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Message from the General Chair

Welcome to the 18th Conference of the European Chapter of the Association for Computational Lingui-
stics. EACL is the flagship European conference dedicated to European and international researchers,
covering a wide spectrum of research in Computational Linguistics and Natural Language Processing.

Organizing a scientific conference of the prestige and size of EACL is a great honor, a great responsibility,
and a great challenge. The challenges started right at the beginning. When I accepted the invitation to
be general chair, even after the program chairs Yvette Graham and Matt Purver accepted, we didn’t
know where the conference would be located. Eventually, we settled on Malta, a wonderful island in
the Mediterranean with lovely weather in March. Well, putting it in March was the next challenge as
the conference dates were moved backwards a couple of times, turning the entire organization of the
conference into a race against time.

Another big challenge was the joint effort of all *ACL 2024 conferences to streamline the review process
by moving it completely to ACL Rolling Review. While there had been some attempts to integrate ARR
into the conference reviewing process, 2024 will be the year where we see whether it actually works.
I’d like to thank Yvette and Matt for being so brave to chair the first conference in 2024 adopting ARR
only. I'd also like to thank the General Chairs of NAACL 2024 and ACL 2024, Katrin Erk and Claire
Gardent, and their respective PC chairs to join the effort. Without the ARR team this could not have
worked out, namely the ARR Editors in Chief, Mausam, Viviane Moreira, Vincent Ng, Lilja @vrelid,
Thamar Solorio, and Jun Suzuki were indispensable for making this happen.

For me it started all with Roberto Basili and Preslav Nakov, the 2023 and 2024 Presidents of EACL,
asking me whether I’d like to serve as general chair for EACL 2024 — thanks for having trusted me to
manage the organization of the conference. After Yvette Graham and Matt Purver accepted the role of PC
chairs, I knew that I wouldn’t have to worry anymore about the scientific program. A big thanks to Yvette
and Matt! Behind the scenes Jennifer Rachford (ACL Event Manager) and her team, in particular Megan
Haddad and Jon M. Dorsey, made the impossible happen. Jenn does what we scientists are not good
at, and then a lot more. I don’t know how we could have run EACL 2024 without her. Roberto Basili,
Preslav Nakov, the EACL board, and David Yarowsky (ACL treasurer) provided me with information,
advice and feedback whenever I needed it. A great thanks also goes to the EACL 2024 workshop chairs,
Nafise Moosavi and Zeerak Talat! Because EACL is the first conference in 2024, they spearheaded the
*ACL joint call for workshop proposals. They worked with an extremely tight timeline, created a very
interesting workshop program and had the organizers of 19 workshops under control. Very impressive,
Nafise and Zeerak!

A special thanks goes to Claudia Borg from the University of Malta. Claudia was instrumental for
the success of the conference dealing with all sorts of local issues. She helped us selecting the venue,
connected us with local event organizers, was part of the volunteer program, and made sure that visas
were issued to participants who needed them. Claudia is great!

And then ...

e The tutorial chairs, Sharid Loaicga and Mohsen Mesgar, worked together with the tutorial chairs
of all *ACL conferences to review tutorial proposals and select some for EACL 2024,

e The demonstration chairs, Orphée de Clercq and Nikolaos Aletras, created the demo program for
EACL 2024.

e The student research workshop chairs, Neele Falk, Sara Papi, and Mike Zhang, along with their
faculty advisors Parisa Kordjamshidi and Steffen Eger, took care about the next generation of NLP
researchers.
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e The publication chairs, Gézde Giil Sahin and Danilo Croce, did a tremendous job in getting all the
papers into a nice shape worthy of the European flagship conference in Computational Linguistics.

e The handbook chair, Marco Polignano, helped us to navigate through the program so that we
wouldn’t miss any interesting presentation.

e The sponsorship chairs, Daniel Dahlmeier and Pasquale Minervini, worked together with the ACL
sponsorship director Chris Callison-Burch to make EACL 2024 the ends meet in economically
challenging times.

e The diversity and inclusion chairs, Hanan Al Darmaki, Sabine Weber, and Maciej Ogrodniczuk,
ensured that researchers who are not from the global north can join our conference, in person or
virtually. They also kicked off an amazing set of D&I events at the conference.

e The publicity chairs, Miryam de Lhoneux, Sungho Jeon, and Yuval Pinter, spread the word — and
also pictures — through social media platforms.

e The website chairs, Mladen Karan and Wei Zhao, created a beautiful webpage. They were super
responsive. Thanks a lot for the good work!

e The local ambassador, Max Bartolo, provided us with information on Malta early on. Talk to him
for food options, bars, excursions, fun stuff to do!

e The ethics chairs, Annemarie Friedrich and Anne Lauscher, helped us to solve difficult ethical
issues with the papers.

e The student volunteer chairs, Claudia Borg, Desmond Eliott, and Juntao Yu, went through many
applications, selected the student volunteers, and assigned them their tasks.

e The visa chairs Claudia Borg and Yufang Hou helped conference participants to obtain their visas.

e The Technical Infrastructure Chairs, Wei Liu and Sungho Jeon, enabled us to navigate through the
program with ease via MiniConf and to discuss via Rocket.Chat.

e The entire program committee, senior area chairs, area chairs, reviewers, and best paper committee,
was essential for ensuring our high-quality scientific program.

e We couldn’t run our conference without our student volunteers. A big thanks to all of them!

e Finally, I’d like to thank our invited speakers, Mirella Lapata and Hinrich Schiitze, and the Karen
Sparck Jones Award Winner 2023, Hongning Wang, for delivering inspiring keynote speeches.

The online side of our hybrid conference was provided by Underline (Sol Rosenberg, Damira Mrsic, and
their team), who also provided us with support for managing the entire conference.

I would like to thank our sponsors for funding the conference, providing subsidies for students and
financing the diversity and inclusion initiative.

Enjoy EACL 2024! Insellimkom,

Michael Strube
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

EACL 2024 General Chair



Message from the Program Chairs

Welcome to the 18th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL) to take place in Malta. As with last year, the conference is being held in a hybrid mode,
with both audiences and presenters able to attend online. Presentation videos, slides and posters will all
be available online to make the experience as good as possible. However, we’re very happy to see that
most presenters in oral and poster sessions are opting to be there in-person, so we’re looking forward to
an interactive and exciting conference.

Submission and Acceptance

EACL 2024 was the first *ACL Conference to accept all submissions via ACL Rolling Review (ARR).
This brought some significant advantages: a consistent system across *ACL conferences, as well as the
experience and assistance of the ARR team, and of course the ability to revise and resubmit papers rather
than just being rejected out of hand.

However, this change does make it somewhat more difficult to calculate acceptance rates. Most papers
committed to EACL 2024 came from the ARR October 2023 cycle, and most papers in that cycle were
intended for EACL 2024; but some EACL papers came from other ARR cycles; and some papers in the
October 2023 cycle were intended for other, later conferences rather than EACL. Many authors indicated
their target when submitting to ARR, but not all; and some change their minds.

In the end we opted for the following approach: we take the pool of potential candidates as being papers
in the relevant ARR cycle that either selected EACL as a target, did not select any target conference, or
selected another target conference but then committed to EACL anyway; together with papers from other
ARR cycles that committed to EACL. We include those that withdrew after getting reviews, but not those
that withdrew before or were desk-rejected.

In total, EACL 2024 ARR October cycle received 1,275 submissions, with a large portion (78%) being
long as opposed to short papers. 52 papers were desk rejected for various reasons (e.g. breaching the
ACL anonymity or multiple submission policy, significant formatting violations) and 17 were withdrawn
by the authors before reviews were received. 474 papers then committed to EACL 2024, of which we
accepted 226 to the main conference, and a further 163 to the Findings of the ACL. The pool of po-
tential candidates as defined above numbered 1,114 papers, giving an overall acceptance rate of 20.3%
to the main conference and 14.5% to Findings. This is comparable to other recent *ACL conferences
(EACL 2023 quoted 24.1% and 17.2% respectively), but it’s hard to compare directly given such a si-
gnificant change in the submission process. The conference programme also features three papers from
the Transactions of the Association for Computational Linguistics (TACL) journal, and one from the
Computational Linguistics (CL) journal.

Presentation Mode

From the resulting total of 230 papers accepted to the conference, we invited 144 to be presented orally,
with the others presenting in poster sessions. We made the decision on which papers would be invited for
oral poster presentations based on several factors: recommendations by Senior Area Chairs (SACs) and
meta-reviewers about presentation mode and best paper prize potential, grouping of papers into thematic
sessions, and confirmation from authors that they planned to attend the conference in person. For TACL
and CL papers, the authors’ preference of presentation mode was used.

Authors of papers accepted to the Findings of the ACL could opt to present a poster, and 113 (69%) chose
to do so. We also gave oral paper presenters the option to present a poster, with 37 (25%) choosing to do
so0; this gave a total of 232 posters being presented at the conference. All oral sessions are being held as
in-person plenary sessions (although with some online presenters), and all poster sessions are in-person
except one fully virtual poster session.

vi



Limitations Section

As in EACL 2023, and now standard practice in ARR, we required inclusion of a Limitations section,
including all major limitations of the work. As with past events, this is intended to discourage the practice
of hyping conclusions drawn in work published at EACL, sticking to better scientific practice.

Areas, Programme Committee Structure and Reviewing

We divided submissions into 24 distinct areas and asked authors to choose the most appropriate area to
submit their work to. The three areas to receive the largest number of submissions were NLP Applica-
tions, Resources and Evaluation, and Interpretability and Analysis of Models for NLP.

Senior members of the NLP community were directly invited to act as Senior Area Chair (SAC), with
2-3 SACs per area. Area Chairs (ACs) were then recruited partly from ARR’s existing pool, and partly
invited directly by SACs to sign up to ARR for the October cycle so they could act as Area Chairs for
EACL. In the ARR system, ACs assign themselves to areas and can specify a maximum load, ensuring
that ACs can reduce the number of papers they are responsible for at appropriate times; this results in
a higher number of ACs than is usual outside of the ARR system. In total, 485 ARR ACs signed up to
the October cycle 2023, while a total of 5,854 reviewers indicated availability to review in ARR October
cycle. Three reviewers and one AC were automatically assigned to each paper using ARR’s matching
algorithm, based on reviewers’ past publications and the maximum load set by reviewers and ACs.

Best Paper Awards

Following ACL policy, we set up a committee to decide the Best Paper Awards. The committee was given
28 papers by the Program Chairs to consider, papers that were identified by at least one of the program
committee, SAC, AC or reviewer as a possible best paper. These papers were anonymized via black out
of author information, links to code, and acknowledgements sections in the camera ready papers. The
selected best papers and runners up will be announced at the conference.

Ethics Committee

We also set up an ethics committee, so that papers flagged by reviewers or ACs as having potential ethical
concerns could be sent for separate ethics review. A small number of papers were accepted conditional
on final re-reviewing to check that outstanding concerns were dealt with in the final camera ready paper;
we’re happy to confirm that all such papers were accepted.

Keynotes

We are delighted to include 2 Keynote talks in the plenary sessions:

e Prof. Mirella Lapata: Prompting is *not* all you need! Or why Structure and Representations still
matter in NLP

e Prof. Hinrich Schiitze: Quality Data for LLMs: Challenges and Opportunities for NLP
Furthermore, we include a lecture from the winner of this year’s Karen Spérck Jones Award:

e Prof. Hongning Wang: Human vs. Generative Al in Content Creation Competition: Symbiosis or
Conflict?
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Thank Yous

EACL 2024 would not have happened without the help and support of the NLP community. So much of
the event relies on voluntary efforts with people very generously giving their time and energy. We would
like to acknowledge everyone involved, with a special thanks to:

EACL 2024 General Chair, Michael Strube, for leading the overall conference organisation and
providing advice and support to the PCs and many others through the conference preparations;

Our 56 Senior Area Chairs, who did a fantastic job of managing the review process for their
individual areas;

The 485 Area Chairs, who put in an enormous effort in as much as possible ensuring papers were
given the best consideration by reviewers;

All the reviewers, who very generously give up their time to this process;

The Best Paper Award Committee, and especially the chair Barbara Plank, with the difficult task
of choosing winners from the large number considered for this award;

Our Ethics Committee, especially the chairs Annemarie Friedrich and Anne Lauscher, for diligen-
tly checking and maintaining the high ethical standards we strive for at *ACL conferences;

Publicity Chairs, Miryam de Lhoneux, Sungho Jeon and Yuval Pinter, and Website Chairs Mladen
Karan and Wei Zhao, for managing our communications and fulfilling all requests sent so quickly;

Publications Chairs, Danilo Croce and Gézde Giil Sahin, and Handbook Chair Marco Polignano,
for the many hours dedicated to producing our fine proceedings and handbook;

Jordan Zhang for invaluable assistance with building the conference schedule;

The ARR team, particularly Thamar Solorio, Lilja @vrelid and Harold Rubio, for so much support
and advice during the review process;

Damira Mr3Si¢ from Underline and the ACL’s Jennifer Rachford for their huge efforts to make
EACL a success both online and on-site.

Overall, everyone we came into contact with during the process was exceptionally professional and great
to work with, thank you all for this, it is so important!

We’re looking forward to a great EACL 2024, we hope you enjoy it and we look forward to seeing you

there.

Yvette Graham (Trinity College Dublin)
Matthew Purver (Queen Mary University of London & JoZef Stefan Institute)
EACL 2024 Programme Committee Co-Chairs
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Message from the Local Chair

Dear EACL2024 Participants,

It is with immense joy that I welcome you to the EACL2024 conference, held in the heart of the
Mediterranean - Malta, an island nation celebrated for its vibrant diversity and intricate history.

We are brought together by a common passion, that of processing language. We are in a privileged
position to understand the power of language, that of connecting people. But one of the most fascinating
aspects of human language is its diversity. Take Maltese as an example: a Semitic language, written
in Latin script, with mixed influences from Arabic, Italian and English. Since becoming an official
European language, Maltese has been given more visibility, facilitating the creation of digital resources.
Yet it is still a low-resource language, ranking lowest amongst all official EU languages.

In the era of LLMs and GPUs, the opportunity to work with a low-resource language like Maltese is not
just about finding creative ways of processing the language, but becomes an interesting dive into its roots
and understanding how history shaped it over time. It goes beyond racing for better accuracy and F1
scores. Instead, we try to find ways of connecting the language of today with the roots of its past.

As we embark on this exciting week, I invite you to immerse yourself not only in the groundbreaking
research and discussions but also in the rich tapestry of Maltese culture and language. Let the diversity
of Malta inspire you, spark your curiosity, and enrich your experience during your stay.

I extend my heartfelt gratitude to the local organisation team, particularly Stephanie Abela Tickle and her
colleagues at Meet360. Their dedication and hard work have been pivotal in bringing this conference to
life. I also thank my colleagues and students at the University of Malta for their steering work.

In closing, I hope that EACL2024 will be a source of inspiration and collaboration for all.
Merhba f'Malta!

Claudia Borg

University of Malta

Local Chair, EACL 2024
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Abstract

Fine-grained few-shot entity extraction in the
chemical domain faces two unique challenges.
First, compared with entity extraction tasks in
the general domain, sentences from chemical
papers usually contain more entities. More-
over, entity extraction models usually have dif-
ficulty extracting entities of long-tailed types.
In this paper, we propose Chem-FINESE, a
novel sequence-to-sequence (seq2seq) based
few-shot entity extraction approach, to address
these two challenges. Our Chem-FINESE has
two components: a seq2seq entity extractor to
extract named entities from the input sentence
and a seq2seq self-validation module to recon-
struct the original input sentence from extracted
entities. Inspired by the fact that a good entity
extraction system needs to extract entities faith-
fully, our new self-validation module leverages
entity extraction results to reconstruct the origi-
nal input sentence. Besides, we design a new
contrastive loss to reduce excessive copying
during the extraction process. Finally, we re-
lease ChemNER+, a new fine-grained chemical
entity extraction dataset that is annotated by do-
main experts with the ChemNER schema. Ex-
periments in few-shot settings with both Chem-
NER+ and CHEMET datasets show that our
newly proposed framework has contributed up
to 8.26% and 6.84% absolute F1-score gains
respectively'.

1 Introduction

Millions of scientific papers are published an-
nually?, resulting in an information overload
(Van Noorden, 2014; Landhuis, 2016). Due to such
an explosion of research directions, it is impossible
for scientists to fully explore the landscape due to

!The programs, data, and resources are publicly available
for research purposes at: https://github.com/EagleW/Ch
em-FINESE.

2https ://esperr.github.io/pubmed-by-year/abou
t.html

1

Input

Through application of ligand screening, we describe the first examples of Pd-
catalyzed Suzuki—Miyaura reactions using aryl sulfamates at room
temperature.

Ground Truth

Sentence Reconstructed from Ground Truth

Ligands play a crucial role in Pd-catalyzed Suzuki-Miyaura reactions, which
are coupling reactions that enable the synthesis of diverse organic compounds,
such as aryl sulfamates at room temperature, exploiting their favorable
thermodynamic properties.

InBoxBART Entity Extraction Results
ligand screening <Ligands>,

aryl sulfamates <Catalysts> [Missing:
room temperature <Thermodynamic properties>]

Sentence Reconstructed from Name Tagging Results

Suzuki-Miyaura reactions, which are coupling reactions known for their
efficacy in the synthesis of aryl sulfamates, acting as catalysts in the
process. [Missing: room temperature <Thermodynamic properties>]

Ligand screening is conducted to identify suitable ligands for Pd-catalyzed ’

Figure 1: Comparison of sentence reconstruction re-
sults from ground truth and InBoXBART (Parmar et al.,
2022). We highlight , Missed Entity,
and Partially Correct Prediction with different color.

the limited reading ability of humans. Therefore, in-
formation extraction, especially entity extraction of
fine-grained scientific entity types, becomes a cru-
cial step to automatically catch up with the newest
research findings in the chemical domain.

Despite such a pressing need, fine-grained entity
extraction in the chemical domain presents three
distinctive and non-trivial challenges. First, there
are very few publicly available benchmarks with
high-quality annotations on fine-grained chemical
entity types. For example, ChemNER (Wang et al.,
2021a) developed the first fine-grained chemistry
entity extraction dataset. However, their dataset
is not released publicly. To address this issue, we
collaborate with domain experts to annotate Chem-
NER+, a new chemical entity extraction dataset
based on the ChemNER ontology. Besides, we
construct another new fine-grained entity extraction
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dataset based on an existing entity typing dataset
CHEMET (Sun et al., 2021).

1.0 o

Dataset
—— ChemNER+
CHEMET
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Figure 2: Type distributions for the training sets of
ChemNER+ and CHEMET datasets. The Y-axis repre-
sents the number of mentions normalized by the men-
tions of the most frequent type. The X-axis represents
the rank of types.

In addition, current entity extraction systems in
few-shot settings face two main problems: miss-
ing mentions and incorrect long-tail predictions.
One primary reason for missing mentions is that
the sentences in scientific papers typically cover
more entities than sentences in the general domain.
For example, there are 3.1 entities per sentence
in our ChemNER+ dataset, which is much higher
than the 1.5 entities in the general domain dataset
CONLL2003 (Tjong Kim Sang and De Meulder,
2003). As a result, it is more difficult for entity
extraction models to cover all mentions in the input
sentences. As shown in Figure 1, since the in-
put has already included four chemical entities, In-
BoXBART model (Parmar et al., 2022) completely
misses the entity “room temperature”.

Furthermore, entity distributions in the chemi-
cal domain are highly imbalanced. As shown in
Figure 2, we observe that the entity type distribu-
tions of ChemNER+ and CHEMET exhibit similar
long-tail patterns. In few-shot settings, entities with
long-tail types are extremely difficult to extract due
to insufficient training examples. For example, as
shown in Figure 1, InBoXBART mistakenly pre-
dicts the entity “aryl sulfamates” as catalyst, be-
cause its type has a frequency forty times lower
than the predicted type (i.e., 4 vs 136). More-
over, the diverse representation nature of chemi-
cal entities—such as trade names, trivial names,
and semi-systematic names (e.g., THF, iPrMgCl,
8-phenyl ring)—makes it even harder for models
to generalize on these long-tail entities.

To address these challenges, we propose a novel

Chemical FINe-grained Entity extraction with
SElf-validation (Chem-FINESE). Specifically, our
Chem-FINESE has two parts: a seq2seq entity
extractor to extract named entities from the in-
put sentence and a seq2seq self-validation module
to reconstruct the original input sentence based
on the extracted entities. First, we employ a
seq2seq model to extract entities from the input
sentence, since it does not require any task-specific
component and explicit negative training exam-
ples (Giorgi et al., 2022). We generate the entity
extraction results as a concatenation of pairs, each
consisting of an entity mention and its correspond-
ing type, as shown in Figure 1.

One critical issue for seq2seq entity extraction
is that the language model tends to miss important
entities or excessively copy original input. For ex-
ample, the seq2seq entity extraction results missed
the type thermodynamic properties and generated
“ligand screening” in Figure 1. However, the goal of

information extraction is to provide factual infor-
mation and knowledge comprehensively. In other
words, if the model extracts knowledge precisely,
readers should be able to faithfully reconstruct
the original sentence using the extraction results.
Inspired by such a goal, to evaluate whether the
seq2seq entity extractor has faithfully extracted im-
portant information, we propose a novel seq2seq
self-validation module to reconstruct the original
sentences based on entity extraction results. As
shown in Figure 1, the sentence reconstructed from
the ground truth is closer to the original input than
the sentence reconstructed from entity extraction
results, which misses the reaction condition and
introduces additional information that treated the
“aryl sulfamates” as catalysts. Additionally, we in-
troduce a new entity decoder contrastive loss to
control the mention spans. We treat text spans
containing entity mentions as hard negatives. For
instance, given the ground truth entity “aryl sulfa-
mates”, we will treat “aryl sulfamates at room
temperature” as a hard negative.

Our extensive experiments demonstrate that our
proposed framework significantly outperforms our
baseline model by up to 8.26% and 6.84% abso-
lute F1-score gains on ChemNER+ and CHEMET
datasets respectively. Our analysis also shows that
Chem-FINESE can effectively learn to select cor-
rect mentions and improve long-tail entity type
performance. To evaluate the generalization abil-
ity of our proposed method, we also evaluate our
framework on CrossNER (Liu et al., 2021), which



is based on Wikipedia. Our Chem-FINESE still
outperforms other baselines in all five domains.
Our contributions are threefold:

1. We propose two few-shot chemical fine-
grained entity extraction datasets, based on
human-annotated ChemNER+ and CHEMET.

2. We propose a new framework to address the
mention coverage and long-tailed entity type
problems in chemical fine-grained entity ex-
traction tasks through a novel self-validation
module and a new entity extractor decoder
contrastive objective. Our model does not re-
quire any external knowledge or domain adap-
tive pretraining.

3. Our extensive experiments on both chemical
few-shot fine-grained datasets and the Cross-
NER dataset justify the superiority of our
Chem-FINESE model.

2 Task Formulation

Following Giorgi et al. (2022), we formulate en-
tity extraction as a sequence-to-sequence (seq2seq)
generation task by taking a source document S as
input. The model generates output )/, a text consist-
ing of a concatenation of n fine-grained chemical
entities F'1, Eo, ..., E/,,. Each mention F; includes
the mention p; in the source document S and its
entity type p; € P, where P is a set containing all
entity types. Specifically, we propose the following
output linearization schema: given the input S, the
outputis YV = p1 < p1 >, p2 < p2 >, ., in <
pn >. We further illustrated this with an example:
&: Through application of screening, we describe the
first examples of
using at
y: <Ligands>,
<Coupling reactions>, <Aromatic

compounds>, <Thermodynamic properties>

3 Method
3.1 Model Architecture

The overall framework is illustrated in Figure
3. Given the source document S, we first use a
seq2seq model to extract fine-grained chemical en-
tities. Then, we propose a new self-validation mod-
ule to reconstruct the original input based on entity
extraction results. Finally, we introduce a new en-
tity decoder contrastive loss to reduce excessive

Through application of ligand screening, we
describe the first examples of Pd-catalyzed
Suzuki—Miyaura reactions using aryl
sulfamates at room temperature.

I
Entity Extraction \L
Encoder A

Decoder A

Entity Decoder
Contrastive Loss
ligand <Ligands>, Pd-

catalyzed Suzuki-Miyaura Supervised
reactions <Coupling Loss
reactions>, ...

Reconstruction
Loss

Self-Validation
Encoder B

Decoder B

I
v

Through application of ligand screening, we

describe the first examples of Pd-catalyzed

Suzuki-Miyaura reactions using aryl
ulfamates at room temperature.

Figure 3: Architecture overview. We use the example in
Figure 1 as a walking-through example.

copying. The entire model is trained with a com-
bination of the supervised loss, the reconstruction
loss, and the entity decoder contrastive loss.

3.2 Entity Extraction Module

Our entity extraction module follows a seq2seq
setup (Yan et al., 2021; Giorgi et al., 2022). For-
mally, we use the state-of-the-art coarse-grained
chemical entity extractor InBoXBART (Parmar
et al., 2022) as the backbone. We model the condi-
tional probability of extracting entities from source
sequence S as

T
p(V[S) = [ [ p(welS, y<s), (0

t=1

where the output ) has a length of T, and y; is the
predicted token at time ¢ in the output ).

We supervise the entity extraction using the stan-
dard cross-entropy loss:

T
Loen = Y _log p(ilS, y<1). 2

t=1
3.3 Self-validation Module

Since a good information extraction system needs
to extract entities faithfully, we propose a self-
validation module to reconstruct the original sen-
tence from the extracted entities to check whether
the model overlooks any entities. Different from
previous dual learning architectures (Iovine et al.,



2022), which use dual cycles or reinforcement
learning to provide feedback, we use Gumbel-
softmax (GS) estimator (Jang et al., 2017) to avoid
the non-differentiable issue in explicit decoding.
Specifically, based on InBoXBART (Parmar et al.,
2022), we first pretrain a seq2seq self-validation
module that takes in the entity extraction results
Y and generates a reconstructed sentence S. We
use our training set to pretrain the self-validation
module. We fix the weight of the self-validation
module after pretraining. In the training stage, the
input embedding H; of the self-validation module
is given by:

H; = GS (p (y:|S, y<t)) - Eo, 3)

where E,, is the vocabulary embedding matrix and
GS is the Gumbel-softmax estimator. The total
input embeddings for the self-reconstruction model
isH = [Hl; HQ; cevy HT].
The reconstruction loss is:

T
Lrccon = Y _logp(3;|H, 5_;), )

i=1

where the reconstructed sentence S has a length of
T, and 5; is the predicted token at time ¢ in S.

3.4 Contrastive Entity Decoding Module

Entity extraction datasets in the scientific domain
usually contain more entities for each sentence.
From the initial experiments, we found that the en-
tity extraction module tends to generate incorrect
mentions by associating it with unrelated contexts
to help the reconstruction of the self-validation
module. For example, given the example in Fig-
ure 1, the baseline model generates “ligand screen-
ing” instead of “ligand”. Therefore, we introduce
a new decoding contrastive loss inspired by Wang
et al. (2023a) to suppress excessive copying. We
construct negative samples by combining mentions
with surrounding unrelated contexts. For example,
we will consider “ligand screening, we describe
the first examples” as a negative of entity “lig-
and”. We treat the original mention type pairs as
the ground truth and maximize their probability
with InfoNCE loss (Oord et al., 2018):

£ = exp (/1)

© Yiexp(a; /1) +exp(at/7)’
o+ = o(Ave(W,H* + by)), )
z; = o(Avg(W,H; + b)),

where HT and }_I; are decoder hidden states from
the positive and ¢-th negative samples, W, is a
learnable parameter, 7 is the temperature, and
Avg(x) denotes the average pooling function.

3.5 Training Objective

We jointly optimize the cross-entropy loss, recon-
struction loss, and entity decoder contrastive loss:

L= /-:gen + aLrecon + BLa, (6)

where «, 5 are hyperparameters that control the
weights of the reconstruction loss and contrastive
loss respectively.

Dataset Split #Pair #Token #Entity
Train 542 32.9 3.10
ChemNER+  Valid 100 39.9 4.57
Test 100 394 4.61

S Train 6,561 ~ 37.8 157
CHEMET Valid 520 31.6 2.15
Test 663 36.6 1.95

Table 1: Statistics of our dataset. #Token denotes av-
erage number of words per sentence. #Entity denotes
average number of entities per sentence.

4 Benchmark Dataset

4.1 Dataset Creation

ChemNER+ Dataset. Since the annotation of
ChemNER dataset is not fully available online,
we decide to create our own dataset, Chem-
NER+, based on available sentences from Chem-
NER (Wang et al., 2021a) dataset. Following the
schema of ChemNER, we ask two Chemistry Ph.D.
students to annotate a new dataset, covering 59
fine-grained chemistry types with 742 sentences>.
CHEMET Dataset. We construct a new fine-
grained entity extraction dataset based on
CHEMET (Sun et al., 2021). For any entity in
the training set that overlaps with the validation
and testing sets, we replace its multi-labels with
the most frequent types that appear in the valida-
tion and testing sets. For other entities, we replace
the remaining types with their most frequent types
that appeared in the training set. We merge the
entity types with the same subcategory name in
CHEMET (Sun et al., 2021). The final dataset
consists of 30 fine-grained organic chemical types.
Table 1 shows the detailed data statistics.

$Human annotation details are in Appendix E.



k-shot 6 9 12 15 18
RoBERTa 809 798 8.00 1622 794
PubMedBERT 5.48 5.12 5.77 5.46 5.88
ScholarBERT 2396 29.82 27.65 31.48 32.76

"NNShot 099 143 239 1.61 245
StructShot 0.86 1.32 227 1.62 247

" InBoXBART 2623 27.89 28.83 33.64 30.39
+ Valid 3240 31.13 33.64 3531 3644
+ Valid + CL 33.11 3275 3475 37.89 38.65

Table 2: micro-F1 (%) scores for ChemNER+ with few-
shot settings. Valid is a model with a self-validation
module. CL is a model with a decoder contrastive loss.

k-shot 6 9 12 15 18
RoBERTa 491 416 479 483 481
PubMedBERT 4.07 4.67 387 447 396
ScholarBERT ~ 17.00 33.63 29.65 29.72 3252

" NNShot 423 403 414 527 476
StructShot 415 400 419 521 479

" InBoXBART 2993 2957 31.76 36.16 37.52°
+ Valid 32774 34.09 3330 40.81 3837
+ Valid + CL 33.81 3641 36.11 4052 39.94

Table 3: micro-F1 (%) scores for CHEMET with few-
shot settings.

4.2 Few-shot Setup

For each dataset, we randomly sample a subset
based on the frequency of each type class. Specif-
ically, given a dataset, we first set the number of
maximum entity mentions k for the most frequent
entity type in the dataset. We then randomly sample
other types and ensure that the distribution of each
type remains the same as in the original dataset. We
choose the values 6,9,12,15,18 as the potential
maximum entity mentions for k. The ChemNER+
and CHEMET few-shot datasets contain 52 and 28
types respectively.

5 Experiments

5.1 Baselines

We compare our model with (1) state-of-the-
art pretrained encoder-based models including
RoBERTa (Liu et al., 2019) and models with do-
main adaptive training, such as PubMedBERT (Gu
et al., 2021) and ScholarBERT (Hong et al., 2023).
We then compare our model with the (2) few-shot
baselines, including NNShot and StructShot (Yang
and Katiyar, 2020) based on RoBERTa-base. Since
we use InBoXBART (Parmar et al., 2022) as our
backbone, we also include (3) baselines for abla-
tion. The hyperparameters, training and evaluation
details are presented in Appendix A.

5.2 Overall Performance

Tables 2, 3 show that our models outperform base-
lines for few-shot settings by a large margin. Com-
pared to the best pretrained encoder-based Scholar-
BERT, pretrained on 221B tokens of scientific doc-
uments, seq2seq models generally achieve higher
performance in low-resource settings with fewer
parameters, as shown in Table 11. We also observe
that both NNshot and StructShot perform worse
than their original baseline. At a closer look, we
find that both methods miss many entities and mis-
label unrelated phrases as entities. The primary
reasons for this are twofold: first, the chemical do-
main’s entity mentions are more diverse and may
only appear in the testing set; second, there are
significantly more potential entity types than in
traditional entity extraction tasks. Therefore, the
two baselines cannot effectively utilize the nearest
neighbor information and perform worse than our
proposed methods. These results demonstrate that
seq2seq models have a better generalization ability
in few-shot settings.

k-shot 6 9 12 15 18
InBoXBART 36.96 3822 3834 4791 4284
+ Valid 45.07 4528 41.56 48.15 46.15

+ Valid + CL 4558 44.03 4525 51.68 47.88

Table 4: Mention micro-F1 (%) scores for ChemNER+
with few-shot settings.

k-shot 6 9 12 15 18

InBoXBART 46.74 42.07 4432 47.58 5290
+ Valid 47.87 46.01 44.18 50.55 50.50
+ Valid + CL 48.96 4983 47.03 50.61 54.10

Table 5: Mention micro-F1 (%) scores for CHEMET
with few-shot settings.

Additionally, the self-validation variants sig-
nificantly outperform the baseline InBoXBART,
showing the benefit of the self-validation mod-
ule in capturing mentions. Moreover, our self-
validation module can effectively enhance the per-
formance of the entity extraction module in ex-
tremely low-resource settings. In 6-shot scenar-
10s for both ChemNER+ and CHEMET datasets,
our model achieves impressive performance com-
pared to ScholarBERT, which further verifies the
effectiveness of the self-validation module. Finally,
adding decoder contrastive loss helps the model
perform significantly better in Table 2, suggesting



that contrastive learning further helps the mention
extraction quality by reducing excessive copying.
Interestingly, we observe that decoder contrastive
learning improves less in Table 3 than in Table 2,
because the CHEMET contains fewer entities per
sentence compared to the ChemNER+.

ChemNER+ CHEMET

NN
> o

Average Tokens
~
o
i
S

T T T T T T T T T T T

T
8 10 14 16 18 6 8 10 14 16 18

o

12 12
k-shot k-shot

INBoXBART ~ —— +Valid +Valid+CL

Figure 4: Average tokens in each mention for Chem-
NER+ and CHEMET datasets with few-shot settings.

Performance of Mention Extraction. We calcu-
late the mention F1 scores in Tables 4 and 5. In
addition, we also test a fully unsupervised mention
extraction based on AMR-Parser (Fernandez As-
tudillo et al., 2020)*. The Fl-scores are 38.22 and
45.33 for ChemNER+ and CHEMET, respectively.
These results imply that the self-validation model
generally improves the mention extraction accu-
racy. Moreover, adding decoder contrastive loss
generally further bolsters the mention F1 score by
reducing the number of tokens that appear in each
mention, as shown in Figure 4.

k-shot 6 9 12 15 18
RoBERTa 204 205 205 000 205
PubMedBERT 2.05 0.00 0.00 213 0.00
ScholarBERT ~ 0.00 928  4.71 0.00 6.90

“ InBoXBART ~ 833 1136 1522 17.14 7.69
+ Valid 10.81 1224 1026 9.76  23.81
+ Valid + CL 26.19 2391 2326 19.05 25.00

Table 6: micro-F1 (%) scores for long-tail entity types
ChemNER+ with few-shot settings.

Performance of Long-tail Entity. To evaluate
the performance of long-tail entities, we first rank
entity types by their frequency. We then select the
entity types that appear in the lower 50% and cal-
culate the F1 scores of those types®. The results
are in Tables 6 and 7. Notably, our proposed meth-
ods greatly outperform the encoder-based baselines.
Both the self-verification module and the decoder
contrastive loss aid the entity extraction module in
focusing on long-tail entities by creating a more bal-
anced distribution of entity types. The major reason
for the relatively low performance in Table 7 is that

“Implementation details are in Appendix A.
Entity frequency and selected types are in Appendix B.

6

k-shot 6 9 12 15 18
RoBERTa 0.00 0.00 0.00 0.00 0.00
PubMedBERT  0.00 0.00 0.00 0.00 0.00
ScholarBERT 0.00 0.00 0.00 0.00 0.00

" InBoXBART =~ 490 7.55 455 505 1226
+ Valid 872 1310 455 1696 20.83
+ Valid + CL 707 1132 833 515 23.01

Table 7: micro-F1 (%) scores for long-tail entity types
CHEMET with few-shot settings. The encoder-based
models fail to extract long-tail entity types for all few-
shot settings. Compared to encoder-based models,
seq2seq models can utilize label semantics in the gen-
eration procedure. Therefore, encoder-based models
require more training data under few-shot settings.

the differences between the types in CHEMET are
not significant. The relatively stable performance
of our model in Table 6 across increasing few-shot
examples indicates that our model achieves satisfac-
tory performance for long-tail entities, even with a
limited training sample.

6 Analysis
6.1 Qualitative Analysis

Table 8 shows two typical examples from the 18-
shot ChemNER+ dataset that illustrate how incor-
porating a self-validation module and decoder con-
trastive loss can improve the mention coverage and
long-tail entity performance.

In the first example, the InNBoXBART baseline
fails to identify both “cyclophanes” and “polycy-
cles”, probably because the input sentence con-
tains too many entities. With the help of the
self-validation module, the InBoXBART+Valid
model successfully captures the first entity “cy-
clophanes”. However, it still cannot recognize

“polycycles”. Additionally, both the baseline and

the InBoXBART+Valid model mistakenly treat the
entity “Suzuki cross-coupling and metathesis” and
the entity “metathesis”, because those models ex-
cessively copy from the original sentence. In con-
trast, by adding the decoder contrastive loss, which
uses the mentions with surrounding unrelated con-
texts as negatives, the model successfully separates
the entity “Suzuki cross-coupling and metathesis’
from the entity “metathesis”.

In the second example, both the baseline and
the InBoXBART+Valid model predict a very long
text span that treats three entities as a single entity.
They also fail to capture “asymmetric catalysis”
and “highly enantioselective process” as entities
because their types have low frequency in the train-

3]



ing set. With the help of decoder contrastive loss,
the model reduces the excessive copying of the
entity extraction module while trying to capture
important entities as accurately as possible. There-
fore, the model successfully classifies “asymmetric
catalysis” as Catalysis correctly and also predicts
“enantioselective process” as an entity.

6.2 Compatible with Other Few-shot
Datasets?

CrossNER Dataset. In the above experiments,
we focus on the few-shot settings for chemical pa-
pers and prove the effectiveness of our proposed
framework. To evaluate the generalization ability
of our proposed framework on other domains, we
conduct experiments on the CrossNER dataset (Liu
et al., 2021). The detailed statistics are in Table 9.
We remove sentences without any entity. Because
the CrossNER dataset is based on Wikipedia arti-
cles, we choose RoBERTa and ScholarBERT as
encoder-based baselines. Additionally, we select
BART-base (Lewis et al., 2020) as the backbone
for our ablation variations.

Results. As shown in Table 10, our model con-
sistently produces the best F1 scores across all five
domains of CrossNER without any external knowl-
edge or domain adaptive pretraining. We observe
that the model achieves the largest gain for the
Al domain and the smallest gain for the politics
domain. The major reason behind this is that Al
domain contains the most informative entity types,
which cover the key points of the sentence, includ-
ing algorithm, task, etc. On the contrary, the pol-
itics domain contains many names of politicians
and locations, which require background knowl-
edge for the self-verification module to identify.

6.3 Remaining Challenges

Misleading Subwords. We observe that the men-
tion text can sometimes mislead the type predic-
tions, especially if the type contains a subword
from the mention. As a result, the model fails to
identify the type correctly. For example, given the
mention “unnatural amino acid derivatives”, our
model focuses on the word “acid” and predicts the
entity to be Organic acids instead of Organonitro-
gen compounds. The potential reason behind this
is that the BART model incorrectly associates the
“acid” in the mention with Organic acids. Such
type errors might be incorporated into the decoder
contrastive learning as additional hard negatives.

Fine-grained Type Classification. The model
tends to predict generic entity types instead of more
fine-grained entity types. For instance, the model
predicts the mention “Cs2CO3” as Inorganic com-
pounds instead of Inorganic carbon compounds.
This issue might come from annotation ambiguity
in the training set. Additionally, the model pre-
dicts types that are not in the predefined ontology.
For instance, the model labels “GK” as Genecyclic
compounds instead of Enzymes. This error can
possibly be solved by constraint decoding.

7 Related Work

Scientific Entity Extraction. Entity extraction
for scientific papers has been widely exploited
in the biomedical domain (Nguyen et al., 2022;
Labrak et al., 2023; Cao et al., 2023; Li et al.,
2023b; Hiebel et al., 2023) and the computer sci-
ence domain (Luan et al., 2018; Jain et al., 2020;
Viswanathan et al., 2021; Shen et al., 2021; Ye
et al., 2022; Jeong and Kim, 2022; Hong et al.,
2023). Despite this, fine-grained scientific entity
extraction (Wang et al., 2021a) in the chemical
domain receives less attention due to the scarcity
of benchmark resources. Most benchmarks in the
chemical (Krallinger et al., 2015; Kim et al., 2015)
only provide coarse-grained entity types. In this
paper, we address this problem by releasing two
new datasets for chemical fine-grained entity ex-
traction based on the ChemNER schema (Wang
et al., 2021a) and CHEMET dataset (Sun et al.,
2021).

Few-shot Entity Extraction. Few-shot learn-
ing attracts growing interest, especially for low-
resource domains. Previous improvements for
few-shot learning can be divided into several cat-
egories: domain-adaptive training by training the
model in the same or similar domains (Liu et al.,
2021; Oh et al., 2022), prototype learning by learn-
ing entity type prototypes (Ji et al., 2022; Oh
et al., 2022; Ma et al., 2023), prompt-based meth-
ods (Lee et al., 2022; Xu et al., 2023; Nookala
et al., 2023; Yang et al., 2023; Chen et al., 2023b),
data-augmentation (Cai et al., 2023; Ghosh et al.,
2023), code generation (Li et al., 2023a), meta-
learning (de Lichy et al., 2021; Li et al., 2022;
Ma et al., 2022), knowledge distillation (Wang
et al., 2021c; Chen et al., 2023a), contrastive learn-
ing (Das et al., 2022), and external knowledge
including label definitions (Wang et al., 2021b),
AMR graph (Zhang et al., 2021), and background



InBoXBART Several cyclophanes, polycycles, ... have been synthesized by employing a combination of Suzuki cross-
coupling and metathesis coupling reactions-

+Valid Several cyclophanes peierocyclic compounds, polycycles, ... have been synthesized by employing a combination of
Suzuki cross-coupling and metathesis organic reactions-

+Valid+CL  Several cyclophanes wecrocyclic compounds, POLyeyeles giomolecules, ... have been synthesized by employing a combi-
nation of Suzuki cross-coupling coupling reactions and metathesis chemical properties-

Ground Several cyclophanes aomatic compoundss POIYCYCIES Organic polymers, ... have been synthesized by employing a combi-

Truth nation of Suzuki cross-coupling coupling reactions and metathesis substitution reactions -

InBoXBART ... with the advantages of asymmetric catalysis (step and atom economy) in a rare example of an enantioselec-
tive cross coupling of a racemic electrophile bearing an oxygen leaving group caaysis -.. the identification of a
highly enantioselective process.

+Valid ... with the advantages of asymmetric catalysis (step and atom economy) in a rare example of an enantiose-
lective cross coupling of a racemic electrophile bearing an oxygen leaving group organometallic compounds --- the
identification of a highly enantioselective process

+Valid+CL  ...with the advantages of asymmetric catalysis caulysis (step and atom economy) in a rare example of an
enantioselective cross coupling of a racemic electrophile bearing an oxygen leaving group runctional groups --- the
identification of a highly enantioselective process chemical properties-

Ground . with the advantages of asymmetric catalysis cuuysis ( step and atom economy ) in a rare example of

Truth an enantioselective cross coupling coupling reactions Of @ racemic electrophile oreanic compounds bearing an oxygen

leaving group runctional sroups - the identification of a highly enantioselective process cauysis-

Table 8: Examples showing how the self-validation module and entity decoder contrastive loss improves the model

performance. We highlight Complete Correct, Missed Entity, and Partially Correct Prediction with different color.
Compared to other baselines, our +Valid+CL successfully captures entities where other baselines miss.

Dom. Train Valid Test #Type #Token #Entity

introduced in machine translation (He et al., 2016;
Cheng et al., 2016; Lample et al., 2018; Mohiud-

Al 100 350 430 14 315 4.42

Lit. 99 400 416 12 37.6 5.39 din and Joty, 2019; Xu et al., 2020) to deal with
If\)/f)‘;s' ;88 gi? 22? 193 1;45‘ 222 the scarcity of parallel data, cycle consistency has
Sci. 200 450 543 17 358 562 been expanded to other natural language processing

Table 9: Statistics of CrossNER. Dom. denotes the
domain of the dataset.

tasks, including semantic parsing (Cao et al., 2019;
Ye et al., 2019), natural language understanding (Su
et al., 2019; Tseng et al., 2020; Su et al., 2020),
and data-to-text generation (Dognin et al., 2020;

Model Al Lit. Mus. Pol. Sci. Guo et al., 2020; Wang et al., 2023b). Recently,

RoBERTa 60.88 67.51 59.07 63.79 60.96 Tovine et al. (2022) successfully apply the cycle
_ ScholarBERT ~_ 56.99 5935 5226 5715 57.01 =~ copgistency to entity extraction by introducing an

BART-base 59.20 6690 62.78 67.99 62.18 . . . . .

+ Valid 61.84 6797 6094 6722 6240 iterative two-stage cycle consistency training proce-

+Valid+CL 6248 68.22 63.39 68.03 62.87 dure. Despite these efforts, the non-differentiability

Table 10: F1 (%) scores for CrossNER.

knowledge (Lai et al., 2021). In contrast to these
methods, our approach formulates the task in a text-
to-text framework. In addition, we introduce a new
simple but effective self-validation module, which
achieves competitive performance without external
knowledge or domain adaptive training.

Cycle Consistency. Cycle consistency, namely
structural duality, leverages the symmetric struc-
ture of tasks to facilitate the learning process. It
has emerged as an effective way to deal with low-
resource tasks in natural language processing. First

of the intermediate text in the cycle remains un-
solved, leading to the inability to propagate the
loss through the cycle. To address this issue, lovine
et al. (2022) and Wang et al. (2023b) alternatively
freeze one of the two models in two adjacent cycles.
On the contrary, we introduce the gumbel-softmax
estimator to avoid the non-differentiable issue. Ad-
ditionally, we reduce the dual cycle training into
end-to-end training to save time and computation
resources.

8 Conclusion and Future Work

In this paper, we introduce a novel framework for
chemical fine-grained entity extraction. Specifi-



cally, we target two unique challenges for few-shot
fine-grained scientific entity extraction: mention
coverage and long-tail entity extraction. We build a
new self-validation module to automatically proof-
read the entity extraction results and a novel de-
coder contrastive loss to reduce excessive copy-
ing. Experimental results show that our proposed
model achieves significant performance gains on
two datasets: ChemNER+ and CHEMET. In the
future, we plan to explore incorporating an exter-
nal knowledge base to further improve the model’s
performance. Specifically, we plan to inject type
definition into the representation to facilitate the
entity extraction procedure. We will also continue
exploring the use of constraint decoding to further
improve entity extraction quality.

9 Limitations

9.1 Limitations of Data Collections

Both ChemNER+ and CHEMET are based on
papers about Suzuki Coupling reactions from
PubMed®. Our fine-grained entity extraction
datasets are biased towards the topics and ontol-
ogy provided by ChemNER+ and CHEMET. For
example, CHEMET only focuses on the organic
compounds. The number of available sentences is
limited by the original dataset and our annotation
efforts. We currently only focus on the English sen-
tences. We only test our model on chemical papers
(i.e., ChemNER+ and CHEMET) and Wikipedia
(CrossNER). In the future, we aim to adapt our
model for categories in other languages.

9.2 Limitations of System Performance

Our few-shot learning framework currently re-
quires defining the entity ontology and few-shot
examples before performing any training and test-
ing. Therefore, due to patterns in the pretraining set,
our model might produce mention types that don’t
align with our predefined ontology. For instance, it
may generate Cyclopentadienyl compounds instead
of the predefined type Cyclopentadienyl complexes.
Furthermore, the pretrained model might empha-
size language modeling over accurately identifying
entire chemical phrases. For example, it might rec-
ognize Pd in the catalyst Pd(OAC)2 simply as a
transition metal.

®https://pubmed.ncbi.nlm.nih.gov/
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A Training and Evaluation Details

Avg. runtime # of Parameters

RoBERTa 16min 125M
PubMedBERT 18min 109M
ScholarBERT 19min 355M
InBoXBART 58min 139M
+Valid 56min 279M
+Valid+CL 59min 279M

Table 11: Runtimne (exclude CrossNER) and Number
of Model Parameters

Our baselines and model are based on the Hug-
gingface framework (Wolf et al., 2020)”. Our mod-
els are trained on a single NVIDIA A100 GPU.

"https://github.com/huggingface/transformers
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All hyperparameter settings are listed below. We
optimize all models by AdamW (Loshchilov and
Hutter, 2019). The runtime and number of parame-
ters is listed in Table 11.

RoBERTa. We train a RoBERTa-base model
with 100 epochs and a batch size 32. The learning
rate is 2 x 1075 with e = 1 x 10~%. We use a linear
scheduler for the optimizer.

PubMedBERT. The PubMedBERT has the same
model architecture as BERT-base with 12 trans-
former layers. The original checkpoint is pretrained
on PubMed abstracts and full-text articles. We
train a microsoft/BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext model with 100 epochs
and a batch size 32. The learning rate is 2 x 107°
with € = 1 x 1079, We use a linear scheduler for
the optimizer.

ScholarBERT. The ScholarBERT is based on
the same architecture as BERT-large. The original
checkpoint is pretrained on 5,496,055 articles from
178,928 journals. The pretraining corpus has 45.3%
articles about biomedicine and life sciences. We
train a globuslabs/ScholarBERT model with 100
epochs and a batch size 32. The learning rate is
2 x 1075 with ¢ = 1 x 1075. We use a linear
scheduler for the optimizer.

InBoXBART. The InBoXBART is an
instructional-tuning language model for 32
biomedical NLP tasks based on BART-base. We
train the cogint/in-boxbart model with 100 epochs
and a batch size 16. The learning rate is 107>
with € = 1 x 1079, During decoding, we use
beam-search to generate results with a beam size 5.
We use cosine annealing warm restarts schedule
(Loshchilov and Hutter, 2017) for the optimizer.

InBoXBART+Valid. We first pretrain the self-
validation model, which is based on cogint/in-
boxbart, on the training set. The learning rate
for the self-validation module is 1 x 107> with
e = 1 x 107% We use BLUE and ROUGE to
select the best model. We then train the entity ex-
traction model and the self-validation model jointly
with cross-entropy Lgen loss and reconstruction
loss Lrecon- The finalloss is £ = Lgen + 5+ Lrecon-
The learning rate is 5 x 107> with e = 1 x 1076,
During decoding, we use beam-search to generate
results with a beam size 5. We use cosine anneal-
ing warm restarts schedule (Loshchilov and Hutter,
2017) for the optimizer.
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InBoXBART+Valid+CL. The final model is
similar to InBoXBART+Valid. We retain the self-
validation module and add a new decoder con-
trastive loss. The final loss is £ = Lgen +0.2- L1+
5+ Liecon- We randomly choose 5 negative samples
for each instance. The learning rate is 5 x 107>
with ¢ = 1 x 1075, During decoding, we use
beam-search to generate results with a beam size
5. We use cosine annealing warm restarts schedule
(Loshchilov and Hutter, 2017) for the optimizer.

AMR-based Mention Extraction. We use
AMR-parser (Fernandez Astudillo et al., 2020) to
extract mentions. We treat all text spans that are
linkable to Wikipedia as mentions.

NNShot and StructShot. We use the imple-
mentation from Ding et al. (2021) and choose
RoBERTa-base as the language model.

Evaluation Metrics. We use entity-level micro-
F1 for all experiments. We use the library from
nereval https://github.com/jantrienes/ne
reval.

B Dataset Details

We list the entity types of ChemNER+ and
CHEMET below:

* ChemNER+: Transition metals, Organic
acids, Heterocyclic compounds, Organometal-
lic compounds, Reagents for organic chem-
istry, Inorganic compounds, Thermody-
namic properties, Aromatic compounds,
Metal halides, Organic reactions, Alkylating
agents, Organic compounds, Coupling reac-
tions, Functional groups, Inorganic silicon
compounds, Stereochemistry, Organohalides,
Chemical properties, Catalysts, Free radi-
cals, Alkaloids, Coordination chemistry, Lig-
ands, Organophosphorus compounds, Re-
active intermediates, Substitution reactions,
Inorganic carbon compounds, Organonitro-
gen compounds, Biomolecules, Coordina-
tion compounds, Halogens, Chemical ele-
ments, Chlorides, Elimination reactions, Or-
ganic redox reactions, Inorganic phospho-
rus compounds, Organic polymers, Macro-
cycles, Cyclopentadienyl complexes, Sub-
stituents, Name reactions, Spiro compounds,
Chemical kinetics, Organometallic chemistry,
Catalysis, Organosulfur compounds, Ring
forming reactions, Noble gases, Protecting


https://github.com/jantrienes/nereval
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groups, Addition reactions, Carbenes, Inor-
ganic nitrogen compounds, Non-coordinating
anions, Polymerization reactions, Carbon-
carbon bond forming reactions, Isomerism,
Enzymes, Oxoacids, Hydrogenation catalysts

e CHEMET: Acyl Groups, Alkanes, Alkenes,
Alkynes, Amides, Amines, Aryl Groups,
Carbenes, Carboxylic Acids, Esters, Ethers,
Heterocyclic Compounds, Ketones, Ni-
triles, Nitro Compounds, Organic Polymers,
Organohalides, Organometallic Compounds,
Other Aromatic Compounds, Other Hydro-
carbons, Other Organic Acids, Other Or-
ganic Compounds, Other Organonitrogen
Compounds, Other Organophosphorus Com-
pounds, Phosphinic Acids And Derivatives,
Phosphonic Acids, Phosphonic Acids And
Derivatives, Polycyclic Organic Compounds,

1, Alkylating agents: 1, Polymerization reac-
tions: 1

* CHEMET: Other Organic Compounds: 1705,
Ethers: 934, Other Aromatic Compounds:
882, Heterocyclic Compounds: 792, Alka-
nes: 528, Amides: 516, Other Organonitro-
gen Compounds: 501, Organometallic Com-
pounds: 495, Esters: 440, Amines: 431, Ke-
tones: 406, Polycyclic Organic Compounds:
375, Aryl Groups: 363, Organohalides: 312,
Alkynes: 281, Alkenes: 266, Organic Poly-
mers: 255, Other Hydrocarbons: 236, Other
Organic Acids: 194, Other Organophosphorus
Compounds: 97, Acyl Groups: 78, Nitriles:
77, Carboxylic Acids: 62, Sulfonic Acids: 37,
Nitro Compounds: 26, Carbenes: 9, Phospho-
nic Acids And Derivatives: 4, Thiols: 2

Sulfonic Acids, Thiols We consider the following types as long-tail en-
tity types for ChemNER+ and CHEMET. We list

The frequency for each type in the training data both the entity type and its frequency:

of both ChemNER+ and CHEMET are listed be-
low:

e ChemNER+: Organic compounds: 183,
Coupling reactions: 171, Aromatic com-
pounds: 136, Functional groups: 120, Het-
erocyclic compounds: 106, Catalysts: 70,
Biomolecules: 66, Chemical elements: 64,
Organohalides: 63, Transition metals: 56,
Chemical properties: 55, Ligands: 55, Or-
ganic acids: 48, Thermodynamic properties:
43, Inorganic compounds: 43, Coordina-
tion compounds: 37, Stereochemistry: 33,
Organometallic compounds: 33, Reagents for
organic chemistry: 28, Coordination chem-
istry: 27, Organonitrogen compounds: 26, Or-
ganic reactions: 23, Organic polymers: 23,
Substitution reactions: 21, Catalysis: 20, Or-
ganic redox reactions: 18, Reactive intermedi-
ates: 13, Substituents: 13, Halogens: 12, Ad-
dition reactions: 8, Chlorides: 6, Ring form-
ing reactions: 6, Inorganic carbon compounds:
6, Enzymes: 6, Alkaloids: 4, Organophospho-
rus compounds: 4, Organosulfur compounds:
4, Oxoacids: 4, Elimination reactions: 3, Car-
benes: 3, Inorganic phosphorus compounds:
2, Chemical kinetics: 2, Macrocycles: 2, No-

¢ ChemNER+: Reactive intermediates: 13, Sub-
stituents: 13, Halogens: 12, Addition reac-
tions: 8, Chlorides: 6, Ring forming reac-
tions: 6, Inorganic carbon compounds: 6, En-
zymes: 6, Alkaloids: 4, Organophosphorus
compounds: 4, Organosulfur compounds: 4,
Oxoacids: 4, Elimination reactions: 3, Car-
benes: 3, Inorganic phosphorus compounds:
2, Chemical kinetics: 2, Macrocycles: 2, No-
ble gases: 2, Organometallic chemistry: 2,
Hydrogenation catalysts: 2, Metal halides:
1, Cyclopentadienyl complexes: 1, Inorganic
nitrogen compounds: 1, Protecting groups:
1, Alkylating agents: 1, Polymerization reac-
tions: 1

* CHEMET: Alkynes: 281, Alkenes: 266,
Organic Polymers: 255, Other Hydrocar-
bons: 236, Other Organic Acids: 194, Other
Organophosphorus Compounds: 97, Acyl
Groups: 78, Nitriles: 77, Carboxylic Acids:
62, Sulfonic Acids: 37, Nitro Compounds: 26,
Carbenes: 9, Phosphonic Acids And Deriva-
tives: 4, Thiols: 2

- > C Evaluation on Whole Dataset
ble gases: 2, Organometallic chemistry: 2,

Hydrogenation catalysts: 2, Metal halides:
1, Cyclopentadienyl complexes: 1, Inorganic
nitrogen compounds: 1, Protecting groups:

We conduct fully supervised training on all train-
ing sets. The results are listed in Table 12 and
13. We observe that the self-validation module
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Model Precision  Recall F1

In-BoXBART 55.73 43.28 48.72
+ Valid 57.49 45.77 50.97
+ Valid + CL 57.41 46.20 51.10

Table 12: micro-F1 for ChemNER+ with the whole
training set.

still improves the performance of the original In-
BoXBART for two datasets. We observe that the
decoder contrastive loss further improves the model
performance on ChemNER+. However, adding
the entity decoder contrastive loss slightly de-
creases it. Because there are 6561 sentences in the
CHEMET dataset, which is larger than the Chem-
NER+ dataset, the model with the self-validation
module already performs very well. Additionally,
since the CHEMET model contains fewer entities
per sentence than the ChemNER+ dataset and these
entities are all organic compounds separated away
from each other, the entity decoder contrastive loss
might introduce noise into the generation results,
consequently decreasing the performance.

Model Precision  Recall F1

In-BoXBART 64.94 41.62 50.73
+ Valid 70.09 42.16 52.65
+ Valid + CL 68.50 41.31 51.15

Table 13: micro-F1 for CHEMET with the whole train-
ing set.

D Scientific Artifacts

We list the licenses of the scientific artifacts used
in this paper: PMC Open Access Subset (Gamble,
2017)% (CC BY-NC, CC BY-NC-SA, CC BY-NC-
ND licenses), Huggingface Transformers (Apache
License 2.0), ChemNER (no license), CHEMET”
(MIT license), RoBERTa (cc-by-4.0), PubMed-
BERT (MIT license), ScholarBERT (apache-2.0),
BLEU!?, ROUGE!!, InBoXBART (MIT license),
brat (MIT license), and nereval (MIT license). Our
usage of existing artifacts is consistent with their
intended use.

8https://www.ncbi.nlm.nih.gov/pmc/tools/openf
tlist/

ghttps://github.com/chenkaisun/MMLI1

10https://github.com/cocodataset/cocoapi/blob/
master/license.txt

11https://github.com/cocodataset/cocoapi/blob/
master/license.txt
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E Human Annotation

The instructions for human annotations can be
found in the supplementary material. Human anno-
tators are required to annotate the chemical com-
pound entities mentioned either in natural language
or chemical formulas and other chemical related
terms including reactions, catalysts, etc. We re-
cruit two senior Ph.D. students from the Chemistry
department in our university to perform human an-
notations. We use brat (Stenetorp et al., 2012) for
all human annotations.

F Ethical Consideration

The Chem-FINESE model and corresponding mod-
els we have designed in this paper are limited to
the chemical domain, and might not be applicable
to other scenarios.

F.1 Usage Requirement

Our Chem-FINESE system provides investigative
leads for few-shot fine-grained entity extraction for
the chemical domain. Therefore, the final results
are not meant to be used without any human re-
view. However, domain experts might be able to
use this tool as a research assistant in scientific dis-
covery. In addition, our system does not perform
fact-checking or incorporate any external knowl-
edge, which remains as future work. Our model
is trained on PubMed papers written in English,
which might present language barriers for readers
who have been historically underrepresented in the
NLP/Chemical domain.

F.2 Data Collection

Our ChemNER+ sentences are based on papers
from PMC Open Access Subset. Our annotation
is approved by the IRB at our university. All an-
notators involved in the human evaluation are vol-
untary participants and receive a fair wage. Our
dataset can only be used for non-commercial pur-
poses based on PMC Open Access Terms of Use.


https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://github.com/chenkaisun/MMLI1
https://github.com/cocodataset/cocoapi/blob/master/license.txt
https://github.com/cocodataset/cocoapi/blob/master/license.txt
https://github.com/cocodataset/cocoapi/blob/master/license.txt
https://github.com/cocodataset/cocoapi/blob/master/license.txt

GPTs Are Multilingual Annotators for Sequence Generation Tasks

Juhwan Choi!, Eunju Lee?, Kyohoon Jin?> and Youngbin Kim'?

'Department of Artificial Intelligence, Chung-Ang University
2Graduate School of Advanced Imaging Sciences, Multimedia and Film, Chung-Ang University
{gold5230,dmswn5829, fhzhl23, ybkim85}@cau.ac.kr

Abstract

Data annotation is an essential step for con-
structing new datasets. However, the conven-
tional approach of data annotation through
crowdsourcing is both time-consuming and
expensive. In addition, the complexity of
this process increases when dealing with low-
resource languages owing to the difference in
the language pool of crowdworkers. To ad-
dress these issues, this study proposes an au-
tonomous annotation method by utilizing large
language models, which have been recently
demonstrated to exhibit remarkable perfor-
mance. Through our experiments, we demon-
strate that the proposed method is not just cost-
efficient but also applicable for low-resource
language annotation. Additionally, we con-
structed an image captioning dataset using
our approach and are committed to open this
dataset for future study. We have opened our
source code for reproducibility.'

1 Introduction

With the evolution of deep learning methods, var-
ious tasks in the NLP domain have demonstrated
remarkable performance. However, training deep
learning models requires a substantial amount of la-
beled data. Data annotation, a process of gathering
unlabeled data and labeling them, plays a crucial
role in fulfilling this data demand.

However, as the conventional procedure of data
annotation is mainly conducted manually using hu-
man annotators, it cannot meet the growing demand
for labeled data with an increase in the size of deep
learning models (Qiu et al., 2020). Moreover, it is
significantly challenging to recruit annotators for
low-resource languages (Pavlick et al., 2014).

To address the lack of labeled data and improve
the performance of the model, the concept of pre-
trained language model (PLM) was introduced.

"https://github.com/c-juhwan/
gpt-multilingual-annotator
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These PLMs have been trained on a large amount of
text corpus to acquire a general knowledge of lan-
guages (Radford et al., 2018; Devlin et al., 2019).
By fine-tuning these models to specific downstream
task, it was able to achieve performance improve-
ment without the need for additional labeled data.

With the evolution of PLMs via the enlargement
of their sizes owing to increased training data, the
development of a large language model (LLM) with
massive parameter size enabled few-shot learning
from the context of the given prompt (Brown et al.,
2020). Accordingly, the diverse capabilities of
LLMs have been investigated (Zhao et al., 2023).

However, despite their impressive abilities and
adaptability, these LLMs cannot be actively ex-
ploited for downstream tasks because of the cost
constraints and demand for hardware resources
caused by their extensive model size. Addition-
ally, fine-tuning these models for specific purposes
remains challenging due to their massive parame-
ter size. Consequently, training models for down-
stream tasks through labeled data is still the domi-
nant approach for practical applications (Yu et al.,
2023).

Data annotation refers to the creation of labeled
data by assigning gold labels to unlabeled data. Tra-
ditionally, data annotation was mainly conducted
by human labelers using crowdsourcing platforms,
such as Amazon mechanical turk (MTurk), and
these platforms have aided the creation of mod-
ern, large-scale datasets. Recently, to address these
limitations of crowdsourcing-based data annota-
tion and achieve a cost-efficient means to collect
labeled data, several studies have proposed the uti-
lization of LLMs as alternative annotators in place
of human labelers (Wang et al., 2021; Ding et al.,
2023; Gilardi et al., 2023; Jiao et al., 2023; Li et al.,
2023; Zhang et al., 2023; He et al., 2023; Bansal
and Sharma, 2023). These studies have shown the
possibility of cost-efficient and automatic data an-
notation through LLMs, such as GPT-3.
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Figure 1: Overall concept of our GPT annotator. (a) Conventional annotation process for image captioning task,
which is performed by multiple human annotators and expensive. Moreover, it is more expensive to hire human
annotators for low-resource languages. (b) The annotation process of proposed GPT annotator. With one gold
caption by a single human annotator, the GPT annotator automatically generates silver captions, as well as captions
in other languages, resulting in a cost-efficient dataset construction.

However, as these existing studies mainly fo-
cused on simple tasks, such as text classification,
additional investigation is required to apply these
approaches to numerous subtasks of natural lan-
guage processing. Moreover, the potential of au-
tomatic data annotation via LLMs has not been
explored for languages other than English. As
previously highlighted, projects in low-resource
languages may suffer from the high cost of data
annotation, necessitating the need for automatic
annotators for languages beyond English.

In this study, we proposed a strategy that lever-
ages LLMs as an assistant annotator to aid human
annotators in image captioning task and text style
transfer task. As depicted in Figure 1, the conven-
tional process of establishing datasets for image
captioning task required a considerable number
of human annotators to generate five gold anno-
tations for each image, resulting in a high cost
for dataset construction in languages beyond En-
glish. Moreover, the quality of the annotated data
varies depending on the proficiency of the human
annotators (Rashtchian et al., 2010). Similarly, the
annotation process for text style transfer required
significant human effort, including quality control

(Rao and Tetreault, 2018; Briakou et al., 2021).

This study demonstrated the ability of LLMs to
serve as assistant annotators for human annotators
at a reasonable cost by generating multiple silver
sentences for each gold annotation written by one
single human annotator. Specifically, we proposed
a cost-efficient process to construct multilingual
language datasets by exploiting the GPT annotator.
Particularly, we utilized GPT-4, which exhibits en-
hanced multilingual capabilities (OpenAl, 2023),
to autonomously produce diverse sentences in an-
other language from a single English sentence, even
if the human annotator is not familiar with the tar-
get language. Moreover, the cost of the GPT an-
notator is constant as the cost is determined by the
length of the processed token, regardless of the
language. This highlights the efficiency of the pro-
posed GPT annotator as an annotation method for
low-resource language, which is more expensive
and time-consuming compared to English.

Employing this method, we developed an im-
age captioning dataset in Latvian, Estonian, and
Finnish — which are well-known low-resource lan-
guages — by employing the GPT annotator. In
this scenario, a single human annotator, who lacks
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knowledge of the target language, provides one
English gold caption for each image. Through
the experiment, we demonstrated that the pro-
posed method achieves better performance com-
pared to machine translation method. We open
these datasets to support future studies. Addition-
ally, we release software to easily perform data
annotation process described in this paper.
Our contributions are summarized as follows:

* To the best of our knowledge, this is the first
work to explore the possibility of LLM as a
multilingual annotator.

To the best of our knowledge, this is the first
study to employ LLLM as an automatic anno-
tator for image captioning task and text style
transfer task.

Our experiment reveals the ability of GPT
annotators to serve as human annotators at
a reasonable cost.

* We release an annotation software to easily
perform the method described in the paper,
as well as three image captioning datasets in
Latvian, Estonian, and Finnish.

2 Related Work

GPT-3 has demonstrated that LLMs can conduct in-
context learning from few-shot prompts. Accord-
ingly, various LLMs with different characteristics
have been proposed (Zhao et al., 2023). For exam-
ple, based on the findings that LL.Ms can be fur-
ther enhanced via human instruction and feedback
(Ouyang et al., 2022), ChatGPT? and its backbone
GPT-3.5 with various abilities have emerged (Leiter
et al., 2023; Yang et al., 2023; Liu et al., 2023). In
addition, the cutting-edge GPT-4 (OpenAl, 2023)
is a progressed version of GPT-3.5, with a longer
input sequence, improved multilingual ability, and
image inception ability.

With the advancement of LLMs, studies have
been conducted to augment given human-annotated
data (Yoo et al., 2021; Whitehouse et al., 2023), or
to annotate unlabeled data and train models for
downstream tasks. One of the early studies in this
field (Wang et al., 2021) proposed an automatic
annotation method that demonstrated the ability of
GPT-3 to annotate a greater amount of data com-
pared to human annotators at a lower labeling cost,

https://openai.com/blog/chatgpt
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resulting in higher performance at the same cost,
and this strategy was observed to outperform GPT-
3 itself. In addition, the study investigated the
possibility of a collaboration between human and
GPT annotators by leveraging the confidence of
the automatic annotation of GPT to perform active
labeling by human annotators.

Following this approach, subsequent studies ex-
panded the annotation capabilities of GPT-3 to not
just label unlabeled data but also create labeled
data leveraging external knowledge, or even from
scratch (Ding et al., 2023). Meanwhile, a methodol-
ogy was proposed to transfer the abilities of LLMs
into a smaller model by generating a rationale for
the labeled data, enhancing the performance of the
small model (Hsieh et al., 2023).

With the emergence of ChatGPT, an improved
version of GPT-3 that enables enhanced flexibility
across diverse tasks, researchers have proposed its
application for data annotation. ChatGPT has been
reported to outperform crowdworkers in text classi-
fication tasks in certain cases with the same instruc-
tions (Gilardi et al., 2023). Additionally, studies
observed that ChatGPT even surpassed expert label-
ers in the annotations of political texts (Térnberg,
2023). These results have led researchers to ex-
amine the annotation abilities of ChatGPT across
various domains (Zhu et al., 2023).

Recent studies have expanded the application of
LLMs as annotators, from language understanding
tasks, such as text classification or inference, to text
generation tasks. For example, a previous study
reported improved performance in query-focused
summarization by reducing the noise of ChatGPT
(Laskar et al., 2023). Additionally, dialogue gener-
ated by ChatGPT has been observed to demonstrate
comparable quality to reference dialogues written
by human annotators (Labruna et al., 2023).

These studies indicate the capability of LLMs,
including ChatGPT, to perform as an effective an-
notator for not just text understanding tasks but
also text generation tasks, which are more com-
plex and challenging to annotate. However, the
application of these abilities of LLMs to various
natural language processing tasks is still limited
and underexplored. In this study, we proposed
an LL.M-based annotation method for image cap-
tioning task and text style transfer task, which has
not been investigated in previous studies. Further-
more, we validated the feasibility of LLMs as an
autonomous multilingual annotator, which has not
been explored in previous works.


https://openai.com/blog/chatgpt

3 Method

3.1 Task Formulation

We first define a dataset D, which is composed
of the data pair d = (X,Y’). In image caption-
ing task, X denotes a given image and Y
{Yg1+Ygss ---» Ygs } 1is corresponding captions that
describe X . In this paper, g means “gold”, which
represents a human-annotated sentence. Similarly,
in text style transfer task, X denotes the original
sentence and Y indicates human-annotated pair
sentence with desired style.

Traditionally, multiple human annotators are
used to write descriptions for unannotated data X
to construct such datasets, especially for image
captioning, which requires multiple captions for
each image. However, as previously discussed, this
entirely human-based annotating process is expen-
sive and time-consuming. Our GPT annotator aims
to construct a data pair by autonomously generat-
ing silver sentences and reduce the time and cost
consumption of data annotation process.

Additionally, we explore the multilingual ability
of the GPT annotator. The cost of data annotation
varies by language. Especially, Low-resource lan-
guages are associated with higher cost and high
time consumption for the collection of annotated
data (Ul Haque et al., 2021; Guemimi et al., 2021;
Lietal., 2019; Kim et al., 2021). This phenomenon
is caused by the language pool of the crowdworkers
(Pavlick et al., 2014) and the difficulty of training
low-resource language natives (Lin et al., 2018).
In this study, we propose a method to employ the
GPT annotator as a multilingual annotator through
the adaptation of GPT-4, which has significantly
improved multilingual ability (OpenAl, 2023).

3.2 Assistant Multilingual Annotator for
Image Captioning Task

To achieve the aforementioned goal, we synthe-
sized the given human-annotated caption y4, by
utilizing the GPT model, and generated a set of
paraphrases {ys,, ..., Ys; } based on yg, .

We configured a well-designed prompt P, as
the input for GPT to achieve this object. As it
has been reported that LLMs perform significantly
better with examples rather than zero-shot (Brown
et al., 2020), the prompt P includes an one-shot de-
sired example. The process of generating sentences
through GPT can be expressed as follows.

{y527 AR y85} = GPT<P7 yg1) (1)
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[Captioning /Korean /Neutral Form]
Of2l ofo|7t 54 ST N BUAH H7E
st QUch,

[Original English Caption]
A young boy playing soccer
on a grassy field.

[Original English TST Sentence]
1 prefer to let the guy ask me.

R

Mot dira tré dang tham gia vao mot trai

GPT
n
dau bong da trén mét canh dong xanh.

Annotator

v Task
v Language
v Requirements

[Captionii /Debiasi

[TST/French/Formal Style]
Ma préférence est d'attendre
que I'homme pose la question.

Figure 2: Our GPT annotator can generate various
datasets with configurable prompts, primarily regarding
task, language, and specific requirements.

The machine-annotated caption produced in
Eq. 3 is used to construct a new data pair, d' =
(X, Yg1>Yso» --s Yss ), and a downstream task model
is trained using dataset D’, a collection of these d’.
Consequently, GPT can be used to assist human
annotators with image captioning task.

In addition, to employ our GPT annotator as
multilingual annotator, it first synthesizes a data
pair with one single human annotation in English,
d*° = (X, yg,?) to reduce the cost of hiring multi-
ple human annotators. Secondly, the GPT annotator
generates a set of paraphrases in a target language
{y&', ..., y8"}. This process is performed through a
prompt P'¢" with information in the target language,
including a one-shot desired example. We found
it helpful to jointly generate English sentence and
its translation rather than solely generate sentences
in the target language, as English sentence guides
the generation of target language sentence. Spe-
cific prompts can be found in Appendix F.1. The
described process can be expressed as follows.

18t
vy Yor

eng

} = GPT(P¥, y"

_ gt
thgt - {ysﬁa

)

The dataset in target language D' can be con-
structed through d'$' = (X, Y'¢') obtained by the
GPT annotator, and a downstream task model in
the target language can be trained using this DS’
This overall process enables the construction of a
dataset D8’ in any designated language with only
one single annotation in English by utilizing the
LLM. Furthermore, this process is performed with-
out any intervention of a human annotator who is
fluent in the target language, reducing the cost of
hiring expert annotators in the target language.

(@)

3.3 Assistant Multilingual Annotator for Text
Style Transfer Task

For text style transfer task, we first analyze the
given data pair d”° = (X*%,Y,") written in
English through the GPT annotator. Nextly, the



GPT annotator creates a translated version of the
pair and its paraphrase in target language, dtgt
(XE V¥ and df' = (X, V58", This gener-
ation of paraphrase allows to fully utilize given
annotation and effectively construct a dataset in
target language with a limited amount of annotated
data.

Similarly to image captioning task, we config-
ured a well-designed prompt P8’ for the annotation
process, including an one-shot example. Specific
prompts can be found in Appendix F.2. The pro-
cess described in this section can be formulated as
follows.

', d§") = (X0, Y0, (X8, Y

J 3)
— GP'l“(_Pl‘gt7 (Xeng Yeng))

We could acquire text style transfer dataset D8’
in the target language through this process.

4 Experiment

4.1 Experimental Design

This section describes experimental design to vali-
date the effectiveness of our GPT annotator in each
tasks. We primarily assessed our method based
on the performance of the model trained on the
downstream task, which can serve as an indirect
measure of the quality of synthesized dataset (Ye
et al., 2022). Further implementation details can
be found in Appendix A.

4.1.1 Image Captioning Task

To assess the cost-efficiency of our GPT annotator,
we evaluated the proposed GPT annotator through
three different image captioning datasets: Flickr8k
(Rashtchian et al., 2010) dataset was constructed by
annotating approximately 8,000 images collected
from Flickr via MTurk. Flickr30k (Young et al.,
2014) dataset is an extension of Flickr8k dataset,
and it consisted of 30,000 images with captions
acquired through crowdsourcing. MSCOCO (Lin
et al., 2014; Chen et al., 2015) dataset is an anno-
tated dataset of more than 160,000 images.

As Flickr8k and Flickr30k datasets do not pro-
vide explicit validation and test sets, we divided
them in the ratio of 8:1:1. For the MSCOCO
dataset, we utilized the COCO 2014 split, which
consists of approximately 82,000 training data,
40,000 validation data, and 40,000 test data. To
validate the effectiveness of the proposed method,
we set up a scenario with only one gold caption per
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image by selecting only one caption for the original
dataset.

BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), and METEOR (Denkowski and Lavie, 2014)
metrics were measured through the NLG-EVAL
library (Sharma et al., 2017) for evaluation. Ad-
ditionally, we also employed BERTScore (Zhang
et al., 2020) and BARTScore (Yuan et al., 2021) for
model-based evaluation. For the MSCOCO dataset,
the performance was evaluated through the official
evaluation server.> For multilingual experiments,
we adapted different datasets for each language, a
subset of the aforementioned datasets with anno-
tated captions. These datasets will be accordingly
discussed in each section. We report the average
performance of the model trained on three different
random seeds, except the result on MSCOCO 2014
dataset.

4.1.2 Text Style Transfer Task

For text style transfer task, we conducted our ex-
periments based on XFormal (Briakou et al., 2021)
dataset, which encompasses French, Brazilian Por-
tuguese, and Italian. First, we selected 6,000 data
for the GYAFC (Rao and Tetreault, 2018) dataset,
an English dataset that performs the same text for-
mality style transfer, and translated them into each
language using the NLLB (Costa-jussa et al., 2022)
model and Google Translator* to build a baseline
dataset. Second, we built a dataset with only 3,000
English data using our GPT Annotator as it gen-
erates two target language data for each English
data. Using each dataset built by the Translation
model and GPT Annotator respectively, we fine-
tuned mBART (Tang et al., 2021) model to per-
form text style transfer task, and compared its per-
formance and the formality of the generated text.
Simliarly to image captioning task, NLG-EVAL li-
brary, as well as BERTScore and BARTScore were
deployed for measuring metrics. Throughout the
manuscript, we report the average performance of
the model trained on three different random seeds.

4.2 Cost-Efficiency of GPT Annotator

Based on the concept of a previous study (Wang
et al., 2021), we evaluated the difference in the
performance of human annotators and GPT anno-
tator under a fixed budget. The previous study
(Rashtchian et al., 2010) suggested that it takes

*https://codalab.lisn.upsaclay.fr/
competitions/7404
*nttps://translate.google.com


https://codalab.lisn.upsaclay.fr/competitions/7404
https://codalab.lisn.upsaclay.fr/competitions/7404
https://translate.google.com

Flickr8k
Human Annotator
w/ Limited Budget

Synonym Replacement
Back-Translation
HRQ-VAE
GPT Annotator
w/ GPT-3.5
Flickr30k
Human Annotator
w/ Limited Budget
Synonym Replacement
Back-Translation
HRQ-VAE
GPT Annotator
w/ GPT-3.5
MSCOCO 2014
Human Annotator
w/ Limited Budget
Synonym Replacement
Back-Translation
HRQ-VAE
GPT Annotator
w/ GPT-3.5

‘BLEU ROUGE METEOR BERTS. BARTS.

28.96 38.76 17.83 0.7817  -18.379

30.30
30.02
21.62

38.61
39.02
29.53

17.61
17.32
15.83

0.7802
0.7795
0.7542

-18.457
-18.413
-18.641

33.13 39.98 18.41 0.7892  -18.374

BLEU ROUGE METEOR BERTS. BARTS.

25.72 34.14 15.66 0.7539  -18.350

26.78
27.32
20.94

35.28
36.70
27.53

15.54
15.67
12.97

0.7556
0.7591
0.7385

-18.329
-18.321
-18.542

30.57 37.68 16.02 0.7669  -18.298

BLEU ROUGE METEOR BERTS. BARTS.

40.40 46.60 18.90

45.10
41.35
45.59

50.30
46.70
50.10

23.90
21.80
24.20

46.38 50.40 24.50

Table 1: Experimental results to validate the cost-
efficiency of the proposed GPT annotator. We only
report BLEU, ROUGE, and METEOR for MSCOCO
2014 dataset as the official evaluation server does not
provide BERTScore and BARTScore result.

0.05$ to create five gold captions per image, which
is equivalent to 0.01$ for each gold caption. In the
experiment, approximately 1000 tokens were used
to generate annotated data pair.

According to this cost analysis, the method pro-
posed in this study required 0.012$ to generate one
gold caption and four silver captions for each im-
age using GPT-3.5, as it takes approximately 1,000
tokens to generate silver captions.> Based on this
configuration, it would cost approximately 76.8$ to
exploit GPT annotator to annotate the 6,400 images
in the Flickr8k train set. In contrast, only 1,500
images can be annotated by purely human anno-
tators under the same fixed budget. Similarly, for
Flickr30k dataset, annotating 24,000 train data us-
ing the proposed method would cost approximately
2888$, whereas for the same amount, human anno-
tators can only annotate 5,800 images to generate
five gold captions. Following the same configura-
tion, in the MSCOCO dataset, only 19,680 images
can be annotated by human annotators under the
budget that can annotate 82,000 images with GPT
annotator.

Under this scenario, we compared the results
of training the model by selecting only 1,500
fully human-annotated data from Flickr8k dataset,
5,800 fully human-annotated data from Flickr30k

3As of the time of this study, GPT-3.5 charged 0.002$ per
1000 tokens. Currently, it charges 0.001$ per 1000 tokens of
prompt and 0.002$ per 1000 tokens of generation.
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dataset, and 19,680 fully human-annotated data
from MSCOCO dataset with the results obtained
by training the model using the GPT-annotated data
for the entire images of each dataset. Additionally,
we also exploited other data augmentation base-
lines such as synonym replacement (Zhang et al.,
2015), Back-Translation (Sennrich et al., 2016) and
HRQ-VAE (Hosking et al., 2022) to augment one
gold data for extensive comparison.

Table 1 shows the results of the experiment. The
experimental results suggest that under the same
budget, annotating a larger number of images with
one gold caption and multiple silver captions re-
sulted in improved performance compared to an-
notating a smaller number of images with multiple
gold captions using only human annotators. This
outcome is consistent with the findings of previous
work (Wang et al., 2021), indicating the cost effi-
ciency of GPT annotators, and indicates that these
characteristics of GPT annotators are applicable to
a wider range of tasks including image captioning.
Furthermore, GPT annotator has shown superior
performance against other augmentation baselines,
suggesting that GPT annotator can generate better
and diverse sentences.

4.3 Multilingual Experiment
4.3.1 Korean Experiment

Korean is a language that is attracting increasing at-
tention owing to its approximately 80 million native
speakers and rising Korean content. Nevertheless,
the resource to fulfill this demand is limited (Gu
et al., 2018; Sennrich and Zhang, 2019; Kim et al.,
2021; Sahoo et al., 2023). For example, there is no
dedicated Korean dataset for the image captioning
task. Although there are data that applied machine
translation to existing English datasets, they are not
fully open and have limited availability.®
Considering these characteristics of the Korean
language, we first evaluated the multilingual abil-
ity of the proposed method based on Korean. In
this experiment, we assessed the effectiveness of a
Korean image captioning model which was trained
on two separate datasets: the AiHub dataset, which
applies machine translation to the English dataset,
and the Korean dataset constructed by GPT-4 us-
ing the approach described in this study. Due to
the absence of dedicated evaluation set for a fair
®https://aihub.or.kr operated by the Korean gov-
ernment offers a machine-translated version of COCO cap-

tioning dataset; however, the public usage of this dataset is
limited as it is only available to Korean citizens.


https://aihub.or.kr

Korean ‘ Precisionf Recallf Fluency] THUMBT Vietnamese [ BLEU ROUGE METEOR BERTS. BARTS.
AiHub Original
4862 5382 3216  0.8309 -14.511
(Machine-Translated) 43 4.09 0.03 417 (Human-Annotated)
NLLB
GPT Annotator -
T Ao 472 459 0.02 464 (Machine-Translated) | 176 4049 2661 08114 -14.645
HRQ-VAE +NLLB | 2126  28.64 2348 07720 -15.342
. . . Google Translator 37.22 46.24 26.86 0.8196  -14.534
Table 2: Hgman evaluation results of the validation Grvr/%ﬁn:mr i3 4783 2057 08235 14537
of the effectiveness of the proposed GPT annotator on W

Korean language. We follow the evaluation process and
metric of THUMB (Kasai et al., 2022), and report the
average THUMB score of three Korean native speakers.
Please refer to Appendix C for quantitative analysis.

comparison, human evaluation was conducted on
100 captions generated by each model from the test
image set. The human evaluation was performed
in accordance with the previously proposed proto-
col (Kasai et al., 2022), and we report the average
THUMB score of three Korean native speakers.

Table 2 presents the results of the human evalua-
tion. The outcomes of the evaluation indicate that
the model trained on the dataset using GPT anno-
tator performed better than the machine-translated
dataset in terms of ratings by humans. In addition,
our GPT annotator demonstrated a lower penalty
on fluency, which suggests that our method gener-
ates more natural sentences.

These evaluation results confirmed that the
model can achieve improved performance when
trained with the dataset constructed using the
method proposed in this study. Furthermore, as
our GPT annotator generates five Korean captions
using only one gold English caption by a human
annotator, it is more cost-efficient compared to ap-
plying machine translation to five gold captions in
English. Moreover, our GPT annotator has addi-
tional advantages that could ensure consistency in
sentence structure compared to machine transla-
tion. Specifically, we instructed the annotator to
generate sentences in the neutral form (“-3}T}”)
rather than the polite form (“-& 4] t}”) through
the prompt. We can maintain consistency in tone
and style of the dataset through this configuration,
leading to better for the quality of the annotated
data and reduce the need for post-processing and
human intervention.

4.3.2 Vietnamese Experiment

Vietnamese also has more than 85 million native
speakers, but suffering from lack of annotated data
(Ngo et al., 2020; Huynh et al., 2022). To demon-
strate the versatility of our approach in another
language, we expanded our experiments to Viet-
namese. For the experiment, we adapted UiT-ViIC
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Table 3: Experimental results in Vietnamese based on
UiT-ViIC dataset.

dataset (Lam et al., 2020). This dataset consists of
images selected from the MSCOCO dataset relat-
ing to sports, each with five Vietnamese captions
manually annotated by a human annotator. We ap-
plied NLLB model and Google Translator to build
a baseline by translating English captions from the
original MSCOCO dataset into Vietnamese. Addi-
tionally, we adopted the data generated by HRQ-
VAE in Section 4.2 and translated them into Viet-
namese using NLLB model.

Table 3 presents the results on Vietnamese. The
experimental result suggests that our approach is
valid in Vietnamese, leading to better performance
of the model compared to a machine translation-
based approach.

4.3.3 Polish Experiment

Polish is another language that has challenge of
low-resource language (Dadas et al., 2020; Au-
gustyniak et al., 2022). To further validate our
method’s applicability, we also conducted experi-
ments on the AIDe dataset for Polish (Wréblewska,
2018). This dataset is composed of 1,000 im-
ages selected from the Flickr8k dataset, each with
two human-annotated captions in Polish. For this
experiment, we configured our prompt to gener-
ate two caption pairs for each image. Similarly
to Vietnamese experiment, for the Polish transla-
tion baseline, we utilized the NLLB model and
Google Translator to translate two English captions
from the original Flickr8k dataset into Polish. We
also adopted the data generated by HRQ-VAE in
Section 4.2 and translated them into Polish using
NLLB model.

Table 4 indicates the results on Polish. The ex-
perimental result demonstrates the effectiveness of
our approach, showcasing not just better perfor-
mance compared to translation baseline but also
comparable performance to human-annotated data.



Polish ‘ BLEU ROUGE METEOR BERTS. BARTS. Latvian ‘ BLEU ROUGE METEOR BERTS. BARTS.
Original NLLB
(Human-Annotated) 8.68 19.38 9.38 0.7405  -18.162 (Machine-Translated) 6.39 17.53 10.13 0.6803  -16.061
NLLB HRQ-VAE + NLLB 5.14 16.61 10.21 0.6728  -16.127
. 4.14 14.4 7 .64 -18.27
(Machine-Translated) 6 6.78 0.6466 8.279 Google Translator 8.53 17.09 10.67 0.6848  -16.067
HRQ-VAE + NLLB 3.21 13.15 5.99 0.6495 -18.331 GPT Annotator
Google Translator 4.64 14.14 6.91 0.6507 -18.244 w/ GPT-4 1035 1861 1079 0.6911 -16.054
GPg//gis%)tZtor 517 18.90 8.92 06962  -18.197 Estonian BLEU ROUGE METEOR BERTS. BARTS.
- NLLB
(Machine-Translated) 4.97 13.12 7.89 0.6893 -15.409
Table 4: Experimental results in Polish based on AIDe HRQ-VAE+NLLB | 337 784 587 06876 -15409
dataset Google Translator 6.04 12.51 8.75 0.7008  -15.408
. GPT Annotator
w/ GPT-4 6.62 13.47 9.22 0.7050  -15.407
French BLEU ROUGE METEOR BERTS. BARTS. Formality Finnish BLEU ROUGE METEOR BERTS. BARTS.
NLLB NLLB
(Machine-Tianslatedy | 4859 5026 3142 08103 -17.596 7237 (Machine-Translaedy | 19 1043 7.74 07122 -16.392
Google Translator | 51.69 5402 3262 08076 17541 7538 HRQVAE+NLLB | 374 1023 706 06965 -16.401
GPVTV/AC:‘;;’TO' 5481  56.83 3398 08175 -17.519 8512 Google Translator 428 10.84 7.88 07128 -16.394
Brazilian Portuguese | BLEU ROUGE METEOR BERTS. BARTS. Formality GPVT]/’E"‘;]‘}_‘Z“’F 496 1229 8.64 07143 -16.389
NLLB
(Machine-Translatedy | 273 5581 3244 08286 -18955 6858
Google Translator | 9% 9774 %419 OMI8 -189% 72 Table 6: Experimental results of our constructed dataset
nnotator
G 5794 6072 3560 08363 -18864  79.21 in Latvian.
Ttalian BLEU ROUGE METEOR BERTS. BARTS. Formality
NLLB
(Machine-Translated) | 4797 4934 3012 07839 18843 6803
G(o};;f}li\Tram:lumr 49.13 51.73 30.89 0.7873  -18.805 71.86 Of each training image’ Similar tO preViOUS experi_
nnotator
oo 5234 5371 3202 07994 -18702 7429 L. .
W/ GPT- ments. The validation and test captions were con-

Table 5: Experimental results on text style transfer in
French, Brazilian Portuguese, and Italian.

4.4 Text Style Transfer Experiment

Table 5 presents the experimental result of our
GPT annotator for text style transfer task in French,
Brazilian Portuguese, and Italian. The results not
only highlight the performance of our GPT Anno-
tator with fewer original human-annotated samples
but also underscore its ability to enhance text for-
mality against translation. This achievement was
possible through the consistent generation of sen-
tences with formal and informal styles, owing to
the flexibility of LLMs and instructible prompts.

4.5 Employing GPT Annotator for Dataset
Construction

Latvian, Estonian, and Finnish have approximately
1.5, 1.1, and 4.8 million native speakers, which
make them hard to hire annotators and construct
datasets. To address the practical challenges in the
field of data annotation, we constructed an image
captioning dataset in these languages, which did
not have any image captioning dataset, using our
GPT annotator. We first selected 3,850 images and
their English captions from the MSCOCO dataset
and splited them into 2,695 train images, 924 vali-
dation images, and 231 test images, following the
configuration of the Vietnamese UiT-VilC dataset.

To build a baseline, we utilized NLLB and
Google Translator to translate the English caption
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structed by translating using mBART model, for a
fair comparison.

Table 6 clearly showcases the efficiency of our
GPT annotator when human-annotated data is
scarce, as observed in case of these low-resource
languages. The human investigation of annotated
data remains for future work. We plan to release the
training, validation, and testing datasets for wider
access and further study. This experimental result
demonstrates the possibility of the GPT annota-
tor to easily construct dataset in any designated
language, enhancing the accessibility of various
languages.

5 Conclusion

In this study, we have demonstrated the possibility
of exploiting LLM as a multilingual assistant an-
notator by generating multiple silver data from a
single gold data in different languages. The experi-
mental results showcased that the proposed method
is cost-efficient compared to entirely human anno-
tation, and can be effectively employed to construct
datasets in various languages and tasks.

The approach described in this work can be
widely adapted to various languages, as it utilizes
the multilingual fluency and flexibility of LLMs.
We constructed an image captioning in Latvian as
a practical application of our GPT annotator. Fur-
thermore, the cost-efficiency of the GPT annotator
suggested in this paper will be improved in the fu-
ture, as the price of LLMs is expected to decline as
recent cost reductions of GPT-3.5 and GPT-4 have



shown. Future studies will focus on improving the
proposed method by utilizing the image inception
ability and expanding this method to other tasks.

Limitations

Extreme low-resource languages may still en-
counter difficulty producing high-quality sentences
even with the use of GPT-4. To examine the re-
sponses of GPT-4 in translating into extremely low-
resource languages, we conducted an error analysis
in two extremely low-resource languages, Basque
and Maori. Basque has a small amount of speak-
ers, and it is also a unique language isolate, that
does not have a distinct relationship with other
languages such as Spanish and French, making it
harder to process. Maori has a very small amount
of language users, posing a challenge as an ex-
tremely low-resource language. Please refer to
Appendix E.7 for the analysis result.

Additionally, the approach demonstrated in this
work generates silver sentences as paraphrases of
the given gold sentences, thus they might not fully
capture the information that exists in the image
but is not mentioned in the gold sentences. Con-
sequently, the gold captions produced by multiple
human annotators can be more diverse than silver
captions. To address this issue, human annotators
could create gold captions that contain as much
detailed and diverse information as possible while
constructing a new dataset through this method.

Ethics Statement

As this work proposes the utilization of LLMs as
an assistant data annotator and for the automatic
generation of sentences, it may suffer from the po-
tential bias of LLMs. To mitigate this concern, we
added explicit instructions to prevent the genera-
tion of biased sentences in the prompts. However,
the human supervisor is still essential to examine
and validate the absence of biased expressions in
the generated data. Specifically, the human supervi-
sor should ensure that there is not any biased gold
sentence produced by the human annotator, as it di-
rectly affects the bias of generated sentences using
LLMs.

Furthermore, in addition to the error analysis pre-
sented in the previous section, we have conducted
supplementary error analysis on Basque and Maori
languages in Appendix E.8. This additional in-
vestigation aims to explore the potential ethical
biases exhibited by GPT-4. Our findings suggest
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that GPT-4 may exhibit unexpected ethical biases,
particularly in extremely low-resource languages,
where its knowledge about the language may be
limited compared to high-resource languages such
as English.
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A Implementation Details

A.1 Model Implementation

PyTorch (Paszke et al., 2019) and Huggingface
Transformers library (Wolf et al., 2020) have been
employed for the implementation process.

For image captioning task, Vision Transformer
(ViT) (Dosovitskiy et al., 2021) and Transformer
(Vaswani et al., 2017) were deployed as the encoder
and decoder of the model, respectively. Particularly,
pretrained vi¢z_b_16 from torchvision library (main-
tainers and contributors, 2016) was adapted as an
encoder, and the decoder consisted of 12 heads and
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12 layers, with a hidden layer size and embedding
layer size of 768.

For text style transfer task, we fine-tuned mbart-
50-large model using each dataset to convert infor-
mal text into formal text. Additionally, we sepa-
rately trained another mBART model as formality
classifier using XFormal training data for each lan-
guage to measure the formality of the generated
text. The text formality was measured by the aver-
age logit of the classifier.

Every model was trained using AdamW
(Loshchilov and Hutter, 2018) with a batch size
of 16 and a learning rate of 5e-5 through 10 epochs,
while the weight decay of the optimizer was set to
le-5, and a CosineAnnealingLR (Loshchilov and
Hutter, 2017) scheduler was deployed.

A.2 GPT Annotator Implementation

We utilized the official API from OpenAl to imple-
ment the proposed GPT annotator. The versions
of the models used are gpt-3.5-turbo-0301 and gpt-
4-0314, respectively. The prompts used can be
found in Appendix F. If an error occurred while
generating an annotation using a given prompt, the
API was called again with a patience of three times.
If this patience was exceeded, the data pair was
excluded from the annotation process.

A.3 Further Details

We employed the facebook/nllb-200-distilled-
600M model, which comprises 600M parameters,
to create a training dataset using the NLLB baseline.
Similarly, we utilized the facebook/mbart-large-
50-many-to-many-mmt model, with approximately
611M parameters, to construct validation and test
sets for Latvian, Estonian, and Finnish. This choice
was made to ensure a fair and equitable compari-
son between the baseline models and our proposed
GPT annotator. For evaluation with BERTScore
(Zhang et al., 2020) and BARTScore (Yuan et al.,
2021), we exploited bert-base-multilingual-cased
and facebook/mbart-large-50, respectively. Note
that we reported BERTScore-F1 in the manuscript.

Label smoothing (Szegedy et al., 2016) was ap-
plied with a smoothing epsilon of 0.05. The train-
ing procedure was conducted on a single Nvidia
RTX 3090 GPU.

For the tokenizing of text input, we em-
ployed tokenizer of pre-trained model available
on Huggingface for each language. Specif-
ically, facebook/bart-base, cosmoquester/bart-
ko-base, vinai/bartpho-syllable, sdadas/polish-
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bart-base, and joelito/legal-latvian-roberta-base,
tartuNLP/EstBERT, TurkuNLP/bert-base-finnish-
uncased-v1 were adapted as the tokenizer for En-
glish, Korean, Vietnamese, Polish, Latvian, Esto-
nian, and Finnish. For text style transfer task, as it
is based on facebook/mbart-large-50 model, each
language shares same tokenizer.

For the test procedure of the Flickr8k and
Flickr30k datasets, all five available human-
annotated captions of the test set were utilized as
reference sentences for evaluation. Beam search
(Freitag and Al-Onaizan, 2017) was applied as a de-
coding strategy to generate sentences at inference
time, with a beam size of 5.

B GPT Annotator Software

In order to streamline the annotation process out-
lined in this paper, we have developed specialized
software tailored for multilingual data annotation,
leveraging OpenAl GPT models. This software
currently supports tasks such as image captioning,
text style transfer, and machine translation. Al-
though these functionalities are not discussed in
detail in this paper due to space constraints, they
are available within the software.

The annotator software takes a JSON file as input
and generates a new JSON file containing multi-
lingual annotations in the target language. This
is achieved by utilizing the specified prompt and
the chosen version of the GPT model. Moreover,
the software is designed to facilitate faster data an-
notation through multiprocessing capabilities. For
a more comprehensive understanding of the soft-
ware’s functionality, please refer to the attached
code.

C Quantitative Experiments on Korean

We have included the human evaluation results
in Table 2 within the main manuscript. This was
done because there is no dedicated evaluation set
available in Korean, which is essential for a fair
evaluation. In this section, we present additional
quantitative evaluation results to provide a more
comprehensive perspective on our model’s perfor-
mance.

To conduct this quantitative evaluation, we uti-
lized the validation set from the AiHub dataset
since there is no specific test set available in Ko-
rean within the official COCO dataset. In addition
to this evaluation, we also translated the model’s
inferences on the test image set into English. This



Evaluation Method Validation Set (Korean) Test Set (Translated to English)
Metric BLEU ROUGE METEOR | BLEU ROUGE METEOR
AiHub

(Machine-Translated) 11.20 20.64 19.41 34.85 41.60 19.80
GPT Annotator
w/ GPT-A 7.01 15.84 18.56 32.70 39.90 19.20

Table 7: Quantitative experimental results of the machine-translated dataset and proposed GPT annotator on Korean
language. The left column (“Validation Set’) refers to the inference result of the validation set provided in Korean.
The right column (“Test Set’) is the evaluation result of the Korean model, but as there is no Korean data for the test
set, we translated the Korean inference result into English and uploaded it to the official evaluation server.

Metric Precision Recall Fluency THUMB
Human #1 4.61 4.26 0.01 443
Human #2 4.3 4.21 0.05 4.21
Human #3 4.62 4.56 0.01 4.58

Table 8: For transparency of human evaluation, we
report the average value of each metric as rated by three
raters.

allowed us to assess the model’s performance on
the test set using the official evaluation server. The
quantitative analysis results are presented in Ta-
ble 7.

However, it is important to note that while quan-
titative analysis is relatively straightforward to per-
form, it may not provide an accurate measure of the
Korean model’s performance. The AiHub dataset’s
validation set relies on machine translation, which
may be too coarse to gauge the model’s capabili-
ties precisely. Similarly, assessing the quality of
a generated Korean sentence by translating it into
English is not a direct evaluation method. This is
the primary rationale for conducting a human eval-
uation, which offers a more robust assessment of
the model’s performance.

D Detailed Information on Human
Evaluation

Human raters were recruited from volunteered stu-
dents who are native in Korean. Three raters are
native Korean speakers in their 20s who majored
in engineering. The detailed information about
THUMB score (Kasai et al., 2022), the metric used
in this study for the assessment of the generated
caption, was provided to raters. After the expla-
nation of the metric, process, and purpose of the
study, raters were asked to evaluate the precision,
recall, and fluency penalty that composes THUMB
score. Figure 3 is a screenshot as an example of
the human evaluation form. To prevent rater fa-
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tigue, We instructed them to pause the evaluation
process if they felt exhausted and not to finish it all
at once. 100 images for evaluation were randomly
selected from the generated output by each model
from the COCO2014 test image set. Table 8 shows
the average evaluation result of each rater.



E Case Analysis

To evaluate the excellence and contextual precision of the produced captions, we conducted a direct
comparison between captions originating from each dataset for identical images. This assessment unveiled
significant enhancements in both caption quality and contextual alignment within our recently generated
dataset compared to the baselines.

E.1 Korean Analysis

* Quality of Generated Sentence

— MSCOCO Image ID: 237944
+ English Reference:
A person under a dryer wearing a towel
% AiHub (Machine-Translated):
= g o] 9 (Drader - This word does not exist in Korean.)
% GPT Annotator w/ GPT-4:
TS FE Aol =gfolof ol o At} (A person with a towel is under the dryer.)

— MSCOCO Image ID: 215878

* English Reference:
A white microwave oven a pot holder and some books

x AiHub (Machine-Translated):
SFQF A A}F | AR o] v =4 A HAL Yo (Put a pot lid and some books in a
white microwave)

# GPT Annotator w/ GPT-4:
ShQF A A A @&, Wu] ol 2 A M o] It} (There is a white
microwave oven, pot holders, and some books.)

¢ Context of Generated Sentence

— MSCOCO Image ID: 190556

* English Reference:
Close up images of bikes parked next to the highway.

+ AiHub (Machine-Translated):
145 57 Ao FAE XA AL o] w] X £ ot} (Close the image of a bicycle parked
on the side of the high way.)

* GPT Annotator w/ GPT-4:
15T F dojl FAH XA ALl 23 o] u] X & o]t} (Close-up images of a bicycle
parked on the side of the highway.)

— MSCOCO Image ID: 273929

+ English Reference:
A far away shot of Big Ben and the nearby complex.

x AiHub (Machine-Translated):
H A Al A2 FZ2HAE £ 902 210 Q (I shot Big Ben and the nearby complex
from a distance with a gun)

* GPT Annotator w/ GPT-4:
9 Wy A2 AEES HelA B2 AL ot} (This is a photo of Big Ben and nearby
buildings from a distance.)

E.2 Vietnamese Analysis
* Quality of Generated Sentence
— MSCOCO Image ID: 213669
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* English Reference:
A young man holding a tennis racquet on a tennis court.

* Vietnamese Reference:
Ngudi dan 6ng dang cam vot tennis chay t6i ddnh bong. (A man holding a tennis racket runs
to hit the ball.)

% NLLB (Machine-Translated):
mot ngudi dan Ong ding trén mot thic an véi mot tén Iha (@ man standing on a food with a
rocket)

* GPT Annotator w/ GPT-4:
Mot ngudi tré tudi dang & trén san tennis v6i ciy vot trong tay. (A young person is on the
tennis court with a racket in his hand.)

E.3 Polish Analysis

¢ Context of Generated Sentence

— Flickr File Name:
1153704539_542f7aa3ab

+ English Reference:
A girl playing trumpet in a marching band.

* Polish Reference:
Dziewczyna w sportowym stroju i czapce z daszkiem stoi na trawniku i gra na trabce w
towarzystwie innych muzykéw. (A girl in sports clothes and a baseball cap stands on the
lawn and plays the trumpet in the company of other musicians.)

% NLLB (Machine-Translated):
Dziewczyna grajaca na trabce w zespole. (A girl playing the trumpet in a band.)

* GPT Annotator w/ GPT-4:
Dziewczyna grajaca na trabce w orkiestrze marszowej. (A girl playing the trumpet in the
march orchestra.)

* Quality of Generated Sentence

— Flickr File Name:
1386251841_5f384alfea

* English Reference:
A woman is looking at dressed, headless mannequins in a store display.

* Polish Reference:
Kobieta oglada wystawe z ubranymi w damskie stroje manekinami. (A woman looks at an
exhibition with mannequins dressed in women’s clothes.)

% NLLB (Machine-Translated):
Kobieta patrzy na ubrane, bezglowe manieki w sklepach. (A woman looks at clothed,
headless maniacs in stores.)

* GPT Annotator w/ GPT-4:
Kobieta patrzy na ubrane, bezglowe manekiny w wystawie sklepowej. (A woman looks at
clothed, headless mannequins in a store window.)

— Flickr File Name:
1387785218_cee67735f5
* English Reference:
A child pushes a doll in a baby carriage.
+ Polish Reference:
Dziecko idzie droga, prowadzac przed soba maty wézek z lalka. (A child walks along the
road, pushing a small stroller with a doll in front of him.)
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% NLLB (Machine-Translated):
Mata dziewczynka wpychajaca koto lalki (A little girl pushing a doll wheel)
* GPT Annotator w/ GPT-4:
Dziecko popycha lalk¢ w wézku dla dzieci. (A child pushes a doll in a baby stroller.)

— Flickr File Name:
1499495021_d295ceb77c

+ English Reference:
A dark haired woman wearing a brown jacket and fatigue bottoms and a balding man
wearing a green sweater and blue jeans with a fishing pole, stand at the foot of the surf.

* Polish Reference:
Mezczyzna stoi z wedka nad brzegiem wody, a obok niego stoi kobieta. (A man stands with
a fishing rod at the water’s edge and a woman stands next to him.)

% NLLB (Machine-Translated):
Czarnowtlosa kobieta w bragzowej kurtce i zme¢czonym dnie i tysy mezczyzna w zielonej
swetrze i niebieskich dzinséw z palcem rybaczem, stoja u stop ptywu. (A black-haired
woman in a brown jacket and a tired bottom and a bald man in a green sweater and blue
Jeans with a fisherman'’s finger, stand at the foot of the tide.)

* GPT Annotator w/ GPT-4:
Kobieta o ciemnych wlosach, ubrana w brazowa kurtke i spodnie w kamuflaz, oraz tysiejacy
mezczyzna w zielonym swetrze i niebieskich dzinsach z wedka, stoja u podnéza fali. (A
woman with dark hair, wearing a brown jacket and camouflage pants, and a balding man in
a green sweater and blue jeans with a fishing rod, stand at the foot of a wave.)

— Flickr File Name:
146098876_0d99d7£fb98

* English Reference:
A boy and three girls in blue school uniforms walk down a dirt-covered road.

* Polish Reference:
Chlopiec i trzy dziewczynki w mundurkach ida, niosac zeszyty. (A boy and three girls in
uniforms are walking, carrying notebooks.)

% NLLB (Machine-Translated):
Chlopak i trzy dziewczyny w niebieskich mundurach szli po bigdnej drodze. (A boy and
three girls in blue uniforms were walking on the wrong path.)

* GPT Annotator w/ GPT-4:
Chlopiec i trzy dziewczyny w niebieskich mundurkach szkolnych ida po drodze pokrytej
brudem. (A boy and three girls in blue school uniforms are walking on a road covered with
dirt.)

E.4 Latvian Analysis

* Quality of Generated Sentence

— MSCOCO Image ID: 46544
* English Reference:
A woman playing tennis on a tennis court.
% NLLB (Machine-Translated):
Sieva tenisa tenisa. (Tennis wife in tennis.)
* GPT Annotator w/ GPT-4:
Sieviete spele tenisu tenisa korta. (A woman plays tennis on a tennis court.)

— MSCOCO Image ID: 43960

* English Reference:
A boy catching a ball while another boy holds a bat.
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% NLLB (Machine-Translated):
Puikas, kas ienem lopu, kamer cits puikas, kas drikst pienemt lopu. (Boys who take livestock,
while other boys who are allowed to accept livestock.)

* GPT Annotator w/ GPT-4:

Zg&ns noker balls, kameér cits zéns tur niiju. (A boy catches the ball while another boy holds
the stick.)

— MSCOCO Image ID: 47813
* English Reference:
There are four people playing tennis in doubles.
% NLLB (Machine-Translated):
Divas grupas spele Cetri cilveki. (Four people play in two groups.)
* GPT Annotator w/ GPT-4:
Cetri cilveki spele tenisu dubultspéles. (Four people play tennis in doubles.)

E.5 Estonian Analysis

* Quality of Generated Sentence

— MSCOCO Image ID: 1596
* English Reference:
A person swing a tennis racket at a tennis ball.
% NLLB (Machine-Translated):

Uks inimene kiigub tennisepalli peal tennise racket. (One person moves a tennis racket on
top of a tennis ball.)

* GPT Annotator w/ GPT-4:
Inimene 166b tennise reketiga tennisepalli. (A person hits a tennis ball with a tennis racket.)

— MSCOCO Image ID: 35818
* English Reference:
A group of boys play soccer in a grassy field.
% NLLB (Machine-Translated):
Grupp poisid méngib jalgpalli médgedes. (A group of boys plays football in the mountains.)
* GPT Annotator w/ GPT-4:

Poiste grupp mingib jalgpalli rohusel véljakul. (A group of boys plays football on a green
field.)

— MSCOCO Image ID: 65500
* English Reference:
Two sets of people are at a tennis net.
% NLLB (Machine-Translated):
Kaks inimest on tennistoo juures. (Two people are at tennis work.)
* GPT Annotator w/ GPT-4:
Kaks inimeste riihma on tennisevorgu juures. (Two groups of people are at the tennis net.)

E.6 Finnish Analysis

¢ Quality of Generated Sentence

— MSCOCO Image ID: 217929

* English Reference:
people in uniforms playing baseball in the field
% NLLB (Machine-Translated):
joukkueessa pelaavat joukkueessa (in the team play in the team)
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* GPT Annotator w/ GPT-4:
Ihmiset uniformuissa pelaavat baseballia kentélld. (People in uniforms are playing baseball
on the field.)

— MSCOCO Image ID: 226747

+ English Reference:
a persong swinging a tennis racket hitting a tennis ball

% NLLB (Machine-Translated):
laulaja, joka heiluttaa tenniskdyté, joka lyo tenniskappiin (the singer who swings the tennis
racket, who hits the tennis locker)

* GPT Annotator w/ GPT-4:
Henkil6 heiluttaa tennis-mailaa osuen tennispalloon. (A person swings a tennis racket
hitting a tennis ball.)

* Comment:
In this example, we found that the original reference for input to NLLB and GPT annotator
has a typo (“persong” instead of “person”), which leads to quality issues in the sentence
generated through NLLB model. Whereas, our GPT annotator automatically corrected this
typo through the generation process. This behavior underscores the additional advantage of
our GPT annotator compared to the baseline.

E.7 Error Analysis

* Error Analysis on Basque

- Case 1

* Source Text:
A black dog and a spotted dog are fighting.

* Google Translator:
Txakur beltz bat eta txakur orban bat borrokan ari dira

* GPT Annotator w/ GPT-4:
Kolore beltzeko txakur bat eta beste bat orbainekin borrokan ari dira. (A black dog and
another with scars are fighting.)

* Comment:
The word “spot” has changed to “scar.”

— Case 2

% Source Text:
Several women wait outside in a city.

* Google Translator:
Hainbat emakume kanpoan itxaroten hiri batean.

* GPT Annotator w/ GPT-4:
Emakume talde bat hiri bateko inguru batean zutik daude. (A group of women are standing
in an area of a city.)

* Comment:
The word “wait” has changed to “standing”, which does not fully contain the original
meaning.

— Case 3

* Source Text:
A man clad in a safety vest and helmet is standing in the street with a flag.

* Google Translator:
Segurtasun txalekoa eta kaskoa jantzita dagoen gizon bat kalean dago bandera batekin.
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* GPT Annotator w/ GPT-4:
Segurtasun gerrikoa eta kaskoa jantzita, gizon bat bandera batekin dago kalean. (A man
wearing a seat belt and a helmet stands on the street with a flag.)

* Comment:
The word “safety best” has changed to “seat belt.”

* Error Analysis on Maori

- Case 1

* Source Text:
A man in green holds a guitar while the other man observes his shirt.

* Google Translator:
Ko tetahi tangata he kakariki e mau ana ki te kita, ko tetahi atu tangata e titiro ana ki tana
koti.

* GPT Annotator w/ GPT-4:
E pupuri ana te tangata i te kita, ko te tangata ke atu e matakitaki ana i tana hate. (One is
holding a guitar while the other is looking at his shirt.)

* Comment:
The sentence has lost the expression about the color of the clothes the man wearing.

— Case 2

% Source Text:
Boys perform dances on poles during the nighttime.

* Google Translator:
Ka kanikani nga tama ki runga pou i te po.

* GPT Annotator w/ GPT-4:
Tamariki tane e mahi ake ana i nga pou i te po tuturu. (Boys who work up posts in the real
night.)

* Comment:
The word “perform dance” has changed to “work up.”

— Case 3

* Source Text:
A ballet class of five girls jumping in sequence.

* Google Translator:
He karaehe paoro o nga kotiro tokorima e peke ana i te raupapa.

* GPT Annotator w/ GPT-4:
He akomanga parekareka o rima kotiro e peke tahi ana i roto i te raupapa. (It’s a fun class of
five girls jumping together in a series.)

* Comment:
The generated sentence has lost the word “ballet” and changed it to “fun”, implying the
model has less understanding of proper nouns.

E.8 Ethical Bias Analysis

* Error Analysis on Ethical Bias

— Basque

* Source Text:
Two young, White males are outside near many bushes.

* Google Translator:
Bi ar zuri kanpoan daude zuhaixka askoren ondoan.

* GPT Annotator w/ GPT-4:
Gazte kaukasiko gizon pare bat kanpoan daude, zuhaixka ugariz inguratuta. (A couple of
young Caucasian men are outside, surrounded by many bushes.)
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* Comment:
The output from GPT annotator contains the word “Caucasian”, which is a word based on
obsolete racial classification.

— Maori

* Source Text:
Two young, White males are outside near many bushes.

* Google Translator:
Tokorua nga tama tane ma, kei waho tata ki nga ngahere maha.

* GPT Annotator w/ GPT-4:
E rua nga tane rangatahi, Pakeha, kei waho e tu tata ana ki nga purei. (Two young European
men are standing outside near the playground.)

* Comment:
The output from GPT annotator contains the word “European” instead of “White”, which
can be interpreted as a geographical bias.
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image_id: 69
Sentence 1: 8t 22|2| AIZHE0] E|0|Z0]| Z2{2¢0F QL.
Sentence 2: 2% AIZISO0| H|[O|S0f| 20} UL,

Sentence 1: Pr...

Sentence 1: Re...
Sentence 1: Flu...
Sentence 2: Pr...
Sentence 2: Re...

Sentence 2: Flu...

Figure 3: The screenshot of human evaluation form. Sentence 1 is the output from the model trained by AiHub
dataset, and Sentence 2 is the output from the model trained by the dataset constructed by our GPT annotator.
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F Prompt

This section describes the prompt used for the experiment.

F.1 Prompt for Image Captioning Task

System

You are a helpful assistant.

User will ask you to generate paraphrases of a sentence.

You will generate paraphrases of the sentence and its translation in Korean language.

VERY IMPORTANT: You must speak ‘-3}t} form in Korean. You must not use ‘-3 T} or other
forms. $t=ro] 42 HGsto] AT wff, r=A] -shoh A E AHGstod of st - op, -
Urb 5o 282 Arh A8t gk,

You will generate a translation of input sentence in Korean, and also generate 4 paraphrases and its
translation in Korean.

Output sentence should be neutral expression. You should not generate phrases like “You will see’ or
“You will find’.

Output sentence will be complete, natural and fluent.

Each output sentence should have different expressions as much as possible.

You will not generate the same sentence as the input sentence.

You must not generate any biased, offensive, or inappropriate paraphrases.

User input example: The men at bat readies to swing at the pitch while the umpire looks on.

Your output example:

Translation: E}A o] Q1= FAE 0] Ad#o] A AR = T 29T FH| & shrh

Paraphrase 1: The male players at the bat ready to hit the ball as the umpire watches attentively. / 4] 0]
F9 2A AARL AU MES £ @1t A5 Fo] B2 A FE 5 Yok

Paraphrase 2: The male batters at the bat prepare to hit the pitch as the umpire stands watch. / R4 of] A1
HA BAbE ol Ado]l AARE Zh2d BE A E¥E sk ok

Paraphrase 3: The batters at the plate are poised to swing as the umpire keeps an eye on them. / E}A] of|
AE BHA7E A o] AARE 7h2t] 29 AAE F S

Paraphrase 4: The hitters at the plate wait for themselves to take their swings at the ball while the umpire
looks on. / B} o] A B}AE Al o] A A K= F 32 Tl 29T Fv]E St

You will not say ‘Sure! here’s the output’ or any similar phrases.

You will not say ‘I don’t know’ or any similar phrases.

You will just generate the output paraphrases following the output example.

User
Input: Living room with furniture with garage door at one end.
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F.2 Prompt for Text Style Transfer Task

System

You are a helpful assistant. You are fluent in French and English.

You will generate paraphrases of formal and informal sentences and their translations into French.
Output sentence should be neutral expression.

Output sentence will be complete, natural and fluent.

Each output sentence should have different expressions as much as possible.

You will not generate the same sentence as the input sentence.

You must not generate any biased, offensive, or inappropriate paraphrases.

You will not say ‘Sure! here’s the output’ or any similar phrases.

You will not say ‘I don’t know’ or any similar phrases.

You will just generate the output paraphrases following the output example.

[Input Sentence]

Formal 1: Then kiss her, brother; that works every time.

Informal 1: Then kiss her;) works every time bro!!!!

[Paraphrase]

Formal 2: Subsequently, kiss her, sibling; that method proves effective on each occasion.
Informal 2: So, just give her a smooch, bro! It seriously works every single time ;)
[Translation in French]

Formal 1: Alors embrasse-la, mon frére. Cela fonctionne a chaque fois.

Informal 1: Alors embrasse-la ;) ca marche a chaque fois frérot!!!!

Formal 2: Ensuite, embrasse-la, frére ; cette méthode fonctionne a chaque fois.
Informal 2: Alors, donne-lui un bisou, mec ! Ca marche a tous les coups ;)

User

[Input Sentence]

Formal 1: After that I never bought her another gift.

Informal 1: and enver since then i never bought her another gift
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Abstract

Predicting next visit diagnosis using Electronic
Health Records (EHR) is an essential task in
healthcare, critical for devising proactive future
plans for both healthcare providers and patients.
Nonetheless, many preceding studies have not
sufficiently addressed the heterogeneous and hi-
erarchical characteristics inherent in EHR data,
inevitably leading to sub-optimal performance.
To this end, we propose NECHO, a novel med-
ical code-centric multimodal contrastive EHR
learning framework with hierarchical regulari-
sation. First, we integrate multifaceted informa-
tion encompassing medical codes, demograph-
ics, and clinical notes using a tailored network
design and a pair of bimodal contrastive losses,
all of which pivot around a medical codes repre-
sentation. We also regularise modality-specific
encoders using a parental level information in
medical ontology to learn hierarchical struc-
ture of EHR data. A series of experiments on
MIMIC-III data demonstrates effectiveness of
our approach.

1 Introduction

Predicting a patient’s future diagnosis has been
a longstanding objective in both academic and
industrial healthcare sectors. Its significance is
highlighted for healthcare providers with refining
decision-making processes and resource allocation,
and also for patients with effective future plans.
By leveraging the extensive accumulation of EHR
data, data-driven deep learning methodologies have
achieved considerable advancements in the health-
care practices, particularly in next admissions di-
agnosis prediction (Choi et al., 2016a; Ma et al.,
2018; Qiao et al., 2019; Zhang et al., 2020a).
However, most of previous studies have shown
limited consideration into multifaceted and hierar-
chical properties inherent in EHR data. First, it is
heterogeneous, encompassing a range of modali-
ties including demographics (e.g. age), medical
images (e.g., Computed Tomography), text (e.g.
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Figure 1: A Segment of Longitudinal EHR Data. It in-
cludes demographics, medical codes and clinical notes.

clinical notes), time series (e.g. laboratory tests),
and medical codes (e.g. ICD-9). Each modality of-
fers diverse and unique perspectives of a single ob-
servation and holds substantial potential to improve
representative power if it is integrated seamlessly
with other modalities. Nevertheless, the majority
of previous works have solely focused on medical
codes or shown limited exploration into effective
multimodal fusion strategies (Choi et al., 2017;
Zhang et al., 2020a; Yang and Wu, 2021).

Second, EHR data employs International Clas-
sification of Diseases (ICD) codes (Slee, 1978),
an organised hierarchical medical concept ontol-
ogy. It is used by domain experts to systematically
categorise patient diagnoses into relevant medical
concepts. For instance, in its ninth version (ICD-9),
circulatory system diseases (ICD-9 code 390-459)
are further categorised into 9 subcategories, each
denoting specific conditions, such as hypertensive
disease (ICD-9 code 401-405). Each is further di-
vided into 10 subcategories (e.g. ICD-9 code 401.0
to 401.9). This shows a highly structured and hi-
erarchical dependency amongst them. Despite the
critical importance of these attributes, they have
been largely overlooked in earlier studies.

To address the aforementioned characteristics
of EHR data, we present a novel framework for
Next Visit Diagnosis Prediction via Medical Code-
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Centric Multimodal Contrastive EHR Modelling
with Hierarchical Regularisation (NECHO). To the
best of our knowledge, this framework is the first
work designed in a medical code-centric fashion for
diagnosis prediction. It tightly and seamlessly en-
tangles three distinct modalities of medical codes,
demographics, and clinical notes through a metic-
ulously designed multimodal fusion network and
two bimodal contrastive losses. Its goal is to boost
representational power by positioning demograph-
ics and clinical notes as supplementary modalities.
Furthermore, we harness an auxiliary loss to regu-
larise each modality-specialised encoder based on
the ancestral level of medical codes, thereby suc-
cessfully injecting more general information from
the ICD-9 medical ontology. Therefore, the main
contributions of our work are threefold as follows:

* We effectively integrate three distinct modal-
ities by developing a novel fusion network
and a pair of bimodal contrastive losses, cen-
tralised around medical codes representation.

* We also propose to use auxiliary losses for
each modality-specific model to regularise
them using the parental level of medical codes
to learn more general information, leveraging
hierarchical nature of ICD-9 codes.

Our proposed NECHO framework achieves
superior performance over previous works
on MIMIC-III (Johnson et al., 2016), a pub-
licly available large-scale real-world health-
care data.

2 Related Works

2.1 Next Visit Diagnosis Prediction

Al research community has delved into future diag-
nosis predictions, employing various data modali-
ties such as graph, text, or more than two. DoctorAl
(Choi et al., 2016a) is the first work that predicts
diagnoses utilising a simple recurrent neural net-
works (RNN). It is further refined to RETAIN (Choi
et al., 2016b) and Dipole (Ma et al., 2017), which
incorporate attention mechanisms.

Meanwhile, graph neural networks (GNN) have
been influential, with models like GRAM (Choi
etal., 2017) and KAME (Ma et al., 2018) construct-
ing disease graphs from medical ontology, and oth-
ers like MMORE (Song et al., 2019) and HAP
(Zhang et al., 2020b) focusing on learning both on-
tology and diagnosis co-occurrence and leveraging
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hierarchical attention, respectively. MIPO (Peng
et al., 2021) predicts parental level medical codes
based on the medical ontology additionally.

Biomedical domain specific pre-trained
word2vec (Zhang et al., 2019) and language
models have been introduced (Alsentzer et al.,
2019) for clinical text understanding.  The
importance of them is particularly underscored in
multimodal EHR learning (Husmann et al., 2022),
often supplementing diverse prediction tasks.
MNN (Qiao et al., 2019) and CGL (Lu et al., 2021)
fuse medical codes and clinical notes. MAIN (An
et al., 2021) further integrates demographics to
learn more comprehensive information of patients.
(Yang and Wu, 2021) explore multiple fusion
strategies for clinical event prediction.

2.2 Multimodal Learning

Beyond EHR, multimodality learning has been ex-
plored to various domains, particularly in multi-
modal sentiment analysis (MSA) (Gandhi et al.,
2022). We introduce a few works that have some-
what influenced our work.

First, Tensor Fusion Network (TFN) (Zadeh
et al., 2017; Liu et al., 2018) and Multimodal Adap-
tation Gate (MAG) (Rahman et al., 2020) perform
an outer product and attentional gate on representa-
tions from varying modalities, respectively. (Tsai
et al., 2019) use cross-modal and self-attention
transformers (Vaswani et al., 2017). (Yu et al.,
2021) introduce Unimodal Label Generation Mod-
ule (ULGM) to boost modality-wise representa-
tions. However, the above literature do not con-
sider the modality imbalance, such as the superior-
ity of text-based models. Based on such findings,
text-centred multimodal fusion strategies have been
developed (Qiu et al., 2022; Huang et al., 2023).

2.3 Contrastive Learning

Contrastive Learning has emerged as a predomi-
nant paradigm, showing its superior performance in
many research areas recently. Originally, it aims to
learn features from different views of a single sam-
ple and discriminate samples from different classes
(Oord et al., 2018; Chen et al., 2020). Next, it is
extended to multimodality. CLIP (Radford et al.,
2021) is a seminal work on multimodal contrastive
learning, employing InfoNCE loss (Oord et al.,
2018) to learn transferable features between images
and texts. (Zhang et al., 2022) apply this strategy
to medical domain, whilst (Mai et al., 2022) exploit
trimodal contrastive learning in MSA.
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Figure 2: The Overall Framework of Our Proposed NECHO.

3 Methodology

In this section, we firstly introduce notations and
problem formulation on next visit diagnosis pre-
diction. Thereafter, we describe an overview and
details of our proposed framework, NECHO.

3.1 Problem Formulation

Multimodal EHR Data A clinical record can be
represented as a time-ordered sequence of visits
Vi,...,Vp, where T is the total number of vis-
its of any patient P. Each visit V; is denoted as
(Cy, Ay, Hy, Wy), where C; is a set of diagnosis
codes, A; is a set of diagnosis codes at their ances-
tral level, H; is demographics, W, is a clinical note
at ¢-th admission, respectively.

We denote a set of medical codes from EHR
data as ¢, ca,...,cc € C, where |C| is the num-
ber of unique medical codes at a level in ICD-
9 code hierarchy G. Similarly, a set of medical
codes at their direct ancestral level is denoted as
ai,as,...,as € A. The total number of unique
medical codes in parental level is |A|. Note that,
|A| < |C]|.

Diagnosis code at t-th visit is represented by
Cy = {cr1,c2, ... ,ct;m}, where |C| represents
the number of diagnosis codes. Its ancestral level
code is denoted by Ay = {as1,as2,- -, a4a(}
with of the number of parental level diagnosis
codes |A|. Demographics is represented as H; =
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{he:1, b2, - - - By} where [H] is the total num-
ber of demographics features. Clinical note is rep-
resented as Wy = {wg1, weo, . .. ,wt;|w|}, where
|W| is the maximum number of words to process.

Next Visit Diagnosis Prediction Task Based
on the above notations, next visit diagnosis pre-
diction is defined as follows. Given the patient’s
multifaceted clinical records for the previous 1" vis-
its, the objective is to predict a (7" + 1)-th visit’s
diagnosis codes, denoted as g7 1.

3.2 Medical Code Information Centred
Multimodal Fusion

One of the major challenges in the realm of Al
healthcare is how to integrate the multifaceted data
effectively. This has catalysed a surge of research
on multimodal EHR learning (Zhang et al., 2020a;
Yang and Wu, 2021). Nonetheless, a notable limita-
tion in prior studies is the oversight of modality im-
balance and the adoption of a modality-symmetric
strategy, resulting in an unsatisfactory performance.
We empirically observe that the medical code rep-
resentations show the best performance. Also, pre-
vious works on MSA prioritise text representations
at the core (Qiu et al., 2022; Huang et al., 2023)
due to their superiority. Based on these findings,
we introduce a novel medical code-centric multi-
modal fusion training scheme, which encompasses
a tailored multimodal fusion network and a couple
of bimodal contrastive losses.



3.2.1 Modality-Specific Feature Extraction

Before introducing our novel fusion strategies, we
first explain modality-specific encoders that extract
features from each modality. We design them as
simple as possible to highlight the efficacy of our
proposed fusion strategies. In other words, our
framework is modular, with the potential for perfor-
mance enhancement if the encoders are switched
to more representative ones.

We employ a simple embedding layer for both
medical codes and demographics, and a combina-
tion of BioWord2Vec (Zhang et al., 2019) and 1D
CNN (Kim, 2014) to process clinical notes. Sub-
sequently, the feature vector is passed to a fully
connected layer (Linear) connected with ReLLU ac-
tivation function (Nair and Hinton, 2010).

My = Encoder,, (my), n

M; = ReLU(Linear(M;))

where m; is a data of modality m € (C, H, W)

at t-th visit and Encoder,,, is a modality-specialised

encoder, passing the feature vector M; to MLP.

Finally, a modality-specific feature M, is yielded.

Appendix A provides a detailed information on
how each modality-specific encoder operates.

3.2.2 Multimodal Fusion Network

Cross-Modal Transformer After acquiring repre-
sentations from all modalities, we entangle them
using two cross-modal transformers (CMTs), intro-
duced by MulT (Tsai et al., 2019). It has verified
its effectiveness in integrating meaningful infor-
mation across different modalities. Initially, we
put the each distinct representation to a temporal
non-linear projector, 1D CNN:
H™ = ConviD(M,) )
where M; is a representation from any modality
m and H'tm is a resultant representation. Conv1D
is equivalent to 1D CNN. Next, we introduce cross-
modal attention, which facilitates the information
transfer from the source modality to the target
modality, e.g. medical codes — clinical notes.
Let two modalities as m and msy. Then, us-
ing trainable weights W () with a dimension of
dy., we define the query, key and values as Q™' =
H™mWwe™, Km2 = H™WE™ and V™2 =
H™WV™  respectively. The cross-modal atten-
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tion, denoted as CA, from m to mo is then:

Zm1 —m2

= CA™ =M (™ fm?)

Qm (K™)T
Vi,

We omit ¢ for brevity. CMT is an extension of

the CA. It is composed of a multi-head cross-modal

attention block (MHA) and a Layer Normalisation
layer (LM) (Ba et al., 2016). It is computed feed-

3)

= Softmax( yvme,

forwardly for¢ =1, ..., D layers as follows:
mi1—mo __ m
Zioy " = Hiy “
Smi1—ma mi1—mso mi1—mso
Z(i)1 = MHA(Z.)1 (LM(Z(Z._I) ) )
LM(H ) +LM(Z ™),
Zpome = foma=ms (LM(Z{5 7))+ ©
LM(Z57™m2).

During the process at MHA, the representations
from the source modality are correlated with the tar-
get modality, enhancing the representational power
across different modalities. As presented in Fig. 2,
the fusion is performed in a medical code-centric
fashion, thus we set m; as medical code C and
mg as either demographics H or clinical notes W.
Thus, we acquire two representations of Ztc —H
and ZE~W from the two CMTs.

Self-Attention Transformer To extract sequen-
tial feature representations effectively and boost
dependencies from the above two cross-modal and
medical code representations, a self-attention trans-
former (SA) is employed. It processes across the
single-patient visits:

§¢ = SAY(HY),

Additionally, we perform a residual connection
(He et al., 2016) between the code representation
before and after SAC to enhance the influence of
the medical code modality representation.

o =g¢ +Hyp . ®)

Multimodal Adaptation Gate Rather than per-
forming a simple concatenation of the three distinct
representations, we modify and adopt previous mul-
timodal adaptation gate (MAG) (Rahman et al.,
2020; Yang and Wu, 2021) in the medical code-
centric manner. First, we calculate the trimodal



gating value g € R and the displacement vector H
by concatenating (5) meaningful representations
in the previous stage as:

g = Linear([7° @ 9 " @ 97~"]),  (9)
H = Linear(g[g¢ "7 @ g¢7"]).  (10)

This modification maximises the influence of
medical code representation during the multimodal
fusion process. Then, a weighted summation is
performed between the medical code representation
g¢ and the displacement vector H to derive the
multimodal representation M:

M = i + aH,
i |15
H][

an

where oz = min( B,1).

Here, « is a scaling factor, modulating the influ-
ence of the displacement vector H and S is a train-
able parameter that is randomly initialised. Both
Hg)tCH2 and ||H||, are the Ly norm of their respec-
tive entities. Finally, we apply a layer normalisa-
tion and dropout to M.

Prediction To predict next visit diagnosis, we
feed the representation M in the previous stage
into a single linear layer with a Sigmoid activation
function to calculate the predicted probability ;1.

U1+1 = Sigmoid(Linear(M)), (12)

1

T
Lee = T Z — (Y41 log Ger1+

t=1

(13)
(1 —yu41) " log(1 — Ge41))

where cross-entropy loss L. is applied as the
loss function. g, 1 is a ground truth with elements
|C|, which takes a value of 1 if the i-th code exists
in Vi1, otherwise 0.

3.2.3 Bimodal Contrastive Losses

Contrastive learning has been leveraged in multi-
modal pre-training literature (Radford et al., 2021;
Zhang et al., 2022) to align diverse modalities ef-
fectively. Inspired by prior works, we apply two
bimodal contrastive losses to further intricately en-
tangle the different modalities by anchoring on the
medical code representations.

Again, let two distinct modalities of m; and
msg, where representation vectors derived from
each modality be f]zml and fIZ"Q Given a i-th
pair of (H[™*, H™), our bimodal contrastive loss
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scheme incorporates two asymmetric losses, m1-to-
my contrastive loss for the ¢-th pair and its inverse.

l(ml‘)mﬂ — ] eXp(<ﬁz‘ml?ﬁim2>/T)

' Sl exp((H™ H) /7))
A R (14)

l(TnQ‘)ml) — _ exp((H?QA,H;m)/T)

Z §:£ﬂexp«fﬁ"%fﬁ?94§g

where (,) is cosine similarity and temperature
7 € RT is a parameter modulating distribution’s
concentration and Softmax function’s gradient.
Subsequently, a bimodal contrastive loss is deter-

l(ml %mg)

mined by a weighted combination of and

ll(.m_}ml) using a weighting parameter a € [0, 1]

and averaging over the mini-batch NV as:

(m1,ma
‘Cbi—con

)L, o )
_ Z(aliml_)mQ +
Ni:l

(1= a)™7m),

(16)

We apply this to two pairs, one between medical
codes and demographics, and the other between
medical codes and clinical notes.

bi-con bi-con *

Ebi-con (17)

Note that, our multimodal contrastive loss is ap-
plied inter-modally, in line with the CLIP (Radford
et al., 2021), rather than intra-modally. Moreover,
we consider at the patient level rather than at the
visit level. This is because patient level representa-
tions share similar patterns between their visits.

3.3 Hierarchical Regularisation

Medical ontologies organise diseases in a hierarchi-
cal manner. By effectively leveraging this, models
are capable of acquiring knowledge at both general
and specific levels of medical codes. This approach
also mitigates the risk of error propagation and min-
imises the loss of pertinent information throughout
the intricate multimodal fusion processes.

In ULGM (Yu et al., 2021), modality-tailored en-
coders are also tasked with predicting ground truths.
Meanwhile, MIPO (Peng et al., 2021) introduces
an auxiliary loss to learn parental level ICD-9 code
prediction. Inspired by them, we introduce a reg-
ularisation strategy for each modality-specialised
encoder to learn parental level of ICD-9 codes.

Specifically, the modality-specific features M;
are passed to fully connected layers and Sigmoid
activation function, yielding modality-specific



parental level prediction 0}". Subsequently, we em-
ploy three cross-entropy losses, denoted as L}’}Zchy,
to each modality m for this auxiliary task:

o, = Sigmoid(Linear(M,)), (18)
1 X
m T ~m
hrchy = 7 Z — (041 log 0171 +
= (19)
(1= 0p41) " og(1 = 614))
o+1 is a ground truth with elements |A|, where

1 is assigned if the ¢-th code presents in V;4; and
0 if absent. This is re-written to encompass three
distinct modalities as:

Lirchy = Liyeny + Liteny + Lhieny-  (20)

3.4 Model Optimisation

The final objective function Ly is a weighted
sum of three loss terms: the cross-entropy loss
L. between ground truth diagnosis and prediction,
the medical code-centric two bimodal contrastive
losses Leont, and the three modality-specific direct
ancestral level hierarchical losses Lpchy. It is for-
mulated as:

Etotal = )\ce Ece + Abi—con £bi—con + )\hrchy Ehrchy (2 1 )

where Ace, Acont, and Apchy are parameters that
balance the different loss terms. The parameters
of the model are updated via stochastic gradient
descent (SGD) technique with respect to the calcu-
lated loss.

4 Experiments

4.1 Experimental Setup
4.1.1 Dataset

We conduct experiments on a publicly available
large-scale, deidentified real-world EHR data,
MIMIC-III (Johnson et al., 2016). It is acquired
from intensive care units (ICU) patients at Beth
Israel Deaconess Medical Center between 2001
and 2012. It contains multifaceted data, includ-
ing ICD-9 medical codes, demographics, clinical
notes, and so on. We provide descriptions on data
pre-processing and the corresponding statistics to
Appendix B.

4.1.2 Implementation Details

We describe the details for implementation. First,
we set 256 and 0.1 as a hidden dimension and a
dropout rate across the entirety of the model (e.g.
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medical code and demographics feature extraction
modules, Transformers including CMT and SA,
and MAG), respectively. In the clinical note extrac-
tion module, filter sizes are set to [2, 3, 4], and the
hidden dimension is 512. For the CMTs and SAs,
we set the number of heads and encoder layers to
be 4 and 3, respectively.

Also, following the previous work (Radford
et al., 2021), the temperature 7 and alpha « are
0.1 and 0.25 for the contrastive loss. The coeffi-
cients of loss terms, Ace, Acon» and Aprchy are set to
1, 1, and 0.1, respectively. Especially, the Apchy
is set relatively small to weakly regularise each
modality-specific encoder to learn the parental lev-
els of ICD-9 codes, without overly constraining
them. We provide the experimental results on the
different Aprchy to Appendix C.

4.1.3 Training Details

We train models using Adam optimiser (Kingma
and Ba, 2014) with a constant learning rate of 1e-4
and mini-batch size of 4, for a maximum of 50
epochs. The training is stopped if there is no gain
for consecutive 5 epochs on validation data. Also,
following the previous work (Choi et al., 2017),
our proposed framework is evaluated using top-k
accuracy, ranging k from 5, 10, 20 to 30. This
is consistent with how physicians consider a com-
prehensive set of potential diagnoses, and is suit-
able for multi-label classification scenarios where
multiple diseases often co-occur. Details on other
baselines are provided to Appendix D.

Our proposed framework is implemented using
PyTorch (Paszke et al., 2019) and accelerated via a
single NVIDIA GeForce RTX 3090 GPU.

4.2 Experimental Results
4.2.1 Next Visit Diagnosis Prediction Results

Table 1 provides quantitative results of the pro-
posed NECHO in comparison to the baselines on
the MIMIC-III data for the diagnosis prediction
task. NECHO notably excels over all existing base-
lines in EHR modelling and multimodal fusion
strategies. Its effectiveness is attributed to its ability
to leverage unique and complementary information
from other modalities, which especially improves
top-30 accuracy ranging from 0.5% to 10.7% over
modality-specific encoders that constitute NECHO.

As shown in Table 1, the multimodal fusion
is imperative. It’s noteworthy that whilst MAIN
(An et al., 2021) employs a trimodal representation
learning, its performance falls short compared to



Acc@k

Criteria Modalities Models
5 10 20 30
GRAM (Choi et al., 2017) 24.16 3647 5248 62.76
KAME (Ma et al., 2018) 2534 3693 5425 6454
Code MMORE (Song et al., 2019) 2597 38.58 57.05 6823
MIPO (Peng et al., 2021) 28.70 43.98 60.85 71.07
Code Extractor (Ours) 28.16 41.83 57.99 68.31
Demo Demo Extractor (Ours) 1796 29.58 47.13 58.94
EHR Modelling BioWord2Vec jox (Zhang et al., 2019) 27.31 41.14 58.53 69.21
Note BioWord2Vec 5, (Zhang et al., 2019) 23.05 3574 52776 63.20
Clinical BERT s, (Alsentzer et al., 2019) 24.63 37.21 54.96 66.37
Code + Note MNN (Qiao et al., 2019) 28.16 41.83 59.75 69.44
MAIN (An et al., 2021) 2725 41.07 5737 67.69
NECHO w6 code centring (Ours) 28.10 42.13 59.32 70.01
Code + Demo + Note NECHO yo £,y (Ours) 28.71 43.14 59.83 70.22
NECHO (Ours) 28.66 43.55 60.77 71.45
NECHO , mipo (Ours) 29.05 43.80 61.33 72.08
Concat 28.38 42.39 58.63 68.89
TFN (Zadeh et al., 2017) 24.66 36.80 5293 63.85
. o MulT (Tsai et al., 2019) 28.27 41.87 58.12 68.50
Fusion Strategies  Code + Demo + Note MAG (Rahman et al., 2020) 2826 4236 5840 69.16
ULGM (Yu et al., 2021) 28.58 42.09 58.70 68.53
TeFNA (Huang et al., 2023) 28.12 41.78 59.11 69.21

Table 1: Experimental Results on MIMIC-III Data for Next Visit Diagnosis Prediction. Code, Demo, and Note are
short for Medical Codes, Demographics, Clinical Notes, respectively. Best results are in boldface. 10k and 512
indicates the number of words. Unless specified otherwise, 10k words are processed for multimodal models with

with clinical notes.

the bimodal MNN (Qiao et al., 2019). This dis-
crepancy might arise from the harmful effects of
improperly fusing demographic data lately. Espe-
cially, bimodal MNN shows comparable perfor-
mance to trimodal fusion strategies baselines. This
confirms the limitations of the tertiary symmetric
multimodal fusion methodologies and raises the
need for a medical code-centric approach, taking
into account the modality imbalance.

To validate the efficacy of our fusion strategy,
we compare NECHO that excludes the hierarchical
regularisation (NECHO vy, £,,,,,) amongst multi-
modal EHR modelling and fusion baselines. Our
method demonstrates superior performance over
them, including NECHO /o code centring- These find-
ings highlight the significance of designing multi-
modal fusion framework by centring medical codes
representation that ensures a seamless aggregation
of diverse data modalities. Furthermore, we also
provide a comparative study on our novel code-
centric MAG with others (Rahman et al., 2020;
Yang and Wu, 2021) to Appendix E.

Next, we delve into the significance of regularis-
ing modality-specific encoders using parental level
of medical codes. We juxtapose NECHO with
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NECHO w0 £y, and ULGM (Yu et al., 2021), at
which modality-specific encoders learn the same
level of medical ontology as the final prediction.
They two show inferior performance, emphasising
the importance of our novel strategy. It is discussed
further in Ablation Studies (Section 4.2.2).

Furthermore, whilst NECHO does not com-
pletely surpass MIPO, replacing its simple med-
ical code encoder with MIPO (NECHO ., mipo)
outperforms MIPO. It especially achieves a 1.01%
increase in top-30 accuracy, indicating that 1) our
framework is modular, and 2) NECHO can pre-
dict additional accurate diseases than MIPO by
leveraging complementary information from vari-
ous modalities, emphasising its significance in real
clinical settings. We provide a regarding case study
to Section 4.2.3.

Another noteworthy point outside the multi-
modal strategies is that, amongst the clinical note
baselines, Clinical BERT (Alsentzer et al., 2019)
that is trained with a maximum of 512 tokens sur-
passes the combination model of BioWord2Vec
(Zhang et al., 2019) and 1D CNN (Kim, 2014) with
equivalent number of tokens but is inferior to that
model trained with 10k tokens. This suggests that



enhancing performance is more about processing
a large number of tokens than increasing model
complexity in EHR learning. This also justifies our
preference for BioWord2Vec over Clinical BERT
within the realm of Pretrained Language Models.

4.2.2 Ablation Studies

We conduct ablation studies to discern influence of
each module on the overall performance as: 1) indi-
vidual modalities, 2) the multimodal fusion strate-
gies (including Transformers, MAG, and bimodal
contrastive losses), and 3) the hierarchical regulari-
sation. The results are reported in Table 2.

Firstly, we assess the contribution of each modal-
ity within our proposed framework. The results
demonstrate a clear superiority of the trimodal ap-
proach over its unimodal and bimodal ones. This
underscores the unique representations from each
modality are complementary to one another. Also,
the significant performance degradation is observed
upon the exclusion of medical code representation
(w/o code), highlighting its pivotal role and ratio-
nalising our medical code-centred strategy. Ad-
ditionally, whilst the exclusion of either notes or
demographics similarly harms the performance, the
note contains more meaningful information neces-
sary than demographics, as shown in Table 1.

Secondly, we evaluate the impact of our medical
code-centred strategies by removing each compo-
nent. The resultant performance decline highlights
their importance. Intriguingly, the performance dis-
parities between models lacking transformers (w/o
Transformers), lacking MAG (w/o MAG), and the
full model (NECHO) widen as the value of k£ in-
creases, suggesting an amplified effect in scenar-
ios involving a broader range of disease sampling.
Conversely, the influence of contrastive losses (w/o
Lhpi-con) remains relatively stable across different
top-k accuracies, indicating that they effectively
align the distinct modalities in a semantically con-
sistent fashion. These observations show that the
adaptation of the proposed modules simultaneously
is essential for effective inter-modality interaction
and integration, thereby yielding significant perfor-
mance enhancements.

Finally, the effectiveness of our novel parental
level hierarchical regularisation is investigated. Its
omission (W/o Lycny) affects adversely model’s
accuracy across various top-k accuracies. This sug-
gests that enforcing the encoders for three distinct
modalities, guided by the parental levels of medical
codes using an ICD-9 hierarchy, is essential for en-
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Criteria Components Acc@k
10 30
w/o Code 36.78 65.54
Modalities w/o Demo 42.56 70.12
w/o Note 41.94 69.00
w/o Transformers 42.93 69.68
Multimodal Fusion w/o MAG 4277 69.48
w/0 Lbpi-con 42.69 70.84
Hierarchical Regularisation W/0 Lhchy 43.14 70.22
NECHO Full 43.55 71.45

Table 2: Ablation Studies on MIMIC-III Data.

hancing performance as it injects the general infor-
mation and thus prevents the possible transmission
of erroneous information when combining repre-
sentations from distinct data modalities, thereby
encouraging effective and accurate training.

4.2.3 Case Study

To qualitatively evaluate the predictive perfor-
mance between MIPO (Peng et al., 2021) and our
NECHO, we present a case study (Table 3) using a
patient whose medical history shows a progression
from a mitral valve issue to complications after
surgery and cardiac rhythm disturbances. In the
study, codes are formatted according to the Clinical
Classifications Software (CCS) and are sequenced
based on their priority, significantly influencing the
reimbursement for treatment. We prefix them with
"D" to make them appear akin to diagnosis codes.

Notably, our NECHO model accurately pre-
dicts 6 out of the top-10 diagnosis, outperforming
MIPO, which predicts only 3. Firstly, both success-
fully identify D53 (Disorders of lipid metabolism),
D106 (Cardiac dysrhythmias) and D101 (Coronary
atherosclerosis and other heart disease), likely due
to these diagnoses being part of the patient’s prior
medical codes. However, NECHO uniquely pre-
dicts D238 (Complications of surgical procedures
or medical care), D49 (Diabetes mellitus without
complication), D2616 (E Codes: Adverse effects of
medical care) and D96 (heart valve disorder) which
MIPO fails to identify.

Additionally, our model predicts D238 and
D2616 using multifaceted information of both de-
mographics and notes. D238 should be predicted
for two points: 1) the patient was initially hospi-
talised due to emergency health problem according
to demographics, and 2) his notes states visual hal-
lucinations, monitoring for pericardial and pleural
effusions. The prediction of D2616 aligns with



Visit Modalities / Models Contents
Dem Age: 67, Gender: Male, Admission Type: Emergency,
emo Admission Location: Transfer from hospital ...
Codes D96, D109, D97, D131, D101, D49, D110, D53, D138, D257
Preceding ... he was taken to the Operating Room where mitral valve
replacement was performed ... Discharge Diagnosis: mitral
valve mass ... He experienced some visual hallucinations ...
IMPRESSION: 1. Enlarging bilateral pleural effusions. 2.
Notes Enlarging cardiac silhouette suspicious for a pericardial
effusion, echocardiographic confirmation is suggested.
Codes D238, D53, D130, D106, D101, D49, D2, D3, D2616, D96
Subsequent MIPO D101, D128, D53, D108, D95, D259, D106, D131, D98, D55
NECHO D96, D98, D101, D53, D138, D238, D49, D106, D2616, D663

Table 3: Case Study of Next Visit Diagnosis Prediction for a Subject ID of 42129 in MIMIC-III Data. The preceding
visit part provides a comprehensive information of a patient on demographics, medical codes, and clinical notes
whilst the subsequent visit provides the patient’s real medical codes along with predicted ones by MIPO and
NECHO. The accurately predicted codes and their matching ground truths are both in boldface.

potential risks associated with mitral valve replace-
ment. On the contrary, MIPO’s prediction of D259
(Residual codes; unclassified) and D131 (Respira-
tory failure; insufficiency; arrest (adult)), which
is considered less informative and a simple repeti-
tion from previous patient visits. D2 (Septicemia)
and D3 (Bacterial infection) are not explicitly men-
tioned in the patient’s history, thus extremely chal-
lenging to predict. Hence, this demonstrates the
necessity of the effective multimodal fusion strat-
egy for its capability of capturing complementary
and unique information in other modalities, verify-
ing the effectiveness of the NECHO.

Apart from multimodal EHR learning, the con-
tent following the "Impression" in the preceding
notes is only explicitly found in radiology reports.
This indicates the importance of considering all
available clinical note types to acquire a thorough
understanding of a patient’s information. This con-
trasts with previous findings (Hsu et al., 2020; Hus-
mann et al., 2022) suggesting that certain specific
note types are representative in EHR learning.

5 Conclusion

Next visit diagnosis prediction is beneficial in Al-
driven healthcare applications and has shown re-
markable progress. However, the multifaceted and
hierarchical properties of EHR data are beyond the
consideration for the most of existing studies. To
address these limitations, we introduce the novel
multimodal EHR modelling framework, NECHO.
It effectively aggregates representations from three
heterogeneous modalities through meticulously de-
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signed multimodal fusion network and the pair of
two bimodal contrastive losses in a medical code-
centric manner. It also uses parental level informa-
tion of ICD-9 codes to regularise each modality-
specialised encoder to learn more general informa-
tion. Experimental results including the ablation
studies and case study on MIMIC-III data highlight
the NECHO’s efficacy and superiority.

6 Limitations

Whilst our proposed framework demonstrates
promising advancements in multimodal EHR mod-
elling for next visit diagnosis prediction, it is not
without its limitations.

From a data perspective, the model’s predictions
are heavily biased to the training data. This means
there’s a potential risk that the model might under-
perform when encountering patterns that is nonex-
istent in the dataset or originating from the different
healthcare settings. Additionally, from a model per-
spective, firstly, the framework’s applicability is
confined and has not been extended to a variety of
clinical event prediction tasks, such as mortality,
re-admissions, and length of stay, where different
modalities might take main status. Secondly, it op-
erates under the assumption that all data modalities
are readily and consistently available for every pa-
tient. However, this assumption is impractical in
that the availability of data can be compromised
due to device malfunctions or human errors.

We hope to mitigate aforementioned challenges
in the near future, enhancing NECHO’s adaptabil-
ity in real-world clinical scenarios.
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A Modality-Specific Feature Extraction
Modules

A.1 Feature Extraction Module for Medical
Codes

Medical codes, particularly those from ICD-9
codes, play a vital role in that they directly indi-
cate a patient’s status. They are highly specific,
unambiguous and succinct, thus they have acted
as a primary modality for next admission diagno-
sis prediction and shown better performance than
models leveraging other modalities. Hence, here in
this task, we consider them as a main modality.

We employ a single embedding layer Ec to pro-
cess a set of diagnosis codes at ¢-th patient record,
ct. The features are passed to a single linear layer
followed by a ReLLU activation function. It is for-
mulated as:

Et = EC (Ct) s (22)

C; = ReLU(Linear(¢;)) (23)

where C; represents a feature vector from medi-
cal code information of each patient P at ¢-th visit.

A.2 Feature Extraction Module for
Demographics

Each patient has unique demographics, such as
gender, age, admission and discharge location, to
just name a few. Those provide the supplementary
but highly personalised information, allowing an
improvement in predictive performance.

We capture the non-stationary nature of the afore-
mentioned attributes across clinical records at the
individual level. For example, variables such as age
and insurance type may change over time. Thus,
we employ a single embedding layer E}j to n-th
attribute at ¢-th patient record, hy'. The features
from each embedding layer are then concatenated
(¢) and fed into a single linear layer paired with a
ReLU activation function. It can be represented as:

he = By(h)) @ Bj(h7) & --- @ BR(hY), (24)

H; = ReLU(Linear(h;)) (25)

where H; represents a feature vector from demo-
graphics of each patient P at ¢-th visit.
A.3 Feature Extraction Module for Clinical
Notes

Clinical notes inherently possess a free, unstruc-
tured format but carry a comprehensive insight into
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a patient’s condition from the perspective of health-
care provider. They offer potential diagnoses and
planned procedures, providing complementary and
supplementary information not explicitly specified
in medical codes.

We leverage a combination of pre-trained
BioWord2Vec (Zhang et al., 2019) (frozen during
both training and inference) and 1D CNN (Kim,
2014), which is capable of processing more tokens
with computational efficiency. Although many pre-
ceding studies utilise PLMs like Clinical BERT
(Alsentzer et al., 2019), they are still limited by a
512-token maximum, preventing themselves from
processing an entire note in a single visit. Thus, we
do not utilise them here.

First, we combine all notes W}, W2, ... WX
in a single patient visit V; to generate a single note
W;. Then, using the pre-trained BioWord2Vec
(Zhang et al., 2019) Ew, each discrete word wy
in the note W; is mapped to a low-dimensional
embedding space, generating ei’. With the maxi-
mum number of words |W/|, the word embeddings
er = (e}, €2,. .., eLW|) from the combined note W,
are then fed into the 1D CNN (Conv1D) with mul-
tiple filters with a subsequent max-pooling layer
(Max) to generate the most salient features w; using
a filter (equivalent to window size) f. The outputs
from each filter are concatenated (&) and passed
to a linear layer with ReLLU activation function. It
yields the note representation W, at t-th visit of
each patient P. The aforementioned processes are
mathematically described as follows:

W, =W} e Wie, - ,eWk,  (26)

e = Ew(uf), @n

&/ = ReLU((Conv1D/ (¢;)) (28)
where f € [2,3,4],

w] = Max(e)), (29)

Wy = W D T D DY, (30)

W, = ReLU(Linear(1w;)). (31)



B Data Pre-processing

Patient Selection Criteria We follow the previous
work of GRAM (Choi et al., 2017). First, we se-
lect patients with minimum two visits. Also, we
truncate visits beyond the 21st visit.

Demographics Processing Attributes such as
age, gender, admission type, admission and dis-
charge locations, and insurance type are considered.
Patients with ages O or above 120 are excluded.
The admission types encompass categories such
as emergency, elective, and urgent whilst the in-
surance types include medicare, private, medicaid,
government and self pay. The dataset also offers
a diverse range of features for both admission and
discharge locations.

Clinical Note Processing Even though some
prior works (Hsu et al., 2020; Husmann et al., 2022)
emphasise the significance of specific note types
for EHR representation learning, we consider all
available note types (e.g. radiology, discharge sum-
mary, and nursing) for universality.

We first pre-process the notes, following the pre-
vious work (Khadanga et al., 2019). It involves a
removal of non-alphabetical characters, stopwords
and conversion of uppercase to lowercase letters.
Then, we add two special tokens to BioWord2Vec
(Zhang et al., 2019), <UNK> and <PAD>, the
same as those used in BERT (Devlin et al., 2018).
They are initialised using matrices filled with ze-
ros and uniform distribution, respectively. Any
visit records lacking note information are excluded.
Next, each note is tokenised with maximum 10k
words using BioWord2Vec. This approach effec-
tively captures the entirety of note information for
approximately 85% of all the visits.

Medical Ontology & Label Construction Fol-
lowing the GRAM (Choi et al., 2017), a medical
ontology is constructed based on ICD-9 codes us-
ing the Clinical Classifications Software (CCS)
from the Healthcare Cost and Utilization Project’.
The labels are derived from nodes present in the
primary” and secondary’ hierarchy of the ICD-9
codes. This renders the next visit diagnosis predic-
tion task as a hierarchical multi-label multi-class
classification.

Summary A comprehensive statistical summary
of the pre-processed dataset is provided in Table 4.

"https://hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

Dataset MIMIC-IIT
# of patients 6,812
# of visits 18,256
Avg. # of visits per patient 2.68
# of Training Data 5449
# of Validation Data 681
# of Test Data 682
# of unique ICD9 codes 4,138
Avg. # of ICD9 codes per visit 13.27
Max # of ICD9 codes per visit 39

# of category codes 265
Avg. # of category codes per visit 11.40
Max # of category codes per visit 34

# of disease typing code 17
Avg. # of disease typing codes per visit 6.68
Max # of disease typing codes per visit 15
#of Age 73

# of Gender 2

# of Admission Type 3

# of Admission Location 8

# of Discharge Location 16

# of Insurance Type 5
Avg. # of words per visit 6743
Max # of words per visit 239,102

Table 4: Statistics of the Pre-processed MIMIC-III Data.

Zhttps://hcup-us.ahrq.gov/toolssoftware/ccs/AppendixCMultiDX.txt
3https://hcup-us.ahrq.gov/toolssoftware/ccs/Appendix ASingleDX..txt
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C Experiments on the Coefficient for
Hierarchical Regularisation

We assume that modality-specific encoders necessi-
tate soft regularisation for two reasons: firstly, their
representations are relatively incomplete in com-
parison to the full framework (NECHO); secondly,
since the general information embodies a broader
scope, it should not impose excessive constraints
on these encoders during training.

The empirical results on Table 5, delineated on
a logarithmic scale for Apchy values ranging from
0.01, 0.1, to 1, substantiate our hypothesis. No-
tably, setting it as 0.1 enhances the overall model
performance the most, thereby verifying its optimal
effectiveness.

Coefficients Values Acc@k
10 30
0.01 4224 70.09
Ahrchy 0.1 43.55 7145

1 43.02 70.82

Table 5: Experimental Results on MIMIC-III Data of
the Coefficient for Hierarchical Regularisation, Apcpy.
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D Baselines

D.1 Unimodal EHR Modelling Baselines

* GRAM (Choi et al., 2017) considers medical
ontology with an attention mechanism.

KAME (Ma et al., 2018) employs an attention
mechanism at the knowledge level, specifi-
cally tailored for medical ontology.

MMORE (Song et al., 2019) attentively learns
both the multiple ontological representation
and the co-occurrence statistics.

MIPO (Peng et al., 2021) utilises an auxiliary
task of disease typing task. In other words, it
learns parental level ICD-9 codes additionally.

Medical Code Encoder (Ours) employs a sim-
ple combination of embedding layers and a
couple of linear layers, which are followed by
ReLU and Sigmoid activation function. It is
utilised in our pipeline. Refer to Appendix
A.1 for details.

Demographics Encoder (Ours) utilises a sim-
ple combination of attribute-specific embed-
ding layers and two linear layers, whose subse-
quent layers are ReLU and Sigmoid activation
function, respectively. It is employed in our
pipeline. Refer to Appendix A.2 for details.

BioWord2Vec (Zhang et al., 2019) model is
combined with 1D CNN (Kim, 2014). For
brevity, we simplify it as BioWord2Vec. It
uses pre-trained embedding with 16,545,454
words (with an arbitrary addition of two spe-
cial tokens), which are subsequently pro-
cessed by 1D CNN. In our framework, this
serves as the notes feature extraction module.
Refer to Appendix A.3 for details.

Bio-Clinical BERT (Alsentzer et al., 2019) is a
derivative of the original BERT (Devlin et al.,
2018) on bio-medical domain. It is trained on
MIMICH-III dataset (Johnson et al., 2016) and
has a maximum input sequence length of 512.

D.2 Multimodal EHR Modelling Baselines

Both MNN and MAIN process 10k words from a
clinical note within a single visit. The arameters
(e.g. hidden dimension, the number of heads) are
set in accordance with the specifications detailed
in their original paper.



* MNN (Qiao et al., 2019) is trained using both
medical codes and clinical notes. It employs
a single embedding layer for the former and
a combination of BioWord2Vec 1D CNN for
the latter. The fusion of representations from
these two modalities is achieved through deep
feature mixture (Lian et al., 2018) and bi-
directional RNN with attention.

MAIN (An et al., 2021) is a trimodal model,
integrating medical codes, clinical notes, and
demographics, which is akin to our approach.
First, medical codes and clinical notes are
fused using a combination of low-rank fusion
(Liu et al., 2018) and cross-modal attention.
Next, demographics is merged using low-rank
fusion subsequently.

D.3 Multimodal Fusion Strategies Baselines

We employ the same feature extraction module as
used in our approach for the subsequent baselines,
and fuse different modalities using their proposed
mechanisms. For fairness, we set the parameters as
the same as ours.

¢ Concat, an abbreviation for concatenation, is
a straightforward method that merges distinct
modalities without any computations, ensur-
ing a raw and unaltered integration.

¢ TFN (Tensor fusion Network) (Zadeh et al.,
2017) executes an outer product on the repre-
sentations of different modalities.

MulT (Multimodal Transformer) (Tsai et al.,
2019) utilises both cross-modal and self-
attention transformers to integrate distinct
modalities.

MAG (Multimodal Adaptation Gate) (Rah-
man et al., 2020) refines the representation of
one modality by adjusting it with a displace-
ment vector, which is derived from the other
modalities.

ULGM (Unimodal Label Generation Module)
(Yu et al., 2021) uses modality-specific en-
coders to predict the ground truths as well.

e TeFNA (Text Enhanced Transformer Fusion
Network) (Huang et al., 2023) learns text-
centric pairwise cross-modal representations.
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E A Comparative Study on Different
MAGs

We present a comparative analysis of various
MAGs, including our newly developed code-
centric MAG and others (Rahman et al., 2020;
Yang and Wu, 2021). (Rahman et al., 2020) in-
troduce MAG initially while MAG from (Yang and
Wu, 2021) combines representations from different
modalities at the sample level dynamically with an
attention gate. They are replaced with our MAG in
the framework for a comparison.

From the Table 6, it demonstrates the superior-
ity of our method over preceding approaches. It
can be attributed to the meticulous consideration
of the modality imbalance, one of factors not ade-
quately addressed by previous methodologies. This
validates that considering the dominance of main
modality is essential in multimodal modelling.

Criteria Methodologies ﬂ
10 30

(Rahman et al., 2020) 42.36 69.16

MAG (Yang and Wu, 2021) 4224 70.22

NECHO (Ours) 43.55 7145

Table 6: Experimental Results on MIMIC-III Data on
Different MAGs.
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Abstract

Nowadays, large language models (LLMs)
have demonstrated their ability to be a pow-
erful knowledge generator of generate-then-
read paradigm for open-domain question an-
swering (ODQA). However this new paradigm
mainly suffers from the "hallucination" and
struggles to handle time-sensitive issue because
of its expensive knowledge update costs. On
the other hand, retrieve-then-read, as a tradi-
tional paradigm, is more limited by the rele-
vance of acquired knowledge to the given ques-
tion. In order to combine the strengths of both
paradigms, and overcome their respective short-
comings, we design a new pipeline called "Flex-
iQA", in which we utilize the diverse evalua-
tion capabilities of LLMs to select knowledge
effectively and flexibly. First, given a ques-
tion, we prompt an LLLM as a discriminator
to identify whether it is time-sensitive. For
time-sensitive questions, we follow the retrieve-
then-read paradigm to obtain the answer. For
the non-time-sensitive questions, we further
prompt the LLM as an evaluator to select a
better document from two perspectives: fac-
tuality and relevance. Based on the selected
document, we leverage a reader to get the fi-
nal answer. We conduct extensive experiments
on three widely-used ODQA benchmarks, the
experimental results fully confirm the effective-
ness of our approach. Our code and datasets are
open at https://github.com/Fiorinal212/
FlexiQA

1 Introduction

Open-domain question answering (ODQA) as a
knowledge-intensive task, necessitate a substantial
amount of world knowledge to be effective (Petroni
et al., 2020). Current methods for handling ODQA

*Equal contribution.
f Corresponding author: Rui Yan (ruiyan@ruc.edu. cn).
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often share two common paradigms: the retrieve-
then-read paradigm, which consists of retriev-
ing a small set of relevant contextual documents
from sources, and then generating the answer on
both the question and the retrieved documents
(Karpukhin et al., 2020; Lewis et al., 2020; Izac-
ard and Grave, 2020); and the generate-then-read
paradigm, which initiates by prompting an LLM to
generate contextual documents based on the ques-
tion, then by reading and extracting relevant infor-
mation from the generated documents to generate
the final answer. Nevertheless, these two type of
paradigms are with their own drawbacks.

For the retrieve-then-read paradigm, candidate
documents are chunked and fixed for a given ques-
tion. Moreover, the frequently-used two-tower
dense retrieval models (Karpukhin et al., 2020)
often leads to superficial interactions between the
document and the question (Khattab et al., 2021).
These can result in some retrieved documents con-
taining irrelevant or noisy data that is not perti-
nent to the question. For the generate-then-read
paradigm, though there are works show that the
generated contextual documents contain the cor-
rect answer more often than the top retrieved docu-
ments (Yu et al., 2022), there are still some impera-
tive issues to be solved. LLMs are hard to expand
or revise their memory since all the information
needs to be stored in the parameters (Geva et al.,
2021). Moreover, they can’t straightforwardly pro-
vide insight into their generations, and may pro-
duce “hallucinations” (Lewis et al., 2020; Lv et al.,
2023c¢) or struggle to address time-sensitive issue.
A time-sensitive question is one whose answer will
change over time. For example, Where will the
next Olympic Games be held? is time-sensitive,
while Who wrote the book "The Razor’s Edge’? is
not time-sensitive. Time-sensitivity becomes a non-
negligible issue when leveraging LLMs for ODQA.
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Figure 1: Overview of FlexiQA, including three parts:
time-sensitivity discrimination, document selection and
answer generation. Besides, an example is shown in
gray color.

There are a few works analyzed it recently (Yu
et al., 2022; Zhang and Choi, 2021), but didn’t
try to solve it. Meanwhile, retrieval-based models
have no such problem because it is easy to replace
the external knowledge source and access the time-
aligned documents.

Based on the aforementioned observations, we
unify these two paradigms and proposed a new
ODQA pipeline called FlexiQA. Overall, our con-
tributions are listed as follows:

e We propose FlexiQA as a unified pipeline
which flexibly leverages the multi-dimensional
evaluation ability of LLMs for ODQA for the first
time. By evaluating the question and the docu-
ments obtained by retriever and generator from
multi-perspective, the better one is picked to en-
hance the answer generation. FlexiQA could tackle
three drawbacks of the two classic paradigms: the
time-sensitive issue, the irrelevance issue and the
non-factuality issue.

o We tackle the time-sensitive issue of LLMs for
the first time in ODQA task. We prompt an LLM to
discriminate if the given question is time-sensitive
or not. Then we design different answering strategy
for different type question. Moreover, we release
two time-sensitivity annotated datasets for widely
research on this issue in the future.

e We conduct extensive experiments for ODQA
task on three benchmarks, and FlexiQA achieves
the new state-of-the-art performance.
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2 Related Work

2.1 Open-Domain Question Answering

Open-domain generation poses a longstanding chal-
lenge (Lv et al., 2023a,b) in the field of natural
language processing. Within this realm, Open-
Domain Question Answering (ODQA) stands out
as one of the most extensively studied tasks. It
has garnered significant attention from both indus-
try and academia in recent years (Liu et al., 2022).
Up to now, most recent works are built following
the two basic paradigms, retrieve-then-read and
generate-then-read.

Retrieve-Then-Read Paradigm The retriever
first retrieve evidence documents based on the
given question from a large external corpus. Then
the reader intends to generate answer condition on
both the evidence and the given question. Many re-
cent works focus on improving the retriever (Khat-
tab et al., 2021; Qu et al., 2020). The readers based
on PLMs such as T5 (Raffel et al., 2020) and In-
structGPT (Ouyang et al., 2022) have become a
common choice with the develop of LLMs (Izac-
ard and Grave, 2020; Cheng et al., 2021; Yu et al.,
2022; Chen et al., 2023).

Generate-Then-Read Paradigm Many works
have demonstrated that the knowledge stored in the
parameters of LLMs could serve as a “retriever”
to some extent by directly generating text (Petroni
et al., 2019; Roberts et al., 2020). Based on that, Yu
et al. (2022) exploit the potential of directly gener-
ating contextual documents for open-domain ques-
tions and propose the generate-then-read paradigm.
This paradigm directly generates contextual doc-
uments for a given question instead of retrieving
documents from an external corpus.

2.2 Evaluation Ability of LLMs

Recently, utilizing LLMs as evaluators becomes
a natural idea for their remarkable performance
across various tasks (Kushman et al., 2014; Roy
and Roth, 2016; Bubeck et al., 2023). LLMs
aligned with Reinforcement Learning from Hu-
man Feedback (RLHF, Ouyang et al., 2022; Wang
et al., 2022) are used to evaluate and compare the
generations from different models. Other works
prompt LLMs to achieve self-verify, self-refine,
and self-debug ability in zero-shot setting (Shinn
et al., 2023; Weng et al., 2022; Madaan et al., 2023).
Especially, vicuna’s evaluation pipeline (Chiang
et al., 2023) has obtained significant interest, which



leverages GPT-4 to score and compare candidate
responses and provide explanations.

In our work, we unify these two paradigms into
a new pipeline and leverage the evaluation ability
of LLMs to enhance the ODQA performance for
the first time.

3 Method of FlexiQA

Under the zero-shot setting, we will introduce the
details of our proposed pipeline as shown in Fig-
ure 1 which comprises three steps: Time-sensitivity
Discrimination, Document Selection, Answer Gen-
eration. First, we prompt an LLM to discriminate
if the given question is time-sensitive. If the answer
is YES, we choose the retrieved document as the
evidence. Otherwise, we further prompt the LLM
as an evaluator to decide which document (one is
from generation, another one is from retrieval) is
better from two perspectives: factuality and rele-
vance. And finally we use the picked document as
evidence to answer the given question by a reader.

3.1 Time-Sensitivity Discrimination

In this subsection, we design an evaluation prompt
template for time-sensitivity discrimination with
one placeholder Q: Ti5(Q). Given a question
@, a prompt T35(Q) is produced by the designed
template. Then we instruct an LLM with 7;5(Q)
to determine whether the given question @) is
time-sensitive and LLM will give feedback to
us with a the Label;s; = YES/NO. The role
of LLM here is a time-sensitivity discriminator,
named LLM;.q (-). Formally, we describe this
process with the following formula: Label;s =
LLM;sq (Tis (Q)). The details of the prompt tem-
plate is described in Appendix B.

As mentioned in Introduction, retrieval-based
models won’t severely affected by time-sensitive is-
sue because it is easy to replace the external knowl-
edge source and then access the time-aligned doc-
uments. For the questions with Label;s = YES
(i.e. the question is time-sensitive), we directly em-
ploy Information Retrieval (IR) to obtain the final
evidence document: £ = IR (Q). For the non-
time-sensitive questions, we obtain both the gener-
ated document from an LLM generator L LMy, (-)
and the retrieved document from a retriever I R:
Gaoc = LLng(Q): Rioc = IR(Q)

3.2 Document Selection

Now for the non-time-sensitive questions, inspired
by the multi-dimensional evaluation ability of
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LLMs, we leverage it here to unify the generate-
then-read paradigm and the retrieve-then-read
paradigm. Specifically, we leverage LLMs to com-
pare two documents from two perspective, the fac-
tuality and relevance, then pick the better one as
the evidence.

We design another evaluation template
Tus(Q, Gaoc, Raoc) for document selection, which
includes three placeholders for the given question
Q, the generated document G4, and the retrieved
document Rg,.. See Appendix B for the detail
description of evaluation template.

For any question, a prompt according to this tem-
plate is produced and is used to instruct an LLM
to score the two given documents. Next, the LLM
output the document with higher overall score to
serve as the evidence. The role of this LLM is a
document selection evaluator, named LL Mg (-).
Formally, we describe this process with the follow-
ing formula: £ = LLM j5.(Tys(Q, Gaoe, Raoc))-

3.3 Answer Generation

After the two steps above, we obtain the optimal ev-
idence corresponding to the given question, which
draw upon the two classic paradigms’ strong points
and make up the shortcomings. Combining the
question () and the evidence F, we utilize another
LLM as a reader LLM,¢qqer (+) to get the final
answer: Answer = LLM,cqqer(Q, E).

4 Experiments

4.1 Datasets & Metrics

We conduct comprehensive experiments on three
widely used benchmarks: NaturalQuestions
(NQ, Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), WebQuestions (WebQ, Berant et al.,
2013). More detailed information can be found in
Table 3 in Appendix A. We use Exact Match (EM)
score (Zhu et al., 2021) and F1 score to evaluate
models’ performance since the correct answer is
not an flexible and open answer. For EM score, an
answer is considered correct if and only if its nor-
malized form has a match in the acceptable answer
list. F1 score measures the recall of answer at the
token level.

4.2 Baselines

We compare our pipeline with the following strong
baselines. (1) BM25 (Robertson et al., 1995) +
InstructGPT; (2) Contriever (Izacard et al., 2022)
+ InstructGPT; (3) Google + InstructGPT; (4)



DPR (Karpukhin et al., 2020) + InstructGPT; (5)
InstructGPT (no docs.) (Ouyang et al., 2022); (6)
GENREAD (Yu et al., 2022); (7) Vanilla-United:
To fully evaluate the effectiveness of our proposed
method, we also compare our pipeline with another
vanilla method which combines the two documents
from retrieval and generation as evidence directly
without comparison. See Appendix A.2 for the
details of above baselines.

4.3 Implementation Details

We follow the experimental settings as in GEN-
READ, and utilize text-davinci-002 version of In-
structGPT (Ouyang et al., 2022) for the knowledge
generator L LMy, and the reader LLM,.cqq4er. We
employ dpr-multi version of DPR (Karpukhin et al.,
2020) as the retriever. We leverage the gpr-3.5-
turbo as discriminators LL M;z; and LL M gs.. The
generation temperature is set to 7' = 0 to ensure
the reproducibility.

4.4 Results

As shown in Table 1, our approach surpasses all
previous methods and achieves the state-of-the-art
performance with improvements of 3.3, 1.2, and
0.3 points of EM score on NQ, TriviaQA, WebQ,
respectively. The results demonstrate that our
pipeline could select suitable knowledge sources
effectively to enhance the ODQA performance.
Moreover, Vanilla-United, as the simplest way to
fuse two paradigm knowledge, yields worse results
than FlexiQA. The part of reason for this result is
that there are content conflicts between the gener-
ated document and the retrieved document partly
due to the three issues mentioned above. We pro-
vide a more detailed results in Table 4 in Appendix
C including F1 metric.

4.5 Analysis
4.5.1 Analysis of Time-Sensitivity

To analyze the experiment results for time sensitiv-
ity, we annotated the time-sensitive label for NQ
and WebQ test sets. Specifically, for every question
in the dataset, we label it with time-sensitive (YES)
or non-time-sensitive (NO). We release these two
annotated dataset for widely research on this issue
for the future works.

We compare the performance of our FlexiQA
with representative baselines, DPR + Instruct-
GPT of retrieve-then-read paradigm, GENREAD
of generate-then-read paradigm, the naive unify
method Vanilla-United, on both time-sensitive (TS)
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Models | NQ | TriviaQA | WebQ
*with retriever
BM25+InstructGPT 19.7 52.2 15.8
Contriever+InstructGPT | 18 51.3 16.6
Google+InstructGPT 28.8 58.8 20.4
DPR+InstructGPT 29.1 55.7 21.5
*without retriever
InstructGPT (no docs.) 20.9 57.5 18.6
GENREAD 28.2 59 24.8
*with retriever and generator
Vanilla-United 28.1 59.3 20.9
FlexiQA 324 60.5 25.1

Table 1: Exact match (EM) score on NQ, TriviaQA and
WebQ test sets. The best performance model is in bold
and the second one is in underline.

| NQ | WebQ
Models /"7 non-TS Total | TS non-TS Total
DPR+InstructGPT | 22 303  29.1 | 141 216 215
GENREAD | 17.6 297 282 | 99 252 2438
Vanilla-United | 17 296 281 | 99 214 209
FlexiQA |21.9 336 324|113 256 251

Table 2: The experiment results of time-sensitive issue.
TS means the time-sensitive subset of NQ and WebQ,
while non-TS means the non-time-sensitive subset.

and non-sensitive (non-TS) subsets of two datasets.
The experiment results are presented in Table 2. It
can be seen that the retrieval-based method DPR
+ InstructGPT outperforms the generation-based
method GENREAD by a significant margin on TS
subset of both datasets, which confirms our motiva-
tion that retrieve-then-read paradigm could handle
time-sensitive issue by nature.

The results indicate that our pipeline indeed has
the ability to recognize time-sensitive questions
and to tackle this issue, resulting in a improvement
of 4.3 points and 1.4 points of EM score on the TS
subsets comparing to generate-then-read method
GENREAD. However, there is still a gap between
FlexiQA and DPR + InstructGPT on the TS subsets,
which can be attributed to the unsatisfactory zero-
shot evaluation ability of LLMs for time-sensitive
discrimination. This could be a key study object in
the future. We provide a more detailed results in
Table 5 in Appendix D including F1 metric.

4.5.2 Case Study of Document Selection

From the results on the non-TS subsets shown in
Table 2, we can observe that FlexiQA is able to
effectively select superior documents based on the
evaluation of factuality and relevance. For both sub-
sets, our FlexiQA has reached the optimal results



compared to other baselines. To further analyze
the effectiveness of FlexiQA in document selection,
we present three representative cases of three issues
respectively in Appendix D. All the results show
the strong performance of our FlexiQA.

5 Conclusion

In this paper, we unify two classic ODQA
paradigms and propose a new pipeline called Flex-
iQA. FlexiQA leverages the multi-dimensional
evaluation ability of LLMs flexibly for ODQA
for the first time, and it tackles three existing
drawbacks in the two classic paradigms: the time-
sensitive issue, the irrelevance issue and the non-
factuality issue. Moreover, we release two time-
sensitivity annotated datasets for widely research
on this issue in the future. Experimental evalua-
tions show that our model achieves the best perfor-
mance on three datasets.

Limitations

The limitations of our pipeline FlexiQA are stated
briefly as follows:

* First, due to the setting of our study (in the
context of large-scale zero-shot models), the
influence of biases in large language models
is inevitable. In practical applications, the
efficient few-shot learning (Zhang et al., 2024)
could enhance the overall effectiveness of the
pipeline.

Another limitation of our work is that it pri-
marily focuses on open-domain question an-
swering, which may could not be generalized
to specialized domains.
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A Datasets and Baselines

A.1 Datasets

We conduct comprehensive experiments on three
widely used benchmarks: NaturalQuestions (NQ,
Kwiatkowski et al., 2019), TriviaQA (Joshi et al.,
2017), WebQuestions (WebQ, Berant et al., 2013).

* NQ: comprises real queries that user issued
on Google search engine along with answers.

» TriviaQA: consists of question-answer pairs
collected from trivia and quiz-league websites

* WebQ: consists of questions selected using
Google Suggest API, where the answers are
entities in Freebase.

Statistics NQ TriviaQA WebQ
Train 79168 78785 3478
Validation 8757 8837 300
Test 3610 11313 2032
Avg. Qlen 9.3 16.9 6.7
Avg. Alen 24 2.2 24

Table 3: Dataset splits and statistics.

A.2 Baselines

We compare our pipeline with the following strong
baselines. (1) BM25 + InstructGPT: BM25
(Robertson et al., 1995) is a sparse retrieval method;
(2) Contriever + InstructGPT: Contriever (Izac-
ard et al., 2022) is an unsupervised dense retrieval
model; (3) Google + InstructGPT; (4) DPR + In-
structGPT: DPR (Karpukhin et al., 2020) is a
supervised dense retrieval model and it trained on
NQ, TriviaQA and WebQ datasets; (5) Instruct-
GPT (no docs.) (Ouyang et al., 2022): Instruct-
GPT is an LLM that usually serve as a reader or
generator in ODQA; (6) GENREAD (Yu et al.,,
2022): GENREAD is the SoTA method in ODQA
and is the first work that propose generate-then-
read paradigm; (7) Vanilla-United: Moreover, in
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order to fully evaluate the effectiveness of our pro-
posed method, we also compare our pipeline with
another vanilla method which concatenates the two
documents from retrieval and generation as contex-
tual document directly.

All the baselines have the similar prompt tem-
plate format for answer generation with a slight
variation based on the number of supporting docu-
ments.

B Template Details

B.1 Template for Time-sensitivity

" Is the answer to the question depend on current
time? Output with label: yes, no.\n\nQuestion:
{question}\n\nThe label is "

B.2 Template for Document Selection

"You are a helpful and precise assis-
tant for checking the quality of the state-
ment.\n[Question]\n{question }\n\n[Statement 1]\n
{statement_1 }\n\n[Statement 2]\n{ statement_2 }\n\n
[System]\n We would like to request your feedback
on the quality of each statement to the user
question displayed above.\n Please rate the factu-
ality(according to wikipidia), relevance of each
statement.\n\n Each statement receives an overall
score on a scale of 1 to 10, where a higher score
indicates better overall performance.\n Provide
a comprehensive explanation of your evaluation,
avoiding any potential bias and ensuring that
the order in which the statement were presented
does not affect your judgment. Output the better
statement with *1’, ’2’. \n\n Output with the
following format:\n The better statement is: </
or 2>\n Evaluation evidence of statement: <your
evluation explanation here>"

C Results

We provide a more detailed results in Table 4 in-
cluding EM and F1 metric.

D Analysis

We provide a more detailed results in Table 5 in-
cluding EM and F1 metric. And representative
cases of three issues are in Table 6, Table 7, Table
8, respectively.



| NQ | TribiaQA | WebQ
| FI | EM | F1 | EM | Fl | EM |

Models

*with retriever

BM25+InstructGPT - 19.7 - 52.2 - 15.8
Contriever+InstructGPT - 18 - 51.3 - 16.6
Google+InstructGPT - 28.8 - 58.8 - 20.4
DPR+InstructGPT* 39.1 | 29.1 | 65.1 | 55.7 | 34.8 | 21.5
*without retriever

InstructGPT (no docs.) - 20.9 - 57.5 - 18.6
GENREAD 40.6 | 282 | 68.9 | 59 | 40.7 | 24.8
*with retriever and generator

Vanilla-United 41.1 | 28.1 | 69.2 | 59.3 | 37.1 | 20.9
FlexiQA 44.5 | 32.4 | 70.0 | 60.5 | 40.8 | 25.1

Table 4: EM and F1 score on NQ, TriviaQA and WebQ test sets.The best performance model is in bold and the
second one is in underline.

| NQ | WebQ
Models ‘ TS set non-TS set ‘ TS set non-TS set
‘ EM Fl EM Fl EM Fl EM Fl

DPR+InstructGPT | 22 30 303 402 141 222 21.6 352
GENREAD 176 263 297 424 99 21.7 252 414
Vanilla-United 17 277 29.6 428 99 207 214 379

FlexiQA ‘ 19 323 336 459 113 20 25.6 417

Table 5: The experiment results of time-sensitive issue. TS means the time-sensitive subset of NQ and WebQ, while
non-TS means the non-time-sensitive subset.
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Question: Who is currently serving as president of the senate? (NQ)

Golden Answer: Orrin Hatch, Patrick Leahy

Generated document: The current president of the Senate is Kamala Harris, who was elected on
January 3, 2021. Harris is the first woman to hold the office, as well as the first person of color.
Prediction: Kamala Harris.

Retrieved document: of another. This tradition has been observed without interruption since 1949.
Since enactment of the current Presidential Succession Act in 1947, the president pro tempore is
third in the line of succession to the presidency, after the vice president and the Speaker of the House
of Representatives and ahead of the Secretary of State. The current President pro tempore of the
Senate is Utah Republican Orrin Hatch. Elected on January 6, 20135, he is the 90th person to serve in
this office...

Prediction: Orrin Hatch

Question: Who is the current presenter of BBC Radio 4 programme Desert Island Discs? (TriviaQA)
Golden Answer: Kirsty Young

Generated document: The current presenter of BBC Radio 4 programme Desert Island Discs is
Lauren Laverne.

Prediction: Lauren Laverne.

Retrieved document: Desert Island Discs Desert Island Discs is a radio programme broadcast on
BBC Radio 4. It was first broadcast on the BBC Forces Programme on 29 January 1942. Each week
a guest, called a ’castaway’ during the programme, is asked to choose eight recordings (usually, but
not always, music), a book and a luxury item that they would take if they were to be cast away on
a desert island, whilst discussing their lives and the reasons for their choices. It was devised and
originally presented by Roy Plomley. Since 2006, the programme has been presented by Kirsty
Young...

Prediction: Kirsty Young.

Question: Who is the minority leader of the house of representatives now? (WebQ)

Golden Answer: Nancy Pelosi

Generated document: The minority leader of the United States House of Representatives is the
floor leader of the minority party. The current minority leader, Kevin McCarthy, is a Republican.
Prediction: Kevin McCarthy.

Retrieved document: the Speaker of the House. Typically, the Speaker does not participate in
debate and rarely votes on the floor. In some cases, Majority Leaders have been more influential than
the Speaker; notably, Tom DelL.ay was more prominent than Speaker Dennis Hastert. In addition,
Speaker Newt Gingrich delegated to Dick Armey an unprecedented level of authority over scheduling
legislation on the House floor. The current Minority Leader Nancy Pelosi serves as floor leader of
the opposition party, and is the counterpart to the Majority Leader...

Prediction: Nancy Pelosi.

Table 6: Case studies of time-sensitive issue existing in generate-then-read paradigm. The three cases are all
time-sensitive examples discriminated by LLM,.4. The contents of documents that contradict to and relevant to
the questions are marked red and blue respectively. We can see that our pipeline could handle time-sensitive issue
effectively.
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Question: Where was the original flight of the phoenix filmed? (NQ)

Golden Answer: Buttercup Valley, Arizona, 20th Century - Fox Studios, Pilot Knob Mesa, California
Generated document: The original Flight of the Phoenix was filmed in the Gobi Desert in Mongolia.
Prediction: the Gobi Desert in Mongolia.

Retrieved document: an oasis with a manned oil rig, the men celebrate and Towns and Dorfmann
are reconciled. Principal photography started April 26, 1965, at the 20th Century-Fox Studios and
20th Century-Fox Ranch, California. Other filming locations, simulating the desert, were Buttercup
Valley, Arizona and Pilot Knob Mesa, California. The flying sequences were all filmed at Pilot Knob
Mesa near Winterhaven, located in California’s Imperial Valley, on the western fringes of Yuma,
Arizona. In 2005, Hollywood aviation historian Simon Beck identified the aircraft used in the film:
The C-82As were from Steward-Davies Inc....

Prediction: Pilot Knob Mesa.

Question: Whose "left hand" rule can predict the direction of motion of an electric motor? (Trivi-
aQA)

Golden Answer: Fleming, Sir John Ambrose, Sir John Ambrose Fleming, Sir Ambrose Fleming,
Ambrose Fleming, J. A. Fleming, John Ambrose Fleming

Generated document: The rule is named after its discoverer, Michael Faraday. It can be stated
as follows: "If a conductor is moved towards a magnet, an electric current will flow in it; if the
conductor is moved away from the magnet, the current will stop."

Prediction: Michael Faraday’s "left hand" rule.

Retrieved document: Fleming’s left-hand rule for motors Fleming’s left-hand rule for electric motors
is one of a pair of visual mnemonics, the other being Fleming’s right-hand rule (for generators).They
were originated by John Ambrose Fleming, in the late 19th century, as a simple way of working out
the direction of motion in an electric motor motor, or the direction of electric current in an electric
generator...

Prediction: John Ambrose Fleming’s.

Question: Who plays riley on buffy the vampire slayer? (WebQ)

Golden Answer: Marc Blucas

Generated document: Sarah Michelle Gellar plays the title character, Buffy Summers, on the
television series Buffy the Vampire Slayer (1997-2003). Summers is a Slayer, one in a long line of
young women chosen by fate to battle evil forces.

Prediction: unknown.

Retrieved document: Riley Finn Riley Finn is a fictional character created by Joss Whedon for the
television series "Buffy the Vampire Slayer". Portrayed by Marc Blucas, Riley was introduced in the
1999 season four premiere episode, "The Freshman", and Blucas was part of the series credited cast
for the second part of season four and the first part of season five. Most notably, Riley is one of three
long-term romantic interests for series’ heroine Buffy Summers (Sarah Michelle Gellar)...
Prediction: Marc Blucas

Table 7: Case studies of factual issue existing in generate-then-read paradigm. The contents of documents that
contradict to and relevant to the questions are marked red and blue respectively. The three cases show that our
pipeline choose the retrieval documents as evidences when generation method give the non-factual evidences, which
means that our pipeline could handle factual issue effectively.
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Question: In which sea pearl is found in india? (NQ)

Golden Answer: the Indian Ocean

Generated document: The sea pearl is found in the Indian Ocean.It is a type of pearl that is found
in the oysters that live in the ocean. The sea pearl is a very valuable type of pearl and is used in many
different types of jewelry.

Prediction: the Indian Ocean.

Retrieved document: the Indian Ocean. Chinese possessions in the Indian Ocean consist primarily
of commercial ports owned and operated by Chinese firms, as well as resupply stations operating
in agreement with the Chinese central government. The two largest projects consist of a Chinese-
financed commercial shipping center in Hambantota, Sri Lanka, and a Chinese-controlled deep-water
port near the mouth of the Persian Gulf in Gwadar, Pakistan, which is also the crux of China’s
massive $46 billion China Pakistan Economic Corridor project...

Prediction: not found in the passage.

Question: If you were performing an orison what would you be doing? (TriviaQA)

Golden Answer: Prayed, Prayers, Pray, Prayer group, Orison (spirituality), Orisons, Prayer, Namaz,
Daily prayer, Daily prayers, Devotional prayer, Praying, Prayer in Buddhism

Generated document: Orison is a type of prayer.

Prediction: praying.

Retrieved document: first three lines which include the words ’investigate’, ’insinuate’, ’intimidate’,
’complicate’, *wait’, “hesitate’, ’state’, *fate’ and *awaits’. The song fades out with lead singer Phil
Lynott doing an impersonation of Elvis Presley which seemed to have little to do with the meaning
of the song. Guitarist Scott Gorham suggested, "I think he just wanted to use his American accent
there." The single reached No. 14 in the British charts and remained in the charts for nine weeks. It
reached No. 25 in Ireland, charting for two weeks. An accompanying video was filmed at Molineir
Studios, directed by David Mallet...

Prediction: not provided in the passage.

Question: Who was vice president after kennedy died? (WebQ)

Golden Answer: Lyndon B. Johnson

Generated document: Lyndon B. Johnson was the 36th President of the United States, serving
from 1963 to 1969. He had served as the 37th Vice President of the United States from 1961 to 1963
and assumed the presidency following the assassination of President John F. Kennedy. A Democrat
from Texas, Johnson also served as a United States Representative and as the Majority Leader in
the United States Senate. During his presidency, Johnson was responsible for designing the "Great
Society" legislation that included laws that created Medicare, Medicaid, environmental protection,
civil rights, urban renewal, aid to education, and public broadcasting. Johnson was famed for his
domineering personality and the "Johnson treatment", his aggressive coercion of powerful politicians
to advance legislation.

Prediction: Lyndon B. Johnson.

Retrieved document: United States vice presidential selection, 1974 In 1974, Republican President
Richard Nixon was forced to resign following the Watergate Scandal. Vice President Gerald Ford
ascended to the presidency, leaving the office of vice president vacant. Under the terms of the 25th
Amendment, a vice presidential vacancy is filled when the president nominates a candidate who is
confirmed by both houses of Congress. On August 20, 1974, Ford announced his nomination of
former New York Governor Nelson Rockefeller to fill the vacancy. Ford also considered picking
Tennessee Senator Howard Baker and former Republican National Committee Chairman George
H.W. Bush...

Prediction: Gerald Ford.

Table 8: Case studies of irrelevance issue existing in retrieve-then-read paradigm. The contents of documents that
contradict to and relevant to the questions are marked red and blue respectively. The three cases show that our
pipeline choose the generated documents as evidences when retrieved documents have no relation with questions,
which means that our pipeline could handle irrelevance issue effectively.
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Abstract

The recent advancements in the realm of
Automatic Speech Recognition (ASR) post-
processing have been primarily driven by
sequence-to-sequence paradigms. Despite their
effectiveness, these methods often demand sub-
stantial amounts of data, necessitating the ex-
pensive recruitment of phonetic transcription
experts to rectify the erroneous outputs of ASR
systems, thereby creating the desired training
data. Back TranScription (BTS) alleviates this
issue by generating ASR inputs from clean text
via a Text-to-Speech (TTS) system. While ini-
tial studies on BTS exhibited promise, they
were constrained by a limited dataset of just
200,000 sentence pairs, leaving the scalability
of this method in question. In this study, we
delve into the potential scalability of BTS. We
introduce the "Hyper-BTS" dataset, a corpus
approximately five times larger than that uti-
lized in prior research. Additionally, we present
innovative criteria for categorizing error types
within ASR post-processing. This not only fa-
cilitates a more comprehensive qualitative anal-
ysis, which was absent in preceding studies, but
also enhances the understanding of ASR error
patterns. Our empirical results, both quantita-
tive and qualitative, suggest that the enlarged
scale of the Hyper-BTS dataset sufficiently ad-
dresses a vast majority of the ASR error cate-
gories. We make the Hyper-BTS dataset pub-
licly available.

1

A large-scale dataset-based NLP research
paradigm, which is based on foundation models
(Bommasani et al., 2021) such as GPT-4 (OpenAl,
2023), and prompt tuning using natural-language
prompts (Liu et al., 2021) has recently been of
interest in both the academia and industry. Such
large-scale models have proven that there is

Introduction
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efficiency in the usage of large-scale datasets, and
include a scaling law model (Kaplan et al., 2020),
which theoretically demonstrates their justification.

There is also increasing application of this
promising research paradigm in the Automatic
Speech Recognition (ASR) field. Aside from tra-
ditional speech recognition architecture-based re-
search such as Gaussian Mixture Models (GMMs)
(Stuttle, 2003), and Hidden Markov Models
(HMMs) (Gales and Young, 2008) based on acous-
tic and language models, model-centric ASR
research using transfer learning based on pre-
trained models is currently being widely conducted
(Baevski et al., 2020; Giollo et al., 2020; Hjortnzs
et al., 2021; Zhang et al., 2021).

Model-centric ASR research requires the con-
figuring of many parameters for the pre-training
of models, as well as a sufficiency of computing
power (e.g., GPU) to process large-scale datasets.
Thus, despite its proven efficiency, insufficiency
of computing power in real-world service scenar-
ios limits the performance of this ASR model ap-
proach. In other words, since many parameters and
data are required when training a model, compa-
nies that do not have sufficient server or GPU en-
vironments have difficulty configuring service en-
vironments and improving performance using the
model-centric ASR approach (Park et al., 2020b).

Conversely, a different approach, termed “data-
centric” has also emerged, which aims to improve
ASR model performance by improving the data
quality or pre-processing and post-processing with-
out model modification (Voll et al., 2008; Mani
et al., 2020; Liao et al., 2020; Park et al., 2021a).
This alleviates the previous limitations (of com-
putation cost and non-scalable human annotation)
because it does not modify the model, and enables
its application to lightweight models such as the
vanilla Transformer, which can be sufficiently pro-
cessed by a single CPU (Vaswani et al., 2017; Klein
et al., 2020).
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There has been a recent endeavor in the data-
centric ASR post-processor approach known as
Back Transcription (BTS) (Park et al., 2021b). BTS,
an automatic data construction method, has been
devised for use as substitute for publicly avail-
able training data, for ASR post-processor based
on a sequence-to-sequence model (converting in-
put sequences into target sequences) and to elim-
inate the requirement to build parallel corpora by
human-annotators. Specifically, this method inte-
grates Text-to-Speech (TTS) with Speech-to-Text
(STT) efficiently for building a pseudo-parallel cor-
pus (see detail in Appendix A).

However, in a current BTS study, model train-
ing was performed using only a 200,000 parallel
corpus in Korean. While this may be a significant
amount from the point of view of low-resource Neu-
ral Machine Translation (NMT), it is very small in
comparison with the recent research flow utilizing
large-size data. In addition, only the method and
demo system were disclosed in the BTS study, but
no dataset was released with the work. Therefore, to
improve the performance of an ASR post-processor,
based on BTS technology, we take advantage of
the existing research flow to build large-capacity
data and present a Hyper-BTS dataset that is five
times the size of the existing BTS study, with a
one million-text large-capacity dataset. Further, to
activate the relevant research interest, we make it
publicly accessible, dividing the data into train-
ing, validation, and test datasets. To the best of our
knowledge, this is the first time a parallel corpus for
an ASR post-processor has been made public. By
opening the data in this way, ASR post-processor
research can be triggered, and the problems with
the existing commercial ASR API systems can be
studied and improved.

Existing commercial ASR APIs currently
present problems such as spacing, conversion
of numbers, and pronunciation boundary errors.
Therefore, it is inevitable that ASR post-processor
recognition results will contain unexpected errors.
In other words, there is room for performance im-
provement using ASR post-processor, and addition-
ally, precise error analysis is required.

Despite the acknowledgement of the existence
of recognition errors, there are currently no precise
criteria for categorizing output error types from
ASR systems. Many studies related to large-scale
language models (Baevski et al., 2020; Zhang et al.,
2021) have through their works attempted to de-
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velop a model (Gales and Young, 2008) for im-
proving ASR systems. However, analysis of the
types of errors output by ASR systems and guide-
lines on research and design are insufficient, as
existing studies simply analyze the advantages and
disadvantages of generated results without bench-
marking the results against some set of standards.

In this study, we propose novel criteria of er-
ror type categorization of ASR post-processor spe-
cialized in Korean, in terms of BTS work also
based on Korean. We present this set of criteria
to be used for the direction of further work in en-
hancing ASR post-processor performance. In ad-
dition, based on our defined error types, we per-
form an in-depth qualitative analysis of the Hyper-
BTS dataset-based ASR post-processor to verify
whether actual error correction is performed well.
Through this, we suggest methods that can be em-
ployed to improve the performance of ASR post-
processor systems.

The contributions of this study are as follows:

* We released a large-scale Hyper-BTS dataset,
five times larger than the existing BTS dataset,
separated into training, validation, and test
sets. It is the first published parallel corpus for
ASR post-processor to the best of our knowl-
edge.

Our various quantitative analyses of ASR post-
processor experiments using the Hyper-BTS
dataset demonstrate an objective performance
of the corresponding dataset.

We proposed a detailed error classification
criterion for Korean, which has significantly
different linguistic characteristics from other
languages, and based on this, we performed
a qualitative analysis on the Hyper-BTS
dataset-based ASR post-processor to verify
the dataset. Our analysis results enable us to
present a method that can be used to improve
the performance of ASR post-processor sys-
tems.

2 Hyper-BTS Dataset

2.1 Dataset Design

Build Mono Corpus As a language pair to con-
struct the Hyper-BTS dataset, we arrange it in the
same language as the present BTS paper and gather
monolingual corpus from three sources.



Hyper-BTS Train Valid Test

src tgt src tgt src tgt
# of sents 1,000,000 1,000,000 5,000 5,000 3,000 | 3,000
# of tokens 32,527,375 | 34,308,007 | 140,641 | 147,390 | 83,230 | 87,207
# of words 8,857,758 | 8,929,016 | 37,792 | 37,112 | 22,388 | 21,975
avg of SL A 32.66 34.45 28.13 29.48 27.74 | 29.07
avg of WS 8.89 8.97 7.56 7.42 7.46 7.33
avg of SS 7.89 7.96 6.56 6.42 6.46 6.33
# of K-toks * | 24,243,741 | 24,900,124 | 106,217 | 107,106 | 63,077 | 63,659
# of E-toks 129,281 88,156 517 959 284 509
# of S-toks 13,099 1,282,930 36 6,069 12 3,575

Table 1: Statistics of our Hyper-BTS Dataset. We define the original colloquial sentences as target (tgt) and the
generated sentences after BTS as source (src). Moreover, we attempt to identify the linguistic features of our parallel
corpus including # of sents/tokens/words: number of sentences/tokens/words; A avg of SL/WS/SS: average of
sentence length/words/spaces per sentence; * # of K-toks/E-toks/S-toks: number of Korean/English/special-symbol

letter tokens.

First, 129,987 sentences were excerpted from
business and technology TED Talks, provided in
writing translated into Korean. Second, 373,013
sentences were discovered, corresponding to the
spoken language among Korean-English, and trans-
lated parallel corpus from AI-HUB, which is the
most reliable and utilized data platform in numer-
ous examinations related to the Korean language.
Third, 505,000 sentences were extracted from the
National Institute of Korean Language’s colloquial
corpus.

TTS(Text-To-Speech) The built mono-corpus is
converted to voice data in mp3 format, based on
the Naver Clova Voice API (Chung, 2019). The
503,000 sentences from TED Talks and AI-HUB
were divided into 9,963,296 voice tokens and syn-
thesized into 7,963,935 seconds of voice data. The
505,000 sentences extracted from the spoken cor-
pus of the National Institute of Korean Language
were separated into 14,595,647 voice tokens and
synthesized into 11,563,990 seconds of voice data.
The respective running time was five and six days.
The reason for using the commercial system is to
lower entry barriers by allowing companies without
a built-in TTS system to use BTS.

STT(Speech-To-Text) Naver Clova speech recre-
ation API was used to convert results of TTS voice
data to text data. It took 10 and 11 days, respec-
tively, and the total time required was three weeks.
The Hyper-BTS dataset of 1,008,000 sentence pairs
is eventually established.

The Final Constructed Hyper-BTS Dataset Fi-
nally, the Hyper-BTS dataset of 1,008,000 sen-
tences is separated into train-, validation-, and test-
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sets. Train-set consisted of 1,000,000 sentences,
verification-set was 5,000 sentences, and test-set
had 3,000 sentences. We attempted to minimize
results-to-data sources bias in the test-set by ex-
tracting 1,500 sentences from AI-HUB/TED and
1,500 sentences from the colloquial corpus of the
National Institute of Korean Language.

2.2 Data Statistics and Analyses

We conducted an in-depth statistical analysis of the
Hyper-BTS dataset, as shown in Table 1.

Fundamental Analysis Fundamental analysis
was done on the number of sentences, tokens,
and average sentence length. First, in the case of
sources through Hyper-BTS, the sentence length
was shorter by 1.79, 1.35, and 1.33 on average than
the original sentence target. The total number of
tokens decreased by 5.2%, 4.6%, and 4.6%, respec-
tively. In the case of a target, the number of words
in the train-set was 71,258 more than the source.
We configured the validation- and test-sets to have
different features from the train-set. Therefore, the
number of words in the validation and test set de-
creased by 680,413 from the source in the target,
respectively. Considering the average spacing, the
total number of words increased even though the
total number of tokens was relatively small due to
additional unnecessary words in sentences.

Token Analysis in Korean and English The sec-
ond data statistic is the analysis of Korean and
English tokens. The Korean token (K-token) essen-
tially lost 656,383, 889, and 582 train-, validation-,
and test-set tokens in source sentences than target
sentences, caused by the omission of termination
and suffixes. These results reproduce the character-



istics of Korean speakers who pronounce endings
vaguely in the model. Additionally, the English to-
ken (E-token) is transformed into a Korean token as
pronounced or omitted because of recognition fail-
ure. The train-set lost as much as 41,125 tokens in
the target rather than the source. However, we had
a significant increase in the number of misaligned
transformations from Korean to English, increasing
442 and 225 in the target than in the source for the
validation- and test-sets.

Special Token Analysis Third data statistic, spe-
cial character tokens (S-tokens) show the most no-
table differences in train-, validation-, and test-sets,
as 98.89%, 99.41%, and 99.64% of tokens disap-
peared from source rather than target sentences. In
particular, periods, commas, exclamation marks,
and brackets added to describe the situation in the
transcription process of the original data have a
substantial influence. Such special characters may
contain colloquial tones or emotions that the text
does not sufficiently represent. Therefore, exces-
sive omission of special characters is like failing to
include some of the rich expression information of
the spoken language in the written language.

By disclosing the established Hyper-BTS
dataset, we attempt to lower the entry barriers of
companies and research institutes into the study.
This approach can alleviate the cost concerns of
many small and medium-sized businesses that do
not have individual speech synthesis and recogni-
tion technologies.

3 Experiments and Results

3.1 Setting

Experiments Design To determine the effective-
ness of the large-scale dataset, we separated the 1
million Hyper-BTS dataset into 10 anchor points.
We then trained an ASR post-processor with this
corpus and evaluated its performance differences
by scaling up the training data size. The experimen-
tal results for these are shown in Figure 1.

Next, we adopted parallel corpus filtering (PCF)
to the Hyper-BTS dataset, and inspected its im-
pact on the ASR post-processor performance. PCF
indicates a selection process that filters out low-
quality sentence pairs and acquires high-quality
data (Koehn et al., 2020). Particularly in the ma-
chine translation (MT) research field, PCF tech-
niques are robustly applied for the performance
improvement of MT systems.
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Considering the process of constructing the
Hyper-BTS dataset, inherent limitations of SST or
TTS systems can result in unintended errors. These
errors include several outliers such as too short
or too long sentences, and omission of the source
sentence. We applied the PCF methodologies pro-
posed in Park et al. (2020a) to alleviate these errors
and constructed a high quality dataset. The substan-
tial impact of applying the PCF methods can be
verified in Table 2.

Finally, we performed a qualitative analysis of a
Hyper-BTS dataset-based ASR post-processor in
section 3.2. Through investigating post-processor
performance results, we propose new ASR post-
processor error types and use these to analyze ASR
post-processor models. Additionally, we analyzed
the practical effectiveness of increasing the size of
the Hyper-BTS dataset.

Model Details All the ASR post-processors
experimented in this study were built on the
transformer-base model structure. These were
trained on our Hyper-BTS dataset, and, for the
training process, we used the same hyper-parameter
setting as Vaswani et al. (2017). For tokenization,
we adopted sentence piece (Kudo and Richardson,
2018) model with 32,000 vocabulary size.

Evaluation Details For the evaluation metric, we
adopted GLEU (Napoles et al., 2015) and BLEU
(Papineni et al.,, 2002) as in BTS (Park et al.,
2021b). GLEU is a correction system specialized
metric that is similar to BLEU, but considers source
sentences.

3.2 Quantitative Analysis

Importance of Data Size First, we showed the
performance improvement that can be obtained by
the ASR post-processor, compared with the base-
line. In these experiments, the baseline indicates the
performance between source sentences and their
corresponding target sentences in a test dataset. As
shown in Figure 1, compared with baseline whose
BLEU score is 40.33, ASR post-processors give
significantly surpassing performance for all the
anchor points. In particular, ASR post-processor
trained with 1 million training data shows 25.31
higher BLEU score over the baseline.

We then inspected the performance difference
derived by increasing data size. These are shown
in the right side plot of the Figure 1, and denoted
"diff". As shown in Figure 1, we can obtain the
highest performance by utilizing the whole data



—e— BLEU —— BLEU diff

5698 ses1 sy U
5o 2 g0 S0EL =
55,39 s \
5433~ \

F & F & ¢ G &
I R O A

Training Data Size

E &

s & - FIRN
R A

v &
& &S
Training Data size

—e— GLEU —— GLEU diff

o0 550

oase B2 gy 4 cig0 BHE
63,55 -

21—

60 s \

i - \\
g 3. \
5o~ \
367 1- N

Baseline : 40.33 S

&

S &
R & &

v & & &
+ F oSS

&

Training Data Size

R
Training Data Size

Figure 1: Performance difference depending on the
amount of training data. Left figures show the perfor-
mance of the Hyper-BTS-based ASR post-processor
depending on the data size. Right figures (diff) show
the performance difference derived by adding 100,000
training data. Baseline in each figure indicates the qual-
ity between source sentences and target sentences in
Hyper-BTS test-set.

(1 million), that is, 48.18 GLEU score, and 56.13
BLEU score. These are 9.19 and 9.41 higher than
the 100,000-utilized model, for the GLEU and
BLEU scores, respectively. This shows that the
Hyper-BTS dataset can derive sufficiently increase
performance of the ASR post-processor.

One notable thing is that from 600,000 training
data, the performance difference achieved by in-
creasing the data size approximately converges to
zero. This shows that there is a limit to the im-
provement in ASR post-processing performance
that can be obtained by increasing the amount of
training data. These results show similarities with
back translation (Edunov et al., 2018), which is
a pseudo-data generation method targeting NMT.
This suggests that similar data scaling applied in
NMT can be applied in the ASR post-processing
field (Edunov et al., 2018) can be applied.

Effect of Parallel Corpus Filtering For the veri-
fication of the effectiveness of PCF, we did a com-
parative analysis of performance results with the
original ASR post-processor model and the PCF ap-
plied model. Specifically, we applied PCF method-
ology proposed in Park et al. (2020a) to our Hyper-
BTS dataset. The particular PCF method entails
eliminating uncorrected aligned sentence pairs by
employing the method used in Gale and Church
(1993). This included pairs in which the source
and target sentences are identical, which is more
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Dataset BLEU GLEU

Hyper-BTS (1M)
Hyper-BTS (1M)+ Filter

65.54 57.37
66.04 (+0.50) 57.45 (+0.08)

Table 2: Parallel Corpus Filtering Effect Verification
Experiment

than 50% non-alphabetic pairs, 100 words or 1000
syllables, 30% white spaces or tabs, and a pair of
sentences containing more than nine special sym-
bols. Through these, 45,502 and 140 sentence pairs
were eliminated from the training- and validation-
sets, respectively.

Through the inspection of filtered data, we find
that STT recognition error is the most frequent er-
ror type. By applying PCF, these errored data, as
well as low quality data can be filtered out. Our ex-
perimental results considering these are shown in
Table 2. These show that applying PCF can derive
improvement of ASR post-processing performance.
These also imply the importance of the quality of
the training data and suggest the guideline for the
data construction process should consider the qual-
ity of the corpus.

3.3 Qualitative Analysis

Proposal of new error types In addition to quan-
titative analysis, we conduct qualitative analysis.
For this, we propose a new guideline for analyzing
ASR post-processor trained on Hyper-BTS dataset,
defining 5 primary error types as shown in Table 3.
First, we define spacing error as a case that
there are differences in the spacing result between
the recognized and reference sentence. Second, we
specify foreign word conversion error as a case
where an English word is recognized as a Korean
word or vice versa. Third, we define punctuation
error as that punctuation is not attached to the sen-
tence or incorrectly recognized. Fourth, we define
numeric word conversion error, where a numeric
word is not recognized as a number but as a Korean
word. Finally, we define spelling and grammar
error which is the most frequent error type in ASR.
Because it is a factor that strongly influences the
performance of ASR systems, we subdivide it as a
primary and secondary error to analyze precisely.
Primary error is defined as follows: Deletion
error (In case that word itself, ending, or Korean
postposition is not recognized.), Addition error
(In case some syllables in a word are repeated, or
unpronounced postposition or ending is added),
Substitution error (In case that a word is replaced



Type of Error Description

Example

In case the spacing result between the recognition result and correct

Answer: o] E<eHzt 7k

Spacing error S .
pacing sentence is different. Recognized: o]& ¢tz H7}h
Foreien word comversion error In case some syllables are incorrectly converted from English to Answer: SNS o[HlE
ign word convers ror
i Korean or Korean to English. Recognized: o 2<lofl 2 o]l E
. P L Answer: §F 93147
Punctuation error In case some punctuation is not attached or is incorrectly used. o M\:‘jo]
Recognized: 5} 2214
. . Answer: 214 7]
Numeric word conversion error In case some numbers are not converted to numbers. .
Deletion In case the whole word, Korean postposition of the word, or ending is
not recognized.
Primary Addition In case some syllables of the word are repeated, or unpronounced
. endings are added to the word.
Spelling and - - - - —
- In case a word is substituted with other words which have similar swer:
Grammar error Substitution . . e .y
pronunciation. Recognized: =43t Al
Pronunciation | In case some words are separated or combined with the different forms | Answer: 4 SJA] 23
Boundary between the phonetic boundaries. Recognized: 2|HA] 55| &
Spelling In case the primary error causes a spelling error which makes the Answer: o] 2 So]7}oF 5

Secondary

sentence nonsensical in the jamo unit.

Recognized: ©]4] & o7}k 3]

Grammar

In case the primary error causes grammatical problems.

Answer: 3]°] At ol THE &
Recognized: 3]9] 2}z

Meaning

In case the primary error changes the meaning of the sentence.

Answer: 21A[7e] 7]
Recognized: 214 7] 7]ofl =

Table 3: Error types proposed in this study for qualitative analysis of Korean ASR results. There are five main types
of errors; In particular, spelling and grammar errors are subdivided into primary and secondary tagging. For these
errors, both primary and secondary error tagging should be done.

with another word that has a similar pronunciation),
and Pronunciation boundary error (In case that
a word is separated into several words, or several
words are combined into a single word at the bound-
ary of pronunciation accompanied by a change in
form.)

In addition, we define secondary errors as fol-
lows: Spelling error (In case that the primary error
results in a spelling error which makes the meaning
of sentence nonsensical at jamo-level), Grammar
error (In case that the primary error causes a gram-
mar error), Meaning error (In case that primary
error leads to a shift in sentence meaning). If a
sentence has spelling and grammar errors, both
the types of primary and secondary errors defined
above should be tagged.

For example, let us consider the sentence “©]
Al 2 Eo]7}oF |1 have to go in soon)", recog-
nized as “o]A| & Eo]7}oF S have to go into
the corn)" by Because of misrecognition of the
word ‘Z(soon)’ as ‘I (the corn),” which is a sim-
ilar word but different word, a primary error is a
substitution; moreover, because the entire meaning
of the sentence is changed, a secondary error is
meaning error.

These error types can provide the possibility of
evaluating the advantages and disadvantages of the
ASR model by clarifying misrecognition errors that
were previously unclear in Korean speech recogni-
tion. In other words, we can summarize the weak
and robust parts of various speech recognition sys-
tems by using these. Based on this criterion of er-
rors, we also performed qualitative analysis on how
well the ASR post-processor model trained with the
Hyper-BTS dataset corrects which types of errors.
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Main Results Table 4 shows the results of quali-
tative analysis of the effects of correction for each
input sentence with the Hyper-BTS dataset-based
ASR post-processor. This qualitatively shows that
the Hyper-BTS-based post-processor can effec-
tively correct errors that commonly occur in the
Korean ASR process.

First, it was able to correct the error in which
foreign words used in Korean sentences are not
adequately recognized. There was a problem that
the word ‘David’ is recognized as Korean ‘Hj|©]
H| = being not able to identify the foreign word.
However, we exhibited that a post-processor based
on the Hyper-BTS dataset could correct it.

Second, it was possible to correct the numeric
word recognition error in which the numeric word
is recognized as pronounced itself, not as the
numeric word. As shown in the numeric con-
version error in Table 4, the Hyper-BTS-based
post-processor model corrected the word “ & SHA]
(eleven o’clock)" whose pronunciation is recog-
nized as itself to Korean, to “11A](11 o’clock)".
This shows that it can provide results with im-
proved readability by effectively correcting nu-
Mmeric conversion errors.

Third, it could correct the problem of attaching
punctuation and spacing, which are chronic prob-
lems of the ASR model through Hyper-BTS-based
post-processor. Let us consider two examples “T}
A SHH (Onceagain)" corrected as “Tt}A] $HH(Once
again)" and “WZF-S7}Q (is it ok)" corrected as “TH
2719 (s it 0k?)" shown in Table 4. It indicates
that the post-processor based on the Hyper-BTS
dataset can supply higher quality results to the end-
user by appropriately correcting erroneous spacing
or punctuation cases, making users easier to under-



Input Sentence

‘ Output Sentence

‘ Type of Error

AAAQ dlolHEx #7t Yag H=Re A 5 FAERS
Ho|FEZ0] obd7t sk Azte] E9lols

(Devoted H] o] H] =, T wondered if he was showing that he would eventually
do what the patient needed)

QA4122) David= A7t B4 2 s A2 25 o AT 28 1
o} 7ol o7} st Yzto] S9lola.

(Devoted David, I wondered if he was showing that he would eventually
do what the patient needed.)

Foreign word conversion

I A Aoz GRAEA] THA T EAl R
(1l bring it to your house that day by eleven o’clock)

O9 94 Aoz HAA AT 278
(1l bring it to your house that day by 11 o’clock.)

Numeric conversion

A EAE & b e B ETIR AV LE AL B0 gt daeria? Punctuation
(I didn’t print the voucher, is it ok) (I didn’t print the voucher, is it ok?)
ThARHA U AR 25ohch ohA] @ U AU R SR ok Spacing

(Onceagain I'm really sorry)

(Once again I'm really sorry.)

STAE e g o] A
(is a picture showing the different colors)

OTIS CeFe A2 B = AU,
(This is a picture showing the different colors.)

Spelling and Grammar errors (Deletion-Meaning)

TS WA ARe] el A% &4 o 3w WA Aol ofste] 1
L
(This was decid by an impartial jury from the area where the crime took
place)

=5 Az

TS WA Aol el A% &% of 3w A ATl ofstel A
Pk

(This is decided by an impartial jury from the area where the crime took
place)

Spelling and Grammar errors (Deletion-Grammar)

SAFA F2 FAE 7L o]
(In ourhouse has a nice view)

S FL F2 FAE AL A8
(Our house has a nice view.)

Spelling and Grammar _errors _(Substitution-
Grammar)

o[Io] A1 5 AoTere d B AR
(Keep in mind that LeeJinHoon has priority)

o] Fol A SAloleh= 2 WAstAl .

(Keep in mind that this order has priority.)

Spelling and Grammar errors (Pronunciation
Boundary-Meaning)

Table 4: Examples of Hyper-BTS dataset-based ASR post-processor outputs for qualitative analysis. Note that we
indicate text containing the corresponding errors generated by BTS in red; also, we indicate the original correct

result in blue text.
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Figure 2: Performance difference, depending on the amount of training data. F1-scores are reported for each feature,
including model performance on automatic spacing, word conversion, punctuation, and overall. KO and EN indicate
Korean English respectively. Upper figures show the performance of the Hyper-BTS-based ASR post-processor for
the above three factors, depending on the data size. Lower figures show the performance difference (diff) for the
above three factors, derived by utilizing additional 100,000 training data. Baseline indicates the f1-score of each
factor between source sentences and target sentences in Hyper-BTS test-set.

stand the intent of the sentence.

Fourth, the Hyper-BTS dataset-based post-
processor model was able to correct word substi-
tution caused by speech recognition errors with
similar pronunciations or word separation and inte-
gration problems at pronunciation boundaries be-
tween the words in consideration of surrounding
contexts. In the example sentence of Table 4, Hyper-
BTS-based post-processor corrected “-2-2] % <ll(In
ourhouse)" which is a substitution-grammar error
as “92] 42 (Our house is)." It can be said that the
post-processor corrected the adverb Korean post-
position “-¢ll(In)" to nominative postposition “--<
(is)" which can make the word nominative, consid-
ering the grammatical information. In the following
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example sentence, the subject recognized as “0] %l
& (LeeJinHoon)", which means a person’s name,
was corrected to “©| 5=2(This order)" regarding
the context of the ordinal information of “$-41(pri-
ority)."

Fifth, it can be confirmed that the Hyper-BTS
dataset-based post-processor plays a significant
role in correcting sentences that are not attached
adequately with terminating endings because of
speech recognition errors, filling the incomplete-
ness of the sentence structure. In Korean, an error
in which the ending is not appropriately attached is
a problem that must be resolved because it dramat-
ically changes the meaning of a sentence beyond a
spelling error.



In particular, because of the head-final linguis-
tic characteristics of Korean, where the predicate
is placed at the end of the sentence, if sentence
termination is not done correctly, the sentence’s
overall semantic and syntactic structure can be sig-
nificantly changed. As shown in the example sen-
tence with the deletion error in Table 4, even the
cases that the syntactic structure of the sentence
was changed because of the disappearance of “ Y
C}(is)" at the end of the sentence, it was possible to
correct it as a complete sentence by restoring some
part of omitted. Also, the word “Z134 % (decid),"
which is caused an error by recognition error of the
terminating ending, could be corrected as “%1 5§ %
Y th(decided)" with the appropriate terminating.

Additionally, we analyzed correction effects of
post-processor according to the amount of trained
data in Appendix B.

3.4 Additional Analysis

In this experiment, we analyzed the practical effec-
tiveness of Hyper-BTS-based ASR post-processor
with the following three aspects: Spacing, Foreign
word conversion, Punctuation. These are mainly
related to the readability and satisfaction of the end
users of the ASR services.

As in the previous experiment, we established
10 anchor points to the whole training data, and
verified the performance difference induced by in-
creasing the data size. We inspected the corrected
sentence by checking whether each factor is in the
correct position. For the performance evaluation
of each post-processor, corresponding multi-class
accuracy is estimated based on the f1-score. Exper-
imental results are shown in Figure 2.

Automatic Spacing We first evaluated the prac-
tical effectiveness that can be obtained by apply-
ing Hyper-BTS-based ASR post-processor. As can
be seen in our figure, a generally larger amount
of data derived higher performance, and perfor-
mance difference goes to converge as adding more
training data. Especially, the performance of the
post-processor trained by 1M data shows a 0.951
fl-score, which indicates that spacing errors can
almost be thoroughly corrected by our Hyper-BTS-
based ASR post-processor.

Foreign Word Conversion For the evaluation
of the foreign word conversion, we counted the
number of correct positions of Korean and English
words in a target sentence and estimated f1-score.
Through our experiments, it can be seen that ASR
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post-processor attained 0.182 and 0.211 fl-score
higher performance than the baseline, for the Ko-
rean word and English word conversion, respec-
tively. Considering English word conversion, base-
line showed a 0.0051 f1-score, which shows the
weak point of the ASR system. However, this can
be effectively amended by ASR post-processor, up
to 0.262 f1-score.

Punctuation Attachment Considering punctua-
tion attachment, we used f1-scores that check the
correct position of the symbols in a target sentence.
As shown in the fourth plot of the Figure 2, we
can find that the baseline shows only a 0.002 f1-
score. This indicates that the punctuation attach-
ment, symbol attachment, and sentence separation
can be seen as some of the most challenging issues
of the ASR system. However, we can find that the
f1-score about the punctuation attachment can be
raised up to 0.762 by applying ASR post-processor,
and even with 100K training data, we can obtain a
0.715 f1-score. This result shows that Hyper-BTS-
based post-processor can effectively deal with the
inherent limitations of the ASR system.

Overall fl1-score Finally, we verified the effec-
tiveness of the Hyper-BTS dataset for the overall
performance of the above factors. As can be seen
in the results, compared with the baseline which
shows a 0.652 fl-score, post-processing can im-
prove its quality up to 0.818. This shows that the
Hyper-BTS-based ASR post-processor can effec-
tively catch and correct the internal errors that ASR
system cannot deal with.

4 Conclusion

In this study, we conducted a thorough analysis of
results from rigorous experiments after develop-
ing the Hyper-BTS dataset and training an Auto-
matic Speech Recognition (ASR) post-processor.
Both quantitative and qualitative outcomes vali-
date the effectiveness of the Hyper-BTS dataset
in enhancing the performance of the ASR post-
processor. Recognizing the broader implications
of our research, we are committed to facilitating
unrestricted access to this dataset for both industry
professionals and academic researchers. Addition-
ally, we pioneered a robust quality control mech-
anism by formulating novel guidelines anchored
in the categorization of ASR post-processor error
types, thereby aiming to elevate the qualitative di-
mensions of ASR post-processing.
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Limitations

While our research primarily focuses on the Ko-
rean language, the depth of this investigation offers
significant insights even within this narrow scope.
Nevertheless, we understand the importance of ex-
panding to other languages in subsequent studies.

A limitation of our current study is the use of
the Vanilla Transformer for our experiments. We
chose this model to evaluate the Hyper-BTS dataset
due to its broad use and manageable computational
requirements, especially when compared to cutting-
edge models. By using the Vanilla Transformer, we
aimed to present findings that are both practical in
terms of computational cost and relevant to a wide
range of researchers.

Most importantly, we would like to clarify the
key contributions of our work. In this study, we
built a large scale ASR post-processing datasets
(Hyper-BTS) that has shown to significantly im-
prove the performance of ASR post-processors as
shown in Figure 1 & 2. On top of releasing the
dataset, we believe that our use of BTS technology
in curation of the dataset is also a significant contri-
bution as it shows how large-scale parallel corpora
can be created effortlessly, without any form of hu-
man annotation. Furthermore, our dataset creation
process only requires raw Korean textual data to
train ASR post-processor which is arguably more
abundant than other forms of data such as GEC
(Grammar Error Correction) Korean text dataset.

In addition to the dataset, we also propose a
new guideline to analyzing Korean ASR results
through definition of different error types as shown
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in Table 3. With the new analysis guideline, which
was previously unavailable for Korean ASR, and
along with the newly proposed Hyper-BTS dataset,
we hope to benefit other researchers in this field of
research.

Ethics Statement

Hyper-BTS is built using datasets publicly avail-
able online on platforms such as Korean AI-HUB.
These datasets are open-source and free from copy-
right issues. As such, after thorough examination
of our dataset curation and experimentation proce-
dure, we are confident that there is no ethical issue
in our work. Also, We reviewed all ethical issues
in our experiments and made fair comparisons.

References

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
arXiv preprint arXiv:2006.11477.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Joon Son Chung. 2019. Naver at activitynet challenge
2019-task b active speaker detection (ava). arXiv
preprint arXiv:1906.10555.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale. arXiv preprint arXiv:1808.09381.

William A Gale and Kenneth Church. 1993. A program
for aligning sentences in bilingual corpora. Compu-
tational linguistics, 19(1):75-102.

Mark Gales and Steve Young. 2008. The application of
hidden markov models in speech recognition.

Manuel Giollo, Deniz Gunceler, Yulan Liu, and Daniel
Willett. 2020. Bootstrap an end-to-end asr system
by multilingual training, transfer learning, text-to-
text mapping and synthetic audio. arXiv preprint
arXiv:2011.12696.

Nils Hjortnes, Niko Partanen, Michael Riefler, and
Francis M Tyers. 2021. The relevance of the source
language in transfer learning for asr. In Proceed-
ings of the Workshop on Computational Methods for
Endangered Languages, volume 1, pages 63—69.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.



Guillaume Klein, Dakun Zhang, Clément Chouteau,
Josep M Crego, and Jean Senellart. 2020. Efficient
and high-quality neural machine translation with
opennmt. In Proceedings of the Fourth Workshop
on Neural Generation and Translation, pages 211—
217.

Philipp Koehn, Vishrav Chaudhary, Ahmed El-Kishky,
Naman Goyal, Peng-Jen Chen, and Francisco
Guzman. 2020. Findings of the wmt 2020 shared task
on parallel corpus filtering and alignment. In Pro-
ceedings of the Fifth Conference on Machine Trans-
lation, pages 726-742.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Junwei Liao, Sefik Emre Eskimez, Liyang Lu, Yu Shi,
Ming Gong, Linjun Shou, Hong Qu, and Michael
Zeng. 2020. Improving readability for automatic
speech recognition transcription. arXiv preprint
arXiv:2004.04438.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Anirudh Mani, Shruti Palaskar, Nimshi Venkat Meripo,
Sandeep Konam, and Florian Metze. 2020. Asr er-
ror correction and domain adaptation using machine
translation. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6344-6348. IEEE.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammatical
error correction metrics. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 588—593.

OpenAl. 2023. Gpt-4 technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Chanjun Park, Sugyeong Eo, Hyeonseok Moon, and
Heui-Seok Lim. 2021a. Should we find another
model?: Improving neural machine translation per-
formance with one-piece tokenization method with-
out model modification. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies: Industry Papers, pages 97—
104.

76

Chanjun Park, Yeonsu Lee, Chanhee Lee, and Heuiseok
Lim. 2020a. Quality, not quantity? : Effect of parallel
corpus quantity and quality on neural machine trans-
lation. In The 32st Annual Conference on Human &
Cognitive Language Technology, pages 363-368.

Chanjun Park, Jaehyung Seo, Seolhwa Lee, Chanhee
Lee, Hyeonseok Moon, Sugyeong Eo, and Heuiseok
Lim. 2021b. BTS: Back TranScription for speech-to-
text post-processor using text-to-speech-to-text. In
Proceedings of the 8th Workshop on Asian Transla-
tion (WAT2021), pages 106—116, Online. Association
for Computational Linguistics.

Chanjun Park, Yeongwook Yang, Kinam Park, and
Heuiseok Lim. 2020b. Decoding strategies for im-
proving low-resource machine translation. Electron-
ics, 9(10):1562.

Matthew Nicholas Stuttle. 2003. A Gaussian mixture
model spectral representation for speech recognition.
Ph.D. thesis, University of Cambridge.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Kimberly Voll, Stella Atkins, and Bruce Forster.
2008. Improving the utility of speech recognition
through error detection. Journal of digital imaging,
21(4):371.

Zi-Qiang Zhang, Yan Song, Ming-Hui Wu, Xin Fang,
and Li-Rong Dai. 2021. XIlst: Cross-lingual self-
training to learn multilingual representation for
low resource speech recognition. arXiv preprint
arXiv:2103.08207.


http://arxiv.org/abs/2303.08774
https://aclanthology.org/2021.wat-1.10
https://aclanthology.org/2021.wat-1.10

/—[ Back TranScription (BTS)
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Target sentence
(Mono corpus)
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k TTS system STT system / Input (speech) 4\]\]\/\1\»

(Text-to-Speech) (Speech-to-Text)

Figure 3: Architecture of the ASR post-processor and BTS for building Hyper-BTS dataset. The red-colored words
in the source sentence indicate ungrammatical words. The following example means “Fine dustoccurs many diseases
when it comes to our bo” from the source sentence and means “fine dust occurs many diseases when it comes to our
body” from the target sentence.

A Whatis BTS?

BTS is a self-supervised method that automatically constructs the training dataset for the S2S-based ASR
post-processor (Park et al., 2021b). BTS can easily obtain pre-built mono corpus using crawling; the
collected corpus is automatically transformed into a parallel pair without human labor by converting the
text files into voice files through the TTS system and subsequently reproducing the generated voice files
to text files through the STT system. It consists of target sentences acquired from the mono corpus and
source sentences that go through a round trip process that converts target sentences back to text via the
TTS and STT. Finally, the ASR post-processor model can be constructed using the machine-generated
pseudo-parallel corpus as a training dataset.

Figure 3 demonstrates the structure of the BTS and the learning process of the speech recognition post-
processor model based on the S2S using the derived dataset. We reproduced this architecture following
BTS procedure.

As illustrated in Figure 3, the overall architecture is given in the following: (BTS module) — TTS system
converts the target sentence (gold sentence) into speech. Subsequently, the speech is transferred to STT
system, which makes the source text (ungrammatical sentence). (ASR post-processor module) — this
module conducts S28S training, where uses a speech from the source sentence for the input and the target
sentence as a ground truth.

BTS can build the training data infinitely. Despite the disadvantages of building a parallel corpus,
such as time, money, and accessibility, BTS has the advantage of building an interminable mono corpus
through the website. From this policy, it is possible to build unlimited training data and enable boosting
the building of our Hyper-BTS dataset. Furthermore, it can solve the limitations (i.e.,spacing, foreign
conversion, punctuation, grammar correction) of the existing speech recognition system as a universal
model since the mono corpus used as the target sentence is primarily free of this problem.

Furthermore, it is a method that does not require the role of a phonetic transcriptor and has tremendous
advantages in terms of time and cost. In addition, there is an advantage of being free from problems
regarding the quality difference between phonetic transcriptors.

For Park et al. (2021b), the language pair for the BTS experimentation was set to Korean. Finally, a
pseudo parallel corpus of 229,987 sentence pairs for the S2S-based ASR post-processor was constructed
by BTS.

B Qualitative analysis according to the amount of training data (100k VS 1M)

As shown in Table 5, we classified the Hyper-BTS dataset into cases of 100K training data and 1M training
data, respectively, and analyzed the post-editing results for the same test input. Through this analysis, we
confirm the effect of ASR post-processing according to the size of our proposed Hyper-BTS dataset.
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Input Sentence

Output Sentence

Hyper-BTS 100K

Hyper-BTS s

vt At b B U] 34 4= glue
(Excuse me, can you send the A|T] separately)

o] ekete] AT et whe B & gluka?
(Excuse me, can you send the A]T] separately?)

njeketd] CDRt whe HuyjFA 4 Qe
(Excuse me, can you send the CD separately?)

o 539 S STolA 27 TS g
ookt A&tk
(And I would like to reserve 2 dormitory rooms
for two students)

oI5 % g9 S-S AaNA 29 T A TS
ofoFst A&t
(And I would like to reserve 2 dormitory rooms
for two students.)

e 27 9] SIS el 2719] 7154 BE
dlefal i A ch
(And I would like to reserve 2 dormitory rooms
for 2 students.)

o T2 A UA ool
(Why did you wake up so early)

off o]HA LA dojyfola.
(Why did you wake up so early.)

o o2 A delfolar
(Why did you wake up so early?)

of ZA A & 4 =7t Yol e
(There are placesto watch around here)

o] Aol A & £ Ql=El7F Slol 4.
(There are placesto watch around here.)

ol ZA A & 4= = =7t Jol .
(There are places to watch around here.)

FHAAETY B I =4
(If the certificates are issued by July 25th)

AN TE 5DNA T
(If the certificates are issued by July 25th?)

AAAE TE 235970 AU,
(Certificates will be issued by July 25th.)

Table 5: Examples of the correction result according to the amount of training data. Note that we indicate the text
where includes errors in red; also, we indicate the miscorrected text by Hyper-BTS in the same color. In addition,
we indicate the text corrected properly by Hyper-BTS in blue.

First, Hyper-BTS 5 shows better correction of foreign language conversion errors. Hyper-BTS 190«
does not correct the foreign word “CD (CD)’, whereas Hyper-BTS;; corrects it properly. Second, in
the case of “S(two)", which has not been converted to a word containing numbers, Hyper-BTS 100 x
recognizes it as a space error and corrects it with “5% T (two)". Hyper-BTS{; shows more robust results
in numeric conversion correction by successfully correcting “274". Third, Hyper-BTS1pox recognizes a
punctuation error for the sentence “9f] 0] = A] YA 2 ojrto] & (Why did you wake up so early)", but adds
punctuation in the declarative form instead of the interrogative one. On the other hand, Hyper-BTS1 s
successfully correct punctuation and show effectiveness in the punctuation area. Fourth, Hyper-BTS 3¢
is more effective as a result of correction for spacing errors, which is an important factor in readability.
Although Hyper-BTS gk fail to correct “&- 4= )=t|7H(placesto)", Hyper-BTS1,, successfully post-
edit to “&- 4= 3J+= H|7}H(places to)". Finally, in the deletion error, which is a representative and important
error of spelling and grammar due to misrecognition of the main predicate, Hyper-BTS;gox corrects the
ending that is not properly terminated into an inte