokenizer, and then POS tagged with one
of the included POS taggers. After much testing, we
have decided on a combination of Brill – Trigram –
Bigram – Unigram – Affix – Regex backoff tagger
with noun as default tag. The trainable parts of the
tagger were trained on the included CoNLL 2000
tagged corpus.

Before chunking was applied, we also simplified
some tags and removed some others to get a simpler
structure of POS tags. We then used a regex chun-
ker to find a sequence of a proper noun and a verb
separated by zero or more other tokens. We have
also tested a proper noun - verb - proper noun com-
bination, but there were even fewer results, so this
direction was abandoned.

3.3.2 Latent Semantic Indexing (LSI) based
A corpus is represented in LSI (Deerwester et

al., 1990) as a large matrix of term occurrences
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in individual documents. The rank of the matrix
is then reduced using singular value decomposition
that groups together terms that occur in similar con-
text which should therefore account for synonyms.

We have used a tool called gensim (Řehůřek and
Sojka, 2010) that enabled us to quickly train a LSI
model using the whole corpus and index just the re-
lated articles. In order to localize the similarity and
place an anchor, we split the source document into
paragraphs and compute similarity scores between
target document and each paragraph of the source
document. We then split the paragraph with the
highest score into sentences and again obtain scores
for each. The sentence with the best score is then
chosen as the result.

3.3.3 Sorted n-grams

Drawing on plagiarism detection, the winning
method from the PAN 2010 (Kasprzak and Bran-
dejs, 2010) seemed a viable choice. The basis of
the method is comparing n-grams of the source and
the destination documents. First, the text was again
tokenized with NLTK, removed stopwords and to-
kens with two or less characters. Then overlapping
n-grams were constructed. We have deviated from
Kasprzak’s merging policy and decided to merge
two results if they are less than 20 tokens apart. We
also required only one shared n-gram to consider the
documents similar. Results were ranked based on
the number of shared tokens within each.

3.3.4 Unigrams tf*idf

This method uses unigram tf*idf weighted scores.
Since we had a closed system, we used corpus-wide
frequencies; stopwords were also removed. We have
scored tokens in the source document with tf*idf
summary of the destination document; tokens not
in summary are given a zero weight. We have ex-
perimentally determined that a summary of just top
150 tokens improves results. Sentences were ranked
based on the sum of its tokens weights. We also in-
cluded NEs from Zemanta API response for both
source and destination document. Sentences con-
taining shared NEs get their score multiplied by the
sum of shared NE tf*idf weights. The result was
then the sentence with the highest score.

Manual CrowdFlower
P R P R

Original links 0.691 0.691 0.981 0.432
Sorted 5-grams 0.822 0.254
Sorted 4-grams 0.741 0.352
Sorted 3-grams 0.680 0.424 0.956 0.275
Longest Chunk 0.080 0.075 0.907 0.165
Unigrams tf*idf 0.626 0.242 0.882 0.127
LSI based 0.648 0.640

Table 2: Precision and recall for manual and Crowd-
Flower evaluation

3.3.5 Baseline
Our baseline was a method that inserted links that

were originally present in the source documents.
This method was used to compare our automatic
methods to what people are actually linking in the
real world.

4 Evaluation Results and Discussion

Results are presented as precision and recall for
different methods and both evaluations in Table 2.
Empty cells in the table indicate that these methods
were not evaluated using CrowdFlower. Recall is
the fraction of relevant results out of all the possible
results (236) and precision is the fraction of relevant
results out of all the retrieved results.

The first thing we notice is the general disagree-
ment between results from the authors and Crowd-
Flower workers; the latter tend to give higher scores,
which leads to higher precision and recall. The rea-
son for this might be in the authors’ background
knowledge and thus higher expectations.

As a contrast almost half of CrowdFlower work-
ers stated they don’t blog and of the rest, more than
a third of them don’t link out, i.e. do not use re-
lated articles. We also have only 74% median inter-
annotator agreement leading us to believe that some
of the annotators answered without being familiar
with the question (monetary incentive issue).

Furthermore, CrowdFlower results for original
links (our baseline) indicate that almost all of them
were recognized as relevant, while our evaluators
discarded 30% of them. Clearly seen in the re-
sults of different sorted n-grams methods is also the
precision-recall trade-off.
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5 Conclusion

Based on evaluation results and despite differences
between the evaluators with background knowledge
and the crowds, we can conclude that that our ap-
proach for automatic construction of in-text links
rivals manual creation by professional writers and
bloggers and is thus a promising direction for fur-
ther research.
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Abstract

Sentence completion is a challenging seman-
tic modeling task in which models must
choose the most appropriate word from a
given set to complete a sentence. Although
a variety of language models have been ap-
plied to this task in previous work, none of the
existing approaches incorporate syntactic in-
formation. In this paper we propose to tackle
this task using a pair of simple language mod-
els in which the probability of a sentence is
estimated as the probability of the lexicalisa-
tion of a given syntactic dependency tree. We
apply our approach to the Microsoft Research
Sentence Completion Challenge and show that
it improves on n-gram language models by 8.7
percentage points, achieving the highest accu-
racy reported to date apart from neural lan-
guage models that are more complex and ex-
pensive to train.

1 Introduction

The verbal reasoning sections of standardised tests
such as the Scholastic Aptitude Test (SAT) fea-
ture problems where a partially complete sentence
is given and the candidate must choose the word
or phrase from a list of options which completes
the sentence in a logically consistent way. Sen-
tence completion is a challenging semantic mod-
elling problem. Systematic approaches for solving
such problems require models that can judge the
global coherence of sentences. Such measures of
global coherence may prove to be useful in various
applications, including machine translation and nat-
ural language generation (Zweig and Burges, 2012).

Most approaches to sentence completion employ
language models which use a window of immedi-
ate context around the missing word and choose the
word that results in the completed sentence with the
highest probability (Zweig and Burges, 2012; Mnih
and Teh, 2012). However, such language models
may fail to identify sentences that are locally co-
herent but are improbable due to long-range syntac-
tic/semantic dependencies. Consider, for example,
completing the sentence

I saw a tiger which was really very ...

with either fierce or talkative. A language model
relying on up to five words of immediate context
would ignore the crucial dependency between the
missing word and the noun tiger.

In this paper we tackle sentence completion us-
ing language models based on dependency gram-
mar. These models are similar to standard n-gram
language models, but instead of using the linear or-
dering of the words in the sentence, they generate
words along paths in the dependency tree of the sen-
tence. Unlike other approaches incorporating syntax
into language models (e.g., Chelba et al., 1997), our
models are relatively easy to train and estimate, and
can exploit standard smoothing methods. We apply
them to the Microsoft Research Sentence Comple-
tion Challenge (Zweig and Burges, 2012) and show
an improvement of 8.7 points in accuracy over n-
gram models, giving the best results to date for any
method apart from the more computationally de-
manding neural language models.
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Figure 1: Dependency tree example

2 Unlabelled Dependency Language
Models

In dependency grammar, each word in a sentence is
associated with a node in a dependency tree (Figure
1). We define a dependency tree as a rooted, con-
nected, acyclic directed graph together with a map-
ping from the nodes of the tree to a set of gram-
matical relation labels R. We define a lexicalised
dependency tree as a dependency tree along with a
mapping from the vertices of the tree to a vocabulary
V .

We seek to model the probability distribution of
the lexicalisation of a given dependency tree. We
will use this as a language model; we neglect the
fact that a given lexicalised dependency tree can
correspond to more than one sentence due to vari-
ations in word order. Let ST be a lexicalised de-
pendency tree, where T is the unlexicalised tree and
let w1w2 . . . wm be an ordering of the words corre-
sponding to a breadth-first enumeration of the tree.
In order for this representation to be unique, when
we parse a sentence, we will use the unique breadth-
first ordering where the children of any node appear
in the same order as they did in the sentence. We
define w0 to be a special symbol denoting the root
of the tree. We denote the grammatical relation be-
tween wk and its parent by gk ∈ R.
We apply the chain rule to the words in the tree in
the order of this breadth-first enumeration:

P[ST |T ] =

m∏
i=1

P[wi|(wk)
i−1
k=0, T ] (1)

Given a word wi, we define the ancestor sequence

A(w) to be the subsequence of (wk)
i−1
k=0 describ-

ing the path from the root node to the parent of
w, where each element of the sequence is the par-
ent of the next element. For example in Figure 1,
A(w8) = (w0, w1, w3). We make the following two
assumptions:

• that each word wi is conditionally independent
of the words outside of its ancestor sequence
(wk)

i−1
k=0∩A(wi)

c, given the ancestor sequence
A(wi);

• that the words are independent of the labels
(gk)

m
k=1.

Using these assumptions, we can write the probabil-
ity as:

P[ST |T ] =

m∏
i=1

P[wi|A(wi)] (2)

Given a training data corpus consisting of sen-
tences parsed into dependency trees, the maximum
likelihood estimator for the probability P[wi|A(wi)]
is given by the proportion of cases where the ances-
tor sequence A(wi) was followed by wi. Let C(·) be
the count of the number of observations of a pattern
in the corpus. We have

P̂[wi|A(wi)] =
C((A(wi), wi))∑

w∈V C((A(wi), w))
(3)

As is the case for n-gram language models, we can’t
hope to observe all possible sequences of words no
matter how big the corpus. To deal with this data
sparsity issue, we take inspiration from n-gram mod-
els and assume a Markov property of order (N −1):

P[w|A(w)] = P[w|A(N−1)(w)] (4)

where A(N−1)(w) denotes the sequence of up to
(N − 1) closest ancestors of w.

The maximum likelihood estimator for this prob-
ability is:

P̂[wi|A(N−1)(wi)] =
C((A(N−1)(wi), wi))∑

w∈V C((A(N−1)(wi), w))

We have arrived at a model which is quite similar
to n-gram language models. The main difference
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is that each word in the tree can have several chil-
dren, while in the n-gram models it can only be fol-
lowed by one word. Thus the sum in the denomina-
tor above does not simplify to the count of the ances-
tor sequence in the way that it does for n-gram lan-
guage models. However, we can calculate and store
the denominators easily during training, so that we
do not need to sum over the vocabulary each time we
evaluate the estimator. We refer to this model as the
order N unlabelled dependency language model.

As is the case for n-gram language models, even
for low values of N, we will often encounter se-
quences (A(N−1)(w), w) which were not observed
in training. In order to avoid assigning zero prob-
ability to the entire sentence, we need to use a
smoothing method. We can use any of the smooth-
ing methods used for n-gram language models. For
simplicity, we use stupid backoff smoothing (Brants
et al., 2007).

3 Labelled Dependency Language Models

We assumed above that the words are generated in-
dependently from the grammatical relations. How-
ever, we are likely to ignore valuable information in
doing so. To illustrate this point, consider the fol-
lowing pair of sentences:

You ate an apple

nsubj
dobj

det

An apple ate you

det nsubj dobj

The dependency trees of the two sentences are
very similar, with only the grammatical relations be-
tween ate and its arguments differing. The unla-
belled dependency language model will assign the
same probability to both of the sentences as it ig-
nores the labels of grammatical relations. In order
to be able to distinguish between them, the nature
of the grammatical relations between the words in
the dependency tree needs to be incorporated in the
language model. We relax the assumption that the
words are independent of the labels of the parse tree,
assuming instead the each word is conditionally in-
dependent of the words and labels outside its ances-
tor path given the words and labels in its ancestor

path. We define G(wi) to be the sequence of gram-
matical relations between the successive elements of
(A(wi), wi). G(wi) is the sequence of grammatical
relations found on the path from the root node to
wi. For example, in Figure 1, G(w8) = (g1, g3, g8).
With our modified assumption we have:

P[ST |T ] =
m∏

i=1

P[wi|A(wi), G(wi)] (5)

Once again we apply a Markov assumption.
Let G(N−1)(w) be the sequence of grammat-
ical relations between successive elements of
(A(N−1)(w), w). With an (N − 1)th order Markov
assumption, we have:

P[ST |T ] =
m∏

i=1

P[wi|A(N−1)(wi), G
(N−1)(wi)]

The maximum likelihood estimator for the probabil-
ity is once again given by the ratio of the counts of
labelled paths. We refer to this model as the order
N labelled dependency language model.

4 Dataset and Implementation Details

We carried out experiments using the Microsoft
Research Sentence (MSR) Completion Challenge
(Zweig and Burges, 2012). This consists of a set
of 1,040 sentence completion problems taken from
five of the Sherlock Holmes novels by Arthur Co-
nan Doyle. Each problem consists of a sentence
in which one word has been removed and replaced
with a blank and a set of 5 candidate words to com-
plete the sentence. The task is to choose the can-
didate word which, when inserted into the blank,
gives the most probable complete sentence. The set
of candidates consists of the original word and 4
imposter words with similar distributional statistics.
Human judges were tasked with choosing imposter
words which would lead to grammatically correct
sentences and such that, with some thought, the cor-
rect answer should be unambiguous. The training
data set consists of 522 19th century novels from
Project Gutenberg. We parsed the training data us-
ing the Nivre arc-eager deterministic dependency
parsing algorithm (Nivre and Scholz, 2004) as im-
plemented in MaltParser (Nivre et al., 2006). We
trained order N labelled and unabelled dependency
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I saw a tiger which was really very
a. fierce
b. talkative

I saw a tiger which was really very fierce

ROOT

P[“fierce”] = P[saw|ROOT]× P[I|ROOT, saw]× P[tiger|ROOT, saw]× P[a|saw, tiger]× P[fierce|saw, tiger]
×P[which|tiger, fierce]× P[was|tiger, fierce]× P[really|tiger, fierce]× P[very|tiger, fierce]

PARSE

EVALUATE PROBABILITY

Figure 2: Procedure for evaluating sentence completion problems

N Unlab-SB Lab-SB Ngm-SB Ngm-KN
2 43.2% 43.0% 28.1% 27.8%
3 48.3% 49.8% 38.5% 38.4%
4 48.3% 50.0% 40.8% 41.1%
5 47.4% 49.9% 41.3% 40.8%

Table 1: Summary of results for Sentence Completion

language models for 2 ≤ N ≤ 5. Words which
occured fewer than 5 times were excluded from the
vocabulary. In order to have a baseline to compare
against, we also trained n-gram language models
with Kneser-Ney smoothing and stupid backoff us-
ing the Berkeley Language Modeling Toolkit (Pauls
and Klein, 2011).

To test a given language model, we calculated the
scores it assigned to each candidate sentence and
chose the completion with the highest score. For
the dependency language models we parsed the sen-
tence with each of the 5 possible completions and
calculated the probability in each case. Figure 2 il-
lustrates an example of this process for the order 3
unlabelled model.

5 Results

Table 1 summarises the results. Unlab-SB is the or-
der N unlabelled dependency language model with
Stupid Backoff, Lab-SB is the order N labelled
dependency language model with Stupid Backoff,
Ngm-SB is the n-gram language model with Stupid
Backoff and Ngm-KN is the interpolated Kneser-
Ney smoothed n-gram language model.

Both of the dependency language models outper-
fomed the n-gram language models by a substantial

Method Accuracy
n-grams (Various) 39% - 41%

Skip-grams (Mikolov) 48%
Unlabelled Dependency Model 48.3%

Average LSA (Zweig) 49%
Labelled Dependency Model 50.0%

Log-bilinear Neural LM (Mnih) 54.7%
Recurrent Neural LM (Mikolov) 55.4%

Table 2: Comparison against previous results

margin for all orders considered. The best result was
achieved by the order 4 labelled dependency model
which is 8.7 points in accuracy better than the best n-
gram model. Furthermore, the labelled dependency
models outperformed their unlabelled counterparts
for every order except 2.

Comparing against previous work (Table 2), the
performance of our n-gram baseline is slightly better
than the accuracy reported by other authors (Mnih
and Teh, 2012; Zweig et al., 2012) for models of this
type. The performance of the labelled dependency
language model is superior to the results reported
for any single model method, apart from those rely-
ing on neural language models (Mnih and Teh, 2012;
Mikolov et al., 2013) . However the superior perfor-
mance of neural networks comes at the cost of long
training times. The best result achieved in Zweig et
al. (2012) using a single method was 49% accuracy
with a method based on LSA. Mikolov et al. (2013)
also reported accuracy of 48% for a method called
skip-grams, which uses a log-linear classifier to pre-
dict which words will appear close to each other in
sentences.
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6 Related Work and Discussion

The best-known language model based on depen-
dency parsing is that of Chelba et al. (1997). This
model writes the probability in the familiar left-to-
right chain rule decomposition in the linear order
of the sentence, conditioning the probability of the
next word on the linear trigram context, as well as
some part of the dependency graph information re-
lating to the words on its left. The language mod-
els we propose are far simpler to train and compute.
A somewhat similar model to our unlabelled depen-
dency language model was proposed in Graham and
van Genabith (2010). However they seem to have
used different probability estimators which ignore
the fact that each node in the dependency tree can
have multiple children. Other research on syntac-
tic language modelling has focused on using phrase
structure grammars (Pauls and Klein, 2012; Char-
niak, 2001; Roark, 2001; Hall and Johnson, 2003).
The linear complexity of deterministic dependency
parsing makes dependency language models such as
ours more scalable than these approaches.

The most similar task to sentence completion is
lexical substitution (McCarthy and Navigli, 2007).
The main difference between them is that in the lat-
ter the word to be substituted provides a very im-
portant clue in choosing the right candidate, while
in sentence completion this is not available. An-
other related task is selectional preference modeling
(Séaghdha, 2010; Ritter et al., 2010), where the aim
is to assess the plausibility of possible syntactic ar-
guments for a given word.

The dependency language models described in
this paper assign probabilities to full sentences. Lan-
guage models which require full sentences can be
used in automatic speech recognition (ASR) and ma-
chine translation (MT). The approach is to use a con-
ventional ASR or MT decoder to produce an N-best
list of the most likely candidate sentences and then
re-score these with the language model. This was
done by Chelba et al. (1997) for ASR using a de-
pendency language model and by Pauls and Klein
(2011) for MT using a PSG-based syntactic lan-
guage model.

7 Conclusion

We have proposed a pair of language models which
are probabilistic models for the lexicalisation of a
given dependency tree. These models are simple
to train and evaluate and are scalable to large data
sets. We applied them to the Microsoft Research
Sentence Completion Challenge. They performed
substantially better than n-gram language models,
achieving the best result reported for any single
method except for the more expensive and complex
to train neural language models.
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Abstract

In this paper, we propose a walk-based graph
kernel that generalizes the notion of tree-
kernels to continuous spaces. Our proposed
approach subsumes a general framework for
word-similarity, and in particular, provides a
flexible way to incorporate distributed repre-
sentations. Using vector representations, such
an approach captures both distributional se-
mantic similarities among words as well as the
structural relations between them (encoded as
the structure of the parse tree). We show an ef-
ficient formulation to compute this kernel us-
ing simple matrix operations. We present our
results on three diverse NLP tasks, showing
state-of-the-art results.

1 Introduction
Capturing semantic similarity between sentences

is a fundamental issue in NLP, with applications in
a wide range of tasks. Previously, tree kernels based
on common substructures have been used to model
similarity between parse trees (Collins and Duffy,
2002; Moschitti, 2004; Moschitti, 2006b). These
kernels encode a high number of latent syntactic
features within a concise representation, and com-
pute the similarity between two parse trees based
on the matching of node-labels (words, POS tags,
etc.), as well as the overlap of tree structures. While
this is sufficient to capture syntactic similarity, it
does not capture semantic similarity very well, even
when using discrete semantic types as node labels.
This constrains the utility of many traditional
tree kernels in two ways: i) two sentences that
are syntactically identical, but have no semantic
similarity can receive a high matching score (see
Table 1, top) while ii) two sentences with only local

syntactic overlap, but high semantic similarity can
receive low scores (see Table 1, bottom).

tree pairs semantic syntactic score

✓ high

✓ low

love

we toys

crush

they puppies

kissed

she cat

gave

she

her

kiss

a

friend

feline

green little

her

Table 1: Traditional tree kernels do not capture se-
mantic similarity

In contrast, distributional vector representations
of words have been successful in capturing fine-
grained semantics, but lack syntactic knowledge.
Resources such as Wordnet, dictionaries and on-
tologies that encode different semantic perspectives
can also provide additional knowledge infusion.

In this paper, we describe a generic walk-based
graph kernel for dependency parse trees that sub-
sumes general notions of word-similarity, while
focusing on vector representations of words to
capture lexical semantics. Through a convolutional
framework, our approach takes into account the
distributional semantic similarities between words
in a sentence as well as the structure of the parse
tree. Our main contributions are:

1. We present a new graph kernel for NLP that ex-
tends to distributed word representations, and
diverse word similarity measures.

2. Our proposed approach provides a flexible
framework for incorporating both syntax and
semantics of sentence level constructions.

3. Our generic kernel shows state-of-the-art per-
formance on three eclectic NLP tasks.
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2 Related Work

Tree kernels in NLP Tree kernels have been ex-
tensively used to capture syntactic information about
parse trees in tasks such as parsing (Collins and
Duffy, 2002), NER (Wang et al., 2010; Cumby and
Roth, 2003), SRL (Moschitti et al., 2008) and rela-
tion extraction (Qian et al., 2008). These kernels are
based on the paradigm that parse trees are similar if
they contain many common substructures, consist-
ing of nodes with identical labels (Vishwanathan and
Smola, 2003; Collins and Duffy, 2002). Moschitti
(2006a) proposed a partial tree kernel that adds flex-
ibility in matching tree substructures. Croce et al.
(2011) introduce a lexical semantic tree kernel that
incorporates continuous similarity values between
node labels, albeit with a different focus than ours
and would not match words with different POS. This
would miss the similarity of “feline friend” and “cat”
in our examples, as it requires matching the adjective
“feline” with “cat”, and verb “kissed” with “kiss”.

Walk based kernels Kernels for structured data
derive from the seminal Convolution Kernel for-
malism by Haussler (1999) for designing kernels
for structured objects through local decompositions.
Our proposed kernel for parse trees is most closely
associated with the random walk-based kernels de-
fined by Gartner et al. (2003) and Kashima et al.
(2003). The walk-based graph kernels proposed by
Gartner et al. (2003) count the common walks be-
tween two input graphs, using the adjacency matrix
of the product graph. This work extends to graphs
with a finite set of edge and node labels by appro-
priately modifying the adjacency matrix. Our kernel
differs from these kernels in two significant ways: (i)
Our method extends beyond label matching to con-
tinuous similarity metrics (this conforms with the
very general formalism for graph kernels in Vish-
wanathan et al. (2010)). (ii) Rather than using the
adjacency matrix to model edge-strengths, we mod-
ify the product graph and the corresponding adja-
cency matrix to model node similarities.

3 Vector Tree Kernels

In this section, we describe our kernel and an al-
gorithm to compute it as a simple matrix multiplica-
tion formulation.

3.1 Kernel description
The similarity kernel K between two dependency

trees can be defined as:

K(T1, T2) =
∑

h1⊆T1,h2⊆T2

len(h1)=len(h2)

k(h1, h2)

where the summation is over pairs of equal length
walks h1 and h2 on the trees T1 and T2 respec-
tively. The similarity between two n length walks,
k(h1, h2), is in turn given by the pairwise similari-
ties of the corresponding nodes vih in the respective
walks, measured via the node similarity kernel κ:

k(h1, h2) =

n∏
i:1

κ(vh1
i , v

h2
i )

In the context of parse trees, nodes vh1
i and vh2

i cor-
respond to words in the two parse trees, and thus can
often be conveniently represented as vectors over
distributional/dependency contexts. The vector rep-
resentation allows us several choices for the node
kernel function κ. In particular, we consider:

1. Gaussian : κ(v1, v2) = exp
(
− ‖v1−v2‖

2

2σ2

)
2. Positive-Linear: κ(v1, v2) = max(vT1 v2, 0)

3. Sigmoid: κ(v1, v2) =
(
1 + tanh(αvT1 v2)

)
/2

We note that the kernels above take strictly non-
negative values in [0, 1] (assuming word vector rep-
resentations are normalized). Non-negativity is nec-
essary, since we define the walk kernel to be the
product of the individual kernels. As walk kernels
are products of individual node-kernels, bounded-
ness by 1 ensures that the kernel contribution does
not grow arbitrarily for longer length walks.

The kernel function K puts a high similarity
weight between parse trees if they contain com-
mon walks with semantically similar words in corre-
sponding positions. Apart from the Gaussian kernel,
the other two kernels are based on the dot-product
of the word vector representations. We observe that
the positive-linear kernel defined above is not a Mer-
cer kernel, since the max operation makes it non-
positive semidefinite (PSD). However, this formu-
lation has desirable properties, most significant be-
ing that all walks with one or more node-pair mis-
matches are strictly penalized and add no score to
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the tree-kernel. This is a more selective condition
than the other two kernels, where mediocre walk
combinations could also add small contributions to
the score. The sigmoid kernel is also non-PSD, but
is known to work well empirically (Boughorbel et
al., 2005). We also observe while the summation in
the kernel is over equal length walks, the formalism
can allow comparisons over different length paths by
including self-loops at nodes in the tree.

With a notion of similarity between words that
defines the local node kernels, we need computa-
tional machinery to enumerate all pairs of walks
between two trees, and compute the summation
over products in the kernel K(T1, T2) efficiently.
We now show a convenient way to compute this as
a matrix geometric series.

3.2 Matrix Formulation for Kernel
Computation

Walk-based kernels compute the number of com-
mon walks using the adjacency matrix of the prod-
uct graph (Gartner et al., 2003). In our case, this
computation is complicated by the fact that instead
of counting common walks, we need to compute a
product of node-similarities for each walk. Since
we compute similarity scores over nodes, rather than
edges, the product for a walk of length n involves
n+ 1 factors.

However, we can still compute the tree kernel K
as a simple sum of matrix products. Given two trees
T (V,E) and T ′(V ′, E′), we define a modified prod-
uct graph G(Vp, Ep) with an additional ghost node
u added to the vertex set. The vertex and edge sets
for the modified product graph are given as:

Vp := {(vi1, vj1′) : vi1 ∈ V, vj1′ ∈ V ′} ∪ u

Ep := {((vi1, vj1′), (vi2, vj2′)) : (vi1, vi2) ∈ E,
(vj1

′, vj2
′)) ∈ E′}⋃

{(u, (vi1, vj1′)) : vi1 ∈ V, vj1′ ∈ V ′}

The modified product graph thus has additional
edges connecting u to all other nodes. In our for-
mulation, u now serves as a starting location for all
random walks on G, and a k + 1 length walk of G
corresponds to a pair of k length walks on T and T ′.
We now define the weighted adjacency matrixW for
G, which incorporates the local node kernels.

W(vi1,vj1
′),(vi2,vj2

′) =

{
0 : ((vi1,vj1

′),(vi2,vj2
′)) /∈ Ep

κ(vi2, vj2
′) : otherwise

Wu,(vi1,vj1
′) = κ(vi1, vj1

′)
W(v,u) = 0 ∀ v ∈ Vp

There is a straightforward bijective mapping from
walks on G starting from u to pairs of walks on T
and T ′. Restricting ourselves to the case when the
first node of a k + 1 length walk is u, the next k
steps allow us to efficiently compute the products of
the node similarities along the k nodes in the corre-
sponding k length walks in T and T ′. Given this ad-
jacency matrix for G, the sum of values of k length
walk kernels is given by the uth row of the (k+1)th

exponent of the weighted adjacency matrix (denoted
asW k+1). This corresponds to k+1 length walks on
G starting from u and ending at any node. Specif-
ically, Wu,(vi,v′j)

corresponds to the sum of similar-
ities of all common walks of length n in T and T ′

that end in vi in T and v′j in T ′. The kernel K for
walks upto length N can now be calculated as :

K(T, T ′) =

|Vp|∑
i

Su,i

where
S = W +W 2 + ...WN+1

We note that in out formulation, longer walks are
naturally discounted, since they involve products of
more factors (generally all less than unity).

The above kernel provides a similarity measure
between any two pairs of dependency parse-trees.
Depending on whether we consider directional re-
lations in the parse tree, the edge set Ep changes,
while the procedure for the kernel computation re-
mains the same. Finally, to avoid larger trees yield-
ing larger values for the kernel, we normalize the
kernel by the number of edges in the product graph.

4 Experiments
We evaluate the Vector Tree Kernel (VTK) on

three NLP tasks. We create dependency trees using
the FANSE parser (Tratz and Hovy, 2011), and
use distribution-based SENNA word embeddings
by Collobert et al. (2011) as word representations.
These embeddings provide low-dimensional vector
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representations of words, while encoding distribu-
tional semantic characteristics. We use LibSVM for
classification. For sake of brevity, we only report
results for the best performing kernel.

We first consider the Cornell Sentence Polarity
dataset by Pang and Lee (2005). The task is to
identify the polarity of a given sentence. The
data consists of 5331 sentences from positive and
negative movie reviews. Many phrases denoting
sentiments are lexically ambiguous (cf. “terribly
entertaining” vs “terribly written”), so simple lexi-
cal approaches are not expected to work well here,
while syntactic context could help disambiguation.

Next, we try our approach on the MSR paraphrase
corpus. The data contains a training set of 4077
pairs of sentences, annotated as paraphrases and
non-paraphrases, and a test-set of 1726 sentence
pairs. Each instance consists of a pair of sentences,
so the VTK cannot be directly used by a kernel
machine for classification. Instead, we generate
16 kernel values based for each pair on different
parameter settings of the kernel, and feed these as
features to a linear SVM.

We finally look at the annotated Metaphor corpus
by (Hovy et al., 2013). The dataset consists of sen-
tences with specified target phrases. The task here is
to classify the target use as literal or metaphorical.
We focus on target phrases by upweighting walks
that pass through target nodes. This is done by
simply multiplying the corresponding entries in the
adjacency matrix by a constant factor.

5 Results
5.1 Sentence Polarity Dataset

Prec Rec F1 Acc
Albornoz et al 0.63 – – 0.63
WNA+synsets 0.61 – – 0.61
WNA 0.53 – – 0.51
DSM 0.54 0.55 0.55 0.54
SSTK 0.49 0.48 0.48 0.49
VTK 0.65 0.58 0.62 0.67

Table 2: Results on Sentence Polarity dataset
On the polarity data set, Vector Tree Kernel

(VTK) significantly outperforms the state-of-the-art
method by Carrillo de Albornoz et al. (2010), who
use a hybrid model incorporating databases of af-
fective lexicons, and also explicitly model the ef-
fect of negation and quantifiers (see Table 2). Lex-
ical approaches using pairwise semantic similarity

of SENNA embeddings (DSM), as well as Word-
net Affective Database-based (WNA) labels perform
poorly (Carrillo de Albornoz et al., 2010), showing
the importance of syntax for this particular problem.
On the other hand, a syntactic tree kernel (SSTK)
that ignores distributional semantic similarity be-
tween words, fails as expected.

5.2 MSR Paraphrase Dataset
Prec Rec F1 Acc

BASE 0.72 0.86 0.79 0.69
Zhang et al 0.74 0.88 0.81 0.72
Qiu et al 0.73 0.93 0.82 0.72
Malakasiotis 0.74 0.94 0.83 0.74
Finch 0.77 0.90 0.83 0.75
VTK 0.72 0.95 0.82 0.72

Table 3: Results on MSR Paraphrase corpus

On the MSR paraphrase corpus, VTK performs
competitively against state-of-the-art-methods. We
expected paraphrasing to be challenging to our
method, since it can involve little syntactic overlap.
However, data analysis reveals that the corpus gener-
ally contains sentence pairs with high syntactic sim-
ilarity. Results for this task are encouraging since
ours is a general approach, while other systems use
multiple task-specific features like semantic role la-
bels, active-passive voice conversion, and synonymy
resolution. In the future, incorporating such features
to VTK should further improve results for this task .

5.3 Metaphor Identification
Acc P R F1

CRF 0.69 0.74 0.50 0.59
SVM+DSM 0.70 0.63 0.80 0.71
SSTK 0.75 0.70 0.80 0.75
VTK 0.76 0.67 0.87 0.76

Table 4: Results on Metaphor dataset
On the Metaphor corpus, VTK improves the pre-

vious score by Hovy et al. (2013), whose approach
uses an conjunction of lexical and syntactic tree ker-
nels (Moschitti, 2006b), and distributional vectors.
VTK identified several templates of metaphor usage
such as “warm heart” and “cold shoulder”. We look
towards approaches for automatedly mining such
metaphor patterns from a corpus.

6 Conclusion
We present a general formalism for walk-based

kernels to evaluate similarity of dependency trees.
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Our method generalizes tree kernels to take dis-
tributed representations of nodes as input, and cap-
ture both lexical semantics and syntactic structures
of parse trees. Our approach has tunable parame-
ters to look for larger or smaller syntactic constructs.
Our experiments shows state-of-the-art performance
on three diverse NLP tasks. The approach can gen-
eralize to any task involving structural and local sim-
ilarity, and arbitrary node similarity measures.
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Abstract

Online resources, such as Wiktionary, provide
an accurate but incomplete source of idiomatic
phrases. In this paper, we study the problem
of automatically identifying idiomatic dictio-
nary entries with such resources. We train
an idiom classifier on a newly gathered cor-
pus of over 60,000 Wiktionary multi-word
definitions, incorporating features that model
whether phrase meanings are constructed
compositionally. Experiments demonstrate
that the learned classifier can provide high
quality idiom labels, more than doubling the
number of idiomatic entries from 7,764 to
18,155 at precision levels of over 65%. These
gains also translate to idiom detection in sen-
tences, by simply using known word sense
disambiguation algorithms to match phrases
to their definitions. In a set of Wiktionary def-
inition example sentences, the more complete
set of idioms boosts detection recall by over
28 percentage points.

1 Introduction

Idiomatic language is common and provides unique
challenges for language understanding systems. For
example, a diamond in the rough can be the literal
unpolished object or a crude but lovable person. Un-
derstanding such distinctions is important for many
applications, including parsing (Sag et al., 2002) and
machine translation (Shutova et al., 2012).

We use Wiktionary as a large, but incomplete, ref-
erence for idiomatic entries; individual entries can
be marked as idiomatic but, in practice, most are

not. Using these incomplete annotations as super-
vision, we train a binary Perceptron classifier for
identifying idiomatic dictionary entries. We intro-
duce new lexical and graph-based features that use
WordNet and Wiktionary to compute semantic re-
latedness. This allows us to learn, for example, that
the words in the phrase diamond in the rough are
more closely related to the words in its literal defi-
nition than the idiomatic one. Experiments demon-
strate that the classifier achieves precision of over
65% at recall over 52% and that, when used to fill in
missing Wiktionary idiom labels, it more than dou-
bles the number of idioms from 7,764 to 18,155.

These gains also translate to idiom detection in
sentences, by simply using the Lesk word sense
disambiguation (WSD) algorithm (1986) to match
phrases to their definitions. This approach allows
for scalable detection with no restrictions on the syn-
tactic structure or context of the target phrase. In a
set of Wiktionary definition example sentences, the
more complete set of idioms boosts detection recall
by over 28 percentage points.

2 Related Work

To the best of our knowledge, this work represents
the first attempt to identify dictionary entries as id-
iomatic and the first to reduce idiom detection to
identification via a dictionary.

Previous idiom detection systems fall in one
of two paradigms: phrase classification, where a
phrase p is always idiomatic or literal, e.g. (Gedigian
et al., 2006; Shutova et al., 2010), or token classifi-
cation, where each occurrence of a phrase p can be
idiomatic or literal, e.g. (Katz and Giesbrecht, 2006;
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Birke and Sarkar, 2006; Li and Sporleder, 2009).
Most previous idiom detection systems have focused
on specific syntactic constructions. For instance,
Shutova et al. (2010) consider subject/verb (cam-
paign surged) and verb/direct-object idioms (stir ex-
citement) while Fazly and Stevenson (2006), Cook
et al. (2007), and Diab and Bhutada (2009) de-
tect verb/noun idioms (blow smoke). Fothergill and
Baldwin (2012) are syntactically unconstrained, but
only study Japanese idioms. Although we focus on
identifying idiomatic dictionary entries, one advan-
tage of our approach is that it enables syntactically
unconstrained token-level detection for any phrase
in the dictionary.

3 Formal Problem Definitions

Identification For identification, we assume data
of the form {(〈pi, di〉, yi) : i = 1 . . . n} where
pi is the phrase associated with definition di and
yi ∈ {literal, idiomatic}. For example, this would
include both the literal pair 〈 “leave for dead”, “To
abandon a person or other living creature that is in-
jured or otherwise incapacitated, assuming that the
death of the one abandoned will soon follow.”〉 and
the idiomatic pair 〈 “leave for dead”, “To disregard
or bypass as unimportant.” 〉. Given 〈pi, di〉, we aim
to predict yi.

Detection To evaluate identification in the con-
text of detection, we assume data {(〈pi, ei〉, yi) :
i = 1 . . . n}. Here, pi is the phrase in exam-
ple sentence ei whose idiomatic status is labeled
yi ∈ {idiomatic, literal}. One such idiomatic pair
is 〈“heart to heart”, “They sat down and had a
long overdue heart to heart about the future of their
relationship.”〉. Given 〈pi, ei〉, we again aim to pre-
dict yi.

4 Data

We gathered phrases, definitions, and example sen-
tences from the English-language Wiktionary dump
from November 13th, 2012.1

Identification Phrase, definition pairs 〈p, d〉 were
gathered with the following restrictions: the title of
the Wiktionary entry must be English, p must com-
posed of two or more words w, and 〈p, d〉must be in

1We used the Java Wiktionary Library (Zesch et al., 2008).

Data Set Literal Idiomatic Total
All 56,037 7,764 63,801
Train 47,633 6,600 54,233
Unannotated Dev 2,801 388 3,189
Annotated Dev 2,212 958 3,170
Unannotated Test 5,603 776 6,379
Annotated Test 4,510 1,834 6,344

Figure 1: Number of dictionary entries with each class
for the Wiktionary identification data.

Data Set Literal Idiomatic Total
Dev 171 330 501
Test 360 695 1055

Figure 2: Number of sentences of each class for the Wik-
tionary detection data.

its base form—senses that are not defined as a dif-
ferent tense of a phrase—e.g. the pair 〈 “weapons of
mass destruction”, “Plural form of weapon of mass
destruction” 〉was removed while the pair 〈 “weapon
of mass destruction”, “A chemical, biological, radio-
logical, nuclear or other weapon that ... ”〉 was kept.

Each pair 〈p, d〉 was assigned label y according
to the idiom labels in Wiktionary, producing the
Train, Unannotated Dev, and Unannotated Test data
sets. In practice, this produces a noisy assignment
because a majority of the idiomatic senses are not
marked. The development and test sets were anno-
tated to correct these potential omissions. Annota-
tors used the definition of an idiom as a “phrase with
a non-compositional meaning” to produce the An-
notated Dev and Annotated Test data sets. Figure 1
presents the data statistics.

We measured inter-annotator agreement on 1,000
examples. Two annotators marked each dictionary
entry as literal, idiomatic, or indeterminable. Less
than one half of one percent could not be deter-
mined2—the computed kappa was 81.85. Given
this high level of agreement, the rest of the data
were only labeled by a single annotator, follow-
ing the methodology used with the VNC-Tokens
Dataset (Cook et al., 2008).

Detection For detection, we gathered the example
sentences provided, when available, for each defi-
nition used in our annotated identification data sets.
These sentences provide a clean source of develop-

2The indeterminable pairs were omitted from the data.
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ment and test data containing idiomatic and literal
phrase usages. In all, there were over 1,300 unique
phrases, half of which had more than one possible
dictionary definition in Wiktionary. Figure 2 pro-
vides the complete statistics.

5 Identification Model

For identification, we use a linear model that pre-
dicts class y∗ ∈ {literal, idiomatic} for an input pair
〈p, d〉 with phrase p and definition d. We assign the
class:

y∗ = arg max
y
θ · φ(p, d, y)

given features φ(p, d, y) ∈ Rn with associated pa-
rameters θ ∈ Rn.

Learning In this work, we use the averaged Per-
ceptron algorithm (Freund and Schapire, 1999) to
perform learning, which was optimized in terms of
iterations T , bounded by range [1, 100], by maxi-
mizing F-measure on the development set.

The models described correspond to the features
they use. All models are trained on the same, unan-
notated training data.

Features The features that were developed fall
into two categories: lexical and graph-based fea-
tures. The lexical features were motivated by the
intuition that literal phrases are more likely to have
closely related words in d to those in p because lit-
eral phrases do not break the principle of compo-
sitionality. All words compared are stemmed ver-
sions. Let count(w, t) = number of times word w
appears in text t.

• synonym overlap: Let S be the set of syn-
onyms as defined in Wiktionary for all words
in p. Then, we define the synonym overlap =
1
|S|

∑
s∈S count(s, d).

• antonym overlap: Let A be the set of antonyms
as defined in Wiktionary for all words in
p. Then, we define the antonym overlap =
1
|A|

∑
a∈A count(a, d).

• average number of capitals:3 The value of
number of capital letters in p

number of words in p .

3In practice, this feature identifies most proper nouns.

Graph-based features use the graph structure of
WordNet 3.0 to calculate path distances. Let
distance(w, v, rel, n) be the minimum distance via
links of type rel in WordNet from a word w to a
word v, up to a threshold max integer value n, and 0
otherwise. The features compute:

• closest synonym:

min
w∈p,v∈d

distance(w, v, synonym, 5)

• closest antonym:4

min
w∈p,v∈d

distance(w, v, antonym, 5)

• average synonym distance:

1

|p|
∑

w∈p,v∈d

distance(w, v, synonym, 5)

• average hyponym:

1

|p|
∑

w∈p,v∈d

distance(w, v, hyponym, 5)

• synsets connected by an antonym: This feature in-
dicates whether the following is true. The set of
synsets Synp, all synsets from all words in p, and
the set of synsets Synd, all synsets from all words
in d, are connected by a shared antonym. This fea-
ture follows an approach described by Budanitsky
et al. (2006).

6 Experiments

We report identification and detection results, vary-
ing the data labeling and choice of feature sets.

6.1 Identification

Random Baseline We use a proportionally ran-
dom baseline for the identification task that classi-
fies according to the proportion of literal definitions
seen in the training data.

Results Figure 3 provides the results for the base-
line, the full approach, and variations with subsets
of the features. Results are reported for the origi-
nal, unannotated test set, and the same test examples
with corrected idiom labels. All models increased

4The first relation expanded was the antonym relation. All
subsequent expansions were via synonym relations.
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Data Set Model Rec. Prec. F1
Unannotated Lexical 85.8 21.9 34.9

Graph 62.4 26.6 37.3
Lexical+Graph 70.5 28.1 40.1

Baseline 12.2 11.9 12.0
Annotated Lexical 81.2 49.3 61.4

Graph 64.3 51.3 57.1
Lexical+Graph 75.0 52.9 62.0

Baseline 29.5 12.5 17.6

Figure 3: Results for idiomatic definition identification.

Figure 4: Precision and recall with varied features on the
annotated test set.

over their corresponding baselines by more than 22
points and both feature families contributed.5

Figure 4 shows the complete precision, recall
curve. We selected our operating point to optimize
F-measure, but we see that the graph features per-
form well across all recall levels and that adding the
lexical features provides consistent improvement in
precision. However, other points are possible, es-
pecially when aiming for high precision to extend
the labels in Wiktionary. For example, the original
7,764 entries can be extended to 18,155 at 65% pre-
cision, 9,594 at 80%, or 27,779 at 52.9%.

Finally, Figures 5 and 6 present qualitative results,
including newly discovered idioms and high scoring
false identifications. Analysis reveals where our sys-
tem has room to improve—errors most often occur
with phrases that are specific to a certain field, such

5We also ran ablations demonstrating that removing each
feature from the Lexical+Graph model hurt performance, but
omit the detailed results for space.

Phrase Definition
feel free You have my permission.
live down To get used to something shameful.
nail down To make something

(e.g. a decision or plan) firm or certain.
make after To chase.
get out To say something with difficulty.
good riddance A welcome departure.
to bad rubbish
as all hell To a great extent or degree; very.
roll around To happen, occur, take place.

Figure 5: Newly discovered idioms.

Phrase Definition
put asunder To sunder; disjoin; separate;

disunite; divorce; annul; dissolve.
add up To take a sum.
peel off To remove (an outer layer or

covering, such as clothing).
straighten up To become straight, or straighter.
wild potato The edible root of this plant.
shallow embedding The act of representing one logic

or language with another by
providing a syntactic translation.

Figure 6: High scoring false identifications.

as sports or mathematics, and with phrases whose
words also appear in their definitions.

6.2 Detection
Approach We use the Lesk (1986) algorithm to
perform WSD, matching an input phrase p from sen-
tence e to the definition d in Wiktionary that defines
the sense p is being used in. The final classification y
is then assigned to 〈p, d〉 by the identification model.

Results Figure 7 shows detection results. The
baseline for this experiment is a model that assigns
the default labels within Wiktionary to the disam-
biguated definition. The Annotated model is the
Lexical+Graph model shown in Figure 3 evaluated
on the annotated data. The +Default setting aug-
ments the identification model by labeling the 〈p, e〉
as idiomatic if either the model or the original label
within Wiktionary identifies it as such.

7 Conclusions

We presented a supervised approach to classifying
definitions as idiomatic or literal that more than dou-
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Model Rec. Prec. F1
Default 60.5 1 75.4
Annotated 78.3 76.7 77.5
Annotated+Default 89.2 79.0 83.8

Figure 7: Detection results.

bles the number of marked idioms in Wiktionary,
even when training on incomplete data. When com-
bined with the Lesk word sense algorithm, this ap-
proach provides a complete idiom detector for any
phrase in the dictionary.

We expect that semi-supervised learning tech-
niques could better recover the missing labels and
boost overall performance. We also think it should
be possible to scale the detection approach, perhaps
with automatic dictionary definition discovery, and
evaluate it on more varied sentence types.
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Abstract

Tokenization is widely regarded as a solved
problem due to the high accuracy that rule-
based tokenizers achieve. But rule-based
tokenizers are hard to maintain and their
rules language specific. We show that high-
accuracy word and sentence segmentation can
be achieved by using supervised sequence la-
beling on the character level combined with
unsupervised feature learning. We evalu-
ated our method on three languages and ob-
tained error rates of 0.27 ‰ (English), 0.35 ‰
(Dutch) and 0.76 ‰ (Italian) for our best mod-
els.

1 An Elephant in the Room

Tokenization, the task of segmenting a text into
words and sentences, is often regarded as a solved
problem in natural language processing (Dridan and
Oepen, 2012), probably because many corpora are
already in tokenized format. But like an elephant in
the living room, it is a problem that is impossible to
overlook whenever new raw datasets need to be pro-
cessed or when tokenization conventions are recon-
sidered. It is moreover an important problem, be-
cause any errors occurring early in the NLP pipeline
affect further analysis negatively. And even though
current tokenizers reach high performance, there are
three issues that we feel haven’t been addressed sat-
isfactorily so far:

• Most tokenizers are rule-based and therefore
hard to maintain and hard to adapt to new do-
mains and new languages (Silla Jr. and Kaest-
ner, 2004);

• Word and sentence segmentation are often seen
as separate tasks, but they obviously inform
each other and it could be advantageous to view
them as a combined task;

• Most tokenization methods provide no align-
ment between raw and tokenized text, which
makes mapping the tokenized version back
onto the actual source hard or impossible.

In short, we believe that regarding tokenization,
there is still room for improvement, in particular on
the methodological side of the task. We are partic-
ularly interested in the following questions: Can we
use supervised learning to avoid hand-crafting rules?
Can we use unsupervised feature learning to reduce
feature engineering effort and boost performance?
Can we use the same method across languages? Can
we combine word and sentence boundary detection
into one task?

2 Related Work

Usually the text segmentation task is split into word
tokenization and sentence boundary detection. Rule-
based systems for finding word and sentence bound-
aries often are variations on matching hand-coded
regular expressions (Grefenstette, 1999; Silla Jr. and
Kaestner, 2004; Jurafsky and Martin, 2008; Dridan
and Oepen, 2012).

Several unsupervised systems have been proposed
for sentence boundary detection. Kiss and Strunk
(2006) present a language-independent, unsuper-
vised approach and note that abbreviations form a
major source of ambiguity in sentence boundary
detection and use collocation detection to build a
high-accuracy abbreviation detector. The resulting
system reaches high accuracy, rivalling handcrafted
rule-based and supervised systems. A similar sys-
tem was proposed earlier by Mikheev (2002).

Existing supervised learning approaches for sen-
tence boundary detection use as features tokens pre-
ceding and following potential sentence boundary,
part of speech, capitalization information and lists
of abbreviations. Learning methods employed in
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these approaches include maximum entropy models
(Reynar and Ratnaparkhi, 1997) decision trees (Ri-
ley, 1989), and neural networks (Palmer and Hearst,
1997).

Closest to our work are approaches that present
token and sentence splitters using conditional ran-
dom fields (Tomanek et al., 2007; Fares et al., 2013).
However, these previous approaches consider tokens
(i.e. character sequences) as basic units for labeling,
whereas we consider single characters. As a con-
sequence, labeling is more resource-intensive, but it
also gives us more expressive power. In fact, our ap-
proach kills two birds with one stone, as it allows us
to integrate token and sentence boundaries detection
into one task.

3 Method

3.1 IOB Tokenization

IOB tagging is widely used in tasks identifying
chunks of tokens. We use it to identify chunks of
characters. Characters outside of tokens are labeled
O, inside of tokens I. For characters at the beginning
of tokens, we use S at sentence boundaries, other-
wise T (for token). This scheme offers some nice
features, like allowing for discontinuous tokens (e.g.
hyphenated words at line breaks) and starting a new
token in the middle of a typographic word if the to-
kenization scheme requires it, as e.g. in did|n’t. An
example is given in Figure 1.

It didn’t matter if the faces were male,
SIOTIITIIOTIIIIIOTIOTIIOTIIIIOTIIIOTIIITO
female or those of children. Eighty-
TIIIIIOTIOTIIIIOTIOTIIIIIIITOSIIIIIIO
three percent of people in the 30-to-34
IIIIIOTIIIIIIOTIOTIIIIIOTIOTIIOTIIIIIIIO
year old age range gave correct responses.
TIIIOTIIOTIIOTIIIIOTIIIOTIIIIIIOTIIIIIIIIT

Figure 1: Example of IOB-labeled characters

3.2 Datasets

In our experiments we use three datasets to compare
our method for different languages and for different
domains: manually checked English newswire texts
taken from the Groningen Meaning Bank, GMB
(Basile et al., 2012), Dutch newswire texts, com-
prising two days from January 2000 extracted from
the Twente News Corpus, TwNC (Ordelman et al.,

2007), and a random sample of Italian texts from the
PAISÀ corpus (Borghetti et al., 2011).

Table 1: Datasets characteristics.
Name Language Domain Sentences Tokens
GMB English Newswire 2,886 64,443
TNC Dutch Newswire 49,537 860,637
PAI Italian Web/various 42,674 869,095

The data was converted into IOB format by infer-
ring an alignment between the raw text and the seg-
mented text.

3.3 Sequence labeling
We apply the Wapiti implementation (Lavergne et
al., 2010) of Conditional Random Fields (Lafferty
et al., 2001), using as features the output label of
each character, combined with 1) the character it-
self, 2) the output label on the previous character, 3)
characters and/or their Unicode categories from con-
text windows of varying sizes. For example, with a
context size of 3, in Figure 1, features for the E in
Eighty-three with the output label S would be E/S,
O/S, /S, i/S, Space/S, Lowercase/S. The intuition
is that the 31 existing Unicode categories can gen-
eralize across similar characters whereas character
features can identify specific contexts such as abbre-
viations or contractions (e.g. didn’t). The context
window sizes we use are 0, 1, 3, 5, 7, 9, 11 and 13,
centered around the focus character.

3.4 Deep learning of features
Automatically learned word embeddings have been
successfully used in NLP to reduce reliance on man-
ual feature engineering and boost performance. We
adapt this approach to the character level, and thus,
in addition to hand-crafted features we use text
representations induced in an unsupervised fashion
from character strings. A complete discussion of
our approach to learning text embeddings can be
found in (Chrupała, 2013). Here we provide a brief
overview.

Our representations correspond to the activation
of the hidden layer in a simple recurrent neural
(SRN) network (Elman, 1990; Elman, 1991), imple-
mented in a customized version of Mikolov (2010)’s
RNNLM toolkit. The network is sequentially pre-
sented with a large amount of raw text and learns to
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predict the next character in the sequence. It uses the
units in the hidden layer to store a generalized rep-
resentation of the recent history. After training the
network on large amounts on unlabeled text, we run
it on the training and test data, and record the activa-
tion of the hidden layer at each position in the string
as it tries to predict the next character. The vector of
activations of the hidden layer provides additional
features used to train and run the CRF. For each of
the K = 10 most active units out of total J = 400
hidden units, we create features (f(1) . . . f(K)) de-
fined as f(k) = 1 if sj(k) > 0.5 and f(k) = 0 oth-
erwise, where sj(k) returns the activation of the kth

most active unit. For training the SRN only raw text
is necessary. We trained on the entire GMB 2.0.0
(2.5M characters), the portion of TwNC correspond-
ing to January 2000 (43M characters) and a sample
of the PAISÀ corpus (39M characters).

4 Results and Evaluation

In order to evaluate the quality of the tokenization
produced by our models we conducted several ex-
periments with different combinations of features
and context sizes. For these tests, the models are
trained on an 80% portion of the data sets and tested
on a 10% development set. Final results are obtained
on a 10% test set. We report both absolute number
of errors and error rates per thousand (‰).

4.1 Feature sets

We experiment with two kinds of features at the
character level, namely Unicode categories (31 dif-
ferent ones), Unicode character codes, and a combi-
nation of them. Unicode categories are less sparse
than the character codes (there are 88, 134, and 502
unique characters for English, Dutch and Italian, re-
spectively), so the combination provide some gener-
alization over just character codes.

Table 2: Error rates obtained with different feature sets.
Cat stands for Unicode category, Code for Unicode char-
acter code, and Cat-Code for a union of these features.

Error rates per thousand (‰)
Feature set English Dutch Italian
Cat-9 45 (1.40) 1,403 (2.87) 1,548 (2.67)
Code-9 6 (0.19) 782 (1.60) 692 (1.20)
Cat-Code-9 8 (0.25) 774 (1.58) 657 (1.14)

From these results we see that categories alone
perform worse than only codes. For English there is
no gain from the combination over using only char-
acter codes. For Dutch and Italian there is an im-
provement, although it is only significant for Ital-
ian (p = 0.480 and p = 0.005 respectively, bino-
mial exact test). We use this feature combination in
the experiments that follow. Note that these models
are trained using a symmetrical context of 9 charac-
ters (four left and four right of the current character).
In the next section we show performance of models
with different window sizes.

4.2 Context window

We run an experiment to evaluate how the size of the
context in the training phase impacts the classifica-
tion. In Table 4.2 we show the results for symmetri-
cal windows ranging in size from 1 to 13.

Table 3: Using different context window sizes.
Error rates per thousand (‰)

Feature set English Dutch Italian
Cat-Code-1 273 (8.51) 4,924 (10.06) 9,108 (15.86)
Cat-Code-3 118 (3.68) 3,525 (7.20) 2,013 (3.51)
Cat-Code-5 20 (0.62) 930 (1.90) 788 (1.37)
Cat-Code-7 10 (0.31) 778 (1.60) 667 (1.16)
Cat-Code-9 8 (0.25) 774 (1.58) 657 (1.14)

Cat-Code-11 9 (0.28) 761 (1.56) 692 (1.21)
Cat-Code-13 8 (0.25) 751 (1.54) 670 (1.17)

4.3 SRN features

We also tested the automatically learned features de-
rived from the activation of the hidden layer of an
SRN language model, as explained in Section 3.
We combined these features with character code and
Unicode category features in windows of different
sizes. The results of this test are shown in Table 4.
The first row shows the performance of SRN fea-
tures on their own. The following rows show the
combination of SRN features with the basic feature
sets of varying window size. It can be seen that aug-
menting the feature sets with SRN features results
in large reductions of error rates. The Cat-Code-1-
SRN setting has error rates comparable to Cat-Code-
9.

The addition of SRN features to the two best
previous models, Cat-Code-9 and Cat-Code-13, re-
duces the error rate by 83% resp. 81% for Dutch,
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and by 24% resp. 26% for Italian. All these dif-
ferences are statistically significant according to the
binomial test (p < 0.001). For English, there are too
few errors to detect a statistically significant effect
for Cat-Code-9 (p = 0.07), but for Cat-Code-13 we
find p = 0.016.

Table 4: Results obtained using different context window
sizes and addition of SRN features.

Error rates per thousand (‰)
Feature set English Dutch Italian
SRN 24 (0.75) 276 (0.56) 738 (1.28)
Cat-Code-1-SRN 7 (0.21) 212 (0.43) 549 (0.96)
Cat-Code-3-SRN 4 (0.13) 165 (0.34) 507 (0.88)
Cat-Code-5-SRN 3 (0.10) 136 (0.28) 476 (0.83)
Cat-Code-7-SRN 1 (0.03) 111 (0.23) 497 (0.86)
Cat-Code-9-SRN 2 (0.06) 135 (0.28) 497 (0.86)
Cat-Code-11-SRN 2 (0.06) 132 (0.27) 468 (0.81)
Cat-Code-13-SRN 1 (0.03) 142 (0.29) 496 (0.86)

In a final step, we selected the best models based
on the development sets (Cat-Code-7-SRN for En-
glish and Dutch, Cat-Code-11-SRN for Italian), and
checked their performance on the final test set. This
resulted in 10 errors (0.27 ‰) for English (GMB
corpus), 199 errors (0.35 ‰) for Dutch (TwNC cor-
pus), and 454 errors (0.76 ‰) for Italian (PAISÀ
corpus).

5 Discussion

It is interesting to examine what kind of errors the
SRN features help avoid. In the English and Dutch
datasets many errors are caused by failure to rec-
ognize personal titles and initials or misparsing of
numbers. In the Italian data, a large fraction of er-
rors is due to verbs with clitics, which are written as
a single word, but treated as separate tokens. Table 5
shows examples of errors made by a simpler model
that are fixed by adding SRN features. Table 6 shows
the confusion matrices for the Cat-Code-7 and Cat-
Code-7-SRN sets on the Dutch data. The mistake
most improved by SRN features is T/I with 89% er-
ror reduction (see also Table 5). The is also the most
common remaining mistake.

A comparison with other approaches is hard be-
cause of the difference in datasets and task defini-
tion (combined word/sentence segmentation). Here
we just compare our results for sentence segmenta-
tion (sentence F1 score) with Punkt, a state-of-the-

Table 5: Positive impact of SRN features.
Ms. Hughes will joi

Cat-Code-7 SIIOSIIIIIOTIIIOTII
Cat-Code-7-SRN SIIOTIIIIIOTIIIOTII

$ 3.9 trillion by t
Cat-Code-7 TOTTIOTIIIIIIIOTIOT

Cat-Code-7-SRN TOTIIOTIIIIIIIOTIOT
bleek 0,4 procent

Cat-Code-11 OTIIIIOTTIOTIIIIIIO
Cat-Code-11-SRN OTIIIIOTIIOTIIIIIIO

toebedeeld: 6,2. In
Cat-Code-11 TIIIIIIIIITOTTITOSI

Cat-Code-11-SRN TIIIIIIIIITOTIITOSI
prof. Teulings het

Cat-Code-11 TIIITOSIIIIIIIOTIIO
Cat-Code-11-SRN TIIIIOTIIIIIIIOTIIO

per costringerlo al
Cat-Code-11 TIIOTIIIIIIIIIIIOTI

Cat-Code-11-SRN TIIOTIIIIIIIIITIOTI

Table 6: Confusion matrix for Dutch development set.
Predicted, Cat-Code-7 Predicted, Cat-Code-7-SRN

Gold I O S T I O S T
I 328128 0 2 469 328546 0 0 53
O 0 75234 0 0 0 75234 0 0
S 4 0 4323 18 1 0 4332 12
T 252 0 33 80828 35 0 10 81068

art sentence boundary detection system (Kiss and
Strunk, 2006). With its standard distributed mod-
els, Punkt achieves 98.51% on our English test set,
98.87% on Dutch and 98.34% on Italian, compared
with 100%, 99.54% and 99.51% for our system. Our
system benefits here from its ability to adapt to a new
domain with relatively little (but annotated) training
data.

6 What Elephant?

Word and sentence segmentation can be recast as a
combined tagging task. This way, tokenization is
cast as a supervised learning task, causing a shift of
labor from writing rules to manually correcting la-
bels. Learning this task with CRF achieves high ac-
curacy.1 Furthermore, our tagging method does not
lose the connection between original text and tokens.

In future work, we plan to broaden the scope of
this work to other steps in document preparation,

1All software needed to replicate our experiments is
available at http://gmb.let.rug.nl/elephant/
experiments.php
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such as normalization of punctuation, and their in-
teraction with segmentation. We further plan to test
our method on a wider range of datasets, allowing a
more direct comparison with other approaches. Fi-
nally, we plan to explore the possibility of a statis-
tical universal segmentation model for mutliple lan-
guages and domains.

In a famous scene with a live elephant on stage,
the comedian Jimmy Durante was asked about it by
a policeman and surprisedly answered: “What ele-
phant?” We feel we can say the same now as far as
tokenization is concerned.
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Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Interspeech.

Roeland Ordelman, Franciska de Jong, Arjan van Hessen,
and Hendri Hondorp. 2007. TwNC: a multifaceted
Dutch news corpus. ELRA Newsleter, 12(3/4):4–7.

David D. Palmer and Marti A. Hearst. 1997. Adap-
tive multilingual sentence boundary disambiguation.
Computational Linguistics, 23(2):241–267.

Jeffrey C. Reynar and Adwait Ratnaparkhi. 1997. A
maximum entropy approach to identifying sentence
boundaries. In Proceedings of the Fifth Conference
on Applied Natural Language Processing, pages 16–
19, Washington, DC, USA. Association for Computa-
tional Linguistics.

Michael D. Riley. 1989. Some applications of tree-based
modelling to speech and language. In Proceedings of
the workshop on Speech and Natural Language, HLT
’89, pages 339–352, Stroudsburg, PA, USA. Associa-
tion for Computational Linguistics.

Carlos N. Silla Jr. and Celso A. A. Kaestner. 2004. An
analysis of sentence boundary detection systems for
English and Portuguese documents. In Fifth Interna-
tional Conference on Intelligent Text Processing and
Computational Linguistics, volume 2945 of Lecture
Notes in Computer Science, pages 135–141. Springer.

Katrin Tomanek, Joachim Wermter, and Udo Hahn.
2007. Sentence and token splitting based on condi-
tional random fields. In Proceedings of the 10th Con-
ference of the Pacific Association for Computational
Linguistics, pages 49–57, Melbourne, Australia.

1426



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1427–1432,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Detecting Compositionality of Multi-Word Expressions using Nearest
Neighbours in Vector Space Models

Douwe Kiela
University of Cambridge

Computer Laboratory
douwe.kiela@cl.cam.ac.uk

Stephen Clark
University of Cambridge

Computer Laboratory
stephen.clark@cl.cam.ac.uk

Abstract

We present a novel unsupervised approach to
detecting the compositionality of multi-word
expressions. We compute the compositional-
ity of a phrase through substituting the con-
stituent words with their “neighbours” in a se-
mantic vector space and averaging over the
distance between the original phrase and the
substituted neighbour phrases. Several meth-
ods of obtaining neighbours are presented.
The results are compared to existing super-
vised results and achieve state-of-the-art per-
formance on a verb-object dataset of human
compositionality ratings.

1 Introduction

Multi-word expressions (MWEs) are defined as “id-
iosyncratic interpretations that cross word bound-
aries” (Sag et al., 2002). They tend to have a
standard syntactic structure but are often semanti-
cally non-compositional; i.e. their meaning is not
fully determined by their syntactic structure and the
meanings of their constituents. A classic example
is kick the bucket, which means to die rather than to
hit a bucket with the foot. These types of expres-
sions account for a large proportion of day-to-day
language interactions (Schuler and Joshi, 2011) and
present a significant problem for natural language
processing systems (Sag et al., 2002).

This paper presents a novel unsupervised ap-
proach to detecting the compositionality of MWEs,
specifically of verb-noun collocations. The idea is

that we can recognize compositional phrases by sub-
stituting related words for constituent words in the
phrase: if the result of a substitution yields a mean-
ingful phrase, its individual constituents are likely to
contribute toward the overall meaning of the phrase.
Conversely, if a substitution yields a non-sensical
phrase, its constituents are likely to contribute less
or not at all to the overall meaning of the phrase.
For the phrase eat her hat, for example, we might
consider the following substituted phrases:

1. consume her hat

2. eat her trousers

Both phrases are semantically anomalous, implying
that eat hat is a highly non-compositional verb-noun
collocation. Following a similar procedure for eat
apple, however, would not lead to an anomaly: con-
sume apple and eat pear are perfectly meaningful,
leading us to believe that eat apple is compositional.

In the context of distributional models, this idea
can be formalised in terms of vector spaces:

the average distance between a phrase
vector and its substituted phrase vectors is
related to its compositionality.

Since we are relying on the relative distances of
phrases in semantic space, we require a method
for computing vectors for phrases. We experi-
mented with a number of composition operators
from Mitchell and Lapata (2010), in order to com-
pose constituent word vectors into phrase vectors.
The relation between phrase vectors and substituted
phrase vectors is most pronounced in the case of
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pointwise multiplication, which has the effect of
placing semantically anomalous phrases relatively
close together in space (since the vectors for the con-
stituent words have little in common), whereas the
semantically meaningful phrases are further apart.
This implies that compositional phrases are less sim-
ilar to their neighbours, which is to say that the
greater the average distance between a phrase vec-
tor and its substituted phrase vectors, the greater its
compositionality.

The contribution of this short focused research pa-
per is a novel approach to detecting the composition-
ality of multi-word expressions that makes full use
of the ability of semantic vector space models to cal-
culate distances between words and phrases. Using
this unsupervised approach, we achieve state-of-the-
art performance in a direct comparison with existing
supervised methods.

2 Dataset and Vectors

The verb-noun collocation dataset from Venkatapa-
thy and Joshi (2005), which consists of 765 verb-
object pairs with human compositionality ratings,
was used for evaluation. Venkatapathy & Joshi used
a support vector machine (SVM) to obtain a Spear-
man ρs correlation of 0.448. They employed a va-
riety of features ranging from frequency to LSA-
derived similarity measures and used 10% of the
dataset as training data with tenfold cross-validation.
McCarthy et al. (2007) used the same dataset and ex-
panded on the original approach by adding WordNet
and distributional prototypes to the SVM, achieving
a ρs correlation of 0.454.

The distributional vectors for our experiments
were constructed from the ukWaC corpus (Baroni
et al., 2009). Vectors were obtained using a stan-
dard window method (with a window size of 5) and
the 50,000 most frequent context words as features,
with stopwords removed. We also experimented
with syntax-based co-occurrence features extracted
from a dependency-parsed version of ukWaC, but
in agreement with results obtained by Schulte im
Walde et al. (2013) for predicting compositional-
ity in German, the window-based co-occurrence
method produced better results.

We tried several weighting schemes from the liter-
ature, such as t-test (Curran, 2004), positive mutual

information (Bullinaria and Levy, 2012) and the ra-
tio of the probability of the context word given the
target word1 to the context word’s overall probabil-
ity (Mitchell and Lapata, 2010). We found that a
tf-idf variant called LTU yielded the best results, de-
fined as follows (Reed et al., 2006):

wij =
(log(fij) + 1.0) log( N

nj
)

0.8 + 0.2× |context word|
|avg context word|

where fij is the number of times that the target word
and context word co-occur in the same window, nj

is the context word frequency, N is the total fre-
quency and |context word| is the total number of oc-
currences of a context word. Distance is calculated
using the standard cosine measure:

dist(v1, v2) = 1− v1 · v2
|v1||v2|

where v1 and v2 are vectors in the semantic vector
space model.

3 Finding Neighbours and Computing
Compositionality

We experimented with two different ways of obtain-
ing neighbours for the constituent words in a phrase.
Since vector space models lend themselves naturally
to similarity computations, one way to get neigh-
bours is to take the k-most similar vectors from a
similarity matrix. This approach is straightforward,
but has some potential drawbacks: it assumes that
we have a large number of vectors to select neigh-
bours from, and becomes computationally expensive
when the number of neighbours is increased.

An alternative source for obtaining neighbours is
the lexical database WordNet (Fellbaum, 1998). We
define neighbours as siblings in the hypernym hier-
archy, so that the neighbours of a word can be found
by taking the hyponyms of its hypernyms. Word-
Net also allows us to extract only neighbours of the
same grammatical type (yielding noun neighbours
for nouns and verb neighbours for verbs, for exam-
ple). Since not every word has the same number
of neighbours in WordNet, we use only the first k

1We use target word to refer to the word for which a vector
is being constructed.
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neighbours, which means that the neighbours have
to be ranked. An obvious ranking method is to use
the frequency with which each neighbour co-occurs
with the other constituent(s) of the same phrase. For
example, for all the WordNet neighbours of eat (for
all senses of eat), we count the co-occurrences with
hat in a given window size and rank them accord-
ingly. This ranking method also has the desirable
side-effect of performing some word sense disam-
biguation, at least in some cases. For example, the
highly ranked neighbours of apple for eat apple are
likely to be items of food, and not (inedible) trees
(apple is also a tree in WordNet).

In order to obtain frequency-ranked neighbours,
we used the ukWaC corpus with a window size of
5. One reason for having multiple neighbours is that
it allows us to correct for word sense disambigua-
tion errors (as mentioned above), since averaging
over results for several neighbours reduces the im-
pact of including incorrect senses. For example, the
first 20 neighbours of eat, ranked by co-occurrence
frequency with all the objects of eat in the dataset,
are:

eat use consume drink sample smoke
swallow spend break hit save afford burn
partake dine breakfast worry damage de-
plete drug

One problem with the evaluation dataset is that
it does not solely consist of verb-noun pairs: 84
phrases contain pronouns, while there are also sev-
eral examples containing words that WordNet con-
siders to be adjectives rather than nouns. This prob-
lem was mitigated by part-of-speech tagging the
dataset. As neighbours for pronouns (which are not
included in WordNet), we used the other pronouns
present in the dataset. For the remaining words,
we included the part-of-speech when looking up the
word in WordNet.

3.1 Average distance compositionality score

We considered several different ways of construct-
ing phrasal vectors. We chose not to use the com-
positional models of Baroni and Zamparelli (2010)
and Socher et al. (2011) because we believe that it is
important that our methods are completely unsuper-
vised and do not require any initial learning phase.

Hence, we experimented with different ways of con-
structing phrasal vectors according to Mitchell and
Lapata (2010) and found that pointwise multiplica-
tion � worked best in our experiments. Thus, we
define the composed vector

−−−−→
eat hat as:

−→
eat�

−→
hat

We can now compute a compositionality score sc by
averaging the distance between the original phrase
vector and its substituted neighbour phrase vectors
via the following formula:

sc(
−−−−→
eat hat) =

1

2k
(

k∑
i=1

dist(
−→
eat�

−→
hat,

−→
eat�

−−−−−−−→
neighbouri) +

k∑
j=1

dist(
−→
eat�

−→
hat,

−−−−−−−→
neighbourj �

−→
hat))

We also experimented with substituting only for
the noun or the verb, and in fact found that only tak-
ing neighbours for the verb yields better results:

sc(
−−−−→
eat hat) =

1

k

k∑
j=1

dist(
−→
eat�

−→
hat,

−−−−−−−→
neighbourj �

−→
hat)

To illustrate the method, consider the collocations
take breath and lend money. The annotators as-
signed these phrases a compositionality score of 1
out of 6 and 6 out of 6, respectively, meaning that the
former is non-compositional and the latter is com-
positional. The distances between the first ten verb-
substituted phrases and the original phrase, together
with the average distance, are shown in Table 1 and
Table 2.

Substituting the verb in the non-compositional
phrase yields semantically anomalous vectors,
which leads to very small changes in the distance
between it and the original phrase vector. This is a
result of using pointwise multiplication, where over-
lapping components are stressed: since the vectors
for take and breath have little overlap outside of
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Neighbour Dist
get breath 0.049
find breath 0.051
use breath 0.050
work breath 0.060
hold breath 0.094
run breath 0.079
carry breath 0.076
look breath 0.065
play breath 0.071
buy breath 0.100
AvgDist 0.069

Table 1: Example take breath

Neighbour Dist
pay money 0.446
put money 0.432
bring money 0.405
provide money 0.442
owe money 0.559
sell money 0.404
cost money 0.482
look money 0.425
distribute money 0.544
offer money 0.428
AvgDist 0.457

Table 2: Example lend money

the idiomatic sense in take breath, its neighbour-
substituted phrases also have little overlap, result-
ing in a smaller change in distance upon substitu-
tion. Conversely, substituting the verb in the com-
positional phrase yields meaningful vectors, putting
them in locations in semantic vector space which are
sufficiently far apart to distinguish them from the
non-compositional cases.

4 Results

Results are given for the two methods of obtaining
neighbours: via frequency-ranked WordNet neigh-
bours and via vector space neighbours. The com-
positionality score was computed by using only the
verb, only the noun, or both constituent neighbours
in the substituted phrase vectors.

System ρs

Venkatapathy and Joshi (2005) 0.447
McCarthy et al. (2007) 0.454
AvgDist VSM neighbours-both 0.131
AvgDist VSM neighbours-verb 0.420
AvgDist VSM neighbours-noun 0.245
AvgDist WN-ranked neighbours-both 0.165
AvgDist WN-ranked neighbours-verb 0.461
AvgDist WN-ranked neighbours-noun 0.169

Table 3: Spearman ρs results

The results are compared with the scores reported
in Venkatapathy and Joshi (2005) and McCarthy et
al. (2007), which were achieved using SVMs with a
wide variety of features. Values of 1 ≤ k ≤ 20 were
tried. If a phrase has fewer than k neighbours be-
cause not enough neighbours have been found to co-
occur with the other constituent, we use all of them.
The results for k = 20 are reported here because
that gave the best overall score. The dataset has an
inter-annotator agreement of Kendall’s τ of 0.61 and
a Spearman ρs of 0.71 and all reported differences
in values are highly significant. Table 3 gives the
results.

Note that, even though the current approach is un-
supervised (in terms of not having access to compo-
sitionality ratings during training, although it does
rely on WordNet), it outperforms SVMs that require
an ensemble of complex feature sets (some of which
are also based on WordNet).

It is interesting to observe that the state-of-the-art
performance is reached when only using the verb’s
neighbours to compute substituted phrase vectors.
One might initially expect this not to be the case,
since e.g. eat trousers, where the noun has been
substituted, does not make a lot of sense either —
which we would expect to be informative for de-
termining compositionality. There are two possi-
ble explanations for this, which might be at play
simultaneously: since our dataset consists of verb-
object pairs, the verb constituent is always the head
word of the phrase, and the dataset contains several
so-called “light verbs”, which have little semantic
content of their own. Head words have been found
to have a higher impact on compositionality scores
for compound nouns: Reddy et al. (2011) weighted
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the contribution of individual constituents in such a
way that the modifier’s contribution is included but
is weighted less highly than the head’s contribution,
which led to an improvement in performance. Our
results might be improved by weighting the contri-
bution of constituent words in a similar fashion, and
by more closely examining the impact of light verbs
for the compositionality of a phrase.

5 Related Work

The past decade has seen extensive work on compu-
tational and statistical methods in detecting the com-
positionality of MWEs (Lin, 1999; Schone and Ju-
rafsky, 2001; Katz and Giesbrecht, 2006; Sporleder
and Li, 2009; Biemann and Giesbrecht, 2011).
Many of these methods rely on distributional mod-
els and vector space models (Schütze, 1993; Tur-
ney and Pantel, 2010; Erk, 2012). Work has been
done on different types of phrases, including work
on particle verbs (McCarthy et al., 2003; Bannard
et al., 2003), verb-noun collocations (Venkatapathy
and Joshi, 2005; McCarthy et al., 2007), adjective-
noun combinations (Vecchi et al., 2011) and noun-
noun compounds (Reddy et al., 2011), as well as on
languages other than English (Schulte im Walde et
al., 2013). Recent developments in distributional
compositional models (Widdows, 2008; Mitchell
and Lapata, 2010; Baroni and Zamparelli, 2010; Co-
ecke et al., 2010; Socher et al., 2011) have opened
up a number of possibilities for constructing vectors
for phrases, which have also been applied to com-
positionality tests (Giesbrecht, 2009; Kochmar and
Briscoe, 2013).

This paper takes that work a step further: by con-
structing phrase vectors and evaluating these vectors
on a dataset of human compositionality ratings, we
show that existing compositional models allow us to
detect compositionality of multi-word expressions
in a straightforward and intuitive manner.

6 Conclusion

We have presented a novel unsupervised approach
that can be used to detect the compositionality of
multi-word expressions. Our results show that the
underlying intuition appears to be sound: substitut-
ing neighbours may lead to meaningful or meaning-
less phrases depending on whether or not the phrase

is compositional. This can be formalized in vec-
tor space models to obtain compositionality scores
by computing the average distance to the original
phrase’s substituted neighbour phrases. In this short
focused research paper, we show that, depending on
how we obtain neighbours, we are able to achieve
a higher performance than that achieved by super-
vised methods which rely on a complex feature set
and support vector machines.
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Abstract

We introduce an extended naive Bayes model
for word sense induction (WSI) and apply it to
a WSI task. The extended model incorporates
the idea the words closer to the target word are
more relevant in predicting its sense. The pro-
posed model is very simple yet effective when
evaluated on SemEval-2010 WSI data.

1 Introduction

The task of word sense induction (WSI) is to find
clusters of tokens of an ambiguous word in an un-
labeled corpus that have the same sense. For in-
stance, given a target word “crane,” a good WSI sys-
tem should find a cluster of tokens referring to avian
cranes and another referring to mechanical cranes.
We believe that neighboring words contain enough
information that these clusters can be found from
plain texts.

WSI is related to word sense disambiguation
(WSD). In a WSD task, a system learns a sense clas-
sifier in a supervised manner from a sense-labeled
corpus. The performance of the learned classifier
is measured on some unseen data. WSD systems
perform better than WSI systems, but building la-
beled data can be prohibitively expensive. In addi-
tion, WSD systems are not suitable for newly cre-
ated words, new senses of existing words, or domain-
specific words. On the other hand, WSI systems can
learn new senses of words directly from texts because
these programs do not rely on a predefined set of
senses.

In Section 2 we describe relevant previous work. In
Section 3 and 4 we introduce the naive Bayes model
for WSI and inference schemes for the model. In Sec-
tion 5 we evaluate the model on SemEval-2010 data.
In Section 6 we conclude.

2 Related Work

Yarowsky (1995) introduces a semi-supervised
bootstrapping algorithm with two assumptions
that rivals supervised algorithms: one-sense-per-
collocation and one-sense-per-discourse. But this
algorithm cannot easily be scaled up because for
any new ambiguous word humans need to pick
a few seed words, which initialize the algorithm.
In order to automate the semi-supervised system,
Eisner and Karakos (2005) propose an unsupervised
bootstrapping algorithm. Their system tries many
different seeds for bootstrapping and chooses the
“best” classifier at the end. Eisner and Karakos’s
algorithm is limited in that their system is designed
for disambiguating words that have only 2 senses.

Bayesian WSI systems have been developed by
several authors. Brody and Lapata (2009) apply
Latent Dirichlet Allocation (LDA) (Blei et al.,
2003) to WSI. They run a topic modeling algorithm
on texts with some fixed number of topics that
correspond to senses and induce a cluster by finding
target words assigned to the same topic. Their
system is evaluated on SemEval-2007 noun data
(Agirre and Soroa, 2007). Lau et al. (2012) apply
a nonparametric model, Hierarchical Dirichlet Pro-
cesses (HDP), to SemEval-2010 data (Manandhar et
al., 2010).

3 Model

Following Yarowsky (1995), we assume that a word
in a document has one sense. Multiple occurrences
of a word in a document refer to the same object
or concept. The naive Bayes model is well suited
for this one-sense-per-document assumption. Each
document has one topic corresponding to the sense of
the target word that needs disambiguation. Context
words in a document are drawn from the conditional
distribution of words given the sense. Context words
are assumed to be independent from each other given
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the sense, which is far from being true yet effective.

3.1 Naive Bayes

The naive Bayes model assumes that every word in a
document is generated independently from the con-
ditional distribution of words given a sense, p(w|s).
The mathematical definition of the naive Bayes
model is as follows:

p(w) =
∑

s

p(s,w) =
∑

s

p(s)p(w |s)

=
∑

s

p(s)
∏
w

p(w|s), (1)

where w is a vector of words in the document. With
the model, a new document can be easily labeled
using the following classifier:

s′ = argmax
s

p(s)
∏
w

p(w|s), (2)

where s′ is the label of the new document. In con-
trast to LDA-like models, it is easy to construct
the closed form classifier from the model. The pa-
rameters of the model, p(s) and p(w|s), can be
learned by maximizing the probability of the corpus,
p(d) =

∏
d p(d) =

∏
w p(w) where d is a vector of

documents and d = w .

3.2 Distance Incorporated Naive Bayes

Intuitively, context words near a target word are
more indicative of its sense than ones that are far-
ther away. To account for this intuition, we propose
a more sophisticated model that uses the distance
between a context word and a target word. Before
introducing the new model, we define a probability
distribution, f(w|s), that incorporates distances as
follows:

f(w|s) =
p(w|s)l(w)∑

w′∈W p(w′|s)l(w)
, (3)

where l(w) = 1
dist(w)x . W is a set of types in the cor-

pus. x is a tunable parameter that takes nonnegative
real values. With the new probability distribution,
the model and the classifier become:

p(w) =
∑

s

p(s)
∏
w

f(w|s) (4)

s′ = argmax
s

p(s)
∏
w

f(w|s), (5)

where f(w|s) replaces p(w|s). The naive Bayes
model is a special case; set x = 0. The new model
puts more weight on context words that are close

to the target word. The distribution of words that
are farther away approaches the uniform distribu-
tion. l(w) smoothes the distribution more as x be-
comes larger.

4 Inference

Given the generative model, we employ two inference
algorithms to learn the sense distribution and word
distributions given a sense. Expectation Maximiza-
tion (EM) is a natural choice for the naive Bayes
(Dempster et al., 1977). When initialized with ran-
dom parameters, EM gets stuck at local maxima. To
avoid local maxima, we use a Gibbs sampler for the
plain naive Bayes to learn parameters that initialize
EM.

5 Experiments

5.1 Data

We evaluate the model on SemEval-2010 WSI task
data (Manandhar et al., 2010). The task has 100
target words, 50 nouns and 50 verbs. For each target
word, there are training and test documents. Table
1 have details. The training and test data are plain
texts without sense tags. For evaluation, the inferred
sense labels are compared with human annotations.
To tune some parameters we use the trial data of

Training Testing Senses (#)
All 879807 8915 3.79

Nouns 716945 5285 4.46
Verbs 162862 3630 3.12

Table 1: Details of SemEval-2010 data

SemEval-2010. The trial data consists of training
and test portions of 4 verbs. On average there are
137 documents for each target word in the training
part of the trial data.

5.2 Task

Participants induce clusters from the training data
and use them to label the test data. Resources other
than NLP tools for morphology and syntax such as
lemmatizer, POS-tagger, and parser are not allowed.
Tuning parameters and inducing clusters are only
allowed during the training phase. After training,
participants submit their sense-labeled test data to
organizers.

LDA models are not compatible with the scoring
rules for the SemEval-2010 competition, and that is
the work against which we most want to compare.
These rules require that training be done strictly be-
fore the testing is done. Note however that LDA re-
quires learning the mixture weights of topics for each
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individual document p(topic | document). These are,
of course, learned during training. But the docu-
ments in the testing corpus have never been seen
before, so clearly their topic mixture weights are not
learned during training, and thus not learned at all.
The way to overcome this is by training on both
train and test documents, but this is exactly what
SemEval-2010 forbids.

5.3 Implementation Details

The documents are tokenized and stemmed by
Stanford tokenizer and stemmer. Stop words and
punctuation in the training and test data are
discarded. Words that occur at most 10 times are
discarded from the training data. Context words
within a window of 50 about a target word are used
to construct a bag-of-words.

When a target word appears more than once
in a document, the distance between that target
word and a context word is ambiguous. We define
this distance to be minimum distance between a
context word and an instance of the target word.
For example, the word “chip” appears 3 times. For

· · · of memory chips . Currently , chips are pro-
duced by shining light through a mask to produce
an image on the chip , much as · · ·

Example 1: an excerpt from “chip” test data

a context word, e.g., “shining” there are three pos-
sible distances: 8 away from the first “chip,” 4 away
from the second “chip” and 11 away from the last
“chip.” We set the distance of “shining” from the
target to 4.

We model each target word individually. We set α,
a Dirichlet prior for senses, to 0.02 and β, a Dirichlet
prior for contextual words, to 0.1 for the Gibbs sam-
pler as in Brody and Lapata (2009). We initialize
EM with parameters learned from the sampler. We
run EM until the likehood changes less than 1%. We
run the sampler 2000 iterations including 1000 itera-
tions of burn-in: 10 samples at an interval of 100 are
averaged. For comparison, we also evaluate EM with
random initialization. All reported scores (described
in Section 5.4) are averaged over ten different runs
of the program.1

5.3.1 Tuning Parameters

Two parameters, the number of senses and x of
the function l(w), need to be determined before run-
ning the program. To find a good setting we do grid
search on the trial data with the number of senses

1Code used for experiments is available for download at
http://cs.brown.edu/~dc65/.

ranging from 2 to 5 and x ranging from 0 to 1.1 with
an interval 0.1. Due to the small size of the training
portion of the trial data, words that occur once are
thrown out in the training portion. All the other pa-
rameters are as described in Section 5.3. We choose
(4, 0.4), which achieves the highest supervised recall.
See Table 2 for the performance of the model with
various parameter settings. With a fixed value of x,
a column is nearly unimodal in the number of senses
and vice versa. x = 0 is not optimal and there is
some noticeable difference between scores with opti-
mal x and scores with x = 0.

5.4 Evaluation

We compare our system to other WSI systems and
discuss two metrics for unsupervised evaluation (V-
Measure, paired F-Score) and one metric for super-
vised evaluation (supervised recall). We refer to the
true group of tokens as a gold class and to an induced
group of tokens as a cluster. We refer to the model
learned with the sampler and EM as NB, and to the
model learned with EM only as NB0.

5.4.1 Short Descriptions of Other WSI
Systems Evaluated on SemEval-2010

The baseline assigns every instance of a target
word with the most frequent sense (MFS). UoY runs
a clustering algorithm on a graph with words as
nodes and co-occurrences between words as edges
(Korkontzelos and Manandhar, 2010). Hermit ap-
proximates co-occurrence space with Random Index-
ing and applies a hybrid of k-means and Hierarchical
Agglomerate Clustering to co-occurrence space (Ju-
rgens and Stevens, 2010). NMFlib factors a matrix
using nonnegative matrix factorization and runs a
clustering algorithm on test instances represented by
factors (Van de Cruys et al., 2011).

5.4.2 V-Measure

V-Measure computes the quality of induced clus-
ters as the harmonic mean of two values, homo-
geneity and completeness. Homogeneity measures
whether instances of a cluster belong to a single gold
class. Completeness measures whether instances of a
gold class belong to a cluster. V-Measure is between
0 and 1; higher is better. See Table 3 for details of
V-Measure evaluation (#cl is the number of induced
clusters).

With respect to V-Measure, NB performs much
better than NB0. This holds for paired F-Score and
supervised recall evaluations. The sampler improves
the log-likelihood of NB by 3.8% on average (4.8%
on nouns and 2.9% on verbs).

Pedersen (2010) points out that it is possible to
increase the V-Measure of bad models by increasing
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#s \ x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
2 74.73 74.76 74.41 74.57 74.06 74.07 74.18 74.33 74.14 74.22 74.15 74.52
3 74.60 74.71 75.21 75.46 75.21 75.57 75.61 75.32 75.53 75.56 74.98 74.79
4 74.52 75.06 74.97 75.14 76.02 75.51 75.74 75.51 75.59 75.51 75.37 75.35
5 73.40 73.88 74.93 75.13 74.79 74.68 74.71 74.49 75.11 74.94 74.86 75.25

Table 2: Performance of the model with various parameters: supervised recall on the trial data. The best value from
each row is bold-faced. The scores are averaged over 100 runs.

VM(%) all nouns verbs #cl
NB 18.0 23.7 9.9 3.42
NB0 14.9 19.0 9.0 3.77
Hermit 16.2 16.7 15.6 10.78
UoY 15.7 20.6 8.5 11.54
NMFlib 11.8 13.5 9.4 4.80
MFS 0.0 0.0 0.0 1.00

Table 3: Unsupervised evaluation: V-Measure

the number of clusters. But increasing the number
of clusters harms paired F-Score, which results in
bad supervised recalls. NB attains a very high V-
Measure with few induced clusters, which indicates
that those clusters are high quality. Other systems
use more induced clusters but fail to attain the V-
Measure of NB.

5.4.3 Paired F-Score

Paired F-Score is the harmonic mean of paired re-
call and paired precision. Paired recall is fraction of
pairs belonging to the same gold class that belong
to the same cluster. Paired precision is fraction of
pairs belonging to the same cluster that belong to
the same class. See Table 4 for details of paired F-
Score evaluation.

As with V-Measure, it is possible to attain a high
paired F-Score by producing only one cluster. The
baseline, MFS, attains 100% paired recall, which to-
gether with the poor performance of WSI systems
makes its paired F-Score difficult to beat. V-Measure
and paired F-Score are meaningful when systems
produce about the same numbers of clusters as the
numbers of classes and attain high scores on these
metrics.

FS(%) all nouns verbs #cl
MFS 63.5 57.0 72.7 1.00
NB 52.9 52.5 53.5 3.42
NB0 46.8 47.4 46.0 3.77
UoY 49.8 38.2 66.6 11.54
NMFlib 45.3 42.2 49.8 4.80
Hermit 26.7 24.4 30.1 10.78

Table 4: Unsupervised evaluation: paired F-Score

5.4.4 Supervised Recall

For the supervised task, the test data is split into
two groups: one for mapping clusters to classes and
the other for standard WSD evaluation. 2 differ-
ent split schemes (80% mapping, 20% evaluation and
60% mapping, 40% evaluation) are evaluated. 5 ran-
dom splits are averaged for each split scheme. Map-
ping is induced automatically by the program pro-
vided by organizers. See Table 5 for details of super-
vised recall evaluation (#s is the average number of
classes mapped from clusters).2

SR(%) all nouns verbs #s
NB 65.4 62.6 69.5 1.72
NB0 63.5 59.8 69.0 1.76
NMFlib 62.6 57.3 70.2 1.82
UoY 62.4 59.4 66.8 1.51
MFS 58.7 53.2 66.6 1.00
Hermit 58.3 53.6 65.3 2.06

Table 5: Supervised evaluation: supervised recall, 80%
mapping and 20% evaluation

Overall our system performs better than other sys-
tems with respect to supervised recall. When a sys-
tem has higher V-Measure and paired F-Score on
nouns than another system, it achieves a higher su-
pervised recall on nouns too. However, this behav-
ior is not observed on verbs. For example, NB has
higher V-Measure and paired F-Score on verbs than
NMFlib but NB attains a lower supervised recall on
verbs than NMFlib. It is difficult to see which verbs
clusters are better than some other clusters.

6 Conclusion

Of the four SemEval-2010 evaluation metrics, and
restricting ourselves to systems obeying the evalua-
tion conditions for that competition, our new model
achieves new best results on three. The exception is
paired F-Score. As we note earlier, this metric tends
to assign very high scores when every word receives
only one sense, and our model is bested by the base-
line system that does exactly that.

260-40 split is omitted here due to almost identical result.
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If we loosen possible comparison systems, the
LDA/HDP model of Lau et al. (2012) achieves supe-
rior numbers to ours for the two supervised metrics,
but at the expense of requiring LDA type processing
on the test data, something that the SemEval or-
ganizers ruled out, presumably with the reasonable
idea that such processing would not be feasible in
the real world. More generally, their system assigns
many senses (about 10) to each word, and thus no-
doubt does poorly on the paired F-Score (they do not
report results on V-Measure and paired F-Score).
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Abstract

This research describes efforts to use crowd-
sourcing to improve the validity of the seman-
tic predicates in VerbNet, a lexicon of about
6300 English verbs. The current semantic
predicates can be thought of semantic prim-
itives, into which the concepts denoted by a
verb can be decomposed. For example, the
verb spray (of the Spray class), involves the
predicates MOTION, NOT, and LOCATION,
where the event can be decomposed into an
AGENT causing a THEME that was originally
not in a particular location to now be in that
location. Although VerbNet’s predicates are
theoretically well-motivated, systematic em-
pirical data is scarce. This paper describes a
recently-launched attempt to address this issue
with a series of human judgment tasks, posed
to subjects in the form of games.

1 Introduction

One key application of Natural Language Processing
(NLP) is meaning extraction. Of particular impor-
tance is propositional meaning: To understand “Jes-
sica sprayed paint on the wall,” it is not enough to
know who Jessica is, what paint is, and where the
wall is, but that, by the end of the event, some quan-
tity of paint that was not previously on the wall now
is. One must extract not only meanings for individ-
ual words but also the relations between them.

One option is to learn these relations in a largely
bottom-up, data-driven fashion (Chklovski and Pan-
tel, 2004; Poon and Domingos, 2009). For instance,
Poon and Domingos (2009) first extracts depen-
dency trees, converts those into quasi-logical form,

recursively induces lambda expressions from them,
and uses clustering to derive progressively abstract
knowledge.

An alternative is to take a human-inspired ap-
proach, mapping the linguistic input onto the kinds
of representations that linguistic and psychologi-
cal research suggests are the representations em-
ployed by humans. While the exact characteriza-
tion of meaning (and by extension, thought) remains
an area of active research in the cognitive sciences
(Margolis and Laurence, 1999), decades of research
in linguistics and psychology suggests that much of
the meaning of a sentence – as well as its syntactic
structure – can be accounted for by invoking a small
number of highly abstract semantic features (usu-
ally represented as predicates), such as causation,
agency, basic topological relations, and directed mo-
tion (Ambridge et al., 2013; Croft, 2012; Jackend-
off, 1990; Levin and Rappaport Hovav, 2005; Peset-
sky, 1995; Pinker, 1989). For instance, a given verb
can appear in some syntactic frames (Sally broke the
vase. Sally broke the vase with the hammer. The vase
broke.) and not others (*Sally broke the vase to the
floor. *Sally broke John the vase.). When verbs are
classified according to the syntactic frames they can
appear in, most if not all the verbs in a class involve
the same set of abstract semantic features.1

Interestingly, roughly these same features (causa-
tion, etc.) have been singled out by developmental
psychologists as part of “core knowledge” – a set of
early-learned or perhaps innate concepts upon which

1Whether all verbs in a class share the same abstract pred-
icates or merely most is an area of active research (Levin and
Rappaport Hovav, 2005).
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the rest of cognition is built (Spelke and Kinzler,
2007). Thus these semantic features/predicates may
be not only crucial to describing linguistic mean-
ing but may be central organizing principles for a
human’s (reasonably successful) thinking about and
conceptualization of the world. As such, they pro-
vide a potentially rewarding target for NLP.

2 VerbNet

2.1 Overview and Structure

Perhaps the most comprehensive implementation
of this approach appears in VerbNet (Kipper et al.,
2008; based on Levin, 1993). VerbNet classifies
verbs based on the syntactic frames they can appear
in, providing a semantic description of each frame
for each class. An example entry is shown below:

Syntactic Frame NP V NP PP.DESTINATION

Example Jessica sprayed the wall.
Syntax AGENT V THEME {+LOC|+DEST CONF}
DESTINATION

Semantics MOTION(DURING(E), THEME)
NOT(PREP(START(E), THEME, DESTINATION))
PREP(END(E), THEME, DESTINATION)
CAUSE(AGENT, E)

The “Syntactic Frame” provides a flat syntactic
parse. “Syntax” provides semantic role labels for
each of the NPs and PPs, which are invoked in “Se-
mantics”. VerbNet decomposes the semantics of
this sentence into four separate predicates: 1) the
THEME (the paint) moves doing the event E; 2) at
the start of the event E, the THEME (the paint) is
not at the DESTINATION (on the wall), whereas 3)
at the end of the event E, the THEME (the paint) is
at the DESTINATION (on the wall), and; 4) the event
is caused by the AGENT (Sally). Note that this cap-
tures only the core aspects of semantics shared by all
verbs in the class; differences between verbs in the
same class (e.g., spray vs. splash) are omitted.

Importantly, the semantics of the sentence is de-
pendent on both the matrix verb (paint) and the syn-
tactic frame. Famously, when inserted in the slightly
different frame NP V NP.DESTINATION PP.THEME

– “Sally sprayed the wall with paint” – “spray” en-
tails that destination (the wall) is now fully painted,
an entailment that does not follow in the example

above (Pinker, 1989).

2.2 Uses and Limitations

VerbNet has been used in a variety of NLP appli-
cations, such as semantic role labeling (Swier and
Stevenson, 2004), inferencing (Zaenen et al., 2008),
verb classification (Joanis et al., 2008), and informa-
tion extraction (Maynard, Funk, and Peters, 2009).

While such applications have been successful thus
far, an important constraint on how well VerbNet-
based NLP applications can be expected to perform
is the accuracy of the semantics encoded in Verb-
Net. Here, several issues arise. Leaving aside mis-
categorized verbs and other inaccuracies, as noted
above VerbNet assumes that all verbs in the same
class share the same core predicates, which may or
may not be empirically justified. Given the number
of semantic predicates (146),2 verb entries (6580),
and unique verb lemmas (6284) it is not feasible for
a single research team to check, particularly since af-
ter a certain number of verbs, intuitions become less
clear. In any case, it may not be ideal to rely solely
on the intuitions of invested researchers, whose in-
tuitions about subtle judgments may be clouded by
theoretical commitments (Gibson and Federenko,
2013); the only way to ensure this is not the case
is through independent validation. Unfortunately, of
the 280 verb classes in VerbNet, this has been done
for only a few (cf Ambridge et al., 2013).

3 VerbCorner

The VerbCorner project was designed to address
these issues by crowd-sourcing the semantic judg-
ments online (gameswithwords.org/VerbCorner/).
Several previous projects have successfully crowd-
sourced linguistic annotations, such as Phrase De-
tectives, where volunteers have contributed 2.5 mil-
lion judgments on anaphoric relations (Poesio et al.,
2012). Below, we outline the VerbCorner project
and describe one specific annotation task in detail.

3.1 Developing Semantic Annotation Tasks

Collecting accurate judgments on subtle questions
from naive participants with limited metalinguistic

2Note that these vary in applicability from those specific to
a small number of verbs (CHARACTERIZE, CONSPIRE) to those
frequently invoked (BEGIN, EXIST).
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skills is difficult. Rare is the non-linguist who can
immediately answer the question, “Does the verb
‘throw,’ when used transitively, entail a change of
location on the part of its THEME?” Thus, we began
by developing tasks that isolate semantic features in
a way accessible to untrained annotators.

We converted the metalinguistic judgments
(“Does this verb entail this abstract predicate?”) into
real-world problems, which previous research sug-
gests should be easier (Cosmides and Tooby, 1992).
Each judgment tasks involved a fanciful backstory.
For instance, in “Simon Says Freeze”, a task de-
signed to elicit judgments about movement, the
Galactic Overlord (Simon) decrees “Galactic Stay
Where You Are Day,” during which nobody is al-
lowed to move from their current location. Partici-
pants read descriptions of events and decide whether
anyone violated the rule. In “Explode on Contact”,
designed to elicit judgments about physical contact,
objects and people explode when they touch one an-
other. The participant reads descriptions of events
and decides whether anything has exploded.3

Each task was piloted until inter-coder reliability
was acceptably high and the modal response nearly
always corresponded with researcher intuitions. As
such, these tasks cannot be used to establish whether
researcher intuitions for the pilot stimuli are correct
(this would be circular); however, there is no guar-
antee that agreement with the researcher will gener-
alize to new items (the pilot stimuli cover a trivial
proportion of all verbs in VerbNet).

3.2 Crowd-sourcing Semantic Judgments

The pilot experiments showed that it is possible to
elicit reliable semantic judgments corresponding to
VerbNet predicates from naive participants (see sec-
tion 3.3). At the project website, volunteers choose
one of the tasks from a list and begin tagging sen-
tences. The sentences are sampled smartly, avoid-
ing sentences already tagged by that volunteer and
biased in favor of of the sentences with the fewest

3Note that each task is designed to elicit judgments about
entailments – things that must be true rather than are merely
likely to be true. If John greeted Bill, they might have come
into contact (e.g., by shaking hands), but perhaps they did not.
Previous work suggests that it is entailments that matter, partic-
ularly for explaining the syntactic behavior of verbs (Levin and
Rappaport Hovav, 2005)

judgments so far. Rather than assessing annotator
quality through gold standard trials with known an-
swers (which wastes data – the answers to these tri-
als are known), approximately 150 sentences were
chosen to be “over-sampled.” As the volunteer tags
sentences, approximately one out of every five are
from this over-sampled set until that volunteer has
tagged all of them. This guarantees that any given
volunteer will have tried some sentences targeted
by many other volunteers, allowing inter-annotator
agreement to be used to assess annotator quality.

Following the example of Zooniverse (zooni-
verse.org), a popular “Citizen Science” platform,
volunteers are encouraged but required to register
(requiring registration prior to seeing the tasks was
found to be a significant barrier to entry). Regis-
tration allows collecting linguistic and educational
background from the volunteer, and also makes it
possible to track the same volunteer across sessions.

Multiple gamification elements were incorporated
into VerbCorner in order to recruit and motivate vol-
unteers. Each task has a leaderboard, where the
volunteer can see his/her rank out of all volunteers
in terms of number of contributions made. In ad-
dition, there is a general leaderboard, which sums
across tasks. Volunteers can earn badges, displayed
on their homepage, for answering certain numbers
of questions in each task. Finally, at random inter-
vals bonus points are awarded, with the explanation
for the bonus points tailored to the task’s backstory.

VerbCorner was launched on May 21, 2013. After
six weeks, 555 volunteers had provided at least one
annotation, for a total of 39,274 annotations, demon-
strating the feasibility of collecting large numbers of
annotations through this method.

3.3 Case Study: Equilibrium
“Equilibrium” was designed to elicit judgments
about application of force, frequently argued to be
a core semantic feature in the sense discussed above
(Pinker, 1989). The backstory involves the “Zen Di-
mension,” in which nobody is allowed to exert force
on anything else. The participant reads descriptions
of events (Sally sprayed paint onto the wall) and de-
cides whether they would be allowable in the Zen
Dimension – and, in particular, which participants
in the event are illegally applying force.

In order to minimize unwanted effects of world
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knowledge, the verb’s arguments are replaced with
nonsense words or randomly chosen proper names
(Sally sprayed the dax onto the blicket). In the
context of the story, this is explained as necessary
anonymization: You are a government official de-
termining whether certain activities are allowable,
and ensuring anonymity is an important safeguard
against favoritism and corruption. An alternative
wouod be to use multiple different content words,
randomly chosen for each annotator. However, this
greatly increases the number of annotators needed
and quickly becomes infeasible.

3.3.1 Pilot Results

The task was piloted on 138 sentences, which com-
prised all possible syntactic frames for three verbs
from each of five verb classes in VerbNet. After
two rounds of piloting (between the first and second,
wording in the backstory was adjusted for clarity
based on pilot subject feedback and results), Kripp’s
alpha reached .76 for 8 annotators, which represents
a reasonably high level of inter-annotator agreement.
Importantly, the modal response matched the intu-
itions of the researchers in 137 of 138 cases.4

3.3.2 Preliminary VerbCorner Results

“Equillibrium” was one of the first tasks posted on
VerbCorner, with data currently being collected on
12 of the 280 VerbNet classes, for a total of 5,171
sentences. As of writing, 414 users have submitted
14,294 judgments. Individual annotators annotated
anywhere from 1 to 195 sentences (mean=8, me-
dian=4). While most sentences have relatively few
judgments, each of the 194 over-sampled sentences
has between 15 and 20 judgments.5

Comparing the modal response with the re-
searchers’ intuitions resulted in a match for 184 of
194 sentences. In general, where the modal response

4The remaining case was “The crose smashed sondily.” for
which four pilot subjects thought involved the crose applying
force – matching researcher intuition – and four thought did
not involve any application of force, perhaps interpreting the
sentence was a passive.

5These are the same 15 verbs used in the piloting. The num-
ber of sentences is larger in order to test a wider range of pos-
sible arguments. In particular, wherever appropriate, separate
sentences were constructed using animate and inanimate argu-
ments. Compare Sally sprayed the dax onto Mary and Sally
sprayed the dax onto the blicket.

did not match researcher intuitions, the modal re-
sponse was itself not popular, comprising an aver-
age of 53% of responses, compared with an aver-
age of 77% where the modal response matched re-
searcher intuitions. Thus, these appear to be cases of
disagreement, either because the correct intuition re-
quires more work to obtain or because of differences
across idiolects (at the moment, there is no obvious
pattern as to which sentences caused difficulty, but
the sample size is small). Thus, follow-up investi-
gation of sentences with little inter-coder agreement
may be warranted.

4 Conclusion and Future Work

Data-collection is ongoing. VerbNet identifies ap-
proximately 150 different semantic predicates. An-
notating every verb in each of its syntactic frames for
each semantic predicate would take many millions
of judgments. However, most of the semantic predi-
cates employed in VerbNet are very narrow in scope
and only apply to a few classes. Thus, we have be-
gun with broad predicates that are thought to apply
to many verbs and are adding progressively narrower
predicates as work progresses. At the current rate,
we should complete annotation for the half-dozen
most frequent semantic predicates in the space of a
year.

Future work will explore using an individual
annotator’s history across trials to weight that
user’s contributions, something that VerbCorner was
specifically designed to allow (see above). How to
assess annotator quality without gold standard data
is an active area of research (Passonneau and Car-
penter, 2013; Rzhetsky, Shatkay and Wilbur, 2009;
Whitehill et al., 2009). For instance, Whitehill and
colleagues (2009) provide an algorithm for jointly
estimating both annotator quality and annotation
difficulty (including the latter is important because
some annotators will have low agreement with oth-
ers due to their poor luck in being assigned difficult-
to-annotate sentences). This algorithm is shown to
outperform using the modal response.

Note that this necessarily biases against annota-
tors with few responses. In our case study above, ex-
cluding annotators who contributed small numbers
of annotations led to progressively worse match to
researcher intuition, suggesting that the loss in data
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caused by excluding these annotations may not be
worth the increased confidence in annotation quality.
Future research will be needed to assess this trade-
off.

The above work shows the feasibility of crowd-
sourcing VerbNet semantic entailments, as has been
shown for a handful of other linguistic judgments
(Artignan, Hascoet and Lafourcade, 2009; Poesio et
al., 2012; Venhuizen et al., 2013). There are many
domains in which gold standard human judgments
are scarce; crowd-sourcing has considerable poten-
tial at addressing this need.
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Abstract

This paper offers an approach for governments
to harness the information contained in social
media in order to make public inspections and
disclosure more efficient. As a case study, we
turn to restaurant hygiene inspections – which
are done for restaurants throughout the United
States and in most of the world and are a fre-
quently cited example of public inspections
and disclosure. We present the first empiri-
cal study that shows the viability of statistical
models that learn the mapping between tex-
tual signals in restaurant reviews and the hy-
giene inspection records from the Department
of Public Health. The learned model achieves
over 82% accuracy in discriminating severe
offenders from places with no violation, and
provides insights into salient cues in reviews
that are indicative of the restaurant’s sanitary
conditions. Our study suggests that public
disclosure policy can be improved by mining
public opinions from social media to target in-
spections and to provide alternative forms of
disclosure to customers.

1 Introduction

Public health inspection records help customers to
be wary of restaurants that have violated health
codes. In some counties and cities, e.g., LA, NYC,
it is required for restaurants to post their inspec-
tion grades at their premises, which have shown
to affect the revenue of the business substantially
(e.g., Jin and Leslie (2005), Henson et al. (2006)),
thereby motivating restaurants to improve their sani-
tary practice. Other studies have reported correlation

between the frequency of unannounced inspections
per year, and the average violation scores, confirm-
ing the regulatory role of inspections in improving
the hygiene quality of the restaurants and decreasing
food-borne illness risks (e.g., Jin and Leslie (2003),
Jin and Leslie (2009), Filion and Powell (2009),
NYC-DoHMH (2012)).

However, one practical challenge in the current
inspection system is that the department of health
has only limited resources to dispatch inspectors,
leaving out a large number of restaurants with un-
known hygiene grades. We postulate that online re-
views written by the very citizens who have visited
those restaurants can serve as a proxy for predicting
the likely outcome of the health inspection of any
given restaurant. Such a prediction model can com-
plement the current inspection system by enlight-
ening the department of health to make a more in-
formed decision when allocating inspectors, and by
guiding customers when choosing restaurants.

Our work shares the spirit of recently emerging
studies that explores social media analysis for pub-
lic health surveillance, in particular, monitoring in-
fluenza or food-poisoning outbreaks from micro-
blogs (e.g., Aramaki et al. (2011), Sadilek et al.
(2012b), Sadilek et al. (2012a), Sadilek et al. (2013),
Lamb et al. (2013), Dredze et al. (2013), von Etter
et al. (2010)). However, no prior work has examined
the utility of review analysis as a predictive tool for
accessing hygiene of restaurants, perhaps because
the connection is not entirely conspicuous: after all,
customers are neither familiar with inspection codes,
nor have the full access to the kitchen, nor have been
asked to report on the hygiene aspects of their expe-
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Figure 1: Spearman’s coefficients of factors & inspection
penalty scores. ‘*’: statistically significant (p ≤ 0.05)

rience.
In this work, we report the first empirical study

demonstrating the utility of review analysis for pre-
dicting health inspections, achieving over 82% accu-
racy in discriminating severe offenders from places
with no violation, and find predictive cues in reviews
that correlate with the inspection results.

2 Data

We scraped entire reviews written for restaurants in
Seattle from Yelp over the period of 2006 to 2013.1

The inspection records of Seattle is publicly avail-
able at www.datakc.org. More than 50% of the
restaurants listed under Yelp did not have inspection
records, implying the limited coverage of inspec-
tions. We converted street addresses into canonical
forms when matching restaurants between Yelp and
inspection database. After integrating reviews with
inspection records, we obtained about 13k inspec-

1Available at http://www.cs.stonybrook.edu/

˜junkang/hygiene/
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Figure 2: Spearman’s coefficients of factors & inspection
penalty scores. ‘*’: statistically significant (p ≤ 0.05)

tions over 1,756 restaurants with 152k reviews. For
each restaurant, there are typically several inspec-
tion records. We defined an “inspection period” of
each inspection record as the period of time start-
ing from the day after the previous inspection to the
day of the current inspection. If there is no previ-
ous inspection, then the period stretches to the past
6 months in time. Each inspection period corre-
sponds to an instance in the training or test set. We
merge all reviews within an inspection period into
one document when creating the feature vector.

Note that non-zero penalty scores may not nec-
essarily indicate alarming hygiene issues. For ex-
ample, violating codes such as “proper labeling” or
“proper consumer advisory posted for raw or under-
cooked foods” seem relatively minor, and unlikely to
be noted and mentioned by reviewers. Therefore, we
focus on restaurants with severe violations, as they
are exactly the set of restaurants that inspectors and
customers need to pay the most attention to. To de-
fine restaurants with ”severe violations” we experi-
ment with a varying threshold t, such that restaurants
with score ≥ t are labeled as “unhygienic”.2

3 Correlates of Inspection Penalty Scores

We examine correlation between penalty scores and
several statistics of reviews:

I. Volume of Reviews:
2For restaurants with “hygienic” labels, we only consider

those without violation, as there are enough number of such
restaurants to keep balanced distribution between two classes.
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• count of all reviews
• average length of all reviews

II. Sentiment of Reviews: We examine whether
the overall sentiment of the customers correlates
with the hygiene of the restaurants based on follow-
ing measures:

• average review rating
• count of negative (≤ 3) reviews

III. Deceptiveness of Reviews: Restaurants with
bad hygiene status are more likely to attract negative
reviews, which would then motivate the restaurants
to solicit fake reviews. But it is also possible that
some of the most assiduous restaurants that abide
by health codes strictly are also diligent in solicit-
ing fake positive reviews. We therefore examine the
correlation between hygiene violations and the de-
gree of deception as follows.

• bimodal distribution of review ratings
The work of Feng et al. (2012) has shown
that the shape of the distribution of opinions,
overtly skewed bimodal distributions in partic-
ular, can be a telltale sign of deceptive review-
ing activities. We approximately measure this
by computing the variance of review ratings.
• volume of deceptive reviews based on linguistic

patterns
We also explore the use of deception classifiers
based on linguistic patterns (Ott et al., 2011)
to measure the degree of deception. Since no
deception corpus is available in the restaurant
domain, we collected a set of fake reviews and
truthful reviews (250 reviews for each class),
following Ott et al. (2011).3

310 fold cross validation on this dataset yields 79.2% accu-
racy based on unigram and bigram features.

Features Acc. MSE SCC

- *50.00 0.500 -
review count *50.00 0.489 0.0005
np review count *52.94 0.522 0.0017
cuisine *66.18 0.227 0.1530
zip code *67.32 0.209 0.1669
avrg. rating *57.52 0.248 0.0091
inspection history *72.22 0.202 0.1961
unigram 78.43 0.461 0.1027
bigram *76.63 0.476 0.0523
unigram + bigram 82.68 0.442 0.0979
all 81.37 0.190 0.2642

Table 1: Feature Compositions & Respective Accuracies,
Respective Mean Squared Errors(MSE) & Squared Cor-
relation Coefficients (SCC), np=non-positive

Filtering Reviews: When computing above statis-
tics over the set of reviews corresponding to each
restaurant, we also consider removing a subset of re-
views that might be dubious or just noise. In partic-
ular, we remove reviews that are too far away (delta
≥ 2) from the average review rating. Another filter-
ing rule can be removing all reviews that are clas-
sified as deceptive by the deception classifier ex-
plained above. For brevity, we only show results
based on the first filtering rule, as we did not find
notable differences in different filtering strategies.

Results: Fig 1 and 2 show Spearman’s rank corre-
lation coefficient with respect to the statistics listed
above, with and without filtering, computed at dif-
ferent threshold cutoffs ∈ {0, 10, 20, 30, 40, 50} of
inspection scores. Although coefficients are not
strong,4 they are mostly statistically significant with
p ≤ 0.05 (marked with ’*’), and show interesting
contrastive trends as highlighted below.

In Fig 1, as expected, average review rating is neg-
atively correlated with the inspection penalty scores.
Interestingly, all three statistics corresponding to the
volume of customer reviews are positively corre-
lated with inspection penalty. What is more inter-
esting is that if potentially deceptive reviews are fil-
tered, then the correlation gets stronger, which sug-
gests the existence of deceptive reviews covering up
unhappy customers. Also notice that correlation is

4Spearman’s coefficient assumes monotonic correlation. We
suspect that the actual correlation of these factors and inspection
scores are not entirely monotonic.
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Hygienic gross, mess, sticky, smell, restroom, dirty
Basic Ingredients: beef, pork, noodle, egg, soy,
ramen, pho,
Cuisines Vietnamese, Dim Sum, Thai, Mexican,
Japanese, Chinese, American, Pizza, Sushi, Indian,
Italian, Asian
Sentiment: cheap, never,
Service & Atmosphere cash, worth, district, delivery,
think, really, thing, parking, always, usually, definitely
- door: “The wait is always out the door when I
actually want to go there”,
- sticker: “I had sticker shock when I saw the prices.”,
- student: “heap, large portions and tasty = the perfect
student food!”,
- the size: “i was pretty astonished at the size of all the
plates for the money.”,
- was dry: “The beef was dry, the sweet soy and
anise-like sauce was TOO salty (almost inedible).”,
- pool: “There are pool tables, TV airing soccer games
from around the globe and of course - great drinks!”

Table 2: Lexical Cues & Examples - Unhygienic (dirty)

generally stronger when higher cutoffs are used (x-
axis), as expected. Fig 2 looks at the relation be-
tween the deception level and the inspection scores
more directly. As suspected, restaurants with high
penalty scores show increased level of deceptive re-
views.

Although various correlates of hygiene scores ex-
amined so far are insightful, these alone are not in-
formative enough to be used as a predictive tool,
hence we explore content-based classification next.

4 Content-based Prediction

We examine the utility of the following features:

Features based on customers’ opinion:

1. Aggregated opinion: average review rating
2. Content of the reviews: unigram, bigram

Features based on restaurant’s metadata:

3. Cuisine: e.g., Thai, Italian, as listed under Yelp
4. Location: first 5 digits of zip code
5. Inspection History: a boolean feature (“hy-

gienic” or “unhygienic”), a numerical feature
(previous penalty score rescaled ∈ [0, 1]), a nu-
meric feature (average penalty score over all
previous inspections)

Hygienic:
Cooking Method & Garnish: brew, frosting, grill,
crush, crust, taco, burrito, toast
Healthy or Fancier Ingredients: celery, calamity,
wine, broccoli, salad, flatbread, olive, pesto
Cuisines : Breakfast, Fish & Chips, Fast Food,
German, Diner, Belgian, European, Sandwiches,
Vegetarian
Whom & When: date, weekend, our, husband,
evening, night
Sentiment: lovely, yummy, generous, friendly, great,
nice
Service & Atmosphere: selection, attitude,
atmosphere, ambiance, pretentious

Table 3: Lexical Cues & Examples - Hygienic (clean)

6. Review Count
7. Non-positive Review Count

Classification Results We use liblinear’s SVM
(Fan et al., 2008) with L1 regularization and 10 fold
cross validation. We filter reviews that are farther
than 2 from the average rating. We also run Sup-
port Vector Regression (SVR) using liblinear. Fig 3
shows the results. As we increase the threshold, the
accuracy also goes up in most cases. Table 1 shows
feature ablation at threshold t = 50, and ‘*’ denotes
statistically significant (p≤0.05) difference over the
performance with all features based on student t-test.

We find that metadata information of restaurants
such as location and cuisine alone show good predic-
tive power, both above 66%, which are significantly
higher than the expected accuracy of random guess-
ing (50%).

Somewhat unexpected outcome is aggregated
opinion, which is the average review rating during
the corresponding inspection period, as it performs
not much better than chance (57.52%). This result
suggest that the task of hygiene prediction from re-
views differs from the task of sentiment classifica-
tion of reviews.

Interestingly, the inspection history feature alone
is highly informative, reaching accuracy upto 72%,
suggesting that the past performance is a good pre-
dictor of the future performance.

Textual content of the reviews (unigram+bigram)
turns out to be the most effective features, reaching
upto 82.68% accuracy. Lastly, when all the features
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are combined together, the performance decreases
slightly to 81.37%, perhaps because n-gram features
perform drastically better than all others.

4.1 Insightful Cues

Table 2 and 3 shows representative lexical cues for
each class with example sentences excerpted from
actual reviews when context can be helpful.

Hygiene: Interestingly, hygiene related words are
overwhelmingly negative, e.g., “gross”, “mess”,
“sticky”. What this suggests is that reviewers do
complain when the restaurants are noticeably dirty,
but do not seem to feel the need to complement on
cleanliness as often. Instead, they seem to focus on
other positive aspects of their experience, e.g., de-
tails of food, atmosphere, and their social occasions.

Service and Atmosphere: Discriminative fea-
tures reveal that it is not just the hygiene related
words that are predictive of the inspection results of
restaurants. It turns out that there are other quali-
ties of restaurants, such as service and atmosphere,
that also correlate with the likely outcome of inspec-
tions. For example, when reviewers feel the need
to talk about “door”, “student”, “sticker”, or “the
size” (see Table 2 and 3), one can extrapolate that
the overall experience probably was not glorious. In
contrast, words such as “selection”, “atmosphere”,
“ambiance” are predictive of hygienic restaurants,
even including those with slightly negative connota-
tion such as “attitude” or “pretentious”.

Whom and When: If reviewers talk about details
of their social occasions such as “date”, “husband”,
it seems to be a good sign.

The way food items are described: Another in-
teresting aspect of discriminative words are the way
food items are described by reviewers. In general,
mentions of basic ingredients of dishes, e.g., “noo-
dle”, “egg”, “soy” do not seem like a good sign. In
contrast, words that help describing the way dish is
prepared or decorated, e.g., “grill”, “toast”, “frost-
ing”, “bento box” “sugar” (as in “sugar coated”)
are good signs of satisfied customers.

Cuisines: Finally, cuisines have clear correlations
with inspection outcome, as shown in Table 2 and 3.

5 Related Work

There have been several recent studies that probe the
viability of public health surveillance by measuring
relevant textual signals in social media, in particu-
lar, micro-blogs (e.g., Aramaki et al. (2011), Sadilek
et al. (2012b), Sadilek et al. (2012a), Sadilek et al.
(2013), Lamb et al. (2013), Dredze et al. (2013), von
Etter et al. (2010)). Our work joins this line of re-
search but differs in two distinct ways. First, most
prior work aims to monitor a specific illness, e.g.,
influenza or food-poisoning by paying attention to
a relatively small set of keywords that are directly
relevant to the corresponding sickness. In contrast,
we examine all words people use in online reviews,
and draw insights on correlating terms and concepts
that may not seem immediately relevant to the hy-
giene status of restaurants, but nonetheless are pre-
dictive of the outcome of the inspections. Second,
our work is the first to examine online reviews in the
context of improving public policy, suggesting addi-
tional source of information for public policy mak-
ers to pay attention to.

Our work draws from the rich body of research
that studies online reviews for sentiment analysis
(e.g., Pang and Lee (2008)) and deception detec-
tion (e.g., Mihalcea and Strapparava (2009), Ott et
al. (2011), Feng et al. (2012)), while introducing
the new task of public hygiene prediction. We ex-
pect that previous studies for aspect-based sentiment
analysis (e.g., Titov and McDonald (2008), Brody
and Elhadad (2010), Wang et al. (2010)) would be a
fruitful venue for further investigation.

6 Conclusion

We have reported the first empirical study demon-
strating the promise of review analysis for predicting
health inspections, introducing a task that has poten-
tially significant societal benefits, while being rele-
vant to much research in NLP for opinion analysis
based on customer reviews.
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Abstract 

The identification of pseudepigraphic texts – 

texts not written by the authors to which they 

are attributed – has important historical, fo-

rensic and commercial applications. We in-

troduce an unsupervised technique for identi-

fying pseudepigrapha. The idea is to identify 

textual outliers in a corpus based on the pair-

wise similarities of all documents in the cor-

pus. The crucial point is that document simi-

larity not be measured in any of the standard 

ways but rather be based on the output of a re-

cently introduced algorithm for authorship ve-

rification. The proposed method strongly 

outperforms existing techniques in systematic 

experiments on a blog corpus. 

1 Introduction 

The Shakespeare attribution problem is centuries 

old and shows no signs of abating. Some scholars 

argue that some, or even all, of Shakespeare’s 

works were not actually written by him. The most 

mainstream theory – and the one that interests us 

here – is that most of the works were written by 

Shakespeare, but that several of them were not. 

Could modern methods of computational author-

ship attribution be used to detect which, if any, of 

the works attributed to Shakespeare were not writ-

ten by him? 

More generally, this paper deals with the unsu-

pervised problem of detecting pseudepigrapha: 

documents in a supposedly single-author corpus 

that were not actually written by the corpus’s pre-

sumed author. Studies as early as Mendenhall 

(1887), have observed that texts by a single author 

tend to be somewhat homogeneous in style. If this 

is indeed the case, we would expect that pseudepi-

grapha would be detectable as outliers.  

Identifying such outlier texts is, of course, a 

special case of general outlier identification, one of 

the central tasks of statistics. We will thus consider 

the pseudepigrapha problem in the context of the 

more general outlier detection problem. 

Typically, research on textual outliers assumes 

that we have a corpus of known authentic docu-

ments and are asked to decide if a specified other 

document is authentic or not (Juola and Stamata-

tos, 2013). One crucial aspect of our problem is 

that we do not assume that any specific text in a 

corpus is known a priori to be authentic or pseude-

pigraphic; we can assume only that most of the 

documents in the corpus are authentic. 

The method we introduce in this paper builds on 

the approach of Koppel and Winter (2013) for de-

termining if two documents are by the same au-

thor. We apply that method to every pair of 

documents in a corpus and use properties of the 

resulting adjacency graph to identify outliers. In 

the following section, we briefly outline previous 

work. In Section 3 we provide a framework for 

outlier detection and in Section 4 we describe our 

method. In Section 5 we describe the experimental 

setting and give results and in Section 6 we present 

results for the plays of Shakespeare. 

2 Related Work 

Identifying outlier texts consists of two main stag-

es: first, representing each text as a numerical vec-

tor representing relevant linguistic features of the 

text and second, using generic methods to identify 

outlier vectors.  

There is a vast literature on generic methods for 

outlier detection, summarized in Hodge & Austin 

(2004) and Chandola et al. (2009). Since our prob-
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lem setup does not entail obtaining any labeled 

examples of authentic or outlier documents, super-

vised and semi-supervised methods are inapplica-

ble. The available methods are unsupervised, 

principally probabilistic or proximity-based me-

thods. A classical variant of such methods for un-

ivariate normally distributed data uses the the z-

score (Grubbs, 1969). Such simple univariate out-

lier detectors are, however, inappropriate for iden-

tifying outliers in a high-dimensional textual 

corpus. Subsequent work, such as the Stahel-

Donoho Estimator (Stahel, 1981; Donoho, 1982), 

PCout (Filzmoser et al., 2008), LOF (Breunig and 

Kriegel, 2000) and ABOD (Kriegel et al., 2008) 

have generalized univariate methods to high-

dimensional data points. 

In his comprehensive review of outlier detection 

methods in textual data, Guthrie (2008) compares a 

variety of vectorization methods along with a va-

riety of generic outlier methods. The vectorization 

methods employ a variety of lexical and syntactic 

stylistic features, while the outlier detection me-

thods use a variety of similarity/distance measures 

such as cosine and Euclidean distance. Similar me-

thods have also been used in the field of intrinsic 

plagiarism detection, which involves segmenting a 

text and then identifying outlier segments (Stama-

tatos, 2009; Stein et al., 2010). 

3 Proximity Methods 

Formally, the problem we wish to solve is defined 

as follows: Given a set of documents D = 

{d1,…,dn}, all or most of which were written by 

author A, which, if any, documents in D were not 

written by A? 

We begin by considering the kinds of proximity 

methods for textual outlier detection considered by 

Guthrie (2008) and in the work on intrinsic plagiar-

ism detection; these will serve as baseline methods 

for our approach. The idea is simple: mark as an 

outlier any document that is too far from the rest of 

the documents in the corpus.  

We briefly sketch the key steps: 

1. Represent a document as a numerical vector.  

The kinds of measurable features that can be 

used to represent a document include frequen-

cies of word unigrams, function words, parts-

of-speech and character n-grams, as well as 

complexity measures such as type/token ratio, 

sentence and word length and so on. 

2. Measure the similarity of two document vec-

tors. 

We can use either inverses of distance meas-

ures such as Euclidean distance or Manhattan 

distance, or else direct similarity measures 

such as cosine or min-max. 

3. Use an aggregation method to measure the 

similarity of a document to a set of documents. 

One approach is to simply measure the dis-

tance from a document to the centroid of all 

the other documents (centroid method). 

Another approach is to first measure the simi-

larity of a document to each other document 

and then to aggregate the results by averaging 

all the obtained values (mean method): 

 
Alternatively, we can average the values only 

for the k nearest neighbors (k-NN method): 

 
(where Dk = k nearest neighbors of di). 

Yet another method is to use median distance 

(median method).  

 
We note that the centroid method and mean 

method suffer from the masking effect (Bendre 

and Kale, 1987; Rousseeuw and Leroy, 2003): 

the presence of some outliers in the data can 

greatly distort the estimator's results regarding 

the presence of other outliers. The k-NN me-

thod and the median method are both much 

more robust. 

4. Choose some threshold beyond which a docu-

ment is marked as an outlier.  

Choosing the threshold is one of the central is-

sues in statistical approaches. For our purpos-

es, however, the choice of threshold is simply 

a parameter trading off recall and precision. 

4 Second-Order Similarity 

Our approach is to use an entirely different kind of 

similarity measure in Step 2. Rather than use a 

first-order similarity measure, as is customary, we 

employ a second-order similarity measure that is 

the output of an algorithm used for the authorship 

verification problem (Koppel et al. 2011), in which 

we need to determine if two, possibly short, docu-

ments were written by the same author.  

That algorithm, known as the “impostors me-

thod” (IM), works as follows. Given two docu-
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ments, d1 and d2, generate an appropriate set of 

impostor documents, p1,…,pm and represent each 

of the documents in terms of some large feature set 

(for example, the frequencies of various words or 

character n-grams in the document). For some ran-

dom subset of the feature set, measure the similari-

ty of d1 to d2 as well as to each of the documents 

p1,…,pm and note if d1 is closer to d2 than to any of 

the impostors. Repeat this k times, choosing a dif-

ferent random subset of the features in each itera-

tion. If d1 is closer to d2 than to any of the 

impostors (and likewise switching the roles of d1 

and d2) for at least θ% of iterations, then output 

that d2 and d1 are the same author. (The parameter 

θ is used to trade-off recall and precision.)  

Adapting that method for our purposes, we use 

the proportion of iterations for which d1 is closer to 

d2 than to any of the impostors as our similarity 

measure (adding a small twist to make the measure 

symmetric over d1 and d2, as can be seen in line 

2.2.2 of the algorithm). More precisely, we do the 

following:  

 
Given: Corpus D={d1,…,dn} 
1. Choose a feature set FS for representing documents, a 

first-order similarity measure sim, and an impostor set 

{p1,…,pm}. 

2. For each pair of documents <di, dj> in set D: 

2.1. Let sim2(di, dj) := 0 

2.2. Iterate K times: 

2.2.1. Randomly choose 40% of features in FS 

2.2.2. If sim(di, dj)
 2  >   

maxu∈{1,..,m}sim(di,  pu)*maxu∈{1,..,m}sim(dj, pu), 

then sim2(di, dj) ≔ sim2(di, dj) + 1/K 

3. For each document di in set D: 

3.1. Compute sim2(di, D) = agg w∈{1,..,n}[sim2(di, dw)] 

where agg is some aggregation function  

3.2. If sim2(di, D) < θ (where θ is a parameter),  

then mark di as outlier. 
 

The method for choosing the impostor set is 

corpus-dependent, but quite straightforward: we 

simply choose random impostors from the same 

genre and language as the documents in question. 

The choice of feature set FS, first-order similarity 

measure sim, and aggregation function agg can be 

varied. For FS, we simply use bag-of-words 

(BOW). As for sim and agg, we show below re-

sults of experiments comparing the effectiveness of 

various choices for these parameters.  

Using second-order similarity has several sur-

face advantages over standard first-order measures. 

First, it is decisive: for most pairs, second-order 

similarity will be close to 0 or close to 1. Second, it 

is self-normalizing: scaling doesn’t depend on the 

size of the underlying feature sets or the lengths of 

the documents. As we will see, it is also simply 

much more effective for identifying outliers. 

5 Experiments 

We begin by assembling a corpus consisting of 

3540 blog posts written by 156 different bloggers. 

The blogs are taken from the blog corpus assem-

bled by Schler et al. (2006) for use in authorship 

attribution tasks. Each of the blogs was written in 

English by a single author in 2004 and each post 

consists of 1000 words (excess is truncated). 

For our initial experiments, each trial consists of 

10 blog posts, all but p of which are by a single 

blogger. The number of pseudepigraphic docu-

ments, p, is chosen from a uniform distribution 

over the set {0,1,2,3}. Our task is to identify 

which, if any, documents in the set are not by the 

main author of the set. The pseudepigraphic docu-

ments might be written by a single author or by 

multiple authors. 

To measure the performance of a given similari-

ty measure sim, we do the following in each trial: 

1. Represent each document in the trial set D 

in terms of BOW. 

2. Measure the similarity of each pair of doc-

uments in the trial set using the similarity 

measure sim. 

3. Using some aggregation function agg, 

compute for each document di:   

sim(di, D) = agg w∈{1,..,n}[sim(di, dw)]. 

4. If sim (di, D) < θ, mark di as an outlier 

(where θ is a parameter ). 

 

Our objective is to show that results using 

second-order similarity are stronger than those us-

ing first-order similarity. Before we do this, we 

need to determine the best aggregation function to 

use in our experiments. In Figure 1, we show re-

call-precision breakeven values (for the outlier 

class) over 250 independent trials, for each of our 

four first-order similarity measures (inverse Eucli-

dean, inverse Manhattan, cosine, min-max) used in 

conjunction with each of four aggregation func-

tions (centroid, mean, k-NN mean, median). As is 

evident, k-NN is the best aggregation function in 

each case. We will give these baseline methods an 

advantage by using k-NN as our aggregation func-

tion in all our subsequent experiments. 
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Figure 1. Breakeven values on first-order similarity 

measures with various aggregation functions. 

 

 We are now ready to perform our main expe-

riment. We use BOW as our feature set and k-NN 

as our aggregation function. We use 500 random 

blog posts as our impostor set. In Figure 2, we 

show recall-precision curves for outlier documents 

over 250 independent trials, as just described, us-

ing four first-order similarity measures as well our 

second-order similarity measure using each of the 

four as a base measure. As can be seen, even the 

worst second-order similarity measure significantly 

outperforms all the standard first-order measures. 

In Figure 3, we show the breakeven values for each 

measure, pairing each first-order measure with the 

second-order measure that uses it as a base. Clear-

ly, the mere use of a second-order method im-

proves results, regardless of the base measure. 

 

 
Figure 2. Recall-precision curves for four first-order 

similarity measures and four second-order similarity 

measures, based on 250 trials of 10 documents each. 

 

 
Figure 3. Breakeven values for first-order measures and 

corresponding second-order measures. 

 

 Thus far we have considered authorial corpora 

consisting of only ten documents. In Figures 4 and 

5, we repeat the experiment described in Figures 2 

and 3 above, but with each trial consisting of 50 

documents including any number of pseudepi-

graphic documents in the range 0 to 15. The same 

phenomenon is apparent: second-order similarity 

strongly improves results over the corresponding 

first-order base similarity measure.  

 

 
Figure 4. Recall-precision curves for four first-order 

similarity measures and four second-order similarity 

measures, based on 250 trials of 50 documents each. 
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Figure 5. Breakeven values for first-order measures and 

corresponding second-order measures 

6 Results on Shakespeare 

We applied our methods to the texts of 42 plays by 

Shakespeare (taken from Project Gutenberg). We 

included two plays by Thomas Kyd as sanity 

checks. In addition, we included three plays occa-

sionally attributed to Shakespeare, but generally 

regarded by authorities as pseudepigrapha (A York-

shire Tragedy, The Life of Sir John Oldcastle and 

Pericles Prince of Tyre). We also included King 

Edward III and King Henry VI (Part 1), both of 

which are subjects of dispute among Shakespeare 

scholars. As impostors we used 39 works by con-

temporaries of Shakespeare, including Christopher 

Marlowe, Ben Jonson and John Fletcher.  

We found that the two plays by Thomas Kyd 

and the three pseudepigraphic plays were all 

among the seven furthest outliers, as one would 

expect. In addition, King Edward III was 9th fur-

thest. King Henry VI (Part 1) was not found to be 

an outlier at all. Curiously, however, three undis-

puted plays by Shakespeare were found to be 

greater outliers than King Edward III. These are 

The Merry Wives of Windsor, The Comedy of Er-

rors and The Tragedy of Julius Caesar. The Merry 

Wives of Windsor is a particularly distant outlier, 

even further out than Oldcastle and Pericles. We 

leave it to Shakespeare scholars to explain the rea-

sons for these anomalies. 

7 Conclusion 

In this paper we defined the problem of unsuper-

vised outlier detection in the authorship verifica-

tion domain. Our method combines standard 

outlier detection methods with a novel inter-

document similarity measure. This similarity 

measure is the output of the impostors method re-

cently developed for solving the authorship verifi-

cation problem. We have found that use of the 

kNN method for outlier detection in conjunction 

with this second-order similarity measure strongly 

outperforms methods based on any outlier detec-

tion method used in conjunction with any standard 

first-order similarity measures. This improvement 

proves to be robust, holding for various corpus siz-

es and various underlying base similarity measures 

used in the second-order similarity measure. 

The method can be used to resolve historical 

conundrums regarding the authenticity of works in 

questioned corpora, such as the Shakespeare cor-

pus briefly considered here. This is currently the 

subject of our ongoing research. 
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Abstract

Feature computation and exhaustive search
have significantly restricted the speed of
graph-based dependency parsing. We propose
a faster framework of dynamic feature selec-
tion, where features are added sequentially as
needed, edges are pruned early, and decisions
are made online for each sentence. We model
this as a sequential decision-making problem
and solve it by imitation learning techniques.
We test our method on 7 languages. Our dy-
namic parser can achieve accuracies compara-
ble or even superior to parsers using a full set
of features, while computing fewer than 30%
of the feature templates.

1 Introduction

Graph-based dependency parsing usually consists of
two stages. In the scoring stage, we score all pos-
sible edges (or other small substructures) using a
learned function; in the decoding stage, we use com-
binatorial optimization to find the dependency tree
with the highest total score.

Generally linear edge-scoring functions are used
for speed. But they use a large set of features, de-
rived from feature templates that consider different
conjunctions of the edge’s attributes. As a result,
parsing time is dominated by the scoring stage—
computing edge attributes, using them to instanti-
ate feature templates, and looking up the weights of
the resulting features in a hash table. For example,
McDonald et al. (2005a) used on average about 120
first-order feature templates on each edge, built from
attributes such as the edge direction and length, the

two words connected by the edge, and the parts of
speech of these and nearby words.

We therefore ask the question: can we use fewer
features to score the edges, while maintaining the ef-
fect that the true dependency tree still gets a higher
score? Motivated by recent progress on dynamic
feature selection (Benbouzid et al., 2012; He et al.,
2012), we propose to add features one group at a
time to the dependency graph, and to use these fea-
tures together with interactions among edges (as de-
termined by intermediate parsing results) to make
hard decisions on some edges before all their fea-
tures have been seen. Our approach has a similar
flavor to cascaded classifiers (Viola and Jones, 2004;
Weiss and Taskar, 2010) in that we make decisions
for each edge at every stage. However, in place of
relatively simple heuristics such as a global relative
pruning threshold, we learn a featurized decision-
making policy of a more complex form. Since each
decision can affect later stages, or later decisions in
the same stage, we model this problem as a sequen-
tial decision-making process and solve it by Dataset
Aggregation (DAgger) (Ross et al., 2011), a recent
iterative imitation learning technique for structured
prediction.

Previous work has made much progress on the
complementary problem: speeding up the decoding
stage by pruning the search space of tree structures.
In Roark and Hollingshead (2008) and Bergsma and
Cherry (2010), pruning decisions are made locally
as a preprocessing step. In the recent vine prun-
ing approach (Rush and Petrov, 2012), significant
speedup is gained by leveraging structured infor-
mation via a coarse-to-fine projective parsing cas-
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cade (Charniak et al., 2006). These approaches
do not directly tackle the feature selection problem.
Although pruned edges do not require further fea-
ture computation, the pruning step must itself com-
pute similar high-dimensional features just to de-
cide which edges to prune. For this reason, Rush
and Petrov (2012) restrict the pruning models to a
smaller feature set for time efficiency. We aim to do
feature selection and edge pruning dynamically, bal-
ancing speed and accuracy by using only as many
features as needed.

In this paper, we first explore standard static fea-
ture selection methods for dependency parsing, and
show that even a few feature templates can give de-
cent accuracy (Section 3.2). We then propose a
novel way to dynamically select features for each
edge while keeping the overhead of decision mak-
ing low (Section 4). Our present experiments use the
Maximum Spanning Tree (MST) parsing algorithm
(McDonald et al., 2005a; McDonald and Pereira,
2006). However, our approach applies to other
graph-based dependency parsers as well—including
non-projective parsing, higher-order parsing, or ap-
proximations to higher-order parsing that use stack-
ing (Martins et al., 2008), belief propagation (Smith
and Eisner, 2008), or structured boosting (Wang et
al., 2007).

2 Graph-based Dependency Parsing

In graph-based dependency parsing of an n-word in-
put sentence, we must construct a tree y whose ver-
tices 0, 1, . . . n correspond to the root node (namely
0) and the ordered words of the sentence. Each di-
rected edge of this tree points from a head (parent)
to one of its modifiers (child).

Following a common approach to structured pre-
diction problems, the score of a tree y is defined
as a sum of local scores. That is, sθ(y) = θ ·∑

E∈y φ(E) =
∑

E∈y θ · φ(E), where E ranges
over small connected subgraphs of y that can be
scored individually. Here φ(E) extracts a high-
dimensional feature vector from E together with the
input sentence, and θ denotes a weight vector that
has typically been learned from data.

The first-order model decomposes the tree into
edges E of the form 〈h,m〉, where h ∈ [0, n] and
m ∈ [1, n] (with h 6= m) are a head token and one

of its modifiers. Finding the best tree requires first
computing θ·φ(E) for each of the n2 possible edges.

Since scoring the edges independently in this way
restricts the parser to a local view of the depen-
dency structure, higher-order models can achieve
better accuracy. For example, in the second-order
model of McDonald and Pereira (2006), each local
subgraph E is a triple that includes the head and
two modifiers of the head, which are adjacent to
each other. Other methods that use triples include
grandparent-parent-child triples (Koo and Collins,
2010), or non-adjacent siblings (Carreras, 2007).
Third-order models (Koo and Collins, 2010) use
quadruples, employing grand-sibling and tri-sibling
information.

The usual inference problem is to find the high-
est scoring tree for the input sentence. Note that in
a valid tree, each token 1, . . . , n must be attached
to exactly one parent (either another token or the
root 0). We can further require the tree to be pro-
jective, meaning that edges are not allowed to cross
each other. It is well known that dynamic program-
ming can be used to find the best projective depen-
dency tree in O(n3) time, much as in CKY, for first-
order models and some higher-order models (Eis-
ner, 1996; McDonald and Pereira, 2006).1 When
the projectivity restriction is lifted, McDonald et al.
(2005b) pointed out that the best tree can be found in
O(n2) time using a minimum directed spanning tree
algorithm (Chu and Liu, 1965; Edmonds, 1967; Tar-
jan, 1977), though only for first-order models.2 We
will make use of this fast non-projective algorithm
as a subroutine in early stages of our system.

3 Dynamic Feature Selection

Unlike typical feature selection methods that fix a
subset of selected features and use it throughout test-
ing, in dynamic feature selection we choose features
adaptively for each instance. We briefly introduce
this framework below and motivate our algorithm
from empirical results on MST dependency parsing.

1Although the third-order model of Koo and Collins (2010),
for example, takes O(n4) time.

2The non-projective parsing problem becomes NP-hard for
higher-order models. One approximate solution (McDonald
and Pereira, 2006) works by doing projective parsing and then
rearranging edges.
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Figure 1: Dynamic feature selection for dependency parsing. (a) Start with all possible edges except those filtered
by the length dictionary. (b) – (e) Add the next group of feature templates and parse using the non-projective parser.
Predicted trees are shown as blue and red edges, where red indicates the edges that we then decide to lock. Dashed
edges are pruned because of having the same child as a locked edge; 2-dot-3-dash edges are pruned because of crossing
with a locked edge; fine-dashed edges are pruned because of forming a cycle with a locked edge; and 2-dot-1-dash
edges are pruned since the root has already been locked with one child. (f) Final projective parsing.

3.1 Sequential Decision Making

Our work is motivated by recent progress on dy-
namic feature selection (Benbouzid et al., 2012; He
et al., 2012; Grubb and Bagnell, 2012), where fea-
tures are added sequentially to a test instance based
on previously acquired features and intermediate
prediction results. This requires sequential decision
making. Abstractly, when the system is in some state
s ∈ S, it chooses an action a = π(s) from the ac-
tion setA using its policy π, and transitions to a new
state s′, inducing some cost. In the specific case of
dynamic feature selection, when the system is in a
given state, it decides whether to add some more
features or to stop and make a prediction based on
the features added so far. Usually the sequential de-
cision making problem is solved by reinforcement
learning (Sutton and Barto, 1998) or imitation learn-
ing (Abbeel and Ng, 2004; Ratliff et al., 2004).

The dynamic feature selection framework has
been successfully applied to supervised classifica-
tion and ranking problems (Benbouzid et al., 2012;
He et al., 2012; Gao and Koller, 2010). Below, we
design a version that avoids overhead in our struc-
tured prediction setting. As there are n2 possible
edges on a sentence of length n, we wish to avoid
the overhead of making many individual decisions
about specific features on specific edges, with each
decision considering the current scores of all other
edges. Instead we will batch the work of dynamic

feature selection into a smaller number of coarse-
grained steps.

3.2 Strategy

To speed up graph-based dependency parsing, we
first investigate time usage in the parsing process
on our development set, section 22 of the Penn
Treebank (PTB) (Marcus et al., 1993). In Fig-
ure 2, we observe that (a) feature computation took
more than 80% of the total time; (b) even though
non-projective decoding time grows quadratically in
terms of the sentence length, in practice it is al-
most negligible compared to the projective decoding
time, with an average of 0.23 ms; (c) the second-
order projective model is significantly slower due
to higher asymptotic complexity in both the scoring
and decoding stages.

At each stage of our algorithm, we need to de-
cide whether to use additional features to refine the
edge scores. As making this decision separately for
each of the n2 possible edges is expensive, we in-
stead propose a version that reduces the number of
decisions needed. We show the process for one short
sentence in Figure 1. The first step is to parse us-
ing the current features. We use the fast first-order
non-projective parser for this purpose, since given
observations (b) and (c), we cannot afford to run
projective parsing multiple times. The single result-
ing tree (blue and red edges in Figure 1) has only
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Figure 2: Time comparison of scoring time and decoding
time on English PTB section 22.

n edges, and we use a classifier to decide which
of these edges are reliable enough that we should
“lock” them—i.e., commit to including them in the
final tree. This is the only decision that our policy
π must make. Locked (red) edges are definitely in
the final tree. We also do constraint propagation: we
rule out all edges that conflict with the locked edges,
barring them from appearing in the final tree.3 Con-
flicts are defined as violation of the projective pars-
ing constraints:

• Each word has exactly one parent
• Edges cannot cross each other4

• The directed graph is non-cyclic
• Only one word is attached to the root

For example, in Figure 1(d), the dashed edges are
removed because they have the same child as one of
the locked (red) edges. The 2-dot-3-dash edge time
← firms is removed because it crosses the locked
edge (comma)← were (whereas we ultimately seek
a projective parse). The fine dashed edge were ←
(period) is removed because it forms a cycle with
were → (period). In Figure 1(e), the 2-dot-1-dash
edge (root) → time is removed since we allow the
root to have only one modifier.

3Constraint propagation also automatically locks an edge
when all other edges with the same child have been ruled out.

4A reviewer asks about the cost of finding edges that cross a
locked edge. Naively this is O(n2). But at most n edges will be
locked during the entire algorithm, for a total O(n3) runtime—
the same as one call to projective parsing, and far faster in prac-
tice. With cleverness this can even be reduced to O(n2 log n).

Once constraint propagation has finished, we visit
all edges (gray) whose fate is still unknown, and up-
date their scores in parallel by adding the next group
of features.

As a result, most edges will be locked in or ruled
out without needing to look up all of their features.
Some edges may still remain uncertain even after in-
cluding all features. If so, a final iteration (Figure 1
(f)) uses the slower projective parser to resolve the
status of these maximally uncertain edges. In our
example, the parser does not figure out the correct
parent of time until this final step. This final, accu-
rate parser can use its own set of weighted features,
including higher-order features, as well as the pro-
jectivity constraint. But since it only needs to re-
solve the few uncertain edges, both scoring and de-
coding are fast.

If we wanted our parser to be able to produce non-
projective trees, then we would skip this final step
or have it use a higher-order non-projective parser.
Also, at earlier steps we would not prune edges
crossing the locked edges.

4 Methods

Our goal is to produce a faster dependency parser by
reducing the feature computation time. We assume
that we are given three increasingly accurate but in-
creasingly slow parsers that can be called as sub-
routines: a first-order non-projective parser, a first-
order projective parser, and a second-order projec-
tive parser. In all cases, their feature weights have
already been trained using the full set of features,
and we will not change these weights. In general
we will return the output of one of the projective
parsers. But at early iterations, the non-projective
parser helps us rapidly consider interactions among
edges that may be relevant to our dynamic decisions.

4.1 Feature Template Ranking

We first rank the 268 first-order feature templates by
forward selection. We start with an empty list of fea-
ture templates, and at each step we greedily add the
one whose addition most improves the parsing ac-
curacy on a development set. Since some features
may be slower than others (for example, the ”be-
tween” feature templates require checking all tokens
in-between the head and the modifier), we could in-
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Figure 3: Forward feature selection result using the non-
projective model on English PTB section 22.

stead select the feature template with the highest ra-
tio of accuracy improvement to runtime. However,
for simplicity we do not consider this: after group-
ing (see below), minor changes of the ranks within a
group have no effect. The accuracy is evaluated by
running the first-order non-projective parser, since
we will use it to make most of the decisions. The
112 second-order feature templates are then ranked
by adding them in a similar greedy fashion (given
that all first-order features have already been added),
evaluating with the second-order projective parser.

We then divide this ordered list of feature tem-
plates into K groups: {T1, T2, . . . , TK}. Our parser
adds an entire group of feature templates at each
step, since adding one template at a time would re-
quire too many decisions and obviate speedups. The
simplest grouping method would be to put an equal
number of feature templates in each group. From
Figure 3 we can see that the accuracy increases sig-
nificantly with the first few templates and gradually
levels off as we add less valuable templates. Thus,
a more cost-efficient method is to split the ranked
list into several groups so that the accuracy increases
by roughly the same amount after each group is
added. In this case, earlier stages are fast because
they tend to have many fewer feature templates than
later stages. For example, for English, we use 7
groups of first-order feature templates and 4 groups
of second-order feature templates. The sequence of
group sizes is 1, 4, 10, 12, 47, 33, 161 and 35, 29, 31,
17 for first- and second-order parsing respectively.

4.2 Sequential Feature Selection

Similar to the length dictionary filter of Rush and
Petrov (2012), for each test sentence, we first de-
terministically remove edges longer than the maxi-
mum length of edges in the training set that have the
same head POS tag, modifier POS tag, and direction.
This simple step prunes around 40% of the non-gold
edges in our Penn Treebank development set (Sec-
tion 6.1) at a cost of less than 0.1% in accuracy.

Given a test sentence of length n, we start with
a complete directed graph G(V, E), where E =
{〈h,m〉 : h ∈ [0, n], m ∈ [1, n]}. After the length
dictionary pruning step, we compute T1 for all re-
maining edges to obtain a pruned weighted directed
graph. We predict a parse tree using the features so
far (other features are treated as absent, with value
0). Then for each edge in this intermediate tree, we
use a binary linear classifier to choose between two
actions: A = {lock, add}. The lock action ensures
that 〈h,m〉 appears in the final parse tree by prun-
ing edges that conflict with 〈h,m〉.5 If the classi-
fier is not confident enough about the parent of m,
it decides to add to gather more information. The
add action computes the next group of features for
〈h,m〉 and all other competing edges with child m.

(Since we classify the edges one at a time, deci-
sions on one edge may affect later edges. To im-
prove efficiency and reduce cascaded error, we sort
the edges in the predicted tree and process them as
above in descending order of their scores.)

Now we can continue with the second iteration of
parsing. Overall, our method runs up to K = K1 +
K2 iterations on a given sentence, where we have
K1 groups of first-order features and K2 groups of
second-order features. We run K1 − 1 iterations
of non-projective first-order parsing (adding groups
T1, . . . , TK1−1), then 1 iteration of projective first-
order parsing (adding group TK1), and finally K2 it-
erations of projective second-order parsing (adding
groups TK1+1, . . . TK).

Before each iteration, we use the result of the pre-
vious iteration (as explained above) to prune some
edges and add a new group of features to the rest. We

5If the conflicting edge is in the current predicted parse tree
(which can happen because of non-projectivity), we forbid the
model to prune it. Otherwise in rare cases the non-projective
parser at the next stage may fail to find a tree.
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then run the relevant parser. Each of the three parsers
has a different set of feature weights, so when we
switch parsers on rounds K1 and K1 + 1, we must
also change the weights of the previously added fea-
tures to those specified by the new parsing model.

In practice, we can stop as soon as the fate of all
edges is known. Also, if no projective parse tree
can be constructed at round K1 using the available
unpruned edges, then we immediately fall back to
returning the non-projective parse tree from round
K1 − 1. This FAIL case rarely occurs in our experi-
ments (fewer than 1% of sentences).

We report results both for a first-order system
where K2 = 0 (shown in Figure 1 and Algorithm 1)
and for a second-order system where K2 > 0.

Algorithm 1 DynFS(G(V, E), π)
E ← {〈h,m〉 : |h−m| ≤ lenDict(h,m)}
Add T1 to all edges in E
ŷ ← non-projective decoding
for i = 2 to K do
Esort ← sort unlocked edges {E : E ∈ ŷ} in

descending order of their scores
for 〈h,m〉 ∈ Esort do

if π(ψ(〈h,m〉)) == lock then
E ← E \ {{〈h′,m〉 ∈ E : h′ 6= h}

⋃
{〈h′,m′〉 ∈ E : crosses 〈h,m〉}

⋃
{〈h′,m′〉 ∈ E : cycle with 〈h,m〉}}
if h == 0 then
E ← E \ {〈0,m′〉 ∈ E : m′ 6= m}

end if
else

Add Ti to {〈h′,m′〉 ∈ E : m′ == m}
end if

end for
if i == K then
ŷ ← projective decoding

else if i 6= K or FAIL then
ŷ ← non-projective decoding

end if
end for
return ŷ

5 Policy Training

We cast this problem as an imitation learning task
and use Dataset Aggregation (DAgger) Ross et al.
(2011) to train the policy iteratively.

5.1 Imitation Learning

In imitation learning (also called apprenticeship
learning) (Abbeel and Ng, 2004; Ratliff et al., 2004),
instead of exploring the environment directed by its
feedback (reward) as in typical reinforcement learn-
ing problems, the learner observes expert demon-
strations and aims to mimic the expert’s behavior.
The expert demonstration can be represented as tra-
jectories of state-action pairs, {(st, at)} where t is
the time step. A typical approach to imitation learn-
ing is to collect supervised data from the expert’s
trajectories to learn a policy (multiclass classifier),
where the input is ψ(s), a feature representation of
the current state (we call these policy features to
avoid confusion with the parsing features), and the
output is the predicted action (label) for that state.

In the sequential feature selection framework, it is
hard to directly apply standard reinforcement learn-
ing algorithms, as we cannot assign credit to certain
features until the policy decides to stop and let us
evaluate the prediction result. On the other hand,
knowing the gold parse tree makes it easy to ob-
tain expert demonstrations, which enables imitation
learning.

5.2 DAgger

Since the above approach collects training data only
from the expert’s trajectories, it ignores the fact that
the distribution of states at training time and that at
test time are different. If the learned policy can-
not mimic the expert perfectly, one wrong step may
lead to states never visited by the expert due to cu-
mulative errors. This problem of insufficient explo-
ration can be alleviated by iteratively learning a pol-
icy trained under states visited by both the expert
and the learner (Ross et al., 2011; Daumé III et al.,
2009; Kääriäinen, 2006).

Ross et al. (2011) proposed to train the policy iter-
atively and aggregate data collected from the previ-
ous learned policy. Let π∗ denote the expert’s policy
and sπi denote states visited by executing πi. In its
simplest parameter-free form, in each iteration, we
first run the most recently learned policy πi; then for
each state sπi on the trajectory, we collect a training
example (ψ(sπi), π

∗(sπi)) by labeling the state with
the expert’s action. Intuitively, this step intends to
correct the learner’s mistakes and pull it back to the
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expert’s trajectory. Thus we can obtain a policy that
performs well under its own induced state distribu-
tion.

5.3 DAgger for Feature Selection

In our case, the expert’s decision is rather straight-
forward. Replace the policy π in Algorithm 1 by
an expert. If the edge under consideration is a gold
edge, it executes lock; otherwise, it executes add.
Basically the expert “cheats” by knowing the true
tree and always making the right decision. On our
PTB dev set, it can get 96.47% accuracy6 with only
2.9% of the first-order features. This is an upper
bound on our performance.

We present the training procedure in Algorithm
2. We begin by partitioning the training set into
N folds. To simulate parsing results at test time,
when collecting examples on T i, similar to cross-
validation, we use parsers trained on T̄ i = T \ T i.
Also note that we show only one pass over training
sentences in Algorithm 2; however, multiple passes
are possible in practice, especially when the training
data is limited.

Algorithm 2 DAgger(T , π∗)
Split the training sentences T into N folds
T 1, T 2, . . . , T N
Initialize D ← ∅, π1 ← π∗

for i = 1 to N do
for G(V, E) ∈ T i do

Sample trajectories {(sπi , πi(sπi))} by
DynFS(G(V, E), πi)
D ← D

⋃
{(ψ(s), π∗(s)}

end for
end for
Train policy πi+1 on D
return Best πi evaluated on development set

5.4 Policy Features

Our linear edge classifier uses a feature vector ψ that
concatenates all previously acquired parsing fea-
tures together with “meta-features” that reflect con-
fidence in the edge. The classifier’s weights are fixed

6The imperfect performance is because the accuracy is mea-
sured with respect to the gold parse trees. The expert only
makes optimal pruning decisions but the performance depends
on the pre-trained parser as well.

across iterations, but ψ(edge) changes per iteration.
We standardize the edge scores by a sigmoid func-

tion. Let ṡ denote the normalized score, defined
by ṡθ(〈h,m〉) = 1/(1 + exp{−sθ(〈h,m〉)}). Our
meta-features for 〈h,m〉 include

• current normalized score, and normalized score
before adding the current feature group
• margin to the highest scoring competing edges,

i.e., ṡ(w, 〈h,m〉)−maxh′ ṡ(w, 〈h′,m〉)
where h′ ∈ [0, n] and h′ 6= h

• index of the next feature group to be added

We also tried more complex meta-features, for ex-
ample, mean and variance of the scores of compet-
ing edges, and structured features such as whether
the head of e is locked and how many locked chil-
dren it currently has. It turns out that given all the
parsing features, the margin is the most discrimi-
native meta-feature. When it is present, other meta-
features we added do not help much, Thus we do not
include them in our experiments due to overhead.

6 Experiment

6.1 Setup
We generate dependency structures from the PTB
constituency trees using the head rules of Yamada
and Matsumoto (2003). Following convention, we
use sections 02–21 for training, section 22 for de-
velopment and section 23 for testing. We also re-
port results on six languages from the CoNLL-X
shared task (Buchholz and Marsi, 2006) as sug-
gested in (Rush and Petrov, 2012), which cover a
variety of language families. We follow the stan-
dard training/test split specified in the CoNLL-X
data and tune parameters by cross validation when
training the classifiers (policies). The PTB test data
is tagged by a Stanford part-of-speech (POS) tagger
(Toutanova et al., 2003) trained on sections 02–21.
We use the provided gold POS tags for the CoNLL
test data. All results are evaluated by the unlabeled
attachment score (UAS). For fair comparison with
previous work, punctuation is included when com-
puting parsing accuracy of all CoNLL-X languages
but not English (PTB).

For policy training, we train a linear SVM classi-
fier using Liblinear (Fan et al., 2008). For all lan-
guages, we run DAgger for 20 iterations and se-
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Language Method First-order Second-order
Speedup Cost(%) UAS(D) UAS(F) Speedup Cost(%) UAS(D) UAS(F)

Bulgarian DYNFS 3.44 34.6 91.1 91.3 4.73 16.3 91.6 92.0
VINEP 3.25 - 90.5 90.7 7.91 - 91.6 92.0

Chinese DYNFS 2.12 42.7 91.0 91.3 2.36 31.6 91.6 91.9
VINEP 1.02 - 89.3 89.5 2.03 - 90.3 90.5

English DYNFS 5.58 24.8 91.7 91.9 5.27 49.1 92.5 92.7
VINEP 5.23 - 91.0 91.2 11.88 - 92.2 92.4

German DYNFS 4.71 21.0 89.2 89.3 6.02 36.6 89.7 89.9
VINEP 3.37 - 89.0 89.2 7.38 - 90.1 90.3

Japanese DYNFS 4.80 15.6 93.7 93.6 8.49 7.53 93.9 93.9
VINEP 4.60 - 91.7 92.0 14.90 - 92.1 92.0

Portuguese DYNFS 4.36 32.9 87.3 87.1 6.84 40.4 88.0 88.2
VINEP 4.47 - 90.0 90.1 12.32 - 90.9 91.2

Swedish DYNFS 3.60 37.8 88.8 89.0 5.04 22.1 89.5 89.8
VINEP 4.64 - 88.3 88.5 13.89 - 89.4 89.7

Table 1: Comparison of speedup and accuracy with the vine pruning cascade approach for six languages. In the setup,
DYNFS means our dynamic feature selection model, VINEP means the vine pruning cascade model, UAS(D) and
UAS(F) refer to the unlabeled attachment score of the dynamic model (D) and the full-feature model (F) respectively.
For each language, the speedup is relative to its corresponding first- or second-order model using the full set of features.
Results for the vine pruning cascade model are taken from Rush and Petrov (2012). The cost is the percentage of
feature templates used per sentence on edges that are not pruned by the dictionary filter.

lect the best policy evaluated on the development set
among the 20 policies obtained from each iteration.

6.2 Baseline Models

We use the publicly available implementation of
MSTParser7 (with modifications to the feature com-
putation) and its default settings, so the feature
weights of the projective and non-projective parsers
are trained by the MIRA algorithm (Crammer and
Singer, 2003; Crammer et al., 2006).

Our feature set contains most features proposed
in the literature (McDonald et al., 2005a; Koo and
Collins, 2010). The basic feature components in-
clude lexical features (token, prefix, suffix), POS
features (coarse and fine), edge length and direction.
The feature templates consists of different conjunc-
tions of these components. Other than features on
the head word and the child word, we include fea-
tures on in-between words and surrounding words as
well. For PTB, our first-order model has 268 feature
templates and 76,287,848 features; the second-order
model has 380 feature templates and 95,796,140 fea-
tures. The accuracy of our full-feature models is

7http://www.seas.upenn.edu/˜strctlrn/
MSTParser/MSTParser.html

comparable or superior to previous results.

6.3 Results
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Figure 4: System dynamics on English PTB section 23.
Time and accuracy are relative to those of the baseline
model using full features. Red (locked), gray (unde-
cided), dashed gray (pruned) lines correspond to edges
shown in Figure 1.

In Table 1, we compare the dynamic parsing mod-
els with the full-feature models and the vine prun-
ing cascade models for first-order and second-order
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Figure 5: Pareto curves for the dynamic and static ap-
proaches on English PTB section 23.

parsing. The speedup for each language is defined as
the speed relative to its full-feature baseline model.
We take results reported by Rush and Petrov (2012)
for the vine pruning model. As speed comparison
for parsing largely relies on implementation, we also
report the percentage of feature templates chosen for
each sentence. The cost column shows the average
number of feature templates computed for each sen-
tence, expressed as a percentage of the number of
feature templates if we had only pruned using the
length dictionary filter.

From the table we notice that our first-order
model’s performance is comparable or superior to
the vine pruning model, both in terms of speedup
and accuracy. In some cases, the model with fewer
features even achieves higher accuracy than the
model with full features. The second-order model,
however, does not work as well. In our experi-
ments, the second-order model is more sensitive to
false negatives, i.e. pruning of gold edges, due to
larger error propagation than the first-order model.
Therefore, to maintain parsing accuracy, the policy
must make high-precision pruning decisions and be-
comes conservative. We could mitigate this by train-
ing the original parsing feature weights in conjunc-
tion with our policy feature weights. In addition,
there is larger overhead during when checking non-
projective edges and cycles.

We demonstrate the dynamics of our system in
Figure 4 on PTB section 23. We show how the run-
time, accuracy, number of locked edges and unde-
cided edges change over the iterations in our first-

order dynamic projective parsing. From iterations
1 to 6, we obtain parsing results from the non-
projective parser; in iteration 7, we run the projective
parser. The plot shows relative numbers (percent-
age) to the baseline model with full features. The
number of remaining edges drops quickly after the
second iteration. From Figure 3, however, we notice
that even with the first feature group which only con-
tains one feature template, the non-projective parser
can almost achieve 50% accuracy. Thus, ideally, our
policy should have locked that many edges after the
first iteration. The learned policy does not imitate
the expert perfectly, either because our policy fea-
tures are not discriminative enough, or because a lin-
ear classifier is not powerful enough for this task.

Finally, to show the advantage of making dynamic
decisions that consider the interaction among edges
on the given input sentence, we compare our results
with a static feature selection approach on PTB sec-
tion 23. The static algorithm does no pruning except
by the length dictionary at the start. In each iteration,
instead of running a fast parser and making deci-
sions online, it simply adds the next group of feature
templates to all edges. By forcing both algorithms
to stop after each stage, we get the Pareto curves
shown in Figure 5. For a given level of high accu-
racy, our dynamic approach (black) is much faster
than its static counterpart (blue).

7 Conclusion

In this paper we present a dynamic feature selec-
tion algorithm for graph-based dependency parsing.
We show that choosing feature templates adaptively
for each edge in the dependency graph greatly re-
duces feature computation time and in some cases
improves parsing accuracy. Our model also makes
it practical to use an even larger feature set, since
features are computed only when needed. In future,
we are interested in training parsers favoring the dy-
namic feature selection setting, for example, parsers
that are robust to missing features, or parsers opti-
mized for different stages.
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Abstract

Cross-lingual adaptation aims to learn a pre-
diction model in a label-scarce target lan-
guage by exploiting labeled data from a label-
rich source language. An effective cross-
lingual adaptation system can substantially re-
duce the manual annotation effort required in
many natural language processing tasks. In
this paper, we propose a new cross-lingual
adaptation approach for document classifica-
tion based on learning cross-lingual discrim-
inative distributed representations of words.
Specifically, we propose to maximize the log-
likelihood of the documents from both lan-
guage domains under a cross-lingual log-
bilinear document model, while minimizing
the prediction log-losses of labeled docu-
ments. We conduct extensive experiments on
cross-lingual sentiment classification tasks of
Amazon product reviews. Our experimental
results demonstrate the efficacy of the pro-
posed cross-lingual adaptation approach.

1 Introduction

With the rapid development of linguistic resources
in different languages, developing cross-lingual nat-
ural language processing (NLP) systems becomes
increasingly important (Bel et al., 2003; Shanahan
et al., 2004). Recently, cross-lingual adaptation
methods have been studied to exploit labeled infor-
mation from an existingsource language domain
where labeled training data is abundant for use in
a target language domain where annotated training
data is scarce (Prettenhofer and Stein, 2010). Pre-
vious work has shown that cross-lingual adaptation

can greatly reduce labeling effort for a variety of
cross language NLP tasks such as document catego-
rization (Bel et al., 2003; Amini et al., 2009), genre
classification (Petrenz and Webber, 2012), and sen-
timent classification (Shanahan et al., 2004; Wei and
Pal, 2010; Prettenhofer and Stein, 2010).

The fundamental challenge of cross-lingual adap-
tation stems from a lack of overlap between the fea-
ture space of the source language data and that of
the target language data. To address this challenge,
previous work in the literature mainly relies on au-
tomatic machine translation tools. They first trans-
late all the text data from one language domain into
the other and then apply techniques such as domain
adaptation (Wan et al., 2011; Rigutini and Maggini,
2005; Ling et al., 2008) and multi-view learning
(Amini et al., 2009; Guo and Xiao, 2012b; Wan,
2009) to achieve cross-lingual adaptation. However,
machine translation tools may not be freely available
for all languages. Moreover, translating all the text
data in one language into the other language is too
time-consuming in reality. As an economic alter-
native solution, cross-lingual representation learn-
ing has recently been used in the literature to learn
language-independent representations of the data for
cross language text classification (Prettenhofer and
Stein, 2010; Petrenz and Webber, 2012).

In this paper, we propose to tackle cross language
text classification by inducing cross-lingual predic-
tive data representations with both labeled and un-
labeled documents from the two language domains.
Specifically, we propose a cross-lingual log-bilinear
document model to learn distributed representations
of words, which can capture both the semantic sim-
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ilarities of words across languages and the predic-
tive information with respect to the target classifi-
cation task. We conduct the representation learn-
ing by maximizing the log-likelihood of all docu-
ments from both language domains under the cross-
lingual log-bilinear document model and minimiz-
ing the prediction log-losses of labeled documents.
We formulate the learning problem as a joint non-
convex minimization problem and solve it using a
local optimization algorithm. To evaluate the effec-
tiveness of the proposed approach, we conduct ex-
periments on the task of cross language sentiment
classification of Amazon product reviews. The em-
pirical results show the proposed approach is very
effective for cross-lingual document classification,
and outperforms other comparison methods.

2 Related Work

Much work in the literature proposes to construct
cross-lingual representations by using aligned paral-
lel data. Basically, they first employ machine trans-
lation tools to translate documents from one lan-
guage domain to the other one and then induce low
dimensional latent representations as interlingual
representations (Littman et al., 1998; Vinokourov
et al., 2002; Platt et al., 2010; Pan et al., 2011; Guo
and Xiao, 2012a). Littman et al. (1998) proposed
a cross-language latent semantic indexing method
to induce interlingual representations by perform-
ing latent semantic indexing over a dual-language
document-term matrix, where each dual-language
document contains its original words and the corre-
sponding translation text. Vinokourov et al. (2002)
proposed a cross-lingual kernel canonical corre-
lation analysis method, which learns two projec-
tions (one for each language) by conducting kernel
canonical correlation analysis over a paired bilin-
gual corpus and then uses the two projections to
project documents from language-specific feature
spaces to the shared multilingual semantic feature
space. Platt et al. (2010) employed oriented prin-
cipal component analysis (Diamantaras and Kung,
1996) over concatenated parallel documents, which
learns a multilingual projection by simultaneously
minimizing the projected distance between paral-
lel documents and maximizing the projected covari-
ance of documents across different languages. Pan

et al. (2011) proposed a bi-view non-negative matrix
tri-factorization method for cross-lingual sentiment
classification on the parallel training and test data.
Guo and Xiao (2012a) developed a transductive
subspace representation learning method for cross-
lingual text classification based on non-negative ma-
trix factorization. Some other works exploited par-
allel data by using multilingual topic models to ex-
tract cross-language latent topics as interlingual rep-
resentations (Mimno et al., 2009; Ni et al., 2011;
Platt et al., 2010; Smet et al., 2011) and using neu-
ral probabilistic language modes to learn word em-
beddings as cross-lingual distributed representations
(Klementiev et al., 2012). Most of them were de-
veloped by applying the latent Dirichlet allocation
(LDA) model (Blei et al., 2003) in a multilingual set-
ting, including the polylingual topic model (Mimno
et al., 2009), the bilingual LDA model (Smet et al.,
2011), and the multilingual LDA model (Ni et al.,
2011). Platt et al. (2010) extended the probabilis-
tic latent semantic analysis (PLSA) model (Hof-
mann, 1999) and presented two variants of multilin-
gual topic models: the joint PLSA model and the
coupled PLSA model. Recently, Klementiev et al.
(2012) extended the neural probabilistic language
model (Bengio et al., 2000) to induce cross-lingual
word distributed representations on a set of word-
level aligned parallel sentences. The applicability
of these approaches however is limited by the avail-
ability of parallel corpus. Translating the whole set
of documents to produce parallel corpus is too time-
consuming, expensive and even practically impossi-
ble for some language pairs. We thus do not evaluate
those approaches in our empirical study.

Another group of works propose to use bilin-
gual dictionaries to learn interlingual representa-
tions (Gliozzo, 2006; Prettenhofer and Stein, 2010).
Gliozzo (2006) first translated each term from one
language to the other using a bilingual dictionary
and used the translated terms to augment origi-
nal documents. Then they conducted latent se-
mantic analysis (LSA) over the document-term ma-
trix with concatenated vocabularies to obtain in-
terlingual representations. Prettenhofer and Stein
(2010) proposed a cross-language structural cor-
respondence learning (CL-SCL) method to induce
language-independent features by using word trans-
lation oracles. They first selected a subset of source
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language features, which have the highest mutual in-
formation with respect to the class labels in the la-
beled documents from the source language domain,
to translate them into the target language domain,
and then used these pivot pairs to induce cross-
lingual representations by modeling the correlations
between pivot features and non-pivot features. Our
proposed approach shares a similarity with the CL-
SCL method in (Prettenhofer and Stein, 2010) on
only requiring a small amount of word translations.
But our approach performs representation learning
in a semi-supervised manner by directly incorporat-
ing discriminative information with respect to the
target prediction task, while CL-SCL only exploits
labels when selecting pivot features and the struc-
tural correspondence learning process is conducted
in a fully unsupervised fashion.

Some other bilingual resources, such as multilin-
gual WordNet (Fellbaum, 1998) and universal part-
of-speech (POS) tags (Petrov et al., 2012), have also
been exploited in the literature for interlingual learn-
ing. Gliozzo (2006) proposed to use MultiWordNet
to map words from different languages to a common
synset-id as language-sharing terms. A similar work
was proposed in A.R. et al. (2012), which trans-
formed words from different languages to WordNet
synset identifiers as interlingual sense-based rep-
resentations. However, multilingual WordNet re-
sources are not always available for different lan-
guage pairs. Recently, Petrenz and Webber (2012)
used language-specific POS taggers to tag each word
and then mapped those language-specific POS tags
to twelve universal POS tags as interlingual features
for cross language fine-grained genre classification.
This approach requires a POS tagger for each lan-
guage and it may be adversely affected by the POS
tagging accuracy.

3 Semi-Supervised Representation
Learning for Cross-Lingual Text
Classification

In this section, we introduce a semi-supervised
cross-lingual representation learning method and
then use it for cross language text classification.

Assume we haveℓs labeled andus unlabeled doc-
uments in the source language domainS andℓt la-
beled andut unlabeled documents in the target lan-

guage domainT . We assume all the documents are
independent and identically distributed in each lan-
guage domain, and each documentxi is represented
as a bag of words,xi = {wi1, wi2, . . . , wiNi

}. We
use(xℓ

i , yi) to denote thei-th labeled document and
its label, and consider exploiting the labeled docu-
ments in the source domainS for learning classifiers
in the target domainT .

To build connections between the two language
domains, we first construct a set of critical bilingual
word pairsM = {(ws

i , w
t
j)}

m
i=1

, wherews
i is a crit-

ical word in the source language domain,wt
j is its

translation in the target language domain, andm is
the number of word pairs. Here being critical means
the word should be discriminative for the prediction
task and occur frequently in both language domains.
Following the work (Prettenhofer and Stein, 2010),
we select bilingual word pairs in a heuristic way.
First we select a subset of words from the source lan-
guage domain, which have the highest mutual infor-
mation with the class labels in labeled source docu-
ments. The mutual information is computed based
on the empirical distributions of words and labels
in the labeled source documents. Then we translate
the selected words into the target language using a
translation tool to produce word pairs. Finally we
produce theM set by eliminating any candidate pair
(ws, wt), if either ws occurs less than a predefined
threshold valueφ in all source language documents
or wt occurs less thanφ in all target language docu-
ments. Given the constructed bilingual word pair set
M , the words appearing in the source language doc-
uments but not inM can be put together to form a
source specific vocabulary setVs = {ws

1
, . . . , ws

vs
}.

Similarly, the words appearing in the target language
documents but not inM can be put together to form
a target specific vocabulary setVt = {wt

1
, . . . , wt

vt
}.

An overall cross-lingual vocabulary set can then be
constructed asV = Vs ∪ Vt ∪ M , which has a total
of v = vs + vt + m entries. This cross-lingual vo-
cabulary set covers all words appearing in both do-
mains, while mapping each bilingual pair inM into
the same entry.

To tackle cross language text classification, we
then propose a cross-lingual log-bilinear document
model to learn a predictive cross-lingual represen-
tation of words, which maps each entry in the vo-
cabulary setV to one row vector in a word embed-
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ding matrixR ∈ R
v×k. Similar to the log-bilinear

language model (Mnih and Hinton, 2007) and the
log-bilinear document model (Maas et al., 2011),
our proposed model learns a dense feature vector for
each word to capture semantic similarities between
the vocabulary entries. But unlike the previous two
models which only work with a monolingual lan-
guage, our model also captures semantic similarities
across different languages. Moreover, we explicitly
incorporate the label information into our proposed
approach, rendering the induced word embeddings
more discriminative to the target prediction task.

3.1 Cross-Lingual Word Embeddings

As mentioned above, we assume a unified embed-
ding matrix R which contains the distributed vec-
tor representations of words in the two language
domains. However, even in a unified representa-
tion space, the distribution of words in the two do-
mains will be different. To capture the distribution
divergence of the two domains and facilitate cross-
lingual learning, we split the word embedding ma-
trix into three parts: source language specific part
Rs ∈ R

v×ks , common partRc ∈ R
v×kc and tar-

get language specific partRt ∈ R
v×kt , such that

k = ks + kc + kt. Intuitively, we assume that source
language words contain no target language specific
representations and target language words contain
no source language specific representations. Thus
for words in the two language domains, we retrieve
their distributed vector representations from the em-
bedding matrixR using two mapping functions,ΦS

andΦT , one for each language domain. The two
mapping functions are defined as

ΦS(w) =[Rs(w), Rc(w),0t]
T (1)

ΦT (w) =[0s, Rc(w), Rt(w)]T (2)

where0t is a kt-dimensional row vector of zeros,
0s is a ks-dimensional row vector of zeros,Rs(w)
denotes the row vector ofRs matrix corresponding
to the wordw, Rc(w) denotes the row vector ofRc

matrix corresponding to the wordw, andRt(w) de-
notes the row vector ofRt matrix corresponding to
the wordw. It is easy to see that each pair of words
in M will share the same vector fromRc. To encode
more information into the common part of represen-
tation for better knowledge transfer from the source

language domain to the target language domain, we
assumekc ≥ ks andkc ≥ kt. The form of three part
feature representations has been exploited in previ-
ous work of domain adaptation with heterogeneous
feature spaces (Duan et al., 2012). However, their
approach simply duplicates the original features as
language-specific representations, while we will au-
tomatically learn those three part latent representa-
tions in our approach.

3.2 Semi-Supervised Cross-Lingual
Representation Learning

Given the word representation scheme above, we
conduct cross-lingual representation learning by si-
multaneously maximizing the log-likelihood of all
documents and the conditional likelihood of labeled
documents from the two language domains

max
θ

∑

L∈{S,T }

∑

xi∈L

Ni
∑

j=1

logPL(wij |θ)+

α
∑

L∈{S,T }

∑

x
ℓ
i∈L

logPL(yi|x
ℓ
i , θ) (3)

whereθ denotes the model parameters andα is a
trade-off parameter. The first part of the objective
function captures the likelihood of the documents
being generated with the learned representationR.
PL(wij |θ) is the probability of wordwij appearing
in the documentxi from the language domainL, and
is defined as

PL(wij |θ) =
exp (−EL(wij , θ))

∑

w′∈V exp (−EL(w′, θ))
(4)

The termEL(wij , θ) is a log-bilinear energy func-
tion, defined as

EL(wij , θ) = −d
T
i ΦL(wij)− bwij

(5)

wheredi is ak-dimensional weight vector for docu-
mentxi andbwij

is the bias for wordwij . Below we
will useb to denote av-dimensional vector contain-
ing all words’ biases.

The second part of the objective function in (3)
takes the label information into account and aims
to render the latent word representations more task-
predictive. We use a logistic regression model to
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compute the conditional probability of the class la-
bel given the document with the induced word rep-
resentations, such that

PL(yi|x
ℓ
i , θ) =

1

1 + exp
(

−yi

(

wTΨL(xℓ
i) + q

))

(6)

wherew, q are model parameters of the logistic re-
gression model,ΨL(xi) is thek-dimensional vector
representation of the documentxi in the language
domainL. We computeΨL(xi) by taking average
over all words in the documentxi such as

ΨL(xi) =
1

Ni

Ni
∑

j=1

ΦL(wij) (7)

By summing over all descriptions above, we can
see that the proposed semi-supervised representa-
tion learning has a set of model parameters,θ =
{R, {di},b,w, q}. In order to avoid overfitting, we
add regularization terms for the parametersR, {di}
andw, which leads to the final optimization problem
below

max
θ

∑

L∈{S,T }

∑

xi∈L

(

Ni
∑

j=1

logPL(wij |θ)− γ‖di‖
2

2

)

+ α
∑

L∈{S,T }

∑

x
ℓ
i∈L

logPL(yi|x
ℓ
i , θ)

− β‖R‖2F − η‖w‖22 (8)

whereβ, γ, η are trade-off parameters,‖ · ‖F denote
the Frobenius norm and‖ · ‖2 denote the Euclidean-
norm. This objective function is not jointly convex
in all model parameters. We develop a gradient-
based iterative optimization procedure to seek a lo-
cal optimal solution. We first randomly initialize the
model parameters{di}, R,w and setb andq to ze-
ros. Then we iteratively make gradient-based up-
dates over the model parameters until reach a local
optimal solution.

3.3 Cross-Lingual Document Classification

After solving (8), we obtain a word embedding ma-
trix R. The distributed vector representation of any
given document can then be computed using Eq. (7)
based on Eq. (1) or Eq. (2). Under the distributed

vector representations of the documents in both lan-
guage domains, we perform cross-lingual document
classification by training a supervised classification
model using labeled data from both language do-
mains and then applying it to classify test documents
in the target language domain .

4 Experiments

We empirically evaluate the proposed approach us-
ing the cross language sentiment classification tasks
of Amazon product reviews in four languages. In
this section, we report our experimental results.

4.1 Dataset

We used the multilingual sentiment classification
dataset1 provided by Prettenhofer and Stein (2010),
which contains Amazon product reviews in four dif-
ferent languages, English (E), French (F), German
(G) and Japanese (J). The English product reviews
were sampled from previous cross-domain senti-
ment classification datasets (Blitzer et al., 2007),
while the other three language product reviews were
crawled from Amazon by the authors in November
2009. In the dataset, each language contains three
categories of product reviews, Books (B), DVD (D)
and Music (M). Each language-category pair con-
tains a balanced training set and test set, each of
which consists of 1000 positive reviews and 1000
negative reviews. Each review is represented as
a unigram bag-of-word feature vector with term-
frequency values. Following the work (Prettenhofer
and Stein, 2010), we used the original English re-
views as the source language while treating the other
three languages as target languages. Thus, we con-
struct nine cross language sentiment classification
tasks (GB, GD, GM, FB, FD, FM, JB, JD, JM), one
for each target language-category pair. For example,
the taskGB means that the target language isGer-
manand the training and test data are samples from
Booksreviews.

4.2 Approaches

We compare our proposed semi-supervised cross-
lingual representation learning (CL-RL ) approach
to the following approaches for cross-lingual doc-
ument classification.

1http://www.webis.de/research/corpora/
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Table 1: Average classification accuracies and standard deviations for the 9 cross-lingual sentiment classification tasks.
The bold format indicates that the difference between the results ofCL-RLandMT is significant withp < 0.05 under
a McNemar paired test for labeling disagreements.

Task TB CL-Dict CLD-LSA CL-SCL MT CL-RL
GB 66.25±0.64 69.40±0.61 70.30±0.44 73.78±0.32 78.05±0.64 79.89±0.30
GD 63.16±0.66 66.37±0.63 66.85±0.46 71.99±0.25 75.75±0.58 77.14±0.16
GM 65.42±0.77 68.81±0.51 68.93±0.58 71.58±0.35 74.85±0.62 77.27±0.16
FB 65.98±0.51 69.35±0.48 69.98±0.51 73.89±0.16 78.00±0.49 78.25±0.32
FD 63.76±0.37 67.96±0.60 68.88±0.43 73.79±0.28 75.75±0.71 74.83±0.30
FM 65.94±0.56 67.98±0.69 68.42±0.60 71.20±0.28 74.85±0.49 78.71±0.32
JB 63.86±0.80 59.40±0.29 62.62±0.62 62.49±0.23 67.20±0.80 71.11±0.21
JD 63.59±0.74 62.13±0.26 63.87±0.72 65.54±0.29 67.70±0.57 73.12±0.23
JM 65.84±0.90 63.01±0.46 65.67±0.72 65.49±0.36 68.30±0.61 74.38±0.40

• TB: This is a target baseline method, which
trains a supervised monolingual classifier on
the labeled training data from the target lan-
guage domain without representation learning.

• CL-Dict: This is a simple baseline compar-
ison method, which uses the bilingual word
pairs directly to align features from different
language domains into a unified feature dictio-
nary and then trains a supervised classifier on
this aligned feature space with labeled training
data from both language domains.

• CLD-LSA: This is the cross-lingual represen-
tation learning method developed in (Gliozzo,
2006), which first translates each document
from one language into the other language via
a bilingual dictionary to produce augmenting
features, and then performs latent semantic
analysis (LSA) over the augmented bilingual
document-term matrix.

• CL-SCL: This is the cross language structural
correspondence learning method developed in
(Prettenhofer and Stein, 2010).

• MT: This is a machine translation based com-
parison method, which first uses an existing
machine translation tool (google translation) to
translate the target language documents into the
source language and then trains a monolingual
classifier with labeled training data from both
domains in the source language.

In all experiments, we used a linear support vec-
tor machine (SVM) for sentiment classification. For
implementation, we used the liblinear package (Fan
et al., 2008) with all of its default parameters. For
the CL-SCL method, we used the same parame-
ter setting as suggested in the paper (Prettenhofer
and Stein, 2010): the number of pivot features is
set as 450, the threshold value for selecting pivot
features is 30, and the reduced dimensionality af-
ter singular value decomposition is 100. For the
CLD-LSAmethod, we set the dimensionality of la-
tent representation as 1000. Similarly, for our pro-
posed approach, we built the cross-lingual vocabu-
lary M by settingm = 450 and φ = 30. For
our representation learning, we setα = 1, β =
γ = η = 1e−4, and setks, kc, kt to be 25, 50,
25, respectively. The values ofα, β, γ and η are
selected using the first cross language classifica-
tion task GB. We selected theα value from the
set{0.01, 0.1, 1, 10, 100} and selectedβ, γ, η values
from the set{1e−5, 1e−4, 1e−3, 1e−2, 1e−5} by re-
peating the experiment three times with random data
partitions and choosing the parameter values that led
to the best average classification accuracy.

4.3 Classification Accuracy

For each of the nine cross language sentiment classi-
fication tasks with different target language-category
pairs, we used the training set in the source language
domain (English) as labeled data while treating the
test set in the source language domain as unlabeled.
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Figure 1: Average classification accuracies and standard deviations for 10 runs with respect to different numbers of
labeled training documents in the target language domain.

For target language domain, we used the test set as
test data while randomly selecting 100 documents
from the training set as labeled data and treating the
rest as unlabeled data. Thus, for each task, we have
2000 labeled documents and 2000 unlabeled docu-
ments from the source language domain, and 100
labeled and 1900 unlabeled documents from the tar-
get language domain for training. We have 2000 test
documents from the target language domain as test-
ing data. In each experiment, a classifier is produced
by each approach with the training data and tested
on the testing data. We repeated each experiment

10 times with different random selections of 100 la-
beled training documents from the target language
domain. The average classification accuracies and
standard deviations are reported in Table 1.

From Table 1, we can see that the proposed semi-
supervised cross-lingual representation learning ap-
proach, CL-RL, clearly outperforms all other com-
parison methods on eight out of the nine tasks. The
target baselineTB performs poorly on all the nine
tasks, which suggests that 100 labeled instances
from the target language is far from enough to ob-
tain an accurate sentiment classifier in the target lan-
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Figure 2: Average classification accuracy and standard deviation results for the proposed approach over 10 runs with
respect to different dimensionality for the induced cross-lingual representations.

guage domain. By exploiting the large amount of
labeled training data from the source language do-
main, even the simple cross-lingual adaptation ap-
proach,CL-Dict, produces effective improvements
over TB. However, its performance is not consis-
tent across the nine tasks. It has inferior perfor-
mance thanTB on the three tasks of adapting En-
glish to the Japanese language domain. This sug-
gests the simple bilingual word-pair based feature
space unification method is far from ideal for pro-
viding effective cross-lingual representations, espe-
cially when two languages (English, Japanese) are
very different. With a better designed representa-
tion learning,CLD-LSAoutperformsCL-Dict on all
the nine tasks, but the improvements are very small
on some tasks (e.g., GM).CL-SCL not only out-
performsCL-Dict on all tasks, but also performs
much better thanCLD-LSAon most tasks. Its per-
formance nevertheless is inferior to the method of
MT. ThoughMT can greatly increase the test accu-
racies comparing to the other four methods,TB, CL-
Dict, CLD-LSA, andCL-SCL, the benefit is obtained
at the cost of whole document translations. In con-
trast, our proposed approach does not require whole
document translations, but relies on the same sim-
ple word-pair translations used inCL-Dict. It how-
ever consistently and significantly outperformsTB,
CL-Dict, CLD-LSA, andCL-SCLon all tasks, and
outperformsMT on eight out of the nine tasks.

We also conduct significance tests for our pro-
posed approach andMT using a McNemar paired
test for labeling disagreements (Gillick and Cox,
1989). The results in bold format indicate that they

are significant withp < 0.05. All these results
demonstrate the efficacy of our cross-lingual repre-
sentation learning method.

4.4 Classification Accuracy vs the Number of
Labeled Target Documents

Next, we investigated the performance of the six ap-
proaches by varying the number of labeled train-
ing documents from the target language domain.
We maintained the same experimental setting as be-
fore, but investigated a range of different values,
ℓt = {100, 200, 300, 400, 500}, as the number of la-
beled training documents from the target language
domain. In each experiment, for a given valueℓt,
we randomly selectedℓt documents from the train-
ing set of the target language domain as labeled data
and used the rest as unlabeled data. We still per-
formed prediction on the same 2000 test documents
in the target language domain. We repeated each
experiment 10 times based on different random se-
lections of the labeled training data from the target
language domain. The average classification accura-
cies and standard deviations across differentℓt val-
ues for all comparison methods on all the nine tasks
are plotted in Figure 1.

We can see when the number of labeled target
documents is small,TB performs poorly, especially
for the first six tasks (GB, GD, GM, FB, FD, FM).
By increasing the size of labeled target training data,
TBcan greatly increase its prediction accuracies and
even outperform theCL-Dict method. The sim-
ple CL-Dict method has inconsistent performance
across the nine tasks. Its performance is better than
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TB when the labeled training data in the target lan-
guage domain is very limited and is poor thanTB
when the labeled target data reaches 300 for the six
tasks using German and French as target languages.
Moreover, when adapting a system from English to
a much more different target language (Japanese),
CL-Dict produces much lower accuracies for all the
three tasks comparing withTB. These results show
that CL-Dict has very limited capacity on transfer-
ring labeled information from a related source lan-
guage domain. Similar performance is observed for
CLD-LSA. With a more sophisticated representation
learning, theCL-SCLmethod consistently outper-
forms CL-Dict. However, it produces inferior per-
formance thanCLD-LSAon the tasks ofJB andJM.
By using more translation resources, theMT method
outperformsTB, CL-Dict, CLD-LSA, CL-SCLin all
the nine tasks across almost all scenarios. Our pro-
posed methodCL-RL significantly outperforms all
the other five comparison methods across all experi-
ments except on the task of FD, whereMT produces
similar performance. Moreover, it is especially im-
portant to notice thatCL-RL achieves high test ac-
curacies even when the number of labeled target in-
stances is small. This is important for transferring
knowledge from a source language to reduce the la-
beling effort in the target language.

4.5 Sensitivity Analysis

We also investigated the sensitivity of the proposed
approach over the dimensionality of the induced
cross-lingual representations. We used the same ex-
perimental setting as before, and conducted experi-
ments with a set of different dimensionality values,
k = {100, 200, 300, 400}. For each valuek, we
set ks = 0.25k, kc = 0.5k, kt = 0.25k. We re-
peated each experiment for 10 times based on dif-
ferent random selections of labeled target training
data and plotted the average prediction accuracies
and standard deviations in Figure 2 for all the nine
cross-lingual sentiment classification tasks. We can
see the proposed approach produces stable accuracy
results across the range of differentk values. This
suggests the proposed approach is not very sensitive
to the dimensionality of the cross-lingual embedding
features within the considered range of values, and
with a small dimensionality of 100, the induced rep-
resentation can already perform very well.

4.6 Cross-Lingual Word Representations

Finally, we used the first taskGB, which adapts the
Booksreviews from English to German, to gain in-
tuitive understandings over the learned cross-lingual
word representations. Given an English word as
seed word, we find its five closest neighboring En-
glish words and German words according to the Eu-
clidean distances calculated in the induced cross-
lingual representation space. We present a few re-
sults in Table 2. From Table 2, we can see that the re-
trieved words in both language domains are seman-
tically close to the seed words, which indicates that
our proposed method can capture semantic similar-
ities of words not only in a monolingual setting but
also in a multilingual setting.

5 Conclusion

In this paper, we proposed a semi-supervised cross-
lingual representation learning approach to address
cross-lingual text classification. The distributed
word representation induced by the proposed ap-
proach can capture semantic similarities of words
across languages while maintaining predictive infor-
mation with respect to the target classification tasks.
To evaluate the proposed approach, we conducted
experiments on nine cross language sentiment clas-
sification tasks constructed from the Amazon prod-
uct reviews in four languages, comparing to a num-
ber of comparison methods. The empirical results
showed that the proposed approach can produce
effective cross-lingual adaptation performance and
significantly outperform other comparison methods.
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Abstract

Often the bottleneck in document classifica-
tion is finding good representations that zoom
in on the most important aspects of the doc-
uments. Most research uses n-gram repre-
sentations, but relevant features often occur
discontinuously, e.g., not. . . good in sentiment
analysis. In this paper we present experi-
ments getting experts to provide regular ex-
pressions, as well as crowdsourced annota-
tion tasks from which regular expressions can
be derived. Somewhat surprisingly, it turns
out that these crowdsourced feature combina-
tions outperform automatic feature combina-
tion methods, as well as expert features, by a
very large margin and reduce error by 24-41%
over n-gram representations.

1 Introduction

Finding good representations of classification prob-
lems is often glossed over in the literature. Sev-
eral authors have emphasized the need to pay more
attention to finding such representations (Wagstaff,
2012; Domingos, 2012), but in document classifica-
tion most research still uses n-gram representations.

This paper considers two document classification
problems where such representations seem inade-
quate. The problems are answer scoring (Burstein
et al., 1998), on data from stackoverflow.com, and
multi-attribute sentiment analysis (McAuley et al.,
2012). We argue that in order to adequately repre-
sent such problems we need discontinuous features,
i.e., regular expressions.

The problem with using regular expressions as
features is of course that even with a finite vocab-

ulary we can generate infinitely many regular ex-
pressions that match our documents. We suggest to
use expert knowledge or crowdsourcing in the loop.
In particular we present experiments where standard
representations are augmented with features from a
few hours of manual work, by machine learning ex-
perts or by turkers.

Somewhat surprisingly, we find that features de-
rived from crowdsourced annotation tasks lead to the
best results across the three datasets. While crowd-
sourcing of annotation tasks has become increasing
popular in NLP, this is, to the best of our knowledge,
the first attempt to crowdsource the problem of find-
ing good representations.

1.1 Related work

Musat et al. (2012) design a collaborative two-player
game for sentiment annotation and collecting a sen-
timent lexicon. One player guesses the sentiment of
a text and picks a word from it that is representative
of its sentiment. The other player also provides a
guess observing only this word. If the two guesses
agree, both players get a point. The idea of gam-
ifying the problem of finding good representations
goes beyond crowdsourcing, but is not considered
here. Boyd-Graber et al. (2012) crowdsource the
feature weighting problem, but using standard rep-
resentations. The work most similar to ours is prob-
ably Tamuz et al. (2011), who learn a ’crowd kernel’
by asking annotators to rate examples by similarity,
providing an embedding that promotes feature com-
binations deemed relative when measuring similar-
ity.
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BoW Exp AMT
n P (1) m µx m µx m µx

STACKOVERFLOW 97,519 0.5013 30,716 0.00131 1,156 0.1380 172,691 0.00331
TASTE 152,390 0.5003 38,227 0.00095 666 0.10631 114,588 0.00285
APPEARANCE 152,331 0.5009 37,901 0.00097 650 0.14629 102,734 0.00289

Table 1: Characteristics of the n×m data sets

2 Experiments

Data The three datasets used in our experi-
ments come from two sources, namely stackover-
flow.com and ratebeer.com. The two beer review
datasets (TASTE and APPEARANCE) are described
in McAuley et al. (2012) and available for down-
load.1 Each input example is an unstructured review
text, and the associated label is the score assigned to
taste or appearance by the reviewer. We randomly
sample about 152k data points, as well as 500 exam-
ples for experiments with experts and turks.

We extracted the STACKOVERFLOW dataset from
a publicly available data dump,2, and we briefly de-
scribe our sampling process here. We select pairs of
answers, where one is ranked higher than the other
by stackoverflow.com users. Obviously the answers
submitted first have a better chance of being ranked
highly, so we also require that the highest ranked
answer was submitted last. From this set of answer
pairs, we randomly sample 97,519 pairs, as well as
500 examples for our experiments with experts and
turks.

Our experiments are classification experiments
using the same learning algorithm in all experi-
ments, namely L1-regularized logistic regression.
We don’t set any parameters The only differences
between our systems are in the feature sets. Results
are from 5-fold cross-validation. The four feature
sets are described below: BoW, HI, Exp and AMT.

For motivating using regular expressions, con-
sider the following sentence from a review of John
Harvard’s Grand Cru:

(1) Could have been more flavorful.

The only word carrying direct sentiment in this
sentence is flavorful, which is positive, but the sen-
tence is a negative evaluation of the Grand Cru’s

1http://snap.stanford.edu/data/web-RateBeer.html
2http://www.clearbits.net/torrents/2076-aug-2012

taste. The trigram been more flavorful seems neg-
ative at first, but in the context of negation or in a
comparative, it can become positive again. How-
ever, note that this trigram may occur discontinu-
ously, e.g., in been less watery and more flavorful.
In order to match such occurrences, we need simple
regular expressions, e.g.,:

been.*more.*flavorful

This is exactly the kind of regular expressions we
asked experts to submit, and that we derived from
the crowdsourced annotation tasks. Note that the
sentence says nothing about the beer’s appearance,
so this feature is only relevant in TASTE, not in
APPEARANCE.

BoW and BoW+HI Our most simple baseline ap-
proach is a bag-of-words model of unigram features
(BoW). We lower-case our data, but leave in stop
words. We also introduce a semantically enriched
unigram model (BoW)+HI, where in addition to
representing what words occur in a text, we also
represent what Harvard Inquirer (HI)3 word classes
occur in it. The HI classes are used to generate
features from the crowdsourced annotation tasks,
so the semantically enriched unigram model is an
important baseline in our experiments below.

BoW+Exp In order to collect regular expressions
from experts, we set up a web interface for query-
ing held-out portions of the datasets with regular ex-
pressions that reports how occurrences of the sub-
mitted regular expressions correlate with class. We
used the Python re syntax for regular expressions
after augmenting word forms with POS and seman-
tic classes from the HI. Few of the experts made use
of the POS tags, but many regular expressions in-
cluded references to HI classes.

3http://www.wjh.harvard.edu/ inquirer/homecat.htm
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Regular expressions submitted by participants
were visible to other participants during the exper-
iment, and participants were allowed to work to-
gether. Participants had 15 minutes to familiarize
themselves with the syntax used in the experiments.
Each query was executed in 2-30 seconds.

Seven researchers and graduate students spent
five effective hours querying the datasets with
regular expressions. In particular, they spent three
hours on the Stack Exchange dataset, and one hour
on each of the two RateBeer datasets. One had to
leave an hour early. So, in total, we spent 20 person
hours on Stack Exchange, and seven person hours
on each of the RateBeer datasets. In the five hours,
we collected 1,156 regular expressions for the
STACKOVERFLOW dataset, and about 650 regular
expressions for each of the two RateBeer datasets.
Exp refers to these sets of regular expressions. In
our experiments below we concatenate these with
the BoW features to form BoW+Exp.

BoW+AMT For each dataset, we also had 500 held-
out examples annotated by three turkers each, using
Amazon Mechanical Turk,4 obtaining 1,500 HITs
for each dataset. The annotators were presented with
each text, a review or an answer, twice: once as run-
ning text, once word-by-word with bullets to tick off
words. The annotators were instructed to tick off
words or phrases that they found predictive of the
text’s sentiment or answer quality. They were not in-
formed about the class of the text. We chose this an-
notation task, because it is relatively easy for annota-
tors to mark spans of text with a particular attribute.
This set-up has been used in other applications, in-
cluding NER (Finin et al., 2010) and error detection
(Dahlmeier et al., 2013). The annotators were con-
strained to tick off at least three words, including
one closed class item (closed class items were col-
ored differently). Finally, we only used annotators
with a track record of providing high-quality anno-
tations in previous tasks. It was clear from the aver-
age time spent by annotators that annotating STACK-
OVERFLOW was harder than annotating the Rate-
beer datasets. The average time spent on a Rate-
beer HIT was 44s, while for STACKOVERFLOW it
was 3m:8s. The mean number of words ticked off

4www.mturk.com

BoW HI Exp AMT
STACKOVERF 0.655 0.654 0.683 0.739
TASTE 0.798 0.797 0.798 0.867
APPEARANCE 0.758 0.760 0.761 0.859

Table 2: Results using all features

was between 5.6 and 7, with more words ticked off
in STACKOVERFLOW. The maximum number of
words ticked off by an annotator was 41. We spent
$292.5 on the annotations, including a trial round.
This was supposed to match, roughly, the cost of the
experts consulted for BoW+Exp.

The features generated from the annotations were
constructed as follows: We use a sliding window of
size 3 to extract trigrams over the possibly discon-
tinuous words ticked off by the annotators. These
trigrams were converted into regular expressions by
placing Kleene stars between the words. This gives
us a manually selected subset of skip trigrams. For
each skip trigram, we add copies with one or more
words replaced by one of their HI classes.

Feature combinations This subsection introduces
some harder baselines for our experiments, consid-
ered in Experiment #2. The simplest possible way
of combining unigram features is by considering n-
gram models. An n-gram extracts features from a
sliding window (of size n) over the text. We call this
model BoW(N = n). Our BoW(N = 1) model
takes word forms as features, and there are obvi-
ously more advanced ways of automatically combin-
ing such features.

Kernel representations We experimented with ap-
plying an approximate feature map for the addi-
tive χ2-kernel. We used two sample steps, result-
ing in 4N + 1 features. See Vedaldi and Zimmer-
man (2011) for details.

Deep features We also ran denoising autoen-
coders (Pascal et al., 2008), previously applied
to a wide range of NLP tasks (Ranganath et al.,
2009; Socher et al., 2011; Chen et al., 2012), with
2N nodes in the middle layer to obtain a deep
representation of our datasets from χ2-BoW input.
The network was trained for 15 epochs. We set the
drop-out rate to 0.0 and 0.3.

Summary of feature sets The feature sets – BoW,
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Figure 1: Results selecting N features using χ2 (left to right): STACKOVERFLOW, TASTE, and APPEARANCE. The
x-axis is logarithmic scale.
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Figure 2: Results using different feature combination techniques (left to right): STACKOVERFLOW, TASTE, and
APPEARANCE. The x-axis is logarithmic scale.

Exp and AMT – are very different. Their character-
istics are presented in Table 1. P (1) is the class dis-
tribution, e.g., the prior probability of positive class.
n is the number of data points, m the number of
features. Finally, µx is the average density of data
points. One observation is of course that the expert
feature set Exp is much smaller than BoW and AMT,
but note also that the expert features fire about 150
times more often on average than the BoW features.
HI is only a small set of additional features.

3 Results

Experiment #1: BoW vs. Exp and AMT We present
results using all features, as well as results obtained
after selecting k features as ranked by a simple χ2

test. The results using all collected features are pre-
sented in Table 2. The error reduction on STACK-
OVERFLOW when adding crowdsourced features to
our baseline model (BoW+AMT), is 24.3%. On
TASTE, it is 34.2%. On APPEARANCE, it is 41.0%.

The BoW+AMT feature set is bigger than those of
the other models. We therefore report results using
the top-k features as ranked by a simple χ2 test.
The result curves are presented in the three plots in

Fig. 1. With +500 features, BoW+AMT outperforms
the other models by a large margin.

Experiment #2: AMT vs. more baselines The
BoW baseline uses a standard representation that,
while widely used, is usually thought of as a weak
baseline. BoW+HIT did not provide a stronger base-
line. We also show that bigram features, kernel-
based decomposition and deep features do not pro-
vide much stronger baselines either. The result
curves are presented in the three plots in Fig. 2.
BoW+AMT is still significantly better than all other
models with +500 features. Since autoencoders
are consistently worse than denoising autoencoders
(drop-out 0.3), we only plot denoising autoencoders.

4 Conclusion

We presented a new method for deriving feature
representations from crowdsourced annotation tasks
and showed how it leads to 24%-41% error reduc-
tions on answer scoring and multi-aspect sentiment
analysis problems. We saw no significant improve-
ments using features contributed by experts, kernel
representations or learned deep representations.
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Abstract

A major challenge in supervised sentence
compression is making use of rich feature rep-
resentations because of very scarce parallel
data. We address this problem and present
a method to automatically build a compres-
sion corpus with hundreds of thousands of
instances on which deletion-based algorithms
can be trained. In our corpus, the syntactic
trees of the compressions are subtrees of their
uncompressed counterparts, and hence super-
vised systems which require a structural align-
ment between the input and output can be suc-
cessfully trained. We also extend an exist-
ing unsupervised compression method with a
learning module. The new system uses struc-
tured prediction to learn from lexical, syntac-
tic and other features. An evaluation with hu-
man raters shows that the presented data har-
vesting method indeed produces a parallel cor-
pus of high quality. Also, the supervised sys-
tem trained on this corpus gets high scores
both from human raters and in an automatic
evaluation setting, significantly outperforming
a strong baseline.

1 Introduction and related work

Sentence compression is a paraphrasing task where
the goal is to generate sentences shorter than given
while preserving the essential content. A robust
compression system would be useful for mobile de-
vices as well as a module in an extractive sum-
marization system (Mani, 2001). Although a com-
pression may differ lexically and structurally from
the source sentence, to date most systems are ex-
tractive and proceed by deleting words from the

input (Knight & Marcu, 2000; Dorr et al., 2003;
Turner & Charniak, 2005; Clarke & Lapata, 2008;
Berg-Kirkpatrick et al., 2011, inter alia). To de-
cide which words, dependencies or phrases can be
dropped, (i) rule-based approaches (Grefenstette,
1998; Jing & McKeown, 2000; Dorr et al., 2003;
Zajic et al., 2007), (ii) supervised models trained
on parallel data (Knight & Marcu, 2000; Turner &
Charniak, 2005; McDonald, 2006; Gillick & Favre,
2009; Galanis & Androutsopoulos, 2010, inter alia)
and (iii) unsupervised methods which make use of
statistics collected from non-parallel data (Hori &
Furui, 2004; Zajic et al., 2007; Clarke & Lapata,
2008; Filippova & Strube, 2008) have been investi-
gated. Since it is infeasible to manually devise a set
of accurate deletion rules with high coverage, recent
research has been devoted to developing statistical
methods and possibly augmenting them with a few
linguistic rules to improve output readability (Clarke
& Lapata, 2008; Nomoto, 2009).

Supervised models. A major problem for super-
vised deletion-based systems is very limited amount
of parallel data. Many approaches make use of a
small portion of the Ziff-Davis corpus which has
about 1K sentence-compression pairs1. Other main
sources of training data are the two manually crafted
compression corpora from the University of Edin-
burgh (“written” and “spoken”, each approx. 1.4K
pairs). Galanis & Androutsopoulos (2011) attempt
at getting more parallel data by applying a deletion-
based compressor together with an automatic para-

1The method of Galley & McKeown (2007) could benefit
from a larger number of sentences.
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phraser and generating multiple alternative com-
pressions. To our knowledge, this extended data set
has not yet been used for successful training of com-
pression systems.

Scarce parallel data makes it hard to go beyond a
small set of features and explore lexicalization. For
example, Knight & Marcu (2000) only induce non-
lexicalized CFG rules, many of which occurred only
once in the training data. The features of McDon-
ald (2006) are formulated exclusively in terms of
syntactic categories. Berg-Kirkpatrick et al. (2011)
have as few as 13 features to decide whether a con-
stituent can be dropped. Galanis & Androutsopou-
los (2010) use many features when deciding which
branches of the input dependency tree can be pruned
but require a reranker to select most fluent com-
pressions from a pool of candidates generated in the
pruning phase, many of which are ungrammatical.

Even further data limitations exist for the algo-
rithms which operate on syntactic trees and refor-
mulate the compression task as a tree pruning one
(Nomoto, 2008; Filippova & Strube, 2008; Cohn &
Lapata, 2009; Galanis & Androutsopoulos, 2010, in-
ter alia). These methods are sensitive to alignment
errors, their performance degrades if the syntactic
structure of the compression is very different from
that of the input. For example, see Nomoto’s 2009
analysis of the poor performance of the T3 system of
Cohn & Lapata (2009) when retrained on a corpus of
loosely similar RSS feeds and news.

Unsupervised models. Few approaches require
no training data at all. The model of Hori & Fu-
rui (2004) combines scores estimated from mono-
lingual corpora to generate compressions of tran-
scribed speech. Adopting an integer linear program-
ming (ILP) framework, Clarke & Lapata (2008) use
hand-crafted syntactic constraints and an ngram lan-
guage model, trained on uncompressed sentences, to
find best compressions. The model of Filippova &
Strube (2008) also uses ILP but the problem is for-
mulated over dependencies and not ngrams. Condi-
tional probabilities and word counts collected from
a large treebank are combined in an ad hoc man-
ner to assess grammatical importance and informa-
tiveness of dependencies. Similarly, Woodsend &
Lapata (2010) formulate an ILP problem to gener-
ate news story highlights using precomputed scores.

Again, an ad hoc combination of the scores learned
independently of the task is used in the objective
function.

Contributions of this paper. Our work is moti-
vated by the obvious need for a large parallel corpus
of sentences and compressions on which extractive
systems can be trained. Furthermore, we want the
compressions in the corpus to be structurally very
close to the input. Ideally, in every pair, the com-
pression should correspond to a subtree of the input.
To this end, our contributions are three-fold:

• We describe an automatic procedure of con-
structing a parallel corpus of 250,000 sentence-
compression pairs such that the dependency
tree of the compression is a subtree of the
source tree. An evaluation with human raters
demonstrates high quality of the parallel data
in terms of readability and informativeness.

• We successfully apply the acquired data to train
a novel supervised compression system which
produces readable and informative compres-
sions without employing a separate reranker.
In particular, we start with the unsupervised
method of Filippova & Strube (2008) and re-
place the ad hoc edge weighting with a lin-
ear function over a rich feature representation.
The parameter vector is learned from our cor-
pus specifically for the compression task us-
ing structured prediction (Collins, 2002). The
new system significantly outperforms the base-
line and hence provides further evidence for the
utility of the parallel data.

• We demonstrate that sparse lexical features are
very useful for sentence compression, and that
a large parallel corpus is a requirement for ap-
plying them successfully.

The compression framework we adopt and the un-
supervised baseline are introduced in Section 2, the
training algorithm for learning edge weights from
parallel data is described in Section 3. In Section
4 we explain how to obtain the data and present an
evaluation of its quality. In Section 5 we compare
the baseline with our system and report the results
of an experiment with humans as well as the results
of an automatic evaluation.
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2 Framework and baseline

We adopt the unsupervised compression framework
of Filippova & Strube (2008) as our baseline and ex-
tend it to a supervised structured prediction problem.
In the experiments reported by Filippova & Strube
(2008), the system was evaluated on the Edinburgh
corpora. It achieved an F-score (Riezler et al., 2003)
higher than reported by other systems on the same
data under an aggressive compression rate and thus
presents a competitive baseline.

Tree pruning as optimization. In this framework,
compressions are obtained by deleting edges of the
source dependency structure so that (1) the retained
edges form a valid syntactic tree, and (2) their to-
tal edge weight is maximized. The objective func-
tion is defined over set X = {xe, e ∈ E} of bi-
nary variables, corresponding to the set E of the
source edges, subject to the structural and length
constraints,

f(X) =
∑
e∈E

xe × w(e) (1)

Here, w(e) denotes the weight of edge e. This con-
strained optimization problem is solved under the
tree structure and length constraints using ILP. If xe

is resolved to 1, the respective edge is retained, oth-
erwise it is deleted. The tree structure constraints en-
force at most one parent for every node and structure
connectivity (i.e., no disconnected subtrees). Given
that length(node(e)) denotes the length of the node
to which edge e points and α is the maximum per-
mitted length for the compression, the length con-
straint is simply∑

e∈E

xe × length(node(e)) ≤ α (2)

Word limit is used in the original paper, whereas we
use character length which is more appropriate for
system comparisons (Napoles et al., 2011). If uni-
form weights are used in Eq. (1), the optimal so-
lution would correspond to a subtree covering as
many edges as possible while keeping the compres-
sion length under given limit.

The solution to the surface realization problem
(Belz et al., 2011) is standard: the words in the com-
pression subtree are put in the same order they are
found in the source.

Due to space limitations, we refer the reader to
(Filippova & Strube, 2008) for a detailed descrip-
tion on the method. Essential for the present discus-
sion is that source dependency trees are transformed
to dependency graphs in that (1) auxiliary, deter-
miner, preposition, negation and possessive nodes
are collapsed with their heads; (2) prepositions re-
place labels on the edges to their arguments; (3) the
dummy root node is connected with every inflected
verb. Figures 1(a)-1(b) illustrate most of the trans-
formations. The transformations are deterministic
and reversible, they can be implemented in a single
top-down tree traversal2.

The set E of edges in Eq. (1) is thus the set of
edges of the transformed dependency graph, like in
Fig. 1(b). A benefit of the transformations is that
function words and negation appear in the compres-
sion if and only if their head words are present.
Hence no separate constraints are required to en-
sure that negation or a determiner is preserved. The
dummy root node makes constraint formulation eas-
ier and also allows for the generation of compres-
sions from any finite clause of the source.

The described pruning optimization framework
is used both for the unsupervised baseline and for
our supervised system. The difference between the
baseline and our system is in how edge weights,
w(e)’s in Eq. (1), are instantiated.

Baseline edge weights. The precomputed edge
weights reflect syntactic importance as well as infor-
mativeness of the nodes they point to. Given edge
e from head node h to node n, the edge weight is
the product of the syntactic and the informativeness
weights,

w(e) = wsynt(e)× winfo(e) (3)

The syntactic weight is defined as

wsynt(e) = P (label(e)|lemma(h)) (4)

For example, verb kill may have multiple argu-
ments realized with dependency labels subj, dobj, in,
etc. However, these argument labels are not equally
likely, e.g., P (subj|kill) > P (in|kill). When forced
to prune an edge, the system would prefer to keep

2Some of the transformations are comparable to what is im-
plemented in the Stanford parser (de Marneffe et al., 2006).
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Britain ’s Ministry of Defense says a British soldier was killed in a roadside blast in southern Afghanistan
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Figure 1: Source, transformed and extracted trees given headline British soldier killed in Afghanistan

the subject edge over the preposition-in edge since it
contributes more weight to the objective function.

The informativeness score is inspired by Wood-
send & Lapata (2012) and is defined as

winfo(e) =
Pheadline(lemma(n))

Particle(lemma(n))
(5)

This weight tells us how likely it is that a word
from an article appears in the headline. For exam-
ple, given two edges one of which points to verb say
and another one to verb kill, the latter would be pre-
ferred over the former because kill is more “head-
liny” than say. When collecting counts for the syn-
tactic and informativeness scores, we used 9M news
articles crawled from the Internet, much more than
Filippova & Strube (2008). As a result our estimates
are probably more accurate than theirs.

Although both wsynt and winfo have a meaning-
ful interpretation, there is no guarantee that product
is the best way to combine the two when assign-
ing edge weights. Also, it is unclear how to inte-
grate other signals, such as distance to the root, node
length or information about the siblings, which pre-

sumably all play a role in determining the overall
edge importance.

3 Learning edge weights

Our supervised system differs from the unsupervised
baseline in that instead of relying on precomputed
scores, we define edge weight w(e) in Eq. (1) with a
linear function over a feature representation,

w(e) = w · f(e) (6)

Here f(e) is a vector of binary variables for every
feature from the set of all possible but very infre-
quent features in the training set. f(e) has 1 for every
feature extracted for edge e and zero otherwise.

Table 1 gives an overview of the feature types
we use (edge e points from head h to node n).
Note that syntactic, structural and semantic features
are closed-class. For all the structural features but
char length, seven is used as maximum possible
value; all possible character lengths are bucketed
into six classes. All the features are local – for a
given edge, contextual information is included about
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syntactic label(e); for e* to h, label(e*); pos(h); pos(n)
structural depth(n); #children(n); #children(h); char length(n); #words in(n)
semantic NE tag(h); NE tag(n); is negated(n)
lexical lemma(n); lemma(h)-label(e); for e* to n’s siblings, lemma(h)-label(e*)

Table 1: Types of features extracted for edge e from h to n

the head and the target nodes, and the siblings as
well as the children of the latter. The negation fea-
ture is only applicable to verb nodes which contain
a negative particle, like not, after the tree transfor-
mations. Lexical features which combine lemmas
and syntactic labels are inspired by the unsupervised
baseline and are very sparse.

In what follows, our assumption is that we have a
compression corpus at our disposal where for every
input sentence there is a correct “oracle” compres-
sion such that its transformed parse tree matches a
subtree of the transformed input graph. Given such
a corpus, we can apply structured prediction meth-
ods to learn the parameter vector w. In our study
we employ an averaged variant of online structured
perceptron (Collins, 2002). In the context of sen-
tence fusion, a similar dependency structure prun-
ing framework and a similar learning approach was
adopted by Elsner & Santhanam (2011).

At every iteration, for every input graph, we find
the optimal solution with ILP under the current pa-
rameter vector w. The maximum permitted com-
pression length is set to be the same as the length
of the oracle compression. Since the oracle com-
pression is a subtree of the input graph, it represents
a feasible solution for ILP. The parameter vector is
updated if there is a mismatch between the predicted
and the oracle sets of edges for all the features with
a non-zero net count. More formally, given an input
graph with the set of edges E, oracle compression
C ⊂ E and compression Ct ⊆ E predicted at itera-
tion t , the parameter update vector at t+ 1 is given
by

wt+1 = wt +
∑

e∈C\Ct

f(e)−
∑

e∈Ct\C

f(e) (7)

w is averaged over all the wt’s so that features
whose weight fluctuated a lot during training are pe-
nalized (Freund & Shapire, 1999).

Of course, training a model with a large number
of features, such as a lexicalized model, is only pos-
sible if there is a large compression corpus where
the dependency tree of the compression is a subtree
of the source sentence. In the next section we in-
troduce our method of getting a sufficient amount of
such data.

4 Acquiring parallel data automatically

In this section we explain how we obtained a parallel
corpus of sentences and compressions. The underly-
ing idea is to harvest news articles from the Internet
where the headline appears to be similar to the first
sentence and use it to find an extractive compression
of the sentence.

Collecting headline-sentence pairs. Using a
news crawler, we collected a corpus of news arti-
cles in English from the Internet. Similarly to previ-
ous work (Dolan et al., 2004; Wubben et al., 2009;
Bejan & Harabagiu, 2010, inter alia), the Google
News service3 was used to identify news. From ev-
ery article, the headline and the first sentence, which
are known to be semantically similar (Dorr et al.,
2003), were extracted. Predictably, very few head-
lines are extractive compressions of the first sen-
tence, therefore simply looking for pairs where the
headline is a subsequence of the words from the first
sentence would not solve the problem of getting a
large amount of parallel data. Importantly, headlines
are syntactically quite different from “normal” sen-
tences. For example, they may have no main verb,
omit determiners and appear incomplete, making it
hard for a supervised deletion-based system to learn
useful rules. Moreover, we observed poor parsing
accuracy for headlines which would make syntactic
annotations for headlines hardly useful.

Thus, instead of taking the headline as it is, we use
it to find a proper extractive compression of the sen-

3http://news.google.com, Jan-Dec 2012.
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tence by matching lemmas of content words (nouns,
verbs, adjectives, adverbs) and coreference IDs of
entities from the headline with those of the sentence.
The exact procedure is as follows (H, S and T stand
for headline, sentence and transformed graph of the
sentence):

PREPROCESSING H and S are preprocessed in a
standard way: tokenized, lemmatized, PoS and NE
tagged. Additionally, S is parsed with a dependency
parser (Nivre, 2006) and transformed as described in
Section 2 to obtain T. Finally, pronominal anaphora
is resolved in S. Recall that S is the first sentence,
so the antecedent must be located in a preceding,
higher-level clause.

FILTERING To restrict the corpus to grammatical
and informative headlines, we implemented a cas-
cade of filters. Pair (H, S) is discarded if any of the
questions in Table 2 is answered positively.

Is H a question?
Is H or S too short? (less than four word tokens)
Is H about as long as S? (min ratio: 1.5)
Does H lack a verb?
Does H begin with a verb?
Is there a noun, verb, adj, adv lemma from H
not found in S?
Are the noun, verb, adj, adv lemmas from H
found in S in a different order?

Table 2: Filters applied to candidate pair (H, S)

MATCHING Given the content words of H, a sub-
set of nodes in T is selected based on lemma or
coreference identity of the main (head) word in the
nodes. For example, the main word of a collapsed
node in T, which covers two words was killed, is
killed; was is its child attached with label aux in the
untransformed parse tree. This node is marked if H
contains word killed or killing because of the lemma
identity. In some cases there are multiple possible
matches. For example, given S Barack Obama said
he will attend G20 and H mentioning Obama, both
Barack Obama and he nodes are marked in T. Once
all the nodes in T which match content words and
entities from H are identified, a minimum subtree
covering these nodes is found such that every word
or entity from H occurs as many times in T as in

H. So if H mentions Obama only once, then either
Barack Obama or he must be covered by the subtree
but not both. This minimum subtree corresponds to
an extractive headline, H*, which we generate by
ordering the surface forms of all the words in the
subtree nodes by their offsets in S. Finally, the char-
acter length of H* is compared with the length of
H. If H* is much longer than H, the pair (H, S) is
discarded (max ratio 1.5).

As an illustration to the procedure, consider the
example from Figure 1 with the extracted headline
and its tree presented in Figure 1(c). Given the
headline British soldier killed in Afghanistan, the
extracted headline would be A British soldier was
killed in a blast in Afghanistan. The lemmas british,
soldier, kill, afghanistan from the headline match the
nodes British, a soldier, was killed, in Afghanistan
in the transformed graph. The node in a blast is
added because it is on the path from was killed to in
Afghanistan. Of course, it is possible to determinis-
tically undo the transformations in order to obtain a
standard dependency tree. In this case the extracted
headline would still correspond to a subtree of the
input (compare Fig. 1(d) with Fig. 1(a)). Also note
that a similar procedure can be implemented for con-
stituency parses.

The resulting corpus consists of 250K tuples (S,
T, H, H*), Appendix provides more examples of
source sentences, original headlines and extracted
headlines. We did not attempt to tune the values for
minimum/maximum length and ratio – lower thresh-
olds may have produced comparable results.

Evaluating data quality. The described proce-
dure produces a comparatively large compression
corpus but how good are automatically constructed
compressions? To answer this question, we ran-
domly selected 50 tuples from the corpus and set up
an experiment with human raters to validate and as-
sess data quality in terms of readability4 and infor-
mativeness5 which are standard measures of com-
pression quality (Clarke & Lapata, 2006). Raters
were asked to read a sentence and a compression
(original H or extracted H* headline) and then rate
the compression on two five-point scales. Three rat-
ings were collected for every item. Table 3 gives

4Also called grammaticality and fluency.
5Also called importance and representativeness.
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average ratings with standard deviation.

AVG read AVG info
ORIG. HEADLINE 4.36 (0.75) 3.86 (0.79)
EXTR. HEADLINE 4.26 (1.01) 3.70 (1.04)

Table 3: Results for two kinds of headlines

In terms of readability and informativeness the
extracted headlines are comparable with human-
written ones: at 95% confidence there is no statis-
tically significant difference between the two.

Encouraged by the results of the validation exper-
iment we proceeded to our next question: Can a su-
pervised compression system be successfully trained
on this corpus?

5 System evaluation and discussion

From the corpus of 250K tuples we used 100K to
get pairs of extracted headlines and sentences for
training (on the development set we did not observe
much improvement from using more training data),
250 for development and the rest for testing. We
ran the learning algorithm for 20 iterations, checking
the performance on the development set. Features
which applied to less than 20 edges were pruned,
the size of the feature set is about 28K.

5.1 Evaluation with humans

50 pairs of original headlines and sentences (differ-
ent from the data validation set in Sec. 4) were ran-
domly selected for an evaluation with humans from
the test data. As in the data quality validation ex-
periment, we asked raters to assess the readability
and informativeness of proposed compressions for
the unsupervised system, our system and human-
written headlines. The latter provide us with upper
bounds on the evaluation criteria. Three ratings per
item per parameter were collected. To get compara-
ble results, the unsupervised and our systems used
the same compression rate: for both, the requested
maximum length was set to the length of the head-
line. Table 4 summarizes the results.

The results indicate that the trained model signifi-
cantly outperforms the unsupervised system, getting
particularly good marks for readability. The differ-
ence in readability between our system and original
headlines is not statistically significant. Note that

AVG read AVG info
ORIG. HEADLINE 4.66† 4.10†‡

OUR SYSTEM 4.30† 3.52†

UNSUP. SYSTEM 3.70 2.70

Table 4: Results for the systems and original headline: †

and ‡ stand for significantly better than Unsupervised and
Our system at 95% confidence, respectively

the unsupervised baseline is also capable of generat-
ing readable compressions but does a much poorer
job in selecting most important information. Our
trained model successfully learned to optimize both
scores. We refer the reader to Appendix for input
and compression examples. Note that the ratings for
the human-written headlines in this experiment are
slightly different from the ratings in the data valida-
tion experiment because a different data sample was
used.

5.2 Automatic evaluation

Our automatic evaluation had the goal of explic-
itly addressing two relevant questions related to our
claims about (1) the benefits of having a large paral-
lel corpus and (2) employing a supervised approach
with a rich feature representation.

1. Our primary motivation for collecting parallel
data has been that having access to sparse lex-
ical features, which considerably increase the
feature space, would benefit compression sys-
tems. But is it really the case for sentence com-
pression? Can a comparable performance be
achieved with a closed, moderately sized set of
dense, non-lexical features? If yes, then a large
compression corpus is probably not needed.
Furthermore, to demonstrate that a large corpus
is not only sufficient but also necessary to learn
weights for thousands of features, we need to
compare the performance of the system when
trained on the full data set and a small portion
of it.

2. The syntactic and informativeness scores in Eq.
(3) were calculated over millions of news arti-
cles and do provide us with meaninful statis-
tics (see Sec. 2). Is there any benefit in re-
placing those scores with weights learned for
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their feature counterparts? Recall that one of
our feature types in Table 1 is the concate-
nation of lemma(h) (parent lemma) and la-
bel(e) which relies on the same information
as wsynt = P (label(e)|lemma(h)). The fea-
ture counterpart of winfo defined in Eq. (5) is
lemma(n)–the lemma of the node to which edge
points. How would the supervised system per-
form against the unsupervised one, if it only ex-
tracted features of these two types?

To answer these questions, we sampled 1,000 tu-
ples from the unused test data and measured F1
score (Riezler et al., 2003) by comparing the trees
of the generated compression and the “correct”, ex-
tracted headline. The systems we compared are the
unsupervised baseline (UNSUP. SYSTEM) and the
supervised model trained on three kinds of feature
sets: (1) SYNT-INFO FEATURES, corresponding to
the supervised training of the unsupervised base-
line model (i.e., lemma(h)-label(e) and lemma(n));
(2) NON-LEX FEATURES, corresponding to a dense,
non-lexical feature representation (i.e., all the fea-
ture types from Table 1 excluding the three involv-
ing lemmas); (3) ALL FEATURES (same as OUR

SYSTEM). Additionally, we trained the system on
10% of the data–10K as opposed to 100K tuples,
ALL FEATURES (10K)–for 20 iterations ignoring
features which applied to less than three edges6. As
before, the same compression rate was used for all
the systems. The results are summarized in Table 5.

F1 score #features
UNSUP. SYSTEM 52.3 N.A.
SYNT-INFO FEATURES 75.0 12,490
NON-LEX FEATURES 79.6 330
ALL FEATURES 84.3 27,813
ALL FEATURES (10K) 81.4 22,529

Table 5: Results for the unsupervised baseline and the
supervised system trained on three kinds of feature sets

Clearly, having more features, lexicalized and un-
lexicalized, is important: there is a significant im-

6Recall from the beginning of the section that for the full
(100K) training set the threshold was set to 20 with no tuning.
For the 10K training set, we tried values of two, three, five and
varied the number of iterations. The result we report is the high-
est we could get for 10K.

provement in going beyond the closed set of 330
non-lexical features to all, from 79.6 to 84.3 points.
Moreover, successful training requires a large cor-
pus since the performance of the system degrades if
only 10K training instances are used. Note that this
number already exceeds all the existing compression
corpora taken together. Hence, sparse lexical fea-
tures are useful for compression and a large paral-
lel corpus is a requirement for successful supervised
training.

Concerning our second question, learning feature
weights from the data produces significantly better
results than the hand-crafted way of making use of
the same information, even if a much larger data
set is used to collect statistics. We observed a dra-
matic increase from 52.3 to 75.0 points. Thus, we
may conclude that training with dense and sparse
features directly from data definitely improves the
performance of the dependency pruning system.

5.3 Discussion
It is important to note that the data we used is chal-
lenging: first sentences in news articles tend to be
long, in fact longer than other news sentences, which
implies less reliable syntactic analysis and noisier
input to the syntax-based systems. In the test set
we used for the evaluation with humans, the mean
sentence length is 165 characters. The average com-
pression rate in characters is 0.46 ± 0.16 which is
quite aggressive7. Recall that we used the very same
framework for the unsupervised baseline and our
system as well as the same compression rate. All the
preprocessing errors affect both systems equally and
the comparison of the two is fair. Predictably, wrong
syntactic parses significantly increase chances of an
ungrammatical compression, and parser errors seem
to be a major source of readability deficiencies.

A property of the described compression frame-
work is that a desired compression length is ex-
pected to be provided by the user. This can be seen
both as a strength and as a weakness, depending on
the application. In a scenario where mobile devices
with a limited screen size are used, or in a summa-
rization scenario where a total summary length is
provided (see the DUC/TAC guidelines8), being able

7We follow the standard terminology where smaller values
imply shorter compressions.

8http://www.nist.gov/tac/
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to specify a length is definitely an advantage. How-
ever, one can also think of other applications where
the user does not have a strict length constraint but
wants the text to be somewhat shorter. In this case,
a reranker which compares compressions generated
for a range of possible lengths can be employed to
find a single compression (e.g., mean edge weight in
the solution or a language model-based score).

6 Conclusions

We have addressed a major problem for supervised
extractive compression models – the lack of a large
parallel corpus. To this end, we presented a method
to automatically build such a corpus from web doc-
uments available on the Internet. An evaluation
with humans demonstrates that the quality of the
corpus is high – the compressions are grammati-
cal and informative. We also significantly improved
a competitive unsupervised method achieving high
readability and informativeness scores by incorpo-
rating thousands of features and learning the feature
weights from our corpus. This result further con-
firms the practical utility of the automatically ob-
tained data. We have shown that employing lexi-
cal features is important for sentence compression,
and that our supervised module can successfully
learn their weights from the corpus. To our knowl-
edge, we are the first to empirically demonstrate that
sparse features are useful for compression and that a
large parallel corpus is a requirement for a success-
ful learning of their weights. We believe that other
supervised deletion-based systems can benefit from
our work.

Acknowledgements: The authors are thankful to
the EMNLP reviewers for their feedback and sug-
gestions.

Appendix

The appendix presents examples of source sentences
(S), original headlines (H), extracted headlines (H*),
unsupervised baseline (U) and our system (O) com-
pressions.
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H Country star Sara Evans marries
H* Country star Sara Evans has married
U Sara Evans has married Jay Barker
O Sara Evans has married Jay Barker
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H Intel to build car batteries
H* Intel would be building car batteries
U would be building the company said
O Intel would be building car batteries
S A New Orleans Saints team spokesman says tight end Jeremy Shockey was taken to a hospital but is doing fine.
H Spokesman: Shockey taken to hospital, doing fine
H* spokesman says Jeremy Shockey was taken to a hospital but is doing fine
U A New Orleans Saints team spokesman says Jeremy Shockey was taken
O tight end Jeremy Shockey was taken to a hospital but is doing fine
S President Obama declared a major disaster exists in the State of Florida and ordered Federal aid to supplement

State and local recovery efforts in the area struck by severe storms, flooding, tornadoes, and straight-line winds
beginning on May 17, 2009, and continuing.

H President Obama declares major disaster exists in the State of Florida
H* President Obama declared a major disaster exists in the State of Florida
U President Obama declared a major disaster exists and ordered Federal aid
O President Obama declared a major disaster exists in the State of Florida
S Regulators Friday shut down a small Florida bank, bringing to 119 the number of US bank failures this year amid

mounting loan defaults.
H Regulators shut down small Florida bank
H* Regulators shut down a small Florida bank
U shut down bringing the number of failures
O Regulators shut down a small Florida bank
S Three men were arrested Wednesday night and Dayton police said their arrests are in connection to a west Dayton

bank robbery.
H 3 men arrested in connection with Bank robbery
H* Three men were arrested are in connection to a bank robbery
U were arrested and Dayton police said their arrests are
O Three men were arrested and police said their arrests are
S The government and the social partners will resume the talks on the introduction of the so-called crisis tax,

which will be levied on all salaries, pensions and incomes over HRK 3,000.
H Government, social partners to resume talks on introduction of “crisis” tax.
H* The government and the social partners will resume the talks on the introduction of the crisis tax
U The government will resume the talks on the introduction of the crisis tax which will be levied
O The government and the social partners will resume the talks on the introduction of the crisis tax
S England star David Beckham may have the chance to return to AC Milan after the Italian club’s coach said

he was open to his move on Sunday.
H Beckham has chance of returning to Milan
H* David Beckham may have the chance to return to AC Milan
U David Beckham may have the chance to return said star was
O David Beckham may have the chance to return to AC Milan
S Eastern Health and its insurance company have accepted liability for some patients involved in the breast cancer

testing scandal, according to a statement released Friday afternoon.
H Eastern Health accepts liability for some patients
H* Eastern Health have accepted liability for some patients
U Health have accepted liability according to a statement
O Eastern Health have accepted liability for some patients
S Frontier Communications Corp., a provider of phone, TV and Internet services, said Thursday

it has started a cash tender offer to purchase up to $700 million of its notes.
H Frontier Communications starts tender offer for up to $700 million of notes
H* Frontier Communications has started a tender offer to purchase $700 million of its notes
U Frontier Communications said Thursday a provider has started a tender offer
O Frontier Communications has started a tender offer to purchase $700 million of its notes
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Abstract

Extractive summarization typically uses sen-
tences as summarization units. In contrast,
joint compression and summarization can use
smaller units such as words and phrases, re-
sulting in summaries containing more infor-
mation. The goal of compressive summariza-
tion is to find a subset of words that max-
imize the total score of concepts and cut-
ting dependency arcs under the grammar con-
straints and summary length constraint. We
propose an efficient decoding algorithm for
fast compressive summarization using graph
cuts. Our approach first relaxes the length con-
straint using Lagrangian relaxation. Then we
propose to bound the relaxed objective func-
tion by the supermodular binary quadratic pro-
gramming problem, which can be solved ef-
ficiently using graph max-flow/min-cut. S-
ince finding the tightest lower bound suffers
from local optimality, we use convex relax-
ation for initialization. Experimental results
on TAC2008 dataset demonstrate our method
achieves competitive ROUGE score and has
good readability, while is much faster than the
integer linear programming (ILP) method.

1 Introduction

Automatic multi-document summarization helps
readers get the most important information from
large amounts of texts. Summarization techniques
can be roughly divided into two categories: extrac-
tive and abstractive. Extractive summarization casts
the summarization task as a sentence selection prob-
lem: identifying important summary sentences from

one or multiple documents. Many methods have
been developed in the past decades, including super-
vised approaches that use classifiers to predict sum-
mary sentences, graph based approaches to rank the
sentences, and recent global optimization methods
such as integer linear programming (Gillick et al.,
2008) (ILP) and submodular maximization methods
(Lin and Bilmes, 2011). Though extractive summa-
rization is popular because of its simplicity and high
readability, it has limitations in that it selects each
sentence as a whole, and thus may miss informative
partial sentences.

To improve the informativeness, joint com-
pression and summarization was proposed (Berg-
Kirkpatrick et al., 2011), which uses words as sum-
marization units, unlike extractive summarization
where each sentence is a basic undecomposable u-
nit. To achieve better readability, manually defined
grammar constraints or automatically learned mod-
els based on syntax trees are added during the sum-
marization process. Up to now, the state of the art
compressive systems are based on integer linear pro-
gramming (ILP). Because ILP suffers from expo-
nential complexity, word-based compression sum-
marization is an order of magnitude slower than
sentence-based extraction.

One common way to solve an ILP problem is to
use its LP relaxation and round the results. How-
ever Berg-Kirkpatrick et al. (2011) found that LP
relaxation gave poor results, finding unacceptably
suboptimal solutions. For speedup, they proposed a
two stage method where they performed some sen-
tence selection in the first step to reduce the number
of candidates. Despite their empirical success, such
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a pruning approach has its inherent problem in that
it may eliminate correct sentences in the first step.
Recently, Almeida and Martins (2013) proposed a
fast joint decoding algorithm based on dual decom-
position. For fast convergence, they added quadratic
penalty terms to alleviate the learning rate problem.

In this paper, we propose an efficient decoding al-
gorithm for fast ILP based compressive summariza-
tion using graph cuts. Our assumption is that all con-
cepts are word n-grams and non-negatively scored.
The rationale for the non-negativity assumption is s-
traightforward: the score of a concept reflects its in-
formativeness, hence should be non-negative. Given
a set of documents, each word is associated with a
binary variable, indicating whether the word is se-
lected in the summary. Our idea is to approximate
the ILP as a binary quadratic programming problem
where coefficients of all quadratic terms are non-
negative. It is well known that such binary quadrat-
ic function is supermodular, and its maximum can
be solved efficiently using graph max-flow/min-cut.
Hence the key is to find the coefficients of the super-
modular binary quadratic function (SBQF) so that
its maximum is close to the optimal ILP objective
function. Our solution consists of 3 steps. First,
we show that the subtree deletion model and gram-
mar constraints can be eliminated by adding SBQF-
s to the objective function. Second, we relax the
summary length constraint using Lagrangian relax-
ation. Third, we propose a family of SBQFs that
are lower bounds of the ILP objective function. S-
ince finding the tightest lower bound suffers from
local optimality, we choose to use convex relaxation
for initialization. To demonstrate our technique, we
conduct experiments on Text Analysis Conference
(TAC) datasets using the same train/test splits as pre-
vious work (Berg-Kirkpatrick et al., 2011). We com-
pare our approach with the state-of-the-art ILP based
approach in terms of summary quality (ROUGE s-
cores and sentence quality) and speed. Experimen-
tal results show that our proposed method achieves
competitive performance with ILP, while about 100
times faster.

2 Compressive Summarization

2.1 Extractive Summarization
As our method is an approximation of ILP based
method, we first briefly review the ILP based extrac-
tive summarization and compressive summarization.
Gillick and Favre (2009) introduced the concept-
based ILP for summarization. A concept is a basic
semantic unit. They used word bigrams as such lan-
guage concepts. Their system achieved the highest
ROUGE score on the TAC 2009 evaluation. This
approach selects sentences so that the total score
of language concepts appearing in the summary is
maximized. The association between the language
concepts and sentences serves as the constraints, in
addition to the summary length constraint.

Formally, given a set of sentences S = {sn}N
n=1,

extractive summarization can be represented by a bi-
nary vector y, where yn indicates whether sentence
sn is selected. Let C = {c1, . . . cJ} denote the set
of concepts in S, e.g., word bigrams (Gillick and
Favre, 2009). Each concept cj is associated with a
given score wj and a binary variable vj indicating
if cj is selected in the summary. Let njk denote the
index of the sentence containing the kth occurrence
of concept cj , and ln denote the length of sentence
sn. The ILP based extractive summarization system
can be formulated as below:

max
y,v

J∑
j=1

wjvj

s.t. vj =
∪
k

ynjk
1 ≤ j ≤ J (1)

N∑
i=1

ynln ≤ L

v,y are binary

The first constraint is imposed by the relation be-
tween concept selection and sentence selection: s-
electing a sentence leads to the selection of all the
concepts it contains, and selecting a concept only
happens when it is present in at least one of the se-
lected sentences. The second constraint is the sum-
mary length constraint.

As solving an ILP problem is generally NP-hard,
pre-pruning of candidate concepts and sentences is
necessary for efficient summarization. For exam-
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ple, the ICSI system (Gillick et al., 2008) removed
the sentences that are too short or have non-overlap
with the queries, and concepts with document fre-
quency less than 3, resulting in 95.8 sentences and
about 80 concepts per topic on the TAC2009 dataset.
Therefore the actual scale of ILP is rather small after
pruning (e.g., 176 variables and 372 constraints per
topic). Empirical studies showed that such small s-
cale ILP can be solved within a few seconds (Gillick
and Favre, 2009).

2.2 Compressive Summarization

The quality of sentence-based extractive summariza-
tion is limited by the informativeness of the orig-
inal sentences and the summary length constraint.
To remove the unimportant part from a long sen-
tence, sentence compression is proposed to generate
more informative summaries (Liu and Liu, 2009; Li
et al., 2013a). Recent studies show that joint sen-
tence compression and extraction, namely compres-
sive summarization, outperforms pipeline systems
that run extractive summarization on the compressed
sentences or compress selected summary sentences
(Martins and Smith, 2009; Berg-Kirkpatrick et al.,
2011; Chali and Hasan, 2012). In Berg-Kirkpatrick
et al. (2011), compressive summarization inte-
grates the concept model for extractive summariza-
tion (Gillick and Favre, 2009) and subtree deletion
model for sentence compression. The score of a
compressive summary consists of two parts, scores
of selected concepts, and scores of the broken arcs
in the dependency parse trees. The selected word-
s must satisfy the length constraint and grammar
constraints that include subtree constraint and some
manually defined hard constraints.

Formally, let x = x1 . . . xI denote the word se-
quence of documents, where s1 = x1, . . . xl1 corre-
sponds to the first sentence, s2 = xl1+1, . . . , xl1+l2

corresponds to the second sentence, and so on. A
compressive summary can be represented by a bi-
nary vector z, where zi indicates whether word xi

is selected in the summary. Let ahm denote the arc
xh → xm in the dependency parse tree of the cor-
responding sentence containing words xh and xm,
and A = {ahm} denote the set of dependency arcs.
The subtree constraint ensures that word xm is se-
lected only if its head xh is selected. In order to
guarantee the readability, grammar constraints are

added to prohibit the breaks of some specific arc-
s. For example, Clarke and Lapata (2008) nev-
er deleted an arc whose dependency label is SUB,
OBJ, PMOD, SBAR or VC. In this paper, we use
B ⊆ A to denote the set of these arcs that must
not be broken in summarization. We use ojk to de-
note the indices of words corresponding to the kth

occurrence of cj . For example, suppose the jth

concept European Union appears twice in the doc-
ument: x22x23 = x50x51 =European Union, then
oj1 = {22, 23}, oj2 = {50, 51}.

The compressive summarization model can be
formulated as an integer programming problem

max
z,v

J∑
j=1

wj · vj +
∑

ahm∈A
wahm

zh(1− zm)

s.t. vj =
∪
k

∏
i∈ojk

zi ∀j

∑
i

zi ≤ L

zh ≥ zm ∀ahm ∈ A (2)

zh = zm ∀ahm ∈ B
z,v are binary

According to the subtree deletion model, the score
of arc ahm is included if zh = 1 and zm = 0, which
can be formulated as wahm

· zh(1 − zm). The first
constraint is similar to that in extractive summariza-
tion, that is, a concept is selected if and only if any
of its occurrence is selected. The third and fourth
constraints are the subtree constraints and manual-
ly defined grammar constraints respectively. In the
rest of the paper, without loss of generality, we re-
move the fourth constraint by directly substituting
one variable for the other.

Finding the optimal summary is generally NP-
hard. Unlike extractive summarization where the s-
cale of the problem (the number of sentences and
concepts) is small, the number of variables in com-
pressive summarization is linear in the number of
words, which is usually thousands on the TAC
datasets. Hence solving such a problem using ILP
based decoding algorithms is not efficient especially
when the document set is large.
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3 Fast Decoding via Graph Cuts

In this section, we introduce our fast decoding al-
gorithm. We assume that all the concepts are word
n-grams, and their scores are non-negative. The non-
negativity assumption can reduce the computational
complexity, but is also reasonable: the score of a
concept denotes its informativeness, hence should
be non-negative. For example, Li et al. (2013b)
proposed to use the estimated normalized frequen-
cies of concepts as scores, which are essentially non-
negative. The basic idea of our method is to approx-
imate the above optimization problem (2) by the su-
permodular binary quadratic programming (SBQP)
problem:

max
z

∑
i

βizi +
∑
ij

αijzizj

s.t. z is binary (3)

where αij ≥ 0. It is known that such a binary
quadratic function is supermodular, and its maxi-
mum can be solved efficiently using graph max-
flow/min-cut (Billionnet and Minoux, 1985; Kol-
mogorov and Zabih, 2004). Now the problem is to
find the optimal α, β for a good approximation.

3.1 Formulate Grammar Constraints and
Subtree Deletion Model by SBQF

We show that the subtree deletion model can be for-
mulated equivalently using SBQF. First, we can e-
liminate the constraint zh ≥ zm by adding a penalty
term to the objective function. That is,

max f(z)

s.t. zh ≥ zm

z is binary

is equivalent to

max f(z)−∞(1− zh)zm

s.t. z is binary

We can see that the penalty term −∞(1−zh)zm ex-
cludes zh = 0, zm = 1 from the feasible set, and
for zh ≥ zm, both problems have the same objective
function value. Hence the two problems are equiva-
lent. Notice that the coefficient of quadratic term in
−∞(1 − zh)zm is positive, hence the penalty term
is supermodular.

Now we eliminate the third constraint in problem
(2) using the penalized objective function described
above. Note that the fourth constraint has been elim-
inated by variable substitution, we have

max
z,v

J∑
j=1

wj · vj +
∑

ahm∈A
wahm

zh(1− zm)

−∞
∑

ahm∈A
(1− zh)zm

s.t. vj =
∪
k

∏
i∈ojk

zi ∀j (4)

∑
i

zi ≤ L

z,v are binary

We can see that for each arc ahm, there must be a
positive quadratic term +∞zhzm in the objective
function, which guarantees the supermodularity of
the objective function, no matter what wahm

is.

3.2 Eliminate Length Constraint Using
Lagrangian Relaxation

Problem (4) is NP-hard, because for any feasible v,
it is a SBQP with a length constraint. Since size con-
strained minimum cut problem is generally NP-hard
(Nagano et al., 2011), Problem (4) can not be cast
as a SBQP as long as P ̸= NP. One popular way to
deal with the size constrained optimization problem
is Lagrangian relaxation. We introduce Lagrangian
multiplier λ to the length constraint in Problem (4),
and get

min
λ

max
z,v

J∑
j=1

wj · vj +
∑

ahm∈A
wahm

zh(1− zm)

−∞
∑

ahm∈A
(1− zh)zm

+λ(L−
∑

i

zi)

s.t. vj =
∪
k

∏
i∈ojk

zi ∀j (5)

λ ≥ 0

z,v are binary

We solve the relaxed problem iteratively. In each
iteration, we fix λ and solve the inner maximiza-
tion problem (details described below). The score of
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each word is penalized by λ — with larger λ, few-
er words are selected. Hence the summary length
can be adjusted by λ. The optimal λ can be found
using binary search. We maintain an upper bound
λmax , and a lower bound λmin, which is initially 0.
In each iteration, we choose λ = 1

2(λmax + λmin)
and search the optimal z. If the duality gap vanish-
es, i.e., λ(L −

∑
i zi) = 0 and

∑
i zi ≤ L, then we

get the global solution of Problem (4). Otherwise,
if
∑

i zi > L, then the current λ is too small, so we
set λmin = λ; otherwise, λ > 0 and

∑
i zi < L,

we set λmax = λ. The search process terminates if
λmax − λmin is less than a predefined threshold.

3.3 Eliminate v Using Supermodular
Relaxation

Now we consider the inner maximization Problem
(5). It is still not a SBQP, since the objective func-
tion is not a linear function of zizj . We propose to
approximate the objective function using SBQP. Our
solution consists of two steps. First we relax the first
constraint of Problem (5) by bounding the objec-
tive function with a family of supermodular pseudo
boolean functions (Boros and Hammer, 2002). Sec-
ond we reformulate these pseudo boolean functions
equivalently as quadratic functions.

Similar to the bounding strategy in (Qian and Liu,
2013), we relax the logical disjunction by lineariza-
tion. Using the fact that for any binary vector a, we
have ∪

ai = max
p∈∆

∑
i

piai

where ∆ denotes the probability simplex

∆ = {p|
∑

k

pk = 1, pk ≥ 0}

We have

vj =
∪
k

∏
i∈ojk

zi

= max
pj∈∆

∑
k

pjk

∏
i∈ojk

zi

Plug the equation above into the objective function
of Problem (5), we get the following optimization

problem

max
z,p

J∑
j=1

∑
k

pjkwj

∏
i∈ojk

zi


+
∑

ahm∈A
wahm

zh(1− zm)

−∞
∑

ahm∈A
(1− zh)zm

+λ(L−
∑

i

zi)

s.t. z is binary (6)

pj ∈ ∆ ∀j

Let Q(p, z) denote the objective function of Prob-
lem (6). Given p, we can see that Q is a supermod-
ular pseudo boolean function because coefficients
of all non-linear terms are non-negative. Using the
fact that for any binary vector a = [a1, . . . ar]

T ,
ai ∈ {0, 1}, 1 ≤ i ≤ r,

r∏
i=1

ai = max
b∈{0,1}

(
r∑

i=1

ai − r + 1

)
b

(Freedman and Drineas, 2005), we get the following
equivalent optimization problem of Problem (6)

max
z,p,q

J∑
j=1

∑
k

pjkwjqjk

∑
i∈ojk

zi − |ojk|+ 1


+
∑

ahm∈A
wahm

zh(1− zm)

−∞
∑

ahm∈A
(1− zh)zm

+λ(L−
∑

i

zi)

s.t. z,q are binary (7)

pj ∈ ∆ ∀j

where |ojk| is the size of ojk.
Let R(z,p,q) denote the objective function of

Problem (7), to search the optimal point, we al-
ternatively update p and z,q. First we initialize
p = p(0). In each iteration, we first fix p. It is ob-
vious that Problem (7) is a SBQP, hence the optimal
z,q can be solved efficiently using max-flow/min-
cut. Then we fix z,q, and update p using projected
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subgradient. That is

pnew
j = P∆

(
pj +

∂R

∂pj
α

)
(8)

where α > 0 is the step size in line search, and func-
tion P∆(q) denotes the projection of q onto the fea-
sible set ∆

P∆(q) = min
p∈∆

∥p− q∥2

which can be solved efficiently by sorting (Duchi et
al., 2008).

3.4 Initialize p Using Convex Relaxation

Since R is non-concave, searching its maximum us-
ing subgradient method suffers from local optimali-
ty. Though one can use techniques such as branch-
and-bound for exact inference (Qian and Liu, 2013;
Gormley and Eisner, 2013), here for fast decoding,
we use convex relaxation to choose a good seed
p(0). Recall that pjk denotes the percentage of the
kth occurrence contributing to cj . The larger pjk is,
the more likely the kth occurrence is selected. To
estimate such likelihood, we replace the binary con-
straint in extractive summarization (Problem (1)) by
0 ≤ y,v ≤ 1, since solving a relaxed LP is much
faster than ILP. Suppose y∗ is the optimal solution
for such a relaxed LP problem, we initialize p by

pjk =
y∗njk∑
k y∗njk

(9)

If for all k, y∗njk
= 0, then we initialize pjk using

uniform distribution

pjk =
1

|oj |

where |oj | is the frequency of cj .

3.5 Summary

For clarity, we summarize our decoding algorithm in
Algorithm 1. Initial λmax can be arbitrarily large. In
our experiments, we set λmax =

∑
j wj , which em-

pirically guarantees the summary length
∑

i zi ≤ L
when λ = λmax. The choice of the step size for
updating p is similar to the projected subgradien-
t method in dual decomposition (Koo et al., 2010).

Algorithm 1 Compressive Summarization via
Graph Cuts
Require: Scores of concepts {wj} and arcs {wahm

},
max summary length L.

Ensure: Compressive summarization z∗, where zi indi-
cates whether the ith word is selected.
Solve the relaxed LP of Problem (1) (replace the binary
constraint by 0 ≤ y,v ≤ 1) to get y.
Initialize p(0) using Eq (9).
Initialize sufficient large λmax, and λmin = 0
while λmax − λmin > ϵ do

Set λ = 1
2 (λmin + λmax)

Set p = p(0).
repeat

Fix p, solve Problem (7) to get z using max-
flow/min-cut.
Update p using Eq (8).

until convergence
if
∑

i zi > L then
λmin = λ

else if
∑

i zi < L then
λmax = λ

else
break

end if
end while

4 Features and Hard Constraints

We choose discriminative models to learn the scores
of concepts and arcs. For concept cj , its score is

wj = θT
conceptfconcept(cj)

where fconcept(cj) is the feature vector of cj , and
θconcept is the corresponding weight vector of fea-
ture fconcept(cj). Similarly, score wahm

is defined
as

wahm
= θT

arcfarc(ahm)

Though our algorithm can handle general word n-
gram concepts, we restrict the concepts to word bi-
grams, which have been widely used recently in the
sentence-based ILP extractive summarization sys-
tems. For a concept cj , we define the following
features, some of which have been used in previous
work (Brandow et al., 1995; Aker and Gaizauskas,
2009; Edmundson, 1969; Radev, 2001; Li et al.,
2013b). All of these features are non-negative.

• Term frequency: the frequency of cj in the giv-
en topic.
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• Stop word ratio: ratio of stop words in cj . The
value can be {0, 0.5, 1}.

• Similarity with topic title: the number of com-
mon words in these two strings, divided by the
length of the longer string.

• Document ratio: percentage of documents con-
taining cj .

• Sentence ratio: percentage of sentences con-
taining cj .

• Sentence-title similarity: word uni-
gram/bigrams cosine similarity between
the sentence containing cj and the topic title.
For concepts appearing in multiple sentences,
we choose the maximal similarity.

• Sentence-query similarity: word uni-
gram/bigram cosine similarity between
the sentence containing cj and the topic query
(concatenation of topic title and description).
For concepts appearing in multiple sentences,
we choose the maximal similarity.

• Sentence position: position of the sentence
containing cj in the document. For concepts
appearing in multiple sentences, we choose the
minimum.

• Sentence length: length of the sentence con-
taining cj . For concepts appearing in multiple
sentences, we choose the maximum.

• Paragraph starter: binary feature indicating
whether cj appears in the first sentence of a
paragraph.

For subtree deletion model, we define the follow-
ing features for arc ahm.

• POS tags of head word xh and child word xm

and their concatenations.

• Dependency label of arc ahm and its parent arc.

• Word xm if xm is a conjunction word or prepo-
sition word. Word xh if xm is a conjunction
word or preposition word.

• Binary feature indicating whether the modifier
xm is a temporal word such as Friday.

We also define some hard constraints for subtree
deletion to improve the readability of the generated
compressed sentences.

• C0 Arc ahm can be cut only if one of the two
conditions holds: (1) there is a comma, colon,
or semicolon between the head and the modifi-
er; (2) the modifier word is a preposition (POS
tag is IN) or a wh-word, such as what, who,
whose (corresponds to POS tag IN, WDT, WP,
WP$, WRB).

• C1 Arcs with dependency labels SUB, OBJ,
PRD, SBAR or VC can not be cut.

• C2 Arcs in set phrases like so far, more than,
according to can not be cut.

• C3 All arcs in coordinate structures can not be
cut, such as cats and dogs.

Note that compared with previous work, our com-
pression is more conservative. Constraint C0 al-
lows only a small portion of arcs to be cut. This
is based on our observation of the sentence com-
pression corpus: removing preposition phrases (PP)
or sub-clauses can greatly reduce the length of sen-
tence, while hurting the readability little. Cutting
other arcs like NMOD usually removes only one or
two words, and possibly affects the sentence’s read-
ability.

5 Experimental Results

5.1 Experimental Setup

Due to the lack of training data for compressive
summarization, we learn the subtree deletion mod-
el and the concept model separately. Specifically,
the sentence compression dataset (Clarke and La-
pata, 2008) (referred as CL08) is used for subtree
deletion model training (θarc). A sentence pair in
the corpus is kept for training the subtree deletion
model if the compressed sentence can be derived by
deleting subtrees from the parse tree of the origi-
nal sentence. There are 3, 178 out of 5, 739 such
pairs. The concept model (θconcept) is learned from
the TAC2009 dataset. We create the oracle extrac-
tive summaries with the maximal bigram recall as
the reference summary. TAC2010 data is used as
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Corpus Sent. Words Topics
Train TAC2009 4, 216 117, 304 44

CL08 3, 178 52, 624 N/A
Develop TAC2010 2, 688 72, 609 46

Test TAC2008 4, 518 123, 946 48

Table 1: Corpus statistics. Training data consist of
two parts, TAC2009 for learning the concept mod-
el, CL08 (Clarke and Lapata, 2008) for learning the
subtree deletion model.

development set for various parameter tuning. Table
1 has the descriptions of all the data used.

We choose averaged perceptron for fast training.
The number of iterations is tuned on the develop-
ment data. Remind that our algorithm is based on the
assumption that scores of concepts are non-negative,
∀j, wj ≥ 0. We assume that feature vector fconcept

is non-negative (e.g., term frequency, n-gram fea-
tures), then θconcept ≥ 0 is required to guarantee the
non-negativity of wj . Therefore, we project θconcept

onto the non-negative space after each iteration. S-
ince training is offline, we use ILP based exact in-
ference for accurate learning. 1

To control the contributions of the concept mod-
el and the subtree deletion model, we introduce a
parameter µ, and modify the original maximization
problem (Problem 2) to:

max
z,v

J∑
j=1

wj · vj + µ×
∑

ahm∈A
wahm

zh(1− zm)

We tune µ on TAC2010 dataset. For max-flow/min-
cut, in our experiments, we implemented the im-
proved shortest augmented path (SAP) method (Ed-
monds and Karp, 1972).

For performance measure of the summaries, we
use both ROUGE and linguistic quality. ROUGE
has been widely used for summarization perfor-
mance and can measure the informativeness of the
summaries (content match between system and ref-
erence summaries). Since joint compression and
summarization tends to pick isolated words to max-
imize the information coverage in the system gener-
ated summaries, it may have poor readability. There-
fore we conduct human evaluation for the linguis-

1we choose the GLPK as our ILP solver, which is used in
(Berg-Kirkpatrick et al., 2011)

tic quality for various systems. The linguistic qual-
ity consists of two parts. One evaluates the gram-
mar quality within a sentence. Annotators marked
if a compressed sentence is grammatically correc-
t. Typical grammar errors include lack of verb or
subordinate clause. The other evaluates the coher-
ence between sentences, including the order of sen-
tences and irrelevant sentences. For compressive
summaries, we removed the sentences with gram-
mar errors when evaluating coherence. The overall
linguistic quality score is the combined score of the
percentage of grammatically correct sentences and
the correct ordering of the summary sentences. The
score is scaled and ranges from 1 (bad) to 10 (good).

5.2 Results on the Development Set
We conducted a series of experiments on the de-
velopment dataset to investigate the effect of the
non-negative score assumption, SBQP approxima-
tion, and initialization. First, we build a stan-
dard ILP based compressive summarizer without the
non-negative score assumption. We varied µ over
{2−4, 2−3, . . . 24} and selected the optimal µ = 2−2

according to both ROUGE-2 score and linguistic
quality. This interpolation weight is used in all the
other experiments.

To study the impact of the non-negative score as-
sumption, we build another summarizer by replac-
ing the concept model with the one trained under the
non-negative constraint. We also compared three d-
ifferent initialization strategies for p. The first one
is uniform initialization, i.e., pjk = 1

|oj | . The second
one is a greedy approach, where extractive summa-
rization is obtained by greedy search (i.e., add the
top ranked sentence iteratively), then we use the cor-
responding y and Eq (9) to initialize p. The last one
is our convex relaxation method described in Sec-
tion 3.4.

Table 2 shows the comparison results. For com-
parison, we also include the sentence-based ILP ex-
tractive summarization results. We can see that the
impact of initial p is substantial. Using convex re-
laxation helps our method to survive from local opti-
mality. The non-negativity assumption has very lit-
tle effect on the standard compressive summariza-
tion (comparing the first two rows). This empir-
ical result demonstrates the appropriateness of the
assumption we use in our proposed method.
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System R-2 LQ
ILP (µ = 2−2) 11.22 6.3

ILP (Non Neg.) 11.18 6.4
Graph Cut (uniform) 9.54 5.9

Graph Cut (greedy) 10.13 6.2
Graph Cut (LP) 11.06 6.1
Sent Extractive 10.11 7.3

Table 2: Experimental results on developmen-
t dataset. R-2 and LQ are short for ROUGE-2 score
multiplied by 100, and linguistic quality respective-
ly.

5.3 Results on Test Dataset
Table 3 shows the summarization results for various
systems on the TAC2008 data set. We show both the
summarization performance and the speed2 of the
system. The presented systems include our graph-
cut based method, the ILP based compression and
summarization, and the sentence-based extractive
summarization. ILP 2-step refers to the 2-step fast
decoding strategy proposed by (Berg-Kirkpatrick et
al., 2011).

We also list the performance of some state-of-the-
art systems, including the two ICSI systems (Gillick
et al., 2008), the compressive summarization sys-
tem of Berg-Kirkpatrick et al. (2011) (GBK’11),
the multi-aspect ILP system of Woodsend and Lapa-
ta (2012)(WL’12) and the dual decomposition based
system (Almeida and Martins, 2013) (AM’13). Note
that for these referred systems since the linguistic
quality results are not comparable due to different
judgment methods. For our graph-cut based method,
to study the tradeoff between the readability of the
summary and the ROUGE scores, we present two
versions for this method: one uses all the constraints
(C0-C3), the other does not use C0.

We can see that our proposed method balanced
speed and quality. Compared with ILP, we achieved
competitive ROUGE scores, but with about 100x
speedup. Our method is also faster than the 2-step
ILP system. We also tried another state-of-the-art
LP solver, Gurobi version 5.53, it achieves 0.17 sec-
onds per topic, much faster than GLPK, but stil-

2For fair comparison, we only recode the running time for
decoding. Other time costs like feature extraction, IO opera-
tions are excluded.

3www.gurobi.com

System R-2 R-SU4 LQ sec.
Graph Cut 11.74 14.54 6.5 0.056
Graph Cut w/o C0 12.05 14.71 5.4 0.053
ILP 11.86 14.62 6.6 5.5
ILP (Non Neg.) 11.82 14.60 6.6 5.2
ILP (2-step) 11.72 14.49 6.5 1.1
Sent Extractive 11.06 13.93 7.1 0.13
ICSI-1 11.0 13.4 - 0.38†

ICSI-2 11.1 14.3 - -
BGK’11 11.70 14.38 6.5† -
WL’12 11.37 14.47 - -
AM’13 12.30+ 15.18+ 4.2† 0.41†

Table 3: Experimental results on TAC2008 dataset.
Columns 2-5 are scores of ROUGE-2, ROUGE-
SU4, linguistic quality, and speed (seconds per top-
ic). ROUGE-2 and ROUGE-SU4 scores are multi-
plied by 100. All the experiments are conducted on
the platform Intel Core i5-2500 CPU 3.30GHz. †

numbers are not directly comparable due to differ-
ent annotations or platforms. + extra resources are
used.

l slower than ours. Regarding the grammar con-
straints used in our system, from the two result-
s for our graph-cut based method, we can see that
adding constraint C0 significantly decreases the R-2
score but improves the language quality. This shows
that word-based joint compression and summariza-
tion can improve ROUGE score; however, we need
to keep in mind about linguistic quality and find a
tradeoff between the ROUGE score and the linguis-
tic quality. Almeida and Martins (2013) trained their
model on extra corpora using multi-task learning,
and achieved better results than ours. The results
of our system and theirs showed that Lagrangian re-
laxation based method combined with combinatorial
optimization algorithms such as dynamic program-
ming or minimum cut can exploit the inner structure
of problems and achieve significant speedup over
ILP.

Four example summaries produced by our system
are shown below. Words in gray are not selected in
the summary.
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India’s space agency is ready to send a man to space within sev-
en years if the government gives the nod, while preparations have
lready begun for the launch of an unmanned lunar mission, a top
official said. India will launch more missions to the moon if its
maiden unmanned spacecraft Chandrayaan-1, slated to be launched
by 2008, is successful a top space fficial said Tuesday. The Unit-
ed States, the European Space Agency, China, Japan and India are
all planning lunar missions during the ext decade.India is “a step
ahead” of China in satellite technology and can surpass Beijing
in space research by tapping the talent of its huge pool of young
scientists, India’s space research chief said Monday. The space
agencies of India and France signed an agreement on Friday to co-
operate in launching a satellite in four years that will help make
climate predictions more accurate. The Indian Space Research Or-
ganization (ISRO) has short-listed experiments from five nation-
s including the United States, Britain and Germany, for a slot on
India’s unmanned moon mission Chandrayaan-1 to be undertaken
by 2006-2007, the Press Trust of India (PTI) reported Monday. A
three-member Afghan delegation is in Bangalore seeking help to
set up a high-tech telemedicine facility in 10 Afghan cities linked
via Indian satellites, Indo-Asian News Service reported Saturday.

A woman was killed in Mississippi when a tree crashed on her car,
becoming the 11th fatality blamed on the powerful Hurricane Kat-
rina that slammed the US Gulf coast after pounding Florida, local
TV reported Monday. The bill for the Hurricane Katrina disaster ef-
fort has so far reached 2.87 billion dollars, federal officials said on
Tuesday. The official death toll from Hurricane Katrina has risen
to 118 people in and around the swamped city of New Orleans,
officials said Thursday. The Foreign Ministry on Friday reported
the first confirmed death of a Guatemalan due to Hurricane Kat-
rina in the United States. The Ugandan government has pledged
200,000 US dollars toward relief and rebuilding efforts in the after-
math of Hurricane Katrina, local press reported on Friday. Swiss
Reinsurance Co., the world’s second largest reinsurance company
on Monday doubled to 40 billion US dollars its initial estimate of
the global insured losses caused by Hurricane Katrina in the United
States.

The A380 ’superjumbo’, which will be presented to the world in
a lavish ceremony in southern France on Tuesday, will be prof-
itable from 2008, its maker Airbus told the French financial news-
paper La Tribune. The A380 will take over from the Boeing 747
as the biggest jet in the skies. An association of residents living n-
ear Paris’s Charles-de-Gaulle airport on Wednesday denounced the
noise pollution generated by the giant Airbus A380, after the new
airliner’s maiden flight. One problem that Airbus is encountering
with its new A380 is that the craft pushes the envelope on the max-
imum size of a commercial airplane. With a whisper more than a
roar, the largest passenger airliner ever built, the Airbus 380, took
off on its maiden flight Wednesday.

“When she came in, she was in good spirits,” a prison staffer told
the New York Daily News. Martha Stewart, the American celebrity
homemaker who had her own cooking and home improvement TV
show, reported to a federal prison in Alderson, West Virginia, on
Friday to serve a five-month sentence for lying about a stock sale.
Home fashion guru Martha Stewart said on Friday that she has ad-
justed to prison life and is keeping busy behind bars since reporting
a week ago to a federal penal camp in West Virginia, where she
is serving a five-month sentence for lying about a stock sale. The
lawyer said he did not know what she is writing, but Stewart has
suggested since her conviction that she might write a book about
her recent experience with the legal system. Walter Dellinger, the
lawyer leading the appeal, said on NBC’s “Today” that Stewart is
exploring “innovative ways to do microwave cooking” The lawyer
said he did not know with her fellow inmates. As Martha Stewart
arrives at the red-brick federal prison in Alderson, W. Va., on Fri-
day to begin a five-month sentence, the company she founded is
focused both on life without her and on life once she returns.

In most cases, the removed phrases do not hurt the
readability of the summaries. The errors are mainly
caused by the break of sub-clauses or main claus-
es that are separated by commas, for example, the
fourth sentence in the last summary, The lawyer said
he did not know what she is writing. The compressed
sentence is grammatically correct, but semantically
incomplete. Other errors are due to the lack of verb,
subject, or object, or incorrect removal of PP, such
as the last sentence of the last summary.

6 Conclusion

In this paper, we propose a fast decoding algorith-
m for compressive summarization using graph cuts.
Our idea is to approximate the original ILP prob-
lem using supermodular binary quadratic program-
ming (SBQP) problem. Under the assumption that
scores of concepts are non-negative, we eliminate
subtree constraints and grammar constraints, and
relax the length constraint and non-supermodular
part of the problem step by step. Our experimen-
tal results showed that the graph cut based method
achieved competitive performance compared to ILP,
while about 100 times faster.

There are several possibilities for further research
involving our graph cut algorithms. One idea is to
apply it to the language model based compression
method (Clarke and Lapata, 2008). The other is
to adapt it to social media text summarization task,
where text is much more noisy. As graph cut is a
general method, applying it to other binary struc-
tured learning tasks is also an interesting direction.

Acknowledgments

We’d like to thank three anonymous reviewers for
their valuable comments. This work is partly sup-
ported by NSF award IIS-0845484 and DARPA un-
der Contract No. FA8750-13-2-0041. Any opinions
expressed in this material are those of the authors
and do not necessarily reflect the views of the fund-
ing agencies.

References

A. Aker and R. Gaizauskas. 2009. Summary generation
for toponym-referenced images using object type lan-
guage models. In Proceedings of RANLP.

1501



Miguel Almeida and Andre Martins. 2013. Fast and ro-
bust compressive summarization with dual decompo-
sition and multi-task learning. In Proceedings of ACL,
pages 196–206, August.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of ACL-HLT, pages 481–490, June.

A. Billionnet and M. Minoux. 1985. Maximizing a su-
permodular pseudoboolean function: A polynomial al-
gorithm for supermodular cubic functions. Discrete
Applied Mathematics, 12(1):1 – 11.

Endre Boros and Peter L. Hammer. 2002. Pseudo-
boolean optimization. Discrete Applied Mathematics,
123(1C3):155 – 225.

Ronald Brandow, Karl Mitze, and Lisa F. Rau. 1995.
Automatic condensation of electronic publications by
sentence selection. Information Processing & Man-
agement, 31(5):675 – 685.

Yllias Chali and Sadid A. Hasan. 2012. On the effective-
ness of using sentence compression models for query-
focused multi-document summarization. In COLING,
pages 457–474.

James Clarke and Mirella Lapata. 2008. Global in-
ference for sentence compression: An integer linear
programming approach. J. Artif. Intell. Res. (JAIR),
31:399–429.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and
Tushar Chandra. 2008. Efficient projections onto the
L1-ball for learning in high dimensions. In Proceed-
ings of ICML, pages 272–279.

Jack Edmonds and Richard M. Karp. 1972. Theoret-
ical improvements in algorithmic efficiency for net-
work flow problems. J. ACM, 19(2):248–264, April.

H. P. Edmundson. 1969. New methods in automatic ex-
tracting. J. ACM, 16(2):264–285, April.

Daniel Freedman and Petros Drineas. 2005. Energy min-
imization via graph cuts: Settling what is possible. In
CVPR (2), pages 939–946.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the Work-
shop on Integer Linear Programming for Natural Lan-
guage Processing, pages 10–18, June.

Dan Gillick, Benoit Favre, and Dilek Hakkani-Tur. 2008.
The ICSI summarization system at tac 2008. In Pro-
ceedings of the Text Understanding Conference.

Matthew R. Gormley and Jason Eisner. 2013. Noncon-
vex global optimization for latent-variable models. In
Proceedings of ACL, pages 444–454, August.

Vladimir Kolmogorov and Ramin Zabih. 2004. What en-
ergy functions can be minimized via graph cuts. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 26:65–81.

Terry Koo, Alexander M. Rush, Michael Collins, Tommi
Jaakkola, and David Sontag. 2010. Dual decomposi-
tion for parsing with non-projective head automata. In
Proceedings of EMNLP 2010, pages 1288–1298, Oc-
tober.

Chen Li, Fei Liu, Fuliang Weng, and Yang Liu. 2013a.
Document summarization via guided sentence com-
pression. In Proceedings of EMNLP (to appear), Oc-
tober.

Chen Li, Xian Qian, and Yang Liu. 2013b. Using super-
vised bigram-based ILP for extractive summarization.
In Proceedings of ACL, pages 1004–1013, August.

Hui Lin and Jeff Bilmes. 2011. A class of submodular
functions for document summarization. In Proceed-
ings of ACL, pages 510–520, June.

Fei Liu and Yang Liu. 2009. From extractive to abstrac-
tive meeting summaries: Can it be done by sentence
compression? In Proceedings of ACL-IJCNLP 2009,
pages 261–264, August.
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Abstract

In a language generation system, a content
planner selects which elements must be in-
cluded in the output text and the ordering be-
tween them. Recent empirical approaches per-
form content selection without any ordering
and have thus no means to ensure that the out-
put is coherent. In this paper we focus on
the problem of generating text from a database
and present a trainable end-to-end generation
system that includes both content selection
and ordering. Content plans are represented
intuitively by a set of grammar rules that op-
erate on the document level and are acquired
automatically from training data. We de-
velop two approaches: the first one is inspired
from Rhetorical Structure Theory and repre-
sents the document as a tree of discourse re-
lations between database records; the second
one requires little linguistic sophistication and
uses tree structures to represent global patterns
of database record sequences within a doc-
ument. Experimental evaluation on two do-
mains yields considerable improvements over
the state of the art for both approaches.

1 Introduction

Concept-to-text generation broadly refers to the task
of automatically producing textual output from non-
linguistic input (Reiter and Dale, 2000). Depend-
ing on the application and the domain at hand, the
input may assume various representations including
databases, expert system knowledge bases, simula-
tions of physical systems, or formal meaning rep-
resentations. Generation systems typically follow
a pipeline architecture consisting of three compo-
nents: content planning (selecting and ordering the

parts of the input to be mentioned in the output text),
sentence planning (determining the structure and
lexical content of individual sentences), and surface
realization (verbalizing the chosen content in natu-
ral language). Traditionally, these components are
hand-engineered in order to ensure output of high
quality.

More recently there has been growing interest
in the application of learning methods because of
their promise to make generation more robust and
adaptable. Examples include learning which con-
tent should be present in a document (Duboue and
McKeown, 2002; Barzilay and Lapata, 2005), how it
should be aligned to utterances (Liang et al., 2009),
and how to select a sentence plan among many al-
ternatives (Stent et al., 2004). Beyond isolated com-
ponents, a few approaches have emerged that tackle
concept-to-text generation end-to-end. Due to the
complexity of the task, most models simplify the
generation process, e.g., by treating sentence plan-
ning and surface realization as one component (An-
geli et al., 2010), by implementing content selection
without any document planning (Konstas and Lap-
ata, 2012; Angeli et al., 2010; Kim and Mooney,
2010), or by eliminating content planning entirely
(Belz, 2008; Wong and Mooney, 2007).

In this paper we present a trainable end-to-end
generation system that captures all components of
the traditional pipeline, including document plan-
ning. Rather than breaking up the generation pro-
cess into a sequence of local decisions, each learned
separately (Reiter et al., 2005; Belz, 2008; Chen and
Mooney, 2008; Kim and Mooney, 2010), our model
performs content planning (i.e., document planning
and content selection), sentence planning (i.e., lex-
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Database Records

temp(time:6-21, min:9, mean:15, max:21)
wind-spd(time:6-21, min:15, mean:20, max:30)
sky-cover(time:6-9, percent:25-50)
sky-cover(time:9-12, percent:50-75)
wind-dir(time:6-21, mode:SSE)
gust(time:6-21, min:20, mean:30, max:40)

Output Text
Cloudy, with a high around 20. South southeast wind
between 15 and 30 mph. Gusts as high as 40 mph.

(a) WEATHERGOV

Database Records

desktop(cmd:lclick, name:start, type:button)
start(cmd:lclick, name:settings, type:button)
start-target(cmd:lclick, name:control panel, type:button)
win-target(cmd:dblclick, name:users and passwords, type:item)
contMenu(cmd:lclick, name:advanced, type:tab)
action-contMenu(cmd:lclick, name:advanced, type:button)

Output Text
Click start, point to settings, and then click control panel. Double-
click users and passwords. On the advanced tab, click advanced.

(b) WINHELP

Figure 1: Database records and corresponding text for (a) weather forecasting and (b) Windows trou-
bleshooting. Each record has a type (e.g., win-target), and a set of fields. Each field has a value, which
can be categorical (in typewriter), an integer (in bold), or a literal string (in italics).

icalization of input entries), and surface realization
jointly. We focus on the problem of generating text
from a database. The input to our model is a set of
database records and collocated descriptions, exam-
ples of which are shown in Figure 1.

Given this input, we define a probabilistic
context-free grammar (PCFG) that captures the
structure of the database and how it can be verbal-
ized. Specifically, we extend the model of Kon-
stas and Lapata (2012) which also uses a PCFG to
perform content selection and surface realization,
but does not capture any aspect of document plan-
ning. We represent content plans with grammar
rules which operate on the document level and are
embedded on top of the original PCFG. We essen-
tially learn a discourse grammar following two ap-
proaches. The first one is linguistically naive but
applicable to multiple languages and domains; it ex-
tracts rules representing global patterns of record
sequences within a sentence and among sentences
from a training corpus. The second approach learns
document plans based on Rhetorical Structure The-
ory (RST; Mann and Thomson, 1988); it therefore
has a solid linguistic foundation, but is resource in-
tensive as it assumes access to a text-level discourse
parser.

We learn document plans automatically using
both representations and develop a tractable decod-
ing algorithm for finding the best output, i.e., deriva-
tion in our grammar. To the best of our knowledge,
this is the first data-driven model to incorporate doc-
ument planning in a joint end-to-end system. Exper-
imental evaluation on the WEATHERGOV (Liang et
al., 2009) and WINHELP (Branavan et al., 2009) do-

mains shows that our approach improves over Kon-
stas and Lapata (2012) by a wide margin.

2 Related Work

Content planning is a fundamental component in a
natural generation system. Not only does it deter-
mine which information-bearing units to talk about,
but also arranges them into a structure that cre-
ates coherent output. It is therefore not surpris-
ing that many content planners have been based
on theories of discourse coherence (Hovy, 1993;
Scott and de Souza, 1990). Other work has re-
lied on generic planners (Dale, 1988) or schemas
(Duboue and McKeown, 2002). In all cases, con-
tent plans are created manually, sometimes through
corpus analysis. A few researchers recognize that
this top-down approach to planning is too inflexible
and adopt a generate-and-rank architecture instead
(Mellish et al., 1998; Karamanis, 2003; Kibble and
Power, 2004). The idea is to produce a large set
of candidate plans and select the best one according
to a ranking function. The latter is typically devel-
oped manually taking into account constraints relat-
ing to discourse coherence and the semantics of the
domain.

Duboue and McKeown (2001) present perhaps
the first empirical approach to content planning.
They use techniques from computational biology
to learn the basic patterns contained within a plan
and the ordering among them. Duboue and McK-
eown (2002) learn a tree-like planner from an
aligned corpus of semantic inputs and correspond-
ing human-authored outputs using evolutionary al-
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gorithms. More recent data-driven work focuses on
end-to-end systems rather than individual compo-
nents, however without taking document planning
into account. For example, Kim and Mooney (2010)
first define a generative model similar to Liang et
al. (2009) that selects which database records to
talk about and then use an existing surface real-
izer (Wong and Mooney, 2007) to render the cho-
sen records in natural language. Their content plan-
ner has no notion of coherence. Angeli et al. (2010)
adopt a more unified approach that builds on top of
the alignment model of Liang et al. (2009). They
break record selection into a series of locally coher-
ent decisions, by first deciding on what records to
talk about. Each choice is based on a history of
previous decisions, which is encoded in the form
of discriminative features in a log-linear model.
Analogously, they choose fields for each record,
and finally verbalize the input using automatically
extracted domain-specific templates from training
data.

Konstas and Lapata (2012) propose a joint model,
which recasts content selection and surface realiza-
tion into a parsing problem. Their model optimizes
the choice of records, fields and words simultane-
ously, however they still select and order records lo-
cally. We replace their content selection mechanism
(which is based on a simple markovized chaining of
records) with global document representations. A
plan in our model is identified either as a sequence
of sentences, each containing a sequence of records,
or as a tree where the internal nodes denote dis-
course information and the leaf nodes correspond to
records.

3 Problem Formulation

The generator takes as input a set of database
records d and outputs a text g that verbalizes some
of these records. Each record token ri ∈ d, with
1 ≤ i ≤ |d|, has a type ri.t and a set of fields f as-
sociated with it. Fields have different values f .v and
types f .t (i.e., integer, categorical, or literal strings).
For example, in Figure 1b, win-target is a record
type with three fields: cmd (denotes the action the
user must perform on an object on their screen,
e.g., left-click), name (denotes the name of the ob-
ject), and type (denotes the type of the object). The
values of these fields are dblclick, users and pass-
words, and item; name is a literal string, the rest are

Grammar Rules
1. S→ R(start)

2. R(ri.t)→ FS(r j,start) R(r j.t) | FS(r j,start)

3. FS(r,r. fi)→ F(r,r. f j) FS(r,r. f j) | F(r,r. f j)

4. F(r,r. f )→W(r,r. f ) F(r,r. f ) |W(r,r. f )

5. W(r,r. f )→ α | g( f .v)

Figure 2: Grammar G of the original model. Paren-
theses denote features, and impose constraints on the
grammar.

categorical.
During training, our algorithm is given a corpus

consisting of several scenarios, i.e., database records
paired with texts w (see Figure 1). For each sce-
nario, the model first decides on a global document
plan, i.e., it selects which types of records belong to
each sentence (or phrase) and how these sentences
(or phrases) should be ordered. Then it selects ap-
propriate record tokens for each type and progres-
sively chooses the most relevant fields; then, based
on the values of the fields, it generates the final text,
word by word.

4 Original Model

Our work builds on the model developed by Kon-
stas and Lapata (2012). The latter is essentially
a PCFG which captures both the structure of the
input database and the way it renders into natural
language. This grammar-based approach lends it-
self well to the incorporation of document planning
which has traditionally assumed tree-like represen-
tations. We first briefly describe the original model
and then present our extensions in Section 5.

Grammar Grammar G in Figure 2 defines a set
of non-recursive CFG rewrite rules that capture the
structure of the database, i.e., the relationship be-
tween records, records and fields, fields and words.
These rules are domain-independent and could be
applied to any database provided it follows the same
structure. Non-terminal symbols are in capitals, the
terminal symbol α corresponds to the vocabulary of
the training set and g( f .v) is a function which gener-
ates integers given the field value f .v. Note that all
non-terminals have features (in parentheses) which
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act as constraints and impose non-recursion (e.g., in
rule (2) i 6= j, so that a record cannot emit itself).

Rule (1) defines the expansion from the start sym-
bol S to the first record R of type start. The rules
in (2) implement content selection, by choosing ap-
propriate records from the database and generating
a sequence. R(ri.t) is the source record, R(r j.t) is
the target record and FS(r j.start) is a place-holder
symbol for the set of fields of record token r j. This
method is locally optimal, since it only keeps track
of the previous type of record for each re-write. The
rules in (3) conclude content selection on the field
level, i.e., after we have chosen a record, we select
and order the corresponding fields. Finally, the rules
in (4) and (5) correspond to surface realization. The
former rule binarizes the sequence of words emitted
by a particular field r. f in an attempt to capture local
dependencies between words, such as multi-word
expressions (e.g., right click, radio button). The lat-
ter rule defines the emission of words and integer
numbers1, given a field type and its value. Note that
the original model lexicalizes field values of cate-
gorical and integer type only.

Training The rules of grammar G are associated
with weights that are learned using the EM algo-
rithm (Dempster et al., 1977). During training, the
records, fields and values of database d and the
words w from the associated text are observed, and
the model learns the mapping between them. Notice
that we use w to denote the gold-standard text and
g to refer to the words generated by the model. The
mapping between the database and the observed text
is unknown and thus the weights of the rules define
a hidden correspondence h between records, fields
and their values.

Decoding Given a trained grammar G and an in-
put scenario from a database d, the model generates
text by finding the most likely derivation, i.e., se-
quence of rewrite rules for the input. Although re-
sembling parsing, the generation task is subtly dif-
ferent. In parsing, we observe a string of words and
our goal is to find the most probable syntactic struc-
ture, i.e., hidden correspondence ĥ. In generation,

1The function g( f .v) : Z→ Z, generates an integer in the
following six ways (Liang et al., 2009): identical, rounding
up/down to a multiple of 5, rounding off a multiple of 5 and
adding or subtracting some noise modelled by a geometric dis-
tribution.

however, the string is not observed; instead, we must
find the best text ĝ, by maximizing both over h and g,
where g = g1 . . .gN is a sequence of words licensed
by G. More formally:

ĝ = f
(

argmax
g,h

P
(
(g,h)

))
(1)

where f is a function that takes as input a derivation
tree (g,h) and returns ĝ. Konstas and Lapata (2012)
use a modified version of the CYK parser (Kasami,
1965; Younger, 1967) to find ĝ. Specifically, they
intersect grammar G with a n-gram language model
and calculate the most probable generation ĝ as:

ĝ = f
(

argmax
g,h

p(g) · p(g,h |d)
)

(2)

where p(g,h |d) is the decoding likelihood for a se-
quence of words g = g1 . . .gN of length N and the
hidden correspondence h that emits it, i.e., the likeli-
hood of the grammar for a given database input sce-
nario d. p(g) is a measure of the quality of each out-
put and is provided by the n-gram language model.

5 Extensions

In this section we extend the model of Konstas and
Lapata (2012) by developing two more sophisticated
content selection approaches which are informed by
a global plan of the document to be generated.

5.1 Planning with Record Sequences
Grammar Our key idea is to replace the content
selection mechanism of the original model with a
document plan which essentially defines a gram-
mar on record types. We split a document into
sentences, each terminated by a full-stop. Then a
sentence is further split into a sequence of record
types. Contrary to the original model, we observe a
complete sequence2 of record types, split into sen-
tences. This way we learn domain-specific pat-
terns of frequently occurring record type sequences
among the sentences of a document, as well as more
local structures within a sentence. We thus substitute
rules (1)–(2) in Figure 2 with sub-grammar GRSE
based on record type sequences:

Definition 1 (GRSE grammar)

GRSE = {ΣR, NRSE , PRSE , D}
2Note that a sequence is different from a permutation, as we

may allow repetitions or omissions of certain record types.
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where ΣR is a set of terminal symbols R(r.t), and
NRSE is a set of non-terminal symbols:

NRSE = {D, SENT}

where D represents the start symbol and SENT a
sequence of records. PRSE is a set of production rules
of the form:

(a) D→ SENT (ti, . . . , t j) . . . SENT (tl, . . . , tm)

(b) SENT (ti, . . . , t j)→ R(ra.ti) . . . R(rk.t j) ·

where t is a record type, ti, t j, tl and tm may overlap
and ra, rk are record tokens of type ti and t j respec-
tively. The corresponding weights for the production
rules PRSE are:

Definition 2 (GRSE weights)

(a) p(ti, . . . , t j, . . . tl, . . . , tm | D)

(b) p(ti) · ... · p(t j) = 1
|s(ti)| · . . . ·

1
|s(t j)|

where s(t) is a function that returns the set of records
with type t (Liang et al., 2009).

Rule (a) defines the expansion from the start sym-
bol D to a sequence of sentences, each represented
by the non-terminal SENT . Similarly to the original
grammar G, we employ the use of features (in paren-
theses) to denote a sequence of record types. The
same record types may recur in different sentences,
but not in the same one. The weight of rule (a) is
simply the joint probability of all the record types
present, ordered and segmented appropriately into
sentences in the document, given the start symbol.

Once record types have been selected (on a per
sentence basis) we move on to rule (b) which de-
scribes how each non-terminal SENT expands to
an ordered sequence of records R, as they are ob-
served within a sentence (see the terminal sym-
bol ‘.’ at the end of the rule). Notice that a record
type ti may correspond to several record tokens ra.
Rules (3)–(5) in grammar G make decisions on these
tokens based on the overall content of the database
and the field/value selection. The weight of this
rule is the product of the weights of each record
type. This is set to the uniform distribution over
{1, ..., |s(t)|} for record type t, where |s(t)| is the
number of records with that type.

Figure 3d shows an example tree for the database
input in Figure 1b, using GRSE and assuming that the
alignments between records and text are given. The

top level of the tree refers to the sequence of record
types as they are observed in the text. The first sen-
tence contains three records with types ‘desktop’,
‘start’ and ‘start-target’, each corresponding to the
textual segments click start, point to settings, and
then click control panel. The next level on the tree,
denotes the choice of record tokens for each sen-
tence, provided that we have decided on the choice
and order of their types (see Figure 3b). In Fig-
ure 3d, the bottom-left sub-tree corresponds to the
choice of the first three records of Figure 1b.

Training A straightforward way to train the ex-
tended model would be to embed the parameters of
GRSE in the original model and then run the EM al-
gorithm using inside-outside at the E-step. Unfortu-
nately, this method will induce a prohibitively large
search space. Rule (a) enumerates all possible com-
binations of record type sequences and the number
grows exponentially even for a few record types and
a small sequence size. To tackle this problem, we ex-
tracted rules for GRSE from the training data, based
on the assumption that there will be far fewer unique
sequences of record types per dataset than exhaus-
tively enumerating all possibilities.

For each scenario, we obtain a word-by-word
alignment between the database records and the cor-
responding text. In our experiments we used Liang
et al.’s (2009) unsupervised model, however any
other semi- or fully supervised method could be
used. As we show in Section 7, the quality of the
alignment inevitably correlates with the quality of
the extracted grammar and the decoder’s output. We
then map the aligned record tokens to their corre-
sponding types, merge adjacent words with the same
type and segment on punctuation (see Figure 3b).
Next, we create the corresponding tree according to
GRSE (Figure 3d) and binarize it. We experimented
both with left and right binarization and adhered to
the latter, as it obtained a more compact set of rules.
Finally, we collectively count the rule weights on the
resulting treebank and extract a rule set, discarding
rules with frequency less than three.

Using the extracted (weighted) GRSE rules, we run
the EM algorithm via inside-outside and learn the
weights for the remaining rules in G. Decoding re-
mains the same as in Konstas and Lapata (2012);
the only requirement is that the extracted grammar
remains binarized in order to guarantee the cubic
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desktop1

Click start,

start1

point to settings,

start-target1

and then click control panel.

win-target1

Double-click users and passwords.

contMenu1

On the advanced tab ,p

action-contMenu1

click advanced.

(a) Record token alignments

[
desktop start start-target‖win-target‖contMenu action-contMenu‖

]
(b) Record type segmentation

[Click start,]desktop1.t [point to settings, ]start1.t [and then
click control panel.]start−target1.t [Double-click users and
passwords.]win−target1.t [On the advanced tab,]contMenu1.t [click
advanced.]action−contMenu1.t

(c) Segmentation of text into EDUs

D

SENT(c, a-c)

R(a-c1.t)R(c1.t)

SENT(w-t)

R(w-t1.t)

SENT(d, s, s-t)

R(s-t1.t)R(s1.t)R(d1.t)

(d) Document plan using the GRSE grammar

D

Elaboration[N][S]

Elaboration[N][S]

R(a-c1.t)R(c1.t)

Elaboration[N][S]

R(w-t1.t)Elaboration[N][S]

Joint[N][N]

R(s-t1.t)R(s1.t)

R(d1.t)

(e) Document plan using the GRST grammar

Figure 3: Grammar extraction example from the WINHELP domain using GRSE and GRST . For GRSE , we take
the alignments of records on words and map them to their corresponding types (a); we then segment record
types into sentences (b); and finally, create a tree using grammar GRSE (c). For GRST , we segment the text
into EDUs based on the records they align to (d) and output the discourse tree (omitted here for brevity’s
sake); we build the document plan once we substitute the EDUs with their corresponding record types (e).

bound of the Viterbi search algorithm. Note that the
original grammar is limited to the generation of cat-
egorical and integer values. We extend it to support
the generation of strings. The following rule adds a
simple verbatim lexicalization for string values:

W(r,r. f )→ gen str( f .v, i)
gen str( f .v, i) : V →V, f .v ∈V

where V is the set of words for the fields of type
string, and gen str is a function that takes the value
of a string-typed field f .v, and the position i in
the string, and generates the corresponding word at
that position. For example, gen str(users and pass-
words, 3) = passwords. The weight of this rule is set
to 1.

5.2 Planning with Rhetorical Structure Theory

Grammar RST (Mann and Thompson, 1988) is a
theory of text organization which provides a frame-
work for analyzing text. A basic tenet of the the-
ory is that a text consists of hierarchically organized
text spans or elementary discourse units (EDUs) that

stand in various relations to one another (e.g., Elab-
oration, Attribution). These “rhetorical relations”
hold between two adjacent parts of the text, where
typically, one part is “nuclear” and one a “satellite”.
An analysis of a text consists in identifying the re-
lations holding between successively larger parts of
the text, yielding a natural hierarchical description
of the rhetorical organization of the text. From its
very inception, RST was conceived as a way to char-
acterize text and textual relations for the purpose of
text generation.

In order to create a RST-inspired document plan
for our input (i.e., database records paired with
texts), we make the following assumption: each
record corresponds to a unique non-overlapping
span in the collocated text, and can be therefore
mapped to an EDU. Assuming the text has been seg-
mented and aligned to a sequence of records, we
can create a discourse tree with record types (in
place of their corresponding EDUs) as leaf nodes.
Again, we define a sub-grammar GRST which re-
places rules (1)–(2) from Figure 2:
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Definition 3 (GRST grammar)

GRST = {ΣR, NRST , PRST , D}

where ΣR is the alphabet of leaf nodes as de-
fined in Section 5.1, NRST is a set of non-terminals
corresponding to rhetorical relations augmented
with nucleus-satellite information (e.g., Elabora-
tion[N][S] stands for the elaboration relation be-
tween the nucleus EDU left-adjoining with the satel-
lite EDU), PRST is the set of production rules of the
form PRST ⊆ NRST ×{NRST ∪ΣR}×{NRST ∪ΣR} as-
sociated with a weight for each rule, and D ∈ NRST
is the root symbol. Figure 3e gives the discourse tree
for the database input of Figure 1b, using GRST .

Training In order to obtain the weighted produc-
tions of GRST , we use an existing state-of-the-art dis-
course parser3 (Feng and Hirst, 2012) trained on the
RST-DT corpus (Carlson et al., 2001). The latter
contains a selection of 385 Wall Street Journal arti-
cles which have been annotated using the framework
of RST and an inventory of 78 rhetorical relations,
classified into 18 coarse-grained categories (Carl-
son and Marcu, 2001). Figure 4 gives a comparison
of the distribution of relations extracted for the two
datasets we used, against the gold-standard annota-
tion of RST-DT. The statistics for the RST-DT cor-
pus are taken from Williams and Power (2008). The
relative frequencies of relations on both datasets fol-
low closely the distribution of those in RST-DT, thus
empirically supporting the application of the RST
framework to our data.

We segment each document in our training set
into EDUs based on the record-to-text alignments
given by the model of Liang et al. (2009) (see Fig-
ure 3c). We then run the discourse parser on the
resulting EDUs, and retrieve the corresponding dis-
course tree; the internal nodes are labelled with
one of the RST relations. Finally, we replace the
leaf EDUs with their respective terminal symbols
R(r.t) ∈ ΣR (Figure 3e) and collect the resulting
grammar productions; their weights are calculated
via maximum likelihood estimation based on their
collective counts in the parse trees licensed by GRST .
Training and decoding of the extended generation
model (after we embed GRST in the original gram-
mar G) is performed identically to Section 5.1.

3Publicly available from http://www.cs.toronto.edu/

˜weifeng/software.html.

6 Experimental Design

Data Since our aim was to evaluate the planning
component of our model, we used datasets whose
documents are at least a few sentences long. Specif-
ically, we generated weather forecasts and trou-
bleshooting guides for an operating system. For
the first domain (henceforth WEATHERGOV) we used
the dataset of Liang et al. (2009), which consists
of 29,528 weather scenarios for 3,753 major US
cities (collected over four days). The database has
12 record types, each scenario contains on average
36 records, 5.8 out of which are mentioned in the
text. A document has 29.3 words and is four sen-
tences long. The vocabulary is 345 words. We used
25,000 scenarios from WEATHERGOV for training,
1,000 scenarios for development and 3,528 scenar-
ios for testing.

For the second domain (henceforth WINHELP) we
used the dataset of Branavan et al. (2009), which
consists of 128 scenarios. These are articles from
Microsoft’s Help and Support website4 and contain
step-by-step instructions on how to perform tasks on
the Windows 2000 operating system. In its original
format, the database provides a semantic representa-
tion of the textual guide, i.e., it represents the user’s
actions on the operating system’s UI. We semi-
automatically converted this representation into a
schema of records, fields and values, following the
conventions adopted in Branavan et al. (2009).5 The
final database has 13 record types. Each scenario has
9.2 records and each document 51.92 words with 4.3
sentences. The vocabulary is 629 words. We per-
formed 10-fold cross-validation on the entire dataset
for training and testing. Compared to WEATHER-
GOV, WINHELP documents are longer with a larger
vocabulary. More importantly, due to the nature of
the domain, i.e., giving instructions, content selec-
tion is critical not only in terms of what to say but
also in what order.

Grammar Extraction and Parameter Setting
We obtained alignments between database records
and textual segments for both domains and gram-
mars (GRSE and GRST ) using the unsupervised model
of Liang et al. (2009). On WEATHERGOV, we ex-
tracted a GRSE grammar with 663 rules (after bi-

4support.microsoft.com
5The dataset can be downloaded from http://homepages.

inf.ed.ac.uk/ikonstas/index.php?page=resources
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Figure 4: Distribution of RST relations on WEATHERGOV, WINHELP, and the RST-DT (Williams and Power,
2008).

narization). The WINHELP dataset is considerably
smaller, and as a result the procedure described in
Section 5.1 yields a very sparse grammar. To al-
leviate this, we horizontally markovized the right-
hand side of each rule (Collins, 1999; Klein and
Manning, 2003).6 After markovization, we obtained
a GRSE grammar with 516 rules. On WEATHERGOV,
we extracted 434 rules for GRST . On WINHELP we
could not follow the horizontal markovization pro-
cedure, since the discourse trees are already bina-
rized. Instead, we performed vertical markovization,
i.e., annotated each non-terminal with their parent
node (Johnson, 1998) and obtained a GRST grammar
with 419 rules. The model of Konstas and Lapata
(2012) has two parameters, namely the number of
k-best lists to keep in each derivation, and the or-
der of the language model. We tuned k experimen-
tally on the development set and obtained best re-
sults with 60 for WEATHERGOV and 120 for WIN-
HELP. We used a trigram model for both domains,
trained on each training set.

Evaluation We compared two configurations of
our system, one with a content planning compo-
nent based on record type sequences (GRSE) and

6When horizontally markovizing, we can encode an arbi-
trary amount of context in the intermediate non-terminals that
result from this process; in our case we store h=1 horizontal
siblings plus the mother left-hand side (LHS) non-terminal, in
order to uniquely identify the Markov chain. For example,
A→ B C D becomes A→ B 〈A . . .B〉, 〈A . . .B〉 → C 〈A . . .C〉,
〈A . . .C〉 → D.

another one based on RST (GRST ). In both cases
content plans were extracted from (noisy) unsuper-
vised alignments. As a baseline, we used the orig-
inal model of Konstas and Lapata (2012). We also
compared our model to Angeli et al.’s system (2010),
which is state of the art on WEATHERGOV.

System output was evaluated automatically, using
the BLEU modified precision score (Papineni et al.,
2002) with the human-written text as reference. In
addition, we evaluated the generated text by eliciting
human judgments. Participants were presented with
a scenario and its corresponding verbalization and
were asked to rate the latter along three dimensions:
fluency (is the text grammatical?), semantic correct-
ness (does the meaning conveyed by the text corre-
spond to the database input?) and coherence (is the
text comprehensible and logically structured?). Par-
ticipants used a five point rating scale where a high
number indicates better performance. We randomly
selected 12 documents from the test set (for each do-
main) and produced output with the system of Kon-
stas and Lapata (2012) (henceforth K&L), our two
models using GRSE and GRST , respectively, and An-
geli et al. (2010) (henceforth ANGELI). We also in-
cluded the original text (HUMAN) as gold-standard.
We obtained ratings for 60 (12 × 5) scenario-text
pairs for each domain. Examples of the documents
shown to the participants are given in Table 1.

The study was conducted over the Internet us-
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WEATHERGOV WINHELP

G
R

SE
Showers before noon. Cloudy, with a high near
38. Southwest wind between 3 and 8 mph.
Chance of precipitation is 55 %.

Right-click my network places, and then click prop-
erties. Right-click local area connection, and click
properties. Click to select the file and printer sharing
for Microsoft networks, and then click ok.

G
R

ST

Showers likely. Mostly cloudy, with a high around
38. South wind between 1 and 8 mph. Chance of
precipitation is 55 %.

Right-click my network places, and then click proper-
ties. Right-click local area connection. Click file and
printer sharing for Microsoft networks, and click ok.

K
&

L

A chance of showers. Otherwise, cloudy, with a
high near 38. Southwest wind between 3 and 8
mph.

Right-click my network places, click properties.
Right-click local area connection. Click to select the
file and printer sharing for Microsoft networks, and
then click ok.

A
N

G
E

L
I A chance of rain or drizzle after 9am. Mostly

cloudy, with a high near 38. Southwest wind be-
tween 3 and 8 mph. Chance of precipitation is 50
%.

Right-click my network places, and then click prop-
erties on the tools menu, and then click proper-
ties. Right-click local area connection, and then click
properties. Click file and printer sharing for Microsoft
networks, and then click ok.

H
U

M
A

N A 50 percent chance of showers. Cloudy, with a
high near 38. Southwest wind between 3 and 6
mph.

Right-click my network places, and then click proper-
ties. Right-click local area connection, and then click
properties. Click to select the file and printer sharing
for Microsoft networks check box. Click ok.

Table 1: Human-authored text and system output on WEATHERGOV and WINHELP.

ing Amazon Mechanical Turk7, and involved 200
volunteers (100 for WEATHERGOV, and 100 for
WINHELP), all self reported native English speak-
ers. For WINHELP, we made sure participants were
computer-literate and familiar with the Windows op-
erating system by administering a short question-
naire prior to the experiment.

7 Results

The results of the automatic evaluation are summa-
rized in Table 2. Overall, our models outperform
K&L’s system by a wide margin on both datasets.
The two content planners (GRSE and GRST ) perform
comparably in terms of BLEU. This suggests that
document plans induced solely from data are of sim-
ilar quality to those informed by RST. This is an
encouraging result given that RST-style discourse
parsers are currently available only for English. AN-
GELI performs better on WEATHERGOV possibly due
to better output quality on the surface level. Their
system defines trigger patterns that specifically lexi-
calize record fields containing numbers. In contrast,
on WINHELP it is difficult to explicitly specify such
patterns, as none of the record fields are numeric; as
a result their system performs poorly compared to

7https://www.mturk.com

the other models.

To assess the impact of the alignment on the
content planner, we also extracted GRSE from
cleaner alignments which we obtained automat-
ically via human-crafted heuristics for each do-
main. The heuristics performed mostly anchor
matching between database records and words in the
text (e.g., the value Lkly of the field rainChance,
matches with the string rain likely in the text).
Using these alignments, GRSE obtained a BLEU
score of 39.23 on WEATHERGOV and 41.35 on WIN-
HELP. These results indicate that improved align-
ments would lead to more accurate grammar rules.
WEATHERGOV seems more sensitive to the align-
ments than WINHELP. This is probably because
the dataset shows more structural variations in the
choice of record types at the document level, and
therefore the grammar extracted from the unsuper-
vised alignments is noisier. Unfortunately, perform-
ing this kind of analysis for GRST would require gold
standard segmentation of our training corpus into
EDUs which we neither have nor can easily approx-
imate via heuristics.

The results of our human evaluation study are
shown in Table 3. We carried out an Analysis of
Variance (ANOVA) to examine the effect of system
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Model WEATHERGOV WINHELP

GRSE 35.60 40.92
GRST 36.54 40.65
K&L 33.70 38.26
ANGELI 38.40 32.21

Table 2: Automatic evaluation of system output us-
ing BLEU-4.

WEATHERGOV WINHELP

Model FL SC CO FL SC CO
GRSE 4.25 3.75 4.18 3.59 3.21 3.35
GRST 4.10 3.68 4.10 3.45 3.29 3.22
K&L 3.73 3.25 3.59 3.27 2.97 2.93
ANGELI 3.90 3.44 3.82 3.44 2.79 2.97
HUMAN 4.22 3.72 4.11 4.20 4.41 4.25

Table 3: Mean ratings for fluency (FL), semantic
correctness (SC) and coherence (CO) on system out-
put elicited by humans.

type (GRSE , GRST , K&L, ANGELI, and HUMAN) on
fluency, semantic correctness and coherence ratings.
Means differences of 0.2 or more are significant at
the 0.05 level using a post-hoc Tukey test. Interest-
ingly, we observe that document planning improves
system output overall, not only in terms of coher-
ence. Across all dimensions our models are per-
ceived better than K&L and ANGELI. As far as co-
herence is concerned, the two content planners are
rated comparably (differences in the means are not
significant). Both GRSE and GRST are significantly
better than the comparison systems (ANGELI and
K&L). Table 1 illustrates examples of system out-
put along with the gold standard content selection
for reference, for the WEATHERGOV and WINHELP

domains, respectively.
In sum, we observe that integrating document

planning either via GRSE or GRST boosts perfor-
mance. Document plans induced from record
sequences exhibit similar performance, compared
to those generated using expert-derived linguistic
knowledge. Our systems are consistently better than
K&L both in terms of automatic and human eval-
uation and are close or better than the supervised
model of Angeli et al. (2010). We also show that
feeding the system with a grammar of better qual-
ity can achieve state-of-the-art performance, without

further changes to the model.

8 Conclusions

In this paper, we have proposed an end-to-end sys-
tem that generates text from database input and cap-
tures all components of the traditional generation
pipeline, including document planning. Document
plans are induced automatically from training data
and are represented intuitively by PCFG rules cap-
turing the structure of the database and the way it
renders to text. We proposed two complementary
approaches to inducing content planners. In a first
linguistically naive approach, a document is mod-
elled as a sequence of sentences and each sentence
as a sequence of records. Our second approach
draws inspiration from Rhetorical Structure Theory
(Mann and Thomson, 1988) and represents a docu-
ment as a tree with intermediate nodes correspond-
ing to discourse relations, and leaf nodes to database
records.

Experiments with both approaches demonstrate
improvements over models that do not incorporate
document planning. In the future, we would like to
tackle more challenging domains, such as NFL re-
caps, financial articles and biographies (Howald et
al., 2013; Schilder et al., 2013). Our models could
also benefit from the development of more sophis-
ticated planners either via grammar refinement or
more expressive grammar formalisms (Cohn et al.,
2010).
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Abstract

Recent studies on extractive text summariza-
tion formulate it as a combinatorial optimiza-
tion problem such as a Knapsack Problem, a
Maximum Coverage Problem or a Budgeted
Median Problem. These methods successfully
improved summarization quality, but they did
not consider the rhetorical relations between
the textual units of a source document. Thus,
summaries generated by these methods may
lack logical coherence. This paper proposes a
single document summarization method based
on the trimming of a discourse tree. This is
a two-fold process. First, we propose rules
for transforming a rhetorical structure theory-
based discourse tree into a dependency-based
discourse tree, which allows us to take a tree-
trimming approach to summarization. Sec-
ond, we formulate the problem of trimming
a dependency-based discourse tree as a Tree
Knapsack Problem, then solve it with integer
linear programming (ILP). Evaluation results
showed that our method improved ROUGE
scores.

1 Introduction

State-of-the-art extractive text summarization meth-
ods regard a document (or a document set) as a set
of textual units (e.g. sentences, clauses, phrases)
and formulate summarization as a combinatorial op-
timization problem, i.e. selecting a subset of the set
of textual units that maximizes an objective with-
out violating a length constraint. For example, Mc-
Donald (2007) formulated text summarization as a
Knapsack Problem, where he selects a set of textual

units that maximize the sum of significance scores
of each unit. Filatova et al. (2004) proposed a
summarization method based on a Maximum Cov-
erage Problem, in which they select a set of textual
units that maximizes the weighted sum of the con-
ceptual units (e.g. unigrams) contained in the set.
Although, their greedy solution is only an approxi-
mation, Takamura et al. (2009a) extended it to ob-
tain the exact solution. More recently, Takamura et
al. (2009b) regarded summarization as a Budgeted
Median Problem and obtain exact solutions with in-
teger linear programming.

These methods successfully improved ROUGE

(Lin, 2004) scores, but they still have one critical
shortcoming. Since these methods are based on sub-
set selection, the summaries they generate cannot
preserve the rhetorical structure of the textual units
of a source document. Thus, the resulting summary
may lack coherence and may not include significant
textual units from a source document.

One powerful and potential way to overcome the
problem is to include discourse tree constraints in
the summarization procedure. Marcu (1998) re-
garded a document as a Rhetorical Structure The-
ory (RST) (William Charles, Mann and Sandra An-
near, Thompson, 1988)-based discourse tree (RST-
DT) and selected textual units according to a prefer-
ence ranking derived from the tree structure to make
a summary. Daumé et al. (2002) proposed a docu-
ment compression method that directly models the
probability of a summary given an RST-DT by us-
ing a noisy-channel model. These methods generate
well-organized summaries, however, since they do
not formulate summarizations as combinatorial op-
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Elaboration!
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Elaboration!

Contrast! Contrast!

Evidence!

Example!

Concession! Antithesis!

Figure 1: Example RST-DT from (Marcu, 1998).

timization problems, the optimality of the generated
summaries is not guaranteed.

In this paper, we propose a single document sum-
marization method based on the trimming of a dis-
course tree based on the Tree Knapsack Problem. If
a discourse tree explicitly represents parent-child re-
lationships between textual units, we can apply the
well-known tree-trimming approach to a discourse
tree and reap the benefit of combinatorial optimiza-
tion methods. In other words, to apply the tree-
trimming approach, we need a tree whose all nodes
represent textual units. Unfortunately, the RST-DT
does not allow it, because textual units in the RST-
DT are located only on leaf nodes and parent-child
relationship between textual units are represented
implicitly at higher positions in a tree. Therefore, we
first propose rules that transform an RST-DT into a
dependency-based discourse tree (DEP-DT) that ex-
plicitly defines the parent-child relationships. Sec-
ond, we treat it as a rooted subtree selection, in other
words, a Tree Knapsack Problem and formulate the
problem as an ILP.

2 From RST-DT to DEP-DT

2.1 RST-DT

According to RST, a document is represented as an
RST-DT whose terminal nodes correspond to ele-
mentary discourse units (EDU)s1 and whose non-
terminal nodes indicate the role of the contiguous

1EDUs roughly correspond to clauses.
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Figure 2: Heads of non-terminal nodes.

EDUs namely, ‘nucleus (N)’ or ‘satellite (S)’. A nu-
cleus is more important than a satellite in terms of
the writer’s purpose. That is, a satellite is a child of
a nucleus in the RST-DT. Some discourse relations
such as ‘Elaboration’, ‘Contrast’ and ‘Evidence’ be-
tween a nucleus and a satellite or two nuclei are de-
fined. Figure 1 shows an example of an RST-DT.

2.2 DEP-DT
An RST-DT is not suitable for tree trimming because
it does not always explicitly define parent-child re-
lationships between textual units. For example, if
we consider how to trim the RST-DT in Figure 1,
when we drop e8, we have to drop e7 because of the
parent-child relationship defined between e7 and e8,
i.e. e7 is a satellite (child) of the nucleus (parent)
e8. On the other hand, we cannot judge whether we
have to drop e9 or e10 because the parent-child rela-
tionships are not explicitly defined between e8 and
e9, e8 and e10. This view motivates us to produce a
discourse tree that explicitly defines parent-child re-
lationships and whose root node represents the most
important EDU in a source document. If we can ob-
tain such a tree, it is easy to formulate summariza-
tion as a Tree Knapsack Problem.

To construct a discourse tree that represents
the parent-child relationships between EDUs, we
propose rules for transforming an RST-DT to a
dependency-based discourse tree (DEP-DT). The
procedure is defined as follows:

1. For each non-terminal node excluding the par-
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Depth=1�

Depth=2�

Depth=3�
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Figure 3: The DEP-DT obtained from the RST-DT in Fig-
ure 1.

ent of an EDU in the RST-DT, we define a
‘head’. Here, a ‘head’ of a non-terminal node
is the leftmost descendant EDU whose parent is
N. In Figure 2, ‘H’ indicates the ‘head’ of each
node.

2. For each EDU whose parent is N, we pick the
nearest S with a ‘head’ from the EDU’s ances-
tors and we add the EDU to the DEP-DT as a
child of the head of the S’s parent. If there is no
nearest S, the EDU is the root of the DEP-DT.
For example, in Figure 2, the nearest S to e3

that has a head is node 5 and the head of node
5’s parent is e2. Thus, e3 is a child of e2.

3. For each EDU whose parent is S, we pick the
nearest non-terminal with a ‘head’ from the an-
cestors and we add the EDU to the DEP-DT as
a child of the head of the non-terminal node.
For example, the nearest non-terminal node of
e9 that has a head is node 16 and the head of
node 16 is e10. Thus, e9 is a child of e10.

Figure 3 shows the DEP-DT obtained from the
RST-DT in Figure 1. The DEP-DT expresses the
parent-child relationship between the EDUs. There-
fore, we have to drop e7, e9 and e10 when we drop
e8. Note that, by applying the rules, discourse rela-
tions defined between non-terminals of an RST-DT
are eliminated. However, we believe that these re-
lations are no needed for the summarization that we
are attempting to realize.

3 Tree Knapsack Model for
Single-Document Summarization

3.1 Formalization
We denote T as a set of all possible rooted subtrees
obtained from a DEP-DT. F (t) is the significance
score for a rooted subtree t ∈ T and L is the maxi-
mum number of words allowed in a summary. The
optimal subtree t∗ is defined as follows:

t∗ = arg max
t∈T

F (t) (1)

s.t. Length(t) ≤ L. (2)

Here, we define F (t) as

F (t) =
∑

e∈E(t)

W(e)

Depth(e)
. (3)

E(t) is the set of EDUs contained in t, Depth(e)
is the depth of an EDU e within the DEP-DT. For
example, Depth(e2) = 1, Depth(e6) = 4 for the
DEP-DT of Figure 3. W(e) is defined as follows:

W(e) =
∑

w∈W (e)

tf(w,D). (4)

W (e) is the set of words contained in e and
tf(w, D) is the term frequency of word w in a docu-
ment D.

3.2 ILP Formulation
We formulate the optimization problem in the pre-
vious section as a Tree Knapsack Problem, which is
a kind of Precedence-Constrained Knapsack Prob-
lem (Samphaiboon and Yamada, 2000) and we can
obtain the optimal rooted subtree by solving the fol-
lowing ILP problem2:

maximize
x

N∑
i=1

W(ei)

Depth(ei)
xi (5)

s.t.

N∑
i=1

ℓixi ≤ L (6)

∀i : xparent(i) ≥ xi (7)

∀i : xi ∈ {0, 1}, (8)
2A similar approach has been applied to sentence compres-

sion (Filippova and Strube, 2008).
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ROUGE-1 ROUGE-2
F R F R

TKP(G) .310H,K,L .321G,H,K,L .108 .112H

TKP(H) .281H .284H .092 .093
Marcu(G) .291H .272H .101 .093
Marcu(H) .236 .219 .073 .068
MCP .279 .295H .073 .077
KP .251 .266H .071 .075
LEAD .255 .240 .092 .086

Table 1: ROUGE scores of the RST discourse treebank
dataset. In the table, G,H,K,L indicate a method sta-
tistically significant against Marcu(G), Marcu(H), KP,
LEAD, respectively.

where x is an N -dimensional binary vector that
represents the summary, i.e. xi=1 denotes that the i-
th EDU is included in the summary. N is the number
of EDUs in a document, ℓi is the length (the number
of words) of the i-th EDU, and parent(i) indicates
the ID of the parent of the i-th EDU in the DEP-DT.
Constraint (6) ensures that the length of a summary
is less than limit L. Constraint (7) ensures that a
summary is a rooted subtree of the DEP-DT. Thus,
xparent(i) is always 1 when the i-th EDU is included
in the summary.

In general, the Tree Knapsack Problem is NP-
hard, but fortunately we can obtain the optimal solu-
tion in a feasible time by using ILP solvers for doc-
uments of practical tree size. In addition, bottom-
up DP (Lukes, 1974) and depth-first DP algorithms
(Cho and Shaw, 1997) are known to find the optimal
solution efficiently.

4 Experimental Evaluation

4.1 Settings

We conducted an experimental evaluation on the test
collection for single document summarization eval-
uation contained in the RST Discourse Treebank
(RST-DTB)(Carlson et al., 2001) distributed by the
Linguistic Data Consortium (LDC)3. The RST-DTB
Corpus includes 385 Wall Street Journal articles
with RST annotation, and 30 of these documents
also have one human-made reference summary. The
average length of the reference summaries corre-
sponds to about 10 % of the words in the source

3http://www.ldc.upenn.edu/Catalog/
CatalogEntry.jsp?catalogId=LDC2002T07

document.
We compared our method (TKP) with Marcu’s

method (Marcu) (Marcu, 1998), a simple knapsack
model (KP), a maximum coverage model (MCP)
and a lead method (LEAD). MCP is known to be a
state-of-the-art method for multiple document sum-
marization and we believe that MCP also performs
well in terms of single document summarization.
LEAD is also a widely used summarizer that simply
takes the first K textual units of the document. Al-
though this is a simple heuristic rule, it is known as
a state-of-the-art summarizer (Nenkova and McKe-
own, 2011).

For our method, we examined two types of
DEP-DT. One was obtained from the gold RST-
DT. The other was obtained from the RST-DT pro-
duced by a state-of-the-art RST parser, HILDA (du-
Verle and Prendinger, 2009; Hernault et al., 2010).
For Marcu’s method, we examined both the gold
RST-DT and HILDA’s RST-DT. We re-implemented
HILDA and re-trained it on the RST-DT Corpus ex-
cluding the 30 documents used in the evaluation.
The F-score of the parser was around 0.5. For KP,
we exclude constraint (7) from the ILP formulation
of TKP and set the depth of all EDUs in equations
(3) and (5) at 1. For MCP, we use tf (equation (4))
as the word weight.

We evaluated the summarization systems with
ROUGE version 1.5.5 4. Performance metrics were
the recall (R) and F-score (F) of ROUGE-1,2.

4.2 Results and Discussion

Table 1 shows the evaluation results. In the ta-
ble, TKP(G) and TKP(H) denote methods with the
DEP-DT obtained from the gold RST-DT and from
HILDA, respectively. Marcu(G) and Marcu(H) de-
note Marcu’s method described in (Marcu, 1998)
with gold RST-DT and with HILDA, respectively.
We performed a multiple comparison test for the dif-
ferences among ROUGE scores, we calculated the p-
values between systems with the Wilcoxon signed-
rank test (Wilcoxon, 1945) and used the False Dis-
covery Rate (FDR) (Benjamini and Hochberg, 1995)
to calculate adjusted p-values, in order to limit false
positive rate to 5%.

From the table, TKP(G) and Marcu(G) achieved
4Options used: -n 2 -s -m -x
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Reference:
The Fuji apple may one day replace the Red Delicious as the number one U.S. apple. Since the Red Delicious has been
over-planted and prices have dropped to new lows, the apple industry seems ready for change. Along with growers, supermarkets
are also trying different varieties of apples. Although the Fuji is smaller and not as perfectly shaped as the Red Delicious, it is
much sweeter, less mealy and has a longer shelf life.

TKP(G):
We’ll still have mom and apple pie. A Japanese apple called the Fuji. Some fruit visionaries say the Fuji could someday tumble
the Red Delicious from the top of America’s apple heap. It has a long shelf life. Now, even more radical changes seem afoot. The
Delicious hegemony won’t end anytime soon. New apple trees grow slowly. But the apple industry is ripe for change. There’s a
Fuji apple cult.

Marcu(G):
We’ll still have mom and apple pie. On second thought, make that just mom. The Fuji could someday tumble the Red Delicious
from the top of America’s apple heap. Now, even more radical changes seem afoot. The Delicious hegemony won’t end anytime
soon. More than twice as many Red Delicious apples are grown as the Golden variety, America’s No. 2 apple. But the apple
industry is ripe for change.

MCP:
Called the Fuji. It has a long shelf life. New apple trees grow slowly. Its roots are patriotic. I’m going to have to get another job
this year. Scowls. They still buy apples mainly for big, red good looks. Japanese researchers have bred dozens of strains of Fujis.
Mr. Auvil, the Washington grower, says. Stores sell in summer. The “ big boss ” at a supermarket chain even rejected his Red
Delicious recently. Many growers employ.

LEAD:
Soichiro Honda’s picture now hangs with Henry Ford’s in the U.S. Automotive Hall of Fame, and the game-show “ Jeopardy ” is
soon to be Sony-owned. But no matter how much Japan gets under our skin, we’ll still have mom and apple pie. On second
thought, make that just mom. A Japanese apple called the Fuji is cropping up in orchards the way Hondas did on U.S. roads.

Figure 4: Summaries obtained from wsj 1128.

better results than MCP, KP and LEAD, although
some of the comparisons are not significant. In par-
ticular, TKP(G) achieved the highest ROUGE scores
on all measures. On ROUGE-1 Recall, TKP(G) sig-
nificantly outperformed Marcu(G), Marcu(H), KP
and LEAD. These results support the effectiveness
of our method that utilizes the discourse structure.
Comparing TKP(H) with Marcu(H), the former
achieved higher scores with statistical significance
on ROUGE-1. In addition, Marcu(H) was outper-
formed by MCP, KP and LEAD. The results confirm
the effectiveness of our summarization model and
trimming proposal for DEP-DT. Moreover, the dif-
ference between TKP(G) and TKP(H) was smaller
than that between Marcu(G) and Marcu(H). This
implies that our method is more robust against dis-
course parser error than Marcu’s method.

Figure 4 shows the example summaries gener-
ated by TKP(G), Marcu(G), MCP and LEAD, re-
spectively for an article, wsj 1128. Since TKP(G)
and Marcu(G) utilize a discourse tree, the summary
generated by TKP(G) is similar to that generated by
Marcu(G) but it is different from those generated by
MCP and LEAD.

5 Conclusion

This paper proposed rules for transforming an RST-
DT to a DEP-DT to obtain the parent-child relation-
ships between EDUs. We treated a single document
summarization method as a Tree Knapsack Problem,
i.e. the summarizer selects the best rooted subtree
from a DEP-DT. To demonstrate the effectiveness of
our method, we conducted an experimental evalua-
tion using 30 documents selected from the RST Dis-
course Treebank Corpus. The results showed that
our method achieved the highest ROUGE-1,2 scores.
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Hal Daumé III and Daniel Marcu. 2002. A noisy-channel
model for document compression. In Proc. of the 40th
ACL, pages 449–456.

David duVerle and Helmut Prendinger. 2009. A novel
discourse parser based on support vector machine clas-
sification. In Proc. of the Joint Conference of the 47th
ACL and 4th IJCNLP, pages 665–673.

Elena Filatova and Vasileios Hatzivassiloglou. 2004.
A formal model for information selection in multi-
sentence extraction. In Proc. of the 20th COLING,
pages 397–403.

Katja Filippova and Michael Strube. 2008. Dependency
tree based sentence compression. In Proc. of the 5th
International Natural Language Generation Confer-
ence (INLG), pages 25–32.

Hugo Hernault, Helmut Prendinger, David A duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A discourse
parser using support vector machine classification. Di-
alogue and Discourse, 1(3):1–33.

Chin-Yew Lin. 2004. ROUGE: A Package for Automatic
Evaluation of Summaries. In Proc. of Workshop on
Text Summarization Branches Out, pages 74–81.

J. A. Lukes. 1974. Efficient algorithm for the partition-
ing of trees. IBM Journal of Research and Develop-
ment, 18(3):217–224.

Daniel Marcu. 1998. Improving summarization through
rhetorical parsing tuning. In Proc. of the 6th Workshop
on Very Large Corpora, pages 206–215.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Proc.
of the 29th ECIR, pages 557–564.

Ani Nenkova and Kathaleen McKeown. 2011. Auto-
matic summarization. Foundations and Trends in In-
formation Retrieval, 5(2-3):103–233.

Natthawut Samphaiboon and Takeo Yamada. 2000.
Heuristic and exact algorithms for the precedence-
constrained knapsack problem. Journal of Optimiza-
tion Theory and Applications, 105(3):659–676.

Hiroya Takamura and Manabu Okumura. 2009a. Text
summarization model based on maximum coverage
problem and its variant. In Proc. of the 12th EACL,
pages 781–789.

Hiroya Takamura and Manabu Okumura. 2009b. Text
summarization model based on the budgeted median
problem. In Proceedings of the 18th CIKM.

Frank Wilcoxon. 1945. Individual comparisons by rank-
ing methods. Biometrics Bulletin, 1(6):80–83.

William Charles, Mann and Sandra Annear, Thompson.
1988. Rhetorical Structure Theory: Toward a func-
tional theory of text organization. Text, 8(3):243–281.

1520



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1521–1532,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

A Hierarchical Entity-based Approach to Structuralize User Generated

Content in Social Media: A Case of Yahoo! Answers

Baichuan Li1,2∗, Jing Liu3∗, Chin-Yew Lin4, Irwin King1,2, and Michael R. Lyu1,2

1Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
2Department of Computer Science and Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
3Harbin Institute of Technology, Harbin 150001, P.R. China

4Microsoft Research Asia, Beijing 100080, P.R. China

bcli@cse.cuhk.edu.hk jliu@ir.hit.edu.cn cyl@microsoft.com

{king,lyu}@cse.cuhk.edu.hk

Abstract

Social media like forums and microblogs have

accumulated a huge amount of user generated

content (UGC) containing human knowledge.

Currently, most of UGC is listed as a whole

or in pre-defined categories. This “list-based”

approach is simple, but hinders users from

browsing and learning knowledge of certain

topics effectively. To address this problem, we

propose a hierarchical entity-based approach

for structuralizing UGC in social media. By

using a large-scale entity repository, we design

a three-step framework to organize UGC in

a novel hierarchical structure called “cluster

entity tree (CET)”. With Yahoo! Answers as

a test case, we conduct experiments and the

results show the effectiveness of our frame-

work in constructing CET. We further evaluate

the performance of CET on UGC organiza-

tion in both user and system aspects. From

a user aspect, our user study demonstrates

that, with CET-based structure, users perform

significantly better in knowledge learning than

using traditional list-based approach. From

a system aspect, CET substantially boosts

the performance of two information retrieval

models (i.e., vector space model and query

likelihood language model).

1 Introduction

With the development of Web 2.0, social

media websites—such as online forums, blogs,

microblogs, social networks, and community

∗This work was done when the first two authors were on

internship at MSRA.

Table 1: Sample questions about Edinburgh

1. Where can i buy a hamburger in Edinburgh?

2. Where can I get a shawarma in Edinburgh?

3. How long does it take to drive between Glasgow

and Edinburgh?

4. Whats the difference between Glasgow and Edinburgh?

5. Good hotels in London and Edinburgh?

6. Looking for nice , clean cheap hotel in Edinburgh?

7. Does anyone know of a reasonably cheap hotel in

Edinburgh that is near to Niddry Street South ?

8. Who can recommend a affordable hotel in

Edinburgh City Center?

question answering (CQA) portals—have become

the mainstream of web, where users create, share,

and exchange information with each other. As a

result, more and more UGC is accumulated, with

social media websites retaining a huge amount of

human knowledge and user experience. At present,

most of UGC is organized in a list structure with

extra information (e.g., category hierarchies in

online forums), or without any other information.

This “list-of-content” (list-based approach) is

simple and straightforward, but ineffective for

browsing and knowledge learning. Consider

the following case: a user wants to spend his

vacation in Edinburgh. He visits a CQA website

to explore which aspects are mostly asked. In this

scenario, he may browse some relevant categories

like “Travel:United Kingdom:Edinburgh” to get

useful information. He may also issue a query like

“travel in Edinburgh” to search relevant questions.

However, both the browsing and the searching give

the user a list of relevant contents (e.g., questions

shown in Table 1), not the direct knowledge. Thus,

the user has to read these contents, understand them,

classify them into various topics, and gain valuable
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Figure 1: An CET constructed from questions about Edinburgh

knowledge himself. Obviously, it is ineffective and

time-consuming.

The above problem calls for a new approach to

structuralize UGC in social media, which facilitates

users to seek knowledge (e.g., travel information

about Edinburgh) more effectively. Traditionally,

we can utilize topic models (Blei et al., 2003) or

social tagging to structuralize UGC. However, for

topic models, it is not easy to control the granularity

of topics, and it is hard for users to interpret a topic

only based on the multinomial distribution (Mei et

al., 2007). For social tagging, it is not applicable

in many sites and has sparsity problem (Shepitsen

et al., 2008). Thus, both topic models and social

tagging are not suitable for structuralizing UGC in

social media.

In this paper, we propose a novel hierarchical

entity-based approach, i.e., “cluster entity tree” or

CET, to structuralize UGC in social media by lever-

aging an existing large-scale entity repository. Fig-

ure 1 shows how CET structuralizes UGC in Table 1.

In this CET, each node contains one (named) entity

and a set of question IDs. With “edinburgh” as the

root entity, layer 1 includes all entities that co-occur

with “edinburgh”. Similarly, entities on layer 2 co-

occur with their parent entities on layer 1 and the

root entity “edinburgh”. For example, “city center”

co-occurs with “hotel” and “edinburgh” in Question

8. Deeper layers provide more specific topics about

different aspects of Edinburgh (e.g., Edinburgh’s

hotels). As shown in Fig. 1, the corresponding ques-

tion IDs are also attached in each node. In addition,

entities which share the same parent are clustered to

different groups (see dashed rectangles in Fig. 1)1.

1Single-node clusters are not surrounded by rectangles, like

Through this hierarchical structure, we can easily

browse corresponding questions and answers, and

learn knowledge about Edinburgh more effectively,

such as food and location. Moreover, since similar

entities (and corresponding questions) are grouped

in each layer, it also helps the system manage similar

contents.

By utilizing a large-scale entity repository, CET

avoids the granularity, interpretation, and sparsity

problems. Entity repositories like Freebase2 provide

a large number of named entities across various

pre-defined topics, which avoid the granularity and

sparsity problems. In addition, they usually give

descriptions of entities, which prevent the interpre-

tation problem. Therefore, CET is more suitable for

structuralizing UGC.

In this paper, we propose a three-step framework

to construct CETs.

1. Entity extraction. In this step, we extract en-

tities from documents using an existing entity

repository.

2. Tree construction. we build the co-occurrence

relationship between any two entities and con-

struct hierarchical “entity trees (ETs)”.

3. Hierarchical entity clustering. In an ET, some

entities are more similar than other entities

which share the same parents. Therefore, on

each layer of the ET we cluster entities with

the same parents (e.g., “london”, “nidry street

south”, and “city center” on layer 2 of Fig. 1)

and finally construct a CET.

We select Yahoo! Answers as a test case to evalu-

ate 1) the performance of our framework for con-

“hotel{5}” on layer 2.
2http://www.freebase.com/
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structing CET and 2) the effectiveness of CET in

UGC structuralization. Yahoo! Answers is a popular

CQA portal, where users post questions and provide

answers in different categories. Experimental results

demonstrate the good performance of our frame-

work for constructing CET. We further evaluate

the effectiveness of CET in structuralizing UGC

from both user and system aspects. From a user

aspect, our user study show that, with CET-based

organization, users perform significantly better in

knowledge learning than using list-based approach.

From a system aspect, CET boosts systems’ infor-

mation retrieval substantially: the mean reciprocal

rank (MRR) of vector space model (VSM) and query

likelihood language model (QLLM) are improved

by 9.3% and 8.2%, respectively.

To summarize, our contributions are three-fold:

1. We propose a novel hierarchical entity-based

approach to structuralize UGC in social media.

To our knowledge, we are the first to utilize en-

tities to structuralize UGC for content browsing

and knowledge learning at a large scale;

2. We present a three-step framework to construct

CETs and show its effectiveness from empirical

results;

3. We demonstrate the significant advantages of

our approach for both users and systems in

knowledge learning and retrieval.

The paper proceeds as follows. We present related

work in Section 2. We detail our framework to con-

struct CETs and show empirical results in Section

3. Section 4 and Section 5 evaluate the effectiveness

of CET on knowledge organization from user and

system aspects respectively. We conclude the paper

in Section 6.

2 Related Work

UGC organization in social media. Most UGC

in social media is unstructured, or organized in

a predefined category hierarchy. These categories

give shallow semantics of UGC, and boosts the

performance of information retrieval (Cao et al.,

2008; Duan et al., 2008; Cao et al., 2012) and

recommendation (Guo et al., 2008; Li et al., 2011).

With new content kept adding into a hierarchy, we

need to maintain category hierarchy (Yuan et al.,

2012) to make content within the same category

more topically cohesive.

Apart from category hierarchy, UGC can also be

organized by topic models and tags. Topic models,

such as latent Dirichlet allocation (LDA) (Blei et

al., 2003), are widely applied in document cluster-

ing and classification, However, it is not trivial to

control the granularity of topics (Chen et al., 2011).

What’s more, it is generally difficult to understand

a topic only from the multinomial distribution (Mei

et al., 2007). Social tagging provides an alternative

approach in document organization (Gupta et al.,

2010). In some UGC websites like stackoverflow3,

users usually add tags to describe their contents.

However, tags are not widely applicable and tags

are usually sparse (Shepitsen et al., 2008). Our

hierarchical entity-based approach prevents these

problems by employing a large-scale entity repos-

itory. As the entity repository provides a unified

set of entities across various of pre-defined topics,

and gives descriptions of entities, CET avoids the

granularity, interpretation and sparsity issues.

The work in (Zhu et al., 2013), which automati-

cally generates and updates topic terms to organize

UGC, is mostly related to our work. In this paper,

given a root topic, subtopics and lower-level topics

are extracted from UGC, which form a hierarchical

structure to organize corresponding UGC. However,

in (Zhu et al., 2013) more external sources are

utilized to identify subtopics. In addition, relation-

ships among subtopics which under the same parent

are not investigated. The metro maps proposed

in (Shahaf et al., 2013) are also related to our work.

Different from (Shahaf et al., 2013), we employ a

large-scale entity repository to extract more mean-

ingful and interpretable key terms (entities), which

make each subtopic much easier to understand.

Entity extraction. In our framework, we lever-

age an entity repository to extract named entities

from UGC. A common approach is to utilize a

Named Entity Recognition (NER) system like Stan-

ford NER (Finkel et al., 2005), which recognizes the

names of things (e.g., person and product names)

from texts. For cross-domain NER, (Rüd et al.,

2011) employed search engines. For short-text

NER, (Liu et al., 2012) proposed a graphical model.

However, most of above systems are restricted from

3http://stackoverflow.com/
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producing labels for a few entity classes. To ad-

dress the problem, (Ling and Weld, 2012) defined

a fine-grained set of 112 tags based on Freebase

for entity extraction. However, this approach still

faces the “low-recall” problem in the real world.

Our approach, which leverages a large-scale entity

repository, addresses this issue.

Entity-based document classification and

retrieval. Entity repository has been employed in

other research areas, like document classification

and retrieval. (Schonhofen, 2006) utilized

Wikipedia to classify documents. (Yerva et

al., 2012a) proposed an entity-based classification

for tweets. In addition, entity-based retrieval

models were proposed and applied in both QA

archives (Singh, 2012a) and tweets (Yerva et al.,

2012b). Besides, (Singh, 2012b) proposed an entity-

based translation language model and demonstrated

that it outperformed classical translation language

model in question retrieval. However, to the best of

our knowledge, no previous study leverages entities

to organize UGC in social media.

3 CET Construction

In this section, we formulate the framework to con-

struct CET and show the empirical results. Firstly,

we provide the definitions of the entity repository

and CET.

Definition 3.1 (Entity Repository) Let

ER = {R, g} be an entity repository, where

R is a set of named entities and g : R × R is a

mapping function that defines the similarity of any

two entities.

Note that we do not require a hierarchical structure

in an ER (like Freebase); only a similarity function

is needed.

Definition 3.2 (Cluster Entity Tree) Let D be a set

of documents, ER = {R, g} be an entity reposi-

tory, e be an entity, a cluster entity tree CETe =
(ve, V,E,C) is defined as a tree structure, with the

root node ve, node set V , edge set E, and cluster

set C . Each node vs ∈ V on CETe includes an

entity extracted from the set of documents De ∈
D containing e, and a list L(s) which stores the

indexes of documents containing entity s and its

superior entities. If vs is vt’s parent node, entity t

must co-occur with s and s’s all superior entities at

least once in the same document. Each element of C

(one cluster) includes a set of nodes which share the

same parent node, and the entities within a cluster

are more similar to each other than the entities in

other clusters.

3.1 Framework

This section shows our three-step framework for

constructing CET: entity extraction (Section 3.2.1),

tree construction (Section 3.2.2), and hierarchical

entity clustering (Section 3.2.3).

3.1.1 Entity Extraction

We adopt a simple entity repository based ap-

proach to extract entities, which address the “low-

recall” problem for traditional NER methods (details

are given in Section 3.3.2). This approach involves

two phases: candidate entity extraction and entropy-

based filtering.

Candidate entity extraction. We employ the

Stanford Parser4 to parse each document to a parse

tree. Then, we extract all noun phrases, preprocess

them (including stemming), and extract the noun

phrases which are included in our entity repository.

In our experiments, we adopt a large-scale enterprise

entity repository (anonymized for blind reviews).

Entropy-based filtering. The candidate entities

generated from the last step may contain many

false examples, which are not relevant to the main

semantics of documents, like “we”, “how do i”, etc.

To filter them, we propose an entropy-based method.

Given a document with a category label (or tags,

which are available in most UGC sites), we get the

distributions of each candidate entity over all top

categories. The entropy of a candidate entity ei is

calculated as follows:

Entropy(ei) = −

|C|
∑

c=1

Pc(ei)logPc(ei), (1)

where |C| is the number of top categories and Pc(ei)
is the number of ei in category c divided by all

number of candidate entities in that category.

Top-ranked entities are general terms among cat-

egories. We set a threshold α and remove all candi-

date entities with entropy larger than α. The setting

of α is a tradeoff: higher values will introduce more

noise, while smaller values will lead to decreased

4http://nlp.stanford.edu/software/lex-parser.shtml
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recall. In our experiments, we empirically set α as

1.5 since it provides the most satisfying results.

3.1.2 Tree Construction

Given an entity (e.g., “edinburgh”), we first search

documents containing this entity and make the entity

together with document ids as the root node. Then,

from searched documents we find all entities that co-

occur with the root entity. These entities and cor-

responding document ids form layer-1 nodes of the

entity tree (see the example in Fig. 1). Afterwards,

for each entity in layer-1 nodes, we search entities

that co-occur with it and its superiors, combine them

and corresponding document ids as new nodes, and

put these new nodes under current node, which form

layer-2 nodes. Iteratively, we construct the entity

tree with the given entity as the root.

3.1.3 Hierarchical Entity Clustering

Under the same parent, some entities5 may share

similar topics. Therefore, the final step is to hier-

archically cluster entities with the same parents at

different layers of entity trees. This step not only

facilitates knowledge learning but also reduces the

width of a tree. In this paper, we follow the work

in (Hu et al., 2012) and employ an agglomerative

clustering algorithm for two reasons: 1) it is easy

to implement and its time complexity is O(N2);
2) there is no need to set the number of clusters.

Although the clustering results may be influenced

by instance order, our empirical results demonstrate

its effectiveness. Any other advanced algorithms

like spectral clustering (Ng et al., 2002) can also be

applied, but that is not the emphasis of this paper.

Algorithm. For a set of entities with the same

parent, the agglomerative clustering algorithm

works as follows:

1. Select one entity and create a new cluster which

contains the entity;

2. Select the next entity ei, create an empty can-

didate list, calculate the similarity between the

entity and all existing clusters. Three strategies

are employed6:

• AC-MAX: If the similarity between entity

ei and entity ej in one of the clusters (the

5Here we use the entity to represent the node.
6We modify the clustering algorithm in (Hu et al., 2012)

slightly to assign a unique cluster for each entity.

first one) is larger than threshold θmax, we

put the cluster index and corresponding

similarity in the candidate list.

• AC-MIN: If the similarity between entity

ei and any entity ej in one of the clusters

is larger than threshold θmin, we put the

cluster index and corresponding similarity

in the candidate list.

• AC-AVG: If the mean similarity between

entity ei and any entity ej in one of the

clusters is larger than threshold θavg , we

put the cluster index and corresponding

similarity in the candidate list.

3. If the candidate list is not empty, put ei in the

cluster with highest similarly.

4. If the candidate list is empty, a new cluster with

ei as the element will be created.

5. Stop when all entities are clustered.

Similarity Function. In our entity repository, the

similarity between two entities is computed using

the approach in (Shi et al., 2010), which estimates

the similarity of two terms according to their first-

order and second-order co-occurrences. For exam-

ple, “such as NP, NP” is a good pattern for detecting

similar entities using first-order co-occurrences. In

addition, if two entities usually co-occur with a

third entity (second-order co-occurrence), these two

entities are likely to be similar. To construct simi-

larity functions, pattern-based approaches (Ohshima

et al., 2006; Zhang et al., 2009) utilize first-order

co-occurrences while distributional similarity ap-

proaches (Pasca et al., 2006; Pennacchiotti and

Pantel, 2009) employ second-order co-occurrences.

In the following, we briefly introduce the pattern-

based approach (PB) and the distributional similarity

approach (DS) in (Shi et al., 2010).

PB. Some well-designed patterns are leveraged

to extract similar entities from a huge repository of

webpages. The set of terms extracted by applying

a pattern one time is called a raw semantic class

(RASC). Given two entities ta and tb, PB calculates

their similarity based on the number of RASCs

containing both of them (Zhang et al., 2009):

Sim(ta, tb) = log(1 +

rab
∑

i=1

Pabi
)) ·

√

idf(ta) · idf(tb), (2)

where idf(ta) = log(1 + N
C(ta)

), Pabi is a pattern

which can generate RASC(s) containing both term
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ta and term tb, rab is the total number of such

patterns, N is the total number of RASCs, and

C(ta) is the number of RASCs containing ta. The

above similarity is normalized using the following

function:

SimPB(ta, tb) ==
logSim(ta, tb)

2 logSim(ta, ta)
+

logSim(ta, tb)

2 logSim(tb, tb)
. (3)

DS. DS approach assumes that terms appearing

in similar contexts tend to be similar. In this

approach, a term is represented by a feature vector,

with each feature corresponding to a context in

which the term appears. The similarity between two

terms is computed as the similarity between their

corresponding feature vectors. Jaccard similarity

is employed to estimate the similarity between two

terms. Suppose the feature vector of ta and tb are x

and y respectively,

SimDS(ta, tb) =

∑

i
min(xi, yi)

∑

i
(xi) +

∑

i
(yi)−

∑

i
min(xi, yi)

. (4)

Shi et al. (Shi et al., 2010) found that PB performed

better when dealing with proper nouns; while DS

was relatively good at estimating similarity of other

types of entities. The similarity function in our ER

follows the suggestion of (Shi et al., 2010): if at

least one entity is proper noun, PB is employed;

otherwise DS is used.

3.2 Experiments

3.2.1 Setup

We evaluate the performance of our framework

employing questions from Yahoo! Answers. 54.7

million questions are crawled from all 26 top cate-

gories in Yahoo! Answers, which consist of question

titles and corresponding categories. From these

questions, we construct the following two test sets

for evaluating entity extraction and entity clustering:

Set EE. This set is employed to evaluate the

performance of entity extraction. It contains 520

randomly sampled questions, 20 from each top cat-

egory. One author is asked to label entities for each

question.

Set EC. This set is constructed to automatically

evaluate hierarchical entity clustering and select the

best clustering strategy. The construction process is

as follows. First, we map the four top categories

of Yahoo! Answers to some categories of Freebase

manually, as shown in Table 2. Second, from

questions at each top category of Yahoo! Answers,

Table 2: Category mapping between Yahoo! Answers

and FreeBase

Yahoo! Answers FreeBase

Cars & Transportation Aviation, Transportation, Boats

Spaceflight, Automotive, Bicycles, Rail

Computers & Internet Computer, Internet

Soccer, Olympics,Sports, American football,

Sports Baseball,Basketball,Ice Hockey,Martial Arts,

Cricket,Tennis,Boxing,Skiing

Travel Travel, Location, Transportation

Table 3: Number of questions and entities in Set EC

Category Number of Questions Number of Entities

Cars & Transportation 1,220,427 3,267,596

Computers & Internet 2,912,280 7,324,655

Sports 2,363,758 6,230,868

Travel 1,347,801 3,728,286

we extract entities which appear exactly once in the

corresponding Freebase categories. For instance, if

an entity is extracted from questions in the cate-

gory Computers & Internet, and it appears two or

more times in Computer and Internet categories in

Freebase, it will be filtered. Therefore, each entity

is attached with a unique Freebase category label

(i.e., the ground truth for clustering). Questions

containing at least two entities are selected for Set

EC. Table 3 reports the statistics. Intuitively, entities

with a same Freebase category label should be in one

cluster.

Note that Set EC only covers a small set of real

entities and clustering on Set EC is partial clus-

tering. However, it leverages Freebase labels and

avoids manual labeling, which is time-consuming.

Furthermore, partial clustering results are enough

for evaluating different strategies’ performance and

choosing the best strategy.

Following the common practice, we evaluate en-

tity extraction using precision, recall, and F1 score.

For evaluating entity clustering results, we adopt B-

cubed metrics. As reported in (Amigó et al., 2009),

B-cubed metrics are more suitable than traditional

metrics, such as NMI and purity.

Table 4: Entity extraction for various methods

Method Precision Recall F1

Standord NER 0.750 0.155 0.257

FIGER 0.763 0.154 0.256

Freebase 0.644 0.595 0.619

Our 0.647 0.809 0.719
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Table 5: Clustering results using AC-MAX (θmax=0.1)

Level
Travel Cars & Transportation Computer & Internet Sports

Count P R F1 Count P R F1 Count P R F1 Count P R F1

1 748 0.972 0.653 0.743 1281 0.948 0.868 0.897 3064 0.913 0.664 0.743 890 0.941 0.883 0.901

2 200 0.974 0.730 0.798 1202 0.989 0.956 0.965 11344 0.961 0.842 0.879 636 0.978 0.964 0.963

3 120 1.000 0.833 0.890 858 1.000 0.981 0.988 8184 0.978 0.899 0.920 492 0.965 0.882 0.899

4 NA NA NA NA 1776 1.000 0.980 0.986 3648 0.990 0.908 0.934 1080 0.978 0.844 0.881

5 NA NA NA NA NA NA NA NA 2520 1.000 0.952 0.968 NA NA NA NA

Total 1068 0.976 0.688 0.770 5117 0.984 0.946 0.959 28760 0.968 0.857 0.891 3098 0.965 0.886 0.907

3.2.2 Results: Entity Extraction

Two ERs (i.e., ours and Freebase) are employed

in entity extraction for comparison. In addition, we

compare our approach with Stanford NER (Finkel

et al., 2005) and fine-grained entity recognition

(FIGER) (Ling and Weld, 2012). Table 4 reports

the results of different methods. We can find that

Stanford NER and FIGER get a relatively high

precision in extracting entities. However, their

recalls are very low and only about 15% of entities

are recognized. With the help of entity reposito-

ries, recall is significantly improved with a small

decrease of precision. Therefore, the F1s of entity-

based approaches are much higher. This observation

shows the great advantage of utilizing an entity

repositories in entity extraction and the effectiveness

of our approach. As our ER performs better than

Freebase, we adopt it as our entity repository in the

following evaluations.

3.2.3 Results: Hierarchical Entity Clustering

Table 5 reports the count of clusters, B-Cubed

Precision, Recall, and F1 for different layers of

clustering across four categories using AC-MAX. In

our experiments, AC-MAX performed better than

AC-MIN and AC-AVG. Due to space limitations,

we only report the results of AC-MAX here. For

AC-MAX, we changed the settings of θ from 0.01

to 0.9, and the best performance was achieved when

θmax was set at around 0.1. From Table 5 we

can find that, although AC-MAX’s accuracy varies

across categories (e.g., the F1 of Transportation is

much higher than that of Travel), it performs well in

general. Thus, we adopt AC-MAX with θ = 0.1 for

hierarchical entity clustering.

4 User Study

In this section, we investigate the influence of CET

on users’ content browsing and knowledge learning

from a user study. In the study, we design 24 tasks in

four popular Yahoo! Answers categories (see Table

2). For each category, we design three knowledge-

learning tasks and three question-search tasks, as

shown in Table A.1 in the supplementary material.

A knowledge-learning task asks for some knowl-

edge about a main entity from question texts. For

instance, “find the games running on macbook pro”

requires game names as the answer, where the main

entity is “macbook pro”. A question-search task,

however, asks users to find similar questions to

the question in the task. For example, “questions

about who will win the MVP in NBA this year”

asks for finding similar questions, and filling their

question IDs as the answer. For each task, we

give some suggested keywords (entities) to facilitate

information gathering.

To evaluate user experience, we ask participants

to fill out a questionnaire after each task. Fol-

lowing the work in (Kato et al., 2012), we collect

information from 5 aspects: familiarity, easiness,

satisfaction, adequate time, and helpfulness. A 5-

point Likert scale is designed for each questionnaire.

“5” means the participant totally agrees while “1”

means the participant totally disagrees.

4.1 Setup

Programs. We develop two programs in our user

study. One is CET-based, and the other is traditional

list-based7 . The list-based program searches ques-

tions by utilizing Apache Lucene8. The standard an-

alyzer and the default search algorithm are adopted.

For each query, top 200 most relevant questions are

retrieved.

Data. We extract 70,195 questions which contain

at least one of the 24 main entities (see Table A.1)

7The interface of CET-based program is provided in the

supplementary material (see Fig. A.1). The interface of list-

based program is similar, but the CET display area is replaced

by a flat-ranked list.
8http://lucene.apache.org/core/
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Table 6: User study results

Knowledge-learning Tasks Question-search Tasks

CET-based List-based CET-based List-based

# Queries 2.99 4.47 2.56 3.38

# Answers 8.32 6.06 10.60 10.92

Precision 0.38 0.19 0.40 0.44

Time 136.44 121.87 103.71 87.75

Table 7: Questionnaire results

Knowledge-learning Tasks Question-search Tasks

CET-based List-based CET-based List-based

Familiarity 3.18 3.22 3.07 3.28

Easiness 3.64 3.66 4.10 4.06

Satisfaction 3.70 2.94 3.86 3.44

Enough Time 3.87 3.83 4.44 4.54

Helpfulness 4.16 3.03 4.31 3.71

in the four categories. For each question, we extract

the entities with the help of our entity repository. For

each main entity, we build the corresponding CET

from all extracted questions.

Participants. Sixteen volunteers are invited in

the user study. They are first briefly informed of the

research design and taught how to use two programs.

To familiarize the participants with our programs

promptly, we provide demonstrations using sample

entities. Each volunteer is asked to finish 12 tasks

(6 knowledge-learning tasks and 6 question-search

tasks) using the CET-based program and 12 other

tasks using the list-based program in random order.

Thus, each task is finished by exactly 8 different

participants using each program.

4.2 Results and Discussions

Table 6 reports the user study results, where we give

the statistics for users’ performance with the two

programs. We evaluate from the number of queries

issued, number of answers found, the precision

of answers, and query time for each task. As

our 24 tasks contain both knowledge-learning tasks

and question-search tasks, we report their results

separately. Z-tests are employed for significance

tests.

From Table 6, we observe that more queries are

issued in the knowledge-learning tasks than in the

question-search tasks using both programs. How-

ever, the CET-based program reduces the number

of queries substantially in both tasks. Because the

CET-based program provides a series of clustered

entities, it helpes users further refine queries through

clicking on entities rather than reconstructing a new

query. However, the list-based program only lists

relevant questions, and users have to issue new

queries according to returned questions.

By using the CET-based program, volunteers find

more answers in knowledge-learning tasks (z =
1.69, p < 0.05). The reason is that the CET-

based program clusters similar results in the same

group, and if the user finds one answer she can

easily get more answers. On the contrary, the

list-based program returns a list of questions, and

users need to find answers question-by-question.

For question-search tasks, users of the list-based

program find more answers, but the difference is not

significant (z = 0.19). As the list-based program

returns similar questions as top-ranked results, users

are able to fill in answers easily. For CET-based

program users, they have to find corresponding key

entities in the CETs first. Therefore, they spend

more time (the fourth row in Table 6) finding entities

and less time filling answers. It is worth noting

that our GUI prototype for CET is non-optimal, and

users’ searching time on CET-based program can be

further reduced with better user interface.

The precision of answers from CET-based pro-

gram users is twice of that from list-based program

users (z = 4.15, p < 0.0001) in knowledge-

learning tasks, which demonstrates the advantage of

CET in helping knowledge-learning. For question-

search tasks, CET-based program users perform

slightly worse than list-based program users, but the

difference is not significant (z = 0.48). Since users

of the CET-based program spend more time finding

entities, they have limited time to check the answers.

In both tasks, users spend more time on the

CET-based program. According to users’ post-user-

study feedbacks, a few volunteers reported that they

sometimes spent a considerable amount of time on

finding entities from CETs; however, one positive

observation is that most users find “the entity-based

interface” very interesting, which stimulates them to

spend more time on exploring answers.

The questionnaires reveal more about user expe-

rience on these two programs (see Table 7). Users’

responses to task familiarity and easiness are similar.

However, users of entity-based interface are more

satisfied in both knowledge-learning tasks (z =
3.98, p < 0.0001) and question-search tasks (z =
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1.38), and they feel that entity-based interface is

more helpful in finding answers for both knowledge-

learning tasks (z = 6.47, p < 0.0001) and question-

search tasks (z = 2.55, p < 0.01). These promising

observations show that CET helps knowledge learn-

ing greatly through structuralizing content.

5 CET-based Question Re-Ranking

In this section, we show that CET also helps systems

to better retrieve information through re-ranking. In

the following, we continue to use Yahoo! Answers

as a test case.

Algorithm 1 CET-based search results re-ranking

Input: query q, question collection Q, a ranked list of

k relevant questions Qq = {q1, q2, ..., qk} to q, an

entity repository ER, an empty list Θ.

Output: A new ranked list of questions.

1: Extract entities from each question of Q and

construct a entity co-occurrence graph;

2: Get the PageRank score of each entity;

3: if There is no entity e in q then

4: return Qq;

5: else

6: Identify the key entity e from q which has the

highest PageRank score;

7: Construct the CET cete from Q based on ER;

8: for each question qi do

9: For all entities in qi, build a entity chain C in

descending order of PageRank scores;

10: From C extract the first entity ê that is not

similar to e;

11: if ê exists then

12: Put qi in the corresponding cluster of nodes;

13: else

14: Put qi in Θ;

15: end if

16: end for

17: end if

18: Rank all clusters on cete according to their first

elements’ original ranking;

19: Output the final ranking cluster by cluster and append

the questions in Θ at the last.

Intuitively, questions sharing similar topics

should be ranked similarly. However, traditional

question retrieval models (Cao et al., 2010) such as

QLLM and VSM do not capture key semantics and

give more weights for entity terms. CET provides

a feasible way to address this issue. By utilizing

CET, entities are given more weight while trivial

Table 8: Re-ranking results for VSM and QLLM (*

means that p < 0.05 in students’ t-test)

VSM Re-ranking QLLM Re-ranking

MRR 0.3838 0.4195* (9.30%) 0.3593 0.3889* (8.24%)

MAP 0.3376 0.3558* (5.39%) 0.3326 0.3479* (4.60%)

Prec@1 0.2500 0.3125* (25.00%) 0.2438 0.2688* (10.25%)

words are not. In addition, through clustering

questions with similar topics, those questions which

are ranked lower will be brought higher by their

top-ranked neighbors.

Algorithm 1 illustrates the re-ranking algorithm in

detail. We first extract entities from each question of

the whole question collection, and construct a entity

co-occurrence graph (Line 1). Then, we calculate

the PageRank score of each entity (Line 2). Line 3-

5 check whether q contains at least one entity. If

the answer is no, we return the original ranking.

Otherwise, we identify the key entity in q (Line

6) and construct the CET cete whose root entity

is e (Line 7). Line 8-16 iteratively put questions

in corresponding clusters of cete. In Line 8, we

first build an entity chain for question qi, in which

entities of qi are ranked according to their PageRank

scores. Afterwards, the first entity ê, which is not

similar to e (the similarity is calculated in Section

4.2.1 and the threshold of similarity is set to 0.1), is

picked up as the main aspect of e, and qi is grouped

into the corresponding cluster on cete (Line 7-8). If

ê does not exist, we put qi in a new cluster (Line

13-14). Then, we rank all clusters according to

their first elements’ original rankings (Line 18) and

output the final re-ranked list (Line 19).

We perform our re-ranking on 160 randomly

selected questions from Computers & Internet and

Travel categories of our data set9. Each category

contains 80 questions. All other questions in these

two categories constitute the question collection Q.

For each question, we utilize the VSM and QLLM10

respectively to get the top 15 most relevant questions

(excluding itself). The correct ranking is manually

labeled and checked by two annotators. We firstly

employed the VSM and QLLM respectively to re-

trieve the top 15 results and then obtained manual

judgments. Given a retrieved question by VSM

9These 160 questions are not used for constructing the entity

co-occurrence graph.
10Following (Zhai and Lafferty, 2004), we set λ to 0.2.
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or QLLM, two assessors are asked to label it with

“relevant” or “irrelevant”. If their annotations are

opposite, the third assessor is involved to determine

the final label.

We re-rank these questions using Algorithm 1.

Table 8 shows the results of MRR, mean average

precision (MAP), and Precision@1. We can see that

CET-based re-ranking improves the performance of

standard retrieval models substantially. For VSM,

our re-ranking boosts the MRR and MAP by 9.3%

and 5.4%, respectively. It is worth noting that our re-

ranking improves Prec@1 significantly: from 0.25

to 0.31. The reason is that traditional methods

may give relatively low weights to the key terms

(entities), while CET-based re-ranking addresses

the problem. QLLM and re-ranking report similar

results. Figures 2 and 3 illustrate the performance

of various approaches across categories. We find

that our re-ranking is neither category-biased nor

algorithm-biased, yet it performs better than origi-

nal models on both categories. The above results

demonstrate that, by utilizing the hierarchical entity-

based approach, CET greatly improves the retrieval

performance of these two standard models.

6 Conclusion and Future Work

Traditional list-based organization of UGC in social

media is not effective for content browsing and

knowledge learning due to large volume of doc-

uments. To address this problem, we propose a

novel hierarchical entity-based approach to struc-

turalize UGC in social media. By using a large-

scale entity repository, we construct a three-step

framework to organize knowledge in “cluster entity

trees”. Experimental results show the effectiveness

of the framework in constructing CET. We further

evaluate the performance of CET on knowledge

organization from both user and system aspects.

Our user study demonstrates that, with CET-based

organization, users perform significantly better in

knowledge learning than using list-based approach.

In addition, CET boosts systems’ content search

performance substantially through re-ranking.

To our best knowledge, this work is the first

attempt to utilize entities to structuralize UGC in

social media, and there are some limitations to be

improved in our future work. First, we employ

Figure 2: Re-ranking results of Computer & Internet

Figure 3: Re-ranking results of Travel

Yahoo! Answers as our test data, in which questions

(documents) are usually short. We observe that

nearly 92% of all 54.7 million questions contain

1-4 entities, which means the depth of CETs are

usually not so deep. However, long documents,

such as Blog posts, will lead to deep CETs and

hinder users’ knowledge learning. Second, our

current entity extraction focuses on named entities

instead of canonical entities. In the future, we

plan to employ document summarization techniques

to shorten the depth of CETs. We also aim to

incorporate semantic analysis and normalize named

entities to canonical entities, which make CET more

suitable for practical use.
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Stefan Rüd, Massimiliano Ciaramita, Jens Müller, and

Hinrich Schütze. 2011. Piggyback: using search

engines for robust cross-domain named entity recogni-

tion. In Proceedings of the 49th Annual Meeting of the

Association for Computational Linguistics: Human

Language Technologies - Volume 1, ACL-HLT ’11,

pages 965–975, Stroudsburg, PA, USA. Association

for Computational Linguistics.

Peter Schonhofen. 2006. Identifying document topics

using the wikipedia category network. In Proceedings

1531



of the 2006 IEEE/WIC/ACM International Conference

on Web Intelligence, WI ’06, pages 456–462, Wash-

ington, DC, USA. IEEE Computer Society.

Dafna Shahaf, Jaewon Yang, Caroline Suen, Jeff Jacobs,

Heidi Wang, and Jure Leskovec. 2013. Information

cartography: creating zoomable, large-scale maps

of information. In Proceedings of the 19th ACM

SIGKDD international conference on Knowledge

discovery and data mining, KDD ’13, pages 1097–

1105, New York, NY, USA. ACM.

Andriy Shepitsen, Jonathan Gemmell, Bamshad

Mobasher, and Robin Burke. 2008. Personalized

recommendation in social tagging systems using

hierarchical clustering. In Proceedings of the 2008

ACM conference on Recommender systems, RecSys

’08, pages 259–266, New York, NY, USA. ACM.

Shuming Shi, Huibin Zhang, Xiaojie Yuan, and Ji-

Rong Wen. 2010. Corpus-based semantic class

mining: distributional vs. pattern-based approaches.

In Proceedings of the 23rd International Conference

on Computational Linguistics, COLING ’10, pages

993–1001, Stroudsburg, PA, USA. Association for

Computational Linguistics.

Amit Singh. 2012a. Entity based QA retrieval. In

Proceedings of the 2012 Joint Conference on Empir-

ical Methods in Natural Language Processing and

Computational Natural Language Learning, EMNLP-

CoNLL ’12, pages 1266–1277, Stroudsburg, PA,

USA. Association for Computational Linguistics.

Amit Singh. 2012b. Entity based translation language

model. In Proc. of WWW, WWW ’12 Companion,

pages 599–600.

Surender Reddy Yerva, Zoltán Miklós, and Karl Aberer.

2012a. Entity-based classification of twitter messages.

IJCSA, 9(1):88–115.

Surender Reddy Yerva, Zoltan Miklos, Flavia Grosan,

Alexandru Tandrau, and Karl Aberer. 2012b.

Tweetspector: entity-based retrieval of tweets. In

Proc. of SIGIR, SIGIR ’12, pages 1016–1016.

Quan Yuan, Gao Cong, Aixin Sun, Chin-Yew Lin,

and Nadia Magnenat Thalmann. 2012. Category

hierarchy maintenance: a data-driven approach. In

Proceedings of the 35th international ACM SIGIR con-

ference on Research and development in information

retrieval, SIGIR ’12, pages 791–800, New York, NY,

USA. ACM.

Chengxiang Zhai and John Lafferty. 2004. A study

of smoothing methods for language models applied

to information retrieval. ACM Trans. Inf. Syst.,

22(2):179–214, April.

Huibin Zhang, Mingjie Zhu, Shuming Shi, and Ji-Rong

Wen. 2009. Employing topic models for pattern-

based semantic class discovery. In Proceedings of the

Joint Conference of the 47th Annual Meeting of the

ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume

1 - Volume 1, ACL ’09, pages 459–467, Stroudsburg,

PA, USA. Association for Computational Linguistics.

Xingwei Zhu, Zhao-Yan Ming, Xiaoyan Zhu, and Tat-

Seng Chua. 2013. Topic hierarchy construction

for the organization of multi-source user generated

contents. In Proceedings of the 36th international

ACM SIGIR conference on Research and development

in information retrieval, SIGIR ’13, pages 233–242,

New York, NY, USA. ACM.

1532



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1533–1544,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Semantic Parsing on Freebase from Question-Answer Pairs

Jonathan Berant Andrew Chou Roy Frostig Percy Liang
Computer Science Department, Stanford University

{joberant,akchou}@stanford.edu {rf,pliang}@cs.stanford.edu

Abstract

In this paper, we train a semantic parser that
scales up to Freebase. Instead of relying on
annotated logical forms, which is especially
expensive to obtain at large scale, we learn
from question-answer pairs. The main chal-
lenge in this setting is narrowing down the
huge number of possible logical predicates for
a given question. We tackle this problem in
two ways: First, we build a coarse mapping
from phrases to predicates using a knowledge
base and a large text corpus. Second, we
use a bridging operation to generate additional
predicates based on neighboring predicates.
On the dataset of Cai and Yates (2013), despite
not having annotated logical forms, our sys-
tem outperforms their state-of-the-art parser.
Additionally, we collected a more realistic and
challenging dataset of question-answer pairs
and improves over a natural baseline.

1 Introduction

We focus on the problem of semantic parsing nat-
ural language utterances into logical forms that can
be executed to produce denotations. Traditional se-
mantic parsers (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Kwiatkowski et al., 2010) have two limitations: (i)
they require annotated logical forms as supervision,
and (ii) they operate in limited domains with a small
number of logical predicates. Recent developments
aim to lift these limitations, either by reducing the
amount of supervision (Clarke et al., 2010; Liang et
al., 2011; Goldwasser et al., 2011; Artzi and Zettle-
moyer, 2011) or by increasing the number of logical

Occidental College, Columbia University

Execute on Database

Type.University u Education.BarackObama

Type.University

Education

BarackObama

Which college did Obama go to ?

alignment

alignment

bridging

Figure 1: Our task is to map questions to answers via la-
tent logical forms. To narrow down the space of logical
predicates, we use a (i) coarse alignment based on Free-
base and a text corpus and (ii) a bridging operation that
generates predicates compatible with neighboring predi-
cates.

predicates (Cai and Yates, 2013). The goal of this
paper is to do both: learn a semantic parser with-
out annotated logical forms that scales to the large
number of predicates on Freebase.

At the lexical level, a major challenge in semantic
parsing is mapping natural language phrases (e.g.,
“attend”) to logical predicates (e.g., Education).
While limited-domain semantic parsers are able
to learn the lexicon from per-example supervision
(Kwiatkowski et al., 2011; Liang et al., 2011), at
large scale they have inadequate coverage (Cai and
Yates, 2013). Previous work on semantic parsing on
Freebase uses a combination of manual rules (Yahya
et al., 2012; Unger et al., 2012), distant supervision
(Krishnamurthy and Mitchell, 2012), and schema
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matching (Cai and Yates, 2013). We use a large
amount of web text and a knowledge base to build a
coarse alignment between phrases and predicates—
an approach similar in spirit to Cai and Yates (2013).

However, this alignment only allows us to gen-
erate a subset of the desired predicates. Aligning
light verbs (e.g., “go”) and prepositions is not very
informative due to polysemy, and rare predicates
(e.g., “cover price”) are difficult to cover even given
a large corpus. To improve coverage, we propose
a new bridging operation that generates predicates
based on adjacent predicates rather than on words.

At the compositional level, a semantic parser must
combine the predicates into a coherent logical form.
Previous work based on CCG requires manually
specifying combination rules (Krishnamurthy and
Mitchell, 2012) or inducing the rules from anno-
tated logical forms (Kwiatkowski et al., 2010; Cai
and Yates, 2013). We instead define a few simple
composition rules which over-generate and then use
model features to simulate soft rules and categories.
In particular, we use POS tag features and features
on the denotations of the predicted logical forms.

We experimented with two question answering
datasets on Freebase. First, on the dataset of Cai
and Yates (2013), we showed that our system out-
performs their state-of-the-art system 62% to 59%,
despite using no annotated logical forms. Second,
we collected a new realistic dataset of questions by
performing a breadth-first search using the Google
Suggest API; these questions are then answered by
Amazon Mechanical Turk workers. Although this
dataset is much more challenging and noisy, we are
still able to achieve 31.4% accuracy, a 4.5% ab-
solute improvement over a natural baseline. Both
datasets as well as the source code for SEMPRE, our
semantic parser, are publicly released and can be
downloaded from http://nlp.stanford.edu/

software/sempre/.

2 Setup

Problem Statement Our task is as follows: Given
(i) a knowledge base K, and (ii) a training set of
question-answer pairs {(xi, yi)}ni=1, output a se-
mantic parser that maps new questions x to answers
y via latent logical forms z and the knowledge base
K.

2.1 Knowledge base

Let E denote a set of entities (e.g., BarackObama),
and let P denote a set of properties (e.g.,
PlaceOfBirth). A knowledge base K is a set
of assertions (e1, p, e2) ∈ E × P × E (e.g.,
(BarackObama, PlaceOfBirth, Honolulu)).

We use the Freebase knowledge base (Google,
2013), which has 41M non-numeric entities, 19K
properties, and 596M assertions.1

2.2 Logical forms

To query the knowledge base, we use a logical lan-
guage called Lambda Dependency-Based Compo-
sitional Semantics (λ-DCS)—see Liang (2013) for
details. For the purposes of this paper, we use a re-
stricted subset called simple λ-DCS, which we will
define below for the sake of completeness.

The chief motivation of λ-DCS is to produce
logical forms that are simpler than lambda cal-
culus forms. For example, λx.∃a.p1(x, a) ∧
∃b.p2(a, b) ∧ p3(b, e) is expressed compactly in
λ-DCS as p1.p2.p3.e. Like DCS (Liang et al.,
2011), λ-DCS makes existential quantification im-
plicit, thereby reducing the number of variables.
Variables are only used for anaphora and building
composite binary predicates; these do not appear in
simple λ-DCS.

Each logical form in simple λ-DCS is either a
unary (which denotes a subset of E) or a binary
(which denotes a subset of E × E). The basic λ-
DCS logical forms z and their denotations JzKK are
defined recursively as follows:
• Unary base case: If e ∈ E is an entity (e.g.,
Seattle), then e is a unary logical form with
JzKK = {e}.
• Binary base case: If p ∈ P is a property (e.g.,
PlaceOfBirth), then p is a binary logical form
with JpKK = {(e1, e2) : (e1, p, e2) ∈ K}.2
• Join: If b is a binary and u is a unary, then b.u

(e.g., PlaceOfBirth.Seattle) is a unary de-
noting a join and project: Jb.uKK = {e1 ∈ E :
∃e2.(e1, e2) ∈ JbKK ∧ e2 ∈ JuKK}.

1In this paper, we condense Freebase names for readability
(/people/person becomes Person).

2Binaries can be also built out of lambda abstractions (e.g.,
λx.Performance.Actor.x), but as these constructions are
not central to this paper, we defer to (Liang, 2013).
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• Intersection: If u1 and u2 are both unaries,
then u1 u u2 (e.g., Profession.Scientist u
PlaceOfBirth.Seattle) denotes set intersec-
tion: Ju1 u u2KK = Ju1KK ∩ Ju2KK.
• Aggregation: If u is a unary, then count(u)

denotes the cardinality: Jcount(u)KK =
{|JuKK|}.

As a final example, “number of dramas star-
ring Tom Cruise” in lambda calculus would
be represented as count(λx.Genre(x, Drama) ∧
∃y.Performance(x, y) ∧ Actor(y, TomCruise));
in λ-DCS, it is simply count(Genre.Drama u
Performance.Actor.TomCruise).

It is useful to think of the knowledge base K as
a directed graph in which entities are nodes and
properties are labels on the edges. Then simple λ-
DCS unary logical forms are tree-like graph patterns
which pick out a subset of the nodes.

2.3 Framework

Given an utterance x, our semantic parser constructs
a distribution over possible derivations D(x). Each
derivation d ∈ D(x) is a tree specifying the appli-
cation of a set of combination rules that culminates
in the logical form d.z at the root of the tree—see
Figure 2 for an example.

Composition Derivations are constructed recur-
sively based on (i) a lexicon mapping natural lan-
guage phrases to knowledge base predicates, and (ii)
a small set of composition rules.

More specifically, we build a set of derivations for
each span of the utterance. We first use the lexicon to
generate single-predicate derivations for any match-
ing span (e.g., “born” maps to PeopleBornHere).
Then, given any logical form z1 that has been con-
structed over the span [i1 : j1] and z2 over a non-
overlapping span [i2 : j2], we generate the following
logical forms over the enclosing span [min(i1, i2) :
max(j1, j2)]: intersection z1 u z2, join z1.z2, ag-
gregation z1(z2) (e.g., if z1 = count), or bridging
z1 u p.z2 for any property p ∈ P (explained more in
Section 3.2).3

Note that the construction of derivations D(x)
allows us to skip any words, and in general heav-

3We also discard logical forms are incompatible according
to the Freebase types (e.g., Profession.Politician u
Type.City would be rejected).

Type.Locationu PeopleBornHere.BarackObama

Type.Location

where

was PeopleBornHere.BarackObama

BarackObama

Obama

PeopleBornHere

born

?
join

intersection

lexicon

lexicon lexicon

Figure 2: An example of a derivation d of the utterance
“Where was Obama born?” and its sub-derivations, each
labeled with composition rule (in blue) and logical form
(in red). The derivation d skips the words “was” and “?”.

ily over-generates. We instead rely on features and
learning to guide us away from the bad derivations.

Modeling Following Zettlemoyer and Collins
(2005) and Liang et al. (2011), we define a
discriminative log-linear model over derivations
d ∈ D(x) given utterances x: pθ(d | x) =

exp{φ(x,d)>θ}∑
d′∈D(x) exp{φ(x,d′)>θ} , where φ(x, d) is a feature

vector extracted from the utterance and the deriva-
tion, and θ ∈ Rb is the vector of parameters to
be learned. As our training data consists only of
question-answer pairs (xi, yi), we maximize the log-
likelihood of the correct answer (Jd.zKK = yi), sum-
ming over the latent derivation d. Formally, our
training objective is

O(θ) =
n∑
i=1

log
∑

d∈D(x):Jd.zKK=yi

pθ(d | xi). (1)

Section 4 describes an approximation of this ob-
jective that we maximize to choose parameters θ.

3 Approach

Our knowledge base has more than 19,000 proper-
ties, so a major challenge is generating a manage-
able set of predicates for an utterance. We propose
two strategies for doing this. First (Section 3.1),
we construct a lexicon that maps natural language
phrases to logical predicates by aligning a large text
corpus to Freebase, reminiscent of Cai and Yates
(2013). Second, we generate logical predicates com-
patible with neighboring predicates using the bridg-
ing operation (Section 3.2). Bridging is crucial when
aligning phrases is difficult or even impossible. The
derivations produced by combining these predicates
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grew up in[Person,Location]

born in[Person,Date]

married in[Person,Date]

born in[Person,Location]

DateOfBirth

PlaceOfBirth

Marriage.StartDate

PlacesLived.Location

(BarackObama,Honolulu)

(MichelleObama,Chicago)

(BarackObama,Chicago)(RandomPerson,Seattle)

F(r1) F(r2)

C(r1, r2)

Alignment features

log-phrase-count:log(15765)

log-predicate-count: log(9182)

log-intersection-count: log(6048)

KB-best-match: 0

Figure 3: We construct a bipartite graph over phrasesR1

and predicates R2. Each edge (r1, r2) is associated with
alignment features.

are scored using features that capture lexical, syn-
tactic and semantic regularities (Section 3.3).

3.1 Alignment

We now discuss the construction of a lexicon L,
which is a mapping from natural language phrases
to logical predicates accompanied by a set of fea-
tures. Specifically, for a phrase w (e.g., “born in”),
L(w) is a set of entries (z, s), where z is a predicate
and s is the set of features. A lexicon is constructed
by alignment of a large text corpus to the knowledge
base (KB). Intuitively, a phrase and a predicate align
if they co-occur with many of the same entities.

Here is a summary of our alignment proce-
dure: We construct a set of typed4 phrases
R1 (e.g., “born in”[Person,Location]) and pred-
icates R2 (e.g., PlaceOfBirth). For each
r ∈ R1 ∪ R2, we create its extension
F(r), which is a set of co-occurring entity-
pairs (e.g., F(“born in”[Person,Location]) =
{(BarackObama, Honolulu), . . . }. The lexicon is
generated based on the overlap F(r1) ∩ F(r2), for
r1 ∈ R1 and r2 ∈ R2.

Typed phrases 15 million triples (e1, r, e2) (e.g.,
(“Obama”, “was also born in”, “August 1961”))

4Freebase associates each entity with a set of types using the
Type property.

were extracted from ClueWeb09 using the ReVerb
open IE system (Fader et al., 2011). Lin et al. (2012)
released a subset of these triples5 where they were
able to substitute the subject arguments with KB en-
tities. We downloaded their dataset and heuristically
replaced object arguments with KB entities by walk-
ing on the Freebase graph from subject KB entities
and performing simple string matching. In addition,
we normalized dates with SUTime (Chang and Man-
ning, 2012).

We lemmatize and normalize each text phrase
r ∈ R1 and augment it with a type signature
[t1, t2] to deal with polysemy (“born in” could ei-
ther map to PlaceOfBirth or DateOfBirth). We
add an entity pair (e1, e2) to the extension of
F(r[t1, t2]) if the (Freebase) type of e1 (e2) is t1
(t2). For example, (BarackObama, 1961) is added
to F(“born in”[Person, Date]). We perform a simi-
lar procedure that uses a Hearst-like pattern (Hearst,
1992) to map phrases to unary predicates. If a
text phrase r ∈ R1 matches the pattern “(is|was
a|the) x IN”, where IN is a preposition, then we
add e1 to F(x). For (Honolulu, “is a city in”,
Hawaii), we extract x = “city ′′ and add Honolulu

to F(“city”). From the initial 15M triples, we ex-
tracted 55,081 typed binary phrases (9,456 untyped)
and 6,299 unary phrases.

Logical predicates Binary logical predicates con-
tain (i) all KB properties6 and (ii) concatenations of
two properties p1.p2 if the intermediate type repre-
sents an event (e.g., the married to relation is rep-
resented by Marriage.Spouse). For unary pred-
icates, we consider all logical forms Type.t and
Profession.t for all (abstract) entities t ∈ E (e.g.
Type.Book and Profession.Author). The types
of logical predicates considered during alignment is
restricted in this paper, but automatic induction of
more compositional logical predicates is an interest-
ing direction. Finally, we define the extension of a
logical predicate r ∈ R2 to be its denotation, that is,
the corresponding set of entities or entity pairs.

Lexicon construction Given typed phrases R1,
logical predicates R2, and their extensions F , we
now generate the lexicon. It is useful to think of a

5http://knowitall.cs.washington.edu/
linked_extractions/

6We filter properties from the domains user and base.
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Category Description
Alignment Log of # entity pairs that occur with the

phrase r1 (|F(r1)|)
Log of # entity pairs that occur with the
logical predicate r2 (|F(r2)|)
Log of # entity pairs that occur with both
r1 and r2 (|F(r1) ∩ F(r2)|)
Whether r2 is the best match for r1 (r2 =
arg maxr |F(r1) ∩ F(r)|)

Lexicalized Conjunction of phrase w and predicate z
Text similarity Phrase r1 is equal/prefix/suffix of s2

Phrase overlap of r1 and s2
Bridging Log of # entity pairs that occur with bridg-

ing predicate b (|F(b)|)
Kind of bridging (# unaries involved)
The binary b injected

Composition # of intersect/join/bridging operations
POS tags in join/bridging and skipped
words
Size of denotation of logical form

Table 1: Full set of features. For the alignment and text sim-
ilarity, r1 is a phrase, r2 is a predicate with Freebase name s2,
and b is a binary predicate with type signature (t1, t2).

bipartite graph with left nodes R1 and right nodes
R2 (Figure 3). We add an edge (r1, r2) if (i) the
type signatures of r1 and r2 match7 and (ii) their ex-
tensions have non-empty overlap (F(r1)∩F(r2) 6=
∅). Our final graph contains 109K edges for binary
predicates and 294K edges for unary predicates.

Naturally, non-zero overlap by no means guaran-
tees that r1 should map to r2. In our noisy data,
even “born in” and Marriage.EndDate co-occur 4
times. Rather than thresholding based on some cri-
terion, we compute a set of features, which are used
by the model downstream in conjunction with other
sources of information.

We compute three types of features (Table 1).
Alignment features are unlexicalized and measure
association based on argument overlap. Lexicalized
features are standard conjunctions of the phrase w
and the logical form z. Text similarity features com-
pare the (untyped) phrase (e.g., “born”) to the Free-
base name of the logical predicate (e.g., “People
born here”): Given the phrase r1 and the Freebase
name s2 of the predicate r2, we compute string sim-
ilarity features such as whether r1 and s2 are equal,

7Each Freebase property has a designated type signa-
ture, which can be extended to composite predicates, e.g.,
sig(Marriage.StartDate) = (Person,Date).

as well as some other measures of token overlap.

3.2 Bridging
While alignment can cover many predicates, it is un-
reliable for cases where the predicates are expressed
weakly or implicitly. For example, in “What govern-
ment does Chile have?”, the predicate is expressed
by the light verb have, in “What actors are in Top
Gun?”, it is expressed by a highly ambiguous prepo-
sition, and in “What is Italy money?” [sic], it is
omitted altogether. Since natural language doesn’t
offer much help here, let us turn elsewhere for guid-
ance. Recall that at this point our main goal is to
generate a manageable set of candidate logical forms
to be scored by the log-linear model.

In the first example, suppose the phrases “Chile”
and “government” are parsed as Chile and
Type.FormOfGovernment, respectively, and we hy-
pothesize a connecting binary. The two predicates
impose strong type constraints on that binary, so we
can afford to generate all the binary predicates that
type check (see Table 2). More formally, given two
unaries z1 and z2 with types t1 and t2, we generate a
logical form z1 u b.z2 for each binary b whose type
signature is (t1, t2). Figure 1 visualizes bridging of
the unaries Type.University and Obama.

Now consider the example “What is the
cover price of X-men?” Here, the binary
ComicBookCoverPrice is expressed explicitly, but
is not in our lexicon since the language use is rare.
To handle this, we allow bridging to generate a bi-
nary based on a single unary; in this case, based on
the unary X-Men (Table 2), we generate several bina-
ries including ComicBookCoverPrice. Generically,
given a unary z with type t, we construct a logical
form b.z for any predicate b with type (∗, t).

Finally, consider the question “Who did
Tom Cruise marry in 2006?”. Suppose we
parse the phrase “Tom Cruise marry” into
Marriage.Spouse.TomCruise, or more explicitly,
λx.∃e.Marriage(x, e) ∧ Spouse(e, TomCruise).
Here, the neo-Davidsonian event variable e is an
intermediate quantity, but needs to be further mod-
ified (in this case, by the temporal modifier 2006).
To handle this, we apply bridging to a unary and the
intermediate event (see Table 2). Generically, given
a logical form p1.p2.z

′ where p2 has type (t1, ∗),
and a unary z with type t, bridging injects z and

1537



# Form 1 Form 2 Bridging
1 Type.FormOfGovernment Chile Type.FormOfGovernmentu GovernmentTypeOf.Chile
2 X-Men ComicBookCoverPriceOf.X-Men
3 Marriage.Spouse.TomCruise 2006 Marriage.(Spouse.TomCruise u StartDate.2006)

Table 2: Three examples of the bridging operation. The bridging binary predicate b is in boldface.

constructs a logical form p1.(p2.z
′ u b.z) for each

logical predicate b with type (t1, t).
In each of the three examples, bridging gener-

ates a binary predicate based on neighboring logi-
cal predicates rather than on explicit lexical material.
In a way, our bridging operation shares with bridg-
ing anaphora (Clark, 1975) the idea of establishing
a novel relation between distinct parts of a sentence.
Naturally, we need features to distinguish between
the generated predicates, or decide whether bridging
is even appropriate at all. Given a binary b, features
include the log of the predicate count log |F(b)|, in-
dicators for the kind of bridging, an indicator on the
binary b for injections (Table 1). In addition, we add
all text similarity features by comparing the Free-
base name of b with content words in the question.

3.3 Composition

So far, we have mainly focused on the generation of
predicates. We now discuss three classes of features
pertaining to their composition.

Rule features Each derivation d is the result of ap-
plying some number of intersection, join, and bridg-
ing operations. To control this number, we define
indicator features on each of these counts. This is in
contrast to the norm of having a single feature whose
value is equal to the count, which can only repre-
sent one-sided preferences for having more or fewer
of a given operation. Indicator features stabilize the
model, preferring derivations with a well-balanced
inventory of operations.

Part-of-speech tag features To guide the compo-
sition of predicates, we use POS tags in two ways.
First, we introduce features indicating when a word
of a given POS tag is skipped, which could capture
the fact that skipping auxiliaries is generally accept-
able, while skipping proper nouns is not. Second,
we introduce features on the POS tags involved in a
composition, inspired by dependency parsing (Mc-
Donald et al., 2005). Specifically, when we combine

logical forms z1 and z2 via a join or bridging, we
include a feature on the POS tag of (the first word
spanned by) z1 conjoined with the POS tag corre-
sponding to z2. Rather than using head-modifier in-
formation from dependency trees (Branavan et al.,
2012; Krishnamurthy and Mitchell, 2012; Cai and
Yates, 2013; Poon, 2013), we can learn the appro-
priate relationships tailored for downstream accu-
racy. For example, the phrase “located” is aligned
to the predicate ContainedBy. POS features can de-
tect that if “located” precedes a noun phrase (“What
is located in Beijing?”), then the noun phrase is the
object of the predicate, and if it follows the noun
phrase (“Where is Beijing located?”), then it is in
subject position.

Note that our three operations (intersection, join,
and bridging) are quite permissive, and we rely on
features, which encode soft, overlapping rules. In
contrast, CCG-based methods (Kwiatkowski et al.,
2010; Kwiatkowski et al., 2011) encode the com-
bination preferences structurally in non-overlapping
rules; these could be emulated with features with
weights clamped to −∞.

Denotation features While it is clear that learning
from denotations rather than logical forms is a draw-
back since it provides less information, it is less ob-
vious that working with denotations actually gives
us additional information. Specifically, we include
four features indicating whether the denotation of
the predicted logical form has size 0, 1, 2, or at least
3. This feature encodes presupposition constraints
in a soft way: when people ask a question, usually
there is an answer and it is often unique. This allows
us to favor logical forms with this property.

4 Experiments

We now evaluate our semantic parser empirically.
In Section 4.1, we compare our approach to Cai
and Yates (2013) on their recently released dataset
(henceforth, FREE917) and present results on a new
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dataset that we collected (henceforth, WEBQUES-
TIONS). In Section 4.2, we provide detailed experi-
ments to provide additional insight on our system.

Setup We implemented a standard beam-based
bottom-up parser which stores the k-best derivations
for each span. We use k = 500 for all our experi-
ments on FREE917 and k = 200 on WEBQUES-
TIONS. The root beam yields the candidate set D̃(x)
and is used to approximate the sum in the objective
functionO(θ) in (1). In experiments on WEBQUES-
TIONS, D̃(x) contained 197 derivations on average.

We write the approximate objective as O(θ; θ̃) =∑
i log

∑
d∈D̃(xi;θ̃):Jd.zKK=yi

p(d | xi; θ) to explic-

itly show dependence on the parameters θ̃ used for
beam search. We optimize the objective by initial-
izing θ0 to 0 and applying AdaGrad (stochastic gra-
dient ascent with per-feature adaptive step size con-
trol) (Duchi et al., 2010), so that θt+1 is set based on
taking a stochastic approximation of ∂O(θ;θt)

∂θ

∣∣
θ=θt

.
We make six passes over the training examples.

We used POS tagging and named-entity recogni-
tion to restrict what phrases in the utterance could
be mapped by the lexicon. Entities must be named
entities, proper nouns or a sequence of at least two
tokens. Unaries must be a sequence of nouns, and
binaries must be either a content word, or a verb fol-
lowed by either a noun phrase or a particle. In addi-
tion, we used 17 hand-written rules to map question
words such as “where” and “how many” to logical
forms such as Type.Location and Count.

To compute denotations, we convert a logical
form z into a SPARQL query and execute it on our
copy of Freebase using the Virtuoso engine. On
WEBQUESTIONS, a full run over the training exam-
ples involves approximately 600,000 queries. For
evaluation, we predict the answer from the deriva-
tion with highest probability.

4.1 Main results
4.1.1 FREE917

Cai and Yates (2013) created a dataset consist-
ing of 917 questions involving 635 Freebase rela-
tions, annotated with lambda calculus forms. We
converted all 917 questions into simple λ-DCS, ex-
ecuted them on Freebase and used the resulting an-
swers to train and evaluate. To map phrases to Free-
base entities we used the manually-created entity

lexicon used by Cai and Yates (2013), which con-
tains 1,100 entries. Because entity disambiguation
is a challenging problem in semantic parsing, the en-
tity lexicon simplifies the problem.

Following Cai and Yates (2013), we held out 30%
of the examples for the final test, and performed all
development on the remaining 70%. During devel-
opment, we split the data and used 512 examples
(80%) for training and the remaining 129 (20%) for
validation. All reported development numbers are
averaged across 3 random splits. We evaluated us-
ing accuracy, the fraction of examples where the pre-
dicted answer exactly matched the correct answer.

Our main empirical result is that our system,
which was trained only on question-answer pairs,
obtained 62% accuracy on the test set, outperform-
ing the 59% accuracy reported by Cai and Yates
(2013), who trained on full logical forms.

4.1.2 WEBQUESTIONS

Dataset collection Because FREE917 requires
logical forms, it is difficult to scale up due to the
required expertise of annotating logical forms. We
therefore created a new dataset, WEBQUESTIONS,
of question-answer pairs obtained from non-experts.

To collect this dataset, we used the Google Sug-
gest API to obtain questions that begin with a wh-
word and contain exactly one entity. We started with
the question “Where was Barack Obama born?”
and performed a breadth-first search over questions
(nodes), using the Google Suggest API supplying
the edges of the graph. Specifically, we queried the
question excluding the entity, the phrase before the
entity, or the phrase after it; each query generates 5
candidate questions, which are added to the queue.
We iterated until 1M questions were visited; a ran-
dom 100K were submitted to Amazon Mechanical
Turk (AMT).

The AMT task requested that workers answer the
question using only the Freebase page of the ques-
tions’ entity, or otherwise mark it as unanswerable
by Freebase. The answer was restricted to be one of
the possible entities, values, or list of entities on the
page. As this list was long, we allowed the user to
filter the list by typing. We paid the workers $0.03
per question. Out of 100K questions, 6,642 were
annotated identically by at least two AMT workers.

We again held out a 35% random subset of the
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Dataset # examples # word types
GeoQuery 880 279
ATIS 5,418 936
FREE917 917 2,036
WEBQUESTIONS 5,810 4,525

Table 3: Statistics on various semantic parsing datasets. Our
new dataset, WEBQUESTIONS, is much larger than FREE917
and much more lexically diverse than ATIS.

questions for the final test, and performed all devel-
opment on the remaining 65%, which was further
divided into an 80%–20% split for training and val-
idation. To map entities, we built a Lucene index
over the 41M Freebase entities.

Table 3 provides some statistics about the new
questions. One major difference in the datasets is
the distribution of questions: FREE917 starts from
Freebase properties and solicits questions about
these properties; these questions tend to be tai-
lored to the properties. WEBQUESTIONS starts from
questions completely independent of Freebase, and
therefore the questions tend to be more natural and
varied. For example, for the Freebase property
ComicGenre, FREE917 contains the question “What
genre is Doonesbury?”, while WEBQUESTIONS for
the property MusicGenre contains “What music did
Beethoven compose?”.

The number of word types in WEBQUESTIONS is
larger than in datasets such as ATIS and GeoQuery
(Table 3), making lexical mapping much more chal-
lenging. On the other hand, in terms of structural
complexity WEBQUESTIONS is simpler and many
questions contain a unary, a binary and an entity.

In some questions, the answer provided by AMT
workers is only roughly accurate, because workers
are restricted to selecting answers from the Freebase
page. For example, the answer given by workers to
the question “What is James Madison most famous
for?” is “President of the United States” rather than
“Authoring the Bill of Rights”.

Results AMT workers sometimes provide partial
answers, e.g., the answer to “What movies does Tay-
lor Lautner play in?” is a set of 17 entities, out
of which only 10 appear on the Freebase page. We
therefore allow partial credit and score an answer us-
ing the F1 measure, comparing the predicted set of
entities to the annotated set of entities.

System FREE917 WebQ.
ALIGNMENT 38.0 30.6
BRIDGING 66.9 21.2
ALIGNMENT+BRIDGING 71.3 32.9

Table 4: Accuracies on the development set under different
schemes of binary predicate generation. In ALIGNMENT, bi-
naries are generated only via the alignment lexicon. In BRIDG-
ING, binaries are generated through the bridging operation only.
ALIGNMENT+BRIDGING corresponds to the full system.

As a baseline, we omit from our system the main
contributions presented in this paper—that is, we
disallow bridging, and remove denotation and align-
ment features. The accuracy on the test set of this
system is 26.9%, whereas our full system obtains
31.4%, a significant improvement.

Note that the number of possible derivations for
questions in WEBQUESTIONS is quite large. In the
question “What kind of system of government does
the United States have?” the phrase “United States”
maps to 231 entities in our lexicon, the verb “have”
maps to 203 binaries, and the phrases “kind”, “sys-
tem”, and “government” all map to many different
unary and binary predicates. Parsing correctly in-
volves skipping some words, mapping other words
to predicates, while resolving many ambiguities in
the way that the various predicates can combine.

4.2 Detailed analysis

We now delve deeper to explore the contributions of
the various components of our system. All ablation
results reported next were run on the development
set (over 3 random splits).

Generation of binary predicates Recall that our
system has two mechanisms for suggesting binaries:
from the alignment lexicon or via the bridging op-
eration. Table 4 shows accuracies when only one or
both is used. Interestingly, alignment alone is better
than bridging alone on WEBQUESTIONS, whereas
for FREE917, it is the opposite. The reason for this
is that FREE917 contains questions on rare pred-
icates. These are often missing from the lexicon,
but tend to have distinctive types and hence can be
predicted from neighboring predicates. In contrast,
WEBQUESTIONS contains questions that are com-
monly searched for and focuses on popular predi-
cates, therefore exhibiting larger lexical variation.
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System FREE917 WebQ.
FULL 71.3 32.9
-POS 70.5 28.9
-DENOTATION 58.6 28.0

Table 5: Accuracies on the development set with features re-
moved. POS and DENOTATION refer to the POS tag and deno-
tation features from Section 3.3.

System FREE917 WebQ.
ALIGNMENT 71.3 32.9
LEXICALIZED 68.5 34.2
LEXICALIZED+ALIGNMENT 69.0 36.4

Table 6: Accuracies on the development set using either
unlexicalized alignment features (ALIGNMENT) or lexicalized
features (LEXICALIZED).

For instance, when training without an align-
ment lexicon, the system errs on “When did Nathan
Smith die?”. Bridging suggests binaries that are
compatible with the common types Person and
Datetime, and the binary PlaceOfBirth is cho-
sen. On the other hand, without bridging, the sys-
tem errs on “In which comic book issue did Kitty
Pryde first appear?”, which refers to the rare pred-
icate ComicBookFirstAppearance. With bridging,
the parser can identify the correct binary, by linking
the types ComicBook and ComicBookCharacter. On
both datasets, best performance is achieved by com-
bining the two sources of information.

Overall, running on WEBQUESTIONS, the parser
constructs derivations that contain about 12,000 dis-
tinct binary predicates.

Feature variations Table 5 shows the results of
feature ablation studies. Accuracy drops when POS
tag features are omitted, e.g., in the question “What
number is Kevin Youkilis on the Boston Red Sox” the
parser happily skips the NNPs “Kevin Youkilis” and
returns the numbers of all players on the Boston Red
Sox. A significant loss is incurred without denota-
tion features, largely due to the parser returning log-
ical forms with empty denotations. For instance, the
question “How many people were at the 2006 FIFA
world cup final?” is answered with a logical form
containing the property PeopleInvolved rather than
SoccerMatchAttendance, resulting in an empty de-
notation.

Next we study the impact of lexicalized versus

0 iterations 1 iterations 2 iterations

Figure 4: Beam of candidate derivations D̃(x) for 50
WEBQUESTIONS examples. In each matrix, columns
correspond to examples and rows correspond to beam po-
sition (ranked by decreasing model score). Green cells
mark the positions of derivations with correct denota-
tions. Note that both the number of good derivations and
their positions improve as θ is optimized.
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Figure 5: Accuracy and oracle as beam size k increases.

unlexicalized features (Table 6). In the large WE-
BQUESTIONS dataset, lexicalized features helped,
and so we added those features to our model when
running on the test set. In FREE917 lexicalized fea-
tures result in overfitting due to the small number of
training examples. Thus, we ran our final parser on
the test set without lexicalized features.

Effect of beam size An intrinsic challenge in se-
mantic parsing is to handle the exponentially large
set of possible derivations. We rely heavily on the
k-best beam approximation in the parser keeping
good derivations that lead to the correct answer. Re-
call that the set of candidate derivations D̃(x) de-
pends on the parameters θ. In the initial stages of
learning, θ is far from optimal, so good derivations
are likely to fall below the k-best cutoff of inter-
nal parser beams. As a result, D̃(x) contains few
derivations with the correct answer. Still, placing
these few derivations on the beam allows the train-
ing procedure to bootstrap θ into a good solution.
Figure 4 illustrates this improvement in D̃(x) across
early training iterations.

Smaller choices of k yield a coarser approxima-
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tion in beam search. As we increase k (Figure 5), we
see a tapering improvement in accuracy. We also see
a widening gap between accuracy and oracle score,8

as including a good derivation in D̃(x) is made eas-
ier but the learning problem is made more difficult.

Error analysis The accuracy on WEBQUES-
TIONS is much lower than on FREE917. We an-
alyzed WEBQUESTIONS examples and found sev-
eral main causes of error: (i) Disambiguating en-
tities in WEBQUESTIONS is much harder because
the entity lexicon has 41M entities. For example,
given “Where did the battle of New Orleans start?”
the system identifies “New Orleans” as the target
entity rather than its surrounding noun phrase. Re-
call that all FREE917 experiments used a carefully
chosen entity lexicon. (ii) Bridging can often fail
when the question’s entity is compatible with many
binaries. For example, in “What did Charles Bab-
bage make?”, the system chooses a wrong binary
compatible with the type Person. (iii) The system
sometimes incorrectly draws verbs from subordinate
clauses. For example, in “Where did Walt Disney
live before he died?” it returns the place of death of
Walt Disney, ignoring the matrix verb live.

5 Discussion

Our work intersects with two strands of work.
The first involves learning models of semantics
guided by denotations or interactions with the world.
Besides semantic parsing for querying databases
(Popescu et al., 2003; Clarke et al., 2010; Liang
et al., 2011), previous work has looked at inter-
preting natural language for performing program-
ming tasks (Kushman and Barzilay, 2013; Lei et
al., 2013), playing computer games (Branavan et al.,
2010; Branavan et al., 2011), following navigational
instructions (Chen, 2012; Artzi and Zettlemoyer,
2013), and interacting in the real world via percep-
tion (Matuszek et al., 2012; Tellex et al., 2011; Kr-
ishnamurthy and Kollar, 2013). Our system uses
denotations rather than logical forms as a training
signal, but also benefits from denotation features,
which becomes possible in the grounded setting.

The second body of work involves connecting
natural language and open-domain databases. Sev-

8Oracle score is the fraction of examples for which D̃(x)
contains any derivation with the correct denotation.

eral works perform relation extraction using dis-
tant supervision from a knowledge base (Riedel et
al., 2010; Carlson et al., 2010; Hoffmann et al.,
2011; Surdeanu et al., 2012). While similar in spirit
to our alignment procedure for building the lexi-
con, one difference is that relation extraction cares
about facts, aggregating over phrases, whereas a
lexicon concerns specific phrases, thus aggregating
over facts. On the question answering side, recent
methods have made progress in building semantic
parsers for the open domain, but still require a fair
amount of manual effort (Yahya et al., 2012; Unger
et al., 2012; Cai and Yates, 2013). Our system re-
duces the amount of supervision and has a more ex-
tensive evaluation on a new dataset.

Finally, although Freebase has thousands of prop-
erties, open information extraction (Banko et al.,
2007; Fader et al., 2011; Masaum et al., 2012)
and associated question answering systems (Fader
et al., 2013) work over an even larger open-ended
set of properties. The drawback of this regime is
that the noise and the difficulty in canonicaliza-
tion make it hard to perform reliable composition,
thereby nullifying one of the key benefits of se-
mantic parsing. An interesting midpoint involves
keeping the structured knowledge base but aug-
menting the predicates, for example using random
walks (Lao et al., 2011) or Markov logic (Zhang
et al., 2012). This would allow us to map atomic
words (e.g., “wife”) to composite predicates (e.g.,
λx.Marriage.Spouse.(Gender.Femaleux)). Learn-
ing these composite predicates would drastically in-
crease the possible space of logical forms, but we
believe that the methods proposed in this paper—
alignment via distant supervision and bridging—can
provide some traction on this problem.
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Abstract

We consider the challenge of learning seman-
tic parsers that scale to large, open-domain
problems, such as question answering with
Freebase. In such settings, the sentences cover
a wide variety of topics and include many
phrases whose meaning is difficult to rep-
resent in a fixed target ontology. For ex-
ample, even simple phrases such as ‘daugh-
ter’ and ‘number of people living in’ can-
not be directly represented in Freebase, whose
ontology instead encodes facts about gen-
der, parenthood, and population. In this pa-
per, we introduce a new semantic parsing ap-
proach that learns to resolve such ontologi-
cal mismatches. The parser is learned from
question-answer pairs, uses a probabilistic
CCG to build linguistically motivated logical-
form meaning representations, and includes
an ontology matching model that adapts the
output logical forms for each target ontology.
Experiments demonstrate state-of-the-art per-
formance on two benchmark semantic parsing
datasets, including a nine point accuracy im-
provement on a recent Freebase QA corpus.

1 Introduction

Semantic parsers map sentences to formal represen-
tations of their underlying meaning. Recently, al-
gorithms have been developed to learn such parsers
for many applications, including question answering
(QA) (Kwiatkowski et al., 2011; Liang et al., 2011),
relation extraction (Krishnamurthy and Mitchell,
2012), robot control (Matuszek et al., 2012; Kr-
ishnamurthy and Kollar, 2013), interpreting instruc-

tions (Chen and Mooney, 2011; Artzi and Zettle-
moyer, 2013), and generating programs (Kushman
and Barzilay, 2013).

In each case, the parser uses a predefined set
of logical constants, or an ontology, to construct
meaning representations. In practice, the choice
of ontology significantly impacts learning. For
example, consider the following questions (Q) and
candidate meaning representations (MR):

Q1: What is the population of Seattle?
Q2: How many people live in Seattle?

MR1: λx.population(Seattle, x)
MR2: count(λx.person(x) ∧ live(x, Seattle))

A semantic parser might aim to construct MR1 for
Q1 and MR2 for Q2; these pairings align constants
(count, person, etc.) directly to phrases (‘How
many,’ ‘people,’ etc.). Unfortunately, few ontologies
have sufficient coverage to support both meaning
representations, for example many QA databases
would only include the population relation required
for MR1. Most existing approaches would, given
this deficiency, simply aim to produce MR1 for Q2,
thereby introducing significant lexical ambiguity
that complicates learning. Such ontological mis-
matches become increasingly common as domain
and language complexity increases.

In this paper, we introduce a semantic parsing ap-
proach that supports scalable, open-domain ontolog-
ical reasoning. The parser first constructs a linguis-
tically motivated domain-independent meaning rep-
resentation. For example, possibly producing MR1
for Q1 and MR2 for Q2 above. It then uses a learned
ontology matching model to transform this represen-
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x : How many people visit the public library of New York annually
l0 : λx.eq(x, count(λy.people(y) ∧ ∃e.visit(y, ιz.public(z) ∧ library(z) ∧ of(z, new york), e) ∧ annually(e)))
y : λx.library.public library system.annual visits(x, new york public library)
a : 13,554,002
x : What works did Mozart dedicate to Joseph Haydn
l0 : λx.works(x) ∧ ∃e.dedicate(mozart, x, e) ∧ to(haydn, e)))
y : λx.dedicated work(x) ∧ ∃e.dedicated by(mozart, e) ∧ dedication(x, e) ∧ dedicated to(haydn, e)))
a : { String Quartet No. 19, Haydn Quartets, String Quartet No. 16, String Quartet No. 18, String Quartet No. 17 }

Figure 1: Examples of sentences x, domain-independent underspecified logical forms l0, fully specified
logical forms y, and answers a drawn from the Freebase domain.

tation for the target domain. In our example, pro-
ducing either MR1, MR2 or another more appropri-
ate option, depending on the QA database schema.
This two stage approach enables parsing without
any domain-dependent lexicon that pairs words with
logical constants. Instead, word meaning is filled
in on-the-fly through ontology matching, enabling
the parser to infer the meaning of previously un-
seen words and more easily transfer across domains.
Figure 1 shows the desired outputs for two example
Freebase sentences.

The first parsing stage uses a probabilistic combi-
natory categorial grammar (CCG) (Steedman, 2000;
Clark and Curran, 2007) to map sentences to
new, underspecified logical-form meaning represen-
tations containing generic logical constants that are
not tied to any specific ontology. This approach en-
ables us to share grammar structure across domains,
instead of repeatedly re-learning different grammars
for each target ontology. The ontology-matching
step considers a large number of type-equivalent
domain-specific meanings. It enables us to incorpo-
rate a number of cues, including the target ontology
structure and lexical similarity between the names of
the domain-independent and dependent constants, to
construct the final logical forms.

During learning, we estimate a linear model over
derivations that include all of the CCG parsing de-
cisions and the choices for ontology matching. Fol-
lowing a number of recent approaches (Clarke et al.,
2010; Liang et al., 2011), we treat all intermediate
decisions as latent and learn from data containing
only easily gathered question answer pairs. This ap-
proach aligns naturally with our two-stage parsing
setup, where the final logical expression can be di-
rectly used to provide answers.

We report performance on two benchmark

datasets: GeoQuery (Zelle and Mooney, 1996) and
Freebase QA (FQ) (Cai and Yates, 2013a). Geo-
Query includes a geography database with a small
ontology and questions with relatively complex,
compositional structure. FQ includes questions to
Freebase, a large community-authored database that
spans many sub-domains. Experiments demonstrate
state-of-the-art performance in both cases, including
a nine point improvement in recall for the FQ test.

2 Formal Overview

Task Let an ontology O be a set of logical con-
stants and a knowledge base K be a collection of
logical statements constructed with constants from
O. For example, K could be facts in Freebase (Bol-
lacker et al., 2008) and O would define the set
of entities and relation types used to encode those
facts. Also, let y be a logical expression that can
be executed against K to return an answer a =
EXEC(y,K). Figure 1 shows example queries and
answers for Freebase. Our goal is to build a function
y = PARSE(x,O) for mapping a natural language
sentence x to a domain-dependent logical form y.

Parsing We use a two-stage approach to define
the space of possible parses GEN(x,O) (Section 5).
First, we use a CCG and word-class information
from Wiktionary1 to build domain-independent un-
derspecified logical forms, which closely mirror the
linguistic structure of the sentence but do not use
constants from O. For example, in Figure 1, l0 de-
notes the underspecified logical forms paired with
each sentence x. The parser then maps this interme-
diate representation to a logical form that uses con-
stants from O, such as the y seen in Figure 1.

1www.wiktionary.com
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Learning We assume access to data containing
question-answer pairs {(xi, ai) : i = 1 . . . n} and
a corresponding knowledge base K. The learn-
ing algorithm (Section 7.1) estimates the parame-
ters of a linear model for ranking the possible en-
tires in GEN(x,O). Unlike much previous work
(e.g., Zettlemoyer and Collins (2005)), we do not
induce a CCG lexicon. The lexicon is open domain,
using no symbols from the ontology O for K. This
allows us to write a single set of lexical templates
that are reused in every domain (Section 5.1). The
burden of learning word meaning is shifted to the
second, ontology matching, stage of parsing (Sec-
tion 5.2), and modeled with a number of new fea-
tures (Section 7.2) as part of the joint model.

Evaluation We evaluate on held out question-
answer pairs in two benchmark domains, Freebase
and GeoQuery. Following Cai and Yates (2013a),
we also report a cross-domain evaluation where the
Freebase data is divided by topics such as sports,
film, and business. This condition ensures that the
test data has a large percentage of previously unseen
words, allowing us to measure the effectiveness of
the real time ontology matching.

3 Related Work

Supervised approaches for learning semantic parsers
have received significant attention, e.g. (Kate and
Mooney, 2006; Wong and Mooney, 2007; Muresan,
2011; Kwiatkowski et al., 2010, 2011, 2012; Jones
et al., 2012). However, these techniques require
training data with hand-labeled domain-specific log-
ical expressions. Recently, alternative forms of su-
pervision were introduced, including learning from
question-answer pairs (Clarke et al., 2010; Liang
et al., 2011), from conversational logs (Artzi and
Zettlemoyer, 2011), with distant supervision (Kr-
ishnamurthy and Mitchell, 2012; Cai and Yates,
2013b), and from sentences paired with system
behavior (Goldwasser and Roth, 2011; Chen and
Mooney, 2011; Artzi and Zettlemoyer, 2013). Our
work adds to these efforts by demonstrating a new
approach for learning with latent meaning represen-
tations that scales to large databases like Freebase.

Cai and Yates (2013a) present the most closely
related work. They applied schema matching tech-
niques to expand a CCG lexicon learned with the

UBL algorithm (Kwiatkowski et al., 2010). This ap-
proach was one of the first to scale to Freebase, but
required labeled logical forms and did not jointly
model semantic parsing and ontological reasoning.
This method serves as the state of the art for our
comparison in Section 9.

We build on a number of existing algorithmic
ideas, including using CCGs to build meaning rep-
resentations (Zettlemoyer and Collins, 2005, 2007;
Kwiatkowski et al., 2010, 2011), building deriva-
tions to transform the output of the CCG parser
based on context (Zettlemoyer and Collins, 2009),
and using weakly supervised margin-sensitive pa-
rameter updates (Artzi and Zettlemoyer, 2011,
2013). However, we introduce the idea of learning
an open-domain CCG semantic parser; all previous
methods suffered, to various degrees, from the onto-
logical mismatch problem that motivates our work.

The challenge of ontological mismatch has been
previously recognized in many settings. Hobbs
(1985) describes the need for ontological promiscu-
ity in general language understanding. Many pre-
vious hand-engineered natural language understand-
ing systems (Grosz et al., 1987; Alshawi, 1992; Bos,
2008) are designed to build general meaning rep-
resentations that are adapted for different domains.
Recent efforts to build natural language interfaces to
large databases, for example DBpedia (Yahya et al.,
2012; Unger et al., 2012), have also used hand-
engineered ontology matching techniques. Fader
et al. (2013) recently presented a scalable approach
to learning an open domain QA system, where onto-
logical mismatches are resolved with learned para-
phrases. Finally, the databases research commu-
nity has a long history of developing schema match-
ing techniques (Doan et al., 2004; Euzenat et al.,
2007), which has inspired more recent work on dis-
tant supervision for relation extraction with Free-
base (Zhang et al., 2012).

4 Background

Semantic Modeling We use the typed lambda cal-
culus to build logical forms that represent the mean-
ings of words, phrases and sentences. Logical forms
contain constants, variables, lambda abstractions,
and literals. In this paper, we use the term literal to
refer to the application of a constant to a sequence of
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library of new york

N N\N/NP NP
λx.library(x) λyλfλx.f(x) ∧ loc(x, y) NY C

>
N\N

λf.λx.f(x) ∧ loc(x,NY C)
<

N
λx.library(x) ∧ loc(x,NY C)

Figure 2: A sample CCG parse.

arguments. We include types for entities e, truth val-
ues t, numbers i, events ev, and higher-order func-
tions, such as 〈e, t〉 and 〈〈e, t〉, e〉. We use David-
sonian event semantics (Davidson, 1967) to explic-
itly represent events using event-typed variables and
conjunctive modifiers to capture thematic roles.

Combinatory Categorial Grammars (CCG)
CCGs are a linguistically-motivated formalism
for modeling a wide range of language phenom-
ena (Steedman, 1996, 2000). A CCG is defined by
a lexicon and a set of combinators. The lexicon
contains entries that pair words or phrases with
CCG categories. For example, the lexical entry
library ` N : λx.library(x) in Figure 2 pairs
the word ‘library’ with the CCG category that has
syntactic category N and meaning λx.library(x).
A CCG parse starts from assigning lexical entries to
words and phrases. These are then combined using
the set of CCG combinators to build a logical form
that captures the meaning of the entire sentence. We
use the application, composition, and coordination
combinators. Figure 2 shows an example parse.

5 Parsing Sentences to Meanings

The function GEN(x,O) defines the set of possible
derivations for an input sentence x. Each derivation
d = 〈Π,M〉 builds a logical form y using constants
from the ontology O. Π is a CCG parse tree that
maps x to an underspecified logical form l0. M is an
ontological match that maps l0 onto the fully spec-
ified logical form y. This section describes, with
reference to the example in Figure 3, the operations
used by Π and M .

5.1 Domain Independent Parsing

Domain-independent CCG parse trees Π are built
using a predefined set of 56 underspecified lexi-

cal categories, 49 domain-independent lexical items,
and the combinatory rules introduced in Section 4.

An underspecified CCG lexical category has a
syntactic category and a logical form containing no
constants from the domain ontology O. Instead, the
logical form includes underspecified constants that
are typed placeholders which will later be replaced
during ontology matching. For example, a noun
might be assigned the lexical category N : λx.p(x),
where p is an underspecified 〈e, t〉-type constant.

During parsing, lexical categories are created dy-
namically. We manually define a set of POS tags for
each underspecified lexical category, and use Wik-
tionary as a tag dictionary to define the possible POS
tags for words and phrases. Each phrase is assigned
every matching lexical category. For example, the
word ‘visit’ can be either a verb or a noun in Wik-
tionary. We accordingly assign it all underspecified
categories for the classes, including:

N :λx.p(x) , S\NP/NP :λxλy∃ev.p(y, x, ev)

for nouns and transitive verbs respectively.
We also define domain-independent lexical items

for function words such as ‘what,’ ‘when,’ and
‘how many,’ ‘and,’ and ‘is.’ These lexi-
cal items pair a word with a lexical cate-
gory containing only domain-independent con-
stants. For example, how many ` S/(S\NP)/N :
λf.λg.λx.eq(x, count(λy.f(y) ∧ g(y))) contains
the function count and the predicate eq.

Figure 3a shows the lexical categories and combi-
nator applications used to construct the underspeci-
fied logical form l0. Underspecified constants in this
figure have been labeled with the words that they are
associated with for readability.

5.2 Ontological Matching

The second, domain specific, step M maps the un-
derspecified logical form l0 onto the fully specified
logical form y. The mapping from constants in l0
to constants in y is not one-to-one. For example, in
Figure 3, l0 contains 11 constants but y contains only
2. The ontological match is a sequence of matching
operations M = 〈o1 . . . , on〉 that can transform the
structure of the logical form or replace underspeci-
fied constants with constants from O.
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(a) Underspecified CCG parse Π: Map words onto underspecified lexical categories as described in Section 5.1. Use
the CCG combinators to combine lexical categories to give the full underpecified logical form l0.

how many people visit the public library of new york annually

S/(S\NP )/N N S\NP/NP NP/N N/N N N\N/NP NP AP
λf.λg.λx.eq(x, count( λx.People(x) λx.λy.∃ev. λf.ιx.f(x) λf.λx.f(x)∧ λx.Library(x) λy.λf.λx.Of NewY ork λev.Annually(ev)

λy.f(y) ∧ g(y))) V isit(y, x, ev) Public(x) (x, y) ∧ f(x)
> >

<
>
>

> <
>

S
l0 : λx.eq(x, count(λy.People(y) ∧ ∃e.V isit(y, ιz.Public(z) ∧ Library(z) ∧ Of(z,NewY ork)) ∧ Annually(e)))

(b) Structure Matching Steps in M : Use the operators described in Section 5.2.1 and Figure 4 to transform l0. In
each step one of the operators is applied to a subexpression of the existing logical form to generate a modified logical
form with a new underspecified constant marked in bold.

l0 : λx.eq(x, count(λy.People(y) ∧ ∃e.V isit(y, ιz.Public(z) ∧ Library(z) ∧Of(z,NewY ork), e) ∧Annually(e)))
l1 : λx.eq(x, count(λy.People(y) ∧ ∃e.V isit(y,PublicLibraryOfNewYork, e) ∧Annually(e)))
l2 : λx.HowManyPeopleVisitAnnually(x, PublicLibraryOfNewY ork)))

(c) Constant Matching Steps in M : Replace all underspecified constants in the transformed logical form with a
similarly typed constant from O, as described in Section 5.2.2. The underspecified constant to be replaced is marked
in bold and constants from O are written in typeset.

λx.HowManyPeopleV isitAnnually(x,PublicLibraryOfNewYork)

l3 : 7→ λx.HowManyPeopleV isitAnnually(x, new york public library)

λx.HowManyPeopleVisitAnnually(x, new york public library)

y : 7→ λx.public library system.annual visits(x, new york public library)

Figure 3: Example derivation for the query ‘how many people visit the public library of new york annu-
ally.’ Underspecified constants are labelled with the words from the query that they are associated with for
readability. Constants from O, written in typeset, are introduced in step (c).

Operator Definition and Conditions Example

a.

Collapse
Literal

to
Constant

P (a1, . . . , an) 7→ c
ιz.Public(z) ∧ Library(z) ∧Of(z,NewY ork))

7→ PublicLibraryOfNewY ork
s.t. type(P (a1, . . . , an)) = type(c) Input and output have type e.

type(c) ∈ {e, i} e is allowed in O.
freev(P (a1, . . . , an)) = ∅ Input contains no free variables.

b.

Collapse
Literal

to
Literal

P (a1, . . . , an) 7→ Q(b1, . . . , bm)

eq(x, count(λy.People(y) ∧ ∃e.V isit(y,
PublicLibraryOfNewY ork) ∧Annually(e)))
7→ CountPeopleV isitAnnually(x,

PublicLibraryOfNewY ork)
s.t. type(P (a1, . . . , an)) = type(Q(b1, . . . , bm)) Input and output have type t.

type(Q) ∈ {type(c) : c ∈ O} New constant has type 〈i, 〈e, t〉〉, allowed in O.
freev(P (a1, . . . , an)) = freev(Q(b1, . . . , bm)) Input and output contain single free variable x.
{b1, . . . , bm} ∈ subexps(P (a1, . . . , an)) Arguments of output literal are subexpressions of input.

c. Split
Literal

P (a1, . . . , ak, x, ak+1, . . . , an)
7→ Q(b1, . . . , x, . . . bn) ∧Q′′(c1, . . . , x, . . . cm)

Dedicate(Mozart,Haydn, ev)
7→ Dedicate(Mozart, ev) ∧Dedicate′′(Haydn, ev)

s.t. type(P (. . . )) = t Input has type t. This matches output type by definition.
{type(Q), type(Q′′)} ∈ {type(c) : c ∈ O} New constants have allowed type 〈e, 〈ev, t〉〉.
{b1, . . . , bn, c1, . . . , cm} = {a1, . . . , an} All arguments of input literal are preserved in output.

Figure 4: Definition of the operations used to transform the structure of the underspecified logical form l0 to
match the ontologyO. The function type(c) calculates a constant c’s type. The function freev(lf) returns
the set of variables that are free in lf (not bound by a lambda term or quantifier). The function subexps(lf)
generates the set of all subexpressions of the lambda calculus expression lf .
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5.2.1 Structure Matching
Three structure matching operators, illustrated in

Figure 4, are used to collapse or expand literals in
l0. Collapses merge a subexpression from l0 to cre-
ate a new underspecified constant, generating a log-
ical form with fewer constants. Expansions split a
subexpression from l0 to generate a new logical form
containing one extra constant.

Collapsing Operators The collapsing operator
defined in Figure 4a merges all constants in a
literal to generate a single constant of the same
type. This operator is used to map ιz.Public(z)∧
Library(z)∧Of(z,NewY ork) to PublicLibraryOfNewY ork

in Figure 3b. Its operation is limited to entity typed
expressions that do not contain free variables.

The operator in Figure 4b, in contrast, can be used
to collapse the expression eq(x,count(λy.People(y)∧
∃e.V isit(y,PublicLibraryOfNewY ork,e))∧Annually(e))),
which contains free variable x onto a new expression
CountPeopleV isitAnnually(x,PublicLibraryOfNewY ork).
This is only possible when the type of the newly
created constant is allowed in O and the variable x
is free in the output expression. Subsets of conjuncts
can be collapsed using the operator in Figure 4b by
creating ad-hoc conjunctions that encapsulate them.
Disjunctions are treated similarly.

Performing collapses on the underspecified logi-
cal form allows non-contiguous phrases to be rep-
resented in the collapsed form. In this exam-
ple, the logical form representing the phrase ‘how
many people visit’ has been merged with the logi-
cal form representing the non-adjacent adverb ‘an-
nually.’ This generates a new underspecified con-
stant that can be mapped onto the Freebase relation
public library system annual visits that re-
lates to both phrases.

The collapsing operations preserve semantic type,
ensuring that all logical forms generated by the
derivation sequence are well typed. The full set of
allowed collapses of l0 is given by the transitive clo-
sure of the collapsing operations. The size of this
set is limited by the number of constants in l0, since
each collapse removes at least one constant. At each
step, the number of possible collapses is polynomial
in the number of constants in l0 and exponential in
the arity of the most complex type in O. For do-
mains of interest this arity is unlikely to be high and

for triple stores such as Freebase it is 2.

Expansion Operators The fully specified logical
form y can contain constants relating to multiple
words in x. It can also use multiple constants to rep-
resent the meaning of a single word. For example,
Freebase does not contain a relation representing the
concept ‘daughter’, instead using two relations rep-
resenting ‘female’ and ‘child’. The expansion oper-
ator in Figure 4c allows a single predicate to be split
into a pair of conjoined predicates sharing an argu-
ment variable. For example, in Figure 1, the constant
for ‘dedicate’ is split in two to match its represen-
tation in Freebase. Underspecified constants from
l0 can be split once. For the experiments in Sec-
tion 8, we constrain the expansion operator to work
on event modifiers but the procedure generalizes to
all predicates.

5.2.2 Constant Matching
To build an executable logical form y, all under-

specified constants must be replaced with constants
from O. This is done through a sequence of con-
stant replacement operations, each of which replaces
a single underspecified constant with a constant of
the same type from O. Two example replacements
are shown in Figure 3c. The output from the last re-
placement operation is a fully specified logical form.

6 Building and Scoring Derivations

This section introduces a dynamic program used to
construct derivations and a linear scoring model.

6.1 Building Derivations

The space of derivations is too large to explicitly
enumerate. However, each logical form (both final
and interim) can be constructed with many differ-
ent derivations, and we only need to find the highest
scoring one. This allows us to develop a simple dy-
namic program for our two-stage semantic parser.

We use a CKY style chart parser to calculate the
k-best logical forms output by parses of x. We then
store each interim logical form generated by an op-
erator in M once in a hyper-graph chart structure.
The branching factor of this hypergraph is polyno-
mial in the number of constants in l0 and linear in
the size of O. Subsequently, there are too many
possible logical forms to enumerate explicitly; we
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prune as follows. We allow the top N scoring on-
tological matches for each original subexpression in
l0 and remove matches that differ from score from
the maximum scoring match by more than a thresh-
old τ . When building derivations, we apply constant
matching operators as soon as they are applicable to
new underspecified constants created by collapses
and expansions. This allows the scoring function
used by the pruning strategy to take advantage of all
features defined in Section 7.2.

6.2 Ranking Derivations

Given feature vector φ and weight vector θ, the score
of a derivation d = 〈Π,M〉 is a linear function that
decomposes over the parse tree Π and the individual
ontology-matching steps o.

SCORE(d) = φ(d)θ (1)

= φ(Π)θ +
∑
o∈M

φ(o)θ

The function PARSE(x,O) introduced as our goal in
Section 2 returns the logical form associated with
the highest scoring derivation of x:

PARSE(x,O) = arg max
d∈GEN(x,O)

(SCORE(d))

The features and learning algorithm used to estimate
θ are defined in the next section.

7 Learning

This section describes an online learning algorithm
for question-answering data, along with the domain-
independent feature set.

7.1 Learning Model Parameters

Our learning algorithm estimates the parameters θ
from a set {(xi, ai) : i = 1 . . . n} of questions xi
paired with answers ai from the knowledge base
K. Each derivation d generated by the parser is
associated with a fully specified logical form y =
YIELD(d) that can be executed in K. A derivation d
of xi is correct if EXEC(YIELD(d),K) = ai. We use
a perceptron to estimate a weight vector θ that sup-
port a separation of γ between correct and incorrect
answers. Figure 5 presents the learning algorithm.

Input: Q/A pairs {(xi, ai) : i = 1 . . . n}; Knowledge base
K; Ontology O; Function GEN(x,O) that computes deriva-
tions of x; Function YIELD(d)that returns logical form yield
of derivation d; Function EXEC(y,K) that calculates execu-
tion of y in K; Margin γ; Number of iterations T .

Output: Linear model parameters θ.

Algorithm:
For t = 1 . . . T, i = 1 . . . n :

C = {d : d ∈ GEN(xi,O); EXEC(YIELD(d),K) = ai}
W = {d : d ∈ GEN(xi,O); EXEC(YIELD(d),K) 6= ai}
C∗ = arg maxd∈C(φ(d)θ)

W ∗ = {d : d ∈W ; ∃c ∈ C∗ s.t. φ(c)θ − φ(d)θ < γ)}
If |C∗| > 0 ∧ |W ∗| > 0 :

θ = θ + 1
|C∗|

∑
c∈C∗ φ(c)− 1

|W∗|
∑
e∈W∗ φ(e)

Figure 5: Parameter estimation from Q/A pairs.

7.2 Features
The feature vector φ(d) introduced in Section 6.2
decomposes over each of the derivation steps in d.

CCG Parse Features Each lexical item in Π has
three indicator features. The first indicates the num-
ber of times each underspecified category is used.
For example, the parse in Figure 3a uses the under-
specified category N : λx.p(x) twice. The second
feature indicates (word, category) pairings — e.g.
that N : λx.p(x) is paired with ‘library’ and ‘pub-
lic’ once each in Figure 3a. The final lexical feature
indicates (part-of-speech, category) pairings for all
parts of speech associated with the word.

Structural Features The structure matching op-
erators (Section 5.2.1) in M generate new under-
specified constants that define the types of constants
in the output logical form y. These operators are
scored using features that indicate the type of each
complex-typed constant present in y and the iden-
tity of domain-independent functional constants in
y. The logical form y generated in Figure 3 contains
one complex typed constant with type 〈i, 〈e, t〉〉 and
no domain-independent functional constants. Struc-
tural features allow the model to adapt to different
knowledge bases K. They allow it to determine, for
example, whether a numeric quantity such as ‘pop-
ulation’ is likely to be explicitly listed in K or if it
should be computed with the count function.

Lexical Features Each constant replacement op-
erator (Section 5.2.2) in M replaces an underspec-
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ified constant cu with a constant cO from O. The
underspecified constant cu is associated with the se-
quence of words ~wu used in the CCG lexical en-
tries that introduced it in Π. We assume that each
of the constants cO in O is associated with a string
label ~wO. This allows us to introduce five domain-
independent features that measure the similarity of
~wu and ~wO.

The feature φnp(cu, cO) signals the replacement
of an entity-typed constant cu with entity cO that has
label ~wu. For the second example in Figure 1 this
feature indicates the replacement of the underspeci-
fied constant associated with the word ‘mozart’ with
the Freebase entity mozart. Stem and synonymy
features φstem(cu, cO) and φsyn(cu, cO) signal the
existence of words wu ∈ ~wu and wu ∈ ~wO that
share a stem or synonym respectively. Stems are
computed with the Porter stemmer and synonyms
are extracted from Wiktionary. A single Freebase
specific feature φfp:stem(cu, cO) indicates a word
stem match between wu ∈ ~wu and the word filling
the most specific position in ~wu under Freebase’s hi-
erarchical naming schema.

A final feature φgl(cu, cO) calculates the overlap
between Wiktionary definitions for ~wu and ~wO. Let
gl(w) be the Wiktionary definition for w. Then:

φgl(cu, cO) =
∑

wu∈ ~wu;wO∈ ~wO

2·|gl(wO)∩gl(wc)|
| ~wO |·| ~wu|·|gl(wO)|+|gl(wc)|

Domain-indepedent lexical features allow the
model to reason about the meaning of unseen words.
In small domains, however, the majority of word us-
ages may be covered by training data. We make use
of this fact in the GeoQuery domain with features
φm(cu, cO) that indicate the pairing of ~wu with cO.

Knowledge Base Features Guided by the obser-
vation that we generally want to create queries y
which have answers in knowledge base K, we de-
fine features to signal whether each operation could
build a logical form y with an answer in K.

If a predicate-argument relation in y does not
exist in K, then the execution of y against K
will not return an answer. Two features indicate
whether predicate-argument relations in y exist inK.
φdirect(y,K) indicates predicate-argument applica-
tions in y that exists in K. For example, if the appli-
cation of dedicated by to mozart in Figure 1 ex-
ists in Freebase, φdirect(y,K) will fire. φjoin(y,K)

indicates entities separated from a predicate by one
join in y, such as mozart and dedicated to in Fig-
ure 1, that exist in the same relationship in K.

If two predicates that share a variable in y
do not share an argument in that position in K
then the execution of y against K will fail. The
predicate-predicate φpp(y,K) feature indicates pairs
of predicates that share a variable in y but can-
not occur in this relationship in K. For ex-
ample, since the subject of the Freebase prop-
erty date of birth does not take arguments of
type location, φpp(y,K) will fire if y con-
tains the logical form λxλy.date of birth(x, y)∧
location(x).

Both the predicate-argument and predicate-
predicate features operate on subexpressions of y.
We also define the execution features: φemp(y,K) to
signal an empty answer for y in K; φ0(y,K) to sig-
nal a zero-valued answer created by counting over
an empty set; and φ1(y,K) to signal a one-valued
answer created by counting over a singleton set.

As with the lexical cues, we use knowledge base
features as soft constraints since it is possible for
natural language queries to refer to concepts that do
not exist in K.

8 Experimental Setup

Data We evaluate performance on the benchmark
GeoQuery dataset (Zelle and Mooney, 1996), and a
newly introduced Freebase Query (FQ) dataset (Cai
and Yates, 2013a). FQ contains 917 questions la-
beled with logical form meaning representations for
querying Freebase. We gathered question answer la-
bels by executing the logical forms against Freebase,
and manually correcting any inconsistencies.

Freebase (Bollacker et al., 2008) is a large, col-
laboratively authored database containing almost 40
million entities and two billion facts, covering more
than 100 domains. We filter Freebase to cover the
domains contained in the FQ dataset resulting in a
database containing 18 million entities, 2072 rela-
tions, 635 types, 135 million facts and 81 domains,
including for example film, sports, and business. We
use this schema to define our target domain, allow-
ing for a wider variety of queries than could be en-
coded with the 635 collapsed relations previously
used to label the FQ data.
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We report two different experiments on the FQ
data: test results on the existing 642/275 train/test
split and domain adaptation results where the data is
split three ways, partitioning the topics so that the
logical meaning expressions do not share any sym-
bols across folds. We report on the standard 600/280
training/test split for GeoQuery.

Parameter Initialization and Training We ini-
tialize weights for φnp and φdirect to 10, and weights
for φstem and φjoin to 5. This promotes the use of
entities and relations named in sentences. We ini-
tialize weights for φpp and φemp to -1 to favour log-
ical forms that have an interpretation in the knowl-
edge base K. All other feature weights are initial-
ized to 0. We run the training algorithm for one it-
eration on the Freebase data, at which point perfor-
mance on the development set had converged. This
fast convergence is due to the very small number of
matching parameters used (5 lexical features and 8
K features). For GeoQuery, we include the larger
domain specific feature set introduced in Section 7.2
and train for 10 iterations. We set the pruning pa-
rameters from Section 6.1 as follows: k = 5 for
Freebase, k = 30 for GeoQuery, N = 50, τ = 10.

Comparison Systems We compare performance
to state-of-the-art systems in both domains. On
GeoQuery, we report results from DCS (Liang
et al., 2011) without special initialization (DCS) and
with an small hand-engineered lexicon (DCS with
L+). We also include results for the FUBL algo-
rithm (Kwiatkowski et al., 2011), the CCG learning
approach that is most closely related to our work. On
FQ, we compare to Cai and Yates (2013a) (CY13).

Evaluation We evaluate by comparing the pro-
duced question answers to the labeled ones, with no
partial credit. Because the parser can fail to pro-
duce a complete query, we report recall, the percent
of total questions answered correctly, and precision,
the percentage of produced queries with correct an-
swers. CY13 and FUBL report fully correct logical
forms, which is a close proxy to our numbers.

9 Results

Quantitative Analysis For FQ, we report results
on the test set and in the cross-domain setting, as de-
fined in Section 8. Figure 6 shows both results. Our

Setting System R P F1
Test Our Approach 68.0 76.7 72.1

CY13 59 67 63
Cross Our Approach 67.9 73.5 71.5

Domain CY13 60 69 65

Figure 6: Results on the FQ dataset.

R P F1
All Features 68.6 72.0 70.3
Without Wiktionary 67.2 70.7 68.9
Without K Features 61.8 62.5 62.1

Figure 7: Ablation Results

approach outperforms the previous state of the art,
achieving a nine point improvement in test recall,
while not requiring labeled logical forms in train-
ing. We also see consistent improvements on both
scenarios, indicating that our approach is generaliz-
ing well across topic domains. The learned ontology
matching model is able to reason about previously
unseen ontological subdomains as well as if it was
provided explicit, in-domain training data.

We also performed feature ablations with 5-fold
cross validation on the training set, as seen in Fig-
ure 7. Both the Wiktionary features and knowledge
base features were helpful. Without the Wiktionary
features, the model must rely on word stem matches
which, in combination with graph constraints, can
still recover many of the correct queries. However,
without the knowledge base constraints, the model
produces many queries that return empty answers,
and significantly impacts overall performance.

For GeoQuery, we report test results in Figure 8.
Our approach outperforms the most closely related
CCG model (FUBL) and DCS without initialization,
but falls short of DCS with a small hand-built initial
lexicon. Given the small size of the test set, it is fair
to say that all algorithms are performing at state-of-
the-art levels. This result demonstrates that our ap-

Recall
FUBL 88.6
DCS 87.9
DCS with L+ 91.1
Our Approach 89.0

Figure 8: GeoQuery Results
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Parse Failures (20%)
1. Query in what year did motorola have the most revenue
2 Query on how many projects was james walker a design engineer
Structural Matching Failure (30%)

Query how many children does jerry seinfeld have
3. Labeled λx.eq(x, count(λy.people.person.children(jerry seinfeld, y)))

Predicted λx.eq(x, count(λy.people.person.children(y, jerry seinfeld)))
Incomplete Database (10%)

Query how many countries participated in the 2006 winter olympics
4. Labeled λy.olympics.olympic games.number of countries(2006 winter olympics, y)

Predicted λy.eq(y, count(λy.olympic participation country.olympics participated in(x, 2006 winter olympics)))
Query what programming languages were used for aol instant messenger

5. Labeled λy.computer.software.languages used(aol instant messenger, y)
Predicted λy.computer.software.languages used(aol instant messenger, y) ∧ computer.programming language(y)

Lexical Ambiguity (35%)
Query when was the frida kahlo exhibit at the philadelphia art museum
Labeled λy.∃x.exhibition run.exhibition(x, frida kahlo)∧

6. exhibition venue.exhibitions at(philadelphia art museum, x) ∧ exhibition run.opened on(x, y)
Predicted λy.∃x.exhibition run.exhibition(x, frida kahlo)∧

exhibition venue.exhibitions at(philadelphia art museum, x) ∧ exhibition run.closed on(x, y)

Figure 9: Example error cases, with associated frequencies, illustrating system output and gold standard
references. 5% of the cases were miscellaneous or otherwise difficult to categorize.

proach can handle the high degree of lexical ambi-
guity in the FQ data, without sacrificing the ability
to understanding the rich, compositional phenomena
that are common in the GeoQuery data.

Qualitative Analysis We also did a qualitative
analysis of errors in the FQ domain. The model
learns to correctly produce complex forms that join
multiple relations. However, there are a number of
systematic error cases, grouped into four categories
as seen in Figure 9.

The first and second examples show parse fail-
ures, where the underspecified CCG grammar did
not have sufficient coverage. The third shows a
failed structural match, where all of the correct logi-
cal constants are selected, but the argument order is
reversed for one of the literals. The fourth and fifth
examples demonstrate a failures due to database in-
completeness. In both cases, the predicted queries
would have returned the same answers as the gold-
truth ones if Freebase contained all of the required
facts. Developing models that are robust to database
incompleteness is a challenging problem for future
work. Finally, the last example demonstrates a lex-
ical ambiguity, where the system was unable to de-
termine if the query should include the opening date
or the closing date for the exhibit.

10 Conclusion

We considered the problem of learning domain-
independent semantic parsers, with application to
QA against large knowledge bases. We introduced
a new approach for learning a two-stage semantic
parser that enables scalable, on-the-fly ontological
matching. Experiments demonstrated state-of-the-
art performance on benchmark datasets, including
effective generalization to previously unseen words.

We would like to investigate more nuanced no-
tions of semantic correctness, for example to support
many of the essentially equivalent meaning repre-
sentations we found in the error analysis. Although
we focused exclusively on QA applications, the gen-
eral two-stage analysis approach should allow for
the reuse of learned grammars across a number of
different domains, including robotics or dialog ap-
plications, where data is more challenging to gather.

11 Acknowledgements

This research was supported in part by DARPA un-
der the DEFT program through the AFRL (FA8750-
13-2-0019) and the CSSG (N11AP20020), the ARO
(W911NF-12-1-0197), the NSF (IIS-1115966), and
by a gift from Google. The authors thank Anthony
Fader, Nicholas FitzGerald, Adrienne Wang, Daniel
Weld, and the anonymous reviewers for their helpful
comments and feedback.

1554



References

Alshawi, H. (1992). The core language engine. The
MIT Press.

Artzi, Y. and Zettlemoyer, L. (2011). Bootstrapping
semantic parsers from conversations. In Proceed-
ings of the Conference on Empirical Methods in
Natural Language Processing.

Artzi, Y. and Zettlemoyer, L. (2013). Weakly super-
vised learning of semantic parsers for mapping in-
structions to actions. Transactions of the Associ-
ation for Computational Linguistics, 1(1):49–62.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., and
Taylor, J. (2008). Freebase: a collaboratively cre-
ated graph database for structuring human knowl-
edge. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data.

Bos, J. (2008). Wide-coverage semantic analysis
with boxer. In Proceedings of the Conference on
Semantics in Text Processing.

Cai, Q. and Yates, A. (2013a). Large-scale semantic
parsing via schema matching and lexicon exten-
sion. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics.

Cai, Q. and Yates, A. (2013b). Semantic parsing
freebase: Towards open-domain semantic pars-
ing. In Proceedings of the Joint Conference on
Lexical and Computational Semantics.

Chen, D. and Mooney, R. (2011). Learning to inter-
pret natural language navigation instructions from
observations. In Proceedings of the National Con-
ference on Artificial Intelligence.

Clark, S. and Curran, J. (2007). Wide-coverage ef-
ficient statistical parsing with CCG and log-linear
models. Computational Linguistics, 33(4):493–
552.

Clarke, J., Goldwasser, D., Chang, M., and Roth,
D. (2010). Driving semantic parsing from the
world’s response. In Proceedings of the Confer-
ence on Computational Natural Language Learn-
ing.

Davidson, D. (1967). The logical form of action sen-
tences. Essays on actions and events, pages 105–
148.

Doan, A., Madhavan, J., Domingos, P., and Halevy,
A. (2004). Ontology matching: A machine
learning approach. In Handbook on ontologies.
Springer.

Euzenat, J., Euzenat, J., Shvaiko, P., et al. (2007).
Ontology matching. Springer.

Fader, A., Zettlemoyer, L., and Etzioni, O. (2013).
Paraphrase-driven learning for open question an-
swering. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics.

Goldwasser, D. and Roth, D. (2011). Learning from
natural instructions. In Proceedings of the In-
ternational Joint Conference on Artificial Intelli-
gence.

Grosz, B. J., Appelt, D. E., Martin, P. A., and
Pereira, F. (1987). TEAM: An experiment in
the design of transportable natural language inter-
faces. Artificial Intelligence, 32(2):173–243.

Hobbs, J. R. (1985). Ontological promiscuity. In
Proceedings of the Annual Meeting on Associa-
tion for Computational Linguistics.

Jones, B. K., Johnson, M., and Goldwater, S. (2012).
Semantic parsing with bayesian tree transducers.
In Proceedings of the 50th Annual Meeting of the
Association of Computational Linguistics.

Kate, R. and Mooney, R. (2006). Using string-
kernels for learning semantic parsers. In Pro-
ceedings of the Conference of the Association for
Computational Linguistics.

Krishnamurthy, J. and Kollar, T. (2013). Jointly
learning to parse and perceive: Connecting nat-
ural language to the physical world. Transactions
of the Association for Computational Linguistics,
1(2).

Krishnamurthy, J. and Mitchell, T. (2012). Weakly
supervised training of semantic parsers. In Pro-
ceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning.

Kushman, N. and Barzilay, R. (2013). Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of the Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics.

1555



Kwiatkowski, T., Goldwater, S., Zettlemoyer, L.,
and Steedman, M. (2012). A probabilistic model
of syntactic and semantic acquisition from child-
directed utterances and their meanings. Proceed-
ings of the Conference of the European Chapter
of the Association of Computational Linguistics.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S.,
and Steedman, M. (2010). Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing.

Kwiatkowski, T., Zettlemoyer, L., Goldwater, S.,
and Steedman, M. (2011). Lexical generalization
in CCG grammar induction for semantic parsing.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Liang, P., Jordan, M., and Klein, D. (2011). Learn-
ing dependency-based compositional semantics.
In Proceedings of the Conference of the Associ-
ation for Computational Linguistics.

Matuszek, C., FitzGerald, N., Zettlemoyer, L., Bo,
L., and Fox, D. (2012). A joint model of language
and perception for grounded attribute learning. In
Proceedings of the International Conference on
Machine Learning.

Muresan, S. (2011). Learning for deep language un-
derstanding. In Proceedings of the International
Joint Conference on Artificial Intelligence.

Steedman, M. (1996). Surface Structure and Inter-
pretation. The MIT Press.

Steedman, M. (2000). The Syntactic Process. The
MIT Press.

Unger, C., Bühmann, L., Lehmann, J.,
Ngonga Ngomo, A., Gerber, D., and Cimiano, P.
(2012). Template-based question answering over
RDF data. In Proceedings of the International
Conference on World Wide Web.

Wong, Y. and Mooney, R. (2007). Learning syn-
chronous grammars for semantic parsing with
lambda calculus. In Proceedings of the Confer-
ence of the Association for Computational Lin-
guistics.

Yahya, M., Berberich, K., Elbassuoni, S., Ramanath,
M., Tresp, V., and Weikum, G. (2012). Natural

language questions for the web of data. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing.

Zelle, J. and Mooney, R. (1996). Learning to parse
database queries using inductive logic program-
ming. In Proceedings of the National Conference
on Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2005). Learning
to map sentences to logical form: Structured clas-
sification with probabilistic categorial grammars.
In Proceedings of the Conference on Uncertainty
in Artificial Intelligence.

Zettlemoyer, L. and Collins, M. (2007). Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning.

Zettlemoyer, L. and Collins, M. (2009). Learn-
ing context-dependent mappings from sentences
to logical form. In Proceedings of the Joint Con-
ference of the Association for Computational Lin-
guistics and International Joint Conference on
Natural Language Processing.

Zhang, C., Hoffmann, R., and Weld, D. S. (2012).
Ontological smoothing for relation extraction
with minimal supervision. In Proceeds of the
Conference on Artificial Intelligence.

1556



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1557–1562,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Classifying Message Board Posts with an Extracted Lexicon of Patient
Attributes

Ruihong Huang and Ellen Riloff
School of Computing

University of Utah
Salt Lake City, UT 84112

{huangrh, riloff}@cs.utah.edu

Abstract

The goal of our research is to distinguish vet-
erinary message board posts that describe a
case involving a specific patient from posts
that ask a general question. We create a text
classifier that incorporates automatically gen-
erated attribute lists for veterinary patients to
tackle this problem. Using a small amount of
annotated data, we train an information extrac-
tion (IE) system to identify veterinary patient
attributes. We then apply the IE system to a
large collection of unannotated texts to pro-
duce a lexicon of veterinary patient attribute
terms. Our experimental results show that us-
ing the learned attribute lists to encode pa-
tient information in the text classifier yields
improved performance on this task.

1 Introduction

Our research focuses on the problem of classify-
ing message board posts in the domain of veterinary
medicine. Most of the posts in our corpus discuss a
case involving a specific patient, which we will call
patient-specificposts. But there are also posts that
ask a general question, for example to seek advice
about different medications, information about new
procedures, or how to perform a test. Our goal is
to distinguish the patient-specific posts from general
posts so that they can be automatically routed to dif-
ferent message board folders.

Distinguishing patient-specific posts from general
posts is a challenging problem for two reasons. First,
virtually any medical topic can appear in either type
of post, so the vocabulary is very similar. Second,

a highly skewed distribution exists between patient-
specific posts and general posts. Almost 90% of the
posts in our data are about specific patients.

With such a highly skewed distribution, it would
seem logical to focus on recognizing instances of the
minority class. But the distinguishing characteristic
of a general post is theabsenceof a patient. Two
nearly identical posts belong in different categories
if one mentions a patient and the other does not.
Consequently, our aim is to create features that iden-
tify references to a specific patient and use these to
more accurately distinguish the two types of posts.

Our research explores the use of information ex-
traction (IE) techniques to automatically identify
common attributes of veterinary patients, which we
use to encode patient information in a text classifier.
Our approach involves three phases. First, we train
a conditional random fields (CRF) tagger to iden-
tify seven common types of attributes that are of-
ten ascribed to veterinary patients:SPECIES/BREED,
NAME, AGE, GENDER, WEIGHT, POSSESSOR, and
DISEASE/SYMPTOM. Second, we apply the CRF
tagger to a large set of unannotated message board
posts, collect its extractions, and harvest the most
frequently extracted terms to create aVeterinary Pa-
tient Attribute (VPA) Lexicon.

Finally, we define three types of features that ex-
ploit the harvested VPA lexicon. These features rep-
resent the patient attribute terms, types, and com-
binations of them to help the classifier determine
whether a post is discussing a specific patient. We
conduct experiments which show that the extracted
patient attribute information improves text classifi-
cation performance on this task.
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2 Related Work

Our work demonstrates the use of information ex-
traction techniques to benefit a text classification ap-
plication. There has been a great deal of research on
text classification (e.g., (Borko and Bernick, 1963;
Hoyle, 1973; Joachims, 1998; Nigam et al., 2000;
Sebastiani, 2002)), which most commonly has used
bag-of-word features. Researchers have also inves-
tigated clustering (Baker and McCallum, 1998), La-
tent Semantic Indexing (LSI) (Zelikovitz and Hirsh,
2001), Latent Dirichlet Allocation (LDA) (Br et al.,
2008) and string kernels (Lodhi et al., 2001). Infor-
mation extraction techniques have been used previ-
ously to create richer features for event-based text
classification (Riloff and Lehnert, 1994) and web
page classification (Furnkranz et al., 1998). Se-
mantic information has also been incorporated for
text classification. However, most previous work re-
lies on existing semantic resources, such as Wordnet
(Scott and Stan, 1998; Bloehdorn and Hotho, 2006)
or Wikipedia (Wang et al., 2009).

There is also a rich history of automatic lexicon
induction from text corpora (e.g., (Roark and Char-
niak, 1998; Riloff and Jones, 1999; McIntosh and
Curran, 2009)), Wikipedia (e.g., (Vyas and Pantel,
2009)), and the Web (e.g., (Etzioni et al., 2005;
Kozareva et al., 2008; Carlson et al., 2010)). The
novel aspects of our work are in using an IE tagger
to harvest a domain-specific lexicon from unanno-
tated texts, and using the induced lexicon to encode
domain-specific features for text classification.

3 Text Classification with Extracted
Patient Attributes

This resesarch studies message board posts from the
Veterinary Information Network (VIN), which is a
web site (www.vin.com) for professionals in veteri-
nary medicine. VIN hosts forums where veterinar-
ians discuss medical issues, challenging cases, etc.
We observed that patient-specific veterinary posts
almost always include some basic facts about the
patient, such as the animal’s breed, age, or gender.
It is also common to mention the patient’s owner
(e.g.,“a new client’s cat”) or a disease or symptom
that the patient has (e.g.,“a diabetic cat”). General
posts almost never contain this information.

Although some of these terms can be found in

existing resources such as Wordnet (Miller, 1990),
our veterinary message board posts are filled with
informal and unconventional vocabulary. For ex-
ample, one might naively assume that“male” and
“female” are sufficient to identify gender. But the
gender of animals is often revealed by describing
their spayed/neutered status, often indicated with
shorthand notations. For example,“m/n” means
male and neutered,“fs” means female spayed,“cas-
trated” means neutered and implies male. Short-
hand terms and informal jargon are also frequently
used for breeds (e.g.,“doxy” for dachsund,“labx”
for labrador cross,“gshep” for German Shepherd)
and ages (e.g.,“3-yr-old” , “3yo” , “3mo” ). A par-
ticularly creative age expression describes an animal
as (say)“a 1999 model” (i.e., born in 1999). To rec-
ognize the idiosyncratic vocabulary in these texts,
we use information extraction techniques to identify
terms corresponding to seven attributes of veterinary
patients: SPECIES/BREED, NAME, AGE, WEIGHT,
GENDER, POSSESSOR, andDISEASE/SYMPTOM.

Figure 1 illustrates our overall approach, which
consists of three steps. First, we train a sequential
IE tagger to label veterinary patient attributes using
supervised learning. Second, we apply the tagger
to 10,000 unannotated message board posts to auto-
matically create a Veterinary Patient Attribute (VPA)
Lexicon. Third, we use the VPA Lexicon to encode
patient attribute features in a document classifier.

Unannotated
Texts

PI Sentence 
Classifier

VPA Tagger
(CRF)

VPA
Lexicon

Step 2

PI Sentence 
Classifier

VPA Tagger
(CRF)

Annotated
Texts

Step 1

Annotated
Texts

VPA
Lexicon

Document
Classifier

Step 3

Figure 1: Flowchart for Creating a Patient-Specific vs.
General Document Classifier

3.1 Patient Attribute Tagger

The first component of our system is a tagger that
labels veterinary patient attributes. To train the tag-
ger, we need texts labeled with patient attributes.
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The message board posts can be long and tedious
to read (i.e., they are often filled with medical his-
tory and test results), so manually annotating every
word would be arduous. However, the patient is usu-
ally described at the beginning of a post, most com-
monly in 1-2 “introductory” sentences. Therefore
we adopted a two stage process, both for manual and
automatic tagging of patient attributes.

First, we created annotation guidelines to iden-
tify “patient introductory” (PI) sentences, which we
defined as sentences that introduce a patient to the
reader by providing a general (non-medical) descrip-
tion of the animal (e.g.,“I was presented with a m/n
Siamese cat that is lethargic.”) We randomly se-
lected 300 posts from our text collection and asked
two human annotators to manually identify the PI
sentences. We measured their inter-annotator agree-
ment using Cohen’s kappa (κ) and their agreement
was κ=.93. The two annotators then adjudicated
their differences to create our gold standard set of PI
sentence annotations. 269 of the 300 posts contained
at least one PI sentence , indicating that 89.7% of the
posts mention a specific patient. The remaining 31
posts (10.3%) are general in nature.

Second, the annotators manually labeled the
words in these PI sentences with respect to the 7 vet-
erinary patient attributes. On 50 randomly selected
texts, the annotators achieved an inter-annotator
agreement ofκ = .89. The remaining 250 posts were
then annotated with patient attributes (in the PI sen-
tences), providing us with gold standard attribute an-
notations for all 300 posts. To illustrate, the sentence
below would have the following labels:

Daisyname is a 10yrage oldage labspecies

We used these 300 annotated posts to train both
a PI sentence classifier and a patient attribute tag-
ger. The PI sentence classifier is a support vector
machine (SVM) with a linear kernel (Keerthi and
DeCoste, 2005), unigram and bigram features, and
binary feature values. The PI sentences are the posi-
tive training instances, and the sentences in the gen-
eral posts are negative training instances.

For the tagger, we trained a single conditional ran-
dom fields (CRF) model to label all 7 types of pa-
tient attributes using the CRF++ package (Lafferty
et al., 2001). We defined features for the word string
and the part-of-speech tags of the targeted word, two

words on its left, and two words on its right.
Given new texts to process, we first apply the PI

sentence classifier to identify sentences that intro-
duce a patient. These sentences are given to the pa-
tient attribute tagger, which labels the words in those
sentences for the 7 patient attribute categories.

To evaluate the performance of the patient at-
tribute tagger, we randomly sampled 200 of the 300
annotated documents to use as training data and used
the remaining 100 documents for testing. For this
experiment, we only applied the CRF tagger to the
gold standard PI sentences, to eliminate any con-
founding factors from the PI sentence classifier. Ta-
ble 1 shows the performance of the CRF tagger in
terms of Recall (%), Precision (%), and F Score (%).
Its precision is consistently high, averaging 91%
across all seven attributes. But the average recall is
only 47%, with only one attribute (AGE) achieving
recall≥ 80%. Nevertheless, the CRF’s high preci-
sion justifies our plan to use the CRF tagger to har-
vest additional attribute terms from a large collection
of unannotated texts. As we will see in Section 4,
the additional terms harvested from the unannotated
texts provide substantially more attribute informa-
tion for the document classifier to use.

Attribute Rec Prec F
SPECIES/BREED 59 93 72
NAME 62 100 76
POSSESSOR 12 100 21
AGE 80 91 85
GENDER 59 81 68
WEIGHT 19 100 32
DISEASE/SYMPTOM 35 73 47
Average 47 91 62

Table 1: Patient Attribute Tagger Evaluation

3.2 Creating a Veterinary Patient Attribute
(VPA) Lexicon

The patient attribute tagger was trained with super-
vised learning, so its ability to recognize important
words is limited by the scope of its training set.
Since we had an additional 10,000 unannotated vet-
erinary message board posts, we used the tagger to
acquire a large lexicon of patient attribute terms.

We applied the PI sentence classifier to all 10,000
texts and then applied the patient attribute tagger to
each PI sentence. The patient attribute tagger is not
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perfect, so we assumed that words tagged with the
same attribute value at least five times1 are most
likely to be correct and harvested them to create a
veterinary patient attribute (VPA) lexicon. This pro-
duced a VPA lexicon of 592 words. Table 2 shows
examples of learned terms for each attribute, with
the total number of learned words in parentheses.

Species/Breed (177):DSH, Schnauzer, kitty, Bengal,
pug, Labrador, siamese, Shep, miniature, golden, lab,
Spaniel, Westie, springer, Chow, cat, Beagle, Mix, ...
Name (53):Lucky, Shadow, Toby, Ginger, Boo, Max,
Baby, Buddy, Tucker, Gracie, Maggie, Willie, Tiger,
Sasha, Rusty, Beau, Kiki, Oscar, Harley, Scooter, ...
Age (59):#-year, adult, young, YO, y/o, model, wk,
y.o., yr-old, yrs, y, #-yr, #-month, #m, mo, mth, ...
Gender (39):F/s, speyed, neutered, spayed, N/M,
FN, CM, F, mc, mn, SF, male, fs, M/N, Female,
S, S/F, m/n, m/c, intact, M, NM, castrated, ...
Weight (5): lb, lbs, pound, pounds, kg
Possessor (7):my, owner, client, technician, ...
Disease/Symptom (252):abscess, fever, edema,
hepatic, inappetance, sneezing, blindness, pain,
persistent, mass, insufficiency, acute, poor, ...

Table 2: Examples from the Induced VPA Lexicon

3.3 Text Classification with Patient Attributes

Our ultimate goal is to incorporate patient attribute
information into a text classifier to help it distinguish
between patient-specific posts and general posts. We
designed three sets of features:

Attribute Types:We create one feature for each
attribute type, indicating whether a word of that at-
tribute type appeared or not.

Attribute Types with Neighbor:For each word la-
beled as a patient attribute, we create two features
by pairing its Attribute Type with a preceding or fol-
lowing word. For example, given the sentence:“The
tiny Siamese kitten was lethargic.”, if “Siamese” has
attribute typeSPECIESthen we create two features:
<tiny, SPECIES> and<SPECIES, kitten>.

Attribute Pairs:We create features for all pairs of
patient attribute words that occur in the same sen-
tence. For each pair, we create one feature repre-

1After our text classification experiments were done, we re-
ran the experiments with the unigrams+lexicon classifier using
thresholds ranging from 1 to 10 for lexicon creation, just tosee
how much difference this threshold made. We found that values
≥ 5 produced nearly identical classification results.

senting the words themselves and one feature repre-
senting the attribute types of the words.

4 Evaluation

To create a blind test set for evaluation, our anno-
tators labeled an additional 500 posts aspatient-
specificor general. Specifically, they labeled those
500 posts with PI sentences. The absence of a PI
sentence meant that the post was general. Of the 500
texts, 48 (9.6%) were labeled as general posts. We
evaluated the performance of the PI sentence classi-
fier on this test set and found that it achieved 88% ac-
curacy at identifying patient introductory sentences.

We then conducted a series of experiments for the
document classification task: distinguishing patient-
specific message board posts from general posts.
All of our experiments used support vector machine
(SVM) classifiers with a linear kernel, and ran 10-
fold cross validation on our blind test set of 500
posts. We report Recall (%), Precision (%), and F
score (%) results for the patient-specific posts and
general posts separately, and for the macro-averaged
score across both classes. For the sake of complete-
ness, we also show overall Accuracy (%) results.
However, we will focus attention on the results for
the general posts, since our main goal is to improve
performance at recognizing this minority class.

As a baseline, we created SVM classifiers using
unigram features.2 We tried binary, frequency, and
tf-idf feature values. The first three rows of Table 3
show that binary feature values performed the best,
yielding a macro-averaged F score of 81% but iden-
tifying only 54% of the general posts.

The middle section of Table 3 shows the perfor-
mance of SVM classifiers using our patient attribute
features. We conducted three experiments: apply-
ing the CRF tagger to PI sentences (per its design),
and labeling words with the VPA lexicon either on
all sentences or only on PI sentences (as identi-
fied by the PI sentence classifier). The CRF fea-
tures produced extremely low recall and precision
on the general posts. The VPA lexicon performed
best when applied only to PI sentences and pro-
duced much higher recall than all of the other clas-
sifiers, although with lower precision than the two

2We also tried unigrams + bigrams, but they did not perform
better.
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Patient-Specific Posts General Posts Macro Avg
Method Rec Prec F Rec Prec F Rec Prec F Acc

Unigram Features
Unigrams (freq) 96 96 96 58 60 59 77 76 77 92
Unigrams (tf-idf) 99 93 96 33 84 48 66 89 76 93
Unigrams (binary) 98 95 97 54 79 64 76 87 81 94

Patient Attribute Features
CRF Features (PI Sents) 99 91 95 02 25 04 51 58 54 90
VPA Lexicon Features (All Sents) 96 96 96 60 63 62 78 79 79 93
VPA Lexicon Features (PI Sents) 96 98 97 81 66 73 88 82 85 94

Unigram & Patient Attribute Features
CRF Features (PI Sents) 97 96 97 60 71 65 79 83 81 94
VPA Lexicon Features (PI Sents) 98 98 98 79 78 78 88 88 88 96

Table 3: Experimental Results

best unigram-based SVMs.

The bottom section of Table 3 shows results for
classifiers with both unigrams (binary) and patient
attribute features. Using the CRF features increases
recall on the general posts from 54→ 60, but de-
creases precision from 79→ 71. Using the patient
attribute features from the VPA lexicon yields a sub-
stantial improvement. Recall improves from 54→
79 and precision is just one point lower. Overall, the
macro-averaged F score across the two categories
jumps from 81% to 88%.

We performed paired bootstrap testing (Berg-
Kirkpatrick et al., 2012)) to determine whether the
SVM with unigrams and VPA lexicon features is
statistically significantly better than the best SVM
with only unigram features (binary). The SVM with
unigrams and VPA lexicon features produces sig-
nificantly better F scores at thep < 0.05 level for
general post classification as well as the macro av-
erage. The F score for patient-specific classification
and overall accuracy are statistically significant at
thep < 0.10 level.

Attribute CRF VPA
Tagger Lexicon

SPECIES/BREED 270 1045
NAME 36 43
POSSESSOR 12 233
AGE 545 1773
GENDER 153 338
WEIGHT 27 83
DISEASE/SYMPTOM 220 2673

Table 4: Number of Attributes Labeled in Test Set

Finally, we did an analysis to understand why the
VPA lexicon was so much more effective than the
CRF tagger when used to create features for text
classification. Table 4 shows the number of words
in PI sentences (identified by the classifier) of the
test set that were labeled as patient attributes by the
CRF tagger or the VPA lexicon. The VPA lexicon
clearly labeled many more terms, and the additional
coverage made a big difference for the text classifier.

5 Conclusions

This work demonstrated how annotated data can be
leveraged to automatically harvest a domain-specific
lexicon from a large collection of unannotated texts.
Our induced VPA lexicon was then used to create
patient attribute features that improved the ability of
a document classifier to distinguish between patient-
specific message board posts and general posts. We
believe that this approach could also be used to cre-
ate specialized lexicons for many other domains and
applications. A key benefit of inducing lexicons
from unannotated texts is that they provide addi-
tional vocabulary coverage beyond the terms found
in annotated data sets, which are usually small.

6 Acknowledgements

This material is based upon work supported by
the National Science Foundation under grant IIS-
1018314. We are very grateful to the Veterinary In-
formation Network for providing us with samples of
their data.

1561



References

D. Baker and A. McCallum. 1998. Distributional cluster-
ing of words for text classification. InProceedings of
the 21st annual international ACM SIGIR conference
on Research and development in information retrieval.

T. Berg-Kirkpatrick, D. Burkett, and D. Klein. 2012. An
Empirical Investigation of Statistical Significance in
NLP. In Proceedings of the 2012 Conference on Em-
pirical Methods in Natural Language Processing.

S. Bloehdorn and A. Hotho. 2006. Boosting for text
classification with semantic features. InAdvances in
Web mining and Web usage Analysis.

H. Borko and M. Bernick. 1963. Automatic Document
Classification.J. ACM, 10(2):151–162.

I. Br, J. Szab, and A. Benczr. 2008. Latent dirichlet allo-
cation in web spam filtering. InProceedings of the 4th
international workshop on Adversarial information re-
trieval on the web.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, R. Es-
tevam, J. Hruschka, and T. Mitchell. 2010. Toward
an Architecture for Never-Ending Language Learning.
In Proceedings of the Twenty-Fourth National Confer-
ence on Artificial Intelligence.

O. Etzioni, M. Cafarella, A. Popescu, T. Shaked,
S. Soderland, D. Weld, and A. Yates. 2005. Unsuper-
vised Named-Entity Extraction from the Web: An Ex-
perimental Study.Artificial Intelligence, 165(1):91–
134.

J. Furnkranz, T. Mitchell, and E. Riloff. 1998. A Case
Study in Using Linguistic Phrases for Text Catego-
rization from the WWW. InWorking Notes of the
AAAI/ICML Workshop on Learning for Text Catego-
rization.

W. Hoyle. 1973. Automatic Indexing and Generation
of Classification Systems by Algorithm.Information
Storage and Retrieval, 9(4):233–242.

T. Joachims. 1998. Text categorization with support vec-
tor machines: Learning with many relevant features.
In Proceedings of the European Conference on Ma-
chine Learning (ECML).

S. Keerthi and D. DeCoste. 2005. A Modified Finite
Newton Method for Fast Solution of Large Scale Lin-
ear SVMs.Journal of Machine Learning Research.

Z. Kozareva, E. Riloff, and E. Hovy. 2008. Semantic
Class Learning from the Web with Hyponym Pattern
Linkage Graphs. InProceedings of the 46th Annual
Meeting of the Association for Computational Linguis-
tics: Human Language Technologies (ACL-08).

J. Lafferty, A. McCallum, and F. Pereira. 2001. Condi-
tional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. InProceedings
of the Eighteenth International Conference on Ma-
chine Learning.

H. Lodhi, J. Shawe-Taylor, N. Christianini, and
C. Watkins. 2001. Text classification using string ker-
nels. InAdvances in Neural Information Processing
Systems (NIPS).

T. McIntosh and J. Curran. 2009. Reducing Semantic
Drift with Bagging and Distributional Similarity. In
Proceedings of the 47th Annual Meeting of the Associ-
ation for Computational Linguistics.

G. Miller. 1990. Wordnet: An On-line Lexical Database.
International Journal of Lexicography, 3(4).

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell.
2000. Text Classification from Labeled and Unla-
beled Documents using EM.Machine Learning, 39(2-
3):103–134, May.

E. Riloff and R. Jones. 1999. Learning Dictionaries for
Information Extraction by Multi-Level Bootstrapping.
In Proceedings of the Sixteenth National Conference
on Artificial Intelligence.

E. Riloff and W. Lehnert. 1994. Information Ex-
traction as a Basis for High-Precision Text Classifi-
cation. ACM Transactions on Information Systems,
12(3):296–333, July.

B. Roark and E. Charniak. 1998. Noun-phrase Co-
occurrence Statistics for Semi-automatic Semantic
Lexicon Construction. InProceedings of the 36th
Annual Meeting of the Association for Computational
Linguistics, pages 1110–1116.

S. Scott and M. Stan. 1998. Text classification using
WordNet hypernyms. InIn Use of WordNet in Natu-
ral Language Processing Systems: Proceedings of the
Conference.

F. Sebastiani. 2002. Machine learning in automated text
categorization. InACM computing surveys (CSUR).

V. Vyas and P. Pantel. 2009. Semi-automatic entity set
refinement. InProceedings of North American Asso-
ciation for Computational Linguistics / Human Lan-
guage Technology (NAACL/HLT-09).

P. Wang, J. Hu, H. Zeng, and Z. Chen. 2009. Using
Wikipedia knowledge to improve text classification.
In Knowledge and Information Systems.

S. Zelikovitz and H. Hirsh. 2001. Using LSI for text
classication in the presence of background text. In
Proceedings of the 10th International Conference on
Information and Knowledge Management (CIKM).

1562



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1563–1573,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Lexical Chain Based Cohesion Models for
Document-Level Statistical Machine Translation

Deyi Xiong1, Yang Ding2, Min Zhang1∗ and Chew Lim Tan2

1School of Computer Science and Technology, Soochow University, Suzhou, China 215006
{dyxiong, minzhang}@suda.edu.cn

2School of Computing, National University of Singapore, Singapore 117417
{a0082379, tancl}@comp.nus.edu.sg

Abstract

Lexical chains provide a representation of the
lexical cohesion structure of a text. In this pa-
per, we propose two lexical chain based co-
hesion models to incorporate lexical cohesion
into document-level statistical machine trans-
lation: 1) a count cohesion model that rewards
a hypothesis whenever a chain word occurs in
the hypothesis, 2) and a probability cohesion
model that further takes chain word transla-
tion probabilities into account. We compute
lexical chains for each source document to be
translated and generate target lexical chains
based on the computed source chains via max-
imum entropy classifiers. We then use the
generated target chains to provide constraints
for word selection in document-level machine
translation through the two proposed lexical
chain based cohesion models. We verify the
effectiveness of the two models using a hier-
archical phrase-based translation system. Ex-
periments on large-scale training data show
that they can substantially improve translation
quality in terms of BLEU and that the prob-
ability cohesion model outperforms previous
models based on lexical cohesion devices.

1 Introduction

Given a source document, traditionally most statisti-
cal machine translation (SMT) systems translate the
document sentence by sentence. In such a transla-
tion scheme, sentences are translated independent
of any other sentences. However, a text is normally
written cohesively, in which sentences are connected

∗Corresponding author

to each other via syntactic and lexical devices. This
linguistic phenomenon is called as textual cohesion
(Halliday and Hasan, 1976).

Cohesion is a surface-level property of well-
formed texts. It deals with five categories of rela-
tionships between text units, namely co-reference,
ellipsis, substitution, conjunction and lexical cohe-
sion that is realized via semantically related words.
The former four cohesion relations can be grouped
as grammatical cohesion. Generally speaking,
grammatical cohesion is less common and harder
to identify than lexical cohesion (Barzilay and El-
hadad, 1997).

As most SMT systems translate a text in a
sentence-by-sentence fashion, they tend to build less
lexical cohesion than human translators (Wong and
Kit, 2012). We therefore study lexical cohesion for
document-level translation. We use lexical chains
(Morris and Hirst, 1991) to capture lexical cohe-
sion in a text. Lexical chains are connected graphs
that represent the lexical cohesion structure of a text.
They have been successfully used for information
retrieval (Stairmand, 1996), document summariza-
tion (Barzilay and Elhadad, 1997) and so on. In this
paper, we investigate how lexical chains can be used
to incorporate lexical cohesion into document-level
translation.

Our basic assumption is that the lexical chains of
a target document are direct correspondences of the
lexical chains of its counterpart source document.
This assumption is reasonable as the target docu-
ment translation should be faithful to the source doc-
ument in terms of both text meaning and structure.
Based on this assumption, we propose a framework
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to incorporate lexical cohesion into target document
translation via lexical chains, which works as fol-
lows.

• Compute lexical chains for each source docu-
ment that is to be translated;

• Project the computed source lexical chains onto
the corresponding target document by translat-
ing source chain words into target chain words
using maximum entropy classifiers;

• Incorporate lexical cohesion into the target doc-
ument translation via cohesion models built on
the projected target lexical chains .

We build two lexical chain based cohesion mod-
els. The first model is a count model that rewards a
hypothesis whenever a word in the projected target
lexical chains occur in the hypothesis. As a source
chain word may be translated into many different
target words, we further extend the count model to
a second cohesion model: a probability model that
takes chain word translation probabilities into ac-
count.

We test the two lexical chain based cohesion mod-
els on a hierarchical phrase-based SMT system that
is trained with large-scale Chinese-English bilin-
gual data. Experiment results show that our lexi-
cal chain based cohesion models can achieve sub-
stantial improvements over the baseline. Further-
more, the probability cohesion model is better than
the count model and it also outperforms previous
cohesion models based on lexical cohesion devices
(Xiong et al., 2013).

To the best of our knowledge, this is the first at-
tempt to explore lexical chains for statistical ma-
chine translation. The remainder of this paper is or-
ganized as follows. Section 2 discusses related work
and highlights the differences between our method
and previous work. Section 3 briefly introduces
lexical chains and algorithms that compute lexical
chains. Section 4 elaborates the proposed lexical
chain based framework, including details on source
lexical chain computation, target lexical chain gen-
eration and the two lexical chain based cohesion
models. Section 5 presents our large-scale experi-
ments and results. Finally, we conclude with future
directions in Section 6.

2 Related Work

Recent years have witnessed growing research in-
terests in document-level statistical machine trans-
lation. Such research efforts can be roughly di-
vided into two groups: 1) general document-level
machine translation that does not explore or ex-
plores very little linguistic discourse information;
2) linguistically-motivated document-level machine
translation that incorporates discourse information
such as cohesion and coherence into SMT. Recent
studies (Guillou, 2013; Beigman Klebanov and
Flor, 2013) show that this discourse information is
very important for document-level machine transla-
tion.

General Document-Level Machine Translation
Tiedemann (2010) propose cache-based language
and translation models for document-level machine
translation. These models are built on recently trans-
lated sentences. Following this cache-based ap-
proach, Gong et al. (2011) further introduce two
additional caches. They use a static cache to store
bilingual phrases extracted from documents in train-
ing data that are similar to the document being trans-
lated. They also adopt a topic cache with target
language topic words. Xiao et al. (2011) study
the translation consistency issue in document-level
machine translation. They use a hard constraint to
consistently translate ambiguous source words into
the most frequent translation options. Ture et al.
(2012) soften this consistency constraint by integrat-
ing three counting features into decoder.

Using Lexical Cohesion Devices in Document-
Level SMT Lexical cohesion devices are seman-
tically related words, including word repetition,
synonyms/near-synonyms, hyponyms and so on.
They are also the cohesion-building elements in lex-
ical chains.

Wong and Kit (2012) use lexical cohesion device
based metrics to improve machine translation evalu-
ation at the document level. These metrics measure
the proportion of content words that are used as lex-
ical cohesion devices in machine-generated transla-
tions. Hardmeier et al. (2012) propose a document-
wide phrase-based decoder and integrate a semantic
language model into the decoder. They argue that
their semantic language model can capture lexical
cohesion by exploring n-grams that cross sentence
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boundaries.
Most recently Xiong et al. (2013) integrate

three categories of lexical cohesion devices into
document-level machine translation. They define
three cohesion models based on lexical cohesion de-
vices: a direct reward model, a conditional probabil-
ity model and a mutual information trigger model.
The latter two models measure the strength of lexical
cohesion relation between two lexical items. They
are incorporated into SMT to calculate how appro-
priately lexical cohesion devices are used in doc-
ument translation. As lexical chains capture lexi-
cal cohesion relations among sequences of related
words rather than those only between two words, ex-
periments in Section 5 show that our lexical chain
based probability cohesion model is better than the
lexical cohesion device based trigger model, which
is the best among the three cohesion models pro-
posed by Xiong et al. (2013).

Modeling Coherence in Document-Level SMT
In discourse analysis, cohesion is often studied to-
gether with coherence which is another dimension
of the linguistic structure of a text (Barzilay and
Elhadad, 1997). Cohesion is related to the sur-
face structure of a text while coherence is concerned
with the underlying meaning connectedness in a text
(Vasconcellos, 1989). Compared with cohesion, co-
herence is not easy to be detected. Even so, various
models have been proposed to explore coherence for
document summarization and generation (Barzilay
and Lapata, 2008; Louis and Nenkova, 2012). Fol-
lowing this line, Xiong and Zhang (2013) integrate
a topic-based coherence model into document-level
machine translation, where coherence is defined as a
continuous sentence topic transition.

Our lexical chain based cohesion models are also
related to previous work on using word and phrase
sense disambiguation for lexical choice in SMT
(Carpuat and Wu, 2007b; Carpuat and Wu, 2007a;
Chan et al., 2007). The difference is that we use
document-wide lexical chains to build our cohesion
models rather than sentence-level context features.
In our framework, lexical choice is performed to
make the selected words consistent with the lexical
cohesion structure of a document.

Carpuat (2009) explores the principle of one sense
per discourse (Gale et al., 1992) in the context of
SMT and imposes the constraint of one translation

per discourse on document translation. We also
use the one sense per discourse principle to perform
word sense disambiguation on the source side in our
lexical chaining algorithm (See Section 4.1).

3 Background: Lexical Chain and Chain
Computation

Lexical chains are sequences of semantically related
words (Morris and Hirst, 1991). They represent the
lexical cohesion structure of a text. Figure 2 displays
six lexical chains computed from the Chinese news
article shown in Figure 1. Words in these lexical
chains have lexical cohesion relations such as rep-
etition, synonym, which may range over the entire
text. For example, in the lexical chain LC1 of Fig-
ure 2, the same word “dWgu_” (Germany) repeats
9 times. In the lexical chain LC3, the two words
“z`ngcSi” (president) and “zhdx[” (chairman) are
synonym words. Generally, a text can have many
different lexical chains, each of which represents a
thread of cohesion through the text.

Several lexical chaining algorithms have been
proposed to compute lexical chains from texts. Nor-
mally they need an ontology to obtain semantic re-
lations between words. Word sense disambiguation
(WSD) is also used to determine the sense of each
word in a text. Generally a lexical chain compu-
tation algorithm completes the following three sub-
tasks:

• Building a representation of a text with a set
of candidate words and assigning semantic re-
lations between the candidate words according
to the ontology;

• Choosing the right sense for each candidate
word via WSD;

• Building chains over the semantically related
and disambiguated candidate words.

These three sub-tasks can be done separately or si-
multaneously.

Morris and Hirst (Morris and Hirst, 1991) de-
fine the first lexical chain computation algorithm
that adopts a greedy strategy to immediately disam-
biguate a word at its first occurrence. This algo-
rithm runs in linear time but suffers from inaccu-
rate disambiguation. Barzilay and Elhadad (Barzi-
lay and Elhadad, 1997) significantly improve WSD
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dWgu_ diUnx]n g^ngsZ z`ngcSi su`ma c[zh[
dWgu_ diUnx]n g^ngsZ xuRnbe , qiSn jiRnsh]hu] zhdx[ qZsh[Yr su] de xZlYXr jiRng dRnrYn gRi
g^ngsZ de l[nsh[ z`ngcSi , wWiqZ lie gY yuY , zh[dUo su`ma de j]rYn rWnxuTn jiVrYn wWizh\"
( fTxZnshY b^ Sng diUn ) dWgu_ diUnx]n g^ngsZ z`ngcSi su`ma jZntiRn c[qe tR de zh[we , tR
shu^ , y_uyc tR xiTnrSn bc zUi shaudUo dWgu_ diUnx]n g^ngsZ jiRnsh]hu] de ch^ngfYn x]nrYn ,
c[zh[ sh] tR wWiyZ de xuTnzW"
t_uzZrWn huRny[ng zhYxiUng xuRnbe , dWgu_ diUnx]n g^ngsZ de gdpiUo yZnc\ zUi fTlSnkYfc
gdpiUo jiRoy] sh]chTng shUng zhTng bTifYnzhZsh[yZ y\shUng"
su`ma zUi dWgu_ diUnx]n g^ngsZ b^ Sng z`ngbe zhUokRi jiRnsh]hu] tYbiW hu]y] zh^ng fRbiTo
yZ xiUng shVngm[ng , tR shu^ : 7 w` y\ yUoqic jiRnsh]hu] jiXchc w` de zh[we"8
y_uyc liTng gY yuY hau jiRng jdx[ng dUxuTn , dUn liSnhWzhYngfd zUi m[n diUo zh^ng shVngwUng
luahau , dWgu_ z`ngl\ shZ ruadW s]hb xZwUng zUi gdjiU xiUcua zh] xZn dZ sh[ , dWgu_ diUnx]n
g^ngsZ shebTiwUn m[ng xiTo gdd^ng de zZjZn b]ng wYi xiRoshZ , Wr zhZch[ tR"
dWgu_ diUnx]n gdjiU haulSi hu[ wXn , y\ sh[yZdiTnyZbR ^uyuSn zua sh^u , shUngzhTng
bTifYnzhZbRdiTnwds]"
dWgu_ cSizhYngbe huRny[ng su`ma c[zh[ de juWd]ng"

Figure 1: An example of a Chinese news article (written in pinyin).

LC1: {dWgu_, dWgu_, b^, dWgu_, dWgu_, dWgu_,
dWgu_, b^, dWgu_, dWgu_, dWgu_}
LC2:{jiRnsh]hu], fTxZnshY, jiRnsh]hu], z`ngbe,
jiRnsh]hu], jiRnsh]hu]}
LC3: {z`ngcSi, zhdx[, z`ngcSi, z`ngl\}
LC4: {c[zh[, c[qe, c[zh[, c[zh[}
LC5: {zhTng, xiUcua, shUngzhTng}
LC6: {xuRnbe, xuRnbe, fRbiTo}

Figure 2: Six lexical chains from the example in Figure
1.

accuracy by processing all possible combinations of
word senses in a text to disambiguate words. Un-
fortunately, their algorithm runs slowly in quadratic
time. Galley and Mckeown (2003) present an algo-
rithm that are better than the former two algorithms
both in terms of running efficiency and WSD accu-
racy. They separate the WSD sub-task from the task
of lexical chain building and impose a “one sense
per discourse” constraint in the WSD step.

4 Translating Documents Using Lexical
Chains

In this section, we describe how we incorporate lex-
ical cohesion into document-level machine transla-
tion using lexical chains. We divide the lexical chain
based document-level machine translation process

into three steps: (1) computing lexical chains for
source documents with a source language ontology,
(2) generating target lexical chains from the com-
puted source lexical chains, and finally (3) incorpo-
rating lexical cohesion encoded in the generated tar-
get lexical chains into document-level translation via
lexical chain based cohesion models. The remainder
of this section will elaborate these three steps.

4.1 Source Lexical Chains Computation

We follow the chain computation algorithm intro-
duced by Galley and McKeown (2003) to build lex-
ical chains on source (Chinese) documents. In the
algorithm, the chaining process includes three steps:
choosing candidate words to build a disambiguation
graph (Galley and McKeown, 2003) for each doc-
ument, disambiguating the candidate words and fi-
nally building lexical chains over the disambiguated
candidate words.

The disambiguation graph can be considered as
a representation of all possible interpretations of its
corresponding text. In the graph, nodes are candi-
date words with different senses and edges between
word senses are weighted according to their seman-
tic relations, such as synonym, hypernym and so on.
We use an extended version of a Chinese thesaurus
Tongyici Cilin (Cilin for short) to define word senses
and semantic relations between senses. The ex-
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level 1

level 2

level 3

level 4

level 5

Figure 3: The architecture of the extended Cilin. For sim-
plicity, we only draw a binary tree to represent the hier-
archical structure of Cilin. This doesn’t mean that each
semantic class at level i has only two sub-classes at level
i+ 1. Actually, they have multiple sub-classes.

tended Cilin contains 77,343 Chinese words, which
are organized in a hierarchical structure containing
5 levels as shown in Figure 3. In the 5th level, each
node represents an atomic concept which consists of
a set of synonyms. These atomic concepts are just
like synsets in WordNet. We use them to represent
senses of words in the disambiguation graph.

We select nouns, verbs, abbreviations and idioms
as candidate words for the disambiguation graph.
These words are identified by a Chinese part-to-
speech tagger LTP (Che et al., 2010) in a preprocess-
ing step. In order to build the disambiguation graph,
we first build an array indexed by the atomic con-
cepts of Cilin, then insert a copy of each candidate
word into its all concept (sense) entries in the array.
After that, we create all semantic links among senses
of different candidate words in the disambiguation
graph following Galley and McKeown (2003).

In the second step, we use the principle of one
sense per discourse to perform WSD for each can-
didate word in the disambiguation graph. We sum
the weights of all semantic links under the different
senses of the candidate word in question. The sense
with the highest sum of weights is considered as the
most probable sense for this word. We then assign
this sense to all occurrences of the word in the doc-
ument by adopting the constraint of one sense per
discourse.

Once all candidate words are disambiguated, we
can build lexical chains over these words by remov-
ing all semantic links that connect those unselected

word senses. The six lexical chains shown in Fig-
ure 2 are computed from the Chinese document in
Figure 1 exactly following the algorithm of Galley
and McKeown (2003). The only difference is that
we use Cilin rather than WordNet as the ontology.

4.2 Target Lexical Chains Generation
Since a faithful target document translation should
follow the same cohesion structure as that in its cor-
responding source document, we generate target lex-
ical chains from the computed source lexical chains.
Given a source lexical chain LCs = {sji} where the
ith chain word sji is from the jth sentence of the
source document Ds, we generate a target lexical
chain LCt = {tji} using maximum entropy (Max-
Ent) classifiers. Particularly, we translate a word sji
in the source lexical chain into a target word tji in
the target lexical chain using a corresponding Max-
Ent classifier as follows1.

P (tji |C(s
j
i )) =

exp(
∑

k θkfk(t
j
i , C(s

j
i )))∑

t exp(
∑

k θkfk(t, C(s
j
i )))

(1)

where fk are binary features, θk are weights of these
features, and C(sji ) is the surrounding context of
chain word sji .

We train one MaxEnt classifier per unique source
chain word. For each classifier, we define two
groups of binary features: 1) the preceding and
succeeding two words of sji in the jth sentence
({w−2, w−1, s

j
i , w+1, w+2}); 2) the preceding and

succeeding one word of sji in the lexical chain LCs
({spi−1, s

j
i , s

q
i+1}). All features are in the following

binary form.

f(tji , C(s
j
i )) =

{
1, if tji = ♣ and C(sji ).♥ = ♠
0, else

(2)
where the symbol ♣ is a placeholder for a possible
target word, the symbol♥ indicates a contextual ele-
ment for the chain word sji (e.g., the preceding word
in the jth sentence or the succeeding word in the
lexical chain LCs), and the symbol ♠ represents the
value of ♥.

Given a source document Ds and its N lexical
chains {LCks }Nk=1 computed from the document as

1We collect training instances from word-aligned bilingual
data to train the MaxEnt classifier.
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described in Section 4.1, we can generate the N
target lexical chains {LCkt }Nk=1 using our MaxEnt
classifiers. Each target word tji in the target lexi-
cal chain LCkt is the translation of its corresponding
source word sji in the source lexical chain LCks with
the highest probability P (tji |C(s

j
i )) according to Eq.

(1).
As we know, the MaxEnt classifier can gen-

erate multiple translations for each source word.
In order to incorporate these multiple chain word
translations, we can generate a super target lexi-
cal chain εLCt from a source lexical chain LCs,
where ε is a pre-defined threshold used to se-
lect multiple translations. For example, given a
source lexical chain LCs = {a, b, c}, we can
have the corresponding super target lexical chain
εLCt = {{a1

t , a
2
t ...}, {b1t , b2t ...}, {c1t , c2t ...}}, where

xit is the translation of x with a translation probabil-
ity P (xit|C(x)) ≥ ε according to Eq. (1). Integrat-
ing multiple translations for each source chain word,
we can reduce the error propagation of the MaxEnt
classifier to some extent. Our experiments also con-
firm that the super target lexical chains with multi-
ple translation options for each chain word are better
than the target lexical chains with only one transla-
tion per chain word. Therefore we build our cohe-
sion models based on the super target lexical chains,
which will be described in the next section.

4.3 Lexical Chain Based Cohesion Models

Once we generate the super target lexical chains
{εLCkt }Nk=1 for the target document Dt, we can use
them to provide constraints for the target document
translation. Our key interest is to make the target
document translation TDt as cohesive as possible.
We therefore propose lexical chain based cohesion
models to measure the cohesion of the target docu-
ment translation. The basic idea is to reward a trans-
lation hypothesis if a word from the super target lexi-
cal chains occurs in the hypothesis. According to the
difference in the reward strategy, we have two cohe-
sion models: a count cohesion model and a proba-
bility cohesion model.

Count Cohesion Model Mc(TDt , {εLCkt }Nk=1):
This model rewards a translation hypothesis of the
jth sentence in the document whenever a lexical
chain word tji occurs in the hypothesis. The model

maintains a counter and accumulates the counter
when necessary. It is factorized into the sentence
cohesion metric Mc(Tj , {εLCkt }Nk=1), where Tj is
the translation of the jth sentence in the target docu-
ment. Mc(Tj , {εLCkt }Nk=1) is formulated as follows.

Mc(Tj , {εLCkt }Nk=1) =
∏
w∈Tj

∏
tji∈C

eδ(w,t
j
i ) (3)

where C represents {εLCkt }Nk=1, and the δ function
is defined as follows.

δ(w, tji ) =

{
1, if tji = w
0, otherwise

(4)

Probability Cohesion Model
Mp(TDt , {εLCkt }Nk=1): This model rewards a
translation hypothesis according to the translation
probability of a chain word that occurs in the
hypothesis. The translation probability is computed
by Eq. (1). The model is also factorized into the
sentence cohesion metric Mp(Tj , {εLCkt }Nk=1)
which is formulated as follows.

Mp(Tj ,{εLCkt }Mk=1) =∏
w∈Tj

∏
tji∈C

eδ(w,t
j
i ) × P (tji |C(s

j
i ))

(5)

where P (tji |C(s
j
i ) is the translation probability com-

puted according to Eq. (1).

4.4 Decoding
The proposed lexical chain based cohesion models
are integrated into the log-linear translation frame-
work of SMT as a cohesion feature. Before translat-
ing a source document, we compute lexical chains
for the source document as described in Section 4.1.
We then generate the super target lexical chains. In
order to efficiently calculate our lexical chain based
cohesion models, we reorganize words in the super
target lexical chains into vectors. We associate each
source sentence Sj a vector to store target lexical
chain words that are to occur in the corresponding
target sentence Tj .

Although we still translate a source document
sentence by sentence, we capture the global cohe-
sion structure of the document via lexical chains and
use the lexical chain based cohesion models to con-
strain word selection in document translation. Fig-
ure 4 shows the architecture of an SMT system with
the lexical chain based cohesion model.
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Figure 4: Architecture of an SMT system with the lexical
chain based cohesion model.

5 Experiments

In this section, we conducted a series of experiments
to validate the effectiveness of the proposed lexical
chain based cohesion models for Chinese-to-English
document-level machine translation. We used a hier-
archical phrased-based SMT system (Chiang, 2007)
trained on large-scale data. In particular, we aim at:

• Measuring the impact of the threshold ε on the
probability cohesion model and selecting the
best threshold on a development test set.

• Investigating the effect of the two lexical-chain
based cohesion models.

• Comparing our lexical chain based cohesion
models against the previous lexical cohesion
device based models (Xiong et al., 2013).

5.1 Setup

We collected our bilingual training data from
LDC, which includes the corpus LDC2002E18,
LDC2003E07, LDC2003E14, LDC2004E12,
LDC2004T07, LDC2004T08 (Only Hong Kong
News), LDC2005T06 and LDC2005T10. The
collected bilingual training data contains 3.8M
sentence pairs with 96.9M Chinese words and
109.5M English words. We trained a 4-gram
language model on the Xinhua portion of the
English Gigaword corpus (306 million words) via
the SRILM toolkit (Stolcke, 2002) with Kneser-Ney
smoothing.

Training MT05 MT06 MT08
#Doc 103,236 100 79 109
#Sent 2.80M 1,082 1,664 1,357
#Chain 3.52M 1700 2172 1693
#AvgC 35.72 17 27.49 15.53
#AvgW 14.81 5.89 6.89 5.63

Table 1: Statistics of the training, development and test
sets, which show the number of documents (#Doc) and
sentences (#Sent), the number of lexical chains extracted
from the source documents (#Chain), the average number
of lexical chains per document (#AvgC) and the average
number of words per lexical chain (#AvgW).

In order to build the lexical chain based cohesion
models, we selected corpora with document bound-
aries explicitly provided from the bilingual training
data together with the whole Hong Kong parallel
text corpus as the cohesion model training data2. We
show the statistics of these selected corpora in Table
1. They contain 103,236 documents and 2.80M sen-
tences. Averagely, each document consists of 28.4
sentences. From the source documents of the se-
lected corpora, we extract 3.52M lexical chains. On
average, there are 35.72 lexical chains per document
and 14.81 words per lexical chain.

We used the off-the-shelf MaxEnt toolkit3 to train
one MaxEnt classifier per unique source lexical
chain word (61,121 different source chain words in
total). We performed 100 iterations of the L-BFGS
algorithm implemented in the training toolkit for
each chain word with both Gaussian prior and event
cutoff set to 1 to avoid overfitting. After event cutoff,
we have an average of 17.75 different classes (target
translations) per source chain word.

We used the NIST MT05 as the tuning set for the
minimum error rate training (MERT) [Och, 2003],
the NIST MT06 as the development test set and the
MT08 as the final test set. The numbers of doc-
uments/sentences in the NIST MT05, MT06 and
MT08 are 100/1082, 79/1664 and 109/1357 respec-
tively. They contain 17, 27.49 and 15.53 lexical
chains per document respectively.

We used the case-insensitive BLEU-4 (Papineni
2The training data includes LDC2003E14, LDC2004T07,

LDC2005T06, LDC2005T10 and LDC2004T08 (Hong Kong
Hansards/Laws/News).

3Available at: http://homepages.inf.ed.ac.uk/lzhang10/
maxent toolkit.html
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ε MT06
0.05 30.53
0.1 31.64
0.2 31.45
0.3 30.73
0.4 31.01

Table 2: BLEU scores of the probability cohesion
model Mp(TDt

, {εLCkt }Nk=1) with different values for
the threshold ε.

et al., 2002) as our evaluation metric. As MERT is
normally instable, we ran the tuning process three
times for all our experiments and presented the av-
erage BLEU scores on the three MERT runs as sug-
gested by Clark et al (2011).

5.2 Setting the Threshold ε

As the two lexical chain based cohesion models are
built on the super target lexical chains that are asso-
ciated with a parameter ε, we need to tune the thresh-
old parameter ε on the development test set NIST
MT06. We conducted a group of experiments using
the probability cohesion model defined in Eq. (5)
to find the best threshold. Experiment results are
shown in Table 2.

If we set the threshold too small (e.g., 0.05), the
super target lexical chains may contain too many
noisy words that are not the translations of source
lexical chain words, which may jeopardise the qual-
ity of the super target lexical chains. The cohesion
model built on these noisy super target lexical chains
may select incorrect words rather than the proper
lexical chain words. On the other hand, if we set the
threshold too large (e.g., 0.3 or 0.4), we may take
the risk of not selecting the appropriate chain word
translations into the super target lexical chains. It
seems that the best threshold is 0.1 as we obtained
the highest BLEU score 31.64 on the NIST MT06
with this threshold. Therefore we set the threshold ε
to 0.1 in all experiments thereafter.

5.3 Effect of the Count and Probability
Cohesion Model

After we found the best threshold, we carried out ex-
periments to test the effect of the two lexical chain
based cohesion models: the count and probability
cohesion model. We compared them against the

System MT06 MT08 Avg
Baseline 30.43 23.32 26.88
LexChainCount(top 1) 30.46 23.52 26.99
LexChainCount 30.79 23.34 27.07
LexChainProb 31.64 24.54 28.09

Table 3: Effects of the lexical chain based count and
probability cohesion models. LexChainCount: the count
model defined in Eq. (3). LexChainProb: the probability
model defined in Eq. (5).

baseline system that does not integrate any lexical
chain information. We also compared the count co-
hesion model (LexChainCount(top1)) built on the
target lexical chains where each target chain word is
the best translation of its corresponding source lex-
ical chain word according to Eq. (1). Experiment
results are shown in Table 3.

From Table 3, we can observe that

• Our lexical chain based cohesion models are
able to substantially improve the translation
quality in terms of BLEU score. We achieve
an average improvement of up to 1.21 BLEU
points over the baseline on the two test sets
MT06 and MT08.

• The count cohesion model built on the super
target lexical chains is better than that based
on the target lexical chains only with top one
translations (27.07 vs. 26.99). This shows
the advantage of the super target lexical chains
{εLCkt }Nk=1 over the standard target lexical chi-
ans {LCkt }Nk=1.

• Finally, the probability cohesion model is much
better than the count cohesion model (28.09
vs. 27.07). This suggests that we should take
into account chain word translation probabili-
ties when we reward hypotheses where target
lexical chain words occur.

5.4 Lexical Chains vs. Lexical Cohesion
Devices

As we have mentioned in Section 2, lexical cohe-
sion devices can be also used to build lexical cohe-
sion models to capture lexical cohesion relations in a
text. We therefore want to compare our lexical chain
based cohesion models with the lexical cohesion de-
vice based cohesion models.
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System MT06 MT08 Avg
Baseline 30.43 23.32 26.88
LexDeviceTrigger 31.35 24.11 27.73
LexChainProb 31.64 24.54 28.09

Table 4: The lexical chain based probability cohesion
model (LexChainProb) vs. the lexical cohesion device
based trigger model (LexDeviceTrigger).

We re-implemented the mutual information trig-
ger model that is the best lexical cohesion model
based on lexical cohesion devices among the three
models proposed by Xiong et al. (2013). The mu-
tual information trigger model measures the associ-
ation strength of two lexical cohesion items x and y
in a lexical cohesion relation xRy. In the model, it
is required that x occurs in a sentence preceding the
sentence where y occurs and that the two items have
a lexical cohesion relation such as word repetition,
synonym. The model treats x as the trigger and y as
the triggered item. The mutual information between
the trigger x and the triggered item y estimates how
possible y will occur given x is mentioned in a text.

The comparison results are reported in Table 4.
Our lexical chain based probability cohesion model
outperforms the lexical cohesion device based trig-
ger model by 0.36 BLEU points. The reason for this
superiority of our cohesion model over the trigger
model may be that the former model captures lex-
ical cohesion relations among sequences of words
through lexical chains while the latter model cap-
tures lexical cohesion relations only between two re-
lated words.

6 Conclusions

We have presented two lexical chain based cohesion
models that incorporate the lexical cohesion struc-
ture of a text into document-level machine transla-
tion. We project the lexical chains of a source docu-
ment to the corresponding target document by trans-
lating each word in each source lexical chain into
their counterparts via MaxEnt classifiers. The pro-
jected target lexical chains provide a representation
of the lexical cohesion structure of the target doc-
ument that is to be generated. We build two co-
hesion models based on the projected target lexi-
cal chains: a count model that rewards a hypothesis
according to the time of occurrence of target lexi-

cal chain words in the hypothesis and a probability
model that further takes translation probabilities into
account when rewarding hypotheses. These two co-
hesion models are used to constrain word selection
for document translation so that the generated doc-
ument is consistent with the projected lexical cohe-
sion structure.

We have integrated the two proposed cohesion
models into a hierarchical phrase-based SMT sys-
tem. Experiment results on large-scale data validate
that

• The lexical chain based cohesion models are
able to substantially improve translation qual-
ity in terms of BLEU.

• The probability cohesion model is better than
the count cohesion model.

• The lexical chain based probability cohesion
model is better than the previous mutual infor-
mation trigger model that adopts lexical cohe-
sion devices to capture lexical cohesion rela-
tions between two related words.

As we mentioned in Section 2, cohesion is closely
connected to coherence. It provides a surface indi-
cator for coherence identification (Barzilay and El-
hadad, 1997). In the future, we would like to use
lexical chains to identify coherence and incorporate
both cohesion and coherence into document-level
machine translation.
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Abstract

The IBM translation models have been hugely
influential in statistical machine translation;
they are the basis of the alignment models
used in modern translation systems. Exclud-
ing IBM Model 1, the IBM translation mod-
els, and practically all variants proposed in the
literature, have relied on the optimization of
likelihood functions or similar functions that
are non-convex, and hence have multiple lo-
cal optima. In this paper we introduce a con-
vex relaxation of IBM Model 2, and describe
an optimization algorithm for the relaxation
based on a subgradient method combined
with exponentiated-gradient updates. Our ap-
proach gives the same level of alignment ac-
curacy as IBM Model 2.

1 Introduction

The IBM translation models (Brown et al., 1993)
have been tremendously important in statistical ma-
chine translation (SMT). The IBM models were the
first generation of SMT systems; in recent work,
they play a central role in deriving alignments used
within many modern SMT approaches, for exam-
ple phrase-based translation models (Koehn, 2008)
and syntax-based translation systems (e.g., (Chi-
ang, 2005; Marcu et al., 2006)). Since the origi-
nal IBM paper, there has been a large amount of re-
search exploring the original IBM models and mod-
ern variants (e.g., (Moore, 2004; Liang et al., 2006;
Toutanova and Galley, 2011; Riley and Gildea,
2012; Vogel et al., 1996)).

Excluding IBM Model 1, the IBM translation
models, and practically all variants proposed in the
literature, have relied on the optimization of like-
lihood functions or similar functions that are non-
convex. Unfortunately, non-convex objective func-
tions have multiple local optima, and finding a
global optimum of a non-convex function is typi-
cally a computationally intractible problem. Typi-

cally, an EM algorithm is used, which often runs in
a reasonable amount of time, but with no guarantees
of finding a global optima (or for that matter, even a
near-optimal solution).

In this paper we make the following contributions:

• We introduce a convex relaxation of IBM
Model 2. At a very high level, the relaxation
is derived by replacing the product t(fj |ei) ×
d(i|j) with a relaxation that is commonly used
in the linear programming literature (e.g., see
(Bertsimas, 1997; Bertsimas and Tsitsiklis,
1997; Martins et al., 2010)). (Here t(f |e) are
the translation parameters of the model, and
d(i|j) are the distortion parameters; the prod-
uct is non-linear, effectively introducing non-
convexity into the problem.)

• We describe an optimization algorithm for
the relaxed objective, based on a combina-
tion of stochastic subgradient methods with the
exponentiated-gradient (EG) algorithm (Kivi-
nen and Warmuth, 1997; Beck and Teboulle,
2003).

• We describe experiments with the method on
standard alignment datasets, showing that the
EG algorithm converges in only a few passes
over the data, and that our method achieves ac-
curacies that are very similar to those of IBM
Model 2.

Framing the unsupervised learning of alignment
models as a convex optimization problem, with
guaranteed convergence to a global optimum, has
several clear advantages. First, the method is eas-
ier to analyze, as the objective function is being
truly maximized. Second, there is no need for ini-
tialization heuristics with the approach, given that
the method will always converge to a global op-
timum. Finally, we expect that our convexity-
based approach may facilitate the further develop-
ment of more convex models. There has been a rich
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interplay between convex and non-convex meth-
ods in machine learning: as one example consider
the literature on classification problems, with early
work on the perceptron (linear/convex), then work
on neural networks with back-propagation (non-
linear/non-convex), then the introduction of support
vector machines (non-linear/convex), and finally re-
cent work on deep belief networks (non-linear/non-
convex). In view of these developments, the lack
of convex methods in translation alignment models
has been noticeable, and we hope that our work will
open up new directions and lead to further progress
in this area.

Notation. Throughout this paper, for any integer
N , we use [N ] to denote {1 . . . N} and [N ]0 to de-
note {0 . . . N}.
2 Related Work
(Brown et al., 1993) introduced IBM Models 1
through 5, and optimization methods for these mod-
els based on the EM algorithm. While the models
were originally introduced for full translation, they
are now mainly used to derive alignments which are
then used by phrase-based and other modern SMT
systems. Since the original IBM models were in-
troduced, many variants have been introduced in the
literature. (Vogel et al., 1996) introduced a model,
sometimes referred to as IBM 2.5, which uses a pa-
rameterization that is similar to a hidden Markov
model, and which allows the value of each alignment
variable to be conditioned on a previous alignment
variable. (Liang et al., 2006) describe a method that
explicitly incorporates agreement preferences dur-
ing training. (Och and Ney, 2003) give a systematic
comparison of several alignment models in the liter-
ature. (Moore, 2004) gives a detailed study of IBM
Model 1, showing various steps that can be used to
improve its performance. (Ganchev et al., 2010)
describes a method based on posterior regulariza-
tion that incorporates additional constraints within
the EM algorithm for estimation of IBM models.
All of these approaches are unsupervised, in that
they do not require labeled alignment data; however
several authors have considered supervised models
(e.g., see (Lacoste-Julien et al., 2006; Taskar et al.,
2005; Haghighi et al., 2009)). The focus of the cur-
rent paper is on unsupervised learning; the unsuper-
vised variants described above all make use of non-

convex objective functions during training, with the
usual problems with multiple local maxima.

3 The IBM Model 1 and Model 2
Optimization Problems

In this section we give a brief review of IBM Models
1 and 2, and the optimization problems arising from
these models. The standard approach for optimiza-
tion within these models is the EM algorithm.

Throughout this section, and the remainder of the
paper, we assume that our set of training examples
is (e(k), f (k)) for k = 1 . . . n, where e(k) is the k’th
English sentence and f (k) is the k’th French sen-
tence. Following standard convention, we assume
the task is to translate from French (the “source”
language) into English (the “target” language). We
use E to denote the English vocabulary (set of pos-
sible English words), and F to denote the French
vocabulary. The k’th English sentence is a sequence
of words e(k)

1 . . . e
(k)
lk

where lk is the length of the

k’th English sentence, and each e(k)
i ∈ E; similarly

the k’th French sentence is a sequence f (k)
1 . . . f

(k)
mk

where each f (k)
j ∈ F . We define e(k)

0 for k = 1 . . . n
to be a special NULL word (note that E contains the
NULL word). Finally, we define L = maxn

k=1 lk
and M = maxn

k=1mk.

For each English word e ∈ E, we will assume
that D(e) is a dictionary specifying the set of possi-
ble French words that can be translations of e. The
set D(e) is a subset of F . In practice, D(e) can be
derived in various ways; in our experiments we sim-
ply define D(e) to include all French words f such
that e and f are seen in a translation pair.

Given these definitions, the IBM model 2 opti-
mization problem is given in Figure 1. The parame-
ters in this problem are t(f |e) and d(i|j). The t(f |e)
parameters are translation parameters specifying the
probability of English word e being translated as
French word f . The distortion parameters d(i|j)
specify the probability of the j’th French word in a
sentence being aligned to the i’th English word. We
use a variant of IBM Model 2 where the distortion
variables are shared across all sentence lengths (sim-
ilar variants have been used in (Liang et al., 2006)
and (Koehn, 2008)). The objective function is then

1575



Input: DefineE, F , L,M , (e(k), f (k), lk,mk) for
k = 1 . . . n, D(e) for e ∈ E as in Section 3.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter d(i|j) for each i ∈ [L]0, j ∈ [M ].

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (1)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (2)

∀i ∈ [L]0, j ∈ [M ], d(i|j) ≥ 0 (3)

∀j ∈ [M ],
∑

i∈[L]0

d(i|j) = 1 (4)

Objective: Maximize

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i )d(i|j) (5)

with respect to the t(f |e) and d(i|j) parameters.

Figure 1: The IBM Model 2 Optimization Problem.

the log-likelihood of the training data (see Eq. 5):

1

n

n∑
k=1

mk∑
j=1

log p(f
(k)
j |e

(k)) ,

where

p(f
(k)
j |e

(k)) =

lk∑
i=0

t(f
(k)
j |e

(k)
i )d(i|j) .

Crucially, while the constraints in the IBM Model
2 optimization problem are linear, the objective
function in Eq. 5 is non-convex. Therefore, opti-
mization methods for IBM Model 2, in particular
the EM algorithm, are typically only guaranteed to
reach a local maximum of the objective function.

For completeness, Figure 2 shows the optimiza-
tion problem for IBM Model 1. In IBM Model 1
the distortion parameters d(i|j) are all fixed to be
the uniform distribution (i.e., 1/(L + 1)). The ob-
jective function for IBM Model 1 is actually convex,
so the EM algorithm will converge to a global max-
imum. However IBM Model 1 is much weaker than
model 2, and typically gives far worse performance.

Input: DefineE, F , L,M , (e(k), f (k), lk,mk) for
k = 1 . . . n, D(e) for e ∈ E as in Section 3.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (6)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (7)

Objective: Maximize

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)
(8)

with respect to the t(f |e) parameters.

Figure 2: The IBM Model 1 Optimization Problem.

A common heuristic is to initialize the t(f |e) param-
eters in EM optimization of IBM Model 2 using the
output from IBM Model 1. The intuition behind this
heuristic is that the IBM Model 1 values for t(f |e)
will be a reasonable starting point, and the EM al-
gorithm will climb to a “good” local optimum. We
are not aware of any guarantees for this initialization
heuristic, however.

4 A Convex Relaxation of IBM Model 2

We now introduce a convex optimization problem,
the I2CR (IBM 2 Convex Relaxation) problem.
As its name suggests, this optimization problem is
closely related to IBM Model 2, but is convex. Be-
cause of this it will be relatively easy to derive an op-
timization algorithm that is guaranteed to converge
to a global optimum. Our experiments show that
the relaxation gives very similar performance to the
original IBM 2 optimization problem, as described
in the previous section.

We first describe an optimization problem,
I2CR-1, that illustrates the basic idea behind the
convex relaxation. We then describe a refined re-
laxation, I2CR-2, that introduces a couple of modi-
fications, and which performs well in experiments.
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Input: DefineE, F , L,M , (e(k), f (k), lk,mk) for
k = 1 . . . n, D(e) for e ∈ E as in Section 3.

Parameters:
• A parameter t(f |e) for each e ∈ E, f ∈ D(e).
• A parameter d(i|j) for each i ∈ [L]0, j ∈ [M ].
•A parameter q(i, j, k) for each k ∈ [n], i ∈ [lk]0,
j ∈ [mk].

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (9)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (10)

∀i ∈ [L]0, j ∈ [M ], d(i|j) ≥ 0 (11)

∀j ∈ [M ],
∑

i∈[L]0

d(i|j) = 1 (12)

∀i, j, k, q(i, j, k) ≥ 0 (13)

∀i, j, k, q(i, j, k) ≤ d(i|j) (14)

∀i, j, k, q(i, j, k) ≤ t(f (k)
j |e

(k)
i ) (15)

Objective: Maximize

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

q(i, j, k) (16)

with respect to the q(i, j, k), t(f |e) and d(i|j) pa-
rameters.

Figure 3: The I2CR-1 (IBM 2 Convex Relaxation) Prob-
lem, version 1.

4.1 The I2CR-1 Problem

The I2CR-1 problem is shown in Figure 3. A first
key idea is to introduce a new variable q(i, j, k) for
each k ∈ [n], i ∈ [lk]0, j ∈ [mk]: that is, a new
variable for each triple (i, j, k) specifying a sen-
tence pair, and a specific English and French posi-
tion in that sentence. Each q variable must satisfy
the constraints in Eqs. 13-15, repeated here for con-
venience:

∀i, j, k, q(i, j, k) ≥ 0 ,

∀i, j, k, q(i, j, k) ≤ d(i|j) ,
∀i, j, k, q(i, j, k) ≤ t(f (k)

j |e
(k)
i ) .

The objective function is

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

q(i, j, k)

which is similar to the objective function in Figure 1,
but where t(f (k)

j |e
(k)
i )×d(i|j) has been replaced by

q(i, j, k). The intuition behind the new problem is as
follows. If, instead of the constraints in Eqs. 13-15,
we had the constraint

q(i, j, k) = t(f
(k)
j |e

(k)
i )× d(i|j) , (17)

then the I2CR-1 problem would clearly be identi-
cal to the IBM Model 2 optimization problem. We
have used a standard relaxation of the non-linear
constraint x = y × z where x, y, z are all variables
in the range [0, 1], namely

x ≤ y ,

x ≤ z ,

x ≥ y + z − 1 .

These inequalites are a relaxation in the sense that
any (x, y, z) triple that satisfies x = y × z also sat-
isfies these constraints. Applying this relaxation to
Eq. 17 gives

q(i, j, k) ≤ t(f
(k)
j |e

(k)
i ) ,

q(i, j, k) ≤ d(i|j) ,
q(i, j, k) ≥ t(f

(k)
j |e

(k)
i ) + d(i|j)− 1 . (18)

The final thing to note is that the constraint in
Eq. 18 can be omitted in the I2CR-1 problem. This
is because the task is to maximize the objective
with respect to the q variables and the objective
is strictly increasing as the q values increase—thus
lower bounds on their values are redundant in the
I2CR-1 problem.

It is easily verified that the constraints in the
I2CR-1 problem are linear, and that the objective
function is convex. In Section 5 of this paper we
describe an optimization method for the problem.

Note that because the objective function is being
maximized, and the objective increases monotoni-
cally as the q values increase, at the global optimum1

1More precisely, at any global optimum: the objective func-
tion may not be strictly convex, in which case there will be mul-
tiple global optima.
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Input: Same as in I2CR-1 (Figure 4).
Parameters: Same as in I2CR-1 (Figure 4).

Constraints: Same as in I2CR-1 (Figure 4).
Objective: Maximize

1

2n

n∑
k=1

mk∑
j=1

log′
lk∑

i=0

q(i, j, k)

+
1

2n

n∑
k=1

mk∑
j=1

log′
lk∑

i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)

with respect to the q(i, j, k), t(f |e) and d(i|j) pa-
rameters.

Figure 4: The I2CR-2 (IBM 2 Convex Relaxation) Prob-
lem, version 2. The problem is identical to the I2CR-1
problem, but it also includes a term in the objective func-
tion that is identical to the IBM Model 1 objective. We
define log′(z) = log(z + λ) where λ is a small positive
constant.

we have

q(i, j, k) = min{t(f (k)
j |e

(k)
i ), d(i|j)} ,

where min{x, y} returns the minimum of the two
values x and y. Thus, we could actually eliminate
the q variables and write an optimization problem
that is identical to the IBM Model 2 optimization
problem, but with the objective function

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

min{t(f (k)
j |e

(k)
i ), d(i|j)} .

It will turn out that both views of the I2CR-1
problem—with and without the q variables—are
helpful, so we have included both in this paper.

4.2 The I2CR-2 Problem
Figure 4 shows the refined optimization problem,
which we call I2CR-2. The problem incorporates
two modifications. First, we modify the objective
function to be

1

2n

n∑
k=1

mk∑
j=1

log′
lk∑

i=0

q(i, j, k)

+
1

2n

n∑
k=1

mk∑
j=1

log′
lk∑

i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)
.

Thus the objective function includes a second term
that is identical to the objective function for IBM
Model 1 (see Figure 2). In preliminary experiments
with the I2CR-1 optimization problem, we found
that the I2CR-1 objective was not sufficiently depen-
dent on the t parameters: intuitively, if the d param-
eters achieve the min on many training examples,
the values for the t variables become unimportant.
The addition of the IBM Model 1 objective fixed this
problem by introducing a term that depends on the t
values alone.

Second, we replace log by log′, where log′(z) =
log(z + λ), and λ is a small positive constant (in
our experiments we used λ = 0.001). Under this
definition the derivatives of log′ are upper-bounded
by 1/λ, in contrast to log, where the derivatives
can diverge to infinity. The optimization methods
we use are gradient-based methods (or more pre-
cisely, subgradient-based methods), and we have
found them to be considerably more stable when the
values for gradients do not diverge to infinity.

The modified objective remains convex.

5 A Stochastic Exponentiated-Gradient
Algorithm for Optimization

We now describe an algorithm for optimizing the
I2CR-2 problem in Figure 4. The algorithm is
closely related to stochastic gradient ascent, but with
two modifications:

• First, because the t(f |e) and d(i|j) parame-
ters have simplex constraints (see Figure 1),
we use exponentiated gradient (EG) updates.
EG algorithms are gradient-based methods that
maintain simplex constraints; see for exam-
ple: (Kivinen and Warmuth, 1997; Beck and
Teboulle, 2003; Collins et al., 2008).

• Second, the objective function in the I2CR-
2 problem is convex, but is not differentiable
(the gradient may not exist at all points). For
this reason we use subgradients in the place of
gradients. In spite of the non-differentiability
of the objective function, subgradient meth-
ods still have strong convergence guarantees
when combined with EG updates (e.g., the con-
vergence proofs in (Beck and Teboulle, 2003)
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go through with minor modifications; see also
(Bertsekas, 1999)).

To derive the updates, recall that we are maximiz-
ing the following objective function:

h(t, d)

=
1

2|T |
∑
k∈T

mk∑
j=1

log′
lk∑

i=0

min
{
t(f

(k)
j |e

(k)
i ), d(i|j)

}

+
1

2|T |
∑
k∈T

mk∑
j=1

log′
lk∑

i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)
. (19)

Here we use T to denote the set {1 . . . n}; we will
see shortly why this notation is convenient. We use
t and d to refer to the full set of t and d parameters
respectively; h(t, d) is the function to be maximized.
Recall that log′(z) = log(z + λ) where λ is a small
positive parameter.

Given a concave function f(x) where x ∈ Rd, a
subgradient of f(x) at x is any vector g(x) ∈ Rd

such that for any y ∈ Rd,

f(y) ≤ f(x) + g(x) · (y − x) ,

where u·v is the inner product between vectors u and
v. Subgradients are similar to gradients for differ-
entiable concave functions, in that gradients satisfy
the above property. Subgradients can be used in the
place of gradients in many optimization algorithms
(see for example (Bertsekas, 1999)).

The subgradients for the objective function in
Eq. 19 take a simple form. First, define

R(j, k) = λ+

lk∑
i=0

t(f
(k)
j |e

(k)
i ) ,

Q(j, k) = λ+

lk∑
i=0

min{t(f (k)
j |e

(k)
i ), d(i|j)} ,

and

I(i, j, k) =

{
1 if t(f (k)

j |e
(k)
i ) ≤ d(i|j)

0 otherwise .

Then the subgradients2 are

∇t(f |e) =
1

2|T |
∑
i,j,k:

f
(k)
j

=f

e
(k)
i =e

(
1

R(j, k)
+
I(i, j, k)

Q(j, k)

)

2We set ∇t(f |e) and ∇d(i|j) as the subgradients for the
objective function in Eq. 19 with respect to t(f |e) and d(i|j)
respectively.

and

∇d(i|j) =
1

2|T |
∑

k:i≤lk,j≤mk

1− I(i, j, k)
Q(j, k)

.

Exponentiated-gradient updates then take the fol-
lowing form:

t(f |e)← t(f |e)× exp{γ ×∇t(f |e)}∑
f t(f |e)× exp{γ ×∇t(f |e)}

(20)

and

d(i|j)← d(i|j)× exp{γ ×∇d(i|j)}∑
i d(i|j)× exp{γ ×∇d(i|j)}

, (21)

where γ > 0 is a constant step size in the algorithm.
Note that the EG updates make use of subgradients,
but maintain the simplex constraints on the t and d
variables.

The method just described is a batch gradient
method, where the entire training set T = {1 . . . n}
is used to derive the subgradients before the updates
in Eqs. 20 and 21 are made. Many results in ma-
chine learning and NLP have shown that stochastic
gradient methods, where a subset of the training ex-
amples is used before each gradient-based update,
can converge much more quickly than batch gradi-
ent methods. In our notation, this simply involves
replacing T by some subset T ′ of the training exam-
ples in the above definitions, where |T ′| is typically
much smaller than |T |.

Figure 5 shows our final algorithm, a stochastic
version of the exponentiated-gradient method. The
method takes S passes over the data. For each pass,
it randomly partitions the training set into mini-
batches T1 . . . TK of size B, where B is an integer
specifying the size of each mini-batch (in our exper-
iments we used B = 125 or B = 250). The al-
gorithm then performs EG updates using each mini-
batch T1 . . . TK in turn. As can be seen in Table 3,
our experiments show that the algorithm makes very
significant progress in the first pass over the data,
and takes very few iterations to converge to a good
solution even though we initialized with uniform pa-
rameter values.

6 Experiments

In this section we describe experiments using the
I2CR-2 optimization problem combined with the
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1: Input: Define E, F , L, M , (e(k), f (k), lk,mk)
for k = 1 . . . n, D(e) for e ∈ E as in Section 3.
An integer B specifying the batch size. An inte-
ger S specifying the number of passes over the
data. A step size γ > 0. A parameter λ > 0
used in the definition of log′ .

2: Parameters:
•A parameter t(f |e) for each e ∈ E, f ∈ D(e).
•A parameter d(i|j) for each i ∈ [L]0, j ∈ [M ].

3: Definitions:

R(j, k) = λ+

lk∑
i=0

t(f
(k)
j |e

(k)
i )

Q(j, k) = λ+

lk∑
i=0

min{t(f (k)
j |e

(k)
i ), d(i|j)}

4: Initialization:
• ∀e ∈ E, f ∈ D(e), t(f |e) = 1/|D(e)|
• ∀j ∈ [M ], i ∈ [L]0, d(i|j) = 1/(L+ 1)

5: Algorithm:
6: for all s = 1 to S do
7: Randomly partition [n] into subsets T1 . . . TK of

size B where K = n/B.
8: for all b = 1 to K do
9: ∀e ∈ E, f ∈ D(e), α(e, f) = 0

10: ∀j ∈ [M ], i ∈ [L]0, β(i, j) = 0
11: for all k ∈ Tb do
12: for all j = 1 to mk do
13: for all i = 0 to lk do
14: α(e

(k)
i , f

(k)
j ) += 1/(2R(j, k))

15: if t(f (k)
j |e

(k)
i ) ≤ d(i|j) then

16: α(e
(k)
i , f

(k)
j ) += 1/(2Q(j, k))

17: else
18: β(i, j) += 1/(2Q(j, k))
19: ∀e, f, t(f |e) = t(f |e) exp (γ × α(e, f)/B)
20: ∀i, j, d(i|j) = d(i|j) exp (γ × β(i, j)/B)
21: Renormalize t and d parameters to satisfy∑

f t(f |e) = 1 and
∑

i d(i|j) = 1.
22: Output: t and d parameters.

Figure 5: The stochastic exponentiated-gradient algo-
rithm for optimization of I2CR-2.

stochastic EG algorithm for parameter estimation.
We first describe the data sets we use, and then de-
scribe experiments with the method, comparing our
approach to results from IBM Model 2. We com-
pare the various algorithms in terms of their accu-

racy in recovering alignments, using metrics such as
F-measure and AER.

6.1 Data Sets

We use data from the bilingual word alignment
workshop held at HLT-NAACL 2003 (Michalcea
and Pederson, 2003). As a first dataset, we use the
Canadian Hansards bilingual corpus, with 247,878
English-French sentence pairs as training data, 37
sentences of development data, and 447 sentences
of test data (note that we use a randomly chosen
subset of the original training set of 1.1 million sen-
tences, similar to the setting used in (Moore, 2004)).
The development and test data have been manually
aligned at the word level, annotating alignments be-
tween source and target words in the corpus as ei-
ther “sure” (S) or “possible” (P ) alignments, as de-
scribed in (Och and Ney, 2003).

As a second data set, we used the Romanian-
English data from the HLT-NAACL 2003 workshop.
This consisted of a training set of 48,706 Romanian-
English sentence-pairs, a development set of 17 sen-
tence pairs, and a test set of 248 sentence pairs.

6.2 Methodology

For each of the models—IBM Model 1, IBM Model
2, and I2CR-2—we follow convention in applying
the following methodology: first, we estimate the
t and d parameters using models in both source-
target and target-source directions; second, we find
the most likely alignment for each development or
test data sentence in each direction; third, we take
the intersection of the two alignments as the final
output from the model.

For the EG algorithm we use a batch size B =
250 and step size γ = 0.5 on the Hansards data, and
B = 125 and γ = 0.5 for the Romanian-English
data.

We report the performance of the models in terms
of Precision, Recall, AER, and F-Measure as defined
by (Och and Ney, 2003). If A is the set of align-
ments produced by an algorithm, S is the set of sure
alignments as annotated in test data, and P is the
set of possible alignments, then these quantities are
defined as

Recall =
|A ∩ S|
|S|

,
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Precision =
|A ∩ S|
|A|

,

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

,

F-Measure =
1

.5
Recall + .5

Precision
.

Note that we report results in both AER and
F-measure; however there is evidence (Fraser and
Marcu, 2004) that F-measure is better correlated
with translation quality when the alignments are
used in a full system.

In training IBM Model 1 we follow (Moore,
2004) in running EM for 15 iterations. In training
IBM Model 2 we first train IBM Model 1 for 15
iterations to initialize the t parameters, then train
IBM Model 2 for a further 10 iterations. For the
EG algorithm, we use 10 iterations over the training
data for the Hansards data, and 15 iterations on the
Romanian-English data (on the latter dataset results
on the trial data showed that the method took slightly
longer to converge). We report F-measure and AER
results for each of the iterations under the IBM
Model 2 and I2CR-2 models. See Table 1 for the re-
sults on the Hansards data, and Table 2 for the results
on the English-Romanian dataset. It can be seen that
both I2CR-2 and IBM Model 2 converge to a fairly
stable result after 2-3 iterations. The two models
give very similar levels of performance, for example
after 10 iterations on the Hansard data IBM Model
2 gives 14.22 AER and 0.7516 F-Measure versus
14.60 AER and 0.7506 F-Measure for I2CR-2.

On the right, Table 3 shows the values of the ob-
jective function at each iteration when using the EG
algorithm to optimize the I2CR-2 objective. The
method makes a large amount of progress on the first
iteration and then continues to improve. Finally, we
note that the memory requirements for I2CR-2 and
IBM2 are about the same, but that the time for one
iteration of I2CR-2 on the Hansards data is approxi-
mately one hour, while the time for one iteration of
IBM2 was approximately 10 minutes.

7 Conclusions and Future Work

We have introduced the first convex model for un-
supervised learning of alignments in statistical ma-
chine translation with performance comparable to

Iteration IBM2 I2CR-2 IBM2 I2CR-2
AER AER F-Measure F-Measure

Test Set Statistics
1 0.1491 0.1556 0.7530 0.7369
2 0.1477 0.1489 0.7519 0.7456
3 0.1451 0.1476 0.7527 0.7467
4 0.1426 0.1488 0.7536 0.7449
5 0.1422 0.1495 0.7535 0.7472
6 0.1431 0.1476 0.7511 0.7478
7 0.1434 0.1506 0.7506 0.7456
8 0.1437 0.1495 0.7501 0.7470
9 0.1434 0.1494 0.7501 0.7468
10 0.1422 0.1460 0.7516 0.7506

Development Set Statistics
1 0.1871 0.1971 0.6823 .6676
2 0.1896 0.1760 0.6758 .6827
3 0.1964 0.1860 0.6648 .6739
4 0.1912 0.1835 0.6713 .6775
5 0.1884 0.1813 0.6740 .06773
6 0.1836 0.1851 0.6767 0.6811
7 0.1831 0.1806 0.6749 0.6765
8 0.1842 0.1843 0.6739 0.6775
9 0.1864 0.1928 0.6694 0.6640
10 0.1845 0.1829 0.6703 .6721

Table 1: Results on the Hansards data for IBM Model 2
and the I2CR-2 method.

Iteration IBM2 I2CR-2 IBM2 I2CR-2
AER AER F-Measure F-Measure

Test Set Statistics
1 0.4041 0.5354 0.5959 0.4646
2 0.4010 0.4764 0.5990 0.5256
3 0.4020 0.4543 0.5980 0.5457
4 0.4012 0.4384 0.5988 0.5617
5 0.4003 0.4277 0.5997 0.5723
6 0.3990 0.4266 0.6010 0.5834
7 0.4000 0.4162 0.6000 0.5838
8 0.4023 0.4114 0.5977 0.5886
9 0.4022 0.4081 0.5978 0.5919
10 0.4027 0.4043 0.5973 0.5957
11 0.4031 0.4040 0.5969 0.5960
12 0.4042 0.4027 0.5958 0.5973
13 0.4043 0.4021 0.5957 0.5979
14 0.4062 0.4007 0.5938 0.5993
15 0.4057 0.4014 0.5943 0.5986

Development Set Statistics
1 0.4074 0.5841 0.5926 0.4159
2 0.3911 0.4938 0.6089 0.5062
3 0.3888 0.4673 0.6112 0.5327
4 0.3904 0.4596 0.6096 0.5404
5 0.3881 0.4463 0.6119 0.5537
6 0.3904 0.4306 0.6096 0.5694
7 0.3936 0.4175 0.6094 0.5826
8 0.3897 0.4060 0.6103 0.5940
9 0.3961 0.4014 0.6039 0.5986
10 0.3970 0.4072 0.6030 0.5928
11 0.4018 0.3956 0.5982 0.6044
12 0.4035 0.3931 0.5965 0.6069
13 0.4035 0.3862 0.5965 0.6138
14 0.4014 0.3908 0.5986 0.6092
15 0.4063 0.3858 0.5937 0.6142

Table 2: Results on the English-Romanian data for IBM
Model 2 and the I2CR-2 method.
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Iteration EF Objective FE Objective

0 -99.6053 -79.5566
1 -32.4528 -27.4925
2 -31.1641 -26.262
3 -30.6311 -25.7093
4 -30.3367 -25.3714
5 -30.1428 -25.1456
6 -30.0000 -24.992
7 -29.8736 -24.8605
8 -29.8093 -24.7551
9 -29.7326 -24.684

10 -29.6771 -24.6099

Table 3: Objective values for the EG algorithm opti-
mization of I2CR-2 at each iteration. “EF Objective”
corresponds to training a model with t(e|f) parameters,
“FE Objective” corresponds to the reverse direction, with
t(f |e) parameters. Iteration 0 corresponds to the objec-
tive value under the initial, uniform parameter values.

the commonly-used IBM Model 2. We believe
that introducing convexity without sacrificing per-
formance will open the door to further improve-
ments in this area. Future work will consider ways to
speed up our algorithm and extensions of the method
to more complex alignment models.
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Abstract

Pronunciation dictionaries provide a readily
available parallel corpus for learning to trans-
duce between character strings and phoneme
strings or vice versa. Translation models can
be used to derive character-level paraphrases
on either side of this transduction, allowing
for the automatic derivation of alternative pro-
nunciations or spellings. We examine finite-
state and SMT-based methods for these related
tasks, and demonstrate that the tasks have
different characteristics – finding alternative
spellings is harder than alternative pronunci-
ations and benefits from round-trip algorithms
when the other does not. We also show that
we can increase accuracy by modeling sylla-
ble stress.

1 Introduction

Robust processing of speech and language requires
dealing with variation in language production, ei-
ther in terms of pronunciation in the spoken domain
or spelling in the written domain. Predicting the
intended words of an acoustic or textual sequence
is an important recognition task, often required for
downstream processing such as spoken language un-
derstanding or knowledge extraction. Informal text
genres, such as those found in social media, share
some characteristics with speech; in fact such text is
often informed by pronunciation variation. For ex-
ample, consider the following tweet:

He aint gotta question my loyalty, cuz he knw
wen sh!t get real. Ill be right here!

where several tokens (e.g. “cuz”, “wen”) represent
spelling alternations related to pronunciation. Work
in text normalization and spelling correction – e.g.,
Toutanova and Moore (2002); Li and Liu (2012) –
has included pronunciation information to improve
recognition of the intended word, via grapheme to

phoneme (g2p) conversion modeling derived from
pronunciation dictionaries.

Pronunciation dictionaries provide natural par-
allel corpora, with strings of characters paired to
strings of phones. Thus, standard lexicons have
been used in recent years with machine transla-
tion systems such as Moses (Koehn et al., 2007),
to train g2p systems (Laurent et al., 2009; Gerosa
and Federico, 2009). Further, other algorithms us-
ing such dictionaries also use translation phrase
tables, but not for translation tasks. For exam-
ple, data-driven paraphrasing methods (Bannard and
Callison-Burch, 2005) use translation phrase-tables
as a “pivot” to learn sets of phrases which trans-
lated to the same target phrase. In a similar manner,
with a pronunciation dictionary instead of a phrse-
table, pivoting can be used to learn alternative pro-
nunciations (Karanasou and Lamel, 2010), i.e., di-
rect phoneme-to-phoneme (p2p) “translation” sys-
tems that yield alternative pronunciations. Alterna-
tively, round-trip translation could be used, e.g., to
map from letter strings to phone strings in one step,
then from the resulting phone strings to letter strings
in a second step, as the means to find alternative
spellings (Li and Liu, 2012).

In this study, we explore dictionary-derived mod-
els to find either alternative pronunciations or alter-
native spellings, using either direct (p2p or g2g) or
round-trip algorithms (p2g2p or g2p2g). We com-
pare methods based on weighted finite-state trans-
ducers (WFST) with phrase-based models trained
with Moses. Our main interest is to evaluate Karana-
sou and Lamel (2010) methods – shown to be useful
for deriving alternative pronunciations – for deriv-
ing alternative spellings, and thus to determine the
relative difficulty of these two tasks. We also exam-
ine when, if ever, round-trip processing yields ben-
efits over direct transduction. Our results indicate
that real alternative pronunciations are substantially
easier to find than real alternative spellings, partic-
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ularly when pronunciation features such as syllable
stress are available. Second, round trip translation
yields no gain (and some loss) over direct transduc-
tion for finding alternative pronunciations, yet yields
some modest gains for finding alternative spellings.
Further, WFST methods perform as well as or bet-
ter than Moses trained models. Finally, combining
the methods yields further gains, indicating that the
models are learning complementary sets of patterns.

The primary contribution of this work is to in-
troduce a competitive method of building and us-
ing pair language model WFSTs for generating al-
ternative spellings and pronunciations which reflect
real-world variability. This could improve results for
downstream processes, e.g., epidemiological studies
(Chew and Eysenbach, 2010) or sentiment analysis
(Barbosa and Feng, 2010) derived from social me-
dia text. Further, we present a controlled compari-
son between the two tasks, and demonstrate that they
differ in terms of task difficulty

2 Related work

Text normalization has been a major focus in text-
to-speech (TTS) research for many years. Notably,
Sproat et al. (2001) deemed it a problem in itself,
rather than ad hoc preparatory work, and defined
many of the issues involved, as well as offering a va-
riety of initial solutions. Similar approaches apply to
automatic spelling correction, where Toutanova and
Moore (2002) extended the noisy channel spelling
correction method of Brill and Moore (2000), by
modeling pronunciation alternations to infer from
misspellings to correct spellings. Similarly, Li and
Liu (2012) extended the character-based translation
approach to text normalization of Pennell and Liu
(2011), by adding an additional round-trip trans-
lation to-and-from pronunciations. Karanasou and
Lamel (2010) used Moses to generate alternative
pronunciations from an English dictionary, using
both direct and round-trip methods. They validated
their systems on a set of words with multiple pro-
nunciations, measuring the degree to which alterna-
tive pronunciations are generated from one of the
given pronunciations. Our task and method of eval-
uation is similar to theirs, though we also look at
alternative spellings.

3 Methods

To generate alternative spellings and pronunciations,
we built phrase-based translation and finite-state

transduction models from a parallel corpus. When
pronunciations were part of the model – i.e., not
direct grapheme-to-grapheme – we included condi-
tions with and without vowel stress.

3.1 Corpus
Our training corpus is the CMU Pronouncing Dictio-
nary1, which contains nearly 130k entries. From this
corpus, we identified homophone sets, i.e., sets of
multiple spellings sharing the same pronunciation,
such as “colonel” and “kernel”. We found 9,977
such sets, and randomly selected 1000 for testing;
the rest we used for training. Each set had, on aver-
age, 2.46 members. We also identified homograph
sets, i.e., sets of multiple pronunciations all spelled
the same, such as potato (/potato/ and /p@teto/). We
found 8,216 such homograph sets, and randomly se-
lected 1000 for testing; the rest we used for training.
These sets averaged 2.13 members.

We construct seven parallel training corpora from
the lexicon, each disjoint from its relevant test
set. For round-trip models, the parallel corpus is
each grapheme string in the lexicon aligned with
its phoneme string, if neither the grapheme string
nor phoneme string appear in the test set. There
are four such corpora, corresponding to these op-
tions: stress or no stress, and g2p2g or p2g2p. The
g2p2g and p2g2g conditions require different cor-
pora because they are differently partitioned for test-
ing. For direct grapheme-to-grapheme training sets,
non-homophone words are self-aligned; for homo-
phones, from each homophone set, each possible
pair of spellings are aligned. For example, for a
pronunciation with four spellings—a, b, c, and d—
there would be six alignments: a:b, a:c, a:d, b:c, b:d,
c:d. Similarly for direct phoneme-to-phoneme train-
ing sets, non-homograph words are self-aligned;
words from the training homograph sets are pairwise
aligned in all pairings. There are two direct p2p cor-
pora: with and without stress.

3.2 Phrase-based translation models
As a baseline system, we used the Moses statisti-
cal machine translation package (Koehn et al., 2007)
to build grapheme-based and phoneme-based trans-
lation systems, using a bigram language model.2

These are trained on the parallel corpus resulting
from the homophone or homograph sets detailed in

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2Higher order language models yielded no improvements.
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the previous section for the direct methods. For this
paper, we did not perform round-trip translation with
Moses, rather present it as a baseline for the direct
approach.

3.3 Pair language models

Our weighted finite-state transducer approach is
based on pair language models (Bisani and Ney,
2008; Deligne and Bimbot, 1997; Ghoshal et al.,
2009), or, more recently, (Sagae et al., 2012).) The
basic idea in a pair LM is to align strings, then train a
language model over sequences whose symbols are
the input:output pairs of the alignment. This lan-
guage model can then be converted to transducers.
For a g2g example, homophones “their” and “there”
are aligned via the standard Levenshtein edit dis-
tance algorithm as “t:t h:h e:e i:ε r:r ε:e”. A trigram
model over these x:y strings would use standard n-
gram modeling to estimate, for example, P(ε:e | i:ε
r:r); i.e., the probability of a silent “r” in a given con-
text.

Building the pair language model transducers re-
quires two phases. In the first phase we create new
corpora by aligning the elements of the parallel cor-
pora outlined above. In the second phase we use
these corpora of string alignments to build a pair lan-
guage model.

3.3.1 Alignment and Corpora Building
We use extensions to the Levenshtein edit dis-

tance algorithm to align g2g, p2p and g2p strings,
with substitution matrices created to provide use-
ful alignments (Wagner and Fischer, 1974). As in
Brill and Moore (2000), we allow for certain multi-
symbol strings to be substituted with a single cost,
e.g., substituting ‘th’ with /θ/ in g2p alignment. For
g2g alignment, our substitution cost is 0 for identity
and 2 for a few pairs of commonly interchangeable
graphemes, such as ‘c’ and ‘k’. Other substitutions
are not permitted, and delete and insertion have cost
10. For p2p alignment there are two conditions, with
and without stress. Without vowel stress, no substi-
tutions other than identity are allowed; with vowel
stress, substitution cost is 2.5 for the same vowel
with differing stress; and 5.0 if substituting a vowel
with another vowel. Other substitutions are not per-
mitted, and, again, delete and insertion have cost 10.

For training round-trip models, we have to per-
form g2p and p2g alignment, with differing al-
phabets on the input and output of the alignment.

We begin with a basic substitution table that al-
lows graphemes and their most likely phonemes to
align. We then re-estimate the substitution costs
based on relative frequency estimation (-logP), and
also aggregate sequences of consecutively deleted
graphemes so that they collectively map to a single
phoneme. For example, given the alignment ‘o:/a/
u:/ε/ g:/ε/ h:/ε/ t:/t/’, (‘ought’, /at/), we make a new
rule: ough:/a/, and give it a cost based on its rela-
tive frequency. Grapheme strings that appear suffi-
ciently often with a given phoneme will thus accu-
mulate sufficient probability mass to compete.

Each alignment produced as described above is a
string in a training corpus for creating a pair lan-
guage model. As such, each alignment pair (e.g.
a:/@/) is a token.

3.3.2 From Corpora to WFSTs
We use the open source OpenGrm NGram library

(Roark et al., 2012) to build 5-gram language mod-
els from the strings of input:output pairs. These lan-
gauge models are encoded as weighted finite-state
acceptors in the OpenFst format (Allauzen et al.,
2007). We shrink the models with the ngramshrink
command, using the relative entropy method (Stol-
cke, 1998), with the “theta” threshold set at 1.0e−6.
These finite state acceptors are then converted into
transducers by modifying the arcs: split the labels
of each arc, x:y, making x the input label for that
arc, and y the output label. Thus traversing such
an arc will consume an x a return a y. Such pair
language models we use for all WFST methods dis-
cussed here.

3.4 Producing k-best output

Each tested input string, spelling or pronunciation,
is encoded as a cost-free linear chain WFST and
composed with a pair language model transducer de-
scribed in the previous section. The resulting lattice
is converted to an acceptor by projecting onto its out-
put labels, i.e., for each arc, the input label is set to
the value of the output label. Epsilons are then re-
moved and the result is determinized. The k-best
paths are extracted using the shortest path algorithm
in the OpenFst library.

For direct models (g2g and p2p), the k-best out-
put from this first transduction is our result, ranked
according the probability of each path. For round-
trip methods (e.g. g2p2g), however, we do a second
transduction in the other direction. For example, for
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g2p2g, the first transduction would have transduced
from a spelling to a set of candidate pronunciations;
the second transduction will transduce from pronun-
ciations to spellings. For this second transduction,
we take each string s from the k-best list from the
first transduction, and process them as we did in the
first transduction, now using the inverse transducer.
So, for each s in the first k-best list, we now have a k-
best list from the second transduction. Thus, for the
original input string, we have up to k2 alternatives.
Finally, we score each alternative by combining their
scores from both transductions.

Let p̄ represent a phoneme string, and ḡ a
grapheme string. If we perform a transduction from
p̄ to ḡ, the weights from the transducer provide the
(negative log) joint probability P(p̄, ḡ). By perform-
ing a soft-max normalization over the k-best list out-
put, we obtain the (negative log) conditional proba-
bility P(ḡ | p̄). For round-trip methods, we take the
product of the conditional probability in each direc-
tion, and marginalize out the intermediate grapheme
sequence, i.e.,

P(p̄2 | p̄1) =
∑

ḡ

P(p̄2 | ḡ) P(ḡ | p̄1).

4 Experimental results

For evaluation purposes, we reserved a set of 1000
test homophone sets and 1000 test homograph sets,
as described in Section 3.1. From each set, we gen-
erate alternatives from the longest set member (ties
broken alphabetically) and examine the resulting k-
best list for presence of other members of the set.
Note that the input string itself is not a target, and,
before evaluation, is removed from the k-best list.
Recall is the proportion of the k-best list returned by
the system:

Recall({k-best}) =
| {k-best} ∩ {gold-list} |

| {gold-list} |
.

Results for generating alternative pronunciations
are listed in Table 1; those for generating alternative
spellings are in Table 2. For alternative spellings,
we also present results that combine the outputs of
direct, round-trip (no stress) and Moses into a sin-
gle list using a simple ranked voting scheme (simple
Borda count).

A noteworthy result is the apparent usefulness of
stress modeling for predicting pronunciation varia-
tion using WFSTs with the direct method; this is

Recall: Alternative Pronunciations
k- pair language model Moses

best Direct Roundtrip Direct
size stress none stress none stress none

1 0.43 0.54 0.38 0.37 0.44 0.46
3 0.77 0.71 0.59 0.58 0.60 0.62
5 0.82 0.77 0.66 0.66 0.64 0.65

10 0.86 0.80 0.73 0.76 0.68 0.69

Table 1: Recall for generating alternative pronunciations

seen in the first two data columns of 1. This sug-
gests that stress has an effect on phoneme alteration,
something we discuss in more detail in Section 5.

However, while providing a large gain in the p2p
condition, pronunciation modeling gives small or
negative effects elsewhere. In the round trip meth-
ods, the effects of stress are lost: stress has little
influence of how a particular phoneme is spelled.
Thus, graphemes do not retain much stress informa-
tion, hence any pass through the orthographic do-
main will shed it.

Recall is higher for alternative pronunciations
than for alternative spellings. One reason for this
is that spellings in our test set average eight let-
ters, whereas the pronunciations average around five
phonemes. Furthermore, the average Levenshtein
distance between original spellings and their tar-
get alternatives, is 2.6, while for pronunciations, it
is 2.2. Combining these factors, we see that, for
spellings, more edit operations are required, and
there are more symbols to which to apply them.
Therefore, for spellings, there are more incorrect
candidates.

The results also show gains resulting from the
roundtrip method when applied to finding alternative
spellings, but no such gains when roundtrip methods
are applied to alternative pronunciations. Suppose,
when seeking alternatives for some spelling, we al-
ter grapheme g1 to g2. With a direct method, we
must have instances of g1 mapping to g2 in the train-
ing set. The roundtrip method, however, is less con-
strained: there must exist some phoneme p1 in the
training set such that g1 maps to p1, and p1 maps to
g2; thus, the set of possible alternations at testing are
{g1 → p1} × {p1 → g2}. This argument also ap-
plies to finding alternative pronunciations. Thus the
roundtrip method offers more possible mappings.
These extra possible mappings may be helpful or
harmful, depending on how likely they are compared
to the possible mappings they displace. Why are
they helpful for alternative spellings, but not for al-
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Recall: Alternative Spellings
k- pair language model Moses Comb.

best Direct Roundtrip Direct Direct
size none stress none none none

1 0.19 0.19 0.19 0.20 0.30
3 0.36 0.38 0.37 0.39 0.52
5 0.45 0.49 0.48 0.48 0.60

10 0.55 0.63 0.62 0.60 0.69

Table 2: Recall for generating alternative spellings

ternative pronunciations? We discuss one possible
explanation in Section 5.

Comparing Moses to the pair language model
methods, Moses does slightly better for smaller n
(n = 1, 3), and slightly worse for larger n (n = 10).
Our only partial explanation for this is that Moses
does well at weighing alternatives but, possibly, does
not generate a large number of viable alternatives.
System combination yields solid gains in finding al-
ternative spellings, demonstrating that these differ-
ent systems are coming up with diverse options.

Finally, we note that many of the false positive
pronunciations given by the WFST system are plau-
sibly correct although they are not included in the
CMU dictionary. For example, for the spelling, ad-
equate, the CMU dictionary provides two pronun-
ciations: /æd@kw@t/ and /æd@kwet/. Meanwhile,
the p2p WFST system (with stress modeling) pro-
duces /æd@kwIt/. This suggests that we can learn
from CMU dictionary to predict actual pronuncia-
tions that CMU dictionary does not itself list.

5 Discussion and Summary

The experimental results demonstrated the utility of
stress modeling for generating alternative pronunci-
ations, which we suggested was due to the impact of
stress on phoneme alternation. To examine this more
closely, we looked at each phoneme, stress class,
(ph, s)—e.g. (/@/, primary)—and determined how
likely is an occurrence of (ph, s) to have an alter-
native phoneme in a homograph set. We found that
primary and secondary stressed vowels had an alter-
ation probability of 0.017, while non-stressed vow-
els had an alteration probability of 0.036. This dif-
ference should be picked up in the transition proba-
bilities of our WFSTs, resulting in a preference for
alterations of unstressed vowels. This is analogous
to results found in (Greenberg et al., 2002) for spon-
taneous American English discourse. A further anal-
ysis of the system output might shed more light on
relationships between stress and phoneme choice.

Why are round-trip methods useful for finding al-
ternative spellings but not for finding alternative pro-
nunciations? One possible explanation is that the
variety of orthographic alternations is greater than
that of pronunciation alternations. Thus, the train-
ing set for spelling may provide less relative cover-
age of the alternations in its test set than the training
set for pronunciation provides for its test set. This
is supported by the fact that pronunciation recall ex-
ceeds spelling recall. The roundtrip method allows
for finding mappings not seen in training. These ex-
tra mappings might be no better for spelling than
they are for pronunciation, but for spelling, the map-
pings they replace in the k-best list are worse, so
they yield an improvement. For pronunciation, the
mappings they replace in the k-best list are better,
so they yield a loss. Further research is required to
validate this explanation.

Ultimately, we would like to apply these meth-
ods to the normalization of social media text, espe-
cially to find alternative spellings based on alterna-
tive pronunciations. To apply such methods to, say,
Twitter normalization requires a sizable corpus map-
ping canonical spellings to non-standard spellings.
To assess domain portability, we applied a model
built from the CMU dictionary to just over 100 al-
ternative spellings observed in a small Twitter col-
lection. Using the direct g2g method, we generated
alternative spellings from the canonical spelling of
each term, and measured the recall of the output, i.e.,
whether the observed alternatives were present in the
k-best list. Recall was extremely low (less than 5%),
suggesting that the type of orthographic alterations
that are found in dictionary pronunciations are very
different from the orthographic variations found on
Twitter, and that those differences have a profound
effect on our ability to recover alternatives.

In sum, we have presented a small study of
the utility of pronunciation dictionaries for finding
spelling and pronunciation alternatives, demonstrat-
ing key differences between these tasks.
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Abstract

Recent work has shown that compositional-
distributional models using element-wise op-
erations on contextual word vectors benefit
from the introduction of a prior disambigua-
tion step. The purpose of this paper is to
generalise these ideas to tensor-based models,
where relational words such as verbs and ad-
jectives are represented by linear maps (higher
order tensors) acting on a number of argu-
ments (vectors). We propose disambiguation
algorithms for a number of tensor-based mod-
els, which we then test on a variety of tasks.
The results show that disambiguation can pro-
vide better compositional representation even
for the case of tensor-based models. Further-
more, we confirm previous findings regarding
the positive effect of disambiguation on vec-
tor mixture models, and we compare the ef-
fectiveness of the two approaches.

1 Introduction

Distributional models of meaning have been proved
extremely useful for a number of natural language
processing tasks, ranging from thesaurus extraction
(Curran, 2004) to topic modelling (Landauer and
Dumais, 1997) and information retrieval (Manning
et al., 2008), to name just a few. These models
are based on the distributional hypothesis of Har-
ris (1968), which states that the meaning of a word
depends on its context. This idea allows the words
to be represented by vectors of statistics collected
from a sufficiently large corpus of text; each ele-
ment of the vector reflects how many times a word
co-occurs in the same context with another word
of the vocabulary. However, due to the generative

power of natural language, which is able to pro-
duce infinite new structures from a finite set of re-
sources (words), no text corpus, regardless of its
size, can provide reliable distributional representa-
tions for anything longer than single words or per-
haps very short phrases consisting of two words; in
other words, this technique cannot scale up to the
phrase or sentence level.

Much research activity has been recently dedi-
cated to provide a solution to this problem: although
the direct construction of a sentence vector is not
possible, we might still be able to synthetically cre-
ate such a vectorial representation by somehow com-
posing the vectors of the words that comprise the
sentence. Towards this goal, researchers have em-
ployed a variety of approaches that roughly fall into
two general categories. Following an influential
work (Mitchell and Lapata, 2008), the models in the
first category compute a sentence vector as a mix-
ture of the original word vectors, using simple oper-
ations such as element-wise multiplication and ad-
dition; we refer to these models as vector mixtures.
The main characteristic of these models is that they
do not distinguish between the type-logical identi-
ties of the different words: an intransitive verb, for
example, is of the same order as its subject (a noun),
and both will contribute equally to the composite
sentence vector.

However, this symmetric treatment of composi-
tion seems unjustified from a formal semantics point
of view. Words with special meanings, such as verbs
and adjectives, are usually seen as functions acting
on, hence modifying, a number of arguments rather
than lexical units of the same order as them; an
adjective, for example, is a function that returns a
modified version of its input noun. Inspired from
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this more-aligned-to-formal-semantics view, a sec-
ond research direction aims to represent relational
words as linear maps (tensors of various orders)
that can be applied to one or more arguments (vec-
tors). Baroni and Zamparelli (2010), for example,
model adjectives as matrices which, when matrix-
multiplied with a noun vector, will produce a vec-
torial representation of the specific adjective-noun
compound. The notion of a framework where re-
lational words are entities living in vector spaces of
higher order than nouns, which are simple vectors,
has been formalized by Coecke et al. (2010) in the
context of the abstract mathematical framework of
compact closed categories. We refer to this class of
models as tensor-based.

Regardless of the way they approach the repre-
sentation of relational words and their composition
operation, however, most current compositional-
distributional models do share a common feature:
they all rely on ambiguous vector representations,
where all the senses of a polysemous word, such as
the verb ‘file’ (which can mean register or smooth),
are merged into the same vector or tensor. At least
for the vector mixture approach, this practice has
been proved suboptimal: Reddy et al. (2011) and
Kartsaklis et al. (2013) test a number of simple mul-
tiplicative and additive models using disambiguated
vector representations on various tasks, showing that
the introduction of a disambiguation step prior to ac-
tual composition can indeed increase the quality of
the composite vectors. However, the fact that disam-
biguation can be beneficial for models based on vec-
tor mixtures is not very surprising. Both additive and
multiplicative compositions are but a kind of average
of the vectors of the words in the sentence, hence
can directly benefit from the provision of more ac-
curate starting points. Perhaps a more interesting
question, and one that the current paper aims to ad-
dress, is to what extent disambiguation can also pro-
vide benefits for tensor-based approaches, which in
general constitute more powerful models for natural
language (see discussion in Section 2).

Specifically, this paper aims to: (a) propose dis-
ambiguation algorithms for a number of tensor-
based distributional models; (b) examine the effect
of disambiguation on tensors for relational words;
and (c) meaningfully compare the effectiveness of
tensor-based against vector mixture models in a
number of tasks. Based on the generic procedure of
Schütze (1998), we propose algorithms for a num-

ber of tensor-based models, where the composition
is modelled as the application of linear maps (ten-
sor contractions). Following Mitchell and Lapata
(2008) and many others, we test our models on
two disambiguation tasks similar to that of Kintsch
(2001), and on the phrase similarity task introduced
in (Mitchell and Lapata, 2010). In almost every
case, the results show that disambiguation can make
a great difference in the case of tensor-based models;
they also reconfirm previous findings regarding the
effectiveness of the method for simple vector mix-
ture models.

2 Vectors vs tensors

The simple models of Mitchell and Lapata (2008)
constitute the easiest and perhaps the most intuitive
way of composing two or more vectors: each ele-
ment of the resulting vector is computed as the sum
or the product of the corresponding elements in the
input vectors (left part in Figure 1). In the case of
addition, the components of the output vector are
simply the cumulative scores of the corresponding
input components. So in a sense the output element
embraces both input elements, resembling a union of
the input features. On the other hand, the element-
wise multiplication of two vectors can be seen as the
intersection of their features: a zero element in one
of the input vectors will eliminate the corresponding
feature in the output, no matter how high the other
input component was. In addition to failing to iden-
tify the special roles of words in a sentence, vector
mixture models disregard grammar in another way:
the commutativity of operators make them a bag-
of-words approach, where the meaning of sentence
‘dog bites man’ is equated to that of ‘man bites dog’.

On the contrary to the above element-wise treat-
ment, a compositional approach based on linear
maps computes each element of the resulting vec-

= =

Vector mixture Tensor-based

Figure 1: Vector mixture and tensor-based models for
composition. In the latter approach, the ith element of
the output vector is the linear combination of the input
vector with the ith row of the matrix.
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tor via a linear combination of all the elements of
the input vector (right part of Figure 1); in other
words, possible interdependencies between differ-
ent features are also taken into account, offering (in
principle) more power. Furthermore, by design, the
bag-of-words problem is not present here. Over-
all, tensor-based models offer a more complete and
linguistically motivated solution to the problem of
composition. For example, one can consider build-
ing linear maps for prepositions and logical words,
rather than treating them as noise and discard them,
as commonly done in the vector mixture models.

3 Disambiguation in vector mixtures

For a compositional model based on vector mix-
tures, polysemy of words can be a critical factor.
Pulman (2013) and Kartsaklis et al. (2013) point out
that the element-wise combination of “ambiguous”
vectors produces results that are hard to interpret;
the composed vector is not a purely compositional
representation but a product of two tasks that take
place in parallel: composition and some amount of
disambiguation that emerges as a side-effect of the
compositional process, leaving the resulting vector
in an intermediate state.

This effect is demonstrated in Figure 2, which
shows the composition of the ambiguous verb ‘run’
(with meanings moving fast and dissolving) with the
subject ‘horse’. The first three components of our
toy vector space are related to the dissolving mean-
ing, while the last three of them to the moving fast
meaning. An ambiguous vector for ‘run’ will have
non-zero values for every component. On the other
hand, we would expect the vector for ‘horse’ to have
high values for the ‘race’, ‘gallop’, and ‘move’ com-
ponents, and very low values (but not necessarily
zero) for the dissolving-related ones—it is always
possible for the word ‘horse’ to appear in the same

colour
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painting

race
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move
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9
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0
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0

0

66

104
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Figure 2: The effect of disambiguation on vector compo-
sition. The numbers are (artificial) co-occurrence counts
of each target word with the 6 basis words on the left.

context with the word ‘painting’, for example. The
left part of Figure 2 shows what happens when the
ambiguous ‘run’ vector is used; the multiplication
with the ‘horse’ vector will produce an impure re-
sult, half affected by composition and half by disam-
biguation. However, what we really want is a vec-
tor where all the dissolving-related components will
be eliminated, since they are irrelevant to the way
the word ‘run’ is used in the sentence. In order to
achieve this, we have to introduce a disambiguation
step prior to composition (right part of Figure 2).

These ideas are experimentally verified in the
works of Reddy et al. (2011) and Kartsaklis et al.
(2013); Pulman (2013) also presents a comprehen-
sive analysis of the problem. What remains to be
seen is if disambiguation can also provide bene-
fits for the linguistically motivated setting of tensor-
based models, the principles of which are shortly
discussed in the next section.

4 Tensors as multilinear maps

A tensor is a geometric object that can be seen as the
generalization of the familiar notion of a vector in
higher dimensions. The order of a tensor is the num-
ber of its dimensions; in other words, the number of
indices we need to fully describe a random element
of the tensor. Hence, a vector is a tensor of order
1, a matrix is a tensor of order 2, and so on. Ten-
sors and multilinear maps stand in one-to-one cor-
respondence, as stated by the following well-known
“map-state” isomorphism (Bourbaki, 1989):

f : V1 → . . .→ Vj → Vk
∼= Vk⊗Vj⊗. . .⊗V1 (1)

This offers an elegant way to adopt a formal se-
mantics view of natural language in vector spaces.
Let nouns live in a basic vector space N ∈ RD; re-
turning to our previous example, an adjective then
can be seen as a map f : N → N which is isomor-
phic to N ⊗N (that is, to a matrix). In general, the
order of the tensor is equal to the number of argu-
ments plus one dimension that carries the result; so
a unary function (e.g. adjectives, intransitive verbs)
is represented by a tensor of order 2 (a matrix), a bi-
nary function (e.g. a transitive verb) as an order 3
tensor, and so on. Due to the above isomorphism,
function application (and hence our compositional
operation) becomes a generalisation of matrix mul-
tiplication, formalised in terms of the inner product.
In the case of a unary relational word, such as an
adjective, this is nothing more than the usual notion
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of matrix multiplication between a matrix and a vec-
tor. The generalization of this process to tensors of
higher order is known as tensor contraction. Given
two tensors of orders n and m, the tensor contrac-
tion operation will always produce a tensor of order
n+m− 2.

Let us see an example of how this works for a
simple transitive sentence. Let V ∈ RI×J×K be the
tensor of order 3 for the verb and S ∈ RI , O ∈ RK

the tensors of order 1 (vectors) for the subject and
the object of the verb, respectively. Then V ×O will
return a new tensor living in RI×J (i.e. a matrix)1;
a further interaction of this result with the subject
will return a vector for the whole transitive sentence
living in RJ . We should note that the order in which
the verb is applied to its arguments is not important;
so in general the meaning of a transitive sentence is
given by:

(V ×O)T × S = (VT × S)×O (2)

where T denotes a transpose and makes indices
match, since subject precedes the verb.

5 Creating verb tensors

In this section we review a number of proposals re-
garding concrete methods of constructing tensors for
relational words in the context of the frameworks
of Coecke et al. (2010) and Baroni and Zamparelli
(2010), which both comply to the setting of Section
4.2

Relational Following ideas from the set-theoretic
view of formal semantics, Grefenstette and
Sadrzadeh (2011a) suggest that the meaning of a
relational word should be represented as the sum
of its arguments. The meaning of adjective ‘red’,
for example, becomes the sum of the vectors of
all the nouns that ‘red’ modifies in the corpus; so−→
red =

∑
i
−−−→nouni, where i iterates through all the

occurrences of ‘red’. This can be generalised to
relational words of any arity, by summing the tensor
product of their arguments. So for a transitive verb
we have:

verb
2

=
∑

i

(
−−→
subji ⊗

−−→
obji) (3)

1The symbol × denotes tensor contraction.
2In what follows we use the case of a transitive verb as an

example; however the descriptions apply to any relational word
of any arity. A vector (an order-1 tensor) is denoted as −→x ; ten-
sors of order n > 1 are shown as xn for clarity.

where i again iterates over all occurrences of the spe-
cific verb in the corpus and the superscript denotes
the order of the tensor.

In order to achieve a more expressive represen-
tation for the sentences, the authors used the con-
vention that the arity of the head word in a sentence
will also determine the order of the sentence space;
that is, the space of intransitive sentences will be of
order 1, of transitive ones will be of order 2, and
so on. Recall from Section 4 that for the transitive
case this increases the order of the verb tensor to 4
(2 dimensions for the arguments plus another 2 for
the result). In spite of this, however, note that the
method of Equation 3 produces a matrix. The other
two dimensions of the tensor remain empty (filled
with zeros), a fact that simplifies the calculations but
also considerably weakens the expressive power of
the model. This simplification transforms Equation
2 to the following:

subj verb obj
2

= (
−−→
subj ⊗

−→
obj)� verb2 (4)

where ⊗ denotes the tensor product and � element-
wise multiplication.

Kronecker In a subsequent work (Grefenstette
and Sadrzadeh, 2011b), the same team proposes the
creation of a verb matrix as the Kronecker product
of the verb’s contextual vector with itself:

verb
2

=
−−→
verb⊗

−−→
verb (5)

Again in this model the sentence space is of order
2, and the meaning of a transitive sentence is calcu-
lated using Equation 4.

Frobenius The previous models bring the impor-
tant limitation that only sentences of the same struc-
ture can be meaningfully compared; it is not pos-
sible, for example, to compare an intransitive sen-
tence (e.g. ‘kids play’) with a transitive one (‘chil-
dren play football’), since the former is a vector and
the latter a matrix. Using Frobenius algebras, Kart-
saklis et al. (2012) provide a unified sentence space
for every sentence regardless of its type. These mod-
els turn the matrix of Equation 3 to a tensor of or-
der 3 (as required by the type-logical identities) by
copying one of the existing dimensions. When the
dimension of rows (corresponding to subjects) is
copied, the calculation of a vector for a transitive
sentence becomes:

−−−−−−−−−→
subj verb obj =

−−→
subj � (verb

2 ×
−→
obj) (6)
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Copying the column dimension (objects) gives:

−−−−−−−−−→
subj verb obj =

−→
obj �

(
(verb

2
)T ×

−−→
subj

)
(7)

Linear regression None of the above models cre-
ate tensors that are fully populated: one or more
dimensions will always remain empty. Following
an idea first introduced by Baroni and Zamparelli
(2010) for the creation of adjective matrices, Grefen-
stette et al. (2013) use linear regression in order
to learn full tensors of order 3 for transitive verbs.
Linear regression is a supervised method of learn-
ing, so it needs a number of exemplar data points.
In the case of the adjective ‘red’, for example, we
would need a set of the form 〈−→car,

−−−−→
red car〉, 〈

−−→
shirt,

−−−−−→
red shirt〉, 〈

−−→
shoe,

−−−−−→
red shoe〉 and so on, where the sec-

ond vector in each pair is the contextual vector of the
whole phrase created exactly as if it were a single
word. The goal of the learning process is to find the
parameters adj

2
and
−→
b such that:

−−−−−−→
adj noun ≈ adj2 ×−−−→noun+

−→
b (8)

for all nouns modified by the specific adjective. In
practice, the bias

−→
b is embedded in adj

2
, hence

the above procedure provides us with a matrix for
the adjective. One can generalize this procedure to
tensors of higher order by proceeding step-wise, as
done by Grefenstette et al. (2013). For the case
of a transitive verb, they first use exemplar pairs
of the form 〈

−−→
subj,

−−−−−−−−→
subj verb obj〉 to learn a matrix

verb obj
2

for the verb phrase; then, they perform
a new training session with exemplars of the form
〈
−→
obj, verb obj

2〉, the result of which is an order 3
tensor for the verb.

6 Generic context-based disambiguation

In all of the models of Section 5, the training of a
relational word tensor is based on the set of contexts
where this word occurs. Hence, in these models the
problem of creating disambiguated versions of ten-
sors can be recasted to that of further breaking the
set of contexts in a way that each subset reflects a
different sense of the word in the corpus. If, for ex-
ample, S is the whole set of sentences for a word
w that occurs in the corpus under n different senses,
then the goal is to create n subsets S1, . . . Sn such
that S1 contains the sentences where w appears un-
der the first sense, S2 the sentences where w occurs

under the second sense, and so on. Each one of these
subsets can then be used to train a tensor for a spe-
cific sense of the target relational word.

Towards this purpose we use a variation of the ef-
fective procedure of Schütze (1998): first, each con-
text for a target word wt is represented by a context
vector of the form 1

n(−→w1 + . . . + −→wn), where −→wi is
the lexical vector of some other word wi 6= wt in the
same context. Next, we apply a clustering method
on this set of vectors in order to discover the latent
senses of wt. The assumption is that the contexts
of wt will vary according to the specific sense this
word is used: ‘bank’ as a financial institution should
appear in quite different contexts than as land.

The above procedure will give us a number of
clusters, each consisting of context vectors; we use
the centroid of each cluster as a vectorial repre-
sentation of the corresponding sense. So in our
model each wordw is initially represented by a tuple
〈−→w ,S〉, where−→w is the lexical vector of the word as
created by the usual distributional practice, and S
is a set of sense vectors (centroids of context vec-
tor clusters) produced by the above procedure. The
disambiguation of a new word w under a context C
can now be accomplished as follows: we create a
context vector −→c for C as above, and we compare it
with every sense vector of w; the word is assigned to
the sense corresponding to the closest sense vector.
Specifically, if Sw is the set of sense vectors for w,
−→c the context vector for C, and d(−→v ,−→u ) our vector
distance measure, the preferred sense ŝ is given by:

ŝ = arg min
−→vs∈Sw

d(−→vs ,
−→c ) (9)

For the actual clustering step we follow the set-
ting of Kartsaklis et al. (2013), which worked well in
tasks very similar to ours. Specifically, we perform
hierarchical agglomerative clustering (HAC) using
Ward’s method as the inter-cluster distance, while
the distance between vectors is measured with Pear-
son’s correlation.3 In the above work, this configura-
tion has been found to return the highest V-measure
(Rosenberg and Hirschberg, 2007) on the noun set
of SEMEVAL 2010 Word Sense Induction & Disam-
biguation Task (Manandhar et al., 2010). As con-
text for a word, we consider the sentence in which
this word occurs. The output of HAC is a dendro-
gram embedding all the possible partitionings of the

3Informal experimentation with more robust probabilistic
techniques, such as Dirichlet process gaussian mixture models,
revealed no significant benefits for our setting.
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data. In order to select the optimal partitioning, we
rely on the Caliński/Harabasz index (Caliński and
Harabasz, 1974), also known as variance ratio cri-
terion (VRC). VRC is calculated as the ratio of the
sum of the inter-cluster variances over the sum of
the intra-cluster variances, bearing the intuition that
the optimal partitioning should be the one that re-
sults in the most compact and maximally separated
clusters. We compute the VRC for a range of differ-
ent partitionings (from 2 to 10 clusters) and keep the
partitioning with the highest score.

7 Constructing unambiguous verb tensors

The procedure described in Section 6 provides us
with n clusters of context vectors for a target word.
Since in our case each context vector corresponds
to a distinct sentence, the output of the clustering
scheme can also be seen as n subsets of sentences,
where the word appears under different senses. It
is now quite straightforward to use this partitioning
of the training corpus in order to learn unambiguous
versions of verb tensors, as detailed below.

Relational/Frobenius Both the Relational and the
Frobenius models use the same way of creating an
initial verb matrix (Equation 3) which then they ex-
pand to a higher order tensor. Let S1 . . . Sn be the
sets of sentences returned by the clustering step for
a verb. Then, the verb tensor for the ith sense is:

verb
2
i =

∑
s∈Si

(
−−−→
subjs ⊗

−−→
objs) (10)

where subjs and objs refer to the subject/object pair
that occurred with the verb in sentence s. This can
be generalized to any arity n as follows:

word
n
i =

∑
s∈Si

n⊗
k=1

−−−→argk,s (11)

where argk,s denotes the kth argument of the target
word in sentence s.

Kronecker For a given verb v in a context C, let
−→vi be the sense vector of v given C corresponding to
the sense i returned by Equation 9. Then we have:

verb
2
i = −→vi ⊗−→vi (12)

The generalized version to arity n is given by:

word
n
i =

n⊗
k=1

−→vi (13)

Linear regression Creating unambiguous full ten-
sors using linear regression is also quite straightfor-
ward. Let us assume again that the clustering step
for a verb v returns n sets of sentences S1 . . . Sn,
where each sentence set corresponds to a different
sense. Then, we have n different regression prob-
lems, each one of which will be trained on exemplar
pairs derived exclusively from the sentences of the
corresponding set. This will result in n verb tensors,
which will correspond to the different senses of the
verb. Generalization to higher arities is a straightfor-
ward extension of the step-wise process in Section 5
for transitive verbs.

8 Experiments

In this section we will test the effect of disambigua-
tion on the models of Section 5 in a variety of tasks.
Due to the significant methodological differences
of the linear regression model from the other ap-
proaches and the variety of its set of parameters, we
decided that it would be better if this was left as the
subject of a distinct work.

Experimental setting We train our vectors using
ukWaC (Ferraresi et al., 2008), a corpus of English
text with 2 billion words (100m sentences). We use
2000 dimensions, with weights calculated as the ra-
tio of the probability of the context word given the
target word to the probability of the context word
overall. The context here is a 5-word window on
both sides of the target word. The vectors are disam-
biguated both syntactically and semantically: first,
separate vectors have been created for different syn-
tactic usages of the same word in the corpus; for ex-
ample, the word ‘book’ has two vectors, one for its
noun sense and one for its verb sense. Furthermore,
each word is semantically disambiguated according
to the method of Section 6.

Models We compare the tensor-based models of
Section 5 with the multiplicative and additive mod-
els of Mitchell and Lapata (2008), reporting results
for both ambiguous and disambiguated versions.
For all the disambiguated models, the best sense for
each word in the sentence or phrase is first selected
by applying the procedure of Section 6 and Equa-
tion 9. If the model is based on a vector mixture, the
sense vectors corresponding to these senses are mul-
tiplied or added to form the composite representa-
tion for the sentence or phrase. For the tensor-based
models, the composite meanings are calculated ac-
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cording to the equations of Section 5, using verb
tensors created by the procedures of Section 7. The
semantic similarity of two phrases or sentences is
measured as the cosine distance between their com-
posite vectors. For models that return a matrix (e.g.
Relational, Kronecker), the distance is based on the
Frobenius inner product.

Implementation details Our code is mainly writ-
ten in Python and C++, and for the actual cluster-
ing step we use the Python interface of the efficient
FASTCLUSTER library (Müllner, 2013). In a shared
24-core Xeon machine with 72 GB of memory, and
with a fair amount of parallelism applied, the aver-
age processing time per word was about 4 minutes;
this is roughly translated to 12-13 hours of training
on average per dataset.

8.1 Verb disambiguation task

Perhaps surprisingly, one of the most popular tasks
for testing compositionality in distributional models
is based on disambiguation. This task, originally in-
troduced by Kintsch (2001), has been adopted by
Mitchell and Lapata (2008) and others for evaluating
the quality of composition in vector spaces. Given
an ambiguous verb such as ‘file’, the goal is to find
out to what extent the presence of an appropriate
context will disambiguate its intended meaning. The
context (e.g. a subject/object pair) is composed with
two landmark verbs corresponding to the different
senses (‘smooth’ and ‘register’) to create simple sen-
tences. The assumption is that a good compositional
model should be able to reflect that ‘woman files ap-
plication’ is closer to ‘woman registers application’
than to ‘woman smooths application’.

In this paper we test our models on two different
datasets of transitive sentences, that of Grefenstette
and Sadrzadeh (2011a) and Kartsaklis et al. (2013)4.
Specific details about the creation of the datasets can
be found in the above papers; for the purposes of
the current work it is sufficient to mention that their
main difference is that in the former the verbs and
their alternative meanings have been selected auto-
matically using the JCN metric of semantic similar-
ity (Jiang and Conrath, 1997), while in the latter the
selection was based on human judgements from the
work of Pickering and Frisson (2001). So, while

4This dataset has been created by Mehrnoosh Sadrzadeh in
collaboration with Edward Grefenstette, but remained unpub-
lished until (Kartsaklis et al., 2013).

in the first dataset many verbs cannot be consid-
ered as genuinely ambiguous (e.g. ‘say’ with mean-
ings state and allege or ‘write’ with meanings pub-
lish and spell), the landmarks in the second dataset
correspond to clearly separated senses (e.g. ‘file’
with meanings register and smooth or ‘charge’ with
meanings accuse and bill). Furthermore, subjects
and objects of this latter case are modified by appro-
priate adjectives, overall creating a richer and more
linguistically balanced dataset.

In both cases the evaluation methodology is the
same: each entry of the dataset has the form
〈subject, verb, object, high-sim landmark, low-sim
landmark〉. The context is combined with the verb
and the two landmarks, creating three simple tran-
sitive sentences. The main-verb sentence is paired
with both the landmark sentences, and these pairs
are randomly presented to human evaluators, the
duty of which is to evaluate the similarity of the sen-
tences within a pair in a scale from 1 to 7. The scores
of the compositional models are the cosine distances
(or the Frobenius inner products, in the case of ma-
trices) between the composite representations of the
sentences of each pair. As an overall score for each
model, we report its Spearman’s ρ correlation with
the human judgements. Both datasets consist of 200
pairs of sentences (10 main verbs × 2 landmarks ×
10 contexts).

Results The results for the G&S dataset are shown
in Table 1.5 The verbs-only model (BL) refers to a
non-compositional evaluation, where the similarity
between two sentences is solely based on the dis-
tance between the two verbs, without applying any
compositional step with subject and object.

The tensor-based models present much better per-
formance than the vector mixture ones, with the dis-
ambiguated version of the copy-object model sig-
nificantly higher than the relational model. By de-
sign, the copy-object model retains more informa-
tion about the objects; so this result confirms pre-
vious findings, that in this certain dataset the role
of objects is more important than that of subjects
(Kartsaklis et al., 2012). In general, the disambigua-
tion step improves the results of all the tensor-based
models except Kronecker; the effect is reversed for
the vector mixture models, where the disambiguated
versions present much worse performance (these

5For all tables in this section, � and� denote highly sta-
tistically significant differences with p < 0.001.
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Model Ambig. Disamb.
BL Verbs only 0.198 � 0.132
M1 Multiplicative 0.137 � 0.044
M2 Additive 0.127 � 0.047
T1 Relational 0.219 < 0.223
T2 Kronecker 0.207 � 0.061
T3 Copy-subject 0.070 � 0.122
T4 Copy-object 0.241 � 0.262

Human agreement 0.599
Difference between T4 and T1 is s.s. with p < 0.001

Table 1: Results for the G&S dataset.

Model Ambig. Disamb.
BL Verbs only 0.151 � 0.217
M1 Multiplicative 0.131 < 0.137
M2 Additive 0.085 � 0.193
T1 Relational 0.036 � 0.121
T2 Kronecker 0.159 < 0.166
T3 Copy-subject 0.035 � 0.117
T4 Copy-object 0.033 � 0.095

Human agreement 0.383
Difference between BL and M2 is s.s. with p < 0.001

Table 2: Results for the Kartsaklis et al. dataset.

findings are further discussed in Section 9).
The result of disambiguation is clearer for the

dataset of Kartsaklis et al. (Table 2). The longer
context in combination with genuinely ambiguous
verbs produces two effects: first, disambiguation is
now helpful for all models, either vector mixtures
or tensor-based; second, the disambiguation of just
the verb (verbs-only model), without any interac-
tion with the context, is sufficient to provide the best
score (0.22) with a difference statistically significant
from the second model (0.19 for disambiguated ad-
ditive). In fact, further composition of the verb with
the context decreases performance, confirming the
results reported by Kartsaklis et al. (2013) for vec-
tors trained using BNC. Given the nature of the spe-
cific task, which is designed around the ambiguity of
the verb, this result is not surprising: a direct disam-
biguation of the verb based on the rest of the con-
text should naturally constitute the best method to
achieve top performance—no composition is neces-
sary for this task to be successful.

However, when one does use a task like this in
order to evaluate compositional models (as we do
here and as is commonly the case), they implic-
itly correlate the strength of the disambiguation ef-
fect that takes place during the composition with the
quality of composition, essentially assuming that the
stronger the disambiguation, the better the composi-

tional model that produced this side-effect. Unfor-
tunately, the extent to which this assumption is valid
or not is still not quite clear; the subject is addressed
in more detail in (Kartsaklis et al., 2013). Keeping a
note of this observation, we now proceed to examine
the performance of our models in a task that does not
use disambiguation as a criterion of composition.

8.2 Phrase/sentence similarity task
Our second set of experiments is based on the phrase
similarity task of Mitchell and Lapata (2010). On
the contrary with the task of Section 8.1, this one
does not involve any assumptions about disambigua-
tion, and thus it seems like a more genuine test of
models aiming to provide appropriate phrasal or sen-
tential semantic representations; the only criterion is
the degree to which these models correctly evaluate
the similarity between pairs of sentences or phrases.
We work on the verb-phrase part of the dataset, con-
sisting of 72 short verb phrases (verb-object struc-
tures). These 72 phrases have been paired in three
different ways to form groups exhibiting various
degrees of similarity: the first group contains 36
pairs of highly similar phrases (e.g. produce effect-
achieve result), the pairs of the second group are
of medium similarity (e.g. write book-hear word),
while a last group contains low-similarity pairs (use
knowledge-provide system). The task is again to
compare the similarity scores given by the various
models for each phrase pair with those of human an-
notators. Additionally to the verb phrases task, we
also perform a richer version of the experiment us-
ing transitive sentences.

Verb phrases It can be shown that for simple verb
phrases the relational model reduces itself to the
copy-subject model; for both of these methods, the
meaning of the verb phrase is calculated according
to Equation 6. Furthermore, according to the copy-
object model the meaning of a verb phrase computed
by a verb matrix

∑
ij vij(

−→ni⊗−→nj) and an object vec-
tor
∑

j oj
−→nj becomes:

verb object
2

=
∑
ij

vijoj(
−→ni ⊗−→nj) (14)

Finally, the Kronecker model has no meaning for
verb phrases, since the vector of a verb phrase
will become (−→vs ⊗ −→vs) ×

−→
obj, which is equal to

〈−→vs |
−→
obj〉−→vs , where 〈−→vs |

−→
obj〉 denotes the inner prod-

uct between vectors of verb and object. Hence, the
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Model Ambig. Disamb.
BL Verbs only 0.310 � 0.420
M1 Multiplicative 0.315 � 0.448
M2 Additive 0.291 � 0.436
T1 Rel./Copy-sbj 0.340 � 0.367
T2 Copy-object 0.290 � 0.393

Human agreement 0.550
Difference between M1 and M2 is not s.s.
Difference between M1 and BL is s.s. with p < 0.001

Table 3: Results for the original M&L task.

meaning of a verb phrase becomes a scalar multipli-
cation of the meaning of its verb. As a result, the
cosine distance (used for measuring similarity) be-
tween the meanings of two verb phrases is reduced
to the distance between the vectors of their verbs,
completely dismissing the role of their objects.

Hence our models are limited to those of Table
3. The effects of disambiguation for this task are
quite impressive: the differences between the scores
of all disambiguated models and those of the am-
biguous versions are highly statistically significant
(with p < 0.001), while 4 of the 5 models present
an improvement greater than 10 units of correla-
tion. The models that benefit the most from disam-
biguation are the vector mixtures; both of these ap-
proaches perform significantly better than the best
tensor-based model (copy-object). In fact, the score
of M1 (0.45) is quite high, given that the inter-
annotator agreement is 0.55 (best score reported by
Mitchell and Lapata was 0.41 for their LDA-dilation
model).

Transitive sentences The second part of this ex-
periment aims to examine the extent to which the
above picture can change for the case of text struc-
tures longer than verb phrases. In order to achieve
this, we extend each one of the 72 verb phrases to
a full transitive sentence by adding an appropriate
subject such that the similarity relationships of the
original dataset are retained as much as possible,
so the human judgements for the verb phrase pairs
could as well be used for the transitive cases. We
worked pair-wise: for each pair of verb phrases, we
first selected one of the 5 most frequent subjects for
the first phrase; then, the subject of the other phrase
was selected by a list of synonyms of the first sub-
ject in a way that the new pair of transitive sen-
tences constitutes the least more specific version of
the given verb-phrase pair. So, for example, the pair
produce effect/achieve result became drug produce

effect/medication achieve result, while the pair pose
problem/address question became study pose prob-
lem/paper address question.6

The restrictions of the verb-phrase version do not
hold here, so we evaluate on the full set of models
(Table 4). Once more disambiguation produces bet-
ter results in all cases, with highly statistically sig-
nificant differences for all but one model. Further-
more, now the best score is delivered by one of the
tensor-based models (Kronecker), with a difference
not statistically significant from disambiguated ad-
ditive. In any case, the result suggests that as the
length of the text segments increases, the perfor-
mance of vector mixtures and tensor-based models
converges. Indeed, note how the performance of the
vector mixture models are significantly decreased
compared to the verb phrase task.

9 Discussion

The purpose of this work was twofold: our main ob-
jective was to investigate how disambiguation can
affect the compositional models which are based on
higher order vector spaces; a second, but not less
important goal, was to compare this more linguisti-
cally motivated approach to the simpler vector mix-
ture methods. Based on the experimental work pre-
sented here, we can say with enough confidence that
disambiguation as an additional step prior to com-
position is indeed very beneficial for tensor-based
models. Furthermore, our experiments confirm and
strengthen previous work (Reddy et al., 2011; Kart-
saklis et al., 2013) that showed better performance of
disambiguated vector mixture models compared to
their ambiguous versions. The positive effect of dis-
ambiguation is more evident for the vector mixture
models (especially for the additive model) than for

6The dataset will be available at http://www.cs.ox.
ac.uk/activities/compdistmeaning/.

Model Ambig. Disamb.
BL Verbs only 0.310 � 0.341
M1 Multiplicative 0.325 � 0.404
M2 Additive 0.368 � 0.410
T1 Relational 0.368 � 0.397
T2 Kronecker 0.404 < 0.412
T3 Copy-subject 0.310 � 0.337
T4 Copy-object 0.321 � 0.368

Human agreement 0.550
Difference between T2 and M2 is not s.s.

Table 4: Transitive version of M&L task.
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the tensor-based ones. This is expected: composite
representations created by element-wise operations
are averages, and a prior step of disambiguation can
make a great difference.

From a task perspective, the effect of disambigua-
tion was much more definite in the phrase/sentence
similarity task. This observation is really interest-
ing, since the words of that dataset were not se-
lected in order to be ambiguous in any way. The
superior performance of the disambiguated models,
therefore, implies that the proposed methodology
can improve tasks based on phrase or sentence sim-
ilarity regardless of the level of ambiguity in the
vocabulary. For these cases, the proposed disam-
biguation algorithm acts as a fine-tuning process, the
outcome of which seems to be always positive; it
can only produce better composite representations,
not worse. In general, the positive effect of dis-
ambiguation in the phrase/sentence similarity task is
quite encouraging, especially given the fact that this
task constitutes a more appropriate test for evaluat-
ing compositional models, avoiding the pitfalls of
disambiguation-based experiments (as shortly dis-
cussed in Section 8.1).

For disambiguation-based tasks similar to those
of Section 8.1, the form of dataset is very important;
hence the inferior performance of disambiguated
models in the G&S dataset, compared to the dataset
of Kartsaklis et al.. In fact, the G&S dataset was
the only one where disambiguation was not helpful
for some cases (specifically, for vector mixtures and
the Kronecker model). We believe the reason behind
this lies in the fact that the automatic selection of
landmark verbs using the JCN metric (as done with
the G&S dataset) was not very efficient for certain
cases. Note, for example, that the bare baseline of
comparing just ambiguous versions of verbs (with-
out any composition) in that dataset already achieves
a very high correlation of 0.198 with human judge-
ments (Table 1).7. This number is only 0.15 for the
Kartsaklis et al. dataset, due to the more efficient
verb selection procedure. In general, we consider
the results gained by this latter experiment more re-
liable for the specific task, the successful evaluation
of which requires genuinely ambiguous verbs.

The results are less conclusive for the second
question we posed in the beginning of this section,
regarding the comparison of the two classes of mod-

7The reported number for this baseline by Grefenstette and
Sadrzadeh (2011a) was 0.16 using vectors trained from BNC.

els. Despite the obvious benefits of the tensor-based
approaches, this work suggests for one more time
that vector mixture models might constitute a hard-
to-beat baseline; similar observations have been
made, for example, in the comparative study of Bla-
coe and Lapata (2012). However, when trying to in-
terpret the mixing results regarding the effectiveness
of the tensor-based models compared to vector mix-
tures, we need to take into account that the tensor-
based models tested in this work were all “hybrid”,
in the sense that they all involved some element
of point-wise operation; in other words, they con-
stituted a trade-off between transformational power
and complexity.

Even with this compromise, though, the study
presented in Section 8.2 implies that the effective-
ness of each method depends to some extent on the
length of the text segment: when more words are
involved, vector mixture models tend to be less ef-
fective; on the contrary, the performance of tensor-
based models seems to be proportional to the length
of the phrase or sentence—the more, the better.
These observations comply with the nature of the
approaches: “averaging” larger numbers of points
results in more general (hence less accurate) repre-
sentations; on the other hand, a larger number of
arguments makes a function (such as a verb) more
accurate.

10 Conclusion and future work

In the present paper we showed how to improve
a number of tensor-based compositional distribu-
tional models of meaning by introducing a step
of disambiguation prior to composition. Our sim-
ple algorithm (based on the procedure of Schütze
(1998)) creates unambiguous versions of tensors be-
fore these are composed with vectors of nouns in
order to construct vectors for sentences and phrases.
This algorithm is quite generic, and can be applied
to any model that follows the tensor contraction pro-
cess described in Section 4. As for future work, we
aim to investigate the application of this procedure
to the regression model of Grefenstette et al. (2013).
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Abstract

We present Multi-Relational Latent Seman-
tic Analysis (MRLSA) which generalizes La-
tent Semantic Analysis (LSA). MRLSA pro-
vides an elegant approach to combining mul-
tiple relations between words by construct-
ing a 3-way tensor. Similar to LSA, a low-
rank approximation of the tensor is derived
using a tensor decomposition. Each word in
the vocabulary is thus represented by a vec-
tor in the latent semantic space and each re-
lation is captured by a latent square matrix.
The degree of two words having a specific
relation can then be measured through sim-
ple linear algebraic operations. We demon-
strate that by integrating multiple relations
from both homogeneous and heterogeneous
information sources, MRLSA achieves state-
of-the-art performance on existing benchmark
datasets for two relations, antonymy and is-a.

1 Introduction

Continuous semantic space representations have
proven successful in a wide variety of NLP and IR
applications, such as document clustering (Xu et al.,
2003) and cross-lingual document retrieval (Dumais
et al., 1997; Platt et al., 2010) at the document level
and sentential semantics (Guo and Diab, 2012; Guo
and Diab, 2013) and syntactic parsing (Socher et
al., 2013) at the sentence level. Such representa-
tions also play an important role in applications for
lexical semantics, such as word sense disambigua-
tion (Boyd-Graber et al., 2007), measuring word

∗Work conducted while interning at Microsoft Research.

similarity (Deerwester et al., 1990) and relational
similarity (Turney, 2006; Zhila et al., 2013; Mikolov
et al., 2013). In many of these applications, La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990) has been widely used, serving as a fundamen-
tal component or as a strong baseline.

LSA operates by mapping text objects, typically
documents and words, to a latent semantic space.
The proximity of the vectors in this space implies
that the original text objects are semantically re-
lated. However, one well-known limitation of LSA
is that it is unable to differentiate fine-grained re-
lations. For instance, when applied to lexical se-
mantics, synonyms and antonyms may both be as-
signed high similarity scores (Landauer and Laham,
1998; Landauer, 2002). Asymmetric relations like
hyponyms and hypernyms also cannot be differenti-
ated. Although there exists some recent work, such
as PILSA which tries to overcome this weakness
of LSA by introducing the notion of polarity (Yih
et al., 2012). This extension, however, can only
handle two opposing relations (e.g., synonyms and
antonyms), leaving open the challenge of encoding
multiple relations.

In this paper, we propose Multi-Relational Latent
Semantic Analysis (MRLSA), which strictly gener-
alizes LSA to incorporate information of multiple
relations concurrently. Similar to LSA or PILSA
when applied to lexical semantics, each word is still
mapped to a vector in the latent space. However,
when measuring whether two words have a specific
relation (e.g., antonymy or is-a), the word vectors
will be mapped to a new space according to the rela-
tion where the degree of having this relation will be
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judged by cosine similarity. The raw data construc-
tion in MRLSA is straightforward and similar to the
document-term matrix in LSA. However, instead of
using one matrix to capture all relations, we extend
the representation to a 3-way tensor. Each slice cor-
responds to the document-term matrix in the original
LSA design but for a specific relation. Analogous to
LSA, the whole linear transformation mapping is de-
rived through tensor decomposition, which provides
a low-rank approximation of the original tensor. As
a result, previously unseen relations between two
words can be discovered, and the information en-
coded in other relations can influence the construc-
tion of the latent representations, and thus poten-
tially improves the overall quality. In addition, the
information in different slices can come from het-
erogeneous sources (conceptually similar to (Riedel
et al., 2013)), which not only improves the model,
but also extends the word coverage in a reliable way.

We provide empirical evidence that MRLSA is ef-
fective using two different word relations: antonymy
and is-a. We use the benchmark GRE test of closest-
opposites (Mohammad et al., 2008) to show that
MRLSA performs comparably to PILSA, which was
the pervious state-of-the-art approach on this prob-
lem, when given the same amount of information. In
addition, when other words and relations are avail-
able, potentially from additional resources, MRLSA
is able to outperform previous methods significantly.
We use the is-a relation to demonstrate that MRLSA
is capable of handling asymmetric relations. We
take the list of word pairs from the Class-Inclusion
(i.e., is-a) relations in SemEval-2012 Task 2 (Jur-
gens et al., 2012), and use our model to measure the
degree of two words have this relation. The mea-
sures derived from our model correlate with human
judgement better than the best system that partici-
pated in the task.

The rest of this paper is organized as follows. We
first survey some related work in Section 2, followed
by a more detailed description of LSA and PILSA
in Section 3. Our proposed model, MRLSA, is pre-
sented in Section 4. Section 5 presents our experi-
mental results. Finally, Section 6 concludes the pa-
per.

2 Related Work

MRLSA can be viewed as a model that derives gen-
eral continuous space representations for capturing
lexical semantics, with the help of tensor decompo-
sition techniques. We highlight some recent work
related to our approach.

The most commonly used continuous space rep-
resentation of text is arguably the vector space
model (VSM) (Turney and Pantel, 2010). In this
representation, each text object can be represented
by a high-dimensional sparse vector, such as a
term-vector or a document-vector that denotes the
statistics of term occurrences (Salton et al., 1975)
in a large corpus. The text can also be repre-
sented by a low-dimensional dense vector derived
by linear projection models like latent semantic
analysis (LSA) (Deerwester et al., 1990), by dis-
criminative learning methods like Siamese neural
networks (Yih et al., 2011), recurrent neural net-
works (Mikolov et al., 2013) and recursive neu-
ral networks (Socher et al., 2011), or by graphical
models such as probabilistic latent semantic anal-
ysis (PLSA) (Hofmann, 1999) and latent Dirichlet
allocation (LDA) (Blei et al., 2003). As a general-
ization of LSA, MRLSA is also a linear projection
model. However, while the words are represented
by vectors as well, multiple relations between words
are captured separately by matrices.

In the context of lexical semantics, VSMs provide
a natural way of measuring semantic word related-
ness by computing the distance between the cor-
responding vectors, which has been a standard ap-
proach (Agirre et al., 2009; Reisinger and Mooney,
2010; Yih and Qazvinian, 2012). These approaches
do not apply directly to the problem of modeling
other types of relations. Existing methods that do
handle multiple relations often use a model com-
bination scheme to integrate signals from various
types of information sources. For instance, mor-
phological variations discovered from the Google
n-gram corpus have been combined with informa-
tion from thesauri and vector-based word related-
ness models for detecting antonyms (Mohammad et
al., 2008). An alternative approach proposed by Tur-
ney (2008) that handles synonyms, antonyms and
associations is to use a uniform approach by first
reducing the problem to determining whether two
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pairs of words can be analogous, and then predicting
it using a supervised model with features based on
the frequencies of patterns in the corpus. Similarly,
to measure whether two word pairs have the same
relation, Zhila et al. (2013) proposed to combine het-
erogeneous models, which achieved state-of-the-art
performance. In comparison, MRLSA models mul-
tiple lexical relations holistically. The degree that
two words having a particular relation is estimated
using the same linear function of the corresponding
vectors and matrix.

Tensor decomposition generalizes matrix factor-
ization and has been applied to several NLP applica-
tions recently. For example, Cohen et al. (2013) pro-
posed an approximation algorithm for PCFG pars-
ing that relies on Kruskal decomposition. Van de
Cruys et al. (2013) modeled the composition of
subject-verb-object triples using Tucker decompo-
sition, which results in a better similarity measure
for transitive phrases. Similar to this construction
but used in the community-based question answer-
ing (CQA) scenario, Qiu et al. (2013) represented
triples of question title, question content and answer
as a tensor and applied 3-mode SVD to derive latent
semantic representations for question matching. The
construction of MRLSA bears some resemblance to
the work that use tensors to capture triples. How-
ever, our goal of modeling different relations for lex-
ical semantics is very different from the intended us-
age of tensor decomposition in the existing work.

3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Deerwester et al.,
1990) is a widely used continuous vector space
model that maps words and documents into a low
dimensional space. LSA consists of two main steps.
First, taking a collection of d documents that con-
tains words from a vocabulary list of size n, it first
constructs a d × n document-term matrix W to en-
code the occurrence information of a word in a docu-
ment. For instance, in its simplest form, the element
Wi,j can be the term frequency of the j-th word in
the i-th document. In practice, a weighting scheme
that better captures the importance of a word in the
document, such as TF×IDF (Salton et al., 1975),
is often used instead. Notice that “document” here
simply means a group of words and has been applied

W V X = U
T

Figure 1: SVD applied to a d×n document-term ma-
trix W. The rank-k approximation, X, is the mul-
tiplication of U, Σ and VT , where U and V are
d × k and n × k orthonormal matrices and Σ is a
k × k diagonal matrix. The column vectors of VT

multiplied by the singular values Σ represent words
in the latent semantic space.

to various texts including news articles, sentences
and bags of words. Once the matrix is constructed,
the second step is to apply singular value decom-
position (SVD) to W in order to derive a low-rank
approximation. To have a rank-k approximation, X
is the reconstruction matrix of W, defined as

W ≈ X = UΣVT (1)

where the dimensions of U and V are d× k and
n× k, respectively, and Σ is a k × k diagonal ma-
trix. In addition, the columns in U and V are or-
thonormal and the elements in Σ are the singular
values and are conventionally reverse-ordered. Fig-
ure 1 illustrates this decomposition.

LSA can be used to compute the similarity be-
tween two documents or two words in the latent
space. For instance, to compare the u-th and v-th
words in the vocabulary, one can compute the co-
sine similarity of the u-th and v-th column vectors
of X, the reconstruction matrix of W. In contrast to
a direct lexical matching via the columns of W, the
similarity measure computed as a result of the SVD
may have a nonzero similarity score even if these
two words do not co-occur in any documents. This
is due to the fact that those words can share some
latent components.

An alternative view of using LSA is to treat the
column vectors of ΣVT as a representation of the
words in a new k-dimensional latent space. This
comes from the observation that the inner product
of every two column vectors in X is the inner prod-
uct of the corresponding column vectors of ΣVT ,

1604



joyfulness

gladden

sad

1

anger

1

-1

0

1

1

0

0

-1

0

1

0

0

-1

1

0

0

0

0

1

0

0

0

0

0

0

0

0

Figure 2: The matrix construction of PILSA. The
vocabulary is {joy, gladden, sorrow, sadden, anger,
emotion, feeling} and target words are {joyfulness,
gladden, sad, anger}. For ease of presentation,
we show the numbers with 0-1 values instead of
TF×IDF scores. The polarity (i.e., sign) indicates
whether the term in the vocabulary is a synonym or
antonym of the target word.

which can be derived from the equations below.

XT X = (UΣVT )T (UΣVT )

= VΣUT UΣVT (Σ is diagonal)

= VΣ2VT (Columns of U are orthonormal)

= (ΣVT )T (ΣVT ) (2)

Thus, the semantic relatedness between the i-th and
j-th words can be computed by cosine similarity1:

cos(X:,i,X:,j) (3)

When used to compare words, one well-known
limitation of LSA is that the score captures the gen-
eral notion of semantic similarity, and is unable
to distinguish fine-grained word relations, such as
antonyms (Landauer and Laham, 1998; Landauer,
2002). This is due to the fact that the raw matrix rep-
resentation only records the occurrences of words in
documents without knowing the specific relation be-
tween the word and document. To address this issue,
Yih et al. (2012) proposed a polarity inducing latent
semantic analysis model recently, which we intro-
duce next.

1Cosine similarity is equivalent to the inner product of the
normalized vectors.

3.1 Polarity Inducing Latent Semantic
Analysis

In order to distinguish antonyms from synonyms,
the polarity inducing LSA (PILSA) model (Yih et
al., 2012) takes a thesaurus as input. Synonyms and
antonyms of the same target word are grouped to-
gether as a “document” and a document-term matrix
is constructed accordingly as done in LSA. Because
each word in a group belongs to either one of the two
opposite relations, synonymy and antonymy, the po-
larity information is induced by flipping the signs of
antonyms. While the absolute value of each element
in the matrix is still the same TF×IDF score, the
elements that correspond to the antonyms become
negative.

This design has an intriguing effect. When com-
paring two words using the cosine similarity (or sim-
ply inner product) of their corresponding column
vectors in the matrix, the score of a synonym pair
remains positive, but the score of an antonym pair
becomes negative. Figure 2 illustrates this design
using a simplified matrix as example.

Once the matrix is constructed, PILSA applies
SVD as done in LSA, which generalizes the model
to go beyond lexical matching. The sign of the co-
sine score of the column vectors of any two words
indicates whether they are close to synonyms or to
antonyms and the absolute value reflects the degree
of the relation. When all the column vectors are nor-
malized to unit vectors, it can also be viewed as syn-
onyms are clustered together and antonyms lie on
the opposite sides of a unit sphere. Although PILSA
successfully extends LSA to handle not just one sin-
gle occurrence relation, the extension is limited to
encoding two opposing relations

4 Multi-Relational Latent Semantic
Analysis

The fundamental reason why it is difficult to handle
multiple relations is due to the 2-dimensional ma-
trix representation. In order to overcome this, we
encode the raw data in a 3-way tensor. Each slice
captures a particular relation and is in the format of
the document-term matrix in LSA. Just as in LSA,
where the low-rank approximation by SVD helps
generalize the representation and discover unseen
relations, we apply a tensor decomposition method,
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(a) Synonym layer
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Figure 3: The three slices of MRLSA raw tensorW for an example with vocabulary {joy, gladden, sorrow,
sadden, anger, emotion, feeling} and target words {joyfulness, gladden, sad, anger}. Figures 3(a), 3(b), 3(c)
show the matrices W:,:,syn, W:,:,ant, W:,:,hyper, respectively. Rows represent documents (see definition in
text), and columns represent words. For ease of presentation, we show numbers with 0-1 values instead of
TF×IDF scores.

the Tucker decomposition, to the tensor.

4.1 Representing Multi-Relational Data in
Tensors

A tensor is simply a multi-dimensional array. In this
work, we use a 3-way tensor W to encode multi-
ple word relations. An element of W is denoted
by Wi,j,k using its indices, and W:,:,k represents
the k-th slice of W (a slice of a 3-way tensor is
a matrix, obtained by fixing the third index). Fol-
lowing (Kolda and Bader, 2009), a fiber of a ten-
sor W:,j,k is a vector, which is a high order analog
of a matrix row or column.

When constructing the raw tensorW in MRLSA,
each slice is analogous to the document-term ma-
trix in LSA, but created based on the data of a par-
ticular relation, such as synonyms. With a slight
abuse of notation, we sometimes use the value rather
than index when there is no confusion. For in-
stance, W:,“word”,k represents the fiber correspond-
ing to the “word” in slice k, and W:,:,syn refers to
the slice that encodes the synonymy relation. Below
we use an example to compare this construction to
the raw matrix in PILSA, and discuss how it extends
LSA.

Suppose we are interested in representing two re-
lations, synonymy and antonymy. The raw tensor in
MRLSA would then consist of two slices, W:,:,syn
and W:,:,ant, to encode synonyms and antonyms of
target words from a knowledge source (e.g., a the-
saurus). Each row in W:,:,syn represents the syn-

onyms of a target word, and the corresponding
row in W:,:,ant encodes its antonyms. Figures 3(a)
and 3(b) illustrate an example, where “joy”, ”glad-
den” are synonyms of the target word “joyfulness”
and “sorrow” is its antonym. Therefore, the values
of the corresponding entries are 1. Notice that the
matrix W′ = W:,:,syn − W:,:,ant is identical to the
PILSA raw matrix. We can extend the construction
above to enable MRLSA to utilize other semantic
relations (e.g., hypernymy) by adding a slice cor-
responding to each relation of interest. Fig. 3(c)
demonstrates how to add another slice W:,:,hyper to
the tensor for encoding hypernyms.

4.2 Tensor Decomposition

The MRLSA raw tensor encodes relations in one or
more data resources, such as thesauri. However, the
knowledge from a thesaurus is usually noisy and in-
complete. In this section, we derive a low-rank ap-
proximation of the tensor to generalize the knowl-
edge. This step is analogous to the rank-k approxi-
mation in LSA.

Various tensor decomposition methods have been
proposed in literature. Among them, Tucker decom-
position (Tucker, 1966) is recognized as a multi-
dimensional extension of SVD and has been widely
used in many applications. An illustration of this
method is in Fig. 4(a). In Tucker decomposition,
a d× n×m tensor W is decomposed into four
components G,U,V,T. A low-rank approximation
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(a) Tucker Tensor Decomposition
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=
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(b) Our Reformulation

Figure 4: Fig. 4(a) illustrates the Tucker tensor decomposition method which factors a 3-way tensorW to
three orthogonal matrices, U,V,T, and a core tensor G. We further apply a n-mode matrix product on the
core tensor G with T. Consequently, each slice of the resulted core tensor S (a square matrix) captures a
semantic relation type, and each column of VT is a vector representing a word.

X ofW is defined by

Wi,j,k ≈ Xi,j,k

=

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

Gr1,r2,r3Ui,r1Vj,r2Tk,r3 ,

where G is a core tensor with dimensionsR1×R2×
R3 and U,V,T are orthogonal matrices with di-
mensions d × R1, n × R2,m × R3, respectively.
The rank parameters R1 ≤ d,R2 ≤ n,R3 ≤ m are
given as input to the algorithm. In MRLSA, m (the
number of relations) is usually small, while d and n
are typically large (often in the scale of hundreds
of thousands). Therefore, we choose R1 = R2 = τ ,
τ � d, n andR3 = m, where τ is typically less than
1000.

To make the analogy to SVD clear, we rewrite the
results of Tucker decomposition by performing a n-
mode matrix product over the core tensor G with the
matrix T. This produces a tensor S where each slice
is a linear combination of the slices of G with coeffi-
cients given by T (see (Kolda and Bader, 2009) for
detail). That is, we have

S:,:,k =

m∑
t=1

Tt,kG:,:,t, ∀k.

An illustration is shown in Fig. 4(b), Then, a
straightforward calculation shows that k-th slice of
tensorW is approximated by

W:,:,k ≈ X:,:,k = US:,:,kVT . (4)

Comparing Eq. (4) to Eq. (1), one can observe
that matrices U and V play similar roles here, and

each slice of the core tensor S is analogous to Σ.
However, the square matrix G:,:,k is not necessary
to be diagonal. As in SVD, the column vectors
of G:,:,kVT (capture both word and relation infor-
mation) behave similarly to the column vectors of
the original tensor sliceW:,:,k.

4.3 Measuring the Degrees of Word Relations
In principle, the raw information in the input ten-
sor W can be used for computing lexical similarity
using the cosine score between the column vectors
for two words from the same slice of the tensor. To
measure the degree of other relations, however, our
approach requires one to specify a pivot slice. The
key role of the pivot slice is to expand the lexical
coverage of the relation of interest to additional lexi-
cal entries and, for this reason, the pivot slice should
be chosen to capture the equivalence of the lexical
entries. In this paper, we use the synonymy relation
as our pivot slice. First we consider measuring the
degree of a relation rel holding between the i-th and
j-th words using the raw tensor W , which can be
computed as

cos
(
W:,i,syn,W:,j,rel

)
. (5)

This measurement can be motivated from the logical
rule: syn(wordi, target) ∧ rel(target,wordj) →
rel(wordi,wordj), where the pivot relation syn ex-
pands the coverage of the relation of interest rel.

Turning to the use of the tensor decomposition,
we use a similar derivation to Eq. (3), and measure
the degree of relation rel between two words by

cos
(
S:,:,synV

T
i,:,S:,:,relV

T
j,:

)
. (6)
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For instance, the degree of antonymy between
“joy” and “sorrow” is measured by the co-
sine similarity between the respective fibers
cos(X:,“joy”,syn,X:,“sorrow”,ant). We can encode both
symmetric relations (e.g., antonymy and synonymy)
and asymmetric relations (e.g., hypernymy and
hyponymy) in the same tensor representation. For a
symmetric relation, we use both cos(X:,i,syn,X:,j,rel)
and cos(X:,j,syn,X:,i,rel) and measure the degree of
a symmetric relation by the average of these two
cosine similarity scores. However, for asymmetric
relations, we use only cos(X:,i,syn,X:,j,rel).

5 Experiments

We evaluate MRLSA on two tasks: answering the
closest-opposite GRE questions and measuring de-
grees of various class-inclusion (i.e., is-a) relations.
In both tasks, we design the experiments to empir-
ically validate the following claims. When encod-
ing two opposite relations from the same source,
MRLSA performs comparably to PILSA. However,
MRLSA generalizes LSA to model multiple rela-
tions, which could be obtained from both homoge-
neous and heterogeneous data sources. As a result,
the performance of a target task can be further im-
proved.

5.1 Experimental Setup

We construct the raw tensors to encode a particular
relation in each slice based on two data sources.

Encarta The Encarta thesaurus is developed by
Bloomsbury Publishing Plc2. For each target word,
it provides a list of synonyms and antonyms. We
use the same version of the thesaurus as in (Yih et
al., 2012), which contains about 47k words and a
vocabulary list of approximately 50k words.

WordNet We use four types of relations from
WordNet: synonymy, antonymy, hypernymy and
hyponymy. The number of target words and the
size of the vocabulary in our version are 117,791
and 149,400, respectively. WordNet has better vo-
cabulary coverage, but fewer antonym pairs. For
instance, the WordNet antonym slice contains only
46,945 nonzero entries, while the Encarta antonym
slice has 129,733.

2http://www.bloomsbury.com

We apply a memory-efficient Tucker decomposi-
tion algorithm (Kolda and Sun, 2008) implemented
in tensor toolbox v2.5 (Bader et al., 2012)3 to factor
the tensor. The largest tensor considered in this pa-
per can be decomposed in about 3 hours using less
than 4GB of memory with a commodity PC.

5.2 Answering GRE Antonym Questions

The first task is to answer the closest-opposite ques-
tions from the GRE test provided by Mohammad et
al. (2008)4. Each question in this test consists of
a target word and five candidate words, where the
goal is to pick the candidate word that has the most
opposite meaning to the target word. In order to
have a fair comparison, we use the same data split
as in (Mohammad et al., 2008), with 162 questions
used for the development set and 950 for test. Fol-
lowing (Mohammad et al., 2008; Yih et al., 2012),
we report the results in precision (accuracy of the
questions that the system attempts to answer), re-
call (percentage of the questions answered correctly
over all questions) and F1 (the harmonic mean of
precision and recall).

We tune two sets of parameters using the devel-
opment set: (1) the rank parameter τ in the tensor
decomposition and (2) the scaling factors of differ-
ent slices of the tensor. The rank parameter spec-
ifies the number of dimensions of the latent space.
In the experiments, We pick the best value of τ from
{100, 200, 300, 500, 750, 1000}. The scaling factors
adjust the values of each slice of the tensor. The el-
ements of each slice are multiplied by the scaling
factor before factorization. This is important be-
cause Tucker decomposition minimizes the recon-
struction error (the Frobenius norm of the residual
tensor). As a result, the slice with a larger range of
values becomes more influential to U and V. In this
work, we fixW:,:,ant, and search for the scaling fac-
tor of W:,:,syn in {0.25, 0.5, 1, 2, 4} and the factors
ofW:,:,hyper andW:,:,hypo in {0.0625, 0.125, 0.25}.

Table 1 summarizes the results of training

3http://www.sandia.gov/˜tgkolda/
TensorToolbox. The Tucker decomposition involves
performing SVD on a large matrix. We modify the MATLAB
code of tensor toolbox to use the built-in svd function instead
of svds. This modification reduces both the running time and
memory usage.

4http://www.saifmohammad.com
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Dev. Set Test Set
Prec. Rec. F1 Prec. Rec. F1

WordNet Lookup 0.40 0.40 0.40 0.42 0.41 0.42
WordNet RawTensor 0.42 0.41 0.42 0.42 0.41 0.42
WordNet PILSA 0.63 0.62 0.62 0.60 0.60 0.60
WordNet MRLSA:Syn+Ant 0.63 0.62 0.62 0.59 0.58 0.59
WordNet MRLSA:4-layers 0.66 0.65 0.65 0.61 0.59 0.60
Encarta Lookup 0.65 0.61 0.63 0.61 0.56 0.59
Encarta RawTensor 0.67 0.64 0.65 0.62 0.57 0.59
Encarta PILSA 0.86 0.81 0.84 0.81 0.74 0.77
Encarta MRLSA:Syn+Ant 0.87 0.82 0.84 0.82 0.74 0.78
MRLSA:WordNet+Encarta 0.88 0.85 0.87 0.81 0.77 0.79

Table 1: GRE antonym test results of models based on Encarta and WordNet data in precision, recall and F1.
RawTensor evaluates the performance of the tensor with 2 slices encoding synonyms and antonyms be-
fore decomposition (see Eq. (5)), which is comparable to checking the original data directly (Lookup).
MRLSA:Syn+Ant applies Tucker decomposition to the raw tensor and measures the degree of antonymy
using Eq. (6). The result is similar to that of PILSA (see Sec. 3.1). MRLSA:4-layers adds hypernyms and
hyponyms from WordNet; MRLSA:WordNet+Encarta consists of synonyms/antonyms from Encarta and hy-
pernyms/hyponyms from WordNet, where the target words are aligned using the synonymy relations. Both
models demonstrate the advantage of encoding more relations, from either the same or different resources.

MRLSA using two different corpora, Encarta and
WordNet. The performance of the MRLSA raw
tensor is close to that of looking up the thesaurus.
This indicates the tensor representation is able to
capture the word relations explicitly described in
the thesaurus. After conducting tensor decomposi-
tion, MRLSA:Syn+Ant achieves similar results to
PILSA. This confirms our claim that when giv-
ing the same among of information, MRLSA per-
forms at least comparably to PILSA. However, the
true power of MRLSA is its ability to incorpo-
rate other semantic relations to boost the perfor-
mance of the target task. For example, when
we add the hypernymy and hyponymy relations to
the tensor, these class-inclusion relations provide a
weak signal to help resolve antonymy. We sus-
pect that this is due to the fact that antonyms typ-
ically share the same properties but only have the
opposite meaning on one particular semantic di-
mension. For instance, the antonyms “sadness”
and “happiness” are different forms of emotion.
When two words are hyponyms of a target word,
the likelihood that they are antonyms should thus
be increased. We show that the target relations
and these auxiliary semantic relations can be col-

lected from the same data source (e.g., WordNet
MRLSA:4-layers) or from multiple, heterogeneous
sources (e.g., MRLSA:WordNET+Encarta). In both
cases, the performance of the model improves as
more relations are incorporated. Moreover, our ex-
periments show that adding the hypernym and hy-
ponym layers from WordNet improves modeling
antonym relations based on the Encarta thesaurus.
This suggests that the weak signal from a resource
with a large vocabulary (e.g., WordNet) can help
predict relations between out-of-vocabulary words
and thus improve the recall.

To better understand the model, we examine the
top antonyms for three question words from the
GRE test. The lists below show antonyms and their
MRLSA scores for each of the GRE question words
as determined by the MRLSA:WordNET+Encarta
model. Antonyms that can be found directly in the
Encarta thesaurus are in italics.

inanimate alive (0.91), living (0.90), bodily (0.90), in-
the-flesh (0.89), incarnate (0.89)

alleviate exacerbate (0.68), make-worse (0.67), in-
flame (0.66), amplify (0.65), stir-up (0.64)

relish detest (0.33), abhor (0.33), abominate (0.33), de-
spise (0.33), loathe (0.31)

We can see that from these examples, MRLSA not
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Dev. Test
1a (Taxonomic) 1b (Functional) 1c (Singular) 1d (Plural) Avg.

WordNet Lookup 52.9 34.5 41.4 34.3 36.7
WordNet RawTensor 51.0 38.3 50.0 42.1 43.5
WordNet MRLSA:Syn+Hypony 55.8 41.7 (43.2) 51.0 (51.4) 37.5 (44.4) 43.4 (46.3)
WordNet MRLSA:4-layers 52.9 51.5 (53.9) 51.9 (60.0) 43.5 (50.5) 49.0 (54.8)
MRLSA:WordNet+Encarta 62.1 55.3 (58.7) 57.1 (65.7) 48.6 (53.7) 55.8 (60.1)
UTDNB (Rink and Harabagiu, 2012) - 38.3 36.7 28.2 34.4

Table 2: Results of measuring the class-inclusion (is-a) relations in MaxDiff accuracy (see text for de-
tail). RawTensor has synonym and hyponym slices and measures the degree of is-a relation using Eq. (5).
MRLSA:Syn+Hypo factors the raw tensor and judges the relation by Eq. (6). The constructions of
MRLSA:4-layers and MRLSA:WordNet+Encarta are the same as in Sec. 5.2 (see the caption of Table 1
for detail). For MRLSA models, numbers shown in the parentheses are the results when parameters are
tuned using the test sets. UTDNB is the results of the best performing system in SemEval-2012 Task 2.

only preserves the antonyms in the thesaurus, but
also discovers additional ones, such as exacerbate
and inflame for “alleviate”. Another interesting find-
ing is that while the scores are useful in ranking
the candidate words, they might not be comparable
across different question words. This could be an
issue for some applications, which need to make a
binary decision on whether two words are antonyms.

5.3 Measuring degrees of Is-A relations

We evaluate MRLSA using the class-inclusion por-
tion of SemEval-2012 Task 2 data (Jurgens et al.,
2012). Here the goal is to measure the degree
of two words having the is-a relation. Five an-
notated datasets are provided for different subcate-
gories of this relation: 1a-taxonomic, 1b-functional,
1c-singular, 1d-plural, 1e-class individual. We omit
1e because it focuses on real world entities (e.g.,
queen:Elizabeth, river:Nile), which are not included
in WordNet.

Each dataset contains about 100 questions based
on approximately 40 word pairs. The question con-
sists of 4 randomly chosen word pairs and asks the
best and worst pairs that exemplify the specific is-a
relation. The performance is measured by the av-
erage prediction accuracy, also called the MaxDiff
accuracy (Louviere and Woodworth, 1991).

Because the questions are generated from the
same set of word pairs, these questions are not mutu-
ally independent. Therefore, it is not proper to split
the data of each subcategory into the development
and test sets. Alternatively, we follow the setting

of SemEval-2012 Task 2 and use the first subcat-
egory (1a-taxonomy) to tune the model and eval-
uate its performance based on the results on other
datasets. Since the models are tuned and tested on
different types of subcategories, they might not be
the optimal ones when evaluated on the test sets.
Therefore, we show results using the best parame-
ters tuned on the development set and those tuned on
the test set, where the latter suggests a performance
upper-bound. Besides the rank parameter, we tune
the scaling factors of the synonym, hypernym and
hyponym slices from {4, 16, 64}. The scaling factor
of the antonym slice is fixed to 1.

Table 2 shows the performance in MaxDiff accu-
racy. Results show that even the raw tensor repre-
sentation (RawTensor) performs better than Word-
Net lookup. We suspect that this is because the
tensor representation can capture the fact that the
hyponyms of a word are usually synonymous to
each other. By performing Tucker decomposition
on the raw Tensor, MRLSA achieves better per-
formance. MRLSA:4-layers further leverages the
information from antonyms and hypernyms and
thus improves the model. As we notice in the
GRE antonym test, models based on the Encarta
thesaurus perform better in predicting antonyms.
Therefore, it is interesting to check if combining
synonyms and antonyms from Encarta helps. As
a result, MRLSA:WordNet+Encarta improves over
MRLSA:4-layers significantly. This demonstrates
again that MRLSA can leverage knowledge stored in
heterogeneous resources. Notably, MRLSA outper-
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forms the best system participated in the SemEval-
2012 task with a large margin, with a difference of
21.4 in MaxDiff accuracy.

Next we examine the top words that have the is-
a relation relative to three question words from the
task. The lists below show the hyponyms and their
respective MRLSA scores for each of the question
words as determined by MRLSA:4-layers.

bird ostrich (0.75), gamecock (0.75), nighthawk (0.75),
amazon (0.74), parrot (0.74)

automobile minivan (0.48), wagon (0.48), taxi (0.46),
minicab (0.45), gypsy cab (0.45)

vegetable buttercrunch (0.61), yellow turnip (0.61), ro-
maine (0.61), chipotle (0.61), chilli (0.61)

Although the model in general does a good job
finding hyponyms, we observe that some suggested
words, such as buttercrunch (a mild lettuce) vs.
“vegetable”, do not seem intuitive (e.g., compared to
carrot). Having one additional slice to capture the
general term co-occurrence relation may help im-
prove the model in this respect.

6 Conclusions

In this paper, we propose Multi-Relational Latent
Semantic Analysis (MRLSA) which generalizes La-
tent Semantic Analysis (LSA) for lexical seman-
tics. MRLSA models multiple word relations by
leveraging a 3-way tensor, where each slice cap-
tures one particular relation. A low-rank approx-
imation of the tensor is then derived using a ten-
sor decomposition. Consequently, words in the vo-
cabulary are represented by vectors in the latent se-
mantic space, and each relation is captured by a
latent square matrix. Given two words, MRLSA
not only can measure their degree of having a spe-
cific relation, but also can discover unknown rela-
tions between them. These advantages have been
demonstrated in our experiments. By encoding re-
lations from both homogeneous or heterogeneous
data sources, MRLSA achieves state-of-the-art per-
formance on existing benchmark datasets for two re-
lations, antonymy and is-a.

For future work, we plan to explore directions that
aim for improving both the quality and word cover-
age of the model. For instance, the knowledge en-
coded by MRLSA can be enriched by adding more
relations from a variety of linguistic resources, in-
cluding the co-occurrence relations from large cor-

pora. On model refinement, we notice that MRLSA
can be viewed as a 3-layer neural network without
applying the sigmoid function. Following the strat-
egy of using Siamese neural networks to enhance
PILSA (Yih et al., 2012), training MRLSA with a
multi-task discriminative learning setting can be a
promising approach as well.
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Abstract

We present a new language pair agnostic ap-
proach to inducing bilingual vector spaces
from non-parallel data without any other re-
source in a bootstrapping fashion. The pa-
per systematically introduces and describes all
key elements of the bootstrapping procedure:
(1) starting point or seed lexicon, (2) the confi-
dence estimation and selection of new dimen-
sions of the space, and (3) convergence. We
test the quality of the induced bilingual vec-
tor spaces, and analyze the influence of the
different components of the bootstrapping ap-
proach in the task of bilingual lexicon extrac-
tion (BLE) for two language pairs. Results re-
veal that, contrary to conclusions from prior
work, the seeding of the bootstrapping pro-
cess has a heavy impact on the quality of the
learned lexicons. We also show that our ap-
proach outperforms the best performing fully
corpus-based BLE methods on these test sets.

1 Introduction

Bilingual lexicons serve as an indispensable source
of knowledge for various cross-lingual tasks such
as cross-lingual information retrieval (Lavrenko et
al., 2002; Levow et al., 2005) or statistical machine
translation (Och and Ney, 2003). Additionally, they
are a crucial component in cross-lingual knowledge
transfer, where the knowledge about utterances in
one language may be transferred to another. The
utility of the transfer or annotation projection by
means of bilingual lexicons has already been proven
in various tasks such as semantic role labeling (Padó
and Lapata, 2009; van der Plas et al., 2011), parsing

(Zhao et al., 2009; Durrett et al., 2012; Täckström et
al., 2013b), POS tagging (Yarowsky and Ngai, 2001;
Das and Petrov, 2011; Täckström et al., 2013a), etc.

Techniques for automatic bilingual lexicon ex-
traction (BLE) from parallel corpora on the basis
of word alignment models are well established (Och
and Ney, 2003). However, due to a relative scarce-
ness of parallel data for many language pairs and
domains, alternative approaches that rely on compa-
rable corpora have also gained much interest (e.g.,
Fung and Yee (1998); Rapp (1999)).

The models that rely on non-parallel data typ-
ically represent each word by a high-dimensional
vector in a feature vector space, where the dimen-
sions of the vector are its context features. The con-
text features are typically words co-occurring with
the word in a predefined context.1 The similar-
ity of two words, wS

1 given in the source language
LS with vocabulary V S and wT

2 in the target lan-
guage LT with vocabulary V T is then computed as
sim(wS

1 , w
T
2 ) = SF (cv(wS

1 ), cv(wT
2 )). cv(wS

1 ) =
[scS1 (c1), . . . , sc

S
1 (cN )] is a context vector for wS

1

with N context features ck, where scS1 (ck) denotes
the score for wS

1 associated with context feature ck
(similar for wT

2 ). SF is a similarity function (e.g.,
cosine, the Kullback-Leibler divergence, the Jaccard
index) operating on the context vectors (Lee, 1999).

When operating with 2 languages, the context fea-
tures cannot be compared directly. Therefore, in
order to compare the feature vectors cv(wS

1 ) and
cv(wT

2 ), the context features need to span a shared

1The context may be a document, a paragraph, a window of
predefined size around each occurrence of wS

i in CS , etc. For
an overview, see, e.g., (Tamura et al., 2012).
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bilingual vector space. The standard way of build-
ing a bilingual vector space is to use bilingual lex-
icon entries (Rapp, 1999; Fung and Cheung, 2004;
Gaussier et al., 2004) as dimensions of the space.
However, there seems to be an apparent flaw in
logic, since the methods assume that there exist
readily available bilingual lexicons that are then
used to induce bilingual lexicons! Therefore, the fo-
cus of the researchers has turned to designing BLE
methods that do not rely on any external translation
resources such as machine-readable bilingual lex-
icons and parallel corpora (Haghighi et al., 2008;
Vulić et al., 2011).

In order to circumvent this issue, one line of re-
cent work aims to bootstrap high-quality bilingual
vector spaces from a small initial seed lexicon. The
seed lexicon is constructed by harvesting identical
or similarly spelled words across languages (Koehn
and Knight, 2002; Peirsman and Padó, 2010), and it
spans the initial bilingual vector space. The space is
then gradually enriched with new dimensions/axes
during the bootstrapping procedure. The bootstrap-
ping process has already proven its validity in induc-
ing bilingual lexicons for closely similar languages
such as Spanish-Portuguese or Croatian-Slovene
(Fišer and Ljubešić, 2011), but it still lacks further
generalization to more distant language pairs.

The main goal of this paper is to shed new light
on the bootstrapping approaches to bilingual lexicon
extraction, and to construct a language pair agnos-
tic bootstrapping method that is able to build high-
quality bilingual vector spaces that consequently
lead to high-quality bilingual lexicons for more dis-
tant language pairs where orthographic similarity is
not sufficient to seed bilingual vector spaces. We
aim to answer the following key questions:

• How to seed bilingual vector spaces besides us-
ing only orthographically similar words?
• Is it better to seed bilingual spaces with trans-

lation pairs/dimensions that are frequent in the
corpus, and does the frequency matter at all?
Does the size of the initial seed lexicon matter?
• How to enrich bilingual vector spaces with only

highly reliable dimensions in order to prevent
semantic drift?

With respect to these questions, the main contribu-
tions of this article are:

• We present a complete overview of the frame-
work of bootstrapping bilingual vector spaces
from non-parallel data without any additional
resources. We dissect the bootstrapping pro-
cess and describe all its key components.
• We introduce a new way of seeding the boot-

strapping procedure that does not rely on any
orthographic clues and that yields bilingual
vector spaces of higher quality. We analyze the
impact of different seed lexicons on the quality
of induced bilingual vector spaces.
• We show that in the setting without any ex-

ternal translation resources, our bootstrapping
approach yields lexicons that outperform the
best performing corpus-based BLE methods on
standard test datasets for 2 language pairs.

2 Boostrapping Bilingual Vector Spaces: A
General Overview

This section presents the complete bootstrapping
procedure that starts with an initial seed lexicon
which spans the initial bilingual vector space, while
as the output in each iteration of the procedure it pro-
duces an updated bilingual vector space that can be
used to extract a bilingual lexicon.

2.1 General Framework

We assume that we are solely in possession of a
(non-parallel) bilingual corpus C that is composed
of a sub-corpus CS given in the source language LS ,
and a sub-corpus CT in the target language LT . All
word types that occur in CS constitute a set V S . All
word types in CT constitute a set V T . The goal is to
build a bilingual vector space using only corpus C.

Assumption 1. Dimensions of the bilingual vector
space are one-to-one word translation pairs. For in-
stance, dimensions of a Spanish-English space are
pairs like (perro, dog), (ciencia, science), etc. The
one-to-one constraint (Melamed, 2000), although
not valid in general, simplifies the construction of
the bootstrapping procedure. Z denotes the set of
translation pairs that are the dimensions of the space.

Computing cross-lingual word similarity in a
bilingual vector space. Now, assume that our bilin-
gual vector space consists of N one-to-one word
translation pairs ck = (cSk , c

T
k ), k = 1, . . . , N . For

each word wS
i ∈ V S , we compute the similarity of
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that word with each word wT
j ∈ V T by computing

the similarity between their context vectors cv(wS
i )

and cv(wT
j ), which are actually their representations

in the N -dimensional bilingual vector space.

The cross-lingual similarity is computed follow-
ing the standard procedure (Gaussier et al., 2004):
(1) For each source word wS

i ∈ V S , build its N -
dimensional context vector cv(wS

i ) that consists of
association scores scSk (cSk ), that is, we compute the
strength of association with the “source” part of each
dimension ck that constitutes the N -dimensional
bilingual space. The association is dependent on the
co-occurrence of wS

i and cSk in a predefined context.
Various functions such as the log-likelihood ratio
(LLR) (Rapp, 1999; Ismail and Manandhar, 2010),
TF-IDF (Fung and Yee, 1998), or pointwise mu-
tual information (PMI) (Bullinaria and Levy, 2007;
Shezaf and Rappoport, 2010) are typically used as
weighting functions to quantify the strength of the
association.
(2) Repeat step (1) for each target word wT

j ∈ V T

and build context vectors cv(wT
j ) that consist of

scores scTk (cTk ).
(3) Since cSk and cTk address the same dimension
ck in the bilingual vector space for each k =
1, . . . , N , we are able to compute the similarity be-
tween cv(wS

i ) and cv(wT
j ) using any similarity mea-

sure such as the Jaccard index, the Kullback-Leibler
or the Jensen-Shannon divergence, the cosine mea-
sure, or others (Lee, 1999; Cha, 2007).

The similarity score for two words wS
i and wT

j

is sim(wS
i , w

T
j ). For each source word wS

i , we can
build a ranked listRL(wS

i ) that consists of all words
wT

j ∈ V T ranked according to their respective sim-
ilarity scores sim(wS

i , w
T
j ). In the similar fashion,

we can build a ranked list RL(wT
j ), for each target

word wT
j . We call the top scoring target word wT

j

for some source word wS
i its translation candidate,

and write TC(wS
i ) = wT

j . Additionally, we label
the ranked list RL(wS

i ) that is pruned at position M
as RLM (wS

i ).

Bootstrapping. The key idea of the bootstrapping
approach relies on an insight that highly reliable
translation pairs (wS

1 , w
T
2 ) that are encountered us-

ing the N -dimensional bilingual vector space might
be added as new dimensions of the space. By adding

these new dimensions, it might be possible to extract
more highly reliable translation pairs that were pre-
viously not used as dimensions of the space, and the
iterative procedure repeats until no new dimensions
are found. The induced bilingual vector space may
then be observed as a bilingual lexicon per se, but it
may also be used to find translation equivalents for
other words which are not used to span the space.

Algorithm 1: Bootstrapping a bilingual vector space
Input : Bilingual corpus C = CS ∪ CT

Initialize: (1) Obtain a one-to-one seed lexicon. The
entries from the lexicon are initial dimensions of the
space: Z0; (2) s = 0;
Bootstrap:
repeat

1: For each wS
i ∈ V S : compute RL(wS

i ) using Zs ;
2: For each wT

j ∈ V T : compute RL(wT
j ) using Zs ;

3: For each wS
i ∈ V S and wT

j ∈ V T : score each
translation pair (wS

i , TC(wS
i )) and (TC(wT

j ), wT
j )

and add them to a pool of candidate dimensions ;
4: Choose the best candidates from the pool and add
them as new dimensions: Zs+1 ← Zs ∪ {best} ;
5: Resolve collisions in Zs+1;
6: s← s + 1 ;

until no new dimensions are found (convergence) ;
Output: One-to-one translation pairs→ Dimensions of a

bilingual vector space Zfinal

The overview of the procedure as given by alg. 1
reveals these crucial points in the procedure: (Q1)
how to provide initial dimensions of the space? (the
initialization step), (Q2) how to score each trans-
lation pair, estimate their confidence, and how to
choose the best candidates from the pool of candi-
dates? (steps 3 and 4), and (Q3) how to resolve
potential collisions that violate the one-to-one con-
straint? (step 5). We will discuss (Q1) and (Q2) in
more detail later, while we resolve (Q3) following a
simple heuristic as follows:

Assumption 2. In case of collision, dimen-
sions/pairs that are found at later stages of the boot-
strapping process overwrite previous dimensions.

The intuition here is that we expect for the quality of
the space to increase at each stage of the bootstrap-
ping process, and newer translation pairs should be
more confident than the older ones. For instance, if 2
out of N dimensions of a Spanish-English bilingual
space are pairs (piedra,wall) and (tapia,stone), but
then if during the bootstrapping process we extract a
new candidate pair (piedra,stone), we will delete the
former two dimensions and add the latter.
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2.2 Initializing Bilingual Vector Spaces

Seeding or initializing a bootstrapping procedure is
often a critical step regardless of the actual task
(McIntosh and Curran, 2009; Kozareva and Hovy,
2010), and it decides whether the complete process
will end as a success or a failure. However, Peirsman
and Padó (2011) argue that the initialization step is
not crucial when dealing with bootstrapping bilin-
gual vector spaces. Here, we present two different
strategies of initializing the bilingual vector space.
Identical words and cognates. Previous work re-
lies exclusively on identical and similarly spelled
words to build the initial set of dimensions Z0

(Koehn and Knight, 2002; Peirsman and Padó, 2010;
Fišer and Ljubešić, 2011). This strategy yields
promising results for closely similar language pairs,
but is of limited use for other language pairs.
High-frequency seeds. Another problem with us-
ing only identical words and cognates as seeds lies in
the fact that many of them might be infrequent in the
corpus, and as a consequence the expressiveness of a
bilingual vector space might be limited. On the other
hand, high-frequency words offer a lot of evidence
in the corpus that could be exploited in the boot-
strapping approach. In order to induce initial trans-
lation pairs, we rely on the framework of multilin-
gual probabilistic topic modeling (MuPTM) (Boyd-
Graber and Blei, 2009; De Smet and Moens, 2009;
Mimno et al., 2009; Zhang et al., 2010), that does
not require a bilingual lexicon, it operates with non-
parallel data, and is able to produce highly confident
translation pairs for high-frequency words (Mimno
et al., 2009; Vulić and Moens, 2013).2 Therefore,
we can construct the initial seed lexicon as follows:
(1) Train a multilingual topic model on the corpus.
(2) Obtain one-to-one translation pairs using any of
the MuPTM-based models of cross-lingual similar-
ity, e.g., (Vulić et al., 2011; Vulić and Moens, 2013).
(3) Retain only symmetric translation pairs. This
step ensures that only highly confident pairs are used
as seed translation pairs.
(4) Rank translation pairs according to their fre-
quency in the corpus and use a subset of the most

2One can also use other models that are similar to MuPTM
such as (Haghighi et al., 2008; Daumé III and Jagarlamudi,
2011) to produce the initial seed lexicon, but that analysis is
beyond the scope of this work.

frequent symmetric pairs as seeds.

2.3 Estimating Confidence of New Dimensions
Another crucial step in the bootstrapping proce-
dure is the estimation of confidence in a translation
pair/candidate dimension. Errors in the early stages
of the procedure may negatively affect the learning
process and even cause semantic drift (Riloff and
Shepherd, 1999; McIntosh and Curran, 2009). We
therefore impose the constraint which requires trans-
lation pairs to be symmetric in order to qualify as po-
tential new dimensions of the space. In other words,
given the current set of dimensions Zs, a transla-
tion pair (wS

i , w
T
j ) has a possibility to be chosen as

a new dimension from the pool of candidate dimen-
sions if and only if it holds: TC(wS

i ) = wT
j and

TC(wT
j ) = wS

i . This symmetry constraint should
ensure a relative reliability of translation pairs.

In each iteration of the bootstrapping process, we
may add all symmetric pairs from the pool of candi-
dates as new dimensions, or we could impose addi-
tional selection criteria that quantify the degree of
confidence in translation pairs. We are then able
to rank the symmetric candidate translation pairs in
the pool of candidates according to their confidence
scores (step 3 of alg. 1), and choose only the best
B candidates from the pool in each iteration (step 4)
as done in (Thelen and Riloff, 2002; McIntosh and
Curran, 2009; Huang and Riloff, 2012). By picking
only a subset of the B most confident candidates in
each iteration, we hope to further prevent a possibil-
ity of semantic drift, i.e., “poisoning” the bootstrap-
ping process that might happen if we include incor-
rect translation pairs as dimensions of the space.

In this paper, we investigate 3 different confidence
estimation functions:3

(1) Absolute similarity score. Confidence of a
translation pair CF (wS

i , TC(wS
i )) is simply the ab-

solute similarity value sim(wS
i , TC(wS

i ))
(2) M-Best confidence function. It contrasts the
score of the translation candidate with the average
score over the first M most similar words in the
ranked list. The larger the difference, the more con-
fidence we have in the translation candidate. Given
a word wS

i ∈ V S and a ranked list RLM (wS
i ), the

3A symmetrized version of the confidence functions is com-
puted as the geometric mean of source-to-target and target-to-
source confidence scores.
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average score of the best M words is computed as:

simM (wS
i ) =

1

M

∑
wT

j ∈RLM (wS
i )

sim(wS
i , w

T
j )

The final confidence score is then:

CF (wS
i , TC(wS

i )) = sim(wS
i , TC(wS

i ))− simM (wS
i )

(3) Entropy-based confidence function. We adapt
the well-known entropy-based confidence (Smith
and Eisner, 2007; Tu and Honavar, 2012) to this par-
ticular task. First, we need to define a distribution:

p(wT
j |wS

i ) =
esim(wS

i ,wT
j )∑

wT
l ∈V T esim(wS

i ,wT
l )

The confidence function is then minus the entropy
of the probability distribution p:

CF (wS
i , TC(wS

i )) =
∑

wT
l ∈V T

p(wT
l |wS

i ) log p(wT
l |wS

i )

3 Experimental Setup

Data collections. We investigate our bootstrapping
approach on the BLE task for 2 language pairs:
Spanish-English (ES-EN) and Italian-English (IT-
EN), and work with the following corpora previ-
ously used by Vulić and Moens (2013): (i) a col-
lection of 13, 696 Spanish-English Wikipedia arti-
cle pairs (Wiki-ES-EN), (ii) 18, 898 Italian-English
Wikipedia article pairs (Wiki-IT-EN).4

Following (Koehn and Knight, 2002; Haghighi et
al., 2008; Prochasson and Fung, 2011; Vulić and
Moens, 2013), we use TreeTagger (Schmid, 1994)
for POS-tagging and lemmatization of the corpora,
and then retain only nouns that occur at least 5 times
in the corpus. We record the lemmatized form when
available, and the original form otherwise. Our fi-
nal vocabularies consist of 9, 439 Spanish nouns and

4Vulić and Moens (2013) also worked with Dutch-English
(NL-EN), but we have decided to leave out the results obtained
for that language pair due to space constraints, high similarity
between the two languages, and the fact that the results obtained
for that language pair are qualitatively similar to the results we
report for ES-EN and IT-EN. Hence including the results for
NL-EN would not contribute to the paper with any new impor-
tant insight and conclusion.

12, 945 nouns for ES-EN, and 7, 160 Italian nouns
and 9, 116 English nouns for IT-EN.
Ground truth. The goal of the BLE task is to ex-
tract a bilingual lexicon of one-to-one translations.
In order to test the quality of bilingual vector spaces
induced by our bootstrapping approach, we evaluate
it on standard 1000 ground truth one-to-one trans-
lation pairs built for the Wiki-ES-EN and Wiki-IT-
EN datasets (Vulić and Moens, 2013). Note that
we do not explicitly test the bilingual vector space
as a bilingual lexicon, but rather its ability to find
semantically similar words and translations also for
words that are not used as dimensions of the space
(see sect. 2.1).
Evaluation metrics. We measure the performance
on the BLE task using a standard Top M accuracy
(AccM ) metric. It denotes the number of source
words wS

i from ground truth translation pairs whose
list RLM (wS

i ) contains the correct translation ac-
cording to our ground truth over the total number
of ground truth translation pairs (=1000) (Gaussier
et al., 2004; Tamura et al., 2012).5 Additionally,
we report the mean reciprocal rank (MRR) scores
(Voorhees, 1999) for some experimental runs.
Multilingual topic model. We utilize a straightfor-
ward multilingual extension of the standard Blei et
al.’s LDA model (Blei et al., 2003) called bilingual
LDA (Mimno et al., 2009; Ni et al., 2009; De Smet
and Moens, 2009). BiLDA training follows the pro-
cedure from (Vulić and Moens, 2013), that is, the
training method is Gibbs sampling with the number
of topics set to K = 2000. Hyperparameters of the
model are set to standard values (Steyvers and Grif-
fiths, 2007): α = 50/K and β = 0.01.
Building initial seed lexicons. To produce the lists
of one-to-one translation pairs that are used as seeds
for the bootstrapping approach (see sect. 2.2), we
experiment with the TopicBC and the ResponseBC
methods from (Vulić and Moens, 2013), which are
the MuPTM-based models of cross-lingual seman-
tic similarity that obtain the best results in the BLE
task on these datasets. In short, the TopicBC method
computes the similarity of two words according to
the similarity of their conditional topic distributions
(Griffiths et al., 2007; Vulić et al., 2011) using

5We can build a one-to-one bilingual lexicon by harvesting
one-to-one translation pairs (wS

i , TC(wS
i )), and the quality of

that lexicon is best reflected in the Acc1 score.
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the Bhattacharyya coefficient (BC) (Kazama et al.,
2010) as the similarity function. ResponseBC is a
second-order similarity method. It first computes
initial similarity scores between all words cross-
lingually and monolingually using the cross-lingual
topical space and, in the second step, it computes the
similarity between 2 words as the similarity between
their word vectors that now contain the initial word-
to-word similarity scores with all source and target
words. The similarity function is again BC.

We use these models of similarity as a black box
to acquire seeds for the bootstrapping approach, but
we encourage the interested reader to find more de-
tails about the methods in the relevant literature.
These two models also serve as our baseline models,
and our goal is to test whether we are able to obtain
bilingual lexicons of higher quality using bootstrap-
ping that starts from the output of these models.
Weighting and similarity functions. We have
experimented with different families of weighting
(e.g., PMI, LLR, TF-IDF, chi-square) and similar-
ity functions (e.g., cosine, Dice, Kullback-Leibler,
Jensen-Shannon) (Lee, 1999; Turney and Pantel,
2010). In this paper, we present results obtained
by positive pointwise mutual information (PPMI)
(Niwa and Nitta, 1994) as a weighting function,
which is a standard choice in vector space seman-
tics (Turney and Pantel, 2010), and (combined with
cosine) yields the best results over a group of seman-
tic tasks according to (Bullinaria and Levy, 2007).
We use a smoothed version of PPMI as presented
in (Pantel and Lin, 2002; Turney and Pantel, 2010).
Again, based on the results reported in the relevant
literature (Bullinaria and Levy, 2007; Laroche and
Langlais, 2010; Turney and Pantel, 2010), we opt
for the cosine similarity as a standard choice for SF .
We have also experimented with different window
sizes ranging from 3 to 15 in both directions around
the pivot word, but we have not detected any major
qualitative difference in the results and their inter-
pretation. Therefore, all results reported in the paper
are obtained by setting the window size to 6.

4 Results and Discussion

4.1 Are Seeds Important?

In recent work, Peirsman and Padó (2010; 2011)
report that “the size and quality of the (seed) lex-

icon are not of primary importance given that the
bootstrapping procedure effectively helped filter out
incorrect translation pairs and added more newly
identified mutual nearest neighbors.” According to
their findings, (1) noisy translation pairs are cor-
rected in later stages of the bootstrapping process,
since the quality of bilingual vector spaces gradu-
ally increases, (2) the size of the seed lexicon does
not matter since the bootstrapping approach is able
to learn translation pairs that were previously not
present in the seed lexicon. Additionally, they do not
provide any insight whether the frequency of seeds
in the corpus influences the quality of induced bilin-
gual vector spaces. In this paper, we question these
claims with a series of BLE experiments.

All experiments conducted in this section do not
rely on any extra confidence estimation except for
the symmetry constraint, that is, in each step we en-
rich the bilingual vector space with all new symmet-
ric translation pairs (see alg. 1 and sect. 2.3).
Exp. I: Same size, different seedings? The goal
of this experiment is to test whether the quality of
seeds plays an important role in the bootstrapping
approach. We experiment with 3 different seed lex-
icons: (1) Following (Peirsman and Padó, 2010;
Fišer and Ljubešić, 2011), we harvest identically
spelled words across 2 languages and treat them
as one-to-one translations. This procedure results
in 459 seed translation pairs for ES-EN, and 431
pairs for IT-EN (SEED-ID), (2) We obtain symmet-
ric translation pairs using the TopicBC method (see
sect. 3) and use 459 pairs that have the highest fre-
quency in the Wiki-ES-EN corpus as seeds for ES-
EN (similarly 431 pairs for IT-EN) (SEED-TB), (3)
As in (2), but we now use the ResponseBC method to
acquire seeds (SEED-RB). The frequency of a one-
to-one translation pair is simply computed as the ge-
ometric mean of the frequencies of words that con-
stitute the translation pair.

Fig. 1(a) and 1(b) display the progress of the same
bootstrapping procedure using the 3 different seed
lexicons. We derive several interesting conclusions:
(i) Regardless of the actual choice of the seeding
method, the bootstrapping process proves its valid-
ity and utility since we observe that the quality of
induced bilingual vector spaces increases over time
for all 3 seeding methods. The bootstrapping proce-
dure converges quickly. The increase is especially
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Figure 1: Results with 3 different seeding methods as starting points of the bootstrapping process: (i) identical words
only (SEED-ID), (ii) the TopicBC method (SEED-TB), (iii) the ResponseBC method (SEED-RB). (a)AccM scores for
ES-EN; (b) AccM scores for IT-EN; (c) the number of dimensions in the space with the 3 different seeding methods
in each iteration for ES-EN and IT-EN. The bootstrapping procedure typically converges after a few iterations.
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Figure 2: Results on the BLE task with SEED-RB when using seed translation pairs of different frequency: (i) high-
frequency (HF-SEED), (ii) medium-frequency (MF-SEED), (iii) low-frequency (LF-SEED).

prominent in the first few iterations, when the ap-
proach learns more new dimensions (see fig. 1(c)).
(ii) The seeding method is important. A bootstrap-
ping approach that starts with a better seed lexicon
is able to extract bilingual lexicons of higher quality
as reflected in Acc1 scores. Although the bootstrap-
ping approach seems more beneficial when dealing
with noisier seed lexicons (226% increase in terms
of Acc1 for ES-EN and 177% increase for IT-EN
when starting with SEED-ID, compared to 35% in-
crease for ES-EN, and 15% for IT-EN with SEED-
RB), when starting from a noisy seed lexicon such
as SEED-ID the method is unable to reach the same
level of performance. Starting with SEED-ID, the
approach is able to recover noisy dimensions from
an initial bilingual vector space, but it is still unable
to match the results that are obtained when starting
from a better initial space (e.g., SEED-RB).

(iii) SEED-RB produces slightly better results than
SEED-TB (e.g., the final Acc1 of 0.649 for SEED-
RB compared to 0.626 for SEED-TB for IT-EN, and
0.572 compared to 0.553 for ES-EN). This finding is
in line with the results reported in (Vulić and Moens,
2013) where ResponseBC proved to be a more ro-
bust and a more effective method when applied to
the BLE task directly. In all further experiments we
use ResponseBC to acquire seed pairs, i.e., the seed-
ing method is SEED-RB.
Exp. II: Does the frequency of seeds matter? In
the next experiment, we test whether the frequency
of seeds in the corpus plays an important role in
the bootstrapping process. The intuition is that by
using highly frequent and highly confident transla-
tion pairs the bootstrapping method has more reli-
able clues that help extract new dimensions in sub-
sequent iterations. On the other hand, low-frequency
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pairs (although potentially correct one-to-one trans-
lations) do not occur in the corpus and in the con-
texts of other words frequently enough, and are
therefore not sufficient to extract reliable new di-
mensions of the space.

To test the hypothesis, we again obtain all sym-
metric translation pairs using ResponseBC and then
sort them in descending order based on their fre-
quency in the corpus. In total, we retrieve a sorted
list of 2031 symmetric translation pairs for ES-EN,
and 1689 pairs for IT-EN. Following that, we split
the list in 3 parts of equal size: (i) the top third com-
prises translation pairs with the highest frequency in
the corpus (HF-SEED), (ii) the middle third com-
prises pairs of “medium” frequency (MF-SEED),
(iii) the bottom third are low-frequency pairs (LF-
SEED). We then use these 3 different seed lexicons
of equal size to seed the bootstrapping approach.
Fig. 2(a) and 2(b) show the progress of the boot-
strapping process using these 3 seed lexicons. We
again observe several interesting phenomena:
(i) High-frequency seed translation pairs are better
seeds, and that finding is in line with our hypothesis.
Although the bootstrapping approach again displays
a positive trend regardless of the actual choice of
seeds (we observe an increase even when using LF-
SEED), high-frequency seeds lead to better overall
results in the BLE task. Besides its high presence in
contexts of other words, another advantage of high-
frequency seed pairs is the fact that an initial sim-
ilarity method will typically acquire more reliable
translation candidates for such words (Pekar et al.,
2006). For instance, 89.5% of ES-EN pairs in HF-
SEED are correct one-to-one translations, compared
to 65.1% in MF-SEED, and 44.3% in LF-SEED.
(ii) The difference in results between HF-SEED and
MF-SEED is more visible in Acc1 scores. Although
both seed lexicons for all test words provide ranked
lists which contain words that exhibit some semantic
relation to the given word, the reliability and the fre-
quency of translation pairs are especially important
for detecting the relation of cross-lingual word syn-
onymy, that is, the translational equivalence that is
exploited in building one-to-one bilingual lexicons.
Exp. III: Does size matter? The following exper-
iment investigates whether bilingual vector spaces
may be effectively bootstrapped from small high-
quality seed lexicons, and if larger seed lexicons

necessarily lead to bilingual vector spaces of higher
quality as reflected in BLE results. We again retrieve
a sorted list of symmetric translation pairs as in Exp.
II. Following that, we build seed lexicons of vari-
ous sizes by retaining only the first N pairs from
the list, where we vary N from 200 to 1400 in steps
of 200. We also use the entire sorted list as a seed
lexicon (All), and compare the results on the BLE
task with the results obtained by applying the Re-
sponseBC and TopicBC methods directly (Vulić and
Moens, 2013). The results are summarized in tables
1 and 2. We observe the following:
(i) If we provide a seed lexicon with sufficient en-
tries, the bootstrapping procedure provides compa-
rable results regardless of the seed lexicon size, al-
though results tend to be higher for larger seed lex-
icons (e.g., compare results when starting with 600
and 1200 lexicon entries). When starting with the
size of 600, the bootstrapping approach is able to
find dimensions that were already in the seed lexi-
con of size 1200. The consequence is that, although
bootstrapping with a smaller seed lexicon displays a
slower start (see the difference in results at iteration
0), the performances level after convergence.
(ii) Regardless of the seed lexicon size, the boot-
strapping approach is valuable. It consistently im-
proves the quality of the induced bilingual vector
space, and consequently, the quality of bilingual lex-
icons extracted using that vector space. The positive
impact is more prominent for smaller seed lexicons,
i.e., we observe an increase of 78% for ES-EN when
starting with only 200 seed pairs, compared to an
increase of 15% when starting with 800 seed pairs,
and 10% when starting with 1400 seed pairs.
(iii) The bootstrapping approach outperforms Re-
sponseBC and TopicBC in terms of Acc1 and MRR
scores for both language pairs when the seed lexi-
con provides a sufficient number of entries. How-
ever, in terms of Acc10, TopicBC and ResponseBC
still exhibit comparable (for IT-EN) or even better
(ES-EN) results. Both TopicBC and ResponseBC
are MuPTM-based methods that, due to MuPTM
properties, model the similarity of two words at the
level of documents as contexts, while the bootstrap-
ping approach is a window-based approach that nar-
rows down the context to a local neighborhood of a
word. The MuPTM-based models are better suited
to detect a general topical similarity of words, and
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Iteration: 0 2 5 10

Seed lexicon Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10

200(→1617) 0.274 0.352 0.525 0.446 0.534 0.713 0.481 0.569 0.753 0.488 0.576 0.752
400(→1563) 0.416 0.499 0.663 0.518 0.602 0.774 0.542 0.620 0.787 0.545 0.625 0.788
600(→1554) 0.459 0.539 0.707 0.550 0.630 0.787 0.573 0.650 0.803 0.578 0.654 0.802
800(→1582) 0.494 0.572 0.728 0.548 0.631 0.799 0.563 0.644 0.802 0.567 0.646 0.806

1000(→1636) 0.516 0.591 0.744 0.563 0.644 0.805 0.578 0.656 0.813 0.581 0.658 0.817
1200(→1740) 0.536 0.613 0.764 0.586 0.661 0.804 0.588 0.664 0.812 0.591 0.667 0.814
1400(→1888) 0.536 0.620 0.776 0.583 0.659 0.808 0.589 0.666 0.815 0.588 0.666 0.818

All-2031(→2437) 0.543 0.625 0.785 0.589 0.667 0.813 0.597 0.675 0.818 0.599 0.677 0.820

TopicBC 0.433 0.576 0.843 − − − − − − − − −
ResponseBC 0.517 0.635 0.891 − − − − − − − − −

Table 1: ES-EN: Results with different sizes of the seed lexicon. The number in the parentheses denotes the number
of dimensions in the bilingual space after the bootstrapping procedure converges. The seeding method is SEED-RB.

Iteration: 0 2 5 10

Seed lexicon Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10 Acc1 MRR Acc10

200(→1255) 0.394 0.469 0.703 0.515 0.595 0.757 0.548 0.621 0.782 0.555 0.628 0.787
400(→1265) 0.546 0.618 0.757 0.623 0.690 0.831 0.639 0.704 0.840 0.644 0.709 0.844
600(→1309) 0.585 0.657 0.798 0.653 0.718 0.856 0.664 0.726 0.859 0.672 0.734 0.862
800(→1365) 0.602 0.672 0.813 0.657 0.723 0.857 0.663 0.726 0.865 0.665 0.730 0.867

1000(→1416) 0.616 0.688 0.828 0.629 0.706 0.853 0.636 0.709 0.857 0.642 0.714 0.861
1200(→1581) 0.628 0.700 0.840 0.655 0.724 0.869 0.664 0.733 0.877 0.668 0.736 0.883
1400(→1749) 0.626 0.701 0.851 0.654 0.727 0.867 0.656 0.728 0.867 0.661 0.733 0.874

All-1689(→2008) 0.616 0.695 0.850 0.643 0.716 0.860 0.653 0.724 0.862 0.654 0.726 0.866

TopicBC 0.578 0.667 0.834 − − − − − − − − −
ResponseBC 0.622 0.729 0.882 − − − − − − − − −

Table 2: IT-EN: Results with different sizes of the seed lexicon. The number in the parentheses denotes the number of
dimensions in the bilingual space after the bootstrapping procedure converges. The seeding method is SEED-RB.

are therefore not always able to push the real cross-
lingual synonyms higher in the ranked list of seman-
tically similar words, while the window-based boot-
strapping approach is better tailored to model the
relation of cross-lingual synonymy, i.e., to extract
one-to-one translation pairs (as reflected in Acc1
scores). A similar conclusion for monolingual set-
tings is drawn by Baroni and Lenci (2010).
(iv) Since our bootstrapping approach utilizes Re-
sponseBC or TopicBC as a preprocessing step, it is
obvious that the approach leads to an increased com-
plexity. On top of the initial complexity of Respon-
seBC and TopicBC, the bootstrapping method re-
quires |V S ||V T | comparisons at each iteration, but
given the fact that each wS

i ∈ V S may be processed
independently of any other wS

j ∈ V S in each itera-
tion, the bootstrapping method is trivially paralleliz-
able. That makes the method computationally fea-
sible even for vocabularies larger than the ones re-
ported in the paper.

4.2 Is Confidence Estimation Important?

According to the results from tables 1 and 2, re-
gardless of the seed lexicon size, the bootstrapping
approach does not suffer from semantic drift, i.e.,
if we seed the process with high-quality symmetric
translation pairs, it is able to recover more pairs and
add them as new dimensions of the bilingual vector
space. However, we also study the influence of ap-
plying different confidence estimation functions on
top of the symmetry constraint (see sect 2.3), but we
do not observe any improvement in the BLE results,
regardless of the actual choice of a confidence esti-
mation function. The only observed phenomenon,
as illustrated by fig. 3, is the slower convergence
rate when setting the parameter B to lower values.
The symmetry constraint alone seems to be sufficient
to prevent semantic drift, but it might also be a too
strong and a too conservative assumption, since only
a small portion of all possible translation pairs is
used to span the bilingual vector space (for instance,

1621



0.4

0.45

0.5

0.55

0.6

A
cc

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Iteration

B = 30
B = 50
B = 100
B = 150
B = 200
B = All

Figure 3: The effect of learning rate B on bootstrapping.
Language pair: ES-EN, seed lexicon: SEED-RB with
600 pairs, confidence function: symmetrized M-Best.

when starting with 600 entries for ES-EN, the final
bilingual vector space consists of only 1554 pairs,
while the total number of ES nouns is 9439). One
line of future work will address the construction of
bootstrapping algorithms that also enable the usage
of highly reliable asymmetric pairs as dimensions,
and the confidence estimation functions might have
a more important role in that setting.

5 Conclusion

We have presented a new bootstrapping approach to
inducing bilingual vector spaces from non-parallel
data, and have shown the utility of the induced space
in the BLE task. The approach is fully corpus-based
and, unlike previous work, it does not rely on the
availability of machine-readable translation dictio-
naries or predefined concept categories. We have
systematically described, analyzed and evaluated all
key components of the bootstrapping approach. Re-
sults reveal that, contrary to conclusions from prior
work, the initialization of the bilingual vector space
is especially important. We have presented a novel
approach to initializing the bootstrapping procedure,
and have shown that better results in the BLE task
are obtained by starting from seed lexicons that com-
prise highly reliable high-frequent translation pairs.
The bootstrapping framework presented in the pa-
per is completely language pair independent, which
makes it effectively applicable to any language pair.

In future work, we will investigate other models
of similarity besides TopicBC and ResponseBC (e.g,
the method from (Haghighi et al., 2008)) that could
be used as preliminary models for constructing an
initial bilingual vector space. Furthermore, we plan

to study other confidence functions and explore if
asymmetric translation candidates could also con-
tribute to the bootstrapping method. Finally, we also
plan to test the robustness of our fully corpus-based
bootstrapping approach by porting it to more lan-
guage pairs.
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Abstract

Continuous space word representations ex-
tracted from neural network language mod-
els have been used effectively for natural lan-
guage processing, but until recently it was not
clear whether the spatial relationships of such
representations were interpretable. Mikolov
et al. (2013) show that these representations
do capture syntactic and semantic regularities.
Here, we push the interpretation of continuous
space word representations further by demon-
strating that vector offsets can be used to de-
rive adjectival scales (e.g., okay < good < ex-
cellent). We evaluate the scales on the indirect
answers to yes/no questions corpus (de Marn-
effe et al., 2010). We obtain 72.8% accuracy,
which outperforms previous results (∼60%)
on this corpus and highlights the quality of the
scales extracted, providing further support that
the continuous space word representations are
meaningful.

1 Introduction

There has recently been a surge of interest for deep
learning in natural language processing. In particu-
lar, neural network language models (NNLMs) have
been used to learn distributional word vectors (Ben-
gio et al., 2003; Schwenk, 2007; Mikolov et al.,
2010): the models jointly learn an embedding of
words into an n-dimensional feature space. One of
the advantages put forth for such distributed rep-
resentations compared to traditional n-gram mod-
els is that similar words are likely to have similar
vector representations in a continuous space model,
whereas the discrete units of an n-gram model do

not exhibit any inherent relation with one another.
It has been shown that the continuous space repre-
sentations improve performance in a variety of NLP
tasks, such as POS tagging, semantic role labeling,
named entity resolution, parsing (Collobert and We-
ston, 2008; Turian et al., 2010; Huang et al., 2012).

Mikolov et al. (2013) show that there are some
syntactic and semantic regularities in the word rep-
resentations learned, such as the singular/plural rela-
tion (the difference of singular and plural word vec-
tors are equivalent: apple − apples ≈ car − cars ≈
family − families) or the gender relation (a mascu-
line noun can be transformed into the feminine form:
king − man + woman ≈ queen).

We extend Mikolov et al. (2013)’s approach and
explore further the interpretation of the vector space.
We show that the word vectors learned by NNLMs
are meaningful: we can extract scalar relationships
between adjectives (e.g., bad < okay < good < ex-
cellent), which can not only serve to build a senti-
ment lexicon but also be used for inference. To eval-
uate the quality of the scalar relationships learned
by NNLMs, we use the indirect yes/no question an-
swer pairs (IQAP) from (de Marneffe et al., 2010),
where scales between adjectives are needed to infer
a yes/no answer from a reply without explicit yes or
no such as Was the movie good? It was excellent.
Our method reaches 72.8% accuracy, which is the
best result reported so far when scales are used.

2 Previous work

We use the continuous word representations from
(Mikolov et al., 2011), extracted from a recurrent
neural network language model (RNNLM), whose
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three-layer architecture is represented in Figure 1.
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Figure 1: The architecture of the RNNLM.

In the input layer, w(t) is the input word repre-
sented by 1-of-N coding at time t when the vocabu-
lary size is N . When there are M nodes in the hid-
den layer, the number of connections between the
input layer and the hidden layer is NM and the con-
nections can be represented by a matrix U .

The hidden layer is also connected recurrently to
the context s(t − 1) at time t − 1 (s(0) is initial-
ized with small values like 0.1). The connections
between the previous context and the hidden layer
are represented by a matrix W . The dimension-
ality of the word representations is controlled by
the size of W . The output of the hidden layer is
s(t) = f(Uw(t) + Ws(t − 1)), where f is a sig-
moid function.

Because the inputs of the hidden layer consist of
the word w(t) and the previous hidden layer output
s(t − 1), the current context of the RNN is influ-
enced by the current word and the previous context.
Therefore, we can regard that the continuous repre-
sentations from the RNNLM exploit the context im-
plicitly considering the word sequence information
(Mikolov et al., 2010).

V is a N by M matrix representing the connec-
tions between the hidden layer and the output layer.
The final output is y(t) = g(V s(t)), where g is a
softmax function to represent the probability distri-
bution over all the words in the vocabulary.

When the RNN is trained by the back propagation
algorithm, we can regard the ith column vector of U
as the continuous representation of the ith word in
the vocabulary since the column was adjusted corre-
spondingly to the ith element of w(t). Because the

s(t) outputs of two input words will be similar when
they have similar s(t− 1) values, the corresponding
column vectors of the words will also be similar.

Mikolov et al. (2013) showed that constant vector
offsets of word pairs can represent linguistic regu-
larities. Let wa and wb denote the vectors for the
words a and b, respectively. Then the vector offset
of the word pair is wa − wb. If a and b are syn-
tactically or semantically related, the vector offset
can be interpreted as a transformation of the syn-
tactic form or the meaning. The offset can also be
added to another word vector c. The word vector
nearest to wa − wb + wc would be related to word c
with the syntactic or semantic difference as the dif-
ference between a and b, as it is the case for the
king, man, and woman example, where king − man
+ woman would approximately represent king with
feminine gender (i.e., queen). They also tried to use
the continuous representations generated by Latent
Semantic Analysis (LSA) (Landauer et al., 1998).
However, the results using LSA were worse because
LSA is a bag-of-words model, in which it is difficult
to exploit word sequence information as the context.

For all the experiments in this paper, we use the
precomputed word representations generated by the
RNNLM from (Mikolov et al., 2013). Their RNN is
trained with 320M words from the Broadcast News
data (the vocabulary size is 82,390 words), and we
used word vectors with a dimensionality of 1,600
(the highest dimensionality provided).1 We stan-
dardized the dataset so that the mean and the vari-
ance of the representations are 0 and 1, respec-
tively.2

3 Deriving adjectival scales

Here we explore further the interpretation of word
vectors. Assuming that the transformation of form
or meaning represented by the vector offset is lin-
ear, an intermediate vector between two word vec-
tors would represent some “middle” form or mean-
ing. For example, given the positive and superlative
forms of an adjective (e.g., good and best), we ex-
pect that the word representation in the middle of

1We also experimented with smaller dimensions, but con-
sistent with the analyses in (Mikolov et al., 2013), the highest
dimensionality gave better results.

2http://www.fit.vutbr.cz/˜imikolov/
rnnlm/word_projections-1600.txt.gz
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Input words Words with highest cosine similarities to the mean vector

good:best better: 0.738 strong: 0.644 normal: 0.619 less: 0.609
bad:worst terrible: 0.726 great: 0.678 horrible: 0.674 worse: 0.665
slow:slowest slower: 0.637 sluggish: 0.614 steady: 0.558 brisk: 0.543
fast:fastest faster: 0.645 slower: 0.602 quicker: 0.542 harder: 0.518

Table 1: Words with corresponding vectors closest to the mean of positive:superlative word vectors.

First word (-) 1st quarter Half 3rd quarter Second word (+)

furious 1 angry 0.632 unhappy 0.640 pleased 0.516 happy 1
furious 1 angry 0.615 tense 0.465 quiet 0.560 calm 1
terrible 1 horrible 0.783 incredible 0.714 wonderful 0.772 terrific 1
cold 1 mild 0.348 warm 0.517 sticky 0.424 hot 1
ugly 1 nasty 0.672 wacky 0.645 lovely 0.715 gorgeous 1

Table 2: Adjectival scales extracted from the RNN: each row represent a scale, and for each intermediate point the
closest word in term of cosine similarity is given.

them will correspond to the comparative form (i.e.,
better). To extract the “middle” word between two
word vectors wa and wb, we take the vector offset
wa−wb divided by 2, and add wb: wb+(wa−wb)/2.
The result corresponds to the midpoint between the
two words. Then, we find the word whose cosine
similarity to the midpoint is the highest.

Table 1 gives some positive:superlative pairs and
the top four closest words to the mean vectors, where
the distance metric is the cosine similarity. The
correct comparative forms (in bold) are quite close
to the mean vector of the positive and superlative
form vectors, highlighting the fact that there is some
meaningful interpretation of the vector space: the
word vectors are constituting a scale.

We can extend this idea of extracting an or-
dering between two words. For any two seman-
tically related adjectives, intermediate vectors ex-
tracted along the line connecting the first and sec-
ond word vectors should exhibit scalar properties, as
seen above for the positive-comparative-superlative
triplets. If we take two antonyms (furious and
happy), words extracted at the intermediate points
x1, x2 and x3 should correspond to words lying on
a scale of happiness (from “less furious” to “more
happy”), as illustrated in Figure 2. Table 2 gives
some adjectival scales that we extracted from the
continuous word space, using antonym pairs. We
picked three points with equal intervals on the line
from the first to the second word (1st quarter, half

and 3rd quarter). The extracted scales look quite
reasonable: the words form a continuum from more
negative to more positive meanings.

x2

a=furious

b=happy
x1

x3
angry

unhappy

pleased

Figure 2: An example of vectors with the highest cosine
similarity to intermediate points on the line between furi-
ous and happy.

Tables 1 and 2 demonstrate that the word vector
space is interpretable: intermediate vectors between
two word vectors represent a semantic continuum.

4 Evaluation: Indirect answers to yes/no
questions

To evaluate the quality of the adjective scales learned
by the neural network approach, we use the cor-
pus of indirect answers to yes/no questions created
by (de Marneffe et al., 2010), which consists of
question-answer pairs involving gradable modifiers
to test scalar implicatures. We focus on the 125 pairs
in the corpus where both the question and answer
contain an adjective: e.g., Is Obama qualified? I
think he’s young.3 Each question-answer pair has

3These 125 pairs correspond to the ‘Other adjective’ cate-
gory in (de Marneffe et al., 2010).
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been annotated via Mechanical Turk for whether the
answer conveys yes, no or uncertain.

4.1 Method
The previous section showed that we can draw a line
passing through an adjective and its antonym and
that the words extracted along the line are roughly
semantically ordered. To infer a yes or no answer in
the case of the IQAP corpus, we use the following
approach illustrated with the Obama example above
(Figure 3). Using WordNet 3.1 (Fellbaum, 1998),
we look for an antonym of the adjective in the ques-
tion qualified: unqualified is retrieved. Since the
scales extracted are only roughly ordered, to infer
yes when the question and answer words are very
close, we set the decision boundary perpendicular
to the line connecting the two words and passing
through the midpoint of the line.

Since the answer word is young, we check
whether young is in the area including qualified or
in the other area. We infer a yes answer in the for-
mer case, and a no answer in the latter case. If young
is on the boundary, we infer uncertain. If a sentence
contains a negation (e.g., Are you stressed? I am
not peaceful.), we compute the scale for stressed-
peaceful and then reverse the answer obtained, sim-
ilarly to what is done in (de Marneffe et al., 2010).

qualified

unqualified

young

Figure 3: An example of the decision boundary given
qualified as the question and young as the answer.

Since a word can have multiple senses and differ-
ent antonyms for the senses, it is important to select
the most appropriate antonym to build a more accu-
rate decision boundary. We consider all antonyms
across senses4 and select the antonym that is most
collinear with the question and the answer. For the
word vectors of the question wq, the ith antonym
wanti , and the answer wa, we select anti where
argmaxanti |cos(wq − wa, wq − wanti)|. Figure 4
schematically shows antonym selection when the

4Antonyms in WordNet can be directly opposed to a given
word or indirectly opposed via other words. When there are
direct antonyms for the question word, we only consider those.

Macro
Acc P R F1

de Marneffe (2010) 60.00 59.72 59.40 59.56
Mohtarami (2011) – 62.23 60.88 61.55
RNN model 72.80 69.78 71.39 70.58

Table 3: Score (%) comparison on the 125 scalar adjec-
tive pairs in the IQAP corpus.

question is good and the answer is excellent: bad
and evil are the antonym candidates of good.
Because the absolute cosine similarity of good-
excellent to good-bad is higher than to good-evil, we
choose bad as the antonym in this case.

bad

excellent

good

evil

Figure 4: An example of antonym selection.

4.2 Results and discussion
Table 3 compares our results with previous ones
where adjectival scales are considered: de Marn-
effe et al. (2010) propose an unsupervised approach
where scales are learned from distributional infor-
mation in a Web corpus; Mohtarami et al. (2011)’s
model is similar to ours but uses word represen-
tations obtained by LSA and a word sense disam-
biguation system (Zhong and Ng, 2010) to choose
antonyms. To compare with Mohtarami et al.
(2011), we use macro-averaged precision and recall
for yes and no. For the given metrics, our model sig-
nificantly outperforms the previous ones (p < 0.05,
McNemar’s test).

Mohtarami et al. (2011) present higher numbers
obtained by replacing the answer words with their
synonyms in WordNet. However, that approach fails
to capture orderings. Two words of different degree
are often regarded as synonyms: even though furi-
ous means extremely angry, furious and angry are
synonyms in WordNet. Therefore using synonyms,
the system will output the same answer irrespective
of the order in the pair. Mohtarami et al. (2012)
also presented results on the interpretation of indi-
rect questions on the IQAP corpus, but their method
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Figure 5: Question words (bold), their antonyms (italic), and answer words (normal) of four pairs from the IQAP
dataset. The words are visualized by MDS.

did not involve learning or using scalar implicatures.
Figure 5 gives a qualitative picture: the question

words, antonyms and answer words for four of the
IQAP pairs are visualized in 2D space by multi-
dimensional scaling (MDS). Note that MDS intro-
duces some distortion in the lower dimensions. Bul-
let markers correspond to words in the same pair.
Question words, antonyms, and answer words are
displayed by bold, italic, and normal fonts, respec-
tively. In the Obama example previously mentioned
(Is Obama qualified? I think he’s young.), the ques-
tion word is qualified and the answer word is young.
In Figure 5, qualified is around (2,-20) while its
antonym unqualified is around (-6,-24). Since young
is around (-7,-8), we infer that young is semanti-
cally closer to unqualified which corroborates with
the Turkers’ intuitions in this case. (1), (2) and (3)
give the other examples displayed in Figure 5.

(1) A: Do you think she’d be happy with this
book?

B: I think she’d be delighted by it.

(2) A: Do you think that’s a good idea?
B: It’s a terrible idea.

(3) A: The president is promising support for
Americans who have suffered from this

hurricane. Are you confident you are
going to be getting that?

B: I’m not so sure about my insurance
company.

In (1), delighted is stronger than happy, leading to
a yes answer, whereas in (2), terrible is weaker than
good leading to a no answer. In (3), the presence of
a negation will reverse the answer inferred, leading
to no.

5 Conclusion

In this paper we give further evidence that the rela-
tionships in the continuous vector space learned by
recurrent neural network models are interpretable.
We show that using vector offsets, we can success-
fully learn adjectival scales, which are useful for
scalar implicatures, as demonstrated by the high re-
sults we obtain on the IQAP corpus.
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Abstract

Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-
ality. To address them, we introduce the
Recursive Neural Tensor Network. When
trained on the new treebank, this model out-
performs all previous methods on several met-
rics. It pushes the state of the art in single
sentence positive/negative classification from
80% up to 85.4%. The accuracy of predicting
fine-grained sentiment labels for all phrases
reaches 80.7%, an improvement of 9.7% over
bag of features baselines. Lastly, it is the only
model that can accurately capture the effects
of negation and its scope at various tree levels
for both positive and negative phrases.

1 Introduction

Semantic vector spaces for single words have been
widely used as features (Turney and Pantel, 2010).
Because they cannot capture the meaning of longer
phrases properly, compositionality in semantic vec-
tor spaces has recently received a lot of attention
(Mitchell and Lapata, 2010; Socher et al., 2010;
Zanzotto et al., 2010; Yessenalina and Cardie, 2011;
Socher et al., 2012; Grefenstette et al., 2013). How-
ever, progress is held back by the current lack of
large and labeled compositionality resources and
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Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
sentence.

models to accurately capture the underlying phe-
nomena presented in such data. To address this need,
we introduce the Stanford Sentiment Treebank and
a powerful Recursive Neural Tensor Network that
can accurately predict the compositional semantic
effects present in this new corpus.

The Stanford Sentiment Treebank is the first cor-
pus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of
sentiment in language. The corpus is based on
the dataset introduced by Pang and Lee (2005) and
consists of 11,855 single sentences extracted from
movie reviews. It was parsed with the Stanford
parser (Klein and Manning, 2003) and includes a
total of 215,154 unique phrases from those parse
trees, each annotated by 3 human judges. This new
dataset allows us to analyze the intricacies of senti-
ment and to capture complex linguistic phenomena.
Fig. 1 shows one of the many examples with clear
compositional structure. The granularity and size of
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this dataset will enable the community to train com-
positional models that are based on supervised and
structured machine learning techniques. While there
are several datasets with document and chunk labels
available, there is a need to better capture sentiment
from short comments, such as Twitter data, which
provide less overall signal per document.

In order to capture the compositional effects with
higher accuracy, we propose a new model called the
Recursive Neural Tensor Network (RNTN). Recur-
sive Neural Tensor Networks take as input phrases
of any length. They represent a phrase through word
vectors and a parse tree and then compute vectors for
higher nodes in the tree using the same tensor-based
composition function. We compare to several super-
vised, compositional models such as standard recur-
sive neural networks (RNN) (Socher et al., 2011b),
matrix-vector RNNs (Socher et al., 2012), and base-
lines such as neural networks that ignore word order,
Naive Bayes (NB), bi-gram NB and SVM. All mod-
els get a significant boost when trained with the new
dataset but the RNTN obtains the highest perfor-
mance with 80.7% accuracy when predicting fine-
grained sentiment for all nodes. Lastly, we use a test
set of positive and negative sentences and their re-
spective negations to show that, unlike bag of words
models, the RNTN accurately captures the sentiment
change and scope of negation. RNTNs also learn
that sentiment of phrases following the contrastive
conjunction ‘but’ dominates.

The complete training and testing code, a live
demo and the Stanford Sentiment Treebank dataset
are available at http://nlp.stanford.edu/
sentiment.

2 Related Work

This work is connected to five different areas of NLP
research, each with their own large amount of related
work to which we cannot do full justice given space
constraints.

Semantic Vector Spaces. The dominant ap-
proach in semantic vector spaces uses distributional
similarities of single words. Often, co-occurrence
statistics of a word and its context are used to de-
scribe each word (Turney and Pantel, 2010; Baroni
and Lenci, 2010), such as tf-idf. Variants of this idea
use more complex frequencies such as how often a

word appears in a certain syntactic context (Pado
and Lapata, 2007; Erk and Padó, 2008). However,
distributional vectors often do not properly capture
the differences in antonyms since those often have
similar contexts. One possibility to remedy this is to
use neural word vectors (Bengio et al., 2003). These
vectors can be trained in an unsupervised fashion
to capture distributional similarities (Collobert and
Weston, 2008; Huang et al., 2012) but then also be
fine-tuned and trained to specific tasks such as sen-
timent detection (Socher et al., 2011b). The models
in this paper can use purely supervised word repre-
sentations learned entirely on the new corpus.

Compositionality in Vector Spaces. Most of
the compositionality algorithms and related datasets
capture two word compositions. Mitchell and La-
pata (2010) use e.g. two-word phrases and analyze
similarities computed by vector addition, multiplica-
tion and others. Some related models such as holo-
graphic reduced representations (Plate, 1995), quan-
tum logic (Widdows, 2008), discrete-continuous
models (Clark and Pulman, 2007) and the recent
compositional matrix space model (Rudolph and
Giesbrecht, 2010) have not been experimentally val-
idated on larger corpora. Yessenalina and Cardie
(2011) compute matrix representations for longer
phrases and define composition as matrix multipli-
cation, and also evaluate on sentiment. Grefen-
stette and Sadrzadeh (2011) analyze subject-verb-
object triplets and find a matrix-based categorical
model to correlate well with human judgments. We
compare to the recent line of work on supervised
compositional models. In particular we will de-
scribe and experimentally compare our new RNTN
model to recursive neural networks (RNN) (Socher
et al., 2011b) and matrix-vector RNNs (Socher et
al., 2012) both of which have been applied to bag of
words sentiment corpora.

Logical Form. A related field that tackles com-
positionality from a very different angle is that of
trying to map sentences to logical form (Zettlemoyer
and Collins, 2005). While these models are highly
interesting and work well in closed domains and
on discrete sets, they could only capture sentiment
distributions using separate mechanisms beyond the
currently used logical forms.

Deep Learning. Apart from the above mentioned
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work on RNNs, several compositionality ideas re-
lated to neural networks have been discussed by Bot-
tou (2011) and Hinton (1990) and first models such
as Recursive Auto-associative memories been exper-
imented with by Pollack (1990). The idea to relate
inputs through three way interactions, parameterized
by a tensor have been proposed for relation classifi-
cation (Sutskever et al., 2009; Jenatton et al., 2012),
extending Restricted Boltzmann machines (Ranzato
and Hinton, 2010) and as a special layer for speech
recognition (Yu et al., 2012).

Sentiment Analysis. Apart from the above-
mentioned work, most approaches in sentiment anal-
ysis use bag of words representations (Pang and Lee,
2008). Snyder and Barzilay (2007) analyzed larger
reviews in more detail by analyzing the sentiment
of multiple aspects of restaurants, such as food or
atmosphere. Several works have explored sentiment
compositionality through careful engineering of fea-
tures or polarity shifting rules on syntactic structures
(Polanyi and Zaenen, 2006; Moilanen and Pulman,
2007; Rentoumi et al., 2010; Nakagawa et al., 2010).

3 Stanford Sentiment Treebank

Bag of words classifiers can work well in longer
documents by relying on a few words with strong
sentiment like ‘awesome’ or ‘exhilarating.’ How-
ever, sentiment accuracies even for binary posi-
tive/negative classification for single sentences has
not exceeded 80% for several years. For the more
difficult multiclass case including a neutral class,
accuracy is often below 60% for short messages
on Twitter (Wang et al., 2012). From a linguistic
or cognitive standpoint, ignoring word order in the
treatment of a semantic task is not plausible, and, as
we will show, it cannot accurately classify hard ex-
amples of negation. Correctly predicting these hard
cases is necessary to further improve performance.

In this section we will introduce and provide some
analyses for the new Sentiment Treebank which in-
cludes labels for every syntactically plausible phrase
in thousands of sentences, allowing us to train and
evaluate compositional models.

We consider the corpus of movie review excerpts
from the rottentomatoes.com website orig-
inally collected and published by Pang and Lee
(2005). The original dataset includes 10,662 sen-
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Figure 3: The labeling interface. Random phrases were
shown and annotators had a slider for selecting the senti-
ment and its degree.

tences, half of which were considered positive and
the other half negative. Each label is extracted from
a longer movie review and reflects the writer’s over-
all intention for this review. The normalized, lower-
cased text is first used to recover, from the origi-
nal website, the text with capitalization. Remaining
HTML tags and sentences that are not in English
are deleted. The Stanford Parser (Klein and Man-
ning, 2003) is used to parses all 10,662 sentences.
In approximately 1,100 cases it splits the snippet
into multiple sentences. We then used Amazon Me-
chanical Turk to label the resulting 215,154 phrases.
Fig. 3 shows the interface annotators saw. The slider
has 25 different values and is initially set to neutral.
The phrases in each hit are randomly sampled from
the set of all phrases in order to prevent labels being
influenced by what follows. For more details on the
dataset collection, see supplementary material.

Fig. 2 shows the normalized label distributions at
each n-gram length. Starting at length 20, the ma-
jority are full sentences. One of the findings from
labeling sentences based on reader’s perception is
that many of them could be considered neutral. We
also notice that stronger sentiment often builds up
in longer phrases and the majority of the shorter
phrases are neutral. Another observation is that most
annotators moved the slider to one of the five po-
sitions: negative, somewhat negative, neutral, posi-
tive or somewhat positive. The extreme values were
rarely used and the slider was not often left in be-
tween the ticks. Hence, even a 5-class classification
into these categories captures the main variability
of the labels. We will name this fine-grained senti-
ment classification and our main experiment will be
to recover these five labels for phrases of all lengths.
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Figure 2: Normalized histogram of sentiment annotations at each n-gram length. Many shorter n-grams are neutral;
longer phrases are well distributed. Few annotators used slider positions between ticks or the extreme values. Hence
the two strongest labels and intermediate tick positions are merged into 5 classes.

4 Recursive Neural Models

The models in this section compute compositional
vector representations for phrases of variable length
and syntactic type. These representations will then
be used as features to classify each phrase. Fig. 4
displays this approach. When an n-gram is given to
the compositional models, it is parsed into a binary
tree and each leaf node, corresponding to a word,
is represented as a vector. Recursive neural mod-
els will then compute parent vectors in a bottom
up fashion using different types of compositional-
ity functions g. The parent vectors are again given
as features to a classifier. For ease of exposition,
we will use the tri-gram in this figure to explain all
models.

We first describe the operations that the below re-
cursive neural models have in common: word vector
representations and classification. This is followed
by descriptions of two previous RNN models and
our RNTN.

Each word is represented as a d-dimensional vec-
tor. We initialize all word vectors by randomly
sampling each value from a uniform distribution:
U(−r, r), where r = 0.0001. All the word vec-
tors are stacked in the word embedding matrix L ∈
Rd×|V |, where |V | is the size of the vocabulary. Ini-
tially the word vectors will be random but the L ma-
trix is seen as a parameter that is trained jointly with
the compositionality models.

We can use the word vectors immediately as
parameters to optimize and as feature inputs to
a softmax classifier. For classification into five
classes, we compute the posterior probability over

    not      very       good ...
        a          b             c 

p1 =g(b,c)

p2 = g(a,p1)

0 0 +

+ +

-

Figure 4: Approach of Recursive Neural Network mod-
els for sentiment: Compute parent vectors in a bottom up
fashion using a compositionality function g and use node
vectors as features for a classifier at that node. This func-
tion varies for the different models.

labels given the word vector via:

ya = softmax(Wsa), (1)

where Ws ∈ R5×d is the sentiment classification
matrix. For the given tri-gram, this is repeated for
vectors b and c. The main task of and difference
between the models will be to compute the hidden
vectors pi ∈ Rd in a bottom up fashion.

4.1 RNN: Recursive Neural Network
The simplest member of this family of neural net-
work models is the standard recursive neural net-
work (Goller and Küchler, 1996; Socher et al.,
2011a). First, it is determined which parent already
has all its children computed. In the above tree ex-
ample, p1 has its two children’s vectors since both
are words. RNNs use the following equations to
compute the parent vectors:
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p1 = f

(
W

[
b
c

])
, p2 = f

(
W

[
a
p1

])
,

where f = tanh is a standard element-wise nonlin-
earity, W ∈ Rd×2d is the main parameter to learn
and we omit the bias for simplicity. The bias can be
added as an extra column to W if an additional 1 is
added to the concatenation of the input vectors. The
parent vectors must be of the same dimensionality to
be recursively compatible and be used as input to the
next composition. Each parent vector pi, is given to
the same softmax classifier of Eq. 1 to compute its
label probabilities.

This model uses the same compositionality func-
tion as the recursive autoencoder (Socher et al.,
2011b) and recursive auto-associate memories (Pol-
lack, 1990). The only difference to the former model
is that we fix the tree structures and ignore the re-
construction loss. In initial experiments, we found
that with the additional amount of training data, the
reconstruction loss at each node is not necessary to
obtain high performance.

4.2 MV-RNN: Matrix-Vector RNN

The MV-RNN is linguistically motivated in that
most of the parameters are associated with words
and each composition function that computes vec-
tors for longer phrases depends on the actual words
being combined. The main idea of the MV-RNN
(Socher et al., 2012) is to represent every word and
longer phrase in a parse tree as both a vector and
a matrix. When two constituents are combined the
matrix of one is multiplied with the vector of the
other and vice versa. Hence, the compositional func-
tion is parameterized by the words that participate in
it.

Each word’s matrix is initialized as a d×d identity
matrix, plus a small amount of Gaussian noise. Sim-
ilar to the random word vectors, the parameters of
these matrices will be trained to minimize the clas-
sification error at each node. For this model, each n-
gram is represented as a list of (vector,matrix) pairs,
together with the parse tree. For the tree with (vec-
tor,matrix) nodes:

(p2,P2)

(a,A) (p1,P1)

(b,B) (c,C)
the MV-RNN computes the first parent vector and its
matrix via two equations:

p1 = f

(
W

[
Cb
Bc

])
, P1 = f

(
WM

[
B
C

])
,

where WM ∈ Rd×2d and the result is again a d × d
matrix. Similarly, the second parent node is com-
puted using the previously computed (vector,matrix)
pair (p1, P1) as well as (a,A). The vectors are used
for classifying each phrase using the same softmax
classifier as in Eq. 1.

4.3 RNTN:Recursive Neural Tensor Network
One problem with the MV-RNN is that the number
of parameters becomes very large and depends on
the size of the vocabulary. It would be cognitively
more plausible if there was a single powerful com-
position function with a fixed number of parameters.
The standard RNN is a good candidate for such a
function. However, in the standard RNN, the input
vectors only implicitly interact through the nonlin-
earity (squashing) function. A more direct, possibly
multiplicative, interaction would allow the model to
have greater interactions between the input vectors.

Motivated by these ideas we ask the question: Can
a single, more powerful composition function per-
form better and compose aggregate meaning from
smaller constituents more accurately than many in-
put specific ones? In order to answer this question,
we propose a new model called the Recursive Neu-
ral Tensor Network (RNTN). The main idea is to use
the same, tensor-based composition function for all
nodes.

Fig. 5 shows a single tensor layer. We define the
output of a tensor product h ∈ Rd via the follow-
ing vectorized notation and the equivalent but more
detailed notation for each slice V [i] ∈ Rd×d:

h =

[
b
c

]T

V [1:d]

[
b
c

]
;hi =

[
b
c

]T

V [i]

[
b
c

]
.

where V [1:d] ∈ R2d×2d×d is the tensor that defines
multiple bilinear forms.
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            Slices of       Standard   
                Tensor Layer          Layer

p = f             V[1:2]        +   W

Neural Tensor Layer

b
c

b
c

b
c

T

p = f                             +          

Figure 5: A single layer of the Recursive Neural Ten-
sor Network. Each dashed box represents one of d-many
slices and can capture a type of influence a child can have
on its parent.

The RNTN uses this definition for computing p1:

p1 = f

([
b
c

]T

V [1:d]

[
b
c

]
+W

[
b
c

])
,

where W is as defined in the previous models. The
next parent vector p2 in the tri-gram will be com-
puted with the same weights:

p2 = f

([
a
p1

]T

V [1:d]

[
a
p1

]
+W

[
a
p1

])
.

The main advantage over the previous RNN
model, which is a special case of the RNTN when
V is set to 0, is that the tensor can directly relate in-
put vectors. Intuitively, we can interpret each slice
of the tensor as capturing a specific type of compo-
sition.

An alternative to RNTNs would be to make the
compositional function more powerful by adding a
second neural network layer. However, initial exper-
iments showed that it is hard to optimize this model
and vector interactions are still more implicit than in
the RNTN.

4.4 Tensor Backprop through Structure

We describe in this section how to train the RNTN
model. As mentioned above, each node has a

softmax classifier trained on its vector representa-
tion to predict a given ground truth or target vector
t. We assume the target distribution vector at each
node has a 0-1 encoding. If there are C classes, then
it has length C and a 1 at the correct label. All other
entries are 0.

We want to maximize the probability of the cor-
rect prediction, or minimize the cross-entropy error
between the predicted distribution yi ∈ RC×1 at
node i and the target distribution ti ∈ RC×1 at that
node. This is equivalent (up to a constant) to mini-
mizing the KL-divergence between the two distribu-
tions. The error as a function of the RNTN parame-
ters θ = (V,W,Ws, L) for a sentence is:

E(θ) =
∑

i

∑
j

tij log yi
j + λ‖θ‖2 (2)

The derivative for the weights of the softmax clas-
sifier are standard and simply sum up from each
node’s error. We define xi to be the vector at node
i (in the example trigram, the xi ∈ Rd×1’s are
(a, b, c, p1, p2)). We skip the standard derivative for
Ws. Each node backpropagates its error through to
the recursively used weights V,W . Let δi,s ∈ Rd×1

be the softmax error vector at node i:

δi,s =
(
W T

s (yi − ti)
)
⊗ f ′(xi),

where ⊗ is the Hadamard product between the two
vectors and f ′ is the element-wise derivative of f
which in the standard case of using f = tanh can
be computed using only f(xi).

The remaining derivatives can only be computed
in a top-down fashion from the top node through the
tree and into the leaf nodes. The full derivative for
V and W is the sum of the derivatives at each of
the nodes. We define the complete incoming error
messages for a node i as δi,com. The top node, in
our case p2, only received errors from the top node’s
softmax. Hence, δp2,com = δp2,s which we can
use to obtain the standard backprop derivative for
W (Goller and Küchler, 1996; Socher et al., 2010).
For the derivative of each slice k = 1, . . . , d, we get:

∂Ep2

∂V [k]
= δp2,com

k

[
a
p1

] [
a
p1

]T

,

where δp2,com
k is just the k’th element of this vector.

Now, we can compute the error message for the two
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children of p2:

δp2,down =

(
W T δp2,com + S

)
⊗ f ′

([
a
p1

])
,

where we define

S =
d∑

k=1

δp2,com
k

(
V [k] +

(
V [k]

)T
)[

a
p1

]
The children of p2, will then each take half of this
vector and add their own softmax error message for
the complete δ. In particular, we have

δp1,com = δp1,s + δp2,down[d+ 1 : 2d],

where δp2,down[d + 1 : 2d] indicates that p1 is the
right child of p2 and hence takes the 2nd half of the
error, for the final word vector derivative for a, it
will be δp2,down[1 : d].

The full derivative for slice V [k] for this trigram
tree then is the sum at each node:

∂E

∂V [k]
=

Ep2

∂V [k]
+ δp1,com

k

[
b
c

] [
b
c

]T

,

and similarly for W . For this nonconvex optimiza-
tion we use AdaGrad (Duchi et al., 2011) which con-
verges in less than 3 hours to a local optimum.

5 Experiments

We include two types of analyses. The first type in-
cludes several large quantitative evaluations on the
test set. The second type focuses on two linguistic
phenomena that are important in sentiment.

For all models, we use the dev set and cross-
validate over regularization of the weights, word
vector size as well as learning rate and minibatch
size for AdaGrad. Optimal performance for all mod-
els was achieved at word vector sizes between 25
and 35 dimensions and batch sizes between 20 and
30. Performance decreased at larger or smaller vec-
tor and batch sizes. This indicates that the RNTN
does not outperform the standard RNN due to sim-
ply having more parameters. The MV-RNN has or-
ders of magnitudes more parameters than any other
model due to the word matrices. The RNTN would
usually achieve its best performance on the dev set
after training for 3 - 5 hours. Initial experiments

Model Fine-grained Positive/Negative

All Root All Root

NB 67.2 41.0 82.6 81.8
SVM 64.3 40.7 84.6 79.4
BiNB 71.0 41.9 82.7 83.1

VecAvg 73.3 32.7 85.1 80.1
RNN 79.0 43.2 86.1 82.4

MV-RNN 78.7 44.4 86.8 82.9
RNTN 80.7 45.7 87.6 85.4

Table 1: Accuracy for fine grained (5-class) and binary
predictions at the sentence level (root) and for all nodes.

showed that the recursive models worked signifi-
cantly worse (over 5% drop in accuracy) when no
nonlinearity was used. We use f = tanh in all ex-
periments.

We compare to commonly used methods that use
bag of words features with Naive Bayes and SVMs,
as well as Naive Bayes with bag of bigram features.
We abbreviate these with NB, SVM and biNB. We
also compare to a model that averages neural word
vectors and ignores word order (VecAvg).

The sentences in the treebank were split into a
train (8544), dev (1101) and test splits (2210) and
these splits are made available with the data release.
We also analyze performance on only positive and
negative sentences, ignoring the neutral class. This
filters about 20% of the data with the three sets hav-
ing 6920/872/1821 sentences.

5.1 Fine-grained Sentiment For All Phrases

The main novel experiment and evaluation metric
analyze the accuracy of fine-grained sentiment clas-
sification for all phrases. Fig. 2 showed that a fine
grained classification into 5 classes is a reasonable
approximation to capture most of the data variation.

Fig. 6 shows the result on this new corpus. The
RNTN gets the highest performance, followed by
the MV-RNN and RNN. The recursive models work
very well on shorter phrases, where negation and
composition are important, while bag of features
baselines perform well only with longer sentences.
The RNTN accuracy upper bounds other models at
most n-gram lengths.

Table 1 (left) shows the overall accuracy numbers
for fine grained prediction at all phrase lengths and
full sentences.
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Figure 6: Accuracy curves for fine grained sentiment classification at each n-gram lengths. Left: Accuracy separately
for each set of n-grams. Right: Cumulative accuracy of all ≤ n-grams.

5.2 Full Sentence Binary Sentiment
This setup is comparable to previous work on the
original rotten tomatoes dataset which only used
full sentence labels and binary classification of pos-
itive/negative. Hence, these experiments show the
improvement even baseline methods can achieve
with the sentiment treebank. Table 1 shows results
of this binary classification for both all phrases and
for only full sentences. The previous state of the
art was below 80% (Socher et al., 2012). With the
coarse bag of words annotation for training, many of
the more complex phenomena could not be captured,
even by more powerful models. The combination of
the new sentiment treebank and the RNTN pushes
the state of the art on short phrases up to 85.4%.

5.3 Model Analysis: Contrastive Conjunction
In this section, we use a subset of the test set which
includes only sentences with an ‘X but Y ’ structure:
A phraseX being followed by but which is followed
by a phrase Y . The conjunction is interpreted as
an argument for the second conjunct, with the first
functioning concessively (Lakoff, 1971; Blakemore,
1989; Merin, 1999). Fig. 7 contains an example. We
analyze a strict setting, where X and Y are phrases
of different sentiment (including neutral). The ex-
ample is counted as correct, if the classifications for
both phrases X and Y are correct. Furthermore,
the lowest node that dominates both of the word
but and the node that spans Y also have to have the
same correct sentiment. For the resulting 131 cases,
the RNTN obtains an accuracy of 41% compared to
MV-RNN (37), RNN (36) and biNB (27).

5.4 Model Analysis: High Level Negation
We investigate two types of negation. For each type,
we use a separate dataset for evaluation.
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+
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Figure 7: Example of correct prediction for contrastive
conjunction X but Y .

Set 1: Negating Positive Sentences. The first set
contains positive sentences and their negation. In
this set, the negation changes the overall sentiment
of a sentence from positive to negative. Hence, we
compute accuracy in terms of correct sentiment re-
versal from positive to negative. Fig. 9 shows two
examples of positive negation the RNTN correctly
classified, even if negation is less obvious in the case
of ‘least’. Table 2 (left) gives the accuracies over 21
positive sentences and their negation for all models.
The RNTN has the highest reversal accuracy, show-
ing its ability to structurally learn negation of posi-
tive sentences. But what if the model simply makes
phrases very negative when negation is in the sen-
tence? The next experiments show that the model
captures more than such a simplistic negation rule.

Set 2: Negating Negative Sentences. The sec-
ond set contains negative sentences and their nega-
tion. When negative sentences are negated, the sen-
timent treebank shows that overall sentiment should
become less negative, but not necessarily positive.
For instance, ‘The movie was terrible’ is negative
but the ‘The movie was not terrible’ says only that it
was less bad than a terrible one, not that it was good
(Horn, 1989; Israel, 2001). Hence, we evaluate ac-
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Figure 9: RNTN prediction of positive and negative (bottom right) sentences and their negation.

Model Accuracy

Negated Positive Negated Negative

biNB 19.0 27.3
RNN 33.3 45.5

MV-RNN 52.4 54.6
RNTN 71.4 81.8

Table 2: Accuracy of negation detection. Negated posi-
tive is measured as correct sentiment inversions. Negated
negative is measured as increases in positive activations.

curacy in terms of how often each model was able
to increase non-negative activation in the sentiment
of the sentence. Table 2 (right) shows the accuracy.
In over 81% of cases, the RNTN correctly increases
the positive activations. Fig. 9 (bottom right) shows
a typical case in which sentiment was made more
positive by switching the main class from negative
to neutral even though both not and dull were nega-
tive. Fig. 8 shows the changes in activation for both
sets. Negative values indicate a decrease in aver-

-0.6 -0.4 -0.2 0.0 0.2 0.4
biNBRRNMV-RNNRNTN -0.57

-0.34 -0.16
-0.5

                    Negated Positive Sentences: Change in Activation

-0.6 -0.4 -0.2 0.0 0.2 0.4
biNBRRNMV-RNNRNTN +0.35+0.01-0.01-0.01                    Negated Negative Sentences: Change in Activation

Figure 8: Change in activations for negations. Only the
RNTN correctly captures both types. It decreases positive
sentiment more when it is negated and learns that negat-
ing negative phrases (such as not terrible) should increase
neutral and positive activations.

age positive activation (for set 1) and positive values
mean an increase in average positive activation (set
2). The RNTN has the largest shifts in the correct di-
rections. Therefore we can conclude that the RNTN
is best able to identify the effect of negations upon
both positive and negative sentiment sentences.
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n Most positive n-grams Most negative n-grams

1 engaging; best; powerful; love; beautiful bad; dull; boring; fails; worst; stupid; painfully
2 excellent performances; A masterpiece; masterful

film; wonderful movie; marvelous performances
worst movie; very bad; shapeless mess; worst
thing; instantly forgettable; complete failure

3 an amazing performance; wonderful all-ages tri-
umph; a wonderful movie; most visually stunning

for worst movie; A lousy movie; a complete fail-
ure; most painfully marginal; very bad sign

5 nicely acted and beautifully shot; gorgeous im-
agery, effective performances; the best of the
year; a terrific American sports movie; refresh-
ingly honest and ultimately touching

silliest and most incoherent movie; completely
crass and forgettable movie; just another bad
movie. A cumbersome and cliche-ridden movie;
a humorless, disjointed mess

8 one of the best films of the year; A love for films
shines through each frame; created a masterful
piece of artistry right here; A masterful film from
a master filmmaker,

A trashy, exploitative, thoroughly unpleasant ex-
perience ; this sloppy drama is an empty ves-
sel.; quickly drags on becoming boring and pre-
dictable.; be the worst special-effects creation of
the year

Table 3: Examples of n-grams for which the RNTN predicted the most positive and most negative responses.

1 2 3 4 5 6 7 8 9 10N-Gram Length
0.7
0.8
0.9
1.0

Average
 Ground

 Truth S
entimen

t ModelRNTNMV-RNNRNN

Figure 10: Average ground truth sentiment of top 10 most
positive n-grams at various n. The RNTN correctly picks
the more negative and positive examples.

5.5 Model Analysis: Most Positive and
Negative Phrases

We queried the model for its predictions on what
the most positive or negative n-grams are, measured
as the highest activation of the most negative and
most positive classes. Table 3 shows some phrases
from the dev set which the RNTN selected for their
strongest sentiment.

Due to lack of space we cannot compare top
phrases of the other models but Fig. 10 shows that
the RNTN selects more strongly positive phrases at
most n-gram lengths compared to other models.

For this and the previous experiment, please find
additional examples and descriptions in the supple-
mentary material.

6 Conclusion

We introduced Recursive Neural Tensor Networks
and the Stanford Sentiment Treebank. The combi-
nation of new model and data results in a system
for single sentence sentiment detection that pushes
state of the art by 5.4% for positive/negative sen-
tence classification. Apart from this standard set-
ting, the dataset also poses important new challenges
and allows for new evaluation metrics. For instance,
the RNTN obtains 80.7% accuracy on fine-grained
sentiment prediction across all phrases and captures
negation of different sentiments and scope more ac-
curately than previous models.
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Abstract

We propose a novel approach to sentiment
analysis for a low resource setting. The in-
tuition behind this work is that sentiment
expressed towards an entity, targeted senti-
ment, may be viewed as a span of sentiment
expressed across the entity. This represen-
tation allows us to model sentiment detec-
tion as a sequence tagging problem, jointly
discovering people and organizations along
with whether there is sentiment directed to-
wards them. We compare performance in
both Spanish and English on microblog data,
using only a sentiment lexicon as an exter-
nal resource. By leveraging linguistically-
informed features within conditional random
fields (CRFs) trained to minimize empiri-
cal risk, our best models in Spanish signifi-
cantly outperform a strong baseline, and reach
around 90% accuracy on the combined task of
named entity recognition and sentiment pre-
diction. Our models in English, trained on a
much smaller dataset, are not yet statistically
significant against their baselines.

1 Introduction

Sentiment analysis is a multi-faceted problem. De-
termining when a positive or negative sentiment is
being expressed is a large part of the challenge, but
identifying other attributes, such as the target of the
sentiment, is also crucial if the ultimate goal is to
pinpoint and extract opinions. Consider the exam-
ples below, all of which contain a positive sentiment:

(1) So happy that Kentucky lost to Tennessee!
(2) Kentucky versus Kansas I can hardly wait...
(3) Kentucky is the best alley-oop throwing team

since Sherman Douglas’ Syracuse squads!!

The entities in these examples are college basket-
ball teams, and the events referred to are games. In
(1), although there is a positive sentiment, the tar-
get of the sentiment is an event (Kentucky losing to
Tennessee). However, from the positive sentiment
toward this event, we can infer that the speaker has
a negative sentiment toward Kentucky and a positive
sentiment toward Tennessee. In (2), the positive sen-
timent is toward a future event, but we are not given
enough information to infer a sentiment toward the
mentioned entities. In (3), Kentucky is the direct
target of the positive sentiment. We can also in-
fer a positive sentiment toward Douglas’s Syracuse
teams, and even toward Douglas himself.

These examples illustrate the importance of the
target when interpreting sentiment in context. If we
are looking for sentiments toward Kentucky, for ex-
ample, we would want to identify (1) as negative, (2)
as neutral (no sentiment) and (3) as positive. How-
ever, if we are looking for sentiment toward Ten-
nessee, we would want to identify (1) as positive,
and (2) and (3) as neutral.

The expression of these and other kinds of sen-
timent can be understood as involving three items:

(1) An experiencer

(2) An attitude

(3) A target (optionally)

Research in sentiment analysis often focuses on (2),
predicting overall sentiment polarity (Agarwal et al.,
2011; Bora, 2012). Recent work has begun to com-
bine (2) with (3), examining how to automatically
predict the sentiment polarity expressed towards a
target entity (Jiang et al., 2011; Chen et al., 2012)
for a fixed set of targets. This topic-dependent sen-
timent classification requires that the target entity be
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Figure 1: Sentiment expressed across an entity.

given, and returns statements expressing sentiment
towards the given entity.

In this paper, we take a step towards open-domain,
targeted sentiment analysis by investigating how to
detect both the named entity and the sentiment ex-
pressed toward it. We observe that sentiment ex-
pressed towards a target entity may be possible to
learn in a graphical model along the span of the en-
tity itself: Similar to how named entity recognition
(NER) learns labels along the span of each word in
an entity name, sentiment may be expressed along
the entity as well. A small example is shown in Fig-
ure 1. We focus on people and organizations (voli-
tional named entities), which are the primary targets
of sentiment in our microblog data (see Table 1).

Both NER and opinion expression extraction have
achieved impressive results using conditional ran-
dom fields (CRFs) (Lafferty et al., 2001) to define
the conditional probability of entity categories (Mc-
Callum and Li, 2003; Choi et al., 2006; Yang and
Cardie, 2013). We develop such models to jointly
predict the NE and the sentiment expressed towards
it using minimum risk training (Stoyanov and Eis-
ner, 2012). We learn our models on informal Span-
ish and English language taken from the social net-
work Twitter,1 where the language variety makes
NLP particularly challenging (see Figure 2).

Our ultimate goal is to develop models that will
be useful for low resource languages, where a sen-
timent lexicon may be known or bootstrapped, but
more sophisticated linguistic tools may not be read-
ily available. We therefore do not rely on an external
part-of-speech tagger or parser, which are often used
for features in fine-grained sentiment analysis; such
tools are not available in many languages, and if they
are, are not usually adapted for noisy social media.

Instead, we use information from sentiment lex-
icons and some simple hand-written features, and
otherwise use only features of the word that can be

1www.twitter.com

@[user] le dijo erralo muy por lo bajo jaja un grande
juancito grandes amigos mios
@[user] he told him it was very on the dl haha a great
juancito great friends of mine

@[user] buenos dı́as Profe!! Nos quedamos acciden-
tados otra vez en la carretera vieja guarenas echando
gasoil, estamos a la interperie
@[user] good morning, Prof!! We were wrecked again
on the old guarenas highway while getting diesel, we’re
out in the open

Sin ánimo de ofender a los Militares, que realmente
se merecen ese aumento y más. Pero, dónde queda la
misma recompensa para Médicos.
I do not intend to offend the military in the slightest,
they truly deserve the raise and more. However, I’m
wondering whether doctors will ever receive a similar
compensation.

Figure 2: Messages on Twitter use a wide range of
formality, style, and errors, which makes extracting in-
formation particularly difficult. Examples from Spanish
(screen names anonymized), with approximate transla-
tions in English.

extracted without supervision. These include fea-
tures based on unsupervised word tags (Brown clus-
ters) and a method that automatically syllabifies a
word based on the orthography of the language. All
tools and code used for this research are released
with this paper.2

2 Related Work

As the scale of social media has grown, using
sources such as Twitter to mine public sentiment
has become increasingly promising. Commer-
cial systems include Sentiment1403 (products and
brands) and tweetfeel4 (suggests searching for pop-
ular movies, celebrities and companies).

The majority of academic research has focused on
supervised classification of message sentiment irre-
spective of target (Barbosa and Feng, 2010; Pak and
Paroubek, 2010; Bifet and Frank, 2010; Davidov et
al., 2010; Kouloumpis et al., 2011; Agarwal et al.,
2011). Large datasets are collected for this work by
leveraging the sentiment inherent in emoticons (e.g.,
smilies and frownies) and/or select Twitter hashtags
(e.g., #bestdayever, #fail), resulting in noisy collec-

2www.m-mitchell.com/code
3www.sentiment140.com
4www.tweetfeel.com
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tions appropriate for initial exploration. Prior work
includes: the use of a social network (Speriosu et
al., 2011; Tan et al., 2011; Calais Guerra et al.,
2011; Jiang et al., 2011; Li et al., 2012; Hu et
al., 2013); user-adapted models based on collabo-
rative online-learning (Li et al., 2010b); unsuper-
vised, joint sentiment-topic modeling (Saif et al.,
2012); tracking changing sentiment during debates
(Diakopoulos and Shamma, 2010); and how ortho-
graphic conventions such as word-lengthening can
be used to adapt a Twitter-specific sentiment lexicon
(Brody and Diakopoulos, 2011).

Efforts in targeted sentiment (Bermingham and
Smeaton, 2010; Jin and Ho, 2009; Li et al., 2010a;
Jiang et al., 2011; Tan et al., 2011; Wang et al.,
2011; Li et al., 2012; Chen et al., 2012), have mostly
focused on topic-dependent analysis. In these ap-
proaches, messages are collected on a fixed set of
topics/targets, such as products or sports teams, and
sentiment is learned for the given set. In contrast,
we aim to predict sentiment in tweets for any named
person or organization. We refer to this task as open
domain targeted sentiment analysis.

Within topic-dependent sentiment analysis, sev-
eral approaches have explored applying CRFs or
HMMs to extract sentiment and target words from
text (Jin and Ho, 2009; Li et al., 2010a). In these
approaches, opinion expressions are extracted, and
polarity is annotated across the opinion expression.
However, as noted by many researchers in senti-
ment, opinion orientation towards a specific target
is often not equal to the orientation of a neighbor-
ing opinion expression; and opinion expressions in
one context may not be opinion expressions in an-
other (Kim and Hovy, 2006), making open domain
approaches particularly challenging.

The above work by Jiang et al. (2011) is most
similar to our own. They do not use joint learning,
but they do incorporate a number of parse-based fea-
tures designed to capture relationships between sen-
timent terms and topic references. In our work these
relationships are captured by the CRF model, and
we compare against their approach in Section 6.

Recent work by Yang and Cardie (2013) is sim-
ilar in spirit to our own, where the identification
of opinion holders, opinion targets, and opinion ex-
pressions is modeled as a sequence tagging problem
using a CRF. However, similar to previous work ap-

plying CRFs to extract sentiment, Yang and Cardie
use syntactic relations to connect an opinion target
to an opinion expression. In contrast, we model
the expression of sentiment polarity across the senti-
ment target itself, extracting both the sentiment tar-
get and the sentiment expressed towards it within the
same span of words. This allows us to use surround-
ing context to determine sentiment polarity without
identifying explicit opinion expressions or relying
on a parser to help link expression to target.

Most work in targeted sentiment outside the mi-
croblogging domain has been in relation to prod-
uct review mining (e.g., Yi et al. (2003), Hu and
Liu (2004), Popescu and Etzioni (2005), Qiu et al.
(2011)). Rather than identify named entities (NEs),
this work seeks to identify products and their fea-
tures mentioned in reviews, and classify these for
sentiment. Recent work by Qui et al. jointly learns
targets and opinion words, and Jakob and Gurevych
(2010) use CRFs to extract the targets of opinions,
but do not attempt to classify the sentiment toward
these targets. To the best of our knowledge, this is
the first work to approach targeted sentiment in a low
resource setting and to jointly predict NEs and tar-
geted sentiment.

3 Data

Twitter Collection We use the Spanish/English
Twitter dataset of Etter et al. (2013) to train and test
our models. Approximately 30,000 Spanish tweets
and 10,000 English were labeled for named entities
in BIO encoding: The start of an NE is labeled B-
{NE} and the rest of the NE is labeled I-{NE}. The

NE COUNT NEUTRAL POS NEG

PERSON 5462 80% 20% 0%
ORGANIZATION 4408 80% 20% 0%
LOCATION 1405 100% 0% 0%
URL 1030 100% 0% 0%
TIME 535 70% 10% 20%
DATE 222 100% 0% 0%
MONEY 95 90% 0% 10%
PERCENT 81 80% 20% 0%
TELEPHONE 23 100% 0% 0%
EMAIL 8 100% 0% 0%

Table 1: Distribution of named entities in our Spanish
Twitter corpus. Targeted sentiment percentages are based
on expert annotations from a random sample of 10 (or
all) of of each entity. Most entities are not sentiment tar-
gets (NEUTRAL). PERSON and ORGANIZATION are most
frequent, and among the top recipients of sentiment.
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full set of NE categories are shown in Table 1. For
example, the sequence “Mark Twain” would be la-
beled B-PERSON, I-PERSON. We are interested in both
PERSON and ORGANIZATION entities, which make
up the majority of named entities in this data, and we
evaluate these using the more general entity category
VOLITIONAL. Removing retweets, 7,105 Spanish
tweets contained a total of 9,870 volitional entities
and 2,350 English tweets contained a total of 3,577
volitional entities.

Sentiment Lexicons We use two sentiment lex-
icon sources in each language. For English, we
use the MPQA lexicon (Wilson et al., 2005), which
identifies 12,296 manually and semi-automatically
produced subjective terms along with their polarity.
For the second lexicon, we use SentiWordNet 3.0
(Baccianella et al., 2010), which assigns positive and
negative polarity scores to WordNet synsets. We use
the majority polarity of all words with a subjectivity
score above 0.5.

For Spanish, the first lexicon is obtained from
Volkova et al. (2013), who automatically trans-
lated strongly subjective terms from the MPQA lex-
icon (Wilson et al., 2005) into Spanish. The re-
sulting Spanish lexicon contains about 65K words.
The second lexicon is available from Perez-Rosas
et al. (2012). This contains approximately 1000
sentiment-bearing words collected leveraging man-
ual resources and 2000 collected leveraging auto-
matic resources.

Annotation To collect sentiment labels, we
use crowdsourcing through Amazon’s Mechanical
Turk.5 Annotators (“Turkers”) were shown six
tweets at a time, each with a single highlighted
named entity. Turkers were instructed to (1) se-
lect the sentiment being expressed towards the en-
tity (positive, negative, or no sentiment); and (2)
rate their level of confidence in their selection. Fol-
lowing best practices on collecting language data
with Mechanical Turk (Callison-Burch and Dredze,
2010), two controls were placed among each set of
six tweets to screen out unreliable judgments. An
example prompt is shown in Figure 3.

Each 〈tweet, NE〉 pair was shown to three Turk-
ers, and those with majority consensus on sentiment
polarity were extracted. Tweets without sentiment

5www.mturk.com/mturk
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Figure 4: Targeted sentiment annotated for Spanish.

Majority
POS NEUTRAL NEG

M
in

or
ity POS 757 1249 130

NEUTRAL 707 2151 473
NEG 129 726 452

Table 2: Number of targeted sentiment instances where
at least two of the three annotators (Majority) agreed.
Common disagreements with a third annotator (Minority)
were over whether no sentiment or positive sentiment was
expressed, and whether no sentiment or negative sent-
ment was expressed.

consensus on all NEs were removed. In Spanish, this
yielded 6,658 unique 〈tweet, NE〉 pairs. In English,
which is a smaller data set, this yielded 3,288 unique
pairs. We split the data into folds for 10-fold cross-
validation, developing on the data from one fold and
reporting results for the remaining nine.

The distribution of sentiment for the named en-
tities annotated by Turkers is shown in Figure 4.
Neutral (no targeted sentiment) dominates, followed
by positive sentiment for both organizations and
people. As shown in Table 2, common disagree-
ments were over whether or not there was targeted
positive sentiment, and whether or not there was
targeted negative sentiment. This is in line with
previous research showing that distinguishing pos-
itive sentiment from no sentiment (and distinguish-
ing negative sentiment from no sentiment) is often
more challenging than distinguishing between pos-
itive and negative sentiment (Wilson et al., 2009).
Indeed, we see that it was more common for annota-
tors to disagree than to agree on targeted sentiment,
particularly for negative targeted sentiment, where
more instances had NEUTRAL/NEGATIVE disagree-
ment than NEGATIVE three-way agreement.
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Figure 3: Example Tweet shown to Turkers.

Variable Possible values
Sentiment (s) NOT-TARG, SENT-TARG

(PIPE & JOINT models)
Named Entity (l) O, B-VOLITIONAL, I-VOLITIONAL

(PIPE & JOINT models)
Combined Sent/NE (y) O, B+NOT-TARG, I+NOT-TARG

(COLL models) B+SENT-TARG, I+SENT-TARG

Table 3: Possible values for random variables, targeted
subjectivity (is/is not sentiment target). COLL models
collapse targeted subjectivity and NE label into one node.
Variable Possible values
Sentiment (s) NOT-TARG, POS, NEG

(PIPE & JOINT models)
Named Entity (l) O, B-VOLITIONAL, I-VOLITIONAL

(PIPE & JOINT models)
Combined Sent/NE (y) O, B+NOT-TARG, I+NOT-TARG

(COLL models) B+POS, I+POS

B+NEG, I+NEG

Table 4: Possible values for random variables, targeted
sentiment. The COLL models collapse both targeted sen-
timent and NE label into one node.

4 Targeted Subjectivity and Sentiment

Formally, we define the problem as follows: Given
an observed message w = (w1 . . . wn), where n is
the number of words in the message and wj(1 ≤
j ≤ n) is a word, we learn the probability of a
label sequence l = (l1 . . . ln), where li ∈ the set
of named entity values; and a sentiment sequence
s = (s1 . . . sn), where si ∈ the set of sentiment val-
ues. We additionally explore simpler linear-chain
models that learn the probability of a single label
sequence y = (y1 . . . yn), where yi ∈ the set of con-
joined entity+sentiment values (Tables 3 and 4).

Our basic model is a linear conditional random
field, an undirected graph that represents the con-
ditional distribution p(l, s|w).6 Sentiment towards
a named entity may be modeled in a CRF as a se-

6For the COLL models, this is instead the conditional distri-
bution p(y|w), where entity and sentiment labels are conjoined
in one sequence assignment y.

quence of random variables for sentiment s con-
nected to named entities l. In all models, entity vari-
ables are connected by a factor to their neighbors
in sequence, and we include skip-chains (Finkel and
Manning, 2010) connecting identical words where
at least one is capitalized. Our model strategies in-
clude: a pipeline that first learns volitional entities
then sentiment directed towards them (PIPE); one
that jointly learns volitional entities along with sen-
timent directed towards them (JOINT); and one that
learns volitional entities and targeted sentiment with
combined labels (COLL) (Figure 5).

Using these models, we explore two primary
tasks: (1) the task of detecting whether sentiment
is targeted at an entity, which we refer to as targeted
subjectivity; and (2) the task of detecting whether
positive, negative, or neutral sentiment (no senti-
ment) is targeted at an entity, which we refer to as
targeted sentiment. Moving from targeted subjectiv-
ity prediction to targeted sentiment prediction is pos-
sible by changing the sentiment target (SENT-TARG)
variable into two variables, one for positive targeted
sentiment (POS) and one for negative (NEG). Possi-
ble values for targeted subjectivity are shown in Ta-
ble 3, and possible values for targeted sentiment are
shown in Table 4.

In the pipeline models (PIPE), we first build a
CRF where each word is connected by a factor to
an entity label li ∈ l. In a second model, every ob-
served volitional entity node is connected by a factor
to a sentiment label si ∈ s. An example is shown in
Figure 5 (1).

In the joint models (JOINT), each si ∈ s is con-
nected by a factor to the corresponding entity label
in the sequence, li ∈ l. Sentiment in this model
is partially observed: All sentiment variables are
treated as latent except for the sentiment connected
to the volitional entity. An example is shown in Fig-
ure 5 (2).
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In the collapsed models (COLL), we combine sen-
timent and named entity into one label sequence
(e.g., O, B+SENT-TARG, I+SENT-TARG). An example
is shown in Figure 5 (3). The JOINT and PIPE mod-
els therefore predict named entity sequences, their
category labels, and the sentiment expressed towards
volitional named entities.7 The collapsed models
predict volitional labels and targeted sentiment as
combined categories. The COLL and PIPE models
are considerably faster than JOINT models, where
exact inference is intractable.

1. PIPELINE MODEL (PIPE)

Step 1: Volitional Named Step 2: Sentiment
Entity Recognition

2. JOINT MODEL 3. COLLAPSED MODEL
(JOINT) (COLL)

Figure 5: Example CRFs for targeted subjectivity with
observed variables (dark nodes), predicted variables
(white nodes) and hidden variables (light grey nodes).

5 Training

Minimum-Risk CRF Training We use the
ERMA system (Stoyanov et al., 2011) to learn our
models.8 ERMA (Empirical Risk Minimization un-
der Approximations) learns parameters to minimize
loss on the training data. Predicting NE labels using
a linear-chain CRF trained with empirical risk mini-
mization has been shown to result in a statistically
significant improvement over the common approach
of maximum likelihood estimation (Stoyanov and
Eisner, 2012). All models are trained to optimize

7We found that learning the VOLITIONAL categories dur-
ing training rather than maintaining beliefs about separate
named entities during inference (ORGANIZATION, PERSON)
and then post-processing to VOLITIONAL leads to slightly bet-
ter accuracy.

8sites.google.com/site/ermasoftware

log likelihood using 20 iterations of stochastic
gradient descent, and a maximum of 100 iterations
of belief propagation to compute the marginals for
each example.

Features Features of the models are shown in Ta-
ble 5. For an observed word, features are extracted
for the word itself as well as within a context win-
dow of three words in either direction. Words seen
only once are treated as out-of-vocabulary. Surface
features and linguistic features are concatenated in
groups of two and three to create further features.
All algorithms and code that we have developed for
feature extraction are available online.9

Because we aim to develop models that do not
heavily rely on language-specific resources, we are
interested in exploring unsupervised and lightly
supervised methods for learning relevant features.
Rather than use part-of-speech tags, we therefore
use Brown cluster labels as unsupervised word tags
(Brown et al., 1992; Koo et al., 2008). Brown
clustering is a distributional similarity method that
merges pairs of word clusters in the training data10

to create the smallest decrease in corpus likelihood,
using a bigram language model on the clusters. For
our task, we cut clusters at length 3 and length 5,
and these serve as rough part-of-speech tags without
the need to train additional models. For example,
the word hello is tagged as belonging to cluster 011
(length 3) and 01111 (length 5).

During development, we found that being able
to syllabify the word (break the word into sylla-
bles) was a positive indicator of people names, but
a negative indicator of organization names. This
observation can be approximated automatically us-
ing constraints from the sonority sequencing princi-
ple (Hooper, 1976; Clements, 1990; Blevins, 1996;
Morelli, 2003) on a language’s orthography. This
is a phonotactic principle that states that syllables
will tend to have a sonority peak, usually a vowel,
in the center of the syllable, followed on either side
by consonants with decreasing sonority. Although
languages may violate this principle, the core idea
that a vowel forms the nucleus of a syllable with op-

9www.m-mitchell.com/code
10For Spanish, we train on a sample of ˜7 million Spanish

tweets. For English, we train on the essays (Pennebaker et al.,
2007) and Facebook data (Kosinskia et al., 2013) available from
ICWSM 2013.
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tional consonants before (the onset) and after (the
coda) can be used to begin to automatically learn
syllable structure.11 We learn this in an unsuper-
vised way, using the most frequent (seen more than
1,000 times) word-initial non-vowel sequences from
the Brown cluster data as allowable syllable onset
consonants. Similarly, the most frequent word-final
non-vowel sequences are learned as possible sylla-
ble codas. For each word, we then attempt to seg-
ment syllables using the learned onsets and codas
around each vowel. If a word cannot be syllabified,
it is often an initialism (e.g., CND, lsat).

We follow the approach from the out-of-
vocabulary assignment in the Berkeley parser
(Petrov et al., 2006) to encode common surface
patterns such as capitalization and lexical patterns
such as verb endings as a single feature for words
we have seen once or less. We also use the Jer-
boa toolkit (Van Durme, 2012) to extract further
language-independent features from the data, such
as features for emoticons and binning for repeated
characters (like !!!). In addition, we include features
for whether the word is three or four letters, which
is often used for acronyms and initialisms in several
languages (including Spanish and English); whether
the word is neighbored by a punctuation mark; word
identity; word length; message length; and position
in the sentence.

We utilize a speaker of each language to simply
list word forms for sentiment features that may be
indicative of sentiment, totaling less than two hours
of annotation time. This set includes intensifiers
(e.g., hella, freakin’ in English; e.g., muy, suma-
mente in Spanish), positive/negative abbreviations
(WTF, pso), positive/negative slang words, and pos-
itive/negative prefix and suffixes (e.g., anti- in En-
glish and Spanish, -ito in Spanish).

6 Experiments

We are interested in both PERSON and ORGANIZA-
TION entities, and evaluate these in the collapsed
category VOLITIONAL. This suggests that the data
may be pre-processed to label all volitional entities
as VOLITIONAL NEs, or the models may be learned
with the traditional named entities in place, and post-

11Further development is necessary to extend a similar idea
to languages that do not ordinarily mark all vowels in their or-
thography, such as Hebrew and Arabic.

SURFACE FEATURES

binned word length, message length, and sen-
tence position; Jerboa features; word identity; word
lengthening; punctuation characters, has digit; has
dash; is lower case; is 3 or 4 letters; first letter capi-
talized; more than one letter capitalized, etc.
LINGUISTIC FEATURES

function words; can syllabify; curse words; laugh
words; words for good, bad, no, my; slang words; ab-
breviations; intensifiers; subjective suffixes and pre-
fixes (such as diminutive forms); common verb end-
ings; common noun endings
BROWN CLUSTERING FEATURES

cluster at length 3; cluster at length 5
SENTIMENT FEATURES

is sentiment-bearing word; prior sentiment polarity
Table 5: Features used in model.

processed to identify those that are VOLITIONAL.
We explored results using both methods, and found
that training models on VOLITIONAL tags yielded
the best performance overall; we report numbers for
this approach below.

We compare against a baseline (BASE-NS) where
we use our volitional entity labels and assign no
sentiment directed towards the entity (the majority
case). This is a strong baseline to isolate how our
methods perform specifically for the task of identi-
fying sentiment targeted at an entity.

We report on precision, recall, and sensitivity for
the tasks of NER and targeted subjectivity/sentiment
prediction in isolation; and we report on accuracy
for the targeted subjectivity and targeted sentiment
models. For sentiment, a true positive is an instance
where the label has sentiment, and a true negative is
an instance where the label has no sentiment (neu-
tral). For NER, a true positive is an instance where
the label is a B- or I- label; a true negative is an
instance where the label is O. The three systems
are evaluated against one another for NER, subjec-
tivity (entity has/does not have sentiment expressed
towards it), and sentiment (positive/negative/no sen-
timent) using paired t-tests across folds, with a Bon-
ferroni correction to set α to 0.02.

NER We include results for the isolated task of vo-
litional named entity recognition in Table 6. In both
Spanish and English, all three models are roughly
comparable for precision, recall, and specificity. The
task of finding O tags – spans that are not named en-
tities – works especially well (NE spec). Common
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Spanish English
Model Joint Pipe Coll Joint Pipe Coll
NE prec 65.2 64.3 65.1 59.8 62.3 60.5
NE rec 65.8 64.7 61.2 60.2 57.2 56.5
NE spec 95.4 95.2 95.6 94.3 95.1 94.7

Table 6: Average precision, recall, and specificity for vo-
litional entity NER (in %).

mistakes include confusing B- labels with I- labels.

Subjectivity and Sentiment Table 7 shows results
for the isolated task of predicting the presence of
sentiment about a volitional entity. In Spanish, the
pipeline models (PIPE) perform optimally for sub-
jectivity recall (Subj rec), and significantly above
the COLL models (p<.001). Precision and speci-
ficity are comparable across models. In English as
in Spanish, the collapsed model is particularly poor
at subjectivity recall.

As discussed in Section 2, the subtask of predict-
ing whether subjectivity is expressed towards an en-
tity is comparable to the main task of Jiang et al.
(2011), and so we compare our approach here. The
Jiang et al. study is similar to the current study in that
they aim to detect targeted sentiment, but it differs
from the current study in that they focus exclusively
on subjectivity towards five manually selected enti-
ties: {Obama, Google, iPad, Lakers, Lady Gaga}.
They also evaluate on artificially balanced evalu-
ation data, and evaluate sentiment polarity (posi-
tive/negative) separately from subjectivity (has/does
not have sentiment).

Our dataset includes any entity labeled as PERSON

or ORGANIZATION, and is not balanced (most tar-
gets have no sentiment expressed towards them; see
Table 1), thus we can only roughly compare against
their approach. Lakers and Lady Gaga are rare in
our collection (appearing less than 3 times), and so
we updated the comparison set prior to evaluation to:
{Obama, Google, iPad, BBC, Tebow}. On this set, a
baseline that always guesses no sentiment reaches an
accuracy of 66.9%, compared to Jiang et al.’s 65.5%
accuracy on a balanced set (not strictly compara-
ble, but provided for reference). The JOINT mod-
els reach an accuracy of 71.04% on this set, demon-
strating this approach as potentially useful for topic-
dependent targeted sentiment.

Table 8 shows results for the task of predicting
the polarity of the sentiment expressed about an en-
tity. In Spanish, the PIPE models significantly out-

Spanish English
Model Joint Pipe Coll Joint Pipe Coll
Subj prec 58.3 58.8 58.9 46.6 52.2 45.9
Subj rec 40.1 50.9 19.1 44.5 48.5 16.4
Subj spec 79.6 77.5 77.8 77.6 80.8 74.0

Table 7: Average precision, recall, and specificity (in %)
for subjectivity prediction (has/does not have sentiment)
along the target entity.

Spanish English
Model Joint Pipe Coll Joint Pipe Coll
Sent prec 36.6 45.8 42.5 31.6 42.9 38.5
Sent rec 38.0 40.6 15.5 36.6 34.8 9.7
Sent spec 67.1 75.2 73.3 72.3 82.0 78.1

Table 8: Average precision, recall, and specificity (in %)
for sentiment prediction (positive/negative/no sentiment)
along the target entity.

perform the COLL models on sentiment recall, and
the JOINT models on sentiment precision (p<.01).
In English, PIPE significantly outperforms JOINT on
precision (p<.001).

Targeted Subjectivity and Targeted Sentiment
The JOINT and PIPE models work reasonably
well for the isolated tasks of NER and subjectiv-
ity/sentiment prediction. We now examine results
for targeted subjectivity – labeling an entity and pre-
dicting whether there is sentiment directed towards
it – in Table 9; and targeted sentiment – labeling an
entity and predicting what the sentiment directed to-
wards it is – in Table 10.

We evaluate using two accuracy metrics: Acc-all,
which measures the accuracy of the entire named en-
tity span along with the sentiment span; and Acc-
Bsent, which measures the accuracy of identifying
the start of a named entity (B- labels) along with
the sentiment expressed towards it. Acc-all primar-
ily measures the correctness of O labels, while Acc-
Bsent focuses on the beginning of named entities.

For the targeted subjectivity task, our JOINT mod-
els perform optimally in Spanish, and significantly
above their baselines. For the Acc-Bsent task, JOINT

models perform best, significantly outperforming
their baseline for subjectivity prediction. In English,
where our data is half the size, we do not see a statis-
tically significant difference between the predictive
models and the no sentiment baselines.

For the targeted sentiment task, the JOINT mod-
els again perform relatively well in Spanish (Table
10), labeling volitional entities, predicting whether
or not there is sentiment targeted towards them, and
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Model Joint Joint
Base

Pipe Pipe
Base

Coll Coll
Base

Sp
a Acc-all 89.5* 89.3 89.3** 89.1 89.5* 89.3

Acc-Bsent 32.1*** 29.5 30.9*** 28.3 30.1** 28.1

E
ng Acc-all 88.0 88.1 88.6 88.6 87.9 88.1

Acc-Bsent 30.4 30.8 30.7 30.3 28.1 29.2
***p<.001 **p<.01 *p<.05

Table 9: Average accuracy on Targeted Subjectivity Pre-
diction: Identifying volitional entities and whether they
are a sentiment target. In the core task, Acc-Bsent, the
best model in Spanish is JOINT, significantly outperform-
ing the baseline. In English, the best model (PIPE) does
not significantly improve over its baseline.

Model Joint Joint
Base

Pipe Pipe
Base

Coll Coll
Base

Sp
a Acc-all 89.4 89.4 89.0 89.0 89.2 89.3

Acc-Bsent 29.7* 29.0 30.0 29.2 28.9 29.0

E
ng Acc-all 88.0 88.1 88.2 88.4 87.7 88.1

Acc-Bsent 30.4 30.6 30.5 30.8 27.9 29.8
*p<.05

Table 10: Average accuracy on Targeted Sentiment Pre-
diction: Identifying volitional entities and the polarity
of the sentiment expressed towards them. The Spanish
JOINT models significantly improve over their baseline
for the core task. In English, no models outperform their
baseline.

the sentiment polarity above their no sentiment base-
lines. We find this to be the most difficult task: It
may be clear that sentiment is being expressed to-
wards an entity, but it is not always clear what the
polarity of that sentiment is. Error analysis is given
below in this section. In the smaller English set, the
models do not outperform the no sentiment baseline.

7 Discussion

Feature Analysis Examples of some of the top-
weighted features in the Spanish models are shown
in Table 11. In addition to lexical identity and Brown
cluster, we find that positive indicators include pos-
itive suffixes such as diminutive forms, whether the
word can be syllabized (Section 5), and whether it is
three or four letters.

Error Analysis Because it is relatively common
for there not to be sentiment targeted at a named en-
tity, it is difficult to tease out the polarity in instances
where there is targeted sentiment. Similarly, our pre-
dictions are most reliable for detecting the absence
of a named entity (O labels).

Label confusions are shown in Table 12. Mistakes
are often made by confusing B- labels (the start of

B-VOLITIONAL FEATURES
Negative is a function word; jerboa tags; followed by a word

with 3 or 4 letters that cannot be syllabified
Positive ends in -a, -o, or -s; is capitalized; has one non-

initial capital letter; is 3 or 4 letters

B-VOLITIONAL, POS FEATURES
Negative preceded by a curse word; followed by a word

with a positive suffix; immediately preceded by a
word with a negative prefix

Positive not in a sentiment lexicon; preceded by a happy
emoticon; followed by an exclamation or a ‘my’
word; immediately preceded by a laugh; has two
or more sentiment-bearing words in the sentence

B-VOLITIONAL, NEG FEATURES
Negative is immediately followed by a question mark or

positive abbreviation word
Positive preceded by a ‘bad’ word or curse word; has four

or more sentiment lexicon items

B-VOLITIONAL, NOT-TARG FEATURES
Negative immediately followed by a ‘no’ word or word with

a negative prefix; is preceded by a question mark;
is immediately preceded by a curse word or laugh;
is followed by an exclamation mark

Positive not followed by sentiment lexicon word
Table 11: Example strongly weighted features for a
Spanish joint sentiment model. In addition to lexical
identity, we find that curse words and positive and neg-
ative prefixes are used to detect volitional entities and the
sentiment directed towards them.

an entity) with I- labels (inside an entity); and by
predicting sentiment polarity when the gold annota-
tions say there is not sentiment targeted at the entity.
Some example errors are shown in Figure 13. In
(1), “CANSADO” (“TIRED”) was predicted to be
volitional, while “Matthew” was not. In (2), “Ma-
tias del rı́o” was not predicted to be an entity, likely
due to the fact that the capitalization patterns we see
in this sentence are indicative of the start of a sen-
tence rather than a proper name (similar to 1). In (3),

a.
Observed

B I O

Pr
ed

ic
te

d B 423 21 186
I 36 236 135
O 197 90 7168

b.
Observed

POS NEG NEUT

POS 68 24 42
NEG 58 65 102

NEUT 115 61 468

Table 12: Predicted vs. observed values for a joint model.
(a) For named entities, most common confusions were
between B-VOLITIONAL and O labels. (b) For sentiment,
most common mistakes were to predict that a positive
sentiment was neutral (no sentiment), and that a neutral
sentiment was negative.
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NE prediction errors

1.

Spanish: Cuando estoy CANSADO , él es mi DESCANSO . Mateo . 11 : 29 .
Predicted: O O B-VOLITIONAL O O O O O O O O O O O O

Gold: O O O O O O O O O B-VOLITIONAL O O O O O

English: When I’m TIRED , he is my REST . Matthew . 11 : 29 .

2.

Spanish: Matias del rı́o fue una lata . . .
Predicted: O O O O O O . . .
Gold: B-VOLITIONAL I-VOLITIONAL I-VOLITIONAL O O O . . .
English: Matias del rı́o was a drag . . .

Sentiment prediction errors

3.

Spanish: Mario que dio este contigo
Predicted: NOT-TARG - - - -
Gold: POSITIVE - - - -
English: Mario may God be with you

4.

Spanish: . . . si de verdad estas en cielo , ayudame Superman !!!
Predicted: - - - - - - - - POSITIVE -
Gold: - - - - - - - - NOT-TARG -
English: . . . if you really are in the skies , help me Superman !!!

Sentiment and NE prediction errors

5.

Spanish: Salen del gobierno de Humala dos connotados izquierdistas, Giesecke y Eiguiguren

Predicted: O O O O B-VOLITIONAL I-VOLITIONAL O O O B-VOLITIONAL O B-VOLITIONAL

- - - - NOT-TARG NOT-TARG - - - NOT-TARG - NOT-TARG

Gold: O O O O B-VOLITIONAL O O O O B-VOLITIONAL O B-VOLITIONAL

- - - - NOT-TARG - - - - NEGATIVE - NOT-TARG

English: Leaving the Humala government are two notorious leftists , Giesecke and Eiguiguren

Table 13: Example errors made by joint models.

sentiment may not be clear without spelling correc-
tion: “dio” should be “dios”, meaning “God”; other-
wise, “dio” is the word for “gave”. Humans can eas-
ily fix the spelling error, which changes the overall
reading of the expression. In (4), the positive polar-
ity item “verdad” (“believe”) and the exclamation
marks (!!!) were likely used as indicators of posi-
tive sentiment; however, in this case the annotators
marked the targeted sentiment as neutral. In (5), the
“Humala” entity was predicted to be longer than it is
(“Hamala dos” or “Hamala two”). It was also pre-
dicted that both “Giesecke” and “Eiguiguren” had
no sentiment expressed towards them; annotators
disagreed, with the majority of those who annotated
“Giesecke” marking negative sentiment, and the ma-
jority of those who annotated “Eiguiguren” mark-
ing no sentiment. This highlights some of the diffi-
culty in predicting sentiment discussed in Section 3,
where annotators will often disagree as to whether
there is no sentiment or positive/negative sentiment.

During development, we found that the collapsed
model (COLL) performed best on small amounts of
data. However, as we scaled up the amount of data
we trained on, the PIPE and JOINT models signif-
icantly improved, while the COLL models did not
have significant performance gains.

8 Conclusion

We have introduced the task of open domain targeted
sentiment: predicting sentiment directed towards an
entity along with discovering the entity itself. Our
approach is developed to find targeted sentiment to-
wards both person and organization named entities
by modeling sentiment as a span along the entity.

We find that by modeling targeted sentiment in
this way, we can reliably detect entities and whether
or not they are sentiment targets above a no senti-
ment baseline. How best to determine the polarity
of the sentiment expressed towards the entity, how-
ever, is still an open issue. Our data suggests that
it is usually not clear-cut whether sentiment is being
expressed or not; the strong disagreement between
annotators suggests that detecting sentiment polar-
ity in microblogs is difficult even for humans.

In future work, we hope to explore further meth-
ods for teasing apart sentiment polarity expressed to-
wards a target. This research has achieved promis-
ing results for detecting sentiment targets without re-
lying on external supervised models, and we hope
that the features and approaches developed here can
aid in sentiment analysis in noisy text and languages
without rich linguistic resources.
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Abstract 

Aspect extraction is one of the key tasks in 
sentiment analysis. In recent years, statistical 
models have been used for the task. However, 
such models without any domain knowledge 
often produce aspects that are not interpreta-
ble in applications. To tackle the issue, some 
knowledge-based topic models have been 
proposed, which allow the user to input some 
prior domain knowledge to generate coherent 
aspects. However, existing knowledge-based 
topic models have several major shortcom-
ings, e.g., little work has been done to incor-
porate the cannot-link type of knowledge or 
to automatically adjust the number of topics 
based on domain knowledge. This paper pro-
poses a more advanced topic model, called 
MC-LDA (LDA with m-set and c-set), to ad-
dress these problems, which is based on an 
Extended generalized Pólya urn (E-GPU) 
model (which is also proposed in this paper).  
Experiments on real-life product reviews 
from a variety of domains show that MC-
LDA outperforms the existing state-of-the-art 
models markedly. 

1 Introduction 

In sentiment analysis and opinion mining, aspect 
extraction aims to extract entity aspects or features 
on which opinions have been expressed (Hu and 
Liu, 2004; Liu, 2012). For example, in a sentence 
“The picture looks great,” the aspect is “picture.” 
Aspect extraction consists of two sub-tasks: (1) 
extracting all aspect terms (e.g., “picture”) from 
the corpus, and (2) clustering aspect terms with 
similar meanings (e.g., cluster “picture” and “pho-
to” into one aspect category as they mean the 
same in the domain “Camera”). In this work, we 

adopt the topic modeling approach as it can per-
form both sub-tasks simultaneously (see § 2). 

Topic models, such as LDA (Blei et al., 2003), 
provide an unsupervised framework for extracting 
latent topics in text documents. Topics are aspect 
categories (or simply aspects) in our context. 
However, in recent years, researchers have found 
that fully unsupervised topic models may not pro-
duce topics that are very coherent for a particular 
application. This is because the objective functions 
of topic models do not always correlate well with 
human judgments and needs (Chang et al., 2009). 

To address the issue, several knowledge-based 
topic models have been proposed. The DF-LDA 
model (Andrzejewski et al., 2009) incorporates 
two forms of prior knowledge, also called two 
types of constraints: must-links and cannot-links. 
A must-link states that two words (or terms) 
should belong to the same topic whereas a cannot-
link indicates that two words should not be in the 
same topic. In (Andrzejewski et al., 2011), more 
general knowledge can be specified using first-
order logic. In (Burns et al., 2012; Jagarlamudi et 
al., 2012; Lu et al., 2011; Mukherjee and Liu, 
2012), seeded models were proposed. They enable 
the user to specify prior knowledge as seed 
words/terms for some topics. Petterson et al. (2010) 
also used word similarity as priors for guidance.  

However, none of the existing models is capable 
of incorporating the cannot-link type of knowledge 
except DF-LDA (Andrzejewski et al., 2009). Fur-
thermore, none of the existing models, including 
DF-LDA, is able to automatically adjust the num-
ber of topics based on domain knowledge. The 
domain knowledge, such as cannot-links, may 
change the number of topics. There are two types 
of cannot-links: consistent and inconsistent with 
the domain corpus. For example, in the reviews of 
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domain “Computer”, a topic model may generate 
two topics Battery and Screen that represent two 
different aspects. A cannot-link {battery, screen} 
as the domain knowledge is thus consistent with 
the corpus. However, words Amazon and Price 
may appear in the same topic due to their high co-
occurrences in the Amazon.com review corpus. To 
separate them, a cannot-link {amazon, price} can 
be added as the domain knowledge, which is in-
consistent with the corpus as these two words have 
high co-occurrences in the corpus. In this case, the 
number of topics needs to be increased by 1 since 
the mixed topic has to be separated into two indi-
vidual topics Amazon and Price. Apart from the 
above shortcoming, earlier knowledge-based topic 
models also have some major shortcomings: 

Incapability of handling multiple senses: A 
word typically has multiple meanings or senses. 
For example, light can mean “of little weight” or 
“something that makes things visible.” DF-LDA 
cannot handle multiple senses because its defini-
tion of must-link is transitive. That is, if A and B 
form a must-link, and B and C form a must-link, it 
implies a must-link between A and C, indicating A, 
B, and C should be in the same topic. This case 
also applies to the models in (Andrzejewski et al., 
2011), (Petterson et al., 2010), and (Mukherjee and 
Liu, 2012). Although the model in (Jagarlamudi et 
al., 2012) allows multiple senses, it requires that 
each topic has at most one set of seed words (seed 
set), which is restrictive as the amount of 
knowledge should not be limited. 

Sensitivity to the adverse effect of knowledge: 
When using must-links or seeds, existing models 
basically try to ensure that the words in a must-
link or a seed set have similar probabilities under a 
topic. This causes a problem: if a must-link com-
prises of a frequent word and an infrequent word, 
due to the redistribution of probability mass, the 
probability of the frequent word will decrease 
while the probability of the infrequent word will 
increase. This can harm the final topics because 
the attenuation of the frequent (often domain im-
portant) words can result in some irrelevant words 
being ranked higher (with higher probabilities). 

To address the above shortcomings, we define 
m-set (for must-set) as a set of words that should 
belong to the same topic and c-set (cannot-set) as a 
set of words that should not be in the same topic. 
They are similar to must-link and cannot-link but 
m-sets do not enforce transitivity. Transitivity is 

the main cause of the inability to handle multiple 
senses. Our m-sets and c-sets are also more con-
cise providing knowledge in the context of a set. 
As in (Andrzejewski et al., 2009), we assume that 
there is no conflict between m-sets and c-sets, i.e., 
if 𝑤1  is a cannot-word of 𝑤2  (i.e., shares a c-set 
with 𝑤2), any word that shares an m-set with 𝑤1 is 
also a cannot-word of 𝑤2. Note that knowledge as 
m-sets has also been used in (Chen et al., 2013a) 
and (Chen et al., 2013b). 

We then propose a new topic model, called MC-
LDA (LDA with m-set and c-set), which is not on-
ly able to deal with c-sets and automatically adjust 
the number of topics, but also deal with the multi-
ple senses and adverse effect of knowledge prob-
lems at the same time. For the issue of multiple 
senses, a new latent variable 𝑠 is added to LDA to 
distinguish multiple senses (§ 3). Then, we employ 
the generalized Pólya urn (GPU) model 
(Mahmoud, 2008) to address the issue of adverse 
effect of knowledge (§ 4). Deviating from the 
standard topic modeling approaches, we propose 
the Extended generalized Pólya urn (E-GPU) 
model (§ 5). E-GPU extends the GPU model to 
enable multi-urn interactions. This is necessary for 
handling c-sets and for adjusting the number of 
topics. E-GPU is the heart of MC-LDA. Due to the 
extension, a new inference mechanism is designed 
for MC-LDA (§ 6). Note that E-GPU is generic 
and can be used in any appropriate application. 

In summary, this paper makes the following 
three contributions: 
1. It proposed a new knowledge-based topic mod-

el called MC-LDA, which is able to use both 
m-sets and c-sets, as well as automatically ad-
just the number of topics based on domain 
knowledge. At the same time, it can deal with 
some other major shortcomings of early exist-
ing models. To our knowledge, none of the ex-
isting knowledge-based models is as compre-
hensive as MC-LDA in terms of capabilities. 

2. It proposed the E-GPU model to enable multi-
urn interactions, which enables c-sets to be nat-
urally integrated into a topic model. To the best 
of our knowledge, E-GPU has not been pro-
posed and used before.  

3. A comprehensive evaluation has been conduct-
ed to compare MC-LDA with several state-of-
the-art models. Experimental results based on 
both qualitative and quantitative measures 
demonstrate the superiority of MC-LDA. 
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2  Related Work 

Sentiment analysis has been studied extensively in 
recent years (Hu and Liu, 2004; Pang and Lee, 
2008; Wiebe and Riloff, 2005; Wiebe et al., 2004). 
According to (Liu, 2012), there are three main ap-
proaches to aspect extraction: 1) Using word fre-
quency and syntactic dependency of aspects and 
sentiment words for extraction (e.g., Blair-
goldensohn et al., 2008; Hu and Liu, 2004; Ku et 
al., 2006; Popescu and Etzioni, 2005; Qiu et al., 
2011; Somasundaran and Wiebe, 2009; Wu et al., 
2009; Yu et al., 2011; Zhang and Liu, 2011; 
Zhuang et al., 2006); 2) Using supervised se-
quence labeling/classification (e.g., Choi and 
Cardie, 2010; Jakob and Gurevych, 2010; 
Kobayashi et al., 2007; Li et al., 2010); 3) Topic 
models (Branavan et al., 2008; Brody and Elhadad, 
2010; Fang and Huang, 2012; Jo and Oh, 2011; 
Kim et al., 2013; Lazaridou et al., 2013; Li et al., 
2011; Lin and He, 2009; Lu et al., 2009, 2012, 
2011; Lu and Zhai, 2008; Mei et al., 2007; 
Moghaddam and Ester, 2011; Mukherjee and Liu, 
2012; Sauper et al., 2011; Titov and McDonald, 
2008; Wang et al., 2010, 2011; Zhao et al., 2010). 
Other approaches include shallow semantic pars-
ing (Li et al., 2012b), bootstrapping (Xia et al., 
2009), Non-English techniques (Abu-Jbara et al., 
2013; Zhou et al., 2012), graph-based representa-
tion (Wu et al., 2011), convolution kernels 
(Wiegand and Klakow, 2010) and domain adap-
tion (Li et al., 2012). Stoyanov and Cardie (2011), 
Wang and Liu (2011), and Meng et al. (2012) 
studied opinion summarization outside the reviews. 
Some other works related with sentiment analysis 
include (Agarwal and Sabharwal, 2012; Kennedy 
and Inkpen, 2006; Kim et al., 2009; Mohammad et 
al., 2009). 

In this work, we focus on topic models owing to 
their advantage of performing both aspect extrac-
tion and clustering simultaneously. All other ap-
proaches only perform extraction. Although there 
are several related works on clustering aspect 
terms (e.g., Carenini et al., 2005; Guo et al., 2009; 
Zhai et al., 2011), they all assume that the aspect 
terms have been extracted beforehand. We also 
notice that some aspect extraction models in sen-
timent analysis separately discover aspect words 
and aspect specific sentiment words (e.g., Sauper 
and Barzilay, 2013; Zhao et al., 2010). Our pro-
posed model does not separate them as most sen-

timent words also imply aspects and most adjec-
tives modify specific attributes of objects. For ex-
ample, sentiment words expensive and beautiful 
imply aspects price and appearance respectively. 

Regarding the knowledge-based models, be-
sides those discussed in § 1, the model (Hu et al., 
2011) enables the user to provide guidance interac-
tively. Blei and McAuliffe (2007) and Ramage et 
al. (2009) used document labels in supervised set-
ting. In (Chen et al., 2013a), we proposed MDK-
LDA to leverage multi-domain knowledge, which 
serves as the basic mechanism to exploit m-sets in 
MC-LDA. In (Chen et al., 2013b), we proposed a 
framework (called GK-LDA) to explicitly deal 
with the wrong knowledge when exploring the 
lexical semantic relations as the general (domain 
independent) knowledge in topic models. But 
these models above did not consider the 
knowledge in the form of c-sets (or cannot-links). 

The generalized Pólya urn (GPU) model 
(Mahmoud, 2008) was first introduced in LDA by 
Mimno et al. (2011). However, Mimno et al. (2011) 
did not use domain knowledge. Our results in § 7 
show that using domain knowledge can signifi-
cantly improve aspect extraction. The GPU model 
was also employed in topic models in our work of 
(Chen et al., 2013a, 2013b). In this paper, we pro-
pose the Extended GPU (E-GPU) model. The E-
GPU model is more powerful in handling complex 
situations in dealing with c-sets. 

3 Dealing with M-sets and Multiple Senses 

Since the proposed MC-LDA model is a major 
extension to our earlier work in (Chen et al., 
2013a), which can deal with m-sets, we include 
this earlier work here as the background.     

To incorporate m-sets and deal with multiple 
senses of a word, the MDK-LDA(b) model was 
proposed in (Chen et al., 2013a), which adds a 
new latent variable 𝑠 into LDA. The rationale here 
is that this new latent variable 𝑠 guides the model 
to choose the right sense represented by an m-set. 
The generative process of MDK-LDA(b) is (the 
notations are explained in Table 1): 
                     𝜃  ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼) 
                     𝑧𝑖|𝜃𝑚  ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑚) 
                     𝜑 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽) 
                     𝑠𝑖|𝑧𝑖,𝜑 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙�𝜑𝑧𝑖� 
                     𝜂 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛾) 
                     𝑤𝑖|𝑧𝑖 , 𝑠𝑖,𝜂 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙�𝜂𝑧𝑖,𝑠𝑖� 
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The corresponding plate is shown in Figure 1. Un-
der MDK-LDA(b), the probability of word 𝑤 giv-
en topic 𝑡, i.e., 𝜋𝑡(𝑤), is given by: 

 𝜋𝑡(𝑤) = ∑ 𝜑𝑡(𝑠) ∙ 𝜂𝑡,𝑠(𝑤)𝑆
𝑠=1    (1) 

where 𝜑𝑡(𝑠)  denotes the probability of m-set 𝑠 
occurring under topic 𝑡 and 𝜂𝑡,𝑠(𝑤) is the proba-
bility of word 𝑤 appearing in m-set 𝑠 under topic 𝑡. 

According to (Chen et al., 2013a), the condi-
tional probability of Gibbs sampler for MDK-
LDA(b) is given by (see notations in Table 1): 

    𝑃�𝑧𝑖 = 𝑡, 𝑠𝑖 = 𝑠 �𝒛−𝑖 , 𝒔−𝑖 ,𝒘,𝛼,𝛽, 𝛾� ∝ 
𝑛𝑚,𝑡
−𝑖 + 𝛼

∑ �𝑛𝑚,𝑡′
−𝑖 + 𝛼�𝑇

𝑡′=1
×

𝑛𝑡,𝑠
−𝑖 + 𝛽

∑ �𝑛𝑡,𝑠′
−𝑖 + 𝛽�𝑆

𝑠′=1
×

𝑛𝑡,𝑠,𝑤𝑖
−𝑖 + 𝛾𝑠

∑ �𝑛𝑡,𝑠,𝑣′
−𝑖 + 𝛾𝑠�𝑉

𝑣′=1
 (2) 

The superscript −𝑖  denotes the counts excluding 
the current assignments (𝑧𝑖 and 𝑠𝑖) for word 𝑤𝑖. 

4 Handling Adverse Effect of Knowledge 

4.1 Generalized Pólya urn (GPU) Model 

The Pólya urn model involves an urn containing 
balls of different colors. At discrete time intervals, 
balls are added or removed from the urn according 
to their color distributions. 

In the simple Pólya urn (SPU) model, a ball is 
first drawn randomly from the urn and its color is 
recorded, then that ball is put back along with a 
new ball of the same color. This selection process 
is repeated and the contents of the urn change over 
time, with a self-reinforcing property sometimes 
expressed as “the rich get richer.” SPU is actually 
exhibited in the Gibbs sampling for LDA.  

The generalized Pólya urn (GPU) model differs 
from the SPU model in the replacement scheme 
during sampling. Specifically, when a ball is ran-
domly drawn, certain numbers of additional balls 
of each color are returned to the urn, rather than 
just two balls of the same color as in SPU. 

4.2 Promoting M-sets using GPU 

To deal with the issue of sensitivity to the adverse 
effect of knowledge, MDK-LDA(b) is extended to 
MDK-LDA which employs the generalized Pólya 
urn (GPU) sampling scheme. 

As discussed in § 1, due to the problem of the 
adverse effect of knowledge, important words may 
suffer from the presence of rare words in the same 
m-set. This problem can be dealt with the very 
sampling scheme of the GPU model (Chen et al., 
2013a). Specifically, by adding additional 𝔸𝑠,𝑤′,𝑤 
balls of color 𝑠 into 𝑈𝑡𝑆  while keeping the drawn 
ball, we increase the proportion (probability) of 
seeing the m-set 𝑠 under topic 𝑡 and thus promote 
m-set 𝑠 as a whole. Consequently, each word in 𝑠 
is more likely to be emitted. We define 𝔸𝑠,𝑤′,𝑤 as: 

 𝔸𝑠,𝑤′,𝑤 = �
1           𝑤 = 𝑤′                                   
𝜎           𝑤 ∈ 𝑠,𝑤′ ∈ 𝑠,𝑤 ≠ 𝑤′        

 0           otherwise                             
 (3) 

The corresponding Gibbs sampler for MDK-LDA 
will be introduced in § 6.  

Hyperparameters 
𝛼, 𝛽, 𝛾 Dirichlet priors for 𝜃,  𝜑,  𝜂 
Latent & Visible Variables 

𝑧 Topic (Aspect) 
𝑠 M-set 
𝑤 Word 
𝜃 Document-Topic distribution 
𝜃𝑚 Topic distribution of document 𝑚 
𝜑 Topic-M-set distribution 
𝜑𝑡 M-set distribution of topic 𝑡 
𝜂 Topic-M-set-Word distribution 
𝜂𝑡,𝑠 Word distribution of topic 𝑡, m-set 𝑠 

Cardinalities 
𝑀 Number of documents 
𝑁𝑚 Number of words in document 𝑚 
𝑇 Number of topics 
𝑆 Number of m-sets 
𝑉 The vocabulary size 

Sampling & Count Notations 
𝑧𝑖 Topic assignment for word 𝑤𝑖  
𝑠𝑖  M-set assignment for word 𝑤𝑖  
𝒛−𝑖 Topic assignments for all words except 𝑤𝑖  
𝒔−𝑖 M-set assignments for all words except 𝑤𝑖  

𝑛𝑚,𝑡  
Number of times that topic 𝑡 is assigned 
to word tokens in document 𝑚 

𝑛𝑡,𝑠 
Number of times that m-set 𝑠 occurs un-
der topic 𝑡 

𝑛𝑡,𝑠,𝑤 Number of times that word 𝑤 appears in 
m-set 𝑠 under topic 𝑡 

Table 1. Meanings of symbols. 

 
 
 
 
 
 
 
 
 

Figure 1. Plate notation for MDK-LDA(b) and MC-LDA. 
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5 Incorporating C-sets 

5.1 Extended Generalized Pólya urn Model 

To handle the complex situation resulted from in-
corporating c-sets, we propose an Extended gener-
alized Pólya urn (E-GPU) model. Instead of 
involving only one urn as in SPU and GPU, E-
GPU model considers a set of urns in the sampling 
process. The E-GPU model allows a ball to be 
transferred from one urn to another, enabling mul-
ti-urn interactions. Thus, during sampling, the 
populations of several urns will evolve even if on-
ly one ball is drawn from one urn. This capability 
makes the E-GPU model more powerful as it 
models relationships among multiple urns. 

We define three sets of urns which will be used 
in the new sampling scheme in the proposed MC-
LDA model. The first set of urns is the topic urns 
𝑈𝑚∈{1…𝑀}
𝑇 , where each topic urn contains 𝑇 colors 

(topics) and each ball inside has a color 𝑡 ∈
 {1 …𝑇}. It corresponds to the document-topic dis-
tribution 𝜃 in Table 1. The second set of urns (m-
set urn 𝑈𝑡∈ {1…𝑇}

𝑆 )  corresponds to the topic-m-set 
distribution 𝜑 , with balls of colors (m-sets) 
𝑠 ∈  {1 … 𝑆}  in each m-set urn. The third set of 
urns is the word urns 𝑈𝑡,𝑠

𝑊 ,where 𝑡 ∈  {1 …𝑇} and 
𝑠 ∈  {1 … 𝑆} . Each ball inside a word urn has a 
color (word) 𝑤 ∈  {1 …𝑉}. The distribution 𝜂 can 
be reflected in this set of urns. 

5.2 Handling C-sets using E-GPU 

As MDK-LDA can only use m-sets but not c-sets, 
we now extend MDK-LDA to the MC-LDA model 
in order to exploit c-sets. As pointed out in § 1, c-
sets may be inconsistent with the corpus domain, 
which makes them considerably harder to deal 
with. To tackle the issue, we utilize the proposed 
E-GPU model and incorporate c-sets handling in-
side the E-GPU sampling scheme, which is also 
designed to enable automated adjustment of the 
number of topics based on domain knowledge. 

Based on the definition of c-set, each pair of 
words in a c-set cannot both have large probabili-
ties under the same topic. As the E-GPU model 
allows multi-urn interactions, when sampling a 
ball represents word 𝑤 from a word urn 𝑈𝑡,𝑠

𝑊 , we 
want to transfer the balls representing cannot-
words of 𝑤 (sharing a c-set with 𝑤) to other urns 
(see Step 3 a below). That is, decrease the proba-

bilities of those cannot-words under this topic 
while increasing their corresponding probabilities 
under some other topics. In order to correctly 
transfer a ball that represents word 𝑤, it should be 
transferred to an urn which has a higher proportion 
of 𝑤 and its related words (i.e., words sharing m-
sets with 𝑤). That is, we randomly sample an urn 
that has a higher proportion of any m-set of 𝑤 to 
transfer 𝑤 to (Step 3 b below). However, the situa-
tion becomes more involved when a c-set is not 
consistent with the corpus. For example, aspects 
price and amazon may be mixed under one topic 
(say 𝑡) in LDA. The user may want to separate 
them by providing a c-set {price, amazon}. In this 
case, according to LDA, word price has no topic 
with a higher proportion of it (and its related 
words) than topic 𝑡. To transfer it, we need to in-
crement the number of topics by 1 and then trans-
fer the word to this new topic urn (step 3 c below). 
Based on these ideas, we propose the E-GPU sam-
pling scheme for the MC-LDA model below: 

1. Sample a topic 𝑡 from 𝑈𝑚𝑇 , an m-set 𝑠 from 𝑈𝑡𝑆, and 
a word 𝑤  from 𝑈𝑡,𝑠

𝑊  sequentially, where 𝑚  is the 
𝑚th document. 

2. Record 𝑡, 𝑠 and 𝑤, put back two balls of color 𝑡 in-
to urn 𝑈𝑚𝑇 , one ball of color 𝑠 into urn 𝑈𝑡𝑆, and two 
balls of color 𝑤 into urn 𝑈𝑡,𝑠

𝑊 . Given the matrix 𝔸 
(in Equation 3), for each word 𝑤′ ∈ 𝑠, we put back 
𝔸𝑠,𝑤′ ,𝑤 number of balls of color 𝑠 into urn 𝑈𝑡𝑆. 

3.  For each word 𝑤𝑐 that shares a c-set with 𝑤: 
a) Sample an m-set 𝑠𝑐  from 𝑈𝑡𝑆  which satisfies 

𝑤𝑐 ∈ 𝑠𝑐 . Draw a ball 𝑏 of color 𝑤𝑐 (to be trans-
ferred) from 𝑈𝑡,𝑠𝑐

𝑊  and remove it from 𝑈𝑡,𝑠𝑐
𝑊 . The 

document of ball 𝑏 is denoted by 𝑚𝑐. If no ball 
of color 𝑤𝑐 can be drawn (i.e., there is no ball 
of color 𝑤𝑐 in 𝑈𝑡,𝑠𝑐

𝑊 ), skip steps b) to d). 
b) Produce an urn set {𝑈𝑡′,𝑠′

𝑊 } such that each urn in 
it satisfies the following conditions: 
i)   𝑡′ ≠ 𝑡, 𝑤𝑐 ∈ 𝑠′ 
ii) The proportion of balls of color 𝑠′ in 𝑈𝑡′

𝑆  is    
higher than that of balls of color 𝑠𝑐  in 𝑈𝑡𝑆. 

c) If {𝑈𝑡′,𝑠′
𝑊 } is not empty, randomly select one urn 

𝑈𝑡′,𝑠′
𝑊  from it. If {𝑈𝑡′,𝑠′

𝑊 } is empty, set 𝑇 = 𝑇 +
1, 𝑡′ = 𝑇, draw an m-set 𝑠′ from 𝑈𝑡′

𝑆  which sat-
isfies 𝑤𝑐 ∈ 𝑠′. Record 𝑠′ for step d). 

d) Put the ball 𝑏 drawn from Step a) into 𝑈𝑡′,𝑠′
𝑊 , as 

well as a ball of color 𝑠′ into 𝑈𝑡′
𝑆  and a ball of 

color 𝑡′ into 𝑈𝑚𝑐
𝑇 . 

Note that the E-GPU model cannot be reflected in 
the graphical model in Figure 1 as it is essentially 
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sampling scheme, and hence MC-LDA shares the 
same plate as MDK-LDA(b). 

6 Collapsed Gibbs Sampling 

We now describe the collapsed Gibbs sampler 
(Griffiths and Steyvers, 2004) with the detailed 
conditional distributions and algorithms for MC-
LDA. Inference of 𝑧 and 𝑠 can be computationally 
expensive due to the non-exchangeability of words 
under the E-GPU models. We take the approach of 
(Mimno et al., 2011) which approximates the true 
Gibbs sampling distribution by treating each word 
as if it were the last. 

For each word 𝑤𝑖 , we perform hierarchical 
sampling consisting of the following three steps 
(the detailed algorithms are given in Figures 2 and 
3): 

Step 1 (Lines 1-11 in Figure 2): We jointly 
sample a topic 𝑧𝑖  and an m-set 𝑠𝑖  (containing 𝑤𝑖) 
for 𝑤𝑖 , which gives us a blocked Gibbs sampler 
(Ishwaran and James, 2001), with the conditional 
probability given by: 
     𝑃(𝑧𝑖 = 𝑡, 𝑠𝑖 = 𝑠|𝒛−𝑖 , 𝒔−𝑖 ,𝒘,𝛼,𝛽, 𝛾,𝔸) ∝

     𝑛𝑚,𝑡
−𝑖 +𝛼

∑ �𝑛𝑚,𝑡′
−𝑖 +𝛼�𝑇

𝑡′=1
×

∑ ∑ 𝔸𝑠,𝑣′,𝑤′ ∙𝑛𝑡,𝑠,𝑣′
−𝑖𝑉

𝑣′=1
𝑉
𝑤′=1 +𝛽

∑ �∑ ∑ 𝔸𝑠′,𝑣′,𝑤′∙𝑛𝑡,𝑠′,𝑣′
−𝑖𝑉

𝑣′=1
𝑉
𝑤′=1 +𝛽�𝑆

𝑠′=1
×

     
𝑛𝑡,𝑠,𝑤𝑖
−𝑖 +𝛾𝑠

∑ �𝑛𝑡,𝑠,𝑣′
−𝑖 +𝛾𝑠�𝑉

𝑣′=1
  

 (4) 

This step is the same as the Gibbs sampling for the 
MDK-LDA model. 

Step 2 (lines 1-5 in Figure 3): For every cannot-
word (say 𝑤𝑐) of 𝑤𝑖, randomly pick an urn 𝑈𝑧𝑖,𝑠𝑐

𝑊  
from the urn set {𝑈𝑧𝑖,𝑠̅

𝑊 } where 𝑠̅ ∋ 𝑤𝑐. If there ex-
ists at least one ball of color 𝑤𝑐 in urn 𝑈𝑧𝑖,𝑠𝑐

𝑊 , we 
sample one ball (say 𝑏𝑐 ) of color 𝑤𝑐  from urn 
𝑈𝑧𝑖,𝑠𝑐
𝑊 , based on the following conditional distribu-

tion: 

     𝑃(𝑏 = 𝑏𝑐|𝒛, 𝒔,𝒘,𝛼,𝛽, 𝛾,𝔸) ∝ 𝑛𝑚𝑐,𝑡+𝛼

∑ �𝑛𝑚𝑐,𝑡′+𝛼�
𝑇
𝑡′=1

  (5) 

where 𝑚𝑐  denotes the document of the ball 𝑏𝑐  of 
color 𝑤𝑐. 

Step 3 (lines 6-12 in Figure 3): For each drawn 
ball 𝑏 from Step 2, resample a topic 𝑡 and an m-set 
𝑠  (containing 𝑤𝑐 ) based on the following condi-
tional distribution: 
𝑃(𝑧𝑏 = 𝑡, 𝑠𝑏 = 𝑠|𝒛−𝑏 , 𝒔−𝑏 ,𝒘,𝛼,𝛽, 𝛾,𝔸, 𝑏 = 𝑏𝑐)

∝ 𝐈
�0, 𝑚𝑎𝑥

𝑠′∋𝑤𝑐
(𝜑𝑡�𝑠′�)�

�𝜑𝑧𝑐(𝑠𝑐)� ×
𝑛𝑚,𝑡
−𝑏 + 𝛼

∑ �𝑛𝑚,𝑡′
−𝑏 + 𝛼�𝑇

𝑡′=1

×
∑ ∑ 𝔸𝑠,𝑣′,𝑤′ ∙ 𝑛𝑡,𝑠,𝑣′

−𝑏𝑉
𝑣′=1

𝑉
𝑤′=1 + 𝛽

∑ �∑ ∑ 𝔸𝑠′,𝑣′,𝑤′ ∙ 𝑛𝑡,𝑠′,𝑣′
−𝑏𝑉

𝑣′=1
𝑉
𝑤′=1 + 𝛽�𝑆

𝑠′=1

×
𝑛𝑡,𝑠,𝑤𝑏
−𝑏 + 𝛾𝑠

∑ �𝑛𝑡,𝑠,𝑣′
−𝑏 + 𝛾𝑠�𝑉

𝑣′=1
 

(6) 

where 𝑧𝑐  (same as 𝑧𝑖  in Figure 3) and 𝑠𝑐  are the 
original topic and m-set assignments. The super-
script −𝑏 denotes the counts excluding the original 

Algorithm 1. GibbsSampling(𝑚, 𝑤𝑖 , 𝔸, 𝜇, 𝛺) 
Input: Document 𝑚, Word 𝑤𝑖 , Matrix 𝔸, 
           Transfer cannot-word flag 𝜇, 
           A set of valid topics 𝛺 to be assigned to 𝑤𝑖  
1:   𝑛𝑚,𝑧𝑖 ← 𝑛𝑚,𝑧𝑖 − 1; 
2:   for each word 𝑤′ in 𝑠𝑖 do 
3:       𝑛𝑧𝑖,𝑠𝑖 ← 𝑛𝑧𝑖,𝑠𝑖 − 𝔸𝑠𝑖,𝑤′ ,𝑤𝑖; 
4:   end for 
5:   𝑛𝑧𝑖,𝑠𝑖,𝑤𝑖 ← 𝑛𝑧𝑖,𝑠𝑖,𝑤𝑖 − 1; 
6:   Jointly sample 𝑧𝑖 ∈ 𝛺 and 𝑠𝑖 ∋ 𝑤𝑖  using Equation 2; 
7:   𝑛𝑚,𝑧𝑖 ← 𝑛𝑚,𝑧𝑖 + 1; 
8:   for each word 𝑤′ in 𝑠𝑖 do 
9:       𝑛𝑧𝑖,𝑠𝑖 ← 𝑛𝑧𝑖,𝑠𝑖 + 𝔸𝑠𝑖,𝑤′ ,𝑤𝑖; 
10:  end for 
11:  𝑛𝑧𝑖,𝑠𝑖,𝑤𝑖 ← 𝑛𝑧𝑖,𝑠𝑖,𝑤𝑖 + 1; 
12:  if 𝜇 is true then 
13:      TransferCannotWords(𝑤𝑖 , 𝑧𝑖); 
14:  end if 

Figure 2. Gibbs sampling for MC-LDA. 

Algorithm 2.TransferCannotWords(𝑤𝑖 , 𝑧𝑖) 
Input: Word 𝑤𝑖 , Topic 𝑧𝑖, 
1:   for each cannot-word 𝑤𝑐 of 𝑤𝑖  do 
2:       Randomly select an m-set 𝑠𝑐  from all m-sets of 𝑤𝑐; 
3:       Build a set 𝛹 containing all the instances of 𝑤𝑐 

from the corpus with topic and m-set assign-
ments being 𝑧𝑖 and 𝑠𝑐; 

4:       if 𝛹 is not empty then 
5:            Draw an instance of 𝑤𝑐 from 𝛹 (denoting the 

document of this instance by 𝑚𝑐) using 
Equation 5; 

6:            Generate a topic set 𝛺′ that each topic 𝑡′ inside 
satisfies 𝑚𝑎𝑥𝑠′∋𝑤𝑐(𝜑𝑡′(𝑠′ )) > 𝜑𝑧𝑖(𝑠𝑐). 

7:            if 𝛺′ is not empty then 
8:                GibbsSampling(𝑚𝑐, 𝑤𝑐, 𝔸, false, 𝛺′); 
9:            else 
10:              𝐷𝑢𝑚𝑚𝑦 = 𝑇 + 1; // 𝑇 is #Topics. 
11:               GibbsSampling(𝑚𝑐, 𝑤𝑐, 𝔸, false, {𝐷𝑢𝑚𝑚𝑦}); 
12:           end if 
13:      end if 
14:  end for 

Figure 3. Transfer cannot-words in Gibbs sampling. 
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assignments. 𝐈()  is an indicator function, which 
restricts the ball to be transferred only to an urn 
that contains a higher proportion of its m-set. 
When no topic 𝑡 can be successfully sampled and 
the current sweep (iteration) of Gibbs sampling 
has the same number of topic (𝑇) as the previous 
sweep, we increment 𝑇 by 1. And then assign 𝑇 to 
𝑧𝑏 . The counts and parameters are also updated 
accordingly. 

7 Experiments 

We now evaluate the proposed MC-LDA model 
and compare it with state-of-the-art existing mod-
els. Two unsupervised baseline models that we 
compare with are:  
• LDA: LDA is the basic unsupervised topic 

model (Blei et al., 2003). 
• LDA-GPU: LDA with GPU (Mimno et al., 

2011). Specifically, LDA-GPU applies GPU in 
LDA using co-document frequency.  
As for knowledge-based models, we focus on 

comparing with DF-LDA model (Andrzejewski et 
al., 2009), which is perhaps the best known 
knowledge-based model and it allows both must-
links and cannot-links.  

For a comprehensive evaluation, we consider 
the following variations of MC-LDA and DF-LDA:  
• MC-LDA: MC-LDA with both m-sets and c-

sets. This is the newly proposed model.   
• M-LDA: MC-LDA with m-sets only. This is 

the MDK-LDA model in (Chen et al., 2013a). 
• DF-M: DF-LDA with must-links only. 
• DF-MC: DF-LDA with both must-links and 

cannot-links. This is the full DF-LDA model in 
(Andrzejewski et al., 2009).  

We do not compare with seeded models in (Burns 
et al., 2012; Jagarlamudi et al., 2012; Lu et al., 
2011; Mukherjee and Liu, 2012) as seed sets are 
special cases of must-links and they also do not 
allow c-sets (or cannot-links). 

7.1 Datasets and Settings 

Datasets: We use product reviews from four do-
mains (types of products) from Amazon.com for 
evaluation. The corpus statistics are shown in Ta-
ble 2 (columns 2 and 3). The domains are “Cam-
era,” “Food,” “Computer,” and “Care” (short for 
“Personal Care”). We have made the datasets pub-
lically available at the website of the first author. 

Pre-processing: We ran the Stanford Core NLP 
Tools1 to perform sentence detection and lemmati-
zation. Punctuations, stopwords 2 , numbers and 
words appearing less than 5 times in each corpus 
were removed. The domain name was also re-
moved, e.g., word camera in the domain “Camera”, 
since it co-occurs with most words in the corpus, 
leading to high similarity among topics/aspects. 
Sentences as documents: As noted in (Titov and 
McDonald, 2008), when standard topic models are 
applied to reviews as documents, they tend to pro-
duce topics that correspond to global properties of 
products (e.g., brand name), which make topics 
overlapping with each other. The reason is that all 
reviews of the same type of products discuss about 
the same aspects of these products. Only the brand 
names and product names are different. Thus, us-
ing individual reviews for modeling is not very 
effective. Although there are approaches which 
model sentences (Jo and Oh, 2011; Titov and 
McDonald, 2008), we take the approach of (Brody 
and Elhadad, 2010), dividing each review into sen-
tences and treating each sentence as an independ-
ent document. Sentences can be used by all three 
baselines without any change to their models. Alt-
hough the relationships between sentences are lost, 
the data is fair to all models. 
Parameter settings: For all models, posterior in-
ference was drawn using 1000 Gibbs iterations 
with an initial burn-in of 100 iterations. For all 
models, we set 𝛼 = 1 and 𝛽 = 0.1. We found that 
small changes of 𝛼 and 𝛽 did not affect the results 
much, which was also reported in (Jo and Oh, 
2011) who also used online reviews. For the num-
ber of topics T, we tried different values (see §7.2) 
as it is hard to know the exact number of topics. 
While non-parametric Bayesian approaches (Teh 
et al., 2006) aim to estimate 𝑇  from the corpus, 
they are often sensitive to the hyper-parameters 
(Heinrich, 2009). 

1 http://nlp.stanford.edu/software/corenlp.shtml 
2 http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list 

Domain #Reviews #Sentences #M-sets #C-sets 
Camera 500 5171 173 18 

Food 500 2416 85 10 
Computer 500 2864 92 6 

Care 500 3008 119 13 
Average 500 3116 103 9 

Table 2. Corpus statistics with #m-sets and #c-sets 
having at least two words. 
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For DF-LDA, we followed (Andrzejewski et al., 
2009) to generate must-links and cannot-links 
from our domain knowledge. We then ran DF-
LDA3 while keeping its parameters as proposed in 
(Andrzejewski et al., 2009) (we also experimented 
with different parameter settings but they did not 
produce better results). For our proposed model, 
we estimated the thresholds using cross validation 
in our pilot experiments. Estimated value 𝜎 = 0.2 
in equation 3 yielded good results. The second 
stage (steps 2 and 3) of the Gibbs sampler for MC-
LDA (for dealing with c-sets) is applied after 
burn-in phrase. 
Domain knowledge: User knowledge about a do-
main can vary a great deal. Different users may 
have very different knowledge. To reduce this var-
iance for a more reliable evaluation, instead of 
asking a human user to provide m-sets, we obtain 
the synonym sets and the antonym sets of each 
word that is a noun or adjective (as words of other 
parts-of-speech usually do not indicate aspects) 
from WordNet (Miller, 1995) and manually verify 
the words in those sets for the domain. Note that if 
a word 𝑤  is not provided with any m-set, it is 
treated as a singleton m-set {𝑤}. For c-sets, we ran 
LDA in each domain and provide c-sets based on 
the wrong results of LDA as in (Andrzejewski et 
al., 2009). Then, the knowledge is provided to 
each model in the format required by each model. 
The numbers of m-sets and c-sets are listed in col-
umns 4 and 5 of Table 2. Duplicate sets have been 
removed. 

7.2 Objective Evaluation 

In this section, we evaluate our proposed MC-

3 http://pages.cs.wisc.edu/~andrzeje/research/df_lda.html 

LDA model objectively. Topic models are often 
evaluated using perplexity on held-out test data. 
However, the perplexity metric does not reflect the 
semantic coherence of individual topics learned by 
a topic model (Newman et al., 2010). Recent re-
search has shown potential issues with perplexity 
as a measure: (Chang et al., 2009) suggested that 
the perplexity can sometimes be contrary to human 
judgments. Also, perplexity does not really reflect 
our goal of finding coherent aspects with accurate 
semantic clustering. It only provides a measure of 
how well the model fits the data. 

The Topic Coherence metric (Mimno et al., 
2011) (also called the “UMass” measure (Stevens 
and Buttler, 2012)) was proposed as a better alter-
native for assessing topic quality. This metric re-
lies upon word co-occurrence statistics within the 
documents, and does not depend on external re-
sources or human labeling. It was shown that topic 
coherence is highly consistent with human expert 
labeling by Mimno et al. (2011). Higher topic co-
herence score indicates higher quality of topics, 
i.e., better topic interpretability. 
Effects of Number of Topics 
Since our proposed models and the baseline mod-
els are all parametric models, we first compare 
each model given different numbers of topics. 
Figure 4 shows the average Topic Coherence score 
of each model given different numbers of topics. 
From Figure 4, we note the following: 
1. MC-LDA consistently achieves the highest To-

pic Coherence scores given different numbers 
of topics. M-LDA also works better than the 
other baseline models, but not as well as MC-
LDA. This shows that both m-sets and c-sets 
are beneficial in producing coherent aspects. 

2. DF-LDA variants, DF-M and DF-MC, do not 
perform well due to the shortcomings discussed 

 
Figure 4. Avg. Topic Coherence score of each model 
across different number of topics. 

 
Figure 5. Avg. Topic Coherence score for different 
proportions of knowledge. 
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in § 1. It is slightly better than LDA when 𝑇 = 
15, but worse than LDA in other cases. We will 
further analyze the effects of knowledge on 
MC-LDA and DF-LDA shortly. 

3. LDA-GPU does not perform well due to its use 
of co-document frequency. As frequent words 
usually have high co-document frequency with 
many other words, the frequent words are 
ranked top in many topics. This shows that the 
guidance using domain knowledge is more ef-
fective than using co-document frequency. 

In terms of improvements, MC-LDA outperforms 
M-LDA significantly ( 𝑝 < 0.03 ) and all other 
baseline models significantly (𝑝 < 0.01) based on 
a paired t-test. It is important to note that by no 
means do we say that LDA-GPU and DF-LDA are 
not effective. We only say that for the task of as-
pect extraction and leveraging domain knowledge, 
these models do not generate as coherent aspects 
as ours because of their shortcomings discussed in 
§ 1. In general, with more topics, the Topic Coher-
ence scores increase. We found that when 𝑇  is 
larger than 15, aspects found by each model be-
came more and more overlapping, with several 
aspects expressing the same features of products. 

So we fix 𝑇 = 15 in the subsequent experiments.  
Effects of Knowledge 
To further analyze the effects of knowledge on 
models, in each domain, we randomly sampled 
different proportions of knowledge (i.e., different 
numbers of m-sets/must-links and c-sets/cannot-
links) as shown in Figure 5, where 0% means no 
knowledge (same as LDA and LDA-GPU, which 
do not incorporate knowledge) and 100% means 
all knowledge. From Figure 5, we see that MC-
LDA and M-LDA both perform consistently better 
than DF-MC and DF-M across different propor-
tions of knowledge. With the increasing number of 
knowledge sets, MC-LDA and M-LDA achieve 
higher Topic Coherence scores (i.e., produce more 
coherent aspects). In general, MC-LDA performs 
the best. For both DF-MC and DF-M, the Topic 
Coherence score increases from 0% to 25% 
knowledge, but decreases with more knowledge 
(50% and 100%). This shows that with limited 
amount of knowledge, the shortcomings of DF-
LDA are not very obvious, but with more 
knowledge, these issues become more serious and 
thus degrade the performance of DF-LDA.  

7.3 Human Evaluation 

Since our aim is to make topics more interpretable 
and conformable to human judgments, we worked 
with two judges who are familiar with Amazon 
products and reviews to evaluate the models sub-
jectively. Since topics from topic models are rank-
ings based on word probability and we do not 
know the number of correct topical words, a natu-
ral way to evaluate these rankings is to use Preci-
sion@n (or p@n) which was also used in 
(Mukherjee and Liu, 2012; Zhao et al., 2010), 
where n is the rank position. We give p@n for n = 
5 and 10. There are two steps in human evaluation: 
topic labeling and word labeling. 

Topic Labeling: We followed the instructions in 
(Mimno et al., 2011) and asked the judges to label 
each topic as good or bad. Each topic was present-
ed as a list of 10 most probable words in descend-
ing order of their probabilities under that topic. 
The models which generated the topics for label-
ing were obscure to the judges. In general, each 
topic was annotated as good if it had more than 
half of its words coherently related to each other 
representing a semantic concept together; other-
wise bad. Agreement of human judges on topic 

 
Figure 6. Avg. p@5 of good topics for each model 
across different domains. 
The models of each bar from left to rights are MC-LDA, M-
LDA, LDA, DF-M, DF-MC, LDA-GPU. (Same for Figure 7) 

 
Figure 7. Avg. p@10 of good topics for each model 
across different domains. 
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labeling using Cohen’s Kappa yielded a score of 
0.92 indicating almost perfect agreements accord-
ing to the scale in (Landis and Koch, 1977). This 
is reasonable as topic labeling is an easy task and 
semantic coherence can be judged well by humans. 

Word Labeling: After topic labeling, we chose 
the topics, which were labeled as good by both 
judges, as good topics. Then, we asked the two 
judges to label each word of the top 10 words in 
these good topics. Each word was annotated as 
correct if it was coherently related to the concept 
represented by the topic; otherwise incorrect. 
Since judges already had the conception of each 
topic in mind when they were labeling topics, la-
beling each word was not difficult which explains 
the high Kappa score for this labeling task (score = 
0.892). 

Quantitative Results 
Figures 6 and 7 give the average p@5 and p@10 
of all good topics over all four domains. The num-
bers of good topics generated by each model are 
shown in Table 3. We can see that the human 
evaluation results are highly consistent with Topic 
Coherence results in §7.2. MC-LDA improves 
over M-LDA significantly (𝑝 < 0.01) and both 
MC-LDA and M-LDA outperforms the other base-
line models significantly ( 𝑝 < 0.005 ) using a 
paired t-test. We also found that when the domain 
knowledge is simple with one word usually ex-
pressing only one meaning/sense (e.g., in the do-
main “Computer”), DF-LDA performs better than 
LDA. In other domains, it performs similarly or 
worse than LDA. Again, it shows that DF-LDA is 
not effective to handle complex knowledge, which 
is consistent with the results of effects of 
knowledge on DF-LDA in §7.2. 

Qualitative Results 
We now show some qualitative results to give an 
intuitive feeling of the outputs from different mod-
els. There are a large number of aspects that are 
dramatically improved by MC-LDA. Due to space 
constraints, we only show some examples. To fur-
ther focus, we just show some results of MC-LDA, 
M-LDA and LDA. The results from LDA-GPU 
and DF-LDA were inferior and hard for the human 
judges to match them with aspects found by the 
other models for qualitative comparison. 

Table 4 shows three aspects Amazon, Price, 
Battery generated by each model in the domain 

“Camera”. Both LDA and M-LDA can only dis-
cover two aspects but M-LDA has a higher aver-
age precision. Given the c-set {amazon, price, 
battery}, MC-LDA can discover all three aspects 
with the highest average precision. 

8 Conclusion  

This paper proposed a new model to exploit do-
main knowledge in the form of m-sets and c-sets 
to generate coherent aspects (topics) from online 
reviews. The paper first identified and character-
ized some shortcomings of the existing 
knowledge-based models. A new model called 
MC-LDA was then proposed, whose sampling 
scheme was based on the proposed Extended GPU 
(E-GPU) model enabling multi-urn interactions. A 
comprehensive evaluation using real-life online 
reviews from multiple domains shows that MC-
LDA outperforms the state-of-the-art models sig-
nificantly and discovers aspects with high seman-
tic coherence. In our future work, we plan to 
incorporate aspect specific sentiments in the MC-
LDA model. 
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#Good 
Topics MC-LDA M-LDA LDA DF-M DF-MC LDA-GPU 

Camera 15/18 12 11 9 7 3 
Food 8/16 7 7 5 4 5 

Computer 12/16 10 7 9 6 4 
Care 11/16 10 9 10 9 3 

Average 11.5/16.5 9.75/15 8.5/15 8.25/15 6.5/15 3.75/15 

Table 3. Number of good topics of each model.             
In x/y, x is the number of discovered good topics, and y is the 
total number of topics generated.  

MC-LDA M-LDA LDA 
Amazon Price Battery Price Battery Amazon Battery 
review price battery price battery card battery 
amazon perform life lot review day screen 
software money day money amazon amazon life 
customer expensive extra big life memory lcd 

month cost charger expensive extra product water 
support week water point day sd usb 

warranty cheap time cost power week cable 
package purchase power photo time month case 
product deal hour dot support item charger 

hardware product aa purchase customer class hour 

Table 4. Example aspects in the domain “Camera”; 
errors are marked in red/italic. 
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Abstract

We introduce dependency relations into deci-
phering foreign languages and show that de-
pendency relations help improve the state-of-
the-art deciphering accuracy by over 500%.
We learn a translation lexicon from large
amounts of genuinely non parallel data with
decipherment to improve a phrase-based ma-
chine translation system trained with limited
parallel data. In experiments, we observe
BLEU gains of 1.2 to 1.8 across three different
test sets.

1 Introduction

State-of-the-art machine translation (MT) systems
apply statistical techniques to learn translation rules
from large amounts of parallel data. However, par-
allel data is limited for many language pairs and do-
mains.

In general, it is easier to obtain non parallel data.
The ability to build a machine translation system
using monolingual data could alleviate problems
caused by insufficient parallel data. Towards build-
ing a machine translation system without a paral-
lel corpus, Klementiev et al. (2012) use non paral-
lel data to estimate parameters for a large scale MT
system. Other work tries to learn full MT systems
using only non parallel data through decipherment
(Ravi and Knight, 2011; Ravi, 2013). However, the
performance of such systems is poor compared with
those trained with parallel data.

Given that we often have some parallel data,
it is more practical to improve a translation sys-
tem trained on parallel corpora with non parallel

Figure 1: Improving machine translation with deci-
pherment (Grey boxes represent new data and process).
Mono: monolingual; LM: language model; LEX: trans-
lation lexicon; TM: translation model.

data. Dou and Knight (2012) successfully apply
decipherment to learn a domain specific translation
lexicon from monolingual data to improve out-of-
domain machine translation. Although their ap-
proach works well for Spanish/French, they do not
show whether their approach works for other lan-
guage pairs. Moreover, the non parallel data used in
their experiments is created from a parallel corpus.
Such highly comparable data is difficult to obtain in
reality.

In this work, we improve previous work by Dou
and Knight (2012) using genuinely non parallel data,
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and propose a framework to improve a machine
translation system trained with a small amount of
parallel data. As shown in Figure 1, we use a lexi-
con learned from decipherment to improve transla-
tions of both observed and out-of-vocabulary (OOV)
words. The main contributions of this work are:

• We extract bigrams based on dependency re-
lations for decipherment, which improves the
state-of-the-art deciphering accuracy by over
500%.

• We demonstrate how to improve translations
of words observed in parallel data by us-
ing a translation lexicon obtained from large
amounts of non parallel data.

• We show that decipherment is able to find cor-
rect translations for OOV words.

• We use a translation lexicon learned by de-
ciphering large amounts of non parallel data
to improve a phrase-based MT system trained
with limited amounts of parallel data. In ex-
periments, we observe 1.2 to 1.8 BLEU gains
across three different test sets.

2 Previous Work

Motivated by the idea that a translation lexicon in-
duced from non parallel data can be applied to
MT, a variety of prior research has tried to build a
translation lexicon from non parallel or compara-
ble data (Rapp, 1995; Fung and Yee, 1998; Koehn
and Knight, 2002; Haghighi et al., 2008; Garera et
al., 2009; Bergsma and Van Durme, 2011; Daumé
and Jagarlamudi, 2011; Irvine and Callison-Burch,
2013b; Irvine and Callison-Burch, 2013a). Al-
though previous work is able to build a translation
lexicon without parallel data, little has used the lex-
icon to improve machine translation.

There has been increasing interest in learning
translation lexicons from non parallel data with de-
cipherment techniques (Ravi and Knight, 2011; Dou
and Knight, 2012; Nuhn et al., 2012). Decipher-
ment views one language as a cipher for another and
learns a translation lexicon that produces a good de-
cipherment.

In an effort to build a MT system without a paral-
lel corpus, Ravi and Knight (2011) view Spanish as a

cipher for English and apply Bayesian learning to di-
rectly decipher Spanish into English. Unfortunately,
their approach can only work on small data with lim-
ited vocabulary. Dou and Knight (2012) propose two
techniques to make Bayesian decipherment scalable.

First, unlike Ravi and Knight (2011), who deci-
pher whole sentences, Dou and Knight (2012) deci-
pher bigrams. Reducing a ciphertext to a set of bi-
grams with counts significantly reduces the amount
of cipher data. According to Dou and Knight (2012),
a ciphertext bigram F is generated through the fol-
lowing generative story:

• Generate a sequence of two plaintext tokens
e1e2 with probability P (e1e2) given by a lan-
guage model built from large numbers of plain-
text bigrams.

• Substitute e1 with f1 and e2 with f2 with prob-
ability P (f1|e1) · P (f2|e2).

The probability of any cipher bigram F is:

P (F ) =
∑
e1e2

P (e1e2)
2∏

i=1

P (fi|ei)

Given a corpus of N cipher bigrams F1...FN , the
probability of the corpus is:

P (corpus) =

N∏
j=1

P (Fj)

Given a plaintext bigram language model,
the goal is to manipulate P (f |e) to maximize
P (corpus). Theoretically, one can directly apply
EM to solve the problem (Knight et al., 2006). How-
ever, EM has time complexity O(N · V 2

e ) and space
complexity O(Vf · Ve), where Vf , Ve are the sizes
of ciphertext and plaintext vocabularies respectively,
and N is the number of cipher bigrams.

Ravi and Knight (2011) apply Bayesian learning
to reduce the space complexity. Instead of esti-
mating probabilities P (f |e), Bayesian learning tries
to draw samples from plaintext sequences given ci-
phertext bigrams. During sampling, the probability
of any possible plaintext sample e1e2 is given as:

Psample(e1e2) = P (e1e2)
2∏

i=1

Pbayes(fi|ei)
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misión de naciones unidas en oriente medio
misión de misión naciones
de naciones naciones unidas
naciones unidas misión en
unidas en en oriente
en oriente oriente medio
oriente medio

Table 1: Comparison of adjacent bigrams (left) and de-
pendency bigrams (right) extracted from the same Span-
ish text

with Pbayes(fi|ei) defined as:

Pbayes(fi|ei) =
αP0(fi|ei) + count(fi, ei)

α+ count(ei)

where P0 is a base distribution, and α is a parameter
that controls how much we trust P0. count(fi, ei)
and count(ei) record the number of times fi, ei and
ei appear in previously generated samples respec-
tively.

At the end of sampling, P (fi|ei) is estimated by:

P (fi|ei) =
count(fi, ei)

count(ei)

However, Bayesian decipherment is still very
slow with Gibbs sampling (Geman and Geman,
1987), as each sampling step requires considering
Ve possibilities. Dou and Knight (2012) solve the
problem by introducing slice sampling (Neal, 2000)
to Bayesian decipherment.

3 From Adjacent Bigrams to Dependency
Bigrams

A major limitation of work by Dou and Knight
(2012) is their monotonic generative story for deci-
phering adjacent bigrams. While the generation pro-
cess works well for deciphering similar languages
(e.g. Spanish and French) without considering re-
ordering, it does not work well for languages that
are more different in grammar and word order (e.g.
Spanish and English). In this section, we first look
at why adjacent bigrams are bad for decipherment.
Then we describe how to use syntax to solve the
problem.

The left column in Table 1 contains adjacent bi-
grams extracted from the Spanish phrase “misión

de naciones unidas en oriente medio”. The cor-
rect decipherment for the bigram “naciones unidas”
should be “united nations”. Since the deciphering
model described by Dou and Knight (2012) does
not consider word reordering, it needs to decipher
the bigram into “nations united” in order to get
the right word translations “naciones”→“nations”
and “unidas”→“united”. However, the English lan-
guage model used for decipherment is built from En-
glish adjacent bigrams, so it strongly disprefers “na-
tions united” and is not likely to produce a sensi-
ble decipherment for “naciones unidas”. The Span-
ish bigram “oriente medio” poses the same prob-
lem. Thus, without considering word reordering, the
model described by Dou and Knight (2012) is not a
good fit for deciphering Spanish into English.

However, if we extract bigrams based on depen-
dency relations for both languages, the model fits
better. To extract such bigrams, we first use de-
pendency parsers to parse both languages, and ex-
tract bigrams by putting head word first, followed
by the modifier.1 We call these dependency bi-
grams. The right column in Table 1 lists exam-
ples of Spanish dependency bigrams extracted from
the same Spanish phrase. With a language model
built with English dependency bigrams, the same
model used for deciphering adjacent bigrams is
able to decipher Spanish dependency bigram “na-
ciones(head) unidas(modifier)” into “nations(head)
united(modifier)”.

We might instead propose to consider word re-
ordering when deciphering adjacent bigrams (e.g.
add an operation to swap tokens in a bigram). How-
ever, using dependency bigrams has the following
advantages:

• First, using dependency bigrams avoids com-
plicating the model, keeping deciphering effi-
cient and scalable.

• Second, it addresses the problem of long dis-
tance reordering, which can not be modeled by
swapping tokens in bigrams.

Furthermore, using dependency bigrams al-
lows us to use dependency types to further

1As use of “del” and “de” in Spanish is much more frequent
than the use of “of” in English, we skip those words by using
their head words as new heads if any of them serves as a head.
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improve decipherment. Suppose we have a
Spanish dependency bigram “acceptó(verb) solici-
tud(object)”. Then all of the following English de-
pendency bigrams are possible decipherments: “ac-
cepted(verb) UN(subject)”, “accepted(verb) govern-
ment(subject)”, “accepted(verb) request(object)”.
However, if we know the type of the Spanish depen-
dency bigram and use a language model built with
the same type in English, the only possible decipher-
ment is “accepted(verb) request(object)”. If we limit
the search space, a system is more likely to find a
better decipherment.

4 Deciphering Spanish Gigaword

In this section, we compare dependency bigrams
with adjacent bigrams for deciphering Spanish into
English.

4.1 Data

We use the Gigaword corpus for our decipherment
experiments. The corpus contains news articles from
different news agencies and is available in Spanish
and English. We use only the AFP (Agence France-
Presse) section of the corpus in decipherment ex-
periments. We tokenize the corpus using tools that
come with the Europarl corpus (Koehn, 2005). To
shorten the time required for running different sys-
tems on large amounts of data, we keep only the top
5000 most frequent word types in both languages
and replace all other word types with UNK. We also
throw away lines with more than 40 tokens, as the
Spanish parser (Bohnet, 2010) we use is slow when
processing long sentences. After preprocessing, the
corpus contains approximately 440 million tokens in
Spanish and 350 million tokens in English. To ob-
tain dependency bigrams, we use the Bohnet parsers
(Bohnet, 2010) to parse both the Spanish and En-
glish version of the corpus.

4.2 Systems

Three systems are evaluated in the experiments. We
implement a baseline system, Adjacent, based on
Dou and Knight (2012). The baseline system col-
lects adjacent bigrams and their counts from Spanish
and English texts. It then builds an English bigram
language model using the English adjacent bigrams
and uses it to decipher the Spanish adjacent bigrams.

Dependency Types
Group 1 Verb/Subject
Group 2 Preposition/Preposition-Object,

Noun/Noun-Modifier
Group 3 Verb/Noun-Object

Table 2: Dependency relations divided into three groups

We build the second system, Dependency, using
dependency bigrams for decipherment. As the two
parsers do not output the same set of dependency re-
lations, we cannot extract all types of dependency
bigrams. Instead, we select a subset of dependency
bigrams whose dependency relations are shared by
the two parser outputs. The selected dependency re-
lations are: Verb/Subject, Verb/Noun-Object, Prepo-
sition/Object, Noun/Modifier. Decipherment runs
the same way as in the baseline system.

The third system, DepType, is built using both
dependent bigrams and their dependency types. We
first extract dependency bigrams for both languages,
then group them based on their dependency types.
As both parsers treat noun phrases dependent on
“del”, “de”, and “of” as prepositional phrases, we
choose to divide the dependency bigrams into 3
groups and list them in Table 2. A separate language
model is built for each group of English dependency
bigrams and used to decipher the group of Spanish
dependency bigrams with same dependency type.

For all the systems, language models are built us-
ing the SRILM toolkit (Stolcke, 2002). For the Ad-
jacent system, we use Good-Turing smoothing. For
the other systems, we use a mix of Witten-Bell and
Good-Turing smoothing.

4.3 Sampling Procedure
In experiments, we find that the iterative sam-
pling method described by Dou and Knight (2012)
helps improve deciphering accuracy. We also find
that combining results from different decipherments
helps find more correct translations at each iteration.
Thus, instead of using a single sampling process, we
use 10 different sampling processes at each iteration.
The details of the new sampling procedure are pro-
vided here:

• Extract dependency bigrams from parsing out-
puts and collect their counts.
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• Keep bigrams whose counts are greater than a
threshold α. Then start 10 different randomly
seeded and initialized sampling processes. Per-
form sampling.

• At the end of sampling, extract word transla-
tion pairs (f, e) from the final sample. Esti-
mate translation probabilities P (e|f) for each
pair. Then construct a translation table by keep-
ing translation pairs (f, e) seen in more than
one decipherment and use the average P (e|f)
as the new translation probability.

• Lower the threshold α to include more bigrams
into the sampling process. Start 10 differ-
ent sampling processes again and initialize the
first sample using the translation pairs obtained
from the previous step (for each Spanish token
f, choose an English token e whose P (e|f) is
the highest). Perform sampling again.

• Repeat until α = 1.

4.4 Deciphering Accuracy
We choose the first 1000 lines of the monolingual
Spanish texts as our test data. The data contains
37,505 tokens and 6556 word types. We use type ac-
curacy as our evaluation metric: Given a word type
f in Spanish, we find a translation pair (f, e) with
the highest average P (e|f) from the translation ta-
ble learned through decipherment. If the translation
pair (f, e) can also be found in a gold translation
lexicon Tgold, we treat the word type f as correctly
deciphered. Let |C| be the number of word types
correctly deciphered, and |V | be the total number of
word types evaluated. We define type accuracy as
|C|
|V | .

To create Tgold, we use GIZA (Och and Ney,
2003) to align a small amount of Spanish-English
parallel text (1 million tokens for each language),
and use the lexicon derived from the alignment as
our gold translation lexicon. Tgold contains a subset
of 4408 types seen in the test data, among which,
2878 are also top 5000 frequent word types.

4.5 Results
During decipherment, we gradually increase the size
of Spanish texts and compare the learning curves of
three deciphering systems in Figure 2.

Figure 2: Learning curves for three decipherment sys-
tems. Compared with Adjacent (previous state of the art),
systems that use dependency bigrams improve decipher-
ing accuracy by over 500%.

With 100k tokens of Spanish text, the perfor-
mance of the three systems are similar. However, the
learning curve of Adjacent plateaus quickly, while
those of the dependency based systems soar up as
more data becomes available and still rise sharply
when the size of Spanish texts increases to 10 mil-
lion tokens, where the DepType system improves
deciphering accuracy of the Adjacent system from
4.2% to 24.6%. In the end, with 100 million tokens,
the accuracy of the DepType system rises to 27.0%.
The accuracy is even higher (41%), when evaluated
against the top 5000 frequent word types only.

5 Improving Machine Translation with
Decipherment

In this section, we demonstrate how to use a trans-
lation lexicon learned by deciphering large amounts
of in-domain (news) monolingual data to improve
a phrase-based machine translation system trained
with limited out-of-domain (politics) parallel data.

5.1 Data
We use approximately one million tokens of the Eu-
roparl corpus (Koehn, 2005) as our small out-of-
domain parallel training data and Gigaword as our
large in-domain monolingual training data to build
language models and a new translation lexicon to
improve a phrase-based MT baseline system. For
tuning and testing, we use the development data
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Parallel
Spanish English

Europarl 1.1 million 1.0 million
Tune-2008 52.6k 49.8k
Test-2009 68.1k 65.6k
Test-2010 65.5k 61.9k
Test-2011 79.4k 74.7k

Non Parallel
Spanish English

Gigaword 894 million 940 million

Table 3: Size of training, tuning, and testing data in num-
ber of tokens

from the NAACL 2012 workshop on statistical ma-
chine translation. The data contains test data in the
news domain from the 2008, 2009, 2010, and 2011
workshops. We use the 2008 test data for tuning and
the rest for testing. The sizes of the training, tuning,
and testing sets are listed in Table 3.

5.2 Systems

5.2.1 Baseline Machine Translation System
We build a state-of-the-art phrase-based MT sys-

tem, PBMT, using Moses (Koehn et al., 2007).
PBMT has 3 models: a translation model, a distor-
tion model, and a language model. We build a 5-
gram language model using the AFP section of the
English Gigaword. We train the other models using
the Europarl corpus. By default, Moses uses the fol-
lowing 8 features to score a candidate translation:

• direct and inverse translation probabilities

• direct and inverse lexical weighting

• a language model score

• a distortion score

• phrase penalty

• word penalty

The 8 features have weights adjusted on the tun-
ing data using minimum error rate training (MERT)
(Och, 2003). PBMT has a phrase table Tphrase.
During decoding, Moses copies out-of-vocabulary
(OOV) words, which can not be found in Tphrase,

directly to output. In the following sections, we de-
scribe how to use a translation lexicon learned from
large amounts of non parallel data to improve trans-
lation of OOV words, as well as words observed in
Tphrase.

5.2.2 Decipherment for Machine Translation
To achieve better decipherment, we:

• Increase the size of Spanish ciphertext from
100 million tokens to 894 million tokens.

• Keep top 50k instead of top 5k most frequent
word types of the ciphertext.

• Instead of seeding the sampling process ran-
domly, we use a translation lexicon learned
from a limited amount of parallel data as seed:
For each Spanish dependency bigram f1, f2,
where both f1 and f2 are found in the seed lex-
icon, we find the English sequence e1, e2 that
maximizes P (e1, e2)P (e1|f1)P (e2|f2). Other-
wise, for any Spanish token f that can be found
in the seed lexicon, we choose English word e,
where P (e|f) is the highest as the initial sam-
ple; for any f that are not seen in the seed lexi-
con, we do random initialization.

We perform 20 random restarts with 10k iter-
ations on each and build a word-to-word transla-
tion lexicon Tdecipher by collecting translation pairs
seen in at least 3 final decipherments with either
P (f |e) ≥ 0.2 or P (e|f) ≥ 0.2.

5.2.3 Improving Translation of Observed
Words with Decipherment

To improve translation of words observed in our
parallel corpus, we simply use Tdecipher as an addi-
tional parallel corpus. First, we filter Tdecipher by
keeping only translation pairs (f, e), where f is ob-
served in the Spanish part and e is observed in the
English part of the parallel corpus. Then we ap-
pend all the Spanish and English words in the fil-
tered Tdecipher to the end of Spanish part and En-
glish part of the parallel corpus respectively. The
training and tuning process is the same as the base-
line machine translation system PBMT. We denote
this system as Decipher-OBSV.
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5.2.4 Improving OOV translation with
Decipherment

As Tdecipher is learned from large amounts of in-
domain monolingual data, we expect that Tdecipher

contains a number of useful translations for words
not seen in the limited amount of parallel data (OOV
words). Instead of copying OOV words directly to
output, which is what Moses does by default, we try
to find translations from Tdecipher to improve trans-
lation.

During decoding, if a source word f is in Tphrase,
its translation options are collected from Tphrase ex-
clusively. If f is not in Tphrase but in Tdecipher,
the decoder will find translations from Tdecipher. If
f is not in either translation table, the decoder just
copies it directly to the output. We call this system
Decipher-OOV.

However, when an OOV’s correct translation is
same as its surface form and all its possible transla-
tions in Tdecipher are wrong, it is better to just copy
OOV words directly to output. This scenario hap-
pens frequently, as Spanish and English share many
common words. To avoid over trusting Tdecipher,
we add a new translation pair (f, f) for each source
word f in Tdecipher if the translation pair (f, f) is
not originally in Tdecipher. For each newly added
translation pair, both of its log translation probabil-
ities are set to 0. To distinguish the added transla-
tion pairs from the others learned through decipher-
ment, we add a binary feature θ to each translation
pair in Tdecipher. The final version of Tdecipher has
three feature scores: P (e|f), P (f |e), and θ. Finally,
we tune weights of the features in Tdecipher using
MERT (Och, 2003) on the tuning set.

5.2.5 A Combined Approach
In the end, we build a system Decipher-COMB,

which uses Tdecipher to improve translation of both
observed and OOV words with methods described in
sections 5.2.3 and 5.2.4.

5.3 Results

We tune each system three times with MERT and
choose the best weights based on BLEU scores on
tuning set.

Table 4 shows that the translation lexicon learned
from decipherment helps achieve higher BLEU
scores across tuning and testing sets. Decipher-

OBSV improves BLEU scores by as much as 1.2
points. We analyze the results and find the gain
mainly comes from two parts. First, adding Tdecipher

to small amounts of parallel corpus improves word
level translation probabilities, which lead to better
lexical weighting; second, Tdecipher contains new al-
ternative translations for words observed in the par-
allel corpus.

Moreover, Decipher-OOV also achieves better
BLEU scores compared with PBMT across all tun-
ing and test sets. We also observe that systems us-
ing Tdecipher learned by deciphering dependency bi-
grams leads to larger gains in BLEU scores. When
decipherment is used to improve translation of both
observed and OOV words, we see improvement in
BLEU score as high as 1.8 points on the 2010 news
test set.

The consistent improvement on the tuning and
different testing data suggests that decipherment is
capable of learning good translations for a number
of OOV words. To further demonstrate that our
decipherment approach finds useful translations for
OOV words, we list the top 10 most frequent OOV
words from both the tuning set and testing set as well
as their translations (up to three most likely transla-
tions) in Table 5. P (e|f) and P (f |e) are average
scores over different decipherment runs.

From the table, we can see that decipherment
finds correct translations (bolded) for 7 out of the
10 most frequent OOV words. Moreover, many
OOVs and their correct translations are homographs
, which makes copying OOVs directly to the output
a strong baseline to beat. Nonetheless, decipherment
still finds enough correct translations to improve the
baseline.

6 Conclusion

We introduce syntax for deciphering Spanish into
English. Experiment results show that using de-
pendency bigrams improves decipherment accuracy
by over 500% compared with the state-of-the-art
approach. Moreover, we learn a domain specific
translation lexicon by deciphering large amounts of
monolingual data and show that the lexicon can im-
prove a baseline machine translation system trained
with limited parallel data.
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Decipherment System Tune2008 Test2009 Test2010 Test2011

None PBMT (Baseline) 19.1 19.6 21.3 22.1

Adjacent
Decipher-OBSV 19.5 20.1 22.2 22.6
Decipher-OOV 19.4 19.9 21.7 22.5

Decipher-COMB 19.5 20.2 22.3 22.5

Dependency
Decipher-OBSV 19.7 20.5 22.5 23.0
Decipher-OOV 19.9 20.4 22.4 22.9

Decipher-COMB 20.0 20.8 23.1 23.4

Table 4: Systems that use translation lexicons learned from decipherment show consistent improvement over the
baseline system across tuning and testing sets. The best system, Decipher-COMB, achieves as much as 1.8 BLEU
point gain on the 2010 news test set.

Spanish English P (e|f) P (f |e)
obama his 0.33 0.01

bush 0.27 0.07
clinton 0.23 0.11

bush bush 0.47 0.45
yeltsin 0.28 0.81

he 0.24 0.05
festival event 0.68 0.35

festival 0.61 0.72
wikileaks zeta 0.03 0.33

venus venus 0.61 0.74
serena 0.47 0.62

colchones mattresses 0.55 0.73
cars 0.31 0.01

helado frigid 0.52 0.44
chill 0.37 0.14

sandwich 0.42 0.27
google microsoft 0.67 0.18

google 0.59 0.69
cantante singer 0.44 0.92

jackson 0.14 0.33
artists 0.14 0.77

mccain mccain 0.66 0.92
it 0.22 0.00
he 0.21 0.00

Table 5: Decipherment finds correct translations for 7 out
of 10 most frequent OOV word types.
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Abstract

Translation into morphologically rich lan-
guages is an important but recalcitrant prob-
lem in MT. We present a simple and effec-
tive approach that deals with the problem in
two phases. First, a discriminative model is
learned to predict inflections of target words
from rich source-side annotations. Then, this
model is used to create additional sentence-
specific word- and phrase-level translations
that are added to a standard translation model
as “synthetic” phrases. Our approach re-
lies on morphological analysis of the target
language, but we show that an unsupervised
Bayesian model of morphology can success-
fully be used in place of a supervised analyzer.
We report significant improvements in transla-
tion quality when translating from English to
Russian, Hebrew and Swahili.

1 Introduction

Machine translation into morphologically rich lan-
guages is challenging, due to lexical sparsity and the
large variety of grammatical features expressed with
morphology. In this paper, we introduce a method
that uses target language morphological grammars
(either hand-crafted or learned unsupervisedly) to
address this challenge and demonstrate its effective-
ness at improving translation from English into sev-
eral morphologically rich target languages.

Our approach decomposes the process of produc-
ing a translation for a word (or phrase) into two
steps. First, a meaning-bearing stem is chosen and
then an appropriate inflection is selected using a

feature-rich discriminative model that conditions on
the source context of the word being translated.

Rather than attempting to directly produce full-
sentence translations using such an elementary pro-
cess, we use our model to generate translations of
individual words and short phrases that augment—
on a sentence-by-sentence basis—the inventory of
translation rules obtained using standard translation
rule extraction techniques (Chiang, 2007). We call
these synthetic phrases.

The major advantages of our approach are: (i)
synthesized forms are targeted to a specific transla-
tion context; (ii) multiple, alternative phrases may
be generated with the final choice among rules left
to the global translation model; (iii) virtually no
language-specific engineering is necessary; (iv) any
phrase- or syntax-based decoder can be used with-
out modification; and (v) we can generate forms that
were not attested in the bilingual training data.

The paper is structured as follows. We first
present our “translate-and-inflect” model for pre-
dicting lexical translations into morphologically rich
languages given a source word and its context (§2).
Our approach requires a morphological grammar to
relate surface forms to underlying 〈stem, inflection〉
pairs; we discuss how either a standard morpholog-
ical analyzer or a simple Bayesian unsupervised an-
alyzer can be used (§3). After describing an ef-
ficient parameter estimation procedure for the in-
flection model (§4), we employ the translate-and-
inflect model in an MT system. We describe
how we use our model to synthesize translation
options (§5) and then evaluate translation quality
on English–Russian, English–Hebrew, and English–

1677



Swahili translation tasks, finding significant im-
provements in all language pairs (§6). We finally
review related work (§7) and conclude (§8).

2 Translate-and-Inflect Model

The task of the translate-and-inflect model is illus-
trated in Fig. 1 for an English–Russian sentence pair.
The input will be a sentence e in the source language
(in this paper, always English) and any available lin-
guistic analysis of e. The output f will be composed
of (i) a sequence of stems, each denoted σ and (ii)
one morphological inflection pattern for each stem,
denoted µ. When the information is available, a
stem σ is composed of a lemma and an inflectional
class. Throughout, we use Ωσ to denote the set
of possible morphological inflection patterns for a
given stem σ. Ωσ might be defined by a grammar;
our models restrict Ωσ to be the set of inflections
observed anywhere in our monolingual or bilingual
training data as a realization of σ.1

We assume the availability of a deterministic
function that maps a stem σ and morphological in-
flection µ to a target language surface form f . In
some cases, such as our unsupervised approach in
§3.2, this will be a concatenation operation, though
finite-state transducers are traditionally used to de-
fine such relations (§3.1). We abstractly denote this
operation by ?: f = σ ? µ.

Our approach consists in defining a probabilistic
model over target words f . The model assumes in-
dependence between each target word f conditioned
on the source sentence e and its aligned position i in
this sentence.2 This assumption is further relaxed
in §5 when the model is integrated in the translation
system.

We decompose the probability of generating each
target word f in the following way:

p(f | e, i) =
∑
σ?µ=f

p(σ | ei)︸ ︷︷ ︸
gen. stem

× p(µ | σ, e, i)︸ ︷︷ ︸
gen. inflection

Here, each stem is generated independently from a
single aligned source word ei, but in practice we

1This prevents the model from generating words that would
be difficult for the language model to reliably score.

2This is the same assumption that Brown et al. (1993) make
in, for example, IBM Model 1.

use a standard phrase-based model to generate se-
quences of stems and only the inflection model op-
erates word-by-word. We turn next to the inflection
model.

2.1 Modeling Inflection

In morphologically rich languages, each stem may
be combined with one or more inflectional mor-
phemes to express many different grammatical fea-
tures (e.g., case, definiteness, mood, tense, etc.).

Since the inflectional morphology of a word gen-
erally expresses multiple grammatical features, we
would like a model that naturally incorporates rich,
possibly overlapping features in its representation of
both the input (i.e., conditioning context) and out-
put (i.e., the inflection pattern). We therefore use
the following parametric form to model inflectional
probabilities:

u(µ, e, i) = exp
[
ϕ(e, i)>Wψ(µ)+

ψ(µ)>Vψ(µ)
]
,

p(µ | σ, e, i) =
u(µ, e, i)∑

µ′∈Ωσ
u(µ′, e, i)

. (1)

Here, ϕ is an m-dimensional source context fea-
ture vector function, ψ is an n-dimensional mor-
phology feature vector function, W ∈ Rm×n and
V ∈ Rn×n are parameter matrices. As with the
more familiar log-linear parametrization that is writ-
ten with a single feature vector, single weight vec-
tor and single bias vector, this model is linear in its
parameters (it can be understood as working with
a feature space that is the outer product of the two
feature spaces). However, using two feature vectors
allows to define overlapping features of both the in-
put and the output, which is important for modeling
morphology in which output variables are naturally
expressed as bundles of features. The second term
in the sum in u enables correlations among output
features to be modeled independently of input, and
as such can be understood as a generalization of the
bias terms in multi-class logistic regression (on the
diagonal Vii) and interaction terms between output
variables in a conditional random field (off the diag-
onal Vij).
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она пыталась пересечь пути на ее велосипед

she had attempted to cross the road on her bike

PRP   VBD         VBN          TO    VB       DT     NN    IN  PRP$   NN

nsubj

aux

xcomp

σ:пытаться_V,+,μ:mis2sfm2e

C50   C473        C28          C8    C275   C37   C43  C82 C94   C331

root

-1 +1

она пыталась пересечь пути на ее велосипед

she had attempted to cross the road on her bike

PRP   VBD         VBN          TO    VB       DT     NN    IN  PRP$   NN

nsubj

aux

xcomp

σ:пытаться_V,+,μ:mis2sfm2e

C50   C473        C28          C8    C275   C37   C43  C82 C94   C331

root

-1 +1

Figure 1: The inflection model predicts a form for the target verb lemma σ =пытаться (pytat’sya) based on its
source attempted and the linear and syntactic source context. The correct inflection string for the observed Russian
form in this particular training instance is µ = mis-sfm-e (equivalent to the more traditional morphological string:
+MAIN+IND+PAST+SING+FEM+MEDIAL+PERF).

source aligned word ei
parent word eπi

with its dependency πi → i
all children ej | πj = i with their dependency i→ j

source words ei−1 and ei+1


 token

part-of-speech tag
word cluster


– are ei, eπi

at the root of the dependency tree?
– number of children, siblings of ei

Figure 2: Source features ϕ(e, i) extracted from e and its linguistic analysis. πi denotes the parent of the token in
position i in the dependency tree and πi → i the typed dependency link.

2.2 Source Context Features: ϕ(e, i)

In order to select the best inflection of a target-
language word, given the source word it translates
and the context of that source word, we seek to ex-
ploit as many features of the context as are avail-
able. Consider the example shown in Fig. 1, where
most of the inflection features of the Russian word
(past tense, singular number, and feminine gender)
can be inferred from the context of the English word
it is aligned to. Indeed, many grammatical functions
expressed morphologically in Russian are expressed
syntactically in English. Fortunately, high-quality
parsers and other linguistic analyzers are available
for English.

On the source side, we apply the following pro-
cessing steps:

• Part-of-speech tagging with a CRF tagger
trained on sections 02–21 of the Penn Tree-
bank.

• Dependency parsing with TurboParser (Mar-
tins et al., 2010), a non-projective dependency

parser trained on the Penn Treebank to produce
basic Stanford dependencies.

• Assignment of tokens to one of 600 Brown
clusters, trained on 8G words of English text.3

We then extract binary features from e using this
information, by considering the aligned source word
ei, its preceding and following words, and its syn-
tactic neighbors. These are detailed in Figure 2.

3 Morphological Grammars and Features

We now describe how to obtain morphological anal-
yses and convert them into feature vectors (ψ) for
our target languages, Russian, Hebrew, and Swahili,
using supervised and unsupervised methods.

3.1 Supervised Morphology
The state-of-the-art in morphological analysis uses
unweighted morphological transduction rules (usu-

3The entire monolingual data available for the translation
task of the 8th ACL Workshop on Statistical Machine Transla-
tion was used.
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ally in the form of an FST) to produce candidate
analyses for each word in a sentence and then sta-
tistical models to disambiguate among the analy-
ses in context (Hakkani-Tür et al., 2000; Hajič et
al., 2001; Smith et al., 2005; Habash and Rambow,
2005, inter alia). While this technique is capable
of producing high quality linguistic analyses, it is
expensive to develop, requiring hand-crafted rule-
based analyzers and annotated corpora to train the
disambiguation models. As a result, such analyzers
are only available for a small number of languages,
and, as a practical matter, each analyzer (which re-
sulted from different development efforts) operates
differently from the others.

We therefore focus on using supervised analysis
for a single target language, Russian. We use the
analysis tool of Sharoff et al. (2008) which produces
for each word in context a lemma and a fixed-length
morphological tag encoding the grammatical fea-
tures. We process the target side of the parallel data
with this tool to obtain the information necessary
to extract 〈lemma, inflection〉 pairs, from which we
compute σ and morphological feature vectors ψ(µ).

Supervised morphology features: ψ(µ). Since
a positional tag set is used, it is straightforward to
convert each fixed-length tag µ into a feature vector
by defining a binary feature for each key-value pair
(e.g., Tense=past) composing the tag.

3.2 Unsupervised Morphology
Since many languages into which we might want to
translate do not have supervised morphological an-
alyzers, we now turn to the question of how to gen-
erate morphological analyses and features using an
unsupervised analyzer. We hypothesize that perfect
decomposition into rich linguistic structures may not
be required for accurate generation of new inflected
forms. We will test this hypothesis by experimenting
with a simple, unsupervised model of morphology
that segments words into sequences of morphemes,
assuming a (naı̈ve) concatenative generation process
and a single analysis per type.

Unsupervised morphological segmentation. We
assume that each word can be decomposed into any
number of prefixes, a stem, and any number of suf-
fixes. Formally, we let M represent the set of all
possible morphemes and define a regular grammar

M∗MM∗ (i.e., zero or more prefixes, a stem, and
zero or more suffixes). To infer the decomposition
structure for the words in the target language, we as-
sume that the vocabulary was generated by the fol-
lowing process:

1. Sample morpheme distributions from symmet-
ric Dirichlet distributions: θp ∼ Dir|M |(αp)
for prefixes, θσ ∼ Dir|M |(ασ) for stems, and
θs ∼ Dir|M |(αs) for suffixes.

2. Sample length distribution parameters
λp ∼ Beta(βp, γp) for prefix sequences
and λs ∼ Beta(βs, γs) for suffix sequences.

3. Sample a vocabulary by creating each word
type w using the following steps:

(a) Sample affix sequence lengths:
lp ∼ Geometric(λp);
ls ∼ Geometric(λs).

(b) Sample lp prefixes p1, . . . , plp indepen-
dently from θp; ls suffixes s1, . . . , sls in-
dependently from θs; and a stem σ ∼ θσ.

(c) Concatenate prefixes, the stem, and suf-
fixes: w = p1+· · ·+plp+σ+s1+· · ·+sls .

We use blocked Gibbs sampling to sample seg-
mentations for each word in the training vocabulary.
Because of our particular choice of priors, it possible
to approximately decompose the posterior over the
arcs of a compact finite-state machine. Sampling a
segmentation or obtaining the most likely segmenta-
tion a posteriori then reduces to familiar FST opera-
tions. This model is reminiscent of work on learning
morphology using adaptor grammars (Johnson et al.,
2006; Johnson, 2008).

The inferred morphological grammar is very sen-
sitive to the Dirichlet hyperparameters (αp, αs, ασ)
and these are, in turn, sensitive to the number of
types in the vocabulary. Using αp, αs � ασ � 1
tended to recover useful segmentations, but we have
not yet been able to find reliable generic priors for
these values. Therefore, we selected them empiri-
cally to obtain a stem vocabulary size on the parallel
data that is one-to-one with English.4 Future work

4Our default starting point was to use αp = αs =
10−6, ασ = 10−4 and then to adjust all parameters by factors
of 10.
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Table 1: Corpus statistics.

Parallel Parallel+Monolingual
Sentences EN-tokens TRG-tokens EN-types TRG-types Sentences TRG-tokens TRG-types

Russian 150k 3.5M 3.3M 131k 254k 20M 360M 1,971k
Hebrew 134k 2.7M 2.0M 48k 120k 806k 15M 316k
Swahili 15k 0.3M 0.3M 23k 35k 596k 13M 334k

will involve a more direct method for specifying or
inferring these values.

Unsupervised morphology features: ψ(µ). For
the unsupervised analyzer, we do not have a map-
ping from morphemes to structured morphological
attributes; however, we can create features from the
affix sequences obtained after morphological seg-
mentation. We produce binary features correspond-
ing to the content of each potential affixation posi-
tion relative to the stem:

prefix      suffix
...-3 -2 -1 STEM +1 +2 +3...

For example, the unsupervised analysis µ =
wa+ki+wa+STEM of the Swahili word wakiwapiga
will produce the following features:

ψprefix[−3][wa](µ) = 1,

ψprefix[−2][ki](µ) = 1,

ψprefix[−1][wa](µ) = 1.

4 Inflection Model Parameter Estimation

To set the parameters W and V of the inflection pre-
diction model (Eq. 1), we use stochastic gradient de-
scent to maximize the conditional log-likelihood of
a training set consisting of pairs of source (English)
sentence contextual features (ϕ) and target word in-
flectional features (ψ). The training instances are
extracted from the word-aligned parallel corpus with
the English side preprocessed as discussed in §2.2
and the target side disambiguated as discussed in §3.
When morphological category information is avail-
able, we train an independent model for each open-
class category (in Russian, nouns, verbs, adjectives,
numerals, adverbs); otherwise a single model is used
for all words (excluding words less than four char-
acters long, which are ignored).

Statistics of the parallel corpora used to train the
inflection model are summarized in Table 1. It is
important to note here that our richly parameterized
model is trained on the full parallel training cor-
pus, not just on a handful of development sentences
(which are typically used to tune MT system param-
eters). Despite this scale, training is simple: the in-
flection model is trained to discriminate among dif-
ferent inflectional paradigms, not over all possible
target language sentences (Blunsom et al., 2008) or
learning from all observable rules (Subotin, 2011).
This makes the training problem relatively tractable:
all experiments in this paper were trained on a sin-
gle processor using a Cython implementation of the
SGD optimizer. For our largest model, trained on
3.3M Russian words, n = 231K × m = 336 fea-
tures were produced, and 10 SGD iterations were
performed in less than 16 hours.

4.1 Intrinsic Evaluation

Before considering the broader problem of integrat-
ing the inflection model in a machine translation
system, we perform an artificial evaluation to ver-
ify that the model learns sensible source sentence-
target inflection patterns. To do so, we create an
inflection test set as follows. We preprocess the
source (English) sentences exactly as during train-
ing (§2.2), and using the target language morpholog-
ical analyzer, we convert each aligned target word to
〈stem, inflection〉 pairs. We perform word alignment
on the held-out MT development data for each lan-
guage pair (cf. Table 1), exactly as if it were going to
produce training instances, but instead we use them
for testing.

Although the resulting dataset is noisy (e.g., due
to alignment errors), this becomes our intrinsic eval-
uation test set. Using this data, we measure inflec-
tion quality using two measurements:5

5Note that we are not evaluating the stem translation model,
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acc. ppl. |Ωσ|

Su
pe

rv
is

ed
Russian

N 64.1% 3.46 9.16
V 63.7% 3.41 20.12
A 51.5% 6.24 19.56
M 73.0% 2.81 9.14

average 63.1% 3.98 14.49

U
ns

up
. Russian all 71.2% 2.15 4.73

Hebrew all 85.5% 1.49 2.55
Swahili all 78.2% 2.09 11.46

Table 2: Intrinsic evaluation of inflection model (N:
nouns, V: verbs, A: adjectives, M: numerals).

• the accuracy of predicting the inflection given
the source, source context and target stem, and

• the inflection model perplexity on the same set
of test instances.

Additionally, we report the average number of pos-
sible inflections for each stem, an upper bound to the
perplexity that indicates the inherent difficulty of the
task. The results of this evaluation are presented in
Table 2 for the three language pairs considered. We
remark on two patterns in these results. First, per-
plexity is substantially lower than the perplexity of a
uniform model, indicating our model is overall quite
effective at predicting inflections using source con-
text only. Second, in the supervised Russian results,
we see that predicting the inflections of adjectives
is relatively more difficult than for other parts-of-
speech. Since adjectives agree with the nouns they
modify in gender and case, and gender is an idiosyn-
cratic feature of Russian nouns (and therefore not
directly predictable from the English source), this
difficulty is unsurprising.

We can also inspect the weights learned by the
model to assess the effectiveness of the features
in relating source-context structure with target-side
morphology. Such an analysis is presented in Fig. 3.

4.2 Feature Ablation
Our inflection model makes use of numerous fea-
ture types. Table 3 explores the effect of removing
different kinds of (source) features from the model,
evaluated on predicting Russian inflections using
supervised morphological grammars.6 Rows 2–3

just the inflection prediction model.
6The models used in the feature ablation experiment were

trained on fewer examples, resulting in overall lower accuracies

show the effect of removing either linear or depen-
dency context. We see that both are necessary for
good performance; however removing dependency
context substantially degrades performance of the
model (we interpret this result as evidence that Rus-
sian morphological inflection captures grammatical
relationships that would be expressed structurally in
English). The bottom four rows explore the effect
of source language word representation. The results
indicate that lexical features are important for accu-
rate prediction of inflection, and that POS tags and
Brown clusters are likewise important, but they seem
to capture similar information (removing one has lit-
tle impact, but removing both substantially degrades
performance).

Table 3: Feature ablation experiments using supervised
Russian classification experiments.

Features (ϕ(e, i)) acc.
all 54.7%
−linear context 52.7%
−dependency context 44.4%
−POS tags 54.5%
−Brown clusters 54.5%
−POS tags, −Brown cl. 50.9%
−lexical items 51.2%

5 Synthetic Phrases

We turn now to translation; recall that our translate-
and-inflect model is used to augment the set of rules
available to a conventional statistical machine trans-
lation decoder. We refer to the phrases it produces
as synthetic phrases.

Our baseline system is a standard hierarchical
phrase-based translation model (Chiang, 2007). Fol-
lowing Lopez (2007), the training data is compiled
into an efficient binary representation which allows
extraction of sentence-specific grammars just before
decoding. In our case, this also allows the creation
of synthetic inflected phrases that are produced con-
ditioning on the sentence to translate.

To generate these synthetic phrases with new in-
flections possibly unseen in the parallel training

than seen in Table 2, but the pattern of results is the relevant
datapoint here.
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Russian supervised
Verb: 1st Person

child(nsubj)=I child(nsubj)=we
Verb: Future tense

child(aux)=MD child(aux)=will
Noun: Animate

source=animals/victims/...
Noun: Feminine gender

source=obama/economy/...
Noun: Dative case

parent(iobj)
Adjective: Genitive case

grandparent(poss)

Hebrew
Suffix ים (masculine plural)

parent=NNS after=NNS
Prefix א (first person sing. + future)

child(nsubj)=I child(aux)='ll
Prefix כ (preposition like/as)

child(prep)=IN parent=as
Suffix י (possesive mark)

before=my child(poss)=my
Suffix ה (feminine mark)

child(nsubj)=she before=she
Prefix כש (when)

before=when before=WRB

Swahili
Prefix li (past)

source=VBD source=VBN
Prefix nita (1st person sing. + future)

child(aux) child(nsubj)=I
Prefix ana (3rd person sing. + present)

source=VBZ
Prefix wa (3rd person plural)

before=they child(nsubj)=NNS
Suffix tu (1st person plural)

child(nsubj)=she before=she
Prefix ha (negative tense)

source=no after=not

Figure 3: Examples of highly weighted features learned by the inflection model. We selected a few frequent morpho-
logical features and show their top corresponding source context features.

data, we first construct an additional phrase-based
translation model on the parallel corpus prepro-
cessed to replace inflected surface words with their
stems. We then extract a set of non-gappy phrases
for each sentence (e.g., X → <attempted,
пытаться V>). The target side of each such phrase
is re-inflected, conditioned on the source sentence,
using the inflection model from §2. Each stem is
given its most likely inflection.7

The original features extracted for the stemmed
phrase are conserved, and the following features
are added to help the decoder select good synthetic
phrases:

• a binary feature indicating that the phrase is
synthetic,

• the log-probability of the inflected forms ac-
cording to our model,

• the count of words that have been inflected,
with a separate feature for each morphological
category in the supervised case.

Finally, these synthetic phrases are combined with
the original translation rules obtained for the base-
line system to produce an extended sentence-specific
grammar which is used as input to the decoder. If a

7Several reviewers asked about what happens when k-best
inflections are added. The results for k ∈ {2, 4, 8} range from
no effect to an improvement over k = 1 of about 0.2 BLEU
(absolute). We hypothesize that larger values of k could have a
greater impact, perhaps in a more “global” model of the target
string; however, exploration of this question is beyond the scope
of this paper.

phrase already existing in the standard phrase table
happens to be recreated, both phrases are kept and
will compete with each other with different features
in the decoder.

For example, for the large EN→RU system, 6%
of all the rules used for translation are synthetic
phrases, with 65% of these phrases being entirely
new rules.

6 Translation Experiments

We evaluate our approach in the standard discrim-
inative MT framework. We use cdec (Dyer et al.,
2010) as our decoder and perform MIRA training
to learn feature weights of the sentence translation
model (Chiang, 2012). We compare the following
configurations:

• A baseline system, using a 4-gram language
model trained on the entire monolingual and
bilingual data available.

• An enriched system with a class-based n-gram
language model8 trained on the monolingual
data mapped to 600 Brown clusters. Class-
based language modeling is a strong baseline
for scenarios with high out-of-vocabulary rates
but in which large amounts of monolingual
target-language data are available.

• The enriched system further augmented with
our inflected synthetic phrases. We expect the
class-based language model to be especially

8For Swahili and Hebrew, n = 6; for Russian, n = 7.
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helpful here and capture some basic agreement
patterns that can be learned more easily on
dense clusters than from plain word sequences.

Detailed corpus statistics are given in Table 1:

• The Russian data consist of the News Com-
mentary parallel corpus and additional mono-
lingual data crawled from news websites.9

• The Hebrew parallel corpus is composed of
transcribed TED talks (Cettolo et al., 2012).
Additional monolingual news data is also used.

• The Swahili parallel corpus was obtained by
crawling the Global Voices project website10

for parallel articles. Additional monolingual
data was taken from the Helsinki Corpus of
Swahili.11

We evaluate translation quality by translating and
measuring the BLEU score of a 2000–3000 sentence-
long evaluation corpus, averaging the results over 3
MIRA runs to control for optimizer instability (Clark
et al., 2011). Table 4 reports the results. For all lan-
guages, using class language models improves over
the baseline. When synthetic phrases are added, sig-
nificant additional improvements are obtained. For
the English–Russian language pair, where both su-
pervised and unsupervised analyses can be obtained,
we notice that expert-crafted morphological analyz-
ers are more efficient at improving translation qual-
ity. Globally, the amount of improvement observed
varies depending on the language; this is most likely
indicative of the quality of unsupervised morpholog-
ical segmentations produced and the kinds of gram-
matical relations expressed morphologically.

Finally, to confirm the effectiveness of our ap-
proach as corpus size increases, we use our tech-
nique on top of a state-of-the art English–Russian
system trained on data from the 8th ACL Work-
shop on Machine Translation (30M words of bilin-
gual text and 410M words of monolingual text). The
setup is identical except for the addition of sparse

9http://www.statmt.org/wmt13/
translation-task.html

10http://sw.globalvoicesonline.org
11http://www.aakkl.helsinki.fi/cameel/

corpus/intro.htm

Table 4: Translation quality (measured by BLEU) aver-
aged over 3 MIRA runs.

EN→RU EN→HE EN→SW

Baseline 14.7±0.1 15.8±0.3 18.3±0.1

+Class LM 15.7±0.1 16.8±0.4 18.7±0.2

+Synthetic
unsupervised 16.2±0.1 17.6±0.1 19.0±0.1

supervised 16.7±0.1 — —

rule shape indicator features and bigram cluster fea-
tures. In these large scale conditions, the BLEU score
improves from 18.8 to 19.6 with the addition of word
clusters and reaches 20.0 with synthetic phrases.
Details regarding this system are reported in Ammar
et al. (2013).

7 Related Work

Translation into morphologically rich languages is
a widely studied problem and there is a tremen-
dous amount of related work. Our technique of syn-
thesizing translation options to improve generation
of inflected forms is closely related to the factored
translation approach proposed by Koehn and Hoang
(2007); however, an important difference to that
work is that we use a discriminative model that con-
ditions on source context to make “local” decisions
about what inflections may be used before combin-
ing the phrases into a complete sentence translation.

Combination pre-/post-processing solutions are
also frequently proposed. In these, the tar-
get language is generally transformed from multi-
morphemic surface words into smaller units more
amenable to direct translation, and then a post-
processing step is applied independent of the trans-
lation model. For example, Oflazer and El-Kahlout
(2007) experiment with partial morpheme groupings
to produce novel inflected forms when translating
into Turkish; Al-Haj and Lavie (2010) compare dif-
ferent processing schemes for Arabic. A related but
different approach is to enrich the source language
items with grammatical features (e.g., a source sen-
tence like John saw Mary is preprocessed into, e.g.,
John+subj saw+msubj+fobj Mary+obj) so as
to make the source and target lexicons have simi-
lar morphological contrasts (Avramidis and Koehn,
2008; Yeniterzi and Oflazer, 2010; Chang et al.,
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2009). In general, this work suffers from the prob-
lem that it is extremely difficult to know a priori
what the right preprocessing is for a given language
pair, data size, and domain.

Several post-processing approaches have relied
on supervised classifiers to predict the optimal com-
plete inflection for an incomplete or lemmatized
translation. Minkov et al. (2007) present a method
for predicting the inflection of Russian and Arabic
sentences aligned to English sentences. They train a
sequence model to predict target morphological fea-
tures from the lemmas and the syntactic structures
of both aligned sentences and demonstrate its ability
to recover accurately inflections on reference trans-
lations. Toutanova et al. (2008) apply this method
to generate inflections after translation in two differ-
ent ways: by rescoring inflected n-best outputs or by
translating lemmas and re-inflecting them a posteri-
ori. El Kholy and Habash (2012) follow a similar
method and compare different approaches for gen-
erating rich morphology in Arabic after a transla-
tion step. Fraser et al. (2012) observe improvements
for translation into German with a similar method.
As in that work, we model morphological features
rather than directly inflected forms. However, that
work may be criticized for providing no mechanism
to translate surface forms directly, even when evi-
dence for a direct translation is available in the par-
allel data.

Unsupervised morphology has begun to play a
role in translation between morphologically com-
plex languages. Stallard et al. (2012) show that an
unsupervised approach to Arabic segmentation per-
forms as well as a supervised segmenter for source-
side preprocessing (in terms of English translation
quality). For translation into morphological rich lan-
guages, Clifton and Sarkar (2011) use an unsuper-
vised morphological analyzer to produce morpho-
logical affixes in Finnish, injecting some linguistic
knowledge in the generation process.

Several authors have proposed using conditional
models to predict the probability of phrase transla-
tion in context (Gimpel and Smith, 2008; Chan et
al., 2007; Carpuat and Wu, 2007; Jeong et al., 2010).
Of particular note is the work of Subotin (2011),
who use a conditional model to predict morpholog-
ical features conditioned on rich linguistic features;
however, this latter work also conditions on target

context, which substantially complicates decoding.

Finally, synthetic phrases have been used for
different purposes than generating morphology.
Callison-Burch et al. (2006) expanded the cov-
erage of a phrase table by adding synthesized
phrases by paraphrasing source language phrases,
Chen et al. (2011) produced “fabricated” phrases
by paraphrasing both source and target phrases, and
Habash (2009) created new rules to handle out-of-
vocabulary words. In related work, Tsvetkov et al.
(2013) used synthetic phrases to improve generation
of (in)definite articles when translating into English
from Russian and Czech, two languages which do
not lexically mark definiteness.

8 Conclusion

We have presented an efficient technique that ex-
ploits morphologically analyzed corpora to produce
new inflections possibly unseen in the bilingual
training data. Our method decomposes into two
simple independent steps involving well-understood
discriminative models.

By relying on source-side context to generate ad-
ditional local translation options and by leaving the
choice of the full sentence translation to the decoder,
we sidestep the difficulty of computing features on
target translations hypotheses. However, many mor-
phological processes (most notably, agreement) are
most best modeled using target language context. To
capture target context effects, we depend on strong
target language models. Therefore, an important
extension of our work is to explore the interaction
of our approach with more sophisticated language
models that more directly model morphology, e.g.,
the models of Bilmes and Kirchhoff (2003), or, alter-
natively, ways to incorporate target language context
in the inflection model.

We also achieve language independence by
exploiting unsupervised morphological segmen-
tations in the absence of linguistically informed
morphological analyses.

Code for replicating the experiments is available from
https://github.com/eschling/morphogen;
further details are available in (Schlinger et al., 2013).
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Kemal Oflazer and İlknur Durgar El-Kahlout. 2007. Ex-
ploring different representational units in English-to-
Turkish statistical machine translation. In Proc. of
WMT.

Eva Schlinger, Victor Chahuneau, and Chris Dyer. 2013.
morphogen: Translation into morphologically rich lan-
guages with synthetic phrases. Prague Bulletin of
Mathematical Linguistics, (100).

Serge Sharoff, Mikhail Kopotev, Tomaz Erjavec, Anna
Feldman, and Dagmar Divjak. 2008. Designing and
evaluating a Russian tagset. In Proc. of LREC.

Noah A. Smith, David A. Smith, and Roy W. Tromble.
2005. Context-based morphological disambiguation
with random fields. In Proc. of EMNLP.

David Stallard, Jacob Devlin, Michael Kayser,
Yoong Keok Lee, and Regina Barzilay. 2012.
Unsupervised morphology rivals supervised morphol-
ogy for Arabic MT. In Proc. of ACL.

Michael Subotin. 2011. An exponential translation
model for target language morphology. In Proc. ACL.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying morphology generation models to
machine translation. In Proc. of ACL.

Yulia Tsvetkov, Chris Dyer, Lori Levin, and Archna Bha-
tia. 2013. Generating English determiners in phrase-
based translation with synthetic translation options. In
Proc. of WMT.

Reyyan Yeniterzi and Kemal Oflazer. 2010. Syntax-to-
morphology mapping in factored phrase-based statis-
tical machine translation from English to Turkish. In
Proc. of ACL.

1687



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1688–1699,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Boosting Cross-Language Retrieval by Learning
Bilingual Phrase Associations from Relevance Rankings

Artem Sokolov and Laura Jehl and Felix Hieber and Stefan Riezler
Department of Computational Linguistics

Heidelberg University, 69120 Heidelberg, Germany
{sokolov,jehl,hieber,riezler}@cl.uni-heidelberg.de

Abstract

We present an approach to learning bilin-
gual n-gram correspondences from relevance
rankings of English documents for Japanese
queries. We show that directly optimizing
cross-lingual rankings rivals and complements
machine translation-based cross-language in-
formation retrieval (CLIR). We propose an ef-
ficient boosting algorithm that deals with very
large cross-product spaces of word correspon-
dences. We show in an experimental evalu-
ation on patent prior art search that our ap-
proach, and in particular a consensus-based
combination of boosting and translation-based
approaches, yields substantial improvements
in CLIR performance. Our training and test
data are made publicly available.

1 Introduction

The central problem addressed in Cross-Language
Information Retrieval (CLIR) is that of translating
or projecting a query into the language of the docu-
ment repository across which retrieval is performed.
There are two main approaches to tackle this prob-
lem: The first approach leverages the standard Sta-
tistical Machine Translation (SMT) machinery to
produce a single best translation that is used as
search query in the target language. We will hence-
forth call this the direct translation approach. This
technique is particularly useful if large amounts of
data are available in domain-specific form.

Alternative approaches avoid to solve the hard
problem of word reordering, and instead rely on
token-to-token translations that are used to project

the query terms into the target language with a
probabilistic weighting of the standard term tf-idf
scheme. Darwish and Oard (2003) termed this
method the probabilistic structured query approach.
The advantage of this technique is an implicit query
expansion effect due to the use of probability distri-
butions over term translations (Xu et al., 2001). Re-
cent research has shown that leveraging query con-
text by extracting term translation probabilities from
n-best direct translations of queries instead of using
context-free translation tables outperforms both di-
rect translation and context-free projection (Ture et
al., 2012b; Ture et al., 2012a).

While direct translation as well as probabilistic
structured query approaches use machine learning to
optimize the SMT module, retrieval is done by stan-
dard search algorithms in both approaches. For ex-
ample, Google’s CLIR approach uses their standard
proprietary search engine (Chin et al., 2008). Ture et
al. (2012b; 2012a) use standard retrieval algorithms
such as BM25 (Robertson et al., 1998). That means,
machine learning in SMT-based approaches concen-
trates on the cross-language aspect of CLIR and is
agnostic of the ultimate ranking task.

In this paper, we present a method to project
search queries into the target language that is com-
plementary to SMT-based CLIR approaches. Our
method learns a table of n-gram correspondences by
direct optimization of a ranking objective on rele-
vance rankings of English documents for Japanese
queries. Our model is similar to the approach of
Bai et al. (2010) who characterize their technique as
“Learning to rank with (a Lot of) Word Features”.
Given a set of search queries q ∈ IRQ and docu-
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ments d ∈ IRD, where the jth dimension of a vector
indicates the occurrence of the jth word for dictio-
naries of size Q and D, we want to learn a score
f(q,d) between a query and a given document us-
ing the model1

f(q,d) = q>Wd =

Q∑
i=1

D∑
j=1

qiWijdj .

We take a pairwise ranking approach to optimiza-
tion. That is, given labeled data in the form of a
set R of tuples (q,d+,d−), where d+ is a relevant
(or higher ranked) document and d− an irrelevant
(or lower ranked) document for query q, the goal
is to find a weight matrix W ∈ IRQ×D such that
f(q,d+) > f(q,d−) for all data tuples from R.
The scoring model learns weights for all possible
correspondences of query terms and document terms
by directly optimizing the ranking objective at hand.
Such a phrase table contains domain-specific word
associations that are useful to discern relevant from
irrelevant documents, something that is orthogonal
and complementary to standard SMT models.

The challenge of our approach can be explained
by constructing a joint feature map φ from the outer
product of the vectors q and d where

φ((i−1)D+j)(q,d) = (q⊗ d)ij = (qd>)ij . (1)

Using this feature map, we see that the score func-
tion f can be written in the standard form of a lin-
ear model that computes the inner product between
a weight vector w and a feature vector φ where
w, φ ∈ IRQ×D and

f(q,d) = 〈w, φ(q,d)〉. (2)

While various standard algorithms exist to optimize
linear models, the difficulty lies in the memory foot-
print and capacity of the word-based model. A full-
sized model includes Q × D parameters which is
easily in the billions even for moderately sized dic-
tionaries. Clearly, an efficient implementation and
remedies against overfitting are essential.

The main contribution of our paper is the pre-
sentation of algorithms that make learning a phrase

1With bold letters we denote vectors for query q and docu-
ment d. Vector components are denoted with normal font letters
and indices (e.g., qi).

table by direct rank optimization feasible, and an
experimental verification of the benefits of this ap-
proach, especially with regard to a combination
of the orthogonal information sources of ranking-
based and SMT-based CLIR approaches. Our ap-
proach builds upon a boosting framework for pair-
wise ranking (Freund et al., 2003) that allows the
model to grow incrementally, thus avoiding having
to deal with the full matrix W . Furthermore, we
present an implementation of boosting that utilizes
parallel estimation on bootstrap samples from the
training set for increased efficiency and reduced er-
ror (Breiman, 1996). Our “bagged boosting” ap-
proach allows to combine incremental feature selec-
tion, parallel training, and efficient management of
large data structures.

We show in an experimental evaluation on large-
scale retrieval on patent abstracts that our boosting
approach is comparable in MAP and improves sig-
nificantly by 13-15 PRES points over very competi-
tive translation-based CLIR systems that are trained
on 1.8 million parallel sentence pairs from Japanese-
English patent documents. Moreover, a combination
of the orthogonal information learned in ranking-
based and translation-based approaches improves
over 7 MAP points and over 15 PRES points over the
respective translation-based system in a consensus-
based voting approach following the Borda Count
technique (Aslam and Montague, 2001).

2 Related Work

Recent research in CLIR follows the two main
paradigms of direct translation and probabilistic
structured query approaches. An example for the
first approach is the work of Magdy and Jones
(2011) who presented an efficient technique to adapt
off-the-shelf SMT systems for CLIR by training
them on data pre-processed for retrieval (case fold-
ing, stopword removal, stemming). Nikoulina et al.
(2012) presented an approach to direct translation-
based CLIR where the n-best list of an SMT system
is re-ranked according to the MAP performance of
the translated queries. The probabilistic structured
query approach has seen a lot of work on context-
aware query expansion across languages, based on
various similarity statistics (Ballesteros and Croft,
1998; Gao et al., 2001; Lavrenko et al., 2002; Gao
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et al., 2007). At the time of writing this paper, the
most recent extension to this paradigm is Ture et
al. (2012a). In addition to projecting terms from
n-best translations, they propose a projection ex-
tracted from the hierarchical phrase- based grammar
models, and a scoring method based on multi-token
terms. Since the latter techniques achieved only
marginal improvements over the context-sensitive
query translation from n-best lists, we did not pur-
sue them in our work.

CLIR in the context of patent prior art search
was done as extrinsic evaluation at the NTCIR
PatentMT2 workshops until 2010, and has been on-
going in the CLEF-IP3 benchmarking workshops
since 2009. However, most workshop participants
did either not make use of automatic translation at
all, or they used an off-the-shelf translation tool.
This is due to the CLEF-IP data collection where
parts of patent documents are provided as man-
ual translations into three languages. In order to
evaluate CLIR in a truly cross-lingual scenario, we
created a large patent CLIR dataset where queries
and documents are Japanese and English patent ab-
stracts, respectively.

Ranking approaches to CLIR have been presented
by Guo and Gomes (2009) who use pairwise rank-
ing for patent retrieval. Their method is a classical
learning-to-rank setup where retrieval scores such as
tf-idf or BM25 are combined with domain knowl-
edge on patent class, inventor, date, location, etc.
into a dense feature vector of a few hundred fea-
tures. Methods to learn word-based translation cor-
respondences from supervised ranking signals have
been presented by Bai et al. (2010) and Chen et
al. (2010). These approaches tackle the problem of
complexity and capacity of the cross product matrix
of word correspondences from different directions.
The first proposes to learn a low rank representa-
tion of the matrix; the second deploys sparse online
learning under `1 regularization to keep the matrix
small. Both approaches are mainly evaluated in a
monolingual setting. The cross-lingual evaluation
presented in Bai et al. (2010) uses weak translation-
based baselines and non-public data such that a di-
rect comparison is not possible.

2http://research.nii.ac.jp/ntcir/ntcir/
3http://www.ifs.tuwien.ac.at/˜clef-ip/

A combination of bagging and boosting in the
context of retrieval has been presented by Pavlov et
al. (2010) and Ganjisaffar et al. (2011). This work
is done in a standard learning-to-rank setup using a
few hundred dense features trained on hundreds of
thousands of pairs. Our setup deals with billions of
sparse features (from the cross-product of the un-
restricted dictionaries) trained on millions of pairs
(sampled from a much larger space). Parallel boost-
ing where all feature weights are updated simultane-
ously has been presented by Collins et al. (2002) and
Canini et al. (2010). The first method distributes the
gradient calculation for different features among dif-
ferent compute nodes. This is not possible in our ap-
proach because we construct the cross-product ma-
trix on-the-fly. The second approach requires sub-
stantial efforts in changing the data representation
to use the MapReduce framework. Overall, one of
the goals of our work is sequential updating for im-
plicit feature selection, something that runs contrary
to parallel boosting.

3 CLIR Approaches

3.1 Direct translation approach

For direct translation, we use the SCFG decoder
cdec (Dyer et al., 2010)4 and build grammars us-
ing its implementation of the suffix array extraction
method described in Lopez (2007). Word align-
ments are built from all parallel data using mgiza5

and the Moses scripts6. SCFG models use the same
settings as described in Chiang (2007). Training
and querying of a modified Kneser-Ney smoothed 5-
gram language model are done on the English side
of the training data using KenLM (Heafield, 2011)7.
Model parameters were optimized using cdec’s im-
plementation of MERT (Och (2003)).

At retrieval time, all queries are translated
sentence-wise and subsequently re-joined to form
one query per patent. Our baseline retrieval system
uses the Okapi BM25 scores for document ranking.

4https://github.com/redpony/cdec
5http://www.kyloo.net/software/doku.php/

mgiza:overview
6http://www.statmt.org/moses/?n=Moses.

SupportTools
7http://kheafield.com/code/kenlm/

estimation/
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3.2 Probabilistic structured query approach
Early Probabilistic Structured Query approaches
(Xu et al., 2001; Darwish and Oard, 2003) represent
translation options by lexical, i.e., token-to-token
translation tables that are estimated using standard
word alignment techniques (Och and Ney, 2000).
Later approaches (Ture et al., 2012b; Ture et al.,
2012a) extract translation options from the decoder’s
n-best list for translating a particular query. The
central idea is to let the language model choose flu-
ent, context-aware translations for each query term
during decoding. This retains the desired query-
expansion effect of probabilistic structured models,
but it reduces query drift by filtering translations
with respect to the context of the full query.

A projection of source language query terms f ∈
F into the target language is achieved by repre-
senting each source token f by its probabilistically
weighted translations. The score of target document
E, given source language query F , is computed by
calculating the BM25 rank over projected term fre-
quency and document frequency weights as follows:

score(E|F ) =
∑
f∈F

BM25(tf(f,E), df(f)) (3)

tf(f,E) =
∑
e∈Ef

tf(e, E)p(e|f)

df(f) =
∑
e∈Ef

df(e)p(e|f)

where Ef = {e ∈ E|p(e|f) > pL} is the set of
translation options for query term f with probability
greater than pL. We also use a cumulative threshold
pC so that only the most probable options are added
until pC is reached.

Ture et al. (2012b; 2012a) achieved best retrieval
performance by interpolating between (context-free)
lexical translation probabilities plex estimated on
symmetrized word alignments, and (context-aware)
translation probabilities pnbest estimated on the n-
best list of an SMT decoder:

p(e|f) = λpnbest(e|f) + (1− λ)plex(e|f) (4)

pnbest(e|f) is estimated by calculating expectations
of term translations from k-best translations:

pnbest(e|f) =

∑n
k=1 ak(e, f)D(k, F )∑n

k=1

∑
e′ ak(e

′, f)D(k, F )

where ak(e, f) is a function indicating an alignment
of target term e to source term f in the kth derivation
of queryF , andD(k, F ) is the model score of the kth

derivation in the n-best list for query F .
We use the same hierarchical phrase-based sys-

tem that was used for direct translation to calcu-
late n-best translations for the probabilistic struc-
tured query approach. This allows us to extract
word alignments between source and target text for
F from the SCFG rules used in the derivation. The
concept of self-translation is covered by the de-
coder’s ability to use pass-through rules if words or
phrases cannot be translated.

Probabilistic structured queries that include
context-aware estimates of translation probabilities
require a preservation of sentence-wise context-
sensitivity also in retrieval. Thus, unlike the direct
translation approach, we compute weighted term
and document frequencies for each sentence s in
query F separately. The scoring (3) of a target doc-
ument for a multiple sentence query then becomes:

score(E|F ) =
∑
s in F

∑
f∈s

BM25(tf(f,E), df(f))

3.3 Direct Phrase Table Learning from
Relevance Rankings

Pairwise Ranking using Boosting The general
form of the RankBoost algorithm (Freund et al.,
2003; Collins and Koo, 2005) defines a scoring
function f(q,d) on query q and document d as a
weighted linear combination of T weak learners ht
such that f(q,d) =

∑T
t=1wtht(q,d). Weak learn-

ers can belong to an arbitrary family of functions,
but in our case they are restricted to the simplest
case of unparameterized indicator functions select-
ing components of the feature vector φ(q,d) in (1)
such that f is of the standard linear form (2). In our
experiments, these features indicate the presence of
pairs of uni- and bi-grams from the source-side vo-
cabulary of query terms and the target-side vocabu-
lary of document-terms, respectively. Furthermore,
in order to simulate the pass-through behavior of
SMT, we introduce additional features to the model
that indicate the identity of terms in source and tar-
get. All identity features have the same fixed weight
β, which is found on the development set.

For training, we are given labeled data in the form
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of a set R of tuples (q,d+,d−), where d+ is a rel-
evant (or higher ranked) document and d− an ir-
relevant (or lower ranked) document for query q.
RankBoost’s objective is to correctly rank query-
document pairs such that f(q,d+) > f(q,d−) for
all data tuples from R. RankBoost achieves this by
optimizing the following convex exponential loss:

Lexp =
∑

(q,d+,d−)∈R

D(q,d+,d−)ef(q,d−)−f(q,d+),

where D(q,d+,d−) is a non-negative importance
function on pairs of documents for a given q.

We optimize Lexp in a greedy iterative fash-
ion, which closely follows an efficient algorithm of
Collins and Koo (2005) for the case of binary-valued
h. In each step, the single feature h is selected that
provides the largest decrease of Lexp, i.e., that has
the largest projection on the direction of the gradi-
ent ∇hLexp. Because of the sequential nature of
the algorithm, RankBoost implicitly performs auto-
matic feature selection and regularization (Rosset et
al., 2004), which is crucial to reduce complexity and
capacity for our application.

Parallelization and Bagging To achieve paral-
lelization we use a variant of bagging (Breiman,
1996) on top of boosting, which has been observed
to improve performance, reduce variance and is
trivial to parallelize. The procedure is described
as part of Algorithm 1: From the set of prefer-
ence pairs R, draw S equal-sized samples with
replacement and distribute to nodes. Then, us-
ing each of the samples as a training set, sep-
arate boosting models {wst , hst}, s = 1 . . . S are
trained that contain the same number of features
t = 1 . . . T . Finally the models are averaged:
f(q,d) = 1

S

∑
t

∑
sw

s
th
s
t (q,d).

Algorithm The entire training procedure is out-
lined in Algorithm 1. For each possible feature h
we maintain auxiliary variables W+

h and W−h :

W±h =
∑

(q,d+,d−):h(q,d+)−h(q,d−)=±1

D(q,d+,d−),

which are the cumulative weights of correctly and
incorrectly ranked instances by a candidate feature
h. The absolute value of ∂Lexp/∂h can be ex-

pressed as
∣∣√W+

h −
√
W−h

∣∣ which is used as fea-
ture selection criterion (Collins and Koo, 2005).

The optimum of minimizing Lexp over w (with

fixed h) can be shown to be w = 1
2 ln

W+
h +εZ

W−h +εZ
,

where ε is a smoothing parameter to avoid prob-
lems with small W±h (Schapire and Singer, 1999),
and Z =

∑
(q,d+,d−)∈RD(q,d+,d−). Further-

more, for each step t of the learning process, values
of D are updated to concentrate on pairs that have
not been correctly ranked so far:

Dt+1 = Dt · ewt

(
ht(q,d−)−ht(q,d+)

)
. (5)

Finally, to speed up learning, on iteration t we
recalculate W±h only for those h that cooccur
with previously selected ht and keep the rest un-
changed (Collins and Koo, 2005).

Algorithm 1: Bagged Boosting

Input: training tuplesR, max number of features
T , initial D0, smoothing param. ε ' 10−5

Initialize:
fromR draw S samples with replacement and
distribute to nodes
Learn:
for all samples s = 1 . . . S in parallel do

calculate W+
h ,W−h , Z on sample’s data

for all t = 1 . . . T do

choose ht = arg maxh
∣∣√W+

h −
√
W−h

∣∣
and wt = 1

2 ln
W+

h +εZ

W−h +εZ

update Dt according to (5)
update W±h for all h that cooccur with ht

end
return to master {hst , wst }, t = 1 . . . T

end
Bagging:
return scoring function
f(q,d) = 1

S

∑
t

∑
sw

s
th
s
t (q,d)

Implementation Because of the total number of
features (billions) there are several obstacles for the
straight-forward implementation of Algorithm 1.

First, we cannot directly access all pairs (q,d)
containing a particular feature h needed for calcu-
lating W±h . Building an inverted index is compli-
cated as it needs to fit into memory for fast fre-

1692



quent access8. We resort to the on-the-fly creation of
the cross-product space of features, following prior
work by Grangier and Bengio (2008) and Goel et al.
(2008). That is, while processing a pair (q,d), we
update W±h for all h found for the pair.

Second, even if the explicit representation of all
features is avoided by on-the-fly feature construc-
tion, we still need to keep all W±h in addressable
RAM. To achieve that we use hash kernels (Shi et
al., 2009) and map original features into b-bit integer
hashes. The values W±h′ for new, “hashed”, features
h′ become W±h′ =

∑
h:HASH(h)=h′W

±
h . We used

the MurmurHash3 function on the UTF-8 represen-
tations of features and b = 30 (resulting in more
than 1 billion distinct hashes).

4 Model Combination by Borda Counts

SMT-based approaches to CLIR and our boosting
approach have different strengths. The SMT-based
approaches produce fluent translations that are use-
ful for matching general passages written in natu-
ral language. Both baseline SMT-based approaches
presented above are agnostic of the ultimate retrieval
task and are not specifically adapted for it. The
boosting method, on the other hand, learns domain-
specific word associations that are useful to discern
relevant from irrelevant documents. In order to com-
bine these orthogonal sources of information in a
way that democratically respects each approach we
use Borda Counts, i.e., a consensus-based voting
procedure that has been successfully employed to
aggregate ranked lists of documents for metasearch
(Aslam and Montague, 2001).

We implemented a weighted version of the Borda
Count method where each voter has a fixed amount
of voting points which she is free to distribute among
the candidates to indicate the amount of preference
she is giving to each of them. In the case of retrieval,
for each q, the candidates are the scored documents
in the retrieved subset of the whole document set.
The aggregate score fagg for two rankings f1(q,d)

8It is possible to construct separate query and document in-
verted indices and intersect them on the fly to determine the
set of documents that contains some pair of words. In practice,
however, we found the overhead of set intersection during each
feature access prohibitive.

and f2(q,d) for all (q,d) in the test set is then:

fagg(q,d) = κ
f1(q,d)∑
d f1(q,d)

+(1−κ) f2(q,d)∑
d f2(q,d)

.

In practice, the normalizations sum over the top K
retrieved documents. If a document is present only
in the top-K list of one system, its score is con-
sidered zero for the other system. The aggregated
scores fagg(q,d) are sorted in descending order and
top K scores are kept for evaluation.

Using the terminology proposed by Belkin et
al. (1995), combining several systems’ scores with
Borda Counts can be viewed as the “data fusion”
approach to IR, that merges outputs of the systems,
while the PSQ baseline is an example of the “query
combination” approach that extends the query at the
input. Both techniques were earlier found to have
similar performance in CLIR tasks based on direct
translation, with a preference for the data fusion ap-
proach (Jones and Lam-Adesina, 2002).

5 Translation and Ranking Data

5.1 Parallel Translation Data

For Japanese-to-English patent translation we used
data provided by the organizers of the NTCIR9

workshop for the JP-EN PatentMT subtask. In par-
ticular, we used the data provided for NTCIR-7 (Fu-
jii et al., 2008), consisting of 1.8 million parallel
sentence pairs from the years 1993-2002 for train-
ing. For parameter tuning we used the develop-
ment set of the NTCIR-8 test collection, consisting
of 2,000 sentence pairs. The data were extracted
from the description section of patents published
by the Japanese Patent Office (JPO) and the United
States Patent and Trademark Office (USPTO) by the
method described in Utiyama and Isahara (2007).

Japanese text was segmented using the MeCab10

toolkit. Following Feng et al. (2011), we applied
a modified version of the compound splitter de-
scribed in Koehn and Knight (2003) to katakana
terms, which are often transliterations of English
compound words. As these are usually not split by
MeCab, they can cause a large number of out-of-
vocabulary terms.

9http://research.nii.ac.jp/ntcir/ntcir/
10https://code.google.com/p/mecab/
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#queries #relevant #unique docs
train 107,061 1,422,253 888,127
dev 2,000 26,478 25,669
test 2,000 25,173 24,668

Table 1: Statistics of ranking data.

For the English side of the training data, we ap-
plied a modified version of the tokenizer included in
the Moses scripts. This tokenizer relies on a list of
non-breaking prefixes which mark expressions that
are usually followed by a “.” (period). We cus-
tomized the list of prefixes by adding some abbrevi-
ations like “Chem”, “FIG” or “Pat”, which are spe-
cific to patent documents.

5.2 Ranking Data from Patent Citations

Graf and Azzopardi (2008) describe a method to ex-
tract relevance judgements for patent retrieval from
patent citations. The key idea is to regard patent doc-
uments that are cited in a query patent, either by the
patent applicant, or by the patent examiner or in a
patent office’s search report, as relevant for the query
patent. Furthermore, patent documents that are re-
lated to the query patent via a patent family relation-
ship, i.e., patents granted by different patent author-
ities but related to the same invention, are regarded
as relevant. We assign three integer relevance levels
to these three categories of relationships, with high-
est relevance (3) for family patents, lower relevance
for patents cited in search reports by patent examin-
ers (2), and lowest relevance level (1) for applicants’
citations. We also include all patents which are in
the same patent family as an applicant or examiner
citation to avoid false negatives. This methodol-
ogy has been used to create patent retrieval data at
CLEF-IP11 and proved very useful to automatically
create a patent retrieval dataset for our experiments.

For the creation of our dataset, we used the
MAREC12 citation graph to extract patents in cita-
tion or family relation. Since the Japanese portion
of the MAREC corpus only contains English ab-
stracts, but not the Japanese full texts, we merged
the patent documents in the NTCIR-10 test collec-
tion described above with the Japanese (JP) section

11http://www.ifs.tuwien.ac.at/˜clef-ip/
12http://www.ifs.tuwien.ac.at/imp/marec.

shtml

of MAREC. Title, abstract, description and claims
were added to the MAREC-JP data if the docu-
ment was available in NTCIR. In order to keep par-
allel data for SMT training separate from ranking
data, we used only data from the years 2003-2005
to extract training data for ranking, and two small
datasets of 2,000 queries each from the years 2006-
2007 for development and testing. Table 1 gives an
overview over the data used for ranking. For de-
velopment and test data, we randomly added irrele-
vant documents from the NTCIR-10 collection until
we obtained two pools of 100,000 documents. The
necessary information to reproduce the exact train,
development and test data samples is downloadable
from authors’ webpage13.

The experiments reported here use only the ab-
stract of the Japanese and English patents in our
training, development and test collection.

6 Experiments

6.1 System Development

System development and evaluation in our exper-
iments was done on the ranking data described
in the previous section (see Table 1). We report
Mean Average Precision (MAP) scores, using the
trec eval (ver. 8.1) script from the TREC evalu-
ation campaign14, with a limit of top K = 1, 000 re-
trieved documents for each query. Furthermore, we
use the Patent Retrieval Evaluation Score (PRES)15

introduced by Magdy and Jones (2010). This met-
ric accounts for both precision and recall. In the
study by Magdy and Jones (2010), PRES agreed
with MAP in almost 80% of cases, and both agreed
on the ranks of the best and the worst IR system.
Both MAP and PRES scores are reported in the same
range [0, 1], and 0.01 stands for 1 MAP (PRES)
point. Statistical significance of pairwise system
comparisons was assessed using the paired random-
ization test (Noreen, 1989; Smucker et al., 2007).

For each system, optimal meta-parameter settings
were found by choosing the configuration with high-
est MAP score on the development set. These results

13http://www.cl.uni-heidelberg.de/
statnlpgroup/boostclir

14http://trec.nist.gov/trec_eval
15http://www.computing.dcu.ie/˜wmagdy/

Scripts/PRESeval.htm
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method MAP PRES
dev test dev test

1 DT 0.2636 0.2555 0.5669 0.5681

2 PSQ lexical table 0.2520 0.2444 0.5445 0.5498
3 PSQ n-best table 0.2698 0.2659 0.5789 0.5851

Boost-1g 0.2064 1230.1982 0.5850 120.6122
Boost-2g 0.2526 30.2474 0.6900 1230.7196

Table 2: MAP and PRES scores for CLIR methods (best
configurations) on the development and test sets. Prefixed
numbers denote statistical significance of a pairwise com-
parison with the baseline indicated by the superscript. For
example, the bottom right result shows that Boost-2g is
significantly better than DT (method 1), PSQ lexical ta-
ble (method 2) and PSQ n-best table (method 3).

(together with PRES results) are shown in the sec-
ond and fourth column of Table 2.

The direct translation approach (DT) was devel-
oped in three configurations: no stopword filtering,
small stopword list (52 words) and a large stopword
list (543 words). The last configuration achieved the
highest score (MAP 0.2636).

The probabilistic structured query (PSQ) ap-
proach was developed using the lexical translation
table and the translation table estimated on the de-
coder’s n-best list, both optionally pruned with a
variable lower pL and cumulative pC threshold on
the word pair probability in the table (Section 3.2).
A further meta-parameter of PSQ was whether to use
standard or unique n-best lists. Finally, all variants
were coupled with the same stopword filters as in
the DT approach. The configurations that achieved
the highest scores were: MAP 0.2520 for PSQ with
a lexical table (pL = 0.01, pC = 0.95, no stop-
word filtering), and MAP 0.2698 for PSQ with a
translation table estimated on the n-best list (pL =
0.005, pC = 0.95, large stopword list). Interpolat-
ing between lexical and n-best tables did not im-
prove results in our experiments, thus we set λ = 1
in equation (4).

Each SMT-based system was run with 4 different
MERT optimizations, leading to variations of less
than 1 MAP point for each system. The best con-
figurations for DT and PSQ on the development set
were fixed and used for evaluation on the test set.

Training of the boosting approach (Boost) was
done in parallel on bootstrap samples from the train-
ing data. First, a query q (i.e., a Japanese abstract)
was sampled uniformly from all training queries.

method MAP PRES
dev test dev test

DT + PSQ n-best 0.2778 ∗0.2726 0.5884 ∗0.5942

DT + Boost-1g 0.2778 ∗0.2728 0.6157 ∗0.6225
DT + Boost-2g 0.3309 ∗0.3300 0.7132 ∗0.7279
PSQ lexical + Boost-1g 0.2695 ∗0.2653 0.6068 ∗0.6131
PSQ lexical + Boost-2g 0.3215 ∗0.3187 0.7071 ∗0.7240
PSQ n-best + Boost-1g 0.2863 ∗0.2850 0.6309 ∗0.6402
PSQ n-best + Boost-2g 0.3439 ∗0.3416 0.7212 ∗0.7376

Table 3: MAP and PRES scores of the aggregated mod-
els on the development and test sets. Development scores
correspond to peaks in Figures 1 and 3, respectively, for
MAP and PRES; test scores are given for the κ’s deliv-
ering these peaks on the development set. Prefixed ∗ in-
dicates statistical significance of the result difference be-
tween aggregated system and the respective translation-
based system used in the aggregation.

Then we sampled independently and uniformly a
relevant document d+ (i.e., an English abstract)
from the English patents marked relevant for the
Japanese patent, and a random document d− from
the whole pool of English patent abstracts. If d−

had a relevance score greater or equal to the rele-
vance score of d+, it was resampled. The initial im-
portance weight D0 for a triplet (q,d+,d−) was set
to the positive difference in relevance scores for d+

and d−. Each bootstrap sample consisted of 10 pairs
of documents for each of 10, 000 queries, resulting
in 100, 000 training instances per sample.

The Boost approach was developed for uni-gram
and combined uni- and bi-gram versions. We ob-
served that the performance of the Boost method
continuously improved with the number of iterations
T and with the number of samples S, but saturated
at about 15-20 samples without visible over-fitting
in the tested range of T . Therefore we arbitrarily
stopped training after obtaining 5, 000 features per
sample, and used 35 samples for uni-gram version
and 65 samples for the combined bi-gram version,
resulting in models with 104K and 172K unique fea-
tures, respectively. The optimal values for the pass-
through weight β were found to be 0.3 and 0.2 for
the uni-gram and bi-gram models on the develop-
ment set. The best configuration of uni-gram and
bi-gram model achieved MAP scores of 0.2064 and
0.2526 the development set. Using stopword filters
during training did not improve the results here.
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Figure 1: MAP rank aggregation for combinations of the
bi-gram boosting and the baselines on the dev set.

0.24

0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
A

P

κ

dev, PSQ n-best + Boost-2g
test, PSQ n-best + Boost-2g

dev, PSQ n-best, 0.2698
test, PSQ n-best, 0.2659

dev, Boost-2g, 0.2526
test, Boost-2g, 0.2474

Figure 2: MAP rank aggregation for the bi-gram boosting
and the “PSQ n-best table” approach on dev and test sets.
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Figure 3: PRES rank aggregation for combinations of the
bi-gram boosting and the baselines on the dev set.

6.2 Testing and Model Combination

The third and the fifth columns of Table 2 give a
comparison of the MAP scores of the baseline ap-
proaches and the Boost model evaluated individu-
ally on the test set. Each score corresponds to the
best configuration found on the development set. We
see that the PSQ approach using n-best lists for pro-
jection outperforms all other methods in terms of
MAP, but loses to both Boost approaches when eval-
uated with PRES. Direct translation is about 1 MAP
point lower than PSQ n-best; Boost with combined
uni- and bi-grams is another 0.8 MAP points worse,
but is better in terms of PRES, especially for the bi-
gram version. Given the fact that the complex SMT
system behind the direct translation and PSQ ap-
proach is trained and tuned on very large in-domain
datasets, the performance of the bare phrase table
induced by the Boost method is respectable.

Our best results are obtained by a combination
of the orthogonal information sources of the SMT
and the Boost approaches. We evaluated the Borda
Count aggregation scheme on the development data
in order to find the optimal value for κ ∈ [0, 1]. The
interpolation was done for the best combined uni-
and bi-gram boosting model with the best variants of
the DT and PSQ approaches. As can be seen from
Figures 1 and 3, rank aggregation by Borda Count
outperforms both individual approaches by a large
margin. Figure 2 verifies that the results are trans-
ferable from the development set to the test set. The
best performing system combination on the develop-
ment data is also optimal on the test data.

Table 3 shows the retrieval performance of the
best baseline model (PSQ n-best) combined with
the best Boost model (bi-gram), with an impres-
sive gain of over 7 MAP points (15 PRES points)
over the best individual baseline result from Table 2.
Even when, according to the PRES measure (Fig-
ure 3), the Boost-2g system is better on its own, in-
jecting complementary information from the PSQ or
DT approach still contributes several points. Simi-
lar gains are obtained by model combination of the
DT approach with the best Boost model. However,
a combination of the SMT-based CLIR approaches
DT and PSQ barely improved results over the best
input model. In summary, aggregating rankings is
helpful for orthogonal systems, but not for systems
including similar information.
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6.3 Analysis

Table 4 lists some of the top-200 selected features
for the boosting approach (the most common trans-
lation of the Japanese term is put in subscript).

We see that the direct ranking approach is able
to penalize uni- and bi-gram cooccurrences that are
harmful for retrieval by assigning them a negative
weight, e.g., the pairing of解決resolution with image.
Pairs of uni- and bi-grams that are useful for re-
trieval are boosted by positive weights, e.g., the pair
圧縮compression,機machine and compressor captures an
important compound. Further examples, not shown
in the table, are matches of the same source (tar-
get) n-gram with several different target (source) n-
grams, e.g., the Japanese term 画像image is paired
not only with its main translation, but also with
dozens of related notions: video, picture, scanning,
printing, photosensitive, pixel, background etc. This
has a query expansion effect that is not possible in
systems that use one translation or a small list of n-
best translations. In addition, associations of source
n-grams with overlapping target n-grams help boost
the final score: e.g., the same term画像image is pos-
itively paired with target bi-grams as {an,original},
{original,image} and {image,for}. This has the ef-
fect of compensating for the lack of handling phrase
overlaps in an SMT decoder.

7 Conclusion

We presented a boosting approach to induce a table
of bilingual n-gram correspondences by direct pref-
erence learning on relevance rankings. This table
can be seen as a phrase table that encodes word-
based information that is orthogonal and comple-
mentary to the information in standard translation-
based CLIR approaches. We compared our boosting
approach to very competitive CLIR baselines that
use a complex SMT system trained and tuned on
large in-domain datasets. Furthermore, our patent
retrieval setup gives SMT-based approaches an ad-
vantage in that queries consist of several normal-
length sentences, as opposed to the short queries
common to web search. Despite this and despite the
tiny size (about 170K parameters) of the boosting
phrase table, compared to standard SMT phrase ta-
bles, this approach reached performance similar to
direct translation using a full SMT model in terms

t ht (uni- & bi-grams) wt

1 層layer - layer 1.29
2 データdata - data 1.13
3 回路circuit - circuit 1.13

76 でin - voltage -0.39
77 導guide,電power - conductive 1.25

81 解決resolution - image -0.25

99 変速speed - transmission 1.68
100 液晶LCD - liquid,crystal 1.73

123 力power - force 0.91
124 圧縮compression,機machine - compressor 2.83

132 ケーブルcable - cable 1.81
133 超hyper,音波sound wave - ultrasonic 3.34

169 粒子particle - particles 1.57
170 算出calculation - for,each 1.14

184 ロータrotor - rotor 2.01
185 検出detection,器vessel - detector 1.43

Table 4: Examples of the features found by boosting.

of MAP, and was significantly better in terms of
PRES. Overall, we obtained the best results by a
model combination using consensus- based voting
where the best SMT-based approach was combined
with the boosting phrase table (gaining more than 7
MAP or 15 PRES points). We attribute this to the
fact that the boosting approach augments SMT ap-
proaches with valuable information that is hard to
get in approaches that are agnostic about the rank-
ing data and the ranking task at hand.

The experimental setup presented in this paper
uses relevance links between patent abstracts as
ranking data. While this technique is useful to de-
velop patent retrieval systems, it would be interest-
ing to see if our results transfer to patent retrieval
scenarios where full patent documents are used in-
stead of only abstracts, or to standard CLIR scenar-
ios that use short search queries in retrieval.
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Abstract

We introduce a class of probabilistic con-
tinuous translation models called Recur-
rent Continuous Translation Models that are
purely based on continuous representations
for words, phrases and sentences and do not
rely on alignments or phrasal translation units.
The models have a generation and a condi-
tioning aspect. The generation of the transla-
tion is modelled with a target Recurrent Lan-
guage Model, whereas the conditioning on the
source sentence is modelled with a Convolu-
tional Sentence Model. Through various ex-
periments, we show first that our models ob-
tain a perplexity with respect to gold transla-
tions that is > 43% lower than that of state-
of-the-art alignment-based translation models.
Secondly, we show that they are remarkably
sensitive to the word order, syntax, and mean-
ing of the source sentence despite lacking
alignments. Finally we show that they match a
state-of-the-art system when rescoring n-best
lists of translations.

1 Introduction

In most statistical approaches to machine transla-
tion the basic units of translation are phrases that are
composed of one or more words. A crucial com-
ponent of translation systems are models that esti-
mate translation probabilities for pairs of phrases,
one phrase being from the source language and the
other from the target language. Such models count
phrase pairs and their occurrences as distinct if the
surface forms of the phrases are distinct. Although
distinct phrase pairs often share significant similari-

ties, linguistic or otherwise, they do not share statis-
tical weight in the models’ estimation of their trans-
lation probabilities. Besides ignoring the similar-
ity of phrase pairs, this leads to general sparsity is-
sues. The estimation is sparse or skewed for the
large number of rare or unseen phrase pairs, which
grows exponentially in the length of the phrases, and
the generalisation to other domains is often limited.

Continuous representations have shown promise
at tackling these issues. Continuous representations
for words are able to capture their morphological,
syntactic and semantic similarity (Collobert and We-
ston, 2008). They have been applied in continu-
ous language models demonstrating the ability to
overcome sparsity issues and to achieve state-of-the-
art performance (Bengio et al., 2003; Mikolov et
al., 2010). Word representations have also shown
a marked sensitivity to conditioning information
(Mikolov and Zweig, 2012). Continuous repre-
sentations for characters have been deployed in
character-level language models demonstrating no-
table language generation capabilities (Sutskever et
al., 2011). Continuous representations have also
been constructed for phrases and sentences. The rep-
resentations are able to carry similarity and task de-
pendent information, e.g. sentiment, paraphrase or
dialogue labels, significantly beyond the word level
and to accurately predict labels for a highly diverse
range of unseen phrases and sentences (Grefenstette
et al., 2011; Socher et al., 2011; Socher et al., 2012;
Hermann and Blunsom, 2013; Kalchbrenner and
Blunsom, 2013).

Phrase-based continuous translation models were
first proposed in (Schwenk et al., 2006) and re-
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cently further developed in (Schwenk, 2012; Le et
al., 2012). The models incorporate a principled way
of estimating translation probabilities that robustly
extends to rare and unseen phrases. They achieve
significant Bleu score improvements and yield se-
mantically more suggestive translations. Although
wide-reaching in their scope, these models are lim-
ited to fixed-size source and target phrases and sim-
plify the dependencies between the target words tak-
ing into account restricted target language modelling
information.

We describe a class of continuous translation
models called Recurrent Continuous Translation
Models (RCTM) that map without loss of generality
a sentence from the source language to a probabil-
ity distribution over the sentences in the target lan-
guage. We define two specific RCTM architectures.
Both models adopt a recurrent language model for
the generation of the target translation (Mikolov et
al., 2010). In contrast to other n-gram approaches,
the recurrent language model makes no Markov as-
sumptions about the dependencies of the words in
the target sentence.

The two RCTMs differ in the way they condi-
tion the target language model on the source sen-
tence. The first RCTM uses the convolutional sen-
tence model (Kalchbrenner and Blunsom, 2013) to
transform the source word representations into a rep-
resentation for the source sentence. The source sen-
tence representation in turn constraints the genera-
tion of each target word. The second RCTM intro-
duces an intermediate representation. It uses a trun-
cated variant of the convolutional sentence model to
first transform the source word representations into
representations for the target words; the latter then
constrain the generation of the target sentence. In
both cases, the convolutional layers are used to gen-
erate combined representations for the phrases in a
sentence from the representations of the words in the
sentence.

An advantage of RCTMs is the lack of latent
alignment segmentations and the sparsity associated
with them. Connections between source and target
words, phrases and sentences are learnt only implic-
itly as mappings between their continuous represen-
tations. As we see in Sect. 5, these mappings of-
ten carry remarkably precise morphological, syntac-
tic and semantic information. Another advantage is

that the probability of a translation under the models
is efficiently computable requiring a small number
of matrix-vector products that is linear in the length
of the source and the target sentence. Further, trans-
lations can be generated directly from the probabil-
ity distribution of the RCTM without any external
resources.

We evaluate the performance of the models in four
experiments. Since the translation probabilities of
the RCTMs are tractable, we can measure the per-
plexity of the models with respect to the reference
translations. The perplexity of the models is signifi-
cantly lower than that of IBM Model 1 and is> 43%
lower than the perplexity of a state-of-the-art variant
of the IBM Model 2 (Brown et al., 1993; Dyer et
al., 2013). The second and third experiments aim to
show the sensitivity of the output of the RCTM II
to the linguistic information in the source sentence.
The second experiment shows that under a random
permutation of the words in the source sentences,
the perplexity of the model with respect to the refer-
ence translations becomes significantly worse, sug-
gesting that the model is highly sensitive to word
position and order. The third experiment inspects
the translations generated by the RCTM II. The
generated translations demonstrate remarkable mor-
phological, syntactic and semantic agreement with
the source sentence. Finally, we test the RCTMs
on the task of rescoring n-best lists of translations.
The performance of the RCTM probabilities joined
with a single word penalty feature matches the per-
formance of the state-of-the-art translation system
cdec that makes use of twelve features including
five alignment-based translation models (Dyer et al.,
2010).

We proceed as follows. We begin in Sect. 2 by
describing the general modelling framework under-
lying the RCTMs. In Sect. 3 we describe the RCTM
I and in Sect. 4 the RCTM II. Section 5 is dedicated
to the four experiments and we conclude in Sect. 6.1

2 Framework

We begin by describing the modelling framework
underlying RCTMs. An RCTM estimates the proba-
bility P (f|e) of a target sentence f = f1, ..., fm being
a translation of a source sentence e = e1, ..., ek. Let

1Code and models available at nal.co
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us denote by fi:j the substring of words fi, ..., fj . Us-
ing the following identity,

P (f|e) =
m∏

i=1

P (fi|f1:i−1, e) (1)

an RCTM estimates P (f|e) by directly computing
for each target position i the conditional probability
P (fi|f1:i−1, e) of the target word fi occurring in the
translation at position i, given the preceding target
words f1:i−1 and the source sentence e. We see that
an RCTM is sensitive not just to the source sentence
e but also to the preceding words f1:i−1 in the target
sentence; by doing so it incorporates a model of the
target language itself.

To model the conditional probability P (f|e), an
RCTM comprises both a generative architecture for
the target sentence and an architecture for condition-
ing the latter on the source sentence. To fully cap-
ture Eq. 1, we model the generative architecture with
a recurrent language model (RLM) based on a re-
current neural network (Mikolov et al., 2010). The
prediction of the i-th word fi in a RLM depends on
all the preceding words f1:i−1 in the target sentence
ensuring that conditional independence assumptions
are not introduced in Eq. 1. Although the predic-
tion is most strongly influenced by words closely
preceding fi, long-range dependencies from across
the whole sentence can also be exhibited. The con-
ditioning architectures are model specific and are
treated in Sect. 3-4. Both the generative and con-
ditioning aspects of the models deploy continuous
representations for the constituents and are trained
as a single joint architecture. Given the modelling
framework underlying RCTMs, we now proceed to
describe in detail the recurrent language model un-
derlying the generative aspect.

2.1 Recurrent Language Model
A RLM models the probability P (f) that the se-
quence of words f occurs in a given language. Let
f = f1, ..., fm be a sequence of m words, e.g. a sen-
tence in the target language. Analogously to Eq. 1,
using the identity,

P (f) =
m∏

i=1

P (fi|f1:i−1) (2)

the model explicitly computes without simpli-
fying assumptions the conditional distributions

R

I O

fi P(f   )i+1

h

R

fi-1 P(f )i fi+1 P(f   )i+2

OI

h h hi-1 i i+1

Figure 1: A RLM (left) and its unravelling to depth 3
(right). The recurrent transformation is applied to the hid-
den layer hi−1 and the result is summed to the represen-
tation for the current word fi. After a non-linear transfor-
mation, a probability distribution over the next word fi+1

is predicted.

P (fi|f1:i−1). The architecture of a RLM comprises
a vocabulary V that contains the words fi of the
language as well as three transformations: an in-
put vocabulary transformation I ∈ Rq×|V |, a re-
current transformation R ∈ Rq×q and an output
vocabulary transformation O ∈ R|V |×q. For each
word fk ∈ V , we indicate by i(fk) its index in V
and by v(fk) ∈ R|V |×1 an all zero vector with only
v(fk)i(fk) = 1.

For a word fi, the result of I · v(fi) ∈ Rq×1 is
the input continuous representation of fi. The pa-
rameter q governs the size of the word representa-
tion. The prediction proceeds by successively ap-
plying the recurrent transformation R to the word
representations and predicting the next word at each
step. In detail, the computation of each P (fi|f1:i−1)
proceeds recursively. For 1 < i < m,

h1 = σ(I · v(f1)) (3a)
hi+1 = σ(R · hi + I · v(fi+1)) (3b)
oi+1 = O · hi (3c)

and the conditional distribution is given by,

P (fi = v|f1:i−1) =
exp (oi,v)∑V
v=1 exp(oi,v)

(4)

In Eq. 3, σ is a nonlinear function such as tanh. Bias
values bh and bo are included in the computation. An
illustration of the RLM is given in Fig. 1.

The RLM is trained by backpropagation through
time (Mikolov et al., 2010). The error in the pre-
dicted distribution calculated at the output layer is
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backpropagated through the recurrent layers and cu-
mulatively added to the errors of the previous predic-
tions for a given number d of steps. The procedure is
equivalent to standard backpropagation over a RLM
that is unravelled to depth d as in Fig. 1.

RCTMs may be thought of as RLMs, in which
the predicted distributions for each word fi are con-
ditioned on the source sentence e. We next define
two conditioning architectures each giving rise to a
specific RCTM.

3 Recurrent Continuous Translation
Model I

The RCTM I uses a convolutional sentence model
(CSM) in the conditioning architecture. The CSM
creates a representation for a sentence that is pro-
gressively built up from representations of the n-
grams in the sentence. The CSM embodies a hierar-
chical structure. Although it does not make use of an
explicit parse tree, the operations that generate the
representations act locally on small n-grams in the
lower layers of the model and act increasingly more
globally on the whole sentence in the upper layers
of the model. The lack of the need for a parse tree
yields two central advantages over sentence models
that require it (Grefenstette et al., 2011; Socher et
al., 2012). First, it makes the model robustly appli-
cable to a large number of languages for which accu-
rate parsers are not available. Secondly, the transla-
tion probability distribution over the target sentences
does not depend on the chosen parse tree.

The RCTM I conditions the probability of each
target word fi on the continuous representation of the
source sentence e generated through the CSM. This
is accomplished by adding the sentence representa-
tion to each hidden layer hi in the target recurrent
language model. We next describe the procedure in
more detail, starting with the CSM itself.

3.1 Convolutional Sentence Model

The CSM models the continuous representation of
a sentence based on the continuous representations
of the words in the sentence. Let e = e1...ek be
a sentence in a language and let v(ei) ∈ Rq×1 be
the continuous representation of the word ei. Let
Ee ∈ Rq×k be the sentence matrix for e defined by,

Ee
:,i = v(ei) (5)

(K    M)* :,1

M M M:,1 :,2 :,3
the cat sat on the mat

e

E e
K 2

K 3

L  3

K i   :,1 K i   :,2 K i   :,3

i

Figure 2: A CSM for a six word source sentence e and the
computed sentence representation e. K2,K3 are weight
matrices and L3 is a top weight matrix. To the right, an
instance of a one-dimensional convolution between some
weight matrix Ki and a generic matrix M that could for
instance correspond to Ee

2. The color coding of weights
indicates weight sharing.

The main component of the architecture of the CSM
is a sequence of weight matrices (Ki)2≤i≤r that cor-
respond to the kernels or filters of the convolution
and can be thought of as learnt feature detectors.
From the sentence matrix Ee the CSM computes a
continuous vector representation e ∈ Rq×1 for the
sentence e by applying a sequence of convolutions
to Ee whose weights are given by the weight matri-
ces. The weight matrices and the sequence of con-
volutions are defined next.

We denote by (Ki)2≤i≤r a sequence of weight
matrices where each Ki ∈ Rq×i is a matrix of i
columns and r = d

√
2Ne, where N is the length of

the longest source sentence in the training set. Each
row of Ki is a vector of i weights that is treated as
the kernel or filter of a one-dimensional convolution.
Given for instance a matrix M ∈ Rq×j where the
number of columns j ≥ i, each row of Ki can be
convolved with the corresponding row in M, result-
ing in a matrix Ki ∗M, where ∗ indicates the con-
volution operation and (Ki ∗M) ∈ Rq×(j−i+1). For
i = 3, the value (Ki ∗M):,a is computed by:

Ki
:,1�M:,a +Ki

:,2�M:,a+1 +Ki
:,3�M:,a+2 (6)

where � is component-wise vector product. Ap-
plying the convolution kernel Ki yields a matrix
(Ki∗M) that has i−1 columns less than the original
matrix M.

Given a source sentence of length k, the CSM
convolves successively with the sentence matrix Ee
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the sequence of weight matrices (Ki)2≤i≤r, one af-
ter the other starting with K2 as follows:

Ee
1 = Ee (7a)

Ee
i+1 = σ(Ki+1 ∗Ee

i ) (7b)

After a few convolution operations, Ee
i is either a

vector in Rq×1, in which case we obtained the de-
sired representation, or the number of columns in
Ee

i is smaller than the number i + 1 of columns in
the next weight matrix Ki+1. In the latter case, we
equally obtain a vector in Rq×1 by simply apply-
ing a top weight matrix Lj that has the same num-
ber of columns as Ee

i . We thus obtain a sentence
representation e ∈ Rq×1 for the source sentence e.
Note that the convolution operations in Eq. 7b are
interleaved with non-linear functions σ. Note also
that, given the different levels at which the weight
matrices Ki and Li are applied, the top weight
matrix Lj comes from an additional sequence of
weight matrices (Li)2≤i≤r distinct from (Ki)2≤i≤r.
Fig. 2 depicts an instance of the CSM and of a one-
dimensional convolution.2

3.2 RCTM I
As defined in Sect. 2, the RCTM I models the condi-
tional probability P (f|e) of a sentence f = f1, ..., fm
in a target language F being the translation of a sen-
tence e = e1, ..., ek in a source language E. Accord-
ing to Eq. 1, the RCTM I explicitly computes the
conditional distributions P (fi|f1:i−1, e). The archi-
tecture of the RCTM I comprises a source vocabu-
lary V E and a target vocabulary V F, two sequences
of weight matrices (Ki)2≤i≤r and (Li)2≤i≤r that
are part of the constituent CSM, transformations
I ∈ Rq×|V F|, R ∈ Rq×q and O ∈ R|V F|×q that are
part of the constituent RLM and a sentence transfor-
mation S ∈ Rq×q. We write e = csm(e) for the
output of the CSM with e as the input sentence.

The computation of the RCTM I is a simple mod-
ification to the computation of the RLM described in
Eq. 3. It proceeds recursively as follows:

s = S · csm(e) (8a)
h1 = σ(I · v(f1) + s) (8b)

hi+1 = σ(R · hi + I · v(fi+1) + s) (8c)
oi+1 = O · hi (8d)

2For a formal treatment of the construction, see (Kalchbren-
ner and Blunsom, 2013).

and the conditional distributions P (fi+1|f1:i, e) are
obtained from oi as in Eq. 4. σ is a nonlinear func-
tion and bias values are included throughout the
computation. Fig. 3 illustrates an RCTM I.

Two aspects of the RCTM I are to be remarked.
First, the length of the target sentence is predicted
by the target RLM itself that by its architecture has
a bias towards shorter sentences. Secondly, the rep-
resentation of the source sentence e constraints uni-
formly all the target words, contrary to the fact that
the target words depend more strongly on certain
parts of the source sentence and less on other parts.
The next model proposes an alternative formulation
of these aspects.

4 Recurrent Continuous Translation
Model II

The central idea behind the RCTM II is to first es-
timate the length m of the target sentence indepen-
dently of the main architecture. Given m and the
source sentence e, the model constructs a represen-
tation for the n-grams in e, where n is set to 4. Note
that each level of the CSM yields n-gram represen-
tations of e for a specific value of n. The 4-gram
representation of e is thus constructed by truncat-
ing the CSM at the level that corresponds to n = 4.
The procedure is then inverted. From the 4-gram
representation of the source sentence e, the model
builds a representation of a sentence that has the
predicted length m of the target. This is similarly
accomplished by truncating the inverted CSM for a
sentence of length m.

We next describe in detail the Convolutional n-
gram Model (CGM). Then we return to specify the
RCTM II.

4.1 Convolutional n-gram model
The CGM is obtained by truncating the CSM at the
level where n-grams are represented for the chosen
value of n. A column g of a matrix Ee

i obtained
according to Eq. 7 represents an n-gram from the
source sentence e. The value of n corresponds to
the number of word vectors from which the n-gram
representation g is constructed; equivalently, n is
the span of the weights in the CSM underneath g
(see Fig. 2-3). Note that any column in a matrix
Ee

i represents an n-gram with the same span value
n. We denote by gram(Ee

i ) the size of the n-grams
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Figure 3: A graphical depiction of the two RCTMs. Arrows represent full matrix transformations while lines are
vector transformations corresponding to columns of weight matrices.

represented by Ee
i . For example, for a sufficiently

long sentence e, gram(Ee
2) = 2, gram(Ee

3) = 4,
gram(Ee

4) = 7. We denote by cgm(e, n) that matrix
Ee

i from the CSM that represents the n-grams of the
source sentence e.

The CGM can also be inverted to obtain a repre-
sentation for a sentence from the representation of
its n-grams. We denote by icgm the inverse CGM,
which depends on the size of the n-gram represen-
tation cgm(e, n) and on the target sentence length
m. The transformation icgm unfolds the n-gram
representation onto a representation of a target sen-
tence with m words. The architecture corresponds
to an inverted CGM or, equivalently, to an inverted
truncated CSM (Fig. 3). Given the transformations
cgm and icgm, we now detail the computation of the
RCTM II.

4.2 RCTM II

The RCTM II models the conditional probability
P (f|e) by factoring it as follows:

P (f|e) = P (f|m, e) · P (m|e) (9a)

=

m∏
i=1

P (fi+1|f1:i,m, e) · P (m|e) (9b)

and computing the distributions P (fi+1|f1:i,m, e)
and P (m|e). The architecture of the RCTM II
comprises all the elements of the RCTM I together
with the following additional elements: a translation
transformation Tq×q and two sequences of weight
matrices (Ji)2≤i≤s and (Hi)2≤i≤s that are part of
the icgm3.

The computation of the RCTM II proceeds recur-
sively as follows:

Eg = cgm(e, 4) (10a)
Fg

:,j = σ(T ·Eg
:,j) (10b)

F = icgm(Fg,m) (10c)
h1 = σ(I · v(f1) + S · F:,1) (10d)

hi+1 = σ(R · hi + I · v(fi+1) + S · F:,i+1) (10e)
oi+1 = O · hi (10f)

and the conditional distributions P (fi+1|f1:i, e) are
obtained from oi as in Eq. 4. Note how each re-
constructed vector F:,i is added successively to the
corresponding layer hi that predicts the target word
fi. The RCTM II is illustrated in Fig. 3.

3Just like r the value s is small and depends on the length
of the source and target sentences in the training set. See
Sect. 5.1.2.
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For the separate estimation of the length of the
translation, we estimate the conditional probability
P (m|e) by letting,

P (m|e) = P (m|k) = Poisson(λk) (11)

where k is the length of the source sentence e and
Poisson(λ) is a Poisson distribution with mean λ.
This concludes the description of the RCTM II. We
now turn to the experiments.

5 Experiments

We report on four experiments. The first experiment
considers the perplexities of the models with respect
to reference translations. The second and third ex-
periments test the sensitivity of the RCTM II to the
linguistic aspects of the source sentences. The fi-
nal experiment tests the rescoring performance of
the two models.

5.1 Training
Before turning to the experiments, we describe the
data sets, hyper parameters and optimisation algo-
rithms used for the training of the RCTMs.

5.1.1 Data sets
The training set used for all the experiments com-

prises a bilingual corpus of 144953 pairs of sen-
tences less than 80 words in length from the news
commentary section of the Eighth Workshop on Ma-
chine Translation (WMT) 2013 training data. The
source language is English and the target language
is French. The English sentences contain about
4.1M words and the French ones about 4.5M words.
Words in both the English and French sentences
that occur twice or less are substituted with the
〈unknown〉 token. The resulting vocabularies V E

and V F contain, respectively, 25403 English words
and 34831 French words.

For the experiments we use four different test sets
comprised of the Workshop on Machine Transla-
tion News Test (WMT-NT) sets for the years 2009,
2010, 2011 and 2012. They contain, respectively,
2525, 2489, 3003 and 3003 pairs of English-French
sentences. For the perplexity experiments unknown
words occurring in these data sets are replaced with
the 〈unknown〉 token. The respective 2008 WMT-
NT set containing 2051 pairs of English-French sen-
tences is used as the validation set throughout.

5.1.2 Model hyperparameters
The parameter q that defines the size of the En-

glish vectors v(ei) for ei ∈ V E, the size of the hid-
den layer hi and the size of the French vectors v(fi)
for v(fi) ∈ V F is set to q = 256. This yields a
relatively small recurrent matrix and corresponding
models. To speed up training, we factorize the target
vocabulary V F into 256 classes following the proce-
dure in (Mikolov et al., 2011).

The RCTM II uses a convolutional n-gram model
CGM where n is set to 4. For the RCTM I, the num-
ber of weight matrices r for the CSM is 15, whereas
in the RCTM II the number r of weight matrices for
the CGM is 7 and the number s of weight matrices
for the inverse CGM is 9. If a test sentence is longer
than all training sentences and a larger weight matrix
is required by the model, the larger weight matrix is
easily factorized into two smaller weight matrices
whose weights have been trained. For instance, if a
weight matrix of 10 weights is required, but weight
matrices have been trained only up to weight 9, then
one can factorize the matrix of 10 weights with one
of 9 and one of 2. Across all test sets the proportion
of sentence pairs that require larger weight matrices
to be factorized into smaller ones is < 0.1%.

5.1.3 Objective and optimisation
The objective function is the average of the sum

of the cross-entropy errors of the predicted words
and the true words in the French sentences. The En-
glish sentences are taken as input in the prediction
of the French sentences, but they are not themselves
ever predicted. An l2 regularisation term is added to
the objective. The training of the model proceeds by
back-propagation through time. The cross-entropy
error calculated at the output layer at each step is
back-propagated through the recurrent structure for
a number d of steps; for all models we let d = 6.
The error accumulated at the hidden layers is then
further back-propagated through the transformation
S and the CSM/CGM to the input vectors v(ei) of
the English input sentence e. All weights, includ-
ing the English vectors, are randomly initialised and
inferred during training.

The objective is minimised using mini-batch
adaptive gradient descent (Adagrad) (Duchi et al.,
2011). The training of an RCTM takes about 15
hours on 3 multicore CPUs. While our experiments
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WMT-NT 2009 2010 2011 2012

KN-5 218 213 222 225
RLM 178 169 178 181

IBM 1 207 200 188 197
FA-IBM 2 153 146 135 144

RCTM I 143 134 140 142
RCTM II 86 77 76 77

Table 1: Perplexity results on the WMT-NT sets.

are relatively small, we note that in principle our
models should scale similarly to RLMs which have
been applied to hundreds of millions of words.

5.2 Perplexity of gold translations

Since the computation of the probability of a trans-
lation under one of the RCTMs is efficient, we can
compute the perplexities of the RCTMs with respect
to the reference translations in the test sets. The per-
plexity measure is an indication of the quality that
a model assigns to a translation. We compare the
perplexities of the RCTMs with the perplexity of the
IBM Model 1 (Brown et al., 1993) and of the Fast-
Aligner (FA-IBM 2) model that is a state-of-the-art
variant of IBM Model 2 (Dyer et al., 2013). We add
as baselines the unconditional target RLM and a 5-
gram target language model with modified Kneser-
Nay smoothing (KN-5). The results are reported in
Tab. 1. The RCTM II obtains a perplexity that is
> 43% lower than that of the alignment based mod-
els and that is 40% lower than the perplexity of the
RCTM I. The low perplexity of the RCTMs suggests
that continuous representations and the transforma-
tions between them make up well for the lack of ex-
plicit alignments. Further, the difference in perplex-
ity between the RCTMs themselves demonstrates
the importance of the conditioning architecture and
suggests that the localised 4-gram conditioning in
the RCTM II is superior to the conditioning with the
whole source sentence of the RCTM I.

5.3 Sensitivity to source sentence structure

The second experiment aims at showing the sensi-
tivity of the RCTM II to the order and position of
words in the English source sentence. To this end,
we randomly permute in the training and testing sets

WMT-NT PERM 2009 2010 2011 2012

RCTM II 174 168 175 178

Table 2: Perplexity results of the RCTM II on the WMT-
NT sets where the words in the English source sentences
are randomly permuted.

the words in the English source sentence. The re-
sults on the permuted data are reported in Tab. 2. If
the RCTM II were roughly comparable to a bag-of-
words approach, there would be no difference under
the permutation of the words. By contrast, the dif-
ference of the results reported in Tab. 2 with those
reported in Tab. 1 is very significant, clearly indicat-
ing the sensitivity to word order and position of the
translation model.

5.3.1 Generating from the RCTM II
To show that the RCTM II is sensitive not only to

word order, but also to other syntactic and semantic
traits of the sentence, we generate and inspect can-
didate translations for various English source sen-
tences. The generation proceeds by sampling from
the probability distribution of the RCTM II itself and
does not depend on any other external resources.
Given an English source sentence e, we let m be
the length of the gold translation and we search the
distribution computed by the RCTM II over all sen-
tences of length m. The number of possible target
sentences of length m amounts to |V |m = 34831m

where V = V F is the French vocabulary; directly
considering all possible translations is intractable.
We proceed as follows: we sample with replace-
ment 2000 sentences from the distribution of the
RCTM II, each obtained by predicting one word at
a time. We start by predicting a distribution for the
first target word, restricting that distribution to the
top 5 most probable words and sampling the first
word of a candidate translation from the restricted
distribution of 5 words. We proceed similarly for
the remaining words. Each sampled sentence has a
well-defined probability assigned by the model and
can thus be ranked. Table 3 gives various English
source sentences and some candidate French trans-
lations generated by the RCTM II together with their
ranks.

The results in Tab. 3 show the remarkable syn-
tactic agreements of the candidate translations; the
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English source sentence French gold translation RCTM II candidate translation Rank

the patient is sick . le patient est malade . le patient est insuffisante . 1
le patient est mort . 4
la patient est insuffisante . 23

the patient is dead . le patient est mort . le patient est mort . 1
le patient est dépassé . 4

the patient is ill . le patient est malade . le patient est mal . 3

the patients are sick . les patients sont malades . les patients sont confrontés . 2
les patients sont corrompus . 5

the patients are dead . les patients sont morts . les patients sont morts . 1
the patients are ill . les patients sont malades . les patients sont confrontés . 5

the patient was ill . le patient était malade . le patient était mal . 2

the patients are not dead . les patients ne sont pas morts . les patients ne sont pas morts . 1

the patients are not sick . les patients ne sont pas malades . les patients ne sont pas 〈unknown〉 . 1
les patients ne sont pas mal . 6

the patients were saved . les patients ont été sauvés . les patients ont été sauvées . 6

Table 3: English source sentences, respective translations in French and candidate translations generated from the
RCTM II and ranked out of 2000 samples according to their decreasing probability. Note that end of sentence dots (.)
are generated as part of the translation.

WMT-NT 2009 2010 2011 2012

RCTM I + WP 19.7 21.1 22.5 21.5
RCTM II + WP 19.8 21.1 22.5 21.7
cdec (12 features) 19.9 21.2 22.6 21.8

Table 4: Bleu scores on the WMT-NT sets of each RCTM
linearly interpolated with a word penalty WP. The cdec
system includes WP as well as five translation models and
two language modelling features, among others.

large majority of the candidate translations are fully
well-formed French sentences. Further, subtle syn-
tactic features such as the singular or plural ending
of nouns and the present and past tense of verbs are
well correlated between the English source and the
French candidate targets. Finally, the meaning of
the English source is well transferred on the French
candidate targets; where a correlation is unlikely or
the target word is not in the French vocabulary, a se-
mantically related word or synonym is selected by
the model. All of these traits suggest that the RCTM
II is able to capture a significant amount of both
syntactic and semantic information from the English
source sentence and successfully transfer it onto the
French translation.

5.4 Rescoring and BLEU Evaluation

The fourth experiment tests the ability of the RCTM
I and the RCTM II to choose the best translation
among a large number of candidate translations pro-
duced by another system. We use the cdec sys-
tem to generate a list of 1000 best candidate trans-
lations for each English sentence in the four WMT-
NT sets. We compare the rescoring performance of
the RCTM I and the RCTM II with that of the cdec
itself. cdec employs 12 engineered features includ-
ing, among others, 5 translation models, 2 language
model features and a word penalty feature (WP). For
the RCTMs we simply interpolate the log probabil-
ity assigned by the models to the candidate transla-
tions with the word penalty feature WP, tuned on the
validation data. The results of the experiment are
reported in Tab. 4.

While there is little variance in the resulting Bleu
scores, the performance of the RCTMs shows that
their probabilities correlate with translation qual-
ity. Combining a monolingual RLM feature with
the RCTMs does not improve the scores, while re-
ducing cdec to just one core translation probability
and language model features drops its score by two
to five tenths. These results indicate that the RCTMs
have been able to learn both translation and language
modelling distributions.
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6 Conclusion

We have introduced Recurrent Continuous Transla-
tion Models that comprise a class of purely contin-
uous sentence-level translation models. We have
shown the translation capabilities of these models
and the low perplexities that they obtain with respect
to reference translations. We have shown the ability
of these models at capturing syntactic and semantic
information and at estimating during reranking the
quality of candidate translations.

The RCTMs offer great modelling flexibility due
to the sensitivity of the continuous representations to
conditioning information. The models also suggest
a wide range of potential advantages and extensions,
from being able to include discourse representations
beyond the single sentence and multilingual source
representations, to being able to model morpholog-
ically rich languages through character-level recur-
rences.
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Abstract

Biological processes are complex phenom-
ena involving a series of events that are re-
lated to one another through various relation-
ships. Systems that can understand and rea-
son over biological processes would dramat-
ically improve the performance of semantic
applications involving inference such as ques-
tion answering (QA) – specifically “How?”
and “Why?” questions. In this paper, we
present the task of process extraction, in
which events within a process and the rela-
tions between the events are automatically ex-
tracted from text. We represent processes by
graphs whose edges describe a set of temporal,
causal and co-reference event-event relations,
and characterize the structural properties of
these graphs (e.g., the graphs are connected).
Then, we present a method for extracting rela-
tions between the events, which exploits these
structural properties by performing joint in-
ference over the set of extracted relations.
On a novel dataset containing 148 descrip-
tions of biological processes (released with
this paper), we show significant improvement
comparing to baselines that disregard process
structure.

1 Introduction

A process is defined as a series of inter-related
events that involve multiple entities and lead to an
end result. Product manufacturing, economical de-
velopments, and various phenomena in life and so-
cial sciences can all be viewed as types of processes.
Processes are complicated objects; consider for ex-
ample the biological process of ATP synthesis de-
scribed in Figure 1. This process involves 12 en-
tities and 8 events. Additionally, it describes rela-
tions between events and entities, and the relation-
ship between events (e.g., the second occurrence of
the event ‘enter’, causes the event ‘changing’).

∗Both authors equally contributed to the paper

Automatically extracting the structure of pro-
cesses from text is crucial for applications that re-
quire reasoning, such as non-factoid QA. For in-
stance, answering a question on ATP synthesis, such
as “How do H+ ions contribute to the production
of ATP?” requires a structure that links H+ ions
(Figure 1, sentence 1) to ATP (Figure 1, sentence
4) through a sequence of intermediate events. Such
“How?” questions are common on FAQ websites
(Surdeanu et al., 2011), which further supports the
importance of process extraction.

Process extraction is related to two recent lines
of work in Information Extraction – event extrac-
tion and timeline construction. Traditional event ex-
traction focuses on identifying a closed set of events
within a single sentence. For example, the BioNLP
2009 and 2011 shared tasks (Kim et al., 2009; Kim
et al., 2011) consider nine events types related to
proteins. In practice, events are currently almost al-
ways extracted from a single sentence. Process ex-
traction, on the other hand, is centered around dis-
covering relations between events that span multiple
sentences. The set of possible event types in process
extraction is also much larger.

Timeline construction involves identifying tem-
poral relations between events (Do et al., 2012; Mc-
Closky and Manning, 2012; D’Souza and Ng, 2013),
and is thus related to process extraction as both fo-
cus on event-event relations spanning multiple sen-
tences. However, events in processes are tightly cou-
pled in ways that go beyond simple temporal order-
ing, and these dependencies are central for the pro-
cess extraction task. Hence, capturing process struc-
ture requires modeling a larger set of relations that
includes temporal, causal and co-reference relations.

In this paper, we formally define the task of
process extraction and present automatic extraction
methods. Our approach handles an open set of event
types and works over multiple sentences, extract-
ing a rich set of event-event relations. Furthermore,
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H+ ions flowing down their gradient enter a half channel in a stator, which is anchored in the membrane.

H+ ions enter binding sites within a rotor, changing the shape of each subunit so that the rotor spins within the membrane.

Spinning of the rotor causes an internal rod to spin as well.

Turning of the rod activates catalytic sites in the knob that can produce ATP from ADP and P_i.

Entity Event Entity Event Entity Entity

cotemp
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Entity Event Entity Entity Event Entity Entity Event Entity

same
causes causes

prev

Event Entity Entity Event
same
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raw-materialcauses causes

1
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Figure 1: Partial annotation of the ATP synthesis process. Most of the semantic roles have been removed for simplicity.

we characterize a set of global properties of process
structure that can be utilized during process extrac-
tion. For example, all events in a process are some-
how connected to one another. Also, processes usu-
ally exhibit a “chain-like” structure reflecting pro-
cess progression over time. We show that incor-
porating such global properties into our model and
performing joint inference over the extracted rela-
tions significantly improves the quality of process
structures predicted. We conduct experiments on a
novel dataset of process descriptions from the text-
book “Biology” (Campbell and Reece, 2005) that
were annotated by trained biologists. Our method
does not require any domain-specific knowledge and
can be easily adapted to non-biology domains.

The main contributions of this paper are:

1. We define process extraction and characterize
processes’ structural properties.

2. We model global structural properties in pro-
cesses and demonstrate significant improve-
ment in extraction accuracy.

3. We publicly release a novel data set of 148
fully annotated biological process descrip-
tions along with the source code for our sys-
tem. The dataset and code can be down-
loaded from http://nlp.stanford.edu/
software/bioprocess/.

2 Process Definition and Dataset

We define a process description as a paragraph or
sequence of tokens x = {x1, . . . x|x|} that describes

a series of events related by temporal and/or causal
relations. For example, in ATP synthesis (Figure 1),
the event of rotor spinning causes the event where
an internal rod spins.

We model the events within a process and their
relations by a directed graph P = (V,E), where
the nodes V = {1, . . . , |V |} represent event men-
tions and labeled edges E correspond to event-event
relations. An event mention v ∈ V is defined by a
trigger tv, which is a span of words xi, xi+1, . . . , xj ;
and by a set of argument mentions Av, where each
argument mention av ∈ Av is also a span of words
labeled by a semantic role l taken from a set L. For
example, in the last event mention of ATP synthesis,
tv = produce, and one of the argument mentions is
av = (ATP, RESULT). A labeled edge (u, v, r) in the
graph describes a relation r ∈ R between the event
mentions u and v. The task of process extraction is
to extract the graph P from the text x.1

A natural way to break down process extraction
into sub-parts is to first perform semantic role label-
ing (SRL), that is, identify triggers and predict ar-
gument mentions with their semantic role, and then
extract event-event relations between pairs of event
mentions. In this paper, we focus on the second
step, where given a set of event triggers T , we find
all event-event relations, where a trigger represents
the entire event. For completeness, we now describe
the semantic roles L used in our dataset, and then

1Argument mentions are also related by coreference rela-
tions, but we neglect that since it is not central in this paper.
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present the set of event-event relationsR.
The setL contains standard semantic roles such as

AGENT, THEME, ORIGIN, DESTINATION and LO-
CATION. Two additional semantic roles were em-
ployed that are relevant for biological text: RESULT

corresponds to an entity that is the result of an event,
and RAW-MATERIAL describes an entity that is used
or consumed during an event. For example, the last
event ‘produce’ in Figure 1, has ‘ATP’ as the RE-
SULT, and ‘ADP’ as the RAW-MATERIAL.

The event-event relation set R contains the fol-
lowing (assuming a labeled edge (u, v, r)):

1. PREV denotes that u is an event immediately
before v. Thus, the edges (u, v, PREV) and
(v, w, PREV), preclude the edge (u,w, PREV).
For example, in “When a photon strikes
. . . energy is passed . . . until it reaches . . . ”,
there is no edge (strikes, reaches, PREV) due
to the intervening event ‘passed’.

2. COTEMP denotes that events u and v overlap in
time (e.g., the first two event mentions flowing
and enter in Figure 1).

3. SUPER denotes that event u includes event
v. For instance, in “During DNA replica-
tion, DNA polymerases proofread each nu-
cleotide. . . ” there is an edge (DNA replication,
proofread, SUPER).

4. CAUSES denotes that event u causes event v
(e.g., the relation between changing and spins
in sentence 2 of Figure 1).

5. ENABLES denotes that event u creates precon-
ditions that allow event v to take place. For
example, the description “. . . cause cancer cells
to lose attachments to neighboring cells. . . , al-
lowing them to spread into nearby tissues” has
the edge (lose, spread, ENABLES). An in-
tuitive way to think about the difference be-
tween Causes and Enables is the following: if
u causes v this means that if u happens, then
v happens. If u enables v, then if u does not
happen, then v does not happen.

6. SAME denotes that u and v both refer to the
same event (spins and Spinning in Figure 1).

Early work on temporal logic (Allen, 1983) con-
tained more temporal relations than are used in our

Avg Min Max
# of sentences 3.80 1 15

# of tokens 89.98 19 319
# of events 6.20 2 15

# of non-NONE relations 5.64 1 24

Table 1: Process statistics over 148 process descriptions.
NONE is used to indicate no relation.

relation set R. We chose a relation set R that cap-
tures the essential aspects of temporal relations be-
tween events in a process, while keeping the annota-
tion as simple as possible. For instance, we include
the SUPER relation that appears in temporal anno-
tations such as the Timebank corpus (Pustejovsky
et al., 2003) and Allen’s work, but in practice was
not considered by many temporal ordering systems
(Chambers and Jurafsky, 2008; Yoshikawa et al.,
2009; Do et al., 2012). Importantly, our relation set
also includes the relations CAUSES and ENABLES,
which are fundamental to modeling processes and
go beyond simple temporal ordering.

We also added event coreference (SAME) to R.
Do et al. (2012) used event coreference information
in a temporal ordering task to modify probabilities
provided by pairwise classifiers prior to joint infer-
ence. In this paper, we simply treat SAME as an-
other event-event relation, which allows us to easily
perform joint inference and employ structural con-
straints that combine both coreference and temporal
relations simultaneously. For example, if u and v are
the same event, then there can exist no w, such that
u is before w, but v is after w (see Section 3.3)

We annotated 148 process descriptions based on
the aforementioned definitions. Further details on
annotation and data set statistics are provided in Sec-
tion 4 and Table 1.

Structural properties of processes Coherent pro-
cesses exhibit many structural properties. For ex-
ample, two argument mentions related to the same
event cannot overlap – a constraint that has been
used in the past in SRL (Toutanova et al., 2008). In
this paper we focus on three main structural prop-
erties of the graph P . First, in a coherent pro-
cess, all events mentioned are related to one another,
and hence the graph P must be connected. Sec-
ond, processes tend to have a “chain-like” structure
where one event follows another, and thus we expect
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Deg. Gold Local Global
0 0 29 0
1 219 274 224
2 369 337 408
3 46 14 17
≥ 4 22 2 7

Table 2: Node degree distribution for event mentions on
the training set. Predictions for the Local and Global
models were obtained using 10-fold cross validation.

nodes’ degree to generally be ≤ 2. Indeed, 90% of
event mentions have degree ≤ 2, as demonstrated
by the Gold column of Table 2. Last, if we consider
relations between all possible triples of events in a
process, clearly some configurations are impossible,
while others are common (illustrated in Figure 2).
In Section 3.3, we show that modeling these proper-
ties using a joint inference framework improves the
quality of process extraction significantly.

3 Joint Model for Process Extraction

Given a paragraph x and a trigger set T , we wish
to extract all event-event relations E. Similar to Do
et al. (2012), our model consists of a local pairwise
classifier and global constraints. We first introduce
a classifier that is based on features from previous
work. Next, we describe novel features specific for
process extraction. Last, we incorporate global con-
straints into our model using an ILP formulation.

3.1 Local pairwise classifier

The local pairwise classifier predicts relations be-
tween all event mention pairs. In order to model
the direction of relations, we expand the set R to
include the reverse of four directed relations: PREV-
NEXT, SUPER- SUB, CAUSES-CAUSED, ENABLES-
ENABLED. After adding NONE to indicate no rela-
tion, and including the undirected relations COTEMP

and SAME,R contains 11 relations. The classifier is
hence a function f : T × T → R. As an example,
f(ti, tj) = PREV iff f(tj , ti) = NEXT. Let n be the
number of triggers in a process, and ti be the i-th
trigger in its description. Since f(ti, tj) completely
determines f(tj , ti), it suffices to consider only pairs
with i < j. Note that the process graph P is undi-
rected under the new definition ofR.

Table 3 describes features from previous

Feature Description
POS Pair of POS tags
Lemma Pair of lemmas
Prep∗ Preposition lexeme, if in a prepositional phrase
Sent. count Quantized number of sentences between triggers
Word count Quantized number of words between triggers
LCA Least common ancestor on constituency tree, if exists
Dominates∗ Whether one trigger dominates other
Share Whether triggers share a child on dependency tree
Adjacency Whether two triggers are adjacent
Words btw. For adjacent triggers, content words between triggers
Temp. btw. For adjacent triggers, temporal connectives (from a

small list) between triggers

Table 3: Features extracted for a trigger pair (ti, tj). As-
teriks (*) indicate features that are duplicated, once for
each trigger.

work (Chambers and Jurafsky, 2008; Do et al.,
2012) extracted for a trigger pair (ti, tj). Some
features were omitted since they did not yield
improvement in performance on a development set
(e.g., lemmas and part-of-speech tags of context
words surrounding ti and tj), or they require gold
annotations provided in TimeBank, which we do
not have (e.g., tense and aspect of triggers). To
reduce sparseness, we convert nominalizations into
their verbal forms when computing word lemmas,
using WordNet’s (Fellbaum, 1998) derivation links.

3.2 Classifier extensions
A central source of information to extract event-
event relations from text are connectives such as af-
ter, during, etc. However, there is variability in the
occurrence of these connectives as demonstrated by
the following two sentences (connectives in bold-
face, triggers in italics):

1. Because alleles are exchanged during gene flow, ge-
netic differences are reduced.

2. During gene flow, alleles are exchanged, and genetic
differences are hence reduced.

Even though both sentences express the same re-
lation (exchanged, reduced,CAUSES), the connec-
tives used and their linear position with respect to the
triggers are different. Also, in sentence 1, gene flow
intervenes between exchanged and reduced. Since
our dataset is small, we wish to identify the trig-
gers related to each connective, and share features
between such sentences. We do this using the syn-
tactic structure and by clustering the connectives.
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(e) PREV contradiction
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Figure 2: Relation triangles (a)-(c) are common in the gold standard while (d)-(e) are impossible.

Sentence 1 presents a typical case where by walk-
ing up the dependency tree from the marker because,
we can find the triggers related by this marker:
because mark←−−− exchanged advcl←−−− reduced. When-
ever a trigger is the head of an adverbial clause and
marked by a mark dependency label, we walk on the
dependency tree and look for a trigger in the main
clause that is closest to the root (or the root itself
in this example). By utilizing the syntactic struc-
ture, we can correctly spot that the trigger gene flow
is not related to the trigger exchanged through the
connective because, even though they are linearly
closer. In order to reduce sparseness of connectives,
we created a hand-made clustering of 30 connectives
that maps words into clusters2 (e.g., because, since
and hence to a “causality” cluster). After locating
the relevant pair of triggers, we use these clusters
to fire the same feature for connectives belonging to
the same cluster. We perform a similar procedure
whenever a trigger is part of a prepositional phrase
(imagine sentence 1 starting with “due to allele ex-
change during gene flow . . . ”) by walking up the
constituency tree, but details are omitted for brevity.
In sentence 2, the connective hence is an adverbial
modifier of the trigger reduced. We look up the clus-
ter for the connective hence and fire the same feature
for the adjacent triggers exchanged and reduced.

We further extend our features to handle the rich
relation set necessary for process extraction. The
first event of a process is often expressed as a nom-
inalization and includes subsequent events (SUPER

relation), e.g., “The Calvin cycle begins by incor-
porating...”. To capture this, we add a feature that
fires when the first event of the process description
is a noun. We also add two features targeted at the

2The full set of connectives and their clustering are provided
as part of our publicly released package.

SAME relation: one indicating if the lemmas of ti
and tj are the same, and another specifying the de-
terminer of tj , if it exists. Certain determiners in-
dicate that an event trigger has already been men-
tioned, e.g., the determiner this hints a SAME rela-
tion in “The next steps decompose citrate back to
oxaloacetate. This regeneration makes . . . ”. Last,
we add as a feature the dependency path between ti
and tj , if it exists, e.g., in “meiosis produces cells
that divide . . . ”, the feature dobj−−→ rcmod−−−→ is fired for
the trigger pair produces and divide. In Section 4.1
we empirically show that our extensions to the local
classifier substantially improve performance.

For our pairwise classifier, we train a maximum
entropy classifier that computes a probability pijr

for every trigger pair (ti, tj) and relation r. Hence,
f(ti, tj) = arg maxr pijr.

3.3 Global Constraints

Naturally, pairwise classifiers are local models that
can violate global properties in the process structure.
Figure 3 (left) presents an example for predictions
made by the pairwise classifier, which result in two
triggers (deleted and dupcliated) that are isolated
from the rest of the triggers. In this section, we dis-
cuss how we incorporate constraints into our model
to generate coherent global process structures.

Let θijr be the score for a relation r between the
trigger pair (ti, tj) (e.g., θijr = log pijr), and yijr be
the corresponding indicator variable. Our goal is to
find an assignment for the indicators y = {yijr | 1 ≤
i < j ≤ n, r ∈ R}. With no global constraints this
can be formulated as the following ILP:
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arg max
y

∑
ijr

θijryijr (1)

s.t.∀i,j

∑
r

yijr = 1

where the constraint ensures exactly one relation be-
tween each event pair. We now describe constraints
that result in a coherent global process structure.

Connectivity Our ILP formulation for enforcing
connectivity is a minor variation of the one sug-
gested by Martins et al. (2009) for dependency pars-
ing. In our setup, we want P to be a connected undi-
rected graph, and not a directed tree. However, an
undirected graph P is connected iff there exists a
directed tree that is a subgraph of P when edge di-
rections are ignored. Thus the resulting formulation
is almost identical and is based on flow constraints
which ensure that there is a path from a designated
root in the graph to all other nodes.

Let R̄ be the set R \ NONE. An edge (ti, tj) is
in E iff there is some non-NONE relation between
ti and tj , i.e. iff yij :=

∑
r∈R̄ yijr is equal to 1.

For each variable yij we define two auxiliary binary
variables zij and zji that correspond to edges of the
directed tree that is a subgraph of P . We ensure that
the edges in the tree exist also in P by tying each
auxiliary variable to its corresponding ILP variable:

∀i<j zij ≤ yij , zji ≤ yij (2)

Next, we add constraints that ensure that the graph
structure induced by the auxiliary variables is a tree
rooted in an arbitrary node 1 (The choice of root
does not affect connectivity). We add for every i 6= j
a flow variable φij which specifies the amount of
flow on the directed edge zij .

∑
i

zi1 = 0, ∀j 6=1

∑
i

zij = 1 (3)∑
i

φ1i = n− 1 (4)

∀j 6=1

∑
i

φij −
∑

k

φjk = 1 (5)

∀i 6=j φij ≤ n · zij (6)

Equation 3 says that all nodes in the graph have
exactly one parent, except for the root that has no
parents. Equation 4 ensures that the outgoing flow
from the root is n−1, and Equation 5 states that each
of the other n − 1 nodes consume exactly one unit
of flow. Last, Equation 6 ties the auxiliary variables
to the flow variables, making sure that flow occurs
only on edges. The combination of these constraints
guarantees that the graph induced by the variables
zij is a directed tree and consequently the graph in-
duced by the objective variables y is connected.

Chain structure A chain is a connected graph
where the degree of all nodes is ≤ 2. Table 2
presents nodes’ degree and demonstrates that indeed
process graphs are close to being chains. The fol-
lowing constraint bounds nodes’ degree by 2:

∀j(
∑
i<j

yij +
∑
j<k

yjk ≤ 2) (7)

Since graph structures are not always chains, we
add this as a soft constraint, that is, we penalize the
objective for each node with degree > 2. The chain
structure is one of the several soft constraints we
enforce. Thus, our modified objective function is∑

ijr θijryijr +
∑

k∈K αkCk, where K is the set of
soft constraints, αk is the penalty (or reward for de-
sirable structures), and Ck indicates whether a con-
straint is violated (or satisfied). Note that under this
formulation our model is simply a constrained con-
ditional model (wei Chang et al., 2012). The param-
eters αk are tuned on a development set (see Sec-
tion 4).

Relation triads A relation triad (or a re-
lation triangle) for any three triggers ti, tj
and tk in a process is a 3-tuple of relations
(f(ti, tj), f(tj , tk), f(ti, tk)). Clearly, some triads
are impossible while others are quite common. To
find triads that could improve process extraction, the
frequency of all possible triads in both the training
set and the output of the pairwise classifier were
found, and we focused on those for which the clas-
sifier and the gold standard disagree. We are inter-
ested in triads that never occur in training data but
are predicted by the classifier, and vice versa. Fig-
ure 2 illustrates some of the triads found and Equa-
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tions 8-12 provide the corresponding ILP formula-
tions. Equations 8-10 were formulated as soft con-
straints (expanding the setK) and were incorporated
by defining a reward αk for each triad type.3 On
the other hand, Equations 11-12 were formulated as
hard constraints to prevent certain structures.

1. SAME transitivity (Figure 2a, Eqn. 8): Co-
reference transitivity has been used in past
work (Finkel and Manning, 2008) and we in-
corporate it by a constraint that encourages tri-
ads that respect transitivity.

2. CAUSE-COTEMP (Figure 2b, Eqn. 9): If ti
causes both tj and tk, then often tj and tk are
co-temporal. E.g, in “genetic drift has led to
a loss of genetic variation and an increase in
the frequency of . . .”, a single event causes two
subsequent events that occur simultaneously.

3. COTEMP transitivity (Figure 2c, Eqn. 10): If
ti is co-temporal with tj and tj is co-temporal
with tk, then usually ti and tk are either co-
temporal or denote the same event.

4. SAME contradiction (Figure 2d, Eqn. 11): If
ti is the same event as tk, then their tempo-
ral ordering with respect to a third trigger tj
may result in a contradiction, e.g., if tj is af-
ter ti, but before tk. We define 5 temporal
categories that generate

(
5
2

)
possible contradic-

tions, but for brevity present just one represen-
tative hard constraint. This constraint depends
on prediction of temporal and co-reference re-
lations jointly.

5. PREV contradiction (Figure 2e, Eqn. 12): As
mentioned (Section 3.3), if ti is immediately
before tj , and tj is immediately before tk, then
ti cannot be immediately before tk.

yijSAME + yjkSAME + yikSAME ≥ 3 (8)

yijCAUSES + yikCAUSES + yjkCOTEMP ≥ 3 (9)

yijCOTEMP + yjkCOTEMP + yikCOTEMP+

yikSAME ≥ 3 (10)

yijPREV + yjkPREV + yikSAME ≤ 2 (11)

yijPREV + yjkPREV − yikNONE ≤ 1 (12)
3We experimented with a reward for certain triads or a

penalty for others and empirically found that using rewards re-
sults in better performance on the development set.

We used the Gurobi optimization package4 to
find an exact solution for our ILP, which contains
O(n2|R|) variables and O(n3) constraints. We also
developed an equivalent formulation amenable to
dual decomposition (Sontag et al., 2011), which is a
faster approximation method. But practically, solv-
ing the ILP exactly with Gurobi was quite fast (av-
erage/median time per process: 0.294 sec/0.152 sec
on a standard laptop).

4 Experimental Evaluation

We extracted 148 process descriptions by going
through chapters from the textbook ”Biology” and
marking any contiguous sequence of sentences that
describes a process, i.e., a series of events that lead
towards some objective. Then, each process descrip-
tion was annotated by a biologist. The annotator was
first presented with annotation guidelines and anno-
tated 20 descriptions. The annotations were then
discussed with the authors, after which all process
descriptions were annotated. After training a sec-
ond biologist, we measured inter-annotator agree-
ment κ = 0.69, on 30 random process descriptions.

Process descriptions were parsed with Stanford
constituency and dependency parsers (Klein and
Manning, 2003; de Marneffe et al., 2006), and 35
process descriptions were set aside as a test set
(number of training set trigger pairs: 1932, number
of test set trigger pairs: 906). We performed 10-
fold cross validation over the training set for feature
selection and tuning of constraint parameters. For
each constraint type (connectivity, chain-structure,
and five triad constraints) we introduced a param-
eter and tuned the seven parameters by coordinate-
wise ascent, where for hard constraints a binary pa-
rameter controls whether the constraint is used, and
for soft constraints we attempted 10 different re-
ward/penalty values. For our global model we de-
fined θijr = log pijr, where pijr is the probability at
edge (ti, tj) for label r, given by the pairwise clas-
sifier.

We test the following systems: (a) All-Prev: Since
the most common process structure was chain-like,
we simply predict PREV for every two adjacent trig-
gers in text. (b) Localbase: A pairwise classifier with
features from previous work (Section 3.1) (c) Local:

4www.gurobi.com
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Temporal Full
P R F1 P R F1

All-Prev 58.4 54.8 56.6 34.1 32.0 33.0
Localbase 61.5 51.8 56.2 52.1 43.9 47.6
Local 63.2 55.7† 59.2 54.7 48.3† 51.3
Chain 64.5 60.5†‡ 62.4† 56.1 52.6†‡ 54.3†

Global 63.9 61.4†‡ 62.6†‡ 56.2 54.0†‡ 55.0†‡

Table 4: Test set results on all experiments. Best number
in each column is bolded. † and ‡ denote statistical signif-
icance (p < 0.01) against Localbase and Local baselines,
respectively.

A pairwise classifier with all features (Section 3.2)
(d) Chain: For every two adjacent triggers, choose
the non-NONE relation with highest probability ac-
cording to Local. This baseline heuristically com-
bines our structural assumptions with the pairwise
classifier. We deterministically choose a connected
chain structure, and then use the classifier to label
the edges. (e) Global: Our full model that uses ILP
inference.

To evaluate system performance we compare the
set of predictions on all trigger pairs to the gold stan-
dard annotations and compute micro-averaged pre-
cision, recall and F1. We perform two types of eval-
uations: (a) Full: evaluation on our full set of 11
relations (b) Temporal: Evaluation on temporal re-
lations only, by collapsing PREV, CAUSES, and EN-
ABLES to a single category and similarly for NEXT,
CAUSED, and ENABLED (inter-annotator agreement
κ = 0.75). We computed statistical significance
of our results with the paired bootstrap resampling
method of 2000 iterations (Efron and Tibshirani,
1993), where the units resampled are trigger-trigger-
relation triples.

4.1 Results

Table 4 presents performance of all systems. We see
that using global constraints improves performance
almost invariably on all measures in both full and
temporal evaluations. Particularly, in the full eval-
uation Global improves recall by 12% and overall
F1 improves significantly by 3.7 points against Lo-
cal (p < 0.01). Recall improvement suggests that
modeling connectivity allowed Global to add cor-
rect relations in cases where some events were not
connected to one another.

The Local classifier substantially outperforms

Localbase. This indicates that our novel features
(Section 3.2) are important for discriminating be-
tween process relations. Specifically, in the full eval-
uation Local improves precision more than in the
temporal evaluation, suggesting that designing syn-
tactic and semantic features for connectives is useful
for distinguishing PREV, CAUSES, and ENABLES

when the amount of training data is small.
The Chain baseline performs only slightly worse

than our global model. This demonstrates the strong
tendency of processes to proceed linearly from one
event to the other, which is a known property of dis-
course structure (Schegloff and Sacks, 1973). How-
ever, since the structure is deterministically fixed,
Chain is highly inflexible and does not allow any
extensions or incorporation of other structural con-
straints or domain knowledge. Thus, it can be used
as a simple and efficient approximation but is not a
good candidate for a real system. Further support
for the linear nature of process structure is provided
by the All-Prev baseline, which performs poorly in
the full evaluation, but in temporal evaluation works
reasonably well.

Table 2 presents the degree distribution of Local
and Global on the development set comparing to the
gold standard. The degree distribution of Global is
more similar to the gold standard than Local. In par-
ticular, the connectivity constraint ensures that there
are no isolated nodes and shifts mass from nodes
with degree 0 and 1 to nodes with degree 2.

Table 5 presents the order in which constraints
were introduced into the global model using coor-
dinate ascent on the development set. Connectivity
is the first constraint to be introduced, and improves
performance considerably. The chain constraint, on
the other hand, is included third and the improve-
ment in F1 score is relatively smaller. This can be
explained by the distribution of degrees in Table 2
which shows that the predictions of Local does not
have many nodes with degree > 2. As for triad con-
straints, we see that four constraints are important
and are included in the model, but one is discarded.

Last, we examined the results of Global when
macro-averaging over processes, i.e., assigning each
process the same weight by computing recall, pre-
cision and F1 for each process and averaging those
scores. We found that results are quite similar
(with a slight improvement): in the full evalua-
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Order Parameter name Value (α) F1 score
– Local model – 49.9
1 Connectivity constraint ∞ 51.2
2 SAME transitivity 0.5 52.9
3 Chain constraint -0.5 53.3
4 CAUSE-COTEMP 1.0 53.7
6 PREV contradiction ∞ 53.8
7 SAME contradiction ∞ 53.9

Table 5: Order by which constraint parameters were set
using coordinate ascent on the development set. For each
parameter, the value chosen and F1 score after including
the constraint are provided. Negative values correspond
to penalties, positive values to rewards, and a value of∞
indicates a hard constraint.

tion Global obtains R/P/F1 of 56.4/55.0/55.7, and
in the temporal evaluation Global obtains R/P/F1 of
63.8/62.3/63.1.

4.2 Qualitative Analysis

Figure 3 shows two examples where global con-
straints corrected the predictions of Local. In Fig-
ure 3, left, Local failed to predict the causal rela-
tions skipped-deleted and used-duplicated, possibly
because they are not in the same sentence and are not
adjacent to one another. By enforcing the connectiv-
ity constraint, Global correctly adds the correct re-
lations and connects deleted and duplicated to the
other triggers in the process.

In Figure 3, right, Local predicts a structure that
results in a “SAME contradiction” structure. The
triggers bind and binds cannot denote the same event
if a third trigger secrete is temporally between them.
However, Local predicts they are the same event, as
they share a lemma. Global prohibits this structure
and correctly predicts the relation as NONE.

To better understand the performance of Local,
we analyzed the confusion matrix generated based
on its predictions. Although this is a challenging
11-class classification task, most of the mass is con-
centrated on the matrix diagonal, as desired. Error
analysis reveals that 17.5% of all errors are con-
fusions between NONE and PREV, 11.1% between
PREV and CAUSES, and 8.6% between PREV and
COTEMP. This demonstrates that distinguishing the
classes PREV, CAUSES and COTEMP is challenging
for Local. Our current global constraints do not ad-
dress this type of error, and thus an important direc-
tion for future work is to improve the local model.

The global model depends on the predictions of
the local classifier, and so enforcing global con-
straints does not guarantee improvement in perfor-
mance. For instance, if Local produces a graph that
is disconnected (e.g., deleted in Figure 3, left), then
Global will add an edge. However, the label of the
edge is determined by scores computed based on
the local classifier, and if this prediction is wrong,
we will now be penalized for both the false nega-
tive of the correct class (just as before), and also for
the false positive of the predicted class. Despite that
we see that Global improves overall performance by
3.7 F1 points on the test set.

5 Related Work

A related line of work is biomedical event extrac-
tion in recent BioNLP shared tasks (Kim et al.,
2009; Kim et al., 2011). Earlier work employed a
pipeline architecture where first events are found,
and then their arguments are identified (Miwa et al.,
2010; Björne et al., 2011). Subsequent methods pre-
dicted events and arguments jointly using Markov
logic (Poon and Vanderwende, 2010) and depen-
dency parsing algorithms (McClosky et al., 2011).
Riedel and McCallum (2011) further improved per-
formance by capturing correlations between events
and enforcing consistency across arguments.

Temporal event-event relations have been ex-
tensively studied (Chambers and Jurafsky, 2008;
Yoshikawa et al., 2009; Denis and Muller, 2011;
Do et al., 2012; McClosky and Manning, 2012;
D’Souza and Ng, 2013), and we leverage such
techniques in our work (Section 3.1). However,
we extend beyond temporal relations alone, and
strongly rely on dependencies between process
events. Chambers and Jurafsky (2011) learned event
templates (or frames), where events that are related
to one another and their semantic roles are extracted.
Recently, Cheung et al. (2013) proposed an unsuper-
vised generative model for inducing such templates.
A major difference in our work is that we do not
learn typical event relations from a large and redun-
dant corpus, but are given a paragraph and have a
“one-shot” chance to extract the process structure.

We showed in this paper that global structural
properties lead to significant improvements in ex-
traction accuracy, and ILP is an effective framework
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bindsSAME
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Figure 3: Process graph fragments. Black edges (dotted) are predictions of Local, green (solid) are predictions of
Global, and gold (dashed) are gold standard edges. To reduce clutter, we present the predictions of Global only when
it disagrees with Local. In all other cases, the predictions of Global and Local are identical. Original text, Left: “... the
template shifts . . . , and a part of the template strand is either skipped by the replication machinery or used twice as a
template. As a result, a segment of DNA is deleted or duplicated.” Right: “Cells of mating type A secrete a signaling
molecule, which can bind to specific receptor proteins on nearby cells. At the same time, cells secrete factor, which
binds to receptors on A cells.”

for modeling global constraints. Similar observa-
tions and techniques have been proposed in other
information extraction tasks. Reichart and Barzi-
lay (2012) tied information from multiple sequence
models that describe the same event by using global
higher-order potentials. Berant et al. (2011) pro-
posed a global inference algorithm to identify entail-
ment relations. There is an abundance of examples
of enforcing global constraints in other NLP tasks,
such as in coreference resolution (Finkel and Man-
ning, 2008), parsing (Rush et al., 2012) and named
entity recognition (Wang et al., 2013).

6 Conclusion

Developing systems that understand process de-
scriptions is an important step towards building ap-
plications that require deeper reasoning, such as bi-
ological process models from text, intelligent tutor-
ing systems, and non-factoid QA systems. In this
paper we have presented the task of process extrac-
tion, and developed methods for extracting relations
between process events. Processes contain events
that are tightly coupled through strong dependen-
cies. We have shown that exploiting these structural
dependencies and performing joint inference over all
event mentions can significantly improve accuracy
over several baselines. We have also released a new
dataset containing 148 fully annotated descriptions
of biological processes. Though the models we built
were trained on biological processes, they do not en-
code domain specific information, and hence should
be extensible to other domains.

In this paper we assumed that event triggers are

given as input. In future work, we want to perform
trigger identification jointly with extraction of event-
event relations. As explained in Section 4.2, the
performance of our system is confined by the per-
formance of the local classifier, which is trained on
relatively small amounts of data. Since data annota-
tion is expensive, it is important to improve the lo-
cal classifier without increasing the annotation bur-
den. For example, one can use unsupervised meth-
ods that learn narrative chains (Chambers and Ju-
rafsky, 2011) to provide some prior on the typical
order of events. Alternatively, we can search on the
web for redundant descriptions of the same process
and use this redundancy to improve classification.
Last, we would like to integrate our method into QA
systems and allow non-factoid questions that require
deeper reasoning to be answered by matching the
questions against the learned process structures.
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Abstract

Chambers and Jurafsky (2009) demonstrated
that event schemas can be automatically in-
duced from text corpora. However, our analy-
sis of their schemas identifies several weak-
nesses, e.g., some schemas lack a common
topic and distinct roles are incorrectly mixed
into a single actor. It is due in part to their
pair-wise representation that treats subject-
verb independently from verb-object. This of-
ten leads to subject-verb-object triples that are
not meaningful in the real-world.

We present a novel approach to inducing
open-domain event schemas that overcomes
these limitations. Our approach uses co-
occurrence statistics of semantically typed re-
lational triples, which we call Rel-grams (re-
lational n-grams). In a human evaluation, our
schemas outperform Chambers’s schemas by
wide margins on several evaluation criteria.
Both Rel-grams and event schemas are freely
available to the research community.

1 Introduction

Event schemas (also known as templates or frames)
have been widely used in information extraction.
An event schema is a set of actors (also known as
slots) that play different roles in an event, such as
the perpetrator, victim, and instrument in a bomb-
ing event. They provide essential guidance in ex-
tracting information related to events from free text
(Patwardhan and Riloff, 2009), and can also aid in
other NLP tasks, such as coreference (Irwin et al.,
2011), summarization (Owczarzak and Dang, 2010),
and inference about temporal ordering and causality.

Actor Rel Actor
A1:<person> failed A2:test
A1:<person> was suspended for A3:<time period>
A1:<person> used A4:<substance, drug>
A1:<person> was suspended for A5:<game, activity>
A1:<person> was in A6:<location>
A1:<person> was suspended by A7:<org, person>
Actor Instances:
A1: {Murray, Morgan, Governor Bush, Martin, Nelson}
A2: {test}
A3: {season, year, week, month, night}
A4: {cocaine, drug, gasoline, vodka, sedative}
A5: {violation, game, abuse, misfeasance, riding}
A6: {desert, Simsbury, Albany, Damascus, Akron}
A7: {Fitch, NBA, Bud Selig, NFL, Gov Jeb Bush}

Table 1: An event schema produced by our system, rep-
resented as a set of (Actor,Rel, Actor) triples, and a set
of instances for each actor A1, A2, etc. For clarity we
show unstemmed verbs.

Until recently, all event schemas in use in NLP
were hand-engineered, e.g., the MUC templates and
ACE event relations (ARPA, 1991; ARPA, 1998;
Doddington et al., 2004). This led to technology that
could only focus on specific domains of interest and
has not been applicable more broadly.

The seminal work of Chambers and Jurafsky
(2009) showed that event schemas can also be in-
duced automatically from text corpora. Instead of
labeled roles these schemas have a set of relations
and actors that serve as arguments.1 Their system
is fully automatic, domain-independent, and scales
to large text corpora.

However, we identify several limitations in the
schemas produced by their system.2 Their schemas

1In the rest of this paper we use event schemas to refer to
these automatically induced schemas with actors and relations.

2Available at http://www.usna.edu/Users/cs/
nchamber/data/schemas/acl09
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Actor Rel Actor
A1 caused A2
A2 spread A1
A2 burned A1
- extinguished A1
A1 broke out -
- put out A1
Actor Instances:
A1: {fire, aids, infection, disease}
A2: {virus, bacteria, disease, urushiol, drug}

Table 2: An event schema from Chambers’ system that
mixes the events of fire spreading and disease spreading.

often lack coherence: mixing unrelated events and
having actors whose entities do not play the same
role in the schema. Table 2 shows an event schema
from Chambers that mixes the events of fire spread-
ing and disease spreading.

Much of the incoherence of Chambers’ schemas
can be traced to their representation that uses pairs
of elements from an assertion, thus, treating subject-
verb and verb-object separately. This often leads to
subject-verb-object triples that do not make sense in
the real world. For example, the assertions “fire
caused virus” and “bacteria burned AIDS” are im-
plicit in Table 2.

Another limitation in schemas Chambers released
is that they restrict schemas to two actors, which can
result in combining different actors. Table 4 shows
an example of combining perpeterators and victims
into a single actor.

1.1 Contributions

We present an event schema induction algorithm that
overcomes these weaknesses. Our basic represen-
tation is triples of the form (Arg1, Relation, Arg2),
extracted from a text corpus using Open Information
Extraction (Mausam et al., 2012). The use of triples
aids in agreement between subject and object of a
relation. The use of Open IE leads to more expres-
sive relation phrases (e.g., with prepositions). We
also assign semantic types to arguments, both to al-
leviate data sparsity and to produce coherent actors
for our schemas.

Table 1 shows an event schema generated by our
system. It has six relations and seven actors. The
schema makes several related assertions about a per-
son using a drug, failing a test, and getting sus-
pended. The main actors in the schema include the
person who failed the test, the drug used, and the
agent that suspended the person.

Our first step in creating event schemas is to tab-
ulate co-occurrence of tuples in a database that we
call Rel-grams (relational n-grams) (Sections 3, 5.1).
We then perform analysis on a graph induced from
the Rel-grams database and use this to create event
schemas (Section 4).

We compared our event schemas with those of
Chambers on several metrics including whether the
schema pertains to a coherent topic or event and
whether the actors play a coherent role in that event
(Section 5.2). Amazon Mechanical Turk workers
judged that our schemas have significantly better co-
herence – 92% versus 82% have coherent topic and
81% versus 59% have coherent actors.

We release our open domain event schemas and
the Rel-grams database3 for further use by the NLP
community.

2 System Overview

Our approach to schema generation is based on the
idea that frequently co-occurring relations in text
capture relatedness of assertions about real-world
events. We begin by extracting a set of relational tu-
ples from a large text corpus and tabulate occurrence
of pairs of tuples in a database.

We then construct a graph from this database and
identify high-connectivity nodes (relational tuples)
in this graph as a starting point for constructing event
schemas. We use graph analysis to rank the tu-
ples and merge arguments to form the actors in the
schema.

3 Modeling Relational Co-occurrence

In order to tabulate pairwise occurences of relational
tuples we need a suitable relation-based represen-
tation. We now describe the extraction and rep-
resentation of relations, a database for storing co-
occurrence information, and our probabilistic model
for the co-occurrence. We call this model Rel-
grams, as it can be seen as a relational analog to the
n-grams language model.

3.1 Relations Extraction and Representation

We extract relational triples from each sentence in
a large corpus using the OLLIE Open IE system

3Available at http://relgrams.cs.washington.edu
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Tuples Table
Id Arg1 Rel Arg2 Count
... ... ... ... ...
13 bomb explode in <loc> 547
14 bomb explode in Baghdad 22
15 bomb explode in market 7
... ... ... ... ...
87 bomb kill <per> 173
... ... ... ... ...
92 <loc> be suburb of <loc> 1023
... ... ... ... ...

BigramCounts Table
T1 T2 Dist. Count E11 E12 E21 E22
... ... ... ... ... ... ... ...
13 87 1 27 25 0 0 0
13 87 2 35 33 0 0 0
... ... ... ... ... ... ... ...
13 87 10 62 59 0 0 0
87 13 1 6 0 0 0 0
... ... ... ... ... ... ... ...
92 13 1 12 0 0 12 0
... ... ... ... ... ... ... ...

Figure 1: Tables in the Rel-grams Database: Tuples maps tuples to unique identifiers, BigramCounts provides the
co-occurrence counts (Count) within various distances (Dist.), and four types of argument equality counts (E11-E22).
E11 is the number of times when T1.Arg1 = T2.Arg1, E12 is when T1.Arg1 = T2.Arg2 and so on.

(Mausam et al., 2012).4 This provides relational tu-
ples in the format (Arg1, Relation, Arg2) where each
tuple element is a phrase from the sentence. The
sentence “He cited a new study that was released by
UCLA in 2008.” produces three tuples:

1. (He, cited, a new study)
2. (a new study, was released by, UCLA)
3. (a new study, was released in, 2008)

Relational triples provide a more specific repre-
sentation which is less ambiguous when compared
to (subj, verb) or (verb, obj) pairs. However, using
relational triples also increases sparsity. To reduce
sparsity and to improve generalization, we represent
the relation phrase by its stemmed head verb plus
any prepositions. The relation phrase may include
embedded nouns, in which case these are stemmed
as well. Moreover, tuple arguments are represented
as stemmed head nouns, and we also record seman-
tic types of the arguments.

We selected 29 semantic types from WordNet, ex-
amining the set of instances on a small development
set to ensure that the types are useful, but not overly
specific. The set of types are: person, organization,
location, time unit, number, amount, group, busi-
ness, executive, leader, effect, activity, game, sport,
device, equipment, structure, building, substance,
nutrient, drug, illness, organ, animal, bird, fish, art,
book, and publication.

To assign types to arguments, we apply Stanford
Named Entity Recognizer (Finkel et al., 2005)5, and
also look up the argument in WordNet 2.1 and record

4Available at: http://knowitall.github.io/
ollie/

5We used the system downloaded from: http://nlp.
stanford.edu/software/CRF-NER.shtml and used
the seven class CRF model distributed with it.

the first three senses if they map to our target se-
mantic types. We use regular expressions to recog-
nize dates and numeric expressions, and map per-
sonal pronouns to <person>. We associate all types
found by this mechanism with each argument. The
tuples in the example above are normalized to the
following:

1. (He, cite, study)
2. (He, cite, <activity>)
3. (<person>, cite, study)
4. (<person>, cite, <activity>)
5. (study, be release by, UCLA)
6. (study, be release by, <organization>)
7. (study, be release in, 2008)
8. (study, be release in, <time unit>)
9. (<activity>, be release by, UCLA)
...
In our preliminary experiments, we found that us-

ing normalized relation strings and semantic classes
for arguments results in a ten-fold increase in the
number of Rel-grams with a minimum support.

3.2 Co-occurrence Tabulation

We construct a database to hold co-occurrence
statistics for pairs of tuples found in each document.
Figure 1 shows examples for the types of statistics
contained in the database. The database consists
of two tables: 1) Tuples – Maps each tuple to a
unique identifier and tabulates tuple counts. 2) Bi-
gramCounts – Stores the directional co-occurrence
frequency, a count for tuple T followed by T ′ at a
distance of k, and tabulates the number of times the
same argument was present in the pair of tuples.
Equality Constraints: Along with the co-
occurrence counts, we record the equality of argu-
ments in Rel-grams pairs. We assert an argument
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Table 3: Given a source tuple, the Rel-grams language
model estimates the probability of encountering other re-
lational tuples in a document. For clarity, we show the
unstemmed version.

Top tuples related to
(<person>, convicted of, murder)
1. (<person>, convicted in, <time unit>)
2. (<person>, sentenced to, death)
3. (<person>, sentenced to, year)
4. (<person>, convicted in, <location>)
5. (<person>, sentenced to, life)
6. (<person>, convicted in, <person>)
7. (<person>, convicted after, trial)
8. (<person>, sent to, prison)

pair is equal if they are from the same token se-
quence in the source sentence or one argument is a
co-referent mention of the other. We use the Stan-
ford Co-reference system (Lee et al., 2013)6 to de-
tect co-referring mentions. There are four possible
equalities depending on the specific pair of argu-
ments in the tuples are the same, shown as E11, E12,
E21 and E22 in Figure 1. For example, the E21 col-
umn has counts for the number of times the Arg2 of
T1 was determined to be the same as the Arg1 of T2.
Implementation and Query Language: We pop-
ulated the Rel-grams database using OLLIE extrac-
tions from a set of 1.8 Million New York Times arti-
cles drawn from the Gigaword corpus. The database
consisted of approximately 320K tuples that have
frequency ≥ 3 and 1.1M entries in the bigram table.

The Rel-grams database allows for powerful
querying using SQL. For example, Table 3 shows the
most frequent rel-grams associated with the query
tuple (<person>, convicted of, murder).

3.3 Rel-grams Language Model

From the tabulated co-occurrence statistics, we esti-
mate bi-gram conditional probabilities of tuples that
occur within a window of k tuples from each other.
Formally, we use Pk(T ′|T ) to denote the conditional
probability that T ′ follows T within a window of k
tuples. To discount estimates from low-frequency
tuples, we use a δ-smoothed estimate:

6Available for download at: http://nlp.stanford.
edu/software/dcoref.shtml

Pk(T ′|T ) =
#(T, T ′, k) + δ∑

T ′′∈V

#(T, T ′′, k) + δ · |V |
(1)

where, #(T, T ′, k) is the number of times T ′ fol-
lows T within a window of k tuples. k = 1 in-
dicates adjacent tuples in the document. |V | is the
number of unique tuples in the corpus. For experi-
ments in this paper, we set δ to 0.05.

Co-occurrence within a small window is usu-
ally more reliable but is also sparse, whereas co-
occurrence within larger windows addresses sparsity
but may lead to topic drift. To leverage the bene-
fits of different window sizes, we also define a met-
ric with a weighted average of window sizes from 1
to 10, where the weight decays as window size in-
creases. For example, with α set to 0.5 in equation
2, a window of k+1 has half the weight of a window
of k.

P (T ′|T ) =
∑10

k=1 α
kPk(T ′|T )∑10

k=1 α
k

(2)

We believe that Rel-grams is a valuable source
of common-sense knowledge and may be useful for
several downstream tasks such as improving infor-
mation extractors, inference of implicit information,
etc. We assess its usefulness in the context of gener-
ating event schemas.

4 Schema Generation

We now use Rel-grams to identify relations and ac-
tors pertaining to a particular event. Our schema
generation consists of three steps. First, we build a
relation graph of tuples (G) using connections iden-
tified by Rel-grams. Second, we identify a set of
seed tuples as starting points for schemas. We use
graph analysis to find the tuples most related to each
seed. Finally, we merge the arguments in these tu-
ples to create actors and output the final schema.
Next we describe each of these steps in detail.

4.1 Rel-graph construction
We define a Rel-graph as an undirected weighted
graph G = (V,E), whose vertices (V ) are relation
tuples with edges (E), where an edge between ver-
tices T and T ′ is weighted by the symmetric condi-
tional probability SCP (T, T ′) defined as
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SCP (T, T ′) = P (T |T ′)× P (T ′|T ) (3)

Both conditional probabilities are computed in
Equation 2. Figure 2 shows a portion of a Rel-graph
where the thickness of the edge indicates symmetric
conditional probability.

(bomb, explode at, <location>) 

(bomb, explode on,  
        <time_unit>) 

(bomb, kill,  
    <person>) 

(bomb, wound,  
     <person>) 

(<person>, plant,  
        bomb) 

(<organization>, claim, responsibility) 

Figure 2: Part of a Rel-graph showing tuples strongly
associated with (bomb, explode at, <location>). Undi-
rected edges are weighted by symmetric conditional
probability with line thickness indicating weight.

4.2 Finding Related Tuples

Our goal is to find closely related tuples that per-
tain to an event or topic. First, we locate high-
connectivity nodes in the Rel-graph to use as seeds.
We sort nodes by the sum of their top 25 edge
weights7 and take the top portion of this list after
filtering out redundant views of the same relation.

For each seed (Q), we find related tuples by ex-
tracting the sub-graph (GQ) from Q’s neighbors
(within two hops from Q) in the Rel-graph. Graph
analysis can detect the strongly connected nodes
within this sub-graph, representing tuples that fre-
quently co-occur in the context of the seed tuple.

Page rank is a well-known graph analysis algo-
rithm that uses graph connectivity to identify impor-
tant nodes within a graph (Brin and Page, 1998). We
are interested in connectivity within a subgraph with
respect to a designated query node (the seed). Con-
nection to a query node can help minimize concept
drift and ensure that the selected tuples are closely
related to the main topic of the sub-graph.

7Limiting to the top 25 edges avoids overly general tuples
that occur in many topics, which tend to have a large number of
weak edges.

In this work, we adapt the Personalized PageR-
ank algorithm (Haveliwala, 2002). The personalized
version of PageRank returns ranks of various nodes
with respect to a given query node and hence is more
appropriate for our task than the basic PageRank al-
gorithm. Within the subgraph GQ for a given seed
Q, we compute a solution to the following set of
PageRank Equations:

PRQ(T )

= (1− d) + d
X
T ′

SCP (T, T ′)PRQ(T ′) if T = Q

= d
X
T ′

SCP (T, T ′)PRQ(T ′) otherwise

Here PRQ(T ) denotes the page rank of a tuple T
personalized for the query tuple Q. It is a sum of
all its neighbors’ page ranks, weighted by the edge
weights; d is the damping probability, which we set
to be 0.85 in our implementation.

The solution is computed iteratively by initializ-
ing the page rank of Q to 1 and all others to 0, then
recomputing page rank values until they converge to
within a small ε. This computation remains scalable,
since we restrict it to subgraphs a small number of
hops away from the query node. This is a standard
practice to handle large graphs (Agirre and Soroa,
2009; Mausam et al., 2010).

4.3 Creating Actors and Relations

We take the top n tuples from GQ according to
their Page rank scores. From each tuple T :
(Arg1, Rel, Arg2) in GQ, we record two actors
(A1, A2) corresponding to Arg1 and Arg2, and add
Rel to the list of relations that they participate in.

Then, we merge actors in two steps. First, we col-
lect the equality constraints for the tuples in GQ. If
the arguments corresponding to any pair of actors
have a non-zero equality constraint then we merge
them. Second, we merge actors that perform simi-
lar actions. A1 and A2 are merged if they are con-
nected to the same actor A3 through the same rela-
tion. For example, A1 and A2 in (A1:lawsuit, file by,
A3:company) and (A2:suit, file by, A3:company),
will be merged into a single actor. To avoid merging
distinct actors, we use a small list of rules that spec-
ify the semantic type pairs that cannot be merged
(e.g., location-date). Also, we do not merge two ac-
tors, if it can result in a relation where the same actor
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System A1 Rel A2

Relgrams {bomb, missile, grenade, device} explode in {city, Bubqua, neighborhood}
{bomb, missile, grenade, device} explode kill {people, civilian, lawmaker, owner, soldier}
{bomb, missile, grenade, device} explode on {Feb., Fri., Tues., Sun., Sept.}
{bomb, missile, grenade, device} explode wound {civilian, person, people, soldier, officer}
{bomb, missile, grenade, device} explode in {Feb., Beirut Monday, Sept., Aug.}
{bomb, missile, grenade, device} explode injure {woman, people, immigrant, policeman}

Chambers {bomb, explosion, blast, bomber, mine} explode {soldier, child, civilian, bomber, palestinian}
{soldier, child, civilian, bomber, palestinian} set off {bomb, explosion, blast, bomber, mine, bombing}
{bomb, explosion, blast, bomber, mine} kill {soldier, child, civilian, bomber, palestinian}
{soldier, child, civilian, bomber, palestinian} detonate {bomb, explosion, blast, bomber, mine, bombing}
{bomb, explosion, blast, bomber, mine} injure {soldier, child, civilian, bomber, palestinian}
{soldier, child, civilian, bomber, palestinian} plant {bomb, explosion, blast, bomber, mine, bombing}

Relgrams {Carey, John Anthony Volpe, Chavez, She } veto {legislation, bill, law, measure, version}
{legislation, bill, law, measure, version} be sign by {Carey, John Anthony Volpe, Chavez, She }
{legislation, bill, law, measure, version} be pass by {State Senate, State Assembly, House, Senate, Parliament}
{Carey, John Anthony Volpe, Chavez, She } sign into {law}
{Carey, John Anthony Volpe, Chavez, She } to sign {bill}
{Carey, John Anthony Volpe, Chavez, She } be governor of {Massachusetts, state, South Carolina, Texas, California}

Chambers {clinton, bush, bill, president, house} oppose {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} sign {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} approve {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house veto {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} support {bill, measure, legislation, plan, law}
{clinton, bush, bill, president, house} pass {bill, measure, legislation, plan, law}

Table 4: “Bombing” and “legislation” schema examples from Rel-grams and Chambers represented as a set of
(A1, Rel, A2) tuples, where the schema provides a set of instances for each actor A1 and A2. Relations and argu-
ments are in the stemmed form, e.g., ‘explode kill’ refers to ‘exploded killing’. Instances in bold produce tuples that
are not valid in the real world.

is both the Arg1 and Arg2.
Finally, we generate an ordered list of tuples using

the final set of actors and their relations. The out-
put tuples are sorted by the average page rank of the
original tuples, thereby reflecting their importance
within the sub-graph GQ.

5 Evaluation

We present experiments to explore two main ques-
tions: How well do Rel-grams capture real world
knowledge, and what is the quality of event schemas
built using Rel-grams.

5.1 Evaluating Rel-grams
What sort of common-sense knowledge is encap-
sulated in Rel-grams? How often does it indicate
an implication between a pair of statements, and
how often does it indicate a common real-world
event or topic? To answer these questions, we con-
ducted an experiment to identify a subset of our Rel-
grams database with high precision for two forms of
common-sense knowledge:

• Implication: The Rel-grams express an im-
plication from T to T’ or from T’ to T, a

bi-directional form of the Recognizing Tex-
tual Entailment (RTE) guidelines (Dagan et al.,
2005).
• Common Topic: Is there an underlying com-

mon topic or event to which both T and T’ are
relevant?

We also evaluated whether both T and T’ are valid
tuples that are well-formed and make sense in the
real world, a necessary pre-condition for either im-
plication or common topic.

We are particularly interested in the highest pre-
cision portion of our Rel-grams database. The
database has 1.1M entries with support of at least
three instances for each tuple. To find the highest
precision subset of these, we identified tuples that
have at least 25 Rel-grams, giving us 12,600 seed
tuples with a total of over 280K Rel-grams. Finally,
we sorted this subset by the total symmetrical con-
ditional probability of the top 25 Rel-grams for each
seed tuple.

We tagged a sample of this 280K set of Rel-grams
for valid tuples, implication between T and T’, and
common topic. We found that in the top 10% of this
set, 87% of the seed tuples were valid and 74% of the
Rel-grams had both tuples valid. Of the Rel-grams
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System Id A1 Rel A2

Relgrams R1 bomb explode in city
bomb explode kill people
bomb explode on Fri.
... ... ...

Chambers C1 blast explode child
child detonate blast
child plant bomb
... ... ...

Table 5: A grounded instantiation of the schemas from
Table 4, where each actor is represented as a randomly
selected instance.

with both tuples valid, 83% expressed an implication
between the tuples, and 90% had a common topic.

There were several reasons for invalid tuples –
parsing errors; binary projections of inherently n-ary
relations, for example (<person>, put, <person>);
head-noun only representation omitting essential in-
formation; and incorrect semantic types, primarily
due to NER tagging errors.

While the Rel-grams suffer from noise in the tu-
ple validity, there is clearly strong signal in the data
about common topic and implication between tuples
in the Rel-grams. As we demonstrate in the follow-
ing section, an end task can use graph analysis tech-
niques to amplify this strong signal, producing high-
quality relational schemas.

5.2 Schemas Evaluation

In our schema evaluation, we are interested in
assessing how well the schemas correspond to
common-sense knowledge about real world events.
To this end, we focus on three measures, topical co-
herence, tuple validity, and actor coherence.

A good schema must be topically coherent, i.e.,
the relations and actors should relate to some real
world topic or event. The tuples that comprise a
schema should be valid assertions that make sense
in the real world. Finally, each actor in the schema
should belong to a cohesive set that plays a consis-
tent role in the relations. Since there are no good
automated ways to make such judgments, we per-
form a human evaluation using workers from Ama-
zon’s Mechanical Turk (AMT).

We compare Rel-grams schemas against the state-
of-the-art narrative schemas released by Cham-
bers (Chambers and Jurafsky, 2009).8 Chambers’

8Available at http://www.usna.edu/Users/cs/

System Id A1 Rel A2

Relgrams R11 bomb explode in city
missile explode in city
grenade explode in city
... ... ...

Relgrams R21 missile explode in city
missile explode in neighborhood
missile explode in front
... ... ...

Table 6: A schema instantiation used to test for actor co-
herence. Each of the top instances for A1 or A2 is pre-
sented, holding the relation and the other actor fixed.

schemas are less expressive than ours – they do not
associate types with actors and each schema has a
constant pre-specified number of relations. For a
fair comparison we use a similarly expressive ver-
sion of our schemas that strips off argument types
and has the same number of relations per schema
(six) as their highest quality output set.

5.2.1 Evaluation Design

We created two tasks for AMT annotators. The
first task tests the coherence and validity of rela-
tions in a schema and the second does the same
for the schema actors. In order to make the tasks
understandable to unskilled AMT workers, we fol-
lowed the accepted practice of presenting them with
grounded instances of the schemas (Wang et al.,
2013), e.g., instantiating a schema with a specific ar-
gument instead of showing the various possibilities
for an actor.

First, we collect the information in schemas as a
set of tuples: S = {T1, T2, · · · , Tn}, where each tu-
ple is of the form T : (X,Rel, Y ), which conveys
a relationship Rel between actors X and Y . Each
actor is represented by its highest frequency exam-
ples (instances). Table 4 shows examples of schemas
from Chambers and Rel-grams represented in this
format. Then, we create grounded tuples by ran-
domly sampling from top instances for each actor.

Task I: Topical Coherence To test whether the re-
lations in a schema form a coherent topic or event,
we presented the AMT annotators with a schema as
a set of grounded tuples, showing each relation in
the schema, but randomly selecting one of the top 5
instances from each actor. We generated five such

nchamber/data/schemas/acl09
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Figure 3: (a) Has Topic: Percentage of schema instanti-
ations with a coherent topic. (b) Valid Tuples: Percent-
age of grounded statements that assert valid real-world
relations. (c) Valid + On Topic: Percentage of grounded
statements where 1) the instantiation has a coherent topic,
2) the tuple is valid and 3) the relation belongs to the
common topic. All differences are statistically significant
with a p-value < 0.01.

instantiations for each schema. An example instan-
tiation is shown in Table 5.

We ask three kinds of questions on each grounded
schema: (1) is each of the grounded tuples valid (i.e.
meaningful in the real world); (2) do the majority of
relations form a coherent topic; and (3) does each
tuple belong to the common topic. Similar to pre-
vious AMT studies we get judgments from multiple
(five) annotators on each task and use the majority
labels (Snow et al., 2008).

Our instructions specified that the annotators
should ignore grammar and focus on whether a tuple
may be interpreted as a real world statement. For ex-
ample, the first tuple in R1 in Table 5 is a valid state-
ment – “a bomb exploded in a city”, but the tuples
in C1 “a blast exploded a child”, “a child detonated
a blast”, and “a child planted a blast” don’t make
sense.
Task II: Actor Coherence To test whether the in-
stances of an actor form a coherent set, we held the
relation and one actor fixed and presented the AMT
annotators with the top 5 instances for the other ac-
tor. The first example R11 in Table 6 holds the
relation “explode in” fixed, and A2 is grounded to
the randomly selected instance “city”. We present
grounded tuples by varying A1 and ask annotators to
judge whether these instances form a coherent topic
and whether each instance belongs to that common
topic. As with Task I, we create five random instan-
tiations for each schema.

Figure 4: Actor Coherence: Has Role bars compare the
percentage of tuples where the tested actors have a co-
herent role. Fits Role compares the percentage of top
instances that fit the specified role for the tested actors.
All differences are statistically significant with a p-value
< 0.01.

5.2.2 Results

We obtained a test set of 100 schemas per system
by randomly sampling from the top 500 schemas
from each system. We evaluate this test set using
Task I and II as described above. For both tasks we
obtained ratings from five turkers and use the major-
ity labels as the final annotation.

Does the schema belong to a single topic? The
Has Topic bars in Figure 3 show results for schema
coherence. Rel-grams has a higher proportion of
schemas with a coherent topic, 91% compared to
82% for Chambers’. This is a 53% reduction in in-
coherent schemas.
Do tuples assert valid real-world relations? The
Valid Tuples bars in Figure 3 compare the percent-
age of valid grounded tuples in the schema instan-
tiations. A tuple was labeled valid if a majority of
the annotators labeled it to be meaningful in the real
world. Here we see a dramatic difference – Rel-
grams have 92% valid tuples, compared with Cham-
bers’ 61%.

What proportion of tuples belong? The Valid +
On Topic bars in Figure 3 compare the percentage
of tuples that are both valid and on topic, i.e., fits
the main topic of the schema. Tuples from schema
instantiations that did not have a coherent topic were
labeled incorrect.

Rel-grams have a higher proportion of valid tu-
ples belonging to a common topic, 82% compared to

1728



58% for Chambers’ schemas, a 56% error reduction.
This is the strictest of the experiments described thus
far – 1) the schema must have a topic, 2) the tuple
must be valid, and 3) the tuple must belong to the
topic.
Do actors represent a coherent set of argu-
ments? We evaluated schema actors from the top
25 schemas in Chambers’ and Rel-grams schemas,
using grounded instances such as those in Table 6.
Figure 4 compares the percentage of tuples where
the actors play a coherent role (Has Role), and the
percentage of instances that fit that role for the actor
(Fits Role). Rel-grams has much higher actor co-
herence than Chambers’, with 97% judged to have a
topic compared to 81%, and 81% of instances fitting
the common role compared with Chambers’ 59%.

5.2.3 Error Analysis
The errors in both our schemas and those of

Chambers are primarily due to mismatched actors
and from extraction errors, although Chambers’
schemas have a larger number of actor mismatch er-
rors and the cause of the errors is different for each
system.

Examining the data published by Chambers, the
main source of invalid tuples are mismatch of sub-
ject and object for a given relation, which accounts
for 80% of the invalid tuples. We hypothesize that
this is due to the pair-wise representation that treats
subject-verb and verb-object separately, causing in-
consistent s-v-o tuples. An example is (boiler, light,
candle) where (boiler, light) and (light, candle) are
well-formed, yet the entire tuple is not. In addition,
43% of the invalid tuples seem to be from errors by
the dependency parser.

Our schemas also suffer from mismatched actors,
despite the semantic typing of the actors – we found
a mismatch in 56% of the invalid tuples (5% of
all tuples). A general type such as <person> or
<organization> may still have an instance that does
not play the same role as other instances. For exam-
ple a relation (A1, graduated from, A2) has A2 that
is mostly school names, but also includes “church”
which leads to an invalid tuple.

Extraction errors account for 47% of the invalid
tuples in our schemas, primarily errors that truncate
an n-ary relation as a binary tuple. For example, the
sentence “Mr. Diehl spends more time ... than the

commissioner” is misanalysed by the Open IE ex-
tractor as (Mr. Diehl, spend than, commissioner).

6 Related Work

Prior work by Chambers and Jurafsky (2008;
2009; 2010) showed that event sequences (narrative
chains) mined from text can be used to induce event
schemas in a domain-independent fashion. How-
ever, our manual evaluation of their output showed
key limitations which may limit applicability.

As pointed out earlier, a major weakness in
Chambers’ approach is the pair-wise representation
of subject-verb and verb-object. Also, their released
a set of schemas are limited to two actors, although
this number can be increased by setting a chain split-
ting parameter.

Chambers and Jurafsky (2011) extended schema
generation to learn domain-specific event templates
and associated extractors. In work parallel to ours,
Cheung et al. (2013), developed a probabilistic so-
lution for template generation. However, their ap-
proach requires performing joint probability estima-
tion using EM, which can limit scaling to large cor-
pora.

In this work we developed an Open IE based
solution to generate schemas. Following prior
work (Balasubramanian et al., 2012), we use Open
IE triples for modeling relation co-occurrence. We
extend the triple representation with semantic types
for arguments to alleviate sparisty and to improve
coherence. We developed a page rank based schema
induction algorithm which results in more coherent
schemas with several actors. Unlike Chambers’ ap-
proach this method does not require explicit param-
eter tuning for controlling the number of actors.

While our event schemas are close to being tem-
plates (because of associated types, and actor clus-
tering), they do not have associated extractors. Our
future work will focus on building extractors for
these. It will also be interesting to compare with
Cheung’s system on smaller focused corpora.

Defining representations for events is a topic of
active interest (Fokkens et al., 2013). In this work,
we use a simpler representation, defining event
schemas as a set of actors with associated types and
a set of roles they play.
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7 Conclusions

We present a system for inducing event schemas
from text corpora based on Rel-grams, a language
model derived from co-occurrence statistics of re-
lational triples (Arg1, Relation, Arg2) extracted by
a state-of-the-art Open IE system. By using triples
rather than a pair-wise representation of subject-verb
and verb-object, we achieve more coherent schemas
than Chambers and Jurafsky (2009). In particular,
our schemas have higher topic coherence (92% com-
pared to Chambers’ 82%; make a higher percentage
of valid assertions (94% compared with 61%); and
have greater actor coherence (81% compared with
59%).

Our schemas are also more expressive than those
published by Chambers – we have semantic typing
for the actors, we are not limited to two actors per
schema, and our relation phrases include preposi-
tions and are thus more precise and have higher cov-
erage of actors involved in the event.

Our future plans are to build upon our event
schemas to create an open-domain event extractor.
This will extend each induced schema to have asso-
ciated extractors. These extractors will operate on a
document and instantiate an instance of the schema.

We have created a Rel-grams database with 1.1M
entries and a set of over 2K event schemas from a
corpus of 1.8M New York Times articles. Both are
freely available to the research community9 and may
prove useful for a wide range of NLP applications.
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Abstract

Cross-lingual topic modelling has applications
in machine translation, word sense disam-
biguation and terminology alignment. Multi-
lingual extensions of approaches based on la-
tent (LSI), generative (LDA, PLSI) as well as
explicit (ESA) topic modelling can induce an
interlingual topic space allowing documents
in different languages to be mapped into the
same space and thus to be compared across
languages. In this paper, we present a novel
approach that combines latent and explicit
topic modelling approaches in the sense that
it builds on a set of explicitly defined top-
ics, but then computes latent relations between
these. Thus, the method combines the ben-
efits of both explicit and latent topic mod-
elling approaches. We show that on a cross-
lingual mate retrieval task, our model signif-
icantly outperforms LDA, LSI, and ESA, as
well as a baseline that translates every word in
a document into the target language.

1 Introduction

Cross-lingual document matching is the task of,
given a query document in some source language,
estimating the similarity to a document in some tar-
get language. This task has important applications in
machine translation (Palmer et al., 1998; Tam et al.,
2007), word sense disambiguation (Li et al., 2010)
and ontology alignment (Spiliopoulos et al., 2007).
An approach that has become quite popular in re-
cent years for cross-lingual document matching is
Explicit Semantics Analysis (ESA, Gabrilovich and
Markovitch (2007)) and its cross-lingual extension

CL-ESA (Sorg and Cimiano, 2008). ESA indexes
documents by mapping them into a topic space de-
fined by their similarity to predefined explicit top-
ics – generally articles from an encyclopaedia – in
such a way that there is a one-to-one correspondence
between topics and encyclopedic entries. CL-ESA
extends this to the multilingual case by exploiting
a background document collection that is aligned
across languages, such as Wikipedia. A feature of
ESA and its extension CL-ESA is that, in contrast to
latent (e.g. LSI, Deerwester et al. (1990)) or genera-
tive topic models (such as LDA, Blei et al. (2003)),
it requires no training and, nevertheless, has been
demonstrated to outperform LSI and LDA on cross-
lingual retrieval tasks (Cimiano et al., 2009).

A key choice in Explicit Semantic Analysis is the
document space that will act as the topic space. The
standard choice is to regard all articles from a back-
ground document collection – Wikipedia articles are
a typical choice – as the topic space. However, it
is crucial to ensure that these topics cover the se-
mantic space evenly and completely. In this pa-
per, we present an alternative approach where we
remap the semantic space defined by the topics in
such a manner that it is orthonormal. In this way,
each document is mapped to a topic that is distinct
from all other topics. Such a mapping can be con-
sidered as equivalent to a variant of Latent Seman-
tic Indexing (LSI) with the main difference that our
model exploits the matrix that maps topic vectors
back into document space, which is normally dis-
carded in LSI-based approaches. We dub our model
ONETA (OrthoNormal Explicit Topic Analysis) and
empirically show that on a cross-lingual retrieval
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task it outperforms ESA, LSI, and Latent Dirichlet
Allocation (LDA) as well as a baseline consisting of
translating each word into the target language, thus
reducing the task to a standard monolingual match-
ing task. In particular, we quantify the effect of dif-
ferent approximation techniques for computing the
orthonormal basis and investigate the effect of vari-
ous methods for the normalization of frequency vec-
tors.

The structure of the paper is as follows: we situate
our work in the general context of related work on
topic models for cross-lingual document matching
in Section 2. We present our model in Section 3 and
present our experimental results and discuss these
results in Section 4.

2 Related Work

The idea of applying topic models that map docu-
ments into an interlingual topic space seems a quite
natural and principled approach to tackle several
tasks including the cross-lingual document retrieval
problem.

Topic modelling is the process of finding a rep-
resentation of a document d in a lower dimensional
space RK where each dimension corresponds to one
topic that abstracts from specific words and thus al-
lows us to detect deeper semantic similarities be-
tween documents beyond the computation of the
pure overlap in terms of words.

Three main variants of document models have
been mainly considered for cross-lingual document
matching:

Latent methods such as Latent Semantic Indexing
(LSI, Deerwester et al. (1990)) induce a de-
composition of the term-document matrix in
a way that reduces the dimensionality of the
documents, while minimizing the error in re-
constructing the training data. For example,
in Latent Semantic Indexing, a term-document
matrix is approximated by a partial singu-
lar value decomposition, or in Non-Negative
Matrix Factorization (NMF, Lee and Seung
(1999)) by two smaller non-negative matrices.
If we append comparable or equivalent doc-
uments in multiple languages together before
computing the decomposition as proposed by
Dumais et al. (1997) then the topic model is

essentially cross-lingual allowing to compare
documents in different languages once they
have been mapped into the topic space.

Probabilistic or generative methods instead at-
tempt to induce a (topic) model that has the
highest likelihood of generating the documents
actually observed during training. As with la-
tent methods, these topics are thus interlin-
gual and can generate words/terms in differ-
ent languages. Prominent representatives of
this type of method are Probabilistic Latent Se-
mantic Indexing (PLSI, Hofmann (1999)) or
Latent Dirichlet Allocation (LDA, Blei et al.
(2003)), both of which can be straightforwardly
extended to the cross-lingual case (Mimno et
al., 2009).

Explicit topic models make the assumption that
topics are explicitly given instead of being in-
duced from training data. Typically, a back-
ground document collection is assumed to be
given whereby each document in this corpus
corresponds to one topic. A mapping from doc-
ument to topic space is calculated by comput-
ing the similarity of the document to every doc-
ument in the topic space. A prominent exam-
ple for this kind of topic modelling approach is
Explicit Semantic Analysis (ESA, Gabrilovich
and Markovitch (2007)).

Both latent and generative topic models attempt to
find topics from the data and it has been found that
in some cases they are equivalent (Ding et al., 2006).
However, this approach suffers from the problem
that the topics might be artifacts of the training data
rather than coherent semantic topics. In contrast, ex-
plicit topic methods can use a set of topics that are
chosen to be well-suited to the domain. The princi-
ple drawback of this is that the method for choosing
such explicit topics by selecting documents is com-
paratively crude. In general, these topics may be
overlapping and poorly distributed over the seman-
tic topic space. By comparison, our method takes the
advantage of the pre-specified topics of explicit topic
models, but incorporates a training step to learn la-
tent relations between these topics.
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3 Orthonormal explicit topic analysis

Our approach follows Explicit Semantic Analysis in
the sense that it assumes the availability of a back-
ground document collection B = {b1, b2, ..., bN}
consisting of textual representations. The map-
ping into the explicit topic space is defined by a
language-specific function Φ that maps documents
into RN such that the jth value in the vector is given
by some association measure φj(d) for each back-
ground document bj . Typical choices for this associ-
ation measure φ are the sum of the TF-IDF scores or
an information retrieval relevance scoring function
such as BM-25 (Sorg and Cimiano, 2010).

For the case of TF-IDF, the value of the j-th ele-
ment of the topic vector is given by:

φj(d) =
−−−→
tf-idf(bj)

T −−−→tf-idf(d)

Thus, the mapping function can be represented as
the product of a TF-IDF vector of document dmulti-
plied by anW×N matrix, X, each element of which
contains the TF-IDF value of word i in document bj :

Φ(d) =


−−−→
tf-idf(b1)T

...
−−−→
tf-idf(bN )T

−−−→tf-idf(d) = XT · −−−→tf-idf(d)

For simplicity, we shall assume from this point on
that all vectors are already converted to a TF-IDF
or similar numeric vector form. In order to com-
pute the similarity between two documents di and
dj , typically the cosine-function (or the normalized
dot product) between the vectors Φ(di) and Φ(dj) is
computed as follows:

sim(di, dj) = cos(Φ(di), Φ(dj)) =
Φ(di)

TΦ(dj)

||Φ(di)||||Φ(dj)||

If we represent the above using our above defined
W ×N matrix X then we get:

sim(di, dj) = cos(XTdi, X
Tdj) =

dT
i XXTdj

||XTdi||||XTdj ||

The key challenge with ESA is choosing a good
background document collection B = {b1, ..., bN}.
A simple minimal criterion for a good background
document collection is that each document in this

collection should be maximally similar to itself and
less similar to any other document:

∀i 6= j 1 = sim(bj , bj) > sim(bi, bj) ≥ 0

While this criterion is trivially satisfied if we have
no duplicate documents in our collection, our intu-
ition is that we should choose a background collec-
tion that maximizes the slack margin of this inequal-
ity, i.e. |sim(bj , bj) − sim(bi, bj)|. We can see that
maximizing this margin for all i,j is the same as
minimizing the semantic overlap of the background
documents, which is given as follows:

overlap(B) =
∑

i = 1, . . . , N
j = 1, . . . , N

i 6= j

sim(bi, bj)

We first note that we can, without loss of general-
ity, normalize our background documents such that
||Xbj || = 1 for all j, and in this case we can re-
define the semantic overlap as the following matrix
expression1

overlap(X) = ||XTXXTX− I||1

It is trivial to verify that this equation has a mini-
mum when XTXXTX = I. This is the case when
the topics are orthonormal:

(XTbi)
T(XTbj) = 0 if i 6= j

(XTbi)
T(XTbi) = 1

Unfortunately, this is not typically the case as the
documents have significant word overlap as well as
semantic overlap. Our goal is thus to apply a suitable
transformation to X with the goal of ensuring that
the orthogonality property holds.

Assuming that this transformation of X is done
by multiplication with some other matrix A, we can
define the learning problem as finding that matrix A
such that:

(AXTX)T(AXTX) = I

1||A||p =
∑

i,j |aij |p is the p-norm. ||A||F =
√
||A||2 is

the Frobenius norm.
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If we have the case that W ≥ N and that the rank
of X is N , then XTX is invertible and thus A =
(XTX)−1 is the solution to this problem.2

We define the projection function of a document
d, represented as a normalized term frequency vec-
tor, as follows:

ΦONETA(d) = (XTX)−1XTd

For the cross-lingual case we assume that we have
two sets of background documents of equal size,
B1 = {b11, . . . , b1N}, B2 = {b21, . . . , b2N} in lan-
guages l1 and l2, respectively and that these doc-
uments are aligned such that for every index i, b1i
and b2i are documents on the same topic in each
language. Using this we can construct a projec-
tion function for each language which maps into the
same topic space. Thus, as in CL-ESA, we obtain
the cross-lingual similarity between a document di

in language l1 and a document dj in language l2 as
follows:

sim(di, dj) = cos(Φl1
ONETA(di),Φ

l2
ONETA(dj))

We note here that we assume that Φ could be rep-
resented as a symmetric inner product of two vec-
tors. However, for many common choices of asso-
ciation measures, including BM25, this is not the
case. In this case the expression XTX can be re-
placed with a kernel matrix specifying the associ-
ation of each background document to each other
background document.

3.1 Relationship to Latent Semantic Indexing

In this section we briefly clarify the relationship be-
tween our method ONETA and Latent Semantic In-
dexing. Latent Semantic Indexing defines a map-
ping from a document represented as a term fre-
quency vector to a vector in RK . This transforma-
tion is defined by means of calculating the singu-
lar value decomposition (SVD) of the matrix X as
above, namely

2In the case that the matrix is not invertible we can in-
stead solve ||XTXA − I||F , which has a minimum at A =
VΣ−1UT where XTX = UΣVT is the singular value de-
composition of XTX.

As usual we do not in fact compute the inverse for our exper-
iments, but instead the LU Decomposition and solve by Gaus-
sian elimination at test time.

X = UΣVT

Where Σ is diagonal and U V are the eigenvec-
tors of XXT and XTX., respectively. Let ΣK de-
note the K × K submatrix containing the largest
eigenvalues, and UK ,VK denote the corresponding
eigenvectors. Thus LSI can be defined as:

ΦLSI(d) = Σ−1
K UKd

With regards to orthonormalized topics, we see
that using the SVD, we can simply derive the fol-
lowing:

(XTX)−1XT = VΣ−1UT

When we set K = N and thus choose the maxi-
mum number of topics, ONETA is equivalent to LSI
modulo the fact that it multiplies the resulting topic
vector by V, thus projecting back into document
space, i.e. into explicit topics.

In practice, both methods differ significantly in
that the approximations they make are quite differ-
ent. Furthermore, in the case that W � N and X
has n non-zeroes, the calculation of the SVD is of
complexity O(nN + WN2) and requires O(WN)
bytes of memory. In contrast, ONETA requires com-
putation time ofO(Na) for a > 2, which is the com-
plexity of the matrix inversion algorithm3, and only
O(n+N2) bytes of memory.

3.2 Approximations
The computation of the inverse has a complexity
that, using current practical algorithms, is approxi-
mately cubic and as such the time spent calculating
the inverse can grow very quickly. There are sev-
eral methods for obtaining an approximate inverse.
The most commonly used are based on the SVD or
eigendecomposition of the matrix. As XTX is sym-
metric positive definite, it holds that:

XTX = UΣUT

Where U are the eigenvectors of XTX and Σ is
a diagonal matrix of the eigenvalues. With UK ,ΣK

3Algorithms with a = 2.3727 are known but practical algo-
rithms have a = 2.807 or a = 3 (Coppersmith and Winograd,
1990)
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as the first K eigenvalues and eigenvectors, respec-
tively, we have:

(XTX)−1 ' UKΣ−1
K UT

K (1)

We call this the orthonormal eigenapproxima-
tion or ON-Eigen. The complexity of calculating
(XTX)−1XT from this is O(N2K + Nn), where
n is the number of non-zeros in X.

Similarly, using the formula derived in the previ-
ous section we can derive an approximation of the
full model as follows:

(XTX)−1XT ' UKΣ−1
K VT

K (2)

We call this approximation Explicit LSI as it first
maps into the latent topic space and then into the
explicit topic space.

We can consider another approximation by notic-
ing that X is typically very sparse and moreover
some rows of X have significantly fewer non-zeroes
than others (these rows are for terms with low fre-
quency). Thus, if we take the first N1 columns (doc-
uments) in X, it is possible to rearrange the rows
of X with the result that there is some W1 such
that rows with index greater than W1 have only ze-
roes in the columns up to N1. In other words, we
take a subset of N1 documents and enumerate the
words in such a way that the terms occurring in the
first N1 documents are enumerated 1, . . . ,W1. Let
N2 = N − N1, W2 = W −W1. The result of this
row permutation does not affect the value of XTX
and we can write the matrix X as:

X =

(
A B
0 C

)
where A is a W1 × N1 matrix representing term

frequencies in the first N1 documents, B is a W1 ×
N2 matrix containing term frequencies in the re-
maining documents for terms that are also found in
the firstN1 documents, and C is aW2×N2 contain-
ing the frequency of all terms not found in the first
N1 documents.

Application of the well-known divide-and-
conquer formula (Bernstein, 2005, p. 159) for
matrix inversion yields the following easily verifi-
able matrix identity, given that we can find C′ such
that C′C = I.

(
(ATA)−1AT −(ATA)−1ATBC′

0 C′

)(
A B
0 C

)
= I

(3)

We denote the above equation using a matrix L
as LTX = I. We note that L 6= (XTX)−1X,
but for any document vector d that is representable
as a linear combination of the background doc-
ument set (i.e., columns of X) we have that
Ld = (XTX)−1XTd and in this sense L '
(XTX)−1XT.

We further relax the assumption so that we only
need to find a C′ such that C′C ' I. For this,
we first observe that C is very sparse as it contains
only terms not contained in the first N1 documents
and we notice that very sparse matrices tend to be
approximately orthogonal, hence suggesting that it
should be very easy to find a left-inverse of C. The
following lemma formalizes this intuition:

Lemma: If C is a W × N matrix with M non-
zeros, distributed randomly and uniformly across the
matrix, and all the non-zeros are 1, then DCTC has
an expected value on each non-diagonal value of M

N2

and a diagonal value of 1 if D is the diagonal matrix
whose values are given by ||ci||−2, the square of the
norm of the corresponding column of C.

Proof: We simply observe that if D′ = DCTC,
then the (i, j)th element of D′ is given by

dij =
cTi cj
||ci||2

If i 6= j then the cTi cj is the number of non-zeroes
overlapping in the ith and jth column of C and under
a uniform distribution we expect this to be M2

N3 . Sim-
ilarly, we expect the column norm to be M

N such that
the overall expectation is M

N2 . The diagonal value is
clearly equal to 1.�

As long as C is very sparse, we can use the fol-
lowing approximation, which can be calculated in
O(M) operations, where M is the number of non-
zeroes.

C′ '

 ||c1||
−2 0

. . .
0 ||cN2 ||−2

CT

We call this method L-Solve. The complexity
of calculating a left-inverse by this method is of
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Document
Normalization

Frequency Normalization No Yes

TF 0.31 0.78
Relative 0.23 0.42
TFIDF 0.21 0.63
SQRT 0.28 0.66

Table 1: Effect of Term Frequency and Document Nor-
malization on Top-1 Precision

order O(Na
1 ), being much more efficient than the

eigenvalue methods. However, it is potentially more
error-prone as it requires that a left-inverse of C ex-
ists. On real data this might be violated if we do not
have linear independence of the rows of C, for ex-
ample if W2 < N2 or if we have even one document
which has only words that are also contained in the
first N1 documents and hence there is a row in C
that consists of zeros only. This can be solved by
removing documents from the collection until C is
row-wise linear independent.4

3.3 Normalization

A key factor in the effectiveness of topic-based
methods is the appropriate normalization of the el-
ements of the document matrix X. This is even
more relevant for orthonormal topics as the matrix
inversion procedure can be very sensitive to small
changes in the matrix. In this context, we con-
sider two forms of normalization, term and docu-
ment normalization, which can also be considered
as row/column normalizations of X.

A straightforward approach to normalization is to
normalize each column of X to obtain a matrix as
follows:

X′ =

(
x1

||x1||
. . .

xN

||xN ||

)
If we calculate X′TX′ = Y then we get that the

(i, j)-th element of Y is:

yij =
xT

i xj

||xi||||xj ||
4In the experiments in the next section we discarded 4.2% of

documents at N1 = 1000 and 47% of documents at N1 = 5000
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Figure 1: Effect on Top-1 Precision by various approxi-
mation method

Thus, the diagonal of Y consists of ones only and
due to the Cauchy-Schwarz inequality we have that
|yij | ≤ 1, with the result that the matrix Y is al-
ready close to I. Formally, we can use this to state
a bound on ||X′TX′ − I||F , but in practice it means
that the orthonormalizing matrix has more small or
zero values.

A further option for normalization is to consider
some form of term frequency normalization. For
term frequency normalization, we use TF (tfwn),
Relative ( tfwn

Fw
), TFIDF (tfwn log( N

dfw
)), and SQRT

( tfwn√
Fw

). Here, tfwn is the term frequency of word w
in document n, Fw is the total frequency of word
w in the corpus, and dfw is the number of docu-
ments containing the words w. The first three of
these normalizations have been chosen as they are
widely used in the literature. The SQRT normaliza-
tion has been shown to be effective for explicit topic
methods in previous experiments not reported here.

4 Experiments and Results

For evaluation, we consider a cross-lingual mate re-
trieval task from English/Spanish on the basis of
Wikipedia as aligned corpus. The goal is to, for each
document of a test set, retrieve the aligned document
or mate. For each test document, on the basis of
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Method Top-1 Prec. Top-5 Prec. Top-10 Prec. MRR Time Memory

ONETA L-Solve (N1 = 1000) 0.290 0.501 0.596 0.390 73s 354MB
ONETA L-Solve (N1 = 2000) 0.328 0.531 0.600 0.423 2m18s 508MB
ONETA L-Solve (N1 = 3000) 0.462 0.662 0.716 0.551 4m12s 718MB
ONETA L-Solve (N1 = 4000) 0.599 0.755 0.781 0.667 7m44s 996MB
ONETA L-Solve (N1 = 5000) 0.695 0.817 0.843 0.750 12m28s 1.30GB
ONETA L-Solve (N1 = 6000) 0.773 0.883 0.905 0.824 18m40s 1.69GB
ONETA L-Solve (N1 = 7000) 0.841 0.928 0.937 0.881 26m31s 2.14GB
ONETA L-Solve (N1 = 8000) 0.896 0.961 0.968 0.927 37m39s 2.65GB
ONETA L-Solve (N1 = 9000) 0.924 0.981 0.987 0.950 52m52s 3.22GB
ONETA (No Approximation) 0.929 0.987 0.990 0.956 57m10s 3.42GB

Word Translation 0.751 0.884 0.916 0.812 n/a n/a
ESA (SQRT Normalization) 0.498 0.769 0.835 0.621 72s 284MB
LDA (K=1000) 0.287 0.568 0.659 0.417 4h12m 8.4GB
LSI (K=4000) 0.615 0.756 0.783 0.676 13h51m 19.7GB

ONETA + Word Translation 0.932 0.987 0.993 0.958 n/a n/a

Table 2: Result on large-scale mate-finding studies for English to Spanish matching

the similarity of the query document to all indexed
documents, we compute the value ranki indicating
at which position the mate of the ith document oc-
curs. We use two metrics: Top-k Precision, defined
as the percentage of documents for which the mate is
retrieved among the first k elements, and Minimum
Reciprocal Rank, defined as

MRR =
∑

i∈test

1

ranki

For our experiments, we first extracted a subset
of documents (every 20th) from Wikipedia, filtering
this set down to only those that have aligned pages
in both English and Spanish with a minimum length
of 100 words. This gives us 10,369 aligned doc-
uments in total, which form the background docu-
ment collection B. We split this data into a training
and test set of 9,332 and 1,037 documents, respec-
tively. We then removed all words whose total fre-
quencies were below 50. This resulted in corpus of
6.7 millions words in English and 4.2 million words
in Spanish.

Normalization Methods: In order to investigate
the impact of different normalization methods, we
ran small-scale experiments using the first 500 doc-
uments from our dataset to train ONETA and then
evaluate the resulting models on the mate-finding
task on 100 unseen documents. The results are pre-
sented in Table 1, which shows the Top-1 Precision

for the different normalization methods. We see that
the effect of applying document normalization in
all cases improves the quality of the overall result.
Surprisingly, we do not see the same result for fre-
quency normalization yielding the best result for the
case where we do no normalization at all5 . In the re-
maining experiments we thus employ document nor-
malization and no term frequency normalization.

Approximation Methods: In order to evaluate the
different approximation methods, we experimen-
tally compare 4 different approximation methods:
standard LSI, ON-Eigen (Equation 1), Explicit LSI
(Equation 2), L-Solve (Equation 3) on the same
small-scale corpus. For convenience we plot an ap-
proximation rate which is either K or N1 depending
on method; at K = 500 and N1 = 500, these ap-
proximations become exact. This is shown in Figure
1. We also observe the effects of approximation and
see that the performance increases steadily as we
increase the computational factor. We see that the
orthonormal eigenvector (Equation 1) method and
the L-solve (Equation 3) method are clearly simi-
lar in approximation quality. We see that the explicit
LSI method (Equation 2) and the LSI method both
perform significantly worse for most of the approxi-

5A likely explanation for this is that low frequency terms are
less evenly distributed and the effect of calculating the matrix
inverse magnifies the noise from the low frequency terms
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mation amounts. Explicit LSI is worse than the other
approximations as it first maps the test documents
into a K-dimensional LSI topic space, before map-
ping back into theN -dimensional explicit space. As
expected this performs worse than standard LSI for
all but high values of K as there is significant error
in both mappings. We also see that the (CL-)ESA
baseline, which is very low due to the small number
of documents, is improved upon by even the least ap-
proximation of orthonormalization. In the remain-
ing of this section, we report results using the L-
Solve method as it has a very good performance and
is computationally less expensive than ON-Eigen.

Evaluation and Comparison: We compare
ONETA using the L-Solve method with N1 values
from 1000 to 9000 topics with (CL-)ESA (using
SQRT normalization), LDA (using 1000 topics)
and LSI (using 4000 topics). We choose the largest
topic count for LSI and LDA we could to provide
the best possible comparison. For LSI, the choice of
K was determined on the basis of operating system
memory limits, while for LDA we experimented
with higher values for K without any performance
improvement, likely due to overfitting. We also
stress that for L-Solve ONETA, N1 is not the topic
count but an approximation rate of the mapping. In
all settings we use N topics as with standard ESA,
and so should not be considered directly comparable
to the K values of these methods.

We also compare to a baseline system that re-
lies on word-by-word translation, where we use the
most likely single translation of a word as given by a
phrase table generated by the Moses system (Koehn
et al., 2007) on the EuroParl corpus (Koehn, 2005).
Top 1, Top 5 and Top 10 Precision as well as Mean
Reciprocal Rank are reported in Table 2.

Interestingly, even for a small number of docu-
ments (e.g., N1 = 6000) our results improve both
the word-translation baseline as well as all other
topic models, ESA, LDA and LSI in particular. We
note that at this level the method is still efficiently
computable and calculating the inverse in practice
takes less time than training the Moses system. The
significance for results (N1 ≥ 7000) have been
tested by means of a bootstrap resampling signifi-
cance test, finding out that our results significantly
improve on the translation base line at a 99% level.

Further, we consider a straightforward combina-
tion of our method with the translation system con-
sisting of appending the topic vectors and the trans-
lation frequency vectors, weighted by the relative
average norms of the vectors. We see that in this
case the translations continue to improve the perfor-
mance of the system (albeit not significantly), sug-
gesting a clear potential for this system to help in im-
proving machine translation results. While we have
presented results for English and Spanish here, simi-
lar results were obtained for the German and French
case but are not presented here due to space limita-
tions.

In Table 2 we also include the user time and peak
resident memory of each of these processes, mea-
sured on an 8 Core Intel Xeon 2.50 GHz server.
We do not include the results for Word Translation
as many hours were spent learning a phrase table,
which includes translations for many phrases not in
the test set. We see that the ONETA method signif-
icantly outperforms LSI and LDA in terms of speed
and memory consumption. This is in line with the
theoretical calculations presented earlier where we
argued that inverting the N ×N dense matrix XTX
when W � N is computationally lighter than find-
ing an eigendecomposition of the W × W sparse
matrix XXT. In addition, as we do not multiply
(XTX)−1 and XT, we do not need to allocate a
large W × K matrix in memory as with LSI and
LDA.

The implementations of ESA, ONETA,
LSI and LDA used as well as the data
for the experiments are available at
http://github.com/jmccrae/oneta.

5 Conclusion

We have presented a novel method for cross-lingual
topic modelling, which combines the strengths of
explicit and latent topic models and have demon-
strated its application to cross-lingual document
matching. We have in particular shown that the
method outperforms widely used topic models such
as Explicit Semantic Analysis (ESA), Latent Seman-
tic Indexing (LSI) and Latent Dirichlet Allocation
(LDA). Further, we have shown that it outperforms
a simple baseline relying on word-by-word transla-
tion of the query document into the target language,
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while the induction of the model takes less time
than training the machine translation system from a
parallel corpus. We have also presented an effec-
tive approximation method, i.e. L-Solve, which sig-
nificantly reduces the computational cost associated
with computing the topic models.
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Abstract

Previous approaches for automated essay
scoring (AES) learn a rating model by min-
imizing either the classification, regression,
or pairwise classification loss, depending on
the learning algorithm used. In this paper,
we argue that the current AES systems can
be further improved by taking into account
the agreement between human and machine
raters. To this end, we propose a rank-
based approach that utilizes listwise learn-
ing to rank algorithms for learning a rating
model, where the agreement between the hu-
man and machine raters is directly incorpo-
rated into the loss function. Various linguistic
and statistical features are utilized to facilitate
the learning algorithms. Experiments on the
publicly available English essay dataset, Au-
tomated Student Assessment Prize (ASAP),
show that our proposed approach outperforms
the state-of-the-art algorithms, and achieves
performance comparable to professional hu-
man raters, which suggests the effectiveness
of our proposed method for automated essay
scoring.

1 Introduction

Automated essay scoring utilizes the NLP tech-
niques to automatically rate essays written for given
prompts, namely, essay topics, in an educational set-
ting (Dikli, 2006). Nowadays, AES systems have
been put into practical use in large-scale English
tests and play the role of one human rater. For ex-
ample, before AES systems enter the picture, essays
in the writing assessment of Graduate Record Ex-
amination (GRE) are rated by two human raters. A

third human rater is needed when the difference of
the scores given by the two human raters is larger
than one in the 6-point scale. Currently, GRE essays
are rated by one human rater and one AES system. A
second human rater is required only when there ex-
ists a non-negligible disagreement between the first
human rater and the machine rater. With the help of
an AES system that highly agrees with human raters,
the human workload can be reduced by half at most.
Therefore, the agreement between the AES system
and the human rater is an important indicator of an
AES system’s effectiveness.

There have been efforts in developing AES meth-
ods since the 1960s. Various kinds of algorithms
and models based on NLP and machine learning
techniques have been proposed to implement AES
systems. Existing approaches consider essay rating
as a classification (Larkey, 1998), regression (Attali
and Burstein, 2006) or preference ranking problem
(Yannakoudakis et al., 2011), where the loss func-
tion is the regression loss, classification loss and
pairwise classification loss, respectively. In this pa-
per, we argue that the purpose of AES is to predict
the essay’s rating that human raters would give. If
an AES system frequently disagrees with the first
human rater, a second human rater will be needed in
most cases. Thus, the introduction of the AES sys-
tem does not bring much benefit in reducing the hu-
man workload. It is therefore desirable to minimize
the disagreement between the machine and human
raters. However, this disagreement is not explicitly,
if any, addressed in the current AES methods.

To this end, we propose a rank-based approach
in this paper that utilizes a listwise learning to rank
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algorithm to address automated essay scoring in
the view of directly optimizing the agreement be-
tween human raters and the AES system. Different
from the preference ranking-based approach (Yan-
nakoudakis et al., 2011) that maximizes the pairwise
classification precision (Liu, 2009), our rank-based
approach follows the listwise learning paradigm and
the agreement between the machine and human
raters is directly integrated into the loss function that
is optimized by gradient boost regression trees.

To the best of our knowledge, this work is the first
to apply listwise learning to rank approach for AES,
which aims at the optimization of the agreement be-
tween the human and machine raters. Experimental
results on the publicly available dataset ASAP indi-
cate that our proposed method achieves high agree-
ment with human raters, that is about 0.80, mea-
sured by quadratic weighted Kappa (Brenner and
Kliebsch, 1996). Our proposed method also out-
performs the previous classification, regression and
preference ranking based approaches. As it is widely
accepted that the agreement between human raters,
measured by either quadratic weighted Kappa or
Pearson’s correlation coefficient, ranges from 0.70
to 0.80 (Powers et al., 2000) (Williamson, 2009), our
proposed approach therefore performs as well as hu-
man raters.

The rest of this paper is organized as follows.
In section 2, we introduce the research background
of automated essay scoring and give a brief intro-
duction to learning to rank. In section 3, a de-
tailed description of our listwise learning to rank
approach for automated essay scoring is presented.
Section 4 explains the experimental setup and sec-
tion 5 presents the experimental results. Finally, in
section 6 we conclude this research.

2 Related Work and Background

Firstly, we give a brief description of existing ap-
proaches for AES in section 2.1. Then, an introduc-
tion to learning to rank is presented in section 2.2.

2.1 Existing AES Methods

In general, existing solutions consider AES as a
learning problem. Based on a large number of
predefined objectively measurable features, various
learning techniques, including classification, regres-

sion and preference ranking, are applied (Larkey,
1998) (Yannakoudakis et al., 2011).

Regression-based approach treats feature values
and essay score as independent variables and de-
pendent variable, respectively, and then learns a re-
gression equation by classical regression algorithms,
such as support vector regression (Vapnik et al.,
1996). In 1966, the first AES system, Project Essay
Grader, was developed by Ellis Page upon the re-
quest of the American College Board. The PEG sys-
tem defines a large set of surface text features from
essays, e.g. fourth root of essay length, and uses
regression-based approach to predict the score that
human raters will give. E-rater, developed by Edu-
cational Testing Services (ETS) in America, in late
1990s, is a commercial AES system which has been
put into practical use in the Graduate Record Exam-
ination (GRE) and the Test of English as a Foreign
Language (TOEFL). The E-rater system uses natu-
ral language processing techniques to extract various
kinds of linguistic features of essays, such as lexical,
syntactic, grammar, etc.. Then it predicts the final
score by the stepwise regression method (Attali and
Burstein, 2006).

The classification-based approach sees essay
scores as in-discriminative class labels and uses clas-
sical classification algorithms, e.g. the K-nearest
neighbor (KNN) and the naive Bayesian model, to
predict to which class an essay belongs, where a
class is associated to a numeric rating. Intelligent
Essay Assessor (IEA) (Foltz et al., 1999), developed
also in late 1990s, evaluates essay by measuring se-
mantic features. Each ungraded essay, represented
by a semantic vector generated by Latent Seman-
tic Analysis (LSA) (Dumais, 2005), is rated accord-
ing to the similarity degree with semantic vectors of
graded essays. Bayesian Essay Test Scoring sYs-
tem, developed by Larkey in 2003, is based on naive
Bayesian model. It is the only open-source AES sys-
tem, but has not been put into practical use yet.

Besides classification and regression-based ap-
proaches, (Yannakoudakis et al., 2011) proposed a
preference ranking based approach for learning a
rating model, where a ranking function or model
is learned to construct a global ordering of essays
based on writing quality. It is also the first study
of rank-based approach in automated essay scor-
ing. Although “learning to rank” is not mentioned in
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their paper, the algorithm they used, Ranking SVM
(svm-light package with “-z p“ option), is actually a
pairwise approach. We will give a brief introduction
to learning to rank in section 2.2.

The AES systems can be deployed in two differ-
ent manners, namely prompt-specific and generic. A
prompt-specific rating model is built for a specific
prompt and designed to be the best rating model
for the particular prompt (Williamson, 2009). For
different prompts, the features used, their weights,
and scoring criteria, may be different. It usually re-
quires several hundreds of graded essays for train-
ing, which is time-consuming and usually imprac-
tical in a classroom environment. Generic rating
model is trained from essays across a group of
prompts and designed to be the best fit for pre-
dicting human scores for all prompts. It usually
does not consider prompt-specific features and just
takes writing quality into account. Generic rating
model evaluates essays across all prompts with the
same scoring criteria, which is more consistent with
the human rubric that is usually the same for all
prompts, and therefore has validity-related advan-
tages (Attali et al., 2010).

2.2 Learning to Rank

Learning to rank, also called machine-learned rank-
ing, was originally proposed to settle the ranking
problem in information retrieval (IR) (Liu, 2009). It
is a type of supervised or semi-supervised machine
learning algorithm that automatically construct a
ranking model or function from training data.

Current learning to rank algorithms fall into three
categories, that is, the pointwise, pairwise, listwise
approaches. Pointwise approach takes individual
documents as training examples for learning a scor-
ing function. In fact, both multiple linear regres-
sion and support vector regression (Vapnik et al.,
1996), which have been widely used in automated
essay scoring (Shermis and Burstein, 2002), can be
seen as pointwise approaches. Pairwise approaches
process a pair of documents each time and usu-
ally model ranking as a pairwise classification prob-
lem. Thus, the loss function is always a classifi-
cation loss. Representative algorithms are ranking
SVM (Joachims, 2006), RankNet (Li et al., 2007),
etc.. (Yannakoudakis et al., 2011) apply pairwise
approach, ranking SVM, to automated essay scoring

and achieve better performance than support vec-
tor regression. In listwise approaches, ranking al-
gorithms process a list of documents each time and
the loss function aims at measuring the accordance
between predicted ranking list and the ground truth
label. Representative algorithms are LambdaMart
(Wu et al., 2008), RankCosine (Qin et al., 2008),
etc.. Listwise approach has not yet been used in au-
tomated essay scoring.

3 Automated Essay Scoring by
Maximizing Human-machine Agreement

The main work-flow of our proposed approach is
as follows. Firstly, a set of essays rated by profes-
sional human raters are gathered for the training. A
listwise learning to rank algorithm learns a ranking
model or function using this set of human rated es-
says represented by vectors of the pre-defined fea-
tures. Then the learned ranking model or function
outputs a model score for each essay, including both
rated and unrated essays, from which a global order-
ing of essays is constructed. Finally, the model score
is mapped to a predefined scale of valid ratings, such
as an integer from 1 to 6 in a 6-point scale

In this section, we give a detailed description of
our listwise learning to rank approach for AES in
section 3.1. And features used in our approach are
presented in section 3.2.

3.1 Listwise Learning to Rank for AES

Our choice of the listwise learning to rank algorithm
is due to the fact that it takes the entire set of la-
beled essays associated to a given prompt, instead
of the individual essays or essay pairs as in (Yan-
nakoudakis et al., 2011), as training examples. This
brings us the convenience of easily embedding the
inter-rater agreement into the loss function for the
learning.

In this paper, we deploy LambdaMART (Wu et
al., 2008), a listwise learning to rank algorithm and
then use Random Forests (RF) (Breiman, 2001) for
the bagging of LambdaMART learners. Having
been widely used in information retrieval applica-
tions, LambdaMART is one of the most effective
learning to rank algorithms. For instance, it achieves
the top results in the 2010 Yahoo! Learning to Rank
challenge (Burges, 2010). Random Forests is an
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ensemble learning method for classification and re-
gression.

Previously, the loss function of LambdaMART is
defined as the gradient loss of the retrieval effec-
tiveness, measured by IR evaluation criteria such as
Normalized Discounted Cumulative Gain (nDCG)
(Wu et al., 2008). More specifically, it is a heuristic
method that directly defines λ, the gradient of nDCG
with respect to the model score of each document,
and has been shown to work empirically for partic-
ular loss functions NDCG (Yue and Burges, 2007).
Then, Multiple Additive Regression Trees (MART)
(Friedman, 2000), also called Gradient Boosting De-
cision Tree (GBDT)1, are used to “learn” these gra-
dients iteratively. MART is a class of boosting al-
gorithms that performs gradient descent in function
space, using regression trees. Its output F (x) can be
written as F (x) =

∑
i αifi(x), i = 1, 2, ....N . Each

fi(x) is a function modeled by a single regression
tree and the αi is the corresponding weight. Given
that n trees have been trained, the (n+1)th regression
tree, fi+1(x), models the derivative of the cost with
respect to the current model score at each training
point. Thus, what remains is to compute the deriva-
tive.

As for the automated essay scoring, Lamb-
daMART is not readily available since its loss func-
tion is defined as a function of the gradient of IR
evaluation measures. While such measures focus on
the top-ranked documents that are of great impor-
tance to the IR applications, they are not suitable to
our study. This is because for AES, the rating pre-
diction of all essays equally matters, no matter what
ratings they receive.

It is therefore necessary to re-define the λ. Specif-
ically, we need to define the gradient of the evalua-
tion criteria in AES, e.g. quadratic weighted Kappa
(Brenner and Kliebsch, 1996) and Pearson’s corre-
lation coefficient, with respect to the model score of
each essay. In this paper, we use quadratic weighted
Kappa as the evaluation metric. Kappa (Cohen
and others, 1960) is a statistical metric which is
used to measure inter-rater agreement. Quadratic
weighted Kappa takes the degree of disagreement
between raters into account. This measuring method

1For space reason, we refer the readers to (Friedman, 2000),
(Breiman, 2001) for details of MART, GBDT and Random
Forests.

is widely accepted as a primary evaluation metric for
the AES tasks. For instance, it is the official evalu-
ation metric in the Automated Student Assessment
Prize sponsored by Hewlett Foundation2. We denote
our modified LambdaMART as K-LambdaMART in
which K stands for the Kappa-based gradient func-
tion. Specific steps include the following:

To begin with, we re-define the λi,j for each pair
of essays. For a pair of essays, essay i and essay
j, λi,j is defined as the derivative of RankNet (Li et
al., 2007) loss function multiplied by the Quadratic
weighted Kappa gain after exchanging the two es-
says’ ratings.

λi,j =
−δ

1 + eδ(si−sj)
|∆Kappa| (1)

si and sj are the model scores for essay i and es-
say j, respectively. δ is a parameter which deter-
mines the shape of the sigmoid. Quadratic weighted
Kappa are calculated as follows:

κ = 1 −
∑

i,j ωi,jOi,j∑
i,j ωi,jEi,j

(2)

In matrix O, Oi,j corresponds to the number of
essays that received a score i by human rater and a
score j by the AES system. In matrix ω, ωi,j is the
difference between raters scores (i−j)2

(N−1)2
, where N is

the number of possible ratings. Matrix E is calcu-
lated as the outer product between the two raters vec-
tors of scores, normalized such that E and O have
the same sum.

It is necessary to define the quadratic weighted
Kappa gain, namely ∆Kappa, in an explicit manner.
In each iteration, every essay is ranked by its model
score and then rated according to its ranking posi-
tion. For example, for five essays e1, e2, e3, e4, e5

with actual ratings 5, 4, 3, 2, 1, if the ranking (by
model score) is e3, e4, e1, e5, e2, we assume that
e3, e4, e1, e5, e2 will get ratings of 5, 4, 3, 2, 1, over
which quadratic weighted kappa gain can be calcu-
lated.

After the definition of λi,j for each pair of essays,
it is time to re-define the λ, the gradient for each
essay. Let I denote the set of pairs of indices ⟨i, j⟩,
in which essay i receive a higher rating than essay j.

2http://www.kaggle.com/c/asap-sas
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Set I must include each pair just once. Then, the λ
gradient for each essay, e.g. essay i, is defined as,

λi =
∑

j:⟨i,j⟩∈I

λi,j −
∑

j:⟨j,i⟩∈I

λi,j ; (3)

The rational behind the above formulae is as fol-
lows. For each of the essays in the whole essay col-
lection associated with the same prompt, e.g. essay
i, the gradient λi is incremented by a positive value
λi,j when coming across another essay j that has a
lower rating. The value of λi,j is weighted by the
quadratic weighted Kappa gain after exchanging the
two essays’ ratings. On the contrary, the gradient λi

will be incremented by a negative value −λi,j when
the another essay has a higher rating. As a result, af-
ter each iteration of MART, essays with higher rat-
ing tend to receive a higher model score while essays
with lower rating tend to get a lower model score.

After the training process, the ranking model out-
puts an unscaled model score for each ungraded es-
say. To determine the final rating of each given un-
rated essay, we have to map this unscaled model
score to the predefined scale, such as an integer from
1 to 6 in a 6 point scale. The mapping process
is as follows. To begin with, the learned ranking
model also computes an unscaled model score for
each essay in the training set. As the model is trained
by learning to rank algorithms, essays with higher
model scores tend to get higher actual ratings. In
other words, essays with close model scores tend to
get the same rating. Therefore, we select the k es-
says whose model scores are closest to the given es-
say. We then remove the essays with the very high-
est and lowest model scores within the k. The final
rating is the mean of the remaining k − 2 essays’
ratings. In this paper, k is empirically set to 5, ob-
tained in our preliminary experiments on the ASAP
validation set.

Finally, the Random Forests algorithm is used to
bag K-LambdaMART learners. During the training
process, both features and samples are randomly se-
lected for each K-LambdaMART learner. In the test-
ing phase, it outputs a score for each testing sam-
ple that is the mode of the scores output by each K-
LambdaMART learner.

3.2 Pre-defined Features

We pre-define four types of features that indicate the
essay quality, including lexical, syntactical, gram-
mar and fluency, content and prompt-specific fea-
tures. A brief description of these four classes of
features is given below.
Lexical features: We define 4 subsets of lexical fea-
tures. Each subset of features consists of one or sev-
eral sub features.

– Statistics of word length: The number of words
with length in characters larger than 4, 6, 8, 10, 12,
respectively. The mean and variance of word length
in characters.

– word level: All words in Webster dictionary 3

are divided into 8 levels according to the College
Board Vocabulary Study (Breland et al., 1994). The
higher level a word belongs to, the more sophisti-
cated vocabulary usage it indicates. For example,
words like thoroughfare, percolate are in level 8,
while words with the same meanings, street, filter,
belong to level 1. We count the number of words that
belong to each level and calculate the mean word
level of a given essay.

– Unique words: The number of unique words ap-
peared in each essay, normalized by the essay length
in words.

– Spelling errors: The number of spelling er-
rors detected by the spelling check API provided by
Google 4.
Syntactical features: There are 4 subsets of syntac-
tical features.

– Statistics of sentence length: The number of
sentences with length in words larger than 10, 18,
25, respectively. The mean and variance of sentence
length in words.

– Subclauses: The mean number of subclauses
in each sentence, normalized by sentence length in
words. The mean subclause length in words. Sub-
clauses are labeled as “SBAR” in the parser tree gen-
erated by a commonly used NLP tool, Stanford Core
NLP (Klein and Manning, 2003), which is an inte-
grated suite of natural language processing tools for
English in Java5, including part-of-speech tagging,
parsing, co-reference, etc..

– Sentence level: The sum of the depth of all
nodes in a parser tree generated by Stanford Core
NLP. The height of the parser tree is also incorpo-
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rated into the feature set.
– Mode, preposition, comma: The number of

modes, prepositions and commas in each sen-
tence respectively, normalized by sentence length in
words. Part of speech (POS) is detected by Stanford
Core NLP (Toutanova et al., 2003). The POS tags
of modal verb and preposition are “MD” and “IN”,
respectively.
Grammar and fluency features: There are two
subsets of grammar and fluency features.

– Word bigram and trigram: We evaluate the
grammar and fluency of an essay by calculating
mean tf/TF of word bigrams and trigrams (Briscoe et
al., 2010) (tf is the term frequency in a single essay
and TF is the term frequency in the whole essay col-
lection). We assume a bigram or trigram with high
tf/TF as a grammar error because high tf/TF means
that this kind of bigram or trigram is not commonly
used in the whole essay collection but appears in the
specific essay.

– POS bigram and trigram: Mean tf/TF of POS
bigrams and trigrams. The reason is the same with
word bigrams and trigrams.
Content and prompt-specific features: We define
four subsets of content and prompt-specific features.

– Essay length: Essay length in characters and
words, respectively. The fourth root of essay length
in words is proved to be highly correlated with the
essay score (Shermis and Burstein, 2002).

– Word vector similarity: Mean cosine similarity
of word vectors, in which the element is the term fre-
quency multiplied by inverse document frequency
(tf-idf) (Salton, 1971) of each word. It is calculated
as the weighted mean of all cosine similarities and
the weight is set as the corresponding essay score.

– Semantic vector similarity: Semantic vectors
are generated by Latent Semantic Analysis (Dumais,
2005). The calculation of mean cosine similarity of
semantic vectors is the same with word vector simi-
larity.

– Text coherence: Coherence in writing means
that all the ideas in a paragraph flow smoothly from
one sentence to the next. We only consider nouns
and pronouns in each sentence as they convey more
information. The relevance degree between one sen-
tence and its next in the same paragraph is calcu-
lated as the sum of the similarity degrees between
nouns and pronouns appeared in the two sentences,

normalized by the sum of the two sentences’ length
in words. The similarity degree between words is
set to 1 if coreference exists, indicated by Stanford
Core NLP (Lee et al., 2013). Otherwise, it is mea-
sured by WordNet similarity package (Pedersen et
al., 2004). Finally, text coherence is computed as the
average relevance degree of all pairs of neighbored
sentences.

The rating model is learned off-line using a set of
training essays. For a given target essay, it is the
feature extraction that mainly accounts for the over-
head. In our experiments, it usually costs in average
no more than 10 seconds on a desktop PC with an In-
tel i5-2410M CPU running at 2.3GHZ to extract the
pre-defined features and predict a rating for a given
essay, which is affordable, compared to the cost of a
human rater.

4 Experimental Setup

This section presents our the experimental design,
including the test dataset used, configuration of test-
ing algorithms, feature selection and the evaluation
methodology.

4.1 Test Dataset
The dataset used in our experiments comes from
the Automated Student Assessment Prize (ASAP)1,
which is sponsored by the William and Flora
Hewlett Foundation. Dataset in this competition6

consists of eight essay sets. Each essay set was gen-
erated from a single prompt. The number of es-
says associated with each prompt ranges from 900
to 1800 and the average length of essays in word
in each essay set ranges from 150 to 650. All es-
says were written by students in different grades and
received a resolved score, namely the actual rating,
from professional human raters. Moreover, ASAP
comes with a validation set that can be used for pa-
rameter training. There is no overlap between this
validation set and the test set used in our evaluation.

In AES, the agreement between human-machine
rater is the most important measurement of success.
We use quadratic weighted Kappa to evaluate the
agreement between the ratings given by the AES al-
gorithm and the actual ratings. It is widely accepted

3http://www.merriam-webster.com/
4http://code.google.com/p/google-api-spelling-java/
5http://nlp.stanford.edu/software/corenlp.shtml
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as a reasonable evaluation measure for AES systems
(Williamson, 2009), and is also the official evalu-
ation measure in the ASAP AES competition. It is
calculated on all essay topics. If there are essays that
come from n essay topics, we calculate the agree-
ment degree on each essay topic first and then com-
pute the overall agreement degree in the z-space. In
addition, analysis of variance (ANOVA) (Scheffe,
1999) is conducted to test whether significant differ-
ence exists between the two groups of scores given
by human and machine raters.

4.2 Configuration of Testing Algorithms

Random Forests bagging K-LambdaMart We denote
our proposed method K-LambdaMART where K
stands for the Kappa-based gradient. Our implemen-
tation of RF bagging K-LambdaMART is based on
the open-source RankLib toolkit7, a library of learn-
ing to rank algorithms, in which many popular learn-
ing to rank algorithms have been implemented, e.g.
LambdaMART and RankNet (Li et al., 2007). Em-
pirical settings of parameters obtained by prelimi-
nary experiments on the ASAP validation set are as
follows. For bagging: the number of bags is set to
300, subsampling rate is 0.80 and feature sampling
rate is 0.50. For LambdaMART in each bag: the
number of trees is set to 1, the number of tree leaves
is 100 and other parameters are set to default.

Baseline algorithms We use classical machine
learning algorithms, support vector machine (SVM)
for classification, regression (Vapnik et al., 1996)
and preference ranking (Joachims, 2006), respec-
tively, as the baselines. These three algorithms have
been used for AES in the literature (Briscoe et al.,
2010) (Yannakoudakis et al., 2011). Especially, the
state-of-the-art AES approach proposed by (Yan-
nakoudakis et al., 2011) utilizes the SVM for prefer-
ence ranking, a pairwise learning to rank algorithm,
for training a rating model. The linear kernel is used
in the experiments. The parameter C, which controls
the trade-off between empirical loss and regularizer,
is set by grid search on the ASAP validation set.

The original LambdaMART is not included in the
baseline algorithms as it has been shown that the
performance of LambdaMART is inferior to ranking

6http://www.kaggle.com/c/asap-sas/data

SVM on the same dataset (Chen et al., 2012).

4.3 Feature Selection

Although machine learning approaches usually use
the all features available for training, we try to obtain
an carefully selected feature set that can withstand
the scrutiny of construct validity in assessment de-
velopment (Chen and Zechner, 2011). Specific steps
of feature selection conducted on individual features
are as follows:

To begin with, the importance of the features is
determined by computing each features Pearson cor-
relation coefficient with human raters scores based
on the training set (Chen and Zechner, 2011). Fea-
tures whose absolute Pearson correlation coefficient
with human scores are lower than 0.20 are removed
from the feature set.

Next, we calculate the inter-correlation degrees
between these features. For each pair of features
whose Pearson correlation coefficient larger than
0.90, one of them should be removed. The criteria
for feature removing is as follows. Firstly, at least
one feature in each subset of features should be re-
mained. Satisfying the first prerequisite condition,
the removed one should be linguistically less mean-
ingful than the remaining one.

For prompt-specific rating model, feature selec-
tion is conducted on the essays associated with the
same prompt. For generic rating model, the final
feature set used for training is the intersection of the
8 feature sets for prompt-specific rating model.

For space reason, here we briefly summarize the
feature selection results. Among the lexical features,
word length in characters larger than 8 and 10, num-
ber of words in each of the levels from 3 to 6, num-
ber of unique words, and number of spelling errors
are mostly selected. As for the syntactical features,
sentence length in words larger than 18 and 25, num-
ber of commas, mean clause length and the mean
depth of parser tree are usually selected. Among
the grammar and fluency features, mean tf/TF of
word bigrams and mean tf/TF of POS trigrams are
always selected. For content and prompt-specific
features, essay length in words, word vector and se-
mantic vector similarity with high rated essays, text
coherence are usually selected for training a prompt-

7http://people.cs.umass.edu/ vdang/ranklib.html
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Table 1: Cross-validation on ASAP dataset measured by quadratic weighted Kappa.
Algorithm Prompt-specific ANOVA Generic ANOVA

SVMc (baseline) 0.7302(9.75%) Significant 0.6319(23.93%) Significant
SVMr (baseline) 0.7861(1.95%) Significant 0.7022(11.52%) Significant
SVMp (baseline) 0.7876(1.75%) Significant 0.7669(2.11%) Not significant

RF bagging K-LambdaMART 0.8014 Not significant 0.7831 Not significant

specific rating model. When it comes to the generic
rating model, the prompt-specific features like word
vector similarity and semantic vector similarity, are
removed.

4.4 Evaluation Methodology

We conduct three sets of experiments to evaluate
the effectiveness of our listwise learning to rank ap-
proach for automated essay scoring.

The first set of experiments evaluates our pro-
posed approach under a prompt-specific setting. We
conduct 5-fold cross-validation, where the essays of
each prompt are randomly partitioned into 5 sub-
sets. In each fold, 4 subsets are used for training,
and one is used for testing. To avoid bias introduced
by the random partition, we repeat the 5-fold cross-
validation for 5 times on 5 different random parti-
tions. The overall quadratic weighted Kappa is av-
eraged on all 25 test subsets.

It should be noticed that in random partition of the
whole dataset, the overlap between any two parti-
tions should be kept below 1.5∗1/(#folds)∗100%.
For example, in five-fold cross validation, the over-
lap should be kept below 30%. This is because: ac-
cording to the Dirichlet principle (Courant, 2005),
each subset in one partition overlaps more than 20%
with at least one subset in another partition in five-
fold cross-validation. The tolerance boundary pa-
rameter is then set to 1.5.

The objective of the second set of experiments is
to test the performance of our listwise learning to
rank approach for generic rating models. We also
conduct 5 times 5-fold cross-validation like the first
experiment. In 5-fold cross-validation, essays as-
sociated with the same prompt are randomly parti-
tioned into 5 subsets. In this way, each fold con-
sists of essays across all prompts. The overall per-
formance is averaged on all 25 test subsets.

In the third set of experiments, we evaluate the
quality of the features used in our rating model by

feature ablation test and feature unique test. In abla-
tion test, we evaluate our essay rating model’s per-
formance before and after the removal of a subset
of features from the whole feature set. The per-
formance difference indicates the removed features’
contribution to the rating model’s overall perfor-
mance. In unique test, only a subset of features are
used in the rating model construction and all other
features are removed. The learned rating model’s
performance indicates to which extent the features
are correlated with the actual essay ratings.

5 Experimental Results

5.1 Evaluation Results

Table 1 presents the first set of experimental re-
sults obtained on the ASAP dataset, measured by
quadratic weighted Kappa. In Table 1, RF stands
for random forests. SVMc, SVMr, SVMp are SVM
for classification, regression and preference ranking,
respectively. ANOVA stands for variance analysis,
which aims to test whether significant difference ex-
ists between the scores given by human and ma-
chine raters. The improvement of our RF bagging
K-LambdaMART over each baseline in percentage
is also given.

For prompt-specific rating model, all of these al-
gorithms achieve good performance comparable to
human raters as literatures have revealed that the
agreement between two professional human raters
(measured by statistics for correlation analysis, e.g.
quadratic weighted Kappa) is around 0.70 to 0.80
(Williamson, 2009) (Williamson, 2009). It is clear
that our listwise learning to rank approach, Random
Forests bagging K-LambdaMART, gives the best
performance on the ASAP dataset. The variance
analysis result on the six groups of scores (scores
given by five times of five-fold cross-validation and
the scores provided by human rater), no signifi-
cant difference, suggests the robustness of our pro-
posed approach. On the contrary, although pref-
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erence ranking based approach, SVM for ranking,
and regression based approach, SVM for regression,
give very good result in human-machine agreement,
their variance analysis results indicate that there ex-
ists significant difference between the scores given
by human and machine raters. The result of the first
set of experiments suggests the effectiveness and ro-
bustness of our listwise learning to rank approach in
the building of prompt-specific rating model.

For generic rating model, one can conclude from
Table 1 that RF bagging LambdaMART performs
better than SVM for classification, regression and
preference ranking on the ASAP dataset. The
dataset used in our experiment consists of essays
generated by 8 prompts and each prompt has its own
features. With such a training set, both classifica-
tion and regression based approaches produce not
good results, as it is commonly accepted that rat-
ing model whose performance measured by inter-
rater agreement lower than 0.70 is not applicable
(Williamson, 2009). And the variance analysis re-
sults also reveal that there exists statistically sig-
nificant difference between the scores given by hu-
man and machine raters, indicating a low robustness
of these two baselines. The performance compar-
ison of the generic rating models suggest that the
rank based approaches, SVMp and RF bagging K-
LambdaMART, are more effective than the classifi-
cation based SVMc and the regression based SVMr,
while our proposed RF bagging K-LambdaMART
outperforms the state-of-the-art SVMp. Moreover,
we find that there is no obvious performance dif-
ference when our proposed method is applied to
prompt-specific and generic rating models. Consid-
ering the advantages generic rating models have, the
result of the second set of experiments suggests the
feasibility of building a rating model which is gen-
eralizable across different prompts while performs
slightly inferior to the prompt-specific rating model.

5.2 Feature Analysis
Table 2 gives the results of feature ablation and
unique test. In the table, “All features” stands for
the use of all the features available, apart from the
prompt-specific features that are not applicable to
learning a generic model. In other rows, the feature
subset name stands for the feature subset to be ab-
lated in ablation test and the feature subset to be used

in unique test. Note that we ablate (as in the ablation
test) or use (as in the unique test) a subset of features
such as the different statistics of word length as a
whole since features belonging to the same subset
are usually highly correlated.

Among the lexical features, the two feature sub-
sets, word level and statistics of word length, are
highly correlated with essay score in both prompt-
specific and generic rating models. This observation
was expected since word usage is an important no-
tion of writing quality, regardless of essay topics.

In the syntactical features, the feature subset, sen-
tence level, measured by the height and depth of
the parser tree, correlates the most with essay score.
One can infer that long sentences with nested sub-
clauses tend to improve the final ratings.

All grammar and fluency features achieve perfor-
mance around 0.60 in feature unique test for prompt-
specific rating model. What is more, during fea-
ture selection, we find that the Pearson’s correlation
coefficient between the feature values and the final
ratings in each essay prompt ranges from -0.20 to -
0.60, which suggests that our method to estimate the
number of grammar errors is applicable because it
is widely accepted that in the evaluation of student
essays, essays with more grammar errors tend to re-
ceive lower ratings.

Among the content and prompt-specific features,
essay length and word vector similarity features give
good results in feature unique test. The fourth root of
essay length in words has been proved to be a highly
correlated feature by many works on AES (Shermis
and Burstein, 2002). Word vector similarity feature
measures prompt-specific vocabulary usage, which
is also important to essay evaluation.

In ablation test, there is no significant perfor-
mance decrease no matter what feature subset is re-
moved. It seems that each feature subset contributes
little to the overall performance and therefore can be
removed. However, the result of feature unique test
suggests that most features used in our rating model
are in fact highly correlated with the writing quality.

6 Conclusions and Future Work

We have proposed a listwise learning to rank ap-
proach to automated essay scoring (AES) by di-
rectly incorporating the human-machine agreement
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Table 2: Results of feature ablation and unique test
Feature subset Prompt-specific Generic
All Features 0.8014 0.7831

Ablation Unique Ablation Unique
Lexical features

Statistics of word length 0.7763 0.7512 0.7801 0.7350
Word level 0.7834 0.7582 0.7779 0.7306

Unique words 0.7766 0.6737 0.7692 0.6786
Spelling errors 0.7724 0.6863 0.7730 0.6742

Syntactical features
Statistics of sentence length 0.7856 0.6410 0.7684 0.7025

Subclauses 0.7862 0.5473 0.7813 0.5050
Sentence level 0.7749 0.7046 0.7796 0.6955

Mode, preposition, comma 0.7847 0.5860 0.7807 0.5606
Grammar and fluency features

Word bigrams and trigrams 0.7813 0.6017 0.7824 0.4395
POS bigrams and trigrams 0.7844 0.6410 0.7786 0.6022

Content and prompt-specific features
Essay length 0.7930 0.7502 0.7736 0.7390

Word vector similarity 0.7658 0.7001 – –
Semantic vector similarity 0.7924 0.5683 – –

Text coherence 0.7863 0.6947 0.7798 0.6367

into the loss function. Experiments on the public En-
glish dataset ASAP show that our approach outper-
forms the state-of-the-art algorithms in both prompt-
specific and generic rating settings. Moreover, it is
widely accepted that the agreement between profes-
sional human raters ranges from 0.70 to 0.80, mea-
sured by quadratic weighted Kappa or Pearson’s cor-
relation (Powers et al., 2000) (Williamson, 2009). In
the experiments, our approach achieves a quadratic
weighted Kappa around 0.80 for prompt-specific rat-
ing and around 0.78 for generic rating, suggesting its
potential in automated essay scoring.

Most existing research on AES focus on train-
ing a prompt-specific rating model. While such ap-
proaches have the advantage of providing a satisfac-
tory rating accuracy for essays written for a specific
topic, they also suffer from validity and feasibility
problem as a significant amount of training data,
namely essays with human ratings, are required for
every given essay topic (Attali et al., 2010). It
is therefore appealing to develop an approach that
learns a generic model with acceptable rating accu-
racy, since it has both validity-related and logistical

advantages. In our future work, we plan to continue
the research on generic rating model. Because of
the diversification of writing features of essays asso-
ciated with different prompts, a viable approach is to
explore more generic writing features that can well
reflect the writing quality.
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Abstract

Predicting the success of literary works is a
curious question among publishers and aspir-
ing writers alike. We examine the quantitative
connection, if any, between writing style and
successful literature. Based on novels over
several different genres, we probe the predic-
tive power of statistical stylometry in discrim-
inating successful literary works, and identify
characteristic stylistic elements that are more
prominent in successful writings. Our study
reports for the first time that statistical stylom-
etry can be surprisingly effective in discrim-
inating highly successful literature from less
successful counterpart, achieving accuracy up
to 84%. Closer analyses lead to several new
insights into characteristics of the writing style
in successful literature, including findings that
are contrary to the conventional wisdom with
respect to good writing style and readability.

1 Introduction

Predicting the success of novels is a curious ques-
tion among publishers, professional book reviewers,
aspiring and even expert writers alike. There are po-
tentially many influencing factors, some of which
concern the intrinsic content and quality of the book,
such as interestingness, novelty, style of writing, and
engaging storyline, but external factors such as so-
cial context and even luck can play a role. As a re-
sult, recognizing successful literary work is a hard
task even for experts working in the publication in-
dustries. Indeed, even some of the best sellers and
award winners can go through several rejections be-

fore they are picked up by a publisher.1

Perhaps due to its obvious complexity of the prob-
lem, there has been little previous work that attempts
to build statistical models that predict the success of
literary works based on their intrinsic content and
quality. Some previous studies do touch on the no-
tion of stylistic aspects in successful literature, e.g.,
extensive studies in Literature discuss literary styles
of significant authors (e.g., Ellegård (1962), Mc-
Gann (1998)), while others consider content char-
acteristics such as plots, characteristics of charac-
ters, action, emotion, genre, cast, of the best-selling
novels and blockbuster movies (e.g., Harvey (1953),
Hall (2012), Yun (2011)).

All these studies however, are qualitative in na-
ture, as they rely on the knowledge and insights of
human experts on literature. To our knowledge, no
prior work has undertaken a systematic quantitative
investigation on the overarching characterization of
the writing style in successful literature. In consid-
eration of widely different styles of authorship (e.g.,
Escalante et al. (2011), Peng et al. (2003), Argamon
et al. (2003)), it is not even readily clear whether
there might be common stylistic elements that help
discriminating highly successful ones from less suc-
cessful counterpart.

In this work, we present the first study that in-
vestigates this unstudied and unexpected connection
between stylistic elements and the literary success.
The key findings of our research reveal that there
exists distinct linguistic patterns shared among suc-

1E.g., Paul Harding’s “Tinkers” that won 2010 Pulitzer Prize
for Fiction and J. K. Rowling’s “Harry Potter and the Philoso-
pher’s Stone” that sold over 450 million copies.
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cessful literature, at least within the same genre,
making it possible to build a model with surprisingly
high accuracy (up to 84%) in predicting the success
of a novel. This result is surprising for two reasons.
First, we tackle the hard task of predicting the suc-
cess of novels written by previously unseen authors,
avoiding incidental learning of authorship signature,
since previous research demonstrated that one can
achieve very high accuracy in authorship attribution
(as high as 96% in some experimental setup) (e.g.,
Raghavan et al. (2010), Feng et al. (2012)). Sec-
ond, we aim to discriminate highly successful nov-
els from less successful, but nonetheless published
books written by professional writers, which are un-
doubtedly of higher quality than average writings.
It is important to note that the task we tackle here
is much harder than discriminating highly success-
ful works from those that have not even passed the
scrutinizing eyes of publishers.

In order to quantify the success of literary works,
and to obtain corresponding gold standard labels,
one needs to first define “success”. For practi-
cal convenience, we largely rely on the download
counts available at Project Gutenberg as a surrogate
to quantify the success of novels. For a small num-
ber of novels however, we also consider award re-
cipients (e.g., Pulitzer, Nobel), and Amazon’s sales
records to define a novel’s success. We also ex-
tend our empirical study to movie scripts, where we
quantify the success of movies based on the aver-
age review scores at imdb.com. We leave analysis
based on other measures of literary success as future
research.

In this study, we do not attempt to separate out
success based on literary quality (award winners)
from success based on popularity (commercial hit,
often in spite of bad literary quality), mainly because
it is not practically easy to determine whether the
high download counts are due to only one reason or
the other. We expect that in many cases, the two
different aspects of success are likely to coincide,
however. In the case of the corpus obtained from
Project Gutenberg, where most of our experiments
are conducted, we expect that the download counts
are more indicative of success based on the literary
quality (which then may have resulted in popularity)
rather than popularity without quality.

We examine several genres in fiction and movie

GENRE #BOOKS τ− τ+

Adventure 409 17 100
Detective / Mystery 374 25 90
Fiction 1148 7 125
Historical Fiction 374 25 115
Love Stories 342 16 85
Poetry 580 9 70
Science Fiction 902 30 100
Short Stories 1117 9 224

Table 1: # of books available per genre at Gutenberg with
download thresholds used to define more successful (≥
τ+) and less successful (≤ τ−) classes.

scripts, e.g., adventure stories, mystery, fiction, his-
torical fiction, sci-fi, short stories, as well as poetry,
and present systematic analyses based on lexical and
syntactic features which have been known to be ef-
fective in a variety of NLP tasks ranging from au-
thorship attribution (e.g., Raghavan et al. (2010)),
genre detection (e.g., Rayson et al. (2001), Douglas
and Broussard (2000)), gender identification (e.g.,
Sarawgi et al. (2011)) and native language detection
(e.g., Wong and Dras (2011)).

Our empirical results demonstrate that (1) statis-
tical stylometry can be surprisingly effective in dis-
criminating successful literature, achieving accuracy
up to 84%, (2) some elements of successful styles
are genre-dependent while others are more univer-
sal. In addition, this research results in (3) find-
ings that are somewhat contrary to the conventional
wisdom with respect to the connection between suc-
cessful writing styles and readability, (4) interesting
correlations between sentiment / connotation and the
literary success, and finally, (5) comparative insights
between fiction and nonfiction with respect to the
successful writing style.

2 Dataset Construction

For our experiments, we procure novels from project
Gutenberg2. Project Gutenberg houses over 40, 000
books available for free download in electronic for-
mat and provides a catalog containing brief descrip-
tions (title, author, genre, language, download count,
etc.) of these books. We experiment with genres in
Table 1, which have sufficient number of books al-
lowing us to construct reasonably sized datasets.

We use the download counts in Gutenberg-catalog
2http://www.gutenberg.org/
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Figure 1: Differences in POS tag distribution between more successful and less successful books across different
genres. Negative (positive) value indicates higher percentage in less (more) successful class.

as a surrogate to measure the degree of success of
novels. For each genre, we determine a lower bound
(τ+) and an upper bound (τ−) of download counts as
shown in Table 1 to categorize the available books
as more successful and less successful respectively.
These thresholds are set to obtain at least 50 books
for each class, and for each genre. To balance the
data, for each genre, we construct a dataset of 100
novels (50 per class).

We make sure that no single author has more than
2 books in the resulting dataset, and in the major-
ity of the cases, only one book has been taken from
each author.3 Furthermore, we make sure that the
books from the same author do not show up in both
training and test data. These constraints make sure
that we learn general linguistic patterns of success-
ful novels, rather than a particular writing style of a
few successful authors.

3 Methodology

In what follows, we describe five different aspects of
linguistic styles we measure quantitatively. The first
three correspond to the features that have been fre-
quently utilized in previous studies in related tasks,

3The complete list of novels used for each genre in our
dataset is available at http://www.cs.stonybrook.
edu/˜ychoi/successwithstyle/

e.g., genre detection (e.g., Kessler et al. (1997))
and authorship attribution (e.g., Stamatatos (2009)),
while the last two are newly explored in this work.

I. Lexical Choices: unigrams and bigrams.

II. Distribution of Word Categories: Many pre-
vious studies have shown that the distribution of
part-of-speech (POS) tags alone can reveal surpris-
ing insights on genre and authorship (e.g., Koppel
and Schler (2003)), hence we examine their distri-
butions with respect to the success of literary works.

III. Distribution of Grammar Rules: Recent
studies reported that features based on CFG rules are
helpful in authorship attribution (e.g., Raghavan et
al. (2010), Feng et al. (2012)). We experiment with
four different encodings of production rules:

• Γ: lexicalized production rules (all production
rules, including those with terminals)

• ΓG: lexicalized production rules prepended
with the grandparent node.

• γ: unlexicalized production rules (all produc-
tion rules except those with terminals).

• γG: unlexicalized production rules prepended
with the grandparent node.
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FEATURE
GENRE Avg Avg w/o

HistoryAdven Myster Fiction Histor Love Poetr Sci-fi Short
POS 74.0 63.9 72.0 47.0 65.9 63.0 63.0 67.0 64.5 66.9

Unigram 84.0 73.0 75.0 60.0 82.0 71.0 61.0 57.0 70.3 71.8
Bigram 81.0 73.0 75.0 51.0 72.0 70.0 59.0 57.0 67.2 69.5

Γ 73.0 71.0 75.0 54.0 78.0 74.0 71.0 77.0 71.6 74.1
ΓG 75.0 74.0 75.0 58.0 81.0 72.0 76.0 77.0 73.5 75.7
γ 72.0 70.0 65.0 53.0 70.0 66.0 64.0 71 66.3 68.2
γG 72.0 69.0 74.0 55.0 75.0 69.0 67.0 73.0 69.2 71.2

Γ+Unigram 79.0 73.0 73.0 59.0 80.0 73.0 71.0 73.0 72.6 74.5
ΓG+Unigram 80.0 74.0 74.0 56.0 82.0 72.0 73.0 72.0 72.8 75.2
γ+Unigram 82.0 72.0 73.0 56.0 81.0 69.0 62.0 59.0 69.2 71.1
γG+Unigram 80.0 73.0 74.0 58.0 82.0 70.0 65.0 58.0 70 71.7

PHR 74.0 65.0 65.0 56.0 64.0 62.0 69.0 71.0 65.7 67.1
PHR+CLS 75.0 69.0 64.0 61.0 59.0 62.0 69.0 67.0 65.7 66.4

PHR+Unigram 80.0 74.0 71.0 56.0 79.0 73.0 67.0 66.0 70.7 72.8
PHR+CLS+Unigram 80.0 75.0 71.0 56.0 79.0 73.0 66.0 66.0 70.7 72.8

Table 2: Classification results in accuracy (%).

IV. Distribution of Constituents: PCFG gram-
mar rules are overly specific to draw a big picture
on the distribution of large, recursive syntactic units.
We hypothesize that the distribution of constituents
can serve this purpose, and that it will reveal inter-
esting and more interpretable insights into writing
styles in highly successful literature. Despite its rel-
ative simplicity, we are not aware of previous work
that looks at the distribution of constituents directly.
In particular, we are interested in examining the dis-
tribution of phrasal and/or clausal tags as follows:
(i) Phrasal tag percent (PHR) - percentage distribu-
tion of phrasal tags.4 (ii) Clausal tag percent (CLS)
- percentage distribution of clausal tags.

V. Distribution of Sentiment and Connotation:
Finally, we examine whether the distribution of sen-
timent and connotation words, and their polarity, has
any correlation with respect to the success of literary
works. We are not aware of any previous work that
looks into this connection.

4 Prediction Performance

We use LibLinear SVM (Fan et al., 2008) with
L2 tuned over training data, and all performance is
based on 5-fold cross validation. We take 1000 sen-
tences from the beginning of each book. POS fea-
tures are encoded as unit normalized frequency and
all other features are encoded as tf-idf.5

4The percentage of any phrasal tag is the count of occurrence
of that tag over the sum of counts of all phrasal tags.

5POS tags are obtained using the Stanford POS tagger
(Toutanova and Manning, 2000), and parse trees are based on
the Stanford parser (Klein and Manning, 2003).

Prediction Results Table 2 shows the classifica-
tion results. The best performance reaches as high
as 84% in accuracy. In fact, in all genres except
for history, the best performance is at least 74%,
if not higher. Another notable observation is that
even in the poetry genre, which is not prose, the ac-
curacy gets as high as 74%. This level of perfor-
mance is not entirely anticipated, given that (1) the
test data consists of books written only by previously
unseen authors, and (2) each author has widely dif-
ferent writing style, and (3) we do not have training
data at scale, and (4) we aim to tackle the hard task
of discriminating highly successful ones from less
successful, but nonetheless successful ones, as all of
them were, after all, good enough to be published.6

Prediction with Varying Thresholds of Down-
load Counts Before we proceed to comprehensive
analysis of writing style that are prominent in more
successful literature (§5), in Table 3, we present how
the prediction accuracy varies as we adjust the defi-
nition of more-successful and less-successful litera-
ture, by gradually increasing (decreasing) the thresh-
old τ− (τ+). As we reduce the gap between τ− and
τ+, the performance decreases, which shows that in-
deed there are notable statistical differences in lin-
guistic patterns between novels with high and low
download counts, and the stylistic difference mono-
tonically increases (thereby higher prediction accu-
racy) as we increase the gap between two classes.

6In our pilot study, we also experimented with the binary
classification task of discriminating highly successful ones from
those that are not even published (unpublished online novels),
and it was a much easier task as expected.
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τ− τ+ ACCURACY

17 100 84.0
25 90 78.4
35 80 77.6
45 70 76.4
55 60 73.5

Table 3: Accuracy (%) with varying thresholds of down-
load counts for ADVENTURE with unigram features.

This is particularly interesting as the size of training
data set is actually monotonically decreasing (mak-
ing it harder to achieve high accuracy) while we in-
crease the separation between τ− and τ+.

5 Analysis of Successful Writing Styles

5.1 Insights Based on Lexical Choices

It is apparent from Table 2 that unigram features
yield curiously high performance in many genres.
We therefore examine discriminative unigrams for
ADVENTURE, shown in Table 4. Interestingly, less
successful books rely on verbs that are explicitly de-
scriptive of actions and emotions (e.g., “wanted”,
“took”, “promised”, “cried”, “cheered”, etc.), while
more successful books favor verbs that describe
thought-processing (e.g., “recognized”, “remem-
bered”), and verbs that serve the purpose of quotes
and reports (e.g,. “say”). Also, more successful
books use discourse connectives and prepositions
more frequently, while less successful books rely
more on topical words that could be almost cliché,
e.g., “love”, typical locations, and involve more ex-
treme (e.g., “breathless”) and negative words (e.g.,
“risk”).

5.2 Distribution of Sentiment & Connotation
We also determine the distribution of sentiment and
connotation words separately for each class (Table
5) to check if there exists a connection with respect
to successful writing styles.7 We first compare dis-
tribution of sentiment and connotation for the entire
words. As can be seen in Table 5 – Top, there are
not notable differences. However, when we compare
distribution only with respect to discriminative uni-
grams only (i.e., features with non-zero weights), as

7We use MPQA subjectivity lexicon (Wilson et al., 2005)
and connotation lexicon (Feng et al., 2013) for determining sen-
timent and connotation of words respectively.

Less Successful
CATEGORY UNIGRAMS

Negative never, risk, worse, slaves, hard,
murdered, bruised, heavy, prison,

Body Parts face, arm, body, skins

Location room, beach, bay, hills,
avenue, boat, door

Emotional / want, went, took, promise,
Action Verbs cry, shout, jump, glare, urge

Extreme Words never, very, breathless, sacred
slightest, absolutely, perfectly

Love Related desires, affairs
More Successful

CATEGORY UNIGRAMS

Negation not
Report / Quote said, words, says
Self Reference I, me , my

Connectives
and, which, though, that,
as, after, but, where, what,
whom, since, whenever

Prepositions up, into, out, after, in, within
Thinking Verbs recognized, remembered

Table 4: Discriminative unigrams for ADVENTURE.

shown in Table 5 – Bottom, we find substantial dif-
ferences in all genres. In particular, discriminative
unigrams that characterize less successful novels in-
volve significantly more sentiment-laden words.

5.3 Distribution of Word Categories
Summarized analysis of POS distribution across all
genres is reported in Table 6. It can be seen that
prepositions, nouns, pronouns, determiners and ad-
jectives are predictive of highly successful books
whereas less successful books are characterized by
higher percentage of verbs, adverbs, and foreign
words. Per genre distributions of POS tags are vi-
sualized in Figure 1. Interestingly, some POS tags
show almost universal patterns (e.g., prepositions
(IN), NNP, WP, VB), while others are more genre-
specific.

In Relation to Journalism Style The work of
Douglas and Broussard (2000) reveals that informa-
tive writing (journalism) involves increased use of
nouns, prepositions, determiners and coordinating
conjunctions whereas imaginative writing (novels)
involves more use of verbs and adverbs, as has been
also confirmed by Rayson et al. (2001). Compar-
ing their findings with Table 6, we find that highly
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Adven Myster Fiction Histor Love Poetr Sci-fi Short
- + - + - + - + - + - + - + - +

+ve S 4.7 4.9 4.8 4.6 5.6 4.9 5.0 5.1 5.5 5.1 6.3 5.7 4.1 3.7 4.7 4.8
-ve S 4.0 4.0 4.0 4.0 4.3 4.2 4.2 4.2 4.1 4.2 4.3 4.3 2.9 2.9 3.8 4.0
Tot S 8.7 8.9 8.9 8.7 9.9 9.0 9.2 9.3 9.6 9.3 10.6 9.9 7.0 6.7 8.5 8.9
+ve C 22.3 22.5 22.3 22.5 23.7 23.0 23.0 23.2 23.34 23.3 23.8 22.9 21.2 20.6 22.6 22.7
-ve C 19.4 19.6 19.8 19.8 20.3 19.5 19.2 19.4 20.2 20.4 17.7 17.4 16.6 16.7 18.3 18.9

Total C 41.7 42.1 42.1 42.3 44.0 42.5 42.3 42.6 43.5 43.7 41.5 40.3 37.9 37.3 41.0 41.6

+ve S 3.5 1.8 4.1 2.0 3.7 1.4 3.0 1.0 3.4 1.3 3.9 2.0 7.3 5.9 5.1 2.7
-ve S 5.5 3.4 6.3 3.6 5.5 2.9 4.7 1.9 5.1 2.6 5.8 3.3 9.0 8.0 7.3 4.8

Total S 9.1 5.2 10.4 5.6 9.2 4.3 7.7 3.0 8.5 3.9 9.7 5.2 16.3 13.9 12.4 7.5
+ve C 12.9 8.9 14.3 9.8 12.9 8.5 11.5 6.2 12.0 7.7 14.0 9.6 19.6 19.2 16.5 11.9
-ve C 14.1 9.8 15.2 10.9 13.7 9.9 12.4 7.0 12.9 8.5 14.3 10.3 20.0 19.7 17.0 13.3

Total C 27.0 18.7 29.5 20.7 26.6 18.4 23.9 13.2 24.87 16.1 28.3 19.8 39.7 38.9 33.5 25.2

Table 5: Top: Distribution of sentiment (connotation) among entire unigrams. Bottom: distribution of sentiment
(connotation) among discriminative unigrams. ’S’ and ’C’ stand for sentiment and connotation respectively.

More Successful
CATEGORY SUB-CATEGORY DIFF

Prepositions General 0.00592
Determiners General 0.00226

Nouns Plural 0.00189
Proper (Singular) 0.00016

Coord. conj. General 0.00118
Numbers General 0.00102

Pronouns
Posesseive 0.00081
General WH 0.00042
Possessive WH 5.4E-05

Adjectives General 0.00102
Superlative 0.00011

Less Successful
CATEGORY SUB-CATEGORY DIFF

Adverbs General -0.00272
General WH -0.00028

Verbs

Base -0.00239
Non-3rd sing. present -0.00084
Past tense -0.00041
Past participle -0.00039
3rd person sing. present -0.00036
Modal -0.00091

Foreign General -0.00067
Symbols General -0.00018
Interjections General -0.00016

Table 6: Top discriminative POS tags.

successful books tend to bear closer resemblance to
informative articles.

5.4 Distribution of Constituents
It can be seen in Table 2 that deep syntactic fea-
tures expressed in terms of different encodings of
production rules consistently yield good perfor-

mance across almost all genres. Production rules
are overly specific to gain more generalized, in-
terpretable, high-level insights however (Feng et
al., 2012). Therefore, similarly as word categories
(POS), we consider the categories of nonterminal
nodes of the parse trees, in particular, phrasal and
clausal tags, as they represent the gist of constituent
structure that goes beyond shallow syntactic infor-
mation represented by POS.

Table 8 shows how the distribution of phrasal and
clausal tags differ for successful books when com-
puted over all genres. Positive (negative) DIFF val-
ues indicate that the corresponding tags are favored
in more successful (less successful) books when
counted across all genres. We also report the num-
ber of genres (#Genres) in which the individual dif-
ference is positive / negative.

In terms of phrasal tags, we find that more suc-
cessful books are composed of higher percentage of
PP, NP and wh-noun phrases (WHNP), whereas less
successful books are composed of higher percentage
of VP, adverb phrases (ADVP), interjections (INTJ)
and fragments (FRAG). Notice that this observation
is inline with our earlier findings with respect to the
distribution of POS.

In regard to clausal tags, more successful books
involve more clausal tags that are necessary for com-
plex sentence structure and inverted sentence struc-
ture (SBAR, SBARQ and SQ) whereas less success-
ful books rely more on simple sentence structure (S).
Figure 2 shows the visualization of the distribution
of these phrasal and clausal tags.

It is also worth to mention that phrasal and clausal
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Figure 2: Difference between phrasal and clausal tag percentage distributions of more successful and less successful
books across different genres. Specifically, we plot D−–D+, where D+ is the phrasal tag distribution (in %) of more
successful books and D− is the phrasal tag distribution (in %) of less successful books.

READABILITY INDICES More Succ. Less Succ.
FOG index 9.88 9.80

Flesch index 87.48 87.64

Table 7: Readability: Lower FOG and higher Flesch in-
dicate higher readability (numbers in Boldface).

tags alone can yield classification performance that
are generally better than that of POS tags, in spite of
the very small feature set (26 tags in total). In fact,
constituent tags deliver the best performance in case
of historical fiction genre (Table 2).

Connection to Readability Pitler and Nenkova
(2008) provide comprehensive insights into assess-
ment of readability. In their work, among the most
discriminating features characterizing text with bet-
ter readability is increased use of verb phrases (VP).
Interestingly, contrary to the conventional wisdom –
that readability is of desirable quality of good writ-
ings – our findings in Table 2 suggest that the in-
creased use of VP correlates strongly with the writ-
ing style of the opposite spectrum of highly success-
ful novels.

As a secondary way of probing the connection be-

tween readability and the writing style of successful
literature, we also compute two different readabil-
ity measures that have been used widely in prior
literature (e.g., Sierra et al. (1992), Blumenstock
(2008), Ali et al. (2010)): (i) Flesch reading ease
score (Flesch, 1948), (ii) Gunning FOG index (Gun-
ning, 1968). The overall weighted average readabil-
ity scores are reported in Table 7. Again, we find that
less successful novels have higher readability com-
pared to more successful ones.

The work of Sawyer et al. (2008) provides yet
another interesting contrasting point, where the au-
thors found that award winning academic papers in
marketing journals correlate strongly with increased
readability, characterized by higher percentage of
simple sentences. We conjecture that this opposite
trend is likely to be due to difference between fic-
tion and nonfiction, leaving further investigation as
future research.

In sum, our analysis reveals an intriguing and
unexpected observation on the connection between
readability and the literary success — that they cor-
relate into the opposite directions. Surely our find-
ings only demonstrate correlation, not to be con-
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Phrasal + − DIFF #+
Gen/#−Gen

ADJP 0.030 0.031 -6E-4 5/3
ADJP 0.030 0.031 -6E-4 5/3
ADVP 0.052 0.054 -0.002 2/6
CONJP 3E-4 3E-4 2E-5 5/3
FRAG 0.008 0.008 -1E-4 2/6
LST 2E-4 1E-4 5E-5 6/2
NAC 9E-6 6E-6 3E-6 5/3
NP 0.459 0.453 0.005 6/2
NX 1E-4 1E-4 -4E-7 3/5
PP 0.122 0.117 0.005 7/1
PRN 0.005 0.004 2E-4 4/4
PRT 0.010 0.010 -5E-4 3/5
QP 0.001 0.001 7E-5 6/2
RRC 8E-5 8E-5 6E-6 6/2
UCP 8E-4 7E-4 1E-4 8/0
VP 0.292 0.300 -0.008 1/7
WHADJP 2E-4 2E-4 -5E-5 1/7
WHAVP 0 0 0 -
WHNP 0.013 0.012 0.001 8/0
WHPP 0.001 9E-4 1E-4 6/2
X 0.001 0.001 -4E-5 4/4
Clausal + − DIFF +

Gen/#−Gen

SBAR 0.166 0.164 0.002 4/4
SQ 0.020 0.018 0.002 7/1
SBARQ 0.014 0.013 0.001 7/1
SINV 0.018 0.018 -6E-5 5/3
S 0.781 0.785 -0.004 3/5

Table 8: Overall Phrasal / Clausal Tag Distribution and
analysis. All values are rounded to [3-5] decimal places.

fused as causation, between readability and literary
success. We conjecture that the conceptual complex-
ity of highly successful literary work might require
syntactic complexity that goes against readability.

6 Literature beyond Project Gutenberg
One might wonder how the prediction algorithms
trained on the dataset based on Project Gutenberg
might perform on books not included at Guten-
berg. This section attempts to address such a ques-
tion. Due to the limited availability of electronically
available books that are free of charge however, we
could not procure more than a handful of books.8

6.1 Highly Successful Books
First, we apply the classifiers trained on the Project
Gutenberg dataset (all genres merged) on a few ex-
tremely successful novels (Pulitzer prize, National
Award recipients, etc). Table 9 shows the results of

8We report our prediction results on all books beyond
Project Gutenberg of which we managed to get electronic
copies, i.e., the results in Table 9 are not cherry-picked.

MORE SUCCESSFUL

BOOK (Q) PDKL UPDKL Su SΓ∗

“Don Quixote” 0.139 0.152 + +
– Miguel De Cervantes

“Other Voices, Other Rooms” 0.014 0.010 + +
– Truman Capote

“The Fixer” 0.013 0.015 + +
– Bernard Malamud

“Robinson Crusoe” 0.042 0.051 + +
– Daniel Defoe

“The old man and the sea” 0.065 0.060 + +
– Ernest Hemingway

“A Tale of Two Cities” 0.027 0.030 + +
– Charles Dickens

“Independence Day” 0.031 0.026 + +
– Richard Ford

“Rabbit At Rest” 0.047 0.048 + +
– John Updike

“American Pastoral” 0.039 0.043 + +
– Philip Roth

“Dr Jackel and Mr. Hyde” 0.036 0.037 + +
– Robert Stevenson

LESS SUCCESSFUL

“The lost symbol” 0.046 0.042 - -
– Dan Brown

“The magic barrel” 0.0288 0.0284 + -
– Bernard Malamud

“Two Soldiers” 0.130 0.117 - +
– William Faulkner

“My life as a man” 0.046 0.052 - +
– Philip Roth

Table 9: Prediction on books beyond Gutenberg. Shaded
entries indicate incorrect predictions.

two classification options: (1) KL-divergence based,
and (2) unigram-feature based.

Although KL-divergence based prediction was
not part of the classifiers that we explored in the pre-
vious sections, we include it here mainly to provide
better insights as to which well-known books share
closer structural similarity to either more or less suc-
cessful writing style. As a probability model, we use
the distributions of phrasal tags, as those can give us
insights on deep syntactic structure while suppress-
ing potential noises due to topical variances. Table 9
shows symmetrised KL-divergence between each of
the previously unseen novels and the collection of
books from Gutenberg corresponding to more suc-
cessful (less successful) labels. For prediction, the
label with smaller KL is chosen.

Based only on the distribution of 26 phrasal tags,
the KL divergence classifier is able to make correct
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predictions on 7 out of 10 books, a surprisingly high
performance based on mere 26 features. Of course,
considering only the distribution of phrasal tags is
significantly less informed than considering numer-
ous other features that have shown substantially bet-
ter performance, e.g., unigrams and CFG rewrite
rules. Therefore, we also present the SVM classi-
fier trained on unigram features. It turns out uni-
gram features are powerful enough to make correct
predictions for all ten books in Table 9.

Hemingway and Minimalism It is good to think
about where and why KL-divergence-based ap-
proach fails. In fact, when we included Heming-
way’s The Old Man and the Sea into the test set, we
were expecting some level of confusions when rely-
ing only on high-level syntactic structure, as Hem-
ingway’s signature style is minimalism, with 70%
of his sentences corresponding to simple sentences.
Not surprisingly, more adequately informed clas-
sifiers, e.g., SVM with unigram features, are still
able to recognize Hemingway’s writings as those of
highly successful ones.

6.2 Less Successful Books
In order to obtain less successful books, we consider
the Amazon seller’s rank included in the product de-
tails of a book. The less successful books considered
in Table 9 had an Amazon seller’s rank beyond 200k
(higher rank indicating less commercial success) ex-
cept Dan Brown’s The lost symbol, which we in-
cluded mainly because of negative critiques it had
attracted from media despite its commercial success.
As shown in Table 9, all three classifiers make (ar-
guably) correct predictions on Dan Brown’s book.9

This result also supports our earlier assumption on
the nature of novels available at Project Gutenberg
— that they would be more representative of liter-
ary success than general popularity (with or without
literary quality).

7 Predicting Success of Movie Scripts

We have seen successful results in the novel domain,
but can stylometry-based prediction work on very
different domains, such as screenplays? Unlike nov-
els, movie scripts are mostly in dialogues, which

9Most notable pattern based on phrasal tag analysis is a sig-
nificantly increased use of fragments (FRAG), which associates
strongly with less successful books in our dataset.

FEATURE Adven Fanta Roman Thril
POS 62.0 58.0 61.7 56.0
Unigram 62.0 81.3 70.0 80.0
Bigrams 73.3 84.7 80.8 76.0
Γ 66.0 81.3 70.0 76.0
ΓG 62.0 69.3 86.7 60.0
γ 62.0 81.3 78.3 76.0
γG 69.3 77.3 77.5 68.0
Γ+Uni 62.0 85.3 70.0 76.0
ΓG+Uni 54.7 81.3 70.0 76.0
γ+Uni 58.0 89.3 70.0 76.0
γG+Uni 58.0 84.7 70.0 76.0
PHR 46.0 42.7 65.8 80.0
PHR+CLR 76.7 31.3 65.8 80.0
PHR+Uni 62.0 81.3 70.0 80.0
PHR+CLR+Uni 62.0 81.3 70.0 80.0

Table 10: Classification results on movie dialogue data
(rating ≥ 8 vs rating ≤ 5.5).

are likely to be more informal. Also, what to keep
in mind is that much of the success of movies de-
pends on factors beyond the quality of writing of the
scripts, such as the quality of acting, the popularity
of actors, budgets, artistic taste of directors and pro-
ducers, editing and so forth.

We use the Movie Script Dataset introduced in
Danescu-Niculescu-Mizil and Lee (2011). It in-
cludes the dialogue scripts of 617 movies. The aver-
age rating of all movies is 6.87. We consider movies
with IMDb rating ≥ 8 as “more successful”, the
ones with IMDb rating ≤ 5.5 as “less successful”.
We combine all the dialogues of each movie and
filter out the movies with less than 200 sentences.
There are 11 genres (“ADVENTURE”, “FANTASY”,
“ROMANCE”, “THRILLER”, “ACTION”, “COMEDY”,
“CRIME”, “DRAMA”, “HORROR”, “MYSTERY”, “SCI-
FI”) with 15 movies or more per class, we take 15
movies per class and perform classification tasks
with the same experiment setting as Table 2.

Table 10, we show some of the example genres
with relatively successful outcome, reaching as high
as 89.3% accuracy in FANTASY genre. We would
like to note however that in many other genres, the
prediction did not work as well as it did for the novel
domain. We suspect that there are at least two rea-
sons for this: it must be partly due to very limited
data size — only 15 instances per class with the rat-
ing threshold we selected for defining the success of
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movies. The second reason is due to many other ex-
ternal factors that can also influence the success of
movies, as discussed earlier.

8 Related Work

Predicting success of novels and movies: To the
best of our knowledge, our work is the first that pro-
vides quantitative insights into the unstudied con-
nection between the writing style and the success of
literary works. There have been some previous work
that aims to gain insights into the secret recipe of
successful books, but most were qualitative, based
only on a dozen of books, focusing mainly on the
high-level content of the books, such as the per-
sonalities of protagonists, antagonists, the nature of
plots (e.g., Harvey (1953), Yun (2011)). In con-
trast, our work examines a considerably larger col-
lection of books (800 in total) over eight different
sub-genres, providing insights into lexical, syntac-
tic, and discourse patterns that characterize the writ-
ing styles commonly shared among the successful
literature. Another relevant work has been on a dif-
ferent domain of movies (Yun, 2011), however, the
prediction is based only on external, non-textual in-
formation such as the reputation of actors and direc-
tors, and the power of distribution systems etc, with-
out analyzing the actual content of the movie scripts.

Text quality and readability: Louis (2012) ex-
plored various features that measure the quality of
text, which has some high-level connections to our
work. Combining the insights from Louis (2012)
with our results, we find that the characteristics of
text quality explored in Louis (2012), readability of
text in particular, do not correspond to the prominent
writing style of highly successful literature. There
have been a number of other work that focused on
predicting and measuring readability (e.g., Kate et
al. (2010), Pitler and Nenkova (2008), Schwarm and
Ostendorf (2005), Heilman and Eskenazi (2006) and
Collins-Thompson et al. (2004)) employing various
linguistic features.

There is an important difference however, in re-
gard to the nature of the selected text for analysis:
most studies in readability focus on differentiating
good writings from noticeably bad writings, often
involving machine generated text or those written
by ESL students. In contrast, our work essentially

deals with differentiating good writings from even
better writings. After all, all the books that we an-
alyzed are written by expert writers who passed the
scrutinizing eyes of publishers, hence it is reason-
able to expect that the writing quality of even less
successful books is respectful.

Predicting success among academic papers: In
the domain of academic papers, which belongs to
the broad genre of non-fiction, the work of Sawyer
et al. (2008) investigated the stylistic characteris-
tics of award winning papers in marketing journals,
and found that the readability plays an important
role. Combined with our study which focuses on fic-
tion and creative writing, it suggests that the recipe
for successful publications can be very different de-
pending on whether it belongs to fiction or nonfic-
tion. The work of Bergsma et al. (2012) is also
somewhat relevant to ours in that their work in-
cluded differentiating the writing styles of workshop
papers from major conference papers, where the lat-
ter would be generally considered to be more suc-
cessful.

9 Conclusion

We presented the first quantitative study that learns
to predict the success of literary works based on their
writing styles. Our empirical results demonstrated
that statistical stylometry can be surprisingly effec-
tive in discriminating successful literature, achiev-
ing accuracy up to 84% in the novel domain and
89% in the movie domain. Furthermore, our study
resulted in several insights including: lexical and
syntactic elements of successful styles, the connec-
tion between successful writing style and readabil-
ity, the connection between sentiment / connotation
and the literary success, and last but not least, com-
parative insights between successful writing styles
of fiction and nonfiction.
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Abstract

We develop a novel generative model of con-
versation that jointly captures both the top-
ical content and the speech act type asso-
ciated with each utterance. Our model ex-
presses both token emission and state tran-
sition probabilities as log-linear functions of
separate components corresponding to topics
and speech acts (and their interactions). We
apply this model to a dataset comprising anno-
tated patient-physician visits and show that the
proposed joint approach outperforms a base-
line univariate model.

1 Introduction

Communication involves at least two aspects: the
words one says and the acts one performs in saying
them. Examples of the latter include asking ques-
tions, issuing commands, and so on. These are re-
ferred to as speech acts under the sociolinguistic the-
ory of Austin (1955), which was further developed
by Searle (1969; 1985). Recognizing speech acts is
crucial to understanding communication because a
speaker’s meaning is only partially captured by the
words they use; much of their intent is expressed im-
plicitly via speech acts (Searle, 1969).

On this view, conversational utterances can be as-
signed both a topic and a speech act. The former
describes the subject matter of what was said and
the latter captures the “social act” (e.g., promising)
performed by saying it. For example, the utterance
“Obama won the election” is topically political and
is an example of an information giving speech act.
“Did Obama win the election?”, meanwhile, belongs

Role Utterance Topic Speech act
D Let me just write down some

of these issues here so I get
them straight in my mind.

Logistics Commissive

P Doctor you ain’t got to tell me
nuttin’.

Socializing Directive

P I’m in very good hands when
I’m around you.

Socializing Give Info.

P If push comes to a shove, you
open the window and throw
me out.

Socializing Humor/Levity

D I wanted to ask you, too - Biomedical Conv. Mgmt.
D you know you had that

colonic polyp -
Biomedical Ask Q.

D - is it two years from now that
they’re going to be doing the
repeat?

Biomedical Ask Q.

P Yeah. Biomedical Conv. Mgmt.
D We’ll do the repeat coloscopy

in about two years.
Biomedical Give Info.

Table 1: An excerpt from a patient-doctor interaction,
annotated with topic and speech act codes. The D and
P roles denote doctor and patient, respectively. Conv.
Mgmt. abbreviates conversation management; Ask Q. ab-
breviates ask question.

to the same topic but is a question. Both aspects are
necessary to understand conversation.

Previous computational work on speech acts –
which we review in Section 6 – has modeled them
in isolation (Perrault and Allen, 1980; Stolcke et al.,
1998; Stolcke et al., 2000; Kim et al., 2010), i.e.,
independent of topical content. But a richer model
would account for both speech acts and the contex-
tualizing topic of each utterance. To this end, we de-
velop a novel joint, generative model of topics and
speech acts.

We focus on physician-patient communication as
a motivating domain. This is of interest because
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it is widely appreciated that effective communica-
tion is an integral part of clinical practice (Irwin and
Richardson, 2006; Makoul, 2001; Teutsch, 2003).
We provide an excerpt of a conversation between a
patient and their doctor annotated with topics and
speech acts in Table 1. Such annotations can provide
substantive insights into how doctors communicate
with patients (Ong et al., 1995).

A concrete example of this is the use of topic
and speech act codes to assess the efficacy of an
intervention meant to influence physician-patient
communication regarding adherence to antiretrovi-
ral (ARV) medication (Wilson et al., 2010). To
measure the effect of the intervention, investigators
performed a randomized control trial in which they
quantified change in communication patterns by tal-
lying the number of information giving speech acts
that fell under the ARV adherence topic. Without
assigning both topics and speech acts to utterances,
this analysis would not have been possible.

In this work, we develop a novel component-
based generative model for bivariate, sequentially
structured problems. Our approach extends the re-
cently proposed Sparse Additive Generative (SAGE)
model (Eisenstein et al., 2011) and similar recently
developed additive models (Paul and Dredze, 2012;
Paul et al., 2013) to the case of supervised sequen-
tial tasks to capture the joint conditional influence
of topics and speech acts, both with respect to token
generation and state transitions. For brevity, we refer
to this generative Joint, Additive, Sequential model
as JAS. In contrast to previous work on speech acts,
JAS provides a single, coherent generative model of
conversations. And because it is component-based,
this model provides a flexible framework for analyz-
ing communication patterns. We demonstrate that
JAS outperforms a generative univariate baseline in
topic/speech act prediction. Further, we automati-
cally reproduce an analysis of the aforementioned
randomized control trial, and in doing so show that
JAS reproduces the results more faithfully than a
univariate approach.

2 The Markov-Multinomial Model

We begin by considering a baseline generative ap-
proach to modeling topics and speech acts indepen-
dently. This simple approach was used by Stolcke et

al. (2000) to model speech acts. It accounts for only
a single output at each time point yt ∈ Y , and hence
here we model topics and speech acts independently.

A straight-forward (albeit naı̈ve) alternative
would be to treat the Cartesian product of topics
and speech acts as a single output space on which
emissions and transitions are conditioned, but this
space is too large and sparse for this approach to be
practicable. We note that the fully coupled HMM
(Brand et al., 1997) suffers from a similar exponen-
tial output state problem. The related factorial HMM
(FHMM) (Ghahramani and Jordan, 1997; Van Gael
et al., 2008), meanwhile, imposes unwarranted (in
our case) independence assumptions with respect to
state transitions along parallel chains, does not obvi-
ously lend itself to discrete observations (typically
Gaussians are assumed), and does not scale well
enough (in terms of training time) to be feasible for
our application.

The Markov-Multinomial (MM) comprises two
components; transitions and emissions. The former
is modeled by making a first-order Markov assump-
tion, specifically:

P (yt|y0, ..., yt−1) = P (yt|yt−1) = λyt−1,yt (1)

Emissions can be modeled via a multinomial
that captures the conditional probabilities of to-
kens given labels. Denoting an utterance (an utter-
ance comprises the words corresponding to a single
speech act; see Section 4) at time t by ut and its la-
bel by yt, and making the standard naı̈ve assumption
that words are generated independently conditioned
on a label, we have:

P (ut|yt) =
∏

w∈ut

P (w|yt) =
∏

w∈ut

τyt,w (2)

Both sets of parameters (the λ’s and the τ ’s) can be
estimated straight-forwardly using maximum like-
lihood (i.e., using observed counts). We can use
Viterbi decoding (Rabiner and Juang, 1986) to make
predictions for new sequences, as usual. To make
both topic and speech act predictions, we simply in-
duce models for each and make predictions indepen-
dently.

3 JAS: A Joint, Additive, Sequential Model

An obvious shortcoming of the simple MM model
outlined above is that it treats topics and speech acts
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as statistically independent. They are not (as con-
firmed at statistical significance p < .001 using a
χ2 test). One would prefer a more expressive model
that conditions topic and speech act transitions as
well as the production of utterances jointly on both
the current topic and the current speech act.

More specifically, we would like a model that re-
flects the assumption that some latent intent gives
rise to both the topic and the speech act associated
with an utterance. This is consistent with Searle’s
(1969) notion of perlocutionary effects; one per-
forms speech acts with the aim of getting someone
to do something. Intent gives rise to the current
topic and speech act, and the current intent affects
the next; this induces a correlation between adjacent
topics and speech acts. This conceptual model is de-
picted graphically in the left-half of Figure 1.

The latent intent may be, e.g., to encourage a pa-
tient to take their medication more regularly. In our
application the topical content may be ARV adher-
ence and the type of speech act would be selected
by the provider (presumably to maximize the likeli-
hood of patient adherence). For example, she may
opt to urge imperatively (“You really need to take
your medicine”) or to implore with a question (“Will
you please remember to take your medicine?”). Be-
cause we have no way of explicitly modeling intent
(it is never observed), we instead rely on variables
for which we have annotations (i.e., the topics and
speech acts; see Figure 1). We next describe the
model in more detail.

We refer to the topic set by Y , the speech act
set by S and the vocabulary as W . We denote the
(log of the) background probability of word w by
θw, and we will denote components corresponding
to deviations from θw due to a specific topic (speech
act) by ηy

w (ηs
w). Further, we include the component

ηy,s
w to capture interaction effects between topics and

speech acts. We assume that the conditional proba-
bility of word w belonging to an utterance ut with
corresponding topic yt and speech act st is log-linear
with respect to these components, i.e.:

P (w|yt, st) =
1

Zw
exp{θw +ηyt

w +ηst
w +ηst,yt

w } (3)

Where Zw is a normalizing term (implicitly condi-

tioned on yt and st) defined as:

Zw =
∑

w′∈W
exp{θw′ + ηyt

w′ + ηst
w′ + ηst,yt

w′ } (4)

We make the standard naı̈ve assumption that words
are generated independently, given the topic and
speech act of the utterance to which they belong:

P (ut|yt, st) =
∏

w∈ut

P (w|yt, st) (5)

The per-token emission probability just described
falls under the additive generative family of models
recently proposed by Eisenstein et al. (2011). How-
ever, in addition to conditional token emission prob-
abilities, here we need also to model the transition
probabilities such that the likelihood of transition-
ing to topic yt (and to speech act st) reflects both the
previous topic and the previous speech act, captur-
ing the dependencies illustrated in Figure 1. To this
end, we model topic and speech act transition proba-
bilities as log-linear functions of the preceding topic
and speech act.

We denote log of the background topic frequen-
cies by πY , and components capturing the influence
of transitioning to topic yt due to the preceding topic
and speech act by σyt−1,yt and σst−1,yt respectively.
We also include a component σ(yt−1,st−1),yt

that cor-
responds to the interaction effect on topic transi-
tion probability due to the preceding topic/speech
act pair. We then model the topic transition prob-
ability (given the preceding states) as:

P (yt|yt−1, st−1) =

1

Zy
exp{πYyt

+σyt−1,yt +σst−1,yt +σ(yt−1,st−1),yt
}

(6)
Where Zy is a normalizing term for the topic transi-
tions (implicitly conditioned on st−1, yt−1):

Zy =
∑
y′∈Y

exp{πYy′+σyt−1,y′+σst−1,y′+σ(yt−1,st−1),y′}

(7)
Similarly, denoting by πS log-transformed speech
act background frequencies, and including analo-
gous components as above that correspond to the in-
fluence of the preceding topic, speech act and their
interaction on transitioning into speech act st, we

1767



Topict-1 Speech Actt-1

Utterancet-1

Topict Speech Actt

Utterancet

Intentt-1 Intentt

Topict-1 Speech Actt-1

Utterancet-1

Topict Speech Actt

Utterancet

Figure 1: The generative story of utterances, depicted graphically. On the left we show our motivating conceptualiza-
tion: a latent intent gives rise to both the topic and speech acts; these, in turn, jointly induce a distribution over words
and transitions. On the right we show our operationalization of this concept. For clarity, we have denoted arrows
capturing influence due to topics with dotted lines.

have:

P (st|st−1, yt−1) =

1

Zs
exp{πSst

+σst−1,st +σyt−1,st +σ(yt−1,st−1),st
}

(8)

Where Zs is a normalizing constant for speech acts
analogous to Equation 7. Putting things together:

P (yt, st|st−1, yt−1, ut) =

P (ut|yt, st) · P (yt|yt−1, st−1) · P (st|st−1, yt−1)
(9)

As implied by Figure 1, this model assumes that the
topic and speech act at time t are conditionally in-
dependent given the preceding topic and speech act
(yt−1 and st−1). This is intuitively agreeable be-
cause time intervenes as a blocking factor; condi-
tioning the current topic on the current speech act
(or vice versa) would contradict the fact that these
occur simultaneously. Instead, the correlation is in-
duced by the preceding topic/speech act pair. (That
said, this is still a simplifying assumption, as one
may instead choose to model speech act selection as
conditional on topic (Traum and Larsson, 2003).)

Predictions can again be made via Viterbi de-
coding (Rabiner and Juang, 1986) over a matrix of
pairs of joint topic/speech act states. The strategy of
modeling (additive) components allows JAS to avoid
problems due to sparsity in this large output space.

Model parameters can be estimated using stan-
dard optimization techniques. We fix the ‘back-
ground’ frequencies θ, πY , πS to the log of the

corresponding observed proportions of words, top-
ics and speech acts, respectively. For the remaining
parameters, one can use descent-based optimization
methods. The partial derivative for the topic-to-topic
transition component σy,y′ with respect to the likeli-
hood, for example, is:

∂

∂σy,y′
=

∑
s∈S

C(y,s),y′ − P (y′|y, s)C(y,s),∗ (10)

Where C(y,s),y′ denotes the observed count of tran-
sitions from topic/speech act pair (y, s) to y′, and
C(y,s),∗ denotes the total number of observed transi-
tions out of this pair. The term P (y′|y, s) is with
respect to the current parameter estimates and is
defined in Equation 6. The partial derivatives for
the other component parameters (both transition and
emission) are analogous. We use a Newton opti-
mization method similar to the approach outlined by
Eisenstein et al. (2011).1 We assess convergence
by calculating predictive performance on a held-out
portion (5%) of the training dataset at each step,
halting the descent when this declines.

4 Dataset

We use a corpus of patient-provider visits annotated
with Generalized Medical Interaction Anaylsis Sys-
tem (GMIAS) codes. The GMIAS has been used
to: characterize interaction processes in physician-
patient communication about ARV adherence in the

1With the exception that we do not explicitly model the dis-
tribution over component variances.
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Topic; Speech act Count (prevalence)
ARV Adherence; Ask Q 2939 (0.013)
ARV Adherence; Commissive 245 (0.001)
ARV Adherence; Continuation 328 (0.001)
ARV Adherence; Conv. Management 4298 (0.018)
ARV Adherence; Directive 1650 (0.007)
ARV Adherence; Empathy 111 (0.000)
ARV Adherence; Give Information 12796 (0.055)
ARV Adherence; Humor/Levity 46 (0.000)
ARV Adherence; Missing/other 977 (0.004)
ARV Adherence; Social-Ritual 15 (0.000)
Biomedical; Ask Q 13753 (0.059)
Biomedical; Commissive 1049 (0.005)
Biomedical; Continuation 1005 (0.004)
Biomedical; Conv. Management 17611 (0.076)
Biomedical; Directive 4617 (0.020)
Biomedical; Empathy 423 (0.002)
Biomedical; Give Information 54231 (0.233)
Biomedical; Humor/Levity 255 (0.001)
Biomedical; Missing/other 4426 (0.019)
Biomedical; Social-Ritual 119 (0.001)
Logistics; Ask Q 5517 (0.024)
Logistics; Commissive 2308 (0.010)
Logistics; Continuation 435 (0.002)
Logistics; Conv. Management 9672 (0.042)
Logistics; Directive 5148 (0.022)
Logistics; Empathy 100 (0.000)
Logistics; Give Information 23351 (0.101)
Logistics; Humor/Levity 135 (0.001)
Logistics; Missing/other 2732 (0.012)
Logistics; Social-Ritual 285 (0.001)
Missing/other; Ask Q 820 (0.004)
Missing/other; Commissive 70 (0.000)
Missing/other; Continuation 1173 (0.005)
Missing/other; Conv. Management 1605 (0.007)
Missing/other; Directive 523 (0.002)
Missing/other; Empathy 48 (0.000)
Missing/other; Give Information 3994 (0.017)
Missing/other; Humor/Levity 27 (0.000)
Missing/other; Missing/other 12103 (0.052)
Missing/other; Social-Ritual 69 (0.000)
Psycho-Social; Ask Q 2933 (0.013)
Psycho-Social; Commissive 164 (0.001)
Psycho-Social; Continuation 208 (0.001)
Psycho-Social; Conv. Management 4433 (0.019)
Psycho-Social; Directive 787 (0.003)
Psycho-Social; Empathy 262 (0.001)
Psycho-Social; Give Information 15521 (0.067)
Psycho-Social; Humor/Levity 63 (0.000)
Psycho-Social; Missing/other 1199 (0.005)
Psycho-Social; Social-Ritual 36 (0.000)
Socializing; Ask Q 1283 (0.006)
Socializing; Commissive 79 (0.000)
Socializing; Continuation 85 (0.000)
Socializing; Conv. Management 2166 (0.009)
Socializing; Directive 222 (0.001)
Socializing; Empathy 73 (0.000)
Socializing; Give Information 8981 (0.039)
Socializing; Humor/Levity 306 (0.001)
Socializing; Missing/other 849 (0.004)
Socializing; Social-Ritual 1685 (0.007)

Table 2: Topic/speech act pairs and their counts.

context of an intervention trial (Wilson et al., 2010);
analyze communication about sexual risk behavior
(Laws et al., 2011a); elucidate the association of
visit length with constructs of patient-centeredness
(Laws et al., 2011b); and to describe provider-
patient communication regarding ARV adherence
compared with communication about other issues
(Laws et al., 2012). GMIAS annotation is described
at length elsewhere,2 but we summarize it here for
completeness.

GMIAS segments conversation into utterances.
An utterance is here defined as a single completed
speech act. Previous coding systems have simply
defined an utterance as conveying a single thought
(Roter and Larson, 2002) or any independent or un-
restrictive dependent clause of a sentence (Ford and
Ford, 1995). Stolcke et al. (2000) followed Meteer
et al. (1995) in using “sentence-level units”. These
definitions provide helpful guidance to coders, but
many speech acts are poorly formed grammatically,
and cannot be described as a “clause”. Further, some
speech acts cannot be said to convey a “thought” (or
sentence) at all, but rather are pre-syntactical (e.g.,
interjections and non-lexical utterances like laugh-
ter). In any case, most natural segmentations of con-
versations probably largely agree with intuition, and
are not likely to differ substantially.

The model we develop in this work assumes that
transcripts have been manually segmented. While
this comes at some cost, segmenting is still much
cheaper than annotating transcripts. Manually an-
notating a single visit with GMIAS codes takes 2-
4 hours and must be performed by someone with
substantive domain expertise. By contrast, segment-
ing transcripts into utterances takes at most 1/4th of
the time as annotation and can be done by a less
highly-skilled individual. That said, in future work
we hope to explore incorporating automatic segmen-
tation methods (Galley et al., 2003; Eisenstein and
Barzilay, 2008) into our approach.

Each utterance is assigned a single topic code and
a single speech act code. Inter-rater agreement has
been observed to be relatively high for this task:
Kappa between three trained annotators and a ref-
erence annotation ranged from 0.89 to 1.0 for top-
ics and 0.81 to 0.95 for speech acts. We next de-

2
https://sites.google.com/a/brown.edu/m-barton-laws/home/gmias
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scribe the topics and speech acts we consider in
more detail; Table 2 enumerates all pairs of these
and their respective counts in the corpus. We note
that GMIAS defines a hierarchy of both topic and
speech act codes, but here we only attempt to cap-
ture the highest level codes in these hierarchies.

Topics comprise six major categories: ARV
adherence, biomedical, logistics, missing/other,
psycho-social and socializing. Antiretroviral (ARV)
adherence applies to utterances that address ARV
medication usage. Biomedical utterances subsume
clinical observations and diagnostic conclusions.
Utterances that concern the business of conducting a
physical examination fall under logistics. The miss-
ing/other topic covers a few cases, including utter-
ances that are effectively outside of the GMIAS uni-
verse and inaudible utterances; however we note that
missing/other is a topic explicitly assigned by hu-
man annotators. The psycho-social topic includes
such issues as substance abuse, recovery, employ-
ment and relationships. Finally, socializing refers to
casual conversation unrelated to the business of the
medical visit, and to social rituals such as greetings.

There are 10 speech acts:3 ask question, commis-
sive, continuation, conversation management, direc-
tive, empathy, give information, humor/levity, miss-
ing/other, and social-ritual. Ask question is self-
explanatory. Utterances in which the speaker makes
a promise or resolves to take action are commissives.
A continuation refers to the completion of a previ-
ously interrupted speech act (these are rare). Con-
versation management describes utterances that fa-
cilitate turn-taking or guide discussion (‘talk about
talk’). Directives refer to statements that look to
control or influence the behavior of the interlocutor.
Utterances that express responses to emotions, con-
cerns or feelings are coded under empathy. Com-
munication of (purported) facts falls under give in-
formation. Humor/levity captures jokes and jovial
conversation. Missing/other is the same as for top-
ics. Finally, social-ritual utterances represent for-
malities (e.g., “thank you”).

The corpus we use includes 360 GMIAS anno-
tated patient-provider interactions (median length:
605 utterances). This data originated as part of

3These are high-level speech acts; technically each consti-
tutes a category of speech act types.

a study designed to assess the role of the patient-
provider relationship in explaining racial/ethnic dis-
parities in HIV care. Study subjects were HIV care
providers and their patients at four US care sites.
The group responsible for the data are awaiting a
decision from the institutional review board (IRB)
regarding whether we can make this data publicly
available in some form.

5 Experimental Results

Markov-Multinomial Joint Additive Sequential
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Figure 2: Mean F-scores across all topic/speech act pairs
for the Markov-Multinomial (MM; left) and the proposed
Joint Additive Sequential (JAS; right) models. The thick
black line shows the mean difference over ten different
folds; the thin grey lines describe per-fold differences.
The proposed JAS model outperforms the baseline MM
model for all folds

Our evaluation includes two parts.4 First, we
perform standard cross-validation over the afore-
mentioned 360 annotated interactions, evaluating F-
measure for each topic/speech act pair. Second,
we look to automatically reproduce an analysis of

4Source code at: https://github.com/bwallace/JAS; unfortu-
nately we do not yet have permission to post the data.
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a randomized control trial that assessed the efficacy
of an intervention meant to alter physician-patient
communication. We show that JAS outperforms the
baseline approach with respect to both tasks.

We emphasize that while we are here compar-
ing predictive performance, we are specifically in-
terested in fully generative models of conversations
due to the longer-term applications we have in mind.
We would like, e.g., to use this model to assess the
variation in communicative approaches across dif-
ferent doctors, and generative models are more nat-
urally amenable to answering such exploratory ques-
tions. Indeed, perhaps the main strength of the ad-
ditive component based sequential model we have
proposed here is that it will allow us to easily in-
corporate physician-specific parameters that capture
deviations in provider speech act and/or topic tran-
sition patterns. Further, we may soon have access
to many unannotated transcripts, and we would like
to learn from these; generative approaches allow
straight-forward exploitation of unlabeled data. For
these reasons, we did not experiment with discrim-
inative models, e.g., Dynamic Conditional Random
Fields (DCRFs) (Sutton et al., 2007) for this work.

5.1 Cross-fold Validation
Our aim is to measure model performance in terms
of correctly identifying both the topic and speech act
corresponding to each utterance. We quantify this
via the F-score calculated for each topic/speech act
pair that is observed at least once. One can see in
Table 2 that many such pairs have low prevalence;
this can result in undefined F-scores (e.g., when no
utterances are assigned to a given pair). In this case,
it is reasonable to treat these as zero values, as is
commonly done (Forman and Scholz, 2010). This
penalizes models when they completely fail to iden-
tify an entire class of utterances.

We first report macro-averages, that is, averages
of the individual topic/speech act pair F-scores.
Figure 2 displays the macro-averaged F-score for
each of the 10 folds (grey lines connect folds)
and the average of these (thick black line). The
JAS model achieves an average macro-averaged F-
score of .234 versus the .207 achieved by base-
line Markov-Multinomial (MM) model; JAS outper-
forms MM on every fold.

For a more granular picture, Figure 3 displays av-

erage F-score differences with respect to every indi-
vidual topic and speech act pair for which this differ-
ence was non-zero. This is the (signed) difference of
the F-score achieved using JAS minus that achieved
using the MM model; black lines thus correspond
to pairs for which JAS outperformed MM, and red
lines to pairs for which MM outperformed JAS. The
latter achieves an improvement of >= .05 for 10
pairs, and results in an F-score of > .02 below that
attained by MM only once.

The relatively low F-scores for the metrics quanti-
fying performance with respect to the cross of topic
and speech act codes belie relatively good over-
all (marginal) predictive performance. That is, we
achieve much better performance with respect to
metrics that measure topic and speech act predic-
tions independently of one another. This is due to the
very large output space under consideration (see Ta-
ble 2). Specifically, averaged over ten runs, the MM
model achieves a marginal mean topic F-score of
.667 and marginal mean speech act F-score of .516.
JAS begets a marginal mean topic F-score of .661
and a marginal mean speech act F-score of .544;
hence the JAS model incurs an F-score loss of .006
(a 0.9% decrease) with respect to marginal topic
code prediction, but improves the marginal speech
act F-score by .028 (a 5.4% increase).

5.2 (Re-)Analysis of Randomized Control Trial

We also evaluated performance by tallying model
predictions over 116 held-out cases collected from
a randomized, cross-over study of an intervention
aimed at improving physicians knowledge of pa-
tients anti-retroviral (ARV) adherence (Wilson et al.,
2010). The intervention was a report given to the
physician before a routine office visit that contained
information regarding the patients ARV usage and
their beliefs about ARV therapy. To explore the ef-
ficacy of this intervention, 58 paired (116 total) au-
dio recorded visits were annotated with GMIAS; 58
correspond to visits before which the provider was
not provided with the report (control cases), while
the other 58 correspond to visits before which they
were (intervention cases).

Wilson et al. (2010) demonstrated that the in-
tervention indeed increased adherence-related dia-
logue, and specifically the number of information
giving speech acts performed by the physician un-
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Figure 3: Average difference in F-scores corresponding to specific topic/speech act pairs, sorted by magnitude. Black
lines (extending rightward) represent pairs for which JAS outperforms the baseline model; red lines (leftward) are
pairs for which baseline performs better.

True MM JAS
control intervention control intervention control intervention
10 (4, 28) 23 (11, 39) 13 (5, 33) 27 (16, 44) 12 (5, 28) 23 (14, 40)

Table 3: Utterance counts {Median (25th, 75th per-
centile)} for the ARV/information giving topic and speech
act pair. We show the ‘gold standard’ (True) tallies,
which were assigned by humans, and the counts taken
using the two models, MM and JAS. The JAS model pre-
dictions are closer to the true numbers.

derneath this topic. We attempted to reproduce this
finding using automated rather manual annotations.
To this end, we trained MM and JAS models over
the aforementioned 360 annotated visits and then
used this model to generate topic and speech act
code predictions for the utterances comprising the
116 held-out visits used for the analysis (these were
not part of the training set). We then assessed the
direction and magnitude of the change in the num-
ber of ARV adherence/information giving utterances
in the paired control versus intervention cases. We
compared the results for this analysis calculated us-
ing the true (manually assigned) codes to the results
calculated using the predicted codes.

Following the original analysis (Wilson et
al., 2010), we report the median number of

ARV/information giving utterances and correspond-
ing 25th and 75th percentiles over the 58 control and
intervention visits, as counted using the true (hu-
man) annotations and using the codes predicted by
the MM and JAS models. These are reported in Ta-
ble 3. The JAS model predictions better match the
true labels in all except one case (the lower 25th for
the controls, for which it predicts the same number
as the MM model).

6 Related work

There is a relatively long history of research into
modeling conversational speech acts in computa-
tional linguistics. Perrault and Allen (1980) con-
ducted pioneering work on computationally formal-
izing speech acts, though their work pre-dates statis-
tical NLP and is therefore not directly relevant to the
present work.

Stolcke et al. (2000; 1998) proposed a probabilis-
tic approach to modeling conversational speech acts
based on the Hidden Markov Model (HMM) (Ra-
biner and Juang, 1986). They were interested in
modeling an unrestricted set of conversations, and
did not impose a hierarchy on the speech acts; they
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therefore enumerated many more speech acts (42)
than we do in the present work (recall that we use 10
‘high-level’ speech acts).5 Their model has served
as the baseline approach in the present work. Stol-
cke et al. also considered jointly performing speech
recognition and speech act classification.

Others have investigated visual structures of
patient-provider interactions to qualitatively assess
communication in care. Specifically, (Cretchley et
al., 2010) leveraged concept maps to explore conver-
sations between people with schizophrenia and their
carers. Briefly, this approach allowed them to (qual-
itatively) identify two distinct conversational strate-
gies used by care-takers and their patients. Angus et
al. (Angus et al., 2012) presented a similar approach
in which they used text visualization software to ex-
plore patterns of (inferred) topics in consultations.

Another thread of research has investigated classi-
fying speech acts in emails into one of a small set of
“email speech acts”, e.g., request, propose, commit
(Cohen et al., 2004; Goldstein et al., 2006). Cohen et
al. (2004) demonstrated that good performance can
be achieved for this task via existing text classifica-
tion technologies. Elsewhere, researchers have ex-
plored automatically inferring “speech acts” in vari-
ous other online social mediums, including message
board posts (Qadir and Riloff, 2011), Wikipedia talk
pages (Ferschke et al., 2012) and Twitter (Zhang et
al., 2012).

A separate line of inquiry concerns classifying di-
alogue acts in chat. Researchers have attempted di-
alogue act classification both for 1-on-1 (Kim et al.,
2010) and multi-party (Kim et al., 2012; Clark and
Popescu-Belis, 2004) online chats. Ang et al. (2005)
considered the task of jointly segmenting and clas-
sifying utterances comprising multiparty meetings,
while Hsueh and Moore (2006) proposed analogous
methods for topic segmentation and labeling (other
works on topic segmentation include (Galley et al.,
2003) and (Eisenstein and Barzilay, 2008)). Incor-
porating such segmentation methods into the pro-
posed model (rather than relying on inputs to be
manually segmented beforehand) would be a natu-
ral extension of this work.

Additive component models of text have recently

5We note that only 8 of the 42 speech acts appeared with
greater than 1% frequency in Stolcke et al.’s corpus.

gained traction (Eisenstein et al., 2011; Paul, 2012;
Paul and Dredze, 2012; Paul et al., 2013). To our
knowledge, this is the first extension of supervised
additive component models to a sequential task.6

7 Conclusions and Future Directions

We have proposed a novel Joint, Additive, Sequen-
tial (JAS) model of conversational topics and speech
acts. In contrast to previous approaches to mod-
eling conversational exchanges, this model factors
both the current topic and the current speech act into
token emission and state transition probabilities. We
demonstrated that this model consistently outper-
forms a univariate generative baseline that treats
speech acts and topics independently. Furthermore,
we showed JAS can automatically re-produce the
analysis of a randomized control trial designed to as-
sess the efficacy of an intervention to alter physician
communication habits with high-fidelity.

The generative component-based framework we
have introduced in this work provides a means of
exploring factors in patient-physician communica-
tion. One limitation of the model we have pre-
sented is that it makes several simplifying assump-
tions around dialogue. For example, we have ig-
nored non-linearities and ‘back-channels’ in con-
versation, and we have ignored differences across
physicians with respect to communication styles.

Going forward, we hope to address these limita-
tions. We also plan on extending this model to in-
vestigate qualitative questions surrounding patient-
physician communication quantitatively. For exam-
ple, we are interested in investigating how communi-
cation varies across hospitals and physicians. To ex-
plore this, we can add additional components to the
transition probability terms corresponding to differ-
ent hospitals and doctors. Ultimately, we would like
to correlate patterns in physician communication (as
gleaned from the model) with objective, measured
health outcomes (e.g., patient satisfaction and adher-
ence to ARVs).

6Though Paul (2012) recently proposed ‘mixed-
membership’ Markov models for unsupervised conversation
modeling.
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Abstract

The distributional hypothesis, which states
that words that occur in similar contexts tend
to have similar meanings, has inspired sev-
eral Web mining algorithms for paraphras-
ing semantically equivalent phrases. Unfortu-
nately, these methods have several drawbacks,
such as confusing synonyms with antonyms
and causes with effects. This paper intro-
duces three Temporal Correspondence Heuris-
tics, that characterize regularities in parallel
news streams, and shows how they may be
used to generate high precision paraphrases
for event relations. We encode the heuristics
in a probabilistic graphical model to create
the NEWSSPIKE algorithm for mining news
streams. We present experiments demon-
strating that NEWSSPIKE significantly outper-
forms several competitive baselines. In order
to spur further research, we provide a large
annotated corpus of timestamped news arti-
cles as well as the paraphrases produced by
NEWSSPIKE.

1 Introduction

Paraphrasing, the task of finding sets of semantically
equivalent surface forms, is crucial to many natu-
ral language processing applications, including re-
lation extraction (Bhagat and Ravichandran, 2008),
question answering (Fader et al., 2013), summa-
rization (Barzilay et al., 1999) and machine transla-
tion (Callison-Burch et al., 2006). While the benefits
of paraphrasing have been demonstrated, creating a
large-scale corpus of high precision paraphrases re-
mains a challenge — especially for event relations.

Many researchers have considered generating
paraphrases by mining the Web guided by the dis-

tributional hypothesis, which states that words oc-
curring in similar contexts tend to have similar
meanings (Harris, 1954). For example, DIRT (Lin
and Pantel, 2001) and Resolver (Yates and Etzioni,
2009) identify synonymous relation phrases by the
distributions of their arguments. However, the dis-
tributional hypothesis has several drawbacks. First,
it can confuse antonyms with synonyms because
antonymous phrases appear in similar contexts as of-
ten as synonymous phrases. For the same reasons, it
also often confuses causes with effects. For exam-
ple, DIRT reports that the closest phrase to fall is
rise, and the closest phrase to shoot is kill.1 Sec-
ond, the distributional hypothesis relies on statis-
tics over large corpora to produce accurate similarity
statistics. It remains unclear how to accurately para-
phrase less frequent relations with the distributional
hypothesis.

Another common approach employs the use of
parallel corpora. News articles are an interesting
target, because there often exist articles from dif-
ferent sources describing the same daily events.
This peculiar property allows the use of the tem-
poral assumption, which assumes that phrases in
articles published at the same time tend to have
similar meanings. For example, the approaches by
Dolan et al. (2004) and Barzilay et al. (2003) iden-
tify pairs of sentential paraphrases in similar arti-
cles that have appeared in the same period of time.
While these approaches use temporal information
as a coarse filter in the data generation stage, they
still largely rely on text metrics in the prediction
stage. This not only reduces precision, but also lim-
its the discovery of paraphrases with dissimilar sur-

1http://demo.patrickpantel.com/demos/
lexsem/paraphrase.htm
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face strings.
The goal of our research is to develop a technique

to generate paraphrases for large numbers of event
relation with high precision, using only minimal hu-
man effort. The key to our approach is a joint cluster
model using the temporal attributes of news streams,
which allows us to identify semantic equivalence
of event relation phrases with greater precision. In
summary, this paper makes the following contribu-
tions:
• We formulate a set of three temporal corre-

spondence heuristics that characterize regulari-
ties over parallel news streams.
• We develop a novel program, NEWSSPIKE,

based on a probabilistic graphical model that
jointly encodes these heuristics. We present in-
ference and learning algorithms for our model.
• We present a series of detailed experiments

demonstrating that NEWSSPIKE outperforms
several competitive baselines, and show through
ablation tests how each of the temporal heuris-
tics affects performance.
• To spur further research on this topic, we pro-

vide both our generated paraphrase clusters and
a corpus of 0.5M time-stamped news articles2,
collected over a period of about 50 days from
hundreds of news sources.

2 System Overview

The main goal of this work is to generate high preci-
sion paraphrases for relation phrases. News streams
are a promising resource, since articles from dif-
ferent sources tend to use semantically equivalent
phrases to describe the same daily events. For ex-
ample, when a recent scandal hit, headlines read:
“Armstrong steps down from Livestrong”; “Arm-
strong resigns from Livestrong” and “Armstrong
cuts ties with Livestrong”. From these we can con-
clude that the following relation phrases are seman-
tically similar: {step down from, resign from, cut ties
with}.

To realize this intuition, our first challenge is
to represent an event. In practice, a question like
“What happened to Armstrong and Livestrong on
Oct 17?” could often lead to a unique answer. It im-

2https://www.cs.washington.edu/node/
9473/
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Figure 1: NEWSSPIKE first applies open informa-
tion extraction to articles in the news streams, obtain-
ing shallow extractions with time-stamps. Next, an
extracted event candidate (EEC) is obtained after group-
ing daily extractions by argument pairs. Temporal fea-
tures and constraints are developed based on our tempo-
ral correspondence heuristics and encoded into a joint in-
ference model. The model finally creates the paraphrase
clusters by predicting the relation phrases that describe
the EEC.

plies that using an argument pair and a time-stamp
could be an effective way to identify an event (e.g.
(Armstrong, Livestrong, Oct 17) for the previous
question). Based on this observation, this paper in-
troduces a novel mechanism to paraphrase relations
as summarized in Figure 1.

NEWSSPIKE first applies the ReVerb open infor-
mation extraction (IE) system (Fader et al., 2011)
on the news streams to obtain a set of (a1, r, a2, t)
tuples, where the ai are the arguments, r is a re-
lation phrase, and t is the time-stamp of the cor-
responding news article. When (a1, a2, t) suggests
a real word event, the relation r of (a1, r, a2, t) is
likely to describe that event (e.g. (Armstrong, resign
from, Livestrong, Oct 17). We call every (a1, a2, t)
an extracted event candidate (EEC), and every rela-
tion describing the event an event-mention.

For each EEC (a1, a2, t), suppose there are m ex-
traction tuples (a1, r1, a2, t) . . . (a1, rm, a2, t) shar-
ing the values of a1, a2, and t. We refer to this
set of extraction tuples as the EEC-set, and denote
it (a1, a2, t, {r1 . . . rm}). All the event-mentions in
the EEC-set may be semantically equivalent and are
hence candidates for a good paraphrase cluster.

Thus, the paraphrasing problem becomes a pre-
diction problem: for each relation ri in the EEC-set,
does it or does it not describe the hypothesized
event? We solve this problem in two steps. The
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next section proposes a set of temporal correspon-
dence heuristics that partially characterize semanti-
cally equivalent EEC-sets. Then, in Section 4, we
present a joint inference model designed to use these
heuristics to solve the prediction problem and to
generate paraphrase clusters.

3 Temporal Correspondence Heuristics

In this section, we propose a set of temporal heuris-
tics that are useful to generate paraphrases at high
precision. Our heuristics start from the basic obser-
vation mentioned previously — events can often be
uniquely determined by their arguments and time.
Additionally, we find that it is not just the publica-
tion time of the news story that matters, the verb
tenses of the sentences are also important. For ex-
ample, the two sentences “Armstrong was the chair-
man of Livestrong” and “Armstrong steps down
from Livestrong” have past and present tense re-
spectively, which suggests that the relation phrases
are less likely to describe the same event and are
thus not semantically equivalent. To capture these
intuitions, we propose the Temporal Functionality
Heuristic:

Temporal Functionality Heuristic. News articles
published at the same time that mention the same
entities and use the same tense tend to describe the
same events.

Unfortunately, we find that not all the event can-
didates, (a1, a2, t), are equally good for paraphras-
ing. For example, today’s news might include
both “Barack Obama heads to the White House”
and “Barack Obama greets reporters at the White
House”. Although the two sentences are highly
similar, sharing a1 = “Barack Obama” and a2 =
“White House,” and were published at the same
time, they describe different events.

From a probabilistic point of view, we can treat
each sentence as being generated by a particular hid-
den event which involves several actors. Clearly,
some of these actors, like Obama, participate in
many more events than others, and in such cases
we observe sentences generated from a mixture of
events. Since two event mentions from such a mix-
ture are much less likely to denote the same event
or relation, we wish to distinguish them from the
better (semantically homogeneous) EECs like the
(Armstrong, Livestrong) example. The question be-

comes “How one can distinguish good entity pairs
from bad?”

Our method rests on the simple observation that
an entity which participates in many different events
on one day is likely to have participated in events
in recent days. Therefore we can judge whether an
entity pair is good for paraphrasing by looking at
the history of the frequencies that the entity pair is
mentioned in the news streams, which is the time
series of that entity pair. The time series of the entity
pair (Barack Obama, the White House) tends to be
high over time, while the time series of the entity
pair (Armstrong, Livestrong) is flat for a long time
and suddenly spikes upwards on a single day. This
observation leads to:

Temporal Burstiness Heuristic. If an entity or an
entity pair appears significantly more frequently in
one day’s news than in recent history, the corre-
sponding event candidates are likely to be good to
generate paraphrase.

The temporal burstiness heuristic implies that a
good EEC (a1, a2, t) tends to have a spike in the time
series of its entities ai, or argument pair (a1, a2), on
day t.

However, even if we have selected a good EEC
for paraphrasing, it is likely that it contains a few
relation phrases that are related to (but not synony-
mous with) the other relations included in the EEC.
For example, it’s likely that the news story report-
ing “Armstrong steps down from Livestrong.” might
also mention “Armstrong is the founder of Live-
strong.” and so both “steps down from” and “is the
founder of” relation phrases would be part of the
same EEC-set. Inspired by the idea of one sense per
discourse from (Gale et al., 1992), we propose:

One Event-Mention Per Discourse Heuristic. A
news article tends not to state the same fact more
than once.

The one event-mention per discourse heuristic is
proposed in order to gain precision at the expense
of recall — the heuristic directs an algorithm to
choose, from a news story, the single “best” relation
phrase connecting a pair of two entities. Of course,
this doesn’t answer the question of deciding which
phrase is “best.” In Section 4.3, we describe how
to learn a probabilistic graphical model which does
exactly this.
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4 Exploiting the Temporal Heuristics

In this section we propose several models to capture
the temporal correspondence heuristics, and discuss
their pros and cons.

4.1 Baseline Model

An easy way to use an EEC-set is to simply predict
that all ri in the EEC-set are event-mentions, and
hence are semantically equivalent. That is, given
EEC-set (a1, a2, t, {r1 . . . rm}), the output cluster is
{r1 . . . rm}.

This baseline model captures the most of the tem-
poral functionality heuristic, except for the tense re-
quirement. Our empirical study shows that it per-
forms surprisingly well. This demonstrates that the
quality of our input for the learning model is good:
the EEC-sets are promising resources for paraphras-
ing.

Unfortunately, the baseline model cannot deal
with the other heuristics, a problem we will remedy
in the following sections.

4.2 Pairwise Model

The temporal functionality heuristic suggests we ex-
ploit the tenses of the relations in an EEC-set; while
the temporal burstiness heuristic suggests we ex-
ploit the time series of its arguments. A pairwise
model can be designed to capture them: we compare
pairs of relations in the EEC-set, and predict whether
each pair is synonymous or non-synonymous. Para-
phrase clusters are then generated according to some
heuristic rules (e.g. assuming transitivity among
synonyms). The tenses of the relations and time se-
ries of the arguments are encoded as features, which
we call tense features and spike features respec-
tively. An example tense feature is whether one re-
lation is past tense while the other relation is present
tense; an example spike feature is the covariance of
the time series.

The pairwise model can be considered similar to
paraphrasing techniques which examine two sen-
tences and determine whether they are semantically
equivalent (Dolan and Brockett, 2005; Socher et al.,
2011). Unfortunately, these techniques often based
purely on text metrics and does not consider any
temporal attributes. In section 5, we evaluate the
effect of applying these techniques.

1 

𝑍 (Armstrong,Livestrong,Oct.17) 

0 

1 

0 

𝑌 be founder of 

𝑌 step down 

𝑌 give speech at 
0 

1 

𝑌 be chairman of 

Article2 Article1 

𝑌 resign from 

Φjoint 

ΦZ 

Φ2
Y 

Φ1
Y 

Figure 2: an example model for EEC (Armstrong, Live-
strong, Oct 17). Y and Z are binary random variables.
ΦY , ΦZ and Φjoint are factors. be founder of and step
down come from article 1 while give speech at, be chair-
man of and resign from come from article 2.

4.3 Joint Cluster Model
The pairwise model has several drawbacks: 1) it
lacks the ability to handle constraints, such as the
mutual exclusion constraint implied by the one-
mention per discourse heuristic; 2) ad-hoc rules,
rather than formal optimizations, are required to
generate clusters containing more than two relations.

A common approach to overcome the drawbacks
of the pairwise model and to combine heuristics to-
gether is to introduce a joint cluster model, in which
heuristics are encoded as features and constraints.
Data, instead of ad-hoc rules, determines the rel-
evance of different insights, which can be learned
as parameters. The advantage of the joint model
is analogous to that of cluster-based approaches for
coreference resolution (CR). In particular, a joint
model can better capture constraints on multiple
variables and can yield higher quality results than
pairwise CR models (Rahman and Ng, 2009).

We propose an undirected graphical model,
NEWSSPIKE, which jointly clusters relations. Con-
straints are captured by factors connecting multiple
random variables. We introduce random variables,
the factors, the objective function, the inference al-
gorithm, and the learning algorithm in the following
sections. Figure 2 shows an example model for EEC
(Armstrong, Livestrong, Oct 17).

4.3.1 Random Variables
For the EEC-set (a1, a2, t, {r1, . . . rm}), we intro-

duce one event variable and m relation variables, all
boolean valued. The event variable Z(a1,a2,t) indi-
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cates whether (a1, a2, t) is a good event for para-
phrasing. It is designed in accordance with the
temporal burstiness heuristic: for the EEC (Barack
Obama, the White House, Oct 17), Z should be as-
signed the value 0.

The relation variable Y r indicates whether rela-
tion r describes the EEC (a1, a2, t) or not (i.e. r is an
event-mention or not). The set of all event-mentions
with Y r = 1 define a paraphrase cluster, contain-
ing relation phrases. For example, the assignments
Y step down = Y resign from = 1 produce a paraphrase
cluster {step down, resign from}.

4.3.2 Factors and the Joint Distribution

In this section, we introduce a conditional proba-
bility model defining a joint distribution over all of
the event and relation variables. The joint distribu-
tion is a function over factors. Our model contains
event factors, relation factors and joint factors.

The event factor ΦZ is a log-linear function with
spike features, used to distinguish good events. A re-
lation factor ΦY is also a log-linear function. It can
be defined for individual relation variables (e.g. ΦY

1

in Figure 2) with features such as whether a relation
phrase comes from a clausal complement3. A rela-
tion factor can also be defined for a pair of relation
variables (e.g. ΦY

2 in Figure 2) with features captur-
ing the pairwise evidence for paraphrasing, such as
if two relation phrases have the same tense.

The joint factors Φjoint are defined to apply con-
straints implied by the temporal heuristics. They
play two roles in our model: 1) to satisfy the tempo-
ral burstiness heuristic, when the value of the event
variable is false, the EEC is not appropriate for para-
phrasing, and so all relation variables should also be
false; and 2) to satisfy the one-mention per discourse
heuristic, at most one relation variable from a single
article could be true.

We define the joint distribution over these vari-
ables and factors as follows. Let Y = (Y r1 . . . Y rm)
be the vector of relation variables; let x be the fea-
tures. The joint distribution is:

3Relation phrases in clausal complement are less useful for
paraphrasing because they often do not describe a fact. For ex-
ample, in the sentence He heard Romney had won the election,
the extraction (Romney, had won, the election) is not a fact at
all.

p(Z = z,Y = y|x; Θ)
def
=

1

Zx
ΦZ(z,x)

×
∏
d

Φjoint(z,yd,x)
∏
i,j

ΦY (yi, yj ,x)

where yd indicates the subset of relation variables
from a particular article d, and the parameter vector
Θ is the weight vector of the features in ΦZ and ΦY ,
which are log-linear functions; i.e.,

ΦY (yi, yj ,x)
def
= exp

∑
j

θjφj(yi, yj ,x)


where φj is the jth feature function.

The joint factors Φjoint are used to apply the tem-
poral burstiness heuristic and the one event-mention
per discourse heuristic. Φjoint is zero when the EEC
is not good for paraphrasing, but some yr = 1; or
when there is more than one r in a single article such
that yr = 1. Formally, it is calculated as:

Φjoint(z,yd,x)
def
=


0 if z = 0 ∧ ∃yr = 1

0 if
∑

yr∈yd
yr > 1

1 otherwise

4.3.3 Maximum a Posteriori Inference
The goal of inference is to find the predictions z,y

which yield the greatest probability, i.e.,

z∗,y∗ = arg max
z,y

p(Z = z,Y = y|x; Θ)

This can be viewed as a MAP inference problem.
In general, inference in a graphical model is chal-
lenging. Fortunately, the joint factors in our model
are linear, and the event and relation factors are log-
linear; we can cast MAP inference as an integer lin-
ear programming (ILP) problem, and then compute
an approximation in polynomial time by means of
linear programming using randomized rounding, as
proposed in (Yannakakis, 1992).

We build one ILP problem for every EEC. The
variables of the ILP are Z and Y, which only take
values of 0 or 1. The objective function is the sum
of logs of the event and relation factors ΦZ and
ΦY . The temporal burstiness heuristic of Φjoint is
encoded as a linear inequality constraint z ≥ yi; the
one-mention per discourse heuristic of Φjoint is en-
coded as the constraint

∑
yi∈yd

yi ≤ 1.
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4.3.4 Learning
Our training data consists a set of N = 500 la-

beled EEC-sets each in the form of {(Ri, R
gold
i ) |Ni=1

}. Each R is the set of all relations in the EEC-set
while Rgold is a manually selected subset of R con-
taining relations describing the EEC. Rgold could be
empty if the EEC was deemed poor for paraphras-
ing. For our model, the gold assignment yrgold = 1
if r ∈ Rgold; the gold assignment zgold = 1 if Rgold

is not empty.
Given {(Ri, R

gold
i ) |Ni=1}, learning over similar

models is commonly done via maximum likelihood
estimation as follows:

L(Θ) = log
∏

i

p(Zi = zgold
i ,Yi = ygold

i | xi,Θ)

For features in relation factors, the partial deriva-
tive for the ith model is:

Φj(y
gold
i ,xi)− Ep(zi,yi|,xi,Θ)Φj(yi,xi)

where Φj(yi,xi) =
∑
φj(X,Y,x), the sum of val-

ues for the jth feature in the ith model; and values
of X,Y come from the assignment yi. For features
in event factors, the partial derivative is derived sim-
ilarly as

φj(z
gold
i ,xi)− Ep(zi,yi|,xi,Θ)φj(zi,xi)

It is unclear how to efficiently compute the expec-
tations in the above formula, a brute force approach
requires enumerating all assignments of yi, which
is exponentially large with the number of relations.
Instead, we opt to use a more tractable perceptron
learning approach (Collins, 2002; Hoffmann et al.,
2011). Instead of computing the expectations, we
simply compute φj(z

∗
i ,xi) and Φj(y

∗
i ,xi), where

z∗i ,y
∗
i is the assignment with the highest probabil-

ity, generated by the MAP inference algorithm us-
ing the current weight vector. The weight updates
are the following:

Φj(y
gold
i ,xi)− Φj(y

∗
i ,xi) (1)

φj(z
gold
i ,xi)− φj(z

∗
i ,xi) (2)

The updates can be intuitively explained as penal-
ties on errors. In sum, our learning algorithm con-
sists of iterating the following two steps: (1) in-
fer the most probable assignment given the current
weights; (2) update the weights by comparing in-
ferred assignments and the truth assignment.

5 Empirical Study

We first introduce the experimental setup for our em-
pirical study, and then we attempt to answer two
questions in sections 5.2 and 5.3 respectively: First,
does the NEWSSPIKE algorithm effectively exploit
the proposed heuristics and outperform other ap-
proaches which also use news streams? Secondly,
do the proposed temporal heuristics paraphrase re-
lations with greater precision than the distributional
hypothesis?

5.1 Experimental Setup

Since we were unable to find any elaborate time-
stamped, parallel, news corpus, we collected data
using the following procedure:
• Collect RSS news seeds, which contain the title,

time-stamp, and abstract of the news items.
• Use these titles to query the Bing news search

engine API and collect additional time-stamped
news articles.

• Strip HTML tags from the news articles using
Boilerpipe (Kohlschütter et al., 2010); keep only
the title and first paragraph of each article.

• Extract shallow relation tuples using the OpenIE
system (Fader et al., 2011).

We performed these steps every day from Jan-
uary 1 to February 22, 2013. In total, we collected
546,713 news articles, for which 2.6 million extrac-
tions had 529 thousand unique relations.

We used several types of features for paraphras-
ing: 1) spike features obtained from time series; 2)
tense features, such as whether two relation phrases
are both in the present tense; 3) cause-effect fea-
tures, such as whether two relation phrases often ap-
pear successively in the news articles; 4) text fea-
tures, such as whether sentences are similar; 5) syn-
tactic features, such as whether a relation phrase
appears in a clausal complement; and 6) semantic
features, such as whether a relation phrase contains
negative words.

Text and semantic features are encoded using the
relation factors of section 4.3.2. For example, in Fig-
ure 2, the factor ΦY

2 includes the textual similarity
between the sentences containing the phrases “step
down” and “be chairman of” respectively; it also
includes the feature that the tense of “step down”
(present) is different from the tense of “be chairman
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output {go into, go to, speak, return,
head to}

gold {go into, go to, approach, head to}
golddiv {go ∗, approach, head to}

P/R precision = 3/5 recall = 3/4

P/Rdiv precisiondiv = 2/4 recalldiv = 2/3

Figure 3: an example pair of the output cluster and the
gold cluster, and the corresponding precision recall num-
bers.

of” (past).

5.2 Comparison with Methods using Parallel
News Corpora

We evaluated NEWSSPIKE against other methods
that also use time-stamped news. These include the
models mentioned in section 3 and state-of-the-art
paraphrasing techniques.

Human annotators created gold paraphrase clus-
ters for 500 EEC-sets; note that some EEC-sets
yield no gold cluster, since at least two synonymous
phrases. Two annotators were shown a set of candi-
date relation phrases in context and asked to select a
subset of these that described a shared event (if one
existed). There was 98% phrase-level agreement.
Precision and recall were computed by comparing
an algorithm’s output clusters to the gold cluster of
each EEC. We consider paraphrases with minor lex-
ical diversity, e.g. (go to, go into), to be of lesser in-
terest. Since counting these trivial paraphrases tends
to exaggerate the performance of a system, we also
report precision and recall on diverse clusters i.e.,
those whose relation phrases all have different head
verbs. Figure 3 illustrates these metrics with an ex-
ample; note under our diverse metrics, all phrases
matching go * count as one when computing both
precision and recall. We conduct 5-fold cross val-
idation on our labeled dataset to get precision and
recall numbers when the system requires training.

We compare NEWSSPIKE with the models in Sec-
tion 4, and also with the state-of-the-art paraphrase
extraction method:

Baseline: the model discussed in Section 4.1.
This system does not need any training, and gener-
ates outputs with perfect recall.

Pairwise: the pairwise model discussed in Sec-
tion 4.2 and using the same set of features as used

System P/R P/R diverse
prec rec prec rec

Baseline 0.67 1.00 0.53 1.00
Pairwise 0.90 0.60 0.81 0.37
Socher 0.81 0.35 0.68 0.29

NEWSSPIKE 0.92 0.55 0.87 0.31

Table 1: Comparison with methods using parallel news
corpora

by NEWSSPIKE. To generate output clusters, transi-
tivity is assumed inside the EEC-set. For example,
when the pairwise model predicts that (r1, r2) and
(r1, r3) are both paraphrases, the resulting cluster is
{r1, r2, r3}.

Socher: Socher et al. (2011) achieved the best re-
sults on the Dolan et al. (2004) dataset, and released
their code and models. We used their off-the-shelf
predictor to replace the classifier in our Pairwise
model. Given sentential paraphrases, aligning rela-
tion phrases is natural, because OpenIE has already
identified the relation phrases.

Table 1 shows precision and recall numbers. It
is interesting that the basic model already obtains
0.67 precision overall and 0.53 in the diverse con-
dition. This demonstrates that the EEC-sets gen-
erated from the news streams are a promising re-
source for paraphrasing. Socher’s method performs
better, but not as well as Pairwise or NEWSSPIKE,
especially in the diverse cases. This is probably
due to the fact that Socher’s method is based purely
on text metrics and does not consider any tempo-
ral attributes. Taking into account the features used
by NEWSSPIKE, Pairwise significantly improves the
precision, which demonstrates the power of our tem-
poral correspondence heuristics. Our joint cluster
model, NEWSSPIKE, which considers both temporal
features and constraints, gets the best performance
in both conditions.

We conducted ablation testing to evaluate how
spike features and tense features, which are par-
ticularly relevant to the temporal aspects of news
streams, can improve performance. Figure 4 com-
pares the precision/recall curves for three systems
in the diverse condition: (1) NEWSSPIKE; (2)
w/oSpike: turning off all spike features; and (3)
w/oTense: turning off all features about tense.
(4) w/oDiscourse: turning off one event-mention
per discourse heuristic. There are some dips in
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Figure 4: Precision recall curves on hard, diverse cases
for NewsSpike, w/oSpike, w/oTense and w/oDiscourse.

the curves because they are drawn after sorting
the predictions by the value of the corresponding
ILP objective functions, which do not perfectly re-
flect prediction accuracy. However, it is clear that
NEWSSPIKE produces greater precision over all
ranges of recall.

5.3 Comparison with Methods using the
Distributional Hypothesis

We evaluated our model against methods based on
the distributional hypothesis. We ran NEWSSPIKE

over all EEC-sets except for the development set and
compared to the following systems:

Resolver: Resolver (Yates and Etzioni, 2009)
uses a set of extraction tuples in the form of
(a1, r, a2) as the input and creates a set of relation
clusters as the output paraphrases. Resolver also
produces argument clusters, but this paper only eval-
uates relation clustering. We evaluated Resolver’s
performance with an input of the 2.6 million extrac-
tions described in section 5.1, using Resolver’s de-
fault parameters.

ResolverNYT: Since Resolver is supposed to
perform better when given more accurate statis-
tics from a larger corpus, we tried giving it more
data. Specifically, we ran ReVerb on 1.8 million NY
Times articles published between 1987 and 2007 ob-
tain 60 million extractions (Sandhaus, 2008). We ran
Resolver on the union of this and our standard test
set, but report performance only on clusters whose
relations were seen in our news stream.

System all diverse
prec #rels prec #rels

Resolver 0.78 129 0.65 57
ResolverNyt 0.64 1461 0.52 841

ResolverNytTop 0.83 207 0.72 79
Cosine 0.65 17 0.33 9

CosineNyt 0.56 73 0.46 59
NEWSSPIKE 0.93 24843 0.87 5574

Table 2: Comparison with methods using the distribu-
tional hypothesis

ResolverNytTop: Resolver is designed to
achieve good performance on its top results. We thus
ranked the ResolverNYT outputs by their scores and
report the precision of the top 100 clusters.

Cosine: Cosine similarity is a basic metric for
the distributional hypothesis. This system employs
the same setup as Resolver in order to generate
paraphrase clusters, except that Resolver’s similar-
ity metric is replaced with the cosine. Each relation
is represented by a vector of argument pairs. The
similarity threshold to merge two clusters was 0.5.

CosineNYT: As for ResolverNYT, we ran Cosi-
neNYT with an extra 60 million extractions and re-
ported the performance on relations seen in our news
stream.

We measured the precision of each system by
manually labeling all output if 100 or fewer clus-
ters were generated (e.g. ResolverNytTop), other-
wise 100 randomly chosen clusters were sampled.
Annotators first determined the meaning of every
output cluster and then created a gold cluster by
choosing the correct relations. The gold cluster
could be empty if the output cluster was nonsensi-
cal. Unlike many papers that simply report recall on
the most frequent relations, we evaluated the total
number of returned relations in the output clusters.
As in Section 5.2, we also report numbers for the
case of lexically diverse relation phrases.

As can be seen in Table 2, NEWSSPIKE outper-
formed methods based on the distributional hypoth-
esis. The performance of the Cosine and Cosi-
neNyt was very low, suggesting that simple simi-
larity metrics are insufficient for handling the para-
phrasing problem, even when large-scale input is in-
volved. Resolver and ResolverNyt employ an ad-
vanced similarity measurement and achieve better
results. However, it is surprising that Resolver re-
sults in a greater precision than ResolverNyt. It
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is possible that argument pairs from news streams
spanning 20 years sometimes provide incorrect ev-
idence for paraphrasing. For example, there were
extractions like (the Rangers, be third in, the NHL)
and (the Rangers, be fourth in, the NHL) from news
in 2007 and 2003 respectively. Using these phrases,
ResolverNyt produced the incorrect cluster {be third
in, be fourth in}. NEWSSPIKE achieves greater pre-
cision than even the best results from ResolverNyt-
Top, because NEWSSPIKE successfully captures the
temporal heuristics, and does not confuse synonyms
with antonyms, or causes with effects. NEWSSPIKE

also returned on order of magnitude more relations
than other methods.

5.4 Discussion
Unlike some domain-specific clustering methods,
we tested on all relation phrases extracted by Ope-
nIE on the collected news streams. There are no
restrictions on the types of relations. Output para-
phrases cover a broad range, including politics,
sports, entertainment, health, science, etc. There
are 10 thousand nonempty clusters over 17 thousand
distinct phrases with average size 2.4. Unlike meth-
ods based on distributional similarity, NewsSpike
correctly clusters infrequently appearing phrases.

Since we focus on high precision, it is not sur-
prising that most clusters are of size 2 and 3. These
high precision clusters can contribute a lot to gen-
erate larger paraphrase clusters. For example, one
can invent the technique to merge smaller clusters
together. The work presented here provides a foun-
dation for future work to more closely examine these
challenges.

While this paper gives promising results, there
are still behaviors found in news streams that prove
challenging. Many errors are due to the discourse
context: the two sentences are synonymous in the
given EEC-set, but the relation phrases are not
paraphrases in general. For example, consider the
following two sentences: “DA14 narrowly misses
Earth” and “DA14 flies so close to Earth”. Statis-
tics information from large corpus would be helpful
to handle such challenges. Note in this paper, in or-
der to fairly compare with the distributional hypoth-
esis, we purposely forced NEWSSPIKE not to rely
on any distributional similarity. But NEWSSPIKE’s
graphical model has the flexibility to incorporate any
similarity metrics as features. Such a hybrid model

has great potential to increase both precision and re-
call, which is one goal for future work.

6 Related Work

The vast majority of paraphrasing work falls into
two categories: approaches based on the distribu-
tional hypothesis or those exploiting on correspon-
dences between parallel corpora (Androutsopoulos
and Malakasiotis, 2010; Madnani and Dorr, 2010).

Using Distribution Similarity: Lin and Pan-
tel’s (2001) DIRT employ mutual information statis-
tics to compute the similarity between relations rep-
resented in dependency paths. Resolver (Yates and
Etzioni, 2009) introduces a new similarity metric
called the Extracted Shared Property (ESP) and uses
a probabilistic model to merge ESP with surface
string similarity.

Identifying the semantic equivalence of relation
phrases is also called relation discovery or unsu-
pervised semantic parsing. Often techniques don’t
compute the similarity explicitly but rely implic-
itly on the distributional hypothesis. Poon and
Domingos’ (2009) USP clusters relations repre-
sented with fragments of dependency trees by re-
peatedly merging relations having similar context.
Yao et al. (2011; 2012) introduces generative mod-
els for relation discovery using LDA-style algorithm
over a relation-feature matrix. Chen et al. (2011) fo-
cuses on domain-dependent relation discovery, ex-
tending a generative model with meta-constraints
from lexical, syntactic and discourse regularities.

Our work solves a major problem with these ap-
proaches, avoiding errors such as confusing syn-
onyms with antonyms and causes with effects. Fur-
thermore, NEWSSPIKE doesn’t require massive sta-
tistical evidence as do most approaches based on the
distributional hypothesis.

Using Parallel Corpora: Comparable and par-
allel corpora, including news streams and multiple
translations of the same story, have been used to
generate paraphrases, both sentential (Barzilay and
Lee, 2003; Dolan et al., 2004; Shinyama and Sekine,
2003) and phrasal (Barzilay and McKeown, 2001;
Shen et al., 2006; Pang et al., 2003). Typical meth-
ods first gather relevant articles and then pair sen-
tences that are potential paraphrases. Given a train-
ing set of paraphrases, models are learned and ap-
plied to unlabeled pairs (Dolan and Brockett, 2005;
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Socher et al., 2011). Phrasal paraphrases are often
obtained by running an alignment algorithm over the
paraphrased sentence pairs.

While prior work uses the temporal aspects of
news streams as a coarse filter, it largely relies on
text metrics, such as context similarity and edit dis-
tance, to make predictions and alignments. These
metrics are usually insufficient to produce high pre-
cision results; moreover they tend to produce para-
phrases that are simple lexical variants (e.g. {go to,
go into}.). In contrast, NEWSSPIKE generates para-
phrase clusters with both high precision and high di-
versity.

Others: Textual entailment (Dagan et al., 2009),
which finds a phrase implying another phrase,
is closely related to the paraphrasing task. Be-
rant et al. (2011) notes the flaws in distributional
similarity and proposes local entailment classi-
fiers, which are able to combine many features.
Lin et al. (2012) also uses temporal information to
detect the semantics of entities. In a manner similar
to our approach, Recasens et al. (2013) mines paral-
lel news stories to find opaque coreferent mentions.

7 Conclusion

Paraphrasing event relations is crucial to many natu-
ral language processing applications, including re-
lation extraction, question answering, summariza-
tion, and machine translation. Unfortunately, previ-
ous approaches based on distribution similarity and
parallel corpora, often produce low precision clus-
ters. This paper introduces three Temporal Corre-
spondence Heuristics that characterize semantically
equivalent phrases in news streams. We present a
novel algorithm, NEWSSPIKE, based on a proba-
bilistic graphical model encoding these heuristics,
which harvests high-quality paraphrases of event re-
lations.

Experiments show NEWSSPIKE’s improvement
relative to several other methods, especially at pro-
ducing lexically diverse clusters. Ablation tests
confirm that our temporal features are crucial to
NEWSSPIKE’s precision. In order to spur future
research, we are releasing an annotated corpus of
time-stamped news articles and our harvested rela-
tion clusters.
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Abstract

Wikification, commonly referred to as Disam-
biguation to Wikipedia (D2W), is the task of
identifying concepts and entities in text and
disambiguating them into the most specific
corresponding Wikipedia pages. Previous ap-
proaches to D2W focused on the use of lo-
cal and global statistics over the given text,
Wikipedia articles and its link structures, to
evaluate context compatibility among a list of
probable candidates. However, these meth-
ods fail (often, embarrassingly), when some
level of text understanding is needed to sup-
port Wikification. In this paper we introduce
a novel approach to Wikification by incorpo-
rating, along with statistical methods, richer
relational analysis of the text. We provide an
extensible, efficient and modular Integer Lin-
ear Programming (ILP) formulation of Wik-
ification that incorporates the entity-relation
inference problem, and show that the ability
to identify relations in text helps both candi-
date generation and ranking Wikipedia titles
considerably. Our results show significant im-
provements in both Wikification and the TAC
Entity Linking task.

1 Introduction

Wikification (D2W), the task of identifying concepts
and entities in text and disambiguating them into
their corresponding Wikipedia page, is an important
step toward supporting deeper textual understand-
ing, by augmenting the ability to ground text in ex-
isting knowledge and facilitating knowledge expan-
sion.

D2W has been studied extensively recently
(Cucerzan, 2007; Mihalcea and Csomai, 2007;

Milne and Witten, 2008; Ferragina and Scaiella,
2010; Ratinov et al., 2011) and has already found
broad applications in NLP, Information Extraction,
and Knowledge Acquisition from text, from coref-
erence resolution (Ratinov and Roth, 2012) to entity
linking and knowledge population (Ellis et al., 2011;
Ji et al., 2010; Cucerzan, 2011).

Given a document D containing a set of concept
and entity mentionsM ( referred to later as surface),
the goal of Wikification is to find the most accurate
mapping from mentions to Wikipedia titles T ; this
mapping needs to take into account our understand-
ing of the text as well as background knowledge that
is often needed to determine the most appropriate ti-
tle. We also allow a special NIL title that captures
all mentions that are outside Wikipedia.

Earlier approaches treated this task as a word-
sense disambiguation (WSD) problem, which was
later enhanced with a certain level of global rea-
soning, but essentially all approaches focused on
generic statistical features in order to achieve robust
disambiguation. It was shown that by disambiguat-
ing to the most likely title for every surface, in-
dependently maximizing the conditional probability
Pr(title|surface), we already achieve a very com-
petitive baseline on several Wikification datasets
(Ratinov et al., 2011). This strong statistical baseline
makes use of the relatively comprehensive coverage
of the existing Wikipedia links from surface strings
to Wikipedia titles. Although more involved statis-
tical features are required in order to make substan-
tial improvements, global features such as context
TF-IDF, better string similarity, etc., statistics-based
Wikification systems give a fairly coherent set of
disambiguation when sufficient context is available.
Consider the following example: Earth’s biosphere
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then significantly altered the atmospheric and other ba-
sic physical conditions, which enabled the proliferation
of organisms. The atmosphere is composed of 78.09%
nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon
dioxide, and small amounts of...

The baseline system we adopted (Ratinov et al.,
2011), one of the best Wikification systems, al-
ready disambiguates atmosphere correctly to the ti-
tle Earth’s atmosphere instead of the more general
title Atmosphere, making use of the concept Earth in
its local context to resolve the mention to the more
specific title that better coheres with the topic. How-
ever, consider the following example:

Ex. 1 “As Mubarak, the wife of deposed Egyptian
President Hosni Mubarak got older, her influence...”

The bold faced name should be mapped to Suzanne
Mubarak, but all existing Wikification systems map
both names in this sentence to the dominant page
(the most linked page) of Hosni Mubarak, failing to
understand the relation between them, which should
prevent them from being mapped to the same page.
A certain level of text understanding is required even
to be able to generate a good list of title candidates.
For example, in:

Ex. 2 “...ousted long time Yugoslav President Slo-
bodan Milošević in October. Mr. Milošević’s So-
cialist Party...”

the bold-faced concept should be mapped to the
page of the Socialist Party of Serbia, which is far
down the list of titles that could be related to “So-
cialist Party”; making this title a likely candidate
requires understanding the possessive relation with
Milošević and then making the knowledge-informed
decision that he is more related to Socialist Party of
Serbia than any other possible titles. Finally, in

Ex. 3 “James Senn, director of Robinson College’s
Center for Global Business Leadership at Georgia
State University...”

we must link Robinson College to J. Mack Robin-
son College of Business which is located at Geor-
gia State University instead of Robinson College,
Cambridge, which is the only probable title linked
by the surface Robinson College in the version of
the Wikipedia dump we used.

These examples further illustrate that, along with
understanding the relation expressed in the text, we

need to access background knowledge sources and
to deal with variability in surface representation
across the text, Wikipedia, and knowledge, in order
to reliably address the Wikification problem.

In this paper we focus on understanding those nat-
ural language constructs that will allow eliminat-
ing these “obvious” (to a human reader) mistakes
from Wikification. In particular, we focus on resolv-
ing coreference and a collection of local syntactico-
semantic relations (Chan and Roth, 2011); better un-
derstanding the relational structure of the text allows
us to generate title candidates more accurately given
the text, rank these candidates better and determine
when a mention in text has no corresponding title
in Wikipedia and should be mapped to NIL, a key
problem in Wikification. Moreover, it allows us to
access external knowledge based resources more ef-
fectively in order to support these decisions.

We incorporate the outcome of our relational
analysis, along with the associated features extracted
from external sources and the “standard” wikifica-
tion statistical features, into an ILP-based inference
framework that globally determines the best assign-
ment of mentions to titles in a given document. We
show that by leveraging a better understanding of
the textual relations, we can substantially improve
the Wikification performance. Our system signifi-
cantly outperforms all the top Wikification systems
on the widely adopted standard datasets and shows
state-of-the-art results when evaluated (without be-
ing trained directly) on the TAC 2011 Entity Linking
task.

2 The Wikification Approach

A general Wikification decision consists of three
computational components: (1) generating a ranked
list of title candidates for each mention, (2) rank-
ing candidates globally, and (3) dealing with NIL
mentions. For (1), the “standard” way of using
Pr(title|surface) is often not sufficient; consider
the case where the mention is the single word “Presi-
dent”; disambiguating such mentions depends heav-
ily on the context, i.e. to determine the relevant
country or organization. However, it is intractable to
search the entire surface-to-title space, and using an
arbitrary top-K list will inevitably leave out a large
number of potential solutions. For (2), even though
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the anchor texts cover many possible ways of para-
phrasing the Wikipedia article titles and thus using
the top Pr(title|surface) is proven to be a fairly
strong baseline, it is never comprehensive. There is
a need to disambiguate titles that were never linked
by any anchor text, and to disambiguate mentions
that have never been observed as the linked text. For
(3) the Wikifier needs to determine when a mention
corresponds to no title, and map it to a NIL entity.
Simply training a classifier using coherency features
or topical models turns out to be insufficient, since it
has a predetermined granularity at which it can dis-
tinguish entities.

Next we provide a high-level description (Alg. 1)
of our approach to improve Wikification by leverag-
ing textual relations in these three stages.

Algorithm 1 Relational Inference for Wikification
Note: Γ : M → T is the sought after mapping from
all mentions in the document to all candidate titles
in Wikipedia.
Require: Document D, Knowledge Base K con-

sisting of relation triples σ = (ta, p, tb), where
p is the relation predicate.

1: Generate initial mentions M = {mi} from D.
2: Generate candidates ti = {tki } for mention mi

and initialize candidate priors Pr(tki |mi) with
existing Wikification system, for all mi ∈M .

3: Instantiate non-coreference relational con-
straints and add relational candidates.

4: Instantiate coreference relational constraints
and add relational candidates.

5: Construct an ILP objective function and solve
for the arg maxΓ Pr(Γ).

6: return Γ.

Most of our discussion addresses the relational
analysis and its impact on stage (2) and (3) above.
We will only briefly discuss improvements to the
standard candidate generation stage in Sec. 4.4

3 Problem Formulation

We now describe how we formulate our global deci-
sion problem as an Integer Linear Program (ILP).

We use two types of boolean variables: eki is
used to denote whether we disambiguate mi to tki
(Γ(mi) = tki ) or not. r

(k,l)
ij is used to denote if

titles tki and tlj are chosen simultaneously, that is,

r
(k,l)
ij = eki ∧ elj .

Our models determine two types of score for
the boolean variables above: ski = Pr(eki ) =
Pr(Γ(mi) = tki ), represents the initial score for the
kth candidate title being chosen for mentionmi. For
a pair of titles (tki , t

l
j), we denote the confidence of

finding a relation between them by w(k,l)
ij . Its value

depends on the textual relation type and on how co-
herent it is with our existing knowledge.

Our goal is to find the best assignment to vari-
ables eki , such that it satisfies some legitimacy (hard)
constraints and the soft constraints dictated by the
relational constraints (via scores w(k,l)

ij ). To accom-
plish that we define our objective function as a Con-
strained Conditional Model (CCM) (Roth and Yih,
2004; Chang et al., 2012) that is used to reward or
penalize a pair of candidates tki , t

l
j by w(k,l)

ij when
they are chosen in the same document. Specifically,
we choose the assignment ΓD that optimizes:

ΓD = arg max
Γ

∑
i

∑
k

ski e
k
i +

∑
i,j

∑
k,l

w
(k,l)
ij r

(k,l)
ij

s.t. r
(k,l)
ij ∈ {0, 1} Integral constraints

eki ∈ {0, 1} Integral constraints

∀i
∑

k e
k
i = 1 Unique solution

2r(k,l)
ij ≤ eki + elj Relation definition

Note that as in most NLP problems, the prob-
lem is very sparse, resulting in a tractable ILP
that is solved quickly by off-the-shelf ILP packages
(Gurobi Optimization, 2013). In our case the key
reason for the sparseness is that w(k,l)

ij = 0 for most
pairs considered, which does not require explicit in-
stantiation of r(k,l)

ij .

4 Relational Analysis

The key challenge in incorporating relational anal-
ysis into the Wikification decision is to systemati-
cally construct the relational constraints (the solid
edges between candidates in Figure 1) and incorpo-
rate them into our inference framework. Two main
components are needed: first, we need to extract
high precision textual relations from the text; then,
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Slobodan Milošević
...
...
Savo Milošević

Slobodan Milošević Socialist Party (France)
Socialist Party
...
Socialist Party of Serbia

Yugoslavia President
...

President of the Federal Republic of Yugoslavia

...ousted long time [ Yugoslav President ] [Slobodan Milošević] in October. Mr. [Milošević]'s [Socialist Party] ...

CoreferenceApposition

search in lexical/relational space

search in lexical and P(title|surface) space

Possessive
m1 m2 m3 m4

t1

t2

...
founder_ofholds_office

=

Figure 1: Textual relation inference framework: The goal is to maximize the objective function assigning mentions
to titles while enforcing coherency with relations extracted from both text and an external knowledge base. Here,
searching the external KB reveals that Slobodan Milošević is the founder of the Socialist Party of Serbia, which can be
referred to by the surface Socialist Party; we therefore reward the output containing this pair of candidates. The same
idea applies for the relation “Slobodan Milošević holds office as President of the Federal Republic of Yugoslavia” as
well as to the coreference relation between two mentions of Slobodan Milošević.

we need to assign weights to these semantic rela-
tions. We determine the weights by combining type
and confidence of the relation extracted from text
with the confidence in relations retrieved from an ex-
ternal Knowledge Base (KB) by using the mention
pairs as a query. It is noteworthy that although con-
text window based coherency objective functions
capture many proximity relations, using these unfil-
tered relations as constraints in our experiments in-
troduced excessive amount of false-positives for the
intrinsically sparse textual relations and resulted in
severe performance hit.

In Sec. 4.1 we describe how we extract relations
from text; our goal is to reliably identify arguments
that we hypothesize to be in a relation; we show
that this is essential both to our candidate genera-
tion, our ranking and the mapping to NIL. Sec. 4.2
describes how we use an external KB to verify that
these arguments are indeed in a relation. Finally,
Sec. 4.3 shows how we generate scores for the men-
tions and relations, as coefficients in the objective
function of Sec. 3. The process is illustrated in Fig-
ure 1. Overall, our approach is an ambiguity-aware
approach that identifies, filters and scores the rele-
vant relations; this is essential due to the ambiguity,
variability and noise inherent in directly matching
surface forms to titles.

4.1 Relation Extraction

Even though relation extraction is an open prob-
lem, analysis on the ACE2004 Relation Detection
and Characterization (RDC) dataset shows that ap-

proximately 80% of the relations are expressed
through syntactico-semantic structures (Chan and
Roth, 2011) that are easy to extract with high pre-
cision. Unlike the general ACE RDC task, we can
restrict relation arguments to be named entities and
thus leverage the large number of known relations in
existing databases (e.g. Wikipedia infoboxes). We
also consider conference relations that potentially
aid mapping different mentions to the same title.

4.1.1 Syntactico-semantic Relations
We introduce our approach using the following

example. Consider a news article discussing Israeli
politics while briefly mentioning:

Ex. 4 An official at the [Iranian]1 [Ministry of
Defense]2 told Tehran Radio that...

A purely statistical approach would very likely map
the entity [Ministry of Defense]2 to Ministry of De-
fense (Israel) instead of Ministry of Defense and
Armed Forces Logistics (Iran) because the context is
more coherent with concepts related to Israel rather
than to Iran. Nevertheless, the pre-modifier relation
between [Iranian]1 and [Ministry of Defense]2 de-
mands the answer to be tightly related to Iran. Even
though human readers may not know the correct ti-
tle needed here, understanding the pre-modifier re-
lation allows them to easily filter through a list of
candidates and enforce constraints that are derived
jointly from the relation expressed in the text and
their background knowledge.

In our attempt to mimic this general approach, we
employ several high precision classifiers to resolve
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a range of local relations that are used to retrieve
relevant background knowledge, and consequently
integrated into our inference framework. Our in-
put for relation extraction is any segment matched
by the regular expression to be mentioned in sec-
tion 4.4 in the candidate generation stage; we ana-
lyze its constituents by decomposing it into the two
largest sub-entities that have (in Wikipedia) corre-
sponding candidates. In the above example, Ira-
nian Ministry of Defense would be decomposed into
Iranian and Ministry of Defense and our relation
extraction process hypothesizes a relation between
these arguments.

Note that we do not use any full parsing since it
does not address our needs directly nor does it scale
well with the typical amount of data used in Wikifi-
cation.

4.1.2 Coreference Relations
In addition to syntactico-semantic relations, we

could also encounter other textual relations. The fol-
lowing example illustrates the importance of under-
standing co-reference relations in Wikification:

Ex. 5 [Al Goldman]1, chief market strategist at
A.G. Edwards, said ... [Goldman]2 told us that...

There is no Wikipedia entry (or redirection) that
matches the name Al Goldman. Clearly [Goldman]2

refers to the same person and should be mapped to
the same entity (or to NIL) rather than popular en-
tities frequently referred to as Goldman, coherent
with context or not, such as Goldman Sachs. To ac-
complish that, we cluster named entities that share
tokens or are acronyms of each other when there
is no ambiguity (e.g. no other longer named en-
tity mentions containing Goldman in the document)
and use a voting algorithm (Algorithm 2) to generate
candidates locally from within the clusters. We also
experimented with using full-fledged coference sys-
tems, but found it to be time consuming while pro-
viding no significant end-to-end performance differ-
ence.

4.1.3 Coreferent Nominal Mentions
Document level coreference also provides impor-

tant relations between named entities and nominal
mentions. Extracting these relations proved to be
very useful for classifying NIL entities, as unfamil-
iar concepts tend to be introduced with these suc-

cinct appositional nominal mentions. These descrip-
tions provide a clean “definition” of the entity, al-
lowing us to abstract the inference to a limited “noun
phrase entailment problem”. That is, it allows us to
determine whether the target mention corresponds to
a candidate title. Consider, for example, wikifying
Dorothy Byrne in: Dorothy Byrne, a state coordi-
nator for the Florida Green Party, . . .
Identifying the apposition relation allows us to de-
termine that this Dorothy Byrne is not the baseline
Wikipedia title. We use the TF-IDF cosine similar-
ity between the nominal description and the lexical
context (Ratinov et al., 2011) of the candidate page,
head word attributes and entity relation (i.e. between
Dorothy Byrne and Florida Green Party) to deter-
mine whether any candidates of Dorothy Byrne can
entail the nominal mention.

4.2 Relational Queries

Statistics based candidate generation algorithms al-
ways generate the same list of candidates given the
same surface string; even though this approach has
a competitive coverage rate, it will not work well
in some “obvious” (to human) cases; for example,
it offers very little information on highly ambigu-
ous surface strings such as “President” for which it
is even intractable to rank all the candidates. Top-
K lists which were used in previous literature suf-
fer from the same problem. Instead, we make use
of relational queries to generate a more likely set of
candidates.

Once mention pairs are generated from text us-
ing the syntactico-semantic structures and corefer-
ence, we use these to query our KB of relational
triples. We first indexed all Wikipedia links and DB-
pedia relations as unordered triples σ = (ti, p, tj),
where the arguments ti, tj are tokenized, stemmed
and lowercased for best recall. p is either a relation
predicate from the DBpedia ontology or the predi-
cate LINK indicating a hyperlink relation. Since
our baseline system has approximately 80% accu-
racy at this stage, it is reasonable to assume that at
least one of the argument mentions is correctly dis-
ambiguated. Therefore we prune the search space
by making only two queries for each mention pair
(mi,mj): q0 = (t∗i ,mj) and q1 = (mi, t

∗
j ) where

t∗i , t
∗
j are the strings representing the top titles cho-

sen by the current model for mentions mi,mj re-
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spectively.
We also aggressively prune the search results in

a way similar to the process in Sec. 4.4, only keep-
ing the arguments that are known to be possible or
very likely candidates of the mention, based on the
ambiguity that exists in the query result.

4.3 Relation Scoring

For the final assignment made using our objective
function (Sec. 3) we need to normalize and rescale
the output of individual components of our system as
they come from different scoring functions. We con-
sider adding new title candidates from two sources,
through the coreference module and through the
combined DBpedia and Wikipedia inter-page link
structures. Next we describe how to compute and
combine these scores.

4.3.1 Scoring Knowledge Base Relations
Our model uses both explicit relations p 6=

LINK from DBpedia and Wikipedia hyperlinks
p = LINK (implicit relation). We want to favor
relations with explicit predicate, each weighted as φ
implicit relation (we use φ = 5 in our experiments,
noting the results are insensitive to slight changes of
this parameter).

For each query, we denote the score returned by
our KB search engine1 given query q and triple σ
as Simσ,q. The relational weight wk,li,j between two
candidates (see Sec. 3) is determined as:

wk,li,j =
1
Z

∑
σ

ασSimσ,q

where the sum is over the top 20 KB triples, ασ is
the relation type scaling constant (φ or 1), and Z is
a normalization factor that normalizes all wk,li,j to the
range [0, 1].

Note that we do not check the type of the relation
against the textual relation. The key reason is that
explicit relations are not as robust, especially con-
sidering that we restrict one of the arguments in the
relation and constraining the other argument’s lexi-
cal form. Moreover, we back off to restricting the re-
lations to be between known candidates when mul-
tiple lexically matched arguments are retrieved with
high ambiguity. Additionally, most of our relations

1http://lucene.apache.org/

Algorithm 2 Coreferent Candidates Voting
Require: Coreference cluster C

1: Vote collector vt denotes the score for a candi-
date t, which by default is 0.

2: ti = {t1i . . . tni } is the set of candidates of men-
tion mi.

3: li is the token count of mi

4: for all mi ∈ C, li ≥ 2 do
5: for all tki ∈ ti do
6: vtki

= vtki
+ ski

7: end for
8: end for
9: Let AllSingle denote whether ∀i, li = 1

10: for all mi ∈ C where li = 1 do
11: for all tki ∈ ti do
12: if AllSingle or vtki > 0 then
13: vtki

= vtki
+ ski

14: end if
15: end for
16: end for
17: return v

do not have explicit predicates in the text anyhow,
and extracting a type would add noise to our deci-
sion.

4.3.2 Scoring Coreference Relations
For coreference relations, we simply use hard

constraints by assigning candidates in the same
coreference cluster a high relational weight, which
is a cheap approximation to penalizing the output
where the coreferent mentions disambiguate to dif-
ferent titles. In practice, using a weight of 10 is suf-
ficient. Another important issue here is that the cor-
rect coreferent candidate might not exist in the can-
didate list of the shorter mentions in the cluster. For
example, if a mention has the surface Richard, the
number of potential candidates is so large that any
top K list of titles will not be informative. We there-
fore ignore candidates generated from short surface
strings and give it the same candidate list as the head
mentions in its cluster. Figure 2 shows the voting al-
gorithm we use to elect the potential candidates for
the cluster.

The reason for separating the votes of longer and
shorter mentions is that shorter mentions are inher-
ently more ambiguous. Once a coreferent relation
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is determined, longer mentions in the cluster should
dictate what this cluster should collectively refer to.

4.4 Candidate Generation

Beyond the algorithmic improvements, the mention
and candidate generation stage is aided by a few
systematic preprocessing improvement briefly de-
scribed below.

4.4.1 Mention Segmentation
Since named entities may sometimes overlap with

each other, we use regular expressions to match
longer surface forms that are often incorrectly seg-
mented or ignored by NER 2 due to different an-
notation standards. For example, this will capture:
Prime Minister of the United Kingdom. The regu-
lar expression pattern we used for Step 1 in Algo-
rithm 1 simply adds mentions formed by any two
consecutive capitalized word chunks connected by
up to 2 punctuation marks, prepositions, and the to-
kens “the”, “’s” & “and”. These segments are also
used as arguments for relation extraction.

4.4.2 Lexical Search
We link certain mentions directly to their exact

matching titles in Step 3 when there is very low am-
biguity. Specifically, when no title is known for a
mention that is relatively long and fuzzily matches
the lexically retrieved title, we perform this aggres-
sive linking. The lexical similarity metrics are com-
puted using the publicly available NESim 3 package
(Do et al., 2009) with a threshold tuned on a subset
of Wikipedia redirects, and by insisting that ORG
type entities must have the same head word as the
candidate titles. We only accept the link if there ex-
ists exactly one title in the lexical searching result
after pruning.

5 Experiments and Evaluation

This section describes our experimental evaluation.
We compare our system against the top D2W sys-
tems and perform several experiments to analyze
and better understand the power of our approach.
We based our work on the GLOW system from

2We used the IllinoisNER package http://cogcomp.
cs.illinois.edu/page/software_view/4

3http://cogcomp.cs.illinois.edu/page/
software_view/22

(Ratinov et al., 2011) to initialize the candidates and
corresponding priors ski in our objective function.
Both the baseline system and our new system are
publicly available 4.

5.1 Comparison with other Wikification
systems

We first evaluate on the same 4 datasets5 used in
(Ratinov et al., 2011). The AQUAINT dataset, orig-
inally introduced in (Milne and Witten, 2008), re-
sembles the Wikipedia annotation structure in that
only the first mention of a title is linked, and is
thus less sensitive to coreference capabilities. The
MSNBC dataset is from (Cucerzan, 2007) and in-
cludes many mentions that do not easily map to
Wikipedia titles due to rare surface or other idiosyn-
cratic lexicalization (Cucerzan, 2007; Ratinov et al.,
2011). Both of these datasets came from the news
domain and do not contain any annotated NIL enti-
ties. The ACE and Wikipedia datasets are both taken
from (Ratinov et al., 2011) where ACE is a subset
of ACE2004 Coreference documents annotated by
Amazon Mechanical Turkers in a similar standard as
in AQUAINT but with NIL entities. The Wikipedia
dataset is a sample of Wikipedia pages with its orig-
inal hyperlink annotation.

The evaluation methodology Bag of Titles (BOT)
F1 was used in both (Milne and Witten, 2008; Rati-
nov et al., 2011). For each document, the gold bag
of titles is evaluated against our bag of system out-
put titles requiring exact segmentation match.

Dataset
System ACE MSNBC AQUAINT Wiki
M&W 72.76 68.49 83.61 80.32
R&R 77.25 74.88 83.94 90.54
RI 85.30 81.20 88.88 93.09

Table 1: Performance on Wikification datasets, BOT F1
Performance. Our system, Relational Inference (RI) ex-
hibits significant improvements over M&W (Milne and
Witten, 2008) and R&R (Ratinov et al., 2011).

4http://cogcomp.cs.illinois.edu/page/
download_view/Wikifier

5http://cogcomp.cs.illinois.edu/page/
resource_view/4
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5.2 Ablation study

We incrementally add various components to the
system and study their impact on the end perfor-
mance. Due to the changes in Wikipedia since the
datasets were generated, some of the pages no longer
exist; in order to minimize the interference caused
by these inconsistencies to an accurate evaluation
of various componenents, we consider all non-NIL
gold annotations that do not exist in the current
Wikipedia index as NIL entities. Additionally in the
MSNBC dataset, 127 out of 756 surface forms are
known to be non-recallable. This explains the per-
formance difference between the final rows in Tab.
1 and 2.

Dataset
Components ACE MSNBC AQUAINT Wiki
Baseline 80.68 83.00 83.93 91.93
+Lexical Match 83.47 84.13 88.88 93.41
+Coreference 83.40 87.88 88.88 93.09
RI 85.83 88.16 88.88 93.09

Table 2: Ablation study on Wikification datasets, BOT F1
Performance

The Baseline refers to the best performing configu-
ration that was used in (Ratinov et al., 2011) except
for using the current Wikipedia redirects. The Lexi-
cal Match refers to the applying solely the method-
ology introduced in Sec. 4.4. The Coreference per-
formance includes all the inference performed with-
out the KB triples, while the Relational Inference
(RI) line represents all aspects of the proposed re-
lational inference. It is clear that different datasets
show somewhat different characteristics and conse-
quently different gains from the various aspects of
our approach but that, overall, all aspects contribute
to improved performance.

5.3 TAC Entity Linking 2011

Next we evaluate our approach on the TAC English
Entity Linking Task, which provides standardized
evaluation metrics, allowing us to compare to a large
number of other systems. We did not evaluate on the
2012 English Entity Linking due to the significant
amount of ambiguous NIL entities included (Ellis et

al., 2011) in the queries and the need to cluster them,
which our D2W task definition does not address in
depth. We compare our system with the Top 3 TAC
2011 systems (LCC, MS-MLI and NUSchime) as
well as our baseline system GLOW that participated
in TAC 2011 English Entity Linking (Ratinov and
Roth, 2011) in table 3. The evaluation metric is the
official modified B3 and Micro-Average explained
in (Ji et al., 2011).

Given the TAC Knowledge Base (TKB), which is
a subset of the 2009 Wikipedia Dump, the TAC En-
tity Linking objective is to answer a named entity
query string with either a TKB entry ID or a NIL
entity ID, where the NIL entity IDs should be clus-
tered across documents.

It is important to note that we did not retrain our
system on the TAC data as the top three systems did,
even though the objective function is slightly differ-
ent. Instead, we ran our system on the TAC doc-
uments directly without any query expansion. For
the final output of each query, we simply use the
most confident candidate among all matched men-
tions. Due to the clustering requirement, we also
trivially cluster NIL entities that either are mapped
to the same out-of-KB Wikipedia URL or have the
same surface form.

Performance
System MA B3 P B3 R B3 F1
LCC 86.1 84.4 84.7 84.6
MS-MLI 86.8 84.8 83.4 84.1
RI 86.1 82.9 84.5 83.7
NUSchime 86.3 81.5 84.9 83.1
RI-0 81.4 78.6 79.1 78.8
Cogcomp 78.7 75.7 76.5 76.1

Table 3: TAC2011 Entity Linking performance. MA is
Micro-Average. LLC (Monahan et al., 2011) is the best
performing system in terms of B3 F1 while MS-MLI
(Cucerzan, 2011) is the best in terms of Micro-Average.
Cogcomp (Ratinov and Roth, 2011) is the GLOW based
system that participated in TAC 2011.RI is the complete
relational inference system described in this paper; as de-
scribed in the text, RI was not trained on the TAC data,
unlike the other top systems.

We performed two runs on the TAC2011 data to
study the effects of relational inference. The first
run, RI-0, uses the current Wikipedia index and
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Figure 2: The RI compared with the other top 14
TAC2011 English Entity Linking systems ranked by
modified B3 F1 measure. Original figure from (Ji et al.,
2011).

redirects for lexical matching without any inference,
which scored 2.7% higher than the original GLOW
system (Cogcomp). We can regard this performance
as the new baseline that benefited from the fuzzy
lexical matching capabilities that we have added, as
well as the broader set of surface forms and redirects
from the current Wikipedia dump. In the second run,
RI, the complete relational inference described in
this paper, scored 4.9% higher than the new base-
line and sits on par with the top tier systems despite
not being trained on the given data. The LCC sys-
tem used sophisticated clustering algorithms trained
on the TAC development set (Monahan et al., 2011).
The second-ranked MS-MLI system relied on topic
modeling, external web search engine logs as well as
training on the development data (Cucerzan, 2011).
This shows the robustness of our methods as well
as the general importance of understanding textual
relations in the task of Entity Linking and Wikifica-
tion.

6 Related Work and Discussion

Earlier works on Wikification formulated the task
as a WSD problem (Bunescu and Pasca, 2006; Mi-
halcea and Csomai, 2007) and focused primarily on
training a model using local context. Later, various
global statistical approaches were proposed to em-
phasize different coherence measures between the ti-
tles of the disambiguated mentions in the same doc-

ument (Cucerzan, 2007; Milne and Witten, 2008;
Ratinov et al., 2011). Built on top of the statisti-
cal models, our work focuses on leveraging deeper
understanding of the text to more effectively and ac-
curately utilize existing knowledge.

We have demonstrated that, by incorporating tex-
tual relations and semantic knowledge as linguistic
constraints in an inference framework, it is possible
to significantly improve Wikification performance.
In particular, we have shown that our system is ca-
pable of making “intelligent” inferences that makes
use of basic text understanding and has the ability to
reason with it and verify it against relevant informa-
tion sources. This allows our Relational Inference
approach to resolve a variety of difficult examples
illustrated in the Introduction.

Our system features high modularity since the re-
lations are considered only at inference time; con-
sequently, we can use any underlying Wikification
system as long as it outputs a distribution of title
candidates for each mention.

One possibility for future work is to supply this
framework with a richer set of relations from the
text, such as verbal relations. It will also be inter-
esting to incorporate high-level typed relations and
relax the relation arguments to be general concepts
rather than only named entities.
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Abstract

Event schema induction is the task of learning
high-level representations of complex events
(e.g., a bombing) and their entity roles (e.g.,
perpetrator and victim) from unlabeled text.
Event schemas have important connections to
early NLP research on frames and scripts,
as well as modern applications like template
extraction. Recent research suggests event
schemas can be learned from raw text. In-
spired by a pipelined learner based on named
entity coreference, this paper presents the first
generative model for schema induction that in-
tegrates coreference chains into learning. Our
generative model is conceptually simpler than
the pipelined approach and requires far less
training data. It also provides an interesting
contrast with a recent HMM-based model. We
evaluate on a common dataset for template
schema extraction. Our generative model
matches the pipeline’s performance, and out-
performs the HMM by 7 F1 points (20%).

1 Introduction

Early research in language understanding focused
on high-level semantic representations to drive their
models. Many proposals, such as frames and scripts,
used rich event schemas to model the situations de-
scribed in text. While the field has since focused on
more shallow approaches, recent work on schema
induction shows that event schemas might be learn-
able from raw text. This paper continues the trend,
addressing the question, can event schemas be in-
duced from raw text without prior knowledge? We
present a new generative model for event schemas,

and it produces state-of-the-art induction results, in-
cluding a 7 F1 point gain over a different generative
proposal developed in parallel with this work.

Event schemas are unique from most work in in-
formation extraction (IE). Current relation discovery
(Banko et al., 2007a; Carlson et al., 2010b) focuses
on atomic facts and relations. Event schemas build
relations into coherent event structures, often called
templates in IE. For instance, an election template
jointly connects that obama won a presidential elec-
tion with romney was the defeated, the election oc-
curred in 2012, and the popular vote was 50-48. The
entities in these relations fill specific semantic roles,
as in this template schema:

Template Schema for Elections
(events: nominate, vote, elect, win, declare, concede)

Date: Timestamp
Winner: Person
Loser: Person
Position: Occupation
Vote: Number

Traditionally, template extractors assume fore-
knowledge of the event schemas. They know a Win-
ner exists, and research focuses on supervised learn-
ing to extract winners from text. This paper focuses
on the other side of the supervision spectrum. The
learner receives no human input, and it first induces
a schema before extracting instances of it.

Our proposed model contributes to a growing
line of research in schema induction. The majority
of previous work relies on ad-hoc clustering algo-
rithms (Filatova et al., 2006; Sekine, 2006; Cham-
bers and Jurafsky, 2011). Chambers and Jurafsky
is a pipelined approach, learning events first, and
later learning syntactic patterns as fillers. It requires
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several ad-hoc metrics and parameters, and it lacks
the benefits of a formal model. However, central to
their algorithm is the use of coreferring entity men-
tions to knit events and entities together into an event
schema. We adapt this entity-driven approach to a
single model that requires fewer parameters and far
less training data. Further, experiments show state-
of-the-art performance.

Other research conducted at the time of this pa-
per also proposes a generative model for schema in-
duction (Cheung et al., 2013). Theirs is not entity-
based, but instead uses a sequence model (HMM-
based) of verb clauses. These two papers thus pro-
vide a unique opportunity to compare two very dif-
ferent views of document structure. One is entity-
driven, modeling an entity’s role by its coreference
chain. The other is clause-driven, classifying indi-
vidual clauses based on text sequence. Each model
makes unique assumptions, providing an interest-
ing contrast. Our entity model outperforms by 7 F1
points on a common extraction task.

The rest of the paper describes in detail our
main contributions: (1) the first entity-based gen-
erative model for schema induction, (2) a direct
pipeline/formal model comparison, (3) results im-
proving state-of-the-art performance by 20%, and
(4) schema induction from the smallest amount of
training data to date.

2 Previous Work

Unsupervised learning for information extraction
usually learns binary relations and atomic facts.
Models can learn relations like Person is married to
Person without labeled data (Banko et al., 2007b), or
rely on seed examples for ontology induction (dog is
a mammal) and attribute extraction (dogs have tails)
(Carlson et al., 2010b; Carlson et al., 2010a; Huang
and Riloff, 2010; Durme and Pasca, 2008). These do
not typically capture the deeper connections mod-
eled by event schemas.

Algorithms that do focus on event schema extrac-
tion typically require both the schemas and labeled
corpora, such as rule-based approaches (Chinchor
et al., 1993; Rau et al., 1992) and modern super-
vised classifiers (Freitag, 1998; Chieu et al., 2003;
Bunescu and Mooney, 2004; Patwardhan and Riloff,
2009; Huang and Riloff, 2011). Classifiers rely on

the labeled examples’ surrounding context for fea-
tures (Maslennikov and Chua, 2007). Weakly su-
pervised learning removes some of the need for la-
beled data, but most still require the event schemas.
One common approach is to begin with unlabeled,
but clustered event-specific documents, and extract
common word patterns as extractors (Riloff and
Schmelzenbach, 1998; Sudo et al., 2003; Riloff et
al., 2005; Filatova et al., 2006; Patwardhan and
Riloff, 2007; Chen et al., 2011). Bootstrapping with
seed examples of known slot fillers has been shown
to be effective (Yangarber et al., 2000; Surdeanu et
al., 2006).

Shinyama and Sekine (2006) presented unre-
stricted relation discovery to discover relations in
unlabeled documents. Their algorithm used redun-
dant documents (e.g., all describe Hurricane Ivan)
to observe repeated proper nouns. The approach re-
quires many documents about the exact same event
instance, and relations are binary (not schemas) over
repeated named entities. Our model instead learns
schemas from documents with mixed topics that
don’t describe the same event, so repeated proper
nouns are less helpful.

Chen et al. (2011) perform relation extraction
with no supervision on earthquake and finance do-
mains. Theirs is a generative model that represents
relations as predicate/argument pairs. As with oth-
ers, training data is pre-clustered by event type and
there is no schema connection between relations.

This paper builds the most on Chambers and Ju-
rafsky (2011). They learned event schemas with a
three-stage clustering algorithm that included a re-
quirement to retrieve extra training data. This paper
removes many of these complexities. We present
a formal model that uniquely models coreference
chains. Advantages include a joint clustering of
events and entities, and a formal probabilistic inter-
pretation of the resulting schemas. We achieve better
performance, and do so with far less training data.

Cheung et al. (2013) is most related as a genera-
tive formulation of schema induction. They propose
an HMM-based model over latent event variables,
where each variable generates the observed clauses.
Latent schema variables generate the event vari-
ables (in the spirit of preliminary work by O’Connor
(2012)). There is no notion of an entity, so learning
uses text mentions and relies on the local HMM win-
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message: id dev-muc3-0112 (bellcore, mitre)
incident: date 10 mar 89
incident: location peru: huanuco, ambo (town)
incident: type bombing
incident: stage accomplished
incident: instrument explosive: ”-”
perp: individual ”shining path members”
perp: organization ”shining path”

Figure 1: A subset of the slots in a MUC-4 template.

dow for event transitions. Their model was created
in parallel with our work, and provides a nice con-
trast in both approach and results. Ours outperforms
their model by 20% on a MUC-4 evaluation.

In summary, this paper extends most previous
work on event schema induction by removing the
supervision. Of the recent ‘unsupervised’ work, we
present the first entity-driven generative model, and
we experiment on a mixed-domain corpus.

3 Dataset: The MUC-4 Corpus

The corpus from the Message Understanding Con-
ference (MUC-4) serves as the challenge text (Sund-
heim, 1991), and will ground discussion of our
model. MUC-4 is also used by the closest previ-
ous work. It contains Latin American newswire
about terrorism events, and it provides a set of
hand-constructed event schemas that are tradition-
ally called template schemas. It also maps labeled
templates to the text, providing a dataset for tem-
plate extraction evaluations. Until very recently,
only extraction has been evaluated. We too evalu-
ate our model through extraction, but we also com-
pare our learned schemas to the hand-created tem-
plate schemas. An example of a filled in MUC-4
template is given in Figure 1.

The MUC-4 corpus defines six template types:
Attack, Kidnapping, Bombing, Arson, Robbery,
and Forced Work Stoppage. Documents are often
labeled with more than one template and type. Many
include multiple events at different times in different
locations. The corpus is particularly challenging be-
cause template schemas are inter-mixed and entities
can play multiple roles across instances.

The training corpus contains 1300 documents,
733 of which are labeled with at least one schema.
567 documents are not labeled with any schemas.

These unlabeled documents are articles that report
on non-specific political events and speeches. They
make the corpus particularly challenging. The de-
velopment and test sets each contain 200 documents.

4 A Generative Model for Event Schemas

This paper’s model is an entity-based approach, sim-
ilar in motivation to Haghighi and Klein (2010) and
the pipelined induction of Chambers and Jurafsky
(2011). Coreference resolution guides the learning
by providing a set of pre-resolved entities. Each
entity receives a schema role label, so it allows all
mentions of the entity to inform that role choice.
This important constraint links coreferring mentions
to the same schema role, and distinguishes our ap-
proach from others (Cheung et al., 2013).

4.1 Illustration

The model represents a document as a set of enti-
ties. An entity is a set of entity mentions clustered
by coreference resolution. We will use the following
two sentences for illustration:

A truck bomb exploded near the embassy.
Three militia planted it, and then they fled.

This text contains five entity mentions. A perfect
coreference resolution system will resolve these five
mentions into three entities:

Entity Mentions Entities Roles
a truck bomb (a truck bomb, it) Instrument
the embassy (the embassy) Target
three militia (three militia, they) Perpetrator
it
they

The schema roles, or template slots, are the type
of target knowledge we want to learn. Each en-
tity will be labeled with both a slot variable s and
a template variable t (e.g., the s=perpetrator of a
t=bombing). The lexical context of the entity men-
tions guides the learning model to this end.

4.2 Definitions

A document d ∈ D is represented as a set of entities
Ed. Each entity e ∈ Ed is a triple: e = (h,M,F )

1. he is the canonical word for the entity (typically
the first mention’s head word)
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Text
A truck bomb exploded near the embassy.
Three militia planted it, and then they fled.

Entity Representation
entity 1: h = bomb, F = {PHYS-OBJ},

M = { (p=explode, d=subject-explode)
(p=plant, d=object-plant) }

entity 2: h = militia, F = {PERSON, ORG},
M = { (p=plant, d=subject-plant),

(p=flee, subject-flee) }
entity 3: h = embassy, F = {PHYS-OBJ, ORG},

M = { (p=explode, d=prep near-explode) }

Figure 2: Example text mapped to our entities.

2. Me is a set of entity mentions m ∈ Me. Each
mention is a pairm = (p, d): the predicate, and
the typed dependency from the predicate to the
mention (e.g., push and subject-push).

3. Fe is a set of binary entity features. This paper
only uses named entity types as features, but
generalizes to other features as well.

A document is thus reduced to its entities, their
grammatical contexts, and entity features. Figure 2
continues our example using this formulation. he is
chosen to be e’s longest non-pronoun mention m ∈
Me. Mentions are labeled with NER and WordNet
synsets to create an entity’s features Fe ⊆ {Person,
Org, Loc, Event, Time, Object, Other}. We use the
Stanford NLP toolkit to parse, extract typed depen-
dencies, label with NER, and run coreference.

4.3 The Generative Models
Similar to topics in LDA, each document d in our
model has a corresponding multinomial over schema
types θd, drawn from a Dirichlet. For each entity in
the document, a hidden variable t is drawn accord-
ing to θd. These t variables represent the high level
schema types, such as bombing or kidnapping. The
predicates associated with each of the entity’s men-
tions are then drawn from the schema’s multinomial
over predicates Pt. The variable t also generates
a hidden variable s from its distribution over slots,
such as perpetrator and victim. Finally, the entity’s
canonical head word is generated from βs, all entity
mentions’ typed dependencies from δs, and named
entity types from γs.

The most important characteristic of this model
is the separation of event words from the lexical
properties of specific entity mentions. The schema
type variables t only model the distribution of event
words (bomb, plant, defuse), but the slot variables
s model the syntax (subject-bomb, subject-plant,
object-arrest) and entity words (suspect, terrorist,
man). This allows the high-level schemas to first se-
lect predicates, and then forces predicate arguments
to prefer slots that are in the parent schema type.

Formally, a document d receives a labeling Zd

where each entity e ∈ Ed is labeled Zd,e = (t, s)
with a schema type t and a slot s. The joint distribu-
tion of a document and labeling is then as follows:

P (d, Zd) =
∏

e∈Ed

P (t|θ)× P (s|t)

×
∏

e∈Ed

P (he|s)

×
∏

e∈Ed

∏
f∈Fe

P (f |s)

×
∏

e∈Ed

∏
m∈Me

P (dm|s) ∗ P (pm|t) (1)

The plate diagram for the model is given in Fig-
ure 3. The darker circles correspond to the observed
entity components in Figure 2. We assume the fol-
lowing generative process for a document d:

Generate θd from Dir(α)
for each schema type t = 1...m do

Generate Pt from Dir(η)
for each slot st = 1...k do

Generate βs from Dir(µ)
Generate γs from Dir(ν)
Generate δs from Dir(ϕ)

for each entity e ∈ Ed do
Generate schema type t from Multinomial(θd)
Generate slot s from UniformDist(k)
Generate head word h from Multinomial(βs)
for each mention m ∈Me do

Generate predicate token p from Multinomial(Pt)
Generate typed dependency d from Multinomial(δs)

for each entity type i = 1..|Fe| do
Generate entity type f from Multinomial(γs)

The number of schema types m and the number
of slots per schema k are chosen based on training
set performance.
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Figure 3: The full plate diagram for the event schema
model. Hyper-parameters are omitted for readability.

The Flat Relation Model
We also experiment with a Flat Relation Model that
removes the hidden t variables, ignoring schema
types. Figure 4 visually compares this flat model
with the full model. We found that the predicate
distribution Pt hurts performance in a flat model.
Predicates are more informative at the higher level,
but less so for slots where syntax is more important.
We thus removed Pt from the model, and everything
else remains the same. This flat model now learns
a large set of k slots S that aren’t connected by a
high-level schema variable. Each slot s ∈ S has a
corresponding triple of multinomials (h,M,F ) sim-
ilar to above: (1) a multinomial over the head men-
tions βs, (2) a multinomial over the grammatical re-
lations of the entity mentions δs, and (3) a multino-
mial over the entity features γs. For each entity in
a document, a hidden slot s ∈ S is first drawn from
Θ, and then the observed entity (h,M,F ) is drawn
according to the multinomials (βs, γs, δs). We later
evaluate this flat model to show the benefit of added
schema structure.

4.4 Inference
We use collapsed Gibbs sampling for inference,
sampling the latent variables te,d and se,d in se-
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Figure 4: Simplified plate diagrams comparing the flat
relation model to the full template model. The observed
f ∈ F variables are not included for clarity.

quence conditioned on a full setting of all the other
variables (Griffiths and Steyvers, 2004). Initial pa-
rameter values are set by randomly setting t and s
variables from the uniform distribution over schema
types and slots, then computing the other parameter
values based on these initial settings. The hyperpa-
rameters for the dirichlet distributions were chosen
from a small grid search (see Experiments).

Beyond standard inference, we added one con-
straint to the model that favors grammatical distri-
butions δs that do not contain conflicts. The subject
and direct object of a verb should not both receive
high probability mass under the same schema slot
δs. For instance, the victim of a kidnapping should
not favor both the subject and object of a single verb.
Semantic roles should (typically) select one syntac-
tic slot, so this constraint encourages that behavior.
During sampling of se,d, we use a penalty factor λ
to make conflicting relations less likely. Formally,
P (se,d = s|θ, he, Fe,Me) = λ iff there exists an
m ∈ Me such that P (m|σs) < P (inv(m)|σs) and
P (inv(m)|σs) > 0.1, where inv(m) = object if
m = subject and vice versa. Otherwise, the proba-
bility is computed as normal. We normalize the dis-
tributions after penalties are computed.

4.5 Entity Extraction for Template Filling

Inducing event schemas is only one benefit of the
model. The learned model can also extract spe-
cific instances of the learned schemas without ad-
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ditional complexity. To evaluate the effectiveness of
the model, we apply the model to perform standard
template extraction on MUC-4. Previous MUC-4
induction required an extraction algorithm separate
from induction because induction created hard clus-
ters (Chambers and Jurafsky, 2011). Cluster scores
don’t have a natural interpretation, so extraction re-
quired several parameters/thresholds to tune. Our
model instead simply relies on model inference.

We run inference as described above and each en-
tity receives a template label te,d and a template slot
label se,d. These labels are the extractions, and it re-
quires no other parameters. The model thus requires
far less machinery than a pipeline, and the exper-
iments below further show that this simpler model
outperforms the pipeline.

Beyond parameters, the question of “irrelevant”
documents is a concern in MUC-4. Approximately
half the corpus are documents that are not labeled
with a template, so past algorithms required extra
processing stages to filter out these irrelevant doc-
uments. Patwardhan and Riloff (2009) and Cham-
bers and Jurafsky (2011) make initial decisions as to
whether they should extract or not from a document.
Huang and Riloff (2011) use a genre detector for this
problem. Even the generative HMM-based model of
Cheung et al. (Cheung et al., 2013) requires an ex-
tra filtering parameter. Our formal model is unique
in not requiring additional effort. Ours is the only
approach that doesn’t require document filtering.

5 Evaluation Setup

Evaluating on MUC-4 has a diverse history that
complicates comparison. The following balances
comparison against previous work and enables fu-
ture comparison to our results.

5.1 Template Schema Slots
Most systems do not evaluate performance on all
MUC-4 template slots. They instead focus on four
main slots, ignoring the parameterized slots that in-
volve deeper reasoning (such as ‘stage of execution’
and ‘effect of incident’). The four slots and example
entity fillers are shown here:

Perpetrator: Shining Path members
Victim: Sergio Horna
Target: public facilities
Instrument: explosives

We also focus only on these four slots. We merged
MUC’s two perpetrator slots (individuals and orgs)
into one gold Perpetrator. Previous work has both
split the two and merged the two. We merge them
because the distinction between an individual and
an organization is often subtle and not practically
important to analysts. This is also consistent with
the most recent event schema induction in Chambers
and Jurafsky (2011) and Cheung et al. (2013).

One peculiarity in MUC-4 is that some templates
are labeled as optional (i.e., all its slots are optional),
and some required templates contain optional slots
(i.e., a subset of slots are optional). We ignore
both optional templates and specific optional slots
when computing recall, as in previous work (Pat-
wardhan and Riloff, 2007; Patwardhan and Riloff,
2009; Chambers and Jurafsky, 2011).

Comparison between the extracted strings and the
gold template strings uses head word scoring. We
do not use gold parses for the text, so head words
are defined simply as the rightmost word in the noun
phrase. The exception is when the extracted phrase
is of the form “A of B”, then the rightmost word in
“A” is used as the head. This is again consistent with
previous work1. The standard evaluation metrics are
precision, recall, and F1 score.

5.2 Mapping Learned Slots
Induced schemas need to map to gold schemas be-
fore evaluation. Which learned slots correspond to
MUC-4 slots? There are two methods of mapping.
The first ignores the schema type variables t, and
simply finds the best performing s variable for each
gold template slot2. We call this the slot-only map-
ping evaluation. The second approach is to map each
template variable t to the best gold template type g,
and limit the slot mapping so that only the slots un-
der t can map to slots under g. We call this the tem-
plate mapping evaluation. The slot-only mapping
can result in higher scores since it is not constrained
to preserve schema structure in the mapping.

Chambers and Jurafsky (2011) used template
mapping in their evaluation. Cheung et al. (2013)
used slot-only mapping. We run both evaluations in
this paper and separately compare both.

1Personal communications with Patwardhan and Riloff
2bombing-victim is a template slot distinct from kidnap-

victim. Both need to be mapped.
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6 Experiments

We use the Stanford CoreNLP toolkit for text pro-
cessing and parsing. We developed the models on
the 1300 document MUC-4 training set. We then
learned once on the entire 1700 training/dev/test set,
and report extraction numbers from the inferred la-
bels on the 200 document test set. Each experiment
was repeated 10 times. Reported numbers are aver-
aged across these runs.

There are two structure variables for the model:
the number of schema types and the number of slots
under each type. We searched for the optimal values
on the training set before evaluating on test. The
hyperparameters for all evaluations were set to α =
η = µ = ν = 1, ϕ = .1 based on a grid search.

6.1 Template Schema Induction

The first evaluation compares the learned schemas
to the gold schemas in MUC-4.

Since most previous work assumes this knowl-
edge ahead of time, we align our schemas with the
main MUC-4 template types to measure quality. We
inspected the learned event schemas that mapped to
MUC-4 schemas based on the template mapping ex-
traction evaluation.

Figure 5 shows some of the learned distribu-
tions for two mapped schemas: kidnappings and
bombings. The predicate distribution for each event
schema is shown, as well as the top 5 head words
and grammatical relations for each slot. The words
and events that were jointly learned in these exam-
ples appear quite accurate. The bombing and kidnap
schemas learned all of the equivalent MUC-4 gold
slots. Interestingly, our model also learned Loca-
tions and Times as important entities that appear in
the text. These entities are not traditionally included
in the MUC-4 extraction task.

Figure 6 lists the MUC-4 slots that we did and
did not learn for the four most prevelant types. We
report 71% recall, with almost all errors due to the
model’s failure to learn about arsons. Arson tem-
plates only occur in 40 articles, much less than the
200 bombing and over 400 attack. We show below
that overall extraction performs well despite this.
The learned distributions for Attack end up extract-
ing Arson perpetrators and Arson victims in the ac-
tual extraction evaluation.

Bomb Kidnap Attack Arson
Perpetrator X X X x
Victim X X X X
Target X - X x
Instrument X - x x
Location X X X X
Date/Time X X X x

Figure 6: The MUC-4 gold slots that were learned. The
bottom two are not in the traditional evaluation, but were
learned by our model nonetheless.

Evaluation: Template Mapping
Prec Recall F1

C & J 2011 .48 .25 .33
Formal Template Model .42 .27 .33

Table 1: MUC-4 extraction with template mapping. A
learned schema first maps to a gold MUC template.
Learned slots can then only map to slots in that template.

6.2 Extraction Experiments

We now present the full extraction experiment that
is traditionally used for evaluating MUC-4 per-
formance. Although our learned schemas closely
match gold schemas, extraction depends on how
well the model can extract from diverse lexical con-
texts. We ran inference on the full training and test
sets, and used the inferred labels as schema labels.
These labels were mapped and evaluated against the
gold MUC-4 labels as discussed in Section 5.

Performance is compared to two state-of-the-art
induction systems. Since these previous two mod-
els used different methods to map their learned
schemas, we compare separately. Table 1 shows the
template mapping evaluation with Chambers and Ju-
rafsky (C&J). Table 2 shows the slot-only mapping
evaluation with Cheung et al.

Our model achieves an F1 score comparable to
C&J, and 20% higher than Cheung et al. Part of the
greater increase over Cheung et al. is the mapping
difference. For each MUC-4 type, such as bombing,
any four learned slots can map to the four MUC-
4 bombing slots. There is no constraint that the
learned slots must come from the same schema type.
The more strict template mapping (Table 1) ensures
that entire schema types are mapped together, and it
reduces our performance from .41 to .33.
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Kidnapping Entities
Victim (Person 88%)

businessman object-kidnap
citizen object-release
Soares prep of-kidnapping
Kent possessive-release

hostage object-found

Perpetrator (Person 62%, Org 30%)
guerrilla subject-kidnap

ELN subject-hold
group subject-attack

extraditables subject-demand
man subject-announce

Date (TimeDate 89%)
TIME tmod-kidnap

February prep on-kidnap
hours tmod-release

morning prep on-release
night tmod-take

Bombing Entities
Victim (Person 86%, Location 8%)
person object-kill

guerrilla object-wound
soldier subject-die

man subject-blow up
civilian subject-try

Physical Target (Object 65%, Event 42%)
building object-destroy

office object-damage
explosive object-use

station and-office
vehicle prep of-number

Instrument (Event 56%, Object 39%)
bomb subject-explode

explosion subject-occur
attack object-cause
charge object-place
device subject-destroy

Figure 5: Select distributions for two learned events. Left columns are head word distributions β, right columns are
syntactic relation distributions δ, and entity types in parentheses are the learned γ. Most probable words are shown.

Evaluation: Slot-Only Mapping
Prec Recall F1

Cheung et al. 2013 .32 .37 .34
Flat Relation Model .26 .45 .33
Formal Template Model .41 .41 .41

Table 2: MUC-4 extraction with slot-only mapping. Any
learned slot is allowed to map to any gold slot.

Entity Role Performance
Prec Recall F1

Perpetrator .40 .20 .26
Victim .42 .31 .34
Target .38 .28 .31
Instrument .57 .39 .45

Table 3: Results for each MUC-4 template slot using the
template-mapping evaluation.

The macro-level F1 scores can be broken down
into individual slot performance. Table 3 shows
these results ranging from .26 to .45. The Instrument
role proves easiest to learn, consistent with C&J.

A large portion of MUC-4 includes irrelevant
documents. Cheung et al. (2013) evaluated their
model without irrelevant documents in the test set
that to see how performance is affected. We com-
pare against their numbers in Table 4. Results are
closer now with ours outperforming .46 to .43 F1.
This suggests that the HMM-based approach stum-
bles more on spurious documents, but performs bet-
ter on relevant ones.

Gold Document Evaluation
Prec Recall F1

Cheung et al. 2013 .41 .44 .43
Formal Template Model .49 .43 .46

Table 4: Full MUC-4 extraction with gold document clas-
sification. These results ignore false positives extracted
from “irrelevant” documents in the test set.

6.3 Model Ablation

Table 2 shows that the flat relation model (no latent
type variables t) is inferior to the full schema model.
F1 drops 20% without the explicit modeling of both
schema types t and their entity slots s. The entity
features Fe are less important. Experiments with-
out them show a slight drop in performance (2 F1
points), small enough that they could be removed for
efficiency. However, it is extremely useful to learn
slots with NER labels like Person or Location.

Finally, we experimented without the sub-
ject/object constraint (Section 4.4). Performance
drops 5-10% depending on the number of schemas
learned. Anecdotally, it merges too many schema
slots that should be separate. We recommend using
this constraint as it has little impact on CPU time.

6.4 Extension: Reduce Training Size

One of the main benefits of this generative model
appears to be the reduction in training data. The
pipelined approach in C&J required an information
retrieval stage to bring in hundreds of other docu-
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ments from an external corpus. This paper’s genera-
tive model doesn’t require such a stage.

We thus attempted to induce and extract event
schemas from just the 200 test set documents, with
no training or development data. We repeated this
experiment 30 times and averaged the results, setting
the number of templates t = 20 and slots s = 10 as
in the main experiment. The resulting F1 score for
the template-mapping evaluation fell to 0.27 from
the full data experiment of 0.33 F1. Adding more
training documents in another experiment did not
significantly increase performance over 0.27 until
all training and development documents were in-
cluded. This could be explained by the develop-
ment set being more similar to the test set than train-
ing. We did not investigate further to prevent over-
experimentation on test.

7 Discussion

Our model is one of the first generative formula-
tions of schema induction. It produces state-of-the-
art performance on a traditional extraction task, and
performs with less training data as well as a more
complex pipelined approach. Further, our unique
entity-driven approach outperforms an HMM-based
model developed in parallel to this work.

Our entity-driven proposal is strongly influenced
by the ideas in the pipeline model of Chambers and
Jurafsky (2011). Coreference chains have been used
in a variety of learning tasks, such as narrative learn-
ing and summarization. Here we are the first to show
how it can be used for schema induction in a proba-
bilistic model, connecting predicates across a docu-
ment in a way that is otherwise difficult to represent.
The models perform similarly, but ours also includes
significant benefits like a reduction in complexity,
reproducibility, and a large reduction in training data
requirements.

This paper also implies that learning and ex-
traction need not be independent algorithms. Our
model’s inference procedure to learn schemas is the
same one that labels text for extraction. C&J re-
quired 3-4 separate pipelined steps. Cheung et al.
(2013) required specific cutoffs for document classi-
fication before extraction. Not only does our model
perform well, but it does so without these steps.

Highlighted here are key differences between this

proposal and the HMM-based model of Cheung et
al. (2013). One of the HMM strengths is the in-
clusion of sequence-based knowledge. Each slot la-
bel is influenced by the previous label in the text,
encouraging syntactic arguments of a predicate to
choose the same schema. This knowledge is only
loosely present in our document distribution θ. Che-
ung et al. also include a hidden event variable be-
tween the template and slot variables. Our model
collapses this event variable and makes fewer depen-
dency assumptions. This difference requires further
investigation as it is unclear if it provides valuable
information, or too much complexity.

We also note a warning for future work on proper
evaluation methodology. This task is particularly
difficult to compare to other models due to its
combination of both induction and then extraction.
There are many ways to map induced schemas to
gold answers, and this paper illustrates how ex-
traction performance is significantly affected by the
choice. We suggest the template-mapping evalua-
tion to preserve learned structure.

Finally, these induced results are far behind su-
pervised learning (Huang and Riloff, 2011). There
is ample room for improvement and future research
in event schema induction.
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Abstract

This paper introduces IQPs (Integer Quadratic
Programs) as a way to model joint inference
for the task of concept recognition in clinical
domain. IQPs make it possible to easily in-
corporate soft constraints in the optimization
framework and still support exact global infer-
ence. We show that soft constraints give statis-
tically significant performance improvements
when compared to hard constraints.

1 Introduction
In this paper, we study the problem of concept

recognition in the clinical domain. State-of-the-art
approaches (de Bruijn et al., 2011; Patrick et al.,
2011; Torii et al., 2011; Minard et al., 2011; Jiang
et al., 2011; Xu et al., 2012; Roberts and Harabagiu,
2011; Jindal and Roth, 2013) for concept recogni-
tion in clinical domain (Uzuner et al., 2011) use
sequence-prediction models like CRF (Lafferty et
al., 2001), MEMM (McCallum et al., 2000) etc.
These approaches are limited by the fact that they
can model only local dependencies (most often,
first-order models like linear chain CRFs are used
to allow tractable inference).

Clinical narratives, unlike newswire data, provide
a domain with significant knowledge that can be ex-
ploited systematically to improve the accuracy of
the prediction task. Knowledge in this domain can
be thought of as belonging to two categories: (1)
Background Knowledge captured in medical ontolo-
gies like UMLS (Url1, 2013), MeSH and SNOMED
CT and (2) Discourse Knowledge driven by the
fact that the narratives adhere to a specific writing
style. While the former can be used by generating
more expressive knowledge-rich features, the lat-
ter is more interesting from our current perspective,

since it provides global constraints on what output
structures are likely and what are not. We exploit
this structural knowledge in our global inference for-
mulation.

Integer Linear Programming (ILP) based ap-
proaches have been used for global inference in
many works (Roth and Yih, 2004; Punyakanok et
al., 2004; Punyakanok et al., 2008; Marciniak and
Strube, 2005; Bramsen et al., 2006; Barzilay and
Lapata, 2006; Riedel and Clarke, 2006; Clarke and
Lapata, 2007; Clarke and Lapata, 2008; Denis et al.,
2007; Chang et al., 2011). However, in most of these
works, researchers have focussed only on hard con-
straints while formulating the inference problem.

Formulating all the constraints as hard constraints
is not always desirable because the constraints are
not perfect in many cases. In this paper, we pro-
pose Integer Quadratic Programs (IQPs) as a way
of formulating the inference problem. IQPs is a
richer family of models than ILPs and it enables
us to easily incorporate soft constraints into the in-
ference procedure. Our experimental results show
that soft constraints indeed give much better perfor-
mance than hard constraints.

2 Identifying Medical Concepts
Task Description Our input consists of clinical re-
ports in free-text (unstructured) format. The task is:
(1) to identify the boundaries of medical concepts
and (2) to assign types to such concepts. Each con-
cept can have 3 possible types: (1) Test, (2) Treat-
ment, and (3) Problem. We would refer to these
three types by TEST, TRE and PROB in the follow-
ing discussion.

Our Approach In the first step, we identify the
concept boundaries using a CRF (with BIO encod-
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[Chest x-ray] gave positive evidence for [atelectasis] and [sarcoidosis].
Test Problem Problem

(a) Example 1

No [hemoptysis], [hematemesis], [urgency], [abdominal pain], [black or tarry stools], [dysuria].
Problem ProblemProblem ProblemProblemProblem

(b) Example 2

Figure 1: This figure motivates the global inference procedure we used. For discussion, please refer to §2.

ing). Features used by the CRF include the con-
stituents given by MetaMap (Aronson and Lang,
2010; Url2, 2013), shallow parse constituents, sur-
face form and part-of-speech (Url3, 2013) of words
in a window of size 3. We also use conjunctions of
the features.

After finding concept boundaries, we determine
the probability distribution for each concept over 4
possible types (TEST, TRE, PROB or NULL). These
probability distributions are found using a multi-
class SVM classifier (Chang and Lin, 2011). Fea-
tures used for training this classifier include con-
cept tokens, full text of concept, bi-grams, head-
word, suffixes of headword, capitalization pattern,
shallow parse constituent, Metamap type of concept,
MetaMap type of headword, occurrence of concept
in MeSH (Url4, 2013) and SNOMED CT (Url5,
2013), MeSH and SNOMED CT descriptors.

Inference Procedure: The final assignment of
types to concepts is determined by an inference pro-
cedure. The basic principle behind our inference
procedure is: “Types of concepts which appear close
to one another are often closely related. For some
concepts, type can be determined with more confi-
dence. And relations between concepts’ types guide
the inference procedure to determine the types of
other concepts.” We will now explain it in more de-
tail with the help of examples. Figure 1 shows two
sentences in which the concepts are shown in brack-
ets and correct (gold) types of concepts are shown
above them.

First, consider first and second concepts in Fig-
ure 1a. These concepts follow the pattern: [Con-
cept1] gave positive evidence for [Concept2]. In
clinical narratives, such a pattern strongly suggests
that Concept1 is of type TEST and Concept2 is of
type PROB. Table 1 shows additional such patterns.
Next, consider different concepts in Figure 1b. All

Pattern
1 using [TRE] for [PROB]
2 [TEST] showed [PROB]
3 Patient presents with [PROB] status post

[TRE]
4 use [TRE] to correct [PROB]
5 [TEST] to rule out [PROB]
6 Unfortunately, [TRE] has caused [PROB]

Table 1: Some patterns that were used in constraints.

these concepts are separated by commas and hence,
form a list. It is highly likely that such concepts
should have the same type.

3 Modeling Global Inference
Inference is done at the level of sentences. Sup-

pose there are m concepts in a sentence. Each of
the m concepts has to be assigned one of the follow-
ing types: TEST, TRE, PROB or NULL. To represent
this as an inference problem, we define the indicator
variables xi,j where i takes values from 1 to m (cor-
responding to concepts) and j takes values from 1 to
4 (corresponding to 4 possible types). pi,j refers to
the probability that the ith concept has type j.

We can now write the following optimization
problem to find the optimal concept types:

max
x

m∑
i=1

4∑
j=1

xi,j · pi,j (1)

subject to
4∑

j=1

xi,j = 1 ∀i (2)

xi,j ∈ {0, 1} ∀i, j (3)

The objective function in Equation (1) expresses
the fact that we want to maximize the expected num-
ber of correct predictions in each sentence. Equa-
tion (2) enforces the constraint that each concept has
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a unique type. We would refer to these as Type-1
constraints.
3.1 Constraints Used

In this subsection, we will describe two addi-
tional types of constraints (Type-2 and Type-3)
that were added to the optimization procedure de-
scribed above. Whereas Type-1 constraints de-
scribed above were formulated as hard constraints,
Type-2 and Type-3 constraints are formulated as
soft constraints.
3.1.1 Type-2 Constraints

Certain constructs like comma, conjunction, etc.
suggest that the 2 concepts appearing in them should
have the same type. Figure 1b shows an example of
such a constraint. Suppose that there are n2 such
constraints. Also, assume that the lth constraint says
that the concepts Rl and Sl should have the same
type. To model this, we define a variable wl as fol-
lows:

wl =

4∑
m=1

(xRl,m − xSl,m)2 (4)

Now, if the concepts Rl and Sl have the same
type, then wl would be equal to 0; otherwise, wl

would be equal to 2. So, the lth constraint can be
enforced by subtracting (ρ2 · wl

2 ) from the objective
function given by Equation (1). Thus, a penalty of
ρ2 would be enforced iff this constraint is violated.
3.1.2 Type-3 Constraints

Some short patterns suggest possible types for the
concepts which appear in them. Each such pattern,
thus, enforces a constraint on the types of corre-
sponding concepts. Figure 1a shows an example
of such a constraint. Suppose that there are n3

such constraints. Also, assume that the kth con-
straint says that the concept A1,k should have the
type B1,k and that the concept A2,k should have
the type B2,k. Equivalently, the kth constraint can
be written as follows in boolean algebra notation:
(xA1,k,B1,k

= 1)∧(xA2,k,B2,k
= 1). For the kth con-

straint, we introduce one more variable zk ∈ {0, 1}
which satisfies the following condition:

zk = 1⇔ xA1,k,B1,k
∧ xA2,k,B2,k

(5)

Using boolean algebra, it is easy to show that
Equation (5) can be reduced to a set of linear in-
equalities. Thus, we can incorporate the kth con-

max
x

m∑
i=1

4∑
j=1

xi,j · pi,j −
n3∑

k=1

ρ3(1− zk)

−
n2∑
l=1

(
ρ2 ·

∑4
m=1(xRl,m − xSl,m)2

2

) (6)

subject to
4∑

j=1

xi,j = 1 ∀i (7)

xi,j ∈ {0, 1} ∀i, j (8)
zk = 1⇔ xA1,k,B1,k

∧ xA2,k,B2,k
∀k ∈ {1...n3} (9)

Figure 2: Final Optimization Problem (an IQP)

straint in the optimization problem by adding to it
the constraint given by Equation (5) and by subtract-
ing (ρ3(1 − zk)) from the objective function given
by Equation (1). Thus, a penalty of ρ3 is imposed iff
kth constraint is not satisfied (zk = 0).

3.2 Final Optimization Problem - An IQP
After incorporating all the constraints mentioned

above, the final optimization problem (an IQP) is
shown in Figure 2. We used Gurobi toolkit (Url6,
2013) to solve such IQPs. In our case, it solves
76 IQPs per second on a quad-core server with In-
tel Xeon X5650 @ 2.67 GHz processors and 50 GB
RAM.

4 Experiments and Results
4.1 Datasets and Evaluation Metrics

For our experiments, we used the datasets pro-
vided by i2b2/VA team as part of 2010 i2b2/VA
shared task (Uzuner et al., 2011). The datasets
used for this shared task contained de-identied clin-
ical reports from three medical institutions: Part-
ners Healthcare (PH), Beth-Israel Deaconess Med-
ical Center (BIDMC) and the University of Pitts-
burgh Medical Center (UPMC). UPMC data was di-
vided into 2 sections, namely discharge (UPMCD)
and progress notes (UPMCP). A total of 349 train-
ing reports and 477 test reports were made available
to the participants. However, data which came from
UPMC (more than 50% data) was not made avail-
able for public use. As a result, we had only 170
clinical reports for training and 256 clinical reports
for testing. Table 3 shows the number of clinical re-
ports made available by different institutions. The
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B BK BC BKC
P R F1 P R F1 P R F1 P R F1

TEST 92.4 79.4 85.4 91.9 80.2 85.7 92.7 79.6 85.7 92.1 80.4 85.8
TRE 92.1 73.6 81.8 92.0 79.5 85.3 92.3 76.8 83.8 92.0 80.2 85.7
PROB 83.6 83.6 83.6 88.9 83.7 86.3 85.9 83.8 84.8 89.6 83.9 86.7

OVERALL 88.4 79.4 83.6 90.7 81.4 85.8 89.6 80.5 84.8 91.0 81.7 86.1

Table 2: Our final system, BKC, consistently performed the best among all 4 systems (B, BK, BC and BKC).

PH BIDMC UPMCD UPMCP
Train 97 73 98 81
Test 133 123 102 119

Table 3: Dataset Characteristics

strikethrough text in this table indicates that the data
was not made available for public use and hence, we
couldn’t use it. We used about 20% of the training
data as a development set. For evaluation, we report
precision, recall and F1 scores.

4.2 Results
In this section, we would refer to following 4

systems: (1) Baseline (B), (2) Baseline + Knowl-
edge (BK), (3) Baseline + Constraints (BC) and
(4) Baseline + Knowledge + Constraints (BKC).
Please note that the difference between B and
BK is that B does not use the features derived
from domain-specific knowledge sources (namely
MetaMap, UMLS, MeSH and SNOMED CT) for
training the classifiers. Both B and BK do not use
the inference procedure. BKC uses all the features
and also the inference procedure. In addition to
these 4 systems, we would refer to another system,
namely, BKC-HARD. This is similar to BKC sys-
tem. However, it sets ρ2 = ρ3 = 1 which effectively
turns Type-2 and Type-3 constraints into hard con-
straints by imposing very high penalty.
4.2.1 Importance of Soft Constraints

Figures 3a and 3b show the effect of varying the
penalties (ρ2 and ρ3) for Type-2 and Type-3 con-
straints respectively. These figures show the F1-
score of BKC on the development set. Penalty of
0 means that the constraint is not active. As we in-
crease the penalty, the constraint becomes stronger.
As the penalty becomes 1, the constraint becomes
hard in the sense that final assignments must respect
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Figure 3: These figures show the result of tuning the
penalty parameters (ρ2 and ρ3) for soft constraints.

BKC-HARD BKC
TEST 84.7 85.8
TRE 84.7 85.7
PROB 85.6 86.7

OVERALL 85.1 86.1

Table 4: Soft constraints (BKC) consistently perform
much better than hard constraints (BKC-HARD).

the constraint. We observe from Figures 3a and 3b
that for Type-2 and Type-3 constraints, global max-
ima is attained at ρ2 = 0.6 and ρ3 = 0.3 respec-
tively.

Hard vs Soft Constraints Table 4 compares the
performance of BKC-HARD with that of BKC.
First 3 rows in this table show the performance of
both systems for the individual categories (TEST,
TRE and PROB). The fourth row shows the overall
score of both systems. BKC outperformed BKC-
HARD on all the categories by statistically signifi-
cant differences at p = 0.05 according to Bootstrap
Resampling Test (Koehn, 2004). For the OVERALL
category, BKC improved over BKC-HARD by 1.0
F1 points.
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Figure 4: This figure shows the effect of training data
size on performance of concept recognition.

4.2.2 Comparing with state-of-the-art baseline
In the 2010 i2b2/VA shared task, majority of

top systems were CRF-based models, motivating
the use of CRF as our baseline. Table 2 com-
pares the performance of 4 systems: B, BK, BC
and BKC. As pointed out before, our BK system
uses CRF for boundary detection, employs all the
knowledge-based features and is very similar to the
top-performing systems in i2b2 challenge. We see
from Table 2 that BKC consistently performed the
best for individual as well as overall categories1.
This result is statistically significant at p = 0.05
according to Bootstrap Resampling Test (Koehn,
2004). It should also be noted that BC performed
significantly better than B for all the categories.
Thus, the constraints are helpful even in the ab-
sence of knowledge-based features. Since we report
results on publicly available datasets, future works
would be able to compare their results with ours.
4.2.3 Effect of training data size

In Figure 4, we report the overall F1-score on a
part of the development set as we vary the size of the
training data from 40 documents to 130 documents.
We notice that the performance increases steadily as
more and more training data is provided. This sug-
gests that if we could train on full training data as
was made available in the challenge, the final scores
could be much higher. We also notice from the fig-
ure that BKC consistently outperforms the state-of-
the-art BK system as we vary the size of the training
data, indicating the robustness of the joint inference
procedure.

1Please note that the results reported in Table 2 can not be
directly compared with those reported in the challenge because
we only had a fraction of the original training and testing data.

5 Discussion and Related Work
In this paper, we chose to train a rather simple se-

quential model (using CRF), and focused on incor-
porating global constraints only at inference time2.
While it is possible to jointly train the model with
the global constraints (as illustrated by Chang et al.
(2007), Mann and McCallum (2007), Mann and Mc-
Callum (2008), Ganchev et al. (2010) etc.), this pro-
cess will be a lot less efficient, and prior work (Roth
and Yih, 2005) has shown that it may not be benefi-
cial.

Roth and Yih (2004, 2007) suggested the use of
integer programs to model joint inference in a fully
supervised setting. Our paper follows their concep-
tual approach. However, they used only hard con-
straints in their inference formulation. Chang et
al. (2012) extended the ILP formulation and used
soft constraints within the Constrained Conditional
Model formulation (Chang, 2011). However, their
implementation performed only approximate infer-
ence. In this paper, we extended the integer lin-
ear programming to a quadratic formulation, argu-
ing that it simplifies the modeling step3, and showed
that it is possible to do exact inference efficiently.

Conclusion
This paper presented a global inference strategy

(using IQP) for concept recognition which allows
us to model structural knowledge of the clinical do-
main as soft constraints in the optimization frame-
work. Our results showed that soft constraints are
more effective than hard constraints.
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Abstract

Different demographics, e.g., gender or age,
can demonstrate substantial variation in their
language use, particularly in informal contexts
such as social media. In this paper we focus on
learning gender differences in the use of sub-
jective language in English, Spanish, and Rus-
sian Twitter data, and explore cross-cultural
differences in emoticon and hashtag use for
male and female users. We show that gen-
der differences in subjective language can ef-
fectively be used to improve sentiment anal-
ysis, and in particular, polarity classification
for Spanish and Russian. Our results show
statistically significant relative F-measure im-
provement over the gender-independent base-
line 1.5% and 1% for Russian, 2% and 0.5%
for Spanish, and 2.5% and 5% for English for
polarity and subjectivity classification.

1 Introduction

Sociolinguistics and dialectology have been study-
ing the relationships between language and speech at
the phonological, lexical and morphosyntactic lev-
els and social identity for decades (Picard, 1997;
Gefen and Ridings, 2005; Holmes and Meyerhoff,
2004; Macaulay, 2006; Tagliamonte, 2006). Re-
cent studies have focused on exploring demographic
language variations in personal email communica-
tion, blog posts, and public discussions (Boneva et
al., 2001; Mohammad and Yang, 2011; Eisenstein
et al., 2010; O’Connor et al., 2010; Bamman et al.,
2012). However, one area that remains largely unex-
plored is the effect of demographic language varia-
tion on subjective language use, and whether these

differences may be exploited for automatic senti-
ment analysis. With the growing commercial im-
portance of applications such as personalized rec-
ommender systems and targeted advertising (Fan
and Chang, 2009), detecting helpful product review
(Ott et al., 2011), tracking sentiment in real time
(Resnik, 2013), and large-scale, low-cost, passive
polling (O’Connor et al., 2010), we believe that sen-
timent analysis guided by user demographics is a
very important direction for research.

In this paper, we focus on gender demographics
and language in social media to investigate differ-
ences in the language used to express opinions in
Twitter for three languages: English, Spanish, and
Russian. We focus on Twitter data because of its vol-
ume, dynamic nature, and diverse population world-
wide.1 We find that some words are more or less
likely to be positive or negative in context depend-
ing on the the gender of the author. For example, the
word weakness is more likely to be used in a pos-
itive way by women (Chocolate is my weakness!)
but in a negative way by men (Clearly they know
our weakness. Argggg). The Russian word достичь
(achieve) is used in a positive way by male users and
in a negative way by female users.

Our goals of this work are to (1) explore the gen-
der bias in the use of subjective language in so-
cial media, and (2) incorporate this bias into models
to improve sentiment analysis for English, Spanish,
and Russian. Specifically, in this paper we:

• investigate multilingual lexical variations in the
use of subjective language, and cross-cultural

1As of May 2013, Twitter has 500m users (140m of them
in the US) from more than 100 countries.
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emoticon and hashtag usage on a large scale in
Twitter data;2

• show that gender bias in the use of subjec-
tive language can be used to improve sentiment
analysis for multiple languages in Twitter.

• demonstrate that simple, binary features repre-
senting author gender are insufficient; rather, it
is the combination of lexical features, together
with set-count features representing gender-
dependent sentiment terms that is needed for
statistically significant improvements.

To the best of our knowledge, this work is the first
to show that incorporating gender leads to signifi-
cant improvements for sentiment analysis, particu-
larly subjectivity and polarity classification, for mul-
tiple languages in social media.

2 Related Work

Numerous studies since the early 1970’s have inves-
tigated gender-language differences in interaction,
theme, and grammar among other topics (Schiffman,
2002; Sunderland et al., 2002). More recent research
has studied gender differences in telephone speech
(Cieri et al., 2004; Godfrey et al., 1992) and emails
(Styler, 2011). Mohammad and Yang (2011) ana-
lyzed gender differences in the expression of senti-
ment in love letters, hate mail, and suicide notes, and
emotional word usage across genders in email.

There has also been a considerable amount of
work in subjectivity and sentiment analysis over
the past decade, including, more recently, in mi-
croblogs (Barbosa and Feng, 2010; Bermingham
and Smeaton, 2010; Pak and Paroubek, 2010; Bifet
and Frank, 2010; Davidov et al., 2010; Li et
al., 2010; Kouloumpis et al., 2011; Jiang et al.,
2011; Agarwal et al., 2011; Wang et al., 2011;
Calais Guerra et al., 2011; Tan et al., 2011; Chen
et al., 2012; Li et al., 2012). In spite of the surge of
research in both sentiment and social media, only a
limited amount of work focusing on gender identi-
fication has looked at differences in subjective lan-
guage across genders within social media. Thel-
wall (2010) found that men and women use emoti-
cons to differing degrees on MySpace, e.g., female

2Gender-dependent and independent lexical resources of
subjective terms in Twitter for Russian, Spanish and English can
be found here: http://www.cs.jhu.edu/~svitlana/

users express positive emoticons more than male
users. Other researchers included subjective patterns
as features for gender classification of Twitter users
(Rao et al., 2010). They found that the majority of
emotion-bearing features, e.g., emoticons, repeated
letters, exasperation, are used more by female than
male users, which is consistent with results reported
in other recent work (Garera and Yarowsky, 2009;
Burger et al., 2011; Goswami et al., 2009; Argamon
et al., 2007). Other related work is that of Otter-
bacher (2010), who studied stylistic differences be-
tween male and female reviewers writing product
reviews, and Mukherjee and Liu (2010), who ap-
plied positive, negative and emotional connotation
features for gender classification in microblogs.

Although previous work has investigated gen-
der differences in the use of subjective language,
and features of sentiment have been used in gender
identification, to the best of our knowledge no one
has yet investigated whether gender differences in
the use of subjective language can be exploited to
improve sentiment classification in English or any
other language. In this paper we seek to answer this
question for the domain of social media.

3 Data

For the experiments in this paper, we use three sets
of data for each language: a large pool of data (800K
tweets) labeled for gender but unlabeled for senti-
ment, plus 2K development data and 2K test data
labeled for both sentiment and gender. We use the
unlabeled data to bootstrap Twitter-specific lexicons
and investigate gender differences in the use of sub-
jective language. We use the development data for
parameter tuning while bootstrapping, and the test
data for sentiment classification.

For English, we download tweets from the corpus
created by Burger et al. (2011). This dataset con-
tains 2,958,103 tweets from 184K users, excluding
retweets. Retweets are omitted because our focus is
on the sentiment of the person tweeting; in retweets,
the words originate from a different user. All users
in this corpus have gender labels, which Burger et
al. automatically extracted from self-reported gen-
der on Facebook or MySpace profiles linked to by
the Twitter users. English tweets are identified using
a compression-based language identification (LID)

1816



tool (Bergsma et al., 2012). According to LID,
there are 1,881,620 (63.6%) English tweets from
which we select a random, gender-balanced sample
of 0.8M tweets. Burger’s corpus does not include
Russian and Spanish data on the same scale as En-
glish. Therefore, for Russian and Spanish we con-
struct a new Twitter corpus by downloading tweets
from followers of region-specific news and media
Twitter feeds. We use LID to identify Russian and
Spanish tweets, and remove retweets as before. In
this data, gender is labeled automatically based on
user first and last name morphology with a precision
above 0.98 for all languages.

Sentiment labels for tweets in the development
and test sets are obtained using Amazon Mechanical
Turk. For each tweet we collect annotations from
five workers and use majority vote to determine the
final label for the tweet. Snow et al. (2008) show
that for a similar task, labeling emotion and valence,
on average four non-expert labelers are needed to
achieve an expert level of annotation. Below are the
example Russian tweets labeled for sentiment:

• Pos: Как же приятно просто лечь в по-
стель после тяжелого дня... (It is a great
pleasure to go to bed after a long day at work...)

• Neg: Уважаемый господин Прохоров ку-
пите эти выборы! (Dear Mr. Prokhorov just
buy the elections!)

• Both: Затолкали меня на местном рынке!
но зато закупилась подарками для всей
семьи :) (It was crowded at the local market!
But I got presents for my family:-))

• Neutral: Киев очень старый город (Kiev is
a very old city).

Table 1 gives the distribution of tweets over senti-
ment and gender labels for the development and test
sets for English (EDEV, ETEST), Spanish (SDEV,
STEST), and Russian (RDEV, RTEST).

Data Pos Neg Both Neut ♀ ♂
EDEV 617 357 202 824 1,176 824
ETEST 596 347 195 862 1,194 806
SDEV 358 354 86 1,202 768 1,232
STEST 317 387 93 1203 700 1,300
RDEV 452 463 156 929 1,016 984
RTEST 488 380 149 983 910 1,090

Table 1: Gender and sentiment label distribution in the
development and test sets for all languages.

4 Subjective Language and Gender

To study the intersection of subjective language and
gender in social media, ideally we would have a
large corpus labeled for both. Although our large
corpus is labeled for gender, it is not labeled for sen-
timent. Only the 4K tweets for each language that
compose the development and test sets are labeled
for both gender and sentiment. Obtaining sentiment
labels for all tweets would be both impractical and
expensive. Instead we use large multilingual senti-
ment lexicons developed specifically for Twitter as
described below. Using these lexicons we can begin
to explore the relationship between subjective lan-
guage and gender in the large pool of data labeled
for gender but unlabeled for sentiment. We also
look at the relationship between gender and the use
of different hashtags and emoticons. These can be
strong indicators of sentiment in social media, and in
fact are sometimes used to create noisy training data
for sentiment analysis in Twitter (Pak and Paroubek,
2010; Kouloumpis et al., 2011).

4.1 Bootstrapping Subjectivity Lexicons

Recent work by Banea et.al (2012) classifies meth-
ods for bootstrapping subjectivity lexicons into two
types: corpus-based and dictionary-based. Corpus-
based methods extract subjectivity lexicons from
unlabeled data using different similarity metrics
to measure the relatedness between words, e.g.,
Pointwise Mutual Information (PMI). Corpus-based
methods have been used to bootstrap lexicons
for ENGLISH (Turney, 2002) and other languages,
including ROMANIAN (Banea et al., 2008) and
JAPANESE (Kaji and Kitsuregawa, 2007).

Dictionary-based methods rely on relations be-
tween words in existing lexical resources. For exam-
ple, Rao and Ravichandran (2009) construct HINDI

and FRENCH sentiment lexicons using relations in
WordNet (Miller, 1995), Rosas et. al. (2012) boot-
strap a SPANISH lexicon using SentiWordNet (Bac-
cianella et al., 2010) and OpinionFinder,3 Clematide
and Klenner (2010), Chetviorkin et al. (2012) and
Abdul-Mageed et. al. (2011) automatically expand
and evaluate GERMAN, RUSSIAN and ARABIC sub-
jective lexicons.

3www.cs.pitt.edu/mpqa/opinionfinder
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We use the corpus-based, language-independent
approach proposed by Volkova et al. (2013) to boot-
strap Twitter-specific subjectivity lexicons. To start,
the new lexicon is seeded with terms from the initial
lexicon LI . On each iteration, tweets in the unla-
beled data are labeled using the current lexicon. If a
tweet contains one or more terms from the lexicon it
is marked subjective, otherwise neutral. Tweet po-
larity is determined in a similar way, but takes into
account negation. For every term not in the lexi-
con with a frequency threshold, the probability of
that word appearing in a subjective sentence is cal-
culated. The top k terms with a subjective probabil-
ity are then added to the lexicon. Bootstrapping con-
tinues until there are no more new terms meeting the
criteria to add to the lexicon. The parameters are op-
timized using a grid search on the development data
using F-measure for subjectivity classification. In
Table 2 we report size and term polarity from the ini-
tial LI and the bootstrapped LB lexicons. Although
more sophisticated bootstrapping methods exist, this
approach has been shown to be effective for atomi-
cally learning subjectivity lexicons in multiple lan-
guages on a large scale without any external, rich,
lexical resources, e.g., WordNet, or advanced NLP
tools, e.g., syntactic parsers (Wiebe, 2000) or infor-
mation extraction tools (Riloff and Wiebe, 2003).

For English, seed terms for bootstrapping are
the strongly subjective terms in the MPQA lexicon
(Wilson et al., 2005). For Spanish and Russian, the
seed terms are obtained by translating the English
seed terms using a bi-lingual dictionary, collecting
subjectivity judgments from MTurk on the transla-
tions, filtering out translations that are not strongly
subjective, and expanding the resulting word lists
with plurals and inflectional forms.

To verify that bootstrapping does provide a bet-
ter resource than existing dictionary-expanded lexi-
cons, we compare our Twitter-specific lexicons LB

English Spanish Russian
LE

I LE
B LS

I LS
B LR

I LR
B

Pos 2.3 16.8 2.9 7.7 1.4 5.3
Neg 2.8 4.7 5.2 14.6 2.3 5.5
Total 5.1 21.5 8.1 22.3 3.7 10.8

Table 2: The initial LI and the bootstrapped LB (high-
lighted) lexicon term count (LI ⊂ LB) with polarity
across languages (thousands).

to the corresponding initial lexicons LI and the ex-
isting state-of-the-art subjective lexicons including:

• 8K strongly subjective English terms from Sen-
tiWordNet χE (Baccianella et al., 2010);

• 1.5K full strength terms from the Spanish sen-
timent lexicon χS (Perez-Rosas et al., 2012);

• 5K terms from the Russian sentiment lexicon
χR (Chetviorkin and Loukachevitch, 2012).

For that we apply rule-based subjectivity classi-
fication on the test data.4 This subjectivity classi-
fier predicts that a tweet is subjective if it contains
at least one, or at least two subjective terms from
the lexicon. To make a fair comparison, we auto-
matically expand χE with plurals and inflectional
forms, χS with the inflectional forms for verbs, and
χR with the inflectional forms for adverbs, adjec-
tives and verbs. We report precision, recall and F-
measure results in Table 3 and show that our boot-
strapped lexicons outperform the corresponding ini-
tial lexicons and the external resources.

Subj ≥ 1 Subj ≥ 2
P R F P R F

χE 0.67 0.49 0.57 0.76 0.16 0.27
LE

I 0.69 0.73 0.71 0.79 0.34 0.48
LE

B 0.64 0.91 0.75 0.7 0.74 0.72
χS 0.52 0.39 0.45 0.62 0.07 0.13
LS

I 0.50 0.73 0.59 0.59 0.36 0.45
LS

B 0.44 0.91 0.59 0.51 0.71 0.59
χR 0.61 0.49 0.55 0.74 0.17 0.29
LR

I 0.72 0.34 0.46 0.83 0.07 0.13
LR

B 0.64 0.58 0.61 0.74 0.23 0.35

Table 3: Precision, recall and F-measure results for sub-
jectivity classification using the external χ, initial LI and
bootstrapped LB lexicons for all languages.

4.2 Lexical Evaluation

With our Twitter-specific sentiment lexicons, we
can now investigate how the subjective use of these
terms differs depending on gender for our three lan-
guages. Figure 1 illustrates what we expect to find.
{F} and {M} are the sets of subjective terms used
by females and males, respectively. We expect that
some terms will be used by males, but never by fe-
males, and vice-versa. The vast majority, however,
will be used by both genders. Within this set of
shared terms, many words will show little difference

4A similar rule-based approach using terms from the
MPQA lexicon is suggested by (Riloff and Wiebe, 2003).
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Figure 1: Gender-dependent vs. independent subjectivity
terms (+ and - indicates term polarity).

Figure 2: The distribution of gender-dependent GDep
and gender-independent GInd sentiment terms.

in their subjective use when considering gender, but
there will be some words for which gender will have
an influence. Of particular interest for our work are
words in which the polarity of a term as it is used in
context is gender-influenced, the extreme case being
terms that flip their polarity depending on the gender
of the user. Polarity may be different because the
concept represented by the term tends to be viewed
in a different light depending on gender. There are
also words like weakness in which a more positive or
more negative word sense tends to be used by men
or women. In Figure 2 we show the distribution of
gender-specific and gender-independent terms from
the LB lexicons for all languages.

To identify gender-influenced terms in our lexi-
cons, we start by randomly sampling 400K male and
400K female tweets for each language from the data.
Next, for both genders we calculate the probability
of term ti appearing in a tweet with another subjec-
tive term (Eq.1), and the probability of it appearing
with a positive or negative term (Eq.2-3) from LB .

pti(subj∣g) =
c(ti, P, g) + c(ti,N, g)

c(ti, g)
, (1)

where g ∈ F,M and P and N are positive and nega-
tive sets of terms from the initial lexicon LI .

pti(+∣g) =
c(ti, P, g)

c(ti, P, g) + c(ti,N, g)
(2)

pti(−∣g) =
c(ti,N, g)

c(ti, P, g) + c(ti,N, g)
(3)

We introduce a novel metric ∆p+ti to measure po-
larity change across genders. For every subjective
term ti we want to maximize the difference5:

∆p+ti = ∣pti(+∣F ) − pti(+∣M)∣

s.t.
RRRRRRRRRRRR

1 −
tfsubj

ti
(F )

tfsubj
ti

(M)

RRRRRRRRRRRR

≤ λ, tfsubj
ti

(M) ≠ 0, (4)

where p(+∣F ) and p(+∣M) are probabilities that
term ti is positive for females and males respec-
tively; tfsubj

ti
(F ) and tfsubj

ti
(M) are correspond-

ing term frequencies (if tfsubj
ti

(F ) > tfsubj
ti

(M) the
fraction is flipped); λ is a threshold that controls
the level of term frequency similarity6. The terms
in which polarity is most strongly gender-influenced
are those with λ→ 0 and ∆p+ti → 1.

Table 4 shows a sample of the most strongly
gender-influenced terms from the initial LI and the
bootstrapped LB lexicons for all languages. A plus
(+) means that the term tends to be used positively
by women and minus (−) means that the term tends
to be used positively by men. For instance, in En-
glish we found that perfecting is used with negative
polarity by male users but with positive polarity by
female users; the term dogfighting has negative po-
larity for women but positive polarity for men.

4.3 Hashtags
People may also express positive or negative senti-
ment in their tweets using hashtags. From our bal-
anced samples of 800K tweets for each language,
we extracted 611, 879, and 71 unique hashtags for
English, Spanish, and Russian, respectively. As we
did for terms in the previous section, we evaluated
the subjective use of the hashtags. Some of these are
clearly expressing sentiment (#horror), while others
seem to be topics that people are frequently opinion-
ated about (#baseball, #latingrammy, #spartak).

5One can also maximize ∆p−ti
= ∣pti(−∣F ) − pti(−∣M)∣.

6λ = 0 means term frequencies are identical for both gen-
ders; λ→ 1 indicates increasing gender divergence.
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English Initial Terms LE
I ∆p+ λ English Bootstrapped Terms LE

B ∆p+ λ
perfecting + 0.7 0.2 pleaseeeeee + 0.7 0.0
weakened + 0.1 0.0 adorably + 0.6 0.4
saddened – 0.1 0.0 creatively – 0.6 0.5
misbehaving – 0.4 0.0 dogfighting – 0.7 0.5
glorifying – 0.7 0.5 overdressed – 1.0 0.3
Spanish Initial Terms LS

I Spanish Bootstrapped Terms LS
B

fiasco (fiasco) + 0.7 0.3 cafeína (caffeine) + 0.7 0.5
triunfar (succeed) + 0.7 0.0 claro (clear) + 0.7 0.3
inconsciente (unconscious) – 0.6 0.2 cancio (dog) – 0.3 0.3
horroriza (horrifies) – 0.7 0.3 llevara (take) – 0.8 0.3
groseramente (rudely) – 0.7 0.3 recomendarlo (recommend) – 1.0 0.0
Russian Initial Terms LR

I Russian Bootstrapped Terms LR
B

магическая (magical) + 0.7 0.3 мечтайте (dream!) + 0.7 0.3
сенсационный (sensational) + 0.7 0.3 танцуете (dancing) + 0.7 0.3
обожаемый (adorable) – 0.7 0.0 сложны (complicated) – 1.0 0.0
искушение (temptation) – 0.7 0.3 молоденькие (young) – 1.0 0.0
заслуживать (deserve) – 1.0 0.0 достичь (achieve) – 1.0 0.0

Table 4: Sample of subjective terms sorted by ∆p+ to show lexical differences and polarity change across genders
(module is not applied as defined in Eq.1 to demonstrate the polarity change direction).

English ∆p+ λ Spanish ∆p+ λ Russian ∆p+ λ
#parenting + 0.7 0.0 #rafaelnarro (politician) + 1.0 0.0 #совет (advise) + 1.0 0.0
#vegas – 0.2 0.8 #amores (loves) + 0.2 1.0 #ukrlaw + 1.0 1.0
#horror – 0.6 0.7 #britneyspears + 0.1 0.3 #spartak (soccer team) – 0.7 0.9
#baseball – 0.6 0.9 #latingrammy – 0.5 0.1 #сны (dreams) – 1.0 0.0
#wolframalpha – 0.7 1.0 #metallica (music band) – 0.5 0.8 #iphones – 1.0 1.0

Table 5: Hashtag examples with opposite polarity across genders for English, Spanish, and Russian.

Table 5 gives the hashtags, correlated with sub-
jective language, that are most strongly gender-
influenced. Analogously to ∆p+ values in Table 4, a
plus (+) means the hashtag is more likely to be used
positively by women, and a minus (−) means the
hashtag is more likely to be used positively by men.
For example, in English we found that male users
tend to express positive sentiment in tweets men-
tioning #baseball, while women tend to be nega-
tive about this hashtag. The opposite is true for the
hashtag #parenting.

4.4 Emoticons
We investigate how emoticons are used differently
by men and women in social media following the
work by (Bamman et al., 2012). For that we rely on
the lists of emoticons from Wikipedia7 and present
the cross-cultural and gender emoticon differences
in Figure 3. The frequency of each emoticon is given

7List of emoticons from Wikipedia http://en.
wikipedia.org/wiki/List_of_emoticons

on the right of each language chart, with probability
of use by a male user in that language given on the
x-axis. The top 8 emoticons are the same across lan-
guages and sorted by English frequency.

We found that emoticons in English data are used
more overall by female users, which is consistent
with previous findings in Schnoebelen’s work.8 In
addition, we found that some emoticons like :-)
(smile face) and :-o (surprised) are used equally by
both genders, at least in Twitter. When comparing
English emoticon usage to other languages, there are
some similarities, but also some clear differences. In
Spanish data, several emoticons are more likely to be
used by male than by female users, e.g., :-o (sur-
prised) and :-& (tongue-tied), and the difference in
probability of use by males and females is greater
for the emoticons, as compared to the same emoti-
cons for English. Interestingly, in Russian Twitter

8Language and emotion (talks, essays and reading notes)
www.stanford.edu/~tylers/emotions.shtml
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Figure 3: Probability of gender and emoticons for English, Spanish and Russian (from left to right).

data emoticons tend to be used more or equally by
male users rather than female users.

5 Experiments

The previous section showed that there are gender
differences in the use of subjective language, hash-
tags, and emoticons in Twitter. We aim leverage
these differences to improve subjectivity and po-
larity classification for the informal, creative and
dynamically changing multilingual Twitter data.9

For that we conduct experiments using gender-
independent GInd and gender-dependent GDep
features and compare the results to evaluate the in-
fluence of gender on sentiment classification.

We experiment with two classification ap-
proaches: (I) rule-based classifier which uses only
subjective terms from the lexicons designed to verify
if the gender differences in subjective language cre-
ate enough of a signal to influence sentiment classifi-
cation; (II) state-of-the-art supervised models which
rely on lexical features as well as lexicon set-count
features.10,11 Moreover, to show that the gender-

9For polarity classification we distinguish between positive
and negative instances, which is the approach typically reported
in the literature for recognizing polarity (Velikovich et al., 2010;
Yessenalina and Cardie, 2011; Taboada et al., 2011)

10A set-count feature is a count of the number of instances
from a set of terms that appears in a tweet.

11We also experimented with repeated punctuation (!!, ??)
and letters (nooo, reealy), which are often used in sentiment
classification in social media. However, we found these features

sentiment signal can be learned by more than one
classifier we apply a variety of classifiers imple-
mented in Weka (Hall et al., 2009). For that we do
10-fold cross validation over English, Spanish, and
Russian test data (ETEST, STEST and RTEST) la-
beled with subjectivity (pos, neg, both vs. neut) and
polarity (pos vs. neg) as described in Section 3.

5.1 Models
For the rule-basedGIndRB

subj classifier, tweets are la-
beled as subjective or neutral as follows:

GIndRB
subj = {

1 if w⃗ ⋅ f⃗ ≥ 0.5,
0 otherwise

(5)

where w⃗ ⋅ f⃗ stands for weighted set features, e.g.,
terms from LI only, emoticons E, or different part-
of-speech tags (POS) from LB weighted using w =

p(subj) = p(subj∣M) + p(subj∣F ) subjectivity
score as shown in Eq.1. We experiment with the
POS tags to show the contribution of each POS to
sentiment classification.

Similarly, for the rule-based GIndRB
pol classifier,

tweets are labeled as positive or negative:

GIndRB
pol = {

1 if w⃗+ ⋅ f⃗+ ≥ w⃗− ⋅ f⃗−,
0 otherwise

(6)

where f⃗+, f⃗− are feature sets that include only posi-
tive and negative features fromLI orLB;w+ andw−

to be noisy and adding them decreased performance.
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Figure 4: Rule-based (RB) and Supervised Learning (SL) sentiment classification results for English. LI - the initial
lexicon, E - emoticons, A,R,V,N are adjectives, adverbs, verbs, nouns from LB .

are positive and negative polarity scores estimated
using Eq.2 - 3 such as: w+ = p(+∣M) + p(+∣F ) and
w− = p(−∣M) + p(−∣F ).

The gender-dependent rule-based classifiers are
defined in a similar way. Specifically, f⃗ is replaced
by f⃗M and f⃗F in Eq.5 and f⃗−, f⃗+ are replaced
by f⃗M−, f⃗F− and f⃗M+, f⃗F+ respectively in Eq.6.
We learn subjectivity s⃗ and polarity p⃗ score vectors
using Eq.1-3. The difference between GInd and
GDep models is that GInd scores w⃗, w⃗+ and w⃗−

are not conditioned on gender.
For gender-independent classification using su-

pervised models, we build feature vectors using lex-
ical features V represented as term frequencies, to-
gether with set-count features from the lexicons:

f⃗GInd
subj = [LI , LB,E, V ];

f⃗GInd
pol = [L+I , L

+

B,E
+, L−I , L

−

B,E
−, V ].

Finally, for gender-dependent supervised models,
we try different feature combinations. (A) We ex-
tract set-count features for gender-dependent subjec-
tive terms from LI , LB, and E jointly:

f⃗GDep−J
subj = [LM

I , L
M
B ,E

M , LF
I , L

F
B,E

F , V ];

f⃗Dep−J
pol = [LM+

I , LM+
B ,EM+, LF+

I , LF+
B ,EF+

LM−
I , LM−

B ,EM−, LF−
I , LF−

B ,EF−, V ].

(B) We extract disjoint (prefixed) gender-specific
features (in addition to lexical features V ) by rely-
ing only on female set-count features when classify-
ing female tweets; and only male set-count features

for male tweets. We refer to the joint features as
GInd−J andGDep−J , and to the disjoint features
GInd −D and GDep −D.

5.2 Results

Figures 4a and 4b show performance improvements
for subjectivity and polarity classification under the
rule-based approach when taking into account gen-
der. The left figure shows precision-recall curves
for subjective vs. neutral classification, and the mid-
dle figure shows precision-recall curves for positive
vs. negative classification. We measure performance
starting with features from LI , and then incremen-
tally add emoticon features E and features from LB

one part of speech at a time to show the contribution
of each part of speech for sentiment classification.12

This experiment shows that there is a clear improve-
ment for the models parameterized with gender, at
least for the simple, rule-based model.

For the supervised models we experiment with
a variety of learners for English to show that gen-
der differences in subjective language improve sen-
timent classification for many learning algorithms.
We present the results in Figure 4c. For subjectiv-
ity classification, Support Vector Machines (SVM),
Naive Bayes (NB) and Bayesian Logistic Regres-
sion (BLR) achieve the best results, with improve-
ments in F-measure ranging from 0.5 - 5%. The po-
larity classifiers overall achieve much higher scores,
with improvements for GDep features ranging from
1-2%. BLR with Gaussian prior is the top scorer

12POS from the Twitter POSTagger (Gimpel et al., 2011).
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P R F A Arand P R F A Arand

English subj vs. neutral p(subj)=0.57 English pos vs. neg p(pos)=0.63
GIndLR 0.62 0.58 0.60 0.66 – 0.78 0.83 0.80 0.71 –
GDep − J 0.64 0.62 0.63 0.68 0.66 0.80 0.83 0.82 0.73 0.70
∆R,% +3.23 +6.90 +5.00 +3.03 3.03↓ +2.56 0.00 +2.50 +2.82 4.29↓
GIndSV M 0.66 0.70 0.68 0.72 – 0.79 0.86 0.82 0.77 –
GDep −D 0.66 0.71 0.68 0.72 0.70 0.80 0.87 0.83 0.78 0.76
∆R,% –0.45 +0.71 0.00 –0.14 2.85↓ +0.38 +0.23 +0.24 +0.41 2.63↓

Spanish subj vs. neutral p(subj)=0.40 Spanish pos vs. neg p(pos)=0.45
GIndLL 0.67 0.71 0.68 0.61 – 0.71 0.63 0.67 0.71 –
GDep − J 0.67 0.72 0.69 0.62 0.61 0.72 0.65 0.68 0.71 0.68
∆R,% 0.00 +1.40 +0.58 +0.73 1.64↓ +2.53 +3.17 +1.49 0.00 4.41↓
GIndSV M 0.68 0.79 0.73 0.65 – 0.66 0.65 0.65 0.69 –
GDep −D 0.68 0.79 0.73 0.66 0.65 0.68 0.67 0.67 0.71 0.68
∆R,% +0.35 +0.21 +0.26 +0.54 1.54↓ +2.43 +2.44 +2.51 +2.08 4.41↓

Russian subj vs. neutral p(subj)=0.51 Russian pos vs. neg p(pos)=0.58
GIndLR 0.66 0.68 0.67 0.67 – 0.66 0.72 0.69 0.62 –
GDep − J 0.66 0.69 0.68 0.67 0.66 0.68 0.73 0.70 0.64 0.63
∆R,% 0.00 +1.47 +0.75 0.00 1.51↓ +3.03 +1.39 +1.45 +3.23 1.58↓
GIndSV M 0.67 0.75 0.71 0.70 – 0.64 0.73 0.68 0.62 –
GDep −D 0.67 0.76 0.71 0.70 0.69 0.65 0.74 0.69 0.63 0.62
∆R,% –0.30 +1.46 +0.56 +0.14 1.44↓ +0.93 +1.92 +1.46 +1.49 1.61↓

Table 6: Sentiment classification results obtained using gender-dependent and gender-independent joint and disjoint
features for Logistic Regression (LR) and SVM models.

for polarity classification with an F-measure of 82%.
We test our results for statistical significance us-
ing McNemar’s Chi-squared test (p-value < 0.01) as
suggested by Dietterich (1998). Only three classi-
fiers, J48, AdaBoostM1 (AB) and Random Forest
(RF) do not always show significant improvements
for GDep features over GInd features. However,
for the majority of classifiers, GDep models outper-
formGIndmodels for both tasks, demonstrating the
robustness of GDep features for sentiment analysis.

In Table 6 we report results for subjectivity and
polarity classification using the best performing
classifiers (as shown in Figure 4c) :

- Logistic Regression (LR) (Genkin et al., 2007)
for GInd − J and GDep − J models.

- SVM model with radial-based kernel for
GInd − D and GDep − D models. We use
LibSVM implementation (EL-Manzalawy and
Honavar, 2005).

Each ∆R(%) row shows the relative percent im-
provements in terms of precision P , recall R, F-
measure F and accuracy A for GDep compared to
GInd models. Our results show that differences in
subjective language across genders can be exploited

to improve sentiment analysis, not only for English
but for multiple languages. For Spanish and Russian
results are lower for subjectivity classification, we
suspect, because lexical features V are already in-
flected for gender and set-count features are down-
weighted by the classifier. For polarity classifica-
tion, on the other hand, gender-dependent features
provide consistent, significant improvements (1.5-
2.5%) across all languages.

As a reality check, Table 6 also reports accuracies
(in Arand columns) for experiments that use random
permutations of male and female subjective terms,
which are then encoded as gender-dependent set-
count features as before. We found that all gender-
dependent models, GDep − J and GDep −D, out-
performed their random equivalents for both subjec-
tivity and polarity classification (as reflected by rel-
ative accuracy decrease ↓ forArand compared toA).
These results further confirm the existence of gen-
der bias in subjective language for any of our three
languages and its importance for sentiment analysis.

Finally, we check whether encoding gender as
a binary feature would be sufficient to improve
sentiment classification. For that we encode fea-
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English Spanish Russian
P R P R P R

(a) 0.73 0.93 0.68 0.63 0.66 0.74
(b) 0.72 0.94 0.69 0.64 0.66 0.74
(c) 0.78 0.83 0.71 0.63 0.66 0.72
(d) 0.69 0.93 0.71 0.62 0.65 0.76
(e) 0.80 0.83 0.72 0.65 0.68 0.73

Table 7: Precision and recall results for polarity classifi-
cation: encoding gender as a binary feature vs. gender-
dependent features GDep − J .

tures such as: (a) unigram term frequencies V , (b)
term frequencies and gender binary V +GBin, (c)
gender-independent GInd, (d) gender-independent
and gender binary GBin + GInd, and (e) gender-
dependent GDep − J . We train logistic-regression
model for polarity classification and report precision
and recall results in Table 7. We observe that includ-
ing gender as a binary feature does not yield signif-
icant improvements compared to GDep − J for all
three languages.

6 Conclusions

We presented a qualitative and empirical study that
analyses substantial and interesting differences in
subjective language between male and female users
in Twitter, including hashtag and emoticon usage
across cultures. We showed that incorporating au-
thor gender as a model component can significantly
improve subjectivity and polarity classification for
English (2.5% and 5%), Spanish (1.5% and 1%) and
Russian (1.5% and 1%). In future work we plan to
develop new models for joint modeling of personal-
ized sentiment, user demographics e.g., age and user
preferences e.g., political favorites in social media.
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Abstract

A very valuable piece of information in news-
paper articles is the tonality of extracted state-
ments. For the analysis of tonality of newspa-
per articles either a big human effort is needed,
when it is carried out by media analysts, or an
automated approach which has to be as accu-
rate as possible for a Media Response Anal-
ysis (MRA). To this end, we will compare
several state-of-the-art approaches for Opin-
ion Mining in newspaper articles in this pa-
per. Furthermore, we will introduce a new
technique to extract entropy-based word con-
nections which identifies the word combina-
tions which create a tonality. In the evalua-
tion, we use two different corpora consisting
of news articles, by which we show that the
new approach achieves better results than the
four state-of-the-art methods.

1 Introduction

The Web keeps many potentially valuable opinions
in news articles which are partly new online articles
or uploaded print media articles. Many companies
or organisations such as political parties or even dis-
tinguished public figures perform a Media Response
Analysis (MRA) (Watson and Noble, 2007) in order
to analyse the output of their effort in public rela-
tions. So, an opinion-oriented analysis of news arti-
cles is important, because the tonality (Watson and
Noble, 2007; Scholz et al., 2012a) is the key indi-
cator of a MRA. A purely manual solution implies
a big human effort for so-called media analysts, be-
cause they have to read and rate approx. 200 to 800
news articles each week.

As a consequence, an automated Opinion Mining
solution is very attractive. At the same time, Opin-
ion Mining in newspaper articles appears to be dif-
ficult, because not all parts of news articles are as
subjective (Balahur et al., 2010) as reviews, for ex-
ample. Also, different parts of one article can con-
tain different opinions (Watson and Noble, 2007).
Therefore, we work with extracted statements of
news articles, in which a sequence of consecutive
sentences has the same tonality value. At the same
time, some approaches focus more on differentiating
only between positive and negative news and leave
out neutral examples (Taboada et al., 2011; Scholz et
al., 2012b). Conversely, we have noticed that even if
the used words in the news domain are quite similar,
the tonality which the words express can be differ-
ent, especially if neutral examples are involved (cf.
section 3.1). We propose this task formulation:

Problem definition: Let s ⊆ d be a statement and
document d represents a newspaper article. The task
is to determine the tonality y for a given statement
s, consisting of k words:

t : s = (w1, w2, ..., wk) 7→
y ∈ {positive,neutral,negative} (1)

Normally, a statement consists of one up to four
sentences. But also longer statements are possible,
but they appear less frequently in a MRA. An au-
tomated approach (Scholz and Conrad, 2013) for
the extraction of statements already exists. The ap-
proach applies machine learning to extract relevant
sentences from a collection of news articles and
combine them to statements. So, we concentrate on
the tonality classification, which is not provided by
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the approach for the statements extraction (Scholz
and Conrad, 2013). Furthermore, we define the po-
larity of sentiment as the distinction between posi-
tive and negative sentiment and the subjectivity as
the distinction between subjective (positive and neg-
ative) statements and neutral statements.

The following example is a positive statement
from an article in The Telegraph (8th Aug 2012)
which deals with the prospects of British companies
in Africa:

• Example statement (positive): There are
structural factors behind the African growth
story: a growing and sizeable population which
is increasingly urbanised with disposable in-
come; growing political stability; and a finan-
cial services industry that is still in its infancy.

The so-called pressrelations dataset (Scholz et al.,
2012a), which represents a publicly available cor-
pus1 of a MRA on German news articles, contains
1,521 annotated statements. Since this is the only
publicly available corpus of a MRA as far as we
know, we perform our experiments in German. We
are aware of the fact that viewpoints play a signif-
icant role in a newspaper, but since we concentrate
on the determination of the tonality, the extraction of
viewpoints can be solved in a separate step (Scholz
and Conrad, 2012). This is possible, because the
tonality of a statement can be determined without
knowledge of the viewpoint in almost all cases. The
only exception is a statement with multiple view-
points and different tonalities, but these statements
are very rare (cf. also section 4.1).

Our approach learns a graph from an annotated
collection of statements, in which nodes and edges
model tonality-bearing word connections. For un-
seen statements, we recognize subgraphs of the
learned graph, compare two weighting methods for
extracting different tonality features, and classify the
statements by a support vector machine.

In this paper, we describe four state-of-the-art
techniques for Opinion Mining in the next section
about related work. In the third section, we intro-
duce our graph-based and entropy-based approach
to calculate the tonality features T . We will evaluate
our approach against the state-of-the-art methods in
section 4, before we conclude in the last section.

1http://www.pressrelations.de/research/

2 Related Work

Opinion Mining and Sentiment Analysis represent a
broad subject area (Pang and Lee, 2008).

The different contributions reach from applying
Opinion Mining in reviews and recommending new
multimedia products for individuals (Qumsiyeh and
Ng, 2012) to sentiment analyses for different topics
in social media (Wang et al., 2011) or the creation
of sentiment dictionaries (Baccianella et al., 2009).
In this paper, we focus on state-of-the-art methods
for Opinion Mining which differ from each other in
their methodology.

In the news domain, Wilson et al. (2009) de-
veloped a word-based classification approach which
can extract contextual polarity. This method (de-
noted as Wilson) uses a lexicon and POS-tagging
to generate word features and sentence features.
Moreover, it also uses deep natural language anal-
yses with dependency parse trees in order to cal-
culate (general and polarity) modification features
and structure features. Finally, they compute 32 fea-
tures for neutral-polar classification and 10 features
for the polarity classification. These features can be
used by different kinds of machine learning tech-
niques such as Ripper (Cohen, 1996) or BoosTexter
(Schapire and Singer, 2000).

Based on a sentiment lexicon, Taboada et al.
(2011) calculate the semantic orientation of opinion-
bearing words (SO-CAL). They begin with a fine-
grained dictionary of adjectives, adverbs, verbs, and
nouns which have a score from -5 to +5. “Master-
piece” has a score of +5 and “monstrosity” of -5,
for example. In addition, the approach takes inten-
sifiers, negations, and irrealis (Taboada et al., 2011)
into account and thereby modifies the score of the
words through rules and formulas. SO-CAL iden-
tifies some special expressions and constructions,
which tell the reader, that this text part does not re-
ally contain an actual opinion or sentiment. The lin-
guistic term for this situation is called irrealis. Also,
text-level features weight the final score by mere
presence of the words.

In the field of customer reviews, Ding et al.
(2008) also work with a dictionary, which even
includes context-dependent words (positive, neu-
tral, and negative words) as well as rules to iden-
tify the sentiment orientation of words (Opinion
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Observer). The rules deal with negations, inter-
sentence conjunctions, but-clauses, and the modifier
“too”. Furthermore, they extract relations between
opinion words and corresponding product features.
Thereby, a detailed analysis of product reviews is
possible.

Sarvabhotla et al. (2011) propose to extract the
subjective excerpt of a text (RSUMM). They con-
struct two word-vectors: An average document fre-
quency vector represents the most important and
most specific word features for the given domain.
Subsequently, an average subjective measure vector
selects the most subjective terms. As a result, they
require hardly any natural language preprocessing
except a sentence splitter and a tokenizer. The fi-
nal classification is accomplished by a SVM (SVM-
Light (Joachims, 1999)).

For product reviews, graph-based approaches
(Goldberg and Zhu, 2006; Wu et al., 2009) can
increase the performance in cross-domain tasks
(Ponomareva and Thelwall, 2012). By contrast, our
graph nodes do not represent documents, but words
to overcome the problem of similar bag-of-words
representations (cf. next section).

One important resource for Opinion Mining in
news is the MPQA corpus (Wiebe et al., 2005)
which contains word and phrase-based annotation
for 523 news articles. Unfortunately, since the cor-
pus does not have statements and a statement-based
tonality, it is not designed as a MRA. A slightly
larger corpus, the pressrelations dataset (Scholz et
al., 2012a) with 617 articles, is the result of a MRA
in German. We use this corpus as one part of our
evaluation.

3 Learning Tonality with Entropy-based
Word Connections

3.1 Graph Model for Word Connections

To solve the Opinion Mining task for a MRA,
we propose a graph-based approach to capture
the opinion-bearing words and modifiers such as
negations. In this way, our approach is able to
recognize tonality-indicating structures (subgraphs)
which provide precise information about the tonal-
ity, even if statements have a very similar bag-of-
words representation and at the same time different
tonalities. One could also say that we create a graph

instead of a sentiment dictionary from training ex-
amples, as other approaches (Kaji and Kitsuregawa,
2007; Du et al., 2010) proceed.

In figure 1, simple examples are shown with a
possible graph (the nodes and edges are taken from
the given statements; of course, the graphs and
weights become larger in practice). These simple
examples are concentrated on nouns, verbs, and ad-
verbs, but also examples with combinations of other
categories are possible, such as, for example, dif-
ferent combinations of adjectives, nouns, and verbs:
“This is a black day for the company”, “The com-
pany is in the black”, “The company is in the red”
and “The company prevents to be in the red”. Thus,
even though the word representation is quite similar,
the tonality can be different.

For opinion-bearing words, we use adjectives,
nouns, verbs, and adverbs, which are widely ac-
knowledged as opinion-bearing word categories
(Bollegala et al., 2011; Remus et al., 2010; Taboada
et al., 2011). Furthermore, we also include negation
particles. Therefore, the vocabulary V is the set of
words in lemma for one set of statements S. Thus,
for every lemma w ∈ V , the approach creates one
node υ in the graph. A node υ also contains the type
information (adjective, noun, verb, adverb, or nega-
tion).

The edge eij shows the appearance of node υi and
υj in combination with tonality y by means of a
weight εi,j (the sequence of the values in equation
2 is also used in figure 1 and 2).

εij = (yijπ, yijo, yijν) (2)

yijπ is the number of co-occurrences of node υi
and υj in positive statements within the same sen-
tence. In analogy, yijo belongs to sentences of neu-
tral statements and yijν to sentences of negative
statements. Figure 1 shows a small example for this
calculation, too.

3.2 Generating Features for Learning

From a learned graph, we can combine different
edges to calculate tonality features for an unseen
statement s. An unseen statement is a statement,
which is of course not used to learn the graph. We
use all edges of the subgraph Gsl which contains the
nodes for every lemma wi in the l-th sentence of s.
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1) This solves the crisis. (positive)
2) This solves the crisis slowly. (neutral)
3) This intensifies the crisis. (negative)

1) This solves the crisis.
          (positive)
2) This solves the crisis slowly.
          (neutral)
3) This intensifies the crisis.
          (negative)

solve

crisis

intensify slowly

(0,0,1)
(0,1,0)

(0,1,0)

(1,1,0)

Figure 1: An example for different statements and a graph: The weights base on the three examples and their notation
is (positive,neutral,negative).

be

structural

crisis factor

(1,2,7)
(5,1,2)

(0,1,0)

(3,1,1)

growth story

tell(2,1,1)

(4,0,0)
(0,8,0)

(2,4,18) (2,2,2)

Figure 2: An example of a learned graph: The nodes and
edges, which are drawn in solid lines, represent the recog-
nized subgraph Gsl for the sentence “There are structural
factors behind the African growth story.”.

We explain this with an example. Assuming that
our learned graph is shown in figure 2. It con-
tains seven nodes and nine edges (also the nodes and
edges in dashed lines). If we further assume that an
unseen statement is the example of section 1. To
keep this example short, we take the part until the
colon as the first sentence of the statement: “There
are structural factors behind the African growth
story.”

Our approach recognizes the nodes for “be”,
“structural”, “factors”, “growth”, and “story”. Thus,
the subgraphGsl for the first sentence (l = 0) would
be the graph which is drawn in solid lines in figure 2.
In this example, it is a connected graph, but it does
not have to be.

We could also look for complete or connected
graphs in the statement instead of using all edges.
The largest complete graph would consist of the
nodes “structural”, “factor”, and “be” in our ex-
ample. But using all edges achieves better results,
because this method provides all information. In
addition, this method is quicker (search for largest
complete or connected graph can be omitted, which
would be an additional check).

If we have found our subgraphs Gsl, we can then
compute the vectorial sum of all edges for one node

υi and we get the probability for a tonality y, if we
observe υi in the l-th sentence:

P (pos|υi) =

∑
eij∈Gsl

yijπ∑
eij∈Gsl

yijπ + yijν
(3)

P (neg|υi) =

∑
eij∈Gsl

yijν∑
eij∈Gsl

yijπ + yijν
(4)

P (sub|υi) =

∑
eij∈Gsl

yijπ + yijν∑
eij∈Gsl

yijπ + yijo + yijν
(5)

P (neu|υi) =

∑
eij∈Gsl

yijo∑
eij∈Gsl

yijπ + yijo + yijν
(6)

For the subjective class (sub), we add the appear-
ance in positive statements (yijπ) and negative state-
ments (yijν). Otherwise we take the appearances in
statements of the same class. The denominators of
the polarity refer only to positive and negative ap-
pearances, while the denominators for the subjectiv-
ity refer to every tonality.

By calculating the vectorial sum, we combine
several edges in order to estimate precise tonality
scores. In this way, we can get the correct tonal-
ity score for the noun “crisis”, if a sentence con-
tains also “solve” and “slowly” (→ more neutral) or
“intensify” (→ more negative) (cf. figure 1). And
we get the correct tonality score for the adjective
“structural”, if a sentence includes also “crisis” (→
negative) or the nodes “factor”, “be”, “growth”, and
“story” (→ positive) (cf. figure 2).

We distinguish between different word categories
(we have noticed that this creates better results than
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just having a single feature for one statement). Thus,
every category gets its own feature and every node
only has a tonality value, if it belongs to the category
of the feature. This does not mean that we only con-
sider edges which connect two nodes with the same
category; we divide the influence of different cate-
gories into different features:

Tcat,z(υi) =

{
fz(υi) if υi ∈ cat

0 if υi /∈ cat
(7)

cat ∈ {adj, adv, n, v} indicates the category of
the node (adjectives, adverbs, nouns, or verbs) and
z specifies the type of feature. One type shows
the difference between positive and negative polarity
(z = pol), for the other type we replace the positive
class by the subjective one (the sum of positive and
negative) and the negative by a neutral one in order
to differentiate between neutral and non-neutral ex-
amples (z = sub). As a result, we calculate eight
features (see table 1) for the tonality, two for each
important word category. For the weighting, we ap-
ply and compare two methods, presented in the next
sections.

3.2.1 Kullback-Leibler Weighting
For the final score, we can use the Kullback-

Leibler divergence (relative entropy) (Kullback and
Leibler, 1951) of P2 from P1:

DKL(P1||P2) =
∑
x∈X

P1(x) log
P1(x)

P2(x)
(8)

To measure the information about tonality, we can
define our tonality scores based on the divergence
between the two category pairs:

fpol(υi) = DKL(P (pos|υi)||P (neg|υi)) (9)

fsub(υi) = DKL(P (sub|υi)||P (neu|υi)) (10)

Here, we measure the information lost, if
P (neg|υi) approximates P (pos|υi), for example.
The Kullback-Leibler is an asymmetric measure, so
a switch of the distributions would give a different
result. This is one reason why we prefer our second
method, but we evaluate both in order to find out
how important the choice of the weighting method
is.

3.2.2 Entropy-summand Weighting
Also, the basic idea of the entropy (Shannon,

1948) can be applied to extract the importance of
the edges for the tonality.

H(X) = −
n∑
i=1

p(xi) log2(p(xi)) (11)

Here, the p(xi) refer to the probabilities in the
equations 3 to 6. We add or subtract the entropy-
summand of the assumed tonality class for one node
υi to/from a perfect state (normalized to 1 and -1):

fpol(υi) =


1 + P (pos|υi) ∗ log2(P (pos|υi))

if P (neg|υi) ≤ P (pos|υi)
−1− P (neg|υi) ∗ log2(P (neg|υi))

otherwise
(12)

fsub(υi) =


1 + P (sub|υi) ∗ log2(P (sub|υi))

if P (neu|υi) ≤ P (sub|υi)
−1− P (neu|υi) ∗ log2(P (neu|υi))

otherwise
(13)

In this way, we measure how much disorder one
node υi provides for a certain tonality class. For a
clearly positive node (appears only in positive state-
ments), e.g., the disorder will be 0 and so fpol(υi) =
1 and also fsub(υi) = 1.

3.3 Final Scores and Classification

To compute the eight final features values (four
for each z-class), we calculate the average scores
of all nodes, which share the same category, over
all sentences of the statement. If no nodes/edges
could be recognized in an unseen statement, all fea-
tures would be zero. We use a SVM2 to clas-
sify the statements by the extracted features. This
works according to the one-versus-all strategy for
a non-binary classification, which achieved slightly
better results than a one-versus-one strategy or a
subjective-objective classification first and then a
positive-negative classification. Linear kernels are
used and the parameters are the default ones. This

2Rapidminer standard implementation (http://rapid-i.com/)
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Polarity Features Subjectivity Features
Tv,pol: polarity for edges with verbs Tv,sub: subjectivity for edges with verbs
Tn,pol: polarity for edges with nouns Tn,sub: subjectivity for edges with nouns
Tadv,pol: polarity for edges with adverbs Tadv,sub: subjectivity for edges with adverbs
Tadj,pol: polarity for edges w. adjectives Tadj,sub: subjectivity for edges w. adjectives

Table 1: Polarity and subjectivity features based on word connections

means that every class has the same priority, for in-
stance.

By using only 8 features, we actually achieve bet-
ter results if compared with the use of one edge as
a feature, because we abstract from individual word
combinations in order to prevent overfitting. We will
demonstrate that in section 4, where this method of
using all edges as features is denoted as the graph
edges method. Another positive aspect of restrict-
ing the number of features to a constant limit is that
we save computing time (for the calculation of dis-
tances within machine learning, e.g.), because the
graphs can be large (cf. section 4).

4 Experiments

4.1 Data and Experimental Setup

We use two different datasets for our evaluation: The
pressrelations dataset3 (called PDS) contains 1,521
statements (446 positive, 492 neutral, 583 negative),
and a real world dataset contains 8,500 statements
(2,125 positive, 2,125 negative, 4,250 neutral) from
5,352 news items about a financial service provider,
the so-called Finance dataset. Up to ten media ana-
lysts (professional experts in the field of MRA) an-
notate the extracted statements with a tonality. We
have investigated their inter-annotator agreement.
So, four analysts annotate the same statements from
a small part of the statements. They achieve an
agreement of 81.8% by using the simple accuracy
metric. The PDS has an inter-annotator agreement
of 88.06% (Cohen’s kappa) (Scholz et al., 2012a).
We do not use the viewpoint information contained
in the PDS. This is not a problem, because the tonal-
ity of statements can be estimated without knowl-
edge of the viewpoint in the most cases.

Nevertheless, a statement can have two different
viewpoints in a MRA. This is the case for 116 state-
ments (approx. 7.62%) of the pressrelations dataset

3http://www.pressrelations.de/research/

and 279 statements of the Finance dataset (approx.
3.28%). Statements can have two different tonal-
ities for different viewpoints, but this is rarely the
case (for less than 3.56% of the pressrelations state-
ments and less than 0.17% of the statements of the
Finance dataset). One of these examples is the fol-
lowing statement, which is a translated statement of
the PDS:

• Example: The logical consequence would be
a substantial increase of the subsidies, which
the SPD fraction has demanded several times.
But the government has limited the funding
for 2011 and a too slight rise is planned for
2012. (Code A: positive, SPD; Code B: nega-
tive, CDU)

At the time of the creation of this dataset, the
SPD is the biggest opposing party of the CDU in
Germany. The CDU is the governing party under
its chairwoman Chancellor Merkel. We keep these
statements within the dataset, because this case can
occur in a MRA. However, we will show that this
situation does not irritate our approach too much.

We use approx. 30% of the statements, that is 420
statements (the first 140 positive, neutral, or nega-
tive statements) or 2,500 statements (the first 625
positive or negative and the first 1,250 neutral state-
ments) in order to create our graph (the graph has
41,470 or 154,001 edges, resp.). For POS-tagging,
identification of negations, and lemmatisation, we
apply the TreeTagger (Schmid, 1995). Unless oth-
erwise stated, 20% of the remaining statements (220
and 1,200 statements) are the training set for the
SVM and the rest is test set. The size of the test
is so large, because we are aiming at a real signifi-
cance of the solution which can actually be operated
in practice.
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4.2 Adapting the State-of-the-Art Approaches
for a German MRA

For the approaches of Ding et al. (2008), Wilson et
al. (2009), and Taboada et al. (2011) we need a sen-
timent dictionary. Thus, we use the same statements
which we use for the creation of our graphs for the
creation of a dictionary as one variant.

To create the lexicon of subjectivity clues for the
method of Wilson et al. (2009), all words which ap-
pear more often in neutral statements get the prior
polarity neutral. For all other words, we calculate
the number of appearances in positive statements
minus the appearances in negative statements di-
vided by all appearances. A positive word has a
value of over 0.2, a negative word has a value of
less than -0.2 and the rest has the prior polarity both.
A positive word with a value above 0.6 belongs to
the reliability class strongsubj, the other positive
words are weaksubj. We treat the negative words
analogously. We use the Stanford Parser for Ger-
man (Rafferty and Manning, 2008) to calculate the
dependency trees for the sentences (Wilson et al.,
2009), in order to extract the General Modification
Features, the Polarity Modification Features and the
Structure Features. The lists of intensifiers, copu-
lar verbs, modals, negations, and polarity shifters
are translated by a domain expert, who also added
such elements which are not direct translations, but
have the same function. The result of this method
is a classification of words and phrases. Thus, for
a statement classification, we classify the words of
the statements and the class of the most frequently
used words is the class of the statement (ambigu-
ous statements are classified as the most frequent
class). According to the authors, we apply the best
machine learning techniques for the word classifica-
tion (BoosTexter for tonality classification and Rip-
per for Subjectivity Analysis with parameters as in
(Wilson et al., 2009)).

For Opinion Observer (Ding et al., 2008), we
also identify neutral words if they appear more often
in neutral than in subjective statements and subjec-
tive words are positive if they appear more often in
positive than in negative statements and vice versa
for negative words. In contrast to Opinion Mining
in customer reviews, we exchange product features
through statements and calculate the orientation of

opinions for all statements with their opinion ori-
entation algorithm. For this purpose, we adapt the
negation rules, the but-clause rule, the inter-sentence
conjunction rule, and the “too” rules for German
(by translating important words such as “but” or the
negations).

SO-CAL (Taboada et al., 2011) needs dictionar-
ies with sentiment values from -5 to +5 with inter-
vals of one. Thus, we use the same scores as the
Wilson method and a word with a value above 0.818
to 1 gets a sentiment score of +5 and so on. This
means, that neutral words also exist. Our domain ex-
pert translated the list of intensifiers (amplifiers and
downtoners) and negations, as well as the expert also
added missing elements. The authors propose two
approaches for the negation search. We use the sec-
ond, more conservative approach, because this ap-
proach works better according to the authors. Also,
we use the value 4 for the negation shift. Further-
more, we implement the algorithm of irrealis block-
ing and translate the list of irrealis markers (modal
verbs, conditional markers, negative polarity items,
private-state verbs (Taboada et al., 2011)).

For all dictionary-based methods (Wilson, Opin-
ion Observer, SO-CAL), we also evaluate an addi-
tional variant which use a sentiment dictionary and
not the statements which we use to construct the
graphs on each fold. We apply the SentiWS (Remus
et al., 2010) for this purpose. As the SentiWS has
sentiment values between −1 and 1, we apply simi-
lar procedures to construct the method-specific dic-
tionaries as described above: For SO-CAL, it is the
same procedure by using the SentiWS values, pos-
itive words has a score above 0.33 for Wilson and
Opinion Observer, strongsubj words have an abso-
lute value above 0.66 and so on. The methods are
denoted as method (dictionary).

RSUMM (Sarvabhotla et al., 2011) needs less
specific adaptation, because only a sentence split-
ter and a tokenizer are needed. So, RSUMM
is very language-independent. We test two ver-
sions of this method: one includes the optimiza-
tion step to estimate the best values for X and Y
(notated as RSUMM(X%, Y%)) and the other ver-
sion (RSUMM(100%)) does without this step, be-
cause we believe that every sentence is important in
the statements and also because more words mean
more information about the tonality in our domain.
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We use the sets for the creation of the graphs and
lexicons as the validation dataset (VDS) (Sarvab-
hotla et al., 2011) and the subjectivity dataset (SDS)
(Sarvabhotla et al., 2011). As in (Sarvabhotla et al.,
2011), we apply the SVMLight package4 for classi-
fication.

Opinion Observer (Ding et al., 2008) and SO-
CAL (Taboada et al., 2011) do not use supervised
learning. Therefore, we have also added our SVM in
order to classify the statements based on the scores
of Opinion Observer and SO-CAL (as shown in ta-
bles with (+ SVM)).

4.3 Results

Table 2 and 4 (left side) show the results on the
pressrelations dataset (PDS) and table 3 and 4 (right
side) show the results on Finance. Table 2 and 3
present the tonality classification (positive, neutral,
negative) and table 4 displays the Subjectivity Anal-
ysis (subjective, neutral).

Word connections (Entropy-summand) achieve
the best results with 63.45% accuracy on PDS (more
than 15% better than Wilson, which is the best of the
’classical’ state-of-the-art methods) and best results
on Finance with 65.17% (more than 4% better than
RSUMM, which comes in second). The weight-
ing of the edges through the Entropy-summand per-
forms better than the Kullback-Leibler weighting
on both datasets, so we use the Entropy-summand
weighting for all further experiments.

Also, the improved methods (RSUMM(100%),
Opinion Observer (+ SVM), and SO-CAL(+ SVM))
get better results in the majority of cases (the im-
provement of SO-CAL is more than 13% on PDS
and more than 4% on Finance, e.g.). Furthermore,
the variants of the methods, which are expanded by a
general sentiment dictionary, perform rather worse.
The ’classical’ Opinion Observer performs better
with a general sentiment dictionary, while Wilson
tends to achieve worse results in this variant.

Wilson (without an additional dictionary)
achieves an accuracy of 42.91% on PDS (Subjec-
tivity Analysis 69.36%) and 48.67% on Finance
(Subjectivity Analysis 60.96%) for their word clas-
sification. The accuracy of the dictionary variant is
43.44% on PDS and 40.12% on Finance. Therefore,

4http://svmlight.joachims.org/

the tonality classification by the most frequent word
class seems appropriate for this task and method,
because this method achieves better results in the
classification of statements than on the word level.

The findings of RSUMM are ambiguous. The
’classical’ RSUMM with parameter optimization
does not perform very well on PDS, but it performs
well on Finance with a high proportion of sentences
and words (RSUMM(90%,95%)). Also, if we use
all sentences and all features (RSUMM(100%)) we
obtain better results on Finance and PDS. This fits in
with our assumption that every sentence of a state-
ment is important and that more words lead to more
tonality information. The number of word features
for RSUMM(100%) is 4,985 features for one state-
ment on PDS and 13,608 features on Finance. Af-
ter the parameter optimization the size is 974 word
features on PDS (RSUMM(80%,20%)) and 12,248
features on Finance (RSUMM(90%,95%)).

The outcomes of this study suggest that methods
which include machine learning techniques tend to
perform better than unsupervised techniques. The
results of the approaches which we expand with a
SVM support this conclusion. As mentioned before,
only the graph edges obtain a not so high accuracy.
This shows the importance of the aggregation of the
edges and entropy-based weighting.

We evaluate the influence of the different input
sizes and so we performed experiments with 5%,
10%, 40%, and 80% training for machine learning
as well as 210 and 840 statements for the creation of
dictionaries/graphs on PSD (0.17% training for 210
statements and 0.32% training for 840 statements in
order to create the same size of training according to
the results of 420 statements). The results are shown
in table 5. Opinion Observer and SO-CAL are writ-
ten in italics, because the results on the left side (size
of the training set) belongs to their (+ SVM) variants
and the results on the right side are the ’classical’
methods with no supervised learning. These exper-
iments show that our word connections remain very
stable if the training set is decreased. However, it
does not benefit from more training, especially when
the training set is very large (80%). Opinion Ob-
server and RSUMM(80%,20%) has the same prob-
lem. Nevertheless, it still receives the second-best
results, even if another method gets a higher accu-
racy. However, in our opinion, it is more important
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Method Accuracy
Positive Neutral Negative

prec rec prec rec prec rec
Wilson 0.4784 0.358 0.5 0.5423 0.5054 0.5540 0.4444
Wilson (dictionary) 0.4609 0.377 0.3366 0.3664 0.2963 0.5346 0.6223
Opinion Observer 0.3806 0.3732 0.1732 0.3481 0.8267 0.6098 0.1693
Opinion Observer (dictionary) 0.4468 0.5083 0.1993 0.4005 0.8693 0.576 0.2822
RSUMM(80%,20%) 0.403 - 0.0 - 0.0 0.403 1.0
SO-CAL 0.3279 0.3676 0.7353 0.2626 0.3551 0.8461 0.0248
SO-CAL (dictionary) 0.2852 0.2987 0.8464 0.2072 0.1307 0.0075 0.0002
Opinion Observer (+ SVM) 0.3825 - 0.0 0.252 0.1084 0.4037 0.8743
Opinion Observer (dictionary + SVM) 0.3235 0.52 0.2122 0.1322 0.0804 0.346 0.6
RSUMM(100%) 0.4801 0.4586 0.3025 0.8298 0.1354 0.4609 0.8789
SO-CAL (+ SVM) 0.4608 0.463 0.3061 0.3543 0.5699 0.6486 0.48
SO-CAL (dictionary + SVM) 0.3995 0.8235 0.0571 0.3559 0.9371 0.6306 0.2
graph edges 0.5482 0.4313 0.551 0.6578 0.5175 0.5831 0.5714
our approach (Kullback-Leibler) 0.5778 0.5 0.302 0.6642 0.6154 0.5534 0.74
our approach (Entropy-summand) 0.6345 0.5346 0.4735 0.6989 0.6818 0.6442 0.7086

Table 2: Results of the experiments on the PDS

Method Accuracy
Positive Neutral Negative

prec rec prec rec prec rec
Wilson 0.5602 0.4206 0.188 0.6358 0.7329 0.4706 0.5872
Wilson (dictionary) 0.4088 0.3678 0.3291 0.5618 0.339 0.3367 0.6132
Opinion Observer 0.4357 0.3641 0.0947 0.5033 0.713 0.2449 0.222
Opinion Observer (dictionary) 0.4583 0.3275 0.186 0.5325 0.664 0.3404 0.3193
RSUMM(90%,95%) 0.6092 0.4433 0.4840 0.731 0.6145 0.5866 0.7233
SO-CAL 0.3478 0.2992 0.5993 0.384 0.373 0.8519 0.046
SO-CAL (dictionary) 0.2905 0.2669 0.9207 0.4429 0.1203 0.001 0.0007
Opinion Observer (+ SVM) 0.4852 0.3384 0.0914 0.496 0.9269 - 0.0
Opinion Observer (dictionary + SVM) 0.4577 0.3299 0.187 0.5118 0.6649 0.3384 0.3177
RSUMM(100%) 0.6088 0.4428 0.4823 0.731 0.6145 0.5854 0.7233
SO-CAL (+ SVM) 0.3921 0.2986 0.7479 0.4573 0.1074 0.599 0.601
SO-CAL (dictionary + SVM) 0.4762 0.3862 0.341 0.544 0.6206 0.3878 0.3244
graph edges 0.5875 0.4437 0.3633 0.6444 0.7096 0.5816 0.5708
our approach (Kullback-Leibler) 0.561 0.3868 0.5445 0.7659 0.5524 0.5201 0.5951
our approach (Entropy-summand) 0.6517 0.53 0.5675 0.7714 0.6527 0.5946 0.7351

Table 3: Results of the experiments on Finance

Method Accuracy Subjective Objective Accuracy Subjective Objective
prec rec prec rec prec rec prec rec

Wilson 0.6818 0.7251 0.8602 0.4970 0.2975 0.6307 0.6228 0.6649 0.6399 0.5966
Wilson (dictionary) 0.7029 0.7742 0.8636 0.2871 0.179 0.5247 0.5296 0.7944 0.5069 0.2305
Opinion Observer 0.4496 0.7698 0.2724 0.3481 0.8267 0.5047 0.508 0.2963 0.5033 0.713
Opinion Observer (dictionary) 0.5422 0.8635 0.3885 0.4005 0.8693 0.5405 0.5538 0.417 0.5325 0.664
RSUMM(80%,20%)/(90%,95%) 0.3269 - 0.0 0.3269 1.0 0.6919 0.7307 0.6170 0.6630 0.7682
SO-CAL 0.5250 0.7373 0.4686 0.3632 0.6449 0.6127 0.616 0.5983 0.6095 0.627
SO-CAL (dictionary) 0.4378 0.7928 0.235 0.3481 0.8693 0.5155 0.5571 0.1513 0.509 0.8797
Opinion Observer (+ SVM) 0.6061 0.6636 0.8454 0.252 0.1084 0.494 0.4665 0.0636 0.496 0.9269
Opinion Observer (dictionary + SVM) 0.4109 0.88 0.1479 0.3508 0.958 0.5327 0.5732 0.2667 0.5204 0.8003
RSUMM(100%) 0.7083 0.7014 0.9865 0.8298 0.1354 0.6975 0.7424 0.6137 0.6654 0.7829
SO-CAL (+ SVM) 0.5153 0.7485 0.4252 0.3702 0.7028 0.6231 0.7415 0.3814 0.582 0.8663
SO-CAL (dictionary + SVM) 0.3598 0.878 0.0605 0.3345 0.9825 0.511 0.5481 0.1421 0.5055 0.8822
graph edges 0.7037 0.6983 0.9882 0.8205 0.1119 0.6302 0.7821 0.3639 0.5840 0.898
our approach (Kullback-Leibler) 0.7662 0.8215 0.8353 0.6449 0.6224 0.7006 0.6753 0.7761 0.735 0.6247
our approach (Entropy-summand) 0.7707 0.8478 0.8050 0.6329 0.6993 0.739 0.7179 0.7898 0.7649 0.6878

Table 4: Subjectivity Analysis on PDS (left side) and on Finance (right side)
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Method 0.05 0.1 0.2 0.4 0.8 210 420 840
Wilson 0.4388 0.4743 0.4784 0.5514 0.5795 0.5275 0.4784 0.5553
Opinion Observer 0.3403 0.3683 0.3825 0.3979 0.3591 0.3585 0.3806 0.3822
SO-CAL 0.4579 0.439 0.4608 0.4402 0.4818 0.3509 0.3279 0.2702
RSUMM(80%,20%) 0.4063 0.4046 0.403 0.3949 0.3636 0.3226 0.403 0.4557
RSUMM(100%) 0.2964 0.448 0.4801 0.5265 0.6318 0.489 0.4801 0.5529
our approach (Entropy-summand) 0.5717 0.5883 0.6345 0.6278 0.5818 0.5224 0.6345 0.6452

Table 5: Different sizes of the training set and the dictionaries/graphs

Features Level(Wilson) Level(SO-CAL) Features Level(Wilson) Level(SO-CAL)
Tv,pol −−−−− nsc Tv,sub nsc + + + + +
Tn,pol −−−−− −−− Tn,sub −−−−− ++
Tadv,pol −−−−− − Tadv,sub −−−−− nsc
Tadj,pol −−−−− −−−−− Tadj,sub −−−−− nsc
Tcat,pol −−−−− nsc Tcat,sub −− + + + + +
Tcat,z(all) + + + + + + + + + +

Table 6: Significance of the tonality features T to the baselines Wilson and SO-CAL

to obtain good results on small training sizes, be-
cause over 75% for training would mean that a pos-
sible practical implementation would not save much
human effort.

4.4 Statistical Significance of the Features

We perform a 10-fold cross validation with our
method, Wilson (as the best ’classical’ state-of-the-
art-method) and SO-CAL (+ SVM) on the pressre-
lations dataset in order to evaluate the contribution
of single tonality features. Our approach (Entropy-
summand with all features) achieves an accuracy of
61.94%, while Wilson gets 56.36% and SO-CAL
46.68%. As an analogy to Wilson et al. (2009),
we carry out a two-sided t-test with Wilson and SO-
CAL (+ SVM) as baselines. The results are shown
in table 6. The pluses indicate a significant increase
to the baseline, the minuses show a significant de-
crease. For one sign, changes are significant at the
level p ≤ 0.1, two signs mean p ≤ 0.05, three signs
p ≤ 0.025, four signs p ≤ 0.01 and five signs in-
dicate p ≤ 0.005. “nsc” stands for no significant
change.

As shown in table 6, the features with type z =
sub are more important than the polarity features. In
the categories, the nouns and verbs are more signifi-
cant than adjectives and adverbs (adverbs are a little
stronger in the polarity difference). Combining all
features produces a very significant increase against
both baselines.

5 Conclusion

We have shown that the word connections outper-
form state-of-the-art-methods in most cases of tonal-
ity classification for a MRA. As a major advantage,
our approach does not need much training data. The
combination of all tonality features is a significant
increase against both baselines, too. The findings
show that the word connections in combination with
the entropy weighting allow to learn the tonality
structure of different word combinations accurately,
even though the training size is small. This is a ma-
jor advantage for a solution, which operates in prac-
tice for media analysts, which have to analyse arti-
cles for a MRA.

So, this approach in combination with an extrac-
tion of statements (Scholz and Conrad, 2013) and
the determination of viewpoints (Scholz and Con-
rad, 2012) represents a fully automated solution in
order to perform Opinion Mining for a MRA.
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Abstract 

Microblog messages pose severe challenges 
for current sentiment analysis techniques due 
to some inherent characteristics such as the 
length limit and informal writing style. In this 
paper, we study the problem of extracting 
opinion targets of Chinese microblog messag-
es. Such fine-grained word-level task has not 
been well investigated in microblogs yet. We 
propose an unsupervised label propagation al-
gorithm to address the problem. The opinion 
targets of all messages in a topic are collec-
tively extracted based on the assumption that 
similar messages may focus on similar opinion 
targets. Topics in microblogs are identified by 
hashtags or using clustering algorithms. Ex-
perimental results on Chinese microblogs 
show the effectiveness of our framework and 
algorithms. 

1 Introduction 

Microblogging services such as Twitter
1
, Sina 

Weibo
2
 and Tencent Weibo

3
 have swept across the 

globe in recent years. Users of microblogs range 

from celebrities to ordinary people, who usually 

express their emotions or attitudes towards a broad 

range of topics. It is reported that there are more 

than 340 million tweets per day on Twitter and 

more than 200 million on Sina Weibo. A tweet 

means a post on Twitter. Since we mainly focus 

on Chinese microblogs instead of Twitter in this 

paper, we will refer to a post as a message. Each 

message is limited to 140 Chinese characters and 

usually contains several sentences. 

                                                           
* Xiaojun Wan is the corresponding author. 
1 https://twitter.com 
2 http://weibo.com/ 
3 http://t.qq.com/ 

Currently, researches on microblog sentiment 

analysis have been conducted on polarity classifi-

cation (Barbosa and Feng, 2010; Jiang el al., 2011; 

Speriosu et al., 2011) and have been proved to be 

useful in many applications, such as opinion poll-

ing (Tang et al., 2012), election prediction 

(Tumasjan et al., 2010) and even stock market 

prediction (Bollen et al., 2011). However, classify-

ing microblog texts at the sentence level is often 

insufficient for applications because it does not 

identify the opinion targets. In this paper, we will 

study the task of opinion target extraction for Chi-

nese microblog messages.  

Opinion target extraction aims to find the object 

to which the opinion is expressed. For example, in 

the sentence “The sound quality is good!”, “sound 

quality” is the opinion target. This task is mostly 

studied in customer review texts in which opinion 

targets are often referred as features or aspects 

(Liu, 2012). Most of the opinion target extraction 

approaches rely on dependency parsing (Zhuang et 

al., 2006; Jakob and Gurevych, 2010; Qiu et al., 

2011) and are regarded as a domain-dependent 

task (Li et al., 2012a). However, such approaches 

are not suitable for microblogs because the natural 

language processing tools perform poorly on mi-

croblog texts due to their inherent characteristics. 

Studies show that one of the state-of-the-art part-

of-speech taggers - OpenNLP only achieves the 

accuracy of 74% on tweets (Liu et al. 2011). The 

syntactic analysis tool that generates dependency 

relation may perform even worse. Besides, mi-

croblog messages may express opinion in different 

ways and do not always contain opinion words, 

which lowers the performance of methods utiliz-

ing opinion words to find opinion targets.  

In this study, we propose an unsupervised 

method to collectively extract the opinion targets 

from opinionated sentences in the same topic. 
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Topics are directly identified by hashtags. We first 

present a dynamic programming based segmenta-

tion algorithm for Chinese hashtag segmentation. 

By leveraging the contents in a topic, our segmen-

tation algorithm can successfully identify out-of-

vocabulary words and achieve promising results. 

Afterwards, all the noun phrases in each sentence 

and the hashtag segments are extracted as opinion 

target candidates. We propose an unsupervised 

label propagation algorithm to collectively rank 

the candidates of all sentences based on the as-

sumption that similar sentences in a topic may 

share the same opinion targets. Finally, for each 

sentence, the candidate which gets the highest 

score after unsupervised label propagation is se-

lected as the opinion target. 

Our contributions in this study are summarized 

as follows: 1) our method considers not only the 

explicit opinion targets within the sentence but 

also the implicit opinion targets in the hashtag or 

mentioned in the previous sentence. 2) We devel-

op an efficient algorithm to segment Chinese 

hashtags. It can successfully identify out-of-

vocabulary words by leveraging contextual infor-

mation and help to improve the segmentation per-

formance of the messages in the topic. 3) We 

develop an unsupervised label propagation algo-

rithm for collective opinion target extraction. La-

bel propagation (Zhu and Ghahramani, 2002) aims 

to spread label distributions from a small training 

set throughout the graph.   However, our unsuper-

vised algorithm leverages the connection between 

two adjacent unlabeled nodes to find the correct 

labels for both of them. The proposed unsuper-

vised method does not need any training corpus 

which will cost much human labor especially for 

fine-grained annotation. 4) To the best of our 

knowledge, the task of opinion target extraction in 

microblogs has not been well studied yet. It is 

more challenging than microblog sentiment classi-

fication and opinion target extraction in review 

texts.  

2 Characteristics of Chinese Microblogs 

Most of previous microblog sentiment analysis 

researches focus on Twitter and especially in Eng-

lish. However, the analysis of Chinese microblogs 

has some differences with that of Twitter: 1) Chi-

nese word segmentation is a necessary step for 

Chinese sentiment analysis, but the existing seg-

mentation tool performs poorly on microblogs 

because the microblog texts are much different 

from regular texts. 2) Wang et al. (2011) find that 

hashtags in English tweets are used to highlight 

the sentiment information such as “ #love”, 

“#sucks” or serve as user-annotated coarse topics 

such as “#news”, “#sports”. But in Chinese mi-

croblogs, most of the hashtags are used to indicate 

fine-grained topics such as #NBA 总决赛第七场# 

(#NBAFinalG7#). Besides, hashtags in Twitter 

always appear within a sentence such as “I love 

#BarackObama!” while hashtags in Chinese mi-

croblogs are always isolated and are surrounded 

by two # symbols such as “#巴拉克奥巴马# 我爱

他!” (“#BarackObama# I love him！”). 

It is noteworthy that topics aggregated by the 

same hashtag play an important role in Chinese 

microblog websites. These websites often provide 

an individual webpage
4
 to list hot topics and invite 

people to participate in the discussion, where each 

topic consists of tens of thousands of messages 

with the same hashtag. The hot topics have a wide 

coverage of timely events and entities. Analyzing 

the opinion targets of these topics can help to get a 

deeper overview of the public attitudes towards 

the entities involved in the hot topics. 

3 Motivation 

As described above, #hashtags# in Chinese mi-

croblogs often indicate fine-grained topics. In this 

study, we aim to collectively extract the opinion 

targets of messages with the same hashtag, i.e. in 

the same topic. Opinion target of a sentence can be 

divided into two types, one of which called explic-

it target appears in the sentence such as “I love 

Obama”, and the other one called implicit target 

                                                           
4 http://huati.weibo.com/ 

Topic Sentence 

#官员财产公示# 

#Property publicity 

of government offic

-ials# 

1. 纯属作秀！ 

(Just for show！) 

2. 财产公示在中国就是作秀。 

(Property publicity is just a show 

in China.) 

#菲军舰恶意撞击# 

#Philippine navy 

vessel hits Chinese 

fishing boat# 

1. 政府还是不够强硬。 

(The government is not tough 

enough.) 

2. 政府为何不能强硬一些？ 

(Why cannot the government take 

a tougher line?) 

Table 1. Motivation Examples 
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may appear out of the sentence, for example, the 

sentence “Just for show!”  in Table 1 directly 

comments on the target in the hashtag “#Property 

publicity of government officials#” . Such implicit 

opinion targets are not considered in previous 

works and are more difficult to extract than explic-

it targets. However, we believe that the contextual 

information will help to locate both of the two 

kinds of opinion targets because similar sentences 

in a topic may share the same opinion target, 

which provides the possibility for collective ex-

traction. 

Table 1 shows the motivation examples of two 

topics and four sentences. The two sentences in 

each topic are considered to be similar because 

they share several Chinese words. In the topic #官

员财产公示# (#Property publicity of government 

officials#), the first sentence omits the opinion 

target. However, the second one contains an ex-

plicit target “财产公示” (“property publicity”) in 

the sentence. If we find the correct opinion target 

for sentence 2, we can infer that sentence 1 may 

have an implicit opinion target similar to the opin-

ion target in sentence 2. In the second topic, both 

sentences contain a noun word “政府” (“govern-

ment”). The similarity between these two sentenc-

es may indicate that both of the two sentences are 

expressing opinion on “政府”. 

Based on the above observation, we can assume 

that similar sentences in a topic may have the 

same opinion targets. Such assumption can help to 

locate both explicit and implicit opinion targets. 

Following this idea, we firstly extract all the noun 

phrases in each sentence as opinion target candi-

dates after applying Chinese word segmentation 

and part-of-speech tagging. Afterwards, an unsu-

pervised label propagation algorithm is proposed 

to rank these candidates for all sentences in the 

topic. 

In our methods, hashtags are used to find gold-

standard topics. For messages without hashtags, an 

alternative way is to generate pseudo topics by 

clustering microblogs messages and then apply the 

proposed algorithm to each pseudo topic. The de-

tailed discussion of such general circumstance is 

shown in Section 5.7. 

4 Methodology 

4.1 Context-Aware Hashtag Segmentation 

In our approach, the Chinese word segmentations 

of hashtags and topic contents are treated separate-

ly. Existing Chinese word segmentation tools 

work poorly on microblog texts. The segmentation 

errors especially on opinion target words will di-

rectly influence the results of part-of-speech tag-

ging and candidate extraction. However, some of 

the opinion target words in a topic are often in-

cluded in the hashtag. By finding the correct seg-

ments of a hashtag and adding them to the user 

dictionary of the Chinese word segmentation tool, 

we can remarkably improve the overall segmenta-

tion performance.  

The following example can help to understand 

the idea better. In the topic #90 后打老人# (means 

“A young man hits an old man”), “90 后” (literally 

“90 later” and means a young man born in the 90s) 

is an important word because it is the opinion tar-

get of many sentences. However, existing Chinese 

word segmentation tools will regard it as two sep-

arate words “90” and “后” (“later”). Then in the 

part-of-speech tagging stage, “90” will be tagged 

as number and “后” will be tagged as localizer. As 

we only extract noun phrases as opinion target 

candidates, the wrong segmentation on “90 后” 

makes it impossible to find the right opinion target. 

Such error may occur many times in sentences that 

mention the word “90 后” and express opinion on 

it. In our method, the message texts of the topic 

are utilized to identify such out-of-vocabulary 

words based on its frequency in the topic. For ex-

ample, the high frequency of “90 后” is a strong 

indication that it should be regard as a single word. 

After segmenting the hashtag correctly into “90 后

/打/老人”, we can add the hashtag segments to the 

user dictionary of the segmentation tool to further 

segment the message texts of the topic. 

The basic idea for our hashtag segmentation al-

gorithm is to regard strings that appear frequently 

in a topic as words. Formally, given a hashtag h 

that contains n Chinese characters c1c2...cn. We 

want to segment into several words w1w2...wm, 

where each word is formed by one of more charac-

ters. 

Firstly, we define the stickiness score for a Chi-

nese string c1c2...cn based on the Symmetrical 

Conditional Probability (SCP) (Silva and Lopes, 

1999): 
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and SCP(c1) = Pr(c1)
2
 for string with only one 

character. Pr(c1c2...cn) is the occurrence frequency 

of the string in the topic.  

Following (Li et al., 2012b), we smooth the 

SCP value by taking logarithm calculation. Be-

sides, the length of the string is taken into consid-

eration, 

 1 2 1 2( ... ) log ( ... )n nSCP c c c n SCP c c c    (2) 

where n is the number of characters in the string. 

Then the stickiness score is defined by the sig-

moid function as follows: 
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2
( ... )

1 n
n SCP c c c
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e
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
 (3) 

For the hashtag h = c1c2...cn, we want to seg-

ment it into m words w1w2...wm which maximize 

the following equation, 

 
1

max ( )
m

i

i

Stickness w


   (4) 

The optimization of Equation (4) can be solved 

efficiently by dynamic programming which itera-

tively segments a string into two substrings. Dif-

ferent from (Li et al., 2012b) which calculates the 

SCP value of each string based on Microsoft Web 

N-Gram, our hashtag segmentation algorithm only 

uses the topic content and do not need any addi-

tional corpus. 

4.2 Candidate Extraction 

After segmenting the hashtag, all the hashtag seg-

ments with length greater than one are added to 

the user dictionary of the Chinese word segmenta-

tion tool ICTCLAS
5
 to further segment the mes-

sage texts of the topic. It also assigns the part-of-

speech tag for each word after segmentation. The 

noun phrases in each sentence is extracted by the 

following regular expression:

( | )( ) .noun adj noun adj noun的 That means a 

noun phrase can only include nouns, adjectives 

and the Chinese word “的” (“of”). It should begin 

with a noun or adjective and end with a noun. For 

                                                           
5 http://www.ictclas.org/ 

example, in the following sentence, “中国/n 的/u 

教育/n 制度/n 有/v 问题/n 。/w” (“Chinese edu-

cation system has problems.”), “中国的教育制度” 

(“Chinese education system”) and “问题” (“prob-

lem”) are extracted as noun phrases.  

The character number of a noun phrase is lim-

ited between two and seven Chinese characters. 

For each sentence, all phrases that match the regu-

lar expression and meet the length restriction are 

extracted as explicit opinion target candidates. The 

hashtag segments are regarded as implicit candi-

dates for all sentences. Besides, some opinionated 

sentences in microblogs do not contain any noun 

phase, such as “无聊至极！ ” (“So boring!”). 

These sentences may express opinion on object 

that has been mentioned before. Therefore, the 

explicit candidates of the previous sentence in the 

same message are also taken as the implicit candi-

dates for such sentences.  

We do not use any syntactic parsing tool to ex-

tract noun phrases because the parsing results on 

microblogs are not reliable. A performance com-

parison of our rule based method and the state-of-

the-art syntactic parser will be shown in Section 5. 

4.3 Unsupervised Label Propagation for 

Candidate Ranking 

We simply assume that each opinionated sentence 

has one opinion target, which is consistent with 

Algorithm 1 Unsupervised Label Propagation 

Input: 

Graph:                              , ,G V E W   

Candidate Similarity:     M MS R 

  

Prior labeling:                 1 M

vY R 

  for vV  

Filtering Matrix:             M M

vF R 

 for vV 

Probability:                       p
inj

 and p
cont

 

Output: 

 Label vector:                   1ˆ M

vY R 

  

1: for all vV do 

2:      ˆ
v vY Y  

3: end for 

4: repeat 

5:       for all vV do 

6:          
,

ˆ
v uv u v

u V u v

D W Y S F
 

    

7:        ˆ inj cont

v v vY p Y p D   

8:       end for 

9: until convergence 
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the statistical result of our dataset that over 93% 

sentences have only one opinion target and each 

sentence has an average of 1.09 targets. Therefore, 

the most confident candidate of each sentence will 

be selected as the opinion target. In this section, 

we introduce an unsupervised graph-based label 

propagation algorithm to collectively rank the 

candidates of all sentences in a topic.  

Label propagation (Zhu and Ghahramani, 2002; 

Talukdar and Crammer, 2009) is a semi-

supervised algorithm which spreads label distribu-

tions from a small set of nodes seeded with some 

initial label information throughout the graph. The 

basic idea is to use information from the labeled 

nodes to label the adjacent nodes in the graph. 

However, our idea is to use the connection be-

tween different nodes to find the correct labels for 

all of them. Our unsupervised label propagation 

algorithm is summarized in Algorithm 1. Sentenc-

es are regarded as nodes and candidates of each 

sentence are regarded as labels. The label vector 

for each node is initialized based on the results of 

the candidate extraction step, which means no 

manually-labeled instances are needed in our 

model. In each iteration, the label vector of one 

node is propagated to the adjacent nodes. Both the 

sentence (node) similarity and the candidate (label) 

similarity are considered during propagation. Fi-

nally, we select the candidate with the highest 

score in the label vector as the opinion target for 

each sentence. The details of Algorithm 1 are pre-

sented as follows. 

Formally, an undirected graph , ,G V E W   

is built for each topic. A node vV represents a 

sentence in the topic and an edge e = (a, b) E 

indicates that the labels of the two vertices should 

be similar.  W  is the normalized weight matrix to 

reflect the strength of this similarity. The similari-

ty between two nodes Wab is simply calculated by 

using the cosine measure (Salton et al., 1975) of 

the two sentences. 

 ( , ) a b
ab a b

a b

T T
W cos T T

T T


 


 (5) 

where Ta and Tb are the term vectors of sentences a 

and b represented by the standard vector space 

model and weighted by term frequency. After cal-

culating the similarity matrix W, we get the weight 

matrix W  by normalizing each row of W such that 

1ab

b

W  . 

For each sentence (node) v, a candidate set Cv is 

extracted in the previous step. The candidate set 

CT for the whole topic is the union of all Cv, 

 vCT C  (6) 

The total number of candidates in the topic is 

denoted by M = |CT|. We calculate the candidate 

similarity matrix 
M MS R 

  based on Jaccard In-

dex: 

 
( ) ( )

1
( ) ( )

i j

ij

i j

A CT A CT
S i j M

A CT A CT
     (7) 

where A(CTi) and A(CTj) are the Chinese character 

sets of the i-th and j-th candidates in CT respec-

tively. 

Candidates are regarded as labels in our model 

and without loss of generality we assume that the 

possible labels for the whole topic are L = {1…M} 

and each label in L corresponds to a unique can-

didate in CT. For each node vV, a label vector 
1 M

vY R 

  is initialized as 

    1
0

k v

v k
k v

w L C
Y k M

L C


  


 (8) 

where w is the initial weight of the candidate. We 

set w = we if Lk is an explicit candidate (extracted 

noun phrase) of v and w = wi if Lk is an implicit 

candidate (hashtag segment or inherited from pre-

vious sentence) of v. If Lk is not a candidate of the 

current sentence, then the corresponding value in 

the label vector is 0. These values which are ini-

tialized as zero should always remain zero during 

the propagation algorithm because the correspond-

ing label does not belong to the candidate set Cv of 

node v. To reset the values on these positions, a 

diagonal matrix 
M M

vF R 

  is created for all nodes 

v, 

  
 

 

1 0
1

0 0

v k
v kk

v k

Y
F k M

Y

 
  


 (9) 

where the subscript kk denotes the k-th position in 

the diagonal of matrix Fv. We can right-multiply 

Yv by Fv to clear the values of the invalid candi-
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dates. Figure 1 shows an example of creating the 

filtering matrix for a label vector. 

The propagation process is formalized via two 

possible actions: inject and continue, with pre-

defined probabilities p
inj

 and p
cont

. Their sum is 

unit: p
inj

 + p
cont

 = 1. In each iteration, every node is 

influenced by its adjacent nodes. The propagation 

influence for each node v is 

  
,

ˆ
v uv u v

u V u v

D W Y S F
 

    (10) 

where ˆ
uY  is the label vector of node u at the previ-

ous iteration. By multiplying the candidate simi-

larity matrix S, we aim to propagate the score of 

the i-th candidate of node u not only to the i-th 

candidate of node v, but also to all the other can-

didates. Wuv measures the strength of such propa-

gation. The filtering matrix Fv is used to clear the 

values of the invalid candidates as described 

above. 

Then the label vector of node v is updated as 

follow, 

  ˆ inj cont

v v vY p Y p D   (11) 

When the positions of the largest values in all 

label vectors keep unchanged in ten iterations, it is 

regarded that the algorithm has already converged.  

5 Experiments 

5.1 Dataset 

We use the dataset from the 2012 Chinese Mi-

croblog Sentiment Analysis Evaluation (CMSAE)
6
 

held by China Computer Federation (CCF). There 

are three tasks in the evaluation: subjectivity clas-

sification, polarity classification and opinion target 

extraction. The dataset contains 20 topics collect-

ed from Tencent Weibo, a popular Chinese mi-

croblogging website. All the messages in a topic 

contain the same hashtag. The dataset has a total 

                                                           
6 http://tcci.ccf.org.cn/conference/2012/pages/page04_eva.

html. The dataset can also be publicly accessed on the website. 

of 17518 messages and 31675 sentences. In each 

topic, 100 messages are manually annotated with 

subjectivity, polarity and opinion targets. A total 

of 2361opinion targets are annotated for 2152 

opinionated sentences.  

5.2 Evaluation Metric  

Precision, recall and F-measure are used in the 

evaluation. Since expression boundaries are hard 

to define exactly in annotation guidelines (Wiebe 

et al., 2005), both the strict evaluation metric and 

the soft evaluation metric are used in CMSAE. 

Strict Evaluation: For a proposed opinion tar-

get, it is regarded as correct only if it covers the 

same span with the annotation result. Note that, in 

CMSAE, an opinion target should be proposed 

along with its polarity. The correctness of the po-

larity is also necessary. 

Soft Evaluation: The soft evaluation metric 

presented in (Johansson and Moschitti, 2010) is 

adopted by CMSAE. The span coverage c be-

tween each pair of the proposed target span s and 

the gold standard span s’ is calculated as follows, 

  ,
s s

c s s
s


 


 (12) 

In Equation 12, the operator |·| counts Chinese 

characters, and the intersection ∩ gives the set of 

characters that two spans have in common. 

Using the span coverage, the span set coverage 

C of a set of spans S with respect to another set S’ 

is  , ( , )
s S s S

C S S c s s
  

   (13) 

The soft precision P and recall R of a proposed 

set of spans Ŝ  with respect to a gold standard set 

S is defined as follows: 

 
ˆ ˆ( , ) ( , )

Precision Recall
ˆ | || |

C S S C S S

SS
   (14) 

Note that the operator |·| counts spans in Equation 

14. The soft F-measure is the harmonic mean of 

soft precision and recall. 

5.3 Comparison Methods 

Our proposed approach is first compared with the 

CMSAE teams. 

CMSAE Teams: Sixteen teams participated in 

the opinion target extraction task of CMSAE. The 

methods of the top 3 teams are used as baselines 

 

1 0 0 0

0 1 0 0
1 1 0.5 0

0 0 1 0

0 0 0 0

v vY F

 
 
   
 
 
 

 

Figure 1. Example of filtering matrix 
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here. They are denoted as Team-1, Team-2 and 

Team-3 respectively. The average result of all the 

sixteen teams is also included and is denoted as 

Team-Avg. We will briefly introduce the best 

team’s method. The most important component of 

their model is a topic-dependent opinion target 

lexicon which is called object sheet. If a word or 

phrase in the object sheet appears in a sentence or 

a hashtag, it is extracted as opinion target. The 

object sheet is manually built for each topic, 

which means their method cannot be applied to 

new topics. 

The following models are also used for compar-

ison. 

AssocMi: We implement the unsupervised 

method for opinion target extraction based on (Hu 

and Liu, 2004), which relies on association mining 

and a sentiment lexicon to extract frequent and 

infrequent product features. 

CRF: The CRF-based method used in (Jakob 

and Gurevych, 2010) is also used for comparison. 

We implement both the single-domain and cross-

domain models. Both models are evaluated using 

5-fold cross-validation. More specifically, the sin-

gle-domain model, denoted as CRF-S, trains dif-

ferent models for different topics. In each cross-

validation round, 80 percent of each topic is used 

for training and the other 20 percent is used for 

test. The cross-domain model, denoted as CRF-C, 

uses 16 topics for training and the rest 4 topics for 

test in each round.  

5.4 Comparison Results  

CMSAE requires all the teams to perform the sub-

jectivity and polarity classification task in advance. 

The opinion targets are extracted only for opinion-

ated sentences and should be proposed along with 

their polarity. To make a fair comparison, we di-

rectly use the subjectivity and polarity classifica-

tion results of Team-1. Then our unsupervised 

label propagation (ULP) method is used to extract 

the opinion targets for the proposed opinionated 

sentences. The parameters of our method are 

simply set as p
inj 

= p
cont

 = 0.5, we = 1 and wi = 0.5. 

Table 2 lists the comparison results with 

CMSAE teams. The average F-measure of all 

teams is 0.12 and 0.20 in strict and soft evaluation, 

respectively. It shows that opinion target extrac-

tion is a quite hard problem in Chinese microblogs. 

Our method performs better than all the teams. It 

increases by 10% and 13% in the two kinds of F-

measure compared to the best team. Besides, we 

do not need any prior information of the topics 

while Team-1 has to manually build an opinion 

target lexicon for each topic. 

To compare with the other opinion target ex-

traction methods, we only use gold-standard opin-

ionated sentences for evaluation and do not 

classify the polarity of the opinion targets. Table 3 

shows the experimental results of the four models. 

Our approach achieves the best result among them. 

AssocMi performs worst in strict evaluation but 

gets better results than the two CRF-based models 

in soft evaluation. The two CRF-based models 

achieve high precision but low recall. We can also 

observe that CRF-S is much more effective than 

CRF-C. It achieves high results because it has al-

ready seen the opinion targets in the training set. 

However, it is impossible to build such single-

domain model in practical applications because 

Method 
Strict Soft 

Precision Recall F-Measure Precision Recall F-Measure 

AssocMi 0.22 0.20 0.21 0.47 0.43 0.45 

CRF-C 0.59 0.15 0.24 0.70 0.18 0.28 

CRF-S 0.61 0.27 0.35 0.73 0.31 0.41 

ULP 0.43 0.39 0.41 0.61 0.55 0.58 

Table 3. Comparison results with baseline methods (only gold-standard opinionated sentences are used) 

Method. 

 

Strict Soft 

Precision Recall F-measure Precision Recall F-measure 

Team-Avg 0.17 0.09 0.12 0.29 0.15 0.20 

Team-3 0.26 0.16 0.20 0.40 0.25 0.31 

Team-2 0.31 0.18 0.23 0.40 0.22 0.29 

Team-1 0.30 0.27 0.29 0.39  0.36 0.37 

ULP 0.37 0.27 0.32 0.48 0.37 0.42 

Table 2. Comparison results with CMSAE teams (with subjectivity and polarity classification in advance) 
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labeled instances are not available for new topics. 

Our proposed method does not require any train-

ing data and gets an increase of 17% over CRF-S 

and 70% over CRF-C in strict evaluation. In terms 

of soft evaluation, we achieve an increase of 41% 

and 107% over the two CRF models.  

5.5 Parameter Sensitivity Study 

In this section, we study the parameter sensitivity. 

There are two major parameters in our algorithm: 

the initial weight w for both explicit and implicit 

candidates in Equation 8 and the injection proba-

bility p
inj

 in Equation 11.  

The initial weights of explicit and implicit can-

didates are set differently because the explicit can-

didates are more likely to be the opinion targets. 

These two kinds of initial weights are denoted as 

we and wi for explicit and implicit candidate, re-

spectively. To study the impact of the initial 

weights, we fix we at 1 and tune wi because we 

only care about the relative contribution of them. 

The injection probability is fixed at 0.5. Figure 2(a) 

displays the opinion target extraction performance 

when wi varies from 0 to 1.5. Due to limited space, 

we only list the strict F-measure of opinion target 

extraction evaluated on opinioned sentences (same 

experimental setup as Table 3).  

In particular, when wi is equal to 0, only explicit 

candidates are considered. When wi becomes larg-

er than 1, the implicit candidates become more 

important than explicit candidates. From the curve 

in Figure 2(a), we can observe that the implicit 

candidates help to improve the performance sig-

nificantly when wi varies from 0 to 0.1. The per-

formance reaches the peak when wi = 0.7 and 

declines rapidly when wi gets larger than 1.  

To study the impact of injection probability p
inj

, 

we fix the initial weights for explicit and implicit 

candidates as 1 and 0.5, respectively. Figure 2(b) 

shows the results of opinion target extraction with 

respect to different values of the injection proba-

bility. We can observe that the performance keeps 

steady except for the two extreme values 0 and 1. 

From the above two figures, we can conclude that 

our proposed method performs well and robustly 

with a wide range of parameter values. 

5.6 Analysis of Candidate Extraction  

Candidate extraction is an important step in our 

proposed method. If the correct opinion target is 

not extracted as a candidate, the ranking step will 

be in vain. As described in Section 3, we develop 

a hashtag segmentation algorithm and use a rule 

based method to extract noun phrases from each 

sentence. We do not use any parsing tool because 

we believe the performance of these tools is not 

good enough when applied on microblogs. A 

quantitative comparison is shown in this section.  

We use one of the state-of-the-art syntactic 

analysis tools - Berkeley Parser (Petrov et al., 

2006) for comparison here. Noun phrases are di-

rectly extracted from the parsing results. Our 

method HS+Rule leverages the hashtag segments 

to enhance the segmentation result and extracts 

explicit candidate using a regular expression. To 

demonstrate the effectiveness of our hashtag seg-

mentation algorithm, the second comparison base-

line Rule directly uses ICTCLAS to segment the 

whole topic content and labels each word with its 

part-of-speech tag. The explicit candidates are ex-

tracted by using the same regular expression. 

The performance on candidate extraction is 

compared in Table 4. The second column shows 

the number of all extracted candidates for all the 

opinionated sentences by different methods. The 

third column shows the number of correct opinion 

targets among them. We can find that the two rule-

based models both outperform Berkeley Parser 

and our HS+Rule method finds 14% more correct 

opinion targets than Rule. It proves the effective-

ness of our hashtag segmentation algorithm. The 

Method Total Correct 

F-Measure of Opinion 

Target Extraction 

Strict Soft 

Berkley 

Parser 
4554 877 0.36 0.56 

Rule 4105 918 0.37 0.56 

HS + Rule 4094 1042 0.41 0.58 

Table 4. Performance of candidate extraction and 

opinion target extraction 
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Figure 2. Influence of the parameters 
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total number of candidates extracted by HS+Rule 
is also less than the other two methods. Therefore, 

the performance of label propagation will be im-

proved when there are fewer candidates to rank. It 

can be demonstrated by the F-measure of opinion 

target extraction in the fourth and fifth columns. 

The experiments are conducted on opinionated 

sentence only as above. By using HS+Rule to ex-

tract candidates, our label propagation algorithm 

gets the highest F-measure in both evaluation met-

rics.  

5.7 Performance on Pseudo Topics by Mes-

sage Clustering 

In our collective extraction algorithm, topics are 

directly identified by hashtags. For messages 

without hashtags, we can first employ clustering 

algorithms to obtain pseudo topics (clusters) and 

then exploiting the topic-oriented algorithm for 

collective opinion target extraction. To test the 

performance of the proposed method in such cir-

cumstance, we use the popular clustering algo-

rithm - Affinity Propagation (Frey and Dueck, 

2007) to generate topics. The experimental results 

are shown in Table 5. APCluster means that the 

messages are clustered after removing all the 

hashtags. APCluster+HS means that all the 

hashtags are retained as normal texts for calculat-

ing message similarity. Therefore, the clustering 

performance can be largely improved. The stand-

ard cosine similarity is used to measure the dis-

tance between microblog messages for Affinity 

Propagation in the above two methods. The last 

method denoted as GoldCluster directly uses 

hashtags to identify the gold-standard topics which 

shows the upper bound of the performance. After 

clustering microblogs, the opinion targets of mes-

sages in each cluster are collectively extracted by 

the proposed unsupervised label propagation algo-

rithm. The experiments are conducted on opinion-

ated sentences only. 

From the results, we can see that clustering mi-

croblogs without hashtags is a quite difficult job 

which only gets an F-Measure of 0.27. However, 

the corresponding opinion target extraction per-

formance is still promising, which outperforms the 

AssocMi and CRF-C methods in Table 3. With the 

help of hashtags, the clustering performance of 

APCluster+HS is largely improved and the opin-

ion target extraction performance is also increased. 

It outperforms all the baseline methods in Table 3. 

The above results reveal that our proposed unsu-

pervised label propagation algorithm works well 

in pseudo topics and the performance can be in-

creased with better clustering results. Therefore, 

we can try to incorporate other social network in-

formation to improve the message clustering per-

formance, which will be studied in our future 

work. 

6 Related Work 

Sentiment analysis, a.k.a. opinion mining, is the 

field of studying and analyzing people’s opinions, 

sentiments, evaluations, appraisals, attitudes, and 

emotions (Liu, 2012). Most of the previous senti-

ment analysis researches focus on customer re-

views (Pang et al., 2002; Hu and Liu, 2004) and 

some of them focus on news (Kim and Hovy, 

2006) and blogs (Draya et al., 2009). However, 

sentiment analysis on microblogs has recently at-

tracted much attention and has been proved to be 

very useful in many applications. 

Classification of opinion polarity is the most 

common task studied in microblogs. Go et.al 

(2009) follow the supervised machine learning 

approach of Pang et al. (2002) to classify the po-

larity of each tweet by distant supervision. The 

training dataset of their method is not manually 

labeled but automatically collected using the 

emoticons. Barbosa and Feng (2010) use the simi-

lar pseudo training data collected from three 

online websites which provide Twitter sentiment 

analysis services. Speriosu et al. (2009) explore 

the possibility of exploiting the Twitter follower 

graph to improve polarity classification.  

Opinion target extraction is a fine-grained 

word-level task of sentiment analysis. Currently, 

this task has not been well studied in microblogs 

yet. It is mostly performed on product reviews 

where opinion targets are always described as 

product features or aspects. The pioneering re-

search on this task is conducted by Hu and Liu 

Clustering Method 
F-Measure 

of Clustering 

F-Measure of Opinion 

Target Extraction 

Strict Soft 

APCluster 0.27 0.35 0.50 

APCluster+HS 0.71 0.37 0.55 

GoldCluster 1.00 0.41 0.58 

Table 5.  Performance of clustering and opinion 

target extraction 
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(2004) who propose a method which extracts fre-

quent nouns and noun phrases as the opinion tar-

gets. Jakob and Gurevych (2010) model the 

problem as a sequence labeling task based on 

Conditional Random Fields (CRF). Qiu et al. 

(2011) propose a double propagation method to 

extract opinion word and opinion target simulta-

neously. Liu et al. (2012) use the word translation 

model in a monolingual scenario to mine the asso-

ciations between opinion targets and opinion 

words.  

7 Conclusion and Future Work  

In this paper, we study the problem of opinion 

target extraction in Chinese microblogs which has 

not been well investigated yet. We propose an un-

supervised label propagation algorithm to collec-

tively rank the opinion target candidates of all 

sentences in a topic. We also propose a dynamic 

programming based algorithm for segmenting 

Chinese hashtags. Experimental results show the 

effectiveness of our method. 

In future work, we will try to collect and anno-

tate data for microblogs in other languages to test 

the robustness of our method. The repost and reply 

messages can also be integrated into our graph 

model to help improve the results.  
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Abstract

This paper presents an approach for detecting
promotional content in Wikipedia. By incor-
porating stylometric features, including fea-
tures based on n-gram and PCFG language
models, we demonstrate improved accuracy
at identifying promotional articles, compared
to using only lexical information and meta-
features.

1 Introduction

Wikipedia is a free, collaboratively edited encyclo-
pedia. Since normally anyone can create and edit
pages, some articles are written in a promotional
tone, violating Wikipedia’s policy requiring a neu-
tral viewpoint. Currently, such articles are identified
manually and tagged with an appropriate Cleanup
message1 by Wikipedia editors. Given the scale and
rate of growth of Wikipedia, it is infeasible to man-
ually identify all such articles. Hence, we present
an approach to automatically detect promotional ar-
ticles.

Related work in quality flaw detection in
Wikipedia (Anderka et al., 2012) has relied on
meta-features based on edit history, Wikipedia links,
structural features and counts of words, sentences
and paragraphs. However, we hypothesize that there
are subtle differences in the linguistic style that dis-
tinguish promotional tone, which we attempt to cap-
ture using stylometric features, particularly deeper
syntactic features. We model the style of promo-
tional and normal articles using language models

1http://en.wikipedia.org/wiki/Wikipedia:
Template_messages/Cleanup

based on both n-grams and Probabilistic Context
Free Grammars (PCFGs). We show that using such
stylometric features improves over using only shal-
low lexical and meta-features.

2 Related Work

Anderka et al. (2012) developed a general model for
detecting ten of Wikipedia’s most frequent quality
flaws. One of these flaw types, “Advert”2, refers to
articles written like advertisements. Their classifiers
were trained using a set of lexical, structural, net-
work and edit-history related features of Wikipedia
articles. However, they used no features capturing
syntactic structure, at a level deeper than Part-Of-
Speech (POS) tags.

A related area is that of vandalism detection in
Wikipedia. Several systems have been developed
to detect vandalizing edits in Wikipedia. These fall
into two major categories: those analyzing author in-
formation and edit metadata (Wilkinson and Huber-
man, 2007; Stein and Hess, 2007); and those using
NLP techniques such as n-gram language models
and PCFGs (Wang and McKeown, 2010; Harpalani
et al., 2011). We combine relevant features from
both these categories to train a classifier that distin-
guishes promotional content from normal Wikipedia
articles.

3 Dataset Collection

We extracted a set of about 13,000 articles from
English Wikipedia’s category, “Category:All arti-

2“Advert” is the flaw-type of majority of the articles in the
Category ‘Articles with a promotional tone’.
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Content Features
Number of characters
Number of words
Number of sentences
Average Word Length
Average, Minimum, Maximum Sentence Lengths,
Ratio of Maximum to minimum sentence lengths
Ratio of long sentences (>48 words) to Short Sen-
tences (<33 words)
Percentage of Sentences in the passive voice
Relative Frequencies of POS tags for pronouns, con-
junctions, prepositions, auxiliary verbs, modal verbs,
adjectives and adverbs
Percentage of sentences beginning with a pronoun,
article, conjunction, preposition, adjective, adverb
Percentage of special phrases3 such as peacock
terms (‘legendary’, ‘acclaimed’, ‘world-class’),
weasel terms (‘many scholars state’, ‘it is be-
lieved/regarded’, ‘many are of the opinion’, ‘most
feel’, ‘experts declare’, ‘it is often reported’) , edi-
torializing terms (‘without a doubt’, ‘of course’, ‘es-
sentially’)
Percentage of easy words, difficult words (Dale-
Chall List), long words and stop words
Overall Sentiment Score based on SentiWordNet4

Table 1: Content Features of a Wikipedia Article

cles with a promotional tone” as a set of positive
examples. We extracted a set of 26,000 untagged
articles to form a noisy set of negative examples,
which may contain some promotional articles that
have not yet been tagged by Wikipedia editors. To
counter this noise, we repeated the experiment us-
ing Wikipedia’s Featured Articles and Good Articles
(approx. 11,000) as a set of clean negative exam-
ples. We used 70% of the articles in each category
to train language models for each of the three cate-
gories (promotional articles, featured/good articles,
untagged articles), and used the remaining 30% to
evaluate classifier performance using 10-fold cross-
validation.

4 Features

4.1 Content and Meta Features of an Article
We used the content and meta features proposed by
Anderka et al. (2012) as given in Tables 1-4. We also

3http://en.wikipedia.org/wiki/Wikipedia:
Manual_of_Style/Words_to_watch

4This feature is not included in Anderka et al. (2012)

Structural Features
Number of Sections
Number of Images
Number of Categories
Number of Wikipedia Templates used
Number of References, Number of References per
sentence and Number of references per section

Table 2: Structural Features of a Wikipedia Article

Wikipedia Network Features
Number of Internal Wikilinks (to other Wikipedia
pages)
Number of External Links (to other websites)
Number of Backlinks (i.e. Number of wikilinks from
other Wikipedia articles to an article)
Number of Language Links (i.e. Number of links to
the same article in other languages)

Table 3: Network Features of a Wikipedia Article

added a new feature, “Overall Sentiment Score” for
an article. This feature is the average of the senti-
ment scores assigned by SentiWordnet (Baccianella
et al., 2010) to all positive and negative sentiment
bearing words in an article. In total, this results in
58 basic document features.

4.2 N-Gram Language Models

Language models are commonly used to measure
stylistic differences in language usage between au-
thors. For this work, we employed them to model
the difference in style of neutral vs. promotional
Wikipedia articles. We trained trigram word lan-
guage models and trigram character language mod-
els5 with Witten-Bell smoothing to produce proba-
bilistic models of both classes.

4.3 PCFG Language Models

Probabilistic Context Free Grammars (PCFG) cap-
ture the syntactic structure of language by mod-
eling sentence generation using probabilistic CFG
productions. We hypothesize that sentences in pro-
motional articles and those in neutral articles tend
to have different kinds of syntactic structures and
therefore, we explored the utility of PCFG models
for detecting this difference. Since we do not have
ground-truth parse trees for sentences in our dataset,

5Modeling longer character sequences did not help.
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Features based on PCFG models and n-gram Language models
Difference in the probabilities assigned to an article by the positive and the negative class character trigram
language models (LM char trigram)
Difference in the probabilities assigned to an article by the positive and the negative class word trigram language
models (LM word trigram)
Difference in the mean values of the probabilities assigned to sentences of an article by the positive and negative
class PCFG models (PCFG mean)
Difference in the maximum values of the probabilities assigned to sentences of an article by the positive and
negative class PCFG models (PCFG max)
Difference in the minimum values of the probabilities assigned to sentences of an article by the positive and
negative class PCFG models (PCFG min)
Difference in the standard deviation values of the probabilities of sentences of an article by the positive and
negative class PCFG models (PCFG std deviation)

Table 5: Features of a Wikipedia Article based on PCFG models and n-gram Language models

Edit History Features
Age of the article
Days since last revision of the article
Number of edits to the article
Number of unique editors
Number of edits made by registered users and by
anonymous IP addresses
Number of edits per editor
Percentage of edits by top 5% of the top contributors
to the article

Table 4: Edit-History Features of a Wikipedia Article

we followed the method of (Raghavan et al., 2010;
Harpalani et al., 2011), which uses the output of
the Stanford parser to train PCFG models for stylis-
tic analysis. We used the PCFG implementation of
Klein and Manning (2003) to learn a PCFG model
for each category.

4.4 Classification
The n-gram and PCFG language models were used
to create a set of additional document features. We
used the probability assigned by the language mod-
els to each sentence in a test document to calculate
document-wide statistics such as the mean, maxi-
mum, and minimum probability and standard devia-
tion in probabilities of the set of sentences in an arti-
cle. The language-modeling features used are shown
in Table 5.

Since we have a wide variety of features, we
experimented with various ensemble learning tech-
niques and found that LogitBoost performed best
empirically. We used the Weka implementation of

LogitBoost (Friedman et al., 2000) to train a classi-
fier using various combinations of features. We used
Decision Stumps as a base classifier and ran boost-
ing for 500 iterations.

5 Experimental Evaluation

5.1 Methodology
We used 10-fold cross-validation to test the perfor-
mance of our classifier using various combinations
of features. We ran the classifier on the portion
(30%) of the dataset not used for language model-
ing.6 We measured overall classification accuracy
as well as precision, recall, F-measure, and area un-
der the ROC curve for all experiments. We tested
performance in two settings (Anderka et al., 2012):

• Pessimistic Setting: The negative class consists
of articles from the Untagged set. Since some
of these could be manually undetected promo-
tional articles, the accuracy measured in this
setting is probably an under-estimate.

• Optimistic Setting: The negative class consists
of articles from the Featured/Good set. These
articles are at one end of the quality spectrum,
making it relatively easier to distinguish them
from promotional articles.

The true performance of the classifier is likely some-
where between that achieved in these two settings.

6We maintain an equal number of positive and negative test
cases in both the settings.
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Features Pessimistic Setting Optimistic Setting
P R F1 AUC P R F1 AUC

Bag-of-words Baseline 0.823 0.820 0.821 0.893 0.931 0.931 0.931 0.979
PCFG 0.881 0.870 0.865 0.903 0.910 0.910 0.910 0.961
Character trigrams 0.889 0.887 0.888 0.952 0.858 0.843 0.841 0.877
Word trigrams 0.863 0.863 0.863 0.931 0.887 0.883 0.882 0.931
Character trigrams + Word trigrams 0.89 0.888 0.889 0.952 0.908 0.907 0.907 0.962
PCFG+Char. trigrams+Word trigrams 0.914 0.915 0.914 0.974 0.950 0.950 0.950 0.983
58 Content and Meta Features 0.866 0.867 0.867 0.938 0.986 0.986 0.986 0.996
All Features 0.940 0.940 0.940 0.986 0.989 0.989 0.989 0.997

Table 6: Performance (Precision(P), Recall(R), F1 score, AUC) of the classifier in the two settings

5.2 Results for Pessimistic Setting

From Table 6, we see that all features perform
better than the bag-of-words baseline. We also
see that character trigrams, one of the simplest
features, gives the best individual performance.
However, deeper syntactic features using PCFGs
also performs quite well. Combining all of the
language-modeling features (PCFG + character tri-
grams + Word trigrams) further improves perfor-
mance. Compared to the 58 content and meta fea-
tures utilized by Anderka et al., (2012) described
in Section 4.1, the PCFG and character trigram fea-
tures give much better performance, both individu-
ally and when combined. It is interesting to note
that adding Anderka et al.’s features to the language-
modeling ones gives a fairly small improvement in
performance. This validates our hypothesis that pro-
motional articles tend to have a distinct linguistic
style that is captured well using language models.

5.3 Results for Optimistic Setting

In the Optimistic Setting, as shown in Table 6,
the content and meta features give the best perfor-
mance, which improves only slightly when com-
bined with language-modeling features. The bag-of-
words baseline performs better than all the language
modeling features. This performance could be be-
cause there is a much clearer distinction between
promotional articles and featured/good articles that
can be captured by simple features alone. For exam-
ple, featured/good articles are generally longer than
usual Wikipedia articles and have more references.

5.4 Top Ranked Features and their
Performance

To analyze the performance of different features, we
determined the top ranked features using Informa-
tion Gain. In the Pessimistic Setting, the top six
features are all language-modeling features (charac-
ter trigram model feature works best), followed by
basic meta-features such as character count, word
count, category count and sentence count. The new
feature we introduced, “Overall Sentiment Score” is
the 18th most informative feature in the pessimistic
setting, indicating that the cumulative sentiment of a
bag of words is not as discriminative as we would in-
tuitively assume. Using the 10 top-ranked features,
we get an F1 of 0.93, which is only slightly worse
than that achieved using all features (F1 = 0.94).

In the Optimistic Setting, the top-ranked features
are the number of references and the number of
references per section. This is consistent with the
observation that featured/good articles have very
long and comprehensive lists of references, since
Wikipedia’s fundamental policy is to maintain ver-
ifiability by citing relevant sources. Features based
on the n-gram and PCFG models also appear in the
list of ten best features. Using only the top 10 fea-
tures, gives an F1 of 0.988, which is almost as good
as using all features (F1 = 0.989).

5.5 Optimistic and Pessimistic Settings

In the optimistic setting, there is a clear distinc-
tion between the positive (promotional) and negative
(featured/good) classes. But there are only subtle
differences between the positive and negative (un-
tagged articles) classes in the pessimistic setting.
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Best Features in Pessimistic Setting Best Features in Optimistic Setting
LM char trigram Number of References
LM word trigram Number of References per Section
PCFG min LM word trigram
PCFG max Number of Words
PCFG mean PCFG mean
PCFG std deviation Number of Sentences
Number of Characters LM char trigram
Number of Words Number of Words
Number of Categories Number of Characters
Number of Sentences Number of Backlinks

Table 7: Top 10 Features (listed in order) in both Settings ranked using Information Gain

These two classes are superficially similar, in terms
of length, reference count, section count etc. Stylo-
metric features based on the trained language mod-
els are successful at detecting the subtle linguistic
differences in the two types of articles. This is use-
ful because the pessimistic setting is closer to the
real-world setting of articles in Wikipedia.

5.6 Error Analysis
Since the pessimistic setting is close to the real set-
ting of Wikipedia articles, it is useful to do an error
analysis of the classifier’s performance in this set-
ting. There is an approximately equal proportion of
false positives and false negatives.

A significant number of false positives seem to
be cases of manually undetected promotional arti-
cles. This demonstrates the practical utility of our
classifier. But there are also many false positives
that seem to be truly unbiased. These articles ap-
pear to have been poorly written, without following
Wikipedia’s editing policies. Examples include use
of very long lists of nouns, use of ambiguous terms
like ”many believe” and excessive use of superla-
tives. Other common characteristics of most of the
false positives are presence of a considerable num-
ber of complex sentences with multiple subordinate
clauses. These stylistic cues seem to be misleading
the classifier.

A common thread underlying most of the false
negatives is the fact that they are written in a nar-
rative style or they have excessive details in terms of
the content. Examples include narrating a detailed
story of a fictional character in an unbiased manner
or writing a minutely detailed account of the history
of an organization. Another source of false negatives

comes from biographical Wikipedia pages which are
written in a resume style, listing all their qualifi-
cations and achievements. These cues could help
one manually detect that the article, though not pro-
motional in style, is probably written with the view
of promoting the entity. As possible future work,
we could incorporate features derived from language
models for narrative style trained using an appropri-
ate external corpus of narrative text. This might en-
able the classifier to detect some cases of unbiased
promotional articles.

6 Conclusion

Our experiments and analysis show that stylomet-
ric features based on n-gram language models and
deeper syntactic PCFG models work very well for
detecting promotional articles in Wikipedia. Af-
ter analyzing the errors that are made during clas-
sification, we realize that though promotional con-
tent is non-neutral in majority of the cases, there do
exist promotional articles that are neutral in style.
Adding additional features based on language mod-
els of narrative style could lead to a better model of
Wikipedia’s promotional content.
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Abstract

We explore Debatepedia, a community-
authored encyclopedia of sociopolitical de-
bates, as evidence for inferring a low-
dimensional, human-interpretable representa-
tion in the domain of issues and positions. We
introduce a generative model positing latent
topics and cross-cutting positions that gives
special treatment to person mentions and opin-
ion words. We evaluate the resulting repre-
sentation’s usefulness in attaching opinionated
documents to arguments and its consistency
with human judgments about positions.

1 Introduction

The social web has evolved into a forum for large
portions of the population to discuss and debate
complex issues of societal importance. Websites like
Debatepedia,1 an online, community-authored ency-
clopedia of debates (§2), seek to organize some of
this exchange into structured information resources
that summarize arguments and link externally to
texts (editorials, blog posts, etc.) that express and
evoke them. Empirical NLP, we propose, has a
role to play in creating a more compact and easily-
interpretable way to understand the opinion space.
In particular, we envision applications to computa-
tional journalism, where there is high demand for
transformation of and pattern discovery in unman-
ageable, unstructured, evolving data (including text)
to inform the public (Cohen et al., 2011).

In this paper, we develop a generative model for
discovering such a representation (§3), using De-
batepedia as a corpus of evidence. We draw in-
spiration from Lin et al. (2008) and Ahmed and

1http://dbp.idebate.org

Xing (2010), who used generative models to infer
topics—distributions over words—and other word-
associated variables representing perspectives or
ideologies. We view topics as lexicons, and propose
that grounding a topic model with evidence beyond
bags of words can lead to more lexicon-like repre-
sentations. Specifically, our generative topic model
grounds topics using the hierarchical organization
of arguments within Debatepedia. Further, we use
named entity recognition as a preprocessing step, an
existing sentiment lexicon to construct an informed
prior, and we incorporate a latent, discrete position
variable that cuts across debates.2

We evaluate the model informally and formally
(§4). Subjectively, the model identifies reasonable
topic and perspective terms, and it associates topics
sensibly with important public figures. In quanti-
tative evaluations, we find the model’s representa-
tion superior to topics from vanilla latent Dirichlet
allocation (Blei et al., 2003) and the joint sentiment
topic model (Lin and He, 2009) in matching external
texts to debates. Further, the position variables can
be used to infer the side of an argument within a de-
bate; our model performs with an accuracy of 86%
on position prediction of the debate argument. The
cross-cutting position variable is not especially con-
sistent with human judgments, suggesting that fur-
ther knowledge sources may be required to improve
interpretability across issues.

2 Data

Debatepedia, like Wikipedia, is constructed by vol-
unteer contributors and has a system of community

2This variable might serve to cluster debate sides according
to “abstract beliefs commonly shared by a group of people,”
sometimes called ideologies (Van Dijk, 1998). We do not claim
that our model infers ideologies (see §4).
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Debate: Gun control; should laws be passed to limit gun ownership further?
Question: Self-defense – Is self-defense a good reason for gun ownership?

Side: Yes Side: No
Argument: A citizen has a “right” to guns as a means
to self-defense: Many groups argue that a citizen
should have the “right” to defend themselves, and that
a gun is frequently the . . .

Argument: The protection of property is not a good
justification for yielding a lethal weapon. While peo-
ple have a right to their property, this should not justify
wielding a lethal . . .

Argument: Gun restrictions and bans disadvantage cit-
izens against armed criminals. Citizens that are not al-
lowed to carry guns are disadvantaged against lawless
criminals that . . .

Argument: Robert F. Drinan, Former Democratic US
Congressman, “Gun Control: The Good Outweighs
the Evil”, 1976 – “These graphic examples of individ-
ual instances of . . .

Question: Economic benefits – Is gun control economically beneficial?
Side: Yes Side: No

Argument: Lax gun control laws are economically
costly. The Coalition for Gun Control claims that, “in
Canada, the costs of firearms death and injury alone
have been estimated at . . .

Argument: Gun sports have economic benefits. Field
sports bring money into poor rural economies and pro-
vide a motivation for landowners to value environmen-
tal protection.

Table 1: An example of a Debatepedia debate on the topic “Gun control.”

moderation. Many of the debate issues covered are
controversial and salient in current public discourse.
Because it is primarily expressed as text, Debatepe-
dia is a corpus of debate topics, but it is organized
hierarchically, with multiple issues in each debate
topic, questions within each issue, and arguments on
two sides of each question. An important feature of
the corpus is the widespread quotation and linking to
external articles on the web, including news stories,
blog postings, wiki pages, and social media forums;
here we use these external articles in evaluation (§4).

Table 1 shows excerpts from a debate page3 from
Debatepedia. Each debate contains “questions,”
which reflect the different aspects of a debate. In this
particular debate, there are 13 questions (2 shown),
ranging from economic benefits to enforceability to
social impacts. For each question, there are two dis-
tinct sides, each with its own set of supporting argu-
ments. Many of these arguments also contains links
to online articles where the quotes are extracted from
(not shown in Table 1). For example, in the second
argument on the “No” side, there is an inline link to
the article written by Congressman Drinan.4

Within a debate topic, the sides cut across differ-
ent questions, aligning arguments together. In gen-

3http://dbp.idebate.org/en/index.php/
Debate:_Gun_control

4http://www.saf.org/LawReviews/Drinan1.
html

Debates 1,303
Arguments 33,556
Articles linked by exactly one argument 3,352
Tokens 1,710,814
Types (excluding NE mentions) 59,601
Person named entity mentions 9,496

Table 2: Debatepedia corpus statistics. Types and tokens
include unigrams, bigrams and person named entities.

eral, the questions are phrased so that a consistent
“pro” and “con” structure is apparent throughout
each debate, aligned to a high-level question (i.e.,
the “Yes” sides of all the questions are consistent
with the same side of the larger debate). The ex-
ample of Table 1 deviates from this pattern, with the
self-defense “Yes” arguing “no” to the high-level de-
bate question—Should laws be passed to limit gun
ownership further?—and the economic “Yes” argu-
ing “yes” to the high-level question.

Table 2 presents statistics of our corpus.

2.1 Preprocessing

We scraped the Debatepedia website and extracted
the debate, question, argument, and side structure
of the debate topics. We crawled the external
web articles that were linked from the Debatepe-
dia arguments. For the web articles, we extracted
the main text content (ignoring boilerplate elements
such as navigation and advertisments) using Boil-
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erpipe (Kohlschütter et al., 2010).5 We tokenized
the text and filtered stopwords.6 We considered both
unigrams and bigrams in our model, keeping all uni-
grams and removing bigram types that appeared less
than 5 times in the corpus. Although our modeling
approach ultimately treats texts as bags of terms (un-
igrams and bigrams), one important preprocessing
step was taken to further improve the interpretabil-
ity of the inferred representation: named entity men-
tions of persons. We identified these mentions of
persons using Stanford NER (Finkel et al., 2005)
and treated each person mention as a single token. In
our qualitative analysis of the model (§4.2), we will
show how this special treatment of person mentions
enables the association of well-known individuals
with debate topics. Though not part of our exper-
imental evaluation in this paper, such associations
are, we believe, an interesting direction for future
applications of the model.

3 Model

Our model defines a probability distribution over
terms7 that are observed in the corpus. Each term
occurs in a context defined by the tuple 〈d, q, s, a〉
(respectively, a debate, a question within the debate,
a side within the debate, and an argument). At each
level of the hierarchy is a different latent variable:
• Each question q within debate d is associated

with a distribution over topics, denoted θd,q.8

• Each side s of the debate d is associated with a
position, denoted id,s and we posit a global dis-
tribution ι that cuts across different questions
and arguments. In our experiments, there are
two positions, and the two sides of a debate
are constrained to associate with opposing po-
sitions. As illustrated by Table 1, this assump-

5http://code.google.com/p/boilerpipe
6www.ranks.nl/resources/stopwords.html
7Recall that our model includes bigrams. We treat each un-

igram and bigram token (after filtering discussed in §2.1) as a
separate term.

8In future work, more sharing across questions within a
debate, or more differentiation among the topic distributions
for arguments under a question, might be explored. Wallach
(2006) describes suitable techniques using hierarchical Dirich-
let draws, and Eisenstein et al. (2011) suggests the use of sparse
shocks to log-odds at different levels. Here we work on the
assumption that Debatepedia’s questions are the most topically
coherent level, and work with a single topic mixture at this level.
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Figure 1: Plate diagram. K is the number of positions,
and T is number of topics. The shaded variables are ob-
served and dashed variables are marginalized. α,β,γ
and all η are fixed hyperparameters (§3.1).

tion is not always correct, though it tends to
hold most of the time.
• Each term wd,q,s,a,n (n is the position index

of the term within an argument) is associated
with one of five functional term types, denoted
yd,q,s,a,n. This variable is latent, except when it
takes the value “entity” (e) for terms marked as
named entity mentions. When it is not an en-
tity, it takes one of the other four values: “gen-
eral position” (i), “topic-specific position” (o),
“topic” (t), or “background” (b). Thus, every
term w is drawn from one of these 5 types of
bags, and y acts as a switching variable to se-
lect the type of bag.
• For some term types (the ones where y ∈
{o, t}), each term wd,q,s,a,n is associated with
one of T discrete topics, as indexed by
zd,q,s,a,n.

Figure 1 illustrates the plate diagram for the
graphical model underlying our approach. The gen-
erative story is given in Figure 2.

3.1 Priors
Typical probabilistic topic models assume a sym-
metric Dirichlet prior over its term distributions or
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1. ∀ topics t, draw topic-term distribution φt
t ∼ Dirichlet(ηt) and topic-entity distribution φe

t ∼ Dirichlet(ηe).
2. ∀ positions i, draw position-term distribution φi

i ∼ Dirichlet(ηi).
3. ∀ topics t, ∀ positions i, draw topic-position term distribution φo

i,t ∼ Dirichlet(ηo).
4. Draw background term distribution φb ∼ Dirichlet(ηb).
5. Draw functional term type distribution µ ∼ Dirichlet(γ).
6. Draw position distribution ι ∼ Dirichlet(β).
7. ∀ debates d:

a. Draw id,1, id,2 ∼ Multinomial(ι), assigning each of the two sides to a position.
b. ∀ questions q in d:

i. Draw topic mixture proportions θd,q ∼ Dirichlet(α).
ii. ∀ arguments a under question q and term positions n in a:

A. Draw topic label zd,q,s,a ∼ Multinomial(θd,q).
B. Draw functional term type yd,q,s,a ∼ Multinomial(µ).
C. Draw term wd,q,s,a ∼ Multinomial (φyd,q,s,a | id,1, id,2, zd,q,s,a).

Figure 2: Generative story for our model of Debatepedia.

apply empirical Bayesian techniques to estimate the
hyperparameters. Motivated by past efforts to ex-
ploit prior knowledge (Zhao et al., 2010; Lin and
He, 2009), we use the OpinionFinder sentiment lex-
icon9 (Wilson et al., 2005) to construct ηi and ηo.
Specifically, terms w in the lexicon were given pa-
rameters ηi

w = ηo
w = 0.01, and other terms were

given ηi
w = ηo

w = 0.001, capturing our prior belief
that opinion-expressing terms are likely to be used
in expressing positions. 5,451 types were given a
“boost” through this prior.

Information retrieval has long exploited the ob-
servation that a term’s document frequency (i.e., the
number of documents a term occurs in) is inversely
related its usefulness in retrieval (Jones, 1972). We
encode this in ηb, the prior over the background
term distribution, by setting each value to the log-
arithm of the term’s argument frequency.

The other priors were set to be symmetric: ηe =
0.01 (entity topics), ηt = 0.001 (topics), α =
50/T = 1.25 (topic mixture coefficients), β = 0.01
(positions), and γ = 0.01 (functional term types).
Preliminary tests showed that final topics are rela-
tively insensitive to the values of the hyperparame-
ters.

3.2 Inference and Parameter Estimation

Exact inference under this model, like most latent-
variable topic models, is intractable. We apply col-
lapsed Gibbs sampling, a standard approach for such

9http://mpqa.cs.pitt.edu/lexicons/subj_
lexicon/

models (Griffiths and Steyvers, 2004).10 The no-
table deviations from typical uses of collapsed Gibbs
sampling are: (i) we jointly sample id,1 and id,2 to
respect the constraint that they differ; and (ii) we
fix the priors, in some cases to be asymmetric, as
discussed in §3.1. We perform Gibbs sampling for
2,000 iterations over the dataset, discarding the first
500 iterations for burn-in, and averaging over every
10th iteration thereafter to get estimates for our term
distributions.

3.3 T and K
In all experiments, we use T = 40 topics andK = 2
positions. We did not extensively explore different
values for T and K; preliminary exploration sug-
gested that interpretability, gauged informally by the
authors, degraded for higher values of either.

4 Evaluation

Recall that the aim of this work is to infer a low-
dimensional representation of debate text. We esti-
mated our model on the Debatepedia debates (not in-
cluding hyperlinked articles), and conducted several
evaluations of the model, each considering a differ-
ent aspect of the goal. We exploit external articles
hyperlinked from Debatepedia described in §2 as
supporting texts for arguments, treating each one’s
association to an argument as variable to be pre-
dicted. Firstly, we evaluate our model on the article
associating task. Secondly, we evaluate our model
on the position prediction task. Then, we compare

10Because this technique is well known in NLP, details are
relegated to supplementary material.
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Figure 3: The distribution over Jensen-Shannon diver-
gences between a hyperlinked article and the correspond-
ing Debatepedia argument, n = 3, 352.

our model’s positional assignment of arguments to
human annotated clusterings. Finally, we present
qualitative discussion.

4.1 Quantitative Evaluation

4.1.1 Topics
As described in §2, our corpus includes 3,352 ar-

ticles hyperlinked by Debatepedia arguments.11 Our
model can be used to infer the posterior over top-
ics associated with such an article, and we compare
that distribution to that of the Debatepedia article
that links to it. Calculating the similarity of these
distributions, we get an estimate of how closely our
model can associate text related to a debate with the
specific argument that linked to it. We compare with
LDA (Blei et al., 2003), which ignores sentiment,
and the joint sentiment topic (JST) model (Lin and
He, 2009), an unsupervised model that jointly cap-
tures sentiment and topic.12 Using Jensen-Shannon
divergence, we find that our approach embeds these
pairs significantly closer than LDA and JST (also
trained with 40 topics), under a Wilcoxon signed
rank test (p < 0.001). Figure 3 shows the histogram
of divergences between our model, JST, and LDA.

Associating external articles. More challenging,
of course, is selecting the argument to which an
external article should be associated. We used the
Jensen-Shannon divergence between topic distribu-
tions of articles and arguments to rank the latter,
for each article. The mean reciprocal rank scores
(Voorhees, 1999) for LDA, JST, and our model were

11We consider only those articles linked by a single Debate-
pedia argument.

12JST multiplies topics out by the set of sentiment labels, as-
signing each token to both a topic and a sentment. We use the
OpinionFinder lexicon in JST’s prior in the same way it is used
in our model.
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Figure 4: Mean reciprocal ranks for the association task.

0.1272, 0.1421, and 0.1507, respectively; the differ-
ence is significant (Wilcoxon signed rank test, p <
0.001). We found the same pattern for MRR@k,
k ∈ {5, 10, 15, 20, 25,∞}, as shown in Figure 4.

It is likely possible to engineer more accurate
models for attaching articles to arguments, but the
attachment task is our aim only insofar as it con-
tributes to an overall assessment of an inferred rep-
resentation’s quality.

4.1.2 Positions
Positional distance by topic. We next consider
the JS divergences of position term distributions by
topic; for each topic t, we consider the divergence
between inferred values for φo

1,t and φo
2,t. Figure 5

shows these measurements sorted from most to least
different; these might be taken as evidence for which
issue areas’ arguments are more lexically distin-
guishable by side, perhaps indicating less common
ground in discourse or (more speculatively) greater
controversy. For example, our model suggests that
debates relating to topics like presidential politics,
foreign policy, teachers, women’s health, religion,
and Israel/Palestine are more heated (within the De-
batepedia community at the time the debates took
place) than those about the minimum wage, Iran as
a nuclear threat, or immigration.

Predicting positions for arguments. We tested
our model’s ability to infer the positions of argu-
ments. In this experiment (only), we held out 3,000
arguments during parameter estimation. The held-
out arguments were selected so that every debate
side maintained at least one argument whose in-
ferred side could serve as the correct answer for the
held-out argument. We then inferred i for each held-
out argument from debate d and side s, given the
parameters, and compared it with the value of id,s

inferred during parameter estimation. The model
achieved 86% accuracy (Table 3 shows the confu-
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sion matrix). Note that JST does not provide a base-
line for comparison, since it does not capture debate
sides.

i = 1 i = 2
i∗ = 1 1,272 216
i∗ = 2 199 1,313

Table 3: Confusion matrix for position prediction on
held-out arguments.

Predicting positions for external articles. We
can also use the model to predict the position
adopted in an external text. For articles linked from
within Debatepedia, we have a gold standard: from
which side of a debate was it linked? After using
the model to infer a position variable for such a text,
we can check whether the inferred position variable
matches that of the argument that links to it. Table 4
shows that our model does not successfully com-
plete this task, assigning about 60% of both kinds
of articles i = 1.

i = 1 i = 2
i∗ = 1 1,042 623
i∗ = 2 1,043 644

Table 4: Confusion matrix for position prediction on hy-
perlinked articles.

Genre. We manually labeled 500 of these articles
into six genre categories. We had two annotators for
this task (Cohen’s κ = 0.856). These categories,
in increasing order of average Jensen-Shannon di-
vergence, are: blogs, editorials, wiki pages, news,
other, and government. Figure 6 shows the results.
While the only difference between the first and last
groups are surprising by chance, we are encouraged
by our model’s suggestion that blogs and editori-
als may be more “Debatepedia argument-like” than
news and government articles.

Note that our model is learned only from text
within Debatepedia; it does not observe the text of
external linked articles. Future work might incorpo-
rate this text as additional evidence in order to cap-
ture effects on language stemming from the interac-
tion of position and genre.
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health, care, insurance, public, private

circumcision, men, sexual, circumcised, foreskin
information, torture, science, evidence, wikipedia

companies, market, industry, business, bailout
law, workers, union, rights, legal

college, cloning, game, football, incest
times, york, ban, june, january

countries, eu, european, international, states
oil, water, production, ethanol, environmental

military, war, iraq, forces, march
economy, financial, spending, economic, government

government, social, governments, state, programs
israel, gaza, hamas, israeli, palestinian

women, religious, abortion, god, life
teachers, pay, test, left, merit

peace, state, west, united, action
united, states, president, administration, foreign

president, washington, obama, american, america

Figure 5: Jensen-Shannon divergences between topic-
specific positional term distributions, for each topic. Top-
ics are labeled by their most frequent terms from φt.

4.1.3 Comparison to Human Judgments of
Positions

We compared our model’s inferred positions to
human judgments. For each of the 11 topics in Ta-
ble 8, we selected two associated debates with more
arguments than average (24.99). The debates were
provided to each of three human annotators,13 who

13All were native English-speaking American graduate stu-
dents not otherwise involved in this research. Each is known
by the authors to have basic literacy with issues and debates in
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Figure 6: Position prediction on 500 hyperlinked articles
by genre.
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“Israel-Palestine” “Same-sex marriage” “Drugs” “Healthcare” “Death penalty” “Abortion”

i1

pre emptive same sex hands free single payer anti death pro choice
israeli palestinian long term performance enhancing so called non violent pro life
open and shut second class in depth self sustaining african american non muslim

i2

two state opposite sex long term government run semi automatic would be
long term well intentioned high speed government approved high profile full time
self destructive day time short term high risk hate crime late term

a. Our model: topic-specific position bigrams associated with six selected topics.

–
war large illegal support death power
assault possibility abuse force penalty limit
disproportionate problems high threat murder civil

+
peace civil disease care power care
independence rights nature universal clean suicide
self-determination affirmative potential uninsured waste death

b. JST: sentiments associated with six selected topics manually aligned to our model’s topics.

Table 6: Terms associated with selected topics. The labels and alignments between the two models’ topics were
assigned manually. (a.) Our model: topic-specific position bigrams which are ranked by comparing the log odds
conditioned on the position and topic: log φoi1,t,w− log φoi2,t,w. We show the top three terms for each position (b.) JST:
we show the top three terms for each sentiment (negative and positive).

A1 (11) A2 (5) A3 (16)
Model (2) 3.21 2.58 3.45
A1 (11) 2.15 2.15
A2 (5) 2.63

Table 5: Variation of information scores for each pairing
of annotators and model.

were instructed to group the 44 sides of the debates.
The instructions stated:

Our goal is to see what you think about how
the different sides of different debates can be
lined up. You might find it convenient to
think of these in terms of political philoso-
phies, contemporary political party platforms,
or something else. Any of these is fine; we
want you to tell us the grouping you find most
reasonable.

All three annotators (hereafter denoted A1, A2, and
A3) used fairly involved labeling schemes; the an-
notators used 37, 30, and 16 unique labels, respec-
tively.14 A1 used keyword lists to label items; we
coarsened his labels manually by removing or merg-
ing less common keywords (resulting in: Republi-
can, Democrat, science/environment, nanny, politi-
cal reform, fiscal liberal, fiscal conservative, liber-
tarian, Israel, Palestine, and one unlabeled side).
A2 provided a coarse annotation along with each

American politics.
14In a small number of cases, an annotator declined to label

a side. Each unlabeled item received its own cluster.

fine-grained one (liberal, conservative, ?, and two
unlabeled sides). We used 100 samples from our
Gibbs sampler to estimate posteriors for each id,s;
these were always 99% or more in agreement, so we
mapped each debate side into its single most proba-
ble cluster. Recall that the two sides of each debate
must be in different clusters.

Table 5 shows the variation of information mea-
sure (Meila, 2003) for each pairing among the three
annotators and our model. The model agrees with
A2’s coarse clustering most closely, and in fact is
closer to A2’s clustering than A2 is to A3’s; it also
agrees with A2’s coarse clustering better than A2’s
coarse and fine clusterings agree (3.36, not shown
in the table). This is promising, but we do not
have confidence that the positional dimension is be-
ing captured especially well in this model; for those
debate-sides labeled liberal or conservative by A2,
the best match of our two positions was still only in
agreement only about 60% of the time, and agree-
ment with each human annotator is within the inter-
val of what would be expected if each debate’s sides
were assigned uniformly at random to positions.15

Remarks. Within debates and within topics, the
model uses the position variable to distinguish sides
well. For external text, the model performs well
on articles such as blogs and editorials but on oth-
ers the positional categories do not seem meaning-

15This was determined using a Monte Carlo simulation with
1,000 samples.
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Topic i = 1 i = 2

None (φi) vice president, c sections, twenty four, cross pressures,
pre dates, anti ballistic, cost effectiveness, anti land-
mine, court appointed, child poverty

cross examination, under runs, hand outs, half million,
non christians, break down, counter argument, seventy
five, co workers, run up

“Israel-
Palestine”

pre emptive, israeli palestinian, open and shut, first
time, hamas controlled, democratically elected

two state, long term, self destructive, secretary general,
right wing, all out, near daily, short term

“Same-sex
marriage”

same sex, long term, second class, blankenhorn rauch,
wrong headed, self denial, left handed

opposite sex, well intentioned, day time, planet wide,
day night, child rearing, low earth, one way, one third

“Drugs” hands free, performance enhancing, in depth, hand
held, best kept, non pharmaceutical, anti marijuana

long term, high speed, short term, peer reviewed, alco-
hol related, mind altering, inner city, long lasting

“Healthcare” single payer, so called, self sustaining, public private,
for profit, long run, high cost, multi payer

government run, government approved, high risk, two
tier, government appointed, low cost, set up

“Death
penalty”

anti death, non violent, african american, self help, cut
and cover, heavy handed, dp equivalent

semi automatic, high profile, hate crime, assault
weapons, military style, high dollar, self protective

“Abortion” pro choice, pro life, non muslim, well educated, anti
abortion, much needed, church state, birth control

would be, full time, late term, judeo christian, life
style, day to day, non christian, child bearing

Table 7: General position (first row) and topic-specific position bigrams associated with six selected topics.
Topic Terms Person entity mentions
“Israel-
Palestine”

israel, gaza, hamas, israeli, pales-
tinian

Benjamin Netanyahu, Al Jazeera, Mavi Marmara, Nicholas Kristoff,
Steven R. David

“Same-sex
marriage”

marriage, gay, mars, space, moon Buzz Aldrin, Andrew Sullivan, Moon Base, Scott Bidstrup, Ted Olson

“Drugs” marijuana, drug, drugs, alcohol, age Four Loko, Evo Morales, Toni Meyer, Sean Flynn, Robert Hahn
“Healthcare” health, care, insurance, public, pri-

vate
Kent Conrad, Paul Hsieh, Paul Krugman, Ezra Klein, Jacob Hacker

“Death
penalty”

death, crime, punishment, penalty,
justice

Adam Bedau, Thomas R. Eddlem, Jeff Jacoby, John Baer, Peter Bronson

“Abortion” women, religious, abortion, god, life Ronald Reagan, John Paul II, Sara Malkani, Mother Teresa, Marcella
Alsan

Table 8: For 6 selected topics (labels assigned manually), top terms (φt) and person entities (φe). Bigrams were
included but did not rank in the top five for these topics. The model has conflated debates relating to same-sex
marriage with the space program.

ful, perhaps due to the less argumentative nature
of other kinds of articles. Noting the vast litera-
ture focusing on ideological positions expressed in
text, we believe this failure suggests (i) that broad-
based positions that hold across many topics may
require richer textual representations (see, e.g., the
“syntactic priming” of Greene and Resnik, 2009),
or (ii) that an alternative representation of positions,
such as the spatial models favored by political sci-
entists (Poole and Rosenthal, 1991), may be more
discoverable. Aside from those issues, a stronger
theory of positions may be required. Such a the-
ory could be encoded in a more informative prior or
weaker independence assumptions across debates.
Finally, exploiting explicitly ideological texts along-
side the moderated arguments of Debatepedia might
also help to identify textual associations with gen-
eral positions (Sim et al., 2013). We leave these di-

rections to future work.

4.2 Qualitative Analysis

Of the T = 40 topics our model inferred, we subjec-
tively judged 37 to be coherent; a glimpse of each is
given in Figure 5. We manually selected six of the
most interpretable topics for further evaluation.

As a generative modeling approach, our model
was designed for the purpose of reducing the dimen-
sionality of the sociopolitical debate space, as evi-
denced by Debatepedia. It is like other topic models
in this regard, but we believe that some effects of our
design choices are noteworthy. Table 6 compares the
positional bigrams of our model to the sentiments in-
ferred by JST. We observe the benefit of our model
in identifying terms associated with positions on so-
cial issues, while JST selects more general sentiment
terms.
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Table 7 shows bigrams most strongly associated
with general position distributions φi and selected
topic-position distributions φo.16 We see the poten-
tial benefit of multiword expressions. Although we
have used frequent bigrams as a poor man’s approx-
imation to multiword expression analysis, we find
the topic-specific positions terms to be subjectively
evocative. While somewhat internally coherent, we
do not observe consistent alignment across topics,
and the general distributions φi are not suggestive.

The separation of personal name mentions into
their own distributions, shown for some topics in
Table 8, gives a distinctive characterization of top-
ics based on relevant personalities. Subjectively, the
top individuals are relevant to the subject matter as-
sociated with each topic (though the topics are not
always pure; same-sex marriage and the space pro-
gram are merged, for example).

5 Related Work

Insofar as debates are subjective, our study is related
to opinion mining. Subjective text classification
(Wiebe and Riloff, 2005) leads to opinion mining
tasks such as opinion extraction (Dave et al., 2003),
positive and negative polarity classification (Pang et
al., 2002), sentiment target detection (Hu and Liu,
2004; Ganapathibhotla and Liu, 2008), and feature-
opinion extraction (Wu et al., 2009). The above
studies are conducted mostly on product reviews, a
domain with a simpler opinion landscape and more
concrete rationales for those opinions, compared to
sociopolitical debates.

Generative topic models have been successfully
implemented in opinion mining tasks such as feature
identification (Titov and McDonald, 2008), entity-
topic extraction (Newman et al., 2006), mining con-
tentious expressions and interactions (Mukherjee
and Liu, 2012) and specific aspect-opinion word ex-
traction from labeled data (Zhao et al., 2010). Most
relevant to this research is work on feature-sentiment
extraction (Lin and He, 2009; Mei et al., 2007). Mei
et al. (2007) built on PLSI, which is problematic
for generalizing beyond the training sample. The
JST model of Lin and He (2009) is an LDA-based
topic model in which each word token is assigned
both a sentiment and a topic; they exploited a sen-

16For more topics, please refer to the supplementary notes.

timent lexicon in the prior distribution. Our model
is closely related, but introduces a switching vari-
able that assigns some tokens to positions, some to
topics, and some to both. Unlike Lin and He’s senti-
ments, our model’s positions are associated with the
two sides of a debate, and we incorporate topics at
the level of questions within debates.

Some studies have specifically analyzed con-
trastive viewpoints or stances in general discussion
text.Agrawal et al. (2003) used graph mining based
method to classify authors in to opposite camps for
a given topic. Paul et al. (2010) developed an unsu-
pervised method for summarizing contrastive opin-
ions from customer reviews. Abu-Jbara et al. (2012)
and Dasigi et al. (2012) developed techniques to ad-
dress the problem of automatically detecting sub-
groups of people holding similar stances in a dis-
cussion thread.

Several prior studies have considered debates.
Cabrio and Villata (2012) developed a system based
on argumentation theory which recognizes the en-
tailment and contradiction relationships between
two texts. Awadallah et al. (2011) used a debate
corpus as a seed for extracting person-opinion-topic
tuples from news and other web documents and in
later work classified the quotations to specific top-
ics and polarity using language models (Awadal-
lah et al., 2012). Somasundaran and Wiebe (2009)
and Anand et al. (2011) were interested in ideolog-
ical content in debates, relying on discourse struc-
ture and leveraging sentiment lexicons to recognize
stances.

Closer to the methodology we describe, Lin et
al. (2008) presented a statistical model for politi-
cal discourse that incorporates both topics and ide-
ologies; they used debates on the Israeli-Palestinian
conflict. Fortuna et al. (2009) showed that it is pos-
sible to isolate a subset of terms from media content
that are informative of a news organization’s bias to-
wards a particular issue. Ahmed and Xing (2010) in-
troduced multi-level latent Dirichlet allocation, and
Eisenstein et al. (2011) introduced sparse additive
generative models, both conceived as extensions to
well-established probabilistic modeling techniques
(Blei et al., 2003); these were applied to debates
and political blog datasets. Our approach builds on
these models (especially the switching variables of
Ahmed and Xing). We go farther in jointly modeling
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text across many debates evidenced by the structure
of Debatepedia, thus grounding our models more
solidly in familiar sociopolitical issues, and in mak-
ing extensive use of existing NLP resources.

6 Conclusion

Using text from Debatepedia, we inferred topics and
position term lexicons in the domain of sociopoliti-
cal debates. Our approach brings together tools from
information extraction and sentiment analysis into a
latent-variable topic model and exploits the hierar-
chical structure of the dataset. Our qualitative and
quantitative evaluations show the model’s strengths
and weaknesses.
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Abstract

With the rapid growth of social media, Twitter
has become one of the most widely adopted
platforms for people to post short and instant
message. On the one hand, people tweets
about their daily lives, and on the other hand,
when major events happen, people also fol-
low and tweet about them. Moreover, people’s
posting behaviors on events are often closely
tied to their personal interests. In this paper,
we try to model topics, events and users on
Twitter in a unified way. We propose a model
which combines an LDA-like topic model and
the Recurrent Chinese Restaurant Process to
capture topics and events. We further propose
a duration-based regularization component to
find bursty events. We also propose to use
event-topic affinity vectors to model the asso-
ciation between events and topics. Our exper-
iments shows that our model can accurately
identify meaningful events and the event-topic
affinity vectors are effective for event recom-
mendation and grouping events by topics.

1 Introduction

Twitter is arguably the most popular microblog site
where people can post short, instant messages to
share with families, friends and the rest of the
world. For content analysis on Twitter, two impor-
tant concepts have been repeatedly visited: (1) Top-
ics. These are longstanding themes that many per-
sonal tweets revolve around. Example topics range
from music and sports to more serious ones like pol-
itics and religion. Much work has been done to an-
alyze topics on Twitter (Ramage et al., 2010; Hong

and Davison, 2010; Zhao et al., 2011; Lau et al.,
2012). (2) Events. These are things that take place
at a certain time and attract many people’s short-
term attention in social media. Example events in-
clude concerts, sports games, scandals and elections.
Event detection on Twitter has been a hot research
topic in recent years (Petrović et al., 2010; Weng and
Lee, 2011; Becker et al., 2011; Diao et al., 2012; Li
et al., 2012).

The concepts of topics and events are orthogonal
in that many events fall under certain topics. For
example, concerts fall under the topic about mu-
sic. Furthermore, being social media, Twitter users
play important roles in forming topics and events on
Twitter. Each user has her own topic interests, which
influence the content of her tweets. Whether a user
publishes a tweet related to an event also largely de-
pends on whether her topic interests match the na-
ture of the event. Modeling the interplay between
topics, events and users can deepen our understand-
ing of Twitter content and potentially aid many pred-
ication and recommendation tasks. In this paper, we
aim to construct a unified model of topics, events
and users on Twitter. Although there has been a
number of recent studies on event detection on Twit-
ter, to the best of our knowledge, ours is the first that
links the topic interests of users to their tweeting be-
haviors on events.

Specifically, we propose a probabilistic latent
variable model that identifies both topics and events
on Twitter. To do so, we first separate tweets into
topic tweets and event tweets. The former are related
to a user’s personal life, such as a tweet complain-
ing about the traffic condition or wishing a friend
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happy birthday. The latter are about some major
global event interesting to a large group of people,
such as a tweet advertising a concert or comment-
ing on an election result. Although considering only
topic tweets and event tweets is a much simplified
view of the diverse range of tweets, we find it ef-
fective in finding meaningful topics and events. We
further use an LDA-like model (Blei et al., 2003) to
discover topics and the Recurrent Chinese Restau-
rant Process (Ahmed and Xing, ) to discover events.
Details are given in Section 3.1.

Our major contributions lie in two novel modi-
fications to the base model described above. The
first is a duration-based regularization component
that punishes long-term events (Section 3.2). Be-
cause events on Twitter tend to be bursty, this mod-
ification presumably can produce more meaningful
events. More specifically, we borrow the idea of us-
ing pseudo-observed variables to regularize graph-
ical models (Balasubramanyan and Cohen, 2013),
and carefully design the pseudo-observed variable
in our task to capture the burstiness of events. The
second modification is adding event-topic affinity
vectors inspired by PMF-based collaborative filter-
ing (Salakhutdinov and Mnih, 2008) (Section 3.3).
It uses the latent topics to explain users’ preferences
of events and subsequently infers the association be-
tween topics and events.

We use a real Twitter data set consisting of 500
users to evaluate our model (Section 4). We find
that the model can discover meaningful topics and
events. Comparison with our base model and with
an existing model for event discovery on Twitter
shows that the two modifications are both effective.
The duration-based regularization helps find more
meaningful events; the event-topic affinity vectors
improve an event recommendation task and helps
produce a meaningful organization of events by top-
ics.

2 Related Work

Study of topics, events and users on Twitter is re-
lated to several branches of work. We review the
most interesting and relevant work below.
Event detection on Twitter: There have been quite
a few studies in this direction in recent years, in-
cluding both online detection (Sakaki et al., 2010;

Petrović et al., 2010; Weng and Lee, 2011; Becker et
al., 2011; Li et al., 2012) and offline detection (Diao
et al., 2012). Online detection is mostly concerned
with early detection of major events, so efficiency of
the algorithms is the main focus. These algorithms
do not aim to identify all relevant tweets, nor do
they analyze the association of events with topics. In
comparison, our work focuses on modeling topics,
events and users as well as their relation. Recently,
Petrović et al. (2013) pointed out that Twitter stream
does not lead news stream for major news events, but
Twitter stream covers a much wider range of events
than news stream. Our work helps better understand
these additional events on Twitter and their relations
with users’ topic interests. Our model bears similar-
ity to our earlier work (Diao et al., 2012), but we use
a non-parametric model (RCRP) to discover events
directly inside the probabilistic model.

Temporal topic modeling: A number of models
have been proposed for the temporal aspect of top-
ics (Blei and Lafferty, 2006; Wang and McCallum,
2006; Wang et al., 2007; Hong et al., 2011), but most
of them fix the number of topics. The Recurrent Chi-
nese Restaurant Process (Ahmed and Xing, ) was
proposed to model the life cycles of topics and al-
lows an infinite number of topics. It has later been
combined with LDA to model both topics and events
in news streams and social media streams (Ahmed
et al., 2011; Tang and Yang, 2012). Our work also
jointly models topics and events, but different from
previous work, we do not assume that every docu-
ment (tweet in our case) belongs to an event, which
is important because Twitter contains many personal
posts unrelated to major events.

Collaborative filtering with LDA: Part of our
model is inspired by work on collaborative fil-
tering based on probabilistic matrix factorization
(PMF) (Salakhutdinov and Mnih, 2008). Recently
there has been some work combining LDA with
PMF to recommend items with textual content such
as news articles and advertisements (Wang and Blei,
2011; Agarwal and Chen, 2010). They use topics to
interpret the latent structure of users and items. We
borrow their idea but our items are events, which are
not known and have to be discovered by our model.
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Figure 1: Plate notation for the whole model, in which pseudo-observed variables and distributions based on empirical
counts are shown as dotted nodes.

3 Our Model

In this section, we present our model for topics,
events and users on Twitter. We assume that we have
a stream of tweets which are divided into T epoches.
Let t ∈ {1, 2, . . . , T} be the index of an epoch.
Each epoch contains a set of tweets and each tweet
is a bag of words. We use wt,i,j ∈ {1, 2, . . . , V }
to denote the j-th word of the i-th tweet in the t-
th epoch, where V is the vocabulary size. The au-
thor of the i-th tweet in the t-th epoch (i.e. the
Twitter user who publishes the tweet) is denoted as
ut,i ∈ {1, 2, . . . , U}, where U is the total number of
Twitter users we consider.

We first present our base model in Section 3.1.
We then introduce a duration-based regularization
mechanism to ensure the burstiness of events in Sec-
tion 3.2. In Section 3.3 we discuss how we model the
relation between topics and events using event-topic
affinity vectors. Finally we discuss model inference
in Section 3.4.

3.1 The Base Model

Recall that our objective is to model topics, events,
users and their relations. As in many topic models,
our topic is a multinomial distribution over words,
denoted as ϕa where a is a topic index. Each event is
also a multinomial distribution over words, denoted
as ψk where k is an event index. Because topics are

long-standing and stable, we fix the number of top-
ics to be A, where A can be tuned based on histor-
ical data. In contrast, events emerge and die along
the timeline. We therefore use a non-parametric
model called the Recurrent Chinese Restaurant Pro-
cess (RCRP) (Ahmed and Xing, ) to model the birth
and death of events. To model the relation between
users and topics, we assume each user u has a multi-
nomial distribution over topics, denoted as θu.

As we have discussed, we separate tweets into two
categories, topic tweets and event tweets. Separa-
tion of these two categories is done through a latent
variable y sampled from a user-specific Bernoulli
distribution πu. For topic tweets, the topic is sam-
pled from the corresponding user’s topic distribution
θu. For event tweets, the event is sampled accord-
ing to RCRP. We now briefly review RCRP. Gener-
ally speaking, RCRP assumes a Chinese Restaurant
Process (CRP) (Blackwell and MacQueen, 1973) for
items within an epoch and chains up the CRPs in ad-
jacent epochs along the timeline. Specifically, in our
case, the generative process can be described as fol-
lows. Tweets come in according to their timestamps.
In the t-th epoch, for the i-th tweet, we first flip a bi-
ased coin based on probability πu to decide whether
this tweet is event-related. If it is, then we need to
decide which event it belongs to. It could be an ex-
isting event that has at least one related tweet in the
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previous epoch or the current epoch, or it could be a
new event. Let nk,t−1 denote the number of tweets
related to event k at the end of epoch (t − 1). Let
n

(i)
k,t denote the number of tweets related to event k

in epoch t before the i-th tweet comes. Let Nt−1

denote the total number of event-related tweets in
epoch (t− 1) and N (i)

t denote the number of event-
related tweets in epoch t before the i-th tweet. Then
RCRP assumes that the probability for the i-th tweet

to join event k is
nk,t−1+n

(i)
k,t

Nt−1+N
(i)
t +α

and the probability

to start a new event is α

Nt−1+N
(i)
t +α

, where α is a

parameter. As we can see, RCRP naturally captures
the “rich-get-richer” phenomenon in social media.

Finally we place Dirichlet and Beta priors on
the various parameters in our model. Formally,
the generative process of our base model is out-
lined in Figure 2, excluding the lines in bold and
blue. We also show the plate notation in Figure 1,
in which the Recurrent Chinese Restaurant Pro-
cess is represented as an infinite dynamic mixture
model (Ahmed and Xing, ) and θrcrpt means the dis-
tribution on an infinite number of events in epoch t.
Dt is the total number of tweets (both event-related
and topic tweets), while Nt represents the number
event-related tweets in epoch t.

3.2 Regularization on Event Durations

As we have pointed out, events on Twitter tend to
be bursty, i.e. the duration of an event tends to
be short, but this characteristic is not captured by
RCRP. While there can be different ways to incor-
porate this intuition, here we adopt the idea of regu-
larization using pseudo-observed variables proposed
recently by Balasubramanyan and Cohen (2013).
We introduce a pseudo-observed binary variable rt,i
for each tweet, where the value of rt,i is set to 1
for all tweets. We assume that this variable is de-
pendent on the hidden variables y and s. Specif-
ically, if yt,i is 0, i.e. the tweet is topic-related,
then rt,i gets a value of 1 with probability 1. If
yt,i is 1, then we look at all the tweets that belong
to event st,i. Our goal is to make sure that this
tweet is temporally close to these other tweets. So
we assume that rt,i gets a value of 1 with proba-
bility exp(−

∑T
t′=1,|t′−t|>1 λ|t − t′|nst,i,t′), where

nst,i,t′ is the number of tweets in epoch t′ that be-

• For each topic a = 1, . . . , A
- draw ϕa ∼ Dirichlet(β)

• For each user u = 1, . . . , U
- draw θu ∼ Dirichlet(γ), πu ∼ Beta(τ)

• For each epoch t and tweet i
- draw yt,i ∼ Bernoulli(πut,i)
- If yt,i = 0

* draw zt,i ∼ Multinomial(θut,i)
* For each j, draw wt,i,j ∼ Multinomial(ϕzt,i)

- If yt,i = 1
* draw st,i from RCRP
* If st,i is a new event

. draw ψst,i ∼ Dirichlet(β)

. draw η0
st,i

∼ Gaussian(0, ι−1)

. draw ηst,i
∼ Gaussian(0, ι−1IA)

* draw rt,i ∼ Bernoulli(ρst,i,t), where ρst,i,t =

exp(−
∑T
t′=1,|t′−t|>1 λ|t

′ − t|nst,i,t′)

* draw ct,i ∼ Gaussian(η0
st,i

+ηTst,i
· z̄ut,i , ϵ

−1)

* For each j, draw wt,i,j ∼ Multinomial(ψst,i)

Figure 2: The generative process of our model, in which
the duration-based regularization (section 3.2) and the
event-topic affinity vector (section 3.3) are in blue and
bold lines.

long to event st,i and λ > 0 is a parameter. We can
see that when we factor in the generation of these
pseud-observed variables r, we penalize long-term
events and favor events whose tweets are concen-
trated along the timeline. Generation of these vari-
ables r is shown in bold and blue in Figure 2.

3.3 Event-Topic Affinity Vectors

So far in our model topics and events are not re-
lated. However, many events are highly related to
certain topics. For example, a concert is related to
music while a football match is related to sports. We
would like to capture these relations between top-
ics and events. One way to do it is to assume that
event tweets also have topical words sampled from
the event’s topic distribution, something similar to
the models by Ahmed et al. (2011) and by Tang
and Yang (2012). However, our prelimiary exper-
iments show that this idea does not work well on
Twitter, mainly because tweets are too short. Here
we explore another approach inspired by recommen-
dation methods based on probabilistic matrix factor-
ization (Salakhutdinov and Mnih, 2008). The idea
is that when a user posts a tweet about an event, we
can treat the event as an item and this posting be-
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havior as adoption of the item. If we assume that the
adoption behavior is influenced by some latent fac-
tors, i.e. the latent topics, then basically we would
like the topic distribution of this user to be close to
that of the event.

Specifically, we assume that each event k has as-
sociated with it an A-dimensional vector ηk and a
parameter η0

k. The vector ηk represents the event’s
affinity to topics. η0

k is a bias term that represents
the inner popularity of an event regardless of its
affinity to any topic. We further assume that each
tweet has another pseudo-observed variable ct,i that
is set to 1. For topic tweets, ct,i gets a value of 1
with probability 1. For event tweets, ct,i is gener-
ated by a Gaussian distribution with mean equal to
η0
st,i + ηst,i · z̄ut,i , where z̄u is an A-dimensional

vector denoting the empirical topic distribution of
user u’s tweets. This treatment follows the practice
of fLDA by Agarwal and Chen (2010). Let C̄u,a be
the number of tweets by user u assigned to topic a,
based on the values of the latent variables y and z.
Then

z̄u,a =
C̄u,a∑A

a′=1 C̄u,a′
,

ct,i ∼Gaussian(η0
st,i + ηst,i · z̄ut,i , ϵ

−1),

where ϵ is a parameter. We generate ηk and η0
k using

Gaussian priors once event k emerges. The genera-
tion of the variables c is shown in bold and blue in
Figure 2.

3.4 Inference

We train the model using a stochastic EM sampling
scheme. In this scheme, we alternate between Gibbs
sampling and gradient descent. In the Gibbs sam-
pling part, we fix the values of η0

k and ηk for each
event k, and then we sample the latent variables yt,i
,zt,i and st,i for each tweet. In the gradient descent
part, we update the event-topic affinity vectors ηk

and the bias term η0
k of each event k by keeping the

assignment of the variables yt,i ,zt,i and st,i fixed.

For the Gibbs sampling part, we jointly sample
yt,i = 0, zt,i = a (topic tweet) and yt,i = 1, st,i = k
(event tweet) as follows:

Topic tweet:
p(yt,i = 0, zt,i = a|y¬t,i, z¬t,i,w, r, c, ut,i)

∝
n

(π)
u,0 + τ

n
(π)

u,(.) + 2τ

n
(θ)
u,a + γ

n
(θ)

u,(.) +Aγ

∏V
v=1

∏E(v)−1

i=0 (n
(ϕ)
a,v + i+ β)∏E(.)−1

i=0 (n
(ϕ)

a,(.) + i+ V β)∏
t′,i′∈Iu

N (ct′,i′ |η0
st′,i′

+ ηst′,i′
· z̄∗u, ϵ−1)

N (ct′,i′ |η0
st′,i′

+ ηst′,i′
· z̄u, ϵ−1)

Event tweet:
p(yt,i = 1, st,i = k|y¬t,i, z¬t,i,w, r, c, ut,i)

∝
n

(π)
u,1 + τ

n
(π)

u,(.) + 2τ

1

N

(
nRCRP
k,t N (ct,i|η0

st,i
+ ηst,i

· z̄u, ϵ−1)

· exp(−
T∑
t′=1

|t′−t|>1

λ|t− t′|nk,t′)
)∏V

v=1

∏E(v)−1

i=0 (n
(ψ)
k,v + i+ β)∏E(.)−1

i=0 (n
(ψ)

k,(.) + i+ V β)

in which,

nRCRP
k,t =



(nk,t−1 + nk,t)

· nk,t+nk,t+1

nk,t
if nk,t−1 > 0, nk,t > 0,

nk,t−1 if nk,t−1 > 0, nk,t = 0,

nk,t+1 if nk,t+1 > 0, nk,t = 0,

α if k is a new event,

where we use u to represent ut,i. n
(π)
u,0 is the number

of topic tweets by user u while n(π)
u,1 is the number

of event tweets by user u. They stem from integrat-
ing out the user’s Bernoulli distribution πu. n(π)

u,(.) is

the total number of tweets by user u. Similarly, n(θ)
u,a

is the number of tweets assigned to topic a for this
user, resulting from integrating out the user’s topic
distribution θu. n(θ)

u,(.) is the same as n(π)
u,0. E(v) is

the number of times word type v appears in the cur-
rent tweet, and E(.) is the total number of words in

the current tweet. n(ϕ)
a,v is the number of times word

type v is assigned to topic a, and n(ϕ)
a,(.) is the number

of words assigned to topic a. n(ψ)
k,v is the number of

times word type v is assigned to event k, and n(ψ)
k,(.)

is the total number of words assigned to event k.
These word counters stem form integrating out each
event’s word distribution and are set to zero when k
is a new event. Iu = {t′, i′|yt′,i′ = 1, ut′,i′ = u},
which is the set of event tweets published by user u,
and u represents ut,i for short. z̄∗

u is the empirical
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counting vector which considers the current tweet’s
topic assignment, while z̄u and all other counters do
not consider the current tweet. Finally, N is a lo-
cal normalization factor for event tweets, which in-
cludes the RCRP, event-topic affinity and regulariza-
tion on event duration.

With the previous Gibbs sampling step, we can
get the assignment of variables yt,i ,zt,i and st,i.
Given the assignment, we use gradient descent to
update the values of the bias term η0

k and the event-
topic affinity vectors ηk for each current existing
event k. First, we can get the logarithm of the poste-
rior distribution:

lnP (y, z, s, r, c|w,u, all priors)

= constant −
∞∑
k=1

{ ι
2
(η0
k
2

+ ηk · ηk)

+

U∑
u=1

nu,k
ϵ

2
[1− (η0

k + ηk · z̄u)]
2},

where nu,k is the number of event tweets about
event k published by user u. The derivative of the
logarithm of the posterior distribution with respect
to the bias term η0

k and the event-topic affinity vec-
tor ηk are as follows:

∂ lnP

∂η0
k

= −ιη0
k +

U∑
u=1

ϵnu,k[1− (η0
k + ηk · z̄u)],

∂ lnP

∂ηk
= −ιηk +

U∑
u=1

ϵnu,k[1− (η0
k + ηk · z̄u)]z̄u.

4 Experiment

4.1 Dataset and Experiment Setup
We evaluate our model on a Twitter dataset that con-
tains 500 users. These users are randomly selected
from a much larger pool of around 150K users based
in Singapore. Selecting users from the same coun-
try/city ensures that we find coherent and meaning-
ful topics and events. We use tweets published be-
tween April 1 and June 30, 2012 for our experi-
ments. For preprocessing, we use the CMU Twitter
POS Tagger1 to tag these tweets and remove those
non-standard words (i.e. words tagged as punc-
tuation marks, emoticons, urls, at-mentions, pro-
nouns, etc.) and stop words. We also remove tweets

1http://www.ark.cs.cmu.edu/TweetNLP/

with less than three words. After preprocessing, the
dataset contains 655,881 tweets in total.

Recall that our model is designed to identify top-
ics, events and their relations with users. We there-
fore would like to evaluate the quality of the iden-
tified topics and events as well as the usefulness of
the discovered topic distributions of users and event-
topic affinity vectors. Because our topic discovery
mechanism is fairly standard and a quick inspection
shows that the discovered topics are generally mean-
ingful and comparable to those discovered by stan-
dard LDA, here we do not focus on evaluation of
topics. In Section 4.2 we evaluate the quality of the
discovered events. In Section 4.3 we show how the
discovered event-topic affinity vectors can be useful.

For comparison, we consider an existing method
called TimeUserLDA introduced in our previous
work (Diao et al., 2012). TimeUserLDA also mod-
els topics and events by separating topic tweets from
event tweets. However, it groups event tweets into a
fixed number of bursty topics and then uses a two-
state machine in a postprocessing step to identify
events from these bursty topics. Thus, events are
not directly modeled within the generative process
itself. In contrast, events are inherent in our gener-
ative model. We do not compare with other event
detection methods because our objective is not on-
line event detection.

We also compare our final model with two de-
generate versions of it. We refer to the base model
described in Section 3.1 as Base and the model
with the duration-based regularization as Base+Reg.
Comparison with these two degenerate models al-
lows us to assess the effect of the two modifications
we propose. We refer to the final model with both
the duration-based regularization and the event-topic
affinity vectors as Base+Reg+Aff.

For the parameter setting, we empirically set A to
40, γ to 50

A , τ to 1, β to 0.01, α to 1, ι to 10, ϵ to 1,
and the duration regularization parameter λ to 0.01.
When a new event k is created, the inner popular-
ity bias term η0

k is set to 1, and the factors in event-
topic affinity vectors ηk are all set to 0. We run the
stochastic EM sampling scheme for 300 iterations.
After Gibbs sampling assigns each variable a value
at the end of each iteration, we update the values of
η0
k and ηk for the existing events using gradient de-

scent.
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Event Top words Duration Inner popularity (η0
k)

debate caused by
Manda Swaggie

singapore, bieber, europe, amanda, justin, trending,
manda, hates, swaggie, hate

17 June - 19 June 0.9457

Indonesia tsunami tsunami, earthquake, indonesia, singapore, hit, warn-
ing, aceh, 8.9, safe, magnitude

10 April - 12 April 0.9439

SJ encore concert #ss4encore, cr, #ss4encoreday2, hyuk, 120526, super,
leader, changmin, fans, teuk

26 May - 28 May 0.8360

Mother’s Day day, happy, mother’s, mothers, love, mom, mum, ev-
eryday, mother, moms

11 May - 14 May 0.9370

April Fools’ Day april, fools, day, fool, joke, prank, happy, today, trans,
fool’s

1 April - 3 April 0.9322

Table 1: The top-5 events identified by Base+Reg+Aff. We show the story name which is manually labeled, top ten
ranking words, lasting duration and the inner popularity (η0

k) for each event.

4.2 Events
First we quantitatively evaluate the quality of the de-
tected events. Our model finds clusters of tweets
that represent events. We first assess whether these
events are meaningful. We then judge whether the
detected event tweets are indeed related to the corre-
sponding event.

Quality of Top Events

Method P@5 P@10 P@20 P@30

Base+Reg+Aff 1.000 1.000 0.950 0.900
Base+Reg 1.000 1.000 0.950 0.867

Base 0.000 0.200 0.250 0.367
TimeUserLDA 1.000 0.800 0.750 0.600

Table 2: Precision@K for the various methods.

Usually we are interested in the most popular
events on Twitter. We therefore assess whether the
top events are meaningful. For each method, we
rank the detected events based on the number of
tweets assigned to them and then pick the top-30
events for each method. We randomly mix these
events and ask two human judges to label them.
The judges are given 100 randomly selected tweets
for each event (or all tweets if an event contains
less than 100 tweets). The judges can use exter-
nal sources to help them. If an event is meaningful
based on the 100 sample tweets, a score of 1 is given.
Otherwise it is scored 0. The inter-annotator agree-
ment score is 0.744 using Cohen’s kappa, showing
substantial agreement. Finally we treat an event as
meaningful if both judges have scored it 1.

Table 2 shows the performance in terms of

precision@K, and Table 1 shows the top 5 events
of our model (i.e., Base+Reg+Aff). We have the
following findings from the results: (1) Our base
model performs quite poorly for the top events while
Base+Reg and Base+Reg+Aff perform much bet-
ter. This shows that the duration-based regular-
ization is critical in finding meaningful events. A
close examination shows that the base model clus-
ters many general topic tweets as events, such as
tweets about transportation and music and even
foursquare tweets. (2) TimeUserLDA performs well
for the very top events (P@5 and P@10) but its
performance drops for lower-ranked events (P@20
and P@30), similar to what was reported by Diao
et al. (2012). A close examination shows that this
method is good at finding major events that do not
have strong topic association and thus attract most
people’s attention, e.g. earthquakes, but not good at
finding topic-oriented events such as some concerts
and sports games. This is because this method mixes
topics and events first and only detects events from
bursty topics in a second stage of postprocessing. In
contrast, our model performs well for topic-oriented
events. (3) The difference between Base+Reg and
Base+Reg+Aff is small, suggesting that the event-
topic affinity vectors are not crucial for event detec-
tion.

Precision of Event Tweets
Next, we evaluate the relevance of the detected

event tweets to each event. To make a fair compar-
ison, we select only the common events identified
by all the methods. We pick 3 out of 5 common
events shared by all methods within top-30 events
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Event TimeUserLDA Base Base+Reg Base+Reg+Aff

Father’s Day 0.61 0.63 0.71 0.72
debate caused by Manda Swaggie 0.73 0.74 0.84 0.80
Indonesia tsunami 0.75 0.75 0.82 0.80
Super Junior album release N/A 0.72 0.78 0.81

Table 3: Precision of the event tweets for the 4 common events.

(we pick “Fathers’ day” to represent public festi-
vals, and ignore the similar events “Mothers’ day”
and “April fools”). We also pick one event shared
by three RCRP based models. We further ask one
of the judges to score the 100 tweets as either 1 or 0
based on their relevance to the event. The precision
of the 100 tweets for each event and each method is
shown in Table 3. We can see that again Base+Ref
and Base+Ref+Aff perform similarly, and both out-
perform the other two methods. We also take a
close look at the tweets and find that the false posi-
tives mislabeled by Base is mainly due to the long-
duration of the discovered events. For example, for
the event “Super Junior album release,” Base finds
other music-related tweets surrounding the peak pe-
riod of the event itself.

In summary, our evaluation on event quality
shows that (1) Using the non-parametric RCRP
model to identify events within the generative
model itself is advantageous over TimeUserLDA,
which identifies events by postprocessing. (2) The
duration-based regularization is crucial for finding
more meaningful events.

4.3 Event-Topic Association

Besides event identification, our model also finds the
association between events and topics through the
event-topic affinity vectors. The discovered event-
topic association can potentially be used for various
tasks. Here we conduct two experiments to demon-
strate its usefulness.

Event Recommendation
Recall that to discover event-topic association, we

treat an event as an item and a tweet about the event
as indication of the user’s adoption of the item. Fol-
lowing this analogy with item recommendation, we
define an event recommendation task where the goal
is to recommend an event to users who have not
posted any tweet about the event but may potentially
be interested in the event. Intuitively, if a user’s topic

distribution is similar to the event-topic affinity vec-
tor of the event, then the user is likely to be inter-
ested in the event.

Specifically, we use the first two months’ data
(April and May 2012) as training data to learn all
the users’ topic distributions. We then use a ransom
subset of 250 training users and their tweets in June
to identify events in June as well as the event-topic
affinity vectors of these events. We pick 8 meaning-
ful events that are ranked high by all methods for
testing. For each event, we try to find among the
remaining 250 users those who may be interested
in the event and compare the results with ground
truth obtained by human judgment. Because it is
time consuming to obtain the ground truth for all 250
users, we randomly pick 100 of these 250 users for
testing purpose. For each test user and each event,
we manually inspect the user’s tweets around the
peak days of the event to judge whether she has com-
mented on the event. This is used as ground truth.

With our complete model Base+Reg+Aff, we can
simply rank the 100 test users in decreasing order of
ηk · z̄u. For the other methods, because we do not
have any parameter that directly encodes event-topic
association, we cannot rank users based on how sim-
ilar their topic distributions are to the event’s affinity
to topics. We instead adopt a collaborative filtering
strategy and rank the test users by their similarity
with those training users who have tweeted about
the event. Specifically, each of these methods pro-
duces a topic distribution θu for each user. In addi-
tion, for each test event these methods identify a list
of training users who have tweeted on it. By taking
the average topic distribution of these training users
and compute its cosine similarity with a test user’s
topic distribution, we can rank the 100 test users.

Since we have turned the recommendation task
into a ranking task, we use Average Precision, a
commonly used metric in information retrieval, to
compare the performance. Average Precision is the
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Event TimeUserLDA Base Base+Reg Base+Reg+Aff Inner popularity (η0
k)

debate caused by Manda Swaggie 0.3533 0.3230 0.3622 0.2956 0.943
Father’s Day 0.3811 0.3525 0.3596 0.4362 0.917
Big Bang album release 0.1406 0.1854 0.1533 0.1902 0.893
City Harvest Church scandal N/A 0.2832 0.1874 0.3347 0.890
Alex Ong pushing an old lady N/A 0.1540 0.1539 0.1113 0.876
final episode of Super Spontan (reality show) N/A 0.0177 0.0331 0.2900 0.862
Super Junior album release N/A 0.0398 0.0330 0.5900 0.792
LionsXII 9-0 Sabah FA (soccer) 0.0711 0.1207 0.2385 0.3220 0.773

MAP N/A 0.1845 0.1901 0.3213

Table 4: For the 8 test events that happened in June 2012, we compute the Average Precision for each event. We also
show the Mean Average Precision (MAP) when applicable.

Topic Top words of the topic Related event Top words of the event

Food eat, food, eating, ice, hungry, din-
ner, cream, lunch, chicken, buy

Ben&Jerry free cone day free, cone, day, ben, jerry’s, today, b&j, zoo,
#freeconeday, singapore

Super Junior encore concert #ss4encore, cr, #ss4encoreday2, hyuk,
120526, super, leader, changmin, fans, teuk

Korean Music
music, big, cr, super, bang, junior,
love, concert, bank, album

Super Junior Shanghai concert #ss4shanghai, cr, 120414, donghae, eun-
hyuk, giraffe, solo, hyuk, ryeowook, shang-
hai

Super Junior Paris concert #ss4paris, cr, paris, super, 120406, ss4, ju-
nior, siwon, show, update

Malay aku, nak, tak, kau, ni, lah, tk, je,
mcm, nk

final episode of Super Spontan zizan, johan, friendship, jozan, #superspon-
tan, skips, forever, real, juara, gonna

LionsXII 9-0 Sabah FA sabah, 9-0, #lionsxii, lions, singapore, 7-0,
amet, sucks, sabar, goal

Soccer win, game, man, chelsea, match,
city, goal, good, united, team

Man City crowned English champions man, city, united, qpr, fuck, bored, lah, love,
glory, update

Table 5: Example topics and their corresponding correlated events.

average of the precision value obtained for the set
of top items existing after each relevant item is re-
trieved (Manning et al., 2008). We also rank the
8 events in decreasing order of their inner popular-
ity η0

k learned by our complete model. The results
are shown in Table 4. We have the following find-
ings from the table. (1) Our complete method out-
performs the other methods for 6 out of the 8 test
events, suggesting that with the inferred event-topic
affinity vectors we can do better event recommen-
dation. (2) The improvement brought by the event-
topic affinity vectors, as reflected in the difference in
Average Precision between Base+Reg+Aff and Base
(or Base+Reg) is more pronounced for events with
lower inner popularity. Recall that the inner popu-
larity of an event shows the inherent popularity of
an event regardless of its association with any topic,

that is, an event with high inner popularity attracts
attention of many people regardless of their topic
interests, while an event with low inner popularity
tends to attract attention of certain people with simi-
lar topic interests. The finding above suggests that
the event-topic affinity vectors are especially use-
ful for recommending events that attract only certain
people’s attention, such as those related to sports,
music, etc.

One may wonder for the events with low inner
popularity why we could not achieve the same ef-
fect by Base or Base+Reg where we consider the
topic similarity of test users with training users who
have tweeted about the event. Our close examina-
tion shows that for these events although Base and
Base+Reg may identify relevant event tweets with
decent precision, the users they identify who have
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tweeted about the event may not share similar topic
interests. As a result, when we average these users’
topic interests, we cannot obtain a clear skewed
topic distribution that explains the event’s affinity
to different topics. In contrast, Base+Reg+Aff ex-
plicitly models the event-topic affinity vector and
prefers to assign a tweet to an event if its author’s
topic distribution is similar to the event’s affinity
vector. Through the training iterations, the users
who have tweeted about an event as identified by
Base+Reg+Aff will gradually converge to share sim-
ilar topic distributions.

Grouping Events by Topics
Finally, we show that the event-topic affinity vec-

tors can also be used to group events by topics. This
can potentially be used to better organize and present
popular events in social media. In Table 5 we show
a few highly related events for a few popular topics
in our Twitter data set. Specifically given a topic a
we rank the meaningful events that contain at least
70 tweets based on ηk,a. We can see from the table
that the events are indeed related to the correspond-
ing topic. The event “LionsXII 9-0 Sabah FA” is
particularly interesting in that it is highly related to
both the topic on Malay and the topic on soccer. (Li-
onsXII is a soccer team from Singapore and Sabah
FA is a soccer team from Malaysia.)

5 Conclusion

In this paper, we propose a unified model to study
topics, events and users jointly. The base of our
method is a combination of an LDA-like model and
the Recurrent Chinese Restaurant Process, which
aims to model users’ longstanding personal topic in-
terests and events over time simultaneously. The Re-
current Chinese Restaurant Process is appealing in
the sense that it provides a principled dynamic non-
parametric model in which the number of events is
not fixed overtime. We further use a time duration-
based regularization to capture the fast emergence
and disappearance of events on Twitter, which is
effective to produce more meaningful events. Fi-
nally, we use an inner popularity bias parameter and
event-topic affinity vectors to interpret an event’s
inherent popularity and its affinity to different top-
ics. Our experiments quantitatively show that our
proposed model can effectively identify meaningful

events and accurately find relevant tweets for these
events. Furthermore, the event-topic association in-
ferred by our model can help an event recommenda-
tion task and organize events by topics.
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Abstract

Work on authorship attribution has tradition-

ally focused on long texts. In this work, we

tackle the question of whether the author of

a very short text can be successfully iden-

tified. We use Twitter as an experimental

testbed. We introduce the concept of an au-

thor’s unique “signature”, and show that such

signatures are typical of many authors when

writing very short texts. We also present a new

authorship attribution feature (“flexible pat-

terns”) and demonstrate a significant improve-

ment over our baselines. Our results show that

the author of a single tweet can be identified

with good accuracy in an array of flavors of

the authorship attribution task.

1 Introduction

Research in authorship attribution has developed

substantially over the last decade (Stamatatos,

2009). The vast majority of such research has been

dedicated towards finding the author of long texts,

ranging from single passages to book chapters. In

recent years, the growing popularity of social me-

dia has created special interest, both theoretical and

computational, in short texts. This has led to many

recent authorship attribution projects that experi-

mented with web data such as emails (Abbasi and

Chen, 2008), web forum messages (Solorio et al.,

2011) and blogs (Koppel et al., 2011b). This paper

addresses the question to what extent the authors of

very short texts can be identified. To answer this

question, we experiment with Twitter tweets.

Twitter messages (tweets) are limited to 140 char-

acters. This restriction imposes major difficulties on

authorship attribution systems, since authorship at-

tribution methods that work well on long texts are

often not as useful when applied to short texts (Bur-

rows, 2002; Sanderson and Guenter, 2006).

Nonetheless, tweets are relatively self-contained

and have smaller sentence length variance com-

pared to excerpts from longer texts (see Section 3).

These characteristics make Twitter data appealing as

a testbed when focusing on short texts. Moreover,

an authorship attribution system of tweets may have

various applications. Specifically, a range of cyber-

crimes can be addressed using such a system, includ-

ing identity fraud and phishing.

In this paper, we introduce the concept of k-

signatures. We denote the k-signatures of an author

a as the features that appear in at least k% of a’s

training samples, while not appearing in the training

set of any other author. When k is large, such signa-

tures capture a unique style used by a. An analysis

of our training set reveals that unique k-signatures

are typical of many authors. Moreover, a substantial

portion of the tweets in our training set contain at

least one such signature. These findings suggest that

a single tweet, although short and sparse, often con-

tains sufficient information for identifying its author.

Our results show that this is indeed the case.

We train an SVM classifier with a set of features

that include character n-grams and word n-grams.

We use a rigorous experimental setup, with varying

number of authors (values between 50-1,000) and

various sizes of the training set, ranging from 50 to

1,000 tweets per author. In all our experiments, a

single tweet is used as test document. We also use

a setting in which the system is allowed to respond

don’t know in cases of uncertainty. Applying this

option results in higher precision, at the expense of
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lower recall.

Our results show that the author of a tweet can be

successfully identified. For example, when using a

dataset of as many as 1,000 authors with 200 train-

ing tweets per author, we are able to obtain 30.3%

accuracy (as opposed to a random baseline of only

0.1%). Using a dataset of 50 authors with as few

as 50 training tweets per author, we obtain 50.7%

accuracy. Using a dataset of 50 authors with 1,000

training tweets per author, our results reach as high

as 71.2% in the standard classification setting, and

exceed 91% accuracy with 60% recall in the don’t

know setting.

We also apply a new set of features, never previ-

ously used for this task – flexible patterns. Flexi-

ble patterns essentially capture the context in which

function words are used. The effectiveness of func-

tion words as authorship attribution features (Koppel

et al., 2009) suggests using flexible pattern features.

The fact that flexible patterns are learned from plain

text in a fully unsupervised manner makes them

domain and language independent. We demon-

strate that using flexible patterns gives significant

improvement over our baseline system. Further-

more, using flexible patterns, our system obtains a

6.1% improvement over current state-of-the-art re-

sults in authorship attribution on Twitter.

To summarize, the contribution of this paper is

threefold.

• We provide the most extensive research to date

on authorship attribution of micro-messages,

and show that authors of very short texts can

be successfully identified.

• We introduce the concept of an author’s unique

k-signature, and demonstrate that such signa-

tures are used by many authors in their writing

of micro-messages.

• We present a new feature for authorship attri-

bution – flexible patterns – and show its sig-

nificant added value over other methods. Us-

ing this feature, our system obtains a 6.1% im-

provement over the current state-of-the-art.

The rest of the paper is organized as follows. Sec-

tions 2 and 3 describe our methods and our experi-

mental testbed (Twitter). Section 4 presents the con-

cept of k-signatures. Sections 5 and 6 present our

experiments and results. Flexible patterns are pre-

sented in Section 7 and related work is presented in

Section 8.

2 Methodology

In the following we briefly describe the main fea-

tures employed by our system. The features below

are binary features.

Character n-grams. Character n-gram features

are especially useful for authorship attribution on

micro-messages since they are relatively tolerant

to typos and non-standard use of punctuation (Sta-

matatos, 2009). These are common in the non-

formal style generally applied in social media ser-

vices. Consider the example of misspelling “Brit-

ney” as “Brittney”. The misspelled name shares the

4-grams “Brit” and “tney” with the correct name. As

a result, these features provide information about the

author’s style (or at least her topic of interest), which

is not available through lexical features.

Following standard practice, we use 4-grams

(Sanderson and Guenter, 2006; Layton et al., 2010;

Koppel et al., 2011b). White spaces are considered

characters (i.e., a character n-gram may be com-

posed of letters from two different words). A sin-

gle white-space is appended to the beginning and

the end of each tweet. For efficiency, we consider

only character n-gram features that appear at least

tcng times in the training set of at least one author

(see Section 5).

Word n-grams. We hypothesize that word n-gram

features would be useful for authorship attribution

on micro-messages. We assume that under a strict

length restriction, many authors would prefer using

short, repeating phrases (word n-grams).

In our experiments, we consider 2 ≤ n ≤ 5.1

We regard sequences of punctuation marks as words.

Two special words are added to each tweet to indi-

cate the beginning and the end of the tweet. For effi-

ciency, we consider only word n-gram features that

appear at least twng times in the training set of at

least one author (see Section 5).

Model. We use libsvm’s Matlab implementation

of a multi-class SVM classifier with a linear kernel

1We skip unigrams as they are generally captured by the

character n-gram features.
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(Chang and Lin, 2011). We use ten-fold cross vali-

dation on the training set to select the best regular-

ization factor between 0.5 and 0.005.2

3 Experimental Testbed

Our main research question in this paper is to deter-

mine the extent to which authors of very short texts

can be identified. A major issue in working with

short texts is selecting the right dataset. One ap-

proach is breaking longer texts into shorter chunks

(Sanderson and Guenter, 2006). We take a differ-

ent approach and experiment with micro-messages

(specifically, tweets).

Tweets have several properties making them an

ideal testbed for authorship attribution of short texts.

First, tweets are posted as single units and do not

necessarily refer to each other. As a result, they tend

to be self contained. Second, tweets have more stan-

dardized length distribution compared to other types

of web data. We compared the mean and standard

deviation of sentence length in our Twitter dataset

and in a corpus of English web data (Ferraresi et al.,

2008).3 We found that (a) tweets are shorter than

standard web data (14.2 words compared to 20.9),

and (b) the standard deviation of the length of tweets

is much smaller (6.4 vs. 21.4).

Pre-Processing. We use a Twitter corpus that in-

cludes approximately 5 × 108 tweets.4 All non-

English tweets and tweets that contain fewer than

3 words are removed from the dataset. We also re-

move tweets marked as retweets (using the RT sign,

a standard Twitter symbol to indicate that this tweet

was written by a different user). As some users

retweet without using the RT sign, we also remove

tweets that are an exact copy of an existing tweet

posted in the previous seven days.

Apart from plain text, some tweets contain ref-

erences to other Twitter users (in the format of

@<user>). Since using reference information

makes this task substantially easier (Layton et al.,

2010), we replace each user reference with the spe-

cial meta tag REF. For sparsity reasons, we also re-

place web addresses with the meta tag URL, num-

2In practice, 0.05 or 0.1 are selected in almost all cases.
3
http://wacky.sslmit.unibo.it

4These comprise ∼15% of all public tweets created from

May 2009 to March 2010.
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Figure 1: Number of users with at least x k-signatures

(100 authors, 180 training tweets per author).

bers with the meta tag NUM, time of day with the

meta tag TIME and dates with the meta tag DATE.

4 k-Signatures

In this section, we show that many authors adopt

a unique style when writing micro-messages. This

style can be detected by a strong classification algo-

rithm (such as SVM), and be sufficient to correctly

identify the author of a single tweet.

We define the concept of the k-signature of an au-

thor a to be a feature that appears in at least k% of

a’s training set, while not appearing in the training

set of any other user. Such signatures can be useful

for identifying future (unlabeled) tweets written by

a.

To validate our hypothesis, we use a dataset of

100 authors with 180 tweets per author. We com-

pute the number of k-signatures used by each of

the authors in our dataset. Figure 1 shows our re-

sults for a range of k values (2%, 5%, 10%, 20%

and 50%). Results demonstrate that 81 users use

at least one 2%-signature, 43 users use at least one

5%-signature, and 17 users use at least one 10%-

signature. These results indicate that a large portion

of the users adopt a unique signature (or set of sig-

natures) when writing short texts. Table 1 provides

examples of 10%-signatures.
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Signature Type 10%-signature Examples

Character n-grams

‘ ˆ ˆ’

REF oh ok ˆ ˆ Glad you found it!

Hope everyone is having a good afternoon ˆ ˆ

REF Smirnoff lol keeping the goose in the freezer ˆ ˆ

‘yew ’

gurl yew serving me tea nooch

REF about wen yew and ronnie see each other

REF lol so yew goin to check out tini’s tonight huh???

Word n-grams

.. lal

REF aww those are cool where u get those.. how do ppl react.. lal

Ludas album is gone be hott.. lal

Dayum refs don’t get injury timeouts.. lal.. get him off the field..

smoochies , e3

I’m just back after takin’ a very long, icy cold

shower........Shivering smoochies,E3 http://bit.ly/4CzzP9

A blue stout or two would be nice as well, Purr!Blue smooth

smoochies,E3 http://bit.ly/75D4fO

That is sooooooooooooooooooo unfair!Double smoochies,E3

http://bit.ly/07sXRGX

Table 1: Examples of 10%-signatures.

Results also show that seven users use one or

more 20%-signatures, and five users even use one

or more 50%-signatures. Looking carefully at these

users, we find that they write very structured mes-

sages, and are probably bots, such as news feeds,

bidding systems, etc. Table 2 provides examples of

tweets posted by such users.5

Another interesting question is how many tweets

contain at least one k-signature. Figure 2 shows

for each user the number of tweets in her training

set for which at least one k-signature is found. Re-

sults demonstrate that a total of 18.6% of the train-

ing tweets contain at least one 2%-signature, 10.3%

the training tweets contain at least one 5%-signature

and 6.5% of the training tweets contain at least one

10%-signature. These findings validate our assump-

tion that many users use k-signatures in short texts.

These findings also have direct implications on

authorship attribution of micro-messages, since k-

signatures are reliable classification features. As

a result, texts written by authors that tend to use

k-signatures are likely to be easily identified by a

reasonable classification algorithm. Consequently,

k-signatures provide a possible explanation for the

high quality results presented in this paper.

In the broader context, the presence (and contri-

5Our k-signature method can actually be useful for automat-

ically identifying such users. We defer this to future work.
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Figure 2: Number of users with at least x training tweets

that contain at least one k-signature (100 authors, 180

training tweets per author).

bution) of k-signatures is in line with the hypothesis

proposed by (Davidov et al., 2010a): while still us-

ing an informal and unstructured (grammatical) lan-

guage, authors tend to use typical and unique struc-

tures in order to allow a short message to stand alone

without a clear conversational context.
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User 20%-signature Examples

1 I’m listening to :

I’m listening to: Sigur R?s ? Intro:

http://www.last.fm/music/Sigur+R%C3%B3s http://bit.ly/3XJHyb

I’m listening to: Tina Arena ? In Command:

http://www.last.fm/music/Tina+Arena http://bit.ly/7q9E25

I’m listening to: Midnight Oil ? Under the Overpass:

http://www.last.fm/music/Midnight+Oil http://bit.ly/7IH4cg

2 news now ( str )

#Hotel News Now(STR) 5 things to know: 27 May 2009: From the desks of

the HotelNewsNow.com editor... http://bit.ly/aZTZOq #Tourism #Lodging

#Hotel News Now(STR) Five sales renegotiating tactics: As bookings rep-

resentatives press to reneg... http://bit.ly/bHPn2L

#Hotel News Now(STR) Risk of hotel recession retreats: The Hotel Indus-

try’s Pulse Index increases... http://bit.ly/a8EKrm #Tourism #Lodging

3
( NUM bids )

end date :

NEW PINK NINTENDO DS LITE CONSOLE WITH 21 GIFTS +

CASE: &#163;66.50 (13 Bids) End Date: Tuesday Dec-08-2009 17:..

http://bit.ly/7uPt6V

Microsoft Xbox 360 Game System - Console Only - Working: US $51.99

(25 Bids) End Date: Saturday Dec-12-2009 13:.. http://bit.ly/8VgdTv

Microsoft Sony Playstation 3 (80 GB) Console 6 Months Old:

&#163;190.00 (25 Bids) End Date: Sunday Dec-13-2009 21:21:39 G..

http://bit.ly/7kwtDS

Table 2: Examples of tweets published by very structured users, suspected to be bots, along with one of their 20%-

signatures.

5 Experiments

We report of three different experimental configu-

rations. In the experiments described below, each

dataset is divided into training and test sets using

ten-fold cross validation. On the test phase, each

document contains a single tweet.

Experimenting with varying Training Set Sizes.

In order to test the affect of the training set size,

we experiment with an increasingly larger number

of tweets per author. Experimenting with a range of

training set sizes serves two purposes: (a) to check

whether the author of a tweet can be identified us-

ing a very small number of (short) training samples,

and (b) check how much our system can benefit from

training on a larger corpus.

In our experiments we only consider users who

posted between 1,000–2,000 tweets6 (a total of

6This range is selected since on one hand we want at least

1,000 tweets per author for our experiments, and on the other

hand we noticed that users with a larger number of tweets in

corpus tend to be spammers or bots that are very easy to identify,

so we limit this number to 2,000.

10,183 users), and randomly select 1,000 tweets per

user. From these users, we select 10 groups of 50

users each.7 We perform a set of classification ex-

periments, selecting for each author an increasingly

larger subset of her 1,000 tweets as training set. Sub-

set sizes are (50, 100, 200, 500, 1,000). Thresh-

old values for our features in each setting (see Sec-

tion 2) are (2, 2, 4, 10, 20) for tcng and (2, 2, 2, 3, 5)
for twng, respectively.

Experimenting with varying Numbers of Au-

thors. In a second set of experiments, we use an

increasingly larger number of authors (values be-

tween 100-1,000), in order to check whether the au-

thor of a very short text can be identified in a “needle

in a haystack” type of setting.

Due to complexity issues, we only experiment

with 200 tweets per author as training set. We se-

lect groups of size 100, 200, 500 and 1,000 users

(one group per size). We use the same threshold val-

ues as the 200 tweets per author setting previously

described (tcng = 4, twng = 2).

7An eleventh group is selected as development set.
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Figure 3: Authorship attribution accuracy for 50 authors

with various training set sizes. The values are averaged

over 10 groups. The random baseline is 2%.

Recall-Precision Tradeoff. Another aspect of our

research question is the level of certainty our system

has when suggesting an author for a given tweet.

In cases of uncertainty, many real life applications

would prefer not to get any response instead of get-

ting a response with low certainty. Moreover, in real

life applications we are often not even sure that the

real author is part of our training set. Consequently,

we allow our system to respond “don’t know” in

cases of low confidence (Koppel et al., 2006; Kop-

pel et al., 2011b). This allows our system to obtain

higher precision, at the expense of lower recall.

To implement this feature, we use SVM’s proba-

bility estimates, as implemented in libsvm. These

estimates give a score to each potential author.

These scores reflect the probability that this author

is the correct author, as decided by the prediction

model. The selected author is always the one with

the highest probability estimate.

As selection criterion, we use a set of increasingly

larger thresholds (0.05-0.9) for the probability of the

selected author. This means that we do not select test

samples for which the selected author has a proba-

bility estimate value lower than the threshold.
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Figure 4: Authorship attribution accuracy with varying

number of candidate authors, using 200 training tweets

per author. The random baselines for 509, 100, 200, 500

and 1,000 authors are 2%, 1%, 0.5%, 0.2% and 0.1%,

respectively.

6 Basic Results

Experimenting with varying Training Set Sizes.

Figure 3 shows results for our experiments with

50 authors and various training set sizes. Results

demonstrate that authors of very short texts can be

successfully identified, even with as few as 50 tweets

per author (49.5%). When given more training sam-

ples, authors are identified much more accurately

(up to 69.7%). Results also show that, according to

our hypothesis, word n-gram features substantially

improve over character n-grams features only (3%

averaged improvement over all settings).

Experimenting with varying Numbers of Au-

thors. Figure 4 shows our results for various num-

bers of authors, using 200 tweets per author as train-

ing set. Results demonstrate that authors of an

unknown tweet can be identified to a large extent

even when there are as many as 1,000 candidate au-

thors (30.3%, as opposed to a random baseline of

only 0.1%). Results further validate that word n-

gram features substantially improve over character

9Results for 50 authors with 200 tweets per author are taken

from Figure 3.
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Figure 5: Recall-precision curves for 50 authors with

varying training set sizes.

n-grams features (2.6% averaged improvement).

Recall-Precision Tradeoff. Figure 5 shows the

recall-precision curves for our experiments with 50

authors and varying training set sizes. Results

demonstrate that we are able to obtain very high pre-

cision (over 90%) while still maintaining a relatively

high recall (from ∼35% recall for 50 tweets per au-

thor up to > 60% recall for 1,000 tweets per author).

Figure 6 shows the recall-precision curves for our

experiments with varying number of authors. Re-

sults demonstrate that even in the 1,000 authors set-

ting, we are able to obtain high precision values

(90% and 70%) with reasonable recall values (18%

and ∼30%, respectively).

7 Flexible Patterns

In previous sections we provided strong evidence

that authors of micro-messages can be successfully

identified using standard methods. In this section we

present a new feature, never previously used for this

task – flexible patterns. We show that flexible pat-

terns can be used to improve classification results.

Flexible patterns are a generalization of word n-

grams, in the sense that they capture potentially un-

seen word n-grams. As a result, flexible patterns

can pick up fine-grained differences between au-

thors’ styles. Unlike other types of pattern features,
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Figure 6: Recall-precision curves for varying number of

authors.

flexible patterns are computed automatically from

plain text. As such, they can be applied to various

tasks, independently of domain and language. We

describe them in detail.

Word Frequency. Flexible patterns are composed

of high frequency words (HFW) and content words

(CW). Every word in the corpus is defined as either

HFW or CW. This clustering is performed by count-

ing the number of times each word appears in the

corpus of size s. A word that appears more than

10−4×s times in a corpus is considered HFW. A

word that appears less than 10−3×s times in a cor-

pus is considered CW. Some words may serve both

as HFWs and CWs (see Davidov and Rappoport

(2008b) for discussion).

Structure of a Flexible Pattern. Flexible patterns

start and end with an HFW. A sequence of zero or

more CWs separates consecutive HFWs. At least

one CW must appear in every pattern.10 For effi-

ciency, at most six HFWs (and as a result, five CW

sequences) may appear in a flexible pattern. Exam-

ples of flexible patterns include

1. “theHFW CW ofHFW theHFW”

10Omitting this treats word n-grams as flexible patterns.
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Flexible Pattern Features. Flexible patterns can

serve as binary classification features; a tweet

matches a given flexible pattern if it contains the

flexible pattern sequence. For example, (1) is

matched by (2).

2. “Go to theHFW houseCW ofHFW theHFW rising sun”

Partial Flexible Patterns. A flexible pattern may

appear in a given tweet with additional words not

originally found in the flexible pattern, and/or with

only a subset of the HFWs (Davidov et al., 2010a).

For example, (3) is a partial match of (1), since the

word “great” is not part of the original flexible pat-

tern. Similarly, (4) is another partial match of (1),

since (a) the word “good” is not part of the original

flexible pattern and (b) the second occurrence of the

word “the” does not appear in (4) (missing word is

marked by ).

3. “TheHFW greatHFW kingCW ofHFW theHFW ring”

4. “TheHFW goodHFW kingCW ofHFW Spain”

We use such cases as features with lower weight,

proportional to the number of found HFWs in the

tweet (w =
0.5×nfound

nexpected
). For example, (1) receives a

weight of 1 (complete match) against (2). Against

(3), it receives a weight of 0.5 (= 0.5×3

3
, partial

match with no missing HFWs). Against (4) it re-

ceives a weight of 1/3 (= 0.5×2

3
, partial match with

only 2/3 HFWs found).

Experimenting with Flexible Pattern Features.

We repeat our experiments with varying training set

sizes (see Section 5) with two more systems: one

that uses character n-grams and flexible pattern fea-

tures, and another that uses character n-grams, word

n-grams and flexible patterns. High frequency word

counts are computed separately for each author us-

ing her training set. We only consider flexible pat-

tern features that appear at least tfp times in the

training set of at least one author. Values of tfp for

training set sizes (50, 100, 200, 500, 1,000) are (2,

3, 7, 7, 8), respectively.

Results. Figure 7 shows our results. Results

demonstrate that flexible pattern features have an

added value over both character n-grams alone (av-

eraged 2.9% improvement) and over character n-

grams and word n-grams together (averaged 1.5%
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Figure 7: Authorship attribution accuracy for 50 authors

with various training set sizes and various feature sets.

The values are averaged over 10 groups. The random

baseline is 2%.

Comparison to previous work: SCAP – SCAP algo-

rithm results, as reported by (Layton et al., 2010), Naive

Bayes – Naive Bayes algorithm results, as reported by

(Boutwell, 2011).

improvement). We perform t-tests on each of our

training set sizes to check whether the latter im-

provement is significant. Results demonstrate that

it is highly significant in all settings, with p-values

smaller than values between 10−3 (for 50 tweets per

author) and 10−8 (1,000 tweets per author).

Comparison to Previous Works. Figure 7 also

shows results for the only two works that experi-

mented in some of the settings we experimented in:

Layton et al. (2010) and Boutwell (2011) (see Sec-

tion 8). Our system substantially outperforms these

two systems, by margins of 5.9% to 19%. These

margins are explained by the choice of algorithm

(SVM and not SCAP/naive Bayes) and our set of

features (character n-grams + word n-grams + flex-

ible patterns compared to character n-grams only).

In order to rule out the possibility that these mar-

gins stem from using different datasets, we tested

our system on the dataset used in (Layton et al.,

2010). Our system obtains even higher results on

this dataset than on our datasets (61.6%, a total im-
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provement of 6.1% over (Layton et al., 2010)).

Discussion. To illustrate the additional contribu-

tion of flexible patterns over word n-grams, consider

the following tweets, written by the same author.

5. “. . . theHFW wayCW IHFW treatedCW herHFW”

6. “. . . half of theHFW thingsCW IHFW have seen”

7. “. . . theHFW friendsCW IHFW have had for years”

8. “. . . in theHFW neighborhoodCW IHFW grew up in”

Consider a case where (5) is part of the test set,

while (6-8) appear in the training set. As (5) shares

no sequence of words with (6-8), no word n-gram

feature is able to identify the author’s style in (5).

However, this style can be successfully identified us-

ing the flexible pattern (9), shared by (5-8).

9. theHFW CW IHFW

This demonstrates the added value flexible pattern

features have over word n-gram features.

8 Related Work

Authorship attribution dates back to the end of 19th

century, when (Mendenhall, 1887) applied sentence

length and word length features to plays of Shake-

speare. Ever since, many methods have been devel-

oped for this task. For recent surveys, see (Koppel

et al., 2009; Stamatatos, 2009; Juola, 2012).

Authorship attribution methods can be generally

divided into two categories (Stamatatos, 2009). In

similarity-based methods, an anonymous text is at-

tributed to some author whose writing style is most

similar (by some distance metric). In machine learn-

ing methods, which we follow in this paper, anony-

mous texts are classified, using machine learning al-

gorithms, into different categories (in this case, dif-

ferent authors).

Machine learning papers differ from each other by

the features and machine learning algorithm. Exam-

ples of features include HFWs (Mosteller and Wal-

lace, 1964; Argamon et al., 2007), character n-gram

(Kjell, 1994; Hoorn et al., 1999; Stamatatos, 2008),

word n-grams (Peng et al., 2004), part-of-speech

n-grams (Koppel and Schler, 2003; Koppel et al.,

2005) and vocabulary richness (Abbasi and Chen,

2005).

The various machine learning algorithms used in-

clude naive Bayes (Mosteller and Wallace, 1964;

Kjell, 1994), neural networks (Matthews and Mer-

riam, 1993; Kjell, 1994), K-nearest neighbors (Kjell

et al., 1995; Hoorn et al., 1999) and SVM (De Vel et

al., 2001; Diederich et al., 2003; Koppel and Schler,

2003).

Traditionally, authorship attribution systems have

mainly been evaluated against long texts such as

theater plays (Mendenhall, 1887), essays (Yule,

1939; Mosteller and Wallace, 1964), biblical books

(Mealand, 1995; Koppel et al., 2011a) and book

chapters (Argamon et al., 2007; Koppel et al., 2007).

In recent year, many works focused on web data

such as emails (De Vel et al., 2001; Koppel and

Schler, 2003; Abbasi and Chen, 2008), web forum

messages (Abbasi and Chen, 2005; Solorio et al.,

2011), blogs (Koppel et al., 2006; Koppel et al.,

2011b) and chat messages (Abbasi and Chen, 2008).

Some works focused on SMS messages (Mohan et

al., 2010; Ishihara, 2011).

Authorship Attribution on Twitter. The perfor-

mance of authorship attribution systems on short

texts is affected by several factors (Stamatatos,

2009). These factors include the number of candi-

date authors, the training set size and the size of the

test document.

Very few authorship attribution works experi-

mented with Twitter. Unlike our work, all used a

single group of authors (group sizes varied between

3-50). Layton et al. (2010) used the SCAP method-

ology (Frantzeskou et al., 2007) with character n-

gram features. They experimented with 50 authors

and compared different numbers of tweets per au-

thor (values between 20-200). Surprisingly, they

showed that their system does not improve when

given more training tweets. In our work, we no-

ticed a different trend, and showed that more data

can be extremely valuable for authorship attribution

systems on micro-messages (see Section 6). Silva

et al. (2011) trained an SVM classifier with various

features (e.g., punctuation and vocabulary features)

on a small dataset of three authors only, with vary-

ing training set size. Although their work used a

set of Twitter-specific features that we do not explic-

itly use, our features implicitly cover a large portion

of their features (such as punctuation and emoticon
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features, which are largely covered by character n-

grams).

Boutwell (2011) used a naive Bayes classifier

with character n-gram features. She experimented

with 50 authors and two training size values (120

and 230). She also provided a set of experiments that

studied the effect of joining several tweets into a sin-

gle document. Mikros and Perifanos (2013) trained

an SVM classifier with character n-gram and word

n-grams. They experimented with 10 authors of

Greek text, and also joined several tweets into a sin-

gle document. Joining several tweets into a longer

document is appealing since it can lead to substantial

improvement of the classification results, as demon-

strated by the works above. However, this approach

requires the test data to contain several tweets that

are known a-priori to be written by the same author.

This assumption is not always realistic. In our paper,

we intentionally focus on a single tweet as document

size.

Flexible Patterns. Patterns were introduced by

(Hearst, 1992), who used hand crafted patterns

to discover hyponyms. Hard coded patterns

were used for many tasks, such as discovering

meronymy (Berland and Charniak, 1999), noun cat-

egories (Widdows and Dorow, 2002), verb relations

(Chklovski and Pantel, 2004) and semantic class

learning (Kozareva et al., 2008).

Patterns were first extracted in a fully unsuper-

vised manner (“flexible patterns”) by (Davidov and

Rappoport, 2006), who used flexible patterns in or-

der to establish noun categories, and (Biciçi and

Yuret, 2006) who used them for analogy question

answering. Ever since, flexible patterns were used

as features for various tasks such as extraction of

semantic relationships (Davidov et al., 2007; Tur-

ney, 2008b; Bollegala et al., 2009), detection of

synonyms (Turney, 2008a), disambiguation of nom-

inal compound relations (Davidov and Rappoport,

2008a), sentiment analysis (Davidov et al., 2010b)

and detection of sarcasm (Tsur et al., 2010).

9 Conclusion

The main goal of this paper is to measure to what

extent authors of micro-messages can be identified.

We have shown that authors of very short texts

can be successfully identified in an array of au-

thorship attribution settings reported for long doc-

uments. This is the first work on micro-messages

to address some of these settings. We introduced

the concept of k-signature. Using this concept, we

proposed an interpretation of our results. Last, we

presented the first authorship attribution system that

uses flexible patterns, and demonstrated that using

these features significantly improves over other sys-

tems. Our system obtains 6.1% improvement over

the current state-of-the-art.
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Abstract

This short paper presents a pilot study in-
vestigating the training of a standard Seman-
tic Role Labeling (SRL) system on product
reviews for the new task of detecting com-
parisons. An (opinionated) comparison con-
sists of a comparative “predicate” and up to
three “arguments”: the entity evaluated posi-
tively, the entity evaluated negatively, and the
aspect under which the comparison is made.
In user-generated product reviews, the “predi-
cate” and “arguments” are expressed in highly
heterogeneous ways; but since the elements
are textually annotated in existing datasets,
SRL is technically applicable. We address the
interesting question how well training an out-
of-the-box SRL model works for English data.
We observe that even without any feature en-
gineering or other major adaptions to our task,
the system outperforms a reasonable heuristic
baseline in all steps (predicate identification,
argument identification and argument classifi-
cation) and in three different datasets.

1 Introduction

Sentiment analysis deals with the task of determin-
ing the polarity of an opinionated document or a
sentence, in product reviews typically with regard
to some target product. A common way to express
sentiment about some product is by comparing it to a
different product. In the corpus data we use, around
10% of sentences contain at least one comparison.
Here are some examples of comparison sentences
from our corpus:

(1) a. “[This camera]E+ . . . its [screen]A is much big-
ger than the [400D].”

b. “[D70]E+ beats [EOS 300D]E− in almost [ev-
ery category]A, EXCEPT ONE.”

c. “[Noise suppression]A1A2
was generally

better1 than the [D80]E−1
’s and much better2

than the [Rebel]E−2 ’s.”

d. “A striking difference between the [EOS
350D]E− and the new [EOS 400D]E+ concerns
the [image sensor]A.”

Note that our definition of comparisons is broader
than the linguistic category of comparative sen-
tences, which only includes sentences that contain
a comparative adjective or adverb. For our work,
we consider comparisons expressed by any Part of
Speech (POS).

A comparison contains several parts that must be
identified in order to get meaningful information.
We call the word or phrase that is used to express the
comparison (“better”, “beats”, . . . ) a comparative
predicate. A comparison involves two entities, one
or both of them may be implicit. In our data, most
of the entities are products, e.g., the two cameras
“D70” and “EOS 300D” in sentence 1b. In graded
comparisons, entity+ (E+) is the entity that is being
evaluated positively, entity- (E-) the entity evaluated
negatively. In many sentences one attribute or part
of a product is being compared, like “image sensor”
in sentence 1d. We call this the aspect (A).

The task we want to solve for a given compari-
son sentence is to detect the comparative predicate,
the entities that are involved and the aspect that is
being compared. We borrow our methodology from
Semantic Role Labeling (SRL). In SRL, events are
expressed by predicates and participants of these
events are expressed by arguments that fill differ-
ent semantic roles. Adapted to the problem of de-
tecting comparisons, the events we are interested in
are comparative predicates and the arguments are the
two entities and the aspect that is being compared.

Due to the diversity of possible ways of express-
ing comparisons, the “predicates” and “arguments”
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in this task are more heterogeneous categories than
in standard SRL based on PropBank and Nom-
Bank annotations. Moreoever, the existing labeled
datasets are based on an annotation methodology
which gave the annotators a lot of freedom in de-
ciding on the linguistic anchoring of the “predicate”
and “arguments”. This adds to the heterogeneity of
the observed constructions and makes it even more
interesting to ask the question how far an out-of-the-
box SRL model can take you.

In this work, we re-train an existing SRL system
(Björkelund et al., 2009) on product review data la-
beled with comparative predicates and arguments.
We show that we can get reasonable results with-
out any feature engineering or other major adap-
tions. This is an encouraging result for a linguis-
tically grounded modeling approach to comparison
detection.

2 Related Work

The syntax and semantics of comparative sentences
have been the topic of research in linguistics for a
long time (Moltmann, 1992; Kennedy, 1999). How-
ever, our focus is on computational methods and we
also treat comparisons that are not comparative sen-
tences in a linguistic sense.

In sentiment analysis, some studies have been pre-
sented to identify comparison sentences. Jindal and
Liu (2006a) report good results on English using
class sequential rules based on keywords as features
for a Naive Bayes classifier. A similar approach for
Korean is presented by Yang and Ko (2009; 2011b;
2011a). In our work, we do not address the task of
identifying comparison sentences, we assume that
we are given a set of such sentences.

The step we are concerned with is the detection of
relevant parts of a comparison. To identify entities
and aspect, Jindal and Liu (2006b) use an involved
pattern mining process to mine label sequential rules
from annotated English sentences. A similar ap-
proach is again presented by Yang and Ko (2011a)
for Korean. In contrast to their complicated process-
ing, we simply use an existing SRL system out of
the box. Both approaches consider only nouns and
pronouns for entities and aspects, we use all POS
and allow for multi-word arguments. Jindal and Liu
(2006b) base the recognition of comparative predi-

cates on a list of manually compiled keywords. We
use this as our baseline. Our approach is not de-
pendent on a set of keywords and is therefore more
easily adaptable to a new domain.

All works label the entities according to their po-
sition with respect to the predicate. This requires the
identification of the preferred entity in a non-equal
comparison as an additional step. Ganapathibhotla
and Liu (2008) use hand-crafted rules based on the
polarity of the predicate for this task. As we label
the entities with their roles from the start, we solve
both problems at the same time.

Xu et al. (2011) cast the task as a relation extrac-
tion problem. They present an approach that uses
conditional random fields to extract relations (bet-
ter, worse, same and no comparison) between two
entitites, an attribute and a predicate phrase.

The approach of Hou and Li (2008) is most re-
lated to our approach. They use SRL with standard
SRL features to extract comparative relations from
Chinese sentences. We confirm that SRL is a vi-
able method also for English. In their experiments
they report good results on gold parses, but observe
a drop in performance when they use their method
on automatic parses. All our experiments are con-
ducted on automatically obtained parses.

3 Approach

The input to our system is a sentence that we assume
to contain at least one comparison. The result of our
processing are one or more comparative predicates
and for each predicate three arguments: The two en-
tities that are being compared, and the aspect they
are compared in. More formally speaking, for ev-
ery sentence we expect to get one or more 4-tupels
(predicate, entity+, entity-, aspect). Entity+ is the
entity that is being evaluated as better than entity-.
Any of the arguments may be empty. Currently, we
treat only single words as comparative predicates.
Annotated multi-word predicates are mapped to one
word. We allow for multi-word arguments, but an-
notate only the head word of the phrase and treat it
as a one word argument for evaluation. We do not
place any restrictions on possible POS.

We use a standard pipeline approach from SRL.
As a first step, the comparative predicate is iden-
tified. The next step in SRL would be predicate
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disambiguation to identify the different frames this
predicate can express. As we do not have such
frame information, predicate disambiguation is not
performed in our pipeline.

After we have identified the predicates, the next
step is to identify their arguments. The identifica-
tion step is a binary classification whether a word in
the sentence is some argument of the identified pred-
icate. As a final classification step, it is determined
for each found argument whether this argument is
entity+, entity- or the aspect.

We use an existing SRL system (Björkelund et al.,
2009)1 and the features developed for SRL, based on
the output of the MATE dependency parser (Bohnet,
2010). Features use attributes of the predicate itself,
its head or its dependents. Additionally, for argu-
ment identification and classification there are fea-
tures that describe the relation of predicate and argu-
ment, the argument itself, its leftmost and rightmost
dependent and left and right sibling.

For the classification tasks of the pipeline, the
SRL system uses regularized linear logistic regres-
sion from the LIBLINEAR package (Fan et al.,
2008). We set the SRL system to train separate clas-
sifiers for predicates of different POS. In preliminary
experiments, we have found this to perform slightly
better than training one classifier for all kinds of
predicates, although the difference is not significant.
We do not use the reranker.

4 Experiments

Data. We use the JDPA corpus2 by J. Kessler et al.
(2010) for our experiments. It contains blog posts
about cameras and cars. We use the annotation class
“Comparison” that has four annotation slots. We
convert the “more” slot to entity+, the “less” slot to
entity- and the “dimension” slot to the aspect. For
now, we ignore the “same” slot which indicates if
the two mentions are ranked as equal.

We have also tested our approach on the dataset
used in (Jindal and Liu, 2006b)3. We use all com-

1http://code.google.com/p/mate-tools/
2Available from http://verbs.colorado.edu/

jdpacorpus/ – we ignore cars batch 009 where no
arguments of comparative predicates are annotated.

3Available from http://www.cs.uic.edu/˜liub/
FBS/data.tar.gz – although the original paper works on
some unknown subset of this data, so our results are not directly

JDPA J&L
cameras cars

all sentences 5230 14003 7986
comparison sentences 505 1094 649
predicates 642 1327 695
distinct predicates 147 252 122
preds. occurring once 87 147 61
Entity+ / 1 517 1091 657
Entity- / 2 511 1068 331
Aspect 623 1107 526

Table 1: Statistics about the datasets

parisons annotated as types 1 to 3 (ignoring type 4,
non-gradable comparisons). In this dataset (J&L),
entities are annotated as entity 1 or entity 2 depend-
ing on their position before or after the predicate.
We keep this annotation and train our system to as-
sign these labels.

We do sentence segmentation and tokenization
with the Stanford Core NLP4. Annotations are
mapped to the extracted tokens. We ignore anno-
tations that do not correspond to complete tokens.
In the JDPA corpus, if an annotated argument is out-
side the current sentence, we follow the coreference
chain to find a coreferent annotation in the same sen-
tence. If this is not successful, the argument is ig-
nored. We extract all sentences where we found at
least one comparative predicate as our dataset.

Table 1 shows some statistics of the data.

Evaluation Setup. We evaluate on each dataset
separately using 5-fold cross-validation. We report
precision (P), recall (R), F1-measure (F1), and for
argument classification macro averaged F1-measure
(F1m) over the three arguments. Bold numbers de-
note the best result in each column and dataset. We
mark a F1-measure result with * if it is significantly
higher than all previous lines.5

Results on Predicates. We have implemented
two baselines based on previous work. The sim-
plest baseline, BL POS classifies all tokens with
a comparative POS (’JJR’, ’JJS’, ’RBR’, ’RBS’)
as predicates. A more sophisticated baseline, BL
Keyphrases, uses a list of about 80 manually com-

comparable to the results reported there.
4http://nlp.stanford.edu/software/

corenlp.shtml
5Statistically significant at p < .05 using the approximate

randomization test (Noreen, 1989) with 10000 iterations.

1894



P R F1

ca
m

s BL POS 66.6 38.2 48.5
BL Keyphrases 53.1 62.8 57.5∗

SRL 73.8 58.7 65.4∗
ca

rs
BL POS 62.5 34.7 44.6
BL Keyphrases 51.9 56.5 54.1∗

SRL 73.2 55.5 63.2∗

J&
L

BL POS 74.3 52.9 61.8
BL Keyphrases 61.5 80.0 69.5∗

SRL 77.0 68.1 72.3∗

Table 2: Results predicate identification

P R F1

ca
m

s BL 49.4 47.1 48.2
SRL 66.5 38.0 48.4

ca
rs BL 50.2 50.1 50.1

SRL 68.7 42.2 52.3∗

J&
L BL 38.7 44.6 41.5

SRL 68.5 45.2 54.5∗

Table 3: Results argument identification (gold predicates)

Entity+ / 1 Entity- / 2 Aspect F1m

P R F1 P R F1 P R F1

ca
m

s BL 30.1 31.7 30.9 21.2 21.3 21.3 61.8 51.2 56.0 36.1
SRL 38.6 17.4 24.0 43.7 24.5 31.4 69.9 47.7 56.7 37.3

ca
rs BL 31.1 32.7 31.9 23.0 24.0 23.5 49.3 44.5 46.8 34.0

SRL 39.5 22.9 29.0 48.1 31.0 37.7 58.4 36.2 44.7 37.1∗

J&
L BL 43.2 39.4 41.2 19.0 31.1 23.6 15.0 17.1 16.0 26.9

SRL 58.3 47.2 52.1 60.8 35.6 45.0 58.8 30.6 40.3 45.8∗

Table 4: Results argument classification (gold predicates)

piled comparative keyphrases from (Jindal and Liu,
2006a) in addition to the POS tags.

Table 2 shows the result of our experiments. Our
method significantly outperforms both baselines in
all datasets. The generally low recall values are
mainly a result of the wide variety of predicates that
are used to express comparisons (see Discussion).

Results on Arguments. To get results indepent of
the errors introduced by the relatively low perfor-
mance on predicate identification, we use annotated
predicates (gold predicates) as a starting point for
the argument experiments. All results drop about
10% when system predicates are used.

As a baseline (BL) for argument identification
and classification, we use some heuristics based on
the characteristics of our data. Most entities are
(pro)nouns and most predicates are positive, so we
classify the first noun or pronoun before the predi-
cate as entity+ (entity 1 for J&L) and the first noun
or pronoun after the predicate as a entity- (entity 2).
If the predicate is a comparative adjective, we clas-
sify the predicate itself as aspect, because this type
of annotation is very frequent in the JDPA data. For
other predicates except nouns and verbs, we classify
the direct head of the predicate as aspect.

Table 3 shows the results for argument identifica-

tion, the results for argument classification can be
seen in Table 4. Our system outperforms the base-
line for all datasets. The differences are significant
except for the cameras dataset. In general, the num-
bers are low. We will discuss some reasons for this
in the next section.

5 Discussion

Sparseness. There are many ways to express a
comparison and the size of the available training
data is relatively small. This strongly influences the
recall of our system as many predicates and argu-
ments occur only once. As we can see in Table 1,
60% of the predicates in the cameras dataset occur
only once. In contrast, only 12 predicates occur ten
times or more. The trends are similar in the other
datasets. This particularily affects verbs and nouns,
where many colloquial expressions are used (“ham-
mers”, “pwns”, “go head to head with”, “put X to
the sword”, . . . ).

Argument identification and classification would
benefit from generalizing over the many different
product identifiers like “EOS 5D” or “D200”. We
want to try to use a Named Entity Recognition sys-
tem trained on this type of entities for this purpose.
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Sentiment Relevance. The following examples
show a problem that is typical for sentiment analysis
and responsible for many false positive predicates:

(2) a. “Relatively [lower]A noise at higher ISO . . . ”

b. “. . . but [higher]A then [Sony]E+”

Although “higher” often expresses a comparison
like in sentence 2b, in sentence 2a it only describes
a camera setting and should not be extracted as a
comparative predicate. There has been considerable
work in the areas of subjectivity classification (Wil-
son and Wiebe, 2003) and the related sentiment rel-
evance (Scheible and Schütze, 2013) which we will
try to use to detect such irrelevant, “descriptive” uses
of comparative words.

Linguistic anchoring. In contrast to SRL, the task
of comparison detection in reviews is a relatively
new task without universally recognized definitions
and annotation schemes. The annotators of the cor-
pora had a lot of freedom in their choice of linguis-
tic anchoring of the predicates and arguments. Con-
sider these examples from the cameras dataset:

(3) a. “[Lighter]A in weight compared to the
[others]E−.”

b. “. . . [its]E+ [better]A and faster compared vs
the [SB800 flash]E− as well.”

c. “. . . this camera’s [screen]E+ is [smaller]A than
the [ones]E− on some competing models . . . ”

Sentences 3a and 3b show a situation where two
words are used to express the same comparison and
it is unclear which one to chose as a predicate. The
decision is left to the individual annotators.

There is some variety of annotations on arguments
as well. In the JDPA data, a comparative adjective
is often annotated as aspect, sometimes even when
there is an alternative, e.g., “weight” in sentence 3a.
Also, for a phrase like “its screen”, we find “screen”
annotated as the aspect (sentence 1a) or an entity
(sentence 3c) – and both have their merit. We want
to further study how different linguistic anchorings
of comparisons effect classification performance.

Equative comparisons. As we can see from the
confusion matrix of our system, the distinction be-
tween entity+ and entity- is very difficult to learn.
In graded comparisons, the distinction is informa-
tive, but sentiment information would be needed for

the correct assignment. There are also some prob-
lematic cases where the ranking cannot be inferred
without the broader context, e.g., sentence 1d.

A more annotation-related problem concerns
equative comparisons, i.e., both entities are rated as
equal. The difference between entity+ and entity- is
meaningless in this case. In the JDPA corpus, en-
tities still have to be annotated as either entity+ or
entity- and the annotation guidelines allow the anno-
tator to choose freely. As a result, the data is noisy,
for the same predicate sometimes entity- is before
the predicate, sometimes entity+. If we eliminate
this noise by always assigning the entities in order
of surface position, we see a gain in macro averaged
F1-measure for all systems of about 2% (cameras)
to 4% (cars).

6 Conclusions

We presented a pilot experiment on using an SRL-
inspired approach to detect comparisons (compara-
tive predicate, entity+, entity-, aspect) in user gener-
ated content. We re-trained an existing SRL system
on data that is labeled with comparative predicates
and arguments. Even without feature engineering or
major adaptions, our approach outperforms the base-
lines in three datasets in every task. This is an en-
couraging result for a linguistically grounded mod-
eling approach to comparison detection.

For future work, we plan to include features that
have been tailored specifically to the task of detect-
ing product comparisons. To address the inherent di-
versity of expressions typical for user generated con-
tent, we want to employ generalization techniques,
e.g., to detect product names. We also want to fur-
ther study the different possible linguistic anchor-
ings of comparisons and their effect on classification
performance. Studies of this kind may also inform
future data annotation efforts in that certain ways
of anchoring the elements of a comparison linguis-
tically may be more helpful than others. We also
believe that the explicit modeling of different types
(equative, superlative, non-equal gradable) of com-
parisons will have a positive effect on performance.
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Abstract

Constituency parsing with rich grammars re-
mains a computational challenge. Graph-
ics Processing Units (GPUs) have previously
been used to accelerate CKY chart evalua-
tion, but gains over CPU parsers were mod-
est. In this paper, we describe a collection of
new techniques that enable chart evaluation at
close to the GPU’s practical maximum speed
(a Teraflop), or around a half-trillion rule eval-
uations per second. Net parser performance
on a 4-GPU system is over 1 thousand length-
30 sentences/second (1 trillion rules/sec), and
400 general sentences/second for the Berkeley
Parser Grammar. The techniques we introduce
include grammar compilation, recursive sym-
bol blocking, and cache-sharing.

1 Introduction

Constituency parsing with high accuracy (e.g. latent
variable) grammars remains a computational chal-
lenge. The O(Gs3) complexity of full CKY pars-
ing for a grammar with G rules and sentence length
s, is daunting. Even with a host of pruning heuris-
tics, the high cost of constituency parsing limits its
uses. The most recent Berkeley latent variable gram-
mar for instance, has 1.7 million rules and requires
about a billion rule evaluations for inside scoring of
a single length-30 sentence. GPUs have previously
been used to accelerate CKY evaluation, but gains
over CPU parsers were modest. e.g. in Yi et al.
(2011) a GPU parser is described for the Berkeley
Parser grammar which achieves 5 sentences per sec-
ond on the first 1000 sentences of Penn Treebank

section 22 Marcus et al. (1993), which is compa-
rable with the best CPU parsers Petrov and Klein
(2007). Our parser achieves 120 sentences/second
per GPU for this sentence set, and over 250 sen-
tences/sec on length ≤ 30 sentences. These results
use a Berkeley Grammar approximately twice as big
as Yi et al. (2011), an apparent 50x improvement.
On a 4-GPU system, we achieve 1000 sentences/sec
for length ≤ 30 sentences. This is 2 orders of mag-
nitude faster than CPU implementations that rely
heavily on pruning, and 5 orders of magnitude faster
than full CKY evaluation on a CPU.

Key to these results is a collection of new tech-
niques that enable GPU parsing at close to the
GPU’s practical maximum speed (a Teraflop for re-
cent GPUs), or around a half-trillion rule evaluations
per second. The techniques are:

1. Grammar compilation, which allows register-
to-register code for application of grammar
rules. This gives an order of magnitude (10x)
speedup over alternative approaches that use
shared memory.

2. Symbol/rule blocking of the grammar to re-
spect register, constant and instruction cache
limits. This is precondition for 1 above, and
the details of the partitioning have a big (> 4x)
effect on performance.

3. Sub-block partitioning to distribute rules across
the stream processors of the GPU and allow L2
cache acceleration. A factor of 2 improvement.

The code generated by our parser comes close to the
theoretical limits of the GPU. 80% of grammar rules
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are evaluated using a single-cycle register-to-register
instruction.

2 GPU Design Principles

In this paper, we focus on the architecture of recent
NVIDIA R© GPUs, though many of the principles we
describe here can be applied to other GPUs (e.g.
those made by AMD R©.) The current NVIDIA R©

KeplerTM series GPU contains between 2 and 16
“stream processors” or SMX’s which share an L2
cache interfacing to the GPUs main memory Anony-
mous (2013). The SMXs in turn comprise 192
cores which share a memory which is partitioned
into “shared memory” and L1 cache. Shared mem-
ory supports relatively fast communication between
threads in an SMX. Communication between SMXs
has to pass through slower main memory.

The execution of instructions within SMXs is vir-
tualized and pipelined - i.e. it is not a simple task to
count processors, although there are nominally 192
in the KeplerTM series. Register storage is not at-
tached to cores, instead registers are associated in
blocks of 63 or 255 (depending on KeplerTM sub-
architecture) with running threads. Because of this,
it is usually easier for the programmer to think of
the SMXes as 1024 thread processors. These 1024
threads are grouped into 32 groups of 32 threads
called warps. Each warp of threads shares a program
counter and executes code in lock-step. However,
execution is not SIMD - all threads do not execute all
instructions. When the warp encounters a branching
instruction, all branches that are satisfied by some
thread will be executed in sequence. Each thread
only executes the instructions for its own branch,
and idles for the others. NVIDIA R© calls this model
SIMT (Single Instruction, Multiple Threads). Ex-
ecution of diverging branches by a warp is called
warp divergence. While it simplifies programming,
warp divergence understandably hurts performance
and our first goal is to avoid it.

GPUs are generally optimized for single-
precision floating point arithmetic in support of
rendering and simulation. Table 1 shows instruction
throughput (number of instructions that are executed
per cycle on each SMX). The KeplerTM series has
two architectural sub-generations (3.0 and 3.5) with
significant differences in double-precision support.

Data from Anonymous (2012) and NVIDIA (2012).

Instruction type
Architecture
3.0 3.5

Shared memory word access 32 32
FP arithmetic +,-,*,FMA 192 192
DP arithmetic +,-,*,FMA 8 64

Integer +,- 160 160
Integer *,FMA 32 32

float sin, exp, log,... 32 32

Table 1: Instructions per cycle per SMX in generation 3.0
and 3.5 KeplerTM devices

In the table, FP is floating point, DP is double
precision, and FMA is a single-cycle floating-piont
fused multiply-add used in most matrix and vector
operations (A← A+B ∗C). Note next that floating
point (single precision) operations are extremely fast
and there is an FPU for each of the 192 processors.
Double precision floating point is 3x slower on high-
end 3.5 GPUS, and much slower (24x) on the com-
modity 3.0 machines. While integer addition is fast,
integer multiply is much slower. Perhaps most sur-
prising is the speed of single-precision transcenden-
tal function evaluation, log, exp, sin, cos, tan, etc.,
which are as fast as shared memory accesses or in-
teger multiplication, and which amount to a quarter-
trillion transcendental evaluations per second on a
GTX-680/K10.

PCFG grammar evaluation nominally requires
two multiplications and an addition per rule (section
4) which can be written:

Sij,m =
∑

k=1...j; n,p∈Q

Sik,nS(k+1)j,pcmnp (1)

i.e. the CKY node scores are sums of products of
pairs of scores and a weight. This suggests that at
least in principle, it’s possible to achieve a trillion
rule evaluations per second on a 680 or K10 device,
using a * and an FMA operation for each rule. That
assumes we are doing register-to-register operations
however. If we worked through shared memory (first
line of the table), we would be limited to about 80
billion evaluations/sec, 20 times slower. The anal-
ysis underscores that high performance for parsing
on a GPU is really a challenge of data movement.
We next review the different storage types and their
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bandwidths, since prudent use of, and movement be-
tween storage types is the key to performance.

2.1 Memory Types and Speeds

There are six types of storage on the GPU which
matter for us. For each type, we give the capac-
ity and aggregate bandwidth on a typical device (a
GTX-680 or K10 running at 1GHz).

Register files These are virtualized and associated
with threads rather than processors. 256kB per
SMX. Each thread in architecture 3.0 devices can
access 63 32-bit registers, or 255 registers for 3.5
devices. Aggregate bandwidth 40 TB/s.

Shared memory/L1 cache is shared by all threads
in an SMX. 64kB per SMX partitioned into shared
memory and cache functions. Aggregate bandwidth
about 1 TB/s.

Constant memory Each SMX has a 48kB read/only
cache separate from the L1 cache. It can store gram-
mar constants and has much higher bandwidth than
shared memory. Broadast bandwidth 13 TB/s.

Instruction cache is 8 KB per SMX. Aggregate
bandwidth 13 TB/s.

L2 cache is 0.5-1.5 MB, shared between all SMXs.
Aggregate bandwidth 500 GB/s.

Global memory is 2-6GB typically, and is shared
by all SMXs. GPUs use a particularly fast form of
SDRAM (compared to CPUs) but it is still much
slower than the other memory types above. Ag-
gregate bandwidth about 160 GB/s.

There is one more very important principle: Coa-
lesced main memory access. From the above it can
be seen that main memory access is much slower
than other memories and can easily bottleneck the
calculations. The figure above (160 GB/s) for main
memory access assumes such access is coalesced.
Each thread in the GPU has a thread and a block
number which determines where it runs on the hard-
ware. Consecutively-numbered threads should ac-
cess consecutive main memory locations for fast
memory access.

These parameters suggest a set of design princi-
ples for peak performance:

1. Maximize use of registers for symbol scores,
and minimize use of shared memory (in fact we
will not use it at all).

2. Maximize use of constant memory for rule
weights, and minimize use of shared memory.

3. Partition the rule set into blocks that respect the
limits on number of registers, constant memory
(needed for grammar rules probabilities) and
instruction cache limits.

4. Minimize main memory access and use L2
cache to speed it up.

Lets look in more detail at how to achieve this.

3 Anatomy of an Efficient GPU Parser

High performance on the GPU requires us to mini-
mize code divergence. This suggests that we do not
use a lexicalized grammar or a grammar that is sen-
sitive to the position of a span within the sentence.
These kinds of grammars—while highly accurate—
have irregular memory access patterns that conflict
with SIMD execution. Instead, an unlexicalized ap-
proach like that of Johnson (2011) or Klein and
Manning (2003), or a latent variable approach like
that of Matsuzaki et al. (2005) or Petrov et al. (2006)
are more appropriate. We opt for the latter kind: la-
tent variable grammars are fairly small, and their ac-
curacies rival lexicalized approaches.

Our GPU-ized inside algorithm maintains two
data structures: parse charts that store scores for
each labeled span, as usual, and a “workspace” that
is used to actually perform the updates of the in-
side algorithm. Schematically, this memory lay-
out is represented in Figure 1. A queue is main-
tained CPU-side that enqueues work items of the
form (s, p, l, r), where s is a sentence, and p, l, and
r specify the index in the parse chart for parent, left
child, and right child, respectively. The outer loop
proceeds in increasing span length (or height of par-
ent node scores to be computed). Next the algorithm
iterates over the available sentences. Then it iterates
over the parent nodes at the current length in that
sentences, and finally over all split points for the cur-
rent parent node. In each case, work items are sent to
the queue with that span for all possible split points.

When the queue is full—or when there are no
more work items of that length—the queue is flushed
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Figure 1: The architecture of the system. Parse charts are
stored in triangular arrays laid out consecutively in mem-
ory. Scores for left and right children are transposed and
copied into the “workspace” array, and the inside updates
are calculated for the parent. Scores are then pushed back
to the appropriate cell in the parse charts, maxing them
with scores that are already there. Transposition ensures
that reads and writes are coalesced.

to the GPU, which executes three steps. First, the
scores for each left and right child are copied into
the corresponding column in the workspace. Then
inside updates are applied in parallel for all cells to
get parent scores. Then parents are entered back to
their appropriate cells in the parse charts. This is
typically a many-to one atomic reduction (either a
sum for probability scores, or a max for max-sum
log probability scores). This process repeats until
all span lengths have been processed.

3.1 The Inside Updates

The high-level goal of our parser is to use SIMD
parallelism to evaluate the same rule across many
spans (1024 threads are currently used to process
8192 spans in each kernel). This approaches allows
us to satisfy the GPU performance desiderata from
the previous section. As discussed in section 5 each
GPU kernel actually processes a small subset of the
symbols and rules for the grammar, and kernels are
executed in sequence until the entire grammar has
been processed. Each thread iterates over the rules
in the same order, reading in symbols from the left
child and right child arrays in main memory as nec-
essary.

The two-dimensional work arrays must be stored
in “symbol-major” order for this to work. That is,
the parent VP for one work item is stored next to the
parent VP for the next work item, while the VP sym-
bol for the first work item is stored on the next “row”
of the work array. The reason the workspace cells
are stored in “symbol-major” order is to maximize
coalesced access: each thread in the SMX accesses
the same symbol for a different work item in paral-
lel, and those work items are in consecutive memory
locations.

3.2 The Copy-transpose Operations

Unlike the workspace arrays, the arrays for the parse
charts are stored in “span-major” order, transposed
from how they are stored in the workspace arrays.
That is, for a given span, the NP symbol is next
to the same span’s VP symbol (for example). This
order accelerates both symbol loading and Viterbi
search later on. It requires a transpose-copy in-
stead of “non-transposed” copy to move from chart
to workspace arrays and back again, but note that a
non-transposed copy (or direct access to the chart
by the GPU compute kernel) would probably be
slower. The reason is that any linear ordering of
cells in the triangle table will produce short seg-
ments (less than 32 words and often less than 16)
of consecutive memory locations. This will lead to
many non-coalesced memory accesses. By contrast
the span-major representation always uses vectors
whose lengths equals the number of symbols (500-
1000), and these can be accessed almost entirely
with coalesced operations. The copy-transpose op-
erations are quite efficient (the transpose itself is
much faster than the I/O), and come close to the 160
GB/s GPU main memory limit.

The reverse copy-transpose (from parent
workspace cells to chart) is typically many-to-one,
since parent scores derive from multiple splits. They
are implemented using atomic reduce operations
(either atomic sum or atomic max) to ensure data
consistency.

At the heart of our approach is the use of grammar
compilation and symbol/rule blocking, described
next.
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4 Grammar Compilation

Each rule in a probabilistic context-free grammar
can be evaluated with an update of the form:

Sij,m =
∑

k=1...j; n,p∈Q

Sik,nS(k+1)j,pcmnp (2)

where Sij,m is the score for symbol m as a generator
of the span of words from position i to j in the in-
put sentence, cmnp is the probability that symbol m
generates the binary symbol pair n, p, and Q is the
set of symbols. The scores will be stored in a CKY
chart indexed by the span ij and the symbol m.

To evaluate (2) as fast as possible, we want to
use register variables which are limited in number.
The location indices i, j, k can be moved outside the
GPU kernel to reduce the variable count. We use
symbols P , L and R for respectively the score of the
parent, left child and right child in the CKY chart.
Then the core relation in (2) can be written as:

Pm =
∑

n,p∈Q

LnRpcmnp (3)

In the KeplerTM architecture, register arguments are
non-indexed, i.e. one cannot access register 3 as an
array variable R[i] with i=31. So in order to use
register storage for maximum speed, we must open-
code the grammar. Symbols like L3, R17 are en-
coded as variables L003 and R017, and each rule
must appear as a line of C code:

P043 += L003*R017*0.023123f;
P019 += L012*R123*6.21354e-7f;
: : : :

Open-coding the grammar likely has a host of per-
formance advantages. It allows both compiler and
hardware to “see” what arguments are coming and
schedule the operations earlier than a “grammar
as data” approach. Note that we show here the
sum-product code for computing inner/outer symbol
probabilities. For Viterbi parse extraction we replace
+,* with max,+ and work on log scores.

L and R variables must be loaded from main
memory, while P-values are initialized to zero and
then atomically combined (sum or max) with P-
values in memory. Loads are performed as late as

1Even if indexing were possible, it is extremely unlikely that
such accesses could complete in a single cycle

possible, that is, a load instruction will immediately
precede the first use of a symbol:

float R031 = right[tid+65*stride];
P001 += L001*R031*1.338202e-001f;

where tid is the thread ID plus an offset, and stride
is the row dimension of the workspace (typically
8192), and right is the main memory array of right
symbol scores. Similarly, atomic updates to P-
values occur as early as possible, right after the last
update to a value:

G020 += L041*R008*6.202160e-001f;
atomicAdd(&par[tid+6*stride],G020);

These load/store strategies minimize the active life
of each variable and allow reuse of register variables
for symbols whose lifetimes do not overlap. This
will be critical to successful blocking, described in
the next section.

4.1 Common subexpressions

One interesting discovery made by the compiler was
that the same L,R pair is repeated in several rules. In
hindsight, this is obvious because the symbols in this
grammar are splits of base symbols, and so splits of
the parent symbol will be involved in rules with each
pair of L,R splits. The compiler recognized this by
turning the L,R pair into a common subexpression
in a register. i.e. the compiler converts

P008 += L041*R008*6.200769e-001f;
P009 += L041*R008*6.201930e-001f;
P010 += L041*R008*6.202160e-001f;

into

float LRtmp = L041*R008;
P008 += LRtmp*6.200769e-001f;
P009 += LRtmp*6.201930e-001f;
P010 += LRtmp*6.202160e-001f;

and inspection of the resulting assembly code shows
that each rule is compiled into a single fused
multiply-add of LRtmp and a value from con-
stant memory into the P symbol register. This al-
lows grammar evaluation to approach the theoretical
Gflop limit of the GPU. For this to occur, the rules
need to be sorted with matching L,R pairs consecu-
tive. The compiler does not discover this constraint
otherwise or reorder instructions to make it possible.
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4.2 Exploiting L2 cache

Finally, we have to generate code to evaluate distinct
minor cube rulesets on each of the 8 SMXes con-
currently in order to benefit from the L2 cache, as
described in the next section. CUDATM (NVIDIA’s
GPU programming Platform) does not allow direct
control of SMX target, but we can achieve this by
running the kernel as 8 thread blocks and then test-
ing the block ID within the kernel and dispatching to
one of 8 blocks of rules. The CUDATM scheduler
will execute each thread block on a different SMX
which gives the desired distribution of code.

5 Symbol and Rule Blocking

The grammar formula (3) is very sparse. i.e. most
productions are impossible and most cmnp are zero.
For the Berkeley grammar used here, only 0.2% of
potential rules occur. Normally this would be bad
news for performance because it suggests low vari-
able re-use. However, the update relation is a tensor
rather than a matrix product. The re-use rate is deter-
mined by the number of rules in which a particular
symbol occurs, which is actually very high (more
than 1000 on average).

The number of symbols is about 1100 in this
grammar, and only a fraction can be stored in a
thread’s register set at one time (which is either 63 or
255 registers). To compute all productions we will
need to break the calculation into smaller groups of
variables that can fit in the available register space.

We can visualize this geometrically in figure 2.
The vectors of symbols P , L and R form the lead-
ing edges of this cube. The cube will be partitioned
into smaller subcubes indexed by subsets of those
symbols, and containing all the rules that apply be-
tween those symbols. The partitioning is chosen so
that the symbols in that subset can fit into available
register storage. In addition, the partitioning is cho-
sen to induce the same number of rules in each cube
- otherwise different code paths in the kernel will run
longer than others, and reduce overall performance.
This figure is a simplification - in order to balance
the number of rules in each subcube, the partition-
ing is not uniform in number of symbols as the figure
suggests.

As can be seen in figure 2, cube partitioning has
two levels. The original P-L-R cube is first par-

 

P R 

L 

Figure 2: Partition of the cube of symbol combinations
into major subcubes (left) and minor subcubes (right).

titioned into “major” cubes, which are then parti-
tioned into “minor” cubes (2x2x2 in the figure). A
major cube holds the symbols and rules that are ex-
ecuted in a single GPU kernel. The minor cubes in a
major cube hold the symbols and rules that are exe-
cuted in a particular SMX. For the GTX-680 or K10
with 8 SMXs, this allows different SMXs to concur-
rently work on different 2x2x2 subcubes in a major
cube. This arrangement substantially reduces main
memory bandwidth through the L2 cache (which is
shared between SMXes). Each symbol in a major
cube will be loaded just once from main memory,
but loaded into (up to) 4 different SMXes through
the L2 cache. Subcube division for caching in our
experiments roughly doubled the kernel’s speed.

However, simple partitioning will not work. e.g.
if we blocked into groups of 20 P, L, R symbols
(in order to fit into 60 registers), we would need
1100/20 = 55 blocks along each edge, and a total of
553 ≈ 160, 000 cells. Each symbol would need to
be loaded 552 = 3025 times, there would be almost
no symbol re-use. Throughput would be limited by
main memory speed to about 100 Gflops, an order
of magnitude slower than our target. Instead, we
use a rule partitioning scheme that creates as small a
symbol footprint as possible in each cube. We use a
spectral method to do this.

Before describing the spectral method we men-
tion an optimization that drops the symbol count by
2. Symbols are either terminal or non-terminal, and
in the Berkeley latent variable grammar there are
roughly equal numbers of them (503 non-terminals
and 631 terminals). All binary rules involve a non-
terminal parent. L and R symbols may be either ter-
minal or non-terminal, so there are 4 distinct types
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of rules depending on the L, R, types. We handle
each of these cases with a different kernel, which
rougly halves the number of rules along each edge
(it is either 503 or 631 along each edge). Further-
more, these kernels are called in different contexts,
and a different number of times. e.g. XX (L, R, both
non-terminal) kernels are called O(s3) times for sen-
tences of length s because both L, R children can oc-
cur at every position in the chart. XT and TX kernels
(with one terminal and one non-terminal symbol) are
called only O(s2) times since one of L or R must be
at the base of the chart. Finally TT kernels (both L
and R are terminals) will be called O(s) times. Per-
formance is therefore dominated by the XX kernel.

5.1 Spectral Partitioning

We explored a number of partitioning schemes for
both symbol and rule partitioning. In the end we
settled on a spectral symbol partitioning scheme.
Each symbol is a node in the graph to be parti-
tioned. Each node is assigned a feature vector de-
signed to match it to other nodes with similar sym-
bols occuring in many rules. There was considerable
evolution of this feature set to improve partitioning.
In the end the vector for a particular P symbol is
a = (a1, 0.1 ∗ a2, 0.1 ∗ a3) where a1 is a vector
whose elements are indexed by L, R pairs and whose
values represent the number of rules involving both
those symbols (and the parent symbol P), a2 encodes
L symbols and counts the number of rules contain-
ing that L symbol and P, and a3 encodes the R sym-
bols and counts rules containing that R symbol and
P. This feature vector produces a high similarity be-
tween P symbols that exactly share many L,R pairs
and lower similarity for shared L and R.

A spectral clustering/partitioning algorithm ap-
proximately minimizes the total edge weight of
graph cuts. In our case, the total weight of a cut is
to first order the product of the number of L,R pairs
that occur on each side of the cut, and to second or-
der the count of individual L and R pairs that span
the cut. Let S and T be the counts for a particular
LR pair or feature, then we are trying to minimize
the product S*T while keeping the sum S+T, which
is the total occurences of the feature on both sides of
the partition, constant. Such a product is minimized
when one of S or T is zero. Since many symbols
are involved, this typically does not happen to an in-

dividual symbol, but this heuristic is successful at
making the individual symbol or LR pair distribu-
tions across the cuts as unbalanced as possible. i.e.
one side of the cut has very few instances of a given
symbol. The number of instances of a symbol is an
upper bound on the number of subcells in which than
symbol occurs, and therefore on the number of times
it needs to be loaded from memory. Repeating this
operation recursively to produce a 3d cell decom-
position also concentrates each symbol in relatively
few cells, and so tends to reduce the total register
count per cell.

In a bit more detail, from the vectors a above we
construct a matrix A whose columns are the fea-
ture vectors for each P symbol. Next we construct
the symmetric normalized Laplacian L for the adja-
cency matrix AT A. We then compute the eigende-
composition of L, and extract the eigenvector cor-
responding to the second-smallest eigenvalue. Each
node in the graph is assign a real weight from the
corresponding element of this eigenvector. We sort
by these weights, and partition the symbols using
this sort order. We tried both recursive binary par-
titioning, and partitioning into k intervals using the
original sort order, and obtained better results with
the latter.

Partitioning is applied in order P, L, R to gener-
ate the major cubes of the rule/symbol partition, and
then again to generate minor cubes. This partition-
ing is far more efficient than a naive partitioning.
The XX ruleset for our Berkeley grammar has about
343,000 rules over a 5033 cube of non-terminal sym-
bols. The optimal PxLxR cube decomposition (op-
timal in net kernel throughput) for this ruleset was
6x2x2 for major cubes, and then 2x2x2 for minor
cubes. This requires 6x2x2=24 GPU kernels, each
of which encodes 2x2x2=8 code blocks (recall that
each of the 8 SMXs executes a different code block
from the same kernel)2. Most importantly the reload
rate (the mean number of major cells containing a
given symbol, or the mean number of times a sym-
bol needs to be reloaded from main memory) drops
to about 6 (vs. 3000 for naive partitioning). This
is very significant. Each symbol is used on average
343, 000/501 ≈ 6000 times overall by the XX ker-

2This cube decomposition also respects the constant cache
and instruction cache limits
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nel. Dropping the reload factor to 6 means that for
every 1 main memory load of a symbol, there are
approximately 1000 register or L2 cache reuses. A
little further calculation shows that L2 cache items
are used a little more than twice, so the register reuse
rate within kernel code blocks is close to 500 on av-
erage. This is what allows teraflop range speeds.

Note that while the maximum number of registers
per thread in the GTX-680 or K10 is 63, the aver-
age number of variables per minor cube is over 80
for our best-performing kernel, showing a number
of variables have non-overlapping lifetimes. Sorting
rules lexicographically by (L,R,P) does a good job
of minimizing variable lifetime overlap. However
the CUDATM compiler reorders variables anyway
with slightly worse performance on average (there
seems to be no way around this, other than generat-
ing assembly code directly).

6 GPU Viterbi Parse Extraction

In sequential programs for chart generation, it is pos-
sible to compute and save a pointer to the best split
point and score at each node in the chart. However,
here the scores at each node are computed with fine-
grained parallelism. The best split point and score
cannot be computed until all scores are available.
Thus there is a separate Viterbi step after chart scor-
ing.

The gap between GPU and CPU performance
is large enough that CPU Viterbi search was a
bottleneck, even though it requires asymptotically
less work (O(Gs2) worst case, O(Gs) typical) vs
O(Gs3) to compute the CKY scores. Therefore
we wrote a non-recusive GPU-based Viterbi search.
Current GPUs support “high-level” recursion, but
there is no stack in the SMX. A recursive pro-
gram must create software stack space in either
shared memory or main memory which serious per-
formance impact on small function calls. Instead,
we use an iterative version of Viterbi parse extrac-
tion which uses pre-allocated array storage to store
its output, and such that the partially-complete out-
put array encodes all the information the algorithm
needs to proceed - i.e. the output array is also the
algorithm’s work queue.

Ignoring unaries for the moment, a binary parse
tree for a sentence of length n has 2n − 1 nodes,

including preterminals, internal nodes, and the root.
We can uniquely represent a tree as an array with
2n − 1 elements. In this representation, each index
corresponds to a node in prefix (depth-first) order.
For example, the root is always at position 0, and the
second node will correspond to the root’s left child.
If this second node has a left child, it will be the third
node, otherwise the third node will be the second’s
right sibling.

We can uniquely identify the topology of the tree
by storing the “width” of each node in this array,
where the width is the number of words governed
by that constituent. For a node at position p, its left
child will always be at p + 1, and its right child will
always be at p + 2 ·w`, where w` is the width of the
left child. The symbol for each node can obviously
be stored with the height. For unaries, we require
exactly one unary rule per node, with the possibil-
ity that it is the identity rule, and so we store two
nodes: one for the “pre-unary” symbol, and one for
the “post-unary.” (Identity unary transitions are re-
moved in post-processing.)

Algorithm 1 Non-recursive Viterbi implementation.
The algorithm proceeds left-to-right in depth-first
order along the array representing the tree.
Input: Sentence length n, parse chart V[i,j]
Output: Array tree of size 2·n−2

tree[0].preunary← ROOT
tree[0].width← n
i← 0 . Current leftmost position for span
for p← 0 to 2·n−2 do

j← i + tree[p].width . Rightmost position
postu← BestUnary(V, tree[p].preunary, i, j)
tree[p].postunary← parent
if tree[p].width = 1 then

i← i + 1
else

lc, rc, k← BestBinary(V, parent, i, j)
tree[p + 1].preunary← lc
tree[p + 1].width← k − i
tree[p + 2·(k−i)].width← j - k
tree[p + 2·(k−i)].preunary← rc

end if
end for

Armed with this representation, we are ready to
describe algorithm 1. The algorithm proceeds in
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left-to-right order along the array. First, the sym-
bol of the root is recorded. Then, for each node in
the tree, we search for the best unary rule continuing
it. If the node is a terminal, then no more nodes can
contain the current word, and so we advance the po-
sition of the left most child. Otherwise, if the node
is a non-terminal, we then find its left and right chil-
dren, entering their respective symbols and widths
into the array representing the tree.

The GPU implementation follows the algorithm
outline above although is somewhat technical. Each
parse tree is handled by a separate thread block
(thread blocks are groups of threads that can com-
municate through shared memory, and run on a sin-
gle SMX). Each thread block includes a number of
threads which are used to rapidly (in partly parallel
fashion) iterate through rulesets and symbol vectors
for the BestBinary and BestUnary operations using
coalesced memory accesses. Each thread block first
loads the complete set of L and R scores for the
current split being explored. Recall that these are
in consecutive memory locations using the “span-
major” ordering, so these loads are coalesced. Then
the thread block parallel-iterates through the rules
for the current parent symbol, which will be in a con-
tiguous block of memory since the rules are sorted
by parent symbol, and again are coalesced. The
thread block therefore needs storage for all the L, R
symbol scores and in addition working storage pro-
portional to the number of threads (to hold the best
child symbol and its score from each thread). The
number of threads is chosen to maximize speed: too
few will cause each thread to do more work and to
run more slowly. Too many will limit the number of
thread blocks (since the total threads concurrently
running on an SMX is 1024) that can run concur-
rently. We found 128 to be optimum.

With these techniques, Viterbi search consumes
approximately 1% of the parser’s running time. Its
throughput is around 10 Gflops, and it is 50-100x
faster than a CPU reference implementation.

7 Experiments

The parser was tested in an desktop computer with
one Intel E5-2650 processor, 64 GB ram, and
2 GTX-690 dual GPUs (effectively 4 GTX-680
GPUs). The high-level parser code is written in a

matrix library in the Scala language, which access
GPU code through JNI and using the JCUDA wrap-
per library for CUDATM.

XX-kernel throughput was 900 Gflops per GPU
for sum-product calculation (which uses a single
FMA for most rules) and 700 Gflops per GPU for
max-sum calculations (which requires two instruc-
tions for most rules). Net parser throughput in-
cluding max-sum CKY evaluation, Viterbi scoring
traspose-copy etc was between 500 and 600 gi-
gaflops per GPU, or about 2 teraflops total. Parsing
max-length-30 sentences from the Penn Treebank
test set ran at 250 sentences/sec per GPU, or 1000
sentences/sec total. General sentences were parsed
at about half this rate, 120 sentences/sec per GPU,
or 480 sentences/sec for the system.

8 Conclusions and Future Work

We described a new approach to GPU constituency
parsing with surprisingly fast performance, close
to the theoretical limits of the GPU and similar to
dense matrix multiplication which achieves the de-
vices highest practical throughput. The resulting
parser parses 1000 length-30 sentences per second
in a 4-GPU computer. The parser has immediate ap-
plication to parsing and eventually to parser training.
The two highest-priority extensions are:

Addition of pruning: coarse-to-fine score pruning
should be applicable to our GPU design as it is to
CPU parsers. GPU pruning will not be as granu-
lar as CPU pruning and is unlikely to yield as large
speedups (4-5 orders of magnitude are common for
CPU parser pruning). But on the other hand, we
hardly need speedups that large, and 1-2 orders of
magnitude would be very useful.

Direct generation of assembly code. Currently our
code generator produces (> 1.7 million lines, about
same as the number of rules) C source code which
must be compiled into GPU binary code. While it
takes only 8 seconds to generate the source code, it
takes more than an hour to compile it. The com-
piler evidently applies a number of optimizations
that we cannot disable, and this takes time. This
is an obstacle to e.g. using this framework to train
a parser where there would be frequent updates to
the grammar. However, since symbol variables cor-
respond almost one-to-one with registers (modulo

1906



lifetime overlap and reuse, which our code gener-
ator is slightly better at than the compiler), there is
no reason for our code generator not to generate as-
sembly code directly. Presumably assembly code is
much faster to translate into kernel modules than C
source, and hopefully this will lead to much faster
kernel generation.

8.1 Code Release

The code will be released under a BSD-style open
source license once its dependencies are fully in-
tegrated. Pre- and Final releases will be here
https://github.com/jcanny/BIDParse
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Abstract

In this work, we argue that measures that have
been shown to quantify the degree of semantic
plausibility of phrases, as obtained from their
compositionally-derived distributional seman-
tic representations, can resolve syntactic am-
biguities. We exploit this idea to choose the
correct parsing of NPs (e.g., (live fish) trans-
porter rather than live (fish transporter)). We
show that our plausibility cues outperform
a strong baseline and significantly improve
performance when used in combination with
state-of-the-art features.

1 Introduction

Live fish transporter: A transporter of live fish
or rather a fish transporter that is not dead?
While our intuition, based on the meaning of this
phrase, prefers the former interpretation, the Stan-
ford parser, which lacks semantic features, incor-
rectly predicts the latter as the correct parse.1 The
correct syntactic parsing of sentences is clearly
steered by semantic information (as formal syn-
tacticians have pointed out at least since Fillmore
(1968)), and consequently the semantic plausibil-
ity of alternative parses can provide crucial evidence
about their validity.

An emerging line of parsing research capitalizes
on the advances of compositional distributional se-
mantics (Baroni and Zamparelli, 2010; Guevara,
2010; Mitchell and Lapata, 2010; Socher et al.,
2012). Information related to compositionally-
derived distributional representations of phrases is

1http://nlp.stanford.edu:8080/parser/
index.jsp

integrated at various stages of the parsing process
to improve overall performance.2 We are aware of
two very recent studies exploiting the semantic in-
formation provided by distributional models to re-
solve syntactic ambiguity: Socher et al. (2013) and
Le et al. (2013).

Socher et al. (2013) present a recursive neural net-
work architecture which jointly learns semantic rep-
resentations and syntactic categories of phrases. By
annotating syntactic categories with their distribu-
tional representation, the method emulates lexical-
ized approaches (Collins, 2003) and captures sim-
ilarity more flexibly than solutions based on hard
clustering (Klein and Manning, 2003; Petrov et al.,
2006). Thus, their approach mainly aims at improv-
ing parsing by capturing a richer, data-driven cate-
gorial structure.

On the other hand, Le et al. (2013) work with the
output of the parser. Their hypothesis is that parses
that lead to less semantically plausible interpreta-
tions will be penalized by a reranker that looks at
the composed semantic representation of the parse.
Their method achieves an improvement of 0.2% in
F-score. However, as the authors also remark, be-
cause of their experimental setup, they cannot con-
clude that the improvement is truly due to the se-
mantic composition component, a crucial issue that
is deferred to further investigation.

This work aims at corroborating the hypothesis
that the semantic plausibility of a phrase can in-
deed determine its correct parsing. We develop a
system based on simple and intuitive measures, ex-

2Distributional representations approximate word and
phrase meaning by vectors that record the contexts in which
they are likely to appear in corpora; for a review see, e.g., Tur-
ney and Pantel (2010).
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Type of NP # Example
A (N N) 1296 local phone company
(A N) N 343 crude oil sector
N (N N) 164 miracle home run
(N N) N 424 blood pressure medicine

Total 2227 -

Table 1: NP dataset

tracted from the compositional distributional repre-
sentations of phrases, that have been shown to corre-
late with semantic plausibility (Vecchi et al., 2011).

We develop a controlled experimental setup, fo-
cusing on a single syntactic category, that is, noun
phrases (NP), where our task can be formalized as
(left or right) bracketing. Unlike previous work,
we compare our compositional semantic component
against features based on n-gram statistics, which
can arguably also capture some semantic informa-
tion in terms of frequent occurrences of meaningful
phrases. Inspired by previous literature demonstrat-
ing the power of metrics based on Pointwise Mu-
tual Information (PMI) in NP bracketing (Nakov and
Hearst, 2005; Pitler et al., 2010; Vadas and Curran,
2011), we test an approach exploiting PMI features,
and show that plausibility features relying on com-
posed representations can significantly boost accu-
racy over PMI.

2 Setup

Noun phrase dataset To construct our dataset,
we used the Penn TreeBank (Marcus et al., 1993),
which we enriched with the annotation provided by
Vadas and Curran (2007a), since the original tree-
bank does not distinguish different structures inside
the NPs and always marks them as right bracketed,
e.g., local (phone company) but also blood (pressure
medicine). We focus on NPs formed by three ele-
ments, where the first can be an adjective (A) or a
noun (N), the other two are nouns. Table 1 summa-
rizes the characteristics of the dataset.3

Distributional semantic space As our source cor-
pus we use the concatenation of ukWaC, the English
Wikipedia (2009 dump) and the BNC, with a total of

3The dataset is available from: http://clic.cimec.
unitn.it/composes

about 2.8 billion tokens.4 We collect co-occurrence
statistics for the top 8K Ns and 4K As, plus any
other word from our NP dataset that was below this
rank. Our context elements are composed of the top
10K content words (adjectives, adverbs, nouns and
verbs). We use a standard bag-of-words approach,
counting within-sentence collocates for every target
word. We apply (non-negative) Pointwise Mutual
Information as weighting scheme and dimensional-
ity reduction using Non-negative Matrix Factoriza-
tion, setting the number of reduced-space dimen-
sions to 300.5

Composition functions We experiment with vari-
ous composition functions, chosen among those sen-
sitive to internal structure (Baroni and Zamparelli,
2010; Guevara, 2010; Mitchell and Lapata, 2010),
namely dilation (dil), weighted additive (wadd), lex-
ical function (lexfunc) and full additive (fulladd).6

For model implementation and (unsupervised) es-
timation, we rely on the freely available DISSECT
toolkit (Dinu et al., 2013).7 For all methods, vectors
were normalized before composing, both in training
and in generation. Table 2 presents a summary de-
scription of the composition methods we used.

Following previous literature (Mitchell and Lap-
ata, 2010), and the general intuition that adjectival
modification is quite a different process from noun
combination (Gagné and Spalding, 2009; McNally,
2013), we learn different parameters for noun-noun
(NN) and adjective-noun (AN) phrases. As an ex-
ample of the learned parameters, for the wadd model
the ratio of parameters w1 and w2 is 1:2 for ANs,
whereas for NNs it is almost 1:1, confirming the in-
tuition that a non-head noun plays a stronger role in
composition than an adjective modifier.

4http://wacky.sslmit.unibo.it, http://en.
wikipedia.org, http://www.natcorp.ox.ac.uk

5For tuning the parameters of the semantic space, we com-
puted the correlation of cosines produced with a variety of pa-
rameter settings (SVD/NMF/no reduction, PMI/Local MI/raw
counts/log transform, 150 to 300 dimensions in steps of 50) with
the word pair similarity ratings in the MEN dataset: http:
//clic.cimec.unitn.it/˜elia.bruni/MEN

6We do not consider the popular multiplicative model, as it
produces identical representations for NPs irrespective of their
internal structure.

7http://clic.cimec.unitn.it/composes/
toolkit/
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Model Composition function Parameters
wadd w1~u+ w2~v w1, w2

dil ||~u||22~v + (λ− 1)〈~u,~v〉~u λ
fulladd W1~u+W2~v W1,W2 ∈ Rm×m

lexfunc Au~v Au ∈ Rm×m

Table 2: Composition functions of inputs (u, v).

Recursive composition In this study we also ex-
periment with recursive composition; to the best
of our knowledge, this is the first time that these
composition functions have been explicitly used in
this manner. For example, given the left brack-
eted NP (blood pressure) medicine, we want to
obtain its compositional semantic representation,−−−−−−−−−−−−−−−−−−→
blood pressure medicine. First, basic composition
is applied, in which

−−−→
blood and −−−−−−→pressure are com-

bined with one of the composition functions. Fol-
lowing that, we apply recursive composition; the
output of basic composition, i.e.,

−−−−−−−−−−→
blood pressure,

is fed to the function again to be composed with the
representation of

−−−−−−→
medicine.

The latter step is straightforward for all com-
position functions except lexfunc applied to left-
bracketed NPs, where the first step should return a
matrix representing the left constituent (blood pres-
sure in the running example). To cope with this nui-
sance, we apply the lexfunc method to basic compo-
sition only, while recursive representations are de-
rived by summing (e.g.,

−−−−−−−−−−→
blood pressure is obtained

by multiplying the blood matrix by the pressure vec-
tor, and it is then summed to

−−−−−−→
medicine).

3 Experiments

Semantic plausibility measures We use mea-
sures of semantic plausibility computed on com-
posed semantic representations introduced by Vec-
chi et al. (2011). The rationale is that the correct
(wrong) bracketing will lead to semantically more
(less) plausible phrases. Thus, a measure able to dis-
criminate semantically plausible from implausible
phrases should also indicate the most likely parse.
Considering, for example, the alternative parses of
miracle home run, we observe that home run is
a more semantically plausible phrase than miracle
home. Furthermore, we might often refer to a base-
ball player’s miracle home run, but we doubt that

even a miracle home can run! Given the com-
posed representation of an AN (or NN), Vecchi et
al. (2011) define the following measures:
• Density, quantified as the average cosine of a

phrase with its (top 10) nearest neighbors, cap-
tures the intuition that a deviant phrase should
be isolated in the semantic space.
• Cosine of phrase and head N aims to capture

the fact that the meaning of a deviant AN (or
NN) will tend to diverge from the meaning of
the head noun.
• Vector length should capture anomalous vec-

tors.
Since length, as already observed by Vecchi et al.,
is strongly affected by independent factors such as
input vector normalization and the estimation pro-
cedure, we introduce entropy as a measure of vec-
tor quality. The intuition is that meaningless vec-
tors, whose dimensions contain mostly noise, should
have high entropy.

NP Parsing as Classification Parsing NPs con-
sisting of three elements can be treated as bi-
nary classification; given blood pressure medicine,
we predict whether it is left- ((blood pres-
sure) medicine) or right-bracketed (blood (pressure
medicine)).

We conduct experiments using an SVM with Ra-
dial Basis Function kernel as implemented in the
scikit-learn toolkit.8 Our dataset is split into 10 folds
in which the ratio between the two classes is kept
constant. We tune the SVM complexity parameter
C on the first fold and we report accuracy results on
the remaining nine folds after cross-validation.

Features Given a composition function f , we de-
fine the following feature sets, illustrated with the
usual blood pressure medicine example, which are
used to build different classifiers:
• fbasic consists of the semantic plausibility

measures described above computed for the
two-word phrases resulting from alternative
bracketings, i.e., 3 measures for each bracket-
ing, evaluated on blood pressure and pressure
medicine respectively, for a total of 6 features.
• frec contains 6 features computed on the vec-

tors resulting from the recursive compositions

8http://scikit-learn.org/
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Features Accuracy
right 65.6
pos 77.3
lexfuncbasic 74.6
lexfuncrec 74.0
lexfuncplausibility 76.2
waddbasic 75.9
waddrec 78.2
waddplausibility 78.7
pmi 81.2
pmi+lexfuncplausibility 82.9
pmi+waddplausibility 85.6

Table 3: Evaluation of feature sets from Section 3

(blood pressure) medicine and blood (pressure
medicine).
• fplausibility concatenates fbasic and frec.
• pmi contains the PMI scores extracted from

our corpus for blood pressure and pressure
medicine.9

• pmi + fplausibility concatenates pmi and
fplausibility.

Baseline Model Given the skewed bracketing dis-
tribution in our dataset, we implement the following
majority baselines: a) right classifies all phrases
as right-bracketed; b) pos classifies NNN as left-
bracketed (Lauer, 1995), ANN as right-bracketed.

4 Results and Discussion

Table 3 omits results for dil and fulladd since they
were outperformed by the right baseline. That
wadd- and lexfunc-based plausibility features per-
form well above this baseline is encouraging, since
it represents the typical default behaviour of parsers
for NPs, although note that these features perform
comparably to the pos baseline, which would be
quite simple to embed in a parser (for English, at
least). For both models, using both basic and recur-
sive features leads to a boost in performance over
basic features alone. Note that recursive features
(frec) achieve at least equal or better performance
than basic ones (fbasic). We expect indeed that in
many cases the asymmetry in plausibility will be

9Several approaches to computing PMI for these purposes
have been proposed in the literature including the dependency
model (Lauer, 1995) and the adjacency model (Marcus, 1980).
We implement the latter since it has been shown to perform
better (Vadas and Curran, 2007b) on NPs extracted from Penn
TreeBank.

sharper when considering the whole NP rather than
its sub-parts; a pressure medicine is still a conceiv-
able concept, but blood (pressure medicine) makes
no sense whatsoever. Finally, wadd outperforms
both the more informative baseline pos and lexfunc.
The difference between wadd and lexfunc is signif-
icant (p < 0.05)10 only when they are trained with
recursive composition features, probably due to our
suboptimal adaptation of the latter to recursive com-
position (see Section 2).

The pmi approach outperforms the best
plausibility-based feature set waddplausibility.
However, the two make only a small proportion of
common errors (29% of the total waddplausibility

errors, 32% for pmi), suggesting that they are com-
plementary. Indeed the pmi + waddplausibility

combination significantly outperforms pmi alone
(p < 0.001), indicating that plausibility features
can improve NP bracketing on top of the pow-
erful PMI-based approach. The same effect can
also be observed in the combination of pmi +
lexfuncplausibility, which again significantly
outperforms pmi alone (p < 0.05). This behaviour
further suggests that the different types of errors are
not a result of the parameters or type of composi-
tion applied, but rather highlights fundamental dif-
ferences in the kind of information that PMI and
composition models are able to capture.

One hypothesis is that compositional models are
more robust for low-frequency NPs, for which
PMI estimates will be less accurate; results on
those low-frequency trigrams only (20% of the NP
dataset, operationalized as those consisting of bi-
grams with frequency ≤ 100) revealed indeed that
waddplausibility performed 8.1% better in terms
of accuracy than pmi.

5 Conclusion

Our pilot study showed that semantic plausibility,
as measured on compositional distributional repre-
sentations, can improve syntactic parsing of NPs.
Our results further suggest that state-of-the-art PMI
features and the ones extracted from compositional
representations are complementary, and thus, when
combined, can lead to significantly better results.
Besides paving the way to a more general integration

10Significance values are based on t-tests.
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of compositional distributional semantics in syntac-
tic parsing, the proposed methodology provides a
new way to evaluate composition functions.

The relatively simple-minded wadd approach out-
performed more complex models such as lexfunc.
We plan to experiment next with more linguistically
motivated ways to adapt the latter to recursive com-
position, including hybrid methods where ANs and
NNs are treated differently. We would also like
to consider more sophisticated semantic plausibility
measures (e.g., supervised ones), and apply them to
other ambiguous syntactic constructions.
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Abstract

We present a new approach to referring ex-
pression generation, casting it as a density es-
timation problem where the goal is to learn
distributions over logical expressions identi-
fying sets of objects in the world. Despite
an extremely large space of possible expres-
sions, we demonstrate effective learning of
a globally normalized log-linear distribution.
This learning is enabled by a new, multi-stage
approximate inference technique that uses a
pruning model to construct only the most
likely logical forms. We train and evaluate
the approach on a new corpus of references
to sets of visual objects. Experiments show
the approach is able to learn accurate models,
which generate over 87% of the expressions
people used. Additionally, on the previously
studied special case of single object reference,
we show a 35% relative error reduction over
previous state of the art.

1 Introduction

Understanding and generating natural language re-
quires reasoning over a large space of possible
meanings; while many statements might achieve the
same goal in a certain situation, some are more
likely to be used than others. In this paper, we model
these preferences by learning distributions over sit-
uated meaning use.

We focus on the task of referring expression gen-
eration (REG), where the goal is to produce an ex-
pression which uniquely identifies a pre-defined ob-
ject or set of objects in an environment. In prac-
tice, many such expressions can be produced. Fig-

ure 1 shows referring expressions provided by hu-
man subjects for a set of objects (Figure 1a), demon-
strating variation in utterances (Figure 1b) and their
corresponding meaning representations (Figure 1c).
Although nearly a third of the people simply listed
the colors of the desired objects, many other strate-
gies were also used and no single option dominated.
Learning to model such variation would enable sys-
tems to better anticipate what people are likely to
say and avoid repetition during generation, by pro-
ducing appropriately varied utterances themselves.
With these goals in mind, we cast REG as a den-
sity estimation problem, where the goal is to learn a
distribution over logical forms.

Learning such distributions is challenging. For a
target set of objects, the number of logical forms
that can be used to describe it grows combinatori-
ally with the number of observable properties, such
as color and shape. However, only a tiny fraction
of these possibilities are ever actually used by peo-
ple. We must learn to efficiently find these few, and
accurately estimate their associated likelihoods.

We demonstrate effective learning of a globally
normalized log-linear distribution with features to
account for context dependence and communicative
goals. We use a stochastic gradient descent algo-
rithm, where the key challenge is the need to com-
pute feature expectations over all possible logical
forms. For that purpose, we present a multi-stage
inference algorithm, which progressively constructs
meaning representations with increasing complex-
ity, and learns a pruning model to retain only those
that are likely to lead to high probability expres-
sions. This approach allows us to consider a large
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(a)

The green, red, orange and yellow toys. (1)
The green, red, yellow, and orange objects. (1)

The red, green, yellow and orange toys. (1)
The red, yellow, orange and green objects. (1)
All the green, red, yellow and orange toys. (1)

All the yellow, orange, red and green objects. (1)
All the pieces that are not blue or brown. (2)

All items that are not brown or blue. (2)
All items that are not brown or blue. (2)
Everything that is not brown or blue. (3)
Everything that is not purple or blue. (3)

All but the black and blue ones. (4)
Any toy but the blue and brown toys. (4)

Everything that is green, red, orange or yellow. (5)
All objects that are not triangular or blue. (6)

Everything that is not blue or a wedge. (7)
Everything that is not a brown or blue toy. (8)
All but the blue piece and brown wedge. (9)

Everything except the brown wedge and the blue object. (10)
All pieces but the blue piece and brown triangle shape. (11)

(b)

P̂ (z|S,G) z
0.30 ι(λx.(yellow(x) ∨ orange(x) ∨ red(x) ∨ green(x)) ∧ object(x) ∧ plu(x)) (1)
0.15 ι(λx.¬(brown(x) ∨ blue(x)) ∧ object(x) ∧ plu(x)) (2)
0.10 Every(λx.¬(brown(x) ∨ blue(x)) ∧ object(x) ∧ sg(x)) (3)
0.10 Every(λx.object(x) ∧ sg(x)) \ [ι(λx.(blue(x) ∨ brown(x)) ∧ object(x) ∧ plu(x)] (4)
0.05 Every(λx.(yellow(x) ∨ orange(x) ∨ red(x) ∨ green(x)) ∧ object(x) ∧ sg(x)) (5)
0.05 ι(λx.(triangle(x) ∨ blue(x)) ∧ object(x) ∧ plu(x)) (6)
0.05 Every(λx.object(x) ∧ sg(x)¬(blue(x) ∨ equal(x,A(λy.triangle(y) ∧ sg(y))))) (7)
0.05 Every(λx.object(x) ∧ sg(x) ∧ ¬equal(x,A(λy.(brown(y) ∨ blue(y)) ∧ object(y) ∧ sg(y)))) (8)
0.05 Every(λx.object(x) ∧ sg(x)) \ [ι(λx.(blue(x) ∧ object(x) ∧ sg(x)) ∨ (brown(x) ∧ triangle(x) ∧ sg(x))] (9)
0.05 Every(λx.object(x) ∧ sg(x)) \ [ι(λx.brown(x) ∧ triangle(x) ∧ sg(x)) ∪ ι(λy.blue(y) ∧ object(y) ∧ sg(x))] (10)
0.05 ι(λx.object(x) ∧ plu(x)) \ [ι(λx.(blue(x) ∧ object(x) ∧ sg(x)) ∨ (brown(x) ∧ triangle(x) ∧ object(x) ∧ sg(x))] (11)

(c)

Figure 1: An example scene from our object selection dataset. Figure 1a shows the image shown to subjects
on Amazon Mechanical Turk. The target set G is the circled objects. Figure 1b shows the 20 sentences
provided as responses. Figure 1c shows the empirical distribution P̂ (z|G,S) for this scene, estimated by
labeling the sentences in Figure 1b. The correspondence between a sentence in 1b and its labeled logical
expression in 1c is indicated by the number in parentheses. Section 5.1 presents a discussion of the space of
possible logical forms.

set of possible meanings, while maintaining compu-
tational tractability.

To represent meaning we build on previous ap-
proaches that use lambda calculus (Carpenter, 1997;
Zettlemoyer and Collins, 2005; Artzi and Zettle-
moyer, 2013b). We extend these techniques by mod-
eling the types of plurality and coordination that are
prominent in expressions which refer to sets.

We also present a new corpus for the task of re-
ferring expression generation.1 While most previ-
ous REG data focused on naming single objects,

1The corpus was collected using Amazon Mechanical Turk
and is available on the authors’ websites.

to the best of our knowledge, this is the first cor-
pus with sufficient coverage for learning to name
sets of objects. Experiments demonstrate highly ac-
curate learned models, able to generate over 87%
of the expressions people used. On the previously
studied special case of single object reference, we
achieve state-of-the-art performance, with over 35%
relative error reduction over previous state of the
art (Mitchell et al., 2013).

2 Related Work

Referring expression generation has been exten-
sively studied in the natural language generation
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community, dating as far back as SHRDLU (Wino-
grad, 1972). Most work has built on variations of
the Incremental Algorithm (Dale and Reiter, 1995),
a deterministic algorithm for naming single ob-
jects that constructs conjunctive logical expressions.
REG systems are used in generation pipelines (Dale
and Reiter, 2000) and are also commonly designed
to be cognitively plausible, for example by following
Gricean maxims (Grice, 1975). Krahmer and van
Deemter (2012) and van Deemter et al. (2012a) sur-
vey recent literature on REG.

Different approaches have been proposed for gen-
erating referring expressions for sets of objects.
Van Deemter (2002) extended the Incremental Al-
gorithm to allow disjunction and negation, enabling
reference to sets. Further work attempted to re-
solve the unnaturally long expressions which could
be generated by this approach (Gardent, 2002; Ho-
racek, 2004; Gatt and van Deemter, 2007). Later, de-
scription logic was used to name sets (Areces et al.,
2008; Ren et al., 2010). All of these algorithms are
manually engineered and deterministic.

In practice, human utterances are surprisingly
varied, loosely following the Gricean ideals (van
Deemter et al., 2012b). Much recent work in REG
has identified the importance of modeling the vari-
ation observed in human-generated referring ex-
pressions (Viethen and Dale, 2010; Viethen et al.,
2013; van Deemter et al., 2012b; Mitchell et al.,
2013), and some approaches have applied machine-
learning techniques to single-object references (Vi-
ethen and Dale, 2010; Mitchell et al., 2011a,b). Re-
cently, Mitchell et al. (2013) introduced a proba-
bilistic approach for conjunctive descriptions of sin-
gle objects, which will provide a comparison base-
line for experiments in Section 8. To the best of
our knowledge, this paper presents the first learned
probabilistic model for referring expressions defin-
ing sets, and is the first effort to treat REG as a den-
sity estimation problem.

REG is related to content selection, which
has been studied for generating text from
databases (Konstas and Lapata, 2012), event
streams (Chen et al., 2010), images (Berg et al.,
2012; Zitnick and Parikh, 2013), and text (Barzilay
and Lapata, 2005; Carenini et al., 2006). However,
most approaches to this problem output bags of con-
cepts, while we construct full logical expressions,

allowing our approach to capture complex relations
between attributes.

Finally, our approach to modeling meaning us-
ing lambda calculus is related to a number of ap-
proaches that used similar logical representation
in various domains, including database query in-
terfaces (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005, 2007), natural language instruc-
tions (Chen and Mooney, 2011; Matuszek et al.,
2012b; Kim and Mooney, 2012; Artzi and Zettle-
moyer, 2013b), event streams (Liang et al., 2009;
Chen et al., 2010), and visual descriptions (Ma-
tuszek et al., 2012a; Krishnamurthy and Kollar,
2013). Our use of logical forms follows this line of
work, while extending it to handle plurality and co-
ordination, as described in Section 4.1. In addition,
lambda calculus was shown to enable effective nat-
ural language generation from logical forms (White
and Rajkumar, 2009; Lu and Ng, 2011). If com-
bined with these approaches, our approach would
allow the creation of a complete REG pipeline.

3 Technical Overview

Task Let Z be a set of logical expressions that se-
lect a target set of objects G in a world state S, as
formally defined in Section 5.1. We aim to learn a
probability distribution P (z | S,G), with z ∈ Z .

For example, in the referring expressions domain
we work with, the state S = {o1, . . . , on} is a set
of n objects oi. Each oi has three properties: color,
shape and type. The target setG ⊆ S is the subset of
objects to be described. Figure 1a shows an example
scene. The world state S includes the 11 objects in
the image, where each object is assigned color (yel-
low, green . . . ), shape (cube, cylinder . . . ) and type
(broccoli, apple . . . ). The target set G contains the
circled objects. Our task is to predict a distribution
which closely matches the empirical distribution in
Figure 1c.

Model and Inference We model P (z|S,G) as a
globally normalized log-linear model, using features
of the logical form z, and its execution with respect
to S and G. Since enumerating all z ∈ Z is in-
tractable, we develop an approximate inference al-
gorithm which constructs a high quality candidate
set, using a learned pruning model. Section 5.2 de-
scribes the globally scored log-linear model. Sec-
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tion 5.3 presents a detailed description of the infer-
ence procedure.

Learning We use stochastic gradient descent to
learn both the global scoring model and the explicit
pruning model, as described in section 6. Our data
consists of human-generated referring expressions,
gathered from Amazon Mechanical Turk. These
sentences are automatically labelled with logical
forms with a learned semantic parser, providing a
stand-in for manually labeled data (see Section 7).

Evaluation Our goal is to output a distribution
that closely matches the distribution that would be
produced by humans. We therefore evaluate our
model with gold standard labeling of crowd-sourced
referring expressions, which are treated as samples
from the implicit distribution we are trying to model.
The data and evaluation procedure are described in
Section 7. The results are presented in Section 8.

4 Modeling Referring Expressions

4.1 Semantic Modeling

Our semantic modeling approach uses simply-typed
lambda-calculus following previous work (Carpen-
ter, 1997; Zettlemoyer and Collins, 2005; Artzi and
Zettlemoyer, 2013b), extending it in one important
way: we treat sets of objects as a primitive type,
rather than individuals. This allows us to model plu-
rality, cardinality, and coordination for the language
observed in our data, and is further motivated by re-
cent cognitive science evidence that sets and their
properties are represented as single units in human
cognition (Scontras et al., 2012).

Plurals Traditionally, noun phrases are identified
with the entity-type e and pick out individual ob-
jects (Carpenter, 1997). This makes it difficult to
interpret plural noun-phrases which pick out a set of
objects, like “The red cubes”. Previous approaches
would map this sentence to the same logical expres-
sion as the singular “The red cube”, ignoring the se-
mantic distinction encoded by the plural.

Instead, we define the primitive entity e to range
over sets of objects. 〈e, t〉-type expressions are
therefore functions from sets to a truth-value. These
are used in two ways, modeling both distributive and
collective predicates (cf. Stone, 2000):

1. Distributive predicates are 〈e, t〉-type expres-
sions which will return true if every individual
in the set has a given property. For example, the
expression λx.red(x) will be true for all sets
which contain only objects for which the value
red is true.

2. Collective predicates are 〈e, t〉-type expres-
sions which indicate a property of the set it-
self. For example, in the phrase “the two
cubes”, “two” corresponds to the expression
λx.cardinality2(x) which will return true
only for sets which have exactly two members.

We define semantic plurality in terms of two spe-
cial collective predicates: sg for singular and plu
for plural. For examples, “cube” is interpreted as
λx.cube(x) ∧ sg(x), whereas “cubes” is interpreted
as λx.cube(x) ∧ plu(x). The sg predicate returns
true only for singleton sets. The plu predicate re-
turns true for sets that contain two or more objects.

We also model three kinds of determiners,
functional-type 〈〈e, t〉, e〉-type expressions which
select a single set from the power-set represented
by their 〈e, t〉-type argument. The definite deter-
miner “the” is modeled with the predicate ι, which
resolves to the maximal set amongst those licensed
by its argument. The determinerEvery only accepts
〈e, t〉-type arguments that define singleton sets (i.e.
the argument includes the sg predicate) and returns
a set containing the union of these singletons. For
example, although “red cube” is a singular expres-
sion, “Every red cube” refers to a set. Finally, the
indefinite determiner “a” is modeled with the logical
constant A, which picks a singleton set by implic-
itly introducing an existential quantifier (Artzi and
Zettlemoyer, 2013b).2

Coordination Two types of coordination are
prominent in set descriptions. The first is attribute
coordination, which is typically modeled with the
boolean operators: ∧ for conjunction and ∨ for dis-
junction. For example, the phrase “the red cubes
and green rectangle” involves a disjunction that joins
two conjunctive expressions, both within the scope
of the definite determiner: ι(λx.(red(x)∧cube(x)∧
plu(x)) ∨ (green(x) ∧ rectangle(x) ∧ sg(x))).

2This treatment of the indefinite determiner is related to gen-
eralized skolem terms as described by Steedman (2011).
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The second kind of coordination, a new addition
of this work, occurs when two sets are coordinated.
This can either be set union (∪) as in the phrase “The
cubes and the rectangle” (ι(λx.cube(x)∧ plu(x))∪
ι(λx.rectangle(x) ∧ sg(x)))), or set difference
(\) as in the phrase “All blocks except the green
cube”: (ι(λx.object(x)∧plu(x))\ι(λx.green(x)∧
cube(x) ∧ sg(x))).

4.2 Visual Domain

Objects in our scenes are labeled with attribute val-
ues for four attribute types: color (7 values, such
as red, green), shape (9 values, such as cube,
sphere), type (16 values, such as broccoli, apple)
and a special object property, which is true for
all objects. The special object property captures
the role of descriptions that are true for all objects,
such as “toy” or “item”. Each of these 33 attribute
values corresponds to an 〈e, t〉-type predicate.

5 Model and Inference

In this section, we describe our approach to mod-
eling the probability P (z | S,G) of a logical form
z ∈ Z that names a set of objects G in a world S, as
defined in Section 3. We first define Z (Section 5.1),
and then present the distribution (Section 5.2) and an
approximate inference approach that makes use of a
learned pruning model (Section 5.3).

5.1 Space of Possible Meanings

The set Z defines logical expressions that we will
consider for picking the target set G in state S. In
general, we can construct infinitely many such ex-
pressions. For example, every z ∈ Z can be triv-
ially extended to form a new candidate z′ for Z
by adding a true clause to any conjunct it contains.
However, the vast majority of such expressions are
overly complex and redundant, and would never be
used in practice as a referring expression.

To avoid this explosion, we limit the type and
complexity of the logical expressions that are in-
cluded in Z . We consider only e-type expressions,
since they name sets, and furthermore only include
expressions that name the desired target set G.3 We

3We do not attempt to model underspecified or otherwise
incorrect expressions, although our model could handle this by
considering all e-type expressions.

• p : 〈〈e, t〉, e〉, e1 : 〈e, t〉 → p(e1) : e

e.g.
p = ι : 〈〈e, t〉, e〉
e1 = λx.cube(x) ∧ sg(x) : 〈e, t〉
ι(λx.cube(x) ∧ sg(x)) : e

• p : 〈t, t〉, e1 : 〈e, t〉 → λx.p(e1(x)) : 〈e, t〉

e.g.
p = ¬ : 〈t, t〉
e1 = λx.red(x) : 〈e, t〉
λx.¬(red(x)) : 〈e, t〉

• p : 〈e, 〈e, t〉〉, e1 : e→ λx.(p(x))(e1)

e.g.
p = equal : 〈e, 〈e, t〉〉
e1 = A(λy.cube(y) ∧ sg(y)) : e

λx.equal(x,A(λy.cube(y) ∧ sg(y)))

• p : 〈e, 〈e, e〉〉, e1 : e, e2 : e→ (p(e1))(e2) : e

e.g.

p = \ : 〈e, 〈e, e〉〉
e1 = ι(λx.cube(x) ∧ plu(x)) : e
e2 = Every(λx.object(x) ∧ sg(x)) : e

Every(λx.object(x) ∧ sg(x)) \
ι(λx.cube(x) ∧ plu(x)) : e

• p : 〈t, 〈t, t〉〉, e1 : 〈e, t〉, e2〈e, t〉 →
λx.(p(e1(x)))(e2(x)) : 〈e, t〉

e.g.

p = ∧ : 〈t, 〈t, t〉〉
e1 = λx.red(x) : 〈e, t〉
e2 = λx.cube(x) : 〈e, t〉
λx.red(x) ∧ cube(x) : e

Figure 2: The five rules used during generation.
Each rule is a template which takes a predicate p : t
of type t and one or two arguments ei : ti, with type
ti. The output is the logical expression after the ar-
row→, constructed using the inputs as shown.

also limit the overall complexity of each z ∈ Z , to
contain not more than M logical constants.

To achieve these constraints, we define an induc-
tive procedure for enumerating Z , in order of com-
plexity. We first define Aj to be the set of all e- and
〈e, t〉-type expressions that contain exactly j logi-
cal constants. Figure 2 presents five rules that can be
used to constructAj by induction, for j = 1, . . . ,∞,
by repeatedly adding new constants to expressions
in Aj′ for j′ < j. Intuitively, Aj is the set of all
complexity j expressions that can be used as sub-
expressions for higher complexity entires in our final
set Z . Next, we define Zj to be the e-type expres-
sions inAj that name the correct setG. And, finally,
Z = ∪j=1...MZj of all correct expressions up to a
maximum complexity of M .

This construction allows for a finite Z with good
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empirical coverage, as we will see in the experi-
ments in Section 8. However, Z is still prohibitively
large for the maximum complexities used in practise
(for example M = 20). Section 5.3 presents an ap-
proach for learning models to prune Z , while still
achieving good empirical coverage.

5.2 Global Model
Given a finite Z , we can now define our desired
globally normalized log-linear model, conditioned
on the state S and set of target objects G:

PG(z | S,G; θ) =
1

C
eθ·φ(z,S,G) (1)

where θ ∈ Rn is a parameter vector, φ(z, S,G) ∈
Rn is a feature function and C is the normalization
constant. Section 5.4 defines the features we use.

5.3 Pruning Z
As motivated in Section 5.1, the key challenge for
our global model in Equation 1 is that the set Z is
too large to be explicitly enumerated. Instead, we
designed an approach for learning to approximate Z
with a subset of the highly likely entries, and use this
subset as a proxy for Z during inference.

More specifically, we define a binary distribution
that is used to classify whether each a ∈ Aj is likely
to be used as a sub-expression in Z , and prune each
Aj to keep only the top k most likely entries. This
distribution is a logistic regression model:

Pj(a | S,G;πj) =
eπj ·φ(a,S,G)

1 + eπj ·φ(a,S,G)
(2)

with features φ(a, S,G) ∈ Rn and parameters πj ∈
Rn. This distribution uses the same features as the
global model presented in Equation 1, which we de-
scribe in Section 5.4.

Together, the pruning model and global model de-
fine the distribution P̂ (z | G,S; θ,Π) over z ∈ Z ,
conditioned on the world state S and target set G,
and parameterized by both the parameters θ of the
global model and the parameters Π = {π1, . . . , πM}
of the pruning models.

5.4 Features
We use three kinds of features: logical expression
structure features, situated features and a complexity
feature. All features but the complexity feature are

shared between the global model in Equation 1 and
the pruning model in Equation 2. In order to avoid
overly specific features, the attribute value predi-
cates in the logical expressions are replaced with
their attribute type (ie. red → color). In addition,
the special constants sg and plu are ignored when
computing features.

In the following description of our features, all
examples are computed for the logical expression
ι(λx.red(x) ∧ object(x) ∧ plu(x)), with respect to
the scene and target set in Figure 1a.

Structure Features We use binary features that
account for the presence of certain structures in the
logical form, allowing the model to learn common
usage patterns.

• Head Predicate - indicator for use of a logi-
cal constant as a head predicate in every sub-
expression of the expression. A head predicate
is the top-level operator of an expression. For
example, the head predicate of the expression
“λx.red(x) ∧ object(x)” is “∧” and the head
of λx.red(x) is red. For our running example,
the head features are ι, ∧, color, object.

• Head-Predicate Bigrams and Trigrams -
head-predicate bigrams are defined to be the
head predicate of a logical form, and the head
predicate of one of its children. Trigrams
are similarly defined. E.g. bigrams: [ι,∧],
[∧, color], [∧, object], and trigrams: [ι,∧, red],
[ι,∧, object].

• Conjunction Duplicate - this feature fires if a
conjunctive expression contains duplicate sub-
expressions amongst its children.

• Coordination Children - this feature set indi-
cates the presence of a coordination subexpres-
sion (∧, ∨, ∪ or \) and the head expressions
of all pairs and triples of its child expressions.
E.g. [∧; red, object].

Situated Features These features take into ac-
count the evaluation of the logical form z with re-
spect to the state S and target set G. They capture
common patterns between the target set G and the
object groups named by subexpressions of z.
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• Head Predicate and Coverage - this fea-
ture set indicates the head predicate of ev-
ery sub-expression of the logical form, com-
bined with a comparison between the execu-
tion of the sub-expression and the target set
G. The possible values for this comparison
(which we call the “coverage” of the expres-
sion with respect to G) are: EQUAL, SUBSET
(SUB), SUPERSET (SPR), DISJOINT, ALL,
EMPTY and OTHER. E.g. [ι,SUB], [∧,SUB],
[color,SUB], [object,ALL]

• Coordination Child Coverage - this feature
set indicates the head-predicate of a coordina-
tion subexpression, combined with the cover-
age of all pairs and triples of its child expres-
sions. E.g. [∧;SUB,ALL].

• Coordination Child Relative Coverage - this
feature set indicates, for every pair of child sub-
expressions of coordination expressions in the
logical form, the coverage of the child sub-
expressions relative to each other. The pos-
sible relative coverage values are: SUB-SPR,
DISJOINT, OTHER. E.g. [∧;SUB-SPR].

Complexity Features We use a single real-
numbered feature to account for the complexity of
the logical form. We define the complexity of a log-
ical form to be the number of logical constants used.
Our running example has a complexity of 4. This
feature is only used in the global model, since the
pruning model always considers logical expressions
of fixed complexity.

6 Learning

Figure 3 presents the complete learning algorithm.
The algorithm is online, using stochastic gradi-
ent descent updates for both the globally scored
density estimation model and the learned pruning
model. The algorithm assumes a dataset of the form
{(Zi, Si, Gi) : i = 1 . . . n} where each example
scene includes a list of logical expressions Zi, a
world state Si, and a target set of objects, Gi, which
will be identified by the resulting logical expres-
sions. The output is learned parameters for both the
globally scored density estimation model θ, and for
the learned pruning models Π.

Inputs: Training set {(Zi, Si, Gi) : i = 1 . . . n}, where Zi is
a list of logical forms, Si is a world state, and Gi is a target
set of objects. Number of iterations T . Learning rate α0.
Decay parameter c. Complexity threshold M , as described
in Section 5.3.

Definitions: Let P̂ (z | Gi, Si; θ,Π) be the predicted global
probability from Equation 1. Let P̂j(z | Gi, Si;πj) be the
predicted pruning probability from Equation 2. Let Âj be
the set of all complexity-M logical expressions, after prun-
ing (see Section 5.1). Let SUB(j, z) be all complexity-j
sub-expressions of logical expression z. Let Qi(z | Si, Gi)
be the empirical probability over z ∈ Z , estimated from
Zi. Finally, let φi(z) be a shorthand for the feature function
φ(z, Si, Gi) as defined in Section 5.4.

Algorithm:
Initialize θ ← ~0, πj ← ~0 for j = 1 . . .M

For t = 1 . . . T, i = 1 . . . n:

Step 1: (Update Global Model)
a. Compute the stochastic gradient:

∆θ ← EQi(z|Si,Gi)[φi(z)]− EP̂ (z|Gi,Si;θ,Π)[φi(z)]

b. Update the parameters:
γ ← α0

1+c×τ where τ = i+ t× n
θ ← θ + γ∆θ

Step 2: (Update Pruning Model)
For j = 1 . . .M

a. Construct a set of positive and negative examples:
D+ ←

⋃
z∈Zi

SUB(j, z).
D− ← Âj \ D+

b. Compute mini-batch stochastic gradient, normalizing
for data skew:
∆πj ← 1

|D+|
∑
z∈D+(1− Pj(z | Si, Gi;πj))φi(z)

− 1
|D−|

∑
z∈D− Pj(z | Si, G;πj)φi(z)

c. Update complexity-j pruning parameters:
πj ← πj + γ∆πj

Output: θ and Π = [π1, . . . , πM ]

Figure 3: The learning algorithm.

6.1 Global Model Updates
The parameters θ of the globally scored density es-
timation model are trained to maximize the log-
likelihood of the data:

Oi = log
∏
z∈Zi

PG(z | Si, Gi) (3)

Taking the derivative of this objective with re-
spect to θ yields the gradient in Step 1a of Fig-
ure 3. The marginals, EP̂ (z|Gi,Si;θ,Π)(φi(z)), are
computed over the approximate finite subset of Z
constructed with the inference procedure described
in Section 5.3.
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6.2 Pruning Model Updates

To update each of the M pruning models, we first
construct a set of positive and negative examples
(Step 2a). The positive examples, D+, include those
sub-expressions which should be in the beam - these
are all complexity j sub-expressions of logical ex-
pressions in Zi. The negative examples, D−, in-
clude all complexity-j expressions constructed dur-
ing beam search, minus those which are in D+. The
gradient (Set 2b) is a binary mini-batch gradient,
normalized to correct for data skew.

7 Experimental Setup

Data Collection Our dataset consists of 118 im-
ages, taken with a Microsoft Kinect camera. These
are the same images used by Matuszek et al.
(2012a), but we create multiple prompts for each im-
age by circling different objects, giving 269 scenes
in total. These scenes were shown to workers on
Amazon Mechanical Turk4 who were asked to imag-
ine giving instructions to a robot and complete the
sentence “Please pick up ” in reference to the
circled objects. Twenty referring expressions were
collected for each scene, a total of 5380 expressions.

From this data, 43 scenes (860 expressions) were
held-out for use in a test set. Of the remaining
scenes, the sentences of 30 were labeled with log-
ical forms. 10 of these scenes (200 expressions) are
used as a labeled initialization set, and 20 are used
as a development test set (400 expressions). A small
number of expressions (∼5%) from the labeled ini-
tial set were discarded, either because they did not
correctly name the target set, or because they used
very rare attributes (such as texture, or location) to
name the target objects.

Surrogate Labeling To avoid hand labeling the
large majority of the scenes, we label the data
with a learned semantic parser (Zettlemoyer and
Collins, 2005). We created a hand-made lexicon
for the entire training set, which greatly simplifies
the learning problem, and learned the parameters
of the parsing moder on the 10-scene initialization
set. The weights were then further tuned using
semi-supervised techniques (Artzi and Zettlemoyer,
2011, 2013b) on the data to be labeled. Testing on

4http://www.mturk.com

the development set shows that this parser achieves
roughly 95% precision and 70% recall.

Using this parser, we label the sentences in our
training set. We only use scenes where at least 15
sentences were successfully parsed. This gives a
training set of 141 scenes (2587 expressions). Com-
bining the automatically labeled training set with the
hand-labelled initialization, development and held-
out data, our labelled corpus totals 3938 labeled ex-
pressions. By contrast, the popular TUNA furniture
sub corpus (Gatt et al., 2007) contains 856 descrip-
tions of 20 scenes, and although some of these refer
to sets, these sets contain two objects at most.

Framework Our experiments were implemented
using the University of Washington Semantic Pars-
ing Framework (Artzi and Zettlemoyer, 2013a).

Hyperparameters Our inference procedure re-
quires two hyperparameters: M , the maximum com-
plexity threshold, and k, the beam size. In practice,
we set these to the highest possible values which
still allow for training to complete in a reasonable
amount of time (under 12 hours). M is set to 20,
which is sufficient to cover 99.5% of the observed
expressions. The beam-size k is 100 for the first
three complexity levels, and 50 thereafter.

For learning, we use the following hyperparam-
eters, which were tuned on the development set:
learning rate α0 = .25, decay rate c = .02, num-
ber of epochs T = 10.

Evaluation Metrics Evaluation metrics used in
REG research have assumed a system that produces
a single output. Our goal is to achieve a distribution
over logical forms that closely matches the distribu-
tion observed from human subjects. Therefore, we
compare our learned model to the labeled test data
with mean absolute error:

MAE =
1

2n

n∑
i=1

∑
z∈Z

|P (z | Si, Gi)−Q(z | Si, Gi)|

where Q is the empirical distribution observed in the
training data. MAE measures the total probability
mass which is assigned differently in the predicted
distribution than in the empirical distribution. We
use MAE as opposed to KL divergence or data like-
lihood as both of these measures are uninformative
when the support of the two distributions differ.
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– MAE %dup %uniq Top1
VOA 39.7 98.2 92.5 72.7

GenX
25.8 100 100 72.7
(5.0) (0) (0) (0)

Table 1: Single object referring expression gener-
ation results. Our approach (GenX) is compared
to the approach from Mitchell et al. (2013) (VOA).
Standard deviation over five shuffles of training set
is reported in parentheses.

This metric is quite strict; small differences in the
estimated probabilities over a large number of logi-
cal expressions can result in a large error, even if the
relative ordering is quite similar. Therefore, we re-
port the percentage of observed logical expressions
which the model produces, either giving credit mul-
tiple times for duplicates (%dup) or counting each
unique logical expression in a scene once (%uniq).
Put another way, %dup counts logical expression to-
kens, whereas %uniq counts types. We also report
the proportion of scenes where the most likely log-
ical expression according to the model matched the
most common one in the data (Top1).

Single Object Baseline In order to compare our
method against the state of the art for generating
referring expressions for single objects, we use the
subset of our corpus where the target set is a sin-
gle object. This sub-corpus consists of 44 scenes for
training and 11 held out for testing.

For comparison we re-implemented the proba-
bilistic Visual Objects Algorithm (VOA) of Mitchell
et al. (2013). We refer the readers to the original
paper for details of the approach. The parameters
of the model were tuned on the training data: the
prior likelihood estimates for each of the four at-
tribute types (αatt) were estimated as the relative
frequency of each attribute in the data. We pick the
ordering of attributes and the length penalty, λ, from
the cross-product of all possible 4! orderings and all
integers on the range of [1,10], choosing the setting
which results in the lowest average absolute error
(AAE) on the training set. This process resulted
in the following parameter settings: αcolor = .916,
αshape = .586, αtype = .094, αobject = .506, AP
ordering = [type, shape, object, color], λ = 4. In-
ference was done using 10,000 samples per scene.

– MAE %dup %uniq Top1

Full GenX
54.3 87.4 72.9 52.6
(4.5) (0.6) (1.1) (8.3)

NoPrune
71.8 42.2 16.1 40.0
(2.5) (2.7) (1.7) (5.0)

NoCOV
87.0 26.0 11.2 14.9
(6.7) (3.7) (2.1) (9.7)

NoSTRUC
60.2 79.6 61.9 44.6
(1.7) (0.3) (0.5) (4.5)

HeadExpOnly
88.8 21.9 9.3 14.0
(6.4) (8.6) (3.5) (7.9)

Table 2: Results on the complete corpus for the
complete system (Full GenX), ablating the pruning
model (NoPrune) and the different features: without
coverage features (NoCOV), without structure fea-
tures (NoSTRUC) and using only the logical expres-
sion HeadExp features (HeadExpOnly). Standard
deviation over five runs is shown in parentheses.

8 Results

We report results on both the single-object subset of
our data and the full dataset. Since our approach is
online, and therefore sensitive to data ordering, we
average results over 5 different runs with randomly
ordered data, and report variance.

Single Objects Table 1 shows the different metrics
for generating referring expression for single objects
only. Our approach outperforms VOA (Mitchell
et al., 2013) on all metrics, including an average of
approximately 35% relative reduction in MAE. In
addition, unlike VOA, our system (GenX) produces
every logical expression used to refer to single ob-
jects in our dataset, including a small number which
use negation and equality.

Object Sets Table 2 lists results on the full dataset.
Our learned pruning approach produces an average
72.9% of the unique logical expressions used present
in our dataset – over 87% when these counts are
weighted by their frequency. The globally scored
model achieves a mean absolute error of 54.3, and
correctly assigns the highest probability to the most
likely expression over 52% of the time.

Also shown in Table 2 are results obtained when
elements of our approach are ablated. Using the
global model for pruning instead of an explicitly
trained model causes a large drop in performance,
demonstrating that our global model is inappropri-
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Q P̂ z
.750 .320 ι(λx.object(x) ∧ (yellow(x) ∨ red(x)))

.114 ι(λx.lego(x)) ∪ ι(λx.red(x) ∧ apple(x))

.114 ι(λx.yellow(x) ∧ lego(x))) ∪ ι(λx.apple(x))

.044 ι(λx.lego(x) ∨ (red(x) ∧ apple(x)))

.044 ι(λx.(yellow(x) ∧ lego(x)) ∨ apple(x))

.036 ι(λx.lego(x)) ∪ ι(λx.red(x) ∧ sphere(x))

.026 ι(λx.red(x) ∧ lego(x)) ∪ ι(λx.red(x) ∧ sphere(x))
.050 .021 ι(λx.(lego(x) ∧ yellow(x)) ∨ (red(x) ∧ apple(x)))

.017 ι(λx.(lego(x) ∧ yellow(x)) ∨ (red(x) ∧ sphere(x)))

.014 ι(λx.yellow(x) ∧ lego(x)) ∪ ι(λx.red(x) ∧ sphere(x))

.100 .010 ι(λx.yellow(x) ∧ object(x)) ∪ ι(λx.apple(x))

.050 .007 ι(λx.yellow(x) ∧ object(x)) ∪ ι(λx.red(x) ∧ sphere(x))

.050 .005 ι(λx.yellow(x) ∧ object(x)) ∪ ι(λx.red(x) ∧ object(x))

(a) (b)

Figure 4: Example output of our system for the scene on the right. We show the top 10 expressions (z) from
the predicted distribution (P̂ ) compared to the empirical distribution estimated from our labeled data (Q).
The bottom section shows the predicted probability of the three expressions which were not in the top 10 of
the predicted distribution. Although the mean absolute error (MAE) of P̂ and Q is 63.8, P̂ covers all of the
entries in Q in the correct relative order and also fills in many other plausible candidates.

ate for pruning. We also ablate subsets of our fea-
tures, demonstrating that the coverage and structural
features are both crucial for performance.

Qualitatively, we found the learned distributions
were often higher quality than the seemingly high
mean absolute error would imply. Figure 4 shows
an example output where the absolute error of the
predicted distribution was 63.8. Much of the error
can be attributed to probability mass assigned to log-
ical expressions which, although not observed in our
test data, are reasonable referring expressions. This
might be due to the fact that our estimate of the em-
pirical distribution comes from a fairly small sample
(20), or other factors which we do not model that
make these expressions less likely.

9 Conclusion

In this paper, we modeled REG as a density-
estimation problem. We demonstrated that we can
learn to produce distributions over logical referring
expressions using a globally normalized model. Key
to the approach was the use of a learned pruning
model to define the space of logical expression that
are explicitly enumerated during inference. Exper-
iments demonstrate state-of-the-art performance on
single object reference and the first results for learn-
ing to name sets of objects, correctly recovering over
87% of the observed logical forms.

This approach suggests several directions for fu-

ture work. Lambda-calculus meaning represen-
tations can be designed for many semantic phe-
nomena, such as spatial relations, superlatives, and
graded properties, that are not common in our data.
Collecting new datasets would allow us to study the
extent to which the approach would scale to domains
with such phenomena.

Although the focus of this paper is on REG, the
approach is also applicable to learning distributions
over logical meaning representations for many other
tasks. Such learned models could provide a range
of possible inputs for systems that map logical ex-
pressions to sentences (White and Rajkumar, 2009;
Lu and Ng, 2011), and could also provide a valuable
prior on the logical forms constructed by semantic
parsers in grounded settings (Artzi and Zettlemoyer,
2013b; Matuszek et al., 2012a).
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Abstract

The problem to replace a word with a syn-
onym that fits well in its sentential context
is known as the lexical substitution task. In
this paper, we tackle this task as a supervised
ranking problem. Given a dataset of target
words, their sentential contexts and the poten-
tial substitutions for the target words, the goal
is to train a model that accurately ranks the
candidate substitutions based on their contex-
tual fitness. As a key contribution, we cus-
tomize and evaluate several learning-to-rank
models to the lexical substitution task, includ-
ing classification-based and regression-based
approaches. On two datasets widely used for
lexical substitution, our best models signifi-
cantly advance the state-of-the-art.

1 Introduction

The task to generate lexical substitutions in context
(McCarthy and Navigli, 2007), i.e., to replace words
in a sentence without changing its meaning, has be-
come an increasingly popular research topic. This
task is used, e.g. to evaluate semantic models with
regard to their accuracy in modeling word meaning
in context (Erk and Padó, 2010). Moreover, it pro-
vides a basis of NLP applications in many fields,
including linguistic steganography (Topkara et al.,
2006; Chang and Clark, 2010), semantic text simi-
larity (Agirre et al., 2012) and plagiarism detection
(Gipp et al., 2011). While closely related to WSD,

1Work was done while working at RGAI of the Hungarian
Acad. Sci. and University of Szeged.

2 R. Busa-Fekete is on leave from the Research Group on
Artificial Intelligence of the Hungarian Academy of Sciences
and University of Szeged.

lexical substitution does not rely on explicitly de-
fined sense inventories (Dagan et al., 2006): the pos-
sible substitutions reflect all conceivable senses of
the word, and the correct sense has to be ascertained
to provide an accurate substitution.

While a few lexical sample datasets (McCarthy
and Navigli, 2007; Biemann, 2012) with human-
provided substitutions exist and can be used to
evaluate different lexical paraphrasing approaches,
a practically useful system must also be able to
rephrase unseen words, i.e., any word for which
a list of synonyms is provided. Correspondingly,
unsupervised and knowledge-based approaches that
are not directly dependent on any training material,
prevailed in the SemEval 2007 shared task on En-
glish Lexical Substitution and dominated follow-up
work. The only supervised approach is limited to
the combination of several knowledge-based lexi-
cal substitution models based on different underly-
ing lexicons (Sinha and Mihalcea, 2009).3

A recent work by Szarvas et al. (2013) de-
scribes a tailor-made supervised system based on
delexicalized features that – unlike earlier super-
vised approaches, and similar to unsupervised and
knowledge-based methods proposed for this task –
is able to generalize to an open vocabulary. For
each target word to paraphrase, they first compute
a set of substitution candidates using WordNet: all
synonyms from all of the target word’s WordNet
synsets, together with the words from synsets in
similar to, entailment and also see relation to these
synsets are considered as potential substitutions.
Each candidate then constitutes a training (or test)

3Another notable example for supervised lexical substitu-
tion is Biemann (2012), but this is a lexical sample system ap-
plicable only to the target words of the training datasets.
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example, and these instances are characterized using
non-lexical features from heterogeneous evidence
such as lexical-semantic resources and distributional
similarity, n-gram counts and shallow syntactic fea-
tures computed on large, unannotated background
corpora. The goal is then i) to predict how well
a particular candidate fits in the original context,
and ii) given these predictions for each of the can-
didates, to correctly order the elements of the candi-
date set according to their contextual fitness. That is,
a model is successful if it prioritizes plausible substi-
tutions ahead of less likely synonyms (given the con-
text). This model is able to generate paraphrases for
target words not contained in the training material.
This favorable property is achieved using only such
features (e.g. local n-gram frequencies in context)
that are meaningfully comparable across the differ-
ent target words and candidate substitutions they are
computed from. More importantly, their model also
provides superior ranking results compared to state
of the art unsupervised and knowledge based ap-
proaches and therefore it defines the current state of
the art for open vocabulary lexical substitution.

Motivated by the findings of Szarvas et al. (2013),
we address lexical substitution as a supervised learn-
ing problem, and go beyond their approach from
a methodological point of view. Our experiments
show that the performance on the lexical substitution
task is strongly influenced by the way in which this
task is formalized as a machine learning problem
(i.e., as binary or multi-class classification or regres-
sion) and by the learning method used to solve this
problem. As a result, we are able to report the best
performances on this task for two standard datasets.

2 Related work
Previous approaches to lexical substitution often
seek to automatically generate a set of candidate
substitutions for each target word first, and to rank
the elements of this set of candidates afterward (Has-
san et al., 2007; Giuliano et al., 2007; Martinez et
al., 2007; Yuret, 2007). Alternatively, the candidate
set can be defined by all human-suggested substi-
tutions for the given target word in all of its con-
texts; then, the focus is just on the ranking problem
(Erk and Padó, 2010; Thater et al., 2010; Dinu and
Lapata, 2010; Thater et al., 2011). While only the
former approach qualifies as a full-fledged substitu-

tion system for arbitrary, previously unseen target
words, the latter simplifies the comparison of se-
mantic ranking models, as the ranking step is not
burdened with the shortcomings of automatically
generated substitution candidates.

As mentioned before, Szarvas et al. (2013) re-
cently formalized the lexical substitution problem as
a supervised learning task, using delexicalized fea-
tures. This non-lexical feature representation makes
different target word/substitution pairs in different
contexts4 directly comparable. Thus, it becomes
possible to learn an all-words system that is appli-
cable to unseen words, using supervised methods,
which provides superior ranking accuracy to unsu-
pervised and knowledge based models.

In this work, we build on the problem formu-
lation and the features proposed by Szarvas et
al. (2013) while largely extending their machine
learning methodology. We customize and experi-
ment with several different learning-to-rank models,
which are better tailored for this task. As our experi-
ments show, this contribution leads to further signif-
icant improvements in modeling the semantics of a
text and in end-system accuracy.

3 Datasets and experimental setup
Here we introduce the datasets, experimental setup
and evaluation measures used in our experiments.
Since space restrictions prohibit a comprehensive
exposition, we only provide the most essential in-
formation and refer to Szarvas et al. (2013), whose
experimental setup we adopted, for further details.
Datasets. We use two prominent datasets for lex-
ical substitution. The LexSub dataset introduced
in the Lexical Substitution task at Semeval 2007
(McCarthy and Navigli, 2007)5 contains 2002 sen-
tences for a total of 201 target words (from all
parts of speech), and lexical substitutions assigned
(to each target word and sentence pair) by 5 na-
tive speaker annotators. The second dataset, TWSI
(Biemann, 2012)6, consists of 24,647 sentences for
a total of 1,012 target nouns, and lexical substitu-

4E.g., bright substituted with intelligent in “He was bright
and independent and proud” and side for part in “Find someone
who can compose the biblical side”.

5http://nlp.cs.swarthmore.edu/
semeval/tasks/task10/data.shtml

6http://www.ukp.tu-darmstadt.de/data/
lexical-resources/twsi-lexical-substitutions/
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tions for each target word in context resulting from
a crowdsourced annotation process.

For each sentence in each dataset, the annotators
provided as many substitutions for the target word
as they found appropriate in the context. Each sub-
stitution is then labeled by the number of annotators
who listed that word as a good lexical substitution.
Experimental setup and Evaluation. On both
datasets, we conduct experiments using a 10-fold
cross validation process, and evaluate all learning al-
gorithms on the same train/test splits. The datasets
are randomly split into 10 equal-sized folds on the
target word level, such that all examples for a par-
ticular target word fall into either the training or
the test set, but never both. This way, we make
sure to evaluate the models on target words not seen
during training, thereby mimicking an open vocab-
ulary paraphrasing system: at testing time, para-
phrases are ranked for unseen target words, simi-
larly as the models would rank paraphrases for any
words (not necessarily contained in the dataset). For
algorithms with tunable parameters, we further di-
vide the training sets into a training and a validation
part to find the best parameter settings. For evalua-
tion, we use Generalized Average Precision (GAP)
(Kishida, 2005) and Precision at 1 (P@1), i.e., the
percentage of correct paraphrases at rank 1.
Features. In all experiments, we used the features
described in Szarvas et al. (2013), implemented pre-
cisely as proposed by the original work.

Each (sentence, target word, substitution)
triplet represents an instance, and the feature values
are computed from the sentence context, the target
word and the substitution word. The features used
fall into four major categories.

The most important features describe the syntag-
matic coherence of the substitution in context, mea-
sured as local n-gram frequencies obtained from
web data. The frequency for a 1-5gram context with
the substitution word is computed and normalized
with respect to either 1) the frequency of the origi-
nal context (with the target word) or 2) the sum of
frequencies observed for all possible substitutions.
A third feature computes similar frequencies for the
substitution and the target word observed in the lo-
cal context (as part of a conjunctive phrase).

A second group of features describe the (non-
positional, i.e. non-local) distributional similarity of

the target and its candidate substitution in terms
of sentence level co-occurrence statistics collected
from newspaper texts: 1) How many words from the
sentence appear in the top 1000 salient words listed
for the candidate substitution in a distributional the-
saurus, 2) how similar the top K salient words lists
are for the candidate and the target word, 3) how
similar the 2nd order distributional profiles are for
candidate and target, etc. All these features are care-
fully normalized so that values compare well accross
different words and contexts.

Another set of features capture the properties of
the target and candidate word in WordNet, such as
their 1) number of senses, 2) how frequent senses
are synonymous and 3) the lowest common ancestor
(and all synsets up) for the candidate and target word
in the WordNet hierarchy (represented as a nominal
feature, by the ID of these synsets).

Lastly a group of features capture shallow syntac-
tic patterns of the target word and its local context in
the form of 1) part of speech patterns (trigrams) in
a sliding window around the target word using main
POS categories, i.e. only the first letter of the Penn
Treebank codes, and 2) the detailed POS code of the
candidate word assigned by a POS tagger.

We omit a mathematically precise description of
these features for space reasons and refer the reader
to Szarvas et al. (2013) for a more formal and
detailed description of the feature functions. Im-
portantly, these delexicalized features are numeri-
cally comparable across the different target words
and candidate substitutions they are computed from.
This property enables the models to generalize over
the words in the datasets and thus enables a super-
vised, all-words lexical substitution system.

4 Learning-to-Rank methods
Machine learning methods for ranking are tradition-
ally classified into three categories. In the point-
wise approach, a model is trained that maps in-
stances (in this case candidate substitutions in a con-
text) to scores indicating their relevance or fitness;
to this end, one typically applies standard regression
techniques, which essentially look at individual in-
stances in isolation (i.e., independent of any other
instances in the training or test set). To predict a
ranking of a set of query instances, these are sim-
ply sorted by their predicted scores (Li et al., 2007).
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The pairwise approach trains models that are able
to compare pairs of instances. By marking such a
pair as positive if the first instance is preferred to the
second one, and as negative otherwise, the problem
can formally be reduced to a binary classification
task (Freund et al., 2003). Finally, in the listwise ap-
proach, tailor-made learning methods are used that
directly optimize the ranking performance with re-
spect to a global evaluation metric, i.e., a measure
that evaluates the ranking of a complete set of query
instances (Valizadegan et al., 2009).

Below we give a brief overview of the methods in-
cluded in our experiments. We used the implementa-
tions provided by the MultiBoost (Benbouzid et al.,
2012), RankSVM and RankLib packages.7 For a de-
tailed description, we refer to the original literature.

4.1 MAXENT

The ranking model proposed by Szarvas et al. (2013)
was used as a baseline. This is a pointwise approach
based on a maximum entropy classifier, in which
the ranking task is cast as a binary classification
problem, namely to discriminate good (label > 0)
from bad substitutions. The actual label values for
good substitutions were used for weighting the train-
ing examples. The underlying MaxEnt model was
trained until convergence, i.e., there was no hyper-
parameter to be tuned. For a new target/substitution
pair, the classifier delivers an estimation of the pos-
terior probability for being a good substitution. The
ranking is then produced by sorting the candidates
in decreasing order according to this probability.

4.2 EXPENS

EXPENS (Busa-Fekete et al., 2013) is a point-
wise method with listwise meta-learning step
that exploits an ensemble of multi-class classi-
fiers. It consists of three steps. First, AD-
ABOOST.MH (Schapire and Singer, 1999) classi-
fiers with several different weak learners (Busa-
Fekete et al., 2011; Kégl and Busa-Fekete, 2009)
are trained to predict the level of relevance (qual-
ity) of a substitution (i.e., the number of annotators
who proposed the candidate for that particular con-
text). Second, the classifiers are calibrated to obtain

7RankLib is available at http://people.cs.umass.
edu/˜vdang/ranklib.html. We extended the imple-
mentation of the LAMBDAMART algorithm in this package to
compute the gradients of and optimize for the GAP measure.

an accurate posterior distribution; to this end, several
calibration techniques, such as Platt scaling (Platt,
2000), are used to obtain a diverse pool of calibrated
classifiers. Note that this step takes advantage of
the ordinal structure of the underlying scale of rel-
evance levels, which is an important difference to
MAXENT. Third, the posteriors of these calibrated
classifiers are additively combined, with the weight
of each model being exponentially proportional to
its GAP score (on the validation set). This method
has two hyperparameters: the number of boosting it-
erations T and the scaling factor in the exponential
weighting scheme c. We select T and c from the in-
tervals [100, 2000] and [0, 100], with step sizes 100
and 10, respectively.

4.3 RANKBOOST

RANKBOOST (Freund et al., 2003) is a pairwise
boosting approach. The objective function is the
rank loss (as opposed to ADABOOST, which opti-
mizes the exponential loss). In each boosting it-
eration, the weak classifier is chosen by maximiz-
ing the weighted rank loss. For the weak learner,
we used the decision stump described in (Freund et
al., 2003), which is able to optimize the rank loss
in an efficient way. The only hyperparameter of
RANKBOOST to be tuned is the number of iterations
that we selected from the interval [1, 1000].

4.4 RANKSVM

RANKSVM (Joachims, 2006) is a pairwise method
based on support vector machines, which formulates
the ranking task as binary classification of pairs of
instances. We used a linear kernel, because the opti-
mization using non-linear kernels cannot be done in
a reasonable time. The tolerance level of the op-
timization was set to 0.001 and the regularization
parameter was validated in the interval [10−6, 104]
with a logarithmically increasing step size.

4.5 LAMBDAMART

LAMBDAMART (Wu et al., 2010) is a listwise
method based on the gradient boosted regression
trees by Friedman (1999). The ordinal labels are
learned directly by the boosted regression trees
whose parameters are tuned by using a gradient-
based optimization method. The gradient of parame-
ters is calculated based on the evaluation metric used
(in this case GAP). We tuned the number of boosting
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Database LexSub TWSI
Candidates WN Gold WN Gold

GAP
MaxEnt 43.8 52.4 36.6 47.2
ExpEns 44.3 53.5 37.8 49.7
RankBoost 44.0 51.4 37.0 47.8
RankSVM 43.3 51.8 35.5 45.2
LambdaMART 45.5 55.0 37.8 50.1

P@1
MaxEnt 40.2 57.7 32.4 49.5
ExpEns 39.8 58.5 33.8 53.2
RankBoost 40.7 55.2 33.1 50.8
RankSVM 40.3 51.7 33.2 45.1
LambdaMART 40.8 60.2 33.1 53.6

Table 1: GAP and p@1 values, with significant improve-
ments over the performance of MaxEnt marked in bold.

System GAP
Erk and Padó (2010) 38.6
Dinu and Lapata (2010) 42.9
Thater et al. (2010) 46.0
Thater et al. (2011) 51.7
Szarvas et al. (2013) 52.4
EXPENS 53.5
LAMBDAMART 55.0

Table 2: Comparison to previous studies (dataset LexSub,
candidates Gold).

iterations in the interval [10, 1000] and the number
of tree leaves in {8, 16, 32}.

5 Results and discussion

Our results using the above learning methods are
summarized in Table 1. As can be seen, the two
methods that exploit the cardinal structure of the
label set (relevance degrees), namely EXPENS and
LAMBDAMART, consistently outperform the base-
line taken from Szarvas et al. (2013) – the only ex-
ception is the p@1 score for EXPENS on the Semeval
Lexical Substitution dataset and the candidate sub-
stitutions extracted from WordNet. The improve-
ments are significant (using paired t-test, p < 0.01)
for 3 out of 4 settings for EXPENS and in all settings
for LAMBDAMART. In particular, the results of
LAMBDAMART are so far the best scores that have
been reported for the best studied setting, i.e. the
LexSub dataset using substitution candidates taken
from the gold standard (see Table 2).

We suppose that the relatively good results
achieved by the LAMBDAMART and EXPENS

methods are due to that, first, it seems crucial to
properly model and exploit the ordinal nature of

the annotations (number of annotators who sug-
gested a given word as a good paraphrase) pro-
vided by the datasets. Second, the RANKBOOST and
RANKSVM are less complex methods than the EX-
PENS and LAMBDAMART. The RANKSVM is the
least complex method from the pool of learning-to-
rank methods we applied, since it is a simple lin-
ear model. The RANKBOOST is a boosted decision
stump where, in each boosting iteration, the stump
is found by maximizing the weighted exponential
rank loss. On the other hand, both the EXPENS

and LAMBDAMART make use of tree learners in the
ensemble classifier they produce. We believe that
overfitting is not an issue in a learning task like the
LexSub task: most features are relatively weak pre-
dictors on their own, and we can learn from a large
number of data points (2000 sentences with an av-
erage set size of 20, about 40K data points for the
smallest dataset and setting). Rather, as our results
show, less complex models tend to underfit the data.
Therefore we believe that more complex models can
achieve a better performance, of course with an in-
creased computational cost.

6 Conclusion and future work

In this paper, we customized and applied some rela-
tively novel algorithms from the field of learning-to-
rank for ranking lexical substitutions in context. In
turn, we achieved significant improvements on the
two prominent datasets for lexical substitution.

Our results indicate that an exploitation of the or-
dinal structure of the labels in the datasets can lead to
considerable gains in terms of both ranking quality
(GAP) and precision at 1 (p@1). This observation
is supported both for the theoretically simpler point-
wise learning approach and for the most powerful
listwise approach. On the other hand, the pairwise
methods that cannot naturally exploit this property,
did not provide a consistent improvement over the
baseline. In the future, we plan to investigate this
finding in the context of other, similar ranking prob-
lems in Natural Language Processing.
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2013. Tune and mix: learning to rank using ensembles
of calibrated multi-class classifiers. Machine Learn-
ing, 93(2–3):261–292.

Ching-Yun Chang and Stephen Clark. 2010. Practi-
cal linguistic steganography using contextual synonym
substitution and vertex colour coding. In Proceedings
of the 2010 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1194–1203, Cam-
bridge, MA.

Ido Dagan, Oren Glickman, Alfio Gliozzo, Efrat Mar-
morshtein, and Carlo Strapparava. 2006. Direct word
sense matching for lexical substitution. In Proceed-
ings of the 21st International Conference on Compu-
tational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, ACL-44,
pages 449–456, Sydney, Australia.

Georgiana Dinu and Mirella Lapata. 2010. Measuring
distributional similarity in context. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1162–1172, Cambridge,
MA.

Katrin Erk and Sebastian Padó. 2010. Exemplar-based
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Abstract

Recent work has developed supervised meth-
ods for detecting deceptive opinion spam—
fake reviews written to sound authentic and
deliberately mislead readers. And whereas
past work has focused on identifying individ-
ual fake reviews, this paper aims to identify
offerings (e.g., hotels) that contain fake re-
views. We introduce a semi-supervised man-
ifold ranking algorithm for this task, which
relies on a small set of labeled individual re-
views for training. Then, in the absence of
gold standard labels (at an offering level),
we introduce a novel evaluation procedure
that ranks artificial instances of real offer-
ings, where each artificial offering contains a
known number of injected deceptive reviews.
Experiments on a novel dataset of hotel re-
views show that the proposed method outper-
forms state-of-art learning baselines.

1 Introduction

Consumers increasingly rely on user-generated
online reviews when making purchase deci-
sions (Cone, 2011; Ipsos, 2012). Unfortunately,
the ease of posting content to the Web, potentially
anonymously, combined with the public’s trust and
growing reliance on opinions and other information
found online, create opportunities and incentives for
unscrupulous businesses to post deceptive opinion
spam—fraudulent or fictitious reviews that are
deliberately written to sound authentic, in order to
deceive the reader (Ott et al, 2011).

Unlike other kinds of spam, such as
Web (Martinez-Romo and Araujo, 2009; Castillo
et al, 2006) and e-mail spam (Chirita et al, 2005),
recent work has found that deceptive opinion spam
is neither easily ignored nor easily identified by

human readers (Ott et al, 2011). Accordingly, there
is growing interest in developing automatic, usually
learning-based, methods to help users identify
deceptive opinion spam (see Section 2). Even
in fully-supervised settings, however, automatic
methods are imperfect at identifying individual
deceptive reviews, and erroneously labeling genuine
reviews as deceptive may frustrate and alienate
honest reviewers.

An alternative approach, not yet considered in
previous work, is to instead identify those prod-
uct or service offerings where fake reviews appear
with high probability. For example, a hotel manager
may post fake positive reviews to promote their own
hotel, or fake negative reviews to demote a com-
petitor’s hotel. In both cases, rather than identify-
ing these deceptive reviews individually, it may be
preferable to identify the manipulated offering (i.e.,
the hotel) so that review portal operators, such as
TripAdvisor or Yelp, can further investigate the sit-
uation without alienating users.1

Accordingly, this paper addresses the novel task
of identifying manipulated offerings, which we
frame as a ranking problem, where the goal is to rank
offerings by the proportion of their reviews that are
believed to be deceptive. We propose a novel three-
layer graph model, based on manifold ranking (Zhou
et al, 2003a; 2003b), to jointly model deceptive lan-
guage at the offering-, review- and term-level. In
particular, rather than treating reviews within the
same offering as independent units, there is a rein-
forcing relationship between offerings and reviews.

1Manipulating online reviews may also have legal conse-
quences. For example, the Federal Trade Commission (FTC)
has updated their guidelines on the use of endorsements and
testimonials in advertising to suggest that posting deceptive re-
views may be unlawful in the United States (FTC, 2009).
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Figure 1: Mutual Reinforcement Graph Model for Hotel
Ranking using the Manifold-Ranking Method

Our manifold ranking approach is semi-
supervised in that it requires no supervisory
information at the offering level; rather, it requires
only a small amount of labeled data at a review
level. Intuitively, and as depicted in Figure 1 for
hotel offerings, we represent hotels, reviews and
terms as nodes in a graph, where each hotel is
connected to its reviews, and each review, in turn, is
connected to the terms used within it. The influence
of labeled data is propagated along the graph to
unlabeled data, such that a hotel is considered more
deceptive if it is heavily linked with other deceptive
reviews, and a review, in turn, is more deceptive if it
is generated by a deceptive hotel.

The success of our semi-supervised approach fur-
ther depends on the ability to learn patterns of truth-
ful and deceptive reviews that generalize across re-
views of different offerings. This is challenging, be-
cause reviews often contain offering-specific vocab-
ulary. For example, reviews of hotels in Los Angeles
are more likely to include keywords such as “beach”,
“sea”, “sunshine” or “LA”, while reviews of Juneau
hotels may contain “glacier”, “Juneau”, “bear” or
“aurora borealis.” A hotel review might also men-
tion the hotel’s restaurant or bar by name.

Unfortunately, it is unclear how important (or
detrimental) offering-specific features are when de-
ciding whether a review is fake. Accordingly, we
propose a dimensionality-reduction approach, based
on Latent Dirichlet Allocation (LDA) (Blei et al,
2003), to obtain a vector representation of reviews
for the ranking algorithm that generalizes across re-
views of different offerings. Specifically, we train

an LDA-based topic model to view each review as a
mixture of aspect-, city-, hotel- and review-specific
topics (see Section 6). We then reduce the dimen-
sionality of our data (i.e., labeled and unlabeled re-
views) by replacing each review term vector with a
vector that corresponds to its term distribution over
just its aspect-specific topics, i.e., excluding city-,
hotel- and review-specific topics. We find that, com-
pared to models trained either on the full vocabulary,
or trained on standard LDA document-topic vectors,
this representation allows our models to generalize
better across reviews of different offerings.

We evaluate our approach on the task of identi-
fying (ranking) manipulated hotels. In particular, in
the absence of gold standard offering-level labels,
we introduce a novel evaluation procedure for this
task, in which we rank numerous versions of each
hotel, where each hotel version contains a differ-
ent number of injected, known deceptive reviews.
Thus, we expect hotel versions with larger propor-
tions of deceptive reviews to be ranked higher than
those with smaller proportions.

For labeled training data, we use the Ott et
al. (2011) dataset of 800 positive (5-star) reviews of
20 Chicago hotels (400 deceptive and 400 truthful).
For evaluation, we construct a new FOUR-CITIES

dataset, containing 40 deceptive and 40 truthful re-
views for each of eight hotels in four different cities
(640 reviews total), following the procedure out-
lined in Ott et al. (2011). We find that our manifold
ranking approach outperforms several state-of-the-
art learning baselines on this task, including trans-
ductive Support Vector Regression. We addition-
ally apply our approach to a large-scale collection
of real-world reviews from TripAdvisor and explore
the resulting ranking.

In the sections below, we discuss related work
(Section 2) and describe the datasets used in this
work (Section 3), the dimensionality-reduction ap-
proach for representing reviews (Section 4), and the
semi-supervised manifold ranking approach (Sec-
tion 5). We then evaluate the methods quantitatively
(Sections 6 and 7) and qualitatively (Section 8).

2 Related Work

A number of recent approaches have focused on
identifying individual fake reviews or users who post
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fake reviews. For example, Jindal and Liu (2008)
train machine learning classifiers to identify dupli-
cate (or near duplicate) reviews. Yoo and Gretzel
(2009) gathered 40 truthful and 42 deceptive hotel
reviews and manually compare the psychologically
relevant linguistic differences between them. Lim et
al. (2010) propose an approach based on abnormal
user behavior to predict spam users, without using
any textual features. Ott et al. (2011) solicit decep-
tive reviews from workers on Amazon Mechanical
Turk, and built a dataset containing 400 deceptive
and 400 truthful reviews, which they use to train
and evaluate supervised SVM classifiers. Ott et al.
(2012) expand upon this work to estimate preva-
lences of deception in a review community. Mukher-
jee et al. (2012) study spam produced by groups of
fake reviewers. Li et al. (2013) use topic models
to detect differences between deceptive and truthful
topic-word distributions. In contrast, in this work we
aim to identify fake reviews at an offering level.2

LDA Topic Models. LDA topic models (Blei et
al, 2003) have been employed for many NLP tasks
in recent years. Here, we build on earlier work
that uses topic models to (a) separate background
information from information discussing the vari-
ous “aspects” of products (e.g., Chemudugunta et
al. (2007)) and (b) identify different levels of infor-
mation (e.g., user-specific, location-specific, time-
specific) (Ramage et al., 2009).

Manifold Ranking Algorithm. The manifold-
ranking method (Zhou et al, 2003a; Zhou et al,
2003b) is a mutual reinforcement ranking approach
initially proposed to rank data points along their un-
derlying manifold structure. It has been widely used
in many different ranking applications, such as sum-
marization (Wan et al, 2007; Wan and Yang, 2007).

3 Dataset

In this paper, we train all of our models using the
CHICAGO dataset of Ott et al (2011), which contains
20 deceptive and 20 truthful reviews from each of 20
Chicago hotels (800 reviews total). This dataset is

2Approaches for identifying individual fake reviews may be
applied to our task, for example, by averaging the review-level
predictions for an offering. This averaging approach is one of
our baselines in Section 7.

City Hotels
Chicago W Chicago, Palomar Chicago

New York Hotel Pennsylvania, Waldorf Astoria

Los Angeles
Sheraton Gateway,

The Westin Los Angeles Airport

Houston
Magnolia Hotel,

Crowne Plaza Houston River Oaks

Table 1: Details of our FOUR-CITIES evaluation data.

unique in that it contains known (gold standard) de-
ceptive reviews, solicited through Amazon Mechan-
ical Turk, and is publicly-available.3

Unfortunately, the CHICAGO dataset is limited,
both in size (800 reviews) and scope, in that it only
contains reviews of hotels in one city: Chicago.
Accordingly, in order to perform a more realistic
evaluation for our task, we construct a new dataset,
FOUR-CITIES, that contains 40 deceptive and 40
truthful reviews from each of eight hotels in four dif-
ferent cities (640 reviews total).

We build the FOUR-CITIES dataset using the same
procedure as Ott et al (2011), by creating and di-
viding 320 Mechanical Turk jobs, called Human-
Intelligence Tasks (HITs), evenly across eight of the
most popular hotels in our four chosen cities (see Ta-
ble 1). Each HIT presents a worker with the name of
a hotel and a link to the hotel’s website. Workers are
asked to imagine that they work for the marketing
department of the hotel and that their boss has asked
them to write a fake positive review, as if they were
a customer, to be posted on a travel review website.
Each worker is allowed to submit a single review,
and is paid $1 for an acceptable submission.

Finally, we augment our deceptive FOUR-CITIES

reviews with a matching set of truthful reviews from
TripAdvisor by randomly sampling 40 positive (5-
star) reviews for each of the eight chosen hotels.
While we cannot know for sure that the sampled re-
views are truthful, previous work has suggested that
rates of deception among popular hotels is likely to
be low (Jindal and Liu, 2008; Lim et al, 2010).

4 Topic Models for Dimensionality
Reduction

As mentioned in the introduction, we want to learn
patterns of truthful and deceptive reviews that apply

3We use the dataset available at: http://www.cs.
cornell.edu/˜myleott/op_spam.
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Figure 2: Graphical illustration of the RLDA topic model.

across hotels in different locations. This is challeng-
ing, however, because hotel reviews often contain
specific information about the hotel or city, and it
is unclear whether these features will generalize to
reviews of other hotels.

We therefore investigate an LDA-based
dimensionality-reduction approach (RLDA) to
derive effective vector representations of reviews.
Specifically, we model each document as a bag of
words, generated from a mixture of: (a) “aspect”
topics (that discuss various dimensions of the
offering); (b) city-specific topics; (c) hotel-specific
topics; (d) review-specific topics;4 and (e) a back-
ground topic. We use this model to reduce the
dimensionality of the review representation in our
training and test sets, by replacing each review’s
term vector with a vector corresponding to the
distribution over only the aspect-based topics, i.e.,
we exclude city, hotel and review-specific topics, as
well as the background topic.

Below we present specific details of our model
(Sections 4.1 and 4.2). The effectiveness of our
dimensionality-reduction approach will be directly
evaluated in Section 6, by comparing the perfor-
mance of various classifiers trained either on the full
vocabulary, or on our reduced feature representation.

4.1 RLDA Model Details

The plate diagram and generative story for our
model are given in Figures 2 and 3, respectively.
Our model has a similar general structure to stan-
dard LDA, but with additional machinery to handle
different levels of information. In particular, in or-
der to model K aspects in a collection of R reviews,

4These will be terms used in just a small number of reviews.

• Draw φB ∼ Dir(λ)
• For each aspect z = 1, 2, ...,K: draw φz ∼ Dir(λ)
• For each city c = 1, 2, ..., C: draw φc ∼ Dir(λ)
• For each hotel h = 1, 2, ..., H: draw φh ∼ Dir(λ)
• For each review r:

– Draw πr ∼ Dir(β)
– Draw φr ∼ Dir(λ)
– Draw θr ∼ Dir(α)
– For each word w in d:

∗ Draw yw ∼Multi(πr)
∗ If yw = 0:
· Draw zw ∼Multi(θ)
· Draw w ∼Multi(φzw )

∗ If yw = 1: draw w ∼Multi(φB)
∗ If yw = 2: draw w ∼Multi(φd)
∗ If yw = 3: draw w ∼Multi(φh)
∗ If yw = 4: draw w ∼Multi(φc)

Figure 3: Generative story for the RLDA topic model.

of H hotels, in C cities, we first draw multinomial
word distributions corresponding to: the background
topic, φB; aspect topics, φk for k ∈ [1,K]; review-
specific topics, φr for r ∈ [1, R]; hotel-specific top-
ics, φh for h ∈ [1, H]; and city-specific topics, φc

for c ∈ [1, C]. Then, for each word w in review
R, we sample a switch variable, y ∈ [0, 4], indicat-
ing whether w comes from one of the aspect topics
(y = 0), or the background topic (y = 1), review-
specific topic (y = 2), hotel-specific topic (y = 3)
or city-specific topic (y = 4). If the word comes
from one of the aspect topics, then we further sam-
ple the specific aspect topic, zw ∈ [1,K]. Finally,
we generate the word, w, from the corresponding φ.

4.2 Inference for RLDA
Given the review collection, our goal is to find the
most likely assignment yw (and zw if yw = 0) for
each word, w, in each review. We perform infer-
ence using Gibbs sampling. It is relatively straight-
forward to derive Gibbs sampling equations that al-
low joint sampling of the zw and yw latent variables
for each word token w:

P (yw = 0, Zw = k) =

Na
r,−w + β

Nr,−w + 5β
×

Ck
r,−w + α∑

k C
k
r,−w +Kα

× Ew
k + λ∑

w E
w
k + V λ

,

P (yw = m,m = 1, 2, 3, 4) =
Nm

r,−w + β

Nr,−w + 5β
× Ew

m + λ∑
w E

w
m + V λ

,

Note that the subscript −w indicates that the
count for word token w is excluded. Also, Nr
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denotes the number of words in review r and
Na

r,−w, N
1
r,−w, N

2
r,−w, N

3
r,−w, N

4
r,−w are the number of

words in review r assigned to the aspect, background,
review-specific, hotel-specific and city-specific topics, re-
spectively, excluding the current word. Ck

r,−w denotes
the number of words in review r assigned to aspect topic
k. Ew

k , E
w
1 , E

w
2 , E

w
3 , E

w
4 denote the number of times that

the word w is assigned to aspect k, the background topic,
review-specific topic r, hotel-specific topic h, and city-
specific topic c, respectively. We set hyperparameter α
to 1, β to 0.5, λ to 0.01. We run 200 iterations of Gibbs
sampling until the topic distribution stabilizes. After each
iteration in Gibbs sampling, we obtain:

πi
r =

N i
r + β∑

iN
i
r + 5β

θk
r =

Ck
r + α∑

k C
k
r +Kα

φw
z =

Ew
z + λ∑

w E
w
z + V λ

φw
m =

Ew
m + λ∑

w E
w
m + V λ

(1)

Finally, at the end of Gibbs sampling, we filter out
background, document-specific, hotel-specific and
city-specific information, by replacing each docu-
ment’s term vector with a 1×K aspect-topic vector,
~Gr = 〈θ1

r , θ
2
r , · · · , θK

r 〉.

5 Manifold Ranking for Hotels

In this section, we describe our ranking algorithm —
based on manifold ranking (Zhou et al, 2003a; Zhou
et al, 2003b) — that tries to jointly model deceptive
language at the hotel-, review- and term-level.

5.1 Graph Construction

We use a three-layer (hotel layer, review layer and
term layer) mutual reinforcement model (see Fig-
ure 1). Formally, we represent our three-layer graph
as G = 〈VH , VR, VT , EHR, ERR, ERT , ETT 〉,
where VH = {Hi}i=NH

i=1 , VR = {R}i=HR
i=1 and

VT = {Ti}i=V
i=1 correspond to the set of hotels, re-

views and terms respectively. EHR, ERR and ERT

respectively denote the edges between hotels and re-
views, reviews and reviews and reviews and terms.
Each edge is associated with a weight that denotes
the similarity between two nodes.

Let sim(Hi, Rj), where Hi ∈ VH and Rj ∈ VR,
denote the edge weight between hotelHi and review
Rj , calculated as follows:

sim(Hi, Rj) =

{
1 if Ri ∈ Hj

0 if Ri 6∈ Hj

(2)

Then we get row normalized matrices DHR ∈
RNH×NR and DRH ∈ RNR×NH as follows:

DHR(i, j) =
sim(Hi, Rj)∑
i′ sim(Hi′ , Rj)

DRH(i, j) =
sim(Hi, Rj)∑
j′ sim(Hi, Rj′)

(3)

As described in Section 4.2, each review is rep-
resented with a 1 × K aspect vector Gr after fil-
tering undesired information. The edge weight be-
tween two reviews is then the cosine similarity,
sim(Ri, Rj), between two reviews and can be cal-
culated as follows:

sim(Ri, Rj) =

∑t=K
t=1 Gt

i ·Gt
j√∑t=K

t=1 Gt2
i ·

√∑t=K
t=1 Gt2

j

(4)

Since the normalization process will make the
review-to-review relation matrix asymmetric, we
adopt the following strategy: let P denote the sim-
ilarity matrix between reviews, where P (i, j) =
sim(Ri, Rj) and M denotes the diagonal matrix
with (i,i)-element equal to the sum of the ith row
of SIM . The normalized matrix between reviews
DRR ∈ RNR×NR is calculated as follows:

DRR = M−
1
2 · P ·M− 1

2 (5)

sim(Ri, wj) denotes the similarity between re-
view Ri and term wj and is the conditional prob-
ability of word wj given review Ri. If wj ∈ Rj ,
sim(Ri, wj) is calculated according to Eq. (6) by
integrating out latent parameters θ and π. Else if
wj 6∈ Rj , sim(Ri, wj) = 0.

sim(Ri, wj) =

k=K∑
k=1

p(z = k|ri)× p(wj |z = k)

+
∑

t∈{B,h,c,d}

p(wj |yi = t)p(yi = t|ri)

= π
(a)
d

k=K∑
k=1

θz
d · φ(wj)

z +
∑

t∈{B,h,c,d}

π
(t)
d φ

(wj)
t

(6)
Similar to Eq. (3), we further get the normalized ma-
trix DRT ∈ RHR×V and DTR ∈ RV×HR .

Similarity between terms sim(wi, wj) is given by
the WordNet path-similarity,5 normalized to create
the matrix DV V .

5Path-similarity is based on the shortest path that con-
nects the senses in the “is-a” (hypernym/hyponym) tax-
onomy. See http://nltk.googlecode.com/svn/
trunk/doc/howto/wordnet.html.
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Input: The hotel set VD, review set VR, term
set VT , normalized transition probability matrix
DHR, DRR, DRH , DRT , DTT , DTR.
Output: the ranking vectors SR, SH , ST .
Begin:

1. Initialization: set the score labeled reviews to
+1 or −1 and other unlabeled reviews 0: S0

R =
[+1, ...,+1,−1, ...,−1, 0, ..., 0]. Set S0

H and
S0

T to 0. Normalize the score vector.
2. update Sk

R, Sk
H and Sk

T according to Eq. (7).
3. normalize Sk

R, Sk
H and Sk

T .
4. fix the score of labeled reviews to +1 and −1.

Go to step (2) until convergence.

Figure 4: Semi-Supervised Reinforcement Ranking.

5.2 Reinforcement Ranking Based on the
Manifold Method

Based on the set of labeled reviews, nodes for truth-
ful reviews (positive) are initialized with a high
score (1) and nodes for deceptive reviews, a low
score (-1). Given the weighted graph, our task is
to assign a score to the each hotel, each term, and
the remaining unlabeled reviews. Let SH , SR and
ST denote the ranking scores of hotels, reviews and
terms, which are updated during each iteration as
follows until convergence6:

Sk+1
H = DHR · Sk

R

Sk+1
R = ε1DRR · Sk

R + ε2DRH · Sk
H + ε3DRT · Sk

t

Sk+1
T = ε4DTT · Sk

T + ε5DTR · Sk
R

(7)
where ε1 + ε2 + ε3 = 1 and ε4 + ε5 = 1. (The score
of labeled reviews will be fixed to +1 or −1.)

6 Learning Generalizable Classifiers

In Section 4, we introduced RLDA to filter out
review-, hotel- and city-specific information from
our vector-based review representation. Here, we
will directly evaluate the effectiveness of RLDA
by comparing the performance of binary deceptive
vs. truthful classifiers trained on three feature sets:
(a) the full vocabulary, encoded as unigrams and
bigrams (N-GRAMS); (b) a reduced-dimensionality
feature space, based on standard LDA (Blei et
al, 2003); and (c) a reduced-dimensionality feature

6Convergence is achieved if the difference between ranking
scores in two consecutive iterations is less than 0.00001.

space, based on our proposed revised LDA approach
(RLDA).

We compare two kinds of classifiers, which are
trained on only the labeled CHICAGO dataset and
tested on the FOUR-CITIES dataset. First, we use
SVMlight (Joachims, 1999) to train linear SVM clas-
sifiers, which have been shown to perform well in
related work (Ott et al, 2011). Second, we train a
two-layer manifold classifier, which is a simplified
version of the model presented in Section 5. In this
model, the graph consists of only review and term
layers, and the score of a labeled review is fixed to
1 or -1 in each iteration. After convergence, reviews
with scores greater than 0 are classified as truthful,
and less than 0 as deceptive.

Results and Discussion The results are shown in
Table 2 and show the average accuracy and preci-
sion/recall w.r.t. the truthful (positive) class. We find
that SVM and MANIFOLD are comparable in all six
conditions, and not surprisingly, perform best when
evaluated on reviews from the two Chicago hotels in
our FOUR-CITIES data. However, the N-GRAM and
LDA feature sets perform much worse than RDLA

when evaluation is performed on reviews from the
other three (non-Chicago) cities. This confirms that
classifiers trained on n-gram features overfit to the
training data (CHICAGO) and do not generalize well
to reviews from other cities. In addition, the stan-
dard LDA-based method for dimensionality reduc-
tion is not sufficient for our specific task.

7 Identifying Manipulated Hotels

In this section, we evaluate the performance of our
manifold ranking approach (see Section 5) on the
task of identifying manipulated hotels.

Baselines. We consider several baseline ranking
approaches to compare to our manifold ranking ap-
proach. Like the manifold ranking approach, the
baselines also employ both the CHICAGO dataset (la-
beled) and FOUR-CITIES dataset (without labels).7

For fair comparison, we use identical processing
techniques for each approach. Topic number is set

7While we have not investigated the effects of unlabeled data
in detail, providing additional unlabeled data (beyond the test
set) boosts the manifold ranking performances reported below
by 1-2%.
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city feature set SVM Manifold
Accuracy Precision Recall Accuracy Precision Recall

Chicago
N-GRAMS 0.831 0.844 0.818 0.835 0.844 0.825

LDA 0.833 0.846 0.819 0.817 0.832 0.802
RLDA 0.830 0.838 0.822 0.841 0.819 0.863

Non-Chicago
N-GRAMS 0.728 0.744 0.714 0.733 0.738 0.727

LDA 0.714 0.696 0.732 0.728 0.715 0.741
RLDA 0.791 0.799 0.780 0.801 0.787 0.815

Table 2: Binary classification results showing that n-gram features overfit to the CHICAGO training data. Results
correspond to evaluation on reviews for the two Chicago hotels from FOUR-CITIES and non-Chicago FOUR-CITIES
reviews (six hotels).

to five for all topic-model-based approaches. Each
baseline makes review-level predictions and then
ranks each hotel by the average of those predictions.

• Review-SVR: Uses linear Tranductive Support
Vector Regression with unigram and bigram fea-
tures, similar to Ott et al. (2011).
• Review-SVR+LDA (R): Similar to REVIEW-

SVR but uses our revised LDA (RLDA) topic
model for dimensionality reduction (R).
• Two-Layer Manifold (S): A simplified version of

our model where the hotel-level is removed from
the graph. Dimensionality reduction is performed
using standard LDA (S).
• Two-Layer Manifold (R): Similar to TWO-

LAYER MANIFOLD (S) but uses the revised LDA
(RLDA) model for dimensionality reduction.
• Three-layer Manifold (tf-idf): Our three-layer

manifold ranking model, except with each review
represented as a TF-IDF term vector. Review sim-
ilarity is calculated based on the cosine similarity
between these vectors.

Evaluation Method. To evaluate ranking perfor-
mance in the absence of a gold standard set of ma-
nipulated hotels, we rearrange the FOUR-CITIES test
set of 40 truthful and 40 deceptive reviews for each
of eight hotels: we create 41 versions of each hotel,
where each hotel version contains a different num-
ber of injected deceptive reviews, ranging from 0 to
40. For example, the first version of a hotel will have
40 truthful and 0 deceptive reviews, the second ver-
sion 39 truthful and 1 deceptive, and the 41st ver-
sion 0 truthful and 40 deceptive. In total, we gen-
erate 41 × 8 = 328 versions of hotel reviews. We
expect versions with larger proportions of deceptive

reviews to receive lower scores by the ranking mod-
els (i.e., they are ranked higher/more deceptive).

Metrics. To qualitatively evaluate the ranking re-
sults, we use the Normalized Discounted Cumula-
tive Gain (NDCG), which is commonly used to eval-
uate retrieval algorithms with respect to an ideal
relevance-based ranking. In particular, NDCG re-
wards rankings with the most relevant results at the
top positions (Liu, 2009), which is also our objec-
tive, namely, to rank versions that have higher pro-
portions of deceptive reviews nearer to the top.

Let R(m) denote the relevance score of mth

ranked hotel version. Then, NDCGN is defined as:

NDCGN =
1

IDCGN

m=N∑
m=1

2R(m) − 1

log2(1 +m)
(8)

where IDCGN refers to discounted cumulative gain
(DCG) of the ideal ranking of the top N results. We
define the ideal ranking according to the proportion
of deceptive reviews in different versions, and re-
port NDCG scores for theNth ranked hotel versions
(N = 8 to 321), at intervals of 8 (to account for ties
among the eight hotels).

Results and Discussion. NDCG results are shown
in Figure 5. We observe that our approach (using
2, 5 or 10 topics) generally outperforms the other
approaches. In particular, approaches that use our
RLDA text representation (OUR APPROACH, TWO-
LAYER MANIFOLD (R), and REVIEW-SVR+LDA
(R)), which tries to remove city- and hotel-specific
information, perform better than those that use
the full vocabulary (REVIEW-SVR, TWO-LAYER

MANIFOLD (S), and THREE-LAYER MANIFOLD

(TF-IDF)). This further confirms that our RLDA
dimensionality reduction technique allows models,
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Figure 5: NDCGN results for different approaches. K
indicates the number of topics.

trained on limited data, to generalize to reviews of
different hotels and in different locations. We also
find that approaches that model a reinforcing rela-
tionship between hotels and their reviews are bet-
ter than approaches that model reviews as inde-
pendent units, e.g., TWO-LAYER MANIFOLD (R)
vs. REVIEW-SVR+LDA and TWO-LAYER MANI-
FOLD (S) vs. REVIEW-SVR. This confirms our in-
tuition that a hotel is more deceptive if it is con-
nected with many deceptive reviews, and, in turn,
a review is more deceptive if from a deceptive hotel.

8 Qualitative Evaluation

We now present qualitative evaluations for the
RLDA topic model and the manifold ranking model.

Topic Quality. Table 3 gives the top words for
four aspect topics and four city-specific topics in the
RLDA topic model; Table 4 gives the highest and
lowest ranking term weights in our three-layer man-
ifold model. By comparing the first row of topics in
Table 3, corresponding to aspect topics, to the top
words in Table 4, we observe that the learned top-
ics relate to truthful and deceptive classes. For ex-
ample, Topics 1 and 4 share many terms with the
top truthful terms in the manifold model, e.g., spa-
tial terms, such as location, floor and block,
and punctuation, such as (, ), and $. Similarly,
Topics 2 and 7 share many terms with the top de-
ceptive terms in the manifold model, e.g., hotel,
husband, wife, amazing, experience and
recommend. This makes sense, since topic models
have been shown to produce discriminative topics on

Topic1 Topic2 Topic4 Topic7
location hotel ( hotel

$ stay room service
walk staff ) husband
night restaurant park amazing
block friendly bed will
floor room night weekend
quiet recommend shower friendly
nice love view travel

lobby excellent minute experience
breakfast wife pillow friend

NYC Chicago LA Houston
York Chicago los Houston
ny Michigan Angeles downtown

time mile la Texas
square tower lax cab

nyc Illinois shuttling Westside
street avenue hollywood center

empire Rogers plane Northwest
Chinatown river morning st

station Burnham California museum
Wall Goodman downtown mission

Table 3: Top words in topics extracted from RLDA topic
model (see Section 4). The top row presents topic words
from four aspect topics (K = 10) and the bottom row
presents top words from four city-specific topics.

Deceptive Truthful
term score term score
my -1.063 $ 0.964
visit -0.944 location 0.922
we -0.882 ( 0.884

hotel -0.863 ) 0.884
husband -0.828 bathroom 0.842
family -0.824 floor 0.810

amazing -0.782 breakfast 0.784
experience -0.740 bar 0.762
recommend -0.732 block 0.747

wife -0.680 small 0.721
relax -0.678 but 0.720

vacation -0.651 walk 0.707
will -0.651 lobby 0.707

friendly -0.646 quiet 0.684

Table 4: Term scores from our ranking algorithm.

this data in previous work (Li et al., 2013).

With respect to the second row in Table 4, con-
taining top words from city-specific topics, we ob-
serve that each topic does contain primarily city-
specific information. This helps to explain why re-
moving terms associated with these topics resulted
in a better vector representation for reviews.
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Figure 6: Hotel Ranking Distribution on TripAdvisor

Figure 7: Proportion of Singletons vs. Hotel Ranking.

Real-world Evaluation. Finally, we apply our
ranking model to a large-scale collection of real-
world reviews from TripAdvisor. We crawl 878,561
reviews from 3,945 hotels in 25 US cities from Tri-
pAdvisor excluding all non-5-star reviews and re-
moving hotels with fewer than 100 reviews. In the
end, we collect 244,810 reviews from 838 hotels.

We apply our manifold ranking model and rank
all 838 hotels. First, we present a histogram of the
resulting manifold ranking scores in Figure 6. We
observe that the distribution reaches a peak around
0.04, which in our quantitative evaluation (Sec-
tion 7) corresponded to a hotel with 34 truthful and
6 deceptive reviews. These results suggest that the
majority of reviews in TripAdvisor are truthful, in
line with previous findings by Ott et al. (2011).

Next, we note that previous work has hypothe-
sized that deceptive reviews are more likely to be
posted by first-time review writers, or singleton re-
viewers (Ott et al, 2011; Wu et al, 2011). Accord-
ingly, if this hypothesis were valid, then manipu-
lated hotels would have an above-average proportion

of singleton reviews. Figure 7 shows a histogram
of the average proportion of singleton reviews, as
a function of the ranking scores produced by our
model. Noting that lower scores correspond to a
higher predicted proportion of deceptive reviews, we
observe that hotels that are ranked as being more de-
ceptive by our model have much higher proportions
of singleton reviews, on average, compared to hotels
ranked as less deceptive.

9 Conclusion

We study the problem of identifying manipulated of-
ferings on review portals and propose a novel three-
layer graph model, based on manifold ranking for
ranking offerings based on the proportion of reviews
expected to be instances of deceptive opinion spam.
Experimental results illustrate the effectiveness of
our model over several learning-based baselines.
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Abstract

Recommendation systems (RS) take advan-
tage of products and users information in order
to propose items to consumers. Collaborative,
content-based and a few hybrid RS have been
developed in the past. In contrast, we propose
a new domain-independent semantic RS. By
providing textually well-argued recommenda-
tions, we aim to give more responsibility to the
end user in his decision. The system includes
a new similarity measure keeping up both the
accuracy of rating predictions and coverage.
We propose an innovative way to apply a fast
adaptation scheme at a semantic level, provid-
ing recommendations and arguments in phase
with the very recent past. We have performed
several experiments on films data, providing
textually well-argued recommendations.

1 Introduction

Recommender systems aim at suggesting appropri-
ate items to users from a large catalog of products.
Those systems are individually adapted by using a
specific profile for each user and item, derived from
the analysis of past ratings. The last decade has
shown a historical change in the way we consume
products. People are getting used to receive recom-
mendations. Nevertheless, after a few bad recom-
mendations, users will not be convinced anymore by
the RS. Moreover, if these suggestions come without
explanations, why people should trust it? Numbers
and figures cannot talk to people.
To answer these key issues, we have designed a
new semantic recommender sytem (SRS) including
at least two innovative features:

• Argumentation: each recommendation relies
on and comes along with a textual argumenta-
tion, providing the reasons that led to that rec-
ommendation.

• Fast adaptation: the system is updated in a con-
tinuous way, as each new review is posted.

In doing so, the system will be perceived as less
intrusive thanks to well-chosen words and its fail-
ures will be smoothed over. It is therefore necessary
to design a new generation of RS providing textu-
ally well-argued recommendations. This way, the
end user will have more elements to make a well-
informed choice. Moreover, the system parameters
have to be dynamically and continuously updated,
in order to provide recommendations and arguments
in phase with the very recent past. To do so, we
have adapted the algorithms we described in Gail-
lard (Gaillard et al., 2013), by including a semantic
level, i.e words, terms and phrases as they are natu-
rally expressed in reviews.

This paper is structured as follows. In the next
section, we present the state of the art in recom-
mendation systems and introduce some of the im-
provements we have made. Then, we present our
approach and define the associated methods in sec-
tion 3. We describe the evaluation protocol and how
we have performed some experiments in section 4.
Finally we report results including a comparison to
a baseline in section 5.

2 Related work and choice of a baseline

We present here some methods used in the litera-
ture. Collaborative Filtering (CF) systems use logs
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of users, generally user ratings on items (Burke,
2007; Sarwar et al., 1998). In these systems, the
following assumption is made: if user a and user
b rate n items similarly, they will rate other items
in the same way (Deshpande and Karypis., 2004).
This technique has many well-known issues such
as the “cold start” problem, i.e when new items or
users appear, it is impossible to make a recommen-
dation, due to the absence of rating data (Schein et
al., 2002). Other limitations of RS are sparsity, scal-
ability, overspecialization and domain-dependency
problems.
In Content Based Filtering (CBF) systems, users are
supposed to be independent (Mehta et al., 2008).
Hence for a given user, recommendations rely only
on items he previously rated.

Some RS incorporate semantic knowledge to im-
prove quality. Generally, they apply a concept-
based approach to enhance the user modeling stage
and employ standard vocabularies and ontology re-
sources. For instance, ePaper (scientific-paper rec-
ommender), computes the matching between the
concepts constituting user interests and the concepts
describing an item by using hierarchical relation-
ships of domain concepts (Maidel et al., 2008). Cod-
ina and Ceccaroni (2010) propose to take advantage
of semantics by using an interest-prediction method
based on user ratings and browsing events.
However, none of them are actually based on the
user opinion as it is expressed in natural language.

2.1 Similarity measures
Similarity measures are the keystone of RS (Her-
locker et al., 2005). Resnick (1997) was one of the
first to introduce the Pearson correlation coefficient
to derive a similarity measure between two entities.
Other similarity measures such as Jaccard and Co-
sine have been proposed (Meyer, 2012). Let Su be
the set of items rated by u, Ti the set of users who
have rated item i, ru,i the rating of user u on item i
and rx the mean of x (user or item). PEA(i,j) stands
for the Pearson similarity between items i and j and
is computed as follows:∑

u∈Ti∩Tj
(ru,i − ri)(ru,j − rj)√∑

u∈Ti∩Tj
(ru,i − ri)2

∑
u∈Ti∩Tj

(ru,j − rj)2
(1)

In the remainder, the Pearson similarity measure will
be used as a baseline. The Manhattan Weighted and

Corrected similarity (MWC), that we introduced in
(Gaillard et al., 2013), will be used as a point of
comparison as well1. Again, for none of them, tex-
tual content is taken into account.

2.2 Rating prediction
Let i be a given item and u a given user. We suppose
the pair (u, i) is unique. Indeed, most of social net-
works do not allow multiple ratings by the same user
for one item. In this framework, two rating predic-
tion methods have to be defined: one user oriented
and the other item oriented. Sim stands for some
similarity function in the following formula.

rating(u, i) =

∑
v∈Ti

Sim(u, v)× rv,i∑
v∈Ti

|Sim(u, v)|
(2)

A symmetrical formula for items rating(i, u) is de-
rived from and combined with (2).

r̂u,i = β×rating(u, i)+(1−β)×rating(i, u) (3)

3 Methods

In this section, we describe the methods we have
used and propose some of the enhancements we
have elaborated in our system. In formula (2),
Sim can be replaced by several similarity such as
Pearson, Cosine or MWC similarity (Tan et al.,
2005). All these methods provide a measurement of
the likeness between two objects. We then conclude
if two users (or items) are ”alike” or not. One has
to define what “alike“ should mean in this case. If
two users rate the same movies with equals ratings,
then these similarities will be maximal. However,
they may have rated identically but for completely
different reasons, making them not alike at all.
Moreover, none of these similarity measures can
express why two users or items are similar. This is
due to the fact that they rely on ratings only.

3.1 New similarity based on words
We propose a new similarity method, taking into ac-
count words used by users in their past reviews about
items. In the remainder, we call it the Word Based
Similarity (WBS). Each user x (or item) has a vo-
cabulary set Vx and each word w in it is associated

1Details on MWC can be found in supplementary material.
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with a set of ratings Rw,x and an average usage rat-
ing rw. In order to balance the contribution of each
word, we define a weight function Fw, mixing the
well-known Inverse Document Frequency IDF (w)
with the variance σ2

w. Common words and words w
associated with very heterogenous ratings Rw,x (i.e
a high variance) will have a smaller weight in the
similarity. Nw is the number of items in which the
word w appears. Ntot is the total number of items.
D is the maximum difference between two ratings.
Note that Fw has to be updated at each iteration.

Fw = −log

(
Nw

Ntot

)
× 1

σ2
w

(4)

WBS(x, y) =

∑
w∈Vx∩Vy

(D − |rw,x − rw,y|)Fw

D × |Vx ∩ Vy|
∑

w∈Vx∩Vy
Fw

(5)

3.2 Adaptation
An adaptive framework proposed in (Gaillard et al.,
2013) allows the system to have a dynamic adapta-
tion along time, overcoming most of the drawbacks
due to the cold-start. The authors have designed a
dynamic process following the principle that every
update (u, i) needs to be instantly taken into account
by the system. Consequently, we have to update the
σ2

w and IDF(w) at each iteration, for every word.
Paying attention to avoid a whole re-estimation of
these two variables, we derived an iterative relation
for the two of them2. We thus reduced the complex-
ity by one degree, keeping our system very well-
fitted to dynamic adaptation.

3.3 Textual recommendation
The main innovative feature of our proposal is to
predict what a user is going to write on an item
we recommend. More precisely, we can tell the
user why he is expected to like or dislike the rec-
ommended item. This is possible thanks to the new
similarity measure we have introduced (WBS). Let
us consider a user u and an item i. To keep it sim-
ple, the system takes into account what u has written
on other items in the past and what other users have
written on item i, by using WBS. The idea consists
in extracting what elements of i have been liked or
disliked by other users, and what u generally likes.

2More details can be found in the supplementary material.

At the intersection of these two pieces of informa-
tion, we extract a set of matching words that we
sort by relevance using Fw. Then, by taking into
account the ratings associated with each word, we
define two sub-sets Pw and Nw. Pw contains what
user u is probably going to like in i and Nw what u
may dislike. Finally, we provide the most relevant
arguments contained in both Pw and Nw, and each
of them is given in the context they have been used
for item i. As an example, some outputs are shown
in section 5.2.

4 Evaluation criteria

We present here the evaluation protocol we de-
signed. It should be noted that we are not able
to make online experiments. Therefore, we can
not measure the feedback on our recommendations.
However, the cornerstone of recommender system is
the accuracy of rating predictions (Herlocker et al.,
2004). From this point of view, one could argue that
the quality of a recommender engine could be as-
sessed by its capacity to predict ratings. It is thus
possible to evaluate our system comparing the pre-
diction r̂u,i for a given pair (u, i), with the actual
real rating ru,i.
The classical metrics3 (Bell et al., 2007) Root Mean
Square Error (RMSE) and Mean Absolute Error
(MAE) will be used to evaluate our RS.
Last but not least, we make the following assump-
tion: if WBS results are as good as MWC’s, the
words presented by the system to users as arguments
are likely to be relevant.

5 Experiments

This work has been carried out in partnership with
the website Vodkaster 4, a Cinema social network.
Researchers have used other datasets such as the fa-
mous Netflix. Unfortunately, the latter does not in-
clude textual reviews. It is therefore strictly impos-
sible to experiment a SRS on such a dataset.

5.1 Corpus

The corpus has been extracted from Vodkaster’s
database. Users post micro-reviews (MR) to ex-
press their opinion on a movie and rate it, within a

3Details on metrics are given in the supplementary material.
4www.vodkaster.com
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140 characters Twitter-like length limit. We divided
the corpus into three parts, chronologically sorted:
training (Tr), development (D) and test (T). Note that
in our experiments, the date is taken into account
since we also work on dynamic adaptation.

Tr D Tr+D T
Size 55486 9892 65378 9729

Nb of Films 8414 3184 9130 3877
Nb of Users 1627 675 1855 706

Table 1: Statistics on the corpus

5.2 Results
Figure 1 compares four different methods: the
classical Pearson (PEA) method that does not
allow quick adaptation, the MWC method with and
without quick adaptation MNA and ours (WBS).
Within the confidence interval, in terms of accuracy,
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Figure 1: Evolution of accuracy as a function of coverage
for PEA, MWC and WBS methods on D corpus.

the same performances are obtained by MWC and
WBS. Both outperform5 PEA and MNA. Our word
based approach is thus able to offer the arguments

5Note that the key point here is the comparison of results ob-
tained with the baseline and with the method we propose. Both
of them have been evaluated with the same protocol: RMSE is
computed with respect to rating predictions above some empir-
ical threshold as done in (Gaillard et al., 2013).

feature without any loss of perfomances with
respect to any others RS methods that we know of.

In Table 2, we set a constant coverage (2000 pre-
dictions) in order to be able to compare results ob-
tained with different methods.

Corp. Met. RMSE MAE %Acc. CI
D PEA 0.99 0.76 86.41 1.49
E MNA 0.93 0.72 90.75 1.26
V MWC 0.89 0.69 92.95 1.12

WBS 0.89 0.70 92.45 1.16
T PEA 1.01 0.78 86.02 1.51
E MNA 0.98 0.75 90.04 1.30
S MWC 0.92 0.71 91.46 1.22
T WBS 0.94 0.72 91.15 1.24

Table 2: Results with Pearson (PEA), MWC, MWC with-
out Adaptation (MNA), WBS. CI is the radius confidence
interval estimated in % on accuracy (Acc.).

MNA (MWC without adaptation) being better
and more easily updated than Pearson (PEA), we
have decided to use the adaptive framework only for
MWC. Moreover, for Pearson dynamic adaptation,
the updating algorithm complexity is increased by
one degree.
We want to point out that the results are the same for
both MWC and WBS methods, within a confidence
interval (CI) radius of 1.16%. From a qualitative
point of view, these results can be seen as an
assessment of our approach based on words.

Example of outputs: The movie Apocalypse
Now is recommended to user Theo6 with a rating
prediction equal to 4.3. Why he might like: some
brillant moments (0.99), among the major master-
piece (0.91), Vietnam’s hell (0.8); dislike: did not
understand everything but... (0.71).

The data we have does not contain the informa-
tion on the reaction of the user to the recommen-
dation. In particular, we do not know if the textual
argumentation would have been sufficient for con-
vincing Theo6 to see the film. But we know that
after seeing it, he put a good rating (4.5/5) on this
movie.
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6 Conclusion and perspectives

We have presented an innovative proposal for de-
signing a domain-independent SRS relying on a
word based similarity function (WBS), providing
textually well-argued recommendations to users.
Moreover, this system has been developed in a dy-
namic and adaptive framework. This might be the
first step really made towards an anthromorphic and
evolutive recommender. As future work, we plan to
evaluate how the quality is impacted by the time di-
mension (adaptation delay, cache reset,etc.).
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Abstract

Minimum Error Rate Training (MERT) re-
mains one of the preferred methods for tun-
ing linear parameters in machine translation
systems, yet it faces significant issues. First,
MERT is an unregularized learner and is there-
fore prone to overfitting. Second, it is com-
monly used on a noisy, non-convex loss func-
tion that becomes more difficult to optimize
as the number of parameters increases. To ad-
dress these issues, we study the addition of
a regularization term to the MERT objective
function. Since standard regularizers such as
`2 are inapplicable to MERT due to the scale
invariance of its objective function, we turn to
two regularizers—`0 and a modification of `2—
and present methods for efficiently integrating
them during search. To improve search in large
parameter spaces, we also present a new direc-
tion finding algorithm that uses the gradient of
expected BLEU to orient MERT’s exact line
searches. Experiments with up to 3600 features
show that these extensions of MERT yield re-
sults comparable to PRO, a learner often used
with large feature sets.

1 Introduction

Minimum Error Rate Training emerged a decade
ago (Och, 2003) as a superior training method for
small numbers of linear model parameters of machine
translation systems, improving over prior work using
maximum likelihood criteria (Och and Ney, 2002).
This technique quickly rose to prominence, becom-
ing standard in many research and commercial MT
systems. Variants operating over lattices (Macherey
et al., 2008) or hypergraphs (Kumar et al., 2009) were
subsequently developed, with the benefit of reducing
the approximation error from n-best lists.

The primary advantages of MERT are twofold. It
directly optimizes the evaluation metric under consid-
eration (e.g., BLEU) instead of some surrogate loss.

Secondly, it offers a globally optimal line search. Un-
fortunately, there are several potential difficulties in
scaling MERT to larger numbers of features, due
to its non-convex loss function and its lack of reg-
ularization. These challenges have prompted some
researchers to move away from MERT, in favor of lin-
early decomposable approximations of the evaluation
metric (Chiang et al., 2009; Hopkins and May, 2011;
Cherry and Foster, 2012), which correspond to easier
optimization problems and which naturally incorpo-
rate regularization. In particular, recent work (Chiang
et al., 2009) has shown that adding thousands or tens
of thousands of features can improve MT quality
when weights are optimized using a margin-based
approximation. On simulated datasets, Hopkins and
May (2011) found that conventional MERT strug-
gles to find reasonable parameter vectors, where a
smooth loss function based on Pairwise Ranking Op-
timization (PRO) performs much better; on real data,
this PRO method appears at least as good as MERT
on small feature sets, and also scales better as the
number of features increases.

In this paper, we seek to preserve the advantages
of MERT while addressing its shortcomings in terms
of regularization and search. The idea of adding a
regularization term to the MERT objective function
can be perplexing at first, because the most common
regularizers, such as `1 and `2, are not directly appli-
cable to MERT. Indeed, these regularizers are scale
sensitive, while the MERT objective function is not:
scaling the weight vector neither changes the predic-
tions of the linear model nor affects the error count.
Hence, MERT can hedge any regularization penalty
by maximally scaling down linear model weights.

The first contribution of this paper is to analyze var-
ious forms of regularization that are not susceptible
to this scaling problem. We analyze and experiment
with `0, a form of regularization that is scale insen-
sitive. We also present new parameterizations of `2

1948



regularization, where we apply `2 regularization to
scale-senstive linear transforms of the original linear
model. In addition, we introduce efficient methods
of incorporating regularization in Och (2003)’s exact
line searches. For all of these regularizers, our meth-
ods let us find the true optimum of the regularized
objective function along the line.

Finally, we address the issue of searching in a
high-dimensional space by using the gradient of ex-
pected BLEU (Smith and Eisner, 2006) to find better
search directions for our line searches. This direction
finder addresses one of the serious concerns raised
by Hopkins and May (2011): MERT widely failed
to reach the optimum of a synthetic linear objective
function. In replicating Hopkins and May’s experi-
ments, we confirm that existing search algorithms for
MERT—including coordinate ascent, Powell’s algo-
rithm (Powell, 1964), and random direction sets (Cer
et al., 2008)—perform poorly in this experimental
condition. However, when using our gradient-based
direction finder, MERT has no problem finding the
true optimum even in a 1000-dimensional space.

Our results suggest that the combination of a reg-
ularized objective function and a gradient-informed
line search algorithm enables MERT to scale well
with a large number of features. Experiments with
up to 3600 features show that these extensions of
MERT yield results comparable to PRO (Hopkins
and May, 2011), a parameter tuning method known
to be effective with large feature sets.

2 Unregularized MERT

Prior to introducing regularized MERT, we briefly
review standard unregularized MERT (Och, 2003).
We use fS1 = {f1 . . . fS} to denote the S input sen-
tences of a given tuning set. For each sentence fs, let
Cs = {es,1 . . . es,M} denote the list of M -best can-
didate translations. Each input and output sentence
pair (fs, es,m) is weighted using a linear model that
applies model parameters w = (w1 . . . wD) ∈ RD

to D feature functions h1(f , e,∼) . . . hD(f , e,∼),
where ∼ is the hidden state associated with the
derivation from f to e, such as phrase segmenta-
tion and alignment. Furthermore, let hs,m ∈ RD

denote the feature vector representing the translation
pair (fs, es,m).

In MERT, the goal is to minimize a loss function
E(r, e) that scores translation hypotheses against a

set of reference translations rS1 = {r1 . . . rS}. This
yields the following optimization problem:

ŵ = arg min
w

{ S∑
s=1

E(rs, ê(fs; w))

}
=

arg min
w

{ S∑
s=1

M∑
m=1

E(rs, es,m)δ(es,m, ê(fs; w))

}
(1)

where

ê(fs; w) = arg max
m∈{1...M}

{
wᵀhs,m

}
(2)

While the error surface of Equation 1 is only an
approximation of the true error surface of the MT
decoder, the quality of this approximation depends
on the size of the hypothesis space represented by the
M -best list. Therefore, the hypothesis list is grown
iteratively: decoding with an initial parameter vector
seeds the M -best lists; next, parameter estimation
and M -best list gathering alternate until the cumula-
tive M -best list no longer grows, or until changes of
w between two decoding runs are deemed too small.
To increase the size of the hypothesis space, subse-
quent work (Macherey et al., 2008) instead operated
on lattices, but this paper focuses on M -best lists.

A crucial observation is that the unsmoothed error
count represented in Equation 1 is a piecewise con-
stant function. This enabled Och (2003) to devise a
line search algorithm guaranteed to find the optimum
point along the line. To extend the search from one
to multiple dimensions, MERT applies a sequence
of line optimizations along some fixed or variable
set of search directions {dt} until some convergence
criteria are met. Considering a given point wt and
a given direction dt at iteration t, finding the most
probable translation hypothesis in the set of candi-
dates translations Cs = {es,1 . . . es,M} corresponds
to solving the following optimization problem:

ê(fs; γ) = arg max
m∈{1...M}

{
(wt + γ · dt)ᵀhs,m

}
(3)

The function in this equation is piecewise linear (Pa-
pineni, 1999), which enables an efficient exhaustive
computation. Specifically, this function is optimized
by enumerating the up to M hypotheses that form
the upper envelope of the model score function. The
error count, then, is a piecewise constant function
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defined by the points γfs
1 < · · · < γfs

M at which an in-
crease in γ causes a change of optimum in Equation 3.
Error counts for the whole corpus are simply the sums
of sentence-level piecewise constant functions aggre-
gated over all sentences of the corpus.1 The optimal γ
is finally computed by enumerating all piecewise con-
stant intervals of the corpus-level error function, and
by selecting the one that has the lowest error count
(or, correspondingly, highest BLEU score). Assum-
ing the optimum is found in the interval [γk−1, γk],
we define γopt = (γk−1 + γk)/2 and change the pa-
rameters using the update wt+1 = wt + γopt · dt.

Finally, this method is turned into a global D-
dimensional search using algorithms that repeat-
edly use the aforementioned exact line search algo-
rithm. Och (2003) first advocated the use of Powell’s
method (Powell, 1964; Press et al., 2007). Pharaoh
(Koehn, 2004) and subsequently Moses (Koehn et al.,
2007) instead use coordinate ascent, and more recent
work often uses random search directions (Cer et al.,
2008; Macherey et al., 2008). In Section 4, we will
present a novel direction finder for maximum-BLEU
optimization, which uses the gradient of expected
BLEU to find directions where the BLEU score is
most likely to increase.

3 Regularization for MERT

Because MERT is prone to overfitting when a large
number of parameters must be optimized, we study
the addition of a regularization term to the objective
function. One conventional approach is to regularize
the objective function with a penalty based on the

Euclidean norm ||w||2 =
√∑

iw
2
i , also known as `2

regularization. In the case of MERT, this yields the
following objective function:2

ŵ = arg min
w

{ S∑
s=1

E(rs, ê(fs; w)) +
||w||22
2σ2

}
(4)

1This assumes that the sufficient statistics of the metric under
consideration are additively decomposable by sentence, which
is the case with most popular evaluation metrics such as BLEU
(Papineni et al., 2001).

2The `2 regularizer is often used in conjunction with log-
likelihood objectives. The regularization term of Equation 4
could similarly be added to the log of an objective—e.g.,
log(BLEU) instead of BLEU—but we found that the distinc-
tion doesn’t have much of an impact in practice.
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Figure 1: Example MERT values along one coordi-
nate, first unregularized. When regularized with `2, the
piecewise constant function becomes piecewise quadratic.
When using `0, the function remains piecewise constant
with a point discontinuity at 0.

where the regularization term 1/2σ2 is a free param-
eter that controls the strength of the regularization
penalty. Similar regularizers have also been used
in conjunction with other norms, such as `1 and `0
norms. The `1 norm, defined as ||w||1 =

∑
i |wi|,

applies a constant force toward zero, preferring vec-
tors with fewer non-zero components; `0, defined as
||w||0 = |{i | wi 6= 0}|, simply counts the number of
non-zero components of the weight vector, encoding
a preference for sparse vectors.

Geometrically, `2 is a parabola, `1 is the wedge-
shaped absolute value function, and `0 is an impulse
function with a spike at 0. The original formulation
(Equation 1) of MERT consists of a piecewise con-
stant representation of the loss, as a function of the
step size in a given direction. But with these three reg-
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ularization terms, the function respectively becomes
piecewise quadratic, piecewise linear, or piecewise
constant with a potential impulse jump for each dis-
tinct choice of regularizer. Figure 1 demonstrates this
effect graphically.

As discussed in (McAllester and Keshet, 2011),
the problem with optimizing Equation 4 directly is
that the output of the underlying linear classifier, and
therefore the error count, are not sensitive to the scale
of w. Moreover, `2 regularization (as well as `1 reg-
ularization) is scale sensitive, which means any op-
timizer of this function can drive the regularization
term down to zero by scaling down w. As special
treatments for `2, we evaluate three linear transforms
of the weight vector, where the vector w of the regu-
larization term ||w||22/2σ2 is replaced with either:

1. an affine transform: w− w0

2. a vector with only (D − 1) free parameters, e.g.,
(1, w′2, · · · , w′D)

3. an `1 renormalization: w/||w||1

In (1), regularization is biased towards w0, a weight
vector previously optimized using a competitive yet
much smaller feature set, such as core features of
a phrase-based (Koehn et al., 2007) or hierarchical
(Chiang, 2007) system. The requirement that this
feature set be small is to prevent overfitting. Other-
wise, any regularization toward an overfit parameter
vector w0 would defeat the purpose of introducing
a regularization term in the first place.3 In (2), the
transformation is motivated by the observation that
the D-parameter linear model of Equation 2 only
needs (D − 1) degrees of freedom. Fixing one of
the components of w to any non-zero constant and
allowing the others to vary, the new linear model re-
tains the same modeling power, but the (D − 1) free
parameters are no longer scale invariant, i.e., scaling
the (D − 1)-dimensional vector now has an effect on
linear model predictions. In (3), the weight vector
is normalized as to have an `1-norm equal to 1. In
contrast, the `0 norm is scale insensitive, thus not
affected by this problem.

3.1 Exact line search with regularization
Optimizing with a regularized error surface requires
a change in the line search algorithm presented in

3(Gimpel and Smith, 2012, footnote 6) briefly mentions the
use of such a regularizer with its ramp loss objective function.

Section 2, but the other aspects of MERT remain the
same, and we can still use global search algorithms
such as coordinate ascent, Powell, and random di-
rections exactly the same way as with unregularized
MERT. Line search with a regularization term is still
as efficient as in (Och, 2003), and it is still guar-
anteed to find the optimum of the (now regularized)
objective function along the line. Considering again a
given point wt and a given direction dt at line search
iteration t, finding the optimum γopt corresponds to
finding γ that minimizes:

S∑
s=1

E(rs, ê(fs; γ)) +
||wt + γ · dt||22

2σ2
(5)

Since regularization does not affect the points at
which ê(fs; γ) changes its optimum, the points
γfs

1 < · · · < γfs
M of intersection in the upper enve-

lope remain the same, so the points of discontinuity
in the error surface remain the same. The difference
now is that the error count on each segment [γi−1, γi]
is no longer constant. This means we need to adjust
the final step of line search, which consists of enu-
merating all [γi−1, γi], and keeping the optimum of
Equation 5 for each segment. ê(fs; γ) remains con-
stant within the segment, so we only need to consider
the expression ||wt + γ · dt||22 to select a segment
point. The optimum is either at the left edge, the right
edge, or in the middle if the vertex of the parabola
happens to lie within that segment.4 We compute
this optimum by finding the value γ for which the
derivative of the regularization term is zero. There is
an easy closed-form solution:

d
dγ

[
||wt + γ · dt||22

2σ2

]
= 0

d
dγ

[∑
i

(w2
t,i + 2 · γ · wt,i · dt,i + γ2 · d2

t,i)

]
= 0∑

i

(2 · wt,i · dt,i + 2 · γ · d2
t,i) = 0

γ = −
(∑

i

wt,i · dt,i
)/(∑

i

d2
t,i

)
= −wt

ᵀdt
dt

ᵀdt

This closed-form solution is computed in time pro-
portional to D, which doesn’t slow down the com-

4When the optimum is either at the left edge γi−1 or right
edge γi of a segment, we select a point at a small relative distance
within the segment (.999γi−1 + .001γi, in the former case) to
avoid ties in objective values.
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putation of Equation 5 for each segment (the con-
struction of each segment of the upper envelope is
proportional to D anyway).

We also use `0 regularization. While minimiza-
tion of the `0-norm is known to be NP-hard in gen-
eral (Hyder and Mahata, 2009), this optimization is
relatively trivial in the case of a line search. Indeed,
for a given segment, the value in Equation 5 is con-
stant everywhere except where we intersect any of
the coordinate hyperplanes, i.e., where one of the
coordinates is zero. Thus, our method consists of
evaluating Equation 5 at the intersection points be-
tween the line and coordinate hyperplanes, returning
the optimal point within the given segment. For any
segment that doesn’t cross any of these hyperplanes,
we evaluate the objective function at any point of the
segment (since the value is constant across the entire
segment).

4 Direction finding

4.1 A Gradient-based direction finder

Perhaps the greatest obstacle in scaling MERT
to many dimensions is finding good search direc-
tions. In problems of lower dimensions, iterating
through all the coordinates is computationally feasi-
ble, though not guaranteed to find a global maximum
even in the case of a perfect line search. As the
number of dimensions increases by orders of mag-
nitude, this coordinate direction approach becomes
less and less tractable, and the quality of the search
also suffers (Hopkins and May, 2011).

Optimization has traditionally relied on finding the
direction of steepest ascent: the gradient. Unfortu-
nately, the objective function optimized by MERT is
piecewise constant; while it may admit a subgradi-
ent, this direction is generally not very informative.
Instead we may consider a smoothed variation of the
original approximation. While some variants have
been considered (Och, 2003; Flanigan et al., 2013),
we use an expected BLEU approximation, assum-
ing hypotheses are drawn from a log-linear distri-
bution according to their parameter values (Smith
and Eisner, 2006). That is, we assume the proba-
bility of a translation candidate es,m is proportional
to (exp (wᵀhs,m))µ, where w are the parameters be-
ing optimized, hs,m is the vector of the features for
es,m, and µ is a scaling parameter. As µ approaches

infinity, the distribution places all its weight on the
highest scoring candidate.

The log of the BLEU score may be written as:

min

(
1− R

C
, 0

)
+

1

N

N∑
n=1

(logmn − log cn)

where R is the sum of reference lengths across the
corpus, C is the sum of candidate lengths, mn is the
number of matched n-grams (potentially clipped),
and cn is the number of n-grams in all candidates.

Given a distribution over candidates, we can use
the expected value of the log of the BLEU score. This
is a smooth approximation to the BLEU score, which
asymptotically approaches the true BLEU score as
the scaling parameter µ approaches infinity. While
this expectation is difficult to compute exactly, we
can compute approximations thereof using Taylor se-
ries. Although prior work demonstrates that a second-
order Taylor approximation is feasible to compute
(Smith and Eisner, 2006), we find that a first-order
approximation is faster and very close to the second-
order approximation.5 The first order Taylor approxi-
mation is as follows:

min

(
1− R

E[C]
, 0

)
+

1

N

N∑
n=1

(log E[mn]− log E[cn])

where E is the expectation operator using the proba-
bility distribution P (h; w, µ).

First we note that the gradient ∂
∂wi

P (h; w, µ) is

P (h; w, µ)

(
hi −

∑
h′

h′iP (h′; w, µ)

)
Using the chain rule, the gradient of the first order
approximation to BLEU is as follows:

1

N

N∑
n=1

( 1

E[mn]

∑
h

mn(h)
∂P (h; w, µ)

∂wi

− 1

E[cn]

∑
h

cn(h)
∂P (h; w, µ)

∂wi

)
+

{
0 if E[C] > R
R

E[C]2
∑

h c1(h)∂P (h;w,µ)
∂wi

otherwise

5Experimentally, we compared our analytical gradient of
the first-order Taylor approximation with the finite-difference
gradients of the first- and second-order approximations, and we
found these three gradients to be very close in terms of cosine
similarity (> 0.99). We performed these measurements both at
arbitrary points and at points of convergence of MERT.
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In the case of `2-regularized MERT, the final gradi-
ent also includes the partial derivative of the regular-
ization penalty of Equation 4, which is wi/σ2 for a
given component i of the gradient. We do not update
the gradient in the case of `0 regularization since the
`0-norm is not differentiable.

4.2 Search

Our search strategy consists of looking at the direc-
tions of steepest increase of expected BLEU, which
is similar to that of Smith and Eisner (2006), but with
the difference that we do so in the context of MERT.
We think this difference provides two benefits. First,
while the smooth approximation of BLEU reduces
the likelihood of remaining trapped in a local opti-
mum, we avoid approximation error by retaining the
original objective function. Second, the benefit of
exact line searches in MERT is that there is no need
to be concerned about step size, since step size in
MERT line searches is guaranteed to be optimal with
respect to the direction under consideration.

Finally, our gradient-based search algorithm oper-
ates as follows. Considering the current point wt, we
compute the gradient gt of the first order Taylor ap-
proximation at that point, using the current scaling pa-
rameter µ. (We initialize the search with µ = 0.01.)
We find the optimum along the line wt+γ ·gt. When-
ever any given line search yields no improvement
larger than a small tolerance threshold, we multiply
µ by two and perform a new line search. The increase
of this parameter µ corresponds to a cooling schedule
(Smith and Eisner, 2006), which progressively sharp-
ens the objective function to get a better estimate of
BLEU as the search converges to an optimum. We
repeatedly perform new line searches until µ exceeds
1000. The inability to improve the current optimum
with a sharp approximation (µ > 1000) doesn’t mean
line searches would fail with smaller values, so we
find it helpful to repeat the above procedure until a
full pass of updates of µ from 0.01 to 1000 yields no
improvement.

4.3 Computational complexity

Computing the gradient increases the computational
cost of MERT, though not its asymptotic complexity.
The cost of a single exhaustive line search is

O (SM(D + logM + logS))

where S is the number of sentences, each with M
possible translations, andD is the number of features.
For each sentence, we first identify the model score
as a linear function of the step size, requiring two
dot products for an overall cost of O(SMD).6 Next
we construct the upper envelope for each sentence:
first the equations are sorted in increasing order of
slope, and then they are merged in linear time to form
an envelope, with an overall cost of O(SM logM).
A linear pass through the envelope converts these
into piecewise constant (or linear, or quadratic) repre-
sentations of the (regularized) loss function. Finally
the per-sentence envelopes are merged into a global
representation of the loss along that direction. Our
implementation successively merges adjacent pairs
of piecewise smooth loss function representations
until a single list remains. These logS passes lead to
a merging runtime of O(SM logS).

The time required to compute a gradient is pro-
portional to O(SMD). For each sentence, we first
gather the probability and its gradient, then use this to
compute expected n-gram counts and matches as well
as those gradients in time O(MD). A constant num-
ber of arithmetic operations suffice to compute the
final expected loss value and its gradient. Therefore,
computing the gradient does not increase the algo-
rithmic complexity when compared to conventional
approaches using coordinate ascent and random di-
rections. Likewise the runtime of a single iteration
is competitive with PRO, given that gradient finding
is generally the most expensive part of convex opti-
mization. Of course, it is difficult to compare overall
runtime of convex optimization with that of MERT,
as we know of no way to bound the number of gradi-
ent evaluations required for convergence with MERT.
Therefore, we resort to empirical comparison later in
the paper, and find that the two methods appear to
have comparable runtime.

6In the special case where the difference between the prior
direction and the current direction is sparse, we may update the
individual linear functions in time proportional to the number of
changed dimensions. Coordinate ascent in particular can update
the linear functions in time O(SM): to the intercept of the
equation for each translation, we may add the prior step size
multiplied by the feature value in the prior coordinate, and the
slope becomes the feature value in the new coordinate. However,
this optimization does not appear to be widely adopted, likely
because it does not lead to any speedup when random vectors,
conjugate directions, or other non-sparse directions are used.
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Language pair Train Tune Dev Test
G

B
M

Chinese-English 0.99M 1,797 1,000 1,082
(mt02+03) (mt05)

Finnish-English 2.20M 11,935 2,001 4,855

S
pa

rs
eH

R
M Chinese-English 3.51M 1,894 1,664 1,357

(mt05) (mt06) (mt08)
Arabic-English 1.49M 1,663 1,360 1,313

(mt06) (mt08) (mt09)

Table 1: Datasets for the two experimental conditions.

5 Experimental Design

Following Hopkins and May (2011), our experimen-
tal setup utilizes both real and synthetic data. The
motivation for using synthetic data is that it is a way
of gauging the quality of optimization methods, since
the data is constructed knowing the global optimum.
Hopkins and May also note that the use of an ob-
jective function that is linear in some gold weight
vector makes the search much simpler than in a real
translation setting, and they suggest that a learner
that performs poorly in such a simple scenario has
little hope of succeeding in a more complex one.

The setup of our synthetic data experiment is al-
most the same as that performed by Hopkins and
May (2011). We generate feature vectors of dimen-
sionality ranging from 10 to 1000. These features are
generated by drawing random numbers uniformly in
the interval [0, 500]. This synthetic dataset consists
of S=1000 source “sentences”, and M=500 “trans-
lation” hypotheses for each sentence. A pseudo
“BLEU” score is then computed for each hypothe-
sis, by computing the dot product between a prede-
fined gold weight vector w∗ and each feature vector
hs,m. By this linear construction, w∗ is guaranteed
to be a global optimum.7 The pseudo-BLEU score is
normalized for each M -best list, so that the transla-
tion with highest model score according to w∗ has
a BLEU score of 1, and so that the translation with
lowest model score for the sentence gets a BLEU of
zero. This normalization has no impact on search,
but makes results more interpretable.

For our translation experiments, we use multi-
stack phrase-based decoding (Koehn et al., 2007).
We report results for two feature sets: non-linear
features induced using Gradient Boosting Machines
(Toutanova and Ahn, 2013) and sparse lexicalized

7The objective function remains piecewise constant, and the
plateau containing w∗ maps to the optimal value of the function.

reordering features (Cherry, 2013). We exploit these
feature sets (GBM and SparseHRM, respectively) in
two distinct experimental conditions, which we de-
tail in the two next paragraphs. Both GBM and
SparseHRM augment baseline features similar to
Moses’: relative frequency and lexicalized phrase
translation scores for both translation directions; one
or two language model features, depending on the
language pair; distortion penalty; word and phrase
count; six lexicalized reordering features. For both
experimental conditions, phrase tables have maxi-
mum phrase length of 7 words on either side. In
reference to Table 1, we used the training set (Train)
for extracting phrase tables and language models; the
Tune set for optimization with MERT or PRO; the
Dev set for selecting hyperparameters of PRO and
regularized MERT; and the Test set for reporting fi-
nal results. In each experimental condition, we first
trained weights for the base feature sets, and then
decoded the Tune, Dev, and Test datasets, generating
500-best lists for each set. All results report rerank-
ing performance on these lists with different feature
sets and optimization methods, based on lower-cased
BLEU (Papineni et al., 2001).

The GBM feature set (Toutanova and Ahn, 2013)
consists of about 230 features automatically induced
using decision tree weak learners, which derive fea-
tures using various word-level, phrase-level, and mor-
phological attributes. For Chinese-English, the train-
ing corpus consists of approximately one million sen-
tence pairs from the FBIS and Hong Kong portions
of the LDC data for the NIST MT evaluation and the
Tune and Test sets are from NIST competitions. A
4-gram language model was trained on the Xinhua
portion of the English Gigaword corpus and on the
target side of the bitext. For Finnish-English we used
a dataset from a technical domain of software man-
uals. For this language pair we used two language
models: one very large model trained on billions of
words, and another language model trained from the
target side of the parallel training set.

The SparseHRM set (Cherry, 2013) contains 3600
sparse reordering features. For each phrase, the fea-
tures take the form of indicators describing its orienta-
tion in the derivation, and its lexical content in terms
of word clusters or frequent words. For both Chinese-
English and Arabic-English, systems are trained on
data from the NIST 2012 MT evaluation. 4-gram
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Figure 2: Change in BLEU score and cosine similarity
to the gold weight vector w∗ as the number of features
increases, using the noisy synthetic experiments. The
gradient-based direction finding method is barely affected
by the noise. The increase of the number of dimensions en-
ables our direction finder to find a slightly better optimum,
which moved away from w∗ due to noise.

language models were trained on the target side of
the parallel training data for both Arabic and Chinese.
The Chinese systems development set is taken from
the NIST mt05 evaluation set, augmented with some
material reserved from our NIST training corpora in
order to better cover newsgroup and weblog domains.

6 Results

We conducted experiments with the synthetic data
scenario described in the previous section, as well
as with noise added to the data (Hopkins and May,
2011). The purpose of adding noise is to make the
optimization task more realistic. Specifically, af-
ter computing all pseudo-BLEU scores, we added
noise to each feature vector hs,m by drawing from
a zero-mean Gaussian with standard deviation 200.
Our results with both noiseless and noisy data yield
the same conclusion as Hopkins and May: standard
MERT struggles with many dimensions, and fails
to recover w∗. However, our experiments with the
gradient direction finder of Section 4 are much more
positive. This direction finder not only recovers w∗
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Figure 3: Comparison of rate of convergence between
coordinate ascent and our expected BLEU direction finder
(D = 500). Noisy refers to the noisy experimental setting.

(cosine > 0.999) even with 1000 dimensions, but its
effectiveness is also visible with noisy data, as seen
in Figure 2. The decrease of its cosine is relatively
small compared to other search algorithms, and this
decrease is not necessarily a sign of search errors
since the addition of noise causes the true optimum
to be different from w∗. Finally, Figure 3 shows our
rate of convergence compared to coordinate ascent.

Our experimental results with the GBM feature
set data are shown in Table 2. Each table is di-
vided into three sections corresponding respectively
to MERT (Och, 2003) with Koehn-style coordinate
ascent (Koehn, 2004), PRO, and our optimizer featur-
ing both regularization and the gradient-based direc-
tion finder. All variants of MERT are initialized with
a single starting point, which is either uniform weight
or w0. Instead of providing MERT with additional
random starting points as in Moses, we use random
walks as in (Moore and Quirk, 2008) to attempt to
move out of local optima.8 Since PRO and our opti-
mizer have hyperparameters, we use a held-out set
(Dev) for adjusting them. For PRO, we adjust three
parameters: a regularization penalty for `2, the pa-
rameter α in the add-α smoothed sentence-level ver-
sion of BLEU (Lin and Och, 2004), and a parameter
for scaling the corpus-level length of the references.
The latter scaling parameter is discussed in (He and

8In the case of the gradient-based direction finder, we also
use the following strategy whenever optimization converges to
a (possibly local) optimum. We run one round of coordinate
ascent, and continue with the gradient direction finder as soon as
the optimum improves. If the none of the coordinate directions
helped, we stop the search.
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Chinese-English Finnish-English
Method Starting pt. # feat. Tune Dev Test # feat. Tune Dev Test
MERT uniform 14 33.2 19.9 32.9 15 53.0 52.6 54.8
MERT uniform 224 33.0 19.2 32.1 232 53.2 51.7 53.8
MERT w0 224 34.1 20.1 33.0 232 53.9 52.5 54.7
PRO w0 224 33.4 20.1 33.3 232 53.3 52.9 55.3
`2 MERT (v1: ||w −w0||) w0 224 33.2 20.3 33.5 232 53.2 52.7 55.2
`2 MERT (v2: D − 1 dimensions) w0 224 33.0 20.4 33.2 232 52.9 52.6 55.0
`2 MERT (v3: `1-renormalized) w0 224 33.1 20.0 33.3 232 53.1 52.5 55.1
`0 MERT w0 224 33.4 20.3 33.2 232 53.2 52.6 55.1

Table 2: BLEU scores for GBM features. Model parameters were optimized on the Tune set. For PRO and regularized
MERT, we optimized with different hyperparameters (regularization weight, etc.), and retained for each experimental
condition the model that worked best on Dev. The table shows the performance of these retained models.
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Figure 4: BLEU score on the Finnish Dev set (GBM)
with different values for the 1/2σ2 regularization weight.
To enable comparable results, the other hyperparameter
(length) is kept fixed.

Deng, 2012; Nakov et al., 2012) and addresses the
problem that systems tuned with PRO tend to pro-
duce sentences that are too short. On the other hand,
regularized MERT only requires one hyperparameter
to tune: a regularization penalty for `2 or `0. How-
ever, since PRO optimizes translation length on the
Dev dataset and MERT does so using the Tune set, a
comparison of the two systems would yield a discrep-
ancy in length that would be undesirable. Therefore,
we add another hyperparameter to regularized MERT
to tune length in the same manner using the Dev set.

Table 2 offers several findings. First, unregular-
ized MERT can achieve competitive results with a
small set of highly engineered features, but adding a
large set of more than 200 features causes MERT to
perform poorly, particularly on the test set. However,
unregularized MERT can recover much of this drop
of performance if it is given a good sparse initializer
w0. Regularized MERT (v1) provides an increase in
the order of 0.5 BLEU on the test set compared to

the best results with unregularized MERT. Regular-
ized MERT is competitive with PRO, even though the
number of features is relatively large. Using the same
GBM experimental setting, Figure 4 compares regu-
larized MERT using the gradient direction finder and
coordinate ascent. At the best regularization setting,
the two algorithms are comparable in terms of BLEU
(though coordinate ascent is slower due to its lack of
a good direction finder), but our method seems more
robust with suboptimal regularization parameters.

Our results with the SparseHRM feature set data
are shown in Table 3. As with the GBM feature set,
we find again that the version of `2 MERT regular-
ized towards ||w −w0|| is competitive with PRO,
even though we train MERT with a large set of 3601
features.9 One remaining question is whether MERT
remains practical with large feature sets. As noted
in the complexity analysis of Section 4.3, MERT
has a dependence on the number of features that is
comparable to PRO, i.e., it is linear in both cases.
Practically, we find that optimization time is com-
parable between the two systems. In the case of
Chinese-English for the GBM feature set, one run of
the PRO optimizer took 26 minutes on average, while
regularized MERT with the gradient direction finder
took 37 minutes on average, taking into account the
time to compute w0. In the case of Chinese-English
for the SparseHRM feature set, average optimization
times for PRO and our method were 3.10 hours and
3.84 hours on average, respectively.

9We note that the experimental setup of (Cherry, 2013) inte-
grates the Sparse HRM features into the decoder, while we use
them in an M -best reranking scenario. The reranking setup of
this paper yields smaller improvements for both PRO and MERT
than those of (Cherry, 2013).
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Chinese-English Arabic-English
Method Starting pt. # feat. Tune Dev Test # feat. Tune Dev Test
MERT uniform 14 25.7 34.0 27.8 14 43.2 42.8 45.5
MERT uniform 3601 25.4 33.1 27.3 3601 45.7 42.3 44.9
MERT w0 3601 27.7 33.5 27.5 3601 46.0 42.4 45.2
PRO w0 3601 25.9 34.3 28.1 3601 44.6 43.4 46.1
`2 MERT (v1: ||w −w0||) w0 3601 26.3 34.3 28.3 3601 45.2 43.2 46.0
`2 MERT (v2: D − 1 dimensions) w0 3601 26.4 34.1 28.2 3601 45.0 43.4 45.9
`2 MERT (v3: `1-renormalized) w0 3601 26.1 34.0 27.9 3601 44.9 43.3 45.7
`0 MERT w0 3601 26.5 34.2 28.1 3601 45.4 43.1 46.0

Table 3: BLEU scores for SparseHRM features. Notes in Table 2 also apply here.

Finally, as shown in Table 2, we see that MERT ex-
periments that rely on a good initial starting point w0

generally perform better than when starting from
a uniform vector. While having to compute w0 in
the first place is a bit of a disadvantage compared
to standard MERT, the need for good initializer is
hardly surprising in the context of non-convex op-
timization. Other non-convex problems in machine
learning, such as deep neural networks (DNN) and
word alignment models, commonly require such ini-
tializers in order to obtain decent performance. In
the case of DNN, extensive research is devoted to the
problem of finding good initializers.10 In the case of
word alignment, it is common practice to initialize
search in non-convex optimization problems—such
as IBM Model 3 and 4 (Brown et al., 1993)—with
solutions of simpler models—such as IBM Model 1.

7 Related work

MERT and its extensions have been the target of ex-
tensive research (Och, 2003; Macherey et al., 2008;
Cer et al., 2008; Moore and Quirk, 2008; Kumar et
al., 2009; Galley and Quirk, 2011). More recent work
has focused on replacing MERT with a linearly de-
composable approximations of the evaluation metric
(Smith and Eisner, 2006; Liang et al., 2006; Watan-
abe et al., 2007; Chiang et al., 2008; Hopkins and
May, 2011; Rosti et al., 2011; Gimpel and Smith,
2012; Cherry and Foster, 2012), which generally
involve a surrogate loss function incorporating a reg-
ularization term such as the `2-norm. While we are
not aware of any previous work adding a penalty on

10For example, (Larochelle et al., 2009) presents a pre-trained
DNN that outperforms a shallow network, but the performance
of the DNN becomes much worse relative to the shallow network
once pre-training is turned off.

the weights in the context of MERT, (Cer et al., 2008)
achieves a related effect. Cer et al.’s goal is to achieve
a more regular or smooth objective function, while
ours is to obtain a more regular set of parameters.
The two approaches may be complementary.

More recently, new research has explored direction
finding using a smooth surrogate loss function (Flani-
gan et al., 2013). Although this method is successful
in helping MERT find better directions, it also exac-
erbates the tendency of MERT to overfit.11 As an
indirect way of controlling overfitting on the tuning
set, their line searches are performed over directions
estimated over a separate dataset.

8 Conclusion

In this paper, we have shown that MERT can scale to
a much larger number of features than previously
thought, thanks to regularization and a direction
finder that directs the search towards the greatest
increase of expected BLEU score. While our best
results are comparable to PRO and not significantly
better, we think that this paper provides a deeper un-
derstanding of why standard MERT can fail when
handling an increasingly larger number of features.
Furthermore, this paper complements the analysis
by Hopkins and May (2011) of the differences be-
tween MERT and optimization with a surrogate loss
function.
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P. Liang, A. Bouchard-Côté, D. Klein, and B. Taskar.
2006. An end-to-end discriminative approach to ma-
chine translation. In International Conference on Com-
putational Linguistics and Association for Computa-
tional Linguistics (COLING/ACL).

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
a method for evaluating automatic evaluation metrics
for machine translation. In Proceedings of the 20th
international conference on Computational Linguistics,
Stroudsburg, PA, USA.

Wolfgang Macherey, Franz Och, Ignacio Thayer, and
Jakob Uszkoreit. 2008. Lattice-based minimum error
rate training for statistical machine translation. In Pro-
ceedings of the 2008 Conference on Empirical Methods
in Natural Language Processing, pages 725–734.

David McAllester and Joseph Keshet. 2011. Generaliza-
tion bounds and consistency for latent structural probit
and ramp loss. In Advances in Neural Information
Processing Systems 24, pages 2205–2212.

Robert C. Moore and Chris Quirk. 2008. Random restarts
in minimum error rate training for statistical machine
translation. In Proceedings of the 22nd International
Conference on Computational Linguistics - Volume 1,
pages 585–592.

1958



Preslav Nakov, Francisco Guzman, and Stephan Vogel.
2012. Optimizing for sentence-level BLEU+1 yields
short translations. In Proceedings of COLING 2012,
pages 1979–1994.

Franz Josef Och and Hermann Ney. 2002. Discriminative
training and maximum entropy models for statistical
machine translation. In Proceedings of 40th Annual
Meeting of the Association for Computational Linguis-
tics, pages 295–302.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics, pages 160–167.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. BLEU: a method for automatic evalu-
ation of machine translation. In Proc. of ACL.

Kishore Papineni. 1999. Discriminative training via linear
programming. In Proceedings IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 2, pages 561–564, Vol. 2.

M.J.D. Powell. 1964. An efficient method for finding
the minimum of a function of several variables without
calculating derivatives. Comput. J., 7(2):155–162.

William H. Press, Saul A. Teukolsky, William T. Vetter-
ling, and Brian P. Flannery. 2007. Numerical Recipes:
The Art of Scientific Computing. Cambridge University
Press, 3rd edition.

Antti-Veikko Rosti, Bing Zhang, Spyros Matsoukas, and
Richard Schwartz. 2011. Expected BLEU training
for graphs: BBN system description for WMT11 sys-
tem combination task. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
159–165.

David A. Smith and Jason Eisner. 2006. Minimum risk
annealing for training log-linear models. In Proceed-
ings of the COLING/ACL 2006 Main Conference Poster
Sessions, pages 787–794.

Kristina Toutanova and Byung-Gyu Ahn. 2013. Learn-
ing non-linear features for machine translation using
gradient boosting machines. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 406–411.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and Hideki
Isozaki. 2007. Online large-margin training for sta-
tistical machine translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 764–773.

1959



Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1960–1970,
Seattle, Washington, USA, 18-21 October 2013. c©2013 Association for Computational Linguistics

Of words, eyes and brains:
Correlating image-based distributional semantic models

with neural representations of concepts

Andrew J. Anderson, Elia Bruni, Ulisse Bordignon, Massimo Poesio and Marco Baroni
Center for Mind/Brain Sciences (University of Trento, C.so Bettini 31, Rovereto, Italy)

first.last@unitn.it

Abstract

Traditional distributional semantic models ex-
tract word meaning representations from co-
occurrence patterns of words in text cor-
pora. Recently, the distributional approach has
been extended to models that record the co-
occurrence of words with visual features in
image collections. These image-based models
should be complementary to text-based ones,
providing a more cognitively plausible view
of meaning grounded in visual perception. In
this study, we test whether image-based mod-
els capture the semantic patterns that emerge
from fMRI recordings of the neural signal.
Our results indicate that, indeed, there is a
significant correlation between image-based
and brain-based semantic similarities, and that
image-based models complement text-based
ones, so that the best correlations are achieved
when the two modalities are combined. De-
spite some unsatisfactory, but explained out-
comes (in particular, failure to detect differ-
ential association of models with brain areas),
the results show, on the one hand, that image-
based distributional semantic models can be a
precious new tool to explore semantic repre-
sentation in the brain, and, on the other, that
neural data can be used as the ultimate test set
to validate artificial semantic models in terms
of their cognitive plausibility.

1 Introduction

Many recent neuroscientific studies have brought
support to the view that concepts are represented
in terms of patterns of neural activation over broad

areas, naturally encoded as vectors in a neural se-
mantic space (Haxby et al., 2001; Huth et al., 2012).
Similar representations are also widely used in com-
putational linguistics, and in particular in distribu-
tional semantics (Clark, 2012; Erk, 2012; Turney
and Pantel, 2010), that captures meaning in terms
of vectors recording the patterns of co-occurrence
of words in large corpora, under the hypothesis that
words that occur in similar contexts are similar in
meaning.

Since the seminal work of Mitchell et al. (2008),
there has thus being interest in investigating whether
corpus-harvested semantic representations can con-
tribute to the study of concepts in the brain. The
relation is mutually beneficial: From the point of
view of brain activity decoding, a strong correlation
between corpus-based and brain-derived conceptual
representations would mean that we could use the
former (much easier to construct on a very large
scale) to make inferences about the second: e.g., us-
ing corpus-based representations to reconstruct the
likely neural signal associated to words we have no
direct brain data for. From the point of view of com-
putational linguistics, neural data provide the ulti-
mate testing ground for models that strive to cap-
ture important aspects of human semantic mem-
ory (much more so than the commonly used ex-
plicit semantic rating benchmarks). If we found that
a corpus-based model of meaning can make non-
trivial predictions about the structure of the semantic
space in the brain, that would make a pretty strong
case for the intriguing idea that the model is approx-
imating, in interesting ways, the way in which hu-
mans acquire and represent semantic knowledge.
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We take as our starting point the extensive experi-
ments reported in Murphy et al. (2012), who showed
that purely corpus-based distributional models are at
least as good at brain signal prediction tasks as ear-
lier models that made use of manually-generated or
controlled knowledge sources (Chang et al., 2011;
Palatucci et al., 2009; Pereira et al., 2011), and we
evaluate a very recent type of distributional model,
namely one that is not extracted from textual data
but from image collections through automated vi-
sual feature extraction techniques. It has been ar-
gued that this new generation of image-based dis-
tributional models (Bruni et al., 2011; Bruni et al.,
2012b; Feng and Lapata, 2010; Leong and Mihal-
cea, 2011) provides a more realistic view of mean-
ing, since humans obviously acquire a large propor-
tion of their semantic knowledge from perceptual
data. The first question that we ask, thus, is whether
the more “grounded” image-based models can help
us in interpreting conceptual representations in the
brain. More specifically, we will compare the per-
formance of different image-based representations,
and we will test whether text- and image-based rep-
resentations are complementary, so that when used
together they can better account for patterns in neu-
ral data. Finally, we will check for differences be-
tween anatomical regions in the degree to which text
and/or image models are effective, as one might ex-
pect given the well-known functional specializations
of different anatomical regions.

2 Brain data

We use the data that were recorded and preprocessed
by Mitchell et al. (2008), available for download in
their supporting online material.1 Full details of the
experimental protocol, data acquisition and prepro-
cessing can be found in Mitchell et al. (2008) and
the supporting material. Key points are that there
were nine right-handed adult participants (5 female,
age between 18 and 32). The experimental task was
to actively think about the properties of sixty objects
that were presented visually, each as a line drawing
in combination with a text label. The entire set of
objects was presented in a random order in six ses-
sions, each object remained on screen for 3 seconds
with a seven second fixation gap between presenta-

1http://www.cs.cmu.edu/˜tom/science2008/

tions.
Mitchell and colleagues examined 12 categories,

five objects per category, for a total of 60 concepts
(words). Due to coverage limitations, we use 51/60
words representing 11/12 categories. Table 1 con-
tains the full list of 51 words organized by category.

fMRI acquisition and preprocessing Mitchell et
al. (2008) acquired functional images on a Siemens
Allegra 3.0T scanner using a gradient echo EPI
pulse sequence with TR=1000 ms, TE=30 ms and
a 60◦ angle. Seventeen 5-mm thick oblique-axial
slices were imaged with a gap of 1-mm between
slices. The acquisition matrix was 64×64 with
3.125×3.125×5-mm voxels. They subsequently
corrected data for slice timing, motion, linear trend,
and performed temporal smoothing with a high-pass
filter at 190s cutoff. The data were normalized to
the MNI template brain image, spatially normalized
into MNI space and resampled to 3×3×6 mm3 vox-
els. The voxel-wise percent signal change relative to
the fixation condition was computed for each object
presentation. The mean of the four images acquired
4s post stimulus presentation was used for analysis.

To create a single representation per object per
participant, we took the voxel-wise mean of the six
presentations of each word. Likewise to create a sin-
gle representation per category per participant, we
took the voxel-wise mean of all word models per
category, per participant.

Anatomical parcellation Analysis was conducted
on the whole brain, and to address the question of
whether there are differences in models’ effective-
ness between anatomical regions, brains were fur-
ther partitioned into frontal, parietal, temporal and
occipital lobes. This partitioning is coarse (each lobe
is large and serves many diverse functions), but, for
an initial test, appropriate, given that each lobe has
specialisms that on face value are amenable to inter-
pretation by our different distributional models and
the exact nature of specialist processing in localised
areas is often subject to debate (so being overly re-
strictive may be risky). Formulation of the distribu-
tional models is described in detail in the Section 3,
but for now it is sufficient to know that the Object
model is derived from image statistics of the object
depicted in images, Context from image statistics of
the background scene, Object&Context is a com-
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Animals Bear, Cat, Cow, Dog Horse
Building Apartment, Barn, Church, House
Building parts Arch, Chimney, Closet, Door, Window
Clothing Coat, Dress, Pants, Shirt, Skirt
Furniture Bed, Chair, Desk, Dresser, Table
Insect Ant, Bee, Beetle, Butterfly, Fly
Kitchen utensils Bottle, Cup, Glass, Knife, Spoon
Man made objects Bell, Key, Refrigerator, Telephone, Watch
Tool Chisel, Hammer, Screwdriver
Vegetable Celery, Corn, Lettuce, Tomato
Vehicle Airplane, Bicycle, Car, Train, Truck

Table 1: The 51 words represented by the brain and the distributional models, organized by category.

bination of the two, and Window2 is a text-based
model.

The occipital lobe houses the primary visual pro-
cessing system and consequently it is reasonable
to expect some bias toward image-based semantic
models. Furthermore, given that experimental stim-
uli incorporated line drawings of the object,and the
visual cortex has a well-established role in process-
ing low-level visual statistics including edge detec-
tion (Bruce et al., 2003), we naturally expected a
good performance from Object (formulated from
edge orientation histograms of similar objects).

Following Goodale and Milner (1992)’s influ-
ential perception-action model (see McIntosh and
Schenk (2009) for recent discussion), visual infor-
mation is channeled from the occipital lobe in two
streams: a perceptual stream, serving object identi-
fication and recognition; and an action stream, spe-
cialist in processing egocentric spatial relationships
and ultimately supporting interaction with the world.

The perceptual stream leads to the temporal lobe.
Here the fusiform gyrus (shared with the occipital
lobe) plays a general role in object categorisation
(e.g., animals and tools (Chao et al., 1999), faces
(Kanwisher and Yovel, 2006), body parts (Peelen
and Downing, 2005) and even word form percep-
tion (McCandliss et al., 2003)). As the parahip-
pocampus is strongly associated with scene repre-
sentation (Epstein, 2008), we expect both the Object
and Context models to capture variability in the tem-
poral lobe. Of wider relevance to semantic process-
ing, the medial temporal gyrus, inferior temporal
gyrus and ventral temporal lobe have generally been
implicated to have roles in supramodal integration

and concept retrieval (Binder et al., 2009). Given
this, we expected that incorporating text would also
be valuable and that the Window2&Object&Context
combination would be a good model.

The visual action stream leads from the occipi-
tal lobe to the parietal lobe to support spatial cog-
nition tasks and action control (Sack, 2009). In
that there seems to be an egocentric frame of ref-
erence, placing actor in environment, it is tempt-
ing to speculate that the Context model is more ap-
propriate than the Object model here. As the pari-
etal lobe also contains the angular gyrus, thought
to be involved in complex, supra-modal information
integration and knowledge retrieval (Binder et al.,
2009), we might again forecast that integrating text
and image information would boost performance, so
Window2&Context was earmarked as a strong can-
didate.

The frontal lobe, is traditionally associated with
high-level processing and manipulation of abstract
knowledge and rules and controlled behaviour
(Miller et al., 2002). Regarding semantics, the dor-
somedial prefrontal cortex has been implicated in
self-guided retrieval of semantic information (e.g.,
uncued speech production), the ventromedial pre-
frontal cortex in motivation and emotional process-
ing, the inferior frontal gyrus in phonological and
syntactic processing, (Binder et al., 2009) and in-
tegration of lexical information (Hagoort, 2005).
Given the association with linguistic processing we
anticipated a bias in favour of Window2.

The four lobes were identified and partitioned
using Tzourio-Mazoyer et al. (2002)’s automatic
anatomical labelling scheme.
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Voxel selection The set of 500 most stable voxels,
both within the whole brain and from within each
region of interest were identified for analysis. The
most stable voxels were those showing consistent
variation across the different stimuli between scan-
ning sessions. Specifically, and following a similar
strategy to Mitchell et al. (2008), for each voxel, the
set of 51 words from each unique pair of scanning
sessions were correlated using Pearson’s correlation
(6 sessions and therefore 15 unique pairs), and the
mean of the 15 resulting correlation coefficients was
taken as the measure of stability. The 500 voxels
with highest mean correlations were selected.

3 Distributional models

Distributional semantic models approximate word
meaning by keeping track of word co-occurrence
statistics from large textual input, relying on the dis-
tributional hypothesis: The meaning of a word can
be induced by the context in which it occurs (Turney
and Pantel, 2010). Despite their great success, these
models still rely on verbal input only, while humans
base their meaning representation also on perceptual
information (Louwerse, 2011).

Thanks to recent developments in computer vi-
sion, it is nowadays possible to take the visual per-
ceptual channel into account, and build new com-
putational models of semantics enhanced with vi-
sual information (Feng and Lapata, 2010; Bruni et
al., 2011; Leong and Mihalcea, 2011; Bergsma and
Goebel, 2011; Bruni et al., 2012a). Given a set of
target concepts and a collection of images depicting
those concepts, it is indeed possible to first encode
the image content into low-level features, and subse-
quently convert it into a higher-level representation
based on the bag-of-visual-words method (Grauman
and Leibe, 2011). Recently, Bruni et al. (2012b)
have shown that better semantic representations can
be extracted if we first localize the concept in the
image, and then extract distinct higher-level features
(visual words) from the box containing the concept
and from the surrounding context. We also follow
this strategy here.

In our experiments we utilize both traditional text-
based models and experimental image-based mod-
els, as well as their combination.

3.1 Textual models
Verb We experiment with the original text-based
semantic model used to predict fMRI patterns by
Mitchell et al. (2008). Each object stimulus word
is represented as a 25-dimensional vector, with each
value corresponding to the normalized sentence-
wide co-occurrence of that word with one of 25
manually-picked sensorimotor verbs (such as see,
hear, eat, . . . ) in a trillion word text corpus.

Window2 To create this model, we collect text
co-occurrence statistics from the freely available
ukWaC and Wackypedia corpora combined (about 3
billion words in total).2 As collocates of our distri-
butional model we select a set of 30K words, namely
the top 20K most frequent nouns, 5K most frequent
adjectives and 5K most frequent verbs.

In the tradition of HAL (Lund and Burgess, 1996),
the model is based on co-occurrence statistics with
collocates within a fixed-size window of 2 to the left
and right of each target word. Despite their sim-
plicity, narrow-window-based models have shown
to achieve state-of-the-art results in various stan-
dard semantic tasks (Bullinaria and Levy, 2007)
and to outperform both document-based and syntax-
based models trained on the same corpus (Bruni et
al., 2012a). Moreover, in Murphy et al. (2012) a
window-based model very similar to ours was not
significantly worse than their best model for brain
decoding. We tried also a few variations, e.g., us-
ing a larger window or different transformations on
the raw co-occurrences from those presented below,
but with little, insignificant changes in performance.
Given that our focus here is on visual information,
we only report results for Window2 and its combi-
nation with visual models.

3.2 Visual models
Our visual models are inspired by Bruni et al.
(2012b), that have explored to what extent extract-
ing features from images where objects are local-
ized results in better semantic representations. They
found that extracting visual features separately from
the object and its surrounding context leads to bet-
ter performance than not using localization, and us-
ing only object- and, more surprisingly, context-
extracted features also results in performant models

2http://wacky.sslmit.unibo.it/
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(especially when evaluating inter-object similarity,
the context in which an object is located can signif-
icantly contribute to semantic representation, in cer-
tain cases carrying even more information than the
depicted object itself).

More in detail, with localization the visual fea-
tures (visual words) can be extracted from the ob-
ject bounding box (in our experiments, the Object
model) or from only outside the object box (the
Context model). A combined model is obtained
by concatenating the two feature vectors (the Ob-
ject&Context model).

Visual model construction pipeline To extract
visual co-occurrence statistics, we use images from
ImageNet (Deng et al., 2009),3 a very large im-
age database organized on top of the WordNet hi-
erarchy (Fellbaum, 1998). ImageNet has more than
14 million images, covering 21K WordNet nominal
synsets. ImageNet stands out for the high quality of
its images, both in terms of resolution and concept
annotations. Moreover, for around 3K concepts, an-
notations of object bounding boxes is provided. This
last feature allows us to exploit object localization
within our experiments.

To build visual distributional models, we utilize
the bag-of-visual-words (BoVW) representation of
images (Sivic and Zisserman, 2003; Csurka et al.,
2004). Inspired by NLP, BoVW discretizes the im-
age content in terms of a histogram of visual word
counts. Differently from NLP, in vision there is not a
natural notion of visual words, hence a visual vocab-
ulary has to be built from scratch. The process works
as follows. First, a large set of low-level features is
extracted from a corpus of images. The low-level
feature vectors are subsequently clustered into dif-
ferent regions (visual words). Given then a new im-
age, each of the low-level feature vectors extracted
from the patches that compose it is mapped to the
nearest visual word (e.g., in terms of Euclidean dis-
tance from the cluster centroid) such that the image
can be represented with a histogram counting the in-
stances of each visual word in the image.

As low-level features we use SIFT, the Scale In-
variant Feature Transform (Lowe, 2004). SIFT fea-
tures are good at capturing parts of objects and are
designed to be invariant to image transformations

3http://www.image-net.org/

such as change in scale, rotation and illumination.
To construct the visual vocabulary, we cluster the
SIFT features into 25K different clusters.4 We add
also spatial information by dividing the image into
several subregions, representing each of them in
terms of BoVW and then stacking the resulting his-
tograms (Lazebnik et al., 2006). We use in total 8
different regions, obtaining a final vector of 200K
dimensions (25K visual words × 8 regions). Since
each concept in our dataset is represented by mul-
tiple images, we pool the visual word occurrences
across images by summing them up into a single
vector.

To perform the entire visual pipeline we use
VSEM, an open library for visual semantics (Bruni
et al., 2013).5

3.3 Model transformations and combination
Once both the textual and the visual models are built,
we perform two different transformations on the raw
co-occurrence counts. First, we transform them into
nonnegative Pointwise Mutual Information (PMI)
association scores (Church and Hanks, 1990). As a
second transformation, we apply dimensionality re-
duction to the two matrices. In particular, we adopt
the Singular Value Decomposition (SVD), one of the
most effective methods to approximate the original
data in lower dimensionality space (Schütze, 1997),
and reduce the vectors to 50 dimensions.

To combine text- and image-based semantic mod-
els in a joint representation, we separately normalize
their vectors to unit length, and concatenate them,
along the lines of Bruni et al. (2011). More sophis-
ticated combination models have been proposed in
the recent literature on multimodal semantics. For
example, Bruni et al. (2012a) use SVD as a mix-
ing strategy, given its ability to smooth the matrices
and uncover latent dimensions. Another example is
Silberer and Lapata (2013), where Canonical Corre-
lation Analysis is used. We reserve the exploration
of more advanced combination methods for further
studies.

Finally, to represent the 11 categories we experi-
ment with (see Table 1), we average the vectors of
the concepts they include.

4We use k-means, the most commonly employed clustering
algorithm for this task.

5http://clic.cimec.unitn.it/vsem/
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4 Experiments

A question is posed over how to evaluate the rela-
tionship between the different distributional models
and brain data. Comparing each model’s predictive
performance using the same strategy as Mitchell et
al. (2008) (also followed by Murphy et al. (2012))
is one possibility: they used multiple regression to
relate distributional codes to individual voxel activa-
tions, thus allowing brain states to be estimated from
previously unseen distributional codes. Regression
models were trained on 58/60 words and in testing
the regression models estimated the brain state as-
sociated with the 2 unseen distributional codes. The
predicted brain states were compared with the actual
fMRI data, and the process repeated for each per-
mutation of left-out words, to build a metric of pre-
diction accuracy. For our purposes, a fair compari-
son of models using this strategy is complicated by
differences in dimensionality between both seman-
tic models and lobes (which we compare to other
lobes) in association with the comparatively small
number of words in the fMRI data set. Large dimen-
sionality models risk overfitting the data, and it is a
nuisance to try to reliably correct for the effects of
overfitting in performance comparisons. Not least,
to thoroughly evaluate all possible cross-validation
permutations is demanding in processing time, and
we have many models to compare.

An alternative approach, and that which we
have adopted, is representational similarity analy-
sis (Kriegeskorte et al., 2008). Representational
similarity analysis circumvents the previous prob-
lems by abstracting each fMRI/distributional data
source to a common structure capturing the inter-
relationships between each pair of data items (e.g.,
words). Specifically, for each model/participant’s
fMRI data/anatomical region, the similarity struc-
ture was evaluated by taking the pairwise correla-
tion (Pearson’s correlation coefficient) between all
unique category or word combinations. This pro-
duced a list of 55 category pair correlations and 121
word pair correlations for each data source. For all
brain data, correlation lists were averaged across the
nine participants to produce a single list of mean
word pair correlations and a single list of mean cat-
egory pair correlations for each anatomical region
and the whole brain. Then to provide a measure of

similarity between models and brain data, the cor-
relation lists for respective data sources were them-
selves correlated using Spearman’s rank correlation.
Statistical significance was tested using a permuta-
tion test: The word-pair (or category-pair) labels
were randomly shuffled 10,000 times to estimate a
null distribution when the two similarity lists are
not correlated. The p-value is calculated as the pro-
portion of random correlation coefficients that are
greater than or equal to the observed coefficient.

5 Results

5.1 Category-level analyses
Do image models correlate with brain data? Ta-
ble 2 displays results of Spearman’s correlations be-
tween the per-category similarity structure of dis-
tributional models and brain data. There is a sig-
nificant correlation between every purely image-
based model and the occipital, parietal and tempo-
ral lobes, and also the whole brain (.38≤ ρ ≥.51,
all p≤.01). The frontal lobe is less well described.
Still, whilst not significant, correlations are only
marginally above the conventional p = .05 cutoff
(all are less than p = .064). This strongly suggests
that the answer to our first question is yes: distri-
butional models derived from images can be used
to explain concept fMRI data. Otherwise Window2
significantly correlates with the whole brain and all
anatomical regions except for the frontal lobe where
ρ=.34, p = .07. In contrast Verb (the original, par-
tially hand-crafted model used by Mitchell and col-
leagues) captures inter-relationships poorly and nei-
ther correlates with the whole brain or any lobe.

Do different models correlate with different
anatomical regions? 2-way ANOVA without
replication was used to test for differences in cor-
relation coefficients between the five pure-modality
models (Verb, Window2, Object, Context and Ob-
ject&Context), and the four brain lobes. This re-
vealed a highly significant difference between mod-
els F(4,12)=45.2, p<.001. Post-hoc 2-tailed t-tests
comparing model pairs found that Verb differed sig-
nificantly from all other models (correlations were
lower). There was a clear difference even when Verb
(mean±sd over lobes = .1±.1) was compared to the
second weakest model, Object (mean±sd=.4±.09),
where t =-7.7, p <.01, df=4. There were no

1965



Frontal Parietal Occipital Temporal Whole-Brain
Verb 0.00 (0.51) 0.06 (0.37) 0.24 (0.10) 0.07 (0.35) 0.17 (0.17)
Window2 0.34 (0.06) 0.49 (0.00) 0.47 (0.01) 0.47 (0.00) 0.44 (0.00)
Object 0.27 (0.07) 0.38 (0.02) 0.45 (0.00) 0.47 (0.00) 0.43 (0.01)
Context 0.33 (0.06) 0.50 (0.00) 0.44 (0.00) 0.44 (0.01) 0.44 (0.01)
Object&Context 0.32 (0.05) 0.48 (0.00) 0.51 (0.00) 0.49 (0.00) 0.49 (0.00)
Window2&Object 0.32 (0.06) 0.45 (0.00) 0.52 (0.00) 0.53 (0.00) 0.49 (0.00)
Window2&Context 0.39 (0.04) 0.57 (0.00) 0.53 (0.00) 0.55 (0.00) 0.51 (0.00)
Window2&Object&Context 0.37 (0.04) 0.52 (0.00) 0.55 (0.00) 0.55 (0.00) 0.53 (0.00)

Table 2: Matrix of correlations between each pairwise combination of distributional semantic models and brain data.
Correlations correspond to the pairwise similarity between the 11 categories. In each column the first value corre-
sponds to Spearman’s rank correlation coefficient and the value in parenthesis is the p-value.

Frontal Parietal Occipital Temporal Whole-Brain
Verb -0.04 (0.72) 0.09 (0.06) 0.07 (0.20) 0.03 (0.31) 0.07 (0.18)
Window2 0.07 (0.13) 0.19 (0.00) 0.12 (0.06) 0.21 (0.00) 0.13 (0.04)
Object 0.01 (0.40) 0.08 (0.07) 0.17 (0.01) 0.18 (0.00) 0.17 (0.01)
Context 0.04 (0.24) 0.14 (0.01) 0.01 (0.44) 0.12 (0.02) 0.02 (0.38)
Object&Context 0.03 (0.31) 0.13 (0.01) 0.10 (0.07) 0.17 (0.00) 0.11 (0.06)
Window2&Object 0.04 (0.24) 0.16 (0.00) 0.16 (0.01) 0.23 (0.00) 0.17 (0.00)
Window2&Context 0.07 (0.12) 0.20 (0.00) 0.09 (0.11) 0.22 (0.00) 0.11 (0.07)
Window2&Object&Context 0.05 (0.18) 0.18 (0.00) 0.12 (0.05) 0.23 (0.00) 0.13 (0.02)

Table 3: Matrix of correlations between each pairwise combination of distributional semantic models and brain data.
Correlations correspond to the pairwise similarity between the 51 words. In each column the first value corresponds
to Spearman’s rank correlation coefficient and the value in parenthesis is the p-value.

other significant differences between models. How-
ever there was a highly significant difference be-
tween lobes F(3,12)=13.77, p <.001. Post-hoc 2-
tailed t-tests comparing lobe pairs found that the
frontal lobe yielded significantly different correla-
tions (lower) than each other lobe. When the frontal
lobe (mean±sd over models = .25±.14) was com-
pared to the second weakest anatomical region, the
parietal lobe (mean±sd=.38±.19), the difference
was highly significant, t =-8, df=3, p <.01. This
introduces the question of whether this difference in
correlations is the result of differences in neural cat-
egory organisation and representation, or differences
in the quality of the signal, which we address next.

Category-level inter-correlations between lobes
were all relatively strong and highly significant. The
occipital lobe was found to be the most distinct, be-
ing similar to the temporal lobe (ρ=.71, p <.001),
but less so to the parietal and frontal lobes (ρ=.53,
p <.001 and ρ=.57, p <.001 respectively). The

temporal lobe shows roughly similar levels of cor-
relation to each other lobe (all .71≤ ρ ≥.73, all
p <.001). The frontal and parietal lobes are related
most strongly to each other (ρ=.77, p <.001), to a
slightly lesser extent to the temporal lobe (in both
cases ρ=.73, p <.001) and least so to the occipital
lobe. These strong relationships are consistent with
there being a broadly similar category organisation
across lobes.

To appraise this assertion in the context of the
previously detected difference between the frontal
lobe and all other lobes, we examine the raw cat-
egory pair similarity matrices derived from the oc-
cipital lobe and the frontal lobe (Figure 1). All the
below observations are qualitative. Although it is
difficult to have intuitions about the relative differ-
ences between all category pairs (e.g., whether tools
or furniture should be more similar to animals), we
might reasonably expect some obvious similarities.
For instance, for animals to be visually similar to in-
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sects and clothing, because all have legs and arms
and curves (of course we would not expect a strong
relationship between insects and clothes in function
or other modalities such as sound), buildings to be
similar to building parts and vehicles (hard edges
and windows), building parts to be similar to furni-
ture (e.g., from Table 1 we see there is some overlap
in category membership between these categories,
such as closet and door) and tools to be similar to
kitchen utensils. All of these relationships are main-
tained in the occipital lobe, and many are visible in
the frontal lobe (including the similarity between in-
sects and clothes), however there are exceptions that
are difficult to explain e.g., within the frontal lobe,
building parts are not similar to furniture, kitchen
utensils are closer to clothing than to tools and ve-
hicles are more similar to clothing than anything
else. As such we conclude that category-level rep-
resentations were similar across lobes with differ-
ences likely due to variation in signal quality be-
tween lobes.

Are text- and image-based semantic models com-
plementary? Turning to the question of whether
text- and image-derived semantic information can
be complementary, we observe from Table 2 that
there is not a single instance of a joint model with
a weaker correlation than its pure-image counter-
part. The Window2 model showed a stronger cor-
relation than the Window2&Object model for the
frontal and parietal lobes, but was weaker than Win-
dow2&Object&Context and Window2&Context in
all tests and was also weaker than any joint model
in whole-brain comparisons. The mean±sd correla-
tions for all purely image-based results pooled over
lobes (3 models * 4 lobes) was .42±.08 in com-
parison to .49±.08 for the joint models. The rel-
ative performance of Object vs. Context vs. Ob-
ject&Context on the four different lobes is preserved
between image-based and joint models: correlating
the 12 combinations using Spearman’s correlation
gives ρ=.85, p <.001. Differences can be statis-
tically quantified by pooling all image related cor-
relation coefficients for each anatomical region (3
models * 4 regions), as for the respective joint mod-
els, and comparing with a 2-tailed Wilcoxon signed
rank test. Differences were highly significant (W=0,
p <.001,n=12). This evidence accumulates to sug-

Figure 1: Similarity (Pearson correlation) between each
category pair in (top) occipital and (bottom) frontal lobes.

gest that text and image-derived semantic informa-
tion can be complementary in interpreting concept
fMRI data.

5.2 Word-level analyses

Do image models capture word pair similari-
ties? Per-word results generally corroborate the
relationships observed in the previous section in
the sense that Spearman’s correlation between per-
word and per-category results for the 40 combina-
tions of models and lobes was ρ=.78, p <.001.
There were differences, most obviously a dramatic
drop in the strength of correlation coefficients for
the per-word results, visible in Table 3. Subsets
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of per-word image-based models correlated with
three lobes and the whole brain. Correlations corre-
sponding to significance values of p <.05 were ob-
served in the temporal and parietal lobes, for Con-
text, Object&Context and Window2 whereas Ob-
ject was correlated with the occipital and temporal
lobes (p <.05). 2-way ANOVA without replica-
tion was used to test for differences between mod-
els and lobes. This revealed a significant differ-
ence between models (F(4,12)=4.05, p=.027). Post-
hoc t-tests showed that the Window2 model signifi-
cantly differed from (was stronger than) the Context
(t=3.8, p =.03, df=3) and Object&Context models
(t =4.5, p =.02, df=3). There were no other signifi-
cant differences between models. There was again a
significant difference between lobes (F(3,12)=7.89,
p < .01), with the frontal lobe showing the weak-
est correlations. Post-hoc 2-tailed t-tests comparing
lobe-pairs found that the frontal lobe differed signif-
icantly (correlations were weaker) from the parietal
(t =-9, p <.001, df=4) and temporal lobes (t =-6.4,
p <.01, df=4) but not from the occipital lobe (t =-
2.18, p =.09, df=4). No other significant differences
between lobes were observed.

Are there differences between models/lobes?
Word-level inter-correlations between lobes were all
significant and the pattern of differences in correla-
tion strength largely resembled that of the category-
level analyses. The occipital lobe was again most
similar to the temporal lobe (ρ=.57, p <.001), but
less so to the parietal and frontal lobes (ρ=.47,
p <.001 and ρ=.34, p <.001 respectively). The
temporal lobe this time showed stronger correlation
to the parietal (ρ=.68, p <.001) and frontal lobes
(ρ=.61, p <.001) than the occipital lobe. The frontal
and parietal lobes were again strongly related to one
another (ρ=.67, p <.001). These results echo the
category-level findings, that word-level brain activ-
ity is also organised in a similar way across lobes.
Consequently this diminishes our chances of uncov-
ering neat interactions between models and brain ar-
eas (where for instance the Window2 model corre-
lates with the frontal lobe and Object model matches
the occipital lobe). It is however noteworthy that
we can observe some interpretable selectivity in
lobe*model combinations. In particular the Con-
text model better matches the parietal lobe than the

Object model, which in turn better captures the oc-
cipital and temporal lobes (Observations are quali-
tative). Also as we see next, adding text informa-
tion boosts performance in both parietal and tempo-
ral lobes (see Section 2 on our expectations about
information encoded in the lobes).

Does joining text and image models help word-
level interpretation? As concerns the benefits of
joining Text and Image information, per-word joint
models were generally stronger than the respective
image-based models. There was one exception:
adding text to the Object model weakened corre-
lation with the occipital lobe. Joint models were
exclusively stronger than Window2 for the tempo-
ral and occipital lobes, and were stronger in 1/3 of
cases for the frontal and parietal lobes. In an anal-
ogous comparison to the per-category analysis, a
Wilcoxon signed rank test was used to examine the
difference made by adding text information to image
models (pooling 3 models over 4 anatomical areas
for both image and joint models). The mean±sd of
image models was .1±.06 whereas for Joint models
it was .15±.07. The difference was highly signifi-
cant (W=1, p <.001, n=12).

6 Conclusion

This study brought together, for the first time, two
recent research lines: The exploration of “seman-
tic spaces” in the brain using distributional semantic
models extracted from corpora, and the extension
of the latter to image-based features. We showed
that image-based distributional semantic measures
significantly correlate with fMRI-based neural sim-
ilarity patterns pertaining to categories of concrete
concepts as well as concrete basic-level concepts ex-
pressed by specific words (although correlations, es-
pecially at the basic-concept level, are rather low,
which might signify the need to develop still more
performant distributional models and/or noise inher-
ent to neural data). Moreover, image-based mod-
els complement a state-of-the-art text-based model,
with the best performance achieved when the two
modalities are combined. This not only presents an
optimistic outlook for the future use of image-based
models as an interpretative tool to explore issues of
cognitive grounding, but also demonstrates that they
are capturing useful additional aspects of meaning to
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the text models, which are likely relevant for com-
putational semantic tasks.

The weak comparative performance of the origi-
nal Mitchell et al.’s Verb model is perhaps surprising
given its previous success in prediction (Mitchell et
al., 2008), but a useful reminder that a good predic-
tor does not necessarily have to capture the internal
structure of the data it predicts.

The lack of finding organisational differences be-
tween anatomical regions differentially described by
the various models is perhaps disappointing, but not
uncontroversial, given that the dataset was not origi-
nally designed to tease apart visual information from
linguistic context. It is however interesting that
in the more challenging word-level analysis some
meaningful trend was visible. In future experiments
it may prove valuable to configure a fMRI stimulus
set where text-based and image-based interrelation-
ships are maximally different. Collecting our own
fMRI data will also allow us to move beyond ex-
ploratory analysis, to test sharper predictions about
distributional models and their brain area correlates.
There are also many opportunities for focusing anal-
yses on different subsets of brain regions, with the
semantic system identified by Binder et al. (2009) in
particular presenting one interesting avenue for in-
vestigation.
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Abstract

Classical coreference systems encode various
syntactic, discourse, and semantic phenomena
explicitly, using heterogenous features com-
puted from hand-crafted heuristics. In con-
trast, we present a state-of-the-art coreference
system that captures such phenomena implic-
itly, with a small number of homogeneous
feature templates examining shallow proper-
ties of mentions. Surprisingly, our features
are actually more effective than the corre-
sponding hand-engineered ones at modeling
these key linguistic phenomena, allowing us
to win “easy victories” without crafted heuris-
tics. These features are successful on syntax
and discourse; however, they do not model
semantic compatibility well, nor do we see
gains from experiments with shallow seman-
tic features from the literature, suggesting that
this approach to semantics is an “uphill bat-
tle.” Nonetheless, our final system1 outper-
forms the Stanford system (Lee et al. (2011),
the winner of the CoNLL 2011 shared task)
by 3.5% absolute on the CoNLL metric and
outperforms the IMS system (Björkelund and
Farkas (2012), the best publicly available En-
glish coreference system) by 1.9% absolute.

1 Introduction

Coreference resolution is a multi-faceted task: hu-
mans resolve references by exploiting contextual
and grammatical clues, as well as semantic infor-
mation and world knowledge, so capturing each of

1The Berkeley Coreference Resolution System is available
at http://nlp.cs.berkeley.edu.

these will be necessary for an automatic system to
fully solve the problem. Acknowledging this com-
plexity, coreference systems, either learning-based
(Bengtson and Roth, 2008; Stoyanov et al., 2010;
Haghighi and Klein, 2010; Rahman and Ng, 2011b)
or rule-based (Haghighi and Klein, 2009; Lee et
al., 2011), draw on diverse information sources and
complex heuristics to resolve pronouns, model dis-
course, determine anaphoricity, and identify seman-
tically compatible mentions. However, this leads to
systems with many heterogenous parts that can be
difficult to interpret or modify.

We build a learning-based, mention-synchronous
coreference system that aims to use the simplest pos-
sible set of features to tackle the various aspects
of coreference resolution. Though they arise from
a small number of simple templates, our features
are numerous, which works to our advantage: we
can both implicitly model important linguistic ef-
fects and capture other patterns in the data that are
not easily teased out by hand. As a result, our data-
driven, homogeneous feature set is able to achieve
high performance despite only using surface-level
document characteristics and shallow syntactic in-
formation. We win “easy victories” without design-
ing features and heuristics explicitly targeting par-
ticular phenomena.

Though our approach is successful at modeling
syntax, we find semantics to be a much more chal-
lenging aspect of coreference. Our base system
uses only two recall-oriented features on nominal
and proper mentions: head match and exact string
match. Building on these features, we critically eval-
uate several classes of semantic features which intu-
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itively should prove useful but have had mixed re-
sults in the literature, and we observe that they are
ineffective for our system. However, these features
are beneficial when gold mentions are provided to
our system, leading us to conclude that the large
number of system mentions extracted by most coref-
erence systems (Lee et al., 2011; Fernandes et al.,
2012) means that weak indicators cannot overcome
the bias against making coreference links. Capturing
semantic information in this shallow way is an “up-
hill battle” due to this structural property of corefer-
ence resolution.

Nevertheless, using a simple architecture and fea-
ture set, our final system outperforms the two best
publicly available English coreference systems, the
Stanford system (Lee et al., 2011) and the IMS sys-
tem (Björkelund and Farkas, 2012), by wide mar-
gins: 3.5% absolute and 1.9% absolute, respectively,
on the CoNLL metric.

2 Experimental Setup

Throughout this work, we use the datasets from the
CoNLL 2011 shared task2 (Pradhan et al., 2011),
which is derived from the OntoNotes corpus (Hovy
et al., 2006). When applicable, we use the standard
automatic parses and NER tags for each document.
All experiments use system mentions except where
otherwise indicated. For each experiment, we report
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin,
1998), and CEAFe (Luo, 2005), as well as their av-
erage, the CoNLL metric. All metrics are computed
using version 5 of the official CoNLL scorer.3

3 A Mention-Synchronous Framework

We first present the basic architecture of our corefer-
ence system, independent of a feature set. Unlike bi-
nary classification-based coreference systems where
independent binary decisions are made about each
pair (Soon et al., 2001; Bengtson and Roth, 2008;
Versley et al., 2008; Stoyanov et al., 2010), we use a
log-linear model to select at most one antecedent for

2This dataset is identical to the English portion of the
CoNLL 2012 data, except for the absence of a small pivot text.

3Note that this version of the scorer implements a modified
version of B3, described in Cai and Strube (2010), that was used
for the CoNLL shared tasks. The implementation of CEAFe

is also not exactly as described in Luo et al. (2004), but for
completeness we include this metric as well.

each mention or determine that it begins a new clus-
ter (Denis and Baldridge, 2008). In this mention-
ranking or mention-synchronous framework, fea-
tures examine single mentions to evaluate whether
or not they are anaphoric and pairs of mentions to
evaluate whether or not they corefer. While other
work has used this framework as a starting point
for entity-level systems (Luo et al., 2004; Rahman
and Ng, 2009; Haghighi and Klein, 2010; Durrett et
al., 2013), we will show that a mention-synchronous
approach is sufficient to get state-of-the-art perfor-
mance on its own.

3.1 Mention Detection

Our system first identifies a set of predicted men-
tions from text annotated with parses and named en-
tity tags. We extract three distinct types of mentions:
proper mentions from all named entity chunks ex-
cept for those labeled as QUANTITY, CARDINAL, or
PERCENT, pronominal mentions from single words
tagged with PRP or PRP$, and nominal mentions
from all other maximal NP projections. These basic
rules are similar to those of Lee et al. (2011), except
that their system uses an additional set of filtering
rules designed to discard instances of pleonastic it,
partitives, certain quantified noun phrases, and other
spurious mentions. In contrast to this highly engi-
neered approach and to systems which use a trained
classifier to compute anaphoricity separately (Rah-
man and Ng, 2009; Björkelund and Farkas, 2012),
we aim for the highest possible recall of gold men-
tions with a low-complexity method, leaving us with
a large number of spurious system mentions that we
will have to reject later.

3.2 Coreference Model

Figure 1 shows the mention-ranking architecture
that serves as the backbone of our coreference sys-
tem. Assume we have extracted n mentions from
a document x, where x denotes the surface proper-
ties of a document and any precomputed informa-
tion. The ith mention in a document has an asso-
ciated random variable ai taking values in the set
{1, . . . , i−1, NEW}; this variable specifies mention
i’s selected antecedent or indicates that it begins a
new coreference chain. A setting of the ai, denoted
by a = (a1, ..., an), implies a unique set of corefer-
ence chains C that serve as our system output.
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[Voters]1 agree when [they]1 are given a [chance]2 to decide if [they]1 ...

NEW False NewCorrect

1⟵
NEW

2⟵
3⟵

1⟵

Correct

a1

NEW NEW

1⟵
2⟵ False Anaphor

False Anaphor

Correct

Wrong Link

False New

Correct

Correct

a4a3a2

Figure 1: The basic structure of our coreference model. The ith mention in a document has i possible antecedence
choices: link to one of the i− 1 preceding mentions or begin a new cluster. We place a distribution over these choices
with a log-linear model. Structurally different kinds of errors are weighted differently to optimize for final coreference
loss functions; error types are shown corresponding to the decisions for each mention.

We use a log linear model of the conditional dis-
tribution P (a|x) as follows:

P (a|x) ∝ exp

(
n∑

i=1

w>f(i, ai, x)

)

where f(i, ai, x) is a feature function that examines
the coreference decision ai for mention i with doc-
ument context x. When ai = NEW, the features
fired indicate the suitability of the given mention to
be anaphoric or not; when ai = j for some j, the
features express aspects of the pairwise linkage, and
can examine any relevant attributes of the anaphor
i or the antecedent j, since information about each
mention is contained in x.

Inference in this model is efficient: because
logP (a|x) decomposes linearly over mentions, we
can compute ai = arg maxai

P (ai|x) separately
for each mention and return the set of coreference
chains implied by these decisions.

3.3 Learning
During learning, we optimize for conditional log-
likelihood augmented with a parameterized loss
function (Durrett et al., 2013). The main compli-
cating factor in this process is that the supervision
in coreference consists of a gold clustering C∗ de-
fined over gold mentions. This is problematic for
two reasons: first, because the clustering is defined
over gold mentions rather than our system mentions,
and second, because a clustering does not specify a
full antecedent structure of the sort our model pro-
duces. We can address the first of these problems
by imputing singleton clusters for mentions that do

not appear in the gold standard; our system will then
simply learn to put spurious mentions in their own
clusters. Singletons are always removed before eval-
uation because the OntoNotes corpus does not anno-
tate them, so in this way we can neatly dispose of
spurious mentions. To address the lack of explicit
antecedents in C∗, we simply sum over all possible
antecedent structures licensed by the gold clusters.

Formally, we will maximize the conditional log-
likelihood of the set A(C∗) of antecedent vectors
a for a document that are consistent with the gold
annotation.4 Consistency for an antecedent choice
ai under gold clusters C∗ is defined as follows:

1. If ai = j, ai is consistent iff mentions i and j
are present in C∗ and are in the same cluster.

2. If ai = NEW, ai is consistent off mention i is
not present in C∗, or it is present in C∗ and has
no gold antecedents, or it is present in C∗ and
none of its gold antecedents are among the set
of system predicted mentions.

Given t training examples of the form (xk, C
∗
k),

we write the following likelihood function:

`(w) =

t∑
k=1

log

 ∑
a∈A(C∗

k)

P ′(a|xk)

+ λ‖w‖1

where P ′(a|xk) ∝ P (a|xk) exp(l(a,C∗k)) with
l(a,C∗) being a real-valued loss function. The loss

4Because of this marginalization over latent antecedent
choices, our objective is non-convex.
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here plays an analogous role to the loss in struc-
tured max-margin objectives; incorporating it into a
conditional likelihood objective is a technique called
softmax-margin (Gimpel and Smith, 2010).

Our loss function l(a,C∗) is a weighted linear
combination of three error types, examples of which
are shown in Figure 1. A false anaphor (FA) error
occurs when ai is chosen to be anaphoric when it
should start a new cluster. A false new (FN) error oc-
curs in the opposite case, when ai wrongly indicates
a new cluster when it should be anaphoric. Finally,
a wrong link (WL) error occurs when the antecedent
chosen for ai is the wrong antecedent (but ai is in-
deed anaphoric). Our final parameterized loss func-
tion is a weighted sum of the counts of these three
error types:

l(a,C∗) = αFAFA(a,C∗) + αFNFN(a,C∗) + αWLWL(a,C∗)

where FA(a,C∗) gives the number of false anaphor
errors in prediction a with gold chains C∗ (FN and
WL are analogous). By setting αFA low and αFN

high relative to αWL, we can counterbalance the
high number of singleton mentions and bias the sys-
tem towards making more coreference linkages. We
set (αFA, αFN, αWL) = (0.1, 3.0, 1.0) and λ =
0.001 and optimize the objective using AdaGrad
(Duchi et al., 2011).

4 Easy Victories from Surface Features

Our primary goal with this work is to show that a
high-performance coreference system is attainable
with a small number of feature templates that use
only surface-level information sources. These fea-
tures will be general-purpose and capture linguistic
effects to the point where standard heuristic-driven
features are no longer needed in our system.

4.1 SURFACE Features and Conjunctions

Our SURFACE feature set only considers the follow-
ing properties of mentions and mention pairs:

• Mention type (nominal, proper, or pronominal)

• The complete string of a mention

• The semantic head of a mention

• The first word and last word of each mention

Feature name Count
Features on the current mention

[ANAPHORIC] + [HEAD WORD] 41371
[ANAPHORIC] + [FIRST WORD] 18991
[ANAPHORIC] + [LAST WORD] 19184
[ANAPHORIC] + [PRECEDING WORD] 54605
[ANAPHORIC] + [FOLLOWING WORD] 57239
[ANAPHORIC] + [LENGTH] 4304

Features on the antecedent
[ANTECEDENT HEAD WORD] 57383
[ANTECEDENT FIRST WORD] 24239
[ANTECEDENT LAST WORD] 23819
[ANTECEDENT PRECEDING WORD] 53421
[ANTECEDENT FOLLOWING WORD] 55718
[ANTECEDENT LENGTH] 4620

Features on the pair
[EXACT STRING MATCH (T/F)] 47
[HEAD MATCH (T/F)] 46
[SENTENCE DISTANCE, CAPPED AT 10] 2037
[MENTION DISTANCE, CAPPED AT 10] 1680

Table 1: Our SURFACE feature set, which exploits a
small number of surface-level mention properties. Fea-
ture counts for each template are computed over the train-
ing set, and include features generated by our conjunction
scheme (not explicitly shown in the table; see Figure 2),
which yields large numbers of features at varying levels
of expressivity.

• The word immediately preceding and the word
immediately following a mention

• Mention length, in words

• Two distance measures between mentions
(number of sentences and number of mentions)

Table 1 shows the SURFACE feature set. Features
that look only at the current mention fire on all de-
cisions (ai = j or ai = NEW), whereas features
that look at the antecedent in any way (the latter
two groups of features) only fire on pairwise link-
ages (ai 6= NEW).

Two conjunctions of each feature are also in-
cluded: first with the “type” of the mention be-
ing resolved (either NOMINAL, PROPER, or, if it is
pronominal, the citation form of the pronoun), and
then additionally with the antecedent type (only if
the feature is over a pairwise link). This conjunc-
tion process is shown in Figure 2. Note that features
that just examine the antecedent will end up with
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[Voters]1 generally agree when [they]1 ...

NEW

1⟵

a2

NEW ∧ LEN = 1
NEW ∧ LEN = 1 ∧ [they]

ANT. HEAD = Voters
ANT. HEAD = Voters ∧ [they]
ANT. HEAD = Voters ∧ [they] ∧ NOM

MENT DIST = 1
MENT DIST = 1 ∧ [they]
MENT DIST = 1 ∧ [they] ∧ NOM

Figure 2: Demonstration of the conjunction scheme we
use. Each feature on anaphoricity is conjoined with the
type (NOMINAL, PROPER, or the citation form if it is a
pronoun) of the mention being resolved. Each feature on
a mention pair is additionally conjoined with the types of
the current and antecedent mentions.

conjunctions that examine properties of the current
mention as well, as shown with the ANT. HEAD fea-
ture in the figure.

Finally, we found it beneficial for our lexical indi-
cator features to only fire on words occurring at least
20 times in the training set; for rare words, we use
the part of speech of the word instead.

The performance of our system is shown in Ta-
ble 2. We contrast our performance with that of
the Stanford system (Lee et al. (2011), the winner
of the CoNLL 2011 shared task) and the IMS sys-
tem (Björkelund and Farkas (2012), the best publicly
available English coreference system). Despite its
simplicity, our SURFACE system is sufficient to out-
perform these sophisticated systems: the Stanford
system uses a cascade of ten rule-based sieves each
of which has customized heuristics, and the IMS
system uses a similarly long pipeline consisting of
a learned referentiality classifier followed by multi-
ple resolvers, which are run in sequence and rely on
the outputs of the previous resolvers as features.

4.2 Data-Driven versus Heuristic-Driven
Features

Why are the SURFACE features sufficient to give
high coreference performance, when they do not
make apparent reference to important linguistic phe-
nomena? The main reason is that they actually do
capture the same phenomena as standard corefer-

MUC B3 CEAFe Avg.
STANFORD 60.46 65.48 47.07 57.67

IMS 62.15 65.57 46.66 58.13
SURFACE 64.39 66.78 49.00 60.06

Table 2: Results for our SURFACE system, the STAN-
FORD system, and the IMS system on the CoNLL 2011
development set. Complete results are shown in Ta-
ble 7. Despite using limited information sources, our sys-
tem is able to substantially outperform the other two, the
two best publicly-available English coreference systems.
Bolded values are significant with p < 0.05 according to
a bootstrap resampling test.

ence features, just implicitly. For example, rather
than having rules targeting person, number, gender,
or animacy of mentions, we use conjunctions with
pronoun identity, which contains this information.
Rather than explicitly writing a feature targeting def-
initeness, our indicators on the first word of a men-
tion will capture this and other effects. And finally,
rather than targeting centering theory (Grosz et al.,
1995) with rule-based features identifying syntac-
tic positions (Stoyanov et al., 2010; Haghighi and
Klein, 2010), our features on word context can iden-
tify configurational clues like whether a mention
is preceded or followed by a verb, and therefore
whether it is likely in subject or object position.5

Not only are data-driven features able to capture
the same phenomena as heuristic-driven features,
but they do so at a finer level of granularity, and can
therefore model more patterns in the data. To con-
trast these two types of features, we experiment with
three ablated versions of our system, where we re-
place data-driven features with their heuristic-driven
counterparts:

1. Instead of using an indicator on the first word
of a mention (1STWORD), we instead fire
a feature based on that mention’s manually-
computed definiteness (DEF).

2. Instead of conjoining features on pronominal-
pronominal linkages with the citation form of

5Heuristic-driven approaches were historically more appro-
priate, since past coreference corpora such as MUC and ACE
were smaller and therefore more prone to overfitting feature-
rich models. However, the OntoNotes dataset contains thou-
sands of documents, so having support for features is less of a
concern.
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MUC B3 CEAFe Avg.
SURFACE 64.39 66.78 49.00 60.06

−1STWORD 63.32 66.22 47.89 59.14
+DEF−1STWORD 63.79 66.46 48.35 59.53

−PRONCONJ 59.97 63.46 47.94 57.12
+AGR−PRONCONJ 63.54 66.10 48.72 59.45

−CONTEXT 60.88 64.66 47.60 57.71
+POSN−CONTEXT 62.45 65.44 48.08 58.65
+DEF+AGR+POSN 64.55 66.93 48.94 60.14

Table 3: CoNLL metric scores on the development set,
for the three different ablations and replacement features
described in Section 4.2. Feature types are described in
the text; + indicates inclusion of that feature class, − in-
dicates exclusion. Each individual shallow indicator ap-
pears to do as well at capturing its target phenomenon as
the hand-engineered features, while capturing other infor-
mation as well. Moreover, the hand-engineered features
give no benefit over the SURFACE system.

each pronoun (PRONCONJ), we only conjoin
with a PRONOUN indicator and add features
targeting the person, number, gender, and an-
imacy of the two pronouns (AGR).

3. Instead of using our context features on the
preceding and following word (CONTEXT), we
use manual determinations of when mentions
are in subject, direct object, indirect objection,
or oblique position (POSN).

All rules for computing person, number, gender, an-
imacy, definiteness, and syntactic position are taken
from the system of Lee et al. (2011).

Table 3 shows each of the target ablations, as well
as the SURFACE system with the DEF, AGR, and
POSN features added. While the heuristic-driven
feature always help over the corresponding ablated
system, they cannot do the work of the fine-grained
data-driven features. Most tellingly, though, none of
the heuristic-driven features give statistically signifi-
cant improvements on top of the data-driven features
we have already included, indicating that we are at
the point of diminishing returns on modeling those
specific phenomena. While this does not preclude
further engineering to take better advantage of other
syntactic constraints, our simple features represent
an “easy victory” on this subtask.

5 Uphill Battles on Semantics

In Section 4, we gave a simple set of features that
yielded a high-performance coreference system; this
high performance is possible because features tar-
geting only superficial properties in a fine-grained
way can actually model complex linguistic con-
straints. However, while our existing features cap-
ture syntactic and discourse-level phenomena sur-
prisingly well, they are not effective at capturing se-
mantic phenomena like type compatibility. We will
show that due to structural aspects of the coreference
resolution problem, even a combination of several
shallow semantic features from the literature fails to
adequately model semantics.

5.1 Analysis of the SURFACE System

What can the SURFACE system resolve correctly,
and what errors does it still make? To answer this
question, we will split mentions into several cate-
gories based on their observable properties and the
gold standard coreference information, and exam-
ine our system’s accuracy on each mention subclass
in order to more thoroughly characterize its perfor-
mance.6 These categories represent important dis-
tinctions in terms of the difficulty of mention reso-
lution for our system.

We first split mentions into three categories by
their status in the gold standard: singleton (unanno-
tated in the OntoNotes corpus), starting a new entity
with at least two mentions, or anaphoric. It is impor-
tant to note that while singletons and mentions start-
ing new entities are outwardly similar in that they
have no antecedents, and the prediction should be
the same in either case (NEW), we treat them as dis-
tinct because the factors that impact the coreference
decision differ in the two cases. Mentions that start
new clusters are semantically similar to anaphoric
mentions, but may be marked by heaviness or by a
tendency to be named entities, whereas singletons
may be generic or temporal NPs which might be
thought of as coreferent in a loose sense, but are not

6This method of analysis is similar to that undertaken in
Stoyanov et al. (2009) and Rahman and Ng (2011b), though
we split our mentions along different axes, and can simply eval-
uate on accuracy because our decisions do not directly imply
multiple links, as they do in binary classification-based systems
(Stoyanov et al., 2009) or in entity-mention models (Rahman
and Ng, 2011b).
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Nominal/Proper
Pronominal

1st w/head 2nd+ w/head
Singleton 99.7% 18.1K 85.5% 7.3K 66.5% 1.7K

Starts Entity 98.7% 2.1K 78.9% 0.7K 48.5% 0.3K
Anaphoric 7.9% 0.9K 75.5% 3.9K 72.0% 4.4K

Table 4: Analysis of our SURFACE system on the de-
velopment set. We characterize each predicted mention
by its status in the gold standard (singleton, starting a
new entity, or anaphoric), its type (pronominal or nom-
inal/proper), and by whether its head has appeared as the
head of a previous mention. Each cell shows our sys-
tem’s accuracy on that mention class as well as the size
of the class. The biggest weakness of our system appears
to be its inability to resolve anaphoric mentions with new
heads (bottom-left cell).

included in the OntoNotes dataset due to choices in
the annotation standard.

Second, we divide mentions by their type,
pronominal versus nominal/proper; we then further
subdivide nominals and propers based on whether or
not the head word of the mention has appeared as the
head of a previous mention in the document.

Table 4 shows the results of our analysis. In
each cell, we show the fraction of mentions that
we correctly resolve (i.e., for which we make an
antecedence decision consistent with the gold stan-
dard), as well as the total number of mentions falling
into that cell. First, we observe that there are a sur-
prisingly large number of singleton mentions with
misleading head matches to previous mentions (of-
ten recurring temporal nouns phrases, like July).
The features in our system targeting anaphoricity are
useful for exactly this reason: the more bad head
matches we can rule out based on other criteria, the
more strongly we can rely on head match to make
correct linkages.

Our system is most noticeably poor at resolving
anaphoric mentions whose heads have not appeared
before. The fact that exact match and head match
are our only recall-oriented features on nominals
and propers is starkly apparent here: when we can-
not rely on head match, as is true for this mention
class, we only resolve 7.9% of anaphoric mentions
correctly.7 Many of the mentions in this category

7There are an additional 346 anaphoric nominal/proper men-
tions in the 2nd+ category whose heads only appeared previ-
ously as part of a different cluster; we only resolve 1.7% of

can only be correctly resolved by exploiting world
knowledge, so we will need to include features that
capture this knowledge in some fashion.

5.2 Incorporating Shallow Semantics
As we were able to incorporate syntax with shal-
low features, so too might we hope to incorporate
semantics. However, the semantic information con-
tained even in a coreference corpus of thousands
of documents is insufficient to generalize to unseen
data,8 so system designers have turned to exter-
nal resources such as semantic classes derived from
WordNet (Soon et al., 2001), WordNet hypernymy
or synonymy (Stoyanov et al., 2010), semantic simi-
larity computed from online resources (Ponzetto and
Strube, 2006), named entity type features, gender
and number match using the dataset of Bergsma and
Lin (2006), and features from unsupervised clus-
ters (Hendrickx and Daelemans, 2007; Durrett et al.,
2013). In this section, we consider the following
subset of these information sources:

• WordNet hypernymy and synonymy

• Number and gender data for nominals and
propers from Bergsma and Lin (2006)

• Named entity types

• Latent clusters computed from English Giga-
word (Graff et al., 2007), where a latent cluster
label generates each nominal head (excluding
pronouns) and a conjunction of its verbal gov-
ernor and semantic role, if any (Durrett et al.,
2013). We use twenty clusters, which include
clusters like president and leader (things which
announce).

Together, we call these the SEM features. We
show results from this expansion of the feature set in
Table 5. When using system mentions, the improve-
ments are not statistically significant on every met-
ric, and are quite marginal given that these features
add information that is intuitively central to corefer-
ence and otherwise unavailable to the system. We
explore the reasons behind this in the next section.

these extremely tricky cases correctly.
8We experimented with bilexical features on head pairs, but

they did not give statistically significant improvements over the
SURFACE features.
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MUC B3 CEAFe Avg.
SURFACE 64.39 66.78 49.00 60.06

SURFACE+SEM 64.70 67.27 49.28 60.42
SURFACE (G) 82.80 74.10 68.33 75.08

SURFACE+SEM (G) 84.49 75.65 69.89 76.68

Table 5: CoNLL metric scores on the development set
for our SEM features when added on top of our SURFACE
features. We experiment on both system mentions and
gold mentions. Surprisingly, despite the fact that absolute
performance numbers are much higher on gold mentions
and there is less room for improvement, the semantic fea-
tures help much more than they do on system mentions.

5.3 Analysis of Semantic Features

The main reason that weak semantic cues are not
more effective is the small fraction of positive coref-
erence links present in the training data. From Ta-
ble 4, the number of annotated coreferent spans in
the OntoNotes data is about a factor of five smaller
than the number of system mentions.9 This both
means that most NPs are not coreferent, and for
those that are, choosing the correct links is much
more difficult because of the large number of pos-
sible antecedents. Even head match, which is gen-
erally considered a high-precision indicator (Lee et
al., 2011), would introduce many spurious corefer-
ence arcs if applied too liberally (see Table 4).

In light of this fact, a system needs very strong
evidence to overcome the default hypothesis that a
mention is not coreferent, and a weak indicator will
have such a high “false positive” rate that it cannot
be relied on (given high weight, this feature would
do more harm than good, by introducing many false
linkages).

To confirm this intuition, we show in the bot-
tom part of Table 5 results when we apply these se-
mantic features on top of our SURFACE system on
gold mentions, where there are no singletons. In the
gold mention setting, we see that the semantic fea-
tures give a consistent improvement on every metric.
Moreover, if we look at a breakdown of errors, the
main improvement the semantic features give us is
on resolution of anaphoric nominals with no head

9This observation is more general than just our system: the
majority of coreference systems, including the winners of the
CoNLL shared tasks (Lee et al., 2011; Fernandes et al., 2012),
opt for high mention recall and resolve a relatively large number
of system mentions.

match: accuracy on the 1601 mentions that fall into
this category improves from 28.0% to 37.9%. On
predicted mentions, by contrast, this category only
improves from 7.9% to 12.2%, a much smaller ab-
solute improvement and one that comes at the ex-
pense of performance on most other resolution class.
The one class that does not get worse, singleton pro-
nouns, actually improves by a similar 4% margin,
indicating that roughly half of the gains we observe
are not even necessarily a result of our features do-
ing what they were designed to do.

Our weak cues do yield some small gains, so there
is hope that better weak indicators of semantic com-
patibility could prove more useful. However, while
extremely high-precision approaches with carefully
engineered features have been shown to be suc-
cessful (Rahman and Ng, 2011a; Bansal and Klein,
2012; Recasens et al., 2013a), we conclude that cap-
turing semantics in a data-driven, shallow manner
remains an uphill battle.

6 FINAL System and Results

While semantic features ended up giving only
marginal benefit, we have demonstrated that nev-
ertheless our SURFACE system is a state-of-the-art
English coreference system. However, there remain
a few natural features that we omitted in order to
keep the system as simple as possible, since they
were orthogonal to the discussion of data-driven
versus heuristic-driven features and do not target
world knowledge. Before giving final results, we
will present a small set of additional features that
consider four additional mention properties beyond
those in Section 4.1:

• Whether two mentions are nested

• Ancestry of each mention head: the depen-
dency parent and grandparent POS tags and arc
directions (shown in Figure 3)

• The speaker of each mention

• Number and gender of each mention as deter-
mined by Bergsma and Lin (2006)

The specific additional features we use are shown
in Table 6. Note that unlike in Section 5, we use
the number and gender information only on the an-
tecedent. Due to our conjunction scheme, both this

1978



ROOT

... sent    it    to  the [president] ... [President Obama] signed ...
VBD PRP TO DET NN NNP NNP VBD 

president R TO VBD R Obama L VBD ROOT 

Figure 3: Demonstration of the ancestry extraction pro-
cess. These features capture more sophisticated configu-
rational information than our context word features do: in
this example, president is in a characteristic indirect ob-
ject position based on its dependency parents, and Obama
is the subject of the main verb of the sentence.

semantic information and the speaker information
can apply in a fine-grained way to different pro-
nouns, and can therefore improve pronoun resolu-
tion substantially; however, these features generally
only improve pronoun resolution.

Full results for our SURFACE and FINAL feature
sets are shown in Table 7. Again, we compare to Lee
et al. (2011) and Björkelund and Farkas (2012).10

Despite our system’s emphasis on one-pass resolu-
tion with as simple a feature set as possible, we are
able to outperform even these sophisticated systems
by a wide margin.

7 Related Work

Many of the individual features we employ in the FI-
NAL feature set have appeared in other coreference
systems (Björkelund and Nugues, 2011; Rahman
and Ng, 2011b; Fernandes et al., 2012). However,
other authors have often emphasized bilexical fea-
tures on head pairs, whereas our features are heavily
monolexical. For feature conjunctions, other authors
have exploited three classes (Lee et al., 2011) or au-
tomatically learned conjunction schemes (Fernandes
et al., 2012; Lassalle and Denis, 2013), but to our
knowledge we are the first to do fine-grained mod-
eling of every pronoun. Inclusion of a hierarchy of

10Discrepancies between scores here and those printed in
Pradhan et al. (2012) arise from two sources: improvements
to the system of Lee et al. (2011) since the first CoNLL shared
task, and a fix to the scoring of B3 in the official scorer since
results of the two CoNLL shared tasks were released. Unfor-
tunately, because of this bug in the scoring program, direct
comparison to the printed results of the other highest-scoring
English systems, Fernandes et al. (2012) and Martschat et al.
(2012), is impossible.

Feature name Count
Features of the SURFACE system 418704

Features on the current mention
[ANAPHORIC] + [CURRENT ANCESTRY] 46047

Features on the antecedent
[ANTECEDENT ANCESTRY] 53874
[ANTECEDENT GENDER] 338
[ANTECEDENT NUMBER] 290

Features on the pair
[HEAD CONTAINED (T/F)] 136
[EXACT STRING CONTAINED (T/F)] 133
[NESTED (T/F)] 355
[DOC TYPE] + [SAME SPEAKER (T/F)] 437
[CURRENT ANCESTRY] + [ANT. ANCESTRY] 2555359

Table 6: FINAL feature set; note that this includes the
SURFACE feature set. As with the features of the SUR-
FACE system, two conjoined variants of each feature
are included: first with the type of the current mention
(NOMINAL, PROPER, or the citation form of the pro-
noun), then with the types of both mentions in the pair.
These conjunctions allow antecedent features on gender
and number to impact pronoun resolution, and they al-
low speaker match to capture effects like I and you being
coreferent when the speakers differ.

features with regularization also means that we or-
ganically get distinctions among different mention
types without having to choose a level of granularity
a priori, unlike the distinct classifiers employed by
Denis and Baldridge (2008).

In terms of architecture, many coreference sys-
tems operate in a pipelined fashion, making par-
tial decisions about coreference or pruning arcs
before full resolution. Some systems use sepa-
rate rule-based and learning-based passes (Chen
and Ng, 2012; Fernandes et al., 2012), a series
of learning-based passes (Björkelund and Farkas,
2012), or referentiality classifiers that prune the set
of mentions before resolution (Rahman and Ng,
2009; Björkelund and Farkas, 2012; Recasens et
al., 2013b). By contrast, our system resolves all
mentions in one pass and does not need pruning:
the SURFACE system can train in less than two
hours without any subsampling of coreference arcs,
and rule-based pruning of coreference arcs actually
causes our system to perform less well, since our
features can learn valuable information from these
negative examples.
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MUC B3 CEAFe Avg.
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 F1

CoNLL 2011 Development Set
STANFORD 61.62 59.34 60.46 74.05 58.70 65.48 45.98 48.22 47.07 57.67

IMS 66.67 58.20 62.15 77.60 56.77 65.57 42.92 51.11 46.66 58.13
SURFACE* 68.42 60.80 64.39 76.57 59.21 66.78 45.30 53.36 49.00 60.06

FINAL* 68.97 63.47 66.10 76.58 62.06 68.56 47.32 53.19 50.09 61.58
CoNLL 2011 Test Set

STANFORD 60.91 62.13 61.51 70.61 57.31 63.27 45.79 44.56 45.17 56.65
IMS 68.15 61.60 64.71 75.97 56.39 64.73 42.30 48.88 45.35 58.26

FINAL* 66.81 66.04 66.43 71.07 61.89 66.16 47.37 48.22 47.79 60.13

Table 7: CoNLL metric scores for our systems on the CoNLL development and blind test sets, compared to the results
of Lee et al. (2011) (STANFORD) and Björkelund and Farkas (2012) (IMS). Starred systems are contributions of this
work. Bolded F1 values represent statistically significant improvements over other systems with p < 0.05 using a
bootstrap resampling test. Metric values reflect version 5 of the CoNLL scorer.

8 Conclusion

We have presented a coreference system that uses a
simple, homogeneous set of features in a discrim-
inative learning framework to achieve high perfor-
mance. Large numbers of lexicalized, data-driven
features implicitly model linguistic phenomena such
as definiteness and centering, obviating the need for
heuristic-driven rules explicitly targeting these same
phenomena. Additional semantic features give only
slight benefit beyond head match because they do
not provide strong enough signals of coreference to
improve performance in the system mention setting;
modeling semantic similarity still requires complex
outside information and deep heuristics.

Our system, the Berkeley Coreference
Resolution System, is publicly available at
http://nlp.cs.berkeley.edu.
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Abstract

Many statistical learning problems in NLP call
for local model search methods. But accu-
racy tends to suffer with current techniques,
which often explore either too narrowly or too
broadly: hill-climbers can get stuck in local
optima, whereas samplers may be inefficient.
We propose to arrange individual local opti-
mizers into organized networks. Our building
blocks are operators of two types: (i)trans-
form, which suggests new places to search, via
non-random restarts from already-found local
optima; and (ii)join, which merges candidate
solutions to find better optima. Experiments
on grammar induction show that pursuing dif-
ferent transforms (e.g., discarding parts of a
learned model or ignoring portions of train-
ing data) results in improvements. Groups of
locally-optimal solutions can be further per-
turbed jointly, by constructing mixtures. Us-
ing these tools, we designed several modu-
lar dependency grammar induction networks
of increasing complexity. Our complete sys-
tem achieves 48.6% accuracy (directed depen-
dency macro-average over all 19 languages in
the 2006/7 CoNLL data) — more than 5%
higher than the previous state-of-the-art.

1 Introduction

Statistical methods for grammar induction often boil
down to solving non-convex optimization problems.
Early work attempted to locally maximize the likeli-
hood of a corpus, using EM to estimate probabilities
of dependency arcs between word bigrams (Paskin
2001a; 2001b). That parsing model has since been
extended to make unsupervised learning more feasi-
ble (Klein and Manning, 2004; Headden et al., 2009;
Spitkovsky et al., 2012b). But even the latest tech-
niques can be quite error-prone and sensitive to ini-
tialization, because of approximate, local search.

In theory, global optima can be found by enumer-
ating all parse forests that derive a corpus, though
this is usually prohibitively expensive in practice. A

preferable brute force approach is sampling, as in
Markov-chain Monte Carlo (MCMC) and random
restarts (Hu et al., 1994), which hit exact solutions
eventually. Restarts can be giant steps in a parameter
space that undo all previous work. At the other ex-
treme, MCMC may cling to a neighborhood, reject-
ing most proposed moves that would escape a local
attractor. Sampling methods thus take unbounded
time to solve a problem (and can’t certify optimal-
ity) but are useful for finding approximate solutions
to grammar induction (Cohn et al., 2011; Mareček
andŽabokrtský, 2011; Naseem and Barzilay, 2011).

We propose an alternative (deterministic) search
heuristic that combines local optimization via EM
with non-random restarts. Its new starting places are
informed by previously found solutions, unlike con-
ventional restarts, but may not resemble their prede-
cessors, unlike typical MCMC moves. We show that
one good way to construct such steps in a parame-
ter space is by forgetting some aspects of a learned
model. Another is by merging promising solutions,
since even simple interpolation (Jelinek and Mercer,
1980) of local optima may be superior to all of the
originals. Informed restarts can make it possible to
explore a combinatorial search space more rapidly
and thoroughly than with traditional methods alone.

2 Abstract Operators

Let C be a collection of counts — the sufficient
statistics from which a candidate solution to an
optimization problem could be computed, e.g., by
smoothing and normalizing to yield probabilities.
The counts may be fractional and solutions could
take the form of multinomial distributions. A local
optimizerL will convert C into C∗ = LD(C) — an
updated collection of counts, resulting in a proba-
bilistic model that is no less (and hopefully more)
consistent with a data setD than the originalC:

(1)

LDC C∗
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UnlessC∗ is a global optimum, we should be able
to make further improvements. But ifL is idempo-
tent (and ran to convergence) thenL(L(C)) = L(C).
Given onlyC andLD, the single-node optimization
network above would be the minimal search pattern
worth considering. However, if we had another opti-
mizerL′ — or a fresh starting pointC′ — then more
complicated networks could become useful.

2.1 Transforms (Unary)

New starts could be chosen by perturbing an existing
solution, as in MCMC, or independently of previous
results, as in random restarts. We focus on interme-
diate changes toC, without injecting randomness.

All of our transforms involve selective forgetting
or filtering. For example, if the probabilistic model
that is being estimated decomposes into independent
constituents (e.g., several multinomials) then a sub-
set of them can be reset to uniform distributions, by
discarding associated counts fromC. In text classifi-
cation, this could correspond to eliminating frequent
or rare tokens from bags-of-words. We use circular
shapes to represent such model ablation operators:

(2)C

An orthogonal approach might separate out vari-
ous counts inC by their provenance. For instance,
if D consisted of several heterogeneous data sources,
then the counts from some of them could be ignored:
a classifier might be estimated from just news text.
We will use squares to represent data-set filtering:

(3)C

Finally, if C represents a mixture of possible inter-
pretations overD — e.g., because it captures the out-
put of a “soft” EM algorithm — contributions from
less likely, noisier completions could also be sup-
pressed (and their weights redistributed to the more
likely ones), as in “hard” EM. Diamonds will repre-
sent plain (single) steps of Viterbi training:

(4)C

2.2 Joins (Binary)

Starting from different initializers, sayC1 andC2,
it may be possible forL to arrive at distinct local
optima,C∗

1 6= C∗

2 . The better of the two solutions,
according to likelihoodLD of D, could then be se-
lected — as is standard practice when sampling.

Our joining technique could do better than either
C∗

1 or C∗

2 , by entertaining also a third possibility,
which combines the two candidates. We construct
a mixture model by adding together all counts from
C∗

1 andC∗

2 into C+ = C∗

1 + C∗

2 . Original initializers
C1, C2 will, this way, have equal pull on the merged
model,1 regardless of nominal size (becauseC∗

1 , C
∗

2

will have converged using a shared training set,D).
We return the best ofC∗

1 , C∗

2 andC∗

+ = L(C+). This
approach may uncover more (and never returns less)
likely solutions than choosing amongC∗

1 , C
∗

2 alone:

(5)

LD

LD

LD

+

arg
M

A
X
L
D

C1

C∗

1 = L(C1)

C2
C∗

2 = L(C2)

C∗

1 + C∗

2 = C+

We will use a short-hand notation to represent the
combiner network diagrammed above, less clutter:

(6)

LDC2

C1

3 The Task and Methodology

We apply transform and join paradigms to grammar
induction, an important problem of computational
linguistics that involves notoriously difficult objec-
tives (Pereira and Schabes, 1992; de Marcken, 1995;
Gimpel and Smith, 2012,inter alia). The goal is to
induce grammars capable of parsing unseen text. In-
put, in both training and testing, is a sequence of to-
kens labeled as: (i) a lexical item and its category,
(w, cw); (ii) a punctuation mark; or (iii) a sentence
boundary. Output is unlabeled dependency trees.

3.1 Models and Data

We constrain all parse structures to be projective, via
dependency-and-boundary grammars (Spitkovsky et
al., 2012a; 2012b): DBMs 0–3 are head-outward
generative parsing models (Alshawi, 1996) that dis-
tinguish complete sentences from incomplete frag-
ments in a corpusD: Dcomp comprises inputs ending
with punctuation;Dfrag = D − Dcomp is everything

1If desired, a scaling factor could be used to biasC+ towards
eitherC∗

1 or C∗

2 , for example based on their likelihood ratio.
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else. The “complete” subset is further partitioned
into simple sentences,Dsimp ⊆ Dcomp, with no inter-
nal punctuation, and others, which may be complex.

As an example, consider the beginning of an arti-
cle from (simple) Wikipedia: (i)Linguistics (ii) Lin-
guistics (sometimes called philology) is the science
that studies language.(iii) Scientists who study lan-
guage are called linguists.Since the title does not
end with punctuation, it would be relegated toDfrag.
But two complete sentences would be inDcomp, with
the last also filed underDsimp, as it has only a trail-
ing punctuation mark. Spitkovsky et al. suggested
two curriculum learning strategies: (i) one in which
induction begins with clean, simple data,Dsimp, and
a basic model, DBM-1 (2012b); and (ii) an alterna-
tive bootstrapping approach: starting with still more,
simpler data — namely, short inter-punctuation frag-
ments up to lengthl = 15, Dl

split ⊇ Dl

simp — and a
bare-bones model, DBM-0 (2012a). In our example,
Dsplit would hold five text snippets: (i)Linguistics;
(ii) Linguistics; (iii) sometimes called philology;
(iv) is the science that studies language; and (v)Sci-
entists who study language are called linguists.
Only the last piece of text would still be considered
complete, isolating its contribution to sentence root
and boundary word distributions from those of in-
complete fragments. The sparse model, DBM-0, as-
sumes a uniform distribution for roots of incomplete
inputs and reduces conditioning contexts of stopping
probabilities, which works well with split data. We
will exploit both DBM-0 and the full DBM,2 draw-
ing also on split, simple and raw views of input text.

All experiments prior to final multi-lingual eval-
uation will use the Penn English Treebank’s Wall
Street Journal (WSJ) portion (Marcus et al., 1993) as
the underlying tokenized and sentence-broken cor-
pusD. Instead of gold parts-of-speech, we plugged
in 200 context-sensitive unsupervised tags, from
Spitkovsky et al. (2011c),3 for the word categories.

3.2 Smoothing and Lexicalization

All unlexicalized instances of DBMs will be esti-
mated with “add one” (a.k.a. Laplace) smoothing,

2We use the short-hand DBM to refer to DBM-3, which is
equivalent to DBM-2 ifD has no internally-punctuated sen-
tences (D=Dsplit), and DBM-1 if all inputs also have trailing
punctuation (D=Dsimp); DBM0 is our short-hand for DBM-0.

3
http://nlp.stanford.edu/pubs/goldtags-data.tar.bz2

using only the word categorycw to represent a token.
Fully-lexicalized grammars (L-DBM) are left un-
smoothed, and represent each token as both a word
and its category, i.e., the whole pair(w, cw). To eval-
uate a lexicalized parsing model, we will always ob-
tain a delexicalized-and-smoothed instance first.

3.3 Optimization and Viterbi Decoding

We use “early-switching lateen” EM (Spitkovsky et
al., 2011a,§2.4) to train unlexicalized models, alter-
nating between the objectives of ordinary (soft) and
hard EM algorithms, until neither can improve its
own objective without harming the other’s. This ap-
proach does not require tuning termination thresh-
olds, allowing optimizers to run to numerical con-
vergence if necessary, and handles only our shorter
inputs (l ≤ 15), starting with soft EM (L = SL, for
“soft lateen”). Lexicalized models will cover full
data (l ≤ 45) and employ “early-stopping lateen”
EM (2011a,§2.3), re-estimating via hard EM until
soft EM’s objective suffers. Alternating EMs would
be expensive here, since updates take (at least)O(l3)

time, and hard EM’s objective (L = H) is the one
better suited to long inputs (Spitkovsky et al., 2010).

Our decoders always force an inter-punctuation
fragment to derive itself (Spitkovsky et al., 2011b,
§2.2).4 In evaluation, such (loose) constraints may
help attachsometimesandphilology to called (and
the science...to is). In training, stronger (strict)
constraints also disallow attachment of fragments’
heads by non-heads, to connectLinguistics, called
andis (assuming each piece got parsed correctly).

3.4 Final Evaluation and Metrics

Evaluation is against held-out CoNLL shared task
data (Buchholz and Marsi, 2006; Nivre et al., 2007),
spanning 19 languages. We compute performance
as directed dependency accuracies (DDA), fractions
of correct unlabeled arcs in parsed output (an extrin-
sic metric).5 For most WSJ experiments we include
also sentence and parse tree cross-entropies (soft and
hard EMs’ intrinsic metrics), in bits per token (bpt).

4But these constraints do not impact training with shorter
inputs, since there is no internal punctuation inDsplit or Dsimp.

5We converted gold labeled constituents in WSJ to unlabeled
reference dependencies using deterministic “head-percolation”
rules (Collins, 1999); sentence root symbols, though not punc-
tuation arcs, contribute to scores, as is standard (Paskin,2001b).
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4 Concrete Operators

We will now instantiate the operators sketched out
in §2 specifically for the grammar induction task.

Throughout, we repeatedly employ single steps of
Viterbi training to transfer information between sub-
networks in a model-independent way: when a mod-
ule’s output is a set of (Viterbi) parse trees, it neces-
sarily contains sufficient information required to es-
timate an arbitrarily-factored model down-stream.6

4.1 Transform #1: A Simple Filter

Given a model that was estimated from (and there-
fore parses) a data setD, the simple filter (F ) at-
tempts to extract a cleaner model, based on the sim-
pler complete sentences ofDsimp. It is implemented
as a single (unlexicalized) step of Viterbi training:

(7)C F

The idea here is to focus on sentences that are not
too complicated yet grammatical. This punctuation-
sensitive heuristic may steer a learner towards easy
but representative training text and, we showed, aids
grammar induction (Spitkovsky et al., 2012b,§7.1).

4.2 Transform #2: A Symmetrizer

The symmetrizer (S) reduces input models to sets of
word association scores. It blurs all details of in-
duced parses in a data setD, except the number of
times each (ordered) word pair participates in a de-
pendency relation. We implemented symmetrization
also as a single unlexicalized Viterbi training step,
but now with proposed parse trees’ scores, for a sen-
tence inD, proportional to a product over non-root
dependency arcs of one plus how often the left and
right tokens (are expected to) appear connected:

(8)C S

The idea behind the symmetrizer is to glean infor-
mation from skeleton parses. Grammar inducers can
sometimes make good progress in resolving undi-
rected parse structures despite being wrong about
the polarities of most arcs (Spitkovsky et al., 2009,
Figure 3: Uninformed). Symmetrization offers an
extra chance to make heads or tails of syntactic rela-
tions, after learning which words tend to go together.

6A related approach — initializing EM training with an
M-step — was advocated by Klein and Manning (2004,§3).

At each instance where a worda© attachesz© on
(say) the right, our implementation attributes half its
weight to the intended construction,

y

a© z©, reserving
the other half for the symmetric structure,z© attach-
ing a© to its left:

x

a© z©. For the desired effect, these
aggregated counts are left unnormalized, while all
other counts (of word fertilities and sentence roots)
get discarded. To see why we don’t turn word attach-
ment scores into probabilities, consider sentences
a© z© and c© z©. The fact that z© co-occurs with a©

introduces an asymmetry intoz©’s relation with c©:
P( z© | c©) = 1 differs fromP( c© | z©) = 1/2. Normal-
izing might force the interpretation

y

c© z© (and also
y

a© z©), not because there is evidence in the data, but
as a side-effect of a model’s head-driven nature (i.e.,
factored with dependents conditioned on heads). Al-
ways branching right would be a mistake, however,
for example if z© is a noun, since either ofa© or c©

could be a determiner, with the other a verb.

4.3 Join: A Combiner

The combiner must admit arbitrary inputs, includ-
ing models not estimated fromD, unlike the trans-
forms. Consequently, as a preliminary step, we con-
vert each inputCi into parse trees ofD, with counts
C′

i
, via Viterbi-decoding with a smoothed, unlexical-

ized version of the corresponding incoming model.
Actual combination is then performed in a more pre-
cise (unsmoothed) fashion:C∗

i
are the (lexicalized)

solutions starting fromC′

i
; andC∗

+ is initialized with
their sum,

∑
i
C∗

i
. Counts of the lexicalized model

with lowest cross-entropy onD become the output:7

(9)

LDC2

C1

5 Basic Networks

We are ready to propose a non-trivial subnetwork for
grammar induction, based on the transform and join
operators, which we will reuse in larger networks.

5.1 Fork/Join (FJ)

Given a model that parses a base data setD0, the
fork/join subnetwork will output an adaptation of
that model forD. It could facilitate a grammar in-
duction process, e.g., by advancing it from smaller

7In our diagrams, lexicalized modules are shaded black.
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to larger — or possibly more complex — data sets.

We first fork off two variations of the incoming
model based onD0: (i) a filtered view, which fo-
cuses on cleaner, simpler data (transform #1); and
(ii) a symmetrized view that backs off to word asso-
ciations (transform #2). Next is grammar induction
overD. We optimize a full DBM instance starting
from the first fork, and bootstrap a reduced DBM0

from the second. Finally, the two new induced sets
of parse trees, forD, are merged (lexicalized join):

(10)

HL·DBM
D

SLDBM
D

SLDBM0

D

C

F

S

D0

C1

C2

C′

1

C′

2

The idea here is to prepare for two scenarios: an
incoming grammar that is either good or bad forD.
If the model is good, DBM should be able to hang
on to it and make improvements. But if it is bad,
DBM could get stuck fitting noise, whereas DBM0
might be more likely to ramp up to a good alterna-
tive. Since we can’t know ahead of time which is the
true case, we pursue both optimization paths simul-
taneously and let a combiner later decide for us.

Note that the forks start (and end) optimizing with
soft EM. This is because soft EM integrates previ-
ously unseen tokens into new grammars better than
hard EM, as evidenced by our failed attempt to re-
produce the “baby steps” strategy with Viterbi train-
ing (Spitkovsky et al., 2010, Figure 4). A combiner
then executes hard EM, and since outputs of trans-
forms are trees, the end-to-end process is a chain of
lateen alternations that starts and ends with hard EM.

We will use a “grammar inductor” to represent
subnetworks that transition fromDl

split to Dl+1
split, by

taking transformed parse trees of inter-punctuation
fragments up to lengthl (base data set,D0) to ini-
tialize training over fragments up to lengthl + 1:

(11)C
l+1

The FJ network instantiates a grammar inductor
with l = 14, thus training on inter-punctuation frag-
ments up to length 15, as in previous work, starting
from an empty set of counts,C = ∅. Smoothing

causes initial parse trees to be chosen uniformly at
random, as suggested by Cohen and Smith (2010):

(12)∅
15

5.2 Iterated Fork/Join (IFJ)

Our second network daisy-chains grammar induc-
tors, starting from the single-word inter-punctuation
fragments inD1

split, then retraining onD2
split, and so

forth, until finally stopping atD15
split, as before:

(13)1 2 14 15

We diagrammed this system as not taking an input,
since the first inductor’s output is fully determined
by unique parse trees of single-token strings. This
iterative approach to optimization is akin to deter-
ministic annealing (Rose, 1998), and is patterned af-
ter “baby steps” (Spitkovsky et al., 2009,§4.2).

Unlike the basic FJ, where symmetrization was a
no-op (since there were no counts inC = ∅), IFJ
makes use of symmetrizers — e.g., in the third in-
ductor, whose input is based on strings with up to
two tokens. Although it should be easy to learn
words that go together from very short fragments,
extracting correct polarities of their relations could
be a challenge: to a large extent, outputs of early in-
ductors may be artifacts of how our generative mod-
els factor (see§4.2) or how ties are broken in opti-
mization (Spitkovsky et al., 2012a, Appendix B). We
therefore expect symmetrization to be crucial in ear-
lier stages but to weaken any high quality grammars,
nearer the end; it will be up to combiners to handle
such phase transitions correctly (or gracefully).

5.3 Grounded Iterated Fork/Join (GIFJ)

So far, our networks have been either purely itera-
tive (IFJ) or static (FJ). These two approaches can
also be combined, by injecting FJ’s solutions into
IFJ’s more dynamic stream. Our new transition sub-
network will join outputs of grammar inductors that
either (i) continue a previous solution (as in IFJ); or
(ii) start over from scratch (“grounding” to an FJ):

(14)
HL·DBM

D
l+1

split∅

Cl Cl+1l+1

l+1

The full GIFJ network can then be obtained by un-
rolling the above template froml = 14 back to one.
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WSJ15
split

WSJ15simp

Instance Label Model hsents htrees DDA hsents htrees DDA TA Description

DBM 6.54 6.75 83.7 6.05 6.21 85.1 42.7 Supervised(MLE of WSJ45)
∅ = C — 8.76 10.46 21.4 8.58 10.52 20.7 3.9 Random Projective Parses

SL(S(C)) = C2 DBM0 6.18 6.39 57.0 5.90 6.11 57.5 10.4 B
A

}

Unlexicalized
BaselinesSL(F (C)) = C1 DBM 5.89 5.99 62.2 5.79 5.90 60.9 12.0

H(C′

2) = C∗

2 L-DBM 7.28 7.30 59.2 6.87 6.88 58.6 10.4

Fork/Join















Baseline
Combination

H(C′

1) = C∗

1 L-DBM 7.07 7.08 62.3 6.72 6.73 60.8 12.0
C∗

1 + C∗

2 = C+ L-DBM 7.20 7.27 64.0 6.82 6.88 62.5 12.3
H(C+) = C∗

+ L-DBM 7.02 7.04 64.2 6.64 6.65 62.7 12.8
L-DBM 6.95 6.96 70.5 6.55 6.56 68.2 14.9 Iterated Fork/Join (IFJ)
L-DBM 6.91 6.92 71.4 6.52 6.52 69.2 15.6 Grounded Iterated Fork/Join
L-DBM 6.83 6.83 72.3 6.41 6.41 70.2 17.9 Grammar Transformer(GT)
L-DBM 6.92 6.93 71.9 6.53 6.53 69.8 16.7 IFJ

GT

}

w/Iterated
CombinersL-DBM 6.83 6.83 72.9 6.41 6.41 70.6 18.0

Table 1: Sentence string and parse tree cross-entropies (inbpt), and accuracies (DDA), on inter-punctuation fragments
up to length 15 (WSJ15split) and its subset of simple, complete sentences (WSJ15

simp, with exact tree accuracies — TA).

6 Performance of Basic Networks

We compared our three networks’ performance on
their final training sets,WSJ15split (see Table 1, which
also tabulates results for a cleaner subset,WSJ15simp).
The first network starts fromC = ∅, helping us es-
tablish several straw-man baselines. Its empty ini-
tializer corresponds to guessing (projective) parse
trees uniformly at random, which has 21.4% accu-
racy and sentence string cross-entropy of 8.76bpt.

6.1 Fork/Join (FJ)

FJ’s symmetrizer yields random parses ofWSJ14split,
which initialize training of DBM0. This baseline (B)
lowers cross-entropy to 6.18bpt and scores 57.0%.
FJ’s filter starts from parse trees ofWSJ14simp only, and
trains up a full DBM. This choice makes a stronger
baseline (A), with 5.89bpt cross-entropy, at 62.2%.

The join operator uses counts from A and B,C1

andC2, to obtain parse trees whose own countsC′

1

andC′

2 initialize lexicalized training. From eachC′

i
,

an optimizer arrives atC∗

i
. Grammars corresponding

to these counts have higher cross-entropies, because
of vastly larger vocabularies, but also better accura-
cies: 59.2 and 62.3%. Their mixtureC+ is a simple
sum of counts inC∗

1 andC∗

2 : it is not expected to be
an improvement but happens to be a good move, re-
sulting in a grammar with higher accuracy (64.0%),
though not better Viterbi cross-entropy (7.27 falls
between 7.08 and 7.30bpt) than both sources. The
combiner’s third alternative, a locally optimalC∗

+, is

then obtained by re-optimizing fromC+. This so-
lution performs slightly better (64.2%) and will be
the local optimum returned by FJ’s join operator, be-
cause it attains the lowest cross-entropy (7.04bpt).

6.2 Iterated Fork/Join (IFJ)

IFJ’s iterative approach results in an improvement:
70.5% accuracy and 6.96bpt cross-entropy. To test
how much of this performance could be obtained by
a simpler iterated network, we experimented with
ablated systems that don’t fork or join, i.e., our clas-
sic “baby steps” schema (chaining together 15 op-
timizers), using both DBM and DBM0, with and
without a transform in-between. However, all such
“linear” networks scored well below 50%. We con-
clude from these results that an ability to branch out
into different promising regions of a solution space,
and to merge solutions of varying quality into better
models, are important properties of FJ subnetworks.

6.3 Grounded Iterated Fork/Join (GIFJ)

Grounding improves GIFJ’s performance further, to
71.4% accuracy and 6.92bpt cross-entropy. This re-
sult shows that fresh perspectives from optimizers
that start over can make search efforts more fruitful.

7 Enhanced Subnetworks

Modularity and abstraction allow for compact repre-
sentations of complex systems. Another key benefit
is that individual components can be understood and
improved in isolation, as we will demonstrate next.
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7.1 An Iterative Combiner (IC)

Our basic combiner introduced a third option,C∗

+,
into a pool of candidate solutions,{C∗

1 , C
∗

2}. This
new entry may not be a simple mixture of the orig-
inals, because of non-linear effects from applyingL

to C∗

1 + C∗

2 , but could most likely still be improved.
Rather than stop atC∗

+, when it is better than both
originals, we could recombine it with a next best so-
lution, continuing until no further improvement is
made. Iterating can’t harm a given combiner’s cross-
entropy (e.g., it lowers FJ’s from 7.04 to 7.00bpt),
and its advantages can be realized more fully in the
larger networks (albeit without any end-to-end guar-
antees): upgrading all 15 combiners in IFJ would
improve performance (slightly) more than ground-
ing (71.5vs.71.4%), and lower cross-entropy (from
6.96 to 6.93bpt). But this approach is still a bit timid.

A more greedy way is to proceed so long asC∗

+

is not worse thanboth predecessors. We shall now
state our most general iterative combiner (IC) algo-
rithm: Start with a solution poolp = {C∗

i
}n
i=1. Next,

constructp′ by addingC∗

+ = L(
∑n

i=1 C
∗

i
) to p and re-

moving the worst ofn+ 1 candidates in the new set.
Finally, if p = p′, return the best of the solutions inp;
otherwise, repeat fromp := p′. At n = 2, one could
think of takingL(C∗

1 + C∗

2 ) as performing a kind of
bisection search in some (strange) space. With these
new and improved combiners, the IFJ network per-
forms better: 71.9% (up from 70.5 — see Table 1),
lowering cross-entropy (down from 6.96 to 6.93bpt).
We propose a distinguished notation for the ICs:

(15)

*
C2

C1

7.2 A Grammar Transformer (GT)

The levels of our systems’ performance at grammar
induction thus far suggest that the space of possible
networks (say, with up tok components) may itself
be worth exploring more thoroughly. We leave this
exercise to future work, ending with two relatively
straight-forward extensions for grounded systems.

Our static bootstrapping mechanism (“ground” of
GIFJ) can be improved by pretraining with simple
sentences first — as in the curriculum for learning
DBM-1 (Spitkovsky et al., 2012b,§7.1), but now
with a variable length cut-offl (much lower than the
original 45) — instead of starting from∅ directly:

(16)

SDBM
D

l

simp
∅

l+1







l

The output of this subnetwork can then be refined,
by reconciling it with a previous dynamic solution.
We perform a mini-join of a new ground’s counts
with Cl, using the filter transform (single steps of
lexicalizedViterbi training on clean, simple data),
ahead of the main join (over more training data):

(17)
HL·DBM

D
l+1

split

Cl Cl+1

l+1

F
l

This template can be unrolled, as before, to obtain
our last network (GT), which achieves 72.9% accu-
racy and 6.83bpt cross-entropy (slightly less accu-
rate with basic combiners, at 72.3% — see Table 1).

8 Full Training and System Combination

All systems that we described so far stop training at
D15

split. We will use a two-stage adaptor network to
transition their grammars to a full data set,D45:

(18)

HL·DBM
D

45
split

HL·DBM
D45C

The first stage exposes grammar inducers to longer
inputs (inter-punctuation fragments with up to 45
tokens); the second stage, at last, reassembles text
snippets into actual sentences (also up tol = 45).8

After full training, our IFJ and GT systems parse
Section 23 of WSJ at 62.7 and 63.4% accuracy, bet-
ter than the previous state-of-the-art (61.2% — see
Table 2). To test the generalized IC algorithm, we
merged our implementations of these three strong
grammar induction pipelines into a combined sys-
tem (CS). It scored highest: 64.4%.

(19)

HL·DBM
D45

(GT) #1
(IFJ) #2

#3
CS

The quality of bracketings corresponding to (non-
trivial) spans derived by heads of our dependency
structures is competitive with the state-of-the-art in
unsupervisedconstituentparsing. On the WSJ sen-
tences up to length 40 in Section 23, CS attains sim-
ilar F1-measure (54.2vs.54.6, with higher recall) to

8Note that smoothing in the final (unlexicalized) Viterbi step
masks the fact that model parts that could not be properly es-
timated in the first stage (e.g., probabilities of punctuation-
crossing arcs) are being initialized to uniform multinomials.
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System DDA(@10)

(Gimpel and Smith, 2012) 53.1(64.3)

(Gillenwater et al., 2010) 53.3(64.3)

(Bisk and Hockenmaier, 2012) 53.3(71.5)

(Blunsom and Cohn, 2010) 55.7(67.7)

(Tu and Honavar, 2012) 57.0(71.4)

(Spitkovsky et al., 2011b) 58.4(71.4)

(Spitkovsky et al., 2011c) 59.1(71.4)

#3 (Spitkovsky et al., 2012a) 61.2(71.4)

#2
w/Full Training

{

IFJ
GT

62.7 (70.3)

#1 63.4 (70.3)

#1 + #2 + #3 System Combination CS 64.4 (72.0)

Supervised DBM (also withloosedecoding) 76.3(85.4)

Table 2: Directed dependency accuracies (DDA) on Sec-
tion 23 of WSJ (all sentences and up to length ten) for
recent systems, our full networks (IFJ and GT), and three-
way combination (CS) with the previous state-of-the-art.

PRLG (Ponvert et al., 2011), which is the strongest
system of which we are aware (see Table 3).9

9 Multi-Lingual Evaluation

Last, we checked how our algorithms generalize out-
side English WSJ, by testing in 23 more set-ups: all
2006/7 CoNLL test sets (Buchholz and Marsi, 2006;
Nivre et al., 2007), spanning 19 languages. Most re-
cent work evaluates against this multi-lingual data,
with the unrealistic assumption of part-of-speech
tags. But since inducing high quality word clusters
for many languages would be beyond the scope of
our paper, here we too plugged in gold tags for word
categories (instead of unsupervised tags, as in§3–8).

We compared to the two strongest systems we
knew:10 MZ (Mareček andŽabokrtský, 2012) and
SAJ(Spitkovsky et al., 2012b), which report average
accuracies of 40.0 and 42.9% for CoNLL data (see
Table 4). Our fully-trained IFJ and GT systems score
40.0 and 47.6%. As before, combining these net-
works with our own implementation of the best pre-
vious state-of-the-art system (SAJ) yields a further
improvement, increasing final accuracy to 48.6%.

9These numbers differ from Ponvert et al.’s (2011, Table 6)
for the full Section 23 because we restricted theireval-ps.py
script to a maximum length of 40 words, in our evaluation, to
match other previous work: Golland et al.’s (2012, Figure 1)for
CCM and LLCCM; Huang et al.’s (2012, Table 2) for the rest.

10During review, another strong system (Mareček and Straka,
2013, scoring 48.7%) of possible interest to the reader cameout,
exploiting prior knowledge of stopping probabilities (estimated
from large POS-tagged corpora, via reducibility principles).

System F1

Binary-Branching Upper Bound 85.7
Left-Branching Baseline 12.0
CCM (Klein and Manning, 2002) 33.7
Right-Branching Baseline 40.7
F-CCM (Huang et al., 2012) 45.1
HMM (Ponvert et al., 2011) 46.3
LLCCM (Golland et al., 2012) 47.6 P R
CCL (Seginer, 2007) 52.8 54.6 51.1
PRLG (Ponvert et al., 2011) 54.6 60.4 49.8

CS System Combination 54.2 55.6 52.8
Supervised DBM Skyline 59.3 65.7 54.1
Dependency-Based Upper Bound 87.2 100 77.3

Table 3: Harmonic mean (F1) of precision (P) and re-
call (R) for unlabeled constituent bracketings on Section
23 of WSJ (sentences up to length 40) for our combined
system (CS), recent state-of-the-art and the baselines.

10 Discussion

CoNLL training sets were intended for comparing
supervised systems, and aren’t all suitable for unsu-
pervised learning: 12 languages have under 10,000
sentences (with Arabic, Basque, Danish, Greek, Ital-
ian, Slovenian, Spanish and Turkish particularly
small), compared to WSJ’s nearly 50,000. In some
treebanks sentences are very short (e.g., Chinese and
Japanese, which appear to have been split on punc-
tuation), and in others extremely long (e.g., Arabic).
Even gold tags aren’t always helpful, as their num-
ber is rarely ideal for grammar induction (e.g., 42vs.
200 for English). These factors contribute to high
variances of our (and previous) results (see Table 4).

Nevertheless, if we look at the more stable aver-
age accuracies, we see a positive trend as we move
from a simpler fully-trained system (IFJ, 40.0%),
to a more complex system (GT, 47.6%), to system
combination (CS, 48.6%). Grounding seems to be
more important for the CoNLL sets, possibly be-
cause of data sparsity or availability of gold tags.

11 Related Work

The surest way to avoid local optima is to craft
an objective that doesn’t have them. For example,
Wang et al. (2008) demonstrated a convex train-
ing method for semi-supervised dependency pars-
ing; Lashkari and Golland (2008) introduced a con-
vex reformulation of likelihood functions for clus-
tering tasks; and Corlett and Penn (2010) designed
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Directed Dependency Accuracies (DDA)(@10)

CoNLL Data MZ SAJ IFJ GT CS

Arabic 2006 26.5 10.9 33.3 8.3 9.3 (30.2)

’7 27.9 44.9 26.1 25.6 26.8(45.6)

Basque ’7 26.8 33.3 23.5 24.2 24.4(32.8)

Bulgarian ’7 46.0 65.2 35.8 64.2 63.4(69.1)

Catalan ’7 47.0 62.1 65.0 68.4 68.0 (79.2)

Chinese ’6 — 63.2 56.0 55.8 58.4(60.8)

’7 — 57.0 49.0 48.6 52.5(56.0)

Czech ’6 49.5 55.1 44.5 43.9 44.0(52.3)

’7 48.0 54.2 42.9 24.5 34.3(51.1)

Danish ’6 38.6 22.2 37.8 17.1 21.4(29.8)

Dutch ’6 44.2 46.6 40.8 51.3 48.0 (48.7)

English ’7 49.2 29.6 39.3 57.6 58.2 (75.0)

German ’6 44.8 39.1 34.1 54.5 56.2 (71.2)

Greek ’6 20.2 26.9 23.7 45.0 45.4 (52.2)

Hungarian ’7 51.8 58.2 24.8 52.9 58.3 (67.6)

Italian ’7 43.3 40.7 56.8 31.1 34.9 (44.9)

Japanese ’6 50.8 22.7 32.6 63.7 63.0 (68.9)

Portuguese ’6 50.6 72.4 38.0 72.7 74.5 (81.1)

Slovenian ’6 18.1 35.2 42.1 50.8 50.9 (57.3)

Spanish ’6 51.9 28.2 57.0 61.7 61.4 (73.2)

Swedish ’6 48.2 50.7 46.6 48.6 49.7(62.1)

Turkish ’6 — 34.4 28.0 32.9 29.2(33.2)

’7 15.7 44.8 42.1 41.7 37.9(42.4)

Average: 40.0 42.9 40.0 47.6 48.6 (57.8)

Table 4: Blind evaluation on 2006/7 CoNLL test sets (all
sentences) for our full networks (IFJ and GT), previous
state-of-the-art systems of Spitkovsky et al. (2012b) and
Mareček anďZabokrtský (2012), and three-way combi-
nation withSAJ (CS, including results up to length ten).

a search algorithm for encoding decipherment prob-
lems that guarantees to quickly converge on optimal
solutions. Convexity can be ideal for comparative
analyses, by eliminating dependence on initial con-
ditions. But for many NLP tasks, including grammar
induction, the most relevant known objective func-
tions are still riddled with local optima. Renewed ef-
forts to find exact solutions (Eisner, 2012; Gormley
and Eisner, 2013) may be a good fit for the smaller
and simpler, earlier stages of our iterative networks.

Multi-start methods (Solis and Wets, 1981) can
recover certain global extrema almost surely (i.e.,
with probability approaching one). Moreover, ran-
dom restarts via uniform probability measures can
be optimal, in a worst-case-analysis sense, with par-
allel processing sometimes leading to exponential
speed-ups (Hu et al., 1994). This approach is rarely
emphasized in NLP literature. For instance, Moore
and Quirk (2008) demonstrated consistent, substan-
tial gains from random restarts in statistical machine

translation (but also suggested better and faster re-
placements — see below); Ravi and Knight (2009,
§5, Figure 8) found random restarts for EM to be
crucial in parts-of-speech disambiguation. However,
other reviews are few and generally negative (Kim
and Mooney, 2010; Martin-Brualla et al., 2010).

Iterated local search methods (Hoos and Stützle,
2004; Johnson et al., 1988,inter alia) escape lo-
cal basins of attraction by perturbing candidate so-
lutions, without undoing all previous work. “Large-
step” moves can come from jittering (Hinton and
Roweis, 2003), dithering (Price et al., 2005, Ch. 2)
or smoothing (Bhargava and Kondrak, 2009). Non-
improving “sideways” moves offer substantial help
with hard satisfiability problems (Selman et al.,
1992); and injecting non-random noise (Selman et
al., 1994), by introducing “uphill” moves via mix-
tures of random walks and greedy search strate-
gies, does better than random noise alone or simu-
lated annealing (Kirkpatrick et al., 1983). In NLP,
Moore and Quirk’s (2008) random walks from pre-
vious local optima were faster than uniform sam-
pling and also increased BLEU scores; Elsner and
Schudy (2009) showed that local search can outper-
form greedy solutions for document clustering and
chat disentanglement tasks; and Mei et al. (2001)
incorporated tabu search (Glover, 1989; Glover and
Laguna, 1993, Ch. 3) into HMM training for ASR.

Genetic algorithms are a fusion of what’s best in
local search and multi-start methods (Houck et al.,
1996), exploiting a problem’s structure to combine
valid parts of any partial solutions (Holland, 1975;
Goldberg, 1989). Evolutionary heuristics proved
useful in the induction of phonotactics (Belz, 1998),
text planning (Mellish et al., 1998), factored mod-
eling of morphologically-rich languages (Duh and
Kirchhoff, 2004) and plot induction for story gener-
ation (McIntyre and Lapata, 2010). Multi-objective
genetic algorithms (Fonseca and Fleming, 1993) can
handle problems with equally important but con-
flicting criteria (Stadler, 1988), using Pareto-optimal
ensembles. They are especially well-suited to lan-
guage, which evolves under pressures from compet-
ing (e.g., speaker, listener and learner) constraints,
and have been used to model configurations of vow-
els and tone systems (Ke et al., 2003). Our transform
and join mechanisms also exhibit some features of
genetic search, and make use of competing objec-
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tives: good sets of parse trees must make sense both
lexicalized and with word categories, to rich and im-
poverished models of grammar, and for both long,
complex sentences and short, simple text fragments.

This selection of text filters is a specialized case
of more general “data perturbation” techniques —
even cycling over randomly chosen mini-batches
that partition a data set helps avoid some local op-
tima (Liang and Klein, 2009). Elidan et al. (2002)
suggested how example-reweighing could cause “in-
formed” changes, rather than arbitrary damage, to
a hypothesis. Their (adversarial) training scheme
guided learning toward improved generalizations,
robust against input fluctuations. Language learn-
ing has a rich history of reweighing data via (co-
operative) “starting small” strategies (Elman, 1993),
beginning from simpler or more certain cases. This
family of techniques has met with success in semi-
supervised named entity classification (Collins and
Singer, 1999; Yarowsky, 1995),11 parts-of-speech
induction (Clark, 2000; 2003), and language model-
ing (Krueger and Dayan, 2009; Bengio et al., 2009),
in addition to unsupervised parsing (Spitkovsky et
al., 2009; Tu and Honavar, 2011; Cohn et al., 2011).

12 Conclusion

We proposed several simple algorithms for combin-
ing grammars and showed their usefulness in merg-
ing the outputs of iterative and static grammar in-
duction systems. Unlike conventional system com-
bination methods, e.g., in machine translation (Xiao
et al., 2010), ours do not require incoming mod-
els to be of similar quality to make improvements.
We exploited these properties of the combiners to
reconcile grammars induced by different views of
data (Blum and Mitchell, 1998). One such view re-
tains just the simple sentences, making it easier to
recognize root words. Another splits text into many
inter-punctuation fragments, helping learn word as-
sociations. The induced dependency trees can them-
selves also be viewed not only as directed structures
but also as skeleton parses, facilitating the recovery
of correct polarities for unlabeled dependency arcs.

By reusing templates, as in dynamic Bayesian
network (DBN) frameworks (Koller and Friedman,

11The so-called Yarowsky-cautiousmodification of the orig-
inal algorithm for unsupervised word-sense disambiguation.

2009, §6.2.2), we managed to specify relatively
“deep” learning architectures without sacrificing
(too much) clarity or simplicity. On a still more
speculative note, we see two (admittedly, tenuous)
connections to human cognition. First, the benefits
of not normalizing probabilities, when symmetriz-
ing, might be related to human language process-
ing through the base-rate fallacy (Bar-Hillel, 1980;
Kahneman and Tversky, 1982) and the availability
heuristic (Chapman, 1967; Tversky and Kahneman,
1973), since people are notoriously bad at probabil-
ity (Attneave, 1953; Kahneman and Tversky, 1972;
Kahneman and Tversky, 1973). And second, inter-
mittent “unlearning” — though perhaps not of the
kind that takes place inside of our transforms —
is an adaptation that can be essential to cognitive
development in general, as evidenced by neuronal
pruning in mammals (Craik and Bialystok, 2006;
Low and Cheng, 2006). “Forgetful EM” strategies
that reset subsets of parameters may thus, possibly,
be no less relevant to unsupervised learning than is
“partial EM,” which only suppresses updates, other
EM variants (Neal and Hinton, 1999), or “dropout
training” (Hinton et al., 2012; Wang and Manning,
2013), which is important in supervised settings.

Future parsing models, in grammar induction,
may benefit by modeling head-dependent relations
separately from direction. As frequently employed
in tasks like semantic role labeling (Carreras and
Màrquez, 2005) and relation extraction (Sun et al.,
2011), it may be easier to first establish existence,
before trying to understand its nature. Other key
next steps may include exploring more intelligent
ways of combining systems (Surdeanu and Man-
ning, 2010; Petrov, 2010) and automating the op-
erator discovery process. Furthermore, we are opti-
mistic that both count transforms and model recom-
bination could be usefully incorporated into sam-
pling methods: although symmetrized models may
have higher cross-entropies, hence prone to rejection
in vanilla MCMC, they could work well as seeds
in multi-chain designs; existing algorithms, such as
MCMCMC (Geyer, 1991), which switch contents
of adjacent chains running at different temperatures,
may also benefit from introducing the option to com-
bine solutions, in addition to just swapping them.
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Abstract

We present a framework for cross-lingual
transfer of sequence information from a
resource-rich source language to a resource-
impoverished target language that incorporates
soft constraints via posterior regularization. To
this end, we use automatically word aligned
bitext between the source and target language
pair, and learn a discriminative conditional ran-
dom field model on the target side. Our poste-
rior regularization constraints are derived from
simple intuitions about the task at hand and
from cross-lingual alignment information. We
show improvements over strong baselines for
two tasks: part-of-speech tagging and named-
entity segmentation.

1 Introduction

Supervised systems for NLP tasks are available for
a handful of languages. These systems achieve high
accuracy for many applications; a variety of robust
algorithms to train them from labeled data have been
developed. Here, we focus on learning sequence mod-
els for the languages that lack annotated resources.
For a given resource-poor target language of inter-
est, we assume that parallel data with a resource-rich
source language exists. With the help of this bitext
and a supervised system in the source language, we
infer constraints over the label distribution in the tar-
get language, and train a discriminative model using
posterior regularization (Ganchev et al., 2010).

Cross-lingual learning of structured prediction
models via parallel data has been applied for several
natural language processing problems, including part-
of-speech (POS) tagging (Yarowsky and Ngai, 2001),
syntactic parsing (Hwa et al., 2005) and named-entity
recognition (Kim et al., 2012). These methods are

useful in several ways. First, they help in fast proto-
typing of natural language systems for new languages
that do not boast human annotations. Second, the
output of such systems could be used to bootstrap
more extensive human annotation projects (Vlachos,
2006). Finally, they are significantly more accurate
than purely unsupervised systems (McDonald et al.,
2011; Das and Petrov, 2011).

Recently, Täckström et al. (2013) presented a tech-
nique for coupling token constraints derived from pro-
jected cross-lingual information and type constraints
derived from noisy tag dictionaries to learn POS tag-
gers. Although this technique resulted in state-of-
the-art weakly supervised taggers, the authors used a
heuristic to combine the aforementioned two sources
of constraints: the dictionary constraints pruned the
tagger’s search space, and the intersected token-level
projections were treated as hard observations. On
the other hand, Ganchev et al. (2009) presented a
framework for learning weakly-supervised systems
(in their case, dependency parsers) that incorporated
alignment-based information too, but used the cross-
lingual information only as soft constraints, via poste-
rior regularization. The advantage of this framework
lay in the fact that the projections were only trusted
to a certain degree, determined by a strength hyper-
parameter, which unfortunately the authors did not
have an elegant way to tune. In this paper, we ex-
ploit the better aspects of these two lines of work:
first, we extend the framework of Täckström et al.
by treating the alignment-based projections only as
soft constraints (see §3.4); second, we choose the
constraint strength by utilizing the tag ambiguity of
tokens for a given resource-poor language (see §6.1).

Other than validating our framework on part-of-
speech tagging, we experiment on named-entity seg-
mentation in a cross-lingual framework. For this

1996



task, we present a novel method to perform high-
precision phrase-level entity transfer (§5.2.2); we
also provide ways to balance precision and recall
with posterior regularization (§6.2) by incorporating
intuitive soft constraints during learning. We mea-
sure performance on standard benchmark datasets for
both of these tasks, and report improvements over
state-of-the-art baselines.

2 Prior Work

Cross-lingual projection methods can be classified
by their use of two very broad ideas. The first idea
utilizes parallel data to create full or partial annota-
tions in the low-resource language and trains from
this data. This was popularized by Yarowsky and
Ngai (2001) who applied this to POS tagging and
shallow parsing. It was later applied to parsing (Hwa
et al., 2005) and named entity recognition (Kim et
al., 2012). The second idea, first proposed by Ze-
man and Resnik (2008) and applied more broadly
by McDonald et al. (2011), is to train a model on
a resource-rich language and apply it to a resource-
poor language directly. The disparity between the
languages is mitigated by the choice of features. In
addition to cross-lingual projection, purely unsuper-
vised methods have been explored but with limited
success (Christodoulopoulos et al., 2010). Here, we
resort to cross-lingual projection and incorporate the
first idea; we also follow Li et al. (2012) and use
Wiktionary to further constrain the POS tagging task.

Our learning setup is similar to that of Ganchev et
al. (2009), who also use posterior regularization but
focus on dependency parsing alone. Our work differs
with respect to the tasks, the learning algorithm and
also in that we use corpus-wide constraints, while
Ganchev et al. use one constraint per sentence. For
the part-of-speech tagging task, our approach is sim-
ilar to that of Täckström et al. (2013), who use an
almost identical learning setup but only make use of
hard constraints. By relaxing these constraints, we
allow the model to identify and ignore inconsistently
labeled parts of sentences, and achieve better results
using identical training and test data.

3 Approach

We give an overview of our approach, and present the
details of our model used for cross-lingual learning.

Algorithm 1 Cross-Lingual Learning with Posterior
Regularization
Require: Parallel source and target language data
De and Df , source language model (M)e, task-
specific target language constraints C.

Ensure: Θf , a set of target language parameters.
1: De↔f ← word-align-bitext(De,Df )

2: D̂e ← label-supervised(De)
3: D̂f ← project-and-filter-labels(De↔f , D̂e)
4: Θf ← learn-posterior-constrained(D̂f , C)
5: Return Θf

3.1 General Overview

The general overview of our framework is provided
in Algorithm 1. The process of learning parame-
ters for a target language for a given task involves
four subtasks. First, we run word alignment over a
large corpus of parallel data between the resource-
rich source language and the resource-impoverished
target language (see §4.3). In the second step, we
use a supervised model to label the source side of
the parallel data (see §5.1.1 and §5.2.1). The third
step involves a task-specific word-alignment filter-
ing step; this step involves heuristics for which we
use cues from prior state-of-the-art (Das and Petrov,
2011; Täckström et al., 2013, see §5.1.2) and also
introduce some novel ones for the NE segmentation
problem (see §5.2.2). In the fourth step, we train a
linear chain conditional random field (Lafferty et al.,
2001, CRF henceforth) using posterior regularization.
In the next subsection, we turn to a brief summary of
this final step of estimating parameters of a discrimi-
native model with posterior regularization.

3.2 Learning with Posterior Regularization

In this work, we utilize discriminative CRF mod-
els, and use posterior regularization (PR) to optimize
their parameters. As a framework, posterior regular-
ization is described in detail by Ganchev et al. (2010).
However in our work, we adopt a different optimiza-
tion technique; in what follows, we summarize the
optimization algorithm in the context of CRF models.

Let x be an input sentence with a set of possible
labelings Y(x) and let y ∈ Y(x) be a particular la-
beling for sentence x. We use bold capital letters
X = {x1 . . .xn} and Y = {y1 . . .yn} to denote
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a corpus of sentences and labelings for the corpus
respectively. A CRF models the probability distri-
bution over possible labels for a sentence pθ(y|x)
as:

pθ(y | x) ∝ exp(θ · f(x,y)) (1)

where θ are the model parameters and f(.) is a fea-
ture function. The model examines sentences in iso-
lation, and the probability of a particular labeling for
a corpus is defined as a product over the individual
sentences:

pθ(Y | X) =
∏

(x,y)∈(X,Y)

pθ(y | x). (2)

Traditionally, CRF models have been trained to op-
timize the regularized log-likelihood of the training
data

max
θ
L(θ) = max

θ
log(pθ(Y | X))− γ ||θ|| (3)

In our setting, we do not have a fully labeled cor-
pus, but we have constraints on the distribution of
labels. For example, we may know that a particular
token could be labeled only by a label inventory li-
censed by a dictionary, or that a labeling projected
from a source language is usually (but not always)
correct. We define these constraints in terms of fea-
ture expectations. Let q(Y) be a distribution over all
possible labelings of our corpus Y(X). Let Q be a
set of distributions defined by:

Q = {q(Y) : Eq[φ(X,Y)] ≤ b}, (4)

where φ is a constraint feature function and b is a vec-
tor of non-negative values that serve as upper bounds
to the expectations of every constraint feature. The
vector b is used to encode our prior knowledge about
desirable distributions q(Y). Note that the constraint
features φ are not related to the model features f . The
model features, together with the model parameters θ
define the CRF model; the model features need to be
computed at inference time for prediction. By con-
trast, the constraint features and their corresponding
constraint values are used to define our training ob-
jective function (and are only used during learning).
The PR objective with no labeled data is defined with
respect to Q as:

PR: max
θ
JQ(θ) =

max
θ
−KL(Q‖pθ(Y | X))− γ ||θ|| (5)

where KL(Q||p) = minq∈QKL(q||p) is the
KL-divergence (Kullback and Leibler, 1951)
from a set to a point. Note that as we add more
constraints, Q becomes a smaller set. In the
limit, Q = {q(Y) : q(Ŷ) = 1} contains just one
distribution concentrated on a single labeling Ŷ.
In this limit, posterior regularization degenerates
into the convex log-likelihood objective normally
used for supervised data JQ(θ) = L(θ). However,
in the general case, the PR objective JQ is not
necessarily convex. Prior work, including that of
Ganchev et al. propose an algorithm similar to
Expectation-Maximization (Dempster et al., 1977,
EM henceforth) to optimize JQ, but we follow Liang
et al. (2009) in using a schochastic update-based
algorithm described below.

Note: To make it easier to reason about constraint
values b, we scale constraint features φ(X,Y) to lie
in [0, 1] by computing maxY φ(X,Y) for the corpus
to which φ is applied.

3.3 Optimization
The optimization procedure proposed by
Ganchev et al. is similar to the EM algorithm,
and computes the minimization minq∈QKL(q||p)
at each step, using its dual form; this minimization is
convex, so there is no duality gap. They show that
the optimal primal variables q∗(Y) are related to the
optimal dual variables λ∗ by:

q∗(Y) =
pθ(Y|X)e−λ

∗·φ(X,Y)

Z(λ∗)
. (6)

where Z(λ∗) is the normalizer. The dual problem is
given by:

max
λ≥0
−b · λ− logZ(λ). (7)

Substituting Eq. 7 into the objective in Eq. 5, we get
the saddle-point problem:

max
θ

min
λ≥0

b · λ+ log
∑
Y

pθ(Y|X)e−λ
∗·φ(X,Y)

− γ ||θ|| . (8)

To optimize the above objective function, we need to
compute partial derivatives with respect to both θ and
λ. First, to compute the partial derivatives of Eq. 8
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with respect to θ, we need to find expectations of the
model features f given the current distribution pθ and
the constraint distribution q. To perform tractable
inference, a linear-chain CRF model assumes that
the feature function factorizes according to smaller
parts; in particular the factorization uses the follow-
ing structure:

f(x,y) =
∑
i

f(x, yi, yi−1) (9)

where i ranges over the tokens in the sentence. This
factorization allows us to efficiently compute expec-
tations over the labels yi and label-pairs (yi, yi+1).
To compute the partial gradient of Eq. 8 with respect
to λ, we need to find the expectations of the con-
straint features φ. In order to be tractable here too,
we ensure that φ also factorize according to the same
structure as f . Therefore, the gradient computation
w.r.t. λ turns out to be straightforward.

For all the experiments in this paper, we optimize
Eq. 8 using stochastic projected gradient. For each
training sentence, we compute the gradient of θ and
λ with respect to Eq. 8, take a gradient step in each
one, and truncate the negative entries in λ to zero.
We use a step size of 1 for all experiments.1

3.4 Relationship with Täckström et al. (2013)
In this subsection, we focus briefly on the relationship
between this work and the work of Täckström et al.
(2013), who focused on constrained learning of POS
taggers. Täckström et al. define constrained lattices
and train by optimizing marginal conditional log-
likelihood. In our notation, they define their objective
as:

max
θ

log
∑

Y∈Ŷ(X)

pθ(Y|X)− γ‖θ‖ (10)

where Ŷ(X) are the constrained lattices of label se-
quences that agree with both a dictionary and cross-
lingually projected POS tags for each sentence of
the training corpus. Let us define a constraint fea-
ture φ(X,Y) which counts the number of tags in Y
which are outside the constraint set Ŷ(X) and require
φ(X,Y) ≤ 0. Note that,

arg min
q

KL(q||pθ(Y|X)) s. t. φ(X,Y) ≤ 0

1Note that we did not implement regularization of θ in the
stochastic optimizer, hence our PR objective (Eq. 8) was unregu-
larized; however, the baseline models use `2 regularization.

gives the same distribution as Eq. 10. Given this
equivalence, it is easy to see that the gradient of
Eq. 5 with respect to θ is the same as that of Eq. 10.
By using such constrained lattices, Täckström et al.
avoid maintaining a parameter for the constraint, but
lose the ability to relax the constraint value and al-
low some probability mass outside the pruned lat-
tice. Their paper also differs from ours in that they
use L-BFGS (Liu and Nocedal, 1989), while we use
an online optimization procedure. Since the objec-
tives are non-convex, the two optimization techniques
could lead to different local optima even when the
constraint is not relaxed (b = 0).

4 Tasks and Data

In this section, we focus on the nature of the two tasks
that we attempt to solve, describe the source language
datasets we use to train our supervised models for
transfer, the target language datasets on which we
evaluate our models and the parallel data we use for
cross-lingual transfer.

4.1 Part-of-Speech Tagging

First, we focus on the task of part-of-speech tagging.
Following previous work on cross-lingual POS tag-
ging (Das and Petrov, 2011; Täckström et al., 2013),
we adopt the POS tags of Petrov et al. (2012), ver-
sion 1.03;2 we use the October 2012 version of Wik-
tionary3 as our tag dictionary.

After pruning the search space with the dictionary,
we place soft constraints derived by projecting POS
tags across word alignments. The alignments are fil-
tered for confidence (see §5.1.2), but we also filter
any projected tags that are not licensed by the dictio-
nary. The example in Figure 1 illustrates why this
dictionary filtering step is important. Consider the
English-Spanish phrase pair from Figure 1, which
we observed in our training data. Our supervised tag-
ger correctly tags Asian with the ADJ tag as shown
in the figure. Asian is aligned to the Spanish word
Asia, which should be tagged NOUN. Because the
Spanish Wiktionary only allows the NOUN tag for
Asia, we do not project the ADJ tag from the English
word Asian. By contrast, we do project the NOUN
tag from the English word sponges to the Spanish

2http://code.google.com/p/universal-pos-tags
3http://meta.wikimedia.org/wiki/Wiktionary
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of    [ Asian ]        sponges

de   las   esponjas   de   Asia

ADP ADJ NOUN

MISC

Figure 1: An English (top) – Spanish (bottom) phrase pair
from our parallel data. The correct POS tags and NER
annotations are shown for the English phrase. Word align-
ments are shown as links between English and Spanish
words.

word esponjas because this tag is in our dictionary
for the latter word.

For all our POS experiments, we evaluate on sev-
enteen target languages. Fifteen of these languages
were part of the experiments conducted by Täckström
et al. (2013); we add Arabic and Hungarian to the set.
The first column of Table 1 lists all seventeen lan-
guages using their two-letter abbreviation codes from
the ISO 639-1 standard. The evaluation datasets cor-
respond to the test sets from the CoNLL shared tasks
on dependency parsing (Buchholz and Marsi, 2006;
Nivre et al., 2007). For French we use the treebank
of Abeillé et al. (2003). English serves as our source
language and we use the Penn Treebank (Marcus et
al., 1993, with tags mapped to the universal tags) to
train our supervised source-side model.

4.2 Named-Entity Segmentation

Second, we investigate the task of named-entity seg-
mentation. The goal of this task is to identify the
boundaries of named-entities for a given language
without classifying them by type. This is the un-
labeled version of named-entity recognition, and is
more amenable to cross-lingual supervision. To un-
derstand why that is, consider again the example
from Figure 1. The English supervised NE tagger
correctly identifies Asian as a named entity of type
MISC (miscellaneous). The word-alignments sug-
gest we should transfer this annotation to the Spanish
word Asia which is also an entity. However, this
should be labeled LOC (location) according to the
CoNLL annotation guidelines (Tjong Kim Sang and
De Meulder, 2003). Because syntactic variations
of this kind are common, it makes cross-lingual de-

tection of NE boundaries as well as types hard.4 In
this paper, we focus on named-entity segmentation
alone, consider the full NER task out of scope. We
use English as a source language and train a super-
vised English named-entity tagger with the labels in
place, using the CoNLL 2003 shared task data (Tjong
Kim Sang and De Meulder, 2003). We project the
spans using the maximal-span heuristic (Yarowsky
and Ngai, 2001). We project into Dutch, German and
Spanish and evaluate on the standard CoNLL 2002
and 2003 shared task data sets (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003).

4.3 Parallel Data

For both tasks we use parallel data gathered automat-
ically from the web using the method of Uszkoreit
et al. (2010), as well as data from Europarl (Koehn,
2005) and the UN parallel corpus (UN, 2006), for
languages covered by the latter two corpora. The
parallel sentences are word aligned with the aligner
of DeNero and Macherey (2011). The size of the
parallel corpus is larger than we need for our tasks,
so we follow Täckström et al. (2013) in sampling
500k tokens for POS tagging and 10k sentences for
named-entity segmentation (see §5.1.2 and §5.2.2).

5 Experimental Details

In this section, we provide details about task-
specific implementations of the supervised source-
side model and the word-alignment filtering tech-
niques (steps 2 and 3 in Algorithm 1 respectively);
we also briefly describe the setup of the cross-lingual
experiments for each task.

5.1 Part-of-Speech Tagging

We first focus on the experimental setup for the POS
tagging task. When describing feature sets we refer to
features conjoined with just a single tag as emission
features and with consecutive tag pairs as transition
features.

4We tried using English and German gazetteers from the
CoNLL 2002 and 2003 shared tasks as a label dictionary similar
to the way we use Wiktionary for POS tagging. This did not work
well because the CoNLL gazetteers do not have good coverage
on our parallel datasets, which we use for training.
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5.1.1 Supervised Source-Side Model
We tag the English side of our parallel data with

a supervised first-order linear-chain CRF POS tag-
ger. We use standard features for tagging. Our emis-
sion features are a bias feature, the current word,
its suffixes up to length 3, its capitalization shape,
whether it contains a hyphen, digit or punctuation
and its cluster identity. Our transition features are a
bias feature and the cluster identities of each word
in the transition. For the cluster-based features, we
use monolingual word clusters induced with the ex-
change algorithm of Uszkoreit and Brants (2008),
which implements the same objective as Brown et al.
(1992); these clusters have shown improvements for
sequence labeling tasks (Turian et al., 2010; Täck-
ström et al., 2012). We set the number of clusters to
256 for both the source side tagger and all the other
languages. On Section 23 of the WSJ section of the
Penn Treebank, the source side tagger achieves an
accuracy of 96.2%.

5.1.2 Word Alignment Filtering
Following Täckström et al. (2013), we tag the En-

glish side of our parallel data using the source-side
POS tagger, intersect the word alignments and filter
alignments with confidence below 0.95. We sam-
ple 500,000 tokens of target side sentences for each
language, and use this as training data for learning
weakly-supervised taggers.

5.1.3 Setup for Cross-Lingual Experiments
Following Täckström et al. (2013) we use a re-

duced feature set for the cross-lingual models. The
emission features are the same as the supervised
model but without the punctuation feature,5 and we
use only the bias transition feature. Because this
limits the ability of the model to use context, we
also experiment with an extended feature set that
has transition features for the clusters of each word
in the transition, and their suffixes up to length 3.
We refer to the extended-feature models as “BASE+”
and “PR+” to distinguish them from the models with
fewer features, labeled “BASE” and “PR”.

We train BASE and BASE+ using L-BFGS with
an `2 regularization weight of 1 for 100 iterations to
reproduce the setup used by Täckström et al. (2013).

5The dictionary licenses punctuations, only by the ‘.’ tag.

We have only one constraint feature in our poste-
rior regularization models that fires for the unpruned
projected tags on words xi. This feature controls
how often our model trusts a projected tag; we ex-
plain how its strength is chosen in §6.1. The PR and
PR+ models are trained using the stochastic gradient
method described in §3.3.

5.2 Named-Entity Segmentation

In this subsection, we turn to the experimental details
of the named-entity segmentation system.

5.2.1 Supervised Source-Side Model
To train our supervised source-side NER model,

we implemented a linear-chain first order CRF model.
Our feature set was inspired by the model of Kazama
and Torisawa (2007, §6.1); we used all the local fea-
tures from their model except the gazetteer features,
and added cluster emission features for offsets in the
range [-2, 2] and transition features for offsets in the
range [-1, 1] as well as a sentence-start feature. We
use automatic POS tags for all the experiments.

We use a BIO encoding of the four NER labels
(PER, LOC, ORG and MISC). We also experi-
mented with omitting the NE labels from the tagger,
still with a BIO encoding for segments, but the results
were worse on average than what we report in Table 2.
We train the source-side model on the CoNLL 2003
English training set with log-loss using L-BFGS for
100 iterations with `2 regularization weight of 0.1.
The model gets 90.9% and 87.5% labeled F1 on the
CoNLL development and test sets respectively.6

5.2.2 Word-Alignment Filtering
Projecting named entities across languages can

be error prone for several reasons. Mistakes intro-
duced by the automatic word aligner is one of them.
Word alignment errors are particularly problematic
for entity mentions because of the garbage collector
effect (Brown et al., 1993); due to differences in the
word order between languages, a few alignment er-
rors can result in many errors in the other language.
Additionally, entities can occur on just one side of
the bitext.7 Another source of error is the automatic

6These performance values would place us among the top
three competitors of the CoNLL 2003 shared task.

7For example, “It’s all Greek to me.” in one language and “I
don’t understand it.” in another.
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labeling on the source side, which is inaccurate if the
parallel corpus is out of domain. To mitigate these
errors, we aggressively filter the training data for this
task. We discard sentence pairs where more than
30% of the source language tokens are unaligned,
where any source entities are unaligned or where
any source entities are more than 4 tokens long. We
also compute a confidence score over entity anno-
tations as the minimum posterior over the tags that
comprise the entity and discard sentence pairs that
have an entity with confidence below 0.9. Finally,
we discard any sentences that contain no projected
entities. These filtering steps allow us to keep 7.4%,
9.7% and 10.4% of the aligned sentence pairs for Ger-
man, Spanish and Dutch, respectively, resulting in
very high-precision named-entity projections (see Ta-
ble 2). For comparison, we also perform experiments
without this filtering step.

5.2.3 Setup for Cross-Lingual Experiments
We use a CRF with the same feature set and BIO

encoding for the cross-lingual models as the source-
side NER model. We compare our approach (“PR”
in Table 2) to a baseline (“BASE” in Table 2) which
treats the projected annotations as fully observed.
The PR model treats the projected NE spans of a
sentence as observed, and allows all labels on the
remaining tokens. Since the “O” tag is never seen, an
unconstrained model would learn to never predict it.
We add two features that fire when the current word
is tagged “O”: a bias feature and a feature that fires
when the automatic POS tag is a proper noun. We set
upQ so the desired expectations are at least 0.98 and
at most 0.1 for these constraint features respectively.

6 Results

In this section, we turn to our experimental results;
first, we focus on POS tagging and then turn to the
NE segmentation task.

6.1 Part-of-Speech Tagging
Constraint Strength: As discussed in §4.1, it is
important to filter out projected annotations not li-
censed by Wiktionary. Thus, the quality of weakly-
supervised POS taggers learned from projections
is closely correlated with the coverage of the Wik-
tionary. To quantify the effect of Wiktionary cover-
age, we counted the expected number of possible tags
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Figure 2: Correlation between optimal constraint value b
and dictionary pruning efficiency. Each blue square is a
language, the green line is a linear approximation of the
data.

per token (TpT) for our unlabeled corpora. Specif-
ically, for each token, we counted the number of
tags licensed by the dictionary, or all tags for word
forms not in the dictionary. For each language, we
also ran our system with constraint strengths in {0.7,
0.75, 0.8, 0.85, 0.9, 0.92, 0.95, 0.98, 1.00}, and com-
puted the optimal constraint strength from this set.
We found that the best constraint strength is closely
correlated with the average number of tags available
for each token. Figure 2 shows the best constraint
strength as a function of the inverse of the number of
unpruned tags per token. As observed in the figure,
the relationship between the optimal strength and
1/TpT is roughly linear. Figure 2 also shows a linear
approximation to the data plotted. When applying
this technique to a new language, we would not be
able to estimate the optimal constraint strength, but
we could use the linear approximation and knowl-
edge of 1/TpT to estimate it. For our experiments
below, we perform this estimation for each language
using the linear approximation computed from the
remaining languages.
Results: The results for our part-of-speech tagging
experiments are in Table 1. We compare our results
to BASE, which corresponds to reruns of the best
model of Täckström et al. (2013, Column 9 of Ta-
ble 2), and closely aligns with the numbers reported
by the authors. We see in Table 1 that for both fea-
ture sets (i.e., with and without the ‘+’ extension),
our estimated constraint strength is usually better
than using a constraint strength of 1. The results
in the column labeled PR are better than BASE for
12 out of 17 languages, and the results for PR+ are
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BASE BASE+ PR PR+
ar 37.84 44.96 ∗ 49.04∗ 50.10∗
bg 88.04 87.93 88.02 88.42∗
cs 79.67 80.01 ∗ 80.20∗ 80.68∗
da 88.14 87.92 88.24∗ 87.90
de 90.32 89.97 90.41∗ 90.29
el 90.03 89.03 90.63∗ 90.24∗

es 86.99 86.81 87.20∗ 87.21∗
fr 87.07 87.53 ∗ 87.44∗ 87.48∗

hu 82.05 82.05 82.14∗ 83.13∗
it 89.48 89.89 ∗ 89.52 89.72∗

ja 80.63 78.54 80.02 79.68
nl 85.89 85.77 85.59 85.98∗
pt 90.93 91.60 ∗ 91.48∗ 91.56∗

sl 82.46 82.08 83.16∗ 83.49∗
sv 89.06 88.72 89.25∗ 88.77
tr 64.39 65.74 ∗ 63.88 66.47∗

zh 73.98 72.82 74.51∗ 68.43
Avg 81.59 81.85 ∗ 82.40∗ 82.33∗

-zh-ar 85.01 84.91 85.15∗ 85.40∗

Table 1: POS tagging results. BASE represents the best
model of Täckström et al. (2013). PR is a system with
the same features but with relaxed constraints. BASE+
and PR+ add additional model features (see §5.2.3). ∗ in-
dicates improvements over the previous state of the art
(BASE), and bold values indicate the best score for a lan-
guage. “Avg” indicates averaged results for all 17 lan-
guages, while “-zh-ar” shows averaged results without
Chinese and Arabic.

better than BASE+ for 13 out of 17 languages. Ad-
ditionally, adding features does not tend to help the
baseline model to a large extent (the wins are for
6 languages), but does tend to help the PR model
(for 11 languages); however, there is a large drop in
performance for Chinese.
Error Analysis: Here, we analyze the nature of
improvements that the PR models get. For the lan-
guages where PR results in large improvements, it
stems from the ability to allow the sentential con-
text to sometimes override the tag projected via the
parallel data. For example, the Czech word se can
either be a reflexive pronoun (such as ourselves in
English) or translate to the preposition with. The
pronominal sense comprises about 95% of occur-
rences in the Czech annotations, but it would not
appear in an English translation. For example, the
phrase “podı́vali jsme se” translates to “we looked”,

and the word jsme would typically be aligned to we;
se, which serves as a reflexive pronoun here, remains
unaligned. Consequently, in our data, over 7000 oc-
currences of se appear, but only 17 instances have a
tag projection that is not filtered by Wiktionary. Since
the remaining are tagged with the preposition tag, the
hard-constrained baseline always tags se as a prepo-
sition. By contrast, the soft-constrained PR model
predicts the pronominal sense in cases where the con-
text is most indicative of a pronoun – 38% of the time.
It still mistags many of the pronominal cases where
the contextual evidence is not strong enough. We get
very similar behavior with the Hungarian word hogy
which can translate to the conjunction that (as in “I
see that you are here”) or the adverb how.

We found that the drastic drop in performance for
Chinese under the PR+ model is due to the possessive
marker “的” which serves exclusively as a particle
in the test data. Wiktionary also allows the noun and
adverb tags. The adverbial use is actually a different
token (的确 ↔ really, truly) containing the same
character. Because the cross-lingual training data is
based on machine-learned alignments, 99.4% of the
training examples of的 have no annotations, and only
0.6% have the particle annotation projected from the
English ’s possessive marker. If we remove the noun
and adverb senses from the Wiktionary performance
of PR+ improves to 72.87%. Alternatively, we could
add another constraint to prefer closed-class words
over open-class words when both are licensed by the
dictionary. When we add such a constraint to Chinese
with a constraint value of 0.95, we recover most of the
loss (68.43→ 72.94); however, we do not report this
specific change to the Chinese experimental setup in
Table 1 to maintain generality.

6.2 Named-Entity Segmentation

Results: Table 2 shows the results for the named en-
tity segmentation experiments. First, we observe that
the word alignment filtering step (§5.2.2) improves
results for all three languages by significant margins,
for both the BASE and PR models. Both with and
without filtering, we observe that the baseline mod-
els are very strongly biased towards precision. The
filtering step tends to help with recall more than pre-
cison for both models. By having a soft constraint via
PR and allowing some segmentations to fall outside
of the transferred one, we get an increase in recall,
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No Filtering Filtering (§5.2.2)
Lang Metric BASE PR BASE PR

Prec 74.29 73.85 75.36 76.47
de Recall 41.69 54.50 54.71 64.61

F1 53.41 62.71 63.39 70.04
Prec 74.53 62.10 82.50 70.22

es Recall 56.39 78.33 67.27 81.10
F1 64.20 69.28 74.11 75.27

Prec 81.90 75.12 86.39 76.09
nl Recall 50.54 76.11 65.45 79.11

F1 62.51 75.61 74.47 77.57
Above: dev, below: test

Prec 73.23 71.67 69.90 70.94
de Recall 39.70 51.81 52.52 61.42

F1 51.49 60.14 59.97 65.84
Prec 75.38 65.40 83.50 73.68

es Recall 56.00 80.30 67.55 83.31
F1 64.26 72.09 74.68 78.20

Prec 79.45 73.55 86.01 77.05
nl Recall 47.45 75.37 65.16 80.11

F1 59.42 74.45 74.14 78.55

Table 2: Result for the named-entity segmentation exper-
iments. The highest score in each category is shown in
bold. Note that “No Filtering” still discards sentences with
no projected entities.

and in turn an improved F1 score. On average the
PR model improves F-score by 3.6% on the develop-
ment set and 4.6% on the test set over the baseline
(when filtering is used). Note that because we focus
on named entity segmentation, our results are not
directly comparable to those of Täckström (2012),
who train a de-lexicalized named entity recognizer
on one language and apply it to other languages.
Error Analysis: In order to get a sense for the types
of errors made by the baseline which are corrected
by the PR model, we collected statistics about the
most frequent errors in the segments extracted by
the baseline and by our model. We divided the er-
rors into missing segments, extraneous segments and
overlapping segments.

From Table 2, it is clear that the most common
errors for the baseline models are missing entities.
From our analysis of the CoNLL development data,
we found that the entities that occur with little context
(such as the location and publisher of an item) at the
onset of news articles are most frequently missed. For

German, dpa (Deutsche Presse-Agentur) and Reuter
are the two most common missing segmentations;
the Spanish counterparts are Gobierno (Government)
and Barcelona, while for Dutch they are De Morgen
and Brussel. While filtering parallel sentences and
using a soft constraint both increase recall, even our
strongest model does not get enough information to
predict these entities, and they continue to be major
sources of error. By contrast, the names mentioned
in context are the ones that are most frequently added
to the analysis when PR is used. In a sense this
is desirable, since a machine-learned named-entity
segmentation system is most useful for the long tail
of entity mentions.

If we filter the training data and use the PR model
to further increase recall, precision errors tend to
become relatively more frequent (this trend is ob-
servable in Table 2). For German, the most frequent
precision error is Mark referring to the Deutsche
Mark. For Spanish, the most frequent precision er-
rors are due to boundary errors. The Spanish an-
notation guidelines include enclosing quotes as part
of the entity name, and failing to include them ac-
counts for just under 1% of the precision errors of
the PR system that uses filtering. The second most
frequent error is failing to segment Inter de Milán.
The model segments out either Inter or Milán or both
by themselves depending on context.

7 Conclusions

In this paper, we presented a framework for cross-
lingual transfer of sequence information from a
resource-rich source language to a resource-poor tar-
get language. Our framework incorporates soft con-
straints while training with projected information
via posterior regularization. We presented the effi-
cacy of our framework on two very useful natural
language tasks: POS tagging and named-entity seg-
mentation. The soft constraints used in our work
model intuitions about a given task. For the POS
tagging problem, we designed constraints that also
incorporate projected token-level information, and
presented a principled method for choosing the extent
to which this information should be trusted within
the PR framework. This approach generalizes the
state of the art in cross-lingual projection work in
the context of POS tagging, and improves upon it.
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Across seventeen languages, our models outperform
the previous state of the art by an average of 0.8%
(greater than 4% error reduction), and outperforms
it on twelve out of seventeen languages. For named-
entity segmentation, our model results in 3.6% and
4.6% absolute improvements in F1-score on our de-
velopment and test sets respectively, when averaged
across three languages.
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Oscar Täckström. 2012. Nudging the envelope of direct
transfer methods for multilingual named entity recogni-
tion. In Proceedings of the NAACL-HLT Workshop on
the Induction of Linguistic Structure.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the CoNLL-2003 shared task: language-
independent named entity recognition. In Proceedings
of CoNLL.

Erik F. Tjong Kim Sang. 2002. Introduction to
the CoNLL-2002 shared task: Language-independent
named entity recognition. In Proceedings of CoNLL.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceedings
of ACL.

UN. 2006. ODS UN parallel corpus.
Jakob Uszkoreit and Thorsten Brants. 2008. Distributed

word clustering for large scale class-based language
modeling in machine translation. In Proceedings of
ACL-HLT.

Jakob Uszkoreit, Jay Ponte, Ashok Popat, and Moshe
Dubiner. 2010. Large scale parallel document mining
for machine translation. In Proceedings of COLING.

Andreas Vlachos. 2006. Active annotation. Proceedings
of EACL.

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual POS taggers and NP bracketers via robust
projection across aligned corpora. In Proceedings of
NAACL.

Daniel Zeman and Philip Resnik. 2008. Cross-language
parser adaptation between related languages. In Pro-
ceedings of IJCNLP Workshop: NLP for Less Privi-
leged Languages.

2006



Author Index

Acree, Brice D. L., 91
Addanki, Karteek, 102
Ageev, Mikhail, 1011
Agichtein, Eugene, 1011
Aguilar, Jacqui, 1643
Alshawi, Hiyan, 1983
Altman, Eitan, 1943
Altun, Yasemin, 1481
Anderson, Andrew J., 1960
Archambeau, Cedric, 233
Artzi, Yoav, 1545, 1914
Asher, Nicholas, 357
Auli, Michael, 1044

Bach, Francis, 233
Bailly, Raphaël, 624
Balasubramanian, Niranjan, 1721
Barbosa, Denilson, 447
Baroni, Marco, 141, 1908, 1960
Basile, Valerio, 1422
Batchelor, Colin, 747
Batra, Dhruv, 1100
Beckley, Russell, 1584
Beloucif, Meriem, 102
Benamara, Farah, 357
Benedí, José-Miguel, 244
Berant, Jonathan, 1533, 1710
Berg-Kirkpatrick, Taylor, 874
Bernardi, Raffaella, 769
Bethard, Steven, 821
Bhosale, Shruti, 1851
Biemann, Chris, 884
Black, Alan W, 73
Blanco, Eduardo, 1235
Blunsom, Phil, 345, 1700
Bonial, Claire, 1438
Bordes, Antoine, 1366
Bordignon, Ulisse, 1960

Bos, Johan, 1422
Botha, Jan A., 345
Bouamor, Dhouha, 479
Bouchard, Guillaume, 233
Bruni, Elia, 1960
Burges, Christopher J.C., 55, 193
Busa-Fekete, Róbert, 1926

Cadilhac, Anais, 357
Callison-Burch, Chris, 590
Canny, John, 1898
Cardie, Claire, 1933
Carreras, Xavier, 624
Casacuberta, Francisco, 244
Castellanos, Malu, 1655
Cer, Daniel, 1393
Chahuneau, Victor, 1677
Chai, Joyce Y., 392
Chakrabarti, Soumen, 436
Chambers, Nathanael, 1797
Chang, Baobao, 1
Chang, Kai-Wei, 601, 1602
Chang, Yin-Wen, 210
Charniak, Eugene, 1433, 1765
Chen, Bin, 12
Chen, Chen, 1360
Chen, Enhong, 935
Chen, Hanyang, 647
Chen, Hongbo, 1741
Chen, Huan, 946
Chen, Jianfu, 1246
Chen, Wenliang, 1303
Chen, Xilun, 1055
Chen, Yidong, 535
Chen, Zhiyuan, 1655
Cheng, Xiao, 1787
Cherry, Colin, 1948
Chiang, David, 1387

2007



Chikayama, Takashi, 1372
Chiticariu, Laura, 827
Choe, Do Kook, 1433
Choi, Eunsol, 1545
Choi, Yejin, 1246, 1443, 1753
Chou, Andrew, 1533
Chrupała, Grzegorz, 1422
Chuang, Jason, 1631
Cimiano, Philipp, 1732
Ciot, Morgane, 1136
Clark, Peter, 590, 1710
Clark, Stephen, 1427
Cmejrek, Martin, 545
Cohn, Trevor, 977
Collins, Michael, 210, 1574
Conrad, Stefan, 1828
Cross, James, 758
Cui, Lei, 1055
Curran, James R., 989

Damani, Om P., 163
Das, Dipanjan, 1996
Daumé III, Hal, 1077, 1455
Daxenberger, Johannes, 578
de Marneffe, Marie-Catherine, 1625
De Saeger, Stijn, 693
De Silva, Lalindra, 704
DeNero, John, 636
Devlin, Jacob, 556
Diao, Qiming, 1869
Ding, Xiao, 468
Ding, Yang, 1563
Dobnik, Simon, 747
Dogruoz, A. Seza, 857
Dou, Qing, 1668
Dou, Zhicheng, 468
Dridan, Rebecca, 1201
Dubuisson, Jimmy, 669
Duh, Kevin, 130
Durrett, Greg, 1971
Dyer, Chris, 73, 1100, 1677

Eckmann, Jean-Pierre, 669
Eisenstein, Jacob, 61, 891
Eisner, Jason, 1455
El-Beze, Marc, 1943

Elliott, Desmond, 1292
Elming, Jakob, 1476
Elsner, Micha, 42
Engonopoulos, Nikos, 1354
Eskander, Ramy, 1032
Ethis, Emmanuel, 1943
Etzioni, Oren, 1721
Evang, Kilian, 1422

Fang, Rui, 392
Faralli, Stefano, 170
Feldman, Naomi, 42
Feng, Shi, 897
Feng, Song, 1753
Feng, Wei, 12
Filippova, Katja, 1481
FitzGerald, Nicholas, 1914
Fossum, Victoria, 1387
Foster, Jennifer, 1158
Foulds, James, 113
Frank, Stella, 30
Frostig, Roy, 1533
Fu, Ruiji, 1224
Fukumizu, Kenji, 613

Gaillard, Julien, 1943
Galley, Michel, 1044, 1948
Ganchev, Kuzman, 1996
Ganjigunte Ashok, Vikas, 1753
Gardent, Claire, 808
Gardner, Matt, 833
Garron, Anderson, 1348
Gatti, Lorenzo, 1259
Ge, Tao, 1
Ghonge, Shweta, 163
Ghosh, Riddhiman, 1655
Gilbert, Nathan, 704
Gimpel, Kevin, 1100
Glass, James, 182
Goldwater, Sharon, 30, 42
González-Rubio, Jesús, 244
Goto, Isao, 845
Gottipati, Swapna, 1858
Gravier, Guillaume, 1314
Gross, Justin H., 91
Gubbins, Joseph, 1405



Guerini, Marco, 1259
Guo, Yuhang, 863
Guo, Yuhong, 152, 1465
Gurevych, Iryna, 578

Habash, Nizar, 1032
Hajishirzi, Hannaneh, 289
Hall, David, 1898
Hall, Keith, 879
Hangyo, Masatsugu, 924
Hara, Kazuo, 613
Harding, Brittany, 1710
Hardmeier, Christian, 380
Hartshorne, Joshua K., 1438
Hashimoto, Chikara, 693
Hashimoto, Kazuma, 1372
Hassan, Ahmed, 1000
Hayashi, Katsuhiko, 1382
He, Ben, 1741
He, He, 1455
He, Xiangnan, 780
He, Zhengyan, 426
He, Zhongjun, 524
Hieber, Felix, 1688
Hirao, Tsutomu, 1515
Hirst, Graeme, 300
Hon, Hsiao-Wuen, 85
Hou, Yufang, 814
Hovy, Dirk, 1411
Hovy, Eduard, 1411
Hsu, Meichun, 1655
Hu, Zhichao, 369
Huang, Lian’en, 726
Huang, Liang, 758, 908, 1112
Huang, Lifu, 726
Huang, Ruihong, 704, 1557
Huang, Xiaoqiu, 903
Huang, Xuanjing, 658, 946
Huang, Zhongqiang, 556
Hüllermeier, Eyke, 1926

Irvine, Ann, 1077

Jain, Siddhanth, 436
Jehl, Laura, 1688
Ji, Yangfeng, 891
Ji, Zongcheng, 535

Jiang, Jing, 1858, 1869
Jin, Yiping, 780
Jindal, Prateek, 1808
Johannsen, Anders, 1476
Jurafsky, Daniel, 1983

Kalchbrenner, Nal, 1700
Kan, Min-Yen, 12, 780
Kang, Jihua, 946
Kang, Jun Seok, 1443
Kartsaklis, Dimitri, 1590
Kawahara, Daisuke, 924, 1213
Kehler, Andrew, 914
Keller, Frank, 30, 1292
Kessler, Wiltrud, 1892
Kiela, Douwe, 1427
Kim, Joo-Kyung, 1625
King, Irwin, 1521
Kisiel, Bryan, 833
Klakow, Dietrich, 24
Klein, Dan, 265, 874, 1898, 1971
Klinger, Roman, 1732
Kloetzer, Julien, 693
Knight, Kevin, 1668
Kolhatkar, Varada, 300
Koller, Alexander, 1354
Kominek, John, 1325
Kong, Fang, 278, 715
Konstas, Ioannis, 989, 1503
Koppel, Moshe, 1449, 1880
Koprinska, Irena, 989
Kuhn, Jonas, 333, 1892
Kummerfeld, Jonathan K., 265
Kurohashi, Sadao, 924, 1213
Kuznetsova, Polina, 1246, 1443
Kwiatkowski, Tom, 1545

Lagun, Dmitry, 1011
Lapata, Mirella, 415, 1503
Lascarides, Alex, 357
Laws, M. Barton, 1765
Lazaridou, Angeliki, 1908
Le Roux, Joseph, 1158
Le, Dieu-Thu, 769
Lee, Chia-ying, 182
Lerner, Uri, 513



Lewis, Justin, 1710
Lewis, Mike, 681
Li, Baichuan, 1521
Li, Binyang, 897
Li, Chen, 490
Li, Hang, 935
Li, Jiwei, 1933
Li, Mu, 426, 1055
Li, Peng, 567
Li, Sheng, 863
LI, Shoushan, 715
Li, Sujian, 1
Li, Xiaoming, 1337
Li, Yunyao, 827
Liakata, Maria, 747
Liang, Percy, 1170, 1533
Lin, Chin-Yew, 85, 1521
Lin, Edward, 1325
Lin, Ziheng, 12
Ling, Wang, 73
Liu, Bing, 1124, 1655
Liu, Changsong, 392
Liu, Fei, 490
Liu, Jing, 85, 1521
Liu, Qun, 535, 1066
Liu, Shujie, 426, 1055
Liu, Ting, 468, 863, 1224
Liu, Yang, 490, 567, 1492
Lopez de Lacalle, Oier, 415
Lu, Bao-Liang, 845
Lü, Yajuan, 1066
Lu, Zhengdong, 935
Luca, Michael, 1443
Luque, Franco M., 624
Lyu, Michael R., 1521

Ma, Tengfei, 736
Mairal, Julien, 233
Makazhanov, Aibek, 1022
Makhambetov, Olzhas, 1022
Manning, Christopher D., 1170, 1393, 1631, 1710
Mansur, Mairgup, 311
Markert, Katja, 814
Martinez, Hector, 1476
Matkarimov, Bakhyt, 1022
Matsumoto, Yuji, 130

Matthies, Franz, 803
Mausam, 1721
McCrae, John Philip, 1732
McDonald, Ryan, 908
Meek, Christopher, 1602
Meng, Fandong, 1066
Mesquita, Filipe, 447
Mi, Haitao, 545, 1112
Mitchell, Margaret, 1643
Mitchell, Tom, 833
Miwa, Makoto, 1372
Miyao, Yusuke, 1180
Mochihashi, Daichi, 1180
Moens, Marie-Francine, 1613
Mohapatra, Hrushikesh, 436
Moldovan, Dan, 1235
Mooney, Raymond, 1851
Moore, Joshua, 55
Mori, Shinsuke, 204
Moriceau, Véronique, 958
Moschitti, Alessandro, 458
Mueller, Thomas, 322
Mukherjee, Arjun, 1655
Munishkina, Larissa, 369
Muzny, Grace, 1417

Nagata, Masaaki, 204, 1382, 1515
Nakagawa, Hiroshi, 736
Navigli, Roberto, 170
Nelakanti, Anil Kumar, 233
Ney, Hermann, 1377
Ng, Andrew, 1631
Ng, Hwee Tou, 278
Ng, Jun-Ping, 12, 780
Ng, Vincent, 1360
Nguyen, Dong, 857
Nishino, Masaaki, 1515
Nivre, Joakim, 380
Noji, Hiroshi, 1180
Norimatsu, Jun-ya, 222

O’Keefe, Tim, 989
Oard, Douglas W., 1270
Oh, Jong-Hoon, 693
Ohtake, Kiyonori, 693
Okumura, Manabu, 1213



Ortíz-Martinez, Daniel, 244
Ott, Myle, 1933

Palmer, Martha, 1438
Pareti, Silvia, 989
Pasca, Marius, 403
Patterson, Gary, 914
Peitz, Stephan, 1377
Perelygin, Alex, 1631
Petrov, Slav, 513
Pichotta, Karl, 636
Poesio, Massimo, 1960
Popescu, Adrian, 479
Potts, Christopher, 1631
Preoţiuc-Pietro, Daniel, 977

Qadir, Ashequl, 704
Qian, Jin, 946
Qian, Tieyun, 1124
Qian, Xian, 1492
Qin, Bing, 468, 863, 1224
Qiu, Minghui, 1858
Qiu, Xipeng, 658
Quattoni, Ariadna, 624
Quirk, Chris, 1044, 1077, 1948

Rahimtoroghi, Elahe, 369
Rajput, Nitendra, 1270
Rambow, Owen, 1032
Rappoport, Ari, 1880
Rasooli, Mohammad Sadegh, 124
Reberšek, Peter, 1399
Rebholz-Schuhmann, Dietrich, 747
Reiss, Frederick R., 827
Renshaw, Erin, 55, 193
Resnik, Philip, 1348
Resnik, Rebecca, 1348
Richardson, Matthew, 193
Riedl, Martin, 884
Rietig, Felix, 1377
Riezler, Stefan, 1688
Riloff, Ellen, 704, 1557
Roark, Brian, 1584
Rojas Barahona, Lina M., 808
Roller, Stephen, 1146
Roth, Benjamin, 24
Roth, Dan, 601, 791, 1787, 1808

Rozenknop, Antoine, 1158
Rozovskaya, Alla, 791
Rush, Alexander, 210
Ruths, Derek, 1136

Sabyrgaliyev, Islam, 1022
Sadrzadeh, Mehrnoosh, 1590
Saerens, Marco, 613
Saers, Markus, 102
Saha, Shyamasree, 747
Samdani, Rajhans, 601
Sankaran, Baskaran, 1089
Sano, Motoki, 693
Sarkar, Anoop, 1089
Sasano, Ryohei, 1213
Scheible, Christian, 669
Schlinger, Eva, 1677
Schmid, Helmut, 322
Schmidek, Jordan, 447
Scholz, Thomas, 1828
Schulte im Walde, Sabine, 1146
Schütze, Hinrich, 322, 669
Schwartz, Roy, 1880
Sébillot, Pascale, 1314
Seeker, Wolfgang, 333
Seidman, Shachar, 1449
Semmar, Nasredine, 479
Setiawan, Hendra, 501
Severyn, Aliaksei, 458
Søgaard, Anders, 803, 1476
Shakhnarovich, Gregory, 1100
Sharafudinov, Anuar, 1022
She, Lanbo, 392
Shen, Libin, 839
Shimbo, Masashi, 130, 613
Siahbani, Maryam, 1089
Sim, Yanchuan, 91, 1858
Simion, Andrei, 1574
Simon, Anca-Roxana, 1314
Smith, Noah A., 91, 1677, 1858
Smyth, Padhraic, 113
Socher, Richard, 1393, 1631
Soderland, Stephen, 1721
Sokokov, Artem, 1688
Sonderegger, Morgan, 1136
Song, Linfeng, 1066



Song, Yang, 426
Spitkovsky, Valentin I., 1983
Sproat, Richard, 879
Srivastava, Shashank, 1411
Steedman, Mark, 681
Stein, Cliff, 1574
Strube, Michael, 814
Su, Jian, 12
Sudoh, Katsuhito, 204, 1382
Sui, Zhifang, 1
Sumita, Eiichro, 845
Sun, Maosong, 567
Sun, Xu, 311
Surve, Prafulla, 704
Suzuki, Ikumi, 613
Suzuki, Jun, 1382
Swanson, Reid, 369
Szarvas, György, 1926

Talukdar, Partha Pratim, 833
Tan, Chew Lim, 12, 1563
Tan, Ming, 851
Tanaka, Toru, 222
Tannier, Xavier, 958
Tetreault, Joel, 124
Thalappillil Scaria, Aju, 1710
Tiedemann, Jörg, 380
Titov, Ivan, 1354
Torisawa, Kentaro, 693
Toutanova, Kristina, 1948
Trancoso, Isabel, 73
Trikalinos, Thomas A, 1765
Tsubaki, Masashi, 130
Tsukada, Hajime, 1382
Tsur, Oren, 1880
Tsuruoka, Yoshimasa, 1372
Turchi, Marco, 1259

Uijlings, Jasper, 769
Usunier, Nicolas, 1366
Utiyama, Masao, 845

Van Durme, Benjamin, 590, 1643
Vaswani, Ashish, 1387
Vecchi, Eva Maria, 141, 1908
Verlic, Mateja, 1399
Villalba, Martin, 1354

Vinicombe, Heath, 1851
Vlachos, Andreas, 1405
Volkova, Svitlana, 1815
Vozila, Paul, 1191
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