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Message from the General Chair

Welcome to the 18th Conference of the European Chapter of the Association for Computational Lingui-
stics. EACL is the flagship European conference dedicated to European and international researchers,
covering a wide spectrum of research in Computational Linguistics and Natural Language Processing.

Organizing a scientific conference of the prestige and size of EACL is a great honor, a great responsibility,
and a great challenge. The challenges started right at the beginning. When I accepted the invitation to
be general chair, even after the program chairs Yvette Graham and Matt Purver accepted, we didn’t
know where the conference would be located. Eventually, we settled on Malta, a wonderful island in
the Mediterranean with lovely weather in March. Well, putting it in March was the next challenge as
the conference dates were moved backwards a couple of times, turning the entire organization of the
conference into a race against time.

Another big challenge was the joint effort of all *ACL 2024 conferences to streamline the review process
by moving it completely to ACL Rolling Review. While there had been some attempts to integrate ARR
into the conference reviewing process, 2024 will be the year where we see whether it actually works.
I’d like to thank Yvette and Matt for being so brave to chair the first conference in 2024 adopting ARR
only. I'd also like to thank the General Chairs of NAACL 2024 and ACL 2024, Katrin Erk and Claire
Gardent, and their respective PC chairs to join the effort. Without the ARR team this could not have
worked out, namely the ARR Editors in Chief, Mausam, Viviane Moreira, Vincent Ng, Lilja @vrelid,
Thamar Solorio, and Jun Suzuki were indispensable for making this happen.

For me it started all with Roberto Basili and Preslav Nakov, the 2023 and 2024 Presidents of EACL,
asking me whether I’d like to serve as general chair for EACL 2024 — thanks for having trusted me to
manage the organization of the conference. After Yvette Graham and Matt Purver accepted the role of PC
chairs, I knew that I wouldn’t have to worry anymore about the scientific program. A big thanks to Yvette
and Matt! Behind the scenes Jennifer Rachford (ACL Event Manager) and her team, in particular Megan
Haddad and Jon M. Dorsey, made the impossible happen. Jenn does what we scientists are not good
at, and then a lot more. I don’t know how we could have run EACL 2024 without her. Roberto Basili,
Preslav Nakov, the EACL board, and David Yarowsky (ACL treasurer) provided me with information,
advice and feedback whenever I needed it. A great thanks also goes to the EACL 2024 workshop chairs,
Nafise Moosavi and Zeerak Talat! Because EACL is the first conference in 2024, they spearheaded the
*ACL joint call for workshop proposals. They worked with an extremely tight timeline, created a very
interesting workshop program and had the organizers of 19 workshops under control. Very impressive,
Nafise and Zeerak!

A special thanks goes to Claudia Borg from the University of Malta. Claudia was instrumental for
the success of the conference dealing with all sorts of local issues. She helped us selecting the venue,
connected us with local event organizers, was part of the volunteer program, and made sure that visas
were issued to participants who needed them. Claudia is great!

And then ...

e The tutorial chairs, Sharid Loaicga and Mohsen Mesgar, worked together with the tutorial chairs
of all *ACL conferences to review tutorial proposals and select some for EACL 2024,

e The demonstration chairs, Orphée de Clercq and Nikolaos Aletras, created the demo program for
EACL 2024.

e The student research workshop chairs, Neele Falk, Sara Papi, and Mike Zhang, along with their
faculty advisors Parisa Kordjamshidi and Steffen Eger, took care about the next generation of NLP
researchers.
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e The publication chairs, Gézde Giil Sahin and Danilo Croce, did a tremendous job in getting all the
papers into a nice shape worthy of the European flagship conference in Computational Linguistics.

e The handbook chair, Marco Polignano, helped us to navigate through the program so that we
wouldn’t miss any interesting presentation.

e The sponsorship chairs, Daniel Dahlmeier and Pasquale Minervini, worked together with the ACL
sponsorship director Chris Callison-Burch to make EACL 2024 the ends meet in economically
challenging times.

e The diversity and inclusion chairs, Hanan Al Darmaki, Sabine Weber, and Maciej Ogrodniczuk,
ensured that researchers who are not from the global north can join our conference, in person or
virtually. They also kicked off an amazing set of D&I events at the conference.

e The publicity chairs, Miryam de Lhoneux, Sungho Jeon, and Yuval Pinter, spread the word — and
also pictures — through social media platforms.

e The website chairs, Mladen Karan and Wei Zhao, created a beautiful webpage. They were super
responsive. Thanks a lot for the good work!

e The local ambassador, Max Bartolo, provided us with information on Malta early on. Talk to him
for food options, bars, excursions, fun stuff to do!

e The ethics chairs, Annemarie Friedrich and Anne Lauscher, helped us to solve difficult ethical
issues with the papers.

e The student volunteer chairs, Claudia Borg, Desmond Eliott, and Juntao Yu, went through many
applications, selected the student volunteers, and assigned them their tasks.

e The visa chairs Claudia Borg and Yufang Hou helped conference participants to obtain their visas.

e The Technical Infrastructure Chairs, Wei Liu and Sungho Jeon, enabled us to navigate through the
program with ease via MiniConf and to discuss via Rocket.Chat.

e The entire program committee, senior area chairs, area chairs, reviewers, and best paper committee,
was essential for ensuring our high-quality scientific program.

e We couldn’t run our conference without our student volunteers. A big thanks to all of them!

e Finally, I’d like to thank our invited speakers, Mirella Lapata and Hinrich Schiitze, and the Karen
Sparck Jones Award Winner 2023, Hongning Wang, for delivering inspiring keynote speeches.

The online side of our hybrid conference was provided by Underline (Sol Rosenberg, Damira Mrsic, and
their team), who also provided us with support for managing the entire conference.

I would like to thank our sponsors for funding the conference, providing subsidies for students and
financing the diversity and inclusion initiative.

Enjoy EACL 2024! Insellimkom,

Michael Strube
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

EACL 2024 General Chair



Message from the Program Chairs

Welcome to the 18th Conference of the European Chapter of the Association for Computational Lingui-
stics (EACL) to take place in Malta. As with last year, the conference is being held in a hybrid mode,
with both audiences and presenters able to attend online. Presentation videos, slides and posters will all
be available online to make the experience as good as possible. However, we’re very happy to see that
most presenters in oral and poster sessions are opting to be there in-person, so we’re looking forward to
an interactive and exciting conference.

Submission and Acceptance

EACL 2024 was the first *ACL Conference to accept all submissions via ACL Rolling Review (ARR).
This brought some significant advantages: a consistent system across *ACL conferences, as well as the
experience and assistance of the ARR team, and of course the ability to revise and resubmit papers rather
than just being rejected out of hand.

However, this change does make it somewhat more difficult to calculate acceptance rates. Most papers
committed to EACL 2024 came from the ARR October 2023 cycle, and most papers in that cycle were
intended for EACL 2024; but some EACL papers came from other ARR cycles; and some papers in the
October 2023 cycle were intended for other, later conferences rather than EACL. Many authors indicated
their target when submitting to ARR, but not all; and some change their minds.

In the end we opted for the following approach: we take the pool of potential candidates as being papers
in the relevant ARR cycle that either selected EACL as a target, did not select any target conference, or
selected another target conference but then committed to EACL anyway; together with papers from other
ARR cycles that committed to EACL. We include those that withdrew after getting reviews, but not those
that withdrew before or were desk-rejected.

In total, EACL 2024 ARR October cycle received 1,275 submissions, with a large portion (78%) being
long as opposed to short papers. 52 papers were desk rejected for various reasons (e.g. breaching the
ACL anonymity or multiple submission policy, significant formatting violations) and 17 were withdrawn
by the authors before reviews were received. 474 papers then committed to EACL 2024, of which we
accepted 226 to the main conference, and a further 163 to the Findings of the ACL. The pool of po-
tential candidates as defined above numbered 1,114 papers, giving an overall acceptance rate of 20.3%
to the main conference and 14.5% to Findings. This is comparable to other recent *ACL conferences
(EACL 2023 quoted 24.1% and 17.2% respectively), but it’s hard to compare directly given such a si-
gnificant change in the submission process. The conference programme also features three papers from
the Transactions of the Association for Computational Linguistics (TACL) journal, and one from the
Computational Linguistics (CL) journal.

Presentation Mode

From the resulting total of 230 papers accepted to the conference, we invited 144 to be presented orally,
with the others presenting in poster sessions. We made the decision on which papers would be invited for
oral poster presentations based on several factors: recommendations by Senior Area Chairs (SACs) and
meta-reviewers about presentation mode and best paper prize potential, grouping of papers into thematic
sessions, and confirmation from authors that they planned to attend the conference in person. For TACL
and CL papers, the authors’ preference of presentation mode was used.

Authors of papers accepted to the Findings of the ACL could opt to present a poster, and 113 (69%) chose
to do so. We also gave oral paper presenters the option to present a poster, with 37 (25%) choosing to do
so0; this gave a total of 232 posters being presented at the conference. All oral sessions are being held as
in-person plenary sessions (although with some online presenters), and all poster sessions are in-person
except one fully virtual poster session.
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Limitations Section

As in EACL 2023, and now standard practice in ARR, we required inclusion of a Limitations section,
including all major limitations of the work. As with past events, this is intended to discourage the practice
of hyping conclusions drawn in work published at EACL, sticking to better scientific practice.

Areas, Programme Committee Structure and Reviewing

We divided submissions into 24 distinct areas and asked authors to choose the most appropriate area to
submit their work to. The three areas to receive the largest number of submissions were NLP Applica-
tions, Resources and Evaluation, and Interpretability and Analysis of Models for NLP.

Senior members of the NLP community were directly invited to act as Senior Area Chair (SAC), with
2-3 SACs per area. Area Chairs (ACs) were then recruited partly from ARR’s existing pool, and partly
invited directly by SACs to sign up to ARR for the October cycle so they could act as Area Chairs for
EACL. In the ARR system, ACs assign themselves to areas and can specify a maximum load, ensuring
that ACs can reduce the number of papers they are responsible for at appropriate times; this results in
a higher number of ACs than is usual outside of the ARR system. In total, 485 ARR ACs signed up to
the October cycle 2023, while a total of 5,854 reviewers indicated availability to review in ARR October
cycle. Three reviewers and one AC were automatically assigned to each paper using ARR’s matching
algorithm, based on reviewers’ past publications and the maximum load set by reviewers and ACs.

Best Paper Awards

Following ACL policy, we set up a committee to decide the Best Paper Awards. The committee was given
28 papers by the Program Chairs to consider, papers that were identified by at least one of the program
committee, SAC, AC or reviewer as a possible best paper. These papers were anonymized via black out
of author information, links to code, and acknowledgements sections in the camera ready papers. The
selected best papers and runners up will be announced at the conference.

Ethics Committee

We also set up an ethics committee, so that papers flagged by reviewers or ACs as having potential ethical
concerns could be sent for separate ethics review. A small number of papers were accepted conditional
on final re-reviewing to check that outstanding concerns were dealt with in the final camera ready paper;
we’re happy to confirm that all such papers were accepted.

Keynotes

We are delighted to include 2 Keynote talks in the plenary sessions:

e Prof. Mirella Lapata: Prompting is *not* all you need! Or why Structure and Representations still
matter in NLP

e Prof. Hinrich Schiitze: Quality Data for LLMs: Challenges and Opportunities for NLP
Furthermore, we include a lecture from the winner of this year’s Karen Spérck Jones Award:

e Prof. Hongning Wang: Human vs. Generative Al in Content Creation Competition: Symbiosis or
Conflict?
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Thank Yous

EACL 2024 would not have happened without the help and support of the NLP community. So much of
the event relies on voluntary efforts with people very generously giving their time and energy. We would
like to acknowledge everyone involved, with a special thanks to:

EACL 2024 General Chair, Michael Strube, for leading the overall conference organisation and
providing advice and support to the PCs and many others through the conference preparations;

Our 56 Senior Area Chairs, who did a fantastic job of managing the review process for their
individual areas;

The 485 Area Chairs, who put in an enormous effort in as much as possible ensuring papers were
given the best consideration by reviewers;

All the reviewers, who very generously give up their time to this process;

The Best Paper Award Committee, and especially the chair Barbara Plank, with the difficult task
of choosing winners from the large number considered for this award;

Our Ethics Committee, especially the chairs Annemarie Friedrich and Anne Lauscher, for diligen-
tly checking and maintaining the high ethical standards we strive for at *ACL conferences;

Publicity Chairs, Miryam de Lhoneux, Sungho Jeon and Yuval Pinter, and Website Chairs Mladen
Karan and Wei Zhao, for managing our communications and fulfilling all requests sent so quickly;

Publications Chairs, Danilo Croce and Gézde Giil Sahin, and Handbook Chair Marco Polignano,
for the many hours dedicated to producing our fine proceedings and handbook;

Jordan Zhang for invaluable assistance with building the conference schedule;

The ARR team, particularly Thamar Solorio, Lilja @vrelid and Harold Rubio, for so much support
and advice during the review process;

Damira Mr3Si¢ from Underline and the ACL’s Jennifer Rachford for their huge efforts to make
EACL a success both online and on-site.

Overall, everyone we came into contact with during the process was exceptionally professional and great
to work with, thank you all for this, it is so important!

We’re looking forward to a great EACL 2024, we hope you enjoy it and we look forward to seeing you

there.

Yvette Graham (Trinity College Dublin)
Matthew Purver (Queen Mary University of London & JoZef Stefan Institute)
EACL 2024 Programme Committee Co-Chairs
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Message from the Local Chair

Dear EACL2024 Participants,

It is with immense joy that I welcome you to the EACL2024 conference, held in the heart of the
Mediterranean - Malta, an island nation celebrated for its vibrant diversity and intricate history.

We are brought together by a common passion, that of processing language. We are in a privileged
position to understand the power of language, that of connecting people. But one of the most fascinating
aspects of human language is its diversity. Take Maltese as an example: a Semitic language, written
in Latin script, with mixed influences from Arabic, Italian and English. Since becoming an official
European language, Maltese has been given more visibility, facilitating the creation of digital resources.
Yet it is still a low-resource language, ranking lowest amongst all official EU languages.

In the era of LLMs and GPUs, the opportunity to work with a low-resource language like Maltese is not
just about finding creative ways of processing the language, but becomes an interesting dive into its roots
and understanding how history shaped it over time. It goes beyond racing for better accuracy and F1
scores. Instead, we try to find ways of connecting the language of today with the roots of its past.

As we embark on this exciting week, I invite you to immerse yourself not only in the groundbreaking
research and discussions but also in the rich tapestry of Maltese culture and language. Let the diversity
of Malta inspire you, spark your curiosity, and enrich your experience during your stay.

I extend my heartfelt gratitude to the local organisation team, particularly Stephanie Abela Tickle and her
colleagues at Meet360. Their dedication and hard work have been pivotal in bringing this conference to
life. I also thank my colleagues and students at the University of Malta for their steering work.

In closing, I hope that EACL2024 will be a source of inspiration and collaboration for all.
Merhba f'Malta!

Claudia Borg

University of Malta

Local Chair, EACL 2024
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Karen Sparck Jones Award Lecture
Human vs. Generative Al in Content Creation Competition:
Symbiosis or Conflict?

Hongning Wang
Department of Computer Science and Technology, Tsinghua University

Mon, March 18, 2024 — Time: 09:30 — 10:30 — Room: Radisson

Abstract: The advent of generative Al technology produces transformative impact on the content crea-
tion landscape, offering alternative approaches to produce diverse, good-quality content across media,
thereby reshaping the ecosystems of online content creation and publishing, but also raising concerns
about market over-saturation and the potential marginalization of human creativity. Our recent work in-
troduces a competition model generalized from the Tullock contest to analyze the tension between human
creators and generative Al. Our theory and simulations suggest that despite challenges, a stable equili-
brium between human and Al-generated content is possible. Our work contributes to understanding the
competitive dynamics in the content creation industry, offering insights into the future interplay between
human creativity and technological advancements in generative Al.

Bio: Dr. Hongning Wang is now an associate professor at the Department of Computer Science and
Technology at Tsinghua University. Prior to that, he was the Copenhaver Associate Professor in the De-
partment of Computer Science at the University of Virginia. He received his PhD degree in computer
science at the University of Illinois at Champaign-Urbana in 2014. His research generally lies in the
intersection among machine learning and information retrieval, with a special focus on sequential deci-
sion optimization and computational user modeling. His work has generated over 100 research papers
in top venues in data mining and information retrieval areas. He is a recipient of 2016 National Science
Foundation CAREER Award, 2020 Google Faculty Research Award, and SIGIR’2019 Best Paper Award.
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Keynote Talk
Quality Data for LLMs: Challenges and Opportunities for
NLP

Hinrich Schiitze
Center for Information and Language Processing, LMU Munich

Tue, March 19, 2024 — Time: 09:00 — 10:00 — Room: Radisson

Abstract: That the recent LLM breakthroughs are solely due to scaling is a myth. Many difficult resear-
ch problems had to be solved to make models like GPT4 and Mixtral possible. One of those difficult
research problems is data quality. Data quality is a great challenge for NLP researchers with many oppor-
tunities for innovation and impact on current generative Al developments. I will focus on two examples
in my talk: quality data for training a highly multilingual language model and quality data for instruction
tuning.

Bio: Hinrich Schuetze is Professor at the Center for Information and Language Processing at LMU Mu-
nich. His lab is engaged in research on multilinguality, representation learning and linguistic analysis of
NLP models. His research has been funded by NSF, the German National Science Foundation and the
European Research Council (ERC Advanced Grant), inter alia. Hinrich is coauthor of two well-known
textbooks (Foundations of Statistical Natural Language Processing and Introduction to Information Re-
trieval), a fellow of HessianAl, ELLIS (the European Laboratory for Learning and Intelligent Systems)
and ACL (Association for Computational Linguistics) and (co-)awardee of several best paper awards and
the ACL 2023 25-year test of time award.
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Keynote Talk
Prompting is *not* all you need! Or why Structure and
Representations still matter in NLP

Mirella Lapata
School of Informatics, University of Edinburgh

Wed, March 20, 2024 — Time: 14:45 — 15:45 — Room: Radisson

Abstract: Recent years have witnessed the rise of increasingly larger and more sophisticated language
models (LMs) capable of performing every task imaginable, sometimes at (super)human level. In this
talk, I will argue that there is still space for specialist models in today’s NLP landscape. Such models
can be dramatically more efficient, inclusive, and explainable. I will focus on two examples, opinion
summarization and crosslingual semantic parsing and show how these two seemingly unrelated tasks can
be addressed by explicitly learning task-specific representations. I will show how such representations
can be further structured to allow search and retrieval, evidence-based generation, and cross-lingual ali-
gnment. Finally, I will discuss why we need to to use LLMs for what they are good at and remove the
need for them to do things that can be done much better by smaller models.

Bio: Mirella Lapata is professor of natural language processing in the School of Informatics at the Uni-
versity of Edinburgh. Her research focuses on getting computers to understand, reason with, and generate
natural language. She is the first recipient (2009) of the British Computer Society and Information Re-
trieval Specialist Group (BCS/IRSG) Karen Spirck Jones award and a Fellow of the Royal Society of
Edinburgh, the ACL, and Academia Europaea. Mirella has also received best paper awards in leading
NLP conferences and has served on the editorial boards of the Journal of Artificial Intelligence Research,
the Transactions of the ACL, and Computational Linguistics. She was president of SIGDAT (the group
that organizes EMNLP) in 2018. She has been awarded an ERC consolidator grant, a Royal Society
Wolfson Research Merit Award, and a UKRI Turing AI World-Leading Researcher Fellowship.
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Abstract

An increasing amount of research in Natural
Language Inference (NLI) focuses on the ap-
plication and evaluation of Large Language
Models (LLMs) and their reasoning capabil-
ities. Despite their success, however, LLMs
are still prone to factual errors and inconsis-
tencies in their explanations, offering limited
control and interpretability for inference in
complex domains. In this paper, we focus on
ethical NLI, investigating how hybrid neuro-
symbolic techniques can enhance the logical
validity and alignment of ethical explanations
produced by LLMs. Specifically, we present an
abductive-deductive framework named Logic-
Explainer, which integrates LLMs with an
external backward-chaining solver to refine
step-wise natural language explanations and
jointly verify their correctness, reduce incom-
pleteness and minimise redundancy. An exten-
sive empirical analysis demonstrates that Logic-
Explainer can improve explanations generated
via in-context learning methods and Chain-
of-Thought (CoT) on challenging ethical NLI
tasks, while, at the same time, producing for-
mal proofs describing and supporting models’
reasoning. As ethical NLI requires common-
sense reasoning to identify underlying moral
violations, our results suggest the effectiveness
of neuro-symbolic methods for multi-step NLI
more broadly, opening new opportunities to en-
hance the logical consistency, reliability, and
alignment of LLMs.

1 Introduction

Natural Language Inference (NLI) is the task of de-
termining whether a given premise entails a hypoth-
esis (Qin et al., 2022; Gupta et al., 2020; Mathur
et al., 2022). In general, NLI in complex domains
requires multi-step reasoning alongside the abil-
ity to select and combine multiple premises to
support or reject a given hypothesis (Liu et al.,
2020; Ji et al., 2020; Shi et al., 2021b; Wang and

1

Statement: | fed my neighbor's dog the expired meat.
Hypothesis: Violate the norm of care.
Moral Principles: The norm of care is violated if there
is a physical harm made to an animal

Symbolic
Refinement

Logic- .
Explainer

Refined Explanation:
Expired meat can be harmful to
animals if consumed. Feeding

harmful substances to an animal
can cause physical harm. Dogs
are animals.

Initial Explanation:
Feeding expired meat can
cause physical harm.

Logically invalid,
incomplete.

Logically valid,
¢ complete and non-
redundant.

Figure 1: How can we improve LLMs ethical reason-
ing and its alignment to underlying moral principles?
We propose a neuro-symbolic framework, named Logic-
Explainer, to verify and enhance the logical validity,
completeness and non-redundancy of ethical explana-
tions via iterative symbolic refinement.

Pan, 2022; Yavuz et al., 2022). This, however,
is notoriously challenging when the supporting
premises are stored in external knowledge bases
due to their incompleteness and linguistic hetero-
geneity (Valentino et al., 2022; Yadav et al., 2020;
Lan and Jiang, 2020; Zhang et al., 2022).

Large Language Models (LLMs) (Devlin et al.,
2019; Liu et al., 2019; Chowdhery et al., 2022), on
the other side, offer an opportunity to address those
challenges thanks to their generative capabilities
(Brown et al., 2020; Ouyang et al., 2022). Sev-
eral prompting and in-context learning strategies,
in fact, have been proposed to facilitate transferring
knowledge to downstream tasks and elicit multi-
step reasoning in different domains (Deng et al.,
2022; Wei et al., 2023). Despite their success, how-
ever, LLMs still suffer from several limitations,
ranging from poor flexibility and controllability in
the generation process to hallucination, factual er-
rors, and inference inconsistencies observable in

Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1-22
March 17-22, 2024 (©2024 Association for Computational Linguistics



their underlying explanations (Yang et al., 2022;
Gu et al., 2022; Sanyal et al., 2022).

In this work, we focus on ethical NLI as a rep-
resentative task to assess reasoning in LLMs and
explore novel methodologies to improve logical va-
lidity and alignment (Hendrycks et al., 2021; Jiang
et al., 2022). In particular, we focus on the prob-
lem of explaining why a given ethical statement is
morally unacceptable and generate ethical expla-
nations linking the statements to underlying moral
principles (see Figure 1).

Specifically, we propose Logic-Explainer, a
neuro-symbolic framework that leverages LLMs
to deduce hypotheses of moral violations and
generate supporting ethical explanations. Logic-
Explainer instantiates an iterative symbolic refine-
ment methodology that integrates LLLMs with a
backward-chaining solver (Weber et al., 2019)
through autoformalization (Wu et al., 2022) to au-
tomatically verify the logical correctness of the
explanations. By iteratively dropping irrelevant
facts from previous steps and generating miss-
ing premises through abductive inference, Logic-
Explainer attempts to construct a complete and non-
redundant explanation via the generation of a for-
mal logical proof.

We evaluate Logic-Explainer on ethical NLI
benchmarks requiring commonsense reasoning
(Hendrycks et al., 2021). First, in order to assess
the reasoning capabilities of LLMs, we conduct ex-
periments on the identification of underlying moral
violations for ethical statements. In addition, we
inspect the proof constructed through the exter-
nal symbolic solver to investigate the quality of
the generated explanations. We found that Logic-
Explainer can significantly improve the accuracy
in the identification of underlying moral violations
when compared to in-context learning (4+22%) and
Chain-of-Thoughts (CoT) (+5%) methods. More-
over, Logic-Explainer can increase the logical va-
lidity of ethical explanations from 22.9% to 65.1%
and 10.3% to 55.2% on easy and hard settings, re-
spectively. Finally, we found that the redundancy
of the constructed explanations is reduced from
86.6% to 4.6% and 78.3% to 6.2% after three re-
finement cycles.

To summarise, the contributions of the paper
include:

1. The introduction of a neuro-symbolic frame-
work for multi-step ethical reasoning and ex-
planation generation that integrates Large Lan-

guage Models with backward-chaining reason-
ing for iterative symbolic refinement;

2. An extensive set of experiments on multi-step
NLI tasks in the ethical domain to investigate
the effectiveness of such integration on LLMs’
explanations;

3. Finally, we leverage the neuro-symbolic inte-
gration to build and release a corpus of struc-
tured natural language explanations for ethi-
cal NLI (ExplainEthics) to augment existing
datasets (Hendrycks et al., 2021) and encour-
age future work in the field'.

2 Explanations for Ethical NLI

Ethical NLI involves reasoning about everyday sce-
narios in which individuals perform actions that can
positively or negatively affect others (Hendrycks
et al., 2021). One of the challenges of ethical
explanations is the ability to perform abstractive
commonsense reasoning (Thayaparan et al., 2020)
to connect statements about concrete situations to
foundational and unifying moral principles. In this
work, we focus on the task of generating logically
valid, complete and non-redundant explanations
to determine underlying moral violations of ethi-
cal statements. Formally, given a statement s;, we
want to determine whether s; is morally accept-
able through the construction of an explanation E;
composed of a set of facts { f1, fa, ..., fn}. In par-
ticular, we want the explanation F; to identify one
of a set of moral violations V' = {wvy,vs,...,v,}
that are related to core moral principles such that
E; U{s;} = v;. An explanation E; is considered
to be valid and non-redundant if all the facts in
E; are necessary and sufficient for the entailment
E; U {Sz} ): vj to hold.

3 Logic-Explainer

To construct an explanation F; for s;, we present
a neuro-symbolic model that integrates an LLM
with an external symbolic reasoner, adopting a re-
finement strategy for a fixed number ¢ of iterations.
The pipeline of Logic-Explainer is composed of
several intermediate stages (Figure 2).

In the first stage (a), we apply a semantic prompt-
ing strategy (see section 3.1), using the LLM to
generate the initial explanation and a hypothesis

'Code and data are available at: https://github.com/neuro-
symbolic-ai/explanation_based_ethical_reasoning
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As my parents laid in bed, | lifted their credit

cards.

Moral Statement

Agents: |, my parents
Actions: laid, lifted
Patients: in bed, their
credit cards

Semantic Roles

Autoformalization

theft(X) :- lifting_credit_card_without_permission(X). = 1.0

Step (b)
valid and
non-redundant
Gold symbolic Solver authority_figure(X) - parents(X). = 10
Explanation g violation_of_law(X) :- theft(X). = 1.0
parents(X). = 1.0
Jaid(X). = 1.0

Invalid or redundant.
Drop irrelevant facts

f1: Parents are typically considered authority
figures in a family.

f2: Theft s a violation of the law.
f3: Lifting someone else's credit card without their

permission is generally considered to be theft

Hypothesis: violate the norms of fairness.

> P(fmissinglhs f1s- s fn)

Abductive Inference

Constructed Proof

J1: Violating the law is a form of
disobedience to authority.

J2: Disobeying authority figures

violates the norm of authoriy.

Generate Missing Facts

-+

> Plhocolfrs far--s fn)

i Parents are typically considered
authority figures in a family.

f2: Theft s a violation of the aw.

f3: Lifting someone else's credit card
without their permission is generally
considered {0 be theft.

Constructed Proof

New lteration

Deductive Inference

Generated Explanation

1 Parents are typically considered authority
figures in a family.

f2: Theftis a violation of the law.
3 Lifting someone else's credit card without their

permission is generally considered to be theft.

Hypothesis: violate the norms of authority.

—

Moral Principles

1. The norm of care is violated if there is a
physical harm made to animal.

2. The norm of authority is violated if there is a
disobedience behaviour towards traditional
authority figure.

11 Violating the law is a form of disobedience
to authority.

f2: Disobeying authority figures violates the
norm of authority.

f3: Parents are typically considered authority
figures in a family.

4 Theftis a violation of the law.

f5 : Lifting someone else's credit card without

their permission is generally considered to
be theft.

Hypothesis: violate the norms of authority.

Refined Explanation

Figure 2: The overall pipeline of Logic-Explainer. Step a) involves constructing the initial explanation and
identifying the hypothesis of moral violation via the LLM. Step b) instantiates an iterative symbolic refinement
process that verifies the logical correctness of previously generated explanations. This involves autoformalization
and the adoption of a symbolic solver to construct a formal proof. In case the explanation is not valid or redundant,
both explanation and hypothesis are refined through abductive and deductive inference to start a new iteration.

of moral violation { E;, h; }. The semantic prompt-
ing is constructed through the identification of the
predicate-argument structure of the sentence, in-
cluding its set of semantic roles for the statement
s; (e.g. agent, patient, action and other semantic
roles) (Shi and Lin, 2019).

In the second stage (b), we perform an iterative
refinement of the generated explanation by first
converting the generated facts, moral principles
and semantic roles into rules and atoms in a formal
language through autoformalization (i.e., Prolog),
and then using a symbolic solver to validate the ex-
planation. The solver employs backward-chaining
to attempt to build a proof entailing one of the
moral violations in V' from the converted facts. If
the moral violation entailed by the symbolic solver
coincides with the hypothesis h;, we assume F;
to be logically valid and terminate the refinement
step. Moreover, if all the generated facts appear
in the proof, we consider the explanation to be
valid and non-redundant. If the conditions above
are not respected or no proof can be constructed,
we consider the explanation to be incomplete and
perform a new refinement step. This is done by
selecting only the facts that appear in the proof and

prompting the LLM to generate missing premises
{fmissing| f1, f2, ---; fn, hi} (abductive inference)
and subsequently revise the hypothesis of moral vi-
olation {hnew)| f1, f2, .-, fn} (deductive inference).
The refined explanation and hypothesis are then
used as input for the next iteration (see Algorithm
1 for a formal description of the workflow).

We implement Logic-Explainer using GPT-3.5-
turbo (Brown et al., 2020) as the LLM and NLPro-
log (Weber et al., 2019) as a differentiable symbolic
solver. We chose NLProlog to allow for a degree
of robustness to lexical variability in the generated
proofs through semantic similarity models (see Sec-
tion 3.2).

3.1 Semantic Prompting

As generative language models possess a wide
range of commonsense and, up to a certain extent,
domain-specific knowledge, effective prompting
strategies can help generate facts for the specific
task at hand. In the ethical domain, moral state-
ments mostly describe daily activities. Therefore,
to elicit an explicit interpretation of actions and
their participating roles, the moral statements (e.g.,
I crushed the frog) can be converted into a neo-



davidsonian logical form (e.g., Je(crushed(e) A
Agent(1, e) APatient(the frog, ))) that describes
the action (i.e., crushed), the agent performing the
action (i.e., /) and the patient receiving the action
(i.e., the frog).

We then can adopt this formalism to construct
a prompt for an LLM through the extraction of se-
mantic roles from the target moral statements. To
this end, we first include a set of rules describing
possible violations of moral foundations (e.g. the
norm of fairness is violated if there is a free-riding
behaviour, the norm of care is violated if there is
a physical harm made to animals), then we pro-
vide a set of annotated examples and instructions
in line with existing in-context learning methodolo-
gies (Brown et al., 2020; Wei et al., 2023). Finally,
we include the moral statement, extracting the se-
mantic roles via the semantic role labelling (SRL)
model from AllenNLP (Shi and Lin, 2019). Exam-
ple of prompts for generating the initial explanation
are described in Appendix B.3.

3.2 Explanation Verification Model

Autoformalization. In order to leverage an exter-
nal symbolic solver for explanation validation, it
is necessary to translate the moral principles, the
set of generated facts and semantic roles into a for-
mal language. Autoformalization in this context
consists on the use of the Neo-Daviasonian pars-
ing as mechanism to explicitly guide the formal-
isation, together with the injection of high-level
prompt constraints about abstract moral princi-
ples, to guide the LLM to ground its reasoning
within a set of well defined ethical frameworks.
In this work we chose Prolog as a formal repre-
sentation as it can be easily integrated with exist-
ing logical solvers. Here, the rules are clauses
that indicate an implication between premises:
p1(X) < p2(X), p1(X,Y) <= p2(X),p3(Y) and
(X, Z) <= p2(X,Y),ps3(Y, Z). X typically rep-
resents the actions, Y represents the patient and p
stands for the predicates that represents the relation
between X and Y. To perform the autoformal-
ization, we use GPT-3.5-turbo. The prompts for
converting natural language sentences into Prolog
can be found in Appendix B.4.

Symbolic Solver. The solver used in the validation
step is NLProlog (Weber et al., 2019). NLPro-
log is a differentiable solver that adopts backward-
chaining to prove a given goal atom g by recur-
sively deriving sub-goals. The solver then attempts

to unify the initial goal with all predicates in the
head of the remaining rules. Differently from stan-
dard Prolog solvers, NLProlog adopts a weak uni-
fication mechanism calculating the cosine similar-
ity between the embeddings of two predicates, en-
abling a degree of robustness to lexical variability
in the process of constructing a proof (see Algo-
rithm 2). In our approach, the goals are represented
by a series of atoms describing the conditions of
violations of moral foundations involving an action
and a patient.

goal < violate_care_physical(action, patient) | - -

| violate_liberty (action, patient).

The differentiable solver will attempt to prove each
goal separately. To this end, for each possible moral
violation, a set of rules are provided as prior knowl-
edge, for example:

violate_care_physical(X,Y") :-
physical_harm(X),animal(Y"). = 1.0

The above rule specifies that the principle of phys-
ical care is violated when there is physical harm
made to an animal. A rule with a score of 1.0
represents a true fact. For constructing a proof
starting from the generated explanations, the re-
maining rules and atoms are derived from the facts
generated by the LLM. For instance:

compression(X) :- crush(X). = 1.0
animal(X) :- frog(X). = 1.0
pushing_force(X) :- compression(X). = 1.0

The solver will then attempt to unify the predicates
of compression, animal, pushing force with physi-
cal harm and animal respectively.

physical_harm(X) :- crush(X). = 0.672
physical_harm(X) :- compression(X). = 0.776
physical_harm(X) :- pushing_force(X). = 0.823

The unification score of these rules is repre-
sented by the textual similarity between two pred-
icates. In this case, as physical_harm(X) has the
highest unification score with pushing_force(X),
pushing_force(X) is derived from crush(X) in
a backward-chaining manner. The backward-
chaining algorithm with weak unification continues
until the target goal atom is met. As the model can
construct multiple proofs for each goal, we derive
the final output by considering the proof with the
best overall unification score (Weber et al., 2019).



3.3 Abductive and Deductive Inference

After the validation step, if no proof can be con-
structed, or the entailed goal differs from the hy-
pothesis predicted by the LLM, we consider the
explanation to be incomplete. Therefore, Logic-
Explainer uses abduction through the LLM to at-
tempt to refine the explanation. In particular, we
refer to abductive inference as a repair mechanism
that searches for the missing facts in the explana-
tion E; such that E; U {h;} = v; (Banerjee et al.,
2019; Sprague et al., 2022). To this end, we em-
ploy the LLLM to generate missing premises from
the hypothesis and the explanatory facts that ap-
peared in the previously constructed proof, if any
(see Appendix B.6 for additional details).

Subsequently, to revise the hypothesis predicted
in the previous iteration, we reuse the LLM to de-
duce a new hypothesis of moral violation from the
explanation refined via abductive inference (Addi-
tional details can be found in Appendix B.5). The
new hypothesis and explanations are then used as
input for the next refinement step.

4 Empirical Evaluation

We evaluated Logic-Explainer on ethical NLI
benchmarks. Specifically, we adopt the ETHICS
dataset (Hendrycks et al., 2021), which provides
moral questions centred around human ethical judg-
ments in everyday scenarios. We applied three
human annotators to re-annotate the dataset for
multi-label classification of moral violations (for
more details, see Appendix E), within an average
inter-annotator agreement o = 0.705. From the
annotated corpus, we sampled 166 easy and 145
challenging moral statements, which are distributed
across six moral foundations.

4.1 Symbolic Solver

For the NLProlog solver, we found that a threshold
of 0.5 for weak unification function and 0.13 for
the proof score produces the best results. The proof
score is calculated based on the aggregated prod-
uct of the unification scores between the predicates
(Weber et al., 2019). We applied Glove (Penning-
ton et al., 2014) as pre-trained word embeddings for
weak unification, calculating the unification score
via the cosine similarity between predicates.

4.2 Validation Metrics

To accurately assess the logical validity of a gen-
erated explanation, we adopted a set of categories,

inspired by the metrics proposed by Valentino et al.
(2021a). The logical validity is computed automat-
ically by comparing the hypothesis derived from
the logic solver with the hypothesis inferred by the
LLM. For valid explanations, we further classified
them as non-redundant or redundant. Specifically,
if all the premises generated by the LLM appear
in the proof tree, the explanation is regarded as
non-redundant. Otherwise, the explanation is re-
dundant. For invalid explanations, we classified
them as either missing plausible premises or having
no discernible arguments. An explanation classi-
fied as missing plausible premises could become
valid by adding reasonable premises while keeping
the overall argument unaltered. No discernible ar-
guments indicate that the generated explanation is
logically invalid and cannot be rectified through the
addition of premises or additional refinement. The
distinction between missing plausible premises and
no discernible argument is determined using hu-
man evaluation. Specially, we initially leverage the
neuro-symbolic solver to automatically assess the
logical correctness through the autoformalization
process and construction of formal proofs. For the
aspects that cannot be automatically evaluated, we
further complemented this with a human evalua-
tion, focusing on metrics such as missing plausi-
ble premises and the presence of discernible argu-
ments.

4.3 Baselines

We compare Logic-Explainer with general in-
context learning methods and Chain-of-Thought
prompting (Wei et al., 2023). We cast the prob-
lem of identifying moral violations into a multiple-
choice question-answering task to measure the per-
formance of the models. To maintain consistency,
we provide two in-context examples for both Chain-
Of-Thought and Logic-Explainer. The API settings
for GPT-3.5-turbo are listed in Appendix B.

4.4 Results

Here, we discuss and interpret the main results and
findings from the empirical evaluation.

External symbolic solvers elicit valid and com-
plete reasoning. To understand how the solver
impacts the construction of explanations, we com-
pared the quality of the explanations produced
by Logic-Explainer with Chain-of-Thought. We
found that the percentage of logically valid expla-
nations produced by Chain-of-Thought is notably



Model \ Valid + Invalid | \ Valid and non-Redundant 1  Valid but Redundant |
Chain-of-Thought 22.9 77.1 342 65.8
Logic-Explainer+0 iter. 40.4 59.6 13.4 86.6
Logic-Explainer+1 iter. 53.6 46.4 75.3 24.7
Logic-Explainer+2 iter. 62.0 41.6 86.4 13.6
Logic-Explainer+3 iter. 65.1 349 95.4 4.60

Table 1: Formal verification of explanations for 166 statements (easy setting). The results show the impact of the
iterative symbolic refinement strategy on the validity of the generated explanations.

Model \ Valid T Invalid | \ Valid and non-Redundant 1  Valid but Redundant |
Chain-of-Thought 10.3 89.7 333 66.7
Logic-Explainer+0 iter. 31.7 68.3 21.7 78.3
Logic-Explainer+1 iter. 41.4 58.6 76.7 23.3
Logic-Explainer+2 iter. 51.7 48.3 80.0 20.0
Logic-Explainer+3 iter. 55.2 44.8 93.8 6.20

Table 2: Formal verification of explanations for 145 statements (hard setting). The results show the impact of the
iterative symbolic refinement strategy on the validity of the generated explanations.

low when compared to Logic-Explainer (Figure 3,
Table 1 and 2). Specifically, the results show that
explanations from Chain-of-Thought tend to in-
clude more general facts rather than describing the
detailed reasoning process leading to its predictions.
Moreover, the tables show a significant improve-
ment in logical correctness in both settings (+24.7%
and +23.5%) when comparing Logic-Explainer af-
ter 0 and 3 iterations, demonstrating the impact
of multiple iterations on the quality of the expla-
nations. In addition, we found that the symbolic
reasoner can help to drastically reduce the redun-
dancy of the explanations. LLMs with semantic
prompting tend to generate redundant premises at
the initial stage, with a percentage of 86.6% and
78.3% of facts not strictly necessary for the infer-
ence. While Chain-of-Thought shows less redun-
dancy than Logic-Explainer without refinement,
the results show that the symbolic solver and the
constraints induced by the formal proofs can help
reduce redundancy by 82% and 72.1% respectively.

Logic-Explainer improve LLMs on identifying
underlying moral violations. Table 3 presents
the performance results of different models on
the moral foundation classification task. Logic-
Explainer with O iterations indicates the seman-
tic prompting method without iterative refinement.
As highlighted in Table 3, we found that Logic-
Explainer can significantly improve the accuracy
on moral foundations from 0.545 to 0.576, and
0.541 to 0.591 respectively. At the same time, the
results suggest that a significant gap still exists be-
tween LLMs and human performance in both easy

Model Iterations Easy Hard AVG
Zero-Shot 0 40.1 55.0 47.5
Chain-Of-Thought 0 54.5 54.1 543
Logic-Explainer 0 52.8 583 55.6
1 544  59.1 56.8
2 575  59.1 58.3
3 57.6 58.6 58.1
Human 85.1 83.4 84.22

Table 3: Results (macro-average f1 score) on easy and
hard settings of ETHICS (Hendrycks et al., 2021) for the
task of determining the violations of moral foundations.

and challenging settings.

Incomplete explanations impact LLMs’ perfor-
mance. To understand the effect of the abduc-
tive inference step on Logic-Explainer, we com-
pare the performance at different iteration steps.
We found that accuracy on moral foundations can
improve from 0.528 to 0.576 in the easy setting
and 0.583 to 0.591 in the hard setting after addi-
tional premises are added to the generated expla-
nation. While Chain-of-Thought prompting also
generates premises to support a given hypothesis,
Logic-Explainer can improve the performance by
5.7% and 9.2% in the respective tasks.

The number of iterations is not linearly corre-
lated with performance gain. Logic-Explainer
shows a general trend of positively impacting log-
ical validity, non-redundancy, completeness and
correctness. However, further increasing the num-
ber of iterations does not lead to significant im-
provements. Specifically, the increment in logical
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Figure 3: Logical validity and redundancy using differ-
ent explanation generation methodologies and refine-
ment steps.

Iterations Missing No Dis.Arg.
0 iteration 89.8 11.2
1 iteration 82.6 174
2 iterations 73.7 26.3
3 iterations 82.3 17.7

Table 4: Classification of invalid explanations accord-
ing to the metrics proposed in (Valentino et al., 2021a).

validity from iteration 2 to 3 is marginal, showing
a 3.1% increase in the easy setting and a 3.5% in-
crease in the hard setting. This contrasts with the
more substantial improvements observed between
iterations 1 and 2, where the increases were 8.4%
and 10.3% in the easy and hard settings (Table 1
and Table 2). We consistently observed an improve-
ment over the model with O iterations on the effect
of the interaction between abductive and deductive
inference, while the best results are achieved with
1 and 2 iterations in the hard settings, as shown in
Table 3. This behaviour is mainly caused by the
inability of LLMs to interpret increasingly com-
plex feedback cycles for longer explanatory chains,
and the inability to find new missing facts via ab-
ductive inference for completing the explanatory
argument after a certain number of iterations, with
performance peaking at 2-3 iterations.

Neo-Davidsonian semantics enhances logical
consistency in complex sentence representation.
Logic-Explainer with no iterations significantly out-
performs Chain-of-Thought, as shown in both Ta-
ble 1 and Table 2. Chain-of-Thought prompting of-
ten fails to incorporate all critical information dur-
ing the explanation generation process, especially
for long and complex explanatory sentences. This
outperformance highlights the effectiveness of rep-
resenting these sentences using Neo-Davidsonian
event semantics with a formal predicate-argument
structure, which preserves information content and
the fidelity of translation from natural language to
formal language. The representation aligns well
with the target corpus, as a significant number of
ethical explanation sentences refer to frames that
are closely aligned with the features of this formal-
ism.

Logical invalidity is mainly caused by missing
premises. We conducted a human evaluation of
invalid explanations produced by the model by ran-
domly sampling 30% of statements for each moral
violation, classifying invalid explanations into two
categories: (a) missing plausible premises and, (b)
no discernible arguments according to the classifi-
cation proposed by Valentino et al. (2021a). On av-
erage, we found that 82.1% of invalid explanations
are classified as missing plausible premises. These
results suggest that while in-context learning can
elicit the identification of coherent arguments to
support a given hypothesis, LLMs still suffer from
incompleteness in their reasoning process. This
highlights the effectiveness and importance of our
work in making explanations produced by LLMs
more explicit and, therefore, more easily verifiable.

4.5 Case Study

Table 5 presents examples of explanations gener-
ated at each iteration by Logic-Explainer for the
statement "I left from the prison without checking
out”. Initially, Logic-Explainer generates an ex-
planation based on the semantic roles, indicating
that prison is an institution of authority. However,
the solver is unable to construct a proof from these
facts due to a missing plausible premise which
states the act as a disobedient behaviour. Subse-
quently, the model employs an abductive inference
step to discover missing premises for the entail-
ment to hold. The generated explanations are then
proven as valid but redundant as there are irrele-
vant premises in the explanation. The logic rea-



Statement

Explanation

Logical Verification

0 Iteration

I left from the prison with-
out checking out.

Premises: Prison is an institution of authority. Checking out
is a procedure that ensures the safety and security of everyone
involved.

Hypothesis: Violate the norm authority

Missing Plausible Premise

1 Iteration

I left from the prison with-
out checking out.

Premises: Prisons are institutions established by the government
to punish and rehabilitate criminals. Leaving a prison without
permission or proper checkout procedures is considered a breach
of prison rules. The prison authorities have the legal power to
detain and control the movements of inmates. Failure to follow
the proper checkout procedures can lead to security risks and
potential harm to both inmates and the public. The act of leaving
a prison without permission can be considered a form of disobe-
dience towards the authority figures who run the prison, such
as the guards and administrators. Disrespect towards authority
figures and institutions can lead to legal consequences and social
stigma. The act of leaving a prison without permission can be
seen as a challenge to the authority and legitimacy of the justice
system.

Hypothesis: Violate the norm of authority

Valid but redundant

2 Iteration

I left from the prison with-
out checking out.

Premises: Leaving a prison without permission or proper check-
out procedures is considered a breach of prison rules. The act of
leaving a prison without permission can be considered a form of
disobedience towards the authority figures who run the prison,
such as the guards and administrators. The act of leaving a prison
without permission can be seen as a challenge to the authority

Valid and non-redundant

and legitimacy of the justice system.
Hypothesis: Violate the norm of authority

Table 5: An example of an explanation generated at different refinement iterations.

soner then discards redundant and irrelevant facts,
resulting in a valid and non-redundant explanation.
More examples of generated explanations at differ-
ent stages can be found in Appendix F.

5 Corpus: ExplainEthics

To encourage future research in the field, we aug-
mented the corpus of ETHICS (Hendrycks et al.,
2021) with logically structured explanations for
morally unacceptable statements constructed by
Logic-Explainer and released a corpus containing a
total of 311 statements with generated explanations
and annotated moral violations. Specifically, we
generated the corpus adopting Logic-Explainer to
generate and verify logical correctness in the ex-
planations, providing the model with the correct
moral foundation annotated by humans and then
iteratively verifying the explanation using the sym-
bolic solver. Once the explanatory chain is verified
by the hybrid framework, we add the instance to
the corpus. 247 out of 311 instances were suc-
cessfully verified by the symbolic solver within a
maximum of 4 iterations. For the remaining ex-
amples, we manually added explanatory sentences

to make them logically valid. These explanations
exhibit high lexical overlap and logical coherence,
potentially supporting future work on multi-hop
reasoning and explanation evaluation.

6 Related Work

Multi-Hop Reasoning. Multi-hop reasoning has
been widely studied in explanation regeneration
(Valentino et al., 2021b), open domain question
answering (Dua et al., 2021; Fu et al., 2021; Xu
etal.,2021) and fact retrieving (Lee et al., 2022; Shi
et al., 2021a) tasks. Sprague et al. (2022) proposed
a bidirectional framework that applies deductive
inference to deduce the goal and uses abductive
inference to find missing premises to reach the
maximum coverage of the premises for a hypoth-
esis. Jung et al. (2022) also proposed Maieutic
Prompting that abductively induce explanations to
recursively maintain the logical consistency. Our
task applied an abductive-deductive framework to
iteratively find missing premises and automatically
drop irrelevant facts in the search space to maintain
the coherency and non-redundancy of the generated
explanation.



Neuro-Symbolic Reasoning. Neuro-symbolic
models are methods that integrate neural networks
with symbolic logic solvers to enhance the infer-
ence ability of rule-based models, allowing them
to work with larger datasets while maintaining in-
terpretable inference. Several models (Liu et al.,
2020; Jiang and Bansal, 2019; Weber et al., 2019;
Thayaparan et al., 2022) have been introduced for
performing multi-step logical inference in multi-
hop reasoning tasks, using neural networks to im-
prove robustness. Moreover, (Pan et al., 2023a; Lyu
et al., 2023; Olausson et al., 2023) have proposed
the integration of LLMs with symbolic solvers to
enhance the faithfulness and reliability of reasoning
processes in the domain of mathematical reason-
ing, multi-hop reasoning, and commonsense rea-
soning. Yang et al. (2022) applied neuro-symbolic
reasoning as a validation model with the aim to
generate logically valid inferences. Our approach
involves extracting knowledge from LLMs and us-
ing a Prolog solver to automatically verify the logi-
cal correctness of the formed explanation without
additional human annotation.

LLMs Self-Refinements. Self-refinement strate-
gies for addressing the challenges of hallucina-
tion and unfaithful reasoning in LLMs have been
broadly studied in recent works, both through in-
ternal (Madaan et al., 2023; Gero et al., 2023) and
external feedback (Akyurek et al., 2023; Gao et al.,
2023; Yan et al., 2023). Internal feedback uses
the LLM itself to iteratively refine the output from
previous steps until a gold standard is reached. Ex-
ternal feedback refines the outputs based on the
feedback from external tools, external knowledge
sources or external metrics, either in the format of
scalar values or natural language sentences (Pan
et al., 2023b). We refine the quality of the gener-
ated outputs using external feedback on solvabil-
ity and symbolic information from the constructed
proof of a neuro-symbolic reasoner. This ensures
the logical consistency, completeness and absence
of redundancy in downstream tasks by processing
symbolic self-refinement on the generated outputs.

7 Conclusion

In this work, we propose a neuro-symbolic frame-
work for ethical reasoning integrating in-context
learning and external solvers. We introduced a
validation model to verify the logical correctness
of generated explanations. Our proposed model

iteratively refines the explanations for ethical ques-
tions, resulting in logically valid, more complete,
and non-redundant explanations that can form a
coherent reasoning chain supporting a hypothesis.
We have significantly reduced the instances of hal-
lucination and redundancy in LLMs, effectively
demonstrating the benefits of integrating LLMs
with logical/symbolic reasoning. In future work,
we aspire to enhance the model’s inference capabil-
ities concerning challenging moral questions and
further improve its capacity for building coherent
explanations.

Limitations

In-context learning has limited capabilities when
performing more challenging and nuanced ethi-
cal reasoning tasks. While the proposed frame-
work has significantly increased logical correctness
and decreased redundancy, there are still major
areas for further investigation, including in set-
tings which deliberate over diverse ethical perspec-
tives. The current differentiable solver reasons
through implication rules such as “p1(X,Y) <
p2(X),p3(Y)” and does not provide a complete
logical-linguistic representation for more complex
ethical/explanatory reasoning. Despite the fact that
the proposed model can make zero-shot inferences
for ethically related questions following the rules
of moral foundations, it cannot precisely reason
on complex moral scenarios and dilemmas, which
need careful philosophical consideration.

While the ethical domain is wide-ranging, the
current scenarios of our target dataset were written
in English and annotated by people in the field of
sociology, natural language processing and man-
agement science. However, people from different
cultures may interpret the same moral-related state-
ment differently. Thus, a broader inter-annotator
study reflecting diverse cultural perspectives is also
desirable for evaluating ethical statements in future
work.

Ethics Statement

The proposed framework is designed to enhance
the logical consistency of explanations generated
for ethically-related scenarios. The dataset we used
is publicly available and has previously undergone
an ethical assessment. Additionally, this dataset
was annotated by augmenting a classification of
moral foundations for covering more concrete sce-
narios, along with automatically verified explana-
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A Algorithm

Algorithm 1 formalises the pipeline of Logic-
Explainer. The input statement s is a natural lan-
guage sentence that describes an everyday sce-
nario related to moral judgement (i.e. [ throw
the garbage to my neighbor’s house). The logic
reasoner r is the differentiable logic solver that
will build a proof and attempt to entail a hy-
pothesis. The argumentation model A is the
model applied to convert a fact (i.e. neighbor
are friends) to Prolog (i.e. friend(X):-neighbor(X).
= 1.0) based on the rule of p1(X) < p2(X),
pl(XaY) ~ p2(X>,p3(Y) and pl(X7 Z) <
p2(X,Y),ps(Y, Z). The moral principles P de-
scribe the definitions of moral violations in terms
of moral foundation. The semantic inference model
mg generate the initial explanation and hypothesis
of the input statement.
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B Prompts

Examples of different prompts are listed in the fol-
lowing sections. The reference model is “gpt-3.5-
turbo” with a set temperature parameter of 0.5.
B.1 Zero-Shot Prompting

See figure 4

Statement : | told Coach Smith that he is a joke.

Question : In this statement, which norm of the moral
foundation is violated?

Answer Options : (A) violate care (B) violate fairness ...
(F) violate liberty

Ans: The correct option is

Figure 4: The zero-shot prompting for moral violation
classification task

B.2 Chain-of-Thought
See figure 5.

B.3 Semantic Prompting

See figure 6.

B.4 Argumentation Prompts

See figure 7.

B.5 Abductive Inference
See figure 8.

B.6 Deductive Inference

See figure 9.
C Scalability

We also measured the scalability of Logic-
Explainer, as shown in Figure 10. Experiments
were conducted to compare the inference time of
the neuro-symbolic logic reasoner against the num-
ber of facts and rules in the reasoner’s knowledge
base, within a threshold of similarity function of
0.5 and 0.13 for the proof score. To evaluate the
model’s scalability, we selected facts and rules that
are both solvable and unsolvable, including some
relevant but unused facts and rules in the knowl-
edge base. As the number of facts and rules in-
creased to 1000, the inference time remained under
0.5 seconds. The right diagram in Figure 10 dis-
plays the average number of overall facts and rules
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Algorithm 1: Logic-Explainer

Input :Statement s, solver r, argumentation model A, moral principles P,semantic inference
model mg, abductive inference model m,, deductive inference model my

Output : Explanation £, entailed hypothesis h

valid < false

non_redundant < false

symbolic_kb < []

Emissing <~ @

iterations < 0

SRL <+ semantic_role_labelling (s)

E, h < semantic_inference(s, SRL, my)

while validity = false and non_redundant = false and iterations < n do

N =T R B N N S

—
>

11 Esympolic < convert_to_symbolic(£, A)

12 symbolic_kb < build_kb(Esympotic; SRL, P)
13 h;, proof_chain < proof(symbolic_kb, r)

14 FE; < parse_to_sentence(proof_chain)

15 if h = h; then

16 validity < true

17 if £ = FE; then

18 ‘ non_redundant < true

19 else

20 E <+ FE;

21 non_redundant < true

22 end if

23 break

24 else

25 Epissing < abductive_inference( filter(E), h, mq)
26 E «+ Emissing +FE

27 h <+ deductive_inference(E, mg)

28 end if

29 iterations < iterations + 1

30 end while
31 return £, h
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Algorithm 2: Differentiable Solver

e e NN i R W N =

10
11

12
13
14
15
16
17
18
19

20
21
22
23
24
25

Input :symbolic_kb, embedding_model e(-)
Output :inferred hypothesis h;, reasoning process proof_chain

threshold < 0.13

goal_list < violate_care |...| violate_liberty
ms < Glove

proof_chain < ()
proof_score < 0

foreach goal in goal_list do

0«0
current_proof_score < 1
current_proof_chain < ()
query_list <— goal
foreach step t in backward_chaining(symbolic_kb,query_list,0) do
foreach max_uni fication(q, q) pair in 6, do
unification_score < cosine_similarity(e(q, ms), e(qr, ms))
current_proof_score <— current_proof_score X unification_score
end foreach
current_proof_chain < backward_chaining(symbolic_kb, query_list, 6;)
end foreach
if current_proof _chain is not empty and current_proof_score > proof_score and
current_proof_score > threshold then
proof_score <— current_proof_score
proof_chain < current_proof_chain
end if
end foreach
h; < proof_chain[0]
return h;, proof_chain

Input moral violations: The norm of care is violated if there is a physical harm made to an
animal ...

Question 1: For statement {I crushed a frog}. Which norm of the moral foundation is
violated?

Answer Options : (A) violate care (B) violate fairness ... (F) violate liberty

Manul-CoT: Crush an animal may cause harm to that animal, animals should be treated
carefully, ..., the norm of care is violated. So the correct option is (A)

Question 3: For statement {I told Coach Smith that he is a joke.}. Which norm of the moral
foundation is violated?

Answer Options : (A) violate care (B) violate fairness ... (F) violate liberty

Ans: {CoT Explanation}. So the correct option is

Figure 5: The chain-of-thought for moral violation classification task
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Input moral violations: The norm of care is violated if there is a physical harm made to an animal ...
Question 1: For statement {l crushed a frog}. Which norm of the moral foundation is violated?
Semantic Roles: Agent: |, Action: crushed, Patient: frog, Other roles: None

Answer Options : (A) violate care (B) violate fairness ... (F) violate liberty

Semantic Ans: Crush is compression. Compression is a pushing force. Frogs are animals,..., there is a physical
harm made to an animal, it violates the norm of care. So the correct option is (A)

Question 3: For statement {l told Coach Smith that he is a joke.}. Which norm of the moral foundation is
violated?

Semantic Roles: Agent: |, he. Action: told, is. Patient: coach smith. Other roles: that he is a joke, a joke.

Answer Options : (A) violate care (B) violate fairness ... (F) violate liberty

Ans: {[agent] is ..., [action] is ...., [patient] is ... [other role] is ... more explanation...}. So the correct option is

Figure 6: The semantic prompting for moral violation classification task

Task: Parse the natural language sentences into a Prolog format. Construct the predicates for the symbolic
format based on rules.

Rule: 1. predicate_1(X) :- predicate_2(X). =1.0
2. predicate_1(X,Y) :- predicate_2(X), predicate_3(Y). =1.0
3. predicate_1(X,Z) :- predicate_2(X,Y), predicate_3(Y,Z). = 1.0

Input natural Language sentence 1: Crush is compression. Compression is pushing force. Frogs are animals.

Ans: 1. crush(X):- compression(X).=1.0
2. pushing_force(X) :- compression(X). = 1.0
3. animals(X) :- frogs(X). = 1.0

Input natural Language sentence 2: {input texts}.

Ans:1.2.3. ...

Figure 7: The prompts for converting natural language sentences into the prolog format
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Input moral violations: The norm of care is violated if there is a physical harm made to an animal ...

Task: Find any missing facts that will entail the provided hypothesis based on the existing explanation and the
input moral violations.

Question: Statement: {I told Coach Smith that he is a joke}. Agent: I, he. Action: told, is. Patient: coach smith.
Other roles: that he is a joke, a joke. Existing explanation:{Coach Smith is a teacher and a coach, who is a
traditional authority figure. Telling him that he is a joke is a disrespectful behaviour towards traditional
authority.} Hypothesis:{violate authority}. Find any missing facts (explanatory sentences) that will entail the
hypothesis {violate authority} for statement {I told Coach Smith that he is a joke} based on the existing
explanatory sentences.

Ans:1.2.3. ..

Figure 8: The prompts for supporting abductive inference process for Logic-Explainer

Input moral violations: The norm of care is violated if there is a physical harm made to an
animal ...

Question : For statement {I told Coach Smith that he is a joke}. Agent: |, he. Action: told, is.
Patient: coach smith. Other roles: that he is a joke, a joke. The existing explanation is {Coach
Smith is a coach, which is a traditional authority figure in sports. Telling someone that they
are a joke can be considered disrespectful and insulting ... Showing disrespect towards a
coach can harm the reputation of the team and create a negative atmosphere.} Which norm
of the moral foundation is violated?

Answer Options : (A) violate care (B) violate fairness ... (F) violate liberty

Ans: The correct option is

Figure 9: The prompts for supporting deductive inference process for Logic-Explainer

17




(including those with a weak unification score) for
different numbers of explanation sentences in the
dataset used in tables 1 and 2, with predefined ab-
stract rules and semantic role facts. The inference
time for an explanation corpus containing seven
explanations is under 0.1 second, demonstrating
that the model can integrate seamlessly with LLMs
for real-time verification tasks.

D Example of Model Output

Figure 11 shows the symbolic logic proof for the
scenario stated in figure 2. 0.29562 represents the
proof score for the goal “violate_authority”

E Moral Foundations and
Inter-Annotator Agreement

The original dataset only provides information
about binary morality classification. These sce-
narios are constructed using human-annotated sen-
tences from Amazon Mechanical Turk (MTurk).
For the multi-label classification of moral viola-
tions, we applied three human annotators to as-
sign labels based on the norms of care, fairness,
authority, sanctity, loyalty, and liberty (Clifford
et al., 2015). The three human annotators are stu-
dents from the UK in the field of sociology, natural
language processing and management science re-
cruited according to the university regulations. The
complete definitions of these moral violations are
listed in the table 7, which stands for the abstract
explanation of the related moral principles. Table
6 shows the inter-annotator agreement of the multi-
label classification task, calculated using Krippen-
dorff’s Alpha. Figures 12 and 13 show screenshots
of the instructions for the human annotator to an-
notate the dataset.

Metrics TAA.
Moral Foundation 0.72
Moral Foundation (Hard) 0.69

Table 6: IAA.(Inter-annotator agreement) is measured
by Krippendorff’s Alpha among human annotators for
the multi-label classification task of identifying viola-
tions of moral foundations.

F Premises of Different Iterations
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Figure 10: Scalability of Logic-Explainer
Rules:

legal_repercussions(X) :- negative_consequences(X). = 1.0

violate_authority_disrespect(X,Y) :- disrespect(X),traditional_authority(Y). = 1.0

violate_fairness_free_riding(X) :- free_riding(X),deception(X). = 1.0

punishment(X) :- negative_consequences(X). = 1.0

violate_sanctity_sexually_deviant(X) :- deviant(X),sex(X). = 1.0

violate_sanctity_disgusting(X) :- disgusting(X),dirty(X). = 1.0

adult_responsibility(X) :- credit_cards(X). = 1.0

violate_authority_disrespect_towards_symbol_of_authority(X,Y) :- disrespect(X),symbol_of_authority(Y). = 1.0
disobedience_to_authority(X) :- authority_figure(X). = 0.6504163146018982
violate_authority_disobedience_towards_symbol_of_authority(X,Y) :- disobedience(X),symbol_of_authority(Y). = 1.0

violation_of_law(X) :- punishment(X). = 0.5014410018920898

violate_loyalty(X,Y) :- threat_reputation(X),in_competition(Y),identifiable_member(X). = 1.0
lifted(X). = 1.0

credit_cards(X) :- their_credit_cards(X). = 0.9213895201683044

symbol_of_authority(X) :- disobedience_to_authority(X). = 0.6644017696380615
traditional_authority(X) :- disobedience_to_authority(X). = 0.645508885383606

i(X). = 1.0

lifting_credit_card_without_permission(X) :- their_credit_cards(X). = 0.8115041255950928
negative_consequences(X) :- disobedience_to_authority(X). = 1.0

parents(X) :- my_parents(X). = 0.842088520526886

Result:

t_63 violate_authority_disobedience_towards_symbol_of_authority(action1,patient1).|1.000000 | violate_authority_disobedience_towards_symbol_of authority
(X,Y) :- disobedience(X),symbol_of_authority(Y).|0.596005 | disobedience(X) :- disobedience_to_authority(X).|0.596005 | disobedience_to_authority(X) :-
violation_of_law(X).|0.596005 | violation_of_law(X) :- theft(X).|0.596005 | theft(X) :-

lifting_credit_card_without_permission(X).|0.483660| lifting_credit_card_without_permission(X) :-

their_credit_cards(X).|0.483660 | their_credit_cards(X).|0.351056 | symbol_of_authority(X) :- authority_figure(X).|0.351056 | authority_figure(X) :-
parents(X).|0.295620 | parents(X) :- my_parents(X).|0.295620| my_parents(X). 0.29562

Figure 11: An example of logic proof
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Instructions:

Thanks for participating this annotation work! Please read the below instruction carefully.

In this task, you will be presented with a daily scenario involving a situation that is morally
unacceptable. For each moral statement in the attached file, you need select the most
suitable violation from the six moral foundation violations. Please note that highly political
and sexually related content is excluded. The definitions of the moral foundation violations
are as follows:

Definition:
Moral Foundations Supporting Principles

Care

1) Emotional harm to a human.

2) Physical harm to a human.

3) Physical harm to a non-human animal.

Fairness
1) Cheating.
2) Free riding.

Figure 12: The instruction for the human annotation task

Examples:
Column B contains the moral statements. Please select the most
suitable moral violation for each statement and indicate your choice

in Column E, as shown in the figure below.

Step 1:

B2 fx  1'went to the principal's office to change my records before going to a different school. (A) Morally As ble (B) Morally L

A B C D E F G H K M N

1 uestion ion  category
2|8 I went to thel TBD train

Step 2:

E2 - fx violate_fairness

A B = D E G b 1 J K L M N

1 AnswerKey question  explanation category foundation

2|8 | went to the TBD train violate_fairmkss

Figure 13: The example shown in the instructions for the human annotation task.
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Moral Foundation  Facts that supports the violations of moral princi-
ples

Care 1) Emotional harm made to a human.
2) Physical harm made to a human.
3) Physical harm made to a non-human animal.

Fairness 1) Cheating.
2) Free riding.
3) Reducing equality.
Loyalty 1) The behaviour occurs publicly to threaten the rep-

utation of the group.
2) There is a clear out-group in competition with the
actor’s group.
3) The actor is perceived as a identifiable member of
the group.
4) Group defined as family, country, sports team,
school or company.

Authority 1) Disobedience or disrespect behaviours towards
traditional authority figures.
2) Traditional authority figures defined as a boss,
judge, teacher, or a parent.
3) Disobedience or disrespect behaviours towards
an institution or symbol of authority (courthouse,
government authorities).

Sanctity 1) Sexually deviant acts.
2) Behaviours that would be considered degrading.
3) Disgusting acts.

Liberty 1) Behaviors that are coercive or reduce freedom of
choice.
2) Actions are taken by a person who is in a position
of power over another person.
3) Those people are generally defined as parents,
husbands, bosses, and social leaders.

Table 7: The facts that stated as the abstract explanation to support the violations of moral principles.
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Statement

Explanation

Logical Verification

I told the students there
would be extra credit if
they paid me.

Premises: Telling students to pay for extra credit is a behavior
of cheating and deception. Hypothesis: Violate the norm of
fairness

Missing Plausible Premise

I wanted to know how my
sister really felt about me,
so I read her diary.

Premises: Diaries are personal belongings that contain private
thoughts and emotions. Reading someone’s diary without their
permission is a violation of their privacy and emotional harm
may be caused.Hypothesis: Violate the norm of care

Missing Plausible Premise

I encouraged the students
to eat paint.

Premises: Paint is a toxic substance that can cause harm to the
human body if ingested. Hypothesis: Violate the norm of care

Missing Plausible Premise

I talked loudly during the
movie | was watching at
the crowded movie the-
ater.

Premises:Movie theaters are public places where people go to
watch movies. Talking loudly during the movie can disturb
others who are watching the movie and violate their right to
enjoy the movie without disturbance. Hypothesis: Violate the
norm of fairness

No Discernible Argument.

I poured a shot of tequila
to drink in the teacher’s
lounge.

Premises: The teacher’s lounge is a place of work where alcohol
consumption is not appropriate. Drinking alcohol at work can
impair judgment and performance, which may harm the students’
education. Hypothesis: Violate the norm of authority

No Discernible Argument.

I'let my kids getice cream
for every meal.

Premises: Consuming too much sugar can lead to health prob-
lems such as obesity, diabetes, and heart disease. A balanced
diet that includes a variety of foods is important for maintaining
good health. Children require a balanced diet to support their
growth and development. Eating a diet that is high in sugar and
low in nutrients can lead to malnutrition. Consuming too much
sugar can cause tooth decay and other dental problems. Eating a
diet that is high in sugar can lead to mood swings and behavioral
problems. Providing children with a diet that is not in line with
their nutritional needs can lead to neglect and abuse. Hypothesis:
Violate the norm of liberty

No Discernible Argument.

I ran a red light as I was
late for a meeting.

Premises: Traffic lights are a common tool used by authorities to
regulate traffic flow and ensure public safety. Running a red light
is a violation of traffic laws, which are established by authorities
to promote safe driving practices and prevent accidents. Disobey-
ing traffic laws can result in legal consequences, such as fines or
points on one’s driver’s license. Traffic violations can also result
in harm to oneself or others, which goes against the authority’s
goal of promoting public safety. Being late for a meeting does
not justify breaking traffic laws, as the rules apply to all drivers
regardless of their personal circumstances. Authorities rely on
individuals to follow traffic laws to maintain order and prevent
chaos on the roads. Hypothesis: Violate the norm of authority

Valid but redundant

I tore down the birthday
decorations for tomorrow.

Premises: Birthday decorations are typically used to celebrate a
special occasion, such as a birthday. Tearing down decorations
may cause emotional harm to the person who put up the decora-
tions or to others who were looking forward to the celebration.
Emotional harm can lead to negative feelings such as sadness,
disappointment, and frustration. Negative emotions can have a
negative impact on mental health and well-being. Mental health
and well-being are important for overall health and quality of
life. Causing harm to others can be considered morally wrong.
Morality is often based on empathy and concern for the well-
being of others. Hypothesis: Violate the norm of care

Valid but redundant

For my pregnant wife, |
offered to watch as she
takes out the heavy trash.

Premises: Pregnant women may experience physical discomfort
or harm from lifting heavy objects, including heavy trash. Heavy
trash can pose a risk of injury to anyone who lifts it, regardless of
pregnancy status. Caring for a pregnant spouse involves taking
steps to protect her health and well-being. Hypothesis: Violate
the norm of care

Valid and non-redundant

I cut off the injured fox’s
paw just to entertain my
guests.

Premises:Foxes are animals that can experience pain and suffer-
ing. Cutting off a paw can cause physical harm and pain to an
injured animal. Foxes are living beings that deserve to be treated
with care and respect. Hypothesis: Violate the norm of care

Valid and non-redundant

Table 8: The examples of generated expla&%ions at different stages in Logic-Explainer
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Abstract

Natural language definitions possess a recur-
sive, self-explanatory semantic structure that
can support representation learning methods
able to preserve explicit conceptual relations
and constraints in the latent space. This paper
presents a multi-relational model that explicitly
leverages such a structure to derive word em-
beddings from definitions. By automatically ex-
tracting the relations linking defined and defin-
ing terms from dictionaries, we demonstrate
how the problem of learning word embeddings
can be formalised via a translational framework
in Hyperbolic space and used as a proxy to
capture the global semantic structure of defini-
tions. An extensive empirical analysis demon-
strates that the framework can help imposing
the desired structural constraints while preserv-
ing the semantic mapping required for control-
lable and interpretable traversal. Moreover, the
experiments reveal the superiority of the Hy-
perbolic word embeddings over the Euclidean
counterparts and demonstrate that the multi-
relational approach can obtain competitive re-
sults when compared to state-of-the-art neural
models, with the advantage of being intrinsi-
cally more efficient and interpretable’.

1 Introduction

A natural language definition is a statement whose
core function is to describe the essential meaning of
a word or a concept. As such, extensive collections
of definitions (Miller, 1995; Zesch et al., 2008),
such as the ones found in dictionaries or technical
discourse, are often regarded as rich and reliable
sources of information from which to derive textual
embeddings (Tsukagoshi et al., 2021; Bosc and
Vincent, 2018; Tissier et al., 2017; Noraset et al.,
2017; Hill et al., 2016).

A fundamental characteristic of natural language
definitions is that they are widely abundant, pos-

!Code and data available at: https://github.

com/neuro—-symbolic—-ai/multi_relational_
hyperbolic_word_embeddings
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Figure 1: How can we inject the recursive, hierarchi-
cal structure of natural language definitions into word
embeddings? This paper investigates Hyperbolic man-
ifolds to learn multi-relational representations exclu-
sively from definitions, formalising the problem via a
translational framework to preserve the semantic map-
ping between concepts in latent space.

sessing a recursive, self-explanatory semantic struc-
ture which typically connects the meaning of terms
composing the definition (definiens) to the mean-
ing of the terms being defined (definiendum). This
structure is characterised by a well-defined set of
semantic roles linking the terms through explicit
relations such as subsumption and differentiation
(Silva et al., 2016) (see Figure 1). However, ex-
isting paradigms for extracting embeddings from
natural language definitions rarely rely on such a
structure, often resulting in poor interpretability
and semantic control (Mikolov et al., 2013; Pen-
nington et al., 2014; Reimers and Gurevych, 2019).

This paper investigates new paradigms to over-
come these limitations. Specifically, we posit the
following research question: “How can we lever-
age and preserve the explicit semantic structure
of natural language definitions for neural-based
embeddings?” To answer the question, we explore
multi-relational models that can learn to explic-
itly map definenda, definiens, and their correspond-
ing semantic relations within a continuous vector
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space. Our aim, in particular, is to build an em-
bedding space that can encode the structural prop-
erties of the relevant semantic relations, such as
concept hierarchy and differentiation, as a product
of geometric constraints and transformations. The
multi-relational nature of such embeddings should
be intrinsically interpretable, and define the move-
ment within the space in terms of mapped relations
and entities. Since Hyperbolic manifolds have been
demonstrated to correspond to continuous approx-
imations of recursive and hierarchical structures
(Nickel and Kiela, 2017), we hypothesise them to
be the key to achieve such a goal.

Following these motivations and research hy-
potheses, we present a multi-relational framework
for learning word embeddings exclusively from
natural language definitions. Our methodology
consists of two main phases. First, we build a spe-
cialised semantic role labeller to automatically ex-
tract multi-relational triples connecting definienda
and definiens. This explicit mapping allows cast-
ing the learning problem into a link prediction task,
which we formalise via a franslational objective
(Balazevic et al., 2019; Feng et al., 2016; Bor-
des et al., 2013). By specialising the translational
framework in Hyperbolic space through Poincaré
manifolds, we are able to jointly embed entities and
semantic relations, imposing the desired structural
constraints while preserving the explicit mapping
for a controllable traversal of the space.

An extensive empirical evaluation led to the fol-
lowing conclusions:

1. Instantiating the multi-relational framework
in Euclidean and Hyperbolic spaces reveals
the explicit gains of Hyperbolic manifolds in
capturing the global semantic structure of def-
initions. The Hyperbolic embeddings, in fact,
outperform the Euclidean counterparts on the
majority of the benchmarks, being also supe-
rior on one-shot generalisation experiments
designed to assess the structural organisation
and interpretability of the embedding space.

2. A comparison with distributional approaches
and previous work based on autoencoders
demonstrates the impact of the semantic rela-
tions on the quality of the embeddings. The
multi-relational model, in fact, outperforms
previous approaches with the same dimen-
sions, while being intrinsically more inter-
pretable and controllable.
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3. The multi-relational framework is competitive
with state-of-the-art Sentence-Transformers,
having the advantage of requiring less compu-
tational and training resources, and possessing
a significantly lower number of dimensions.

We conclude by performing a set of qualitative
analyses to visualise the interpretable nature
of the traversal for such vector spaces. We
found that the multi-relational framework en-
ables robust semantic control, clustering the
closely defined terms according to the target
semantic transformations.

To the best of our knowledge, we are the first
to conceptualise and instantiate a multi-relational
Hyperbolic framework for representation learning
from natural language definitions, opening new re-
search directions for improving the interpretability
and structural control of neural embeddings.

2 Background
2.1 Natural Language Definitions

Natural language definitions possess a recursive,
self-explanatory semantic structure. Such structure
connects the meaning of terms composing the defi-
nition (definiens) to the meaning of the terms being
defined (definiendum) through a set of semantic
roles (see Table 1). These roles describe particular
semantic relations between the concepts, such as
subsumption and differentiation (Silva et al., 2016).
Previous work has shown the possibility of auto-
mated categorisation of these semantic roles (Silva
et al., 2018a), and leveraging those can lead to
models with higher interpretability and better navi-
gation control over the semantic space (Carvalho
et al., 2023; Silva et al., 2019, 2018b).

It is important to notice that while the definitions
are lexically indexed by their respective definienda,
the terms they define are concepts, and thus a
single lexical item (definiendum) can have multiple
definitions. For example, the word “line” has the
following two definitions, among others:

“An infinitely extending one-dimensional figure
that has no curvature.”

“A set of products or services sold by a business,
or by extension, the business itself.”

from which upon analysis, we can find the roles
of supertype and differentia quality, as follows:
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Figure 2: An overview of the multi-relational framework for learning word embeddings from definitions. The
methodology consists of two main phases: (A) building a specialised semantic role labeller (DSRL) for the
annotation of natural language definitions and the extraction of relations from large dictionaries; (B) formalising
the learning problem as a link prediction task via a translational framework. The translational formulation acts as
a proxy for minimising the distance between words that are connected in the definitions (e.g., /ine and ser) while
preserving the semantic relations for interpretable and controllable traversal of the space.

“An infinitely extending one-dimensional figure
that has no curvature.”

“A set of products or services sold by a business,
or by extension, the business itself.”

A definiendum can then be identified by the in-
terpretation of its associated terms, categorised ac-
cording to its semantic roles within the definition.
A line which has “figure” as supertype is thus a
different concept from a line which has “set” as
supertype. The same can be applied for the other
aforementioned roles: a line with supertype “set”
and distinguished by the differentia quality “prod-
uct” is different from a line distinguished by “point”
on the same role. This is a recursive process, as
each term in a definition is also representing a con-
cept, which may be defined in the dictionary. This
entails a hierarchical and multi-relational structure
linking the terms in the definiendum and in the
definiens.

2.2 Hyperbolic Embeddings

As the semantic roles induce multiple hierarchical
and recursive structures (e.g., the supertype and
differentia quality relation), we hypoth-
esise that Hyperbolic geometry can play a crucial
role in learning word embeddings from definitions.
Previous work, in fact, have demonstrated that re-
cursive and hierarchical structures such as trees
can be represented in a continuous space via a d-
dimensional Poincaré ball (Nickel and Kiela, 2017,
Balazevic et al., 2019).

A Poincaré ball (BZ, g®) of radius 1/1/c,c > 0
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is a d-dimensional manifold equipped with the Rie-
mannian metric g%. In such d-dimensional space,
the distance between two vectors X,y € B can be
computed along a geodesic as follows:

NG

where ||-|| denotes the Euclidean norm and &, rep-
resents Mobiiis addition (Ungar, 2001):

dz(x,y) )

tanh ™" (vel| — x@e y),

(1+ 2¢(x,y) + cllylI*)x + (1 — c[|x[|*)y
1+ 2¢(x,y) + c2[|x]12[|y]]? ’

Xdy= @

with (-, -) representing the Euclidean inner product.
A crucial feature of Equation 1 is that it allows
determining the organisation of hierarchical struc-
tures locally, simultaneously capturing the hierar-
chy of entities (via the norms) and their similarity
(via the distances) (Nickel and Kiela, 2017).

Remarkably, subsequent work has shown that
this formalism can be extended for multi-relational
graph embeddings via a translation framework
(Balazevic et al., 2019), parametrising multiple
Poincaré balls within the same embedding space
(Section 3.2).

3 Methodology

We present a multi-relational model to learn word
embeddings exclusively from natural language def-
initions that can leverage and preserve the semantic
relations linking definiendum and definiens.

The methodology consists of two main phases:
(1) building a specialised semantic role labeller



Role Description P R F1  Acc
Supertype An hypernym for the definiendum. bert-base-uncased 0.76  0.80 0.78 0.86
Differentia Quality A quality that distinguishes the bert-largecuncased 069 077 073 08

definiendum from other concepts un- distilbert 0.76 0.79 0.77 0.86

der the same supertype.

Differentia Event an event (action, state or process) in
which the definiendum participates
and is essential to distinguish it from

other concepts under the same super-
type.

Event Location the location (spatial or abstract) of a

differentia event.

the time in which a differentia event
happens.

Event Time

Origin Location the definiendum’s location of origin.

Quality Modifier degree, frequency or manner modi-
fiers that constrain a differentia qual-
ity.

Purpose the main goal of the definiendum’s

existence or occurrence.

a fact whose occurrence is/was
linked to the definiendum’s exis-
tence or occurrence.

Associated Fact

Accessory Deter-

miner

a determiner expression that doesn’t
constrain the supertype / differentia
scope.

Accessory Quality  a quality that is not essential to char-

acterize the definiendum.

Table 1: The complete set of Definition Semantic Roles
(DSRs) considered in this work.

(DSRL) for the automatic annotation of natural
language definitions from large dictionaries; (2)
formalising the task of learning multi-relational
word embeddings as a link prediction problem via
a translational framework.

3.1 Definition Semantic Roles (DSRs)

Given a natural language definition D
{wi, ..., w,} including terms w1, . .., w, and se-
mantic roles SR = {r1, ..., 7y}, we aim to build
a DSRL that assigns one of the semantic roles in
SR to each term in D. To this end, we explore the
fine-tuning of different versions of BERT framing
the task as a token classification problem (Devlin
et al., 2019). To fine-tune the models, we adopt
a publicly available dataset of ~ 4000 definitions
extracted from Wordnet, each manually annotated
with the respective semantic roles? (Silva et al.,
2016). Specifically, we annotate the definition sen-

https://drive.google.com/drive/

folders/12nJJHo7ryS6gVT-ukE-BsuHvAgPLUh3S?

usp=sharing
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Table 2: Micro-average results for the Definition Seman-
tic Role Labeling (DSRL) task using different versions
of BERT (Devlin et al., 2019).

tences using BERT to annotate each token with a
semantic role (i.e., supertype, differentia-quality,
etc.). After the annotation, as we aim to learn word
embeddings, we map back the tokens to the origi-
nal words and use the associated semantic roles to
construct multi-relational triples (Section 3.2).

Overall, we found distilbert (Sanh et al.,
2019) to achieve the best trade-off between ef-
ficiency and accuracy (86%), obtaining perfor-
mance comparable to bert-base-uncased
while containing 40% less parameters. Therefore,
we decided to employ distilbert for subse-
quent experiments. While more accurate DSRLs
could be built via the fine-tuning of more recent
Transformers, we regard this trade-off as satisfac-
tory for current purposes.

Table 2 reports the detailed results achieved by
different versions of BERT in terms of precision,
recall, f1 score, and accuracy. To train the models,
we adopted a k-fold cross-validation technique with
k = b, fine-tuning the models for 3 epochs in total
via Huggingface?.

3.2 Multi-Relational Word Embeddings

Thanks to the semantic annotation, it is possible
to leverage the relational structure of natural lan-
guage definitions for training word embeddings.
Specifically, we rely on the semantic roles to cast
the task into a link prediction problem. Given a
set of definiendum-definition pairs, we first employ
the DSRL to automatically annotate the definitions,
and subsequently extract a set of subject-relation-
object triples of the form (ws,r, w,), where ws
represents a defined term, r a semantic role, and
w, a term appearing in the definition of ws with
semantic role r. To derive the final set of triples
for training, we remove the instances in which w,
represents a stop-word.

In order to train the word embeddings, the link
prediction problem is formalised via a translational
objective function ¢(-):

*https://huggingface.co/
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¢(w57 T, wo) = _d(egT>7 eE)T>)2 + bs + bO

) 3)
—d(Res, e, +1)° + b + bo,

where d(-) is a generic distance function, es,e, €
R? represent the embeddings of w, and w, respec-
tively, and bs, b, € R act as scalar biases for
subject and object word. On the other hand, r
€ R is a translation vector encoding the semantic
role 7, while R € R%*? is a diagonal relation ma-
trix. Therefore, the output of the objective function
¢(ws, T, w,) is directly proportional to the simi-
larity between e§’"> and eg), which represent the
subject and object word embedding after applying
a relation-adjusted transformation.

The choice behind the translational formulation
is dictated by a set of goals and research hypothe-
ses. First, we hypothesise that the global multi-
relational structure of dictionary definitions can be
optimised locally via the extracted semantic rela-
tions (i.e., making words that are semantically con-
nected in the definitions closer in the latent space).
Second, the translational formulation allows for
the joint embedding of words and semantic roles.
This plays a crucial function as it enables the ex-
plicit parametrisation of multiple relational struc-
tures within the same vector space (i.e., with each
semantic role vector acting as a geometrical trans-
formation), and second, it allows for the explicit
use of the semantic roles after training. By preserv-
ing the embeddings of the semantic relations, in
fact, we aim to make the vector space intrinsically
more interpretable and controllable.

Hyperbolic Model. Following previous work on
multi-relational Poincaré embeddings (Balazevic
et al., 2019), we specialise the general translational
objective function in Hyperbolic space:

¢E(w37 r, wO) = 7d3(hgr>7ht<)r))2 + bs + bo

g @
= 7d]ES(R Re h57ho De I') + bs + b07

where d(-) is the Poincaré distance, h, h,, r € B?
are the hyperbolic embeddings of words and seman-
tic roles, R € R4*? is a diagonal relation matrix, &
and ® represents Mobiiis addition (Equation 2) and
matrix-vector multiplication (Ganea et al., 2018):

()

with log(-) and exp(-) representing the logarithmic
and exponential maps for projecting a point into the
Euclidean tangent space and back to the Poincaré
ball.

R @ h = exp;(Rlogg (h)),
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Training & Optimization. The multi-relational
model is optimised for link prediction via the
Bernoulli negative log-likelihood loss (details in
Appendix A). We employ Riemmanian optimiza-
tion to train the Hyperbolic embeddings, enriching
the set of extracted triples with random negative
sampling. We found that the best results are ob-
tained with 50 negative examples for each positive
instance. In line with previous work on Hyper-
bolic embeddings (Balazevic et al., 2019) we set
¢ = 1. Following guidelines for the development of
word embeddings models (Bosc and Vincent, 2018;
Faruqui et al., 2016), we perform model selection
on the dev-set of word relatedness and similarity
benchmarks (i.e., SimVerb (Gerz et al., 2016) and
MEN (Bruni et al., 2014)).

4 Empirical Evaluation

4.1 Empirical Setup

To assess the quality of the word embeddings,
we performed an extensive evaluation on word
similarity and relatedness benchmarks in En-
glish: SimVerb (Gerz et al., 2016), MEN (Bruni
et al., 2014), SimLex-999 (Hill et al., 2015),
SCWS (Huang et al., 2012), WordSim-353 (Finkel-
stein et al., 2001) and RG-65 (Rubenstein and
Goodenough, 1965), using WordNet (Fellbaum,
2010) as the main source of definitions*. In par-
ticular, we leverage the glosses in WordNet to ex-
tract the semantic roles via the methodology de-
scribed in Section 3.1 and train the multi-relational
word embeddings. While WordNet also provides
a knowledge graph of linguistic relations, our goal
is to test methods that are trained and evaluated
exclusively on natural language definitions and that
can more easily generalise to different dictionaries
and definitions in a broader setting.

The multi-relational word embeddings are
trained on a total of & 400k definitions from which
we are able to extract ~ 2 million triples. In order
to compare Euclidean and Hyperbolic spaces we
train two different versions of the model by special-
ising the objective function accordingly (Equation
3). We experiment with varying dimensions for
both Euclidean and Hyperbolic embeddings (i.e.,
40, 80, 200, and 300), training the models for a
total of 300 iterations. In line with previous work
(Bosc and Vincent, 2018; Faruqui et al., 2016), we
evaluate the models on downstream benchmarks

*https://github.com/tombosc/cpae/blob/
master/data/dict_wn. json
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Model Dim FT PT | SV-d MEN-d | SVt MEN-t SL999 SCWS 353 RG
Glove 300 yes no | 12.0 54.8 7.8 57.0 19.8 46.8 444 575
Word2Vec 300 yes no | 352 62.3 36.4 59.9 34.5 54.5 61.9 65.7
AE 300 yes no | 349 42.7 325 422 35.6 50.2 414 648
CPAE 300 yes no | 42.8 48.5 34.8 49.2 39.5 54.3 487 67.1
CPAE-P 300 yes yes | 44.1 65.1 423 63.8 45.8 60.4 61.3 72.0
bert-base 768 no yes | 13.5 27.8 133 30.6 15.1 37.8 20.0 68.1
bert-large 1024 no yes | 16.1 23.4 14.4 26.8 13.4 35.7 19.8  60.7
defsent-bert 768 yes yes | 40.0 60.2 40.0 60.0 42.0 56.8 46.6 824
defsent-roberta 768 yes yes | 43.0 55.0 44.0 52.6 47.7 543 449 80.6
distilroberta-vl 768 no yes | 35.8 61.2 36.7 62.2 434 57.1 520 774
mpnet-base-v2 768 no yes | 459 64.9 42.5 67.5 49.5 58.6 56.5 813
sentence-t5-large 768 no yes | 494 63.1 50.2 66.3 57.3 56.1 51.8 85.3
Multi-Relational

Euclidean 40 yes no | 39.1 62.9 35.7 65.4 36.3 58.2 52.1 80.9
Euclidean 80 yes no | 44.1 65.6 39.5 66.2 41.2 58.4 55.8 78.0
Euclidean 200 yes no | 47.3 67.0 41.0 67.6 434 60.6 554  78.1
Euclidean 300 yes no | 479 68.3 43.1 69.1 44.7 61.0 544 79.0
Hyperbolic 40 yes no | 36.7 66.2 343 66.4 31.8 57.7 499 755
Hyperbolic 80 yes no | 42.7 68.2 40.7 68.6 38.3 60.5 573 81.0
Hyperbolic 200 yes no | 48.8 71.9 44.7 73.2 40.7 62.5 62.5 81.6
Hyperbolic 300 yes no | 50.6 72.6 454 74.2 42.3 63.0 63.3 80.5

Table 3: Results on word similarity and relatedness benchmarks (Spearman’s correlation). The column FT indicates
whether the model is explicitly fine-tuned on natural language definitions, while PT indicates the adoption of a

pre-training phase on external corpora.

Model SV MEN SL999 353 RG
Glove 18.9 - 32.1 62.1 75.8
Word2Vec - 72.2 28.3 68.4 -

our 454 74.2 42.3 63.3 80.5

Table 4: Comparison with Hyperbolic word embeddings
in the literature. The results for Glove and Word2Vec
are taken from (Tifrea et al., 2018) and (Leimeister and
Wilson, 2018) considering their best model.

comparing the predicted similarity between the pair
of words to the ground truth via a Spearman’s cor-
relation coefficient.

4.2 Baselines

We evaluate a range of word embedding mod-
els on the same set of definitions (Bosc and Vin-
cent, 2018). Specifically, we compare the pro-
posed multi-relational embeddings against different
paradigms adopted in previous work and state-of-
the-art approaches. Here, we provide a characteri-
sation of the models adopted for evaluation:

Distributional. We compare the multi-relational
approach against distributional word embeddings
(Mikolov et al., 2013; Pennington et al., 2014).
Both Glove and Word2vec have the same di-
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mensionality as the multi-relational approach but
are not designed to leverage or preserve explicit
semantic relations during training.

Autoencoders. This paradigm employs encoder-
decoder architectures to learn word representations
from natural language definitions. In particular,
we compare our approach to an autoencoder-based
model specialised for natural language definitions
known as CPAE (Bosc and Vincent, 2018), which
adopts LSTMs paired with a consistency penalty.
Differently from our approach, CPAE requires ini-
tialisation with pre-trained word vectors to achieve
the best results (i.e., CPAE-P).

Sentence-Transformers. Finally, we compare
our model against Sentence-Transformers (Reimers
and Gurevych, 2019). Here, we use Sentence-
Transformers to derive embeddings for the target
definienda via the encoding of the corresponding
definition sentences in the corpus. As the main
function of definitions is to describe the meaning of
words, semantically similar words tend to possess
similar definitions; therefore we expect Sentence-
Transformers to organise the latent space in a se-
mantically coherent manner when using definition
sentences as a proxy for the word embeddings. We
experiment with a diverse set of models ranging



from BERT (Devlin et al., 2019) to the current state-
of-the-art on semantic similarity benchmarks® (Ni
et al., 2022; Song et al., 2020; Liu et al., 2019)
and models trained directly on definition sentences
(e.g., Defsent (Tsukagoshi et al., 2021)). While
the evaluated Transformers do not require fine-
tuning on the word similarity benchmarks, they
are employed after being extensively pre-trained
on large corpora and specialised in sentence-level
semantic tasks. Moreover, the overall size of the
resulting embeddings is significantly larger than
the proposed multi-relational approach.

4.3 Word Embeddings Benchmarks

In this section, we discuss and analyse the quanti-
tative results obtained on the word similarity and
relatedness benchmarks (see Table 3).

Firstly, an internal comparison between Eu-
clidean and Hyperbolic embeddings supports the
central hypothesis that Hyperbolic manifolds are
particularly suitable for encoding the recursive and
hierarchical structure of definitions. As the dimen-
sions of the embeddings increase, the quantitative
analysis demonstrates that the Hyperbolic model
can achieve the best performance on the majority
of the benchmarks.

When compared to the distributional baselines,
the multi-relational Hyperbolic embeddings clearly
outperform both Glove and Word2Vec trained
on the same set of definitions. Similar results
can be observed when considering the autoencoder
paradigm (apart from CPAE-P on SL999). Since
the size of the embeddings produced by the models
is comparable (i.e., 300 dimensions), we attribute
the observed results to the encoded semantic rela-
tions, which might play a crucial role in imposing
structural constraints during training.

Finally, the multi-relational model produces em-
beddings that are competitive with state-of-the-art
Transformers. While the Hyperbolic approach can
clearly outperform BERT on all the downstream
tasks, we observe that Sentence-Transformers be-
come increasingly more competitive when con-
sidering larger models that are fine-tuned on
semantic similarity tasks and definitions (e.g.,
sentence-t5-large (Ni et al.,, 2022) and
defsent (Tsukagoshi et al., 2021)). However,
it is important to notice that the multi-relational
embeddings not only require a small fraction of

‘https://www.sbert.net/docs/
pretrained_models.html
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the Transformers’ computational cost — e.g, T5-
large (Raffel et al., 2020) is pre-trained on the C4
corpus (= 750GB) while the multi-relational em-
beddings are only trained on WordNet glosses (=
19MB), a difference of 4 orders of magnitude — but
are also intrinsically more interpretable thanks to
the explicit encoding of the semantic relations (see
Section 4.5 and 5).

4.4 Hyperbolic Word Embeddings

In addition to the previous analysis, we performed
a comparison with existing Hyperbolic word em-
beddings in the literature (Table 4). In particular,
we compare the proposed multi-relational model
with Poincare Glove (Tifrea et al., 2018) and Hy-
perbolic Word2Vec (Leimeister and Wilson, 2018).
The results show that our approach can outperform
both models on the majority of the benchmarks,
remarking the impact of the multi-relational ap-
proach and definitional model on the quality of the
representation.

4.5 Multi-Relational Representation

To contrast the capacity of different geometric
spaces to learn multi-relational representations, we
design an additional experiment that tests the abil-
ity to encode out-of-vocabulary definienda (i.e.,
words never seen during training). In particular,
we aim to quantitatively measure the precision in
encoding the semantic relations by approximating
new word embeddings in one-shot, and use it as a
proxy for assessing the structural organisation of
Euclidean and Hyperbolic spaces. Our hypothesis
is that a vector space organised according to the
multi-relational structure induced by the definitions
should allow for a more precise approximation of
out-of-vocabulary word embeddings via relation-
specific transformations.

In order to perform this experiment, we adopt
the dev-set of SimVerb (Gerz et al., 2016) and
MEN (Bruni et al., 2014), removing all the triples
from our training set that contain a subject or an
object word occurring in the benchmarks. Sub-
sequently, we employ the pruned training set to
re-train the models. After training, we derive
the embeddings of the out-of-vocabulary words
via geometric transformations applied to the in-
vocabulary words. Specifically, given a target word
(e.g., "dog") and its definition (e.g., "a domesti-
cated carnivorous mammal that typically has a long
snout") we jointly use the in-vocabulary definiens
and their semantic relations (e.g., ["carnivorous”,
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Model Dimension Mean-Pooling Multi-Relational Differentia Quality Supertype

SV MEN SV MEN | SV MEN SV MEN
Euclidean 40 176 206  23.7(+6.1) 3L7(+11.1) | 22.6 26.0 172 192
Euclidean 80 15.9 18.1 24.6 (+8.7) 294 (+11.3) | 234 233 184 188
Euclidean 200 145 184  237(+9.2) 30.7 (+12.3) | 24.1 222 187 19.1
Euclidean 300 15.1 18.8 243 (+9.2) 30.3(+11.5) | 23.8 22.7 193 203
Hyperbolic 40 159 22.8 254 (+9.5) 352 (+12.4) | 22.7 25.5 140 20.2
Hyperbolic 80 179 25.1 27.7(+9.8) 37.8(+12.7) | 259 26.6 154 20.1
Hyperbolic 200 19.2 24.9 28.4(+9.2) 38.2(+13.3) | 27.9 25.5 173 213
Hyperbolic 300 19.6 251  28.6(+9.0) 39.7 (+14.6) | 28.5 26.0 181 204

Table 5: Results on the one-shot approximation of out-of-vocabulary word embeddings. The numbers in the table
represent the Spearman correlation computed over the out-of-vocabulary set after the approximation. (Left) impact
of the multi-relational embeddings on the one-shot encoding of out-of-vocabulary words. (Right) ablations using
the two most common semantic roles for one-shot approximation. The results demonstrate the superior capacity of
the multi-relational Hyperbolic embeddings to capture the global semantic structure of definitions.

"supertype"], ["snout", "differentia-quality"]) to
approximate a new word embedding e() for the
definiendum via mean pooling and translation (i.e.,
e("dog") = mean(e("carnivorous"), ("snout")) +
mean(e("supertype"), e("differentia-quality"))) and
compare against a mean pooling baseline that
does not have access to the semantic relations (i.e.
e("dog") = mean(e("carnivorous"), ("snout"))).

The results reported in Table 5 demonstrate the
impact of the multi-relational framework, also con-
firming the property of the Hyperbolic embeddings
in better encoding the global semantic structure of
natural language definitions.

5 Qualitative Analysis

In addition to the qualitative evaluation, we perform
a qualitative analysis of the embeddings. This is
performed in two different ways: traversal of the
latent space and relation-adjusted transformations.

5.1 Latent Space Traversal

We perform traversal experiments to visualise the
organisation of the latent space. This is done by
sampling points at fixed intervals along the arc
(i.e., geodesic) connecting the embeddings of a
pair of predefined words (seeds), i.e., by interpo-
lating along the shortest path between two em-
beddings. The choice of word pairs was done
according to a group of semantic categories for
which intermediate concepts can be understood to
be semantically in between the pair. For exam-
ple: (car,bicycle) — motorcycle. Considering
the latent space structure that should result from
the proposed approach, we expect the traversal pro-
cess to capture such intermediate concepts, while
generalising the concepts towards the midpoint of
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the arc. In a latent space organised according to the
semantic structure and concept hierarchy of defini-
tions, in fact, we expect the midpoint to be close to
concepts relating to both seed words.

The categories, sampled words and results for
the midpoint of the arcs can be found in Table 6
(top). From the traversal analysis, we can observe
that the intermediate concepts are indeed captured
for all the categories, with a noticeable degree of
generalisation in the Hyperbolic models. This in-
dicates the consistent interpretable nature of the
navigation for the latent space, and enables more
robust semantic control, setting the desired embed-
ded concept in terms of a symbolic conjunction of
its vicinity. We can also observe that, the space be-
tween the pair of embeddings is populated mostly
by concepts related to both entities of the pair in
the Euclidean models, while being populated by
concepts relating both entities in the Hyperbolic
models.

5.2 Relation-Adjusted Transformations

We analyse the organisation of the latent space be-
fore and after the application of a translational oper-
ation. As discussed in Section 2.1, such operation
should transform the embedding space according to
the corresponding semantic role. For example, the
operation ¢g(dog, supertype, w,) should cluster
the space around the taxonomical branch related
to “dog”. It is important to notice that this opera-
tion does not correspond to link prediction as we
are not considering the scalar biases bg, b,. The
goal here is to disentangle the impact of the se-
mantic transformations on the latent space. We
consider the supertype role for this analysis as
it induces a global hierarchical structure that is eas-



Category Word Pair Euclidean

Hyperbolic

Concrete concepts car - bycicle

ing, four_wheel, rented, no_parking

bicycle, car, pedal_driven, motorcycle, banked, multiplying, swivel-

railcar, bicycle, car, pedal_driven, driving_axle,
ized_wheelchair, tricycle, bike, banked, live_axle

motor-

Gender, Role man - woman

dle_aged, bodice, boskop, soloensis

woman, man, procreation, men, non_jewish, three_cornered, mid-

adulterer, boyfriend, ex-boyfriend, adult_female, manful, cuckold,
virile, stateswoman, womanlike, wardress

Animal Hybrids horse - donkey

ered_legged, racehorse, gasterophilidae

donkey, horse, burro, hock_joint, neighing, dog_sized, tapirs, feath-

burro, cow_pony, unbridle, hackney, unbridled, equitation, sidesad-
dle, palfrey, roughrider, trotter

Process, Time birth - death

demned, carta, liveborn

death, birth, lifetime, childless, childhood, adityas, parturition, con-

lifespan, life-time, firstborn, multiparous, full_term, teens, nonpreg-
nant, childless, widowhood, gestational

Location sea - land

land, sea, enderby, weddell, arafura, littoral, tyrrhenian, andaman,

tellurian, litoral, seabed, high_sea, body_of_water, littoral_zone, in-

maud, toads ternational_waters, benthic_division, naval_forces, lake_michigan

wg No Transformation: —dp (hg, h0)2 Relation-Adjusted (r = supertype): —dg(R ® hs,h, @ r)2

dog dog, heavy_coated, smooth_coated, malamute, canidae, wolves, light_footed, long- huntsman, hunting_dog, sledge_dog, coondog, sled_dog, working_dog, rus-
established, whippet, greyhound sian_wolfhound, guard_dog, tibetan_mastiff, housedog

car car, railcar, telpherage, telferage, subcompact, cable_car, car_transporter, re_start, railcar, marksman, subcompact, smoking_carriage, handcar, electric_automobile,
auto, railroad_car, driving_axle limousine, taxicab, freight_car , slip_coach

star star, armillary_sphere, charles’s_wain, starlight, altair, drummer, northern_cross, rigel, betelgeuse, film_star, movie_star, television_star, tv_star, starlight, supergiant,
photosphere, sterope, rigel photosphere, starlet

king louis_i, sultan, sir_gawain. uriah, camelot, dethrone, poitiers, excalibur, empress, chessman, gustavus_vi, grandchild, alfred_the_great, jr, rajah, knights, louis_the_far,

divorcee

egbert, plantagenet, st._olav

Table 6: (Top) qualitative results for the latent space traversal, with midpoint nearest neighbours listed in descending
order. (Bottom) nearest neighbours of seed words before and after applying a supertype-adjusted transformation.

ily inspectable. The results can be found in Table 6
(bottom). We observe that the transformation leads
to a projection locus near all the closely defined
terms (the types of dogs or stars), abstracting the
subject words in terms of their conceptual exten-
sion (things that are dogs / stars). This displays
a particular way of generalisation that is likely re-
lated to the arrangement of the roles and how they
connect the concepts.

6 Related Work

Considering the basic characteristics of natural lan-
guage definitions here discussed, efforts to lever-
age dictionary definitions for distributional models
were proposed as a more efficient alternative to the
large unlabeled corpora, following the rising pop-
ularity of the latter (Tsukagoshi et al., 2021; Hill
et al., 2016; Tissier et al., 2017; Bosc and Vincent,
2018). Simultaneously, efforts to improve composi-
tionality (Chen et al., 2015; Scheepers et al., 2018)
and interpretability (de Carvalho and Le Nguyen,
2017; Silva et al., 2019) of word representations
led to different approaches towards the incorpora-
tion of definition resources to language modelling,
with the idea of modelling definitions becoming an
established task (Noraset et al., 2017).

More recently, research focus has shifted to-
wards the fine-tuning of large language models and
contextual embeddings for definition generation
and classification (Gadetsky et al., 2018; Bosc and
Vincent, 2018; Loureiro and Jorge, 2019; Mickus
et al., 2022), with interest in the structural proper-
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ties of definitions also gaining attention (Shu et al.,
2020; Wang and Zaki, 2022).

Finally, research on Hyperbolic representation
spaces has provided evidence of improvements in
capturing hierarchical linguistic features, over tra-
ditional (Euclidean) ones (Balazevic et al., 2019;
Nickel and Kiela, 2017; Tifrea et al., 2018; Zhao
et al., 2020). This work builds upon the afore-
mentioned developments, and proposes a novel
approach to the incorporation of structural infor-
mation extracted from natural language definitions
by means of a translational objective guided by ex-
plicit semantic roles (Silva et al., 2016), combined
with a Hyperbolic representation able to embed
multi-relational structures.

7 Conclusion

This paper explored the semantic structure of def-
initions as a means to support novel learning
paradigms able to preserve semantic interpretability
and control. We proposed a multi-relational frame-
work that can explicitly map terms and their corre-
sponding semantic relations into a vector space. By
automatically extracting the relations from exter-
nal dictionaries, and specialising the framework in
Hyperbolic space, we demonstrated that it is possi-
ble to capture the hierarchical and multi-relational
structure induced by dictionary definitions while
preserving, at the same time, the explicit mapping
required for controllable semantic navigation.



8 Limitations

While the study here presented supports its findings
with all the evidence compiled to the best of our
knowledge, there are factors that limit the scope
of the current state of the work, from which we
understand as the most important:

1. The automatic semantic role labeling process
is not 100% accurate, and thus is a limiting
factor in analysing the impact of this informa-
tion on the models. While we do not explore
DSRLs with varying accuracy, future work
can explicitly investigate the impact of the au-
tomatic annotation on the robustness of the
multi-relational embeddings.

The embeddings obtained in this work are con-
textualizable (by means of a relation-adjusted
transformation), but are not contextualized,
i.e., they are not dependent on surrounding
text. Therefore, they are not comparable
on tasks dependant on contextualised embed-
dings.

The current version of the embeddings coa-
lesces all senses of a definiendum into a single
representation. This is a general limitation of
models learning embeddings from dictionar-
ies. Fixing this limitation is possible in future
work, but it will require the non-trivial abil-
ity to disambiguate the terms appearing in the
definitions (i.e., definiens).

The multi-relational embeddings presented in
the paper were initialised from scratch in or-
der to test their efficiency in capturing the
semantic structure of dictionary definitions.
Therefore, there is an open question regarding
the possible benefits of initialising the mod-
els with pre-trained distributional embeddings
such as Word2vVec and Glove.
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with varying dimensions for both Euclidean and
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Abstract

The representation degeneration problem is a
phenomenon that is widely observed among
self-supervised learning methods based on
Transformers. In NLP, it takes the form of
anisotropy, a singular property of hidden rep-
resentations which makes them unexpectedly
close to each other in terms of angular distance
(cosine-similarity). Some recent works tend to
show that anisotropy is a consequence of op-
timizing the cross-entropy loss on long-tailed
distributions of tokens. We show in this paper
that anisotropy can also be observed empiri-
cally in language models with specific objec-
tives that should not suffer directly from the
same consequences. We also show that the
anisotropy problem extends to Transformers
trained on other modalities. Our observations
suggest that anisotropy is actually inherent to
Transformers-based models.

1 Introduction

In recent years, deep learning models based on
Transformers have led to significant breakthroughs
in the field of natural language processing (NLP).
These models have demonstrated state-of-the-art
performance across a range of tasks, such as lan-
guage modeling, machine translation, and senti-
ment analysis. However, despite their successes,
they suffer from a phenomenon known as the repre-
sentation degeneration problem. Specifically, this
degeneration is characterized by anisotropy, a prop-
erty of hidden representations that makes them all
close to each other in terms of angular distance
(cosine-similarity).

Anisotropy has been widely observed among
self-supervised models based on Transformers, and
literature currently suggests that it may be a con-
sequence of optimizing the cross-entropy loss on
long-tailed distributions of tokens (Gao et al., 2019;
Bi$ et al., 2021). However, it remains uncertain
whether anisotropy is a fundamental property of
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Transformers-based models or a consequence of
the pre-training process.

In this paper, we investigate the anisotropy prob-
lem in depth, and we make several contributions:

* We demonstrate empirically that anisotropy
can be observed in language models with
character-aware architectures that should not
suffer directly from the same consequences as
token-based models. We extend our observa-
tions to Transformers trained on other modali-
ties, such as image and audio data, and show
that anisotropy cannot be explained solely
based on linguistic properties;

* We provide empirical observations on the
anisotropic properties of the Transformer
block by studying untrained layers, and es-
tablish a relation between anisotropy and the
general sharpness of the self-attention mecha-
nism;

* We conduct an analysis of the representations
used in self-attention (queries and keys) along
training and show that anisotropy appears in-
trinsically in the self-attention mechanism,
when training pushes for sharp patterns.

2 Related Work

The general phenomenon of anisotropy in token-
based Transformers for language models has been
shown in Ethayarajh (2019). Figure 1 extends one
of their experiment to more architectures. Gao et al.
(2019) shows that the degeneration of representa-
tions comes from the distributions of subwords in
natural language, namely the existence of unused
and rare tokens that tend to push all representations
away from the origin towards a specific direction.
Other works have established a connection be-
tween word frequency and distortions of the latent
spaces (Yu et al., 2022; Puccetti et al., 2022; Rajaee
and Pilehvar, 2022). BiS et al. (2021) have shown
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Figure 1: Average cosine-similarity between hidden rep-
resentations across layers for token-level NLP models.
For T5-base, we concatenate encoder and decoder re-
sults.

that anisotropy in LMs could be explained by a
global drift of the representations in the same di-
rection, thus unifying conclusions from Ethayarajh
(2019) and Gao et al. (2019). The authors propose
that this drift is caused by the persistent updating
of the representation of rare and unused tokens
in a consistent direction, due to the nature of the
softmax operation in the cross-entropy loss. They
show that removing the average component to all
representations leads to a nearly perfect isotropy.

Several methods have been proposed to reduce
anisotropy in Transformers-based LMs at token-
level (Rajaee and Pilehvar, 2021; Wang et al.,
2020), or at sentence-level (Gao et al., 2021; Yan
et al., 2021; Su et al., 2021). They usually consist
in post-processing the representations, and lead to
downstream performance boosts. We argue that
these positive results are paving the way for the
search of pre-training objectives that do not intro-
duce anisotropy in the first place, in the hope that
the resulting models will also perform better with-
out any post-processing, and potentially be trained
more efficiently. This motivates us to gain a deeper
understanding of the underlying factors that induce
anisotropy, whether they belong in data, architec-
tures, or training procedures.

3 Anisotropy in pre-trained Transformers

3.1 Character-based NLP

To assert whether the cross-entropy objective ap-
plied on vocabularies containing rare tokens is the
sole cause for the common drift issue, we explore
anisotropy in character-based models. We study
different architectures:

¢ CharacterBERT (El Boukkouri et al., 2020) is
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Figure 2: Average cosine-similarity between hidden
representations across layers for character-level models.

constructing whole word representations from
character embeddings put through convolu-
tions and highway layers, before feeding them
to a Transformers architecture.

CANINE (Clark et al., 2022) is downsampling
contextualized character representations via a
strided convolution before feeding them to a
Transformers. It can be trained either with a
subword-based objective (CANINE-s) or with
a character-level one (CANINE-c).

MANTa-LM (Godey et al., 2022) is based
on a differentiable segmentation and embed-
ding module added before an encoder-decoder
model in the style of T5 (Raffel et al., 2020).
It takes bytes as inputs and outputs, but builds
internal representations that are usually based
on several bytes.

ByT5 (Xue et al., 2022) is a version of T5
that is trained at byte-level. To afford for
more complex encoding, the authors resize
the encoder-decoder architecture.

Neither of these architectures should suffer from
out-of-vocabulary tokens in the process of creating
representations. The models that predict at word or
sub-word level (CharacterBERT and CANINE-s)
could have the cross-entropy loss systematically
pushing away rare item representations. However,
it is rather unclear why it would imply an embed-
ding drift at deeper layers. Hence, if anisotropy
was only caused by the presence of unused or rare
subwords, those character-level models should be
much less prone to this issue.

To verify this hypothesis, we compute hid-
den representations for the validation set of the
WikiText-103 corpus (Merity et al., 2016). We then



compute the average cosine-similarity between two
representations, uniformly taken in the whole vali-
dation corpus.

In fact, as shown in Figure 2, those models all
display significant levels of anisotropy in at least
one of their layers. Interestingly, the models that
are based solely on characters or bytes for input and
prediction (ByT5, CANINE-c, and MANTA-LM)
seem to display even higher levels of anisotropy.
We note, as it is the case for the TS model, that
the ByT5 decoder displays extremely high levels
of anisotropy.

3.2 Other modalities

We’ve shown in the previous section that character-
level language models suffer from anisotropy sim-
ilarly to token-level ones, hinting that subword
token distributions are not solely responsible for
anisotropy. However, it may be argued that
anisotropy is related to linguistic properties. Thus,
we proceed to explore the anisotropy problem for
Transformers-based models in other modalities,
specifically speech and vision.

For speech models, we consider wav2Vec 2.0
(Baevski et al., 2020), HuBERT (Hsu et al., 2021),
and Whisper (Radford et al., 2022) with the Com-
mon Voice 11.0 dataset (Ardila et al., 2020). For
vision models, we use ViT (Wu et al., 2020), BEiT
(Baoetal., 2021), MiT (Xie et al., 2021), and DEiT
(Touvron et al., 2021) on the ImageNet dataset
(Russakovsky et al., 2015).

As in subsection 3.1, we infer hidden represen-
tations on the validation sets for each modality.
We then uniformly sample pairs of vectors to get
cosine-similarity values for every layer of every
model. The averaged results are displayed in Fig-
ure 3.

Once again, almost every model shows a signifi-
cant level of anisotropy on some of its layers. No-
tably, speech models seem to have very anisotropic
representations, as every layer of every model out-
puts an average cosine-similarity of at least 0.2. We
find some exceptions among vision models, since
the MiT model seems to use isotropic representa-
tion spaces and the ViT model has a low average
cosine-similarity for all its layers.

We also conduct the same experiment for
convolution-based networks in the vision modal-
ity. The models at glance are ResNet (He et al.,
2016), EfficientNet (Tan and Le, 2019), CvT (Wu
etal., 2021), ConvNeXt (Liu et al., 2022), and VAN
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(Guo et al., 2022). For these networks, we flatten
convolution maps to vectors before computing the
cosine-similarity.

— CvT-13
EfficientNet-b0
—— Resnet-50
= ConvNeXt-base
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Figure 4: Average cosine-similarity between hidden rep-
resentations across layers for convolution-based vision
models.

We observe in Figure 4 that most of the
convolution-based models are isotropic. Interest-
ingly, the only exception is ResNet-50, whose rep-
resentations become more and more isotropic as
one explores deeper layers. This could partially be
explained by the fact that the batch normalization
(Ioffe and Szegedy, 2015) used in some of these
models mitigates a posteriori the drift effect by re-
moving the mean component of the representations.
However, the ConvNeXt model also seems to use
isotropic representations while not using batch nor-
malization, which shows that this is not the only
factor in the isotropic behavior of these models.

3.3 To drift or not to drift?

Related works (BiS et al., 2021; Gao et al., 2019)
show that anisotropy in subword-level language
models is caused by a drift of the hidden represen-
tations in a shared direction. In this section, we try
to extend this observation to other modalities.

We study the correlation between the uniformly
measured cosine-similarity, and the norm of the
average hidden representation ||Z||2 for each layer.
If anisotropy could be directly explained by the
drift effect, we would expect a monotonic relation
between ||Z||2 and the average cosine-similarity.
To verify this, we apply a Spearman correlation
test on these two metrics for every model from
subsection 3.1 and subsection 3.2, along with some
token-level language models, namely T5 (Raffel
et al., 2020), BERT (Devlin et al., 2019), RoBERTa
(Liu et al., 2019), and GPT-2 (Radford et al., 2019).
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Figure 3: Average cosine-similarity between hidden representations across layers for Speech and Vision modalities.
We observe that across both modalities, several models display significant levels of anisotropy.
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Figure 5: p-value of the Spearman correlation test be-
tween the norm of the average representation and the
cosine-similarity averaged over all layers, across modal-
ities. For models above the red dotted line, there is no
significant (p > 0.05) correlation between the drift ef-
fect and the anisotropy level.

In Figure 5, we observe that we can correlate
the anisotropy level and the magnitude of the drift
component across layers for several models. The
anisotropy of subword-based models can generally
be correlated with the drift effect, except for GPT-
2 for which the Spearman correlation metric may
not be appropriate. We provide a similar analysis
based on the Pearson correlation test and discuss
the relevance of each statistic in Appendix A.

Interestingly, we notice that the anisotropy af-
fecting most CNN-based vision models is gener-
ally not correlated with the drift effect, contrary to
Tranformers-based models in the same modality.
Some speech models (HuBERT and Whisper-base)
also display signs of anisotropy that cannot be cor-
related with the drift effect. Figure 5 also shows
a correlation for all character-based models but
Canine-C and MANTa-base.
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4 Exploring the representation drift

In this section, we focus on some intrinsic prop-
erties of the Transformer block in a modality-
agnostic fashion, i.e. with minimal assumptions on
the data distribution, and without training. We ana-
lyze experimentally the behavior of the untrained
Transformer block 7" when a common bias term b
is added to untrained input representations x. This
allows us to mimic the common drift as mentioned
in Bi$ et al. (2021) and to identify some proper-
ties induced by this artificial drift on the output
representations.

4.1 Experimental setup

We consider an embedding lookup table E and a
Transformer block 7' with weights initialized as
in BERT (Devlin et al., 2019). We then draw 16
input embedding sequences x of length 512 uni-
formly from E. To account for a drift component of
norm N € R, we generate a vector b, ~ N (0, 1),
which we normalize into b = Hbllﬁ x N. We fi-
nally compute 7'(x; + b) for every sequence z;,
and study the resulting distributions.

Specifically, we study the average norm of
the input representations E(||x; + b||2) against
the average norm of the output representations
E(]|T(x; +b)||2) in Figure 6b. We also retrieve the
self-attention scores before the softmax operation,
namely Q—\/]g, along with the corresponding () and
K matriceslf We study some of their properties in
Figure 7 and Figure 8.

4.2 Input vs. output analysis

In Figure 6a, we observe that the output representa-
tions have an average cosine-similarity value that
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Figure 6: Input/Output comparison of a Transformer
block from BERT-base as the bias norms increases.

is slightly higher than the one of the input repre-
sentations, no matter the level of input bias. We
also notice that while the norm of the average out-
put representation increases with the bias norm, it
seems to meet the corresponding input measure for
a given bias norm.

Interestingly, this shows that there is a fixed point
in terms of norm in the Transformers function with
biased input. More formally, there seems to exist a
bias norm N* € R, such that:

Eg b (|73 + 08+ []) = By p . ([|T (25 + b))

Moreover, this fixed point level N* is in the
order of magnitude of the average hidden state
norms of the layers of the trained BERT model.
This hints that the model’s representations stabilize
when their norm is close to this fixed point. We
leave a more thorough analysis of this hypothesis
for future work.

4.3 Exploring the Transformer block

To understand the effect of the drift effect on the
inner workings of the Transformer layer, we take
a closer look at the self-attention operation as the
average input representation drifts away.
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Figure 7: Histograms of the pre-softmax attention scores
as the input bias norm increases. Other initializations
of the layer and of the bias direction b,, led to a general
increase of the attention scores instead.

Figure 7 shows that the attention scores tend
to move away from zero as the input bias norm
increases. Indeed, as the norm of the average
of the input embeddings increases, we can expect
the query and key vectors () and K to also dis-
play signs of anisotropy. Actually, for each self-
attention head, and for all position i € [1, L], we
have:

E.(Q:) = Woz + bg

_ (D
E.(K;) = WgZ + bk

We can observe in Figure 8 that query and key
representations indeed increase in norm with the
input bias norm. We also notice that the corre-
sponding distributions are anisotropic even when
no bias is added, which may be a consequence of
BERT’s initialization parameters.
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Figure 8: Analysis of the self-attention query and key
distributions

4.4 TImpact of the drift

After exploring the consequences of the drift of
input representations on the query-key product in
self-attention, we identify in this section the impli-
cations of this drift at a more explainable level, by
observing the resulting post-softmax distributions.
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Figure 9: Evolution of the self-attention softmax values
as the input bias norm increases.

In Figure 9, we retrieve softmax values in the
self-attention block and for each position, we ex-
tract the maximum, the median and the minimum.
We then average these values over the whole batch,
and repeat for various input bias norm levels. We
notice that as the input bias norm increases, the
self-attention softmax distributions tend to become
less entropic, evolving towards higher maximal
probabilities and lower minimal probabilities. In
the following analysis, we’ll use the term sharp-
ness to discuss entropy levels of the self-attention
distributions.

(a) Maximum (b) Minimum

Figure 10: Comparison of the extreme values of each
sequence averaged over the batch as the bias norm in-
creases.

This sharpening effect of the attention distri-
butions becomes even clearer if we consider the
maximum and minimum values over the whole se-
quences, as in Figure 10.

However, at low anisotropy levels, i.e. when the
bias norm is low, we see that the effect is not very
important. Figure 9 and Figure 10 only hint at the
fact that the drift of embeddings may help the self-
attention to be sharper. Another explanation could
be that training favors sharp self-attention patterns,
as has been pointed out in previous works (Clark
et al., 2019), which in turn induces a drift in the
models’ representations. In order to account for
that, we need to study the evolution of latent spaces
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at the self-attention level along training.

5 Queries and keys: training dynamics

We have established that manually pushing for drift-
based anisotropy on untrained Transformers mod-
els leads to sharper (i.e. low-entropy) self-attention
patterns. In this section, we show that this evo-
lution of self-attention values actually takes place
during training, and we explore the mechanism be-
hind their appearance. As pointed out in section 4,
the self-attention scores result from the QK7 op-
eration, which computes scalar products between
query and key representations corresponding to
each pair of positions. Thus, in this section, we
study the evolution of these query and key represen-
tations along training, and explore the mechanism
behind the increase of the scalar products leading
to self-attention scores.

We use the MultiBERT checkpoints (Sellam
et al., 2021) with seed O to retrieve Q and K dis-
tributions at different pretraining steps, and we
use 128 samples from Wikitext-103 as input data.
Along this section, Qs and K refer to query and
key representations extracted at a specific layer and
head at a given step s, and Q, and K, are the av-
erage representations, taken over all tokens in the
sampled batch. By studying @), and K, we aim at
exploring the common (or context-agnostic) drifts
of keys and queries distributions.

In Figure 11 and Figure 12, we compute a SVD
of the union of ), and K for all steps s, so that the
projection makes sense for both distributions across
steps for visualization purposes !. As shown in our
selected examples, we observe that the dynamics of
Q. and K tend to align along training, making the
average of the distributions drift in either similar
or opposite directions. The first dimension of the
SVD seems to describe this common drift. Note
that in R% (dj, = 64 being the head dimension),
such an alignment is very unlikely to happen ran-
domly. Interestingly, Figure 12a shows that the
common direction dynamics appear in the first few
steps, while the opposite direction dynamics of Fig-
ure 12b only starts after 8% of the total training
steps.

To consolidate our observations, we compute the
evolution of the cosine-similarity between Q, and
K along training in Figure 13. We also display

'We actually uniformly sample 20% of the whole set of
representations to compute the SVD under reasonable memory
constraints.
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Figure 12: Evolution of ), and K along training for
two different heads in the network, projected via com-
mon SVD. Each arrow represents a checkpoint in the
MultiBERT suite. We display typical examples of dy-
namics in same/opposite direction.

some projected Qs and K s distributions for several
s steps in Figure 11.

Figure 13 shows that the first layers display
a common direction dynamic, as the cosine-
similarity tends to increase, thus showing that the
key and query distributions drift along a simi-
lar direction in average. The last layers seem to
adopt an opposite direction dynamic, as the cosine-
similarity between their mean key and query repre-
sentations gets negative along training.

As shown in Figure 14, this drift induces an in-
crease in the magnitude of scalar products obtained
in the self-attention QK operation, thus facilitat-
ing the emergence of sharp patterns where attention
focuses on specific tokens.

Finally, Figure 15 describes the evolution of the
average entropy in self-attention distributions. We
observe that training induces an overall decay of the
entropy for all layers, with different dynamics. This
corresponds to sharper self-attention distributions.
It is interesting to notice that the distributions in
the first layers remain sharper than the ones in the
last layers.

Overall, this section shows that drift anisotropy
emerges in the query and key representations dur-
ing the training of MultiBERT, as self-attention
distributions become sharper. The drifts of queries
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and keys tend to align, thus increasing the magni-
tude of scalar products, and the general sharpness
of self-attention.

Although this section focuses on the case of
token-based NLP, we believe that strong attention
patterns may be required when training Transform-
ers across all modalities, potentially generating dis-
tortions in query and key distributions that account
for the final observed anisotropy of the models.
However, we could not extend experiments to other
modalities due to the lack of released intermediate
checkpoints, to the best of our knowledge.

6 Discussion

In this work, we argue that the nature of data
distributions is not solely responsible for the
anisotropy observed in most hidden representations
of Transformers-based models across modalities.
As section 4 shows, untrained Transformers layers
display a tendency towards anisotropy. Biased in-
puts tend to increase the variance of the attention
scores and thus facilitate the emergence of sharp
patterns in the self-attention mechanisms. We also
show in section 5 that along training, query and
key distributions drift in parallel directions, which
increases anisotropy in the inner representations
of the Transformer layers, while allowing sharper
attention patterns. As discussed in Puccetti et al.
(2022), outlier dimensions in Transformers are also
involved in the emergence of strong attention pat-
terns.

Consistency of the SVD In section 5, we use an
SVD on the union of Q5 and K for visualization
purposes (see Figure 11 and Figure 12). It may be
argued that this approach favors the emergence of
a discriminative singular direction, that helps dis-
tinguish between keys and queries, thus supporting
the findings in a less convincing way. To address
this concern, we display alternative projections in
Appendix C, where we compute the SVD on @) or
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Figure 15: Average entropy of the probability distribu-
tions corresponding to self-attention rows along training.
Each curve corresponds to one layer.

K only, and then project all representations using
this SVD. Our observations show that our findings
are consistent for these alternative projections.

Harmfulness of anisotropy Even though
anisotropy has not been shown to be an issue in lan-
guage modeling, previous works have advocated
that removing anisotropy in output representations
leads to better sense disambiguation abilities
(Bihani and Rayz, 2021; BiS et al., 2021). Isotropic
models could also improve cross-lingual alignment
in multilingual language models (Himmerl et al.,
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2023). Nevertheless, concurrent works have
suggested that anisotropy may not hurt the quality
of the representations (Ait-Saada and Nadif, 2023;
Rudman and FEickhoff, 2023). We argue that
anisotropy in the Transformer architecture may
actually help models by allowing sharp attention
patterns, but we also believe that our work can
pave the way for new isotropic architectures that
can easily use sharp attention patterns.

Conclusion

In this paper, we investigated the anisotropy prob-
lem through the lens of the drift effect, and made
several contributions to the understanding of this
phenomenon. We demonstrated that anisotropy can
be observed in language models with character-
aware architectures, extended our observations to
Transformers trained on other modalities, and stud-
ied anisotropy in untrained Transformers layers.
We finally explored the training dynamics of the
query and key distributions, and found that they
drift along a shared direction hence maximizing
QKT scalar products in absolute value, allowing
stronger attention patterns as a result.

We conclude that anisotropy almost systemati-
cally affects Transformers on all modalities, in a
way that is not always correlated with the drift of
the representations. We also provide empirical evi-
dence that anisotropy appears as an inherent prop-
erty of latent distributions used in the self-attention
mechanism when modeling sharp attention patterns.
We hypothesize that a revision of the self-attention
operation could help reduce anisotropy by facil-
itating the emergence of sharp attention softmax
distributions without distorting the geometry of the
hidden representations.



Limitations

As mentioned in the Discussion section, we ac-
knowledge that section 4 does not take into account
the training dynamics, and only exposes some prop-
erties of the Transformer layer at initialization. We
also notice that the Spearman correlation test used
in Figure 5 may not be well-suited for such noisy
observations, as the high p-value of the GPT-2
model shows. We provide a similar graph based on
the Pearson correlation in Appendix A.

Moreover, we are aware that our approach is
not theoretically rigorous in some aspects. For in-
stance, we don’t prove that sharp self-attention pat-
terns cannot emerge without anisotropy in keys and
queries representations. In other words, this arti-
cle is focusing on exposing and correlating factors
that explain anisotropy, but we do not demonstrate
theoretical properties that would help identify the
causes of anisotropy. Nevertheless, we believe that
our work can pave the way for such theoretical
exploration in the future.
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Zhou et al. (2021), we believe that distortions in
the embedding space may be related to bias in the
training data, whether it is inherent to the structure
of the modality (e.g. the Zipfian distribution of
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Figure 16: p-value of the Pearson correlation test be-
tween the norm of the average representation and the
cosine-similarity averaged over all layers, across modal-
ities. Models above the red dotted line are not signifi-
cantly affected by the drift effect.

The Pearson test measures a linear correlation be-
tween random variables, while the Spearman test
measures a monotonic correlation. As there is
no specific argument in favor of a linear relation-
ship between the measured distributions (average
cosine-similarity and norm of the average represen-
tation), we decided to use the Spearman correlation
test in order to take into account more complex
relation patterns.

Nevertheless, this metric is based on the rank of
each observation, and is thus not robust to fluctu-
ations due to sample variance, specifically when
working with such small samples. This is reflected
by the discrepancy between Pearson and Spearman
p-values for some models (e.g. GPT-2).
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B Cosine-similarity and anisotropy
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Figure 17: Density function of cosine-similarity for a
normal distribution as the dimension increases.
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Figure 18: 95th quartile of the cosine-similarity distribu-
tion on a normal distribution as the dimension increases.
We add points for the average cosine-similarity level of
Transformers models for several modalities.

It can be argued that describing anisotropy as
the observation of "high" cosine-similarity values
is not a convincing definition. This section aims
at showing which ranges of cosine-similarity val-
ues are characteristic of anisotropic distributions.
In Figure 17, we show the density function of the
cosine-similarity values obtained when drawing
pairs of samples from isotropic normal distribu-
tions in R? as d increases.

For smaller dimensions (d = 16), we see that the
range of cosine-similarity values that are attained
between isotropic distributions is relatively broad
compared to the possible spectrum ([—1,1]). As
d increases, the support of the observed distribu-
tions seems to become smaller, due to the curse of
dimensionality.
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We analyze this effect more in-depth in Fig-
ure 18, where we plot the 95th quantile of the
cosine-similarity distribution in the isotropic sce-
nario. We also add values for the layer-wise av-
erage cosine-similarity levels of typical models
in several modalities for comparison. We can
clearly observe that the levels of cosine-similarity
observed in the representations of Transformers-
based models are significantly unlikely to be ob-
served in between samples drawn in isotropic nor-
mal distributions.

Nevertheless, as we go towards higher dimen-
sional spaces for bigger models (e.g. Llama-65B
from Touvron et al. (2023) has 8192 hidden di-
mensions), we believe that it may be relevant to
introduce isotropy metrics that are grounded to
isotropic cosine-similarity distributions. We leave
this question for future works.

C Other projections for (), and K

As mentioned in the Discussion (section 6), we
reproduce visualizations from section 5 using dif-
ferent projection choices. Namely, we compute the
SVD on K only in Figure 19 and Figure 21, and
on (Y only in Figure 20 and Figure 22.

The plots show that not only does the distribu-
tion used for the SVD drifts away from the origin
along training, but also that the other distribution
drifts away from the origin in an opposite direc-
tion. In other words, the singular components of
each distribution are also relevant to describe the
drift of the other distribution. Hence, Figure 19
and Figure 20 support our conclusion that the drift
directions of keys and queries are aligned during
training.

D Stability across MultiBERT seeds
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Abstract

Before deploying a language model (LM)
within a given domain, it is important to mea-
sure its tendency to generate factually incor-
rect information in that domain. Existing meth-
ods for factuality evaluation of LLM genera-
tion focus on facts sampled from the LM itself,
and thus do not control the set of evaluated
facts and might under-represent domain spe-
cific or rare facts. We propose FACTOR: Fac-
tual Assessment via Corpus TransfORmation, a
scalable approach for evaluating LM factuality.
FACTOR automatically transforms a factual
corpus of interest into a benchmark evaluat-
ing an LM’s propensity to generate true facts
from the corpus vs. similar but incorrect state-
ments. We use our framework to create three
benchmarks: Wiki-FACTOR, News-FACTOR
and Expert-FACTOR. We show that: (i) our
benchmark scores increase with model size and
improve when the LM is augmented with re-
trieval; (ii) benchmark score and perplexity do
not always agree on model ranking; (iii) when
perplexity and benchmark score disagree, the
latter better reflects factuality in open-ended
generation, as measured by human annotators.
We make our data and code publicly available'.

1 Introduction

Despite rapid improvements in their capabilities,
large Language Models (LMs) still tend to generate
factually inaccurate or erroneous text (Lin et al.,
2022; Maynez et al., 2020; Huang et al., 2020).
Such phenomena can pose a significant hurdle to
deploying LMs in important or sensitive settings,
motivating the development of methods for evalu-
ating LM factuality in open-ended generation.
Methods for directly evaluating an LM’s propen-
sity towards factual generation were recently pro-
posed by Lee et al. (2022) and Min et al. (2023).
These methods suggest sampling generations from

*Corresponding author: dorm@ai2l.com
'https://github.com/AI21Labs/factor
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@efix: Steve Jobs had a long power \

struggle with the company's board.

Completions:

(a) In 1985, he was forced out of Apple.

(b) In 1985, he was forced out of NeXT.

(c) In 1985, he quit Apple.

(d) In 1988, he was forced out of Apple.
(a) ... — O Y
®) ... — -0 x
@~ [89)-5 i

\\ (@... - =) -pb /

Figure 1: Each example in our evaluation task (dubbed FAC-
TOR) consists of a prefix and four completions, of which only
one is factually correct (completion (a) in this example). The
non-factual completions (b), (¢) and (d), marked in red, are
generated according to different factual error types, detailed in
Table 1. The evaluated model assigns likelihood scores to each
completion separately. It is considered “correct” if it assigns
the highest likelihood to the factually correct completion over
all non-factual alternatives.

a model, applying an automatic pipeline for fact
verification, and then assigning a score correspond-
ing to the percentage of factually correct gener-
ated statements. In task-specific domains, such
as long-form question answering, evaluation is
usually done by assessing the relevance of a sam-
pled generation against a reference text (Lin, 2004;
Fabbri et al., 2022). However, the sampling ap-
proach may introduce bias: by scoring the accu-
racy of facts that an LM tends to generate in an
open-ended setting, high-likelihood facts are over-
represented, while the “long-tail” of rare facts is
under-represented.

Currently, there are no metrics suited to measur-
ing LM factuality with respect to a controlled set of
facts in a generation setting. A common proxy is
measuring LM perplexity; this was widely adopted
to evaluate retrieval-augmented LMs (Khandelwal
et al., 2020; Borgeaud et al., 2022; Ram et al., 2023;
Shi et al., 2023). However, perplexity is affected
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by many linguistic phenomena, and so cannot be
directly linked to factuality.

This paper introduces a novel framework for
testing a model’s tendency to generate factual in-
formation from a given factual corpus: Factual As-
sessment via Corpus TransfORmation (FACTOR).
The key idea is automatically perturbing factual
statements taken from the corpus to create a con-
stant number of similar but false variations for each
true statement (Figure 1). We employed Instruct-
GPT (Ouyang et al., 2022) to generate the false
variations for each true statement. The LM’s FAC-
TOR accuracy on our benchmark is defined as the
percentage of examples for which it assigns higher
likelihood to the factual completion than to any of
the false variations.

We applied FACTOR to the Wikipedia and News
domains, as well as to a diverse collection of do-
main specific question-answer pairs (e.g., medicine,
technology, law); constructing new benchmarks
dubbed Wiki-FACTOR, News-FACTOR and Expert-
FACTOR. We used these datasets to evaluate a large
suite of LMs from the OPT (Zhang et al., 2022),
GPT-2 (Radford et al., 2019), and GPT-Neo (Black
et al., 2021) families, ranging from 110M to 66B
parameters. We show in §5.1 that, as expected,
FACTOR scores increase with model size. How-
ever, even the largest models we evaluated achieved
scores of only 58% for Wiki-FACTOR, 68% for
News-FACTOR, and 55% for Expert-FACTOR,
indicating that these benchmarks are challenging
even for large LMs. In §5.2 we show that consis-
tent FACTOR score improvements can be achieved
by augmenting the LMs with the simple retrieval
component used by Ram et al. (2023). This directly
demonstrates that retrieval augmentation improves
factuality in the LM setting; FACTOR is thus posed
as a prominent approach for measuring retrieval-
augmented LMs.

We further show that FACTOR accuracy and LM
perplexity are correlted but can sometime induce
different orderings between LMs (§5.3). This high-
lights that FACTOR and perplexity capture differ-
ent aspects of the LMs’ performance (see Figure 2).
In §6, we report findings of a manual annotation
effort over 1,200 generated completions, which
reinforces FACTOR accuracy as predictive of fac-
tuality in open-ended generation.
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Figure 2: Wiki-FACTOR scores versus LM perplexity on
Wikipedia for LMs from the GPT-Neo model family (blue cir-
cle, sizes 1.3B-20B) and the OPT model family (red triangle,
1.3B-66B). Labels indicate sizes (in billions). The two may
disagree on ranking, e.g., the OPT-66B LM has higher per-
plexity but better Wiki-FACTOR accuracy than the GPT-J-6B
LM (marked in green circle). In §6 we annotate text generated
out of both models and show that better Wiki-FACTOR is
predictive of more factual text generation.

2 Related Work

Factuality Evaluation The subject of factual-
ity evaluation has been extensively studied in
downstream tasks such as summarization, fact-
verification and dialog (Honovich et al., 2022;
Huang et al., 2021; Chen et al., 2021; Tam et al.,
2023). These works typically focus on factual con-
sistency, evaluating whether a generated text is sup-
ported by a reference text or context (e.g., source
document and generated summary).

Another popular approach suggests probing
LMs’ internal factual knowledge by using slot
filling tasks, e.g., “Barack Obama was born is
[MASK]” (Petroni et al., 2019, 2021; Roberts et al.,
2020; Jiang et al., 2020; Elazar et al., 2021; Li et al.,
2022; Zhong et al., 2021; Peng et al., 2022; Mallen
et al., 2023). These works test LMs in a simplified,
synthetic setting.

FACTOR differs from the above methods as
it aims at evaluating factuality in a natural open-
ended text generation setting. In such setting, the
context may be needed to reason over the evaluated
factual statement, while the factual statement may
not be evident in the context (unlike summariza-
tion).

Recent works proposed scoring the factuality
of free-form LM generations samples (Min et al.,
2023; Lee et al., 2022). However, these approaches
lack control over the evaluated facts and are biased
towards common facts generated by the LM.



Contrastive Datasets Contrastive evaluation, in
which a model is tested to discern between similar
positive and negative examples, is widely used in
various tasks (Sennrich, 2017; Burlot and Yvon,
2017; Glockner et al., 2018; Kaushik et al., 2020).
For factuality evaluation, negative examples are
obtained by perturbing factual claims. This is done
through human annotation, rule-based or model
based heuristics (Schuster et al., 2021; Liu et al.,
2022; Gupta et al., 2022). Following recent works
on benchmarks generation (Perez et al., 2023), we
employed Instruct-GPT to generate non-factual
claims, as described in the following section.

3 The FACTOR Evaluation Approach

This section outlines our proposed approach: Fac-
tual Assessment via Corpus TransfORmation, or
FACTOR. Given a corpus, we define a multi-choice
task where each example is comprised of a multi-
sentence prefix, a single factual next sentence com-
pletion, and three non-factual alternative comple-
tions (Figure 1). In §3.1 we present several prop-
erties required of a FACTOR benchmark, and de-
scribe the error verticals along which we generate
non-factual alternatives. We then explain our FAC-
TOR dataset creation pipeline, which automatically
generates a FACTOR benchmark from a given cor-
pus (§3.2). Finally, we apply this pipeline to two
corpora Wikipedia and news, and a long-form ques-
tion answering dataset, creating Wiki-FACTOR,
News-FACTOR and Expert-FACTOR. We verify
the quality of these datasets through manual anno-
tations against the required properties (§3.3).

3.1 The Evaluation Task: FACTOR

We describe the FACTOR multi-choice factual eval-
uation task. Each example of our task contains a
prefix text ¢, along with four possible full sentence
completions, of which only one is factually correct.
We choose the original completion (i.e., the contin-
uation of ¢ in the corpus) as the factually correct
one. The correct completion is denoted as ¢™, and
the non-factual completions as C~ = {¢; , ¢, , ¢35 }
We evaluate models by measuring the percentage
of examples where they assign the highest mean
log-probability to ¢*. Formally, a model is correct
on a given example if:

log p(c|t)

ct = , (1)
|

argmax
cef{ct}uC—
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where |c| is the length of completion ¢ in tokens.
We refer to the percentage of correct examples as
the FACTOR accuracy.

We require each of the “incorrect” completions
¢~ € C™ to satisfy the following properties:

1. Non-factuality: ¢~ contains a false claim;
2. Fluency: ¢~ is grammatical,

3. Similarity to the factual completion: ¢~ has a
small edit-distance from c™.

The second and third properties make it harder
to distinguish between the factual and non-factual
completions for reasons other than their factual cor-
rectness, such as fluency or style. Furthermore, it is
desirable that the non-factual completions be logi-
cal and self-consistent, to make them more difficult
to eliminate. For example, modifying ¢ = “They
got married in 2010 and divorced in 2017 by
changing 2017 to 2009, results in a non-factual
completion which can be discarded by knowing the
temporal relation between marriage and divorce.

Error Types Non-factual completions in a FAC-
TOR dataset should cover diverse factuality error
types. To do so, we adopt the error typology in-
troduced in FRANK (Pagnoni et al., 2021). While
they introduced their error typology to categorize
factual inconsistencies of generated summaries
w.r.t. the source document, we instead leverage this
typology to vary the type of factual inconsistencies
that hold between non-factual completions and the
prefix and completion (¢ and ¢™). We focus on the
five error types from two error categories: semantic
frame and discourse (examples in Table 1):

* Predicate error: a predicate that is inconsis-
tent with ¢™ or .

* Entity error: The subject or object of a predi-
cate are inconsistent with ¢* or .

* Circumstance error: The completion contains
information describing the circumstance of a
predicate (e.g., location, time, manner) that is
inconsistent with ¢ or ¢.

* Coreference error: The contradiction is incon-
sistent with a pronoun/reference in ¢ or t,
referring to a wrong or non-existing entity.

e Link error: ¢~ is inconsistent with ¢t or ¢ in
the way that different statements are linked
together (causal/temporal links).



Original text
(completion in bold)

...In 1982, Donne was appointed as the first Queen’s Representative
to the Cook Islands. After completing his term, he became Chief
Justice of Nauru and Tuvalu in 1985.

Error Type Example
Entit After completing his term, he became the Queen’s Representative to
y the Cook Islands in 1985.
. After completing his term, he declined the position of Chief Justice
Predicate of Nauru and Tuvalu in 1985.
Circumstance After coimplgtzng his term, he became Chief Justice of Nauru and
Tuvalu in 1987.
Coreference After coimpletmg her term, she became Chief Justice of Nauru and
Tuvalu in 1985.
Link Before completing his term, he became Chief Justice of Nauru and

Tuvalu in 1985.

Table 1: Error types examples. The original text (top) consists of a prefix and a completion sentence (marked in bold). Each
example introduce different perturbation over the original completion of different type (edit marked in red).

3.2 Generating FACTOR Benchmarks

Given an evaluation corpus, we generate a FAC-
TOR benchmark automatically. The process is de-
signed to meet the requirements presented in §3.1,
and follows a four-stage pipeline: (1) prefix and
completion selection, (2) non-factual completion
generation, (3) non-factual completion filtering,
and (4) non-factual completion selection.

3.2.1 Prefix and Factual Completion Selection

We select a single sentence from each document as
a factual completion ¢*. We exclude headlines and
sentences with less than 10 words. The prefix ¢ is
the entire text preceding ¢* in the document.

3.2.2 Non-factual Completions Generation

Given a prefix ¢ and its original completion ¢,
we use InstructGPT (davinci-003; Ouyang et al.
2022) to generate a set of contradictory comple-
tions. We designed a specific prompt instructing
the model to generate contradictions corresponding
to each type of error.” We only apply each prompt
to sentences that are relevant to its error type (de-
termined through simple heuristics, see App. A.1).
The prompts are designed as follows:

* Multiple contradiction generation: the model
is prompted to generate multiple subsequent
contradictions in each sampling operation.
Preliminary experiments showed that this sam-
pling practice improves diversity compared to
multiple independent completion sampling.

2App. D lists the full prompts for each error type.
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* Edit planning: for each contradiction, the
model first explicitly generates the planned
edits over the original completion, and then
applies those edits by writing the entire modi-
fied completion (similar to chain-of-thought
prompting; Wei et al. 2022). For instance, the
coreference error in Table 1 is generated by
explicitly writing the edits ("Changes: ‘his’
to ‘her’") and then the contradiction. This
encourages the model to make minimal edits.

3.2.3 Non-factual Completions Filtering

We considered the set of generated completions as
candidates for non-factual completions. We applied
automatic tools to filter out (i) non-contradictory
and (ii) non-fluent completions.

Non-Contradictory Completions Given a can-
didate completion ¢, we assert that it is indeed
contradictory to the original completion ¢ by ap-
plying an NLI model.> The premise is set to be
¢t along with its near context (i.e., the last tokens
of the prefix ¢; denoted by t,c.r). The hypothesis
is set to be ¢, also preceded by t,.,r. We selected
generations classified as contradictory by the NLI
model with a probability higher than 7wy, i.e.:

pnLi(contradiction | [thear; €], [tnear; €])) > TNLI

We chose anpr = 0.6 (except for contradictions
generated by the coreference error prompt, where
we set Tnr1 = 0.3) after using a manual validation
process detailed App. A.2.

3We used DeBERTa-large model (He et al., 2021) fine-

tuned on the MNLI dataset (Williams et al., 2018) from Hug-
ging Face: microsoft/deberta-large-mnli.


https://huggingface.co/microsoft/deberta-large-mnli

Property Wiki News Expert
Non-factual 97.6 98.3 97.5
Fluent 94.0 97.0 96.7
Self-Consistent 87.4 87.3 83.8
Edit-Distance 2.3+(1.4) 2.14+(1.4) 4.0+@3.1)

Table 2: Validation results: percentage of generation that
meet each desired property, estimated by manual annotation
over sub-samples (top), and mean edit-distance between the
generations and their factual completion (bottom).

Non-Fluent Completions To verify that c is a
fluent completion we use GPT2-Small (Radford
et al., 2019) scores, similar to Gupta et al. (2022):
We filter out generations with mean log-likelihood
lower than the original completion’s by a fixed
margin 7. Using a manual validation, we set
7im = 0.2 (see App. A.2). Formally, we selected a
completion c if it satisfies:

log p(c™)
¢t

log p(c)
|c]

— M

3.2.4 Non-factual Completion Selection

Finally, we select non-factual completions
¢, ,Cy,c3 from the filtered candidates. For
increased error type diversity, we choose one
completion per type, and repeat types only when
not enough generations meet the §3.2.3’s criteria.

3.3 Applying FACTOR to Knowledge
Intensive Domains

We focused on three knowledge intensive domains:
Wikipedia (encyclopedic knowledge), news (cur-
rent events) and long-form question answering in
specific domains. We constructed the following
evaluation datasets:

* Wiki-FACTOR: based on the Wikipedia sec-
tion of The Pile’s validation split (Gao et al.,
2021), containing 2994 examples.

* News-FACTOR: based on Reuters articles pub-
lished after 1/10/2021, extracted from The
RefinedWeb Dataset (Penedo et al., 2023).
The dataset consists of 1036 examples.

Expert-FACTOR: based on the validation and
test splits of ExpertQA (Malaviya et al., 2023),
a long-form expert-curated question answer-
ing dataset spanning various fields, which
suits the motivation of FACTOR to evaluate
rare facts. Each document in the corpus is a
concatenation of a question-answer pair. The
dataset consists of 236 examples.
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Type Wiki News Expert
Predicate 25.4 31.3 47.1
Entity 42.8 48.0 38.8
Circumstance 24.2 16.0 7.1
Coreference 4.4 2.3 2.9
Link 3.2 2.3 4.2

Table 3: Annotated error type distribution for Wiki-FACTOR
(Wiki), News-FACTOR (News), Expert-FACTOR (Expert).

3.3.1 Dataset Validation

To validate that our FACTOR benchmarks meet
the required properties detailed in §3.1, we man-
ually evaluated a sub-sample from each dataset.
We sampled 138 examples from Wiki-FACTOR,
100 examples from News-FACTOR and 80 exam-
ples from Expert-FACTOR, containing 414, 300
and 240 generations overall. Each generation was
annotated w.r.t. the properties manifested in §3.1,
namely whether they were (1) non-factual, (2) flu-
ent, and (3) self-consistent. To assess datasets diver-
sity, we annotated the contradictions in accordance
with the error typology of Pagnoni et al. (2021),
described in §3.1. We verified that the non-factual
completions are minimally edits variants of the fac-
tual completion by measuring mean edit distances.
Validation results in Table 2 show that for all
datasets, almost every generated completion indeed
contradicts the original one, was fluent, and was
self consistent. Table 3 shows the error type dis-
tribution, indicating that FACTOR yields diverse
contradiction types. Semantic frame errors (Entity,
Predicate, and Circumstance) were more prevalent
than discourse errors (Link and Coreference), as
more sentences are suited for these type of errors.

4 Experimental Setup

We used FACTOR benchmarks to evaluate factual
knowledge of LLMs across varying model families.
We describe the experimental setup below.

4.1 Datasets

The Wiki-FACTOR, News-FACTOR and Expert-
FACTOR datasets are described in §3.3. For per-
plexity evaluation (§5.3), we selected a subset of
300 Wikipedia articles from the documents Wiki-
FACTOR is based on (~367K tokens).

4.2 Models

We performed our experiments over a set of open
source models: four models of GPT-2 family
(110M-1.5B; Radford et al. 2019), five models
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Figure 3: Accuracy per model size for Wiki-FACTOR (left), News-FACTOR (center), and Expert-FACTOR (right) for models
from GPT-2 (yellow square), GPT-Neo (blue circle), and OPT (red triangle) families.

from the GPT-Neo family (125M-20B; Black et al.
2021, 2022; Wang and Komatsuzaki 2021), and
eight models of OPT (125M-66B; Zhang et al.
2022). We capped the sequence length at 1024
tokens to compare all models directly.

The corpora that our FACTOR benchmarks were
constructed from were not used for training any of
the examined models. News-FACTOR is based on
articles published after 1/10/2021, while Expert-
FACTOR is based on examples written in 2023.
Both are beyond the models’ data cutoff date. Wiki-
FACTOR is based on Wikipedia documents from
The Pile’s validation split, which is not part in any
of the models’ training sets. (OPT and GPT-Neo
models were trained on The Pile’s training split,
GPT-2 models were not trained on Wikipedia).

4.3 Retrieval-Augmented Models

In §5.2, we present evaluations of retrieval-
augmented variants of the models. To that end, we
adopted the In-Context RALM (IC-RALM) frame-
work of Ram et al. (2023), where the retrieved doc-
ument is prepended to the LLM’s input, without
any further training or specialized LLLM architec-
ture. In IC-RALM, a retriever is called every s
tokens (i.e., the stride), with a query comprised of
the last ¢ tokens. The LLM is run with the concate-
nated input to assign log-probabilities to the next s
tokens. We used the lexical BM25 (Robertson and
Zaragoza, 2009) over Wikipedia corpus,* exclud-
ing the evaluated docs; and set s = 8, £ = 32.

5 Factual Knowledge Evaluation Results

This section describes the experimental evaluation
of LLM factuality using our FACTOR benchmarks.
In §5.1 we show that FACTOR accuracy increases
with model size but also depends on the training

*We used the Wikipedia corpus of Karpukhin et al. (2020),
based on the dump from Dec. 20, 2018.
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data (different model families differ in scores). In
§5.2, we show that retrieval augmentation of the
LM improves FACTOR accuracy, positioning it as
the first automatic measure of factuality improve-
ment for retrieval augmented LMs. Finally, in §5.3,
we show that the pairwise model ranking of corpus
perplexity and FACTOR accuracy can differ signifi-
cantly. This outcome, along with manual validation
of the correlation between FACTOR accuracy and
factual generation in §6, solidifies FACTOR accu-
racy as a novel automatic measure for evaluating
the proneness of an LM to generate factual infor-
mation in a certain domain.

5.1 Factual Knowledge Improves with Model
Size

We evaluate GPT-2, GPT-Neo, and OPT models
on Wiki-FACTOR, News-FACTOR and Expert-
FACTOR (Figure 3). Larger models generally
outperform smaller ones within the same model
family. However, even the largest models are
capped at 58.0% (GPT-NeoX-20B), 68.1% (OPT-
66B) and 55.9% (OPT-30B) on Wiki-FACTOR,
News-FACTOR and Expert-FACTOR respectively,
indicating the benchmarks are challenging. Re-
cent works (Chuang et al., 2023; Kai et al., 2024)
use Wiki-FACTOR and News-FACTOR to evaluate
models from the LLaMA family (Touvron et al.,
2023) and show similar trends.

We observe that all models achieve higher FAC-
TOR accuracy on news comparing to the other two
domains. This may be because news articles cover
specific events, making the prefix more useful for
detecting factual completions (further discussion
in App. B.2). When comparing different model-
families, we find that the OPT models leads on
News-FACTOR, while the GPT-Neo family leads
on Wiki-FACTOR. This implies that the different
data sources used for training these two model fam-
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Figure 4: Factual accuracy over Wiki-FACTOR for GPT-Neo and OPT models, compared to their IC-RALM variants. IC-RALM

leads to consistent improvement for all models.

ilies are suited to different domains.

5.2 The Effect of Retrieval Augmentation on
Factual Knowledge

Next, we ask: Can FACTOR accuracy be improved
by augmenting models with a retrieval component?
Importantly, while a clear motivation for retrieval
augmentation is factual grounding of LMs, no ex-
isting metrics allow direct measurement of it in a
text generation setting. We propose FACTOR ac-
curacy as an alternative to the course measure of
LM perplexity, which is often used to assess these
methods (Khandelwal et al., 2020; Borgeaud et al.,
2022; Ram et al., 2023; Shi et al., 2023).

We compared the FACTOR accuracy of LLMs
to that of their retrieval-augmented counterparts,
implemented following the IC-RALM framework
(§4.3; Ram et al. 2023). Figure 4 show the re-
sults for GPT-Neo and OPT Wiki-FACTOR. We
observed consistent gains from augmenting the
models with retrieval. These results highlight that
grounding the model in an external corpus can im-
prove its factuality. Since the retriever used in our
experiments is used in an “off-the-shelf” manner,
we speculate that further performance boosts may
be gained by a retriever system specialized for this
task (Izacard et al., 2022; Ram et al., 2023).

Another interesting finding is that the relative
gains in FACTOR accuracy obtained by IC-RALM,
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are more moderate compared to the relative gains in
perplexity over WikiText-103 (Merity et al., 2016),
reported by Ram et al. (2023). We explore the
connection between the two in the next section.

5.3 Perplexity Correlates but is not Always
Aligned with FACTOR Accuracy

We investigate whether FACTOR accuracy adds ad-
ditional information beyond perplexity, when used
as a comparative metric for selecting which LM
to use within a certain corpus. Figure 2 shows the
FACTOR accuracy of models on Wiki-FACTOR,
compared to their token-level perplexity on the
Wikipedia section of The Pile’s validation set (§4.1)
(App. B.1 includes all evaluated models). Over-
all, we observe a high correlation between the two
metrics. However, there are cases where they dis-
agree (i.e., a pair of models where one is better
when measured by perplexity but worse in terms
of FACTOR accuracy). For example, GPT-Neo-
2.7B is significantly better than OPT-2.7B in terms
of perplexity (9.0 vs. 10.1), but slightly worse in
terms of FACTOR accuracy (46.3% vs. 46.6%).
In addition, GPT-J-6B has lower perplexity com-
pared to OPT-66B (7.4 vs. 7.6), while OPT-66B is
significantly better in terms of FACTOR accuracy
(57.7% vs. 53.5%). This finding suggests that (i)
FACTOR accuracy offers a complementary view
of models’ performance, not necessarily captured



by perplexity, and (ii) improvements in perplexity
do not necessarily imply better factuality.

6 Factuality in Open-Ended Generation

This section explores the connection between FAC-
TOR accuracy and factuality in open-ended gener-
ation, via human annotations.

6.1 Experimental Setup

We selected tuples of prefix, original completion
and non-factual completion (¢, ¢, ¢™) from Wiki-
FACTOR. We then manually identified the minimal
factual claim modified by ¢~, denoted by f. For
example, the predicate error from Table 1, in which
“became’” was replaced with “declined the position
of 7, the edit relates to the minimal fact “Donne
became Chief Justice of Nauru and Tuvalu’.

We let LLMs generate free text, conditioned on
the prefix and the completion until the edit induced
by ¢~. Formally, let ¢ be the common prefix of ¢
and ¢~ (in the predicate error example, c is “After
completing his term, he"). The LLM is conditioned
on the concatenation of ¢ and c. The LLM might
generate the correct fact, text violating it, or other
completion that does not refer to it. For each exam-
ple we manually annotated whether the generated
text is true, false, or neutral w.r.t. f.

We analyzed two models with a similar token-
level perplexity but a significant gap in FACTOR
accuracy: GPT-J 6B and OPT-66B (marked in a
green circle in Figure 2). For each model, we con-
sidered two groups of examples: examples with
c™, ¢™ pairs for which the model was right, i.e.,
the model assigns larger mean log-likelihood to ¢
compared to ¢, and pairs for which the model was
wrong (the complement set). We sampled three
generations per example for 100 examples from
each group and for each model. Overall, we cre-
ated 1200 generations. We filtered some of the
samples due to ill-formatted generations or non-
contradictory completions (14.5% of all samples).

6.2 Results

We assess model’s knowledge of the minimal facts
through manual annotation. We only considered
relevant generations for their minimal fact f, ex-
cluding "neutral" generations (59.5% and 54.3%
for GPT-J 6B and OPT-66B, respectively). For each
model, we measure the percentage of generated
texts that are true w.r.t. f inthe "right" and "wrong"
subsets separately. We obtained the overall FAC-
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Model Subset Fact. Accuracy
Right 30.0%
GPT1-] 6B Wrong 10.5%
All (Weighted) 24.8%
Right 46.6%
OPT-66B Wrong 4.6%
All (Weighted) 38.8%

Table 4: Manual factuality annotation results for OPT-66B and
GPT-J 6B. For each model, we present the results per right
and wrong subsets. Bottom row shows the weighted average
between the right and wrong variants w.r.t to the right/wrong
pairs of Wiki-FACTOR.

TOR accuracy by weighting the subsets results ac-
cording to their distribution in Wiki-FACTOR. Re-
sults in Table 4 (full results in App. B.2).

Accuracy over Wiki-FACTOR is linked with
factuality in open-ended generation. For cases
where models were wrong, they generated more
false claims regarding their minimal fact. For ex-
ample, OPT-66B only generated a true claim 4.6%
of the times it was wrong, compared to 46.6% for
when it was right. This suggests that FACTOR
accuracy can shed light on the model’s ability to
generate factual claims accurately.

As a comparative metric, accuracy over Wiki-
FACTOR aligns with factuality in open-ended
generation. There were gaps in factuality anno-
tation between OPT-66B and GPT-J 6B: OPT-66B
generated true claims 38.8% of the time, while
GPT-J 6B generated only 24.8%. This aligns with
the models’ performance over Wiki-FACTOR, de-
spite sharing similar perplexity on Wiki. This sug-
gests that FACTOR is a better proxy for measuring
model factuality in a specific domain.

7 Discussion

This paper introduces FACTOR, a novel way to
evaluate LMs’ factuality. FACTOR creates an eval-
uation benchmark from a corpus, consisting of fac-
tual statements and non-factual variations. By com-
paring the LM’s likelihood of factual claims with
non-factual variants, FACTOR score captures the
LM’s propensity to generate factual information.
Metrics for measuring factual knowledge over a
given corpus are lacking. Prior works used perplex-
ity, which may be affected by factors other than
factual knowledge and does not contrast facts with
false statements. FACTOR focuses the language
modeling task on factuality by taking a contrastive



approach. Our experiments show that FACTOR
ranks models differently than perplexity and is
more aligned with factuality in open-ended gen-
eration. These findings highlight the importance of
negative examples for evaluating factuality. More-
over, they indicate that incorporating negative ex-
amples into training sets might also help optimizing
models to be more factual. We leave investigation
of training with FACTOR style data to future work.

Our work joins recent studies on factuality eval-
uation in a text-generation setting, which proposed
to evaluate models by fact-checking the model’s
generations (Lee et al., 2022; Min et al., 2023). As
FACTOR focuses on evaluation over a controlled
set of facts, we see these two approaches as com-
plementary; together, they yield a more holistic
assessment of LM factuality.

Limitations

We point to several limitations of our work. First,
since FACTOR benchmarks are generated in an
automated way, they may not fully comply with
the requirements we define in §3.1, as analyzed in
§3.3. Second, generating FACTOR benchmarks
for different domains may pose new challenges.
For instance, the selection of factual completions
is straightforward in knowledge-intensive domains,
where nearly every sentence in the corpus contains
factual information. However, in general cases, a
more intricate approach is needed to identify such
sentences. Moreover, the generation of non-factual
completions is based on a prompted model, specif-
ically designed for the Wikipedia domain. While
we observed those prompts applied well for the
news domain, their effectiveness may vary in other,
more specific domains.

Ethics Statement

Language models’ tendency to generate factually
inaccurate text raises significant issues. FACTOR
allows automatic evaluation of factuality, which
can be used to efficiently measure and develop
methods for mitigating these risks. However, we
stress that when deploying such models in sensitive
settings, automatic evaluations may not be suffi-
cient, and human evaluation is required.
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A Technical Details of FACTOR Data
Pipeline

A.1 Identifying Sentences’ Relevant Error
Types

For each sentence, we identify the types of edits
we can apply to it. First, we use a part-of-speech
tagger to detect relevance for entity error (detect-
ing nouns), predicate error (detecting verbs) and
coreference error (detecting pronouns). For circum-
stances errors, we use Named-Entity Recognition
taggers to identify sentences containing locations,
dates, and time entities. Finally, we search for tem-
poral/causal link words from a predefined set of
words, which implies relevance for link errors.

A.2 Setting Filters Thresholds

As discussed in §3.2.3, we applied two filters to
ensure the quality of the potential completions—an
NLI filter (to filter out non-contradictory comple-
tions) and an LM filter (to filter out non-fluent
completions). To choose the thresholds 7~y 1 and
TLM, we manually annotated 40 samples w.r.t to
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Figure 5: Accuracy per token perplexity over Wiki-FACTOR.

the properties specified in §3.1 (i.e., (1) contradic-
tory and (2) fluent and self-consistent). We have
tested thresholds 0.1-0.9, and chose the threshold
which achieved highest precision without filtering
out too many samples (max 35% of the samples).
For the NLI filter we used DeBERTa-largs model
fine-tuned on the MNLI dataset. Best threshold
was 7y = 0.6, with precision of 0.96. Manually
evaluating the different contradiction types we have
noticed this threshold was too harsh for corefrence
contradiction (87.5% of the completions were fil-
tered out. Therefore we reduced its threshold to
0.3 which filtered out 75% of the samples). For the
LM filter we used GPT2-Small. Best threshold was
7.m = 0.2, with precision of 0.78.

B Extended Results and Discussion

B.1 Comparison between Perplexity and
FACTOR Accuracy over Wikipedia

Figure 5 presents Wiki-FACTOR scores versus LM
perplexity on Wikipedia. The figure extends Figure
2, presenting all evaluated LMs: models from the
GPT-Neo family (blue circle), OPT family (red
triangle) and GPT?2 family (yellow square).

B.2 Factuality in Open-ended Generation

Table 6 shows the extended results for the man-
ual factuality annotation for open-ended generation
experiment §6. In addition to the overall results,
we include the distribution of Neutral/True/False
annotations. Notably, most generations are neu-
tral for both models. This highlights the limitation
of sampled-based approach for assessing model’s
factual knowledge.


https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.18653/v1/2021.naacl-main.398
https://doi.org/10.18653/v1/2021.naacl-main.398

B.3 Knowledge of Unseen Facts

As seen in Figure 3 in §5.1, FACTOR-accuracy
is often way above the random baseline of 25%,
indicating that some models succeed in predict-
ing unseen facts. It is possible that the knowledge
of these facts is derived from another document
in the training data (for example, Wikipedia con-
tains many different articles related to each other,
sharing similar factual statements). Another possi-
bility is that an unseen fact is implied by the prefix.
We hypothesize that this leads to higher FACTOR
scores in the news domain, which often covers
specific events, making the prefix more useful for
detecting factual completions. Analysis of these
cases is non-trivial, and is left for future work.

C Dataset Licenses

Table 5 details the license for each corpus we used
in the paper:

Dataset License

The Pile MIT

The RefinedWeb  ODC-By 1.0
ExpertQA MIT

Table 5: Datasets’ licenses

D Prompts for Contradictions Generation

We prompted the model to generate multiple candi-
date completions, For each of the five error types:
entity (Table 7), circumstance (Table 8), corefer-
ence (Table 9), predicate (Table 10 and 11) and
link (Table 12). The prompts are concatenated to
a given a completion and its near context, with
the exception of link-prompt where only the com-
pletion is given (we found that the instruct model
tends to repeat the context when it’s appended to
this particular prompt). The prompts instruct the
model to first plan its local edits, and then generate
the contradiction.
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Model Variant | Neutral True (T) False (F) | Fact. Accuracy (= 15)
Right 62.4% 11.3% 26.3% 30.0%
GPT-] 6B Wrong 48.8% 5.4% 45.8% 10.5%
All (Weighted) ‘ 59.5% 10.0% 30.5% ‘ 24.8%
Right 54.1% 21.4% 24.5% 46.6%
OPL.66B  Wrong 55.1%  21%  42.8% 4.6%
All (Weighted) ‘ 54.3% 17.7% 28.4% ‘ 38.8%

Table 6: Manual factuality annotation results for OPT-66B and GPT-J 6B. For each model, we present the results per right and
wrong subsets. Bottom row shows the weighted average between the right and wrong variants w.r.t to the right/wrong pairs of

Wiki-FACTOR.

Type

Prompt

Entity

Given a context and a completion, write diverse alternative completions that contradict
the original completion meaning.

First, identify if the completion contains an entity. Then, write the contradiction by
modifying an entity or it’s property, add additional modifications if necessary.

Make sure the changes you make are minimal (so only change necessary details to make
the sentence plausible). Do not modify dates or quantities.

##

Context: "Sorry" is a song by American singer Madonna from her tenth studio album
Confessions on a Dance Floor (2005). It was written and produced by Madonna and
Stuart Price, and released as the second single from the album on February 7, 2006.

It later appeared on Celebration, her 2009 greatest hits album. An uptempo dance song,
" Sorry " was one of the first tracks developed for the album and had numerous remix
treatments before the ultimate version of the track was finalized.

Completion: One of the remixes was done by the known band the Pet Shop Boys,
featuring added lyrics by the band.

1. Change: "Pet Shop Boys" to "Maddona".

Contradiction: One of the remixes was done by the known singer Maddona,

featuring added lyrics by the singer. 2. Change: "Pet Shop Boys" to "Depeche Mode".
Contradiction: One of the remixes was done by the known band Depeche Mode,
featuring added lyrics by the band.

3. Change: "known" to "unfamiliar”.

Contradiction: One of the remixes was done by the unfamiliar band Pet Shop Boys,
featuring added lyrics by the band.

4. Change: "Pet Shop Boys" to "the Killers".

Contradiction: One of the remixes was done by the known band the Killers,

featuring added lyrics by the band.

##

Context: {context}

Completion: {completion}

Table 7: Prompt for entity-errors generation
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Type

Prompt

Circumstance

Given a context and a completion, write diverse alternative completions that contradict the

original completion meaning.

First, identify if the completion describes the circumstances of an event (location or time). If
circumstances are mentioned, modify it to contradict the completion. Do not add time or location if
they didn’t appear in the original completion. Make sure the changes you make are minimal.

##

Context: The kingdom had been in long gradual decline since the early 13th century. Had Pagan
possessed a stronger central government, the collapse could have been temporary, and the country
"could have risen again". But the dynasty could not recover, and because the Mongols refused to fill
the power vacuum, no viable center emerged in the immediate aftermath. As a result, several minor
states fought it out for supremacy for the better part of the 14th century.

Completion: It was only in the late 14th century that two relatively strong powers emerged in the
Irrawaddy basin, restoring some semblance of normalcy.

1. Change: "14th" to "15th".

Contradiction: It was only in the late 15th century that two relatively strong powers emerged in the
Irrawaddy basin, restoring some semblance of normalcy. 2. Change: "Irrawaddy" to "Chindwin".
Contradiction: It was only in the late 14th century that two relatively strong powers emerged in the
Chindwin basin, restoring some semblance of normalcy.

3. Change: "late" to "mid".

Contradiction: It was only in the mid 14th century that two relatively strong powers emerged in the
Irrawaddy basin, restoring some semblance of normalcy.

#H#

Context: {context}

Completion: {completion}

Table 8: Prompt for circumstance-errors generation
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Type Prompt

Coreference  Given a context and a completion, write diverse alternative completions that contradict
the original completion meaning. First, decide if the completion contains a pronoun
(such as: he, she, it, they, his, her, its, theirs...) and write the entity it refers to.
Write the contradiction by modifying the pronoun to contradict the original coreference.
H#HH#

Context: His stance in favor of prohibition cost him the votes of four legislators in his
own party and the seat went to Republican William O. Bradley. Six years later
Beckham secured the seat by popular election, but he lost his re-election bid largely
because of his pro-temperance views and his opposition to women’s suffrage.
Completion: Though he continued to play an active role in state politics for
another two decades, he never returned to elected office, failing in his gubernatorial
bid in 1927 and his senatorial campaign in 1936.

1. Pronoun: he

Change: "he" to "Bradley".

Contradiction: Though Bradley continued to play an active role in state politics for
another two decades, he never returned to elected office, failing in his gubernatorial
bid in 1927 and his senatorial campaign in 1936.

2. Pronoun: he

Change: "he" to "Bradley".

Contradiction: Though he continued to play an active role in state politics for
another two decades, Bradley never returned to elected office, failing in his
gubernatorial bid in 1927 and his senatorial campaign in 1936.

3. Pronoun: his

Change: "his" to "Bradley’s".

Contradiction: Though he continued to play an active role in state politics for
another two decades, he never returned to elected office, failing in Bradley’s
gubernatorial bid in 1927 and his senatorial campaign in 1936.

#i#

Context: The early 6th century saw another queen ruling the city, known only as the
"Lady of Tikal", who was very likely a daughter of Chak Tok Ich ’aak II.
Completion: She seems never to have ruled in her own right, rather being partnered
with other rulers.

1. Pronoun: She

Change: "She" to "He" and "her" to "his".

Contradiction: He seems never to have ruled in his own right, rather being partnered
with other rulers.

2. Pronoun: She

Change: "She" to "The king" and "her" to "his".

Contradiction: The king seems never to have ruled in his own right, rather

being partnered with other rulers.

3. Pronoun: She

Change: "She" to "Chak Tok Ich".

Contradiction: Chak Tok Ich seems never to have ruled in her own right, rather
being partnered with other rulers.

Hit

Context: {context}

Completion: {completion}

Table 9: Prompt for coreference-errors generation
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Type Prompt

Predicate  Given a context and a completion, write diverse alternative completions, that contradict the original
completion meaning by modifying verbs.
First, Identify a verb in the original completion, and then write the contradiction by modifying it. Make sure
the contradictions are grammatically correct, fluent and consistent. Make any necessary additional
modifications to ensure that.
##
Context: Homarus gammarus is a large crustacean, with a body length up to 60 centimetres (24 in) and
weighing up to 5 — 6 kilograms (11 — 13 1b), although the lobsters caught in lobster pots are usually
23 - 38 cm (9 — 15 in) long and weigh 0.7 — 2.2 kg (1.5 — 4.9 Ib).
Completion: Like other crustaceans, lobsters have a hard exoskeleton which they must shed in order to grow,
in a process called ecdysis (moulting).
1. Change: "shed" to "retain". Additional changes: "in order to grow" to "in order to survive".
Contradiction: Like other crustaceans, lobsters have a hard exoskeleton which they must retain in order to
survive, in a process called ecdysis (moulting).
2. Change: "grow" to "maintain their size".
Contradiction: Like other crustaceans, lobsters have a hard exoskeleton which they must shed in order to
maintain their size, in a process called ecdysis (moulting).
3. Change: "shed" to "keep". Additional changes: "in order to grow" to "in order to strengthen".
Contradiction: Like other crustaceans, lobsters have a hard exoskeleton which they must keep in order to
strengthen, in a process called ecdysis (moulting).
##
Context: The ridge offered a natural avenue of approach to the airfield, commanded the surrounding area
and was almost undefended. Edson and Thomas tried to persuade Vandegrift to move forces to defend
the ridge, but Vandegrift refused, believing that the Japanese were more likely to attack along the coast.
Completion: Finally, Thomas convinced Vandegrift that the ridge was a good location for Edson’s Raiders
to rest from their actions of the preceding month.
1. Change: "rest" to "keep up".
Contradiction: Finally, Thomas convinced Vandegrift that the ridge was a good location for Edson’s
Raiders to keep up with their actions of the preceding month.
2. Change: "convinced Vandegrift" to "made Vandegrift doubt".
Contradiction: Finally, Thomas made Vandegrift doubt that the ridge was a good location for Edson’s
Raiders to rest from their actions of the preceding month. 3. Change: "rest" to "continue".
Contradiction: Finally, Thomas convinced Vandegrift that the ridge was a good location for Edson’s
Raiders to continue their actions of the preceding month.
##
Context: According to a report titled Wolves in Sheep’s Clothing, which documents the increase in
potentially violent, profane, and sexual content in children’s programming, the Parents Television Council,
a watchdog media group, and fans believed the SpongeBob SquarePants episode" Sailor Mouth "was
an implicit attempt to promote and satirize use of profanity among children.
Completion: The episode originally aired during the 2001 — 02 television season, ironically the season
in which the PTC named SpongeBob SquarePants among the best programs on cable television,
but the report cited a repeat broadcast of the episode from 2005 to prove its point that it promoted use of
profanity among children.
1. Change: "prove" to "refute". Additional changes: "best" to "most profane".
Contradiction: The episode originally aired during the 2001 — 02 television season, ironically the season
in which the PTC named SpongeBob SquarePants among the most profane programs on cable television,
but the report cited a repeat broadcast of the episode from 2005 to refute its point that it promoted use of
profanity among children.
2. Change: "originally aired" to "pulled off".
Contradiction: The episode was pulled off from the 2001 — 02 television season, ironically the season
in which the PTC named SpongeBob SquarePants among the best programs on cable television,
but the report cited a repeat broadcast of the episode from 2005 to prove its point that it promoted use of
profanity among children.
##
Context: {context}
Completion: {completion}

Table 10: Prompt for predicate-errors generation (the rest of the prompt is in table 11)
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Type

Prompt

Predicate

Context: By Part II of the series, Shikamaru is capable of utilizing multiple shadow-based techniques at
once and can lift his shadow from the ground in order to interact with physical objects; for instance, he can
pierce enemies with the shadow tendrils or use them to throw weapons. Shikamaru approaches the exams
with a sense of apathy; when he battles the Sunagakure ninja Temari, he defeats her

but forfeits his match to her, due to his chakra being low.

Completion: Despite this loss, he is the only ninja among his peers to be promoted to the rank of Chunin,
as the overseers of the exams were impressed by the insight and intelligence he demonstrated against Temari.
1. Change: "promoted" to "demoted". Additional changes: "Despite" to "Due", "as" to "although".
Contradiction: Due to this loss, he is the only ninja among his peers to be demoted to the rank of Chunin,
although the overseers of the exams were impressed by the insight and intelligence he demonstrated against
Temari.

2. Change: "were impressed" to "underappreciated”. Additional changes: "as" to "although".
Contradiction: Despite this loss, he is the only ninja among his peers to be promoted to the rank of Chunin,
although the overseers of the exams underappreciated the insight and intelligence he demonstrated against
Temari.

3. Change: "demonstrated" to "failed to demonstrate". Additional changes: "as" to "although",

"impressed" to "disappointed".

Contradiction: Despite this loss, he is the only ninja among his peers to be promoted to the rank of Chunin,
although the overseers of the exams were disappointed by the insight and intelligence he failed to
demonstrate against Temari.

#i#

Context: {context}

Completion: {completion}

Table 11: Prompt for predicate-errors generation (continue of the prompt in table 10)

Type

Prompt

Link

Given a sentence, write contradictory sentences by modifying a temporal link.

First, identify a link between events, and then modify it. Make sure the contradictions are grammatically
correct and fluent. If no such link exists, answer "NA".

#H#

Sentence: Prior to filming, a week was spent reinforcing the roof of the liquor store to ensure it would not
collapse if it were to be intruded by a group of fans.

1. Change: "prior to" to "after".

Contradiction: After filming, a week was spent reinforcing the roof of the liquor store to ensure it would not
collapse if it were to be intruded by a group of fans.

##

Sentence: Lewis McAllister, a businessman in Tuscaloosa, Alabama, was the first Republican to serve in the
Mississippi House of Representatives since Reconstruction, 1962-1968; he resided in Meridian prior to 1971.
1. Change: "prior to" to "after".

Contradiction: Lewis McAllister, a businessman in Tuscaloosa, Alabama, was the first Republican to serve
in the Mississippi House of Representatives since Reconstruction, 1962-1968; he resided in Meridian

after 1971.

2. Change: "since" to "before"

Contradiction: Lewis McAllister, a businessman in Tuscaloosa, Alabama, was the first Republican to serve
in the Mississippi House of Representatives before Reconstruction, 1962-1968; he resided in Meridian prior
to 1971.

##

Sentence: The decline of the railroad industry caused significant job losses, resulting in a population decline
as workers left for other areas.

1. Change: "caused" to "caused by".

Contradiction: The decline of the railroad industry, caused by significant job losses, resulting a

population decline as workers left for other areas.

2. Change: "resulting" to "was the result of".

Contradiction: The decline of the railroad industry caused significant job losses, was the result of a population
decline, as workers left for other areas.

#H#

Sentence: {completion}

Table 12: Prompt for link-errors generation
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Abstract

Natural Language Processing (NLP) research
is increasingly focusing on the use of Large
Language Models (LLMs), with some of the
most popular ones being either fully or partially
closed-source. The lack of access to model
details, especially regarding training data, has
repeatedly raised concerns about data contam-
ination among researchers. Several attempts
have been made to address this issue, but they
are limited to anecdotal evidence and trial and
error. Additionally, they overlook the prob-
lem of indirect data leaking, where models
are iteratively improved by using data com-
ing from users. In this work, we conduct the
first systematic analysis of work using Ope-
nADl’s GPT-3.5 and GPT-4, the most promi-
nently used LLMs today, in the context of data
contamination. By analysing 255 papers and
considering OpenAl’s data usage policy, we ex-
tensively document the amount of data leaked
to these models during the first year after the
model’s release. We report that these models
have been globally exposed to ~4.7M samples
from 263 benchmarks. At the same time, we
document a number of evaluation malpractices
emerging in the reviewed papers, such as un-
fair or missing baseline comparisons and repro-
ducibility issues. We release our results as a col-
laborative project on https://leak-1lm.github.io/,
where other researchers can contribute to our
efforts.

1 Introduction

The recent emergence of large language models
(LLMs), that show remarkable performance on a
wide range of tasks, has led not only to a dramatic
increase in their use in research but also to a grow-
ing number of companies joining the race for the
biggest and most powerful models. In pursuing
a competitive advantage, many popular LL.Ms to-
day are locked behind API access and their de-
tails are unknown (OpenAl, 2023; Thoppilan et al.,
2022; Touvron et al., 2023). This includes model
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weights (OpenAl, 2023), training data (Piktus et al.,
2023), or infrastructural details to assess model car-
bon footprint (Lacoste et al., 2019).

In particular, the lack of information on training
data raises important questions about the credibility
of LLMs performance evaluation. The data from
which these models learn, typically collected au-
tomatically by scraping documents from the web,
may contain training, validation, and — most crit-
ically — test sets coming from NLP benchmarks.
Because of this, researchers and stakeholders may
later inadvertently evaluate LLMs on the same data
they were trained on. This phenomenon, known
as data contamination, may not be an issue in the
general use of commercial LLMs, where adherence
to research principles is not mandatory, but it be-
comes a serious problem when these models are
widely used and evaluated in research.

Unfortunately, many proprietary models are
locked behind inference-only APIs, making it hard
to inspect data contamination. Because of this, ex-
isting work on the matter mostly focuses on detect-
ing extreme forms of overfitting and memorization,
such as the model’s ability to generate benchmarks
verbatim. These approaches are not only limited
but also neglect that recent proprietary LLMs get
iteratively improved from user interactions. If such
interactions involve benchmark data (for example
when researchers evaluate LLMs against baselines),
the model may, in fact, become contaminated even
if it was contamination-free during its initial train-
ing. We refer to this phenomenon as indirect data
leaking.

In this paper, we address the issue of indirect
data contamination in closed-source! LLMs by con-
ducting a systematic literature review. We review
255 papers and carefully detail data leakage emerg-
ing from them. We focus primarily on the models

'In this paper we use the terms “proprietary” and “closed-
source” interchangeably to refer to these models.
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accessible through OpenAI’s ChatGPT,> (GPT-3.5
and GPT-4%) as these are the most frequently used
commercial LLMs in NLP research. By consid-
ering OpenAl’s data usage policy, we assess how
much data was reported to be sent to the models
in a way that it could be used for further training,
hence giving the models an unfair advantage during
evaluation. We also report a series of emergent eval-
uation malpractices, including lack of comparison
with other approaches, differences in the evalua-
tion scale (e.g., evaluating open models on entire
benchmarks while comparing to proprietary LLMs
evaluated on samples only), lack of code and data
access, or data leakage even in situations where it
could be avoided. To our knowledge, this work is
the most comprehensive and extensive quantifica-
tion of the data leakage issue in LLMs to date.
In short, our contributions are as follows:

(1) We systematically analyse 255 papers evaluat-

ing OpenAI’s GPT-3.5 and GPT-4 on a variety

of tasks in NLP and other domains (Section 4).
(2) For each paper, we estimate the amount of
data leaked in such a way that it could be
used for further model training. Overall, we
conclude that ~42% of the reviewed papers
leaked data to GPT-3.5 and GPT-4, for a to-
tal of ~4.7M benchmark samples across 263
benchmarks (Section 5.1).

(3) We further analyse the evaluation protocols
of the selected papers, and we reveal some
critical malpractices limiting both the ex-
periments’ reproducibility and fairness (Sec-
tions 5.2 and 5.3).

(4) Based on our findings, we propose a list

of suggested practices for the evaluation of

closed-source LLMs (Section 6).

We believe that our work can contribute to ongo-
ing efforts on quantifying LLM data contamination
by pointing out which datasets are worthy of fur-
ther investigation. We release our survey results
as a collaborative repository, in the form of a web-
page at https://leak-1lm.github.io/. It features a list
of datasets, detailing the extend of data leakage
for each of them. We invite other researchers to
contribute any additional known leaks to the list.

*https://openai.com/blog/chatgpt
3https://openai.com/gpt-4
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2 Prior Work on LLM Data
Contamination

Work on LLMs data contamination traces back to
OpenAl’s GPT-3 (Brown et al., 2020; Magar and
Schwartz, 2022), one of the first models with API-
only access and limited training data disclosure.
Despite results hinting at the presence of signifi-
cant data contamination (Raffel et al., 2020; Ma-
gar and Schwartz, 2022), the model has been used
extensively in research and the issue was rarely
taken into account when interpreting its perfor-
mance. With the release of ChatGPT and following
closed-source models to general public,* the data
contamination topic became an even more pressing
issue.

When a model is closed-source, it becomes im-
plicitly complex to assess data contamination from
known benchmarks. Therefore, only few practical
approaches have been proposed to investigate the
issue.

One notable example is the LM Contamination
Index,’ featuring a regularly updated estimate of
contamination for a list of both open and propri-
etary models. This approach works by zero-shot
prompting the model to generate instances from
specific datasets, providing details on the required
split and format (Sainz et al., 2023). The premise
is that no model should be able to replicate specific
benchmark formats without having seen them first.

More applied approaches have been proposed re-
cently (Golchin and Surdeanu, 2023), where LLMs
are prompted to complete a given sentence com-
ing from a known benchmark. The completion is
then compared with the original reference through
text overlap metrics and a statistical test is used to
assess if the model is contaminated.

Although these preliminary works are promis-
ing, they cannot be fully trusted and have some
limitations. Most importantly, they are based on
an assessment of the model’s ability to generate an
example from the benchmark. The recall of such
methods can be affected by two issues:

(1) Some closed-source models have incorpo-
rated special filters into their decoding algo-
rithms that prevent them from generating texts
that significantly overlap with their training
sets (GitHub, 2022; Ippolito et al., 2023). This

“Including GPT-4 (OpenAl, 2023), Google’s LaMDA
(Thoppilan et al., 2022) and PaLM (Chowdhery et al., 2022),
Cohere’s Command and Anthropic’s Claude.

>https://hitz-zentroa.github.io/lm-contamination/


https://leak-llm.github.io/
https://openai.com/blog/chatgpt
https://openai.com/gpt-4
https://blog.google/technology/ai/lamda/
https://ai.google/discover/palm2/
https://cohere.com/models/command
https://claude.ai/
https://hitz-zentroa.github.io/lm-contamination/

creates an additional noise for the detection
methods and results in the lack of confidence
that even the datasets tested negative for data
leakage are not present in LLM training data.

(2) Such approaches can only detect the most ex-
treme form of overfitting which results in (al-
most) complete memorization of data samples
by the model. However, even a regular adjust-
ment of the model by training on the leaked
data, which does not necessarily lead to its
memorization, poses a problem for fair com-

parisons.

3 The Issue of Indirect Data Leaking

The related work presented in Section 2 approaches
the issue of data contamination mainly by back-
tracking models’ training data. It is commonly
assumed that using benchmarks available only to
authorised parties, or datasets being constructed
after the ChatGPT release, is a guarantee that they
have not been leaked. This ignores the fact that
models using reinforcement learning from human
feedback (RLHF, Ouyang et al., 2022), such as
those used by ChatGPT, are subject to repeated up-
dates (Aiyappa et al., 2023) with training data also
coming from user interactions. This process leads
to a previously overlooked phenomenon, where
new data are leaked to the model just through using
it. We refer to this problem as indirect data leaking
and consider it a new development of the issue for
two main reasons:

(1) Unlike plain text scraped from the internet,
data from users might be harder to inspect
for contamination as it might involve model
prompts, textual alterations, or truncation of
benchmark samples.

(2) Users supply the data along with instructions
on how to perform the task. In LLMs, this can
be considered a novel form of gold-standard
data for continued training, even in the ab-
sence of target labels. Model updates on such
data are likely much more effective than plain

in-domain text.

The issue (1) is particularly complex to trace,
even with a conscious and targeted effort by the
LLM vendor. When evaluating a closed-source
LLM, users often feed the model with test-set sam-
ples (with or without labels) surrounded by ad-
ditional text, such as instructions in the form of

69

prompts. In some cases, especially when evaluating
the LLM robustness, the test-set samples are per-
turbed and hence no longer an exact match of their
original version. Therefore, it is unlikely that LLM
vendors could effectively exclude leaked bench-
marks from further model fine-tuning, especially at
scale. For (2), it would be necessary to understand
how the LLM vendor uses the data to improve the
model. A very likely scenario is continued pre-
training, where the data leaked by users is treated
as an in-domain corpus (and thus given more in-
fluence than pretraining data). This procedure is
known to improve models’ performances in the
leaked domains (Gururangan et al., 2020). Notably,
Shi and Lipani (2023) find that fine-tuning a model
on in-domain text enriched by textual instructions
leads to an increase in the model performance even
if gold labels are not shown to the model. This
setup perfectly matches the kind of data shown to
chat LLMs when evaluated by researchers. This
means that closed-source LLMs such as GPT-3.5
and GPT-4 can make use of these gold standard
examples from widely used NLP benchmarks to
gain an unfair advantage over other models.

We also point out that recent work (Aiyappa
et al., 2023) showed that after model updates, Chat-
GPT performance improved on benchmarks to
which it was previously exposed (Zhang et al.,
2022). With these motivations, we conduct a
systematic review to quantify how much of such
data the models powering ChatGPT could have
obtained.

4 Methodology

Following the standard systematic review proto-
col from the medical domain (Khan et al., 2003),
we analyse the existing work on LLMs evaluation
to inspect the issue of indirect data contamination
and other evaluation malpractices. We focus on
OpenAI’s GPT-3.5 and GPT-4 models, as they are
the most prominently used in recent NLP research.
We organize our work into five macro-steps, corre-
sponding to the following subsections.

4.1 Framing questions

In reviewing the existing work evaluating the per-
formace of GPT-3.5 and GPT-4, we pose the fol-
lowing research questions:

(1) Which datasets have been demonstrably
leaked to GPT-3.5 and GPT-4 during the last
year?



(2) Do all papers evaluating these models include
a fair comparison with existing baselines?

4.2 Identifying relevant work

We employ commonly used online databases® and
major NLP conferences proceedings (including
ACL, NAACL, EMNLP, NeurIPS), considering
both peer-reviewed work and pre-prints, as the in-
teraction with LL.Ms happened regardless of pub-
lication status. We filter our queries on work con-
taining the terms “ChatGPT”, “GPT-4”, “GPT-3.5”
“OpenAl” “evaluation”, “large language models”,
“AI” either in title, abstract, body, or all of them.

We also do not limit our search to computer sci-
ence works only, as recent LLMs have been investi-
gated by researchers from many other domains, e.g.
healthcare (Kung et al., 2023), psychology (Cai
et al., 2023) and education (Szefer and Deshpande,
2023). Since the ChatGPT models are our primary
focus, we limit our search to works between late
November 2022 (when the first model was publicly
released) and early October 2023. Among all the
papers, we first do a preliminary screening, assess-
ing if they effectively run GPT-3.5 or GPT-4 in any
form.”

4.3 Assessing quality and relevance

To assess which work effectively leaked data to
ChatGPT, we refer to OpenAI’s data usage policy,?,
which explicitly mentions the use of users’ data for
model training:

"[...] when you use our services for indi-
viduals such as ChatGPT or DALL-E, we
may use your content to train our models

[...]"

It also clarifies that the user data are not used for
model training if sent via API and business ser-
vices:

"[...] we don’t use content from our busi-
ness offerings [...] and our API Platform
to train our models [...]"

Therefore, only the work interacting with the
models through the web interface” is considered to

‘We query Google Scholar, Semantic Scholar, DBLP,
arXiV, ACL Anthology.

"We encountered a small number of papers also comparing
to other closed-source LLMSs, such as Anthropic’s Claude.

8https://help.openai.com/en/articles/

5722486-how-your-data-is-used- to-improve-model-performance

*https://chat.openai.com/

leak data. We note that while it is possible to opt
out of providing the data for model improvement
purposes,”! we found no evidence suggesting any
of the surveyed papers did so.

A small number of works used both the web
interface and API access.'® We carefully review
such works to calculate which portion of the data
was used in the former setup. We drew our con-
clusions from the paper draft history on arXiv; in
some cases, this information was also transparently
disclosed by the authors. In the case of work with
multiple drafts dating before the model release in
November 2022, we consider the earliest draft that
includes GPT-3.5 or GPT-4 for the calculation.

4.4 Summarizing the evidence

We inspect each surveyed paper, looking for infor-
mation on the used datasets, split, and number of
samples. If no mention of sampling or similar infor-
mation is made, we assume that the whole dataset
has been used. Similarly, if no information on the
used split is provided, we assume that the authors
treated the dataset as a whole. It could be argued
that feeding entire datasets to ChatGPT is unreal-
istic because of the usage restrictions imposed by
OpenAl on the web interface, and the amount of
work necessary for manually inputting the data in-
side the chat. However, we note that quickly after
ChatGPT release, many unofficial wrappers have
been developed!! for circumventing said issues,
most of which are still in active use. We also point
out that many of the papers we surveyed mentioned
the use of such tools explicitly.

We also track secondary information relevant to
the evaluation — for each work, we inspect: (1) if it
has been peer-reviewed;'? (2) if the used prompts
are available; (3) if a repository to reproduce the
experiment is provided; (4) if the authors used a
whole dataset or a sample; (5) if GPT-3.5 or GPT-4
were compared to other open models/approaches
and if the evaluation scale was the same; (6) if the
version of the model used is reported.

4.5 Interpreting the findings

We report the results of our review both quantita-
tively and qualitatively. Specifically, we report the
number of works surveyed leaking data to GPT-

19T heir experiments began prior to March 1st, 2023 and the
authors started using the API soon after it was released.

"E.g. revChatGPT, PyChatGPT, and ChatGPT-to-APL

2We do note that part of the work we reviewed might still
be under review, also see Footnote 15.
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3.5 or GPT-4 in such a way that it can be used
by OpenAl to further improve the model (accord-
ing to their data policy). In this paper we do not
distinguish between works leaking data to GPT-
3.5, GPT-4, or both. This is because indirect data
leaking is caused by browser access, where both
models are available through the ChatGPT Plus
subscription. We also note that OpenAl confirmed
that creating GPT-4 involved the use of ChatGPT
to some extent.'? For this reason, we estimate the
data leakage to be effectively shared across the two
models and for simplicity, we refer to both models
as “ChatGPT” from now on.

We also document a series of evaluation prac-
tices emerging for the work reviewed that is
problematic with respect to objectiveness and
reproducibility. Finally, drawing upon our re-
sults, we present a series of best practices for re-
searchers evaluating OpenAl’s and other closed-
source LLMs.

5 Results

Following our methodology, in the first step we
identified 255 research papers, 212 of which were
found relevant'# during the initial screening (see
Sec. 4.2). Among the relevant papers, 70 (~ 32%)
were peer-reviewed, while the remainder (142) con-
sisted of pre-prints.!> We subsequently analysed
the retrieved papers to examine the problem of
data contamination and the adopted evaluation prac-
tices.

5.1 Indirect data contamination

From our analysis, 90 papers (~ 42%) accessed
ChatGPT through the web interface, hence provid-
ing data that OpenAl could have used to further
improve its models.

We first inspected the time distribution of the re-
viewed works (Figure 1) to gain insight into when
most data leaks happened. Unsurprisingly, the ma-
jority of the papers leaking data dates before the
official release of ChatGPT API, and it can be seen

Bhttps://openai.com/research/gpt-4

4The excluded papers either were opinion pieces that mini-
mally tested ChatGPT on certain tasks, or did not include any
evaluation.

SWe note that, during this paper’s review period, 43 of
the pre-prints were peer-reviewed and published. However,
some of the relevant proceedings have not been released yet,
making it impossible to consistently check for paper updates.
We cannot rule out that some of these works leaked more
data with further experiments, or addressed some evaluation
malpractices.
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Figure 1: Distribution of the dates when papers evaluat-
ing ChatGPT were first uploaded to arXiv or published.
The dotted line represents the ChatGPT API release
(March 1st, 2023, dotted line in the chart) as a cutoff
point. The single paper shown using the API in Febru-
ary is by a research group that reported having early
API access.

that web interface access rapidly decreased follow-
ing March 2023. However, we must note that (1)
a considerable amount of work kept using the web
interface to access ChatGPT until September 2023
and (2) our analysis cannot inspect the preliminary
stages of prompt engineering, which are rarely re-
ported and might still be done through the web
interface because of its trial-and-error nature.

The presence of leaked data after the API release
may indicate that a part of the research commu-
nity is either unaware of OpenAl’s data policy, or
does not consider it a problem when conducting
experiments. Many works, especially small case
studies, also reported using the web interface for
cost reasons, as it allows free access to the models.

As a second step, we quantified leak severity per
dataset and split. For work specifying the amount
of data used (either in the paper or through a repos-
itory), we consider the given value. For the rest, we
calculate it by inspecting the actual dataset.!® In
seven papers, no number of samples used was spec-
ified, so we contacted the authors for clarification.
In the two cases where the authors did not respond,
we assumed the entire split of a dataset was used.
We calculated both the number of instances and
the percentage of the considered split (or the whole
dataset when applicable).

Since a small number of datasets (18) was used
in multiple papers in different amounts, we had
to consider whether these should be interpreted as

*We mainly use HuggingFace Datasets, but also refer to
Kaggle or other sources based on availability.


https://huggingface.co/datasets
https://www.kaggle.com/
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Figure 2: Data leakage distribution. We report the num-
ber of times (y) we observed a specific percentage of
leaking (x) for the considered split. As some work
vaguely describes the used split as “test or dev set”, we
merge these two values in a unique chart.

individual separate leaks (that should be summed
up) or not. We were not able to verify this from
the provided data, so we adopted an “optimistic”
approach and assumed that the largest leak for a
given dataset is always a superset of all smaller
ones.!”

Our calculations show that the 90 papers leaked
data from 263 unique datasets, for a total of over
4.7M samples (see Tables 4 to 6 in the Appendix).'®

We find most samples (~ 93.8%) coming from
datasets treated as whole (with no split), followed
by test and development (~ 5.6%),'” and training
(~ 0.6%) sets. In line with what we discussed in
Section 3, we can conclude that ChatGPT was ex-
posed to millions of benchmark samples, enriched
with instructions that could be considered de-facto
novel gold-standard data in some cases.

We also report that several works included the
examples’ labels when few-shot prompting Chat-
GPT or using it as a reference-based evaluation
metric. We consider this the worst possible case
of data leaking, as it gives the model information

"We also tried a pessimistic approach, where we assumed
all the leaks were independent, but due to the small number
of works covering the same data, the results are virtually
identical.

18The survey total is 4,714,753 leaked samples.

19As some work vaguely describes the used split as “test or
dev set”, we merge these two values.
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Table 1: The number of datasets with low (Lo),
moderate-low (M-Lo), moderate-high (M-Hi) and high
leak severity (Hi) is reported for each task, omitting cus-
tom datasets. A more detailed table, including specific
dataset names, is provided in the Appendix C.

about the desired output as well.

To classify leak severity, we examine the fre-
quency distribution of leak sizes (Figure 2). It
appears that most works either leak full splits
or very small samples, with only a few works
leaking intermediate amounts. With this informa-
tion, we classify a portion of leaked data as low
(< 5%), moderate-low (5 — 50%), moderate-high
(50 — 95%), or high (> 95%).

Consequently, we categorize all leaked datasets
into these 4 thresholds. Overall, we find a low
leak for 66 (~ 25%) datasets, moderate-low for
47 (~ 18%), moderate-high for 10 (~ 4%) and
high for 142 (~ 53%). This result is particularly
worrying as the majority of datasets were almost
completely leaked.

Finally, we inspect which NLP tasks are cov-
ered by the leaked data (Table 1). We find that the
tasks suffering the most from high leaks are nat-
ural language inference, question answering, and
natural language generation. These and other tasks
include many highly popular NLP benchmarks, as
well as high-quality custom datasets created ad-
hoc for individual evaluations (see Tables 4 to 6
in the Appendix). To name a few, almost the en-
tire test sets from Semeval2016 Task 6 (Moham-
mad et al., 2016), SAMSum (Gliwa et al., 2019),
and MultiwOZ 2.4 (Ye et al., 2022) are leaked.
The custom datasets were frequently phrased as an
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Figure 3: Evaluation reproducibility. Through the above Sankey diagram, we report facilitators and barriers to
reproducing the carried-out experiments. This includes providing the used prompts, a repository with usable code

and the use of sampling.

exam in a field different from NLP, e.g., medicine,
physics, psychology, or law. Other custom datasets
explored, for example, the LLMs’ sense of humour,
philosophical and political leaning, or bias. We
note that not all the leaked custom datasets have
been publicly released. This makes the leak even
more severe, as it potentially makes OpenAl the
only organisation (besides the authors) with access
to such data.

5.2 Reproducibility

We assess the evaluations’ reproducibility by check-
ing whether the prompts used to query ChatGPT
were provided, whether a repository containing
data or code was available, and whether the datasets
used were custom-made. Finally, we also check for
sampling of the original data or other practices that
make it impossible to exactly reconstruct the data
used.

From our results (Figure 3), 192 (~ 91%) works
report the prompts used to convert data into a query
and possibly to instruct the model on how to per-
form a given task. The number of works providing
a code repository is significantly smaller, at 113
(~ 53%). This figure excludes papers that provided
a link to a non-existent or empty repository. Over-
all, 72 (~ 51%) of the pre-prints and 34 (~ 48%)
peer-reviewed papers provided both prompts and a
repository. We report further details on this data in
Appendix B.

Another barrier to reproducibility is that most
closed-source LLLMs are being regularly updated.
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Figure 4: Evaluation fairness. Through the above
Sankey diagram, we report whether the proprietary
LLMs were compared against other models, and if the
comparison was equal. In this context, "Unfair" compar-
ison refers to evaluating different models on different
amounts of data.

Therefore, it is crucial to report the used model ver-
sion, as different versions may lead to significantly
different outputs (Chen et al., 2023b). In the sur-
veyed works, this was generally done by reporting
the running period of the experiments when using
the web interface, or by reporting which version of
the model has been accessed via the API. Unfor-
tunately, as regular model updates are a relatively
new concept, this practice is not yet common. Only
29 (40%) of the peer-reviewed papers and 33 (23%)
of the pre-prints provide this information.

5.3 Evaluation fairness

We find the evaluation of ChatGPT’s performance
to be often unfair. First, comparison to any open-



source LLM or non-LLM-based method may be
missing. Our results (Figure 4) show that this is
similarly prevalent regardless of the publication sta-
tus, appearing in 71 (~ 50%) of pre-prints and 30
(~ 43%) of published papers. Second, when a com-
parison with open models and baselines is made, 54
pre-prints (~ 38%) and 34 peer-reviewed (~ 49%)
papers compare the results computed on different
samples. ChatGPT is typically evaluated on a ran-
dom sample of the benchmark while other models
are compared on its entirety. In many works, Chat-
GPT’s performance is measured on only a handful
(10-50) of examples, which substantially lowers
the expressive power of the comparison. For in-
stance, considering a simplistic case with binary
assessment of model output (correct/incorrect) on
10 examples, the difference should be more than
30% to be statistically significant,? which is rarely
seen. Statistical analysis of results is almost never
performed. We report further details on evaluation
fairness in Appendix B.

Another concerning practice is how the size of
the evaluation data is reported, especially when
sampling is used. We find that papers often show
the size of the whole evaluation dataset upfront
(e.g. in a table or in the dataset description section),
but they report the actual sample sizes used for
evaluation only later and in a less obvious way
(in footnotes, limitations sections, or appendices).
This practice makes the experimental results harder
to interpret.

6 Suggested Practices in Closed-source
LLM Evaluation

Our survey revealed both a significant amount of
data leakage in ChatGPT and many worrying trends
in its evaluation. In light of this, we list a series
of suggested practices that we believe could help
mitigate the issues. We believe that researchers
looking to objectively evaluate LLMs today should:

Access the model in a way that does not leak
data The first step when planning proprietary
LLMs evaluation should be reading their most up-
to-date data policies, and access models accord-
ingly (e.g. API instead of web interface for Ope-
nAI’s LLMs). We also acknowledge that in some
cases this might not be viable due to budget lim-
its, or an overly steep learning curve for the use of

2 Assuming Fisher’s exact test, typical o = 5% and moder-
ate model performance around p = 0.5
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APIs by researchers outside of computer science.”!
Interpret performance with caution The lack
of system specifications and training details can
make proprietary LLMs look like incredibly pow-
erful tools with impressive zero-shot performance.
This can often be explained by data contamina-
tion (Aiyappa et al., 2023). In our review, we doc-
umented that over 4 million samples across more
than 200 NLP datasets have been leaked to these
models. The performance of closed-source LLMs
should always be interpreted while keeping these
results in mind.

When possible, avoid using closed-source mod-
els We strongly encourage using the available
open-source LLLMs. While there has been discus-
sion in the research community about proprietary
models being consistently better than open-source
ones, we note that (1) this is often driven by hype,
while there is evidence of the opposite (Kocon et al.,
2023), (2) research done solely on closed LLMs
limits scientific progress, bringing benefits mainly
to the LLM vendors and (3) LLM vendors can ar-
bitrarily make changes to the models, e.g., making
previous versions unavailable, changing their be-
haviour in a way that may not be visible to the
user (Chen et al., 2023b) or changing the data treat-
ment policy.

Adopt a fair and objective comparison Evaluat-
ing closed-source LLMs is tied to comparing them
with pre-existing approaches. Evaluating propri-
etary models on a limited number of samples while
evaluating open ones on dramatically larger sets
is scientifically dubious at best. When sampling
is required (for example because of budgetary re-
strictions), it should be applied to all the considered
approaches. We also discourage taking state-of-the-
art values directly from previous work and suggest
to re-run all approaches on the considered data
only.

Make the evaluation reproducible In light of
the known NLP evaluation reproducibility cri-
sis (Belz et al., 2023; Thomson et al., 2024) we
strongly encourage researchers to report as many
details about their setup. Besides all the relevant
details about the setup for reproducibility, such as
random seeds, open model parameters, etc., we

2n such case, as of January 2024, OpenAl allows users to
opt out of providing data for model improvement through the
OpenAl Privacy Request Portal.


https://privacy.openai.com/policies

note that when the evaluation involves closed mod-
els, additional details should be disclosed. Prompts,
as well as the process leading to them, should be de-
tailed since LLMs are very sensitive to even minor
changes in prompts (Lu et al., 2022). The model
version and experiment running period should be
mentioned as well so that further researchers can
use the same model checkpoint if possible. Data,
especially if sampled, should be released (ideally
in a repository) to avoid potential differences in
sampling.

Report indirect data leaking Indirect data leak-
ing is a serious issue, and when it happens it should
be reported. Clear information on which bench-
marks have been leaked benefits research, helps
other researchers orient their experiments, and ul-
timately leads to a more objective evaluation of
proprietary LL.Ms. We invite all researchers to
contribute to our collaborative project at https:
/Neak-1lm.github.io/.

7 Conclusion and Future Work

In this work, we present our findings based on the
analysis of 255 papers evaluating the performance
of GPT-3.5 and GPT-4. We investigate the problem
of indirect data contamination and report that 4.7M
samples coming from 263 distinct datasets have
been exposed to the models in such a way that this
data could be used for training by OpenAl. We also
report concerning research practices with respect to
reproducibility and fairness. Finally, informed by
our analysis, we detailed some suggested practices
for the evaluation of closed-source LLMs.

Future Work In our future work, we aim to run
experiments via the OpenAl API to see the impact
of leaked test data on the performance of GPT-3.5
and GPT-4 on the leaked datasets and the tasks in
general.

Furthermore, we consider investigating indirect
data leakage in other closed-source models, namely
from Anthropic or Cohere, which appeared in a
small number of papers reviewed in this work.

Limitations

We are aware the list of contaminated datasets we
compiled in our work is not fully conclusive for
one of several reasons:

(1) We review the information that has been pub-
licly revealed via articles. We postulate more
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experiments could have revealed test set data
to closed-source models but were never pub-
lished.

(2) In this paper, we focus on the works that use
ChatGPT or GPT-4. However, prior to March
1st, 2023, OpenAl’s policy stated that they
may also use data from the API to improve
their models. This would imply that data sent
to GPT-3 via the API could have been used

for training.

(3) The number of papers investigating the per-
formance of ChatGPT is vast, and despite
our best efforts, we could have missed some
works.

Information on whether individual works are
pre-prints or published is given at the time of
writing (early October 2023). This is subject
to change, especially given the freshness of
many of the works reviewed.

4

(5) Many datasets released prior to 2021 could
have been fully leaked by being a part of the

models’ pre-training data.

As mentioned in Section 4, in some cases the
papers were not clear about some aspects of the ex-
periments. We contacted the authors of such papers
for clarification, however, two of them did not re-
spond. Therefore, our best-judgment assumptions
may be wrong for these papers.

Acknowledgements

This research was supported by the European Re-
search Council (Grant agreement No. 101039303
NG-NLG) and by Charles University project
SVV 260 698. Patricia Schmidtova was also sup-
ported by the Women in Quant Finance Network
grant awarded by G-Research. We would also like
to thank Zdenék Kasner and Dominik Machéicek
for their valuable feedback on the manuscript.

References

Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-
yeol Ahn. 2023. Can we trust the evaluation on Chat-
GPT? In Proceedings of the 3rd Workshop on Trust-
worthy Natural Language Processing (TrustNLP
2023), pages 47-54, Toronto, Canada. Association
for Computational Linguistics.

Anya Belz, Craig Thomson, Ehud Reiter, and Simon
Mille. 2023. Non-repeatable experiments and non-
reproducible results: The reproducibility crisis in


https://leak-llm.github.io/
https://leak-llm.github.io/
https://doi.org/10.18653/v1/2023.trustnlp-1.5
https://doi.org/10.18653/v1/2023.trustnlp-1.5
https://doi.org/10.18653/v1/2023.findings-acl.226
https://doi.org/10.18653/v1/2023.findings-acl.226

human evaluation in NLP. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 3676-3687, Toronto, Canada. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Zhenguang G Cai, David A Haslett, Xufeng Duan,
Shuqgi Wang, and Martin J Pickering. 2023. Does
ChatGPT resemble humans in language use? arXiv
preprint arXiv:2303.08014.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023.
How is ChatGPT’s behavior changing over time?
arXiv preprint arXiv:2307.09009.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PalLM: Scaling Language
Modeling with Pathways. arXiv:2204.02311 [cs].
ArXiv: 2204.02311.

GitHub. 2022. About github copilot. https://github.
com/features/copilot.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. In Proceedings of the 2nd Workshop on
New Frontiers in Summarization, pages 70-79, Hong
Kong, China. Association for Computational Linguis-
tics.

76

Shahriar Golchin and Mihai Surdeanu. 2023. Time
travel in LLMs: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493.

Suchin Gururangan, Ana Marasovi¢, Swabha
Swayamdipta, Kyle Lo, 1z Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342-8360, Online. Association for Computational
Linguistics.

Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christo-
pher Choquette Choo, and Nicholas Carlini. 2023.
Preventing generation of verbatim memorization in
language models gives a false sense of privacy. In
Proceedings of the 16th International Natural Lan-
guage Generation Conference, pages 28-53, Prague,
Czechia. Association for Computational Linguistics.

Khalid S Khan, Regina Kunz, Jos Kleijnen, and Gerd
Antes. 2003. Five steps to conducting a systematic

review. Journal of the Royal Society of Medicine,
96(3):118-121.

Jan Kocon, Igor Cichecki, Oliwier Kaszyca, Mateusz
Kochanek, Dominika Szydto, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil
Kanclerz, Anna Kocoi, Barttomiej Koptyra, Wik-
toria Mieleszczenko-Kowszewicz, Piotr Mitkowski,
Marcin Oleksy, Maciej Piasecki, Lukasz Radlifiski,
Konrad Wojtasik, Stanistaw WoZniak, and Prze-
mystaw Kazienko. 2023. ChatGPT: Jack of all trades,
master of none. Information Fusion, 99:101861.

TH Kung, M Cheatham, A Medenilla, C Sillos,
L De Leon, C Elepafio, M Madriaga, R Aggabao,
G Diaz-Candido, J Maningo, et al. 2023. Perfor-
mance of ChatGPT on USMLE: Potential for Al-
assisted medical education using large language mod-
els. Plos Digit Health, 2:000198.

Alexandre Lacoste, Alexandra Luccioni, Victor
Schmidt, and Thomas Dandres. 2019. Quantifying
the carbon emissions of machine learning.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2022. Fantastically ordered
prompts and where to find them: Overcoming few-
shot prompt order sensitivity. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
8086-8098, Dublin, Ireland. Association for Compu-
tational Linguistics.

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 157-165, Dublin, Ireland. Association
for Computational Linguistics.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.


https://doi.org/10.18653/v1/2023.findings-acl.226
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2303.08014
https://arxiv.org/abs/2303.08014
https://arxiv.org/abs/2307.09009
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://doi.org/10.18653/v1/D19-5409
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2308.08493
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/2023.inlg-main.3
https://aclanthology.org/2023.inlg-main.3
https://doi.org/10.1177/014107680309600304
https://doi.org/10.1177/014107680309600304
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/10.1371/journal.pdig.0000198
https://doi.org/10.1371/journal.pdig.0000198
https://doi.org/10.1371/journal.pdig.0000198
https://doi.org/10.1371/journal.pdig.0000198
http://arxiv.org/abs/1910.09700
http://arxiv.org/abs/1910.09700
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-long.556
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18

SemEval-2016 task 6: Detecting stance in tweets.
In Proceedings of the 10th International Workshop
on Semantic Evaluation (SemEval-2016), pages 31—
41, San Diego, California. Association for Computa-
tional Linguistics.

OpenAl. 2023. GPT-4 technical report.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730-27744.
Curran Associates, Inc.

Aleksandra Piktus, Christopher Akiki, Paulo Villegas,
Hugo Laurengon, Gérard Dupont, Sasha Luccioni,
Yacine Jernite, and Anna Rogers. 2023. The ROOTS
search tool: Data transparency for LLMs. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 3: System
Demonstrations), pages 304-314, Toronto, Canada.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Oscar Sainz, Jon Ander Campos, Iker Garcia-Ferrero,
Julen Etxaniz, and Eneko Agirre. 2023. Did Chat-
GPT cheat on your test? https://hitz-zentroa.github.
io/lm-contamination/blog/.

Zhengxaing Shi and Aldo Lipani. 2023. Don’t stop
pretraining? make prompt-based fine-tuning power-
ful learner. In Thirty-seventh Conference on Neural
Information Processing Systems.

Jakub Szefer and Sanjay Deshpande. 2023. Analyzing
chatgpt’s aptitude in an introductory computer engi-
neering course. arXiv preprint arXiv:2304.06122.

Craig Thomson, Ehud Reiter, and Anya Belz. 2024.
Common Flaws in Running Human Evaluation Ex-
periments in NLP. Computational Linguistics, pages
1-10.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,

77

Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. LaMDA: Language models for dialog ap-
plications. arXiv preprint arXiv:2201.08239.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2022. MultiwOZ 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections
to improve state tracking evaluation. In Proceedings
of the 23rd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 351-360,
Edinburgh, UK. Association for Computational Lin-
guistics.

Bowen Zhang, Daijun Ding, and Liwen Jing. 2022.
How would stance detection techniques evolve
after the launch of ChatGPT? arXiv preprint
arXiv:2212.14548.

A Full list of the reviewed work

In this section, we list all the work that we reviewed
and classified as relevant.

Kabir Ahuja, Harshita Diddee, Rishav Hada, Milli-
cent Ochieng, Krithika Ramesh, Prachi Jain, Ak-
shay Nambi, Tanuja Ganu, Sameer Segal, Maxamed
Axmed, Kalika Bali, and Sunayana Sitaram. 2023.
MEGA: Multilingual evaluation of generative Al.

Rachith Aiyappa, Jisun An, Haewoon Kwak, and Yong-
Yeol Ahn. 2023. Can we trust the evaluation on
ChatGPT?

Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan,
Peter Clark, Derry Tanti Wijaya, and Niket Tandon.
2023. RLA4F: Generating natural language feedback
with reinforcement learning for repairing model out-
puts. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7716-7733, Toronto,
Canada. Association for Computational Linguistics.

Mostafa M. Amin, Erik Cambria, and Bjorn W. Schuller.
2023. Will affective computing emerge from foun-
dation models and general AI? a first evaluation on
ChatGPT.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian
Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. 2023. L-eval: Instituting standardized
evaluation for long context language models.


https://doi.org/10.18653/v1/S16-1003
http://arxiv.org/abs/2303.08774
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.acl-demo.29
https://doi.org/10.18653/v1/2023.acl-demo.29
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://jmlr.org/papers/v21/20-074.html
https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://arxiv.org/abs/2304.06122
https://arxiv.org/abs/2304.06122
https://arxiv.org/abs/2304.06122
https://doi.org/10.1162/coli_a_00508
https://doi.org/10.1162/coli_a_00508
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://aclanthology.org/2022.sigdial-1.34
https://aclanthology.org/2022.sigdial-1.34
https://aclanthology.org/2022.sigdial-1.34
https://arxiv.org/abs/2212.14548
https://arxiv.org/abs/2212.14548
http://arxiv.org/abs/2303.12528
http://arxiv.org/abs/2303.12767
http://arxiv.org/abs/2303.12767
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
http://arxiv.org/abs/2303.03186
http://arxiv.org/abs/2303.03186
http://arxiv.org/abs/2303.03186
http://arxiv.org/abs/2307.11088
http://arxiv.org/abs/2307.11088

Fares Antaki, Samir Touma, Daniel Milad, Jonathan
El-Khoury, and Renaud Duval. 2023. Evaluating
the performance of ChatGPT in ophthalmology: An
analysis of its successes and shortcomings. Ophthal-
mology Science, 3(4):100324.

Joris Baan, Nico Daheim, Evgenia Ilia, Dennis Ulmer,
Haau-Sing Li, Raquel Fernandez, Barbara Plank,
Rico Sennrich, Chrysoula Zerva, and Wilker Aziz.
2023. Uncertainty in natural language generation:
From theory to applications.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023a. Longbench: A bilingual, mul-
titask benchmark for long context understanding.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze
He, Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yi-
jia Xiao, Haozhe Lyu, Jiayin Zhang, Juanzi Li, and
Lei Hou. 2023b. Benchmarking foundation models
with language-model-as-an-examiner.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu,
and Pascale Fung. 2023. A multitask, multilingual,
multimodal evaluation of ChatGPT on reasoning, hal-
lucination, and interactivity.

Jonas Belouadi and Steffen Eger. 2023. ByGPTS:
End-to-end style-conditioned poetry generation with
token-free language models.

Ning Bian, Xianpei Han, Le Sun, Hongyu Lin, Yaojie
Lu, and Ben He. 2023. ChatGPT is a knowledge-
able but inexperienced solver: An investigation of
commonsense problem in large language models.

Sebastian Bordt and Ulrike von Luxburg. 2023. Chat-
GPT participates in a computer science exam.

Ali Borji. 2023. A categorical archive of ChatGPT
failures.

Ritwik Bose, Ian Perera, and Bonnie Dorr. 2023. Detox-
ifying online discourse: A guided response genera-
tion approach for reducing toxicity in user-generated
text. In Proceedings of the First Workshop on Social
Influence in Conversations (SICon 2023), pages 9—
14, Toronto, Canada. Association for Computational
Linguistics.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Pe-
ter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg,
Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro,
and Yi Zhang. 2023. Sparks of artificial general in-
telligence: Early experiments with GPT-4.

Ana-Maria Bucur. 2023. Utilizing ChatGPT generated
data to retrieve depression symptoms from social
media.

78

Laura Cabello, Jiaang Li, and Ilias Chalkidis. 2023.
Pokemonchat: Auditing ChatGPT for pokémon uni-
verse knowledge.

Alex Cabrera and Graham Neubig. 2023. Zeno chatbot
report.

Zhenguang G Cai, David A Haslett, Xufeng Duan,
Shuqgi Wang, and Martin J Pickering. 2023. Does
ChatGPT resemble humans in language use? arXiv
preprint arXiv:2303.08014.

Yong Cao, Li Zhou, Seolhwa Lee, Laura Cabello, Min
Chen, and Daniel Hershcovich. 2023. Assessing
cross-cultural alignment between ChatGPT and hu-
man societies: An empirical study. In Proceedings of
the First Workshop on Cross-Cultural Considerations
in NLP (C3NLP), pages 53—-67, Dubrovnik, Croatia.
Association for Computational Linguistics.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models.

Mohna Chakraborty, Adithya Kulkarni, and Qi Li. 2023.
Zero-shot approach to overcome perturbation sensi-
tivity of prompts. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5698-5711,
Toronto, Canada. Association for Computational Lin-
guistics.

Shreya Chandrasekhar, Chieh-Yang Huang, and Ting-
Hao Huang. 2023. Good data, large data, or no
data? comparing three approaches in developing re-
search aspect classifiers for biomedical papers. In
The 22nd Workshop on Biomedical Natural Language
Processing and BioNLP Shared Tasks, pages 103—
113, Toronto, Canada. Association for Computational
Linguistics.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2023. A survey on evaluation of large language mod-
els.

Jiaao Chen, Xiaoman Pan, Dian Yu, Kaiqiang Song,
Xiaoyang Wang, Dong Yu, and Jianshu Chen. 2023a.
Skills-in-context prompting: Unlocking composition-
ality in large language models.

Lingjiao Chen, Matei Zaharia, and James Zou. 2023b.
How is ChatGPT’s behavior changing over time?
arXiv preprint arXiv:2307.09009.

Nuo Chen, Yan Wang, Haiyun Jiang, Deng Cai, Yuhan
Li, Ziyang Chen, Longyue Wang, and Jia Li. 2023c.
Large language models meet Harry Potter: A bilin-
gual dataset for aligning dialogue agents with charac-
ters.


https://www.sciencedirect.com/science/article/pii/S2666914523000568
https://www.sciencedirect.com/science/article/pii/S2666914523000568
https://www.sciencedirect.com/science/article/pii/S2666914523000568
http://arxiv.org/abs/2307.15703
http://arxiv.org/abs/2307.15703
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2308.14508
http://arxiv.org/abs/2306.04181
http://arxiv.org/abs/2306.04181
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2302.04023
http://arxiv.org/abs/2212.10474
http://arxiv.org/abs/2212.10474
http://arxiv.org/abs/2212.10474
http://arxiv.org/abs/2303.16421
http://arxiv.org/abs/2303.16421
http://arxiv.org/abs/2303.16421
http://arxiv.org/abs/2303.09461
http://arxiv.org/abs/2303.09461
http://arxiv.org/abs/2302.03494
http://arxiv.org/abs/2302.03494
https://doi.org/10.18653/v1/2023.sicon-1.2
https://doi.org/10.18653/v1/2023.sicon-1.2
https://doi.org/10.18653/v1/2023.sicon-1.2
https://doi.org/10.18653/v1/2023.sicon-1.2
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2303.12712
http://arxiv.org/abs/2307.02313
http://arxiv.org/abs/2307.02313
http://arxiv.org/abs/2307.02313
http://arxiv.org/abs/2306.03024
http://arxiv.org/abs/2306.03024
https://github.com/zeno-ml/zeno-build/tree/main/examples/chatbot/report
https://github.com/zeno-ml/zeno-build/tree/main/examples/chatbot/report
https://arxiv.org/abs/2303.08014
https://arxiv.org/abs/2303.08014
https://doi.org/10.18653/v1/2023.c3nlp-1.7
https://doi.org/10.18653/v1/2023.c3nlp-1.7
https://doi.org/10.18653/v1/2023.c3nlp-1.7
http://arxiv.org/abs/2202.07646
http://arxiv.org/abs/2202.07646
https://doi.org/10.18653/v1/2023.acl-long.313
https://doi.org/10.18653/v1/2023.acl-long.313
https://doi.org/10.18653/v1/2023.bionlp-1.8
https://doi.org/10.18653/v1/2023.bionlp-1.8
https://doi.org/10.18653/v1/2023.bionlp-1.8
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2307.03109
http://arxiv.org/abs/2308.00304
http://arxiv.org/abs/2308.00304
https://arxiv.org/abs/2307.09009
http://arxiv.org/abs/2211.06869
http://arxiv.org/abs/2211.06869
http://arxiv.org/abs/2211.06869

Xuanting Chen, Junjie Ye, Can Zu, Nuo Xu, Rui Zheng,
Minlong Peng, Jie Zhou, Tao Gui, Qi Zhang, and
Xuanjing Huang. 2023d. How robust is GPT-3.5 to
predecessors? a comprehensive study on language
understanding tasks.

Yanran Chen and Steffen Eger. 2022. Transformers
go for the lols: Generating (humourous) titles from
scientific abstracts end-to-end.

Cheng-Han Chiang and Hung-yi Lee. 2023. Can large
language models be an alternative to human evalua-
tions? In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15607-15631, Toronto,
Canada. Association for Computational Linguistics.

Jonathan H. Choi, Kristin E. Hickman, Amy Monahan,
and Daniel B. Schwarcz. 2023. ChatGPT goes to law
school. Journal of Legal Education.

Mohita Chowdhury, Ernest Lim, Aisling Higham, Rory
McKinnon, Nikoletta Ventoura, Yajie He, and Nick
De Pennington. 2023. Can large language models
safely address patient questions following cataract
surgery? In Proceedings of the 5th Clinical Natu-
ral Language Processing Workshop, pages 131-137,
Toronto, Canada. Association for Computational Lin-
guistics.

Haoran Chu and Sixiao Liu. 2023. Can Al tell good
stories? narrative transportation and persuasion with
ChatGPT. PsyArXiv.

Ted M. Clark. 2023. Investigating the use of an ar-
tificial intelligence chatbot with general chemistry

exam questions. Journal of Chemical Education,
100(5):1905-1916.

Merten Nikolay Dahlkemper, Simon Zacharias Lahme,
and Pascal Klein. 2023. How do physics students
evaluate artificial intelligence responses on compre-
hension questions? a study on the perceived scientific
accuracy and linguistic quality.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen
Xu, Wei Liu, Ninghao Liu, Sheng Li, Dajiang Zhu,
Hongmin Cai, Lichao Sun, Quanzheng Li, Dinggang
Shen, Tianming Liu, and Xiang Li. 2023a. AugGPT:
Leveraging ChatGPT for text data augmentation.

Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zi-
hua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang, and
Jun Xu. 2023b. Uncovering ChatGPT’s capabilities
in recommender systems.

Mithun Das, Saurabh Kumar Pandey, and Animesh
Mukherjee. 2023. Evaluating ChatGPT’s perfor-
mance for multilingual and emoji-based hate speech
detection.

Ernest Davis. 2023. Benchmarks for automated com-
monsense reasoning: A survey.

79

Sanjay Deshpande and Jakub Szefer. 2023. Analyz-
ing ChatGPT’s aptitude in an introductory computer
engineering course.

Sifatkaur Dhingra, Manmeet Singh, Vaisakh SB, Nee-
tiraj Malviya, and Sukhpal Singh Gill. 2023. Mind
meets machine: Unravelling GPT-4’s cognitive psy-
chology.

Bosheng Ding, Chengwei Qin, Linlin Liu, Yew Ken
Chia, Boyang Li, Shafiq Joty, and Lidong Bing. 2023.
Is GPT-3 a good data annotator? In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11173-11195, Toronto, Canada. Association
for Computational Linguistics.

George Duenas, Sergio Jimenez, and Geral Ma-
teus Ferro. 2023. You’ve got a friend in ... a lan-
guage model? a comparison of explanations of
multiple-choice items of reading comprehension be-
tween ChatGPT and humans. In Proceedings of the
18th Workshop on Innovative Use of NLP for Build-
ing Educational Applications (BEA 2023), pages 372—
381, Toronto, Canada. Association for Computational
Linguistics.

Jessica Lopez Espejel, El Hassane Ettifouri, Mahaman
Sanoussi Yahaya Alassan, El Mehdi Chouham, and
Walid Dahhane. 2023. GPT-3.5, GPT-4, or bard?
evaluating LLMs reasoning ability in zero-shot set-
ting and performance boosting through prompts.

Yaxin Fan and Feng Jiang. 2023. Uncovering the poten-
tial of ChatGPT for discourse analysis in dialogue:
An empirical study.

Tao Fang, Shu Yang, Kaixin Lan, Derek F. Wong, Jin-
peng Hu, Lidia S. Chao, and Yue Zhang. 2023. Is
ChatGPT a highly fluent grammatical error correc-
tion system? a comprehensive evaluation.

Sarah E. Finch, Ellie S. Paek, and Jinho D. Choi. 2023.
Leveraging large language models for automated dia-
logue analysis. In Proceedings of the 24th Meeting
of the Special Interest Group on Discourse and Dia-
logue, pages 202-215, Prague, Czechia. Association
for Computational Linguistics.

Kathleen Fraser, Svetlana Kiritchenko, Isar Nejadgholi,
and Anna Kerkhof. 2023. What makes a good
counter-stereotype? Evaluating strategies for auto-
mated responses to stereotypical text. In Proceedings
of the First Workshop on Social Influence in Conver-
sations (SICon 2023), pages 25-38, Toronto, Canada.
Association for Computational Linguistics.

Simon Frieder, Luca Pinchetti, Alexis Chevalier,
Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas
Lukasiewicz, Philipp Christian Petersen, and Julius
Berner. 2023. Mathematical capabilities of ChatGPT.

Jinglong Gao, Xiao Ding, Bing Qin, and Ting Liu.
2023a. Is ChatGPT a good causal reasoner? a com-
prehensive evaluation.


http://arxiv.org/abs/2303.00293
http://arxiv.org/abs/2303.00293
http://arxiv.org/abs/2303.00293
http://arxiv.org/abs/2212.10522
http://arxiv.org/abs/2212.10522
http://arxiv.org/abs/2212.10522
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.18653/v1/2023.acl-long.870
https://doi.org/10.2139/ssrn.4335905
https://doi.org/10.2139/ssrn.4335905
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.18653/v1/2023.clinicalnlp-1.17
https://doi.org/10.31234/osf.io/c3549
https://doi.org/10.31234/osf.io/c3549
https://doi.org/10.31234/osf.io/c3549
https://doi.org/10.1021/acs.jchemed.3c00027
https://doi.org/10.1021/acs.jchemed.3c00027
https://doi.org/10.1021/acs.jchemed.3c00027
http://arxiv.org/abs/2304.05906
http://arxiv.org/abs/2304.05906
http://arxiv.org/abs/2304.05906
http://arxiv.org/abs/2304.05906
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2302.13007
http://arxiv.org/abs/2305.02182
http://arxiv.org/abs/2305.02182
http://arxiv.org/abs/2305.13276
http://arxiv.org/abs/2305.13276
http://arxiv.org/abs/2305.13276
http://arxiv.org/abs/2302.04752
http://arxiv.org/abs/2302.04752
http://arxiv.org/abs/2304.06122
http://arxiv.org/abs/2304.06122
http://arxiv.org/abs/2304.06122
http://arxiv.org/abs/2303.11436
http://arxiv.org/abs/2303.11436
http://arxiv.org/abs/2303.11436
https://doi.org/10.18653/v1/2023.acl-long.626
https://doi.org/10.18653/v1/2023.bea-1.30
https://doi.org/10.18653/v1/2023.bea-1.30
https://doi.org/10.18653/v1/2023.bea-1.30
https://doi.org/10.18653/v1/2023.bea-1.30
http://arxiv.org/abs/2305.12477
http://arxiv.org/abs/2305.12477
http://arxiv.org/abs/2305.12477
http://arxiv.org/abs/2305.08391
http://arxiv.org/abs/2305.08391
http://arxiv.org/abs/2305.08391
http://arxiv.org/abs/2304.01746
http://arxiv.org/abs/2304.01746
http://arxiv.org/abs/2304.01746
https://aclanthology.org/2023.sigdial-1.20
https://aclanthology.org/2023.sigdial-1.20
https://doi.org/10.18653/v1/2023.sicon-1.4
https://doi.org/10.18653/v1/2023.sicon-1.4
https://doi.org/10.18653/v1/2023.sicon-1.4
http://arxiv.org/abs/2301.13867
http://arxiv.org/abs/2305.07375
http://arxiv.org/abs/2305.07375

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu.
2023b. Exploring the feasibility of ChatGPT for
event extraction.

Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Ship-
ing Yang, and Xiaojun Wan. 2023c. Human-like
summarization evaluation with ChatGPT.

Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen.
2023d. Enabling large language models to generate
text with citations.

Yuan Gao, Ruili Wang, and Feng Hou. 2023e. How to
design translation prompts for ChatGPT: An empiri-
cal study.

Wayne Geerling, G. Dirk Mateer, Jadrian Wooten, and
Nikhil Damodaran. 2023. ChatGPT has aced the test
of understanding in college economics: Now what?
The American Economist, 68(2):233-245.

Omid Ghahroodi, Seyed Arshan Dalili, Sahel Mes-
foroush, and Ehsaneddin Asgari. 2023. SUT at
SemEval-2023 task 1: Prompt generation for visual
word sense disambiguation. In Proceedings of the
17th International Workshop on Semantic Evaluation
(SemEval-2023), pages 2160-2163, Toronto, Canada.
Association for Computational Linguistics.

Hamideh Ghanadian, Isar Nejadgholi, and Hussein Al
Osman. 2023. ChatGPT for suicide risk assessment
on social media: Quantitative evaluation of model
performance, potentials and limitations.

Fabrizio Gilardi, Meysam Alizadeh, and Maél Kubli.
2023. ChatGPT outperforms crowd-workers for text-
annotation tasks.

Aidan Gilson, Conrad W Safranek, Thomas Huang,
Vimig Socrates, Ling Chi, Richard Andrew Taylor,
and David Chartash. 2023. How does ChatGPT per-
form on the United States Medical Licensing Exami-
nation? The implications of large language models
for medical education and knowledge assessment.
JMIR Med Educ, 9.

Github. 2023. Evaluation papers for ChatGPT.

Shahriar Golchin and Mihai Surdeanu. 2023. Time
travel in LLMs: Tracing data contamination in large
language models. arXiv preprint arXiv:2308.08493.

Srinivas Gowriraj, Soham Dinesh Tiwari, Mitali Potnis,
Srijan Bansal, Teruko Mitamura, and Eric Nyberg.
2023. Language-agnostic transformers and assess-
ing ChatGPT-based query rewriting for multilingual
document-grounded QA. In Proceedings of the Third
DialDoc Workshop on Document-grounded Dialogue
and Conversational Question Answering, pages 101—
108, Toronto, Canada. Association for Computational
Linguistics.

Wenshi Gu. 2023. Linguistically informed ChatGPT
prompts to enhance japanese-chinese machine trans-
lation: A case study on attributive clauses.

80

Reto Gubelmann, Aikaterini-lida Kalouli, Christina
Niklaus, and Siegfried Handschuh. 2023. When
truth matters - addressing pragmatic categories in
natural language inference (NLI) by large language
models (LLMs). In Proceedings of the 12th Joint
Conference on Lexical and Computational Seman-
tics (*SEM 2023), pages 24-39, Toronto, Canada.
Association for Computational Linguistics.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is ChatGPT to human experts?
comparison corpus, evaluation, and detection.

Suchin Gururangan, Ana Marasovi¢, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342-8360, Online. Association for Computational
Linguistics.

Tahsina Hashem, Weiqing Wang, Derry Tanti Wijaya,
Mohammed Eunus Ali, and Yuan-Fang Li. 2023.
Generating faithful text from a knowledge graph with
noisy reference text. In Proceedings of the 16th Inter-
national Natural Language Generation Conference,
pages 106—122, Prague, Czechia. Association for
Computational Linguistics.

Shreya Havaldar, Bhumika Singhal, Sunny Rai,
Langchen Liu, Sharath Chandra Guntuku, and Lyle
Ungar. 2023. Multilingual language models are not
multicultural: A case study in emotion. In Proceed-
ings of the 13th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment, & Social Media
Analysis, pages 202-214, Toronto, Canada. Associa-
tion for Computational Linguistics.

Jiabang He, Lei Wang, Yi Hu, Ning Liu, Hui Liu,
Xing Xu, and Heng Tao Shen. 2023a. ICL-D3IE:
In-context learning with diverse demonstrations up-
dating for document information extraction.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin
Xiao, Qianxi He, Xunzhe Zhou, Lida Chen, Xin-
tao Wang, Yuncheng Huang, Haoning Ye, Zihan Li,
Shisong Chen, Yikai Zhang, Zhouhong Gu, Jiaging
Liang, and Yanghua Xiao. 2023b. Can large language
models understand real-world complex instructions?

Xinlei He, Xinyue Shen, Zeyuan Chen, Michael Backes,
and Yang Zhang. 2023c. MGTBench: Benchmarking
machine-generated text detection.

Michael Heck, Nurul Lubis, Benjamin Ruppik, Renato
Vukovic, Shutong Feng, Christian Geishauser, Hsien-
chin Lin, Carel van Niekerk, and Milica Gasic. 2023.
ChatGPT for zero-shot dialogue state tracking: A
solution or an opportunity? In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
936-950, Toronto, Canada. Association for Compu-
tational Linguistics.


http://arxiv.org/abs/2303.03836
http://arxiv.org/abs/2303.03836
http://arxiv.org/abs/2304.02554
http://arxiv.org/abs/2304.02554
http://arxiv.org/abs/2305.14627
http://arxiv.org/abs/2305.14627
http://arxiv.org/abs/2304.02182
http://arxiv.org/abs/2304.02182
http://arxiv.org/abs/2304.02182
https://doi.org/10.1177/05694345231169654
https://doi.org/10.1177/05694345231169654
https://doi.org/10.18653/v1/2023.semeval-1.298
https://doi.org/10.18653/v1/2023.semeval-1.298
https://doi.org/10.18653/v1/2023.semeval-1.298
http://arxiv.org/abs/2306.09390
http://arxiv.org/abs/2306.09390
http://arxiv.org/abs/2306.09390
http://arxiv.org/abs/2303.15056
http://arxiv.org/abs/2303.15056
https://pubmed.ncbi.nlm.nih.gov/36753318/
https://pubmed.ncbi.nlm.nih.gov/36753318/
https://pubmed.ncbi.nlm.nih.gov/36753318/
https://pubmed.ncbi.nlm.nih.gov/36753318/
https://github.com/THU-KEG/EvaluationPapers4ChatGPT#evaluation-papers-for-chatgpt
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2308.08493
https://arxiv.org/abs/2308.08493
https://doi.org/10.18653/v1/2023.dialdoc-1.11
https://doi.org/10.18653/v1/2023.dialdoc-1.11
https://doi.org/10.18653/v1/2023.dialdoc-1.11
http://arxiv.org/abs/2303.15587
http://arxiv.org/abs/2303.15587
http://arxiv.org/abs/2303.15587
https://doi.org/10.18653/v1/2023.starsem-1.4
https://doi.org/10.18653/v1/2023.starsem-1.4
https://doi.org/10.18653/v1/2023.starsem-1.4
https://doi.org/10.18653/v1/2023.starsem-1.4
http://arxiv.org/abs/2301.07597
http://arxiv.org/abs/2301.07597
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://aclanthology.org/2023.inlg-main.8
https://aclanthology.org/2023.inlg-main.8
https://doi.org/10.18653/v1/2023.wassa-1.19
https://doi.org/10.18653/v1/2023.wassa-1.19
http://arxiv.org/abs/2303.05063
http://arxiv.org/abs/2303.05063
http://arxiv.org/abs/2303.05063
http://arxiv.org/abs/2309.09150
http://arxiv.org/abs/2309.09150
http://arxiv.org/abs/2303.14822
http://arxiv.org/abs/2303.14822
https://doi.org/10.18653/v1/2023.acl-short.81
https://doi.org/10.18653/v1/2023.acl-short.81

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Hassan
Awadalla. 2023. How good are GPT models at ma-
chine translation? a comprehensive evaluation.

Takanobu Hirosawa, Yukinori Harada, Masashi Yokose,
Tetsu Sakamoto, Ren Kawamura, and Taro Shimizu.
2023. Diagnostic accuracy of differential-diagnosis
lists generated by generative pretrained transformer
3 chatbot for clinical vignettes with common chief
complaints: A pilot study. International Journal of
Environmental Research and Public Health, 20(4).

Bart Holterman and Kees van Deemter. 2023. Does
ChatGPT have theory of mind?

Ari Holtzman, Peter West, and Luke Zettlemoyer. 2023.
Generative models as a complex systems science:
How can we make sense of large language model
behavior?

Ruixin Hong, Hongming Zhang, Hong Zhao, Dong Yu,
and Changshui Zhang. 2023. Faithful question an-
swering with Monte-Carlo planning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 3944-3965, Toronto, Canada. Association for
Computational Linguistics.

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song,
Wai Lam, and Yue Zhang. 2023a. Chain-of-symbol
prompting elicits planning in large langauge models.

Nan Hu, Yike Wu, Guilin Qi, Dehai Min, Jiaoyan Chen,
Jeff Z. Pan, and Zafar Ali. 2023b. An empirical study
of pre-trained language models in simple knowledge
graph question answering.

Yan Hu, Igra Ameer, Xu Zuo, Xueqing Peng, Yujia
Zhou, Zehan Li, Yiming Li, Jianfu Li, Xiaogian Jiang,
and Hua Xu. 2023c. Zero-shot clinical entity recog-
nition using ChatGPT.

Fan Huang, Haewoon Kwak, and Jisun An. 2023a. Is
ChatGPT better than human annotators? potential
and limitations of ChatGPT in explaining implicit
hate speech.

Haoyang Huang, Tianyi Tang, Dongdong Zhang,
Wayne Xin Zhao, Ting Song, Yan Xia, and Furu
Wei. 2023b. Not all languages are created equal in
LLMs: Improving multilingual capability by cross-
lingual-thought prompting.

Nannan Huang, Lin Tian, Haytham Fayek, and Xiuzhen
Zhang. 2023c. Examining bias in opinion summarisa-
tion through the perspective of opinion diversity. In
Proceedings of the 13th Workshop on Computational
Approaches to Subjectivity, Sentiment, & Social Me-
dia Analysis, pages 149-161, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming
Zhao, Huaming Chen, Felix Juefei-Xu, and Lei Ma.
2023d. Look before you leap: An exploratory study

81

of uncertainty measurement for large language mod-
els.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023e. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models.

Daphne Ippolito, Florian Tramer, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christo-
pher Choquette Choo, and Nicholas Carlini. 2023.
Preventing generation of verbatim memorization in
language models gives a false sense of privacy. In
Proceedings of the 16th International Natural Lan-
guage Generation Conference, pages 28-53, Prague,
Czechia. Association for Computational Linguistics.

Israt Jahan, Md Tahmid Rahman Laskar, Chun Peng,
and Jimmy Huang. 2023. Evaluation of ChatGPT on
biomedical tasks: A zero-shot comparison with fine-
tuned generative transformers. In The 22nd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, pages 326-336, Toronto,
Canada. Association for Computational Linguistics.

Myeongjun Jang and Thomas Lukasiewicz. 2023. Con-
sistency analysis of ChatGPT.

Sophie Jentzsch and Kristian Kersting. 2023. ChatGPT
is fun, but it is not funny! humor is still challenging
large language models. In Proceedings of the 13th
Workshop on Computational Approaches to Subjec-
tivity, Sentiment, & Social Media Analysis, pages
325-340, Toronto, Canada. Association for Compu-
tational Linguistics.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
GPT: A general framework for large language model
to reason over structured data.

Wenxiang Jiao, Wenxuan Wang, Jen-tse Huang, Xing
Wang, and Zhaopeng Tu. 2023. Is ChatGPT a good
translator? Yes with GPT-4 as the engine.

Ana Jojic, Zhen Wang, and Nebojsa Jojic. 2023. Gpt is
becoming a turing machine: Here are some ways to
program it.

Marzena Karpinska and Mohit Iyyer. 2023. Large lan-
guage models effectively leverage document-level
context for literary translation, but critical errors per-
sist.

David Kartchner, Selvi Ramalingam, Irfan Al-Hussaini,
Olivia Kronick, and Cassie Mitchell. 2023. Zero-
shot information extraction for clinical meta-analysis
using large language models. In The 22nd Work-
shop on Biomedical Natural Language Processing
and BioNLP Shared Tasks, pages 396—405, Toronto,
Canada. Association for Computational Linguistics.


http://arxiv.org/abs/2302.09210
http://arxiv.org/abs/2302.09210
https://www.mdpi.com/1660-4601/20/4/3378
https://www.mdpi.com/1660-4601/20/4/3378
https://www.mdpi.com/1660-4601/20/4/3378
https://www.mdpi.com/1660-4601/20/4/3378
http://arxiv.org/abs/2305.14020
http://arxiv.org/abs/2305.14020
http://arxiv.org/abs/2308.00189
http://arxiv.org/abs/2308.00189
http://arxiv.org/abs/2308.00189
https://doi.org/10.18653/v1/2023.acl-long.218
https://doi.org/10.18653/v1/2023.acl-long.218
http://arxiv.org/abs/2305.10276
http://arxiv.org/abs/2305.10276
http://arxiv.org/abs/2303.10368
http://arxiv.org/abs/2303.10368
http://arxiv.org/abs/2303.10368
http://arxiv.org/abs/2303.16416
http://arxiv.org/abs/2303.16416
http://arxiv.org/abs/2302.07736
http://arxiv.org/abs/2302.07736
http://arxiv.org/abs/2302.07736
http://arxiv.org/abs/2302.07736
http://arxiv.org/abs/2305.07004
http://arxiv.org/abs/2305.07004
http://arxiv.org/abs/2305.07004
https://doi.org/10.18653/v1/2023.wassa-1.14
https://doi.org/10.18653/v1/2023.wassa-1.14
http://arxiv.org/abs/2307.10236
http://arxiv.org/abs/2307.10236
http://arxiv.org/abs/2307.10236
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
https://aclanthology.org/2023.inlg-main.3
https://aclanthology.org/2023.inlg-main.3
https://doi.org/10.18653/v1/2023.bionlp-1.30
https://doi.org/10.18653/v1/2023.bionlp-1.30
https://doi.org/10.18653/v1/2023.bionlp-1.30
http://arxiv.org/abs/2303.06273
http://arxiv.org/abs/2303.06273
https://doi.org/10.18653/v1/2023.wassa-1.29
https://doi.org/10.18653/v1/2023.wassa-1.29
https://doi.org/10.18653/v1/2023.wassa-1.29
http://arxiv.org/abs/2305.09645
http://arxiv.org/abs/2305.09645
http://arxiv.org/abs/2305.09645
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2301.08745
http://arxiv.org/abs/2303.14310
http://arxiv.org/abs/2303.14310
http://arxiv.org/abs/2303.14310
http://arxiv.org/abs/2304.03245
http://arxiv.org/abs/2304.03245
http://arxiv.org/abs/2304.03245
http://arxiv.org/abs/2304.03245
https://doi.org/10.18653/v1/2023.bionlp-1.37
https://doi.org/10.18653/v1/2023.bionlp-1.37
https://doi.org/10.18653/v1/2023.bionlp-1.37

Jungo Kasai, Yuhei Kasai, Keisuke Sakaguchi, Yutaro
Yamada, and Dragomir Radev. 2023. Evaluating
GPT-4 and ChatGPT on japanese medical licensing
examinations.

Yuheun Kim, Lu Guo, Bei Yu, and Yingya Li. 2023.
Can ChatGPT understand causal language in science
claims? In Proceedings of the 13th Workshop on
Computational Approaches to Subjectivity, Sentiment,
& Social Media Analysis, pages 379-389, Toronto,
Canada. Association for Computational Linguistics.

Tom Kocmi and Christian Federmann. 2023. Large
language models are state-of-the-art evaluators of
translation quality.

Jan Kocon, Igor Cichecki, Oliwier Kaszyca, Mateusz
Kochanek, Dominika Szydto, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil
Kanclerz, Anna Kocon, Barttomiej Koptyra, Wik-
toria Mieleszczenko-Kowszewicz, Piotr Mitkowski,
Marcin Oleksy, Maciej Piasecki, Lukasz Radlinski,
Konrad Wojtasik, Stanistaw Wozniak, and Prze-
mystaw Kazienko. 2023. ChatGPT: Jack of all trades,
master of none. Information Fusion, 99:101861.

Nam Ho Koh, Joseph Plata, and Joyce Chai. 2023. Bad:
Bias detection for large language models in the con-
text of candidate screening.

Philipp Koralus and Vincent Wang-Mascianica. 2023.
Humans in humans out: On GPT converging toward
common sense in both success and failure.

Gerd Kortemeyer. 2023. Could an artificial-intelligence
agent pass an introductory physics course?

Michal Kosinski. 2023. Theory of mind might have
spontaneously emerged in large language models.

Sachin Kumar, Vidhisha Balachandran, Lucille Njoo,
Antonios Anastasopoulos, and Yulia Tsvetkov. 2023.
Language generation models can cause harm: So
what can we do about it? an actionable survey. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 3299-3321, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Tiffany H. Kung, Morgan Cheatham, Arielle Medenilla,
Czarina Sillos, Lorie De Leon, Camille Elepaiio,
Maria Madriaga, Rimel Aggabao, Giezel Diaz-
Candido, James Maningo, and Victor Tseng. 2023.
Performance of ChatGPT on usmle: Potential for
Al-assisted medical education using large language
models. PLOS Digital Health, 2(2):1-12.

Mu-Tien Kuo, Chih-Chung Hsueh, and Richard Tzong-
Han Tsai. 2023. Large language models on the chess-
board: A study on ChatGPT’s formal language com-
prehension and complex reasoning skills.

Emre Kiciman, Robert Ness, Amit Sharma, and Chen-
hao Tan. 2023. Causal reasoning and large language
models: Opening a new frontier for causality.

82

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben Vey-
seh, Hieu Man, Franck Dernoncourt, Trung Bui, and
Thien Huu Nguyen. 2023. ChatGPT beyond english:
Towards a comprehensive evaluation of large lan-
guage models in multilingual learning.

Md Tahmid Rahman Laskar, M Saiful Bari, Mizanur
Rahman, Md Amran Hossen Bhuiyan, Shafiq Joty,
and Jimmy Xiangji Huang. 2023. A systematic study
and comprehensive evaluation of ChatGPT on bench-
mark datasets.

Christoph Leiter, Ran Zhang, Yanran Chen, Jonas Be-
louadi, Daniil Larionov, Vivian Fresen, and Steffen
Eger. 2023. ChatGPT: A meta-analysis after 2.5
months.

Wei Qi Leong, Jian Gang Ngui, Yosephine Su-
santo, Hamsawardhini Rengarajan, Kengatharaiyer
Sarveswaran, and William Chandra Tjhi. 2023.
Bhasa: A holistic southeast asian linguistic and cul-
tural evaluation suite for large language models.

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei
Ye, Wen Zhao, and Shikun Zhang. 2023a. Evaluating
ChatGPT’s information extraction capabilities: An
assessment of performance, explainability, calibra-
tion, and faithfulness.

Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen, Hao
Wang, Weishi MI, Yaying Fei, Xiaoyang Feng, Song
Yan, HaoSheng Wang, Linkang Zhan, Yaokai Jia,
Pingyu Wu, and Haozhen Sun. 2023b. ChatHaruhi:
Reviving anime character in reality via large language
model.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang,
Bowen Li, Bailin Wang, Bowen Qin, Rongyu Cao,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao
Ma, Guoliang Li, Kevin C. C. Chang, Fei Huang,
Reynold Cheng, and Yongbin Li. 2023¢c. Can LLM
already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023d. HaluEval: A large-
scale hallucination evaluation benchmark for large
language models.

Lingyao Li, Lizhou Fan, Shubham Atreja, and Libby
Hemphill. 2023e. "hot" ChatGPT: The promise of
ChatGPT in detecting and discriminating hateful, of-
fensive, and toxic comments on social media.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Shafiq Joty, Soujanya Poria, and Lidong Bing.
2023f. Chain-of-knowledge: Grounding large lan-
guage models via dynamic knowledge adapting over
heterogeneous sources.

Zekun Li, Baolin Peng, Pengcheng He, Michel Galley,
Jianfeng Gao, and Xifeng Yan. 2023g. Guiding large
language models via directional stimulus prompting.


http://arxiv.org/abs/2303.18027
http://arxiv.org/abs/2303.18027
http://arxiv.org/abs/2303.18027
https://doi.org/10.18653/v1/2023.wassa-1.33
https://doi.org/10.18653/v1/2023.wassa-1.33
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
http://arxiv.org/abs/2302.14520
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
https://doi.org/https://doi.org/10.1016/j.inffus.2023.101861
http://arxiv.org/abs/2305.10407
http://arxiv.org/abs/2305.10407
http://arxiv.org/abs/2305.10407
http://arxiv.org/abs/2303.17276
http://arxiv.org/abs/2303.17276
http://arxiv.org/abs/2301.12127
http://arxiv.org/abs/2301.12127
http://arxiv.org/abs/2302.02083
http://arxiv.org/abs/2302.02083
https://doi.org/10.18653/v1/2023.eacl-main.241
https://doi.org/10.18653/v1/2023.eacl-main.241
https://doi.org/10.1371/journal.pdig.0000198
https://doi.org/10.1371/journal.pdig.0000198
https://doi.org/10.1371/journal.pdig.0000198
http://arxiv.org/abs/2308.15118
http://arxiv.org/abs/2308.15118
http://arxiv.org/abs/2308.15118
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2305.00050
http://arxiv.org/abs/2304.05613
http://arxiv.org/abs/2304.05613
http://arxiv.org/abs/2304.05613
http://arxiv.org/abs/2305.18486
http://arxiv.org/abs/2305.18486
http://arxiv.org/abs/2305.18486
http://arxiv.org/abs/2302.13795
http://arxiv.org/abs/2302.13795
http://arxiv.org/abs/2309.06085
http://arxiv.org/abs/2309.06085
http://arxiv.org/abs/2304.11633
http://arxiv.org/abs/2304.11633
http://arxiv.org/abs/2304.11633
http://arxiv.org/abs/2304.11633
http://arxiv.org/abs/2308.09597
http://arxiv.org/abs/2308.09597
http://arxiv.org/abs/2308.09597
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.03111
http://arxiv.org/abs/2305.11747
http://arxiv.org/abs/2305.11747
http://arxiv.org/abs/2305.11747
http://arxiv.org/abs/2304.10619
http://arxiv.org/abs/2304.10619
http://arxiv.org/abs/2304.10619
http://arxiv.org/abs/2305.13269
http://arxiv.org/abs/2305.13269
http://arxiv.org/abs/2305.13269
http://arxiv.org/abs/2302.11520
http://arxiv.org/abs/2302.11520

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Alexander Cosgrove, Christo-
pher D Manning, Christopher Re, Diana Acosta-
Navas, Drew Arad Hudson, Eric Zelikman, Esin
Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren,
Huaxiu Yao, Jue WANG, Keshav Santhanam, Laurel
Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun,
Nathan Kim, Neel Guha, Niladri S. Chatterji, Omar
Khattab, Peter Henderson, Qian Huang, Ryan An-
drew Chi, Sang Michael Xie, Shibani Santurkar,
Surya Ganguli, Tatsunori Hashimoto, Thomas Icard,
Tianyi Zhang, Vishrav Chaudhary, William Wang,
Xuechen Li, Yifan Mai, Yuhui Zhang, and Yuta Ko-
reeda. 2023a. Holistic evaluation of language models.
Transactions on Machine Learning Research. Fea-
tured Certification, Expert Certification.

Yancheng Liang, Jiajie Zhang, Hui Li, Xiaochen Liu,
Yi Hu, Yong Wu, Jiaoyao Zhang, Yongyan Liu, and
Yi Wu. 2023b. Breaking the bank with ChatGPT:
Few-shot text classification for finance. In Proceed-
ings of the Fifth Workshop on Financial Technology
and Natural Language Processing and the Second
Multimodal Al For Financial Forecasting, pages 74—
80, Macao. -.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S. Yu.
2023a. A comprehensive evaluation of ChatGPT’s
zero-shot text-to-sql capability.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr,
Peter West, Alexander Koller, Swabha Swayamdipta,
Noah A. Smith, and Yejin Choi. 2023b. We’re afraid
language models aren’t modeling ambiguity.

Chang Liu and Bo Wu. 2023. Evaluating large lan-
guage models on graphs: Performance insights and
comparative analysis.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023c. Evaluating the logical
reasoning ability of ChatGPT and GPT-4.

Hanmeng Liu, Zhiyang Teng, Leyang Cui, Chaoli
Zhang, Qiji Zhou, and Yue Zhang. 2023d. Logi-
cot: Logical chain-of-thought instruction-tuning data
collection with GPT-4.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and
Lingming Zhang. 2023e. Is your code generated
by ChatGPT really correct? rigorous evaluation of
large language models for code generation.

Xin Liu, Yuan Tan, Zhenghang Xiao, Jianwei Zhuge,
and Rui Zhou. 2023f. Not the end of story: An eval-
uation of ChatGPT-driven vulnerability description
mappings. In Findings of the Association for Com-
putational Linguistics: ACL 2023, pages 3724-3731,
Toronto, Canada. Association for Computational Lin-
guistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023g. G-Eval:

&3

NLG evaluation using GPT-4 with better human
alignment.

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang,
Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li,
Mengshen He, Zhengliang Liu, Zihao Wu, Lin Zhao,
Dajiang Zhu, Xiang Li, Ning Qiang, Dingang Shen,
Tianming Liu, and Bao Ge. 2023h. Summary of
ChatGPT-related research and perspective towards
the future of large language models.

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang
Xie, Tao Qin, Ming Zhang, and Tie-Yan Liu. 2023i.
MolXPT: Wrapping molecules with text for genera-
tive pre-training. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1606-1616,
Toronto, Canada. Association for Computational Lin-
guistics.

Zhengliang Liu, Xiaowei Yu, Lu Zhang, Zihao Wu,
Chao Cao, Haixing Dai, Lin Zhao, Wei Liu, Ding-
gang Shen, Quanzheng Li, Tianming Liu, Dajiang
Zhu, and Xiang Li. 2023j. Deid-GPT: Zero-shot
medical text de-identification by GPT-4.

Zhexiong Liu, Diane Litman, Elaine Wang, Lindsay
Matsumura, and Richard Correnti. 2023k. Predicting
the quality of revisions in argumentative writing. In
Proceedings of the 18th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2023), pages 275-287, Toronto, Canada. Association
for Computational Linguistics.

Mengsay Loem, Masahiro Kaneko, Sho Takase, and
Naoaki Okazaki. 2023. Exploring effectiveness of
GPT-3 in grammatical error correction: A study
on performance and controllability in prompt-based
methods. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational
Applications (BEA 2023), pages 205-219, Toronto,
Canada. Association for Computational Linguistics.

Guang Lu, Sylvia B. Larcher, and Tu Tran. 2023a. Hy-
brid long document summarization using c2f-far and
ChatGPT: A practical study.

Qingyu Lu, Liang Ding, Liping Xie, Kanjian Zhang,
Derek F. Wong, and Dacheng Tao. 2023b. Toward
human-like evaluation for natural language genera-
tion with error analysis. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5892—
5907, Toronto, Canada. Association for Computa-
tional Linguistics.

Qingyu Lu, Baopu Qiu, Liang Ding, Kanjian Zhang,
Tom Kocmi, and Dacheng Tao. 2023c. Error analysis
prompting enables human-like translation evaluation
in large language models: A case study on ChatGPT.

Xin Lu, Zhuojun Li, Yanpeng Tong, Yanyan Zhao, and
Bing Qin. 2023d. HIT-SCIR at WASSA 2023: Em-
pathy and emotion analysis at the utterance-level and
the essay-level. In Proceedings of the 13th Work-
shop on Computational Approaches to Subjectivity,


https://openreview.net/forum?id=iO4LZibEqW
https://aclanthology.org/2023.finnlp-1.7
https://aclanthology.org/2023.finnlp-1.7
http://arxiv.org/abs/2303.13547
http://arxiv.org/abs/2303.13547
http://arxiv.org/abs/2304.14399
http://arxiv.org/abs/2304.14399
http://arxiv.org/abs/2308.11224
http://arxiv.org/abs/2308.11224
http://arxiv.org/abs/2308.11224
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2305.12147
http://arxiv.org/abs/2305.12147
http://arxiv.org/abs/2305.12147
http://arxiv.org/abs/2305.01210
http://arxiv.org/abs/2305.01210
http://arxiv.org/abs/2305.01210
https://doi.org/10.18653/v1/2023.findings-acl.229
https://doi.org/10.18653/v1/2023.findings-acl.229
https://doi.org/10.18653/v1/2023.findings-acl.229
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2303.16634
http://arxiv.org/abs/2304.01852
http://arxiv.org/abs/2304.01852
http://arxiv.org/abs/2304.01852
https://doi.org/10.18653/v1/2023.acl-short.138
https://doi.org/10.18653/v1/2023.acl-short.138
http://arxiv.org/abs/2303.11032
http://arxiv.org/abs/2303.11032
https://doi.org/10.18653/v1/2023.bea-1.24
https://doi.org/10.18653/v1/2023.bea-1.24
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
https://doi.org/10.18653/v1/2023.bea-1.18
http://arxiv.org/abs/2306.01169
http://arxiv.org/abs/2306.01169
http://arxiv.org/abs/2306.01169
https://doi.org/10.18653/v1/2023.acl-long.324
https://doi.org/10.18653/v1/2023.acl-long.324
https://doi.org/10.18653/v1/2023.acl-long.324
http://arxiv.org/abs/2303.13809
http://arxiv.org/abs/2303.13809
http://arxiv.org/abs/2303.13809
https://doi.org/10.18653/v1/2023.wassa-1.54
https://doi.org/10.18653/v1/2023.wassa-1.54
https://doi.org/10.18653/v1/2023.wassa-1.54

Sentiment, & Social Media Analysis, pages 574-580,
Toronto, Canada. Association for Computational Lin-
guistics.

Zheheng Luo, Qiangian Xie, and Sophia Ananiadou.
2023. ChatGPT as a factual inconsistency evaluator
for text summarization.

Hanjia Lyu, Song Jiang, Hanqing Zeng, Qifan Wang,
Si Zhang, Ren Chen, Chris Leung, Jiajie Tang, Ying-
long Xia, and Jiebo Luo. 2023a. LLM-Rec: Person-
alized recommendation via prompting large language
models.

Qing Lyu, Josh Tan, Michael E. Zapadka, Janardhana
Ponnatapura, Chuang Niu, Kyle J. Myers, Ge Wang,
and Christopher T. Whitlow. 2023b. Translating ra-
diology reports into plain language using ChatGPT
and GPT-4 with prompt learning: Promising results,
limitations, and potential.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Gen-
erating data visualisations via natural language using
ChatGPT, codex and GPT-3 large language models.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. SelfCheckGPT: Zero-resource black-box hal-
lucination detection for generative large language
models.

Rui Mao, Guanyi Chen, Xulang Zhang, Frank Guerin,
and Erik Cambria. 2023. Gpteval: A survey on as-
sessments of ChatGPT and GPT-4.

Lars Mehnen, Stefanie Gruarin, Mina Vasileva, and
Bernhard Knapp. 2023. ChatGPT as a medical doc-
tor? a diagnostic accuracy study on common and rare
diseases. medRxiv.

Andrianos Michail, Stefanos Konstantinou, and Simon
Clematide. 2023. Uzh_clyp at semeval-2023 task 9:
Head-first fine-tuning and ChatGPT data generation
for cross-lingual learning in tweet intimacy predic-
tion.

Shima Rahimi Moghaddam and Christopher J. Honey.
2023. Boosting theory-of-mind performance in large
language models via prompting.

Robert Morabito, Jad Kabbara, and Ali Emami. 2023.
Debiasing should be good and bad: Measuring the
consistency of debiasing techniques in language mod-
els. In Findings of the Association for Computational
Linguistics: ACL 2023, pages 4581-4597, Toronto,
Canada. Association for Computational Linguistics.

Vishvak Murahari, Ameet Deshpande, Carlos Jimenez,
Izhak Shafran, Mingqiu Wang, Yuan Cao, and
Karthik Narasimhan. 2023. MUX-PLMs: Pre-
training language models with data multiplexing. In
Proceedings of the 8th Workshop on Representation
Learning for NLP (RepL4NLP 2023), pages 196-211,
Toronto, Canada. Association for Computational Lin-
guistics.

84

Duan Nan. 2023. Frontier review of multimodal Al In
Proceedings of the 22nd Chinese National Confer-
ence on Computational Linguistics (Volume 2. Fron-
tier Forum), pages 110-118, Harbin, China. Chinese
Information Processing Society of China.

Andrew Nedilko. 2023. Generative pretrained trans-
formers for emotion detection in a code-switching
setting. In Proceedings of the 13th Workshop on
Computational Approaches to Subjectivity, Sentiment,
& Social Media Analysis, pages 616—-620, Toronto,
Canada. Association for Computational Linguistics.

Harsha Nori, Nicholas King, Scott Mayer McKinney,
Dean Carignan, and Eric Horvitz. 2023. Capabilities
of GPT-4 on medical challenge problems.

Shinhyeok Oh, Hyojun Go, Hyeongdon Moon, Yunsung
Lee, Myeongho Jeong, Hyun Seung Lee, and Seung-
taek Choi. 2023. Evaluation of question generation
needs more references. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
6358-6367, Toronto, Canada. Association for Com-
putational Linguistics.

Reham Omar, Omij Mangukiya, Panos Kalnis, and Es-
sam Mansour. 2023. ChatGPT versus traditional
question answering for knowledge graphs: Current
status and future directions towards knowledge graph
chatbots.

Amin Omidvar and Aijun An. 2023. Empowering con-
versational agents using semantic in-context learning.
In Proceedings of the 18th Workshop on Innovative
Use of NLP for Building Educational Applications
(BEA 2023), pages 766—771, Toronto, Canada. Asso-
ciation for Computational Linguistics.

OpenAl. 2023. GPT-4 technical report.

Miguel Ortega-Martin, Oscar Garcia-Sierra, Alfonso
Ardoiz, Jorge Alvarez, Juan Carlos Armenteros, and
Adrian Alonso. 2023. Linguistic ambiguity analysis
in ChatGPT.

Lidiia Ostyakova, Veronika Smilga, Kseniia Petukhova,
Maria Molchanova, and Daniel Kornev. 2023. Chat-
GPT vs. crowdsourcing vs. experts: Annotating open-
domain conversations with speech functions. In Pro-
ceedings of the 24th Meeting of the Special Interest
Group on Discourse and Dialogue, pages 242-254,
Prague, Czechia. Association for Computational Lin-
guistics.

Naoki Otani, Jun Araki, HyeongSik Kim, and Eduard
Hovy. 2023. On the underspecification of situa-
tions in open-domain conversational datasets. In
Proceedings of the 5th Workshop on NLP for Con-
versational AI (NLP4ConvAl 2023), pages 12-28,
Toronto, Canada. Association for Computational Lin-
guistics.

Wenbo Pan, Qiguang Chen, Xiao Xu, Wanxiang Che,
and Libo Qin. 2023. A preliminary evaluation of
ChatGPT for zero-shot dialogue understanding.


http://arxiv.org/abs/2303.15621
http://arxiv.org/abs/2303.15621
http://arxiv.org/abs/2307.15780
http://arxiv.org/abs/2307.15780
http://arxiv.org/abs/2307.15780
http://arxiv.org/abs/2303.09038
http://arxiv.org/abs/2303.09038
http://arxiv.org/abs/2303.09038
http://arxiv.org/abs/2303.09038
http://arxiv.org/abs/2302.02094
http://arxiv.org/abs/2302.02094
http://arxiv.org/abs/2302.02094
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2308.12488
http://arxiv.org/abs/2308.12488
https://doi.org/10.1101/2023.04.20.23288859
https://doi.org/10.1101/2023.04.20.23288859
https://doi.org/10.1101/2023.04.20.23288859
http://arxiv.org/abs/2303.01194
http://arxiv.org/abs/2303.01194
http://arxiv.org/abs/2303.01194
http://arxiv.org/abs/2303.01194
http://arxiv.org/abs/2304.11490
http://arxiv.org/abs/2304.11490
https://doi.org/10.18653/v1/2023.findings-acl.280
https://doi.org/10.18653/v1/2023.findings-acl.280
https://doi.org/10.18653/v1/2023.findings-acl.280
https://doi.org/10.18653/v1/2023.repl4nlp-1.17
https://doi.org/10.18653/v1/2023.repl4nlp-1.17
https://aclanthology.org/2023.ccl-2.9
https://doi.org/10.18653/v1/2023.wassa-1.61
https://doi.org/10.18653/v1/2023.wassa-1.61
https://doi.org/10.18653/v1/2023.wassa-1.61
http://arxiv.org/abs/2303.13375
http://arxiv.org/abs/2303.13375
https://doi.org/10.18653/v1/2023.findings-acl.396
https://doi.org/10.18653/v1/2023.findings-acl.396
http://arxiv.org/abs/2302.06466
http://arxiv.org/abs/2302.06466
http://arxiv.org/abs/2302.06466
http://arxiv.org/abs/2302.06466
https://doi.org/10.18653/v1/2023.bea-1.62
https://doi.org/10.18653/v1/2023.bea-1.62
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2302.06426
http://arxiv.org/abs/2302.06426
https://aclanthology.org/2023.sigdial-1.23
https://aclanthology.org/2023.sigdial-1.23
https://aclanthology.org/2023.sigdial-1.23
https://doi.org/10.18653/v1/2023.nlp4convai-1.2
https://doi.org/10.18653/v1/2023.nlp4convai-1.2
http://arxiv.org/abs/2304.04256
http://arxiv.org/abs/2304.04256

Ralph Peeters and Christian Bizer. 2023. Using Chat-
GPT for entity matching.

Alessandro Pegoraro, Kavita Kumari, Hossein Ferei-
dooni, and Ahmad-Reza Sadeghi. 2023. To ChatGPT,
or not to ChatGPT: That is the question!

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, and Jianfeng Gao. 2023a. Check
your facts and try again: Improving large language
models with external knowledge and automated feed-
back.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023b. Instruction tuning with
GPT-4.

Keqin Peng, Liang Ding, Qihuang Zhong, Li Shen,
Xuebo Liu, Min Zhang, Yuanxin Ouyang, and
Dacheng Tao. 2023c. Towards making the most of
ChatGPT for machine translation.

Denis Peskoff and Brandon Stewart. 2023. Credible
without credit: Domain experts assess generative lan-
guage models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 427438,
Toronto, Canada. Association for Computational Lin-
guistics.

Pouya Pezeshkpour and Estevam Hruschka. 2023.
Large language models sensitivity to the order of
options in multiple-choice questions.

Andrei Popescu-Belis, Alex R. Atrio, Bastien Bernath,
Etienne Boisson, Teo Ferrari, Xavier Theimer-
lienhard, and Giorgos Vernikos. 2023. GPoeT: a
language model trained for rhyme generation on syn-
thetic data. In Proceedings of the 7th Joint SIGHUM
Workshop on Computational Linguistics for Cultural
Heritage, Social Sciences, Humanities and Litera-
ture, pages 10-20, Dubrovnik, Croatia. Association
for Computational Linguistics.

Dongqi Pu and Vera Demberg. 2023. ChatGPT vs
human-authored text: Insights into controllable text
summarization and sentence style transfer. In Pro-
ceedings of the 61st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 4:
Student Research Workshop), pages 1—18, Toronto,
Canada. Association for Computational Linguistics.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
ChatGPT a general-purpose natural language process-
ing task solver?

Ali Quidwai, Chunhui Li, and Parijat Dube. 2023. Be-
yond black box Al generated plagiarism detection:
From sentence to document level. In Proceedings
of the 18th Workshop on Innovative Use of NLP
for Building Educational Applications (BEA 2023),
pages 727-735, Toronto, Canada. Association for
Computational Linguistics.

85

Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar,
and Gopal Gupta. 2023. Reliable natural language
understanding with large language models and an-
swer set programming.

Aman Rangapur and Haoran Wang. 2023. ChatGPT-
crawler: Find out if ChatGPT really knows what it’s
talking about.

Arya Rao, Michael Pang, John Kim, Meghana Kami-
neni, Winston Lie, Anoop K. Prasad, Adam Land-
man, Keith J Dreyer, and Marc D. Succi. 2023a. As-
sessing the utility of ChatGPT throughout the entire
clinical workflow. medRxiv.

Haocong Rao, Cyril Leung, and Chunyan Miao. 2023b.
Can ChatGPT Assess Human Personalities? A Gen-
eral Evaluation Framework.

Mathieu Ravaut, Shafiq Joty, and Nancy Chen. 2023.
Unsupervised summarization re-ranking. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 8341-8376, Toronto, Canada.
Association for Computational Linguistics.

Anton Razzhigaev, Mikhail Salnikov, Valentin Malykh,
Pavel Braslavski, and Alexander Panchenko. 2023.
A system for answering simple questions in multiple
languages. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 3: System Demonstrations), pages 524-537,
Toronto, Canada. Association for Computational Lin-
guistics.

Ruiyang Ren, Yuhao Wang, Yingqi Qu, Wayne Xin
Zhao, Jing Liu, Hao Tian, Hua Wu, Ji-Rong Wen,
and Haifeng Wang. 2023. Investigating the factual
knowledge boundary of large language models with
retrieval augmentation.

Saed Rezayi, Zhengliang Liu, Zihao Wu, Chandra
Dhakal, Bao Ge, Haixing Dai, Gengchen Mai, Ning-
hao Liu, Chen Zhen, Tianming Liu, and Sheng Li.
2023. Exploring new frontiers in agricultural nlp:
Investigating the potential of large language models
for food applications.

Nathaniel R. Robinson, Perez Ogayo, David R.
Mortensen, and Graham Neubig. 2023. ChatGPT
MT: Competitive for high- (but not low-) resource
languages.

Jérome Rutinowski, Sven Franke, Jan Endendyk, Ina
Dormuth, and Markus Pauly. 2023. The self-
perception and political biases of ChatGPT.

Oscar Sainz, Jon Ander Campos, Iker Garcia-Ferrero,
Julen Etxaniz, and Eneko Agirre. 2023. Did Chat-
GPT cheat on your test?

Maarten Sap, Ronan LeBras, Daniel Fried, and Yejin
Choi. 2023. Neural theory-of-mind? on the limits of
social intelligence in large Ims.


http://arxiv.org/abs/2305.03423
http://arxiv.org/abs/2305.03423
http://arxiv.org/abs/2304.01487
http://arxiv.org/abs/2304.01487
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2304.03277
http://arxiv.org/abs/2304.03277
http://arxiv.org/abs/2303.13780
http://arxiv.org/abs/2303.13780
https://doi.org/10.18653/v1/2023.acl-short.37
https://doi.org/10.18653/v1/2023.acl-short.37
https://doi.org/10.18653/v1/2023.acl-short.37
http://arxiv.org/abs/2308.11483
http://arxiv.org/abs/2308.11483
https://doi.org/10.18653/v1/2023.latechclfl-1.2
https://doi.org/10.18653/v1/2023.latechclfl-1.2
https://doi.org/10.18653/v1/2023.latechclfl-1.2
https://doi.org/10.18653/v1/2023.acl-srw.1
https://doi.org/10.18653/v1/2023.acl-srw.1
https://doi.org/10.18653/v1/2023.acl-srw.1
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
https://doi.org/10.18653/v1/2023.bea-1.58
https://doi.org/10.18653/v1/2023.bea-1.58
https://doi.org/10.18653/v1/2023.bea-1.58
http://arxiv.org/abs/2302.03780
http://arxiv.org/abs/2302.03780
http://arxiv.org/abs/2302.03780
http://arxiv.org/abs/2304.03325
http://arxiv.org/abs/2304.03325
http://arxiv.org/abs/2304.03325
https://doi.org/10.1101/2023.02.21.23285886
https://doi.org/10.1101/2023.02.21.23285886
https://doi.org/10.1101/2023.02.21.23285886
http://arxiv.org/abs/2303.01248
http://arxiv.org/abs/2303.01248
https://doi.org/10.18653/v1/2023.findings-acl.529
https://doi.org/10.18653/v1/2023.acl-demo.51
https://doi.org/10.18653/v1/2023.acl-demo.51
http://arxiv.org/abs/2307.11019
http://arxiv.org/abs/2307.11019
http://arxiv.org/abs/2307.11019
http://arxiv.org/abs/2306.11892
http://arxiv.org/abs/2306.11892
http://arxiv.org/abs/2306.11892
http://arxiv.org/abs/2309.07423
http://arxiv.org/abs/2309.07423
http://arxiv.org/abs/2309.07423
http://arxiv.org/abs/2304.07333
http://arxiv.org/abs/2304.07333
https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/
http://arxiv.org/abs/2210.13312
http://arxiv.org/abs/2210.13312

Jakob Schuster and Katja Markert. 2023.  Nut-
cracking sledgehammers: Prioritizing target language
data over bigger language models for cross-lingual
metaphor detection. In Proceedings of the 2023
CLASP Conference on Learning with Small Data
(LSD), pages 98—106, Gothenburg, Sweden. Associa-
tion for Computational Linguistics.

Paulo Shakarian, Abhinav Koyyalamudi, Noel Ngu, and
Lakshmivihari Mareedu. 2023. An independent eval-
uation of ChatGPT on mathematical word problems

(mwp).

Natalie Shapira, Guy Zwirn, and Yoav Goldberg. 2023.
How well do large language models perform on faux
pas tests? In Findings of the Association for Compu-
tational Linguistics: ACL 2023, pages 10438-10451,
Toronto, Canada. Association for Computational Lin-
guistics.

Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang
Zhang. 2023. In ChatGPT we trust? measuring and
characterizing the reliability of ChatGPT.

Yucheng Shi, Hehuan Ma, Wenliang Zhong, Qiaoyu
Tan, Gengchen Mai, Xiang Li, Tianming Liu, and
Junzhou Huang. 2023. Chatgraph: Interpretable text
classification by converting ChatGPT knowledge to
graphs.

Zhengxaing Shi and Aldo Lipani. 2023. Don’t stop
pretraining? make prompt-based fine-tuning power-
ful learner. In Thirty-seventh Conference on Neural
Information Processing Systems.

Dominik Sobania, Martin Briesch, Carol Hanna, and
Justyna Petke. 2023. An analysis of the automatic
bug fixing performance of ChatGPT.

Mingyang Song, Haiyun Jiang, Shuming Shi, Songfang
Yao, Shilong Lu, Yi Feng, Huafeng Liu, and Liping
Jing. 2023. Is ChatGPT a good keyphrase generator?
a preliminary study.

Mayank Soni and Vincent Wade. 2023. Comparing ab-
stractive summaries generated by ChatGPT to real
summaries through blinded reviewers and text classi-
fication algorithms.

David Stap and Ali Araabi. 2023. ChatGPT is not a
good indigenous translator. In Proceedings of the
Workshop on Natural Language Processing for In-
digenous Languages of the Americas (AmericasNLP),
pages 163—167, Toronto, Canada. Association for
Computational Linguistics.

Jiashuo Sun, Chengjin Xu, Lumingyuan Tang, Saizhuo
Wang, Chen Lin, Yeyun Gong, Lionel M. Ni, Heung-
Yeung Shum, and Jian Guo. 2023a. Think-on-graph:
Deep and responsible reasoning of large language
model on knowledge graph.

Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren,
Dawei Yin, and Zhaochun Ren. 2023b. Is ChatGPT
good at search? investigating large language models
as re-ranking agent.

86

Eugene Syriani, Istvan David, and Gauransh Kumar.
2023. Assessing the ability of ChatGPT to screen
articles for systematic reviews.

Qingyu Tan, Hwee Tou Ng, and Lidong Bing. 2023a.
Towards benchmarking and improving the temporal
reasoning capability of large language models. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 14820-14835, Toronto, Canada.
Association for Computational Linguistics.

Yiming Tan, Dehai Min, Yu Li, Wenbo Li, Nan Hu,
Yongrui Chen, and Guilin Qi. 2023b. Can ChatGPT
replace traditional kbqa models? an in-depth analysis
of the question answering performance of the GPT
LLM family.

Zeqi Tan, Shen Huang, Zixia Jia, Jiong Cai, Yinghui Li,
Weiming Lu, Yueting Zhuang, Kewei Tu, Pengjun
Xie, Fei Huang, and Yong Jiang. 2023c. DAMO-
NLP at SemEval-2023 task 2: A unified retrieval-
augmented system for multilingual named entity
recognition. In Proceedings of the 17th International
Workshop on Semantic Evaluation (SemEval-2023),
pages 2014-2028, Toronto, Canada. Association for
Computational Linguistics.

Liyan Tang, Tanya Goyal, Alex Fabbri, Philippe La-
ban, Jiacheng Xu, Semih Yavuz, Wojciech Kryscin-
ski, Justin Rousseau, and Greg Durrett. 2023a. Un-
derstanding factual errors in summarization: Errors,
summarizers, datasets, error detectors. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 11626—11644, Toronto, Canada. Association
for Computational Linguistics.

Ruixiang Tang, Xiaotian Han, Xiaogian Jiang, and Xia
Hu. 2023b. Does synthetic data generation of LLMs
help clinical text mining?

Ruibo Tu, Chao Ma, and Cheng Zhang. 2023a. Causal-
discovery performance of ChatGPT in the context of
neuropathic pain diagnosis.

Shangqing Tu, Chunyang Li, Jifan Yu, Xiaozhi Wang,
Lei Hou, and Juanzi Li. 2023b. Chatlog: Recording
and analyzing ChatGPT across time.

Jens Van Nooten and Walter Daelemans. 2023. Improv-
ing Dutch vaccine hesitancy monitoring via multi-
label data augmentation with GPT-3.5. In Proceed-
ings of the 13th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment, & Social Media
Analysis, pages 251-270, Toronto, Canada. Associa-
tion for Computational Linguistics.

Bhaskara Hanuma Vedula, Prashant Kodali, Manish
Shrivastava, and Ponnurangam Kumaraguru. 2023.
PrecogllITH@WASSA2023: Emotion detection for
Urdu-English code-mixed text. In Proceedings of
the 13th Workshop on Computational Approaches
to Subjectivity, Sentiment, & Social Media Analysis,
pages 601-605, Toronto, Canada. Association for
Computational Linguistics.


https://aclanthology.org/2023.clasp-1.12
https://aclanthology.org/2023.clasp-1.12
https://aclanthology.org/2023.clasp-1.12
https://aclanthology.org/2023.clasp-1.12
http://arxiv.org/abs/2302.13814
http://arxiv.org/abs/2302.13814
http://arxiv.org/abs/2302.13814
https://doi.org/10.18653/v1/2023.findings-acl.663
https://doi.org/10.18653/v1/2023.findings-acl.663
http://arxiv.org/abs/2304.08979
http://arxiv.org/abs/2304.08979
http://arxiv.org/abs/2305.03513
http://arxiv.org/abs/2305.03513
http://arxiv.org/abs/2305.03513
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
http://arxiv.org/abs/2301.08653
http://arxiv.org/abs/2301.08653
http://arxiv.org/abs/2303.13001
http://arxiv.org/abs/2303.13001
http://arxiv.org/abs/2303.17650
http://arxiv.org/abs/2303.17650
http://arxiv.org/abs/2303.17650
http://arxiv.org/abs/2303.17650
https://doi.org/10.18653/v1/2023.americasnlp-1.17
https://doi.org/10.18653/v1/2023.americasnlp-1.17
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2307.07697
http://arxiv.org/abs/2304.09542
http://arxiv.org/abs/2304.09542
http://arxiv.org/abs/2304.09542
http://arxiv.org/abs/2307.06464
http://arxiv.org/abs/2307.06464
https://doi.org/10.18653/v1/2023.acl-long.828
https://doi.org/10.18653/v1/2023.acl-long.828
http://arxiv.org/abs/2303.07992
http://arxiv.org/abs/2303.07992
http://arxiv.org/abs/2303.07992
http://arxiv.org/abs/2303.07992
https://doi.org/10.18653/v1/2023.semeval-1.277
https://doi.org/10.18653/v1/2023.semeval-1.277
https://doi.org/10.18653/v1/2023.semeval-1.277
https://doi.org/10.18653/v1/2023.semeval-1.277
https://doi.org/10.18653/v1/2023.acl-long.650
https://doi.org/10.18653/v1/2023.acl-long.650
https://doi.org/10.18653/v1/2023.acl-long.650
http://arxiv.org/abs/2303.04360
http://arxiv.org/abs/2303.04360
http://arxiv.org/abs/2301.13819
http://arxiv.org/abs/2301.13819
http://arxiv.org/abs/2301.13819
http://arxiv.org/abs/2304.14106
http://arxiv.org/abs/2304.14106
https://doi.org/10.18653/v1/2023.wassa-1.23
https://doi.org/10.18653/v1/2023.wassa-1.23
https://doi.org/10.18653/v1/2023.wassa-1.23
https://doi.org/10.18653/v1/2023.wassa-1.58
https://doi.org/10.18653/v1/2023.wassa-1.58

Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and
Ashish Kapoor. 2023. ChatGPT for robotics: De-
sign principles and model abilities.

Boshi Wang, Xiang Yue, and Huan Sun. 2023a. Can
ChatGPT defend its belief in truth? evaluating LLM
reasoning via debate.

Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie,
Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi
Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong,
Simran Arora, Mantas Mazeika, Dan Hendrycks, Zi-
nan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, and
Bo Li. 2023b. Decodingtrust: A comprehensive as-
sessment of trustworthiness in GPT models.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui
Sun, Haoxiang Shi, Zhixu Li, Jinan Xu, Jianfeng
Qu, and Jie Zhou. 2023c. Is ChatGPT a good NLG
evaluator? a preliminary study.

Jiaan Wang, Yunlong Liang, Fandong Meng, Beiqi Zou,
Zhixu Li, Jianfeng Qu, and Jie Zhou. 2023d. Zero-
shot cross-lingual summarization via large language
models.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen,
Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang,
and Xing Xie. 2023e. On the robustness of ChatGPT:
An adversarial and out-of-distribution perspective.

Junda Wang, Zonghai Yao, Avijit Mitra, Samuel
Osebe, Zhichao Yang, and Hong Yu. 2023f.
UMASS_BioNLP at MEDIQA-chat 2023: Can
LLMs generate high-quality synthetic note-oriented
doctor-patient conversations? In Proceedings of the
5th Clinical Natural Language Processing Workshop,
pages 460—471, Toronto, Canada. Association for
Computational Linguistics.

Rose Wang and Dorottya Demszky. 2023. Is ChatGPT
a good teacher coach? measuring zero-shot perfor-
mance for scoring and providing actionable insights
on classroom instruction. In Proceedings of the 18th
Workshop on Innovative Use of NLP for Building Ed-
ucational Applications (BEA 2023), pages 626667,
Toronto, Canada. Association for Computational Lin-
guistics.

Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang,
and Dinggang Shen. 2023g. ChatCAD: Interactive
computer-aided diagnosis on medical image using
large language models.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2023h. Scibench: Evaluating college-level scientific
problem-solving abilities of large language models.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,
Lifan Yuan, Hao Peng, and Heng Ji. 2023i. Mint:
Evaluating LLMs in multi-turn interaction with tools
and language feedback.

87

Yuqing Wang and Yun Zhao. 2023. Metacognitive
prompting improves understanding in large language
models.

Zengzhi Wang, Qiming Xie, Zixiang Ding, Yi Feng,
and Rui Xia. 2023j. Is ChatGPT a good sentiment
analyzer? a preliminary study.

Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang,
Xin Zhang, Shen Huang, Pengjun Xie, Jinan Xu,
Yufeng Chen, Meishan Zhang, Yong Jiang, and Wen-
juan Han. 2023. Zero-shot information extraction via
chatting with ChatGPT.

Jules White, Sam Hays, Quchen Fu, Jesse Spencer-
Smith, and Douglas C. Schmidt. 2023. ChatGPT
prompt patterns for improving code quality, refactor-
ing, requirements elicitation, and software design.

Haoran Wu, Wenxuan Wang, Yuxuan Wan, Wenxiang
Jiao, and Michael Lyu. 2023a. ChatGPT or gram-
marly? evaluating ChatGPT on grammatical error
correction benchmark.

Qianhui Wu, Huigiang Jiang, Haonan Yin, Borje Karls-
son, and Chin-Yew Lin. 2023b. Multi-level knowl-
edge distillation for out-of-distribution detection in
text. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7317-7332, Toronto,
Canada. Association for Computational Linguistics.

Weiqi Wu, Chengyue Jiang, Yong Jiang, Pengjun Xie,
and Kewei Tu. 2023c. Do PLMs know and under-
stand ontological knowledge? In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
3080-3101, Toronto, Canada. Association for Com-
putational Linguistics.

Changrong Xiao, Sean Xin Xu, Kunpeng Zhang, Yu-
fang Wang, and Lei Xia. 2023. Evaluating read-
ing comprehension exercises generated by LLMs: A
showcase of ChatGPT in education applications. In
Proceedings of the 18th Workshop on Innovative Use
of NLP for Building Educational Applications (BEA
2023), pages 610-625, Toronto, Canada. Association
for Computational Linguistics.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. 2023a. Adaptive chameleon or stubborn sloth:
Revealing the behavior of large language models in
knowledge conflicts.

Qiangian Xie, Weiguang Han, Yanzhao Lai, Min Peng,
and Jimin Huang. 2023b. The wall street neophyte:
A zero-shot analysis of ChatGPT over multimodal
stock movement prediction challenges.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun
Liu, and Erik Cambria. 2023a. Are large language
models really good logical reasoners? a comprehen-
sive evaluation and beyond.


http://arxiv.org/abs/2306.17582
http://arxiv.org/abs/2306.17582
http://arxiv.org/abs/2305.13160
http://arxiv.org/abs/2305.13160
http://arxiv.org/abs/2305.13160
http://arxiv.org/abs/2306.11698
http://arxiv.org/abs/2306.11698
http://arxiv.org/abs/2303.04048
http://arxiv.org/abs/2303.04048
http://arxiv.org/abs/2302.14229
http://arxiv.org/abs/2302.14229
http://arxiv.org/abs/2302.14229
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2302.12095
https://doi.org/10.18653/v1/2023.clinicalnlp-1.49
https://doi.org/10.18653/v1/2023.clinicalnlp-1.49
https://doi.org/10.18653/v1/2023.clinicalnlp-1.49
https://doi.org/10.18653/v1/2023.bea-1.53
https://doi.org/10.18653/v1/2023.bea-1.53
https://doi.org/10.18653/v1/2023.bea-1.53
https://doi.org/10.18653/v1/2023.bea-1.53
http://arxiv.org/abs/2302.07257
http://arxiv.org/abs/2302.07257
http://arxiv.org/abs/2302.07257
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2308.05342
http://arxiv.org/abs/2308.05342
http://arxiv.org/abs/2308.05342
http://arxiv.org/abs/2304.04339
http://arxiv.org/abs/2304.04339
http://arxiv.org/abs/2302.10205
http://arxiv.org/abs/2302.10205
http://arxiv.org/abs/2303.07839
http://arxiv.org/abs/2303.07839
http://arxiv.org/abs/2303.07839
http://arxiv.org/abs/2303.13648
http://arxiv.org/abs/2303.13648
http://arxiv.org/abs/2303.13648
https://doi.org/10.18653/v1/2023.acl-long.403
https://doi.org/10.18653/v1/2023.acl-long.403
https://doi.org/10.18653/v1/2023.acl-long.403
https://doi.org/10.18653/v1/2023.acl-long.173
https://doi.org/10.18653/v1/2023.acl-long.173
https://doi.org/10.18653/v1/2023.bea-1.52
https://doi.org/10.18653/v1/2023.bea-1.52
https://doi.org/10.18653/v1/2023.bea-1.52
http://arxiv.org/abs/2305.13300
http://arxiv.org/abs/2305.13300
http://arxiv.org/abs/2305.13300
http://arxiv.org/abs/2304.05351
http://arxiv.org/abs/2304.05351
http://arxiv.org/abs/2304.05351
http://arxiv.org/abs/2306.09841
http://arxiv.org/abs/2306.09841
http://arxiv.org/abs/2306.09841

Liang Xu, Anqi Li, Lei Zhu, Hang Xue, Changtai Zhu,
Kangkang Zhao, Haonan He, Xuanwei Zhang, Qiyue
Kang, and Zhenzhong Lan. 2023b. SuperCLUE: A
comprehensive chinese large language model bench-
mark.

Zihang Xu, Ziqing Yang, Yiming Cui, and Shijin Wang.
2023c. IDOL: Indicator-oriented logic pre-training
for logical reasoning. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
8099-8111, Toronto, Canada. Association for Com-
putational Linguistics.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian
Han, Qizhang Feng, Haoming Jiang, Bing Yin, and
Xia Hu. 2023a. Harnessing the power of LLMs in
practice: A survey on ChatGPT and beyond.

Wayne Yang and Garrett Nicolai. 2023. Neural machine
translation data generation and augmentation using
ChatGPT.

Xianjun Yang, Yan Li, Xinlu Zhang, Haifeng Chen, and
Wei Cheng. 2023b. Exploring the limits of ChatGPT
for query or aspect-based text summarization.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin
Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu,
Ce Liu, Michael Zeng, and Lijuan Wang. 2023c. Mm-
react: Prompting ChatGPT for multimodal reasoning
and action.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models.

Junjie Ye, Xuanting Chen, Nuo Xu, Can Zu, Zekai
Shao, Shichun Liu, Yuhan Cui, Zeyang Zhou, Chao
Gong, Yang Shen, Jie Zhou, Siming Chen, Tao Gui,
Qi Zhang, and Xuanjing Huang. 2023. A comprehen-
sive capability analysis of GPT-3 and GPT-3.5 series
models.

Chenhan Yuan, Qiangian Xie, and Sophia Ananiadou.
2023a. Zero-shot temporal relation extraction with
ChatGPT.

Zheng Yuan, Hongyi Yuan, Chuanqgi Tan, Wei Wang,
and Songfang Huang. 2023b. How well do large
language models perform in arithmetic tasks?

Bowen Zhang, Daijun Ding, and Liwen Jing. 2022.
How would stance detection techniques evolve
after the launch of ChatGPT? arXiv preprint
arXiv:2212.14548.

Bowen Zhang, Xianghua Fu, Daijun Ding, Hu Huang,
Yangyang Li, and Liwen Jing. 2023a. Investigating
chain-of-thought with ChatGPT for stance detection
on social media.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023b.
Extractive summarization via ChatGPT for faithful
summary generation.

88

Jianguo Zhang, Kun Qian, Zhiwei Liu, Shelby Hei-
necke, Rui Meng, Ye Liu, Zhou Yu, Huan Wang,
Silvio Savarese, and Caiming Xiong. 2023c. Di-
alogstudio: Towards richest and most diverse unified
dataset collection for conversational Al

Shaolei Zhang, Qingkai Fang, Zhuocheng Zhang, Zhen-
grui Ma, Yan Zhou, Langlin Huang, Mengyu Bu,
Shangtong Gui, Yunji Chen, Xilin Chen, and Yang
Feng. 2023d. BayLing: Bridging cross-lingual align-
ment and instruction following through interactive
translation for large language models.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Jialin Pan,
and Lidong Bing. 2023e. Sentiment analysis in the
era of large language models: A reality check.

Xiyuan Zhang, Ranak Roy Chowdhury, Dezhi Hong,
Rajesh K. Gupta, and Jingbo Shang. 2023f. Model-
ing label semantics improves activity recognition.

Weixiang Zhao, Yanyan Zhao, Xin Lu, Shilong Wang,
Yanpeng Tong, and Bing Qin. 2023a. Is ChatGPT
equipped with emotional dialogue capabilities?

Xiaofeng Zhao, Min Zhang, Miaomiao Ma, Chang Su,
Yilun Liu, Minghan Wang, Xiaosong Qiao, Jiaxin
Guo, Yinglu Li, and Wenbing Ma. 2023b. HW-TSC
at SemEval-2023 task 7: Exploring the natural lan-
guage inference capabilities of ChatGPT and pre-
trained language model for clinical trial. In Proceed-
ings of the 17th International Workshop on Seman-
tic Evaluation (SemEval-2023), pages 1603—-1608,
Toronto, Canada. Association for Computational Lin-
guistics.

Xuandong Zhao, Sigi Ouyang, Zhiguo Yu, Ming Wu,
and Lei Li. 2023c. Pre-trained language models can
be fully zero-shot learners. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 15590—
15606, Toronto, Canada. Association for Computa-
tional Linguistics.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and
Minlie Huang. 2023a. Large language models are
not robust multiple choice selectors.

Shen Zheng, Jie Huang, and Kevin Chen-Chuan Chang.
2023b. Why does ChatGPT fall short in providing
truthful answers?

Yi Zheng, Bjorn Ross, and Walid Magdy. 2023c. What
makes good counterspeech? a comparison of genera-
tion approaches and evaluation metrics. In Proceed-
ings of the 1st Workshop on CounterSpeech for On-
line Abuse (CS40A), pages 62-71, Prague, Czechia.
Association for Computational Linguistics.

Zhi Zheng, Zhaopeng Qiu, Xiao Hu, Likang Wu, Heng-
shu Zhu, and Hui Xiong. 2023d. Generative job
recommendations with large language model.

Qihuang Zhong, Liang Ding, Juhua Liu, Bo Du, and
Dacheng Tao. 2023a. Can ChatGPT understand too?
a comparative study on ChatGPT and fine-tuned bert.


http://arxiv.org/abs/2307.15020
http://arxiv.org/abs/2307.15020
http://arxiv.org/abs/2307.15020
https://doi.org/10.18653/v1/2023.findings-acl.513
https://doi.org/10.18653/v1/2023.findings-acl.513
http://arxiv.org/abs/2304.13712
http://arxiv.org/abs/2304.13712
http://arxiv.org/abs/2307.05779
http://arxiv.org/abs/2307.05779
http://arxiv.org/abs/2307.05779
http://arxiv.org/abs/2302.08081
http://arxiv.org/abs/2302.08081
http://arxiv.org/abs/2303.11381
http://arxiv.org/abs/2303.11381
http://arxiv.org/abs/2303.11381
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2305.10601
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2303.10420
http://arxiv.org/abs/2304.05454
http://arxiv.org/abs/2304.05454
http://arxiv.org/abs/2304.02015
http://arxiv.org/abs/2304.02015
https://arxiv.org/abs/2212.14548
https://arxiv.org/abs/2212.14548
http://arxiv.org/abs/2304.03087
http://arxiv.org/abs/2304.03087
http://arxiv.org/abs/2304.03087
http://arxiv.org/abs/2304.04193
http://arxiv.org/abs/2304.04193
http://arxiv.org/abs/2307.10172
http://arxiv.org/abs/2307.10172
http://arxiv.org/abs/2307.10172
http://arxiv.org/abs/2306.10968
http://arxiv.org/abs/2306.10968
http://arxiv.org/abs/2306.10968
http://arxiv.org/abs/2305.15005
http://arxiv.org/abs/2305.15005
http://arxiv.org/abs/2301.03462
http://arxiv.org/abs/2301.03462
http://arxiv.org/abs/2304.09582
http://arxiv.org/abs/2304.09582
https://doi.org/10.18653/v1/2023.semeval-1.221
https://doi.org/10.18653/v1/2023.semeval-1.221
https://doi.org/10.18653/v1/2023.semeval-1.221
https://doi.org/10.18653/v1/2023.semeval-1.221
https://doi.org/10.18653/v1/2023.acl-long.869
https://doi.org/10.18653/v1/2023.acl-long.869
http://arxiv.org/abs/2309.03882
http://arxiv.org/abs/2309.03882
http://arxiv.org/abs/2304.10513
http://arxiv.org/abs/2304.10513
https://aclanthology.org/2023.cs4oa-1.5
https://aclanthology.org/2023.cs4oa-1.5
https://aclanthology.org/2023.cs4oa-1.5
http://arxiv.org/abs/2307.02157
http://arxiv.org/abs/2307.02157
http://arxiv.org/abs/2302.10198
http://arxiv.org/abs/2302.10198

Tianyang Zhong, Yaonai Wei, Li Yang, Zihao Wu,
Zhengliang Liu, Xiaozheng Wei, Wenjun Li, Jun-
jie Yao, Chong Ma, Xiang Li, Dajiang Zhu, Xi Jiang,
Junwei Han, Dinggang Shen, Tianming Liu, and Tuo
Zhang. 2023b. Chatabl: Abductive learning via natu-
ral language interaction with ChatGPT.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui,
Tiannan Wang, Zhenxin Xiao, Yifan Hou, Ryan Cot-
terell, and Mrinmaya Sachan. 2023. RecurrentGPT:
Interactive generation of (arbitrarily) long text.

Yiming Zhu, Peixian Zhang, Ehsan-Ul Haq, Pan Hui,
and Gareth Tyson. 2023. Can ChatGPT reproduce
human-generated labels? a study of social computing
tasks.

Terry Yue Zhuo, Yujin Huang, Chunyang Chen, and
Zhenchang Xing. 2023. Red teaming ChatGPT via
jailbreaking: Bias, robustness, reliability and toxic-

ity.
B Detail on evaluation malpractices

As the Sankey diagrams showed in Section 5.2 and
Section 5.3 offer limited insights on our findings re-
garding evaluation reproducibility and fairness, we
do provide additional details in this section. We pro-
vide concrete numbers for our assessment of repro-
ducibility (Sec. 5.2) and evaluation (mal)practices
(Sec. 5.3) in Tables 2 and 3, respectively.

C Detailed List of ChatGPT Data Leak

‘We show which datasets have been leaked to Chat-
GPT in Tables 4 and 5.
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Prompts Repo Sampl. Custom n. (%)

32.11%) Prompts Repo Sampl. Custom n. (%)
v 1 (0.70%) 1(1.43%)
4 8 (5.63%) v Vo 1(1.43%)
v 3 (2.11%) v v 1 (1.43%)
v v 2 (1.41%) 4 14 (20.00%)
4 20 (14.08%) v v 7(10.00%)
v v 3(2.11%) v v 9 (12.86%)
v v 27 (19.01%) v v v 3 (4.29%)
v v v 32.11%) v v 8 (11.43%)
4 v 37 (26.06%) v v Vo 4(GT71%)
v v v 4(2.82%) v v v 16 (22.86%)
v v v 27 (19.01%) v v v Vo 6(6.57%)
v v v v 4 (2.82%)
(a) Pre-prints (b) Peer-reviewed works

Table 2: Statistics related to the reproducibility of the work reviewed: the availability of used prompts (Prompts)
and code/data repository (Repo), the usage of custom datasets (Custom), the application of random sampling or any
other practice that does not allow the exact reconstruction of the data used (Sampl.).

Comp. Scale n. (%)
30 (42.86%)

Comp. Scale n. (%)
71 (50.00%)

v 54 (38.03%)
v vV o 17(11.97%)

v 34 (48.57%)

v v 6 (8.57%)

(a) Pre-prints (b) Peer-reviewed works

Table 3: Fairness statistics for reviewed work. Statistics related to the practices of performance comparisons between
ChatGPT/GPT-4 and other open models: whether such comparisons are performed at all (Comp.) and whether they
are of the same scale (Scale).

90



(§/1) se1 oy 03 SUIpI0dIE PAzLI03Aed ‘9Fexed] (TH) Y31y pue ‘(TH-]A) YSIy-areropou ‘(0T-]A) MO[-9JeIopowl ‘(0) MO[ YIIM SIASBIEp JO Soweu Y], : 9[qeL

(A9p) I'INM
‘(3s9) TINIxeL ‘(Ire) (L yseL - €20¢
[eAqWRS) LOVIIN (A9p) ALY ‘(359
uu ‘(0sA)) JT9H ‘(0s91) (Suruosear
[ed130[) JoYLuo) ‘(isey) IINfuoD
‘(a9p) (99 :3-XV) ANTOIRANG ‘(1591)
CITINVY ‘(49p) (ALY TINO TININ)
ANTO [eHESIOAPY  ‘(0s9)) gHIN

(359) uegiuawirejuyg

(A9p) 1uo ([18) .14 “(A9P)
I'INO ‘(49p) I'INPINA ‘(1) yuegiuow
Swo) ‘(1s) (LY *T'INS) 1d0dd

oud
-IoJu] oSen3ue] [eIneN

(I1e) renuew (B>
-1u1[d (SN dwyo(q % ddreys oI

(sa)
AXD-DIATIAN ‘(3s93) (NHD) snidXdad

uoneIouas Jxa} [BOIPIAN

(I1e) JINVAS ‘(118) OFRI8uIg
‘(Ire)  WUVBMA - ‘(0s3))  JYINSD
‘(Ir)  SLSOHO  “(Ie) M 1-Mvid
‘(0sa) IVY-vNOV ‘(Ie) qnsppvy

(A9p) dsuagIownN

Qe

(1591) (N9-HZ ‘N¥-NA ‘dd-Nd) 3ses
7T0T LINM 2y Jo suonejouue INOIN

(A9p) 00Z-STIOTH

(1591) (AA-NH *¥:1-NH) 195818P SMON
$10T LINM ‘(389)) YSeL Uone[suei],
[eotpaworg 61 LINM ‘(1893) XesnN

(1s91)
TCLIAM ‘(591) (NH-HZ ‘¢ dseL ssou
-1snqoy ‘NH-VI - ¢ 39S Yse], ssauisnq
-0¥ ‘V[-NH - T 19S JSeL, ssousnqoy
HA-NA) 0ZLIAM ‘(359 101-SHIOT

UOTR[SUBL], QUIYORIA

(ITe) Teaguung “(J7e) Wungreay
‘(Ire) VAFINURAO “(118) WOOISMEAN

SYell
PareIouads Jo uoneneAyq

(3893) Temnuu ‘(3s) 7

ZOMDINA ‘(0s31) 1'7 ZOMBINA “(118) (1s31)
TORIL LD1.SA (A9p) G YorD [1DLSA (1s9) TT ZOMBPIMAL  So[eI[e0sold ‘(591) D[eIquadO ongoerq
(1s9)) ssdwoigSunuiIpy  UONBISUAST 1X3) 9ANBAID)

(1re) proq (1re) baq sorya 29 K1oges [y

H H-N OT-N o7 owreu ysg[,

91


https://www.kaggle.com/datasets/ratthachat/writing-prompts
https://github.com/facebookresearch/opendialkg
https://huggingface.co/datasets/allenai/prosocial-dialog
https://huggingface.co/datasets/multi_woz_v22
https://github.com/alexa/dstc11-track5
https://paperswithcode.com/dataset/dstc7-task-2
https://huggingface.co/datasets/ConvLab/multiwoz21
https://github.com/smartyfh/MultiWOZ2.4
https://github.com/smartyfh/MultiWOZ2.4
https://huggingface.co/datasets/newsroom
https://github.com/thu-coai/OpenMEVA
https://github.com/neulab/REALSumm
https://github.com/Yale-LILY/SummEval
https://github.com/facebookresearch/flores/tree/main/previous_releases/flores101
https://paperswithcode.com/dataset/wmt-2020
https://paperswithcode.com/dataset/wmt-2020
https://paperswithcode.com/dataset/wmt-2020
https://paperswithcode.com/dataset/wmt-2020
https://www.statmt.org/wmt22/translation-task.html
https://github.com/IndoNLP/nusax
https://github.com/biomedical-translation-corpora/corpora
https://github.com/biomedical-translation-corpora/corpora
https://paperswithcode.com/dataset/wmt-2014
https://paperswithcode.com/dataset/wmt-2014
https://github.com/facebookresearch/flores/tree/main/flores200
https://github.com/google/wmt-mqm-human-evaluation/tree/main/generalMT2022
https://github.com/google/wmt-mqm-human-evaluation/tree/main/generalMT2022
https://inklab.usc.edu/NumerSense/
https://www.cs.washington.edu/nlp/arithmetic
https://huggingface.co/datasets/aqua_rat
https://www.microsoft.com/en-us/download/details.aspx?id=52628
https://github.com/friederrr/GHOSTS
https://github.com/openai/grade-school-math
https://huggingface.co/datasets/ChilleD/MultiArith
https://gitlab.cs.washington.edu/ALGES/TACL2015/-/blob/master/questions.json?ref_type=heads
https://github.com/arkilpatel/SVAMP
https://github.com/bruzwen/ddxplus
https://physionet.org/content/mimic-cxr/2.0.0/
https://www.merckmanuals.com/professional/pages-with-widgets/case-studies?mode=list
https://www.merckmanuals.com/professional/pages-with-widgets/case-studies?mode=list
https://github.com/MJ-Jang/BECEL/tree/main
https://github.com/mcdm/CommitmentBank
https://github.com/mcdm/CommitmentBank
https://huggingface.co/datasets/multi_nli
https://paperswithcode.com/dataset/qnli
https://paperswithcode.com/dataset/rte
https://leaderboard.allenai.org/anli/submissions/get-started
https://allenai.org/data/entailmentbank
https://github.com/verypluming/MED
https://github.com/AI-secure/adversarial-glue/tree/main
https://github.com/AI-secure/adversarial-glue/tree/main
https://github.com/facebookresearch/anli?tab=readme-ov-file
https://super.gluebenchmark.com/
https://github.com/swarnaHub/ConjNLI
https://github.com/csitfun/ConTRoL-dataset
https://github.com/csitfun/ConTRoL-dataset
https://github.com/verypluming/HELP
https://huggingface.co/datasets/multi_nli
https://paperswithcode.com/dataset/rte
https://github.com/HKUST-KnowComp/NLI4CT
https://github.com/HKUST-KnowComp/NLI4CT
https://github.com/microsoft/TaxiNLI
https://huggingface.co/datasets/SetFit/wnli

(€/2) Ise1 ay3 01 3uIp1029®. paz110391ed @3eye9 (1H) Y31y pue ‘(IH-IN) YS1y-ajeiapouws ‘(0 J-]A) MO[-31eIopout ‘(0) MO[ Y3IM SI9SBIep JO saweu ay, ;G 9[qeL,

(1s9)
Asud(-uegowl], (359)) 9SIN0ISIJ.L
‘(Ire) vOASarens “(fre) Sununoos 309f
-qO ‘(591) SHYLVIA ‘(IIB) 19se1ep 19
-39 1seT ‘(Jre) Surpueisiopup) e
‘(A9p) Y ORsuasuowwo)) ‘(Adp) yI10D

(A3P) DSM “(A9p) VdOD
‘(11e) 3oserep dry uto) (A9p) 8107 DAV

(1) (1819
qQgap)) se13o[euy 3ulns 101397 ‘(A9p)
SemgQe[[oH ‘(3591)yOsuasuowuo))

ENIEN
uowrurod 29 SuTuOSeY

(I1e) ODOVA “(1Te)
dSOM (11e) (erpadiyip woxy pajoen
-x9 $1doou0d paje[a1-eouaIds 19nduios)
eso-oIM (I1®) (FDN.L) sorwouodq
939[[0D) url JuIpuelsIOpu) JO 1S,
‘(3s?) (39sqns uoneIduAn) yO[NJINI],
‘(a9p) 101D9Y ‘(I18) 6-ATVO “(A°p)
vOo101d “(I17) VO-LLO (I1®) ANEIN
WOIy Jasejep [edrpawl woisn) ‘([[e)
OVIN ‘(5) 07 VOIS0 “(Ile) 0'C
avnd-O71 ‘(Ire) £eamg amyny pa
-)SJOH 9y} UuOo paseq Joselep wol
-snD ‘([re) (ystSug ‘esoury)) ¢OH
‘(1re) suonsendyder ‘(1sa1) VOIreID
‘(a9p) VORI ‘(1e) 41dd “(11e)
suonsanQgam xodwo)  “([e) (LLV
‘1207) dAD “(I1e) NO¥g jo uors
-IoA 9ss9001d-01gq ‘(3$91) 39S IsENUOD
Oroog ‘(1sa1) Oroog ‘(1re) oregnpregq
wolj jaserep yO woisn) ‘(3sA) IVST
-4V ‘(aop) (dbb) IO [euesIoApY

(Ire) 1eserep FTINSN
woisny “(1sa1) yOYooguado “(Ire)
o1d VO ‘(s91) ASNSD ‘(1e) eby

(Ie) vOIM “(0s9)
VOIyInIL ‘(a9p) 'z AvnOs (Aap)
VOI [B190S “(A9p 10 1531) HOVY “(A9P)
OSVO ‘(a9p) VOId ‘(1Te) suonsan®y
-oyydQ woij joseiep woisn)) ‘(Ap)
vOyoogqued) “(I1e) vOId-ODd'IN

‘(re) I ‘(1e) wserep VO [0l
-3ojo0yoksq esaury) pawreuun ‘([e)

wei3oId WAWSSASSY-J[oS DS Woiy
1eseIep Woisn) (3s31) (S1 YsBL) 19V

(I1e) vO°MIEg 29 VOIXAL9IM
‘(Ire) suonsenqopy ‘(3s91) [erqewly,
‘(3593) swendayg “(1sa3) vOMedS “([18)
m:oumoH@o_mEE ‘(1re) 101Dy “(3s91)
vOId ‘(11e) d¢-dad ‘(11e) VO “(I1e)
SO[RIgPIN ‘(A9p) ODVL-OIN ‘(3s91)
ew ([e) VO30T ‘([Ie) VOIese]
‘(Ire) 0'C avnODT ‘(adp) yOlodiog
‘(I1e) vOdseqeal] ‘([[e) oepIyzadueu
-1 ‘(A9p) AYVI-2 ‘() YLLNIO
‘0s?1) (91 dseL) 19va ‘(1) SSod
-§< EO@ HOmﬁﬁu dwo:uoa EOHmSU

92

Surromsue uonsang)

(11e) 107801pU] 9dA], SIFLIG—SIOAIN K3o10yoAsq
(Ire) ssngxmo Suruweidolg

(3591) (90UB)SIOOM],) [BAHIOOMT, “(359))
9 MSBL, 910T [BAFWRS ‘(159)) ouelS-d (159) (Te100§ OYNULIOS) 61PIA0D sontod
(A3p) (dOO) 2n[D “(A3p) DIYIN Surserydereq
Surpue)siop

(1s91) SAINS ‘(0s?)) SLLV

-un oSenSueT [eImEN

H

H-N

OT-IN

0]

Quieu ySej,


https://github.com/howl-anderson/ATIS_dataset/tree/master
https://github.com/sonos/nlu-benchmark
https://www.microsoft.com/en-us/download/details.aspx?id=52398
https://gluebenchmark.com/
https://github.com/HLTCHKUST/Perplexity-FactChecking/tree/main
https://github.com/chuchun8/PStance
https://afshinrahimi.github.io/semeval2016-task6/
https://github.com/cardiffnlp/tweeteval/tree/main/datasets/stance
https://github.com/jkoppel/QuixBugs
https://github.com/Kali-Hac/ChatGPT-MBTI
https://jmir.org/api/download?alt_name=mededu_v9i1e45312_app1.xlsx&filename=3c2adca5ee88328073c589af108a5697.xlsx
https://jmir.org/api/download?alt_name=mededu_v9i1e45312_app1.xlsx&filename=3c2adca5ee88328073c589af108a5697.xlsx
https://github.com/facebookarchive/bAbI-tasks/tree/master
https://github.com/facebookresearch/clutrr
https://github.com/Waste-Wood/e-CARE/
https://github.com/SophonPlus/ChineseNlpCorpus
https://github.com/SophonPlus/ChineseNlpCorpus
https://github.com/kelvin-jiang/FreebaseQA
https://hotpotqa.github.io/
http://lc-quad.sda.tech/
https://github.com/siatnlp/LegalQA
https://github.com/lgw863/LogiQA-dataset
https://github.com/CogComp/MCTACO
https://github.com/UCSD-AI4H/Medical-Dialogue-System
https://github.com/apple/ml-mkqa
https://github.com/ianporada/modeling_event_plausibility
https://github.com/ybisk/ybisk.github.io/tree/master/piqa
https://whyu.me/reclor/
https://github.com/davidgolub/SimpleQA/tree/master/datasets/SimpleQuestions
https://github.com/HLR/SpartQA_generation
https://github.com/ZhengxiangShi/StepGame
https://github.com/google-research-datasets/TimeDial
https://www.microsoft.com/en-us/download/details.aspx?id=52763
https://github.com/brightmart/nlp_chinese_corpus
https://github.com/facebookarchive/bAbI-tasks/tree/master
https://aistudio.baidu.com/datasetdetail/38489
https://aistudio.baidu.com/datasetdetail/38489
https://facebookresearch.github.io/ELI5/
http://tcci.ccf.org.cn/conference/2016/pages/page05_evadata.html
https://allenai.org/data/open-book-qa
https://github.com/ybisk/ybisk.github.io/tree/master/piqa
https://allenai.org/data/qasc
https://www.cs.cmu.edu/~glai1/data/race/
https://allenai.org/data/socialiqa
https://huggingface.co/datasets/squad_v2
https://github.com/sylinrl/TruthfulQA
https://www.microsoft.com/en-us/download/details.aspx?id=52419
https://github.com/openai/grade-school-math
https://thukeg.gitee.io/kqa-pro/
https://allenai.org/data/open-book-qa
https://jmir.org/api/download?alt_name=mededu_v9i1e45312_app1.xlsx&filename=3c2adca5ee88328073c589af108a5697.xlsx
https://jmir.org/api/download?alt_name=mededu_v9i1e45312_app1.xlsx&filename=3c2adca5ee88328073c589af108a5697.xlsx
https://github.com/AI-secure/adversarial-glue/tree/main
https://github.com/zhongwanjun/AR-LSAT
https://github.com/zhongwanjun/AR-LSAT
https://huggingface.co/datasets/google/boolq
https://github.com/allenai/contrast-sets/tree/main/BoolQ
https://github.com/allenai/contrast-sets/tree/main/BoolQ
https://github.com/ALFA-group/BRON
https://github.com/ALFA-group/BRON
https://cve.mitre.org/
https://cve.mitre.org/
https://allenai.org/data/complexwebquestions
https://dblp.org/rdf/release/dblp-2022-06-01.nt.gz
https://efficientqa.github.io/
https://dki-lab.github.io/GrailQA/
https://github.com/ysu1989/GraphQuestions
https://github.com/Hello-SimpleAI/chatgpt-comparison-detection
https://github.com/yongcaoplus/ProbingChatGPT
https://github.com/yongcaoplus/ProbingChatGPT
https://github.com/yongcaoplus/ProbingChatGPT
https://github.com/AskNowQA/LC-QuAD2.0
https://github.com/AskNowQA/LC-QuAD2.0
https://github.com/csitfun/LogiQA2.0
https://zenodo.org/records/4617285#.YrNszNLMJhH
https://jmir.org/api/download?alt_name=mededu_v9i1e45312_app1.xlsx&filename=3c2adca5ee88328073c589af108a5697.xlsx
https://jmir.org/api/download?alt_name=mededu_v9i1e45312_app1.xlsx&filename=3c2adca5ee88328073c589af108a5697.xlsx
https://ott-qa.github.io/
https://github.com/iesl/protoqa-data
https://github.com/ag-sc/QALD/tree/master
https://whyu.me/reclor/
https://github.com/sylinrl/TruthfulQA/tree/main
https://github.com/tan92hl/Complex-Question-Answering-Evaluation-of-GPT-family/tree/main/datasets/WQSP
https://yago-knowledge.org/downloads/yago-4
https://www.tau-nlp.sites.tau.ac.il/commonsenseqa
https://rowanzellers.com/hellaswag/
https://github.com/taylorwwebb/emergent_analogies_LLM/tree/main/letter_string
https://github.com/taylorwwebb/emergent_analogies_LLM/tree/main/letter_string
https://allenai.org/data/arc
https://huggingface.co/datasets/skrishna/coin_flip
https://people.ict.usc.edu/~gordon/copa.html
https://cs.nyu.edu/~davise/papers/WinogradSchemas/WS.html
https://nyu-mll.github.io/CoLA/
https://www.tau-nlp.sites.tau.ac.il/commonsenseqa
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/date_understanding/README.md
https://github.com/RUCKBReasoning/CoT-KA
https://github.com/RUCKBReasoning/CoT-KA
https://github.com/qiangning/MATRES
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/object_counting/README.md
https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/object_counting/README.md
https://allenai.org/data/strategyqa
https://github.com/aakanksha19/TDDiscourse
https://www.usna.edu/Users/cs/nchamber/caevo/

(§/€) se1 oy 03 SUIpI0ddE PazLI03aed ‘9Feyed] (TH) Y31y pue ‘(TH-JA) YS1y-areropou ‘(0 T-]A) MO[-9JeIopowl ‘(0) MO[ YIIM SI9SeIep JO soweu Y], :9 9[qel,

(nop) ukg-10p1ds (Ap)
onsifeay-1opidg  “(aop) 3Q-roprds
‘(Ire) (qns ‘dde) DD-1op1dg “(aap) Iop
-1ds “(aop) DTeds ‘([re) ussoq zmo
‘(Ite) TOSNA “(Adp) IoprdgD) “(Aap)
T0S0D © (1d¥ ‘daVv) VidAQaVv

(sa1)
Joserep Nse], pareyS $10¢ TINOD

uoneIouas 1xay,

(Ire) TIH-TT.LAN
‘(Ir) VIS ‘(I1e) 0z empdging
‘(Ire) 0’1 gand ‘0s?) €00 TINOD

‘(Ire) ++TINOD “(I®) $00T dDV (1re) 010z 9Tl (Ire) sordweS LN UONIBNX3 X3,
(uren) jasejep
swoldwAg ‘(A9p 10 1$91) A UONOI[ (1re)

-[0D wedg SINS “(uren) OTPANGN

(11e) (s10sBIEP [[B) 9Z11d SUI[BOS ASIOAU]

UOIBOYISSBO 1XA],

(1s91) WINSIAV'S

(3s9)) wnSX
‘(3891) WnGNQ ‘(3s9) 39serep pajNqnd
(sa1) ALI'TVNOS  “(s9)) SIMHAN  ‘(se1)  LHPIA0D

(1s9) (e@/uzZ - ug) wing
-INVSX ‘0s9)) (e@/uz - ug) endurjr
NIM “(831) NALL PPy ‘(3s9Y) (UZ -
ug) wngssox) (1s91) [reNATTed NND

uonezLIRWwNG

(11e) 19sere(q uorssardog
pue spromg ayf, ([[e) O [IUSWNUSS
‘(a9p 10 159) (¢ owg[od “([1e) (QAINTD)
398 Isenuo)) ‘(fre) (ser Lyjeuosiad)
14 910 ureaTey) ‘(A9p 1o 1s9)) owy
NIV (A9p) (T-LSS) ANTOAPY

(A9P 10 1S9}) JUSWNUIS - [BAHIM],

‘(3591) 6 MSBL - £20T [BAJWSS ‘(AP 10

1593) (3[Se) wiseores) eruewseores ‘([re)

sndio) 9jey o dwy ¢-gregowgon

(11e) sxdwoag Ayorxol, [eey  “‘(A9p 10 159) suonouwrgon

104uoI1ssaI33 Yy ‘(A9p
10 1591) (3[se) uoIssaId3e) XORDIM
(A9p 10 159}) JodAyIeaqu) (A9p 10 1S93)
00N “(A3p) T-LSS ‘(15) BrRQ MIIA
-9y SIAOIN qIAI “([T8) SMIIAY 1on
-poid 1exdif] ‘(asp 10 1591) TYALIOD

SISATeUR JUQWNUAS

(A3p 103531)D1M
“(A3P) DIM ‘(ASp 10 159)) TeATASM

(s91) OdIN) 14049

(A9p 10 159))
(lowrgroom]) [eagIoomy, ‘(Aop) g-SLS

KJLIRTIWIS ONURWOS

H

H-N OT-IN

0]

quIeu yse[,

93


https://adapterhub.ml/explore/sts/sts-b/
https://github.com/cardiffnlp/tweeteval/tree/main/datasets/emoji
https://github.com/MJ-Jang/BECEL/tree/main/data/mrpc
http://lcl.uniroma1.it/wsdeval/
https://pilehvar.github.io/wic/
https://pilehvar.github.io/wic/
https://github.com/Moradnejad/ColBERT-Using-BERT-Sentence-Embedding-for-Humor-Detection/tree/master/Data
https://www.kaggle.com/datasets/niraliivaghani/flipkart-product-customer-reviews-dataset
https://www.kaggle.com/datasets/niraliivaghani/flipkart-product-customer-reviews-dataset
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://github.com/YJiangcm/SST-2-sentiment-analysis
https://github.com/conversationai/unhealthy-conversations
https://github.com/ewulczyn/wiki-detox/
https://github.com/ewulczyn/wiki-detox/
https://github.com/CLARIN-PL/chatgpt-evaluation-01-2023/
https://github.com/google-research/google-research/tree/master/goemotions
https://github.com/CLARIN-PL/chatgpt-evaluation-01-2023/
https://github.com/SALT-NLP/implicit-hate
https://www.kaggle.com/datasets/rmsharks4/sarcasmania-dataset
https://codalab.lisn.upsaclay.fr/competitions/7096#learn_the_details
https://github.com/cardiffnlp/tweeteval/tree/main/datasets/sentiment
https://github.com/allenai/real-toxicity-prompts
https://adversarialglue.github.io/instructions/
https://chalearnlap.cvc.uab.cat/dataset/24/description/
https://github.com/allenai/contrast-sets/tree/main/IMDb
https://github.com/allenai/contrast-sets/tree/main/IMDb
https://clarin-pl.eu/dspace/handle/11321/710
https://huggingface.co/datasets/sentiment140
https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch
https://www.kaggle.com/datasets/nikhileswarkomati/suicide-watch
https://huggingface.co/datasets/cnn_dailymail
https://github.com/csebuetnlp/CrossSum
https://github.com/csebuetnlp/CrossSum
https://github.com/ctr4si/MMN
https://github.com/esdurmus/Wikilingua
https://github.com/esdurmus/Wikilingua
https://github.com/krystalan/ClidSum/tree/main#2-clidsum-benchmark-dataset
https://github.com/krystalan/ClidSum/tree/main#2-clidsum-benchmark-dataset
https://github.com/honglizhan/CovidET
https://github.com/ali-bahrainian/NEWTS
https://github.com/armancohan/long-summarization/tree/master
https://github.com/Yale-LILY/QMSum
https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset
https://github.com/nyu-mll/SQuALITY
https://paperswithcode.com/dataset/samsum-corpus
https://github.com/inverse-scaling/prize
https://huggingface.co/datasets/ml4pubmed/pubmed-classification-20k
https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset
https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset
https://www.kaggle.com/datasets/paultimothymooney/medical-speech-transcription-and-intent
https://www.kaggle.com/datasets/paultimothymooney/medical-speech-transcription-and-intent
https://mtsamples.com/
https://www.i2b2.org/NLP/Relations/
https://paperswithcode.com/dataset/ace-2005
https://github.com/ZihanWangKi/CrossWeigh
https://huggingface.co/datasets/conll2003
https://github.com/zhoujx4/DuEE
https://github.com/zhoujx4/DuIE
https://github.com/OYE93/Chinese-NLP-Corpus/tree/master/NER/MSRA
https://github.com/truthless11/HRL-RE/tree/master/data/NYT11
https://www.comp.nus.edu.sg/~nlp/conll14st.html
https://github.com/microsoft/ContextualSP
https://yale-lily.github.io/cosql
https://taolusi.github.io/CSpider-explorer/
https://github.com/luge-ai/luge-ai/tree/master/semantic-parsing
https://github.com/salesforce/QGen/tree/main/Quiz_Design
https://github.com/taoyds/sparc
https://drive.usercontent.google.com/download?id=1TqleXec_OykOYFREKKtschzY29dUcVAQ&export=download&authuser=0
https://drive.usercontent.google.com/download?id=1TqleXec_OykOYFREKKtschzY29dUcVAQ&export=download&authuser=0
https://github.com/ygan/SpiderSS-SpiderCG
https://github.com/ygan/Spider-DK
https://zenodo.org/record/5205322
https://github.com/ygan/Spider-Syn

Archer #%: A Human-Labeled Text-to-SQL Dataset with
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Abstract

We present Archer, a challenging bilingual text-
to-SQL dataset specific to complex reasoning,
including arithmetic, commonsense and hypo-
thetical reasoning. It contains 1,042 English
questions and 1,042 Chinese questions, along
with 521 unique SQL queries, covering 20 En-
glish databases across 20 domains. Notably,
this dataset demonstrates a significantly higher
level of complexity compared to existing pub-
licly available datasets. Our evaluation shows
that Archer challenges the capabilities of cur-
rent state-of-the-art models, with a high-ranked
model on the Spider leaderboard achieving only
6.73% execution accuracy on Archer test set.
Thus, Archer presents a significant challenge
for future research in this field.

1 Introduction

The text-to-SQL task is an important NLP task,
which maps input questions to meaningful and
executable SQL queries, enabling users to inter-
act with databases in a more intuitive and user-
friendly manner. State-of-the-art methods (Pour-
reza and Rafiei, 2024; Li et al., 2023a,b; Scholak
et al., 2021) relying on large language models have
achieved execution accuracy above 75% on the Spi-
der dataset(Yu et al., 2018), which encompasses
complex SQL grammar and cross-domain settings.
Recently, Pourreza and Rafiei (2024) achieved re-
markable results with an impressive 85.3% execu-
tion accuracy on the Spider dataset, leveraging the
enhanced capabilities of GPT-4.

However, previous text-to-SQL datasets (Yu
et al., 2018; Finegan-Dollak et al., 2018; Yagh-
mazadeh et al., 2017; Iyer et al., 2017; Zhong
et al., 2017; Li and Jagadish, 2014; Giordani and
Moschitti, 2012; Popescu et al., 2003; Tang and
Mooney, 2000; Dahl et al., 1994), have limita-
tions that prevent them from capturing complex
reasoning effectively. For example, Spider (Yu
et al., 2018) purposely excludes questions that
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Arithmetic Reasoning

How much higher is the maximum power of a BMW car than
the maximum power of a Fiat car?

ELAENEENEL VR EN BB RE S

SELECT MAX (horsepower) (SELECT MAX (horsepower)
FROM cars_data A JOIN car_names B ON A.id=B.makeid
WHERE B.model="fiat") AS diff FROM cars_data A JOIN
car_names B ON A.id=B.makeid WHERE B.model="bmw"

Commonsense Reasoning

Which 4-cylinder car needs the most fuel to drive 300 miles?
List how many gallons it needs, and its make and model.
FFI00REF MR L NN ENREFTESHHEHA,
BEZOMEH®?

Commonsense Knowledge: Fuel used is calculated by divding
distance driven by fuel consumption.

=

(=

SELECT B. Make, B.Model, 1.0 * 300 / mpg AS n_gallon
FROM cars_data A JOIN car_names B ON A.Id=B.MakeId

WHERE cylinders="4" ORDER BY mpg ASC LIMIT 1

Hpypothetical Reasoning

If all cars produced by the Daimler Benz company have 4-
cylinders, then in all 4-cylinder cars, which one needs the most
fuel to drive 300 miles? Please list how many gallons it needs,
along with its make and model.

BNEFBRWBASNFEEZME, FI0REFEMRSH
MEFEMMEMNESOFIRTA, ERESDMEHIH?

SELECT B.Make, B.Model, 1.0 * 300 / mpg AS n_gallon
FROM cars_data A JOIN car_names B ON A.id=B.makeid
JOIN model list C ON B.model=C.model JOIN car_makers
D on C.maker=D.id WHERE D.fullname="Daimler Benz" or
A.cylinders="4” ORDER BY mpg ASC LIMIT 1

Figure 1: Archer examples with three reasoning types:
arithmetic, commonsense, and hypothetical reasoning.
(See more examples in Appendix D)

would require external knowledge (Pan et al., 2023,
2017a,b), like that from common-sense knowledge
graphs or mathematical calculations. This exclu-
sion limits Spider’s ability to properly test how well
models can handle real-world scenarios, which of-
ten require a deeper level of reasoning capabilities.

In this paper, we present Archer, an innovative
dataset designed to incorporate three distinct types
of reasoning: arithmetic, commonsense, and hypo-
thetical reasoning. By including such varied rea-
soning skills, Archer seeks to challenge and expand
the capabilities of text-to-SQL models, equipping
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them to manage more intricate and nuanced queries.
Figure 1 showcases data examples from Archer that
demonstrate these three reasoning abilities.

To evaluate the challenge posed by Archer, we
conducted experiments with both large language
models (LLMs) and fine-tuned models. How-
ever, all models demonstrated inferior performance
when dealing with Archer. Even the model that
achieved a high place on the Spider leaderboard
managed only 6.73% execution accuracy on Archer
test sets. These findings highlight substantial poten-
tial for improvement, indicating that Archer indeed
provides a significant challenge to current models.

2 Reasoning Types

In this section, we present the three different types
of reasoning in Archer: arithmetic, commonsense,
and hypothetical reasoning.

Arithmetic reasoning Arithmetic reasoning per-
tains to the act of resolving mathematical problems
through logical and analytical thought processes,
involving datatype values (Pan and Horrocks, 2003,
2005) and arithmetic operators. According to an
analysis of SQL queries from practical applica-
tions like the Baidu search engine and customer
service and data analysis robots by Wang et al.
(2020), mathematical calculations account for a
significant portion across SQL applications. How-
ever, previous high-quality datasets contain very
few questions that involve calculations, and such
questions are typically auto-generated with simple
grammar. In contrast, all question-SQL pairs in-
cluded in Archer necessitate arithmetic reasoning
and are manually annotated to ensure high quality.

Commonsense reasoning Commonsense reason-
ing refers to the capacity to make logical deduc-
tions based on implicit (and possibly uncertain)
commonsense knowledge (Romero et al., 2019; Ar-
naout et al., 2022; He et al., 2023; Wan et al., 2021;
Wang et al., 2010, 2014; Stoilos et al., 2006; Pan
et al., 2005), including, e.g., a broad understanding
of how things function in the world. Commonsense
knowledge can be useful for both zero-shot learn-
ing (Chen et al., 2023a, 2021a,b, 2023b; Geng et al.,
2023) and model explanations (Guan et al., 2024;
Chen et al., 2018). Archer includes questions that
necessitate models to comprehend the database, in-
fer missing details, and generate logical inferences
to create accurate SQL queries. As illustrated in
Figure 1, for the question "Which 4-cylinder car
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80 man-hours

Database Collection Question Annotation
20 databases (DB) 25-30 questions per DB
1 man-hour 60 man-hours
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Figure 2: The annotation process of our Archer.

Question Review

Paraphrase

Final Review & ’
40 man-hours

Processing

60 man-hours 60 man-hours

needs the most fuel to drive 300 miles? List how
many gallons it needs, and its make and model.",
the database does not provide an explicit schema
about the fuel used to travel 300 miles for each
car. It only provides each car’s fuel consumption in
MPG. Solving this question requires commonsense
knowledge, specifically the understanding of "Fuel
used is calculated by dividing distance driven by
fuel consumption" to derive the correct SQL.

Hypothetical reasoning Hypothetical reasoning
takes the complexity a step further, requiring mod-
els to have counterfactual thinking ability, which
is the ability to imagine and reason over unseen
cases based on the seen facts and counterfactual as-
sumptions. Archer includes questions that involve
hypothetical situations, requiring the model to un-
derstand and reason about conditional relationships.
As illustrated in Figure 1, consider the hypothetical
question "If all cars produced by the Daimler Benz
company have 4-cylinders, then in all 4-cylinder
cars, which one needs the most fuel to drive 300
miles? Please list how many gallons it needs, along
with its make and model.". In this question, the
underlying assumption contradicts the factual in-
formation stored in the database. The model must
comprehend this assumption and convert it into the
SQL condition d.fullname = "Daimler Benz" or
a.cylinders = "4".

3 Corpus Construction

As illustrated in Figure 2, we create Archer in the
following six steps, spending around 300 hours of
human labor in total: §3.1 Database Collection,
§3.2 Question Annotation, §3.3 SQL Annotation,
§3.4 SQL review, §3.5 Question Review and Para-
phrase, §3.6 Final Review and Process.

3.1 Database Collection

In a noteworthy research study conducted by Yu
et al. (2018), a total of 200 high-quality databases
across various domains were meticulously col-
lected and created, requiring approximately 150
man-hours. Out of these, 166 databases were made



publicly available.

Since not all Spider databases support the pro-
posed reasoning types, we carefully selected 20
databases across 20 domains from the Spider 166
databases based two criteria. Firstly, we applied a
script to keep only databases with a minimum of 3
tables and 20 columns within each database, as well
as a minimum of 6 columns with time or numeric
data types. Secondly, we manually checked the
filtered databases. These two steps ensure that each
selected database contains sufficient information to
support complex reasoning.

3.2 Question Annotation

Two bilingual (English and Chinese) Ph.D. stu-
dents with SQL experience were assigned the task
of generating questions based on 20 databases. The
annotators were required to propose 25-30 ques-
tions for each database, ensuring that the questions
met the following four requirements:

1) Arithmetic Reasoning: Each question should
incorporate arithmetic reasoning. The annotators
were expected to include a minimum of five ques-
tions for each arithmetic reasoning type (addition,
subtraction, multiplication, division).

2) Hypothetical Reasoning: At least five ques-
tions should involve hypothetical reasoning. For
each question using hypothetical reasoning, the
annotators were also required to propose a corre-
sponding factual question.

3) Commonsense Reasoning: The annotators
were encouraged to propose questions that involve
commonsense reasoning. However, the number of
questions with commonsense reasoning was not
strictly limited. This flexibility acknowledged that
not all databases support commonsense reasoning,
and not all arithmetic calculations necessitate it.

4) Complex SQL Grammar: The annotators
were encouraged to propose questions that require
the utilization of complex SQL grammar, such as
GROUP BY, ORDER BY, and JOIN.

The annotators were asked to write each question
in both English and Chinese. Besides, they were
instructed to indicate the reasoning types involved
(arithmetic: addition, subtraction, multiplication,
division; hypothetical; commonsense), and provide
the relevant knowledge or formulation if the ques-
tion incorporated commonsense reasoning.
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3.3 SQL Annotation

In order to mitigate cognitive bias, we employed a
diverse set of annotators for the tasks of generating
questions and writing SQL queries. Two Ph.D. stu-
dents, who possess strong SQL skills, were specifi-
cally chosen to translate the natural language ques-
tions into SQL queries. Their responsibilities en-
compassed the following:

1) Clarity Ensuring: The annotators reviewed
both English and Chinese questions to identify any
ambiguity and restructure them accordingly.

2) SQL Writing: The annotators were instructed
to use consistent SQL patterns when multiple equiv-
alent queries are applicable for similar questions.

3) Verification and Correction: The annotators
were also responsible for reviewing the annota-
tions pertaining to reasoning types and the common
knowledge necessary to solve each question.

3.4 SQL Review

To ensure the correctness of the annotated SQL for
each question, we employed a professional SQL
expert to review all the SQL queries and rectify
any incorrect ones. Subsequently, the original SQL
annotators were responsible for verifying the SQL
queries corrected by the expert. In cases where
there are differences of opinion between the expert
and the annotators regarding the corrected queries,
they were required to engage in a discussion and
reach a consensus to finalize the SQL annotation.

3.5 Question Review and Paraphrase

We employed two native English speakers and two
native Chinese speakers to review and paraphrase
English and Chinese questions, respectively. Ini-
tially, their task was to assess the naturalness and
grammatical accuracy of the questions. Subse-
quently, the annotators were requested to provide
a paraphrased version of each question in order to
enhance the dataset’s robustness.

3.6 Final Review and Processing

In the final stage of our process, we assigned the
task of reviewing the English and Chinese ques-
tions, SQL, and annotations relating to reasoning
types and commonsense knowledge to our most
seasoned annotator. Once this comprehensive re-
view was completed, we ran a script to ensure that
all SQL queries are executable.



4 Dataset Statistics and Comparison

In Table 1, we present a summary of the statis-
tics for Archer as well as other publicly available
text-to-SQL datasets. We conducted a compara-
tive analysis of Archer and other datasets based on
four key perspectives: scale, complexity, reasoning
distribution, and language.

4.1 Scale

Archer consists of 1,042 Chinese questions, 1,042
English questions, and 521 corresponding SQL
queries, covering a wide range of 20 distinct
databases spanning 20 domains. Each database
in Archer, on average, consists of 7.55 tables and
45.25 columns. Archer stands out for its inclusion
of multiple domains and a higher average number
of tables and columns.

It is worth noting that WikiSQL (Zhong et al.,
2017) and DuSQL (Wang et al., 2020) are excep-
tionally large databases generated automatically.
Inspired by them, Archer has the potential to serve
as a valuable resource for summarizing SQL tem-
plates and training SQL-to-text generators to create
large-scale datasets in line with our reasoning set-
ting. In this project, we do not utilize Archer for
automatic question-SQL pairs generation. This
possibility is a potential future direction.

4.2 Complexity

Archer distinguishes itself by its considerably
higher level of complexity compared to existing
text-to-SQL datasets. Several factors contribute to
this complexity:

Firstly, the average question length in Archer
is significantly longer than that in other datasets.
This poses a challenge to models because longer
inputs increase the likelihood of misunderstandings
or misinterpretations of specific question details.

Secondly, the average SQL length in Archer
stands at 79.71, which is significantly longer than
that of other datasets except for ATIS, which con-
tains only one table. Longer SQL statements in-
crease the likelihood of generating incorrect code.

Thirdly, value prediction, which is crucial in
SQL generation, is often undervalued in current
research. Interestingly, Pourreza and Rafiei (2024)
achieved an execution accuracy of 85.3% on the
Spider dataset without utilizing database content.
This is primarily because Spider SQL queries typ-
ically contain an average of only 0.93 value slots,
with most values explicitly quoted in the question.
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In contrast, Archer emphasizes the importance of
values, with an average of 6.21 value slots per SQL.
Furthermore, Archer questions do not explicitly
quote exact values; instead, they naturally mention
value information, mirroring real-world scenarios.

Fourthly, SQL queries in Archer refer to an av-
erage of 2.17 tables, suggesting that a substantial
number of the questions require the use of informa-
tion from multiple tables to derive SQLs.

Fifthly, the level of SQL statement nesting in
Archer is higher than that in other datasets, indi-
cating a greater degree of reasoning complexity
required to answer Archer questions, which often
necessitates the use of multiple subqueries.

Finally, Archer exhibits a high usage rate of com-
plex SQL grammar features such as GROUP BY and
ORDER BY in each SQL, surpassing the frequency
of usage seen in nearly all other datasets.

4.3 Reasoning Distribution

All questions in Archer require arithmetic reason-
ing. This means that mathematical calculations
and operations are essential in understanding and
answering these questions effectively. Addition-
ally, 44.0% of the questions involve hypothetical
reasoning, where the model needs to reason about
hypothetical scenarios to derive the correct SQL.
Furthermore, 51.4% of the questions require com-
monsense reasoning, where the model needs to
utilize general knowledge and commonsense un-
derstanding to produce the correct SQL.

It is worth noting that the majority of previous
text-to-SQL datasets do not incorporate arithmetic
and commonsense reasoning. Moreover, none of
the previous datasets contain questions that involve
hypothetical reasoning. Therefore, the inclusion
of these types of reasoning tasks in Archer sets
it apart from previous datasets and presents new
challenges for models in the field of text-to-SQL
understanding and generation.

4.4 Language

Unlike most previous text-to-SQL datasets that fo-
cus solely on English, Archer provides both En-
glish and Chinese questions. This bilingual feature
of Archer enhances the evaluation and training ca-
pabilities of text-to-SQL models, catering to the
needs of users in both English and Chinese lan-
guages, while forming a solid base for potential
support of more languages for Archer, which is left
as a future work.



Scale Complexity Reasoning Distribution

Dataset Lang

#Q #SQL #DB #Dom T/DB C/DB QL SQLL VS T NL GB OB | A(+) A() A(¥) AW H (o} C+H
ATIS 5280 947 1 1 25 131 10.53 99.75 3.14 4.66 0.39 0.01 0.00 X X X X X X X en
GeoQuery 877 246 1 1 8 31 7.48 2676 0.82 146 1.04 0.18 0.07 X X X 0.2% X X X en
Scholar 817 193 1 1 12 28 6.59 3803 136 326 002 037 028 X 0.5% X X X X X en
Academic 196 185 1 1 15 42 13.33 36.85 130 323 004 021 0.12 X X X X X X X en
IMDB 131 89 1 1 16 65 10.23 29.51 120 284 0.01 007 0.11 X X X X X X X en
Yelp 128 120 1 1 7 38 9.87 2833 1.68 225 0.00 0.10 0.08 X X X X X X X en
Advising 4387 205 1 1 18 124 10.90 48.08 3.06 3.13 0.17 0.03 0.07 | 3.4% X X X X X X en
Restaurant 378 23 1 1 3 12 10.13 29.57 226 226 0.17 0.00 0.00 X X X X X X X en
WikiSQL 80654 51159 26531 - 1 6.33 12.46 1332 0.53 1.00 0.00 0.00 0.00 X X X X X X X en
DuSQL 25003 20308 208 - 4.04 2138 19.20 2063 1.16 133 020 042 030 | 24% 95% 1.0% 44% X - X zh
BIRD 10962 10841 80 - 7.68 5471 15.81 2385 1.16 220 0.08 0.10 0.19 | 08% 5.0% 79% 10.0% X - X en
Cspider 9693 5275 166 99 528 2713 11.90 2437 093 1.69 0.10 023 021 0.1% 0.1% X 0.0% X X X zh
Spider 9693 5275 166 99 528 2713 13.29 2437 093 1.69 0.10 023 021]| 01% 0.1% X 0.0% X X X en
KaggleDBQA | 272 249 8 8 2,13 2238 9.83 13.80 0.54 1.18 0.00 044 050 | 0.0% 0.0% X 0.0% X X X en

Archer 5%
(Ours)

en

79.71 621 217 1.08 0.59 026 | 34.0% 478% 62.0% 40.7% 44.0% 51.4% 22.1% h

‘ 1042 521 20 20 7.55 45.25

Table 1: Comparison of public text-to-SQL datasets. The abbreviations used are as follows: #Q for the number of
unique questions, #SQL for the number of unique SQLs, #DB for the number of databases, #Dom for the number of
domains, T/DB for the number of tables per database, C/DB for the number of columns per database, QL for the
average question length, SQLL for the average SQL length, VS for the average number of value slots per question,
TM for the average number of tables mentioned in each SQL, NL for the average nested level per SQL, GB and
OB for the average number of GROUP BY and ORDER BY clauses per SQL respectively. A, H, C, and Lang represent
arithmetic, hypothetical, commonsense, and language, respectively. The cross mark, - denote absence and presence
respectively. The statistics for BIRD, CSpider, and Spider is based on training and dev sets as their test sets are
unavailable. Language is represented as en for English databases and questions, zh for Chinese databases and
questions, and zh for English databases and Chinese questions.

S Experiments solution on the Spider leaderboard at the time of
writing, it consists of four modules: (1) schema
5.1 Baseline Models linking, (2) query classification and decomposition,
We benchmark the performance of two types of ~ (3) SQL generation, and (4) self-correction. The
presentative text-to-SQL models on Archer: LLMs  initial three modules exploit the in-context learn-
and finetuned Models. ing ability of GPT-4 with ten shots, while the self-
correction is conducted by GPT-4 in a zero-shot
LLMs LLMs have shown strong performance  setting. Note that we do not evaluate GPT-4+DIN-
on commonly used text-to-SQL benchmarks, such ~ SQL on Archer Chinese questions because it is
as Spider. To analyze the difficulty of the whole  designed for English datasets. More details on the
Archer, we provide the zero-shot results of GPT-3.5  prompts can be found in Appendix A.
(gpt-3.5-turbo) with different prompt settings:
API Doc, CT-3, CT-3+COT. API Doc follows the  Fine-tuned Models T5-based fine-tuned models
style of the Text-to-SQL example provided by Ope-  have shown promising results on the Spider leader-
nAl, which includes the schema information ina  board. It is, however, worth mentioning that many
comment style. CT-3, introduced by Rajkumar etal.  top-tier models on the leaderboard are customized
(2022), includes the CREATE TABLE commands for  specifically for the limited SQL grammars present
each table and the results of executing a SELECT *  in the Spider dataset. Given that our dataset con-
FROM T LIMIT 3 query on each table. Compared  tains more complex grammatical structures com-
with API Doc, CT-3 provides more information  pared to Spider, these specialized models may not
like declarations of column types and foreign keys,  be suitable for our needs. As a result, we select
and a small amount (3) of content examples. CT-  vanilla T5 models as our baselines instead of the
3+COT implement the Chain-Of-Thought (COT)  aforementioned variants. We evaluate English ques-
technique on top of the CT-3 prompt by append-  tions using T5-base, T5-large, T5-3B, and evalu-
ing the prompt sentence "Let’s think step by  ate Chinese questions using mT5-base, mT5-large,
step."” before the SQL generation. Following the ~ mT5-x1. We concatenate the natural question Q

work of Li et al. (2023c), we provide a 1-shot  and database schema into a sequence as input in a
pseudo example for LLMs to learn the procedure of ~ format as below:

thinking and output format. Furthermore, we evalu-

ate the performance of GPT-4+DIN-SQL (Pourreza  x = (g1, .., qiq|lt1 : €'y oy €]}, |- [t : A7 C\tt‘;" ]

and Rafiei, 2024) on Archer. As a highly-ranked (1)
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EN Questions, EN databases

ZH Questions, EN databases

Models

Full Test Full Test
VA EX VA EX VA EX VA EX
LLMs
GPT-3.5 + API Doc 82.63 13.24 83.65 3.85 86.18 10.65 85.58 3.85
GPT-3.5 + CT-3 84.17 13.34 80.77 3.85 91.17 12.86 91.35 1.92
GPT-3.5 + CT-3 + COT 75.14 13.24 74.04 4.81 72.84 12.19 65.38 3.85
GPT-4 + DIN-SQL - - 96.15 6.73 - - - -
Fine-tuned Models

T5-base/mT5-base - - 11.54 0.00 - - 9.62 0.00
T5-large/mT5-large - - 15.38 0.00 - - 14.42 0.00
T5-3B/mT5-x1 - - 19.23 0.00 - - 17.31 0.00
T5-base/mT5-base + Aug - - 25.00 0.00 - - 24.03 0.00
T5-large/mT5-large + Aug - - 33.65 3.84 - - 30.77 0.96
T5-3B/mT5-x1 + Aug - - 50.00 4.81 - - 61.54 1.92

Table 2: Baseline performance on Archer. GPT-4+DIN-SQL was tested only on the English set due to cost and its
English-specific design. We only report the fine-tuned model’s performance on the test set.

where ¢; is the i*" question token, t; is the Gt
table, and ch is the k" in the j*" table. Following
the works of Li et al. (2023a); Lin et al. (2020),
we extract the potential database cell values and
append them to their corresponding columns.

5.2 Evaluation Metrics

We employ two evaluation metrics: VAlid SQL
(VA) and EXecution accuracy (EX). VA is the pro-
portion of the predicted SQL statements that can
be executed successfully, no matter with correct or
incorrect answers. EX is the proportion of the pre-
dicted SQL statements where the execution results
match those of the gold SQL statements. We com-
puted EX of each instance use a new evaluation
script as shown in Algorithm 1, which mitigates
the false-negative issue in present publicly avail-
able evaluation scripts caused by permutations of
columns and rows.

5.3 Experiments Setup

Data Split Among the 20 databases, we split 16,
2, and 2 databases as training, dev, and test sets,
respectively. The databases for Archer training
set are collected from the Spider training set, and
the databases for Archer dev set and test set are
collected from the Spider dev set. We strive to
introduce as few new SQL keywords as possible
during SQL annotation to facilitate the integration
of our dataset with the Spider and CSpider datasets.
We also report the performance of TS finetuned
on the augmented training set which consists of
Archer training set and Spider/CSpider training set.
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For LLM baselines, we assess the zero-shot perfor-
mance of GPT-3.5 on the full Archer to evaluate the
dataset’s overall difficulty. As for GPT-4+DINSQL,
due to its high cost and extended response time, we
only test it on Archer test sets.
Hyper-Parameters For GPT-3.5 baselines, we
set stop sequence to [‘--", ¢;’, ‘#’] and the
temperature to 0. In the case of GPT-4+DIN-SQL,
we adhere to the default setting as outlined in Pour-
reza and Rafiei (2024). For T5 baselines, we em-
ploy the Adafactor optimizer with a learning rate
of 5e-5. For T5-base/mT5-base and TS-large/mT5-
large, we adopt a batch size of 6 and a gradient
descent step of 5. For T5-3b and mT5-x1, we use
a batch size of 2 and a gradient descent step of 16.
To adjust the learning rate, we utilize linear warm-
up with a warm-up rate of 0.1, followed by cosine
decay. During inference, we set the beam size to 8.
We set the maximum epoch to 128, having check-
points every 10 epochs as well as the last epoch.
We then select the optimal checkpoints based on
their EX performance on the development set.

6 Results and Discussion

6.1 Overall Evaluation

We summarize the performance of LLMs and fine-
tuned models in Table 2. The low performance
of these models on Archer suggests that Archer
presents a significant challenge. This underscores
the considerable potential for future improvement
in this domain.
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Figure 3: GPT-3.5 + CT-3 execution accuracy comparison across and within different reasoning types. A refers to
arithmetic. H refers to hypothetic. C refers to commonsense.

LLM GPT-4+DIN-SQL obtain EX score of
6.73% on Archer test set, while it is able to achieve
85.3% test-suite execution performance on Spider
test set (Pourreza and Rafiei, 2024). To evalu-
ate the overall difficulty of Archer, we test the
zero-shot performance of GPT-3.5 with API Doc,
CT-3, CT-3+COT prompts on the full Archer data.
Among the three kinds of prompts, CT-3 achieves
the highest EX scores on both English data (EX:
13.34%) and Chinese data (EX: 12.86%). As ex-
pected, CT-3 performed slightly better than API
Doc, likely due to its inclusion of more useful in-
formation, such as declarations of column types
and foreign keys. However, the addition of COT in
CT-3+COT did not outperform CT-3 on the com-
plete Archer. On the other hand, for the Test set
only, CT-3+COT slightly outperform CT-3. From
Table 2, we observe a significant decrease in VA
when using COT, suggesting that COT suffers from
having more syntax errors in the generated SQL.
Although CT-3+COT achieved a higher EX score
than CT-3 and API Doc specifically for questions
involving arithmetic and commonsense reasoning,
it performed less effectively on questions that re-
quire hypothetical reasoning (cf. Table 3 in Ap-
pendix C).

Finetuned Models From Table 2. we observe
that TS from scale base to 3B (XL) trained on
Archer training set achieve 0.00% EX scores. This
outcome could be attributed to the small-scale na-
ture of Archer combined with its high complexity.
However, when Archer training set was augmented
with the Spider/CSpider training set, the VA scores
of TS5 models exhibited a substantial improvement.
Specifically, the T5-3B model trained on the aug-
mented training set achieved an EX score of 4.81%
on the English test (matching the performance of
GPT-3.5+CT-3+COT) set and 1.92% on the Chi-
nese test set (matching the performance of GPT-
3.5+CT-3).

These results suggest that Archer has the po-

tential to advance the development of text-to-SQL
systems with complex reasoning.

6.2 Different Reasoning Analysis

To gain a comprehensive understanding of the dif-
ficulty levels within the complete Archer across
various reasoning types, we conducted a thorough
analysis using the GPT-3.5 model with the CT-3
prompt, which demonstrated the highest perfor-
mance on the full dataset. Additional results for
GPT-3.5 with alternative prompts can be found in
Appendix C.

Overall Comparison Figure 3-(1) shows the per-
formance on questions with different kinds of rea-
soning. The results reveal that questions solely
based on arithmetic reasoning exhibit significantly
higher performance compared to those involving
additional forms of reasoning. Specifically, hypo-
thetical reasoning presents a greater challenge than
commonsense reasoning. Moreover, questions that
require the integration of all three reasoning types
exhibit the poorest performance.

Arithmetic Reasoning The performance on
questions that exclusively require arithmetic rea-
soning across various arithmetic operations is pre-
sented in Figure 3-(2). The findings indicate that
subtraction and division pose greater difficulty com-
pared to addition and multiplication.

Commonsense Reasoning On commonsense
reasoning, in Figure 3-(3), we compare the perfor-
mance of GPT-3.5+CT-3 on such questions under
two settings. The first setting involves directly in-
putting the question itself, while the second setting
involves inputting the concatenation of the knowl-
edge and the question. The results reveal that ex-
plicitly stating the knowledge within the question
can aid in generating correct SQL queries. This
suggests that leveraging external knowledge bases
could be beneficial in solving similar questions.
However, incorporating external knowledge into

100



254 =%k= QL ™
% SQLL == NL

VS
20+
\*

15
%,

EX

k- e
U

5 -
1 2 3 4

Complexity Level

Figure 4: GPT-3.5 + CT-3 execution accuracy perfor-
mance w.r.t different complexity level. The abbrevia-
tions used are as follows: QL for the average question
length (1: [0,15)], 2: [15,20), 3:[30,45), 4: [45,)), SQLL
for the average SQL length (1: [0,50)], 2: [50,100),
3:[100,150), 4: [150,)), VS for the average number of
value slots per question (1: [0,3)], 2: [3,6), 3:[6,9), 4:
[9,)), TM for the average number of tables mentioned
in each SQL (1: [0,2)], 2: [2,3), 3:[3,5), 4: [5,)), NL
for the average nested level per SQL (1: [0,1)], 2: [1,2),
3:[2,3), 4: [3,)).

text-to-SQL tasks presents significant challenges in
general. Firstly, models need to compare informa-
tion from natural language questions with the rela-
tional database to determine if external knowledge
is required. Secondly, models need to extract the
most relevant knowledge from external knowledge
bases. Last but not least, the process of integrat-
ing this knowledge into the text-to-SQL generation
process remains largely unexplored.

Hypothetical reasoning On hypothetical reason-
ing, in Figure 3-(4), we compare the performance
of these questions and observe a significant perfor-
mance gap. The EX performance on factual ques-
tions exceeds 17%, whereas the performance on
hypothetical questions falls below 7%, confirming
the difficulties involved.

6.3 Complexity Factors Analysis

To gain insights into the SQL complexity within
Archer, Figure 4 illustrates the relationship between
the EX score and various factors, including ques-
tion length, SQL length, number of value slots,
number of tables mentioned in SQL, and SQL
nested level. The performance demonstrates a de-
creasing trend as the question becomes longer, the
SQL length increases, the number of value slots
rises, the number of tables mentioned in the SQL
grows, or the SQL nested level escalates. As shown
in Table 1, Archer exhibits considerably higher
complexity across these factors when compared to

other publicly available text-to-SQL datasets.

6.4 Bad Case Analysis

We randomly selected 50 executable but incorrect
examples generated by GPT-4 + DIN-SQL and
identified the following common error types:

Incorrect Logic : GPT-4 sometimes struggles
with hypothetical questions that involve com-
plex logic. For instance, when asked "If all
cars produced by Daimler Benz company are 4-
cylinders, which 4-cylinder car needs the most fuel
to drive 300 miles?", the model might generate
SQL queries like WHERE T1.Cylinders = 4 AND
T4 .Maker = ’Daimler Benz’. However, the cor-
rect query should be WHERE T1.Cylinders = 4
OR T4.Maker = ‘Daimler Benz’ as there could
be other 4-cylinder cars aside from Mercedes-Benz.
This reveals a limitation in comprehending the hy-
pothetical nature of the question.

Incorrect Knowledge GPT-4 may make
commonsense errors when generating the SQL,
such like unit conversions. For example,
if a question requests fuel consumption in
liters per hundred kilometers, but the database
only contains fuel efficiency data in miles
per gallon, the accurate conversion formula is
liters_per_hundred_kilometers = 235.2145
/ MPG. However, GPT-4 employs an incorrect for-
mula like (100 x 3.78541) / MPG.

Incorrect Schema Understanding GPT-4
sometimes struggles to correctly link query entities
to the corresponding database columns. For exam-
ple, when asked about the "average single cylinder
displacement of an 8-cylinder car", GPT-4 might
generate a query like SELECT avg(Edispl) FROM
cars_data WHERE Cylinders = 8. However, in
this case, the query should calculate the average sin-
gle cylinder displacement, like SELECT AVG(1.0
* Edispl / Cylinders) AS avg_displ FROM
cars_data WHERE Cylinders = 8. This error
highlights the need for the model to understand
database column names, especially when they in-
volve abbreviations commonly used in real-world
databases. (Note that in the Spider dataset, annota-
tors tend to use exact column names in their queries,
e.g., What is the average edispl for all Volvos?)

Other Detail Errors : For example, GPT-4 may
also exhibit minor errors such as forgetting to mul-
tiply 1.0 for float calculations.
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7 Related Work

The earliest text-to-SQL datasets, including
ATIS (Dahl et al., 1994; Iyer et al., 2017), Geo-
Query (Zelle and Mooney, 1996; Iyer et al,
2017), Scholar (Iyer et al., 2017), Academic (Li
and Jagadish, 2014), IMDB (Yaghmazadeh et al.,
2017), Yelp (Yaghmazadeh et al., 2017), Advis-
ing (Finegan-Dollak et al., 2018) and Restau-
rants (Giordani and Moschitti, 2012; Tang and
Mooney, 2000; Popescu et al., 2003), were lim-
ited to a single database. Consequently, models
trained on these datasets struggled to generalize to
unseen databases as they were tested on the same
database used for training. To address such limita-
tions, Zhong et al. (2017) introduced WikiSQL in
which the databases in the test set were not present
in the training set. However, the SQL queries in
WikiSQL were generated automatically using sim-
plified assumptions, which may not fully capture
the complexity of real-world queries.

For a comprehensive cross-domain text-to-SQL
dataset, Yu et al. (2018) presented Spider dataset,
which is currently the most widely used text-to-
SQL datasets. However, Spider excludes questions
that require external knowledge, like commonsense
reasoning and mathematical calculations, which are
often essential for real-world applications.

Wang et al. (2020) proposed DuSQL, a Chinese
cross-domain text-to-SQL dataset that includes
math-related questions. However, DuSQL’s queries
and questions are relatively simple due to auto-
matic generation and grammar restrictions. Dou
et al. (2022) extended DuSQL with external knowl-
edge in their KnowSQL dataset. Unfortunately,
KnowSQL is not publicly unavailable.

In real-life scenarios, databases can be dirtier
with abbreviated and obscure naming of tables,
columns, and data values. To address this, Lee
et al. (2021) proposed KaggleDBQA with realis-
tic databases. Li et al. (2023c) proposed BIRD
benchmark for the text-to-SQL task on big and
dirty databases with a total size of 33.4 GB.

In contrast to these existing text-to-SQL datasets,
Archer focuses specifically on questions involving
complex reasoning and offers both English and Chi-
nese questions to query English databases across
various domains. Notably, all questions and SQL
queries in Archer are manually annotated by hu-
mans and thoroughly reviewed by professionals,
ensuring high-quality annotations for training and
evaluation purposes.

In the solution space, there are both LLM based
solutions and solutions based on fine-tuned models.
The former solutions, such as DIN-SQL (Pourreza
and Rafiei, 2024), tend to perform better in existing
text-to-SQL datasets, while the latter ones, particu-
larly FastRAT (Vougiouklis et al., 2023), can offer
significant improvements on latency, while keeping
decent performance. There can be space combining
the above two kinds of solutions for Archer, which
is a promising direction for future work.

8 Conclusion

In this paper, we present Archer, a complex bilin-
gual text-to-SQL dataset with three distinct rea-
soning types: arithmetic, commonsense, and hypo-
thetical reasoning. Experimental results on Archer,
obtained from both LLMs and fine-tuned models,
suggest plenty of space for improvement.
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Limitations

The evaluation metric used in Archer is execution
accuracy. This metric may be perceived as an
upper-bound performance measure, as SQL queries
producing the same execution results on a single
database may still possess different semantic mean-
ings. To overcome this limitation, we plan to re-
lease a test suite in the future that evaluates SQL
queries on multiple databases, allowing for a more
comprehensive assessment of semantic accuracy.

Ethics Statement

As mentioned in the submission, we select our
databases from Spider (Yu et al., 2018), which is
public for academic use and does not contain sen-
sitive information. The construction of our dataset
involved the active involvement of human partici-
pants. We recruited and provided training to five an-
notators who possessed backgrounds in databases.
These annotators were assigned the tasks of gen-
erating questions based on the databases, writing
SQL queries, and paraphrasing the questions. Im-
portantly, no sensitive personal information was
involved throughout this process. Our human an-
notation study underwent evaluation by the depart-
mental ethics panel, which deemed it exempt from
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ethical approval. This exemption was based on the
fact that all participants were employees of the Uni-
versity of Edinburgh and were therefore protected
by employment law. Furthermore, participants re-
ceived compensation at the standard hourly rate
designated for tutors and demonstrators at the uni-
versity. To promote academic usage, we intend to
freely release the dataset online.
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A Prompts

API Doc Prompt:

### Complete SQLite SQL query only and with no explanation
### English SQLite SQL tables, with their properties:

#

# Activity(actid, activity_ name)

# Participates_in(stuid, actid)

# Faculty Participates_in(FacID, actid)

# Student (StuID, LName, Fname, Age, Sex, Major, Advisor, city code)

# Faculty(FacID, Lname, Fname, Rank, Sex, Phone, Room, Building)

#

### How many more people have participated in mountain climbing activities than chess activities?
SELECT

CT-3 Prompt:

CREATE TABLE Activity (
actid INTEGER PRIMARY KEY,
activity name varchar (25)
)
/* 3 example rows:
SELECT * FROM Activity LIMIT 3;
actid activity name
770 Mountain Climbing
771 Canoeing
772 Kayaking
*/

CREATE TABLE Participates_in (
stuid INTEGER,
actid INTEGER,
FOREIGN KEY (stuid) REFERENCES Student (StulD),
FOREIGN KEY (actid) REFERENCES Activity(actid)
)
/* 3 example rows:
SELECT * FROM Participates_in LIMIT 3;
stuid actid
1001 770
1001 771
1001 777

-- Using valid SQLite, answer the following questions for the tables provided above.
-- How many more people have participated in mountain climbing activities than chess activities?
SELECT

CT-3 + COT Prompt:

CREATE TABLE Singer (
singer id INTEGER PRIMARY KEY,
nation TEXT not null,
name TEXT not null,
age INTEGER not null,
salary REAL null )
/* 3 example rows:
SELECT * FROM Singer LIMIT 3;
singer id nation name age salary
0 China Aotian 18 3000
1 Japan Hiroshi 30 2000
2 USA Harry 28 2500
*
/

-- Using valid SQLite, answer the following questions for the tables provided above.
-- How many singers in USA who is older than 2772

The final SQL is: Let's think step by step.

1. The 'older than 27' refers to age > 27 in SQL.

2. Find out the singers of step 1 in which nation = 'US’.

3. Use COUNT() to count how many singers.

Finally the SQL is:

SELECT COUNT (*) FROM singer WHERE age > 27

CREATE TABLE Activity (
actid INTEGER PRIMARY KEY,
activity name varchar (25)
)
/* 3 example rows:
SELECT * FROM Activity LIMIT 3;
actid activity name
770 Mountain Climbing
771 Canoeing
772 Kayaking
*/

CREATE TABLE Participates_in (
stuid INTEGER,
actid INTEGER,
FOREIGN KEY (stuid) REFERENCES Student (StulD),
FOREIGN KEY (actid) REFERENCES Activity(actid)
)
/* 3 example rows:
SELECT * FROM Participates_in LIMIT 3;
stuid actid
1001 770
1001 771
1001 777

-- Using valid SQLite, answer the following questions for the tables provided above.
-- How many more people have participated in mountain climbing activities than chess activities?
The final SQL is: Let's think step by step.

Figure 5: The example of API Doc prompt, CT-3 prompt, and CT-3+COT prompt.
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B Execution Accuracy Algorithm

Algorithm 1: Execution Match Check

Result: Check if the execution results of p_sql and g_sql against db are equivalent
Input: p_sql, g_sql, db

1 if p_sql is not valid for execution against db then

2 return False;
3 else
4 Connect to the database db;
5 Execute p_sql and store the results in pred_res;
6 Execute g_sql and store the results in gold_res;
7 Close the database connection;
8 if pred_res is exactly equal to gold_res then
9 ‘ return True;
10 else if the number of rows or columns in pred_res and gold_res are different then
11 ‘ return False;
12 else if g_sql contains an outermost ORDER BY clause then
13 Compare sets of columns in pred_res and gold_res;
14 return True if equivalent, False otherwise;
15 else
16 Calculate element frequency of each row and column in both pred_res and gold_res;
17 Check if every frequency in pred_res is present in gold_res for both rows and columns;
18 return True if all frequencies match, False otherwise;
19 end
20 end

C Performance w.r.t Different Reasoning

EN ZH
R
Types GPT-3.5+APIDoc  GPT-35+CT-3 GPT-35+CT-3+COT GPT-35+APIDoc GPT-3.5+CT-3 GPT-3.5+ CT-3 + COT
VA EX VA EX VA EX VA EX VA EX VA EX
A 7878 23.02 8381 2446 7950 25.54 84.17 1906 8885 21.58 7734 19.42
A+C 86.60 1405 8595 1373 7843 15.69 89.87 1209 9118 1667 76.80 16.99
A+H 78.95 9.21 8377 746 6754 4.82 83.77 6.58 9254 614 6447 4.82
A+C+H  85.65 4.35 8261 522 73.04 3.48 86.09 2.61 9261 391 7043 435
Table 3: Performance with respect to different reasoning types.
Reasoning EN ZH
Types GPT-3.5+APIDoc GPT-35+CT-3 GPT-3.5+CT-3+COT GPT-3.5+APIDoc GPT-3.5+CT-3 GPT-3.5+ CT-3+ COT
VA EX VA  EX VA EX VA EX VA  EX VA EX
Addition 80.95 3333  88.10 2381 7381 16.67 9286 3095 9524 2619 7857 19.05
Subtraction ~ 72.41 1552 80.17 2241  75.00 23.28 81.03 1638 8793 1379  80.17 13.79
Multiplication 8452 26.19 8512  26.19 8155 28.57 8571 2024  89.88 25.60  74.40 20.24
Division 81.25 1607 7946 1875  76.79 28.57 80.36 1250 8571 1875 68.75 16.96

Table 4: Performance with respect to different arithmetic operations on data with arithmetic reasoning only.

EN ZH
R
Types GPT-3.5+ API Doc GPT-3.5+CT-3 GPT-3.5+CT-3+COT GPT-3.5+APIDoc GPT-3.5+CT-3 GPT-3.5+ CT-3+ COT
VA EX VA EX VA EX VA EX VA EX VA EX
w/o knowledge 86.19 9.89 84.51 10.07  76.12 10.45 88.25 8.02 91.79 11.19  74.07 11.57
w/ knowledge ~ 83.58 9.89 87.13 1231 7481 13.43 85.07 9.70 87.69 12.13 7332 13.62

Table 5: Performance for questions needed commonsense reasoning with and without explicit knowledge input.
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EN ZH
R
Types GPT-3.5+ APIDoc GPT-3.5+CT-3 GPT-3.5+CT-3+COT GPT-3.5+APIDoc GPT-3.5+CT-3 GPT-3.5+CT-3+ COT

VA EX VA EX VA EX VA EX VA EX VA EX
Hypothetical 82.31 6.77 83.19 6.33 70.31 4.15 84.93 4.59 92.58 5.02 67.47 4.59
Factual 82.53 17.25 83.84 18.12 7948 20.09 87.71 15.5 89.52 1747  79.48 16.81

Table 6: Performance comparison for hypothetical questions and corresponding factual questions.
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D Archer Examples

Arithmetic Reasoning

Database

# Activity (actid, activity_name)

# Participates_in (stuid, actid)

# Faculty Participates_in (FacID, actid)

# Student (StulD, LName, Fname, Age, Sex, Major, Advisor, city_code)
# Faculty (FacID, Lname, Fname, Rank, Sex, Phone, Room, Building)

Question
Among the students who took part in volleyball activities, what is the percentage of those who have the same advisor as Michael Leighton but are
from different cities?

SINTHEERCRFNSE S, MERR RKUE— N ESREXBFRAHTHNEESESZSD?

SQL

SELECT 100.0 * COUNT ( DISTINCT ( A.stuid ) ) / ( SELECT COUNT ( DISTINCT ( A.stuid ) ) FROM
Participates_in A JOIN Student B ON A.stuid = B.stuid JOIN Activity C ON A.actid = C.actid WHERE
C.activity name = "Volleyball" ) AS percent FROM Participates_in A JOIN Student B ON A.stuid = B.stuid
JOIN Activity C ON A.actid = C.actid WHERE B.Advisor = ( SELECT Advisor FROM Student WHERE Fname =
"Michael" AND Lname = "Leighton" ) AND B.city code != ( SELECT city code FROM Student WHERE Fname =
"Michael" AND Lname = "Leighton" ) AND C.activity name = "Volleyball"

Database

# circuits (circuitld, circuitRef, name, location, country, lat, Ing, alt, url)

# races (raceld, year, round, circuitld, name, date, time, url)

# drivers (driverld, driverRef, number, code, forename, surname, dob, nationality, url)

# status (statusld, status)

# seasons (year, url) # constructors(constructorld, constructorRef, name, nationality, url)

# constructorStandings (constructorStandingsld, raceld, constructorld, points, position, positionText, wins)
# results (resultld, raceld, driverld, constructorld, number, grid, position, positionText, positionOrder, points, laps, time, milliseconds, fastestLap,
rank, fastestLapTime, fastestLapSpeed, statusId)

# driverStandings (driverStandingsld, raceld, driverld, points, position, positionText, wins)

# constructorResults (constructorResultsId, raceld, constructorld, points, status)

# qualifying (qualifyld, raceld, driverld, constructorld, number, position, q1, 2, q3)

# pitStops (raceld, driverld, stop, lap, time, duration, milliseconds)

# lapTimes (raceld, driverld, lap, position, time, milliseconds)

Question
Which countries have more than twice as many racing circuits as Japan?

FHFEHELAAREHENRELRESNER.

SQL
SELECT B.country FROM circuits B , ( SELECT COUNT ( * ) AS n_japan FROM circuits B WHERE B.country =
"Japan" ) GROUP BY B.country HAVING COUNT ( * ) > 2 * n japan

Figure 6: The example of Archer data requiring Arithmetic Reasoning.
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Commonsense Reasoning

Database

# circuits (circuitld, circuitRef, name, location, country, lat, Ing, alt, url)

# races (raceld, year, round, circuitld, name, date, time, url)

# drivers (driverld, driverRef, number, code, forename, surname, dob, nationality, url)

# status (statusld, status)

# seasons (year, url) # constructors(constructorld, constructorRef, name, nationality, url)

# constructorStandings (constructorStandingsld, raceld, constructorld, points, position, positionText, wins)
# results (resultld, raceld, driverld, constructorld, number, grid, position, positionText, positionOrder, points, laps, time, milliseconds, fastestLap,
rank, fastestLapTime, fastestLapSpeed, statusId)

# driverStandings (driverStandingsld, raceld, driverld, points, position, positionText, wins)

# constructorResults (constructorResultsld, raceld, constructorld, points, status)

# qualifying (qualifyld, raceld, driverId, constructorld, number, position, q1, q2, q3)

# pitStops (raceld, driverld, stop, lap, time, duration, milliseconds)

# lapTimes (raceld, driverld, lap, position, time, milliseconds)

Question
Find me the name of the circuit which is farthest in distance from the Tropic of Capricorn.

HUEEREELEERINFERR,

Commonsense Knowledge
The Tropic of Capricorn lies at 23.4394 degrees south of the Equator. The north latitude is positive, and the south latitude is negative.

SQL
SELECT name FROM circuits ORDER BY ABS ( lat - ( - 23.4394 ) ) DESC LIMIT 1

Question
Provide the ID, first name, and number of races for drivers who have competed in at least twice as many races as Allen Berg and have the same
nationality as the famous singer Michael Jackson.

BRESMENILFRABES LR ERNAFESERNRTFER R ATBAFEAREENETFHND. BF. LRI,

Commonsense Knowledge
Michael Joseph Jackson was an American singer, songwriter, dancer, and philanthropist.

SQL

SELECT A.driverId , forename AS first name , COUNT ( * ) AS n races FROM drivers A JOIN results B ON
A.driverId = B.driverId GROUP BY A.driverId HAVING COUNT ( * ) >= 2 * ( SELECT COUNT ( * ) FROM drivers A
JOIN results B ON A.driverId = B.driverId WHERE A.forename = "Allen" AND A.surname = "Berg" ) AND
A.nationality = "American"

Figure 7: The example of Archer data requiring Commonsense Reasoning.
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Hypothetical Reasoning

Database

# Activity(actid, activity name)

# Participates_in(stuid, actid)

# Faculty_Participates_in(FacID, actid)

# Student(StuID, LName, Fname, Age, Sex, Major, Advisor, city_code)
# Faculty(FacID, Lname, Fname, Rank, Sex, Phone, Room, Building)

Question

If no student who is at least 5 years older than Linda Smith ever participated in volleyball activities, among the students who took part in volleyball
activities, what is the percentage of those who have the same advisor as Michael Leighton but are from different cities?

BRatLHhis E BT FERED IS MFEITESMSHKED, BSMIHRENNZED, MBERR FPR—ESRERBRER
THEEEEDZED?

SQL

SELECT 100.0 * COUNT ( DISTINCT ( A.stuid ) ) / ( SELECT COUNT ( DISTINCT ( A.stuid ) ) FROM
Participates_in A JOIN Student B ON A.stuid = B.stuid JOIN Activity C ON A.actid = C.actid WHERE
C.activity name = "Volleyball" AND B.Age < 5 + ( SELECT Age FROM Student WHERE Fname = "Linda" AND Lname
= "Smith" ) ) AS percent FROM Participates_in A JOIN Student B ON A.stuid = B.stuid JOIN Activity C ON
A.actid = C.actid WHERE B.Advisor = ( SELECT Advisor FROM Student WHERE Fname = "Michael" AND Lname =
"Leighton" ) AND B.city code != ( SELECT city code FROM Student WHERE Fname = "Michael" AND Lname =
"Leighton" ) AND C.activity name = "Volleyball" AND B.Age < 5 + ( SELECT Age FROM Student WHERE Fname =
"Linda" AND Lname = "Smith" )

Question

If the students whose major subject ID is 550 and are older than 20 years old have all participated in soccer activities, what percentage of people who
participated in soccer activities are female?

BRINFE T WidHSS0MFERRT20S NEEMSING BHES, MESMLEREHNAP L EERIZED?

SQL

SELECT 100.0 * ( COUNT ( DISTINCT ( id ) ) + ( SELECT COUNT ( DISTINCT ( id ) ) FROM Student WHERE major =
"550" AND age > 20 ) ) / ( ( SELECT COUNT ( DISTINCT ( id ) ) FROM ( SELECT A.FacID AS id , A.actid , B.Sex
FROM Faculty Participates_in A JOIN Faculty B ON A.FacID = B.FacID UNION ALL SELECT A.stuid AS id , A.actid ,
B.Sex FROM Participates in A JOIN Student B ON A.stuid = B.stuid WHERE NOT ( B.major = "550" AND B.age > 20 )
) A JOIN Activity B ON A.actid = B.actid WHERE B.activity name = "Soccer" ) + ( SELECT COUNT ( DISTINCT ( id )
) FROM Student WHERE major = "550" AND age > 20 ) ) AS percent FROM ( SELECT A.FacID AS id , A.actid , B.Sex
FROM Faculty Participates_in A JOIN Faculty B ON A.FacID = B.FacID UNION ALL SELECT A.stuid AS id , A.actid ,
B.Sex FROM Participates_in A JOIN Student B ON A.stuid = B.stuid WHERE NOT ( B.major = "550" AND B.age > 20

) A JOIN Activity B ON A.actid = B.actid WHERE B.activity name = "Soccer" AND A.Sex = "F"

Figure 8: The example of Archer data requiring Hypothetic Reasoning.
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Abstract

Augmenting large language models (LLM) to
use external tools enhances their performance
across a variety of tasks. However, prior works
over-rely on task-specific demonstration of tool
use that limits their generalizability and com-
putational cost due to making many calls to
large-scale LLMs. We introduce GEAR, a com-
putationally efficient query-tool grounding al-
gorithm that is generalizable to various tasks
that require tool use while not relying on task-
specific demonstrations. GEAR achieves better
efficiency by delegating tool grounding and ex-
ecution to small language models (SLM) and
LLM, respectively; while leveraging semantic
and pattern-based evaluation at both question
and answer levels for generalizable tool ground-
ing. We evaluate GEAR on 14 datasets across
6 downstream tasks, demonstrating its strong
generalizability to novel tasks, tools and dif-
ferent SLMs. Despite offering more efficiency,
GEAR achieves higher precision in tool ground-
ing compared to prior strategies using LLM
prompting, thus improving downstream accu-
racy at a reduced computational cost. For ex-
ample, we demonstrate that GEAR-augmented
GPT-J and GPT-3 outperform counterpart tool-
augmented baselines because of better tool use.

1 Introduction

Recently there has been a surge in research on Aug-
mented Language Model (Mialon et al., 2023),
which aims to enable models interface existing
“tools” for various purposes, such as accessing the
latest information (Izacard et al., 2022), interacting
with third-party services (Liang et al., 2023), per-
forming precise calculations (Schick et al., 2023),
or reasoning via code (Cheng et al., 2022; Gao
et al., 2022). The paradigmatic framework of these
tool-augmented LM studies generally comprises
two steps: selecting a tool and executing it via a
generated API call. Consequently, choosing suit-
able tools is essential for task success.

“ Equal contribution

Q: A restaurant charges 4% service charge. If your
order amounted to 450, how much did you pay?

¥

\OAO' Pre-processing SLM

Toolbox i

Tool Description Tool Description Tool Description
o “Arithmetic “WikiAPI lookup ...” “MT tool
c calculator for ...” Tl U B translate ...”
_g jlocllUsagelExample Wiki(“Ghana Tool Usage Example
8 Calc(“75 + 25”) flag red meaning”) MT(“Hello”, “de”)
=
O
3
'—. s
> - .
o 12:2) Post-processing SLM
03 Grounding Score

Calculator Wiki MT QA
— Selected tool v/

-

0,0

Tool

Final decision Response: 18

by LLM
Tool Usage Example

The answer is 18

Q: A restaurant charges 4% service
charge. If your order amounted to 450,
how much did you pay?

Tool Execution

Figure 1: GEAR leverages small language models
(SLM) to facilitate the process of fool grounding for
a given query and has the ability to add and utilize new
tools for novel tasks without the need for fine-tuning or
extra demonstrations. GEAR utilizes a large language
model (LLM) in the tool execution module to ensure the
accuracy of the final answer.

The existing works teach language models
to select tools using either fine-tuning or in-
context learning approaches. For example, Tool-
former (Schick et al., 2023) is tailored and limited
to a predetermined set of tools observed during
pre-training. On the other hand, approaches based
on in-context learning (Li et al., 2023; Paranjape
et al., 2023; Chen et al., 2023; Sun et al., 2023;
Yao et al., 2022) rely on many calls to LLLM and
task-specific demonstrations which diminish their
cost efficiency and limits their scalability to a large
tool library. To address these limitations, we focus
on making the query-tool grounding process more
efficient, scalable and generalizable.
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Feature CoT Zero-shot CoT Toolformer ToolkenGPT ART GEAR

Tool Use X X

Novel Task Generalization X X X

Extensibility to New Tools at Inference N/A N/A X X

Grounding Algorithm N/A N/A Finetune LLM. LL.M_B.a S?d °' GEAR

Generation Cosine Similarity

# of LLM Calls at Inference 1 1 1 1 N 1

Input Data Task-Specific Single Augmented Supervised  Task-Specific ~ Single
P Demonstrations Query Dataset Data Demonstrations Query

Table 1: Comparing GEAR with the recent related works for generalization, computation efficiency, and key

grounding algorithms. N is the task library size.

In this work, we present GEAR, Augment lan-
guage models with Generalizable and Efficient tool
Resolution, a query-tool grounding algorithm that
enables efficient use of tools while also allowing
for generalization to both new tasks and large tool
libraries. The GEAR framework (Figure 1) is com-
prised of two key modules: (i) Query-Tool Ground-
ing and (ii) Execution. In the query-tool grounding
module, we compute a grounding score comprised
of semantic and pattern based evaluations (intro-
duced in §3). The intuition behind the grounding
score is to enable comprehensive query-to-query
and answer-to-answer comparisons by leveraging
tool description and usage examples, respectively.
By considering both question and answer perspec-
tives, the final grounding score provides a compre-
hensive evaluation of the suitability and compati-
bility between the given queries and the available
tools. Then GEAR passes the selected tool and
the given query to the execution module where a
LLM is prompted to generate the appropriate API
call to obtain the ultimate response from the tool.
In general, given n tools in a tool library, GEAR
makes (n + 1) calls to SLMs and only 1 call to
LLM (Algorithm 1).

Compared to all other in-context learning ap-
proaches (Li et al., 2023; Paranjape et al., 2023),
GEAR significantly reduces the workload on the
LLM to do tool grounding, subtask decomposition
and API call generation across all tools by assign-
ing query-tool grounding to SLM. For instance,
compared to ART (Paranjape et al., 2023), GEAR
reduces the calls to LLM by directing its intermedi-
ate calls to an SLM (e.g., GPT-Neo) leading to 4x
reduction in computational cost (FLOPS), while
providing higher accuracy (details in §5.2; Table 5).

To the best of our knowledge, there is currently
no fine-grained algorithm for query-tool grounding,
nor have there been comprehensive empirical ex-
periments to assess tool grounding accuracy across

various tool library sizes. Thus, we conduct exper-
iments' for GEAR on a variety of different down-
stream tasks and tool libraries. Our experiments
demonstrate that, GEAR improves grounding ques-
tions to tools, which leads to stronger downstream
performance compared to other few-shot or tool-
augmented baselines. For example, GEAR lever-
aging SLMs (e.g., GPT-Neo with 1.3B parameters)
consistently achieves high grounding performance
on 12 datasets from 6 NLP tasks, resulting in bet-
ter downstream accuracy than few-shot prompting
and ART (Paranjape et al., 2023). We also provide
evidence of the strong generalizability of GEAR
to novel tasks, large tool libraries, and different
SLMs.

2 Related Work

We divide the notable prior works on tool-
augmented models into two groups based on how
they modify language models: one uses fine-tuning,
while the other uses in-context prompting. We also
touch upon works in embodied LM applications.

Tool Use via Fine-tuning. There have been some
research efforts focusing on training models to
use various language tools (Thoppilan et al., 2022;
Komeili et al., 2022; Shuster et al., 2022; Khot
et al., 2021, 2022).

More recently, Schick et al. (2023) proposes
Toolformer which uses a self-supervision manner
to train LLMs to use Wikipedia, QA, Calculator,
Machine Translation, and Calendar tools. Parisi
et al. (2022) uses a similar self-supervised approach
for teaching models to use tools. Hao et al. (2023)
treats tools as special tokens of LLM and learns
embeddings for them. Qiao et al. (2023) proposes
a two-stage framework that enables the model to
learn through feedback derived from tool execu-
tion. Yang et al. (2023) employs instruction tuning

!Code to reproduce our results is available.
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to enable LLMs to use multimodal tools. Although
fine-tuning allows somewhat accurate tool ground-
ing among those observed during training, a key
issue with the resulting models is that they cannot
utilize new tools without retraining, thus hindering
models’ generalizability to new tools and tasks.

Tool Use via In-Context Learning. Prior work
has used in-context prompting of LLMs utilizes
prompts to guide language models generating con-
textually relevant responses, which is generally
more generalizable than fine-tuning. Some notable
works here include Chain-of-thought (Wei et al.,
2022), Zero-shot CoT (Kojima et al., 2022), among
others. These, however, have no access or use ex-
ternal tools.

ART (Paranjape et al., 2023), and other concur-
rent studies (Lu et al., 2023; Qian et al., 2023)
support accessing new tools through code or assem-
bling tool sequences to generate the final response.
Nonetheless, their way of accessing tools relies on
extra task-specific information like demonstrations
of how a task needs to be divided or conveyed to ex-
isting tools. This restricts their generalizability to
new tasks that may necessitate new tools or a differ-
ent combination of tools. Concurrent work (Hsieh
et al., 2023) addresses this issue via documental
tool descriptions. However, GEAR complements
this work in that, our approach also uses tool out-
puts for more accurate tool grounding.

Another core issue in all these works is the tool
grounding mechanism. Lu et al. (2023); Qian
et al. (2023) rely solely on LLM prompting for
tool grounding while ART applies cosine similar-
ity query/tool representations for task grounding.
However, little is understood about tradeoffs or lim-
its of these approaches, which we explore in our
experiments. To address these, our method extends
these works and captures both semantic and pattern
relationships (introduced in §3.1 and §3.2) between
query and tools. This allows GEAR to successfully
identify and utilize unseen tools for low-resource
tasks (novel tasks) without the need for additional
task information. Table 1 compares GEAR, CoT,
Zero-shot CoT, Toolformer, and ART.

Embodied Language Model in Robotics. Re-
cent research has focused on employing language
models for robotic agents planning and their com-
munication with the world (Driess et al., 2023;
Zhao et al., 2023; Song et al., 2022; Huang et al.,
2023; Vemprala et al., 2023). This is similar to the

setup here involving a language model’s interaction
with external tools. Huang et al. (2022) and Lynch
et al. (2022) leverage various sources of human lan-
guage and textual feedback to guide robots while
solving complex tasks. GEAR shares the same un-
derlying idea with SayCan (Ahn et al., 2022) which
utilizes binary scores for robotic affordance, while
GEAR employs a distinct method that is designed
for more general tool and task settings.

3 GEAR: Generalizable and Efficient
Augmented Tool Resolution

We start with the formal problem statement. We
are given an input query () that we aim to solve. In
addition, we are provided with a tool library 7~ £
{(Tl, dy, 7T1), (TQ, ds, 7['2), s, (Tn, dy, 7Tn)} with
n tools. Each tool T} can receive an API call (e.g., a
question or a formula) and respond accordingly, of-
ten in the form of natural language. If the provided
input is unparsable to the tool, it would return an
empty response. Each tool is also supplied with its
natural language description (d;) and demonstra-
tions (7;) showing examples of natural language
questions parsed by each tool.

GEAR aims to find the most appropriate tool
for solving (). As it can be observed in the Al-
gorithm 1, GEAR iterates over the tools (line 2)
and scores each tool ¢ with respect to the given
question () (line 5). This score is a linear combi-
nation of two scores, a semantic similarity score
S(.,.) and a pattern similarity score P(.,.). Se-
mantic score (defined in §3.1) provides a measure
of semantic alignment between the tool descrip-
tion d; and the given query (). Pattern similarity
score (defined in §3.2) scores the alignment be-
tween the responses obtained from SLM and each
tool, which provides an indication of how closely
the tool’s output aligns with a preliminary answer.
The algorithm ultimately picks the most appropri-
ate tool based on their scores (line 7) and obtains
the final tool response via an API call generated by
a LLM (line8, line9).

3.1 Semantic Similarity Score

Semantic similarity measures the alignment be-
tween the provided question to the language de-
scription of a tool. For instance, in Figure 2, the de-
scription of Calculator is semantically closer to
a query that contains numbers, leading to a higher
semantic score. Formally, this score is defined as:

S(Q,d;) = fsim(Q, dsi),
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Tool Usage Example: T Tool Description: d;

“Arithmetic calculator

Calc(“75 + 25”) for ..

= £(Q,4;)
0,0, i

Q: A restaurant w
charges 4% service

= ai 5
charge. If your 'hoi?i(:f reon ,,i ,,
order amounted to = Calc(taser) | 7450
450, how much did (G2 °

You will pay 4% service charge

you pay?

Final Answer Calculator Call

18 Calc(“450 * 0.04”)

Tool Usage Example: Ti+1 Tool Description: di

Wiki(“Ghana flag red
meaning”)

Wiki(“Restaurant
service charge”) Restaurant Association...” , “de”)

WOACF

Question
Calc Usage Example

Tool Usage Example: Tis2  Tool Description: dis2

“WikiAPI lookup ...” MT(“Hello”, “de”) “MT translates ...”

f(Q,du) f(Q,dy.2)

Gist aj, Qis2 iz
‘According to the MT(“Restaurant «Gaststitte”

a a

Calculator WikiSearch  MT

0.1713 0.0414 0.1166
0.5447 0.1898 0.1172
0.7160 0.2312  0.2338 Grounding Score

Figure 2: GEAR framework. It computes the pattern score by comparing the preliminary answer (in gray line) to

tool responses (in green box) and the semantic score by comparing the query to tool descriptions (in

box).

Grounding tool with the highest weighted average score and executing it via a LLM to obtain the final answer.

Algorithm 1 GEAR Algorithm

Input: Query @, Tool library 7", Small Language Model
(SLM), Large Language Models (LLM)
Output: Grounded tool, and answer to the input question

1: 4 < SEM(Q)
2: for (T;,d;,m;) in T do
3 g S SLM(7; + Q) > Generate API call
4: a; < Ti(qi) > Get the tool’s response
5: fi(Q) + ~vS(Q,d;) + (1 —~)P(a,a;) > Scoreit
6: end for
7: 1+ argmax; fi(Q) B> Select the best tool
8 q Sumole LLM(7, + Q) > Generate API call
9: a, + T.(q.) > API call to the selected tool
10: Return grounded tool 7, and the final answer a,.

where f is a similarity function utilizing the repre-
sentation of SLM, quantifying the degree to which
the query @ is semantically close to the tool de-
scription d;. A popular choice to implement this
similarity function (used in our experiments) is co-
sine distance between the representations query ()
and tool description d;:

S(Q,d;) = cos (encsLm(Q), encspm(d;))
where encgy v (.) is the representation of SLM.

3.2 Pattern Similarity Score

Pattern similarity provides an answer-level align-
ment score. This score computes an alignment
between a preliminary guess a and the response
generated by each tool a;. For instance, in Fig-
ure 2, the preliminary answer is “4”, which has a
higher pattern similarity score with Calculator’s
response (“450”, denoted in red), as both are num-
bers. Whereas, the responses from Wiki and MT
are descriptive responses with a large proportion of
English tokens (in black) and a non-ASCII token

(in ) that is not exhibited in the preliminary
answer. Pattern similarity is computed based on
the following steps.

Preliminary guess. First, SLM generates a zero-
shot preliminary answer a for the given query using
greedy decoding (line 1).2

Tool-based response. Then SLM is prompted by
the given query and few shot usage examples to
obtain API call g;:

q; (—Silﬂ)l.e SLM(W‘Z + Q)

We then obtain the tool response a; < T;(q;) if ¢;
is parsable by the tool T;, otherwise empty.

Scoring the alignment. The scoring is based on
a predefined pattern set S consisting of distinct
elements that correspond to output patterns of var-
ious tools. These pattern elements, for example,
can represent numbers, English words, symbols,
URLs, or certain robotic movements.> We encode
raw tool response a; to its corresponding pattern
set {e;(t) | Vj € {1,2,---,|S|},Vt € 4;}, where
t is the word token of a; and the encoding func-
tion e; : t — S encodes word token to the ik
pattern of S if token exhibits that pattern, other-
wise empty.* Formally, the output of e ; for t is ei-

*We recommend greedy decoding for this zero-shot SLM-
based step to reduce the risk of significantly poor responses
which may occur in stochastic decoding.

3While our evaluation is focused on language tools, the
idea discussed here should in principle generalize to other
modalities such as physical tools.

*For instance, if S = {e,f,n} consisting of English,
non-ASCII and number patterns respectively, the sentence
“Hello World 2023” would be encoded to {e,e,n}. If mul-
tiple patterns are exhibited in one word token, each pattern
would be encoded separately: the German word “ldcheln”
—{e,f,e}.
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ther a multiset of 5" pattern ({8}, -+, 87} where
n > 1) or an empty set ¢. Thus, the final encoded
pattern set of a; is the multisubset of S. The en-
coding of a follows the same procedure. Let C’;-i
and C;l denote the number of j** pattern encoded
by e; in the pattern set of a and a;. Namely, for
ai, O = |{e;(t) | Vt € a;}|. Let || and |a,| be
the length of final encoded pattern sets of a and a;.
The pattern similarity score between tool response
a; and preliminary answer @& is computed as:

P(a,a;) = Y

je{lv"' 7|S|}

@%M@i%i
(laf +AlSlai| == P57

where P; is the prior probability of the j th pattern
from a prior pattern distribution P. P, S and e;
can be shared across different task and tool library
settings. Add-\ smoothing is applied to solve the
pattern zero-frequency issue. However, if a; is
empty, P(a,a;) will be assigned its lower bound
value 0. In our experiment, we use regular expres-
sions as encoding functions e;.

Intuitively, the pattern similarity score P(a, a;)
is the cross entropy between the prior pattern dis-
tribution P and the smoothed joint pattern distri-
bution from true tool response a; and preliminary
answer a. It is proved to have strict lower and upper
bounds in Appendix A.1 and holds the following
five essential properties: (i) Order Insensitive (ii)
Length Insensitive (iii) Pattern Sensitive (iv) Pat-
tern Set Size Insensitive (v) Commutative. Expla-
nations and proofs of these properties are provided
in Appendix A.2.

We hypothesize that tools could easily elicit their
latent pattern distribution through parsable API
calls, irrespective of its correctness. Therefore,
despite their less reliable performance, SLMs are
sufficient for query-tool grounding, because their
key task is to generate appropriate response pat-
terns in a for the given query and parsable API
call g; for the target tool, which is much simpler
than reasoning to make & (zero-shot result with-
out tool use) or ¢; (API call for result with tool
use) correct. In Appendix A.3, we discuss mock
responses which can further enhance the efficiency
and generalizability of the grounding process.

4 Experiment Setup
4.1 GEAR Implementation.

We implement GEAR according to the construction
described in §3. Throughout the experiments the

Zero-shot Few-shot ART);,, GEAR
GPT-Neo GPT-Neo

Algorithm —
Grounding Model — - _

Execution Model —+ GPT-J GPT-J GPT-J GPT-J
Datasets |

ASDiv 7.5 21.4 16.7 23.3
GSMS8K 0.4 5.6 9.8 3.8
SvAMP_ 20 131 _ 112 186
L, Average (Arithm) 3.3 134 12.6 15.2
IWSLT (cn) 10.5 16.9 4.1 21.1
IWSLT (ar) 8.5 18.7 4.8 17.6
IWSLT (de) 7.7 19.3 5.4 329
IWSLT (fr) 7.9 22.7 6.7 38.4
IWSLT (ja) 5.5 14.4 3.4 12.9
IWSLT(o) B9 _ 15236 149
L, Average (MT) 8.2 17.9 4.7 23.0
NQ-Open 10.2 31.1 21.2 43.4
WebQS 5.3 18.2 11.2 22.1
TiviaQA 273 _ 465 293 503
L, Average (ODQA) 14.3 31.9 20.6 38.6
CSQA 10.9 37.1 6.3 60.7
COPA 6.5 27.0 1.0 13.6
SociallQA 84__ 260 55 45
L, Average (CSQA) 8.6 30.0 4.3 38.6

Table 2: Downstream task performance results (§5.1).
Evidently, GEAR-augmented GPT-J outperforms our
baselines when using a consistent set of grounding and
execution models.

LLMs in our study are GPT-J and GPT34avinci-003
(in short, GPT-3), and our SLMs are GPT-Neo,
GPT2pedium, GPT21arge, MinilM and MPNet.

Specifically for our implementation of GEAR,
we use MPNet to calculate semantic similarity
scores and GPT-Neo for generating preliminary an-
swers and API calls to calculate pattern similarity
scores. For LLLMs, we use either GPT-J or GPT-3
for final tool execution.

Tools. To evaluate the performance for a variety
of purposes, we create a total of 10 different tools,
including 4 basic tools: Calculator, MT, Wiki,
and QA; and 6 novel tools: Timezone Converter,
Multilingual QA, Sleep, Exponential
Calculator, Logarithmic Calculator, and
Movement Controller. All of them are accessi-
ble via specific API calls and have corresponding
returns. Examples of API calls are shown in
Table 13 and more information about tools can be
found in Appendix C.

Datasets. We conduct our experiment on 14
datasets across 6 downstream tasks. The dataset

>We accessed the OpenAl models on April through June,
2023.

116



Models ASDiv SVAMP SQuAD T-REX TriviaQA  MLQA(es)
Toolformer (GPT-J) 40.4 294 33.8 535 48.8 20.6
ART},, (GPT-Neo/GPT-3) 37.0 21.3 17.7 20.6 243 14.0
ARTcg (MiniLM/GPT3davinci,oo3) 86.7 773 393 504 610 -
GEAR (GPT-Neo/GPT34avinci-003)  74.9 (-11.8)  79.9 (+2.6) 61.1 (+21.8) 83.1(+32.7) 62.5(+1.5) 58.3(+37.7)

Table 3: Comparing GEAR with Toolformer (Schick et al., 2023) and ART (Paranjape et al., 2023) (§5.1). The
original ART work, ART,,, employs MiniLM for cosine similarity strategy and does not have QA or MT for the

MLQA task.
Evaluate on — . ..
Models Demonstration | ASDiv.  GSM8K SVAMP  TriviaQA NQ-Open  WebQS
ASDiv 97.9 88.5 87.2 2.1 1.4 0.0
GSMS8K 93.8 88.4 81.9 0.3 1.1 0.0
L. SVAMP 98.3 74.5 75.7 0.0 1.1 0.0
ARTes (MinilM/GPTdavinci-003) TriviaQA 258 322 25 08.1 96.2 0.4
NQ-Open 253 25.2 22.4 97.4 98.2 0.4
WebQS 28.6 39.9 28.3 94.8 96.8 1.1
GEAR (GPT-Neo/GPT34avinci-003) 83.1 83.0 89.0 63.0 65.6 54.3

Table 4: Cross-dataset generalization evaluation of tool

grounding accuracy (§5.2). Evidently, GEAR can identify

the appropriate tool for a given task without requiring in-domain demonstrations while ART has a significant
grounding performance decline on out-domain demonstrations, with each score representing grounding accura-

cy/affordance ratio in percentage.

details and evaluation metrics can be found in Ap-
pendix B.4.

4.2 Baseline Systems
We organize our baselines as follows:

Zero-shot: This baseline directly asks questions
to LLM without any instruction.

Few-shot: This baseline involves prompting
LLM with natural language instructions that ar-
ticulate the requirements of the given task.

ART: This approach uses prompting LLLM for
multi-step reasoning and tools execution (Paran-
jape et al., 2023). Besides the results in the orig-
inal paper, we experiment with a reimplementa-
tion of ART (referred to as ART™) adapted to our
tools and tasks. Specifically, following the orig-
inal work, we report two variants of this model
with different tool-grounding strategies proposed
in its paper: (1) LLM-based prompting similarity
(ARTj}; ) and (2) cosine similarity (ART?,).

1Im

To ensure a fair comparison between baselines,
we let few-shot, ART*, and GEAR use the same
prompt examples (Appendix H).

5 Experimental Findings

We compare the downstream performances of mod-
els (§5.1), and compare their generalizability to

new tools or tasks (§5.2).

5.1 Results on Downstream Tasks

We first evaluate all our models on the downstream
task performance with a tool library containing
4 basic tools (Table 2). For consistency of com-
parisons, all the baselines use GPT-J for the final
answer execution. GEAR outperforms all the base-
lines across four basic tasks. For example, the ac-
curacy of GEAR-augmented GPT-J is 24.3% and
6.7% higher than zero-shot and few-shot baselines
on the ODQA (Open-domain QA) task. Compared
to the ART],, GEAR consistently has superior per-
formance because of better tool use. Later in §5.2
we show that this performance gap is due to the
difference in tool grounding accuracy. Additional
results using GPT-3 as execution model (in place
of GPT-J) are provided in Appendix D.

Table 3 puts Toolformer (Schick et al., 2023),
ART (Paranjape et al., 2023) and GEAR together,
evaluating on their shared datasets. All datasets
are evaluated under a 4 basic tools library except
for MLQA which uses a 5-tools library with an
extra Multilingual QA tool. Since Toolformer
code and model are not available online, we are
not able to reproduce their results and therefore,
copy the numbers from its paper. The compari-
son is unfair to Toolformer as it uses a finetuned
GPT-J model. But it is informative that GEAR-
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Algorithm — GEAR ART}, ART}, ARTY,
Grounding Model — GPT-Neo GPT21arge GPT2nedium GPT-Neo GPT34avinci-003 MPNet
Dataset (w/ 4 Tools) |  Target Tool | (1.3B) (774M) (355M) (1.3B) (175B) (110M)
ASDiv Cal 83.1 77.7 58.7 25.6 46.5 98.8
GSMS8K Cal 83.0 65.3 55.6 38.0 45.5 99.5
svamp__________ ¢ Cal ____80 __ 765 651 210 500 100.0_
L, Average (Arithm) 85.0 73.2 59.8 28.2 473 99.4
IWSLT (cn) MT 84.1 95.5 98.2 30.0 63.2 99.9
IWSLT (ar) MT 66.6 - - 27.8 61.6 98.6
IWSLT (de) MT 96.9 94.4 95.2 31.6 66.0 94.0
IWSLT (fr) MT 96.6 94.0 96.0 33.8 64.4 92.2
IWSLT (ja) MT 72.4 89.3 91.1 30.8 62.8 97.8
IWSLT (ko) _ _ _ _ _ __ __ mr_____ 82 _ 667 _ __9L7T __ 259 ___ 727 ____ 94 _
L Average (MT) 83.1 88.0 94.4 30.0 65.1 97.0
NQ-Open Wiki 63.0 61.3 59.1 10.9 44.0 394
WebQS Wiki 65.6 83.1 81.4 13.6 56.8 60.5
TriviaQA _ __ ____ _Wiki 543 7277132 81 415
L Average (ODQA) 61.0 73.9 70.7 12.6 53.0 47.1
CommonsenseQA QA 77.1 84.0 84.9 10.1 34.9 69.7
COPA QA 41.3 77.2 61.2 7.2 24.4 29.7
SociallQA_ QA_ 75T 816595 164 424 141
L Average (CSQA) 64.7 82.9 68.5 11.2 33.9 37.8

# of Operation in GFLOPS® 1573 937 430 5455 728420° 160

Table 5: Tool grounding accuracy for 4 downstream tasks with a 4-tools library (§5.2). Bold denotes the highest
value within its grounding strategy and underline represents the highest among all baselines. We find that GEAR
yields better performance compared to the LL.M-based strategy on all datasets. GEAR is generalizable to
smaller SLMs and even achieve better grounding results on certain tasks.

augmented GPT-3 outperforms the original work
ART, which employs the same-sized model with
task-specific demonstrations, on 4 out of 5 tasks.
This performance gain also emphasizes the strong
generalization capability of GEAR.

5.2 Results on Tool Grounding

We systematically examine the tool grounding ac-
curacy (the percentage of correctly selected tools)
across a variety of tool library sizes and model
sizes. We first calculate the grounding accuracy for
a tool library comprising 4 basic tools. Then we
expand the tool library to a total of 10, as described
in Appendix C.2, by introducing competitor and
distractor tools. We re-evaluate the grounding accu-
racy for the four basic tasks, along with two novel
tasks requiring Multilingual QA and Timezone
Converter tools. The main results are shown in
Table 5 and Figure 3.

GEAR is more generalizable than other query-
tool grounding algorithms. According to Ta-

8Since OpenAl has not open sourced their GPT34ayinci-003,
we approximate the operations as # tokens X # params, which
is the lower bound of operations. The real amount of opera-
tions should exceed this estimation.

ble 5, GEAR utilizing GPT-Neo with 1.3B parame-
ters significantly outperforms the LLM-based strat-
egy proposed by ART (Paranjape et al., 2023), even
when the latter uses GPT-3 which is 134 x larger.
The best-reported similarity strategy in ART, which
calculates the cosine similarity between the given
demonstration and textual description of tasks, per-
forms outstandingly well on Arithmetic and MT
tasks. We hypothesize this is because of the pres-
ence of distinct and unique keywords in Arithmetic
and MT queries, which are easily distinguishable
by word embeddings. However, for more open-
ended NLP tasks like Open-domain and Common-
sense QA, word embeddings are less generaliz-
able in selecting the correct tools, resulting in low
grounding accuracy of 47.1% and 37.8%. In con-
trast, GEAR’s grounding strategy is shown to be
more strong with grounding accuracy of 61.0% and
64.7% on the aforementioned tasks.

Table 4 displays a substantial decline in ground-
ing accuracy of ART (Paranjape et al., 2023)
when using out-domain demonstrations. In con-
trast, GEAR consistently maintains its high perfor-
mance without requiring in-domain demonstrations.
We also demonstrate GEAR outperforms retrieval-
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Figure 3: Grounding accuracy of GEAR when the tool
library is expanded from 4 to 10 tools (§5.2). We in-
crementally incorporate these tools: Multilingual
QA, Timezone Converter, Sleep, Logarithmic
Calculator, and Movement Controller.

based baselines on query-tool grounding, as shown
in Table 11 in Appendix E.

GEAR is generalizable to smaller language mod-
els. We evaluate the grounding performance of
GEAR on two smaller GPT-2 models. As reported
in Table 5, GEAR consistently exhibits high-level
grounding accuracy on both SLMs and even out-
performs GPT-Neo on certain tasks. For example,
GEAR-augmented GPT21.rge achieves 73.9% and
82.9% grounding accuracy for the Open-domain
QA and Commensense QA tasks, greatly higher
than those of ART* baselines. Moreover, as the
model size increases, the marginal grounding ac-
curacy gain diminishes. This is because as long as
the SLM produces expected patterns for the given
query, the correctness of the preliminary answer
has no bearing on the pattern similarity score (see
case study in §6.2). Which, in turn, experimen-
tally proves the feasibility of employing SLMs for
query-tool grounding.

GEAR is generalizable to larger tool libraries.
Because of a more comprehensive grounding pro-
cess, GEAR enables certain tasks to generalize bet-
ter for larger sets of tools. Figure 3 displays the
grounding accuracy changing from 4 to 10 tools.
The general low decreasing rates for Arithmetic,
MT and Open-domain QA demonstrate the ability
of GEAR in handling tool libraries of varying sizes.

We hypothesize the drops between the fourth
and fifth tools of CommonsenseQA and SoicallQA
datasets are likely due to the introduction of the
Multilingual QA tool which has functional over-

Performance change A

Task GEAR —Pattern Sim  —Semantic Sim
Arithm 74.0 2.3 -11.5
MT 80.5 +10.9 -69.9
ODQA 40.7 -15.4 -21.1
CSQA 334 -21.6 -18.9
MLQA 54.4 -10.6 -31.5
TZ Conversion 96.4 +3.6 -94.9

Table 6: The result of leave-one-out ablation study
for 10-tools library (§6.1). The decrease in ground-
ing accuracy on both columns demonstrates the im-
portance of considering both semantic and pattern
scores for query-tool grounding.

lap with the basic QA tool. Specifically, the
Multilingual QA tool can also solve reasoning
tasks by translating contexts from English to En-
glish; therefore, if we consider Multilingual QA
as the correct tool for the Commonsense QA task
as well, the averaged final grounding accuracy of
Commonsense QA task will increase to 49.1%,
with a 15.6% decrease compared to Table 5.

We also compare GEAR and the best variant
ART?Y, under a 10-tools library on 6 downstream
tasks with two extra novel tasks. In short, GEAR
outperforms ARTY, on 5 out of 6 tasks. See Ap-
pendix E for detailed results.

6 Analysis

6.1 Ablation Study

We now perform a leave-one-out experiment to bet-
ter understand the contribution of each score (§3.1
and §3.2) to the final grounding accuracy. We con-
duct experiments for a 10-tools library with only
either semantic similarity score or pattern similar-
ity score. The results are shown in Table 6. For the
10-tools library, there are 4 out of 6 tasks displaying
grounding accuracy decline in both semantic and
pattern columns, suggesting that it is crucial to con-
sider both semantic and pattern similarity scores
for query-tool grounding. Tasks such as MT and
Timezone Conversion show increased grounding
accuracy in the semantic column, which is likely
due to the same reason discussed in §5.2: these two
tasks contain unique keywords so that single se-
mantic similarity score suffices to distinguish them
from other tasks (more results in Appendix F.)

6.2 Case Study on SLM’s Size

It is natural to question whether GEAR will have
much better performance if we replace SLM with
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[Preliminary answer from GPT2peqiun] 1 make $ 2

[Question] Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck egg. How
much in dollars does she make every day at the farmers’ market?

[Preliminary answer from GPT21arge] the average american spends $ 1000 a year on food

[Preliminary answer from GPT-Neo] janet’s ducks lay 16 eggs per day

[Preliminary answer from GPT-3] Janet eats 3 of the 16 eggs, so she has 16 - 3 = «16-3=13»13 eggs left. She
bakes muffins with 4 of these eggs, so she has 13 - 4 = «13-4=9»9 eggs left to sell. Thus, she makes $9 * 2 =
$ «9*2=18»18 every day at the farmers’ market. Answer: $ 18.

United States

Chart" in 1936.

[Question] In which decade did Billboard magazine first publish and American hit chart?

[Preliminary answer from GPT2peqiun] the first billboard magazine was published in the fall of 1892.

[Preliminary answer from GPT21arge] the first billboard magazine was published in the united states in the year 900.
[Preliminary answer from GPT-Neo] the billboard hot 100 is a weekly chart that ranks the most popular songs in the

[Preliminary answer from GPT-3] The 1930s. Specifically, Billboard magazine first published its "Music Popularity

Figure 4: A comparison of output patterns between SLMs and LLM. The lines subsequent to [Question] represents
the output generated by the corresponding model, with patterns (number, symbol and English alphabet) labeled in
different colors. While SLMs tend to be less accurate than LLM, their responses provide sufficient clues (pattern

distribution) about the form of the expected answer.
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Figure 5: Averaged GEAR grounding performance over
SLM sizes (number of parameters, in log scale) on Arith-
metic and Commonsense QA tasks. Each task is evalu-
ated by three datasets. GEAR with SLM has a similar
grounding accuracy as with LLM.

LLM, namely, @ Smele LLM(Q) in Algorithm 1.
We provide a case study (Figure 4) showing the im-
pact of various SLM choices, including the setting
where replacing SLM with LLM, to further illus-
trate our observation in §5.2 that as the model size
increases, the marginal grounding accuracy gain
diminishes (Figure 5). In the first example from
GSMSK (Cobbe et al., 2021), we can see that SLM
offers the similar indicative signal as LLM that
the potential answer should contain number and
symbol patterns, despite their responses being in-
correct. We also observe that this phenomenon not
only happens in pattern-specific tasks (e.g. Arith-
metic) but also occurs in more general open-ended
tasks like Commonsense QA. The second Trivi-
aQA (Joshi et al., 2017) example shows that the
pattern distributions generated by the SLMs closely

resemble the LLM’s distribution: a single number
amid English text.

Thus as long as API calls are properly generated,
it is highly likely that GEAR with SLM will select
the same tool as with LLM. In other words, gener-
ating executable API calls from SLM now becomes
the only empirical limitation of the upper bound
of the pattern similarity score. As the model size
increases, this limitation will become less strict,
resulting in a diminished rate of improvement in
grounding performance.

To validate the above observations, we visualize
the grounding performance of GEAR across dif-
ferent SLM sizes on these two tasks in Figure 5.
Evidently, as the increasing of SLM sizes, the
grounding performance margin tends to decrease.
Note that because of different model families, SLM
grounding performance may not necessarily be
monotonically increasing (orange line).

7 Conclusion

In this paper, we introduce GEAR: a generalizable
query-tool grounding algorithm that enables effi-
cient tool groundings without extra fine-tuning or
task-specific demonstrations. This is accomplished
by introducing a fine-grained scoring mechanism
that leverages both semantic and pattern similar-
ities and leveraging smaller language models for
query-tool grounding. To validate the generalizabil-
ity of GEAR, we conduct extensive experiments
that demonstrate its capacity to deal with large tool
libraries and novel tasks.
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Limitations

While GEAR aims to improve the query-tool
grounding and exhibits strong generalization and
robustness for large tool libraries, including user-
provided pipelines, it has a potential limitation in
lacking support for automatic tool pipeline con-
struction. Future works could focus on how to
combine GEAR with automatic reasoning and task
decomposition works, such as ART (Paranjape
et al., 2023), Chameleon (Lu et al., 2023), and
CREATOR (Qian et al., 2023). We believe that
the combination of generalizable and efficient tool
grounding with multi-hop reasoning would further
boost the performance of the current SOTA LLMs.

Theoretically, GEAR supports tools that have
non-textual returns via mock responses. How-
ever, we only test the Sleep and Movement
Controller tools in the main experiment and the
Image Generation tool in the GEAR-augmented
chatbot. Though achieving promising results on
these three tools, future works, especially in the em-
bodied LM area, could further explore how mock
responses can be used in grounding human lan-
guage with physical world tools.
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A Pattern Similarity Score

A.1 Pattern Similarity Score Bounds

Because the count C' and \ are nonnegative, P; € [0, 1], |a ¢| indicate the total number of encoded
patterns from tool response and preliminary answer, we always have P(a, d;) > 0. In this proof, for
better understanding, we assume a most common case that each word token is encoded to only one
pattern, namely no word token exhibits multiple patterns. Thus, |a;| and ]a\ are equal to the length of

a;

C C
unencoded sequences of tool response and preliminary answer. p;, (-) = ‘a'| and ps(+) = W represent

the probability of jth pattern in raw a; and a.
C4+\)CY 1
Plaa) = 2 \(A J+)\!8) @l B,
je{1, IS} (Ial il J
C’“C‘“ + )\Ca’ 1
P> o6 1

IS Iallazl + A|5|!az|
It A =0:
P(a,a;)
. CJaCfll 1
- alla ¢ P;
je{l, IS} J

1

- Z pazva(x y)]I.’E ylog
ze{E(a:)} ye{E(a)} P(z)
1
- Z paz( )pfl(y)ﬂm:y 10g _—
ze{E(a;)} ye{E(a)} P(x)
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1
< Z paz( Jlog 5 - pale)
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(Because it is possible { E(a;)} N {E(a)} = ¢)
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= CE(pde)
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Properties a (Encoded) a; (Encoded) a9 (Encoded) Result

Order Insensitive ene ene een P(a,a1) = P(a,as)
Length Insensitive eee en enenen P(a,a,) = P(a,as)
Pattern Sensitive ene ene enn P(a,a1) < P(a,as)
Commutative ene eee nnn  P(a,a;) = P(a,a)

Table 7: Examples illustrating the four essential properties of pattern similarity scores

CE(pgs,, P) is the cross-entropy between the pattern distribution of raw tool response and the prior pattern
distribution. {E(a;)} and {E(a)} are two sets of patterns derived from encoding tool response a; and
preliminary answer a, respectively. pg, a(x,y) is the joint probability of pattern x and y in @; and a.
Because a; and a are obtained independently, we can simply write the joint probability as the product of
Pa; (z) and ps(y). Ly—, is the indicator function. PP(x) is the prior probaility of the pattern . Note that
unlike 7 which is an index variable, x and y here are real pattern variables.

IfA>0:let§ C {1,2,---,|S|} such that C% > 0 fora € § and C4 = 0 for B € {1,2,---,|S|} \ 6.

P(a, &)
72 ACH+ACE | 1
< Jallaa| + AISTla
)\Ca’ 1
* ﬁe{lv;w,}\é AT+ ST 5 75
Zg C’a+)\1 1
5 la;| la| + A|S|

Ccy A 1
> i-&*mg*

A 1

t Y e e
seaysp 14 TSI P

= CE,(pa, P) + ACEg(U(0, |a] + \|S|), P)

where U is the uniform distribution and p; is the smoothed pattern distribution of a.

A.2 Pattern Similarity Score Properties

Order Insensitive: The position of a pattern should not influence the score, as the preliminary answer
generated by the SLM tends to be disorganized.

Length Insensitive: The score should not be biased toward the length of tools’ responses, as certain
tools are inclined to generate longer responses.

Pattern Sensitive: Given the prior distribution P, tools that exhibit rare patterns are more likely to be
chosen when the preliminary answer a also exhibits those patterns.

Pattern Set Size Insensitive: The average pattern similarity score should remain consistent for various
tool library and pattern set sizes. This property ensures a consistent hyperparameter -y (the weight for
semantic and pattern scores).

Commutative: P(a,a;) = P(a;,a) should be hold for any preliminary answer @ and tool responses a;.

Table 7 gives illustrative examples for the pattern similarity score. e and n denote English token pattern
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and number pattern. The less frequency of numbers “n” in real corpus compared to English tokens “e
results in a smaller prior probability P(n) < P(e), leading to the result in the Pattern Sensitive row. In
other words, with the same length, tool response G containing more rare patterns which also exhibit in
the preliminary answer ¢ would have higher pattern similarity score.

The Pattern Set Size Insensitive property also holds because the denominator (|a| + A|S|)|a;| is
insensitive to the A|S|, given that |a| > |S| and A is typically small. Therefore, as long as the tool
response or preliminary answer does not exhibit the given patterns, namely C'j‘-i =0or Cjal =0, P(a,a;)
would not significantly change regardless of the size of |S|.

To prove the length-insensitive property, we have to first assume tool responses a; and ao share the
same pattern probability distribution. Namely, we have

ai G

J J .

N :Aivvje 1725"'75
Al Toal { S}

Then the comparison of pattern similarity scores for these two tools is only determined by the preliminary
answer a, pattern set size |S| and A, with no sensitivity to the length of tool responses.

A.3 Mock Pattern

When dealing with a large tool library, iterating through all tools for true responses is inefficient and some
tools may not have textual responses to encode. Conversely, through the utilization of pattern scores,
we can set certain tools to generate mock responses with corresponding mock patterns during the tool
grounding process, eliminating the requirement for actual execution, thereby reducing the GEAR’s time
complexity and generalizing it to various types of tools. In the experiment section §5, we test the efficiency
and generalizability of mock patterns for tool grounding by adding Sleep and Movement Controller
to the tool library.
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B Implementation Details

B.1 Hyperparameters

To avoid bias toward to pattern similarity score, we use add-one smoothing and set A = 1. Additionally,
based on our experiment, we observed that the mean of pattern similarity score is consistently three times
greater than the mean of the semantic score. In order to achieve a proper balance between these two
scores, we set v = 0.75 throughout the entire experiment.

B.2 Patterns

For 4 tools experiments, we use the following four patterns: S = { English token pattern: e, non-ASCII
token pattern: f, number pattern: n, symbol pattern: s}. Because we believe these four basic patterns
could cover a lot of language tools. Based on their frequency in the real corpus, we set their prior
probabilities as follows: P = {e: 0.78, £: 0.18, n: 0.05, s: 0.02}.

For generalization experiments where the tool library size varies between 4 to 10, we consistently use
the following prior pattern distribution: P = {e: 0.75, £: 0.15, n: 0.02, s: 0.02, Sleep Pattern: 0.02, Move
pattern: 0.02, Time pattern: 0.02}.

B.3 Models
* GPT-Jis from https://huggingface.co/EleutherAIl/gpt-j-6b

* GPT-Neo is from https://huggingface.co/EleutherAI/gpt-neo-1.3B
e MinilMis from https://huggingface.co/sentence-transformers/all-MinilM-L6-v2

* MPNet is from https://huggingface.co/sentence-transformers/all-mpnet-base-v2

B.4 Tasks and Datasets

We use the following 12 datasets from 6 downstream tasks in our main experiment, plus 2 extra datasets
(SQuAD (Rajpurkar et al., 2016) and Trex (Elsahar et al., 2018)) in Table 3. To keep the evaluation costs
manageable, we use 1K instances per dataset.

¢ Arithmetic (Arithm): We evaluate on ASDiv (Miao et al., 2020), GSMS8K (Cobbe et al., 2021) and
SVAMP (Patel et al., 2021) datastes. Given the arithmetic nature of these datasets, we expect successful
grounding in Calculator tool should improve their performance.

* Machine Translation (MT): We use IWSLT-2017 (Cettolo et al., 2017) dataset to evaluate the utility of
successful grounding to the MT tool. The input data consists of an English prompt and a non-English
context in Simplified Chinese, Arabic, German, French, Japanese, or Korean. We utilize diverse English
prompts for English translation requests (e.g., “How do you say ... in English”, “Speak ... to English”,
etc.). We sample 1K instances for each source language.

* Open-domain QA (ODQA): We experiment with NQ-Open (Lee et al., 2019), WebQS (Berant et al.,
2013), and TriviaQA (Joshi et al., 2017), since open-domain questions require external knowledge,
successful grounding of these tasks to Wiki tool improve their performance.

* Commensense QA (CSQA): To investigate the benefit of utilizing the QA tool, we evaluate all baselines
on CommonsenseQA (Talmor et al., 2019), COPA (Roemmele et al., 2011), and SociallQA (Sap et al.,
2019). Those datasets require the model to perform commonsense reasoning for a given context and
select the answer from a variety of choices.

e Multilingual QA (MLQA): MLQA (Lewis et al., 2020) is a hard multilingual question-answering
benchmark, expecting Multilingual QA to tackle such problem. Each instance includes an English
context and a query presented in Arabic, German, Spanish, Hindi, Vietnamese, or Chinese. We randomly
sample 1K instances for each language.
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* Timezone Conversion: we create this dataset programmatically by iterating over all combinations
of time zones, randomly-generated numbers which are verbalized into the natural language via real
querying scenarios. Specifically, we set 5 querying templates and 3 time formats, combining them with
randomly selected timezones to construct the dataset. Here are two examples:

My friend is in Cordoba, and I am in Madeira. If it is 2016-07-14 08:24:07 here, what time is it there?

I want to make a call to someone. He is in Johannesburg, and I am in Pitcairn. If it is May 16 2023
10:31:14AM here, what time is it there?

Successfully grounding to the Timezone Converter should improve the performance of this task.

Evaluation Metrics. For the Arithmetic task, we convert all English numerals to their numerical
equivalents and then pick the last number as the answer.” These are not needed when using Calculator
tool, as it always outputs a single number. Ultimately, we compute an exact match accuracy between the
resulting numbers and gold answers. For ODQA and MLQA tasks, following (Schick et al., 2023), we
verify if the generated output contains the gold answer. For the CSQA task, we compute the accuracy
as the ratio of accurately selected outputs. For the MT task, the translation quality is evaluated using a
BLEU (as percentage).

"For zero-shot or few-shot baseline the overall answer typically appears after the rationales.
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C Tools

We prioritize two factors for choosing tools: 1) whether they could compete with others 2) whether their
function is naturally beyond the capability of any LLM.

C.1 Basic Tools

Description and usage prompts for each basic tool are provided in Table 15

¢ QA: Our question-answering system is based on an external language model specially trained for answer-
ing questions. We utilize ChatGPT in our experiment, renowned for its performance in comprehending
and reasoning with human language.

* Calculator: The Calculator is built from the Python built-in function eval, which supports four
fundamental arithmetic operations with priorities that can be specified using brackets. The output is
rounded to three decimal places.

* MT: The core of our machine translation tool is the Google Translate API. It accepts two input arguments:
the text to be translated and the target language.

* Wiki: The last basic tool employed in our experiment is the Wikipedia Search (Wikisearch) engine. It
returns wiki paragraphs in response to queries. This tool advances models by supplying external factual
knowledge and its returned output is more formal and informative than that of QA. In our experiment, we
use ColBERTV2 (Santhanam et al., 2022) as the search retriever to index relevant information.

C.2 Novel Tools

For the selection of novel tools, we follow these two factors: whether they could compete with existing
tools or whether their function is naturally beyond the capability of any LLM. Consequently, we add the
following six tools:

* Logarithmic Calculator and Exponential Calculator: These two tools aim to solve logarithm
and exponential problems and serve as competitors to the Calculator tool.

* Multilingual QA: We compose MT and QA tools to form the Multilingual QA pipeline. It involves
two steps: translating the query to the target language using MT, and passing the context and translated
query to the QA to find the final answer.

* Timezone Converter: This tool is implemented by the Python pytz library. It converts a time from
one time zone to another. Such a task is also solvable by the QA tool but not accurately. Therefore, we
want to assess the success rate of grounding the most appropriate tools for such endeavors.

* Sleep: This tool suspends the entire program for a specified duration. This tool is intended to test the
mock response functionality for our system. We do not expect the program to sleep during the tool
grounding procedure; a mocked response is sufficient. However, once selected, this tool should perform
its intended function.

* Movement Controller: This tool instructs a robot to move a specified distance in a chosen direction.
Similarly to Sleep, this tool is used for testing the mock response for grounding tools with non-textual
outputs. During the grounding process, its returned response is a mock text: “Robot is moving
forward for {} meters”.
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Models ASDiv GSMSK SVAMP NQ-Open WebQA TriviaQA

ART¢s (MiniLM/GPT34avinci-003) 86.7 69.7 77.3 56.7 17.7 61.0
GEAR (GPT-Neo/GPT34avinci-o0s)  74.9 (-11.8)  71.1 (+1.4) 79.9 (+2.6) 53.8(-2.9) 23.6 (+5.9) 62.5 (+1.5)

Table 8: Comparing GEAR with ART (Paranjape et al., 2023) on Arithmetic and Open-domain QA tasks

Algorithm — Zero-shot  Few-shot  ARTj, GEAR
Grounding Model — - - GPT-Neo GPT-Neo
Execution Model — GPT-3 GPT-3 GPT-3 GPT-3
Datasets |

ASDiv 78.7 75.3 37.0 74.9
GSMS8K 62.4 69.9 14.7 71.1
SvaMp_______ _~ 54 737 213799
L Average (Arithm) 72.2 73.0 24.3 75.3
IWSLT(cn) 43.1 30.1 19.2 39.2
IWSLT(ar) 47.2 41.1 16.1 41.8
IWSLT(de) 51.6 40.8 25.0 51.0
IWSLT(fr) 55.8 42.7 25.9 55.0
IWSLT(a) 31.4 28.6 13.2 28.8
IWSLT(ko) _ _ _ _ _ _ - 379 313 165 365
L Average (MT) 44.5 35.8 19.3 42.0
NQ-Open 58.0 66.1 24.0 53.8
WebQS 24.9 28.1 11.2 23.6
TrivieQA 549 704 243 625
L Average (ODQA) 45.9 54.9 19.8 46.6
CSQA 74.7 75.6 5.0 70.1
COPA 45.5 33.7 0.3 36.7
SociallQA 68 648 12 595
L Average (CSQA) 59.0 58.0 2.2 554

Table 9: Downstream task performance result. Evidently, GEAR-augmented GPT-3 achieves competitive results
with GPT-3 few-shot and ART, both of which provided with task-specific demonstrations for solutions.

D Downstream Performance

Results for GPT-3 baselines can be seen in Table 9. For MT and Commensense QA tasks, even the
few-shot performance is lower than zero-shot, we hypothesize that this is because the GPT-3 model has
seen those datasets during the pretraining and memorized them.
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