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Foreword

The 12" Global Wordnet Conference was celebrated in Donostia-San Sebastidn two years after the out-
break of the coronavirus pandemic forced the preceding event to take place online. Fortunately, this
year the receding threat from the virus and the slow return to pre-pandemic life allowed scholars and re-
searchers from Africa, America, Asia, and Europe to make the journey to the Basque Country. Reunited
in person once more, the conference was an opportunity to greet longtime colleagues and forge new ac-
quaintances. Its varied sessions were interspersed with outings to local landmarks and historical spaces,
including a visit to the traditional cider house on an unusually frigid and windswept evening.

These activities were organized by this year’s host, HiTZ, the Basque Center for Language and Technol-
ogy. Many of the center’s members have long been active participants in the development of WordNet
and its related resources. This includes the steady creation of a Basque WordNet, a notable example of
the multilingual nature of wordnets globally.

We received fifty-two submissions, two more than the previous edition. The increase points to the contin-
uing strength of WordNet and its critical importance to Natural Language Processing within the current
wave of Large Language Models. Among the forty-three submissions accepted and presented during the
conference were studies that discussed the use of Wordnet for improving deep learning, methods to con-
nect wordnets to other ontologies and resources, Wordnet extensions, and wordnets for Latvian, Guarani,
Cantonese, and Japanese. Our invited speakers provided histories of NLP and WordNet that took us from
their origins to the present day and into the future. Christiane Fellbaum, co-founder and co-president of
the Global WordNet Association, presented a retrospective overview of WordNet, while José Camacho,
Senior Lecturer at Cardiff University’s School of Computer Science and Informatics, discussed the open
challenges that exist in word embeddings and language models.

We hope the work collected in this volume will not only encourage further research into wordnets and
their place within NLP today, but also serve as a bridge to future advances in the field.

Begofia Altuna, Itziar Aldabe, Xabier Arregi, Itziar Gonzalez-Dios, Aritz Farwell, Esther Miranda.

January 2023
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Invited talk

Christiane Fellbaum: 35 years of WordNet: Taking stock and looking ahead

We provide a brief behind-the-scenes look at the early days of WordNet, highlighting its initial motiva-
tion and its evolution. Examples of WordNet’s current and potential future contributions to research in
linguistics and psycholinguistics as well as to a wide range of applications are discussed.

Bio Christiane Fellbaum is a Lecturer with Rank of Professor in the Program in Linguistics and the
Computer Science Department at Princeton University. She was educated in Germany, France, and the
U.S. and received her Ph.D. in Linguistics from Princeton University. She is a co-developer, with George
A. Miller, of the lexical database WordNet, and has been active in WordNet-related research and diverse
applications. She has published widely on topics in lexical semantics and computational linguistics.

José Camacho-Collados: Contextualized Embeddings, Word Sense Disambiguation and Open Chal-
lenges

Embeddings have been one of the most important topics of interest in Natural Language Processing (NLP)
for the past decade. Representing knowledge through low-dimensional vectors that are flexible and easily
integrable in modern machine learning models has played a central role in the development of the field.
Embedding techniques initially focused on words but the attention soon started to shift to other forms.
Recently, contextualized embeddings such as those provided by BERT and similar approaches have taken
NLP by storm, providing improvements in many downstream tasks. Unlike static word embeddings,
contextualized models can dynamically capture the meaning of a word in context. In this talk, I will
explain to what extent this is true, showing the main advantages and limitations of current approaches. 1
will take word sense disambiguation as a proxy to answer these questions, presenting an overview of the
field from a language modelling perspective and discussing open challenges.

Bio Jose Camacho-Collados is a Senior Lecturer and UKRI Future Leaders Fellow at Cardiff Univer-
sity, leading the Cardiff NLP group. Before joining Cardiff University, he completed his PhD in Sapienza
University of Rome and was a Google Al PhD Fellow. He has worked on different areas of Natural Lan-
guage Processing (NLP) with a particular focus on semantics. He is the co-author of the “Embeddings in
Natural Language Processing" book and is the current Program Chair of *SEM. In addition to semantics,
he is interested in lexical resources and multilinguality, and in the last few years he has worked on devel-
oping NLP models specialised in social media, such as those included in the recently released TweetNLP
platform.
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Probing Taxonomic and Thematic Embeddings
for Taxonomic Information

Filip Klubicka and John D. Kelleher
ADAPT Centre, Technological University Dublin, Ireland
{filip.klubicka, john.kelleher}@adaptcentre.ie

Abstract

Modelling taxonomic and thematic relatedness
is important for building AI with comprehen-
sive natural language understanding. The goal
of this paper is to learn more about how tax-
onomic information is structurally encoded in
embeddings. To do this, we design a new
hypernym-hyponym probing task and perform
a comparative probing study of taxonomic and
thematic SGNS and GloVe embeddings. Our
experiments indicate that both types of embed-
dings encode some taxonomic information, but
the amount, as well as the geometric properties
of the encodings, are independently related to
both the encoder architecture, as well as the em-
bedding training data. Specifically, we find that
only taxonomic embeddings carry taxonomic
information in their norm, which is determined
by the underlying distribution in the data.

1 Introduction

Research on probing (Ettinger et al., 2016; Shi
et al., 2016; Veldhoen et al., 2016; Adi et al., 2017)
has gained significant momentum in the NLP com-
munity in recent years, helping researchers explore
different aspects of text encodings. While its po-
tential for application is broad, there are still many
NLP tasks the framework has not been applied
to. Specifically, it seems the majority of impact-
ful probing work focuses on analysing syntactic
properties encoded in language representations, yet
the rich and complex field of semantics is compara-
bly underrepresented (Belinkov and Glass, 2019).
One particular semantic problem that has not been
explored at all in the context of probing is the dis-
tinction between the taxonomic and thematic di-
mensions of semantic relatedness (Kacmajor and
Kelleher, 2019): words or concepts which belong
to a common taxonomic category share properties
or functions, and such relationships are commonly
reflected in knowledge-engineered resources such
as ontologies or taxonomies. On the other hand,

thematic relations exist by virtue of co-occurrence
in a (linguistic) context where the relatedness is
specifically formed between concepts performing
complementary roles in a common event or theme.
This distinction informs the theoretical basis of
our work, as we wish to explore the tension be-
tween taxonomic and thematic representations by
examining how their information is structurally en-
coded. Indeed, the vast majority of pretrained lan-
guage models (PTLMs) are trained solely on natu-
ral language corpora, meaning they mainly encode
thematic relations. Consequently, most probing
work is applied to thematic embeddings, while tax-
onomic embeddings remain unexplored. We thus
use the probing framework to study and compare
taxonomic and thematic meaning representations.
In addition, one aspect of embeddings that has
not received much attention is the contribution of
the vector norm to encoding linguistic information.
We have recently highlighted this gap in the liter-
ature and developed an extension of the probing
method called probing with noise (Klubic¢ka and
Kelleher, 2022), which allows for relative intrinsic
probe evaluations that are able to provide structural
insights into embeddings and highlight the role of
the vector norm in encoding linguistic information.
We find taxonomic embeddings to be particularly
interesting for probing the role of the norm, as we
suspect that the hierarchical structure of a taxon-
omy is well suited to be encoded by the vector
norm—given that the norm encodes the vector’s
magnitude, or distance from the space’s origin, it
is possible that the depth of a tree structure, such
as a taxonomy, could be mapped to the vector’s
distance from the origin in some way'. Applying
the probing with noise method to taxonomic em-
beddings on a taxonomic probing task could shed
some light on this relationship. In order to draw

'A hypothesis based on the finding that the squared L2
norm of BERT and ELMo can correspond to the depth of the
word in a syntactic parse tree (Hewitt and Manning, 2019).
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broader comparisons, we apply the same evaluation
framework to taxonomic and thematic SGNS and
GloVe embeddings.

2 Related Work

Hypernymy, understood as the capability to relate
generic terms or classes to their specific instances,
lies at the core of human cognition and plays a cen-
tral role in reasoning and understanding natural lan-
guage (Wellman and Gelman, 1992). Two words
have a hypernymic relation if one of the words
belongs to a taxonomic class that is more general
than that of the other word. Hypernymy can be
seen as an IS-A relationship, and more practically,
hypernymic relations determine lexical entailment
(Geftet and Dagan, 2005) and form the IS-A back-
bone of almost every ontology, semantic network
and taxonomy (Yu et al., 2015). Given this, it is
not surprising that modelling and identifying hy-
pernymic relations has been pursued in NLP for
over two decades (Shwartz et al., 2016).

While research on hypernym detection has been
plentiful, work applying any probing framework to
identify taxonomic information in embeddings is
scarce, and the existing work does nor probe for
it directly, but rather infers taxonomic knowledge
from examining higher-level tasks. For example,
Ettinger (2020) identified taxonomic knowledge in
BERT, but rather than using a probing classifier,
BERT’s masked-LM component was used instead
and its performance was examined on a range of
cloze tasks. One of the relevant findings was that
BERT can robustly retrieve noun hypernyms in this
setting, demonstrating that BERT is strong at asso-
ciating nouns with their hypernyms. Ravichander
et al. (2020) build on Ettinger’s work and investi-
gate whether probing studies shed light on BERT’s
systematic knowledge, and as a case study examine
hypernymy information. They devise additional
cloze tasks to test for prediction consistency and
demonstrate that BERT often fails to consistently
make the same prediction in slightly different con-
texts, concluding that its ability to correctly re-
trieve hypernyms is not a reflection of larger sys-
tematic knowledge, but possibly an indicator of
lexical memorisation (Levy et al., 2015; Santus
et al., 2016; Shwartz et al., 2017).

Aside from this recent focus on BERT, little
work has been done in the space of probing embed-
dings for hypernym information. However, work
on modelling hypernymy has a long history that

stretches back before large PTLMs and includes
pattern-based approaches (Hearst, 1992; Navigli
and Velardi, 2010; Lenci and Benotto, 2012; Boella
and Di Caro, 2013; Flati et al., 2014; Santus et al.,
2014; Flati et al., 2016; Gupta et al., 2016; Pavlick
and Pasca, 2017) that are based on the notion of dis-
tributional generality (Weeds et al., 2004; Clarke,
2009), as well as distributional approaches (Tur-
ney and Pantel, 2010; Baroni et al., 2012; Rei and
Briscoe, 2013; Santus et al., 2014; Fu et al., 2014,
Espinosa-Anke et al., 2016; Ivan Sanchez Carmona
and Riedel, 2017; Nguyen et al., 2017; Pinter and
Eisenstein, 2018; Bernier-Colborne and Barriere,
2018; Nickel and Kiela, 2018; Roller et al., 2018;
Maldonado and Klubicka, 2018; Cho et al., 2020;
Mansar et al., 2021). We highlight the work of
Weeds et al. (2014), who demonstrated that it is
possible to predict a specific semantic relation be-
tween two words given their distributional vectors.
Their work is especially relevant to ours as it shows
that the nature of the relationship one is trying
to establish between words informs the operation
one should perform on their associated vectors, e.g.
summing the vectors works well for a co-hyponym
task. We consider this in §3.

In terms of evaluation benchmarks for model-
ing hypernymy, in most cases their design reduces
them to binary classification (Baroni and Lenci,
2011; Snow et al., 2005; Boleda et al., 2017; Vyas
and Carpuat, 2017), where a system has to decide
whether or not a hypernymic relation holds between
a given candidate pair of terms. Criticisms to this
experimental setting point out that supervised sys-
tems tend to benefit from the inherent modeling
of the datasets in the task, leading to lexical mem-
orization phenomena. Some attempts to alleviate
this issue involve including a graded scale for eval-
uating the degree of hypernymy on a given pair
(Vuli¢ et al., 2017), or reframing the task design as
Hypernym Discovery (Espinosa-Anke et al., 2016).
The latter addresses one of the main drawbacks
of the binary evaluation criterion and resulted in
the construction of a hypernym discovery bench-
mark covering multiple languages and knowledge
domains (Camacho-Collados et al., 2018).

3 Probing Dataset Construction

Conneau et al. (2018) state that a probing task
needs to ask a simple, non-ambiguous question,
in order to minimise interpretability problems
and confounding factors. While we acknowledge
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the hypernym discovery framing as an important
benchmark, and the cloze tasks used by Ettinger
(2020) as an enlightening probing scenario, we
suspect neither is suitable for our probing exper-
iments, for which we require a simpler task that
more directly teases out the hypernym-hyponym
relationship. We thus opt to construct a new tax-
onomic probing task: predicting which word in a
pair is the hypernym, and which is the hyponym.
This dataset is directly derived from WordNet
(Fellbaum, 1998) and contains all its hypernym-
hyponym pairs. Thus each word pair shares only
an immediate hypernym-hyponym relationship be-
tween the candidate words: a word in a pair can
only be a hyponym or hypernym of the other.

However, in our experiments we wish to probe
both taxonomic and thematic encoders. Given that
we are mostly using pretrained thematic and taxo-
nomic embeddings (see §4), their vocabulary cov-
erage might vary dramatically. We wish to mitigate
confounders by comparing like for like as much as
possible, so to retain a higher integrity of interpreta-
tion when comparing models, we prune the dataset
to only use the intersection of vocabularies of all
the used models—we only include word pairs that
have a representation for both candidate words in
all the embedding models.

Note here that one of the goals of our work
is to use the probing with noise method to learn
about embeddings and the way they encode differ-
ent types of information in vector space. We assert
that a prediction of the relationship between a pair
of words cannot be fairly done without the classi-
fier having access to representations for both words
in the pair. Yet, our probe is a classifier which can
only take a single vector as input. Informed by
the work of Weeds et al. (2014) we considered op-
tions such as averaging or summing the individual
word vectors, but found that these were not suit-
able for our framing as they muddled the notion
that the classifier is receiving two separate words
as input. We instead concatenate the word vectors
in question and pass a single concatenated vector
to the classifier (similar to approaches used by Adi
et al. (2017)). This approach allows us to formulate
the task as a positional classification task: given
a pair of words, is the first one the hypernym or
the hyponym of the other? We can then assign
each instance in the corpus a binary label—O or
1—representing the class of the first word in the
pair. The probe can then predict if the left half of

the vector is the hyponym (0) of the right half, or
whether it is its hypernym (1).

Finally, the inherent tree structure of WordNet
means that a smaller number of words will be hy-
pernyms, while a larger number will be hyponym:s.
We want to avoid the probe memorising the subset
of words more likely to be hypernyms, but rather
to learn from information encoded in the (differ-
ences between) vectors themselves. In an attempt
to achieve this, we balance out the ratio of class
labels by duplicating the dataset and swapping the
hypernym-hyponym positions and labels. Before
duplicating, we also define a hold-out test set of
25,000 instances, so as to exclude the possibility
of the same word pair appearing in both the train
and test split—thus, the probe will be evaluated
only on unseen instances. This duplication resulted
in a final dataset of 493,494 instances, of which
50,000 comprise the test set and 443,494 comprise
the training set. Here are some example instances:

0, north, direction
1, direction, north
0, hurt, upset
1, upset, hurt

4 Experimental Setup
4.1 Chosen Embeddings

In our experiments we probe taxonomic and the-
matic SGNS embeddings, and make an analogous
comparison with taxonomic and thematic GloVe
embeddings. Usually pretrained taxonomic em-
beddings are not as easy to come by as thematic
ones, but fortunately we were able to include a set
of freely available taxonomic embeddings that are
based on a random walk algorithm over the Word-
Net taxonomy, inspired by the work of (Goikoetxea
et al., 2015). In short, the approach is to generate a
pseudo-corpus by crawling the WordNet structure
and outputting the lexical items in the nodes vis-
ited, and then running the word embedding train-
ing on the generated pseudo-corpus. Naturally,
the shape of the underlying knowledge graph af-
fects the properties of the generated pseudo-corpus,
while the types of connections that are traversed
will affect the kinds of relations that are encoded
in this resource. A Python implementation has
been made freely available’ and the embeddings

https://github.com/GreenParachute/
wordnet—-randomwalk—python

3



have been shown to encode taxonomic information
(Klubicka et al., 2019). Ultimately we chose these
embeddings as they allow us to be methodologi-
cally consistent by creating taxonomic embeddings
that employ the same encoder architectures used to
obtain thematic embeddings.

word2vec (SGNS) For faxonomic SGNS repre-
sentations® we opt for embeddings trained on the
pseudo-corpus that yielded the highest Spearman
correlation score on the wn-paths benchmark (in-
troduced by Klubicka et al. (2020)), i.e. the cor-
pus with 2 million sentences, with the walk going
both ways and with a 2-word minimum sentence
length. The lack of a directionality constraint pro-
vides higher vocabulary coverage and a smaller pro-
portion of rare words, while the 2-word minimum
sentence length limit ensures that we only have rep-
resentations for words that are part of WordNet’s
taxonomic graph and have at least one hypernym-
hyponym relationship, which makes them suitable
for this task. For the thematic SGNS embeddings
we use a pretrained model, and opt for the gensim*
word2vec implementation which was trained on a
part of the Google News dataset (about 100 billion
tokens) and contains 300-dimensional vectors for

3 million words and phrases”.

GloVe To train taxonomic GloVe embeddings, we
use a popular Python implementation of the GloVe
algorithm®’ and, importantly, train it on the same
2m-both-2w/s pseudo-corpus as the above taxo-
nomic SGNS was trained on®. For the thematic
GloVe embeddings we use the original Stanford pre-
trained GloVe embeddings’, opting for the larger
common crawl model, which was trained on 840
billion tokens and contains 300-dimensional em-
beddings for a total of 2.2 million words.

Note that when we concatenate the two word
embeddings required for an instance in the train
or test set, they become a 600-dimensional vector
which is then passed on as input to the probe.

Shttps://arrow.dit.ie/datas/12/
*https://radimrehurek.com/gensim/
Sword2vec-google-news-300
*https://github.com/maciejkula/
glove-python
"We used the following training parameters: window=10,
no_components=300, learning_rate=0.05, epochs=30,
no_threads=2. Any other parameters are left as default.
$https://arrow.dit.ie/datas/9/
‘https://nlp.stanford.edu/projects/
glove/

4.2 Probing with Noise

The method is described in detail in Klubicka and
Kelleher (2022)'%: in essence it applies targeted
noise functions to embeddings that have an abla-
tional effect and remove information encoded ei-
ther in the norm or dimensions of a vector.

We remove information from the norm (abl.N)
by sampling random norm values and scaling the
vector dimensions to the new norm. Specifically,
we sample the L2 norms uniformly from a range be-
tween the minimum and maximum L2 norm values
of the respective embeddings in our dataset'.

To ablate information encoded in the dimensions
(abl.D), we randomly sample dimension values and
then scale them to match the original norm of the
vector. Specifically, we sample the random dimen-
sion values uniformly from a range between the
minimum and maximum dimension values of the
respective embeddings in our dataset'>. We ex-
pect this to fully remove all interpretable informa-
tion encoded in the dimension values, making the
norm the only information container available to
the probe.

Applying both noise functions to the same vector
(abl.D+N) should remove any information encoded
in it, meaning the probe has no signal to learn from,
a scenario equal to training on random vectors.

Even when no information is encoded in an em-
bedding, the train set may contain class imbalance,
and the probe can learn the distribution of classes.
To account for this, as well as the possibility of a
powerful probe detecting an empty signal (Zhang
and Bowman, 2018), we need to establish informa-
tive random baselines against which we can com-
pare the probe’s performance. We employ two
such baselines: (a) we assert a random prediction
(rand.pred) onto the test set, negating any infor-
mation that a classifier could have learned, class
distributions included; and (b) we train the probe
on randomly generated vectors (rand.vec), estab-
lishing a baseline with access only to class distri-
butions.

Importantly, while we use randomised baselines

Code available here: https://github.com/
GreenParachute/probing-with-noise
""Thematic SGNS: [0.6854, 9.3121]
Taxonomic SGNS: [2.1666, 7.6483]
Thematic GloVe: [3.1519, 13.1196]
Taxonomic GloVe: [0.0167, 6.3104]
Thematic SGNS: [-1.5547, 1.7109]
Taxonomic SGNS: [-1.8811, 1.7843]
Thematic GloVe: [-4.2095, 4.0692]
Taxonomic GloVe: [-1.3875, 1.3931]

4



as a sense check, we use the vanilla SGNS and
GloVe word embeddings in their respective eval-
uations as vanilla baselines against which all of
the introduced noise models are compared. Here,
the probe has access to both dimension and norm
information, as well as class distributions from the
training set. However, given the lack of probing tax-
onomic embeddings in the literature, it is equally
important to establish the vanilla baseline’s per-
formance against the random baselines: we need
to confirm that the relevant information is indeed
encoded somewhere in the embeddings.

Finally, to address the degrees of randomness
in the method, we train and evaluate each model
50 times and report the average score of all the
runs, essentially bootstrapping over the random
seeds (Wendlandt et al., 2018). Additionally, we
calculate a confidence interval (CI) to make sure
that the reported averages were not obtained by
chance, and report it alongside the results.

4.3 Probing Classifier and Evaluation Metric

The embeddings are used as input to a Multi-
Layered Perceptron (MLP) classifier, which pre-
dicts their class labels. We used the scikit-learn
MLP implementation (Pedregosa et al., 2011) us-
ing the default parameters'®. The choice of evalua-
tion metric used to evaluate the probes is not trivial,
as we want to make sure that it reliably reflects a
signal captured in the embeddings, especially in an
imbalanced dataset where the probe could learn the
label distributions, rather than detect a true signal
related to the probed phenomenon. Following our
original approach (Klubicka and Kelleher, 2022),
we use the AUC-ROC score!'#, which is suited to
reflecting the classifier’s performance on both posi-
tive and negative classes.

5 Experimental Results

Experimental evaluation results for taxonomic and
thematic embeddings on the hypernym-hyponym
probing task are presented in Tables 1 and 2. Note
that all cells shaded light grey belong to the same
solver="adam’, max_iter=200,

learning_rate_init=0.001,
early_stopping=False,

Bactivation="relu’,
hidden_layer_sizes=100,
batch_size=min(200,n_samples),
weight init. W ~ N (0, \/6/(fanm + fcmout)) (scikit
relu default). See: https://scikit-learn.org/
stable/modules/generated/sklearn.neural_
network.MLPClassifier.html

“https://scikit-learn.org/stable/

modules/generated/sklearn.metrics.roc_
auc_score.html

SGNS
Model THEM TAX
auc +CI auc +CI

rand. pred. | .5000 | .0009 | .4997 | .0009
rand. vec. 5001 | .0012 | .5001 | .0011
vanilla 9163 | .0004 | .9256 | .0003
abl. N 9057 | .0004 | .9067 | .0005
abl. D 5039 | .0008 | .5294 | .0010
abl. D+N 4998 | .0010 | .5002 | .0009

Table 1: Probing results on SGNS models and baselines.
Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs.

distribution as random baselines on a given task,
as there is no statistically significant difference be-
tween the different scores; cells shaded dark grey
belong to the same distribution as the vanilla base-
line on a given task; and all cells that are not shaded
contain a significantly different score than both the
random and vanilla baselines, indicating that they
belong to different distributions.

SGNS Starting with thematic SGNS (THEM), Ta-
ble 1 shows that the random baselines perform com-
parably to each other, as would be expected, and
their score indicates no ability to discriminate be-
tween the two classes. We can see that the vanilla
representations significantly outperform the ran-
dom baselines, indicating that at least some taxo-
nomic information is encoded in the embeddings.
The norm ablation scenario (abl.N) causes a
statistically significant drop in performance when
compared to the vanilla baseline. In principle, this
indicates that some information has been lost. If in-
stead of the norm, we ablate the dimensions (abl.D),
we see a much more dramatic performance drop
compared to vanilla, indicating that much more in-
formation has been removed. Unsurprisingly, the
difference in the probe’s performance when apply-
ing both noising functions (abl.D+N) compared
to random baselines is not statistically significant,
meaning there is no pertinent information left in
these representations. Notably, once just the dimen-
sion container is ablated, its performance drops to
extremely low levels and approaches random base-
line performance, yet it does not quite reach it—as
small as it is, the difference is statistically signifi-
cant, indicating that not all information has been
removed in this setting. While significant, given
how minor this difference is, one might argue it
does not convincingly indicate the norm’s role in
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GloVe
Model THEM TAX
auc +CI auc +CI

rand. pred. | .4999 | .0011 | .4998 | .0010
rand. vec. 5001 | .0010 | .5001 | .0008
vanilla 9327 | .0004 | .8824 | .0005
abl. N 9110 | .0004 | .8435 | .0008
abl. D 5002 | .0008 | .6621 | .0008
abl. D+N .5000 | .0011 | .5006 | .0011

Table 2: Probing results on GloVe models and baselines.
Reporting average AUC-ROC scores and confidence
intervals (CI) of the average of all training runs.

encoding taxonomic information.

However, we observe a much crisper signal in
the taxonomic SGNS (TAX) results. The random
baselines perform comparably, while the vanilla
baseline significantly outperforms them, while also
significantly outperforming the THEM vanilla base-
line, confirming that the taxonomic embeddings
encode more taxonomic information than thematic
embeddings. The norm ablation scenario causes
a statistically significant performance drop from
vanilla, while ablating the dimension container
yields a larger drop, but does not reach the random-
like performance achieved when ablating both con-
tainers. Here the difference in scores between ab-
lating just the dimensions and ablating both dimen-
sions and norm is also significantly different from
random, but notably also an order of magnitude
larger than in the THEM example. This indicates
that the taxonomic SGNS embeddings use the norm
to encode taxonomic information more so than the-
matic ones.

GloVe In Table 2 we see that thematic GloVe
(THEM) vanilla performance dramatically outper-
forms the baselines, but the scores drop when the
norm is ablated. After ablating the dimension in-
formation, there is a substantial drop in the probe’s
performance and it is immediately comparable to
random baselines with no statistically significant
difference. Furthermore, performance does not sig-
nificantly change after also ablating the norm.
Meanwhile, the taxonomic GloVe embeddings
tell a different story. Firstly, while vanilla embed-
dings outperform the random baselines, they per-
form much worse than THEM vanilla Glo Ve, indi-
cating an inferior representation for the hypernym-
hyponym prediction task, even though they were
trained on WordNet random walk pseudo-corpora

(we discuss this in §6). Ablating the dimensions
causes a significant drop in performance, but it
is nowhere near the random performance reached
when ablating both dimensions and norm. This is
a really strong signal that indicates the norm en-
codes some hypernym-hyponym information. This
echoes the findings on SGNS, showing that taxo-
nomic embeddings tend to use the norm to encode
taxonomic information more so than thematic ones.

5.1 Dataset Validation Experiments:
Dimension Deletions

Our experimental design is based on the assump-
tion that providing the probe with a concatenated
vector of word embeddings would allow it to infer
the asymmetric relationship between the words and
use that signal to make predictions. While we have
taken some steps to ensure this and mitigate lexical
memorisation (see §3), there is still a concern that
the models could have memorised other regulari-
ties encoded in the individual word representations
and used that information to make predictions. For
example, while many candidate words can indeed
be both hyponyms or hypernyms, given the tree
structure of the taxonomy and the distribution of
edges, the frequencies at which a word takes on
a hypernym or hyponym role are still skewed. It
is thus more likely that any given word will be a
hyponym than a hypernym, and it is possible that
the embeddings implicitly encode the frequency at
which a word takes on a hypernym role, versus a
hyponym role.

To validate that the probe is actually learning
a relationship between the candidate words, we
run an additional batch of probing experiments to
establish another set of baselines specific to this
particular probing task. We examine the impact of
two scenarios on the probe’s performance: given
the same labels, a) what if the probe’s input was
only one word vector, and b) what if the probe’s
input was only half of each word vector in the pair?

We denote this line of enquiry as deletion ex-
periments, given that in practice a) can be seen as
deleting half of the concatenated vector, and b) as
deleting one half each vector before concatenating.
The crucial difference is that in a) the probe can
only learn from one word vector without having
any access to a representation of the other word,
meaning it can only predict whether the candidate
word is a hyponym or a hypernym by relying on
the probability derived from its frequency. In b) the
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SGNS GloVe
Model THEM TAX Model THEM TAX
auc +CI auc +CI auc +CI auc +CI

rand. pred. | .5000 | .0009 | .4997 | .0009 rand. pred. | .4999 | .0011 | .4998 | .0010
rand. vec. 5001 | .0012 | .5001 | .0011 rand. vec. 5001 | .0010 | .5001 | .0008
vanilla 9163 | .0004 | .9256 | .0003 vanilla 9327 | .0004 | .8824 | .0005
del. ea. 1h | .8929 | .0004 | .8998* | .0005 del. ea. 1h | .9120* | .0003 | .8727 | .0005
del. ea. 2h | .8927 | .0004 | .9039 | .0004 del. ea. 2h | .9179 | .0004 | .8730 | .0006
del. ct. 1h | .8496 | .0004 | .8525 | .0004 del. ct. 1h .8522 | .0004 | .8405 | .0004
del. ct. 2h | .8495 | .0004 | .8523 | .0003 del. ct. 2h .8522 | .0004 | .8406 | .0004

Table 3: Probing results on SGNS deletions and base-
lines. Reporting average AUC-ROC scores and confi-
dence intervals (CI) of the average of all training runs.

probe has a representation for both vectors, mean-
ing it could leverage the relationship between them,
but the individual vectors are truncated, meaning
that half of the dimensions are gone for each word,
making this inferior to the vanilla setting!”.

We ran these experiments for taxonomic and
thematic SGNS and GloVe embeddings and when
performing deletions assessed the impact of both
halves of the vectors. All dimension deletion re-
sults are included in Tables 3 and 4, where scenario
a) is denoted as del.ct.1h/2h (deleted 1st/2nd half
of concatenated vector) and scenario b) is denoted
as del.ea.1h/2h (deleted 1st/2nd half of each vec-
tor). When comparing the deletions of the different
halves, in cases where there is a statistically signifi-
cant difference between their scores, the lower of
the two scores is marked with an asterisk (*).

SGNS Unsurprisingly, deleting half of the vector
in either scenario causes a statistically significant
drop in performance when compared to vanilla. We
also observe a larger drop in both del.ct. settings
versus the del.ea. settings, which confirms that
predicting a word’s relationship to an “imaginary’
other word is the more difficult task.

However, strikingly, the performance is also sig-
nificantly above random, which indicates that the
probe likely did learn some frequency distributions
from the graph. It is possible that this is a reflection
of the imbalance inherent to WordNet, given the
large number of leaf nodes in the taxonomic graph.

Even still, the significant difference in scores
between the two settings demonstrates that having
access to both words, even at the cost of half the

>

SThis choice is motivated by a desire to make this setting
comparable to a) in terms of dimensionality—had we simply
compared it to vanilla, it would have the advantage of having
access to twice as many dimensions.

Table 4: Probing results on GloVe deletions and base-
lines. Reporting average AUC-ROC scores and confi-
dence intervals (CI) of the average of all training runs.

information in each word’s dimensions, is more
informative than having a full representation of a
single word, indicating that the probe is inferring
the relevant relationship between them.

GloVe The GloVe deletion results echo the find-
ings on SGNS in most settings. Deleting half of
the vector in either scenario causes a significant
performance drop, which is largely above random
performance, and the drop is larger in the del.ct.
setting versus the del.ea. setting. This provides
further indication that, while there is an inherent
imbalance in the underlying data, the probe is infer-
ring the relevant relationship between the candidate
words when given a concatenation of two word vec-
tors. The probe benefits significantly from having
access to a representation of both words, or even
just two halves of each representation. Even when
it is not explicitly told that it is actually getting two
inputs, it is able to pick up on the fact that there is
a difference between them which can be helpful in
deciding on a label.

6 Discussion

There are a number of points to take away from
our experimental results. Firstly, we see that both
vanilla thematic embeddings encode taxonomic
information and the GloVe vanilla model signif-
icantly outperforms the SGNS vanilla model. This
is at least partially due to the fact that the pre-
trained SGNS and GloVe thematic embeddings
were trained on unrelated corpora, which differ
in terms of size, topic and coverage: the corpus
that GloVe was trained on is over 8 times larger
than the one used to train the SGNS model, and
belongs to a different, much more varied genre of
text data. Thus, word representations derived from
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these resources are likely very different and it is
possible that due to the broader scope and much
larger size of the GloVe corpus, the GloVe repre-
sentations reflect more taxonomic knowledge.

However, these encoders exhibit the opposite
behaviour when trained on the same WordNet ran-
dom walk pseudo-corpus: expectedly, vanilla tax-
onomic SGNS scores improve upon its thematic
version, yet vanilla taxonomic GloVe scores signif-
icantly underperform compared to thematic. While
we would expect it to mirror what was observed
in SGNS, taxonomic GloVe is in fact our worst-
performing vanilla model. Given the significant dif-
ferences in model architectures, it is possible that
this unexpected behaviour is due to an interaction
between the architecture and training data'é. While
this may play a role, we suspect that the dominant
factor is rather training corpus size. The Word-
Net pseudo-corpus used for training taxonomic
embeddings was only about 9 million tokens in
size (which is sufficient to encode taxonomic re-
lations, as shown by Maldonado et al. (2019)),
whereas SGNS and GloVe were trained on 100
and 840 billion tokens respectively. It is not sur-
prising that GloVe trained on a small and relatively
sparse pseudo-corpus underperforms compared to
training on a large natural corpus. If anything, it
is encouraging that SGNS trained on a 9-million-
token pseudo-corpus outperforms one trained on a
100-billion-token natural corpus.

Another important finding from our experiments
is the strong evidence that word embedding models
can use the norm to encode taxonomic informa-
tion, regardless of what is encoded in the vector
dimensions. We find the clearest example of this
in taxonomic GloVe after ablating dimension infor-
mation, where the score remains as high as ~0.66,
meaning that the difference of 0.16 points is solely
due to information in the norm. This is a very
large difference given our understanding of the un-
derlying mechanics, where it is well known that
dimensions contain most, if not all information rel-
evant for a task (e.g. Durrani et al. (2020, 2022)),
and this is much more than has been demonstrated
on any of the sentence-level experiments in our
previous work (Klubicka and Kelleher, 2022). Ad-
ditionally, this is the only case where deleting half
of each word vector yields a significantly higher
score (~0.87) than ablating the norm (~0.84). This

"“The interested reader might consult Klubicka (2022,

pages 121-123) for some speculation as to what that inter-
action might be.

suggests that more information is lost when the
norm is ablated than when half of the dimensions
are removed. This is a strong indicator that in this
case the norm encodes information that is not at
all available in the dimensions. Certainly, the ma-
jority of the information in an embedding is and
will always be encoded in the dimensions, but it is
striking how much of it is present in the norm in
this case.

Generally, when it comes to dimension deletion
experiments, it is expected that the performance
would drop dramatically in comparison to vanilla
embeddings. However, an important takeaway is
that in all settings the drop is much smaller than
might be expected, being quite close to vanilla per-
formance and largely above random performance.
This points to a redundancy within the dimen-
sions themselves, seeing as either half of the vector
seems to carry more than half the information re-
quired to model the task, indicating that not many
dimensions are needed to encode specific linguis-
tic features. This is consistent with the findings
of (Durrani et al., 2020), who analysed individual
neurons in PTLMs and found that small subsets
of neurons are sufficient to predict certain linguis-
tic tasks. Our deletion results certainly corrobo-
rate these findings, given how small the drop in
the probe’s performance is when half the vector is
deleted.

For additional insight into the norm, we examine
the norm values. We calculate the norms of the
individual hypernym and hyponym word vectors
in our dataset and present the results in Figure 1.
The median norm value shows that the difference
between hypernym and hyponym norms seems to
be minor in both thematic embedding types (GloVe:
6.26 and 6.24; SGNS: 2.78 and 2.76), whereas the
difference is an order of magnitude larger in both
taxonomic representations (GloVe: 2.03 and 2.67;
SGNS: 5.64 and 5.80). The difference is also quite
large between taxonomic GloVe and SGNS, and it
seems to be what is reflected in our experimental
results, which show that GloVe stores the most
hypernym-hyponym information in the norm.

The median norm measurements show that, on
average, the norm of hypernyms is larger than the
norm of hyponyms. This means that hypernyms,
which are higher up in the tree, are positioned fur-
ther away from the origin of the vector space than
hyponyms, which are positioned lower in the tree
and are closer to the origin. Notably, this is only
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Figure 1: Box plots depicting the median values of the
L2 norm in the different sets of word vectors, separate
for hyponyms and hypernyms. There is a marked differ-
ence observed between hyponym and hypernym norms
in taxonomic GloVe and SGNS, but not in thematic.

true in taxonomic embeddings, but not the the-
matic ones, indicating that in taxonomic embed-
dings there is a mapping between the taxonomic
hierarchy and distance from the origin.

Finally, in spite of the fact that taxonomic GloVe
(TAX) is the worst-performing vanilla model, it
is interesting that its norm also encodes the most
taxonomic information. We base our interpreta-
tion of this result on the following: i) in many
embeddings there is a high correlation between
the norm and word frequency (Goldberg, 2017),
and ii) WordNet pseudo-corpora reflect hypernym-
hyponym frequencies and co-occurrences. We sus-
pect the principal signal that plays a role in the way
taxonomic embeddings encode taxonomic knowl-
edge is precisely these word co-occurrences, which
GloVe is designed to capture. In turn, the norm
can be seen as analogous to the hierarchical nature
of taxonomic relationships and becomes the most
accessible place to store this information. The the-
matic corpora reflect thematic co-occurrences and
frequencies and hence GloVe (THEM) does not
store taxonomic information in the norm, as such
relations are not hierarchical in nature.

7 Conclusion

In this paper we applied the probing with
noise method to two different types of word
representations—taxonomic and thematic—each
generated by two different embedding algorithms—
SGNS and GloVe—on a newly-designed taxo-
nomic probing task. The overall findings are that
(a) both taxonomic and thematic static embeddings
encode taxonomic information, (b) that the norm of
static embedding vectors carries some taxonomic
information and (c) thus the vector norm is a sep-
arate information container at the word level. (d)
While in some cases there can be redundancy be-
tween the information encoded in the norm and
dimensions, at other times the norm can encode
information that is not at all available in the dimen-
sions, and (e) whether the norm is utilised at all is
sometimes dependant on training data, not just the
encoder architecture.

We also show that in the case of SGNS, taxo-
nomic embeddings outperform thematic ones on
the task, demonstrating the usefulness of taxo-
nomic pseudo-corpora in encoding taxonomic in-
formation. Indeed, this work serves to further em-
phasise the importance of the norm, showing that
the taxonomic embeddings use the norm to supple-
ment their encoding of taxonomic information. In
other words, random walk corpora can improve tax-
onomic information in word representations, which
is not always the case for natural language corpora.
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Abstract

WordNet is a database that represents relations
between words and concepts as an abstraction
of the contexts in which words are used. Con-
textualized language models represent words
in contexts but leave the underlying concepts
implicit. In this paper, we investigate how dif-
ferent layers of a pre-trained language model
shape the abstract lexical relationship toward
the actual contextual concept. Can we define
the amount of contextualized concept forming
needed given the abstracted representation of
a word? Specifically, we consider samples of
words with different polysemy profiles shared
across three languages, assuming that words
with a different polysemy profile require a dif-
ferent degree of concept shaping by context.
We conduct probing experiments to investigate
the impact of prior polysemy profiles on the
representation in different layers. We analyze
how contextualized models can approximate
meaning through context and examine cross-
lingual interference effects.

1 Introduction

WordNet (Fellbaum, 1998) is a manually created
database that relates the words of a language to con-
cepts. Concepts are represented through synsets,
based on a weak synonymy relation, whereas ex-
plicit semantic relations between synsets place
these concepts in a semantic space. Words of a lan-
guage can be positioned in that same space but this
can become complex when they are ambiguous. A
polysemous word such as “’star” can be represented
in several positions of this space depending on its
meaning.

Word embeddings (Mikolov et al., 2013) place
words in a semantic space as well based on the
dimensions of the vector that was derived when
learning to predict their context words. Static
word embeddings can be interpreted as an average
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across contexts, even when words occur with dif-
ferent meanings. For our example, this means that
”star” would be positioned somewhere in between
celebrity and synonyms for the concept celestial
body as a compromise across contexts.

More recent pre-trained Transformer-based Lan-
guage Models (PTLM) such as BERT (Devlin et al.,
2018) and RoBERTa (Liu et al., 2019b) capture
a more nuanced relationship between words and
concepts by not only representing the vocabulary
through embeddings but also distinguishing con-
texts: the word “star” will be represented differ-
ently depending on the context in which it oc-
curs. From an abstract point of view, these context-
sensitive representations approximate a relation be-
tween words and concepts. Ethayarajh (2019) in-
vestigates this relationship by measuring the impact
of contextualization on the representation of mean-
ing through the layers of PTLMs, showing that
representations of tokens in contextualized models
deviate from their static initialization. The research
by (Ethayarajh, 2019) is limited to monolingual
models, which leaves open what relationship be-
tween tokens or words and concepts is captured in
cross-lingual models where words and concepts are
shared across languages.

In cross-lingual language models (XPTLMs)
such as XLM-RoBERTa (Conneau and Lample,
2019), the challenge of contextualizing concepts
is even more complex because of the additional
cross-lingual ambiguity. The same word can be
mapped to the same or to different concepts across
languages. For example, the Dutch word star” is
an adjective meaning inflexible whereas the trans-
lation for the English “’star” corresponds to “ster”
in both meanings. The Dutch language, therefore,
adds ambiguity to the word-concept relationship of
”star”. As most XPTLMs use a shared vocabulary
for all languages, the variation in meaning across
languages can simply be interpreted as different
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contexts for a word that needs to be encoded in the
representations of the model.

In most multi-lingual wordnet databases, cross-
lingual ambiguity is underrepresented because they
are commonly build using the expand-method
(Vossen, 1998). This means that the English rep-
resentation of concepts is maintained and cross-
lingual links are established by mapping the vocab-
ulary of the new language onto the existing concept
taxonomy. This approach hampers research to the
universality of concepts in wordnet models (Vossen
and Fellbaum, 2009) but it has been applied widely
because of its clear practical advantages over the
alternative merge-method that requires intense man-
ual labor. XPTLMs can be constructed in different
ways as well, which partially mimics the difference
between the expand and the merge approach: 1)
expanding a monolingual PTML with static lexical
embeddings for target languages while freezing the
other layers (Artetxe et al., 2019) or 2) training
a model from texts from all languages (Conneau
and Lample, 2019) so that all languages contribute
conceptual representations as contexts (a merged
approach).

In this paper, we argue that XPTLMs provide
new opportunities to move beyond the conceptual
limitations of multilingual wordnet databases built
through the expand method. We provide empirical
evidence for the impact of languages on a shared
conceptual XPTLM for both the lexical and concep-
tual levels by measuring to what extent sharing to-
kens in XPTLMs has a positive or negative impact
on representing concepts and to what extent the
contexts in which these words occur compensate
for any disturbances in the token representation.
In other words: to what extent is the representa-
tion of star” a compromise across all language
meanings and to what extent is it defined by the
cross-lingual contexts in which it occurs? XPTLMs
use a shared vocabulary for all languages to exploit
semantic commonalities across languages (cognate
effects). However, cross-lingual differences caused
by semantic drift (Beinborn and Choenni, 2020)
can contribute to semantic interference (Lauscher
et al., 2020).

More specifically, we will address the following
questions in our experiments:

e How consistent is the relationship between
words and concepts with and without the in-
fluence of context for polysemous words?

e What are the effects of sharing vocabulary and

contexts across languages on the representa-
tion of cross-lingual ambiguity?

In order to investigate the above questions, ide-
ally a large sense-tagged parallel corpus would be
required to identify a representative set of con-
cepts shared across languages. Existing corpora
(Bond et al., 2013) are however small and have
skewed sense distributions. Another problem is
that it is hard to determine the best level of granular-
ity for identifying concepts associated with a word
in contexts and they may not be distinguishable
empirically through existing models (Ethayarajh,
2019). Instead of multilingual corpora with Word-
Net senses or all contextualized contexts, we, there-
fore use a controlled set of semantic classes as the
representation of concepts following the work of
(Zhao et al., 2020). Entity types such as PERSON,
ORGANIZATION, and LOCATION can be seen as
coarse-grained concepts for which large datasets
exist. We use the XLEnt dataset (El-Kishky et al.,
2021) which contains 160 million aligned entity
pairs in 120 languages paired with English. We
investigate how well the entity in this data are dis-
tinguished by contextualized models in contextual-
ized layers.

Our contributions are:

e A probing method for measuring the lexical
(token) and contextual (model) effects of lan-
guages within various cross-lingual models.

o Pilot results on cross-lingual interference and
support effects for the typologically related
languages English, German and Dutch.

e Pilot results for cross-lingual zero-shot prob-
ing for German, Dutch, Arabic, and Amharic.

The paper is further structured as follows. In the
next section 2, we describe related work, especially
on semantic probing of distributional models. After
that, we describe in Section 3 our methodology,
which is based on (Zhao et al., 2020) but applied
to multilingual models. The dataset that we use is
described in Section 4 and our experimental results
are described in Section 5. We discuss the results
and conclude in Section 6.

2 Related work

Analyzing the representational structure of contex-
tualized models has become an essential means
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towards developing more transparent and inter-
pretable AI models, for example in the Black-
boxNLP workshop which is reaching its Sth edition
this year (Bastings et al., 2021). However, only a
limited amount of research has been done to inves-
tigate the relationship between the vocabulary of
such models and the degree of context dependency
of the concepts that are associated with the words
in the vocabulary. In Ethayarajh (2019), this rela-
tionship is investigated by measuring the impact of
contextualization on the representation of meaning
through the layers of language models. This study
indicates that 1) contextualized models do enhance
the meaning compared to the static initialization of
the token and 2) there is no finite and discrete set
of representations (thus concepts) for single tokens
across concepts.

Artetxe et al. (2019) show that it is possible to
transfer an English transformer to a new language
by freezing all the inner parameters of the network
and learning a new set of embeddings for the new
language through masked language modeling. This
works because the frozen transformer parameters
constrain the resulting representations to become
aligned with English. This approach does not adapt
the concept representation established for the orig-
inal language English. It only learns the token
embedding using the English concept model and
is thus comparable to the multilingual wordnet ex-
pand model (which uses a single English concept
space and learns token mappings to another lan-
guage). It is not possible to learn new concepts
from another language nor adapt biases learned
from the English data. Phenomena of semantic drift
across languages (Beinborn and Choenni, 2020)
can therefore not be captured and it remains un-
clear how the addition of languages affects the con-
ceptual distribution beyond the performance on the
downstream tasks.

For analyzing how a contextual language model
captures the relationship between a word and a con-
cept, we can use word sense disambiguation as a
proxy task. The task evaluates model performance
in associating an ambiguous word with the cor-
rect concept from the possible concept inventory.
For example, the word “state” could represent a
‘government’ or the concept corresponding to the
WordNet synset called ”a way something is”. One
limitation of using such an approach is the granular-
ity of the sense category. WSD categories are often
too fine-grained and allow only limited abstraction

(Izquierdo et al., 2009).

We opt for a task on a higher abstraction level
and apply semantic class-based probing to quan-
tify the contextualization capability of a language
model using Wiki-PSE in line with Zhao et al.
(2020). Wiki-PSE contains tokens used in con-
texts corresponding to different semantic classes.
For example, the word ‘apple’ can refer to a tech-
nology company corresponding to the ‘Organiza-
tion’ class or it can refer to a fruit belonging to
the ‘Food’ class (Yaghoobzadeh et al., 2019). A
concept-tagged dataset can be used to investigate
relationships between a word form and a concept
in a language model in a simplified setup: word
forms are limited to entity names and their seman-
tic classes define the concept inventory.

Probing has been established as a tool to test
whether linguistics information is encoded in lan-
guage model representations (Adi et al., 2016; Be-
linkov et al., 2017b; Tenney et al., 2019). Adi
et al. (2016) train a classifier to predict sentence
characteristics such as length, semantic informa-
tion, and word order from sentence representation.
Higher performance in the classification task indi-
cates that information about the measured property
is encoded in the embedding. Liu et al. (2019a) ex-
tend the probing tasks to a wider range of linguistic
phenomena such as coreference, semantic relations,
and entity information. Tenney et al. (2019) intro-
duced edge probing and establish a standard format
to quantify the availability of linguistic structure
in pre-trained language models using various NLP
benchmark tasks.

Our work follows Zhao et al. (2020) in that we
use sentence probing to measure the relationship
between a word, its context, and the correspond-
ing concept. We extend this approach to various
multilingual models instead of English BERT. We
present pilot experiments to explore the utility of
using semantic class probing with these multilin-
gual models.

3 Methodology

To analyze how language models capture the rela-
tionship between words and concepts, we identify
words that illustrate edge cases for the relation be-
tween concepts and contexts: 1) a monosemous
(mono) relation between a word and a single con-
cept, 2) balanced polysemous relations between a
word and multiple concepts, and 3) skewed poly-
semous relations where one concept is dominant
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in language use. We expect that the patterns in
concept distribution are reflected in the probing
performance of the cross-lingual models.

Our approach represents only a rough approx-
imation of the set of concepts related to a word
as well as the distribution of concepts in language
use. The actual range of concepts is unknown and
is the result of the pretraining of the model. Our
pilot experiments, therefore, explore whether the
large-scale annotations of XLEnt can serve as a
proxy for probing word-concept relationships in
multilingual models. We assume that such data
provide sufficient information on the relation be-
tween words and concepts to measure the degree of
ambiguity and the capability of models to identify
concept relations from contexts. We hypothesize
that our observations for a selected set of words can
be generalized to a larger sample, which should be
tested in future research.

In the probing setup, the model representation
built during pretraining is not changed and can be
tested for its capacity to represent a concept in tar-
get contexts at different layers. We assume that the
lexical initialization in the first layer will reflect the
prior ambiguity of the word in the pretraining data
and that the integration of context will adjust the
representation toward the target concept in higher
layers. We expect the following observations for
the respective profiles:

1. mono: only minor differences between the lex-
ical initialization level and higher contextual
levels

2. skewed:

(a) matching distribution for test cases:
same as mono

(b) diverging distribution for test cases: low
probing accuracy on the lexical level,
strong indications of concept sensitivity
in higher levels

3. balanced: low probing accuracy at the lexical
level, improved concept knowledge in higher
levels in all cases but not as strong as for di-
verging

In our experiments below, we report on
the results for skewed and balanced ambigu-
ous words in English and across the language
English, Dutch, and German. Our code is
publicly available at https://github.com/cltl/

probing-cross—-linqual-model.

4 Data set and Experiment

For our experiments, we use entities and their re-
spective semantic class as a proxy for a more gen-
eral notion of words and concepts due to data avail-
able for many languages with a controlled number
of concepts in the form of entity types as seman-
tic classes. Specifically, we select a sample from
XLEnt which contains 160 million entity mentions
annotated with 10 classes in 120 languages (EI-
Kishky et al., 2021). We describe the selection
procedure in the following subsections.

4.1 Pre-processing and Sampling

We include English, German, and Dutch in our
analysis.! Table 1 shows the statistical summary of
the total available data.

EN NL DE
Sentences 17,942,551 12,429,622 5,512,929
Entities 4,219,046 6,737,100 2,917,688
Unique Entities 59,054 60,777 38,930
LOC 512,219 744,024 329,030
ORG 1,690,244 3,282,967 1,580,477
PER 2,016,583 2,710,109 1,008,181

Table 1: Statistics of entities distribution in XLEnt for
English, Dutch, and German.

For each of these languages, we selected sen-
tences from one of the three semantic classes: Loca-
tion, Organization, or Person. We selected these se-
mantic classes because they correspond to clearly-
distinct classes which cannot easily be used inter-
changeably in the same sentence, as opposed to
clear metonymically-related classes such as Orga-
nization and Product.

The distribution across language and semantic
classes in XLEnt varies. To maintain similar distri-
bution across our target languages, we, therefore,
sampled an equal number of sentences for each
semantic class.

From the total set of entity names, we selected
a sample of clear cases with monosemous, bal-
anced polysemous, and skewed polysemous rela-
tions. Furthermore, the selected names should oc-
cur as tokens in the English, Dutch, and German
data set. This results in a subset of 21 names related
to the concepts of Person, Organisation, and Loca-
tion. In the appendix B, the complete list of names

!"The main reason for choosing these three languages is that
we have native and up-to-native knowledge of these languages.
In future research, we will also apply the same tests to other
languages.
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is given with the distributions and the division over
the three polysemy profiles: mono, skewed and
balanced. Table 2 shows a few examples of entities
that are shared across languages. From these exam-
ples, Tasman and Aquarias are skewed towards a
location interpretation, whereas Chimera is skewed
towards an organization and Prana is balanced. Sir-
ius is underrepresented towards Person.

To classify the distribution of an entity as bal-
anced or skewed, we first normalized the frequency
distribution between 0 and 1 using the total fre-
quency across all types. We then applied a thresh-
old value to categorize it into balanced and skewed.
For a threshold value of 0.95 (95%) or higher, we
classified an entity as skewed to a particular se-
mantic class. If an entity occurs in more than one
semantic class in a comparative way (at 0.35 or
higher), we classify it as a balanced case.

Shared Entity LOC ORG PER
Tasman 13 5 5
Prana 12 19 16
Sirius 391 481 42
Chimera 10 85 17
Aquarius 124 11 59

Table 2: Sample of names for entities with sufficient
coverage and different polysemy profiles in English,
Dutch, and German.

Using the same threshold, we further distinguish
between cases where Dutch and German have sim-
ilar distributions as English and cases with differ-
ent distributions. We applied a similar approach
to compare the distribution of entities across lan-
guages by comparing the normalized frequency
distribution of entities. We assume that similar
cross-lingual distributions result in better represen-
tation for a target language, whereas diverging dis-
tributions confuse the model and result in poorer
representations. Note that the words are shared
across these languages and get the same lexical
initialization.

Our predictions should generalize over the sam-
pled names per polysemy profile. Our probing
framework can be used to test any language model
that covers these words and the languages from the
dataset. The results tell us to what extent pretrain-
ing resulted in a bias for the lexical initialization
and to what extent the model can correct for this
using the context. Below, we apply our probing
methodology to XLM-RoBERTa and mBERT as a
cross-lingual model to capture the relation between

a word and concepts. We also apply the test to
English BERT itself for comparison. We can easily
extend the test to others models that include the
probing words in the vocabulary.

4.2 Probing Experiment

For our probing experiment, we use a simple one-
layer perceptron (MLP) similar to (Zhao et al.,
2020). We designed a three-class classifier by tak-
ing each of the three distinct semantic classes. Fig-
ure 1 shows the architecture of our probing classi-
fier.

For the experiments, we use the list of entities, a
set of context sentences where these entities occur,
and the semantic class associated with the entity
for each context. In our probing, we first take the
target sentence and pass it through a cross-lingual
language model to generate the contextual repre-
sentation associated with the target entity and the
sentence which contains the entity word. From
the language model output, we use the representa-
tion from the input layer (layer-0), the middle layer
(layer-3), and the last layer(layer-12) as input for
our classifier.”> We use layer-0 as the baseline since
it is initialized with the lexical token representation
of the language model and should exhibit a prior
ambiguity profile. In the middle and last layers,
we get representations of our target words that are
modified by the context. We train and test our prob-
ing model with these representations to detect the
semantic class for the names in context.

4.3 Baseline

One of the core challenges of a probing method is
how to interpret the results of a probing classifier.
Previous works compare the result of the classi-
fier with different approaches including majority
baselines (Belinkov et al., 2017a; Conneau et al.,
2018), static word embeddings (Belinkov, 2022;
Tenney et al., 2019) and a random baseline by train-
ing the probing classifier on a randomized version
of the input feature (Zhang and Bowman, 2018;
Tenney et al., 2019). In our work, we include three
baselines to compare and interpret the result of our
probing model.

5 Results

We first examine our probing setup for resolving
conceptual ambiguity in English entities and next

2We choose the third layer because it gave the best perfor-
mance in most of our experiments
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Figure 1: Architecture of our probing classifier

conduct additional analyses to examine the effect
of shared tokens across multiple languages on con-
ceptual ambiguity. Lastly, we conduct tests across
typologically related and distant languages to check
if a relationship learned between context and con-
cept in one language is relevant for another lan-
guage.

5.1 Probing Ambiguous Entities in English

In the first experiment, we focus on ambiguous
entities in English and their representation in XML-
RoBERTa. Entities are ambiguous if they have
annotations for all three semantic classes in the
data, either balanced or skewed towards one type
as explained above. Table 3 shows the details of the
distributions and the experimental results for the
balanced and skewed cases respectively. Note that
the train and test cases are randomly selected from
the data and exhibit a similar distribution of bal-
anced and skewed distribution. However, the test
results are differentiated among them. For the bal-
anced cases in Table 3, we see that layer-0 results
are lowest, layer-3 are highest and layer-12 results
are in between for all three concepts. Furthermore,
location performs slightly better than organization
and person. Looking at the skewed cases in Table
3, we see a similar pattern that results are lowest
in layer-0, best in layer-3, and go down in layer-
12. Overall, the results are better for skewed cases
than for balanced cases at all levels, except for lo-
cation. Remarkably, location performs lower than
organization and person for the skewed cases.

The first conclusion we can draw here is that
layers do correct for confusion at the lexical level
by the context but some of this is lost in the higher
levels. We can only partially confirm the prediction
that balanced distributions are harder than skewed

distributions. The prediction holds for organiza-
tions and persons, which perform lower for bal-
anced than for skewed at all levels but not for lo-
cation at layer-0 and layer-12. Apparently, the
skewed cases are poorly represented for location
at layer-0, which is correct in layer-3 (outperform-
ing the balanced cases) but drops considerably in
layer-12.

LOC ORG PER
#Train 1506 1490 1504
#Test 494 510 496
#Single-Token Entity 252 779 1088
#Multi-Token Entity 1748 1221 912
Balanced
#Test 417 334 314
Layer-0 0.65 0.58 0.52
Layer-3 0.81 0.78 0.79
Layer-12 0.78 075 0.75
Skewed
#Test 77 176 182
Layer 0 0.61 0.75 0.76
Layer 3 0.86 0.87 0.9
Layer 12 0.78 0.82 0.86

Table 3: F1 scores for probing the different layers of
XLM-RoBERTa on ambiguous entities. We run the ex-
periment five times with seed from (0,1,2,3,4) Results
are averaged over five runs. We observe a standard de-
viation between 0.003 and 0.009 For entities that are
split into sub-tokens during tokenization, we took the
mean of each of the vector embeddings

To investigate the impact of dominance on a con-
cept at the lexical level, we differentiate the results
for the skewed names into test cases that match the
bias and cases that do not match. The results are
shown in Table 4. We perform targeted analysis
of the quantitative performance by explicitly dis-
tinguishing the dominant semantic classes. As can
be expected, the probing performance for detecting
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the location concept for names that predominantly
occur with this concept is already very high al-
ready at layer-O and increases further at layer-3
and layer-12. We observe the same pattern for the
other two classes. We also see that the layer-0 per-
formances for the non-dominant concepts are very
low (from O to max .38), while the probing perfor-
mance increases slightly in layer-3 and layer-12.
The integration of context in the higher layers thus
balances out the bias towards the dominant concept
during initialization but not completely. The fact
that the final scores are significantly lower shows
that the lexical layer initialization does matter for
obtaining optimal results. This also implies that
confusion in a cross-lingual model created by shar-
ing tokens across languages could result in poorer
initialization in layer-0 that needs more repairing
in the context-sensitive layers. We investigate the
impact of such token or vocabulary sharing in the
next subsection.

LOC ORG PER
Skewed to LOC
Layer-0 0.82 0.38 0.25
Layer-3 0.9 0.63 0.73
Layer-12 0.9 0.53 0.67
Skewed to ORG
Layer-0 024 081 0.34
Layer-3 085 093 0.75
Layer-12 059 0.85 0.5
Skewed to PER
Layer-0 0 0 0.97
Layer-3 0.67 0.29 0.97
Layer-12 067 0.25 0.97

Table 4: Result of probing the different layers of XLM-
RoBERTa on entities that are skewed toward a specific
semantic class. Result evaluated on F1-Score averaged
over five runs

5.2 Probing Shared Entities across English,
Dutch, and German

In the second experiment, we specifically probe en-
tity names that are shared across the English, Dutch,
and German data. We first select names that occur
in all three languages. In the second step, we filter
entities that are ambiguous across the three target
classes. From these shared ambiguous entities, we
identify two subcategories: 1) entities that have
a similar type distribution in all three languages,
and 2) entities that clearly exhibit a deviating dis-
tribution in both Dutch and German compared to

English. For the first category, we expect that the
shared distribution should improve the probing ac-
curacy for English, and in the second category, we
expect cross-lingual interference. Table 5 shows
the details of the distribution and the experimental
results. We observe the same consistent pattern of
lowest probing performance on the lexical layer,
highest performance for layer-3, and intermediate
performance on layer-12. Our analyses indicate an
impact of sharing tokens across languages. When
Dutch and German have similar type distributions
the results are substantially higher than when they
have a different distribution. This holds for most
results except for the organization class in layer-3
and layer-12.

Table 5 also shows that we can apply the same
probing to other models such as BERT and mBERT,
in this case only testing on English target sentences.
We observe exactly the same patterns as for XLM-
RoBERTa and even the scores are very similar,
even for the BERT which was pre-trained on En-
glish data only.

Our results confirm that the representation in
contextualized language models varies across lay-
ers. Concepts can be identified less well at the lexi-
cal level (layer-0) unless they match the dominant
meaning, while higher levels integrate contextual
information for further disambiguation. This indi-
cates that lexical biases get repaired and that we can
measure the degree to which this happens in line
with the findings by Ethayarajh (2019). Our pilot
experiment provides a proof of concept for analyz-
ing the effect of the shared vocabulary on concep-
tual representations in cross-lingual contextualized
language models. In future work, we hope to use
this insight to improve such models for languages
that are most affected by sharing vocabulary.

5.3 Cross-Lingual Evaluation

In this part of the experiment, we evaluated a prob-
ing model trained on an English dataset with test
data from German, Dutch, Amharic, and Arabic.
We first select monosemous and polysemous words
by using the frequency distribution of entities and
their types. Based on these distributions, we clas-
sify a word as monosemous if it belongs to one
semantic class frequently. We applied a threshold
value in such a way that if a word occurs 90% of
the time as a single semantic class, we consider it
a monosemous word. If a word occurs in two or
more classes, we consider it a polysemous word.
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LOC ORG PER

#Train 589 600 611
#Test 199 212 189
XLM-RoBERTa BERT mBERT

Similar LOC ORG PER LOC ORG PER LOC ORG PER
Layer-0 0.76  0.67 0.78 0.75 0.66 0.77 0.74 059 079
Layer-3 0.83 0.83  0.84 0.84 085 0.86 082 0.83 0.84
Layer-12 0.81 0.78  0.85 0.82 083 0.86 0.85 0.83 0.87
Diverging

Layer-0 0.57 0.53 042 0.53 051 0.4 0.54 051 045
Layer-3 0.78 0.82  0.68 0.82 0.84 0.71 076 081 0.72
Layer-12 0.75 0.78  0.66 0.8 0.81 0.77 0.81 0.79 0.78

Table 5: Result of probing the different layers of XLM-RoBERTa, BERT, and mBERT on entities that are shared
between English, Dutch, and German with similar/diverging distribution across types. Results are evaluated in

F1-Score and are averaged over five runs.

We then applied three filtering criteria: (a) We fo-
cus on single-word entities instead of multi-word
entities to control ambiguity that might be intro-
duced by multi-word entities. (b) We only include
sentences with a single target entity to control con-
textual information that might be associated with
an additional entity. (c) We restrict our selection to
entities that are labeled as one of the four semantic
classes LOCATION, ORG, PERSON, and EVENT
since these can barely be used interchangeably.

Zero-shot probing We train a multi-class prob-
ing classifier using the English dataset and the set-
ting discussed in Section 4.2 and test it on ran-
domly sampled sentences from each of the four se-
mantic classes that adhere to the specified criteria.
We distinguish two categories of target languages.
In the first category, we sampled test sentences
from Dutch and German which are typologically
related to English and share the same script. In the
second category, we sampled test data from Arabic
and Ambharic which are typologically distant from
English and use a different script.

We distinguish between the following conditions:
the model can be trained on English monosemous
data or on English polysemous data. The test data is
sampled from Dutch and German (category 1) and
from Ambharic and Arabic (category 2). For each
language, we further distinguish between monose-
mous and polysemous test data. Figure 2 shows
the result of evaluating the English probing model.

Results In the monosemous condition, we ob-
serve higher results for German and Dutch than for
Arabic and Ambharic. In a standard Zero-shot eval-
uation where a pre-trained language model is fine-
tuned in a downstream task in a source language

and evaluated on a target language, it has been
widely reported that cross-lingual transfer yields
better results for related languages (Pires et al.,
2019; Wu and Dredze, 2019). As we probe the
cross-lingual representation directly, we show that
transfer occurs even before a pre-trained model is
fine-tuned on a downstream task. Our results show
that to a smaller extent transfer effects can even
be observed for Arabic and Amharic although they
are typologically different from English and use
another script.

In the more difficult case of the polysemous con-
dition, the performance of the classifier on correctly
labeling the ambiguous semantic class is lower in
comparison to the monosemous condition across all
languages but outperforms a lexical baseline. With
a closer look at the result per layer, we observe
that the performance improves for representations
extracted from higher layers. Remarkably, the dif-
ferences across the related and unrelated languages
got smaller in the polysemous condition. Appar-
ently, there is a lower bound of performance at
which the performances clutter together as a result
of the complexity of the task and there are less
differences for the languages.

6 Conclusions

In this paper, we investigated to what extent pol-
ysemous profiles play a role in establishing a re-
lation between words and concepts. We focused
on English but we also investigated words shared
across languages in cross-lingual pre-trained lan-
guage models. We selected representative cases
for concept distributions from a large dataset of
entity mentions as ambiguity profiles. Our prob-
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(b) Result for the English polysemous model

Figure 2: Fl-scores for the different conditions macro-averaged across four classes. Mono refers to monosemous
test data in the corresponding language. Poly refers to polysemous test data in the corresponding language. The
result of the baseline experiment and detailed results per layer are presented in Appendix A.

ing experiments indicate that prior probabilities of
polysemy profiles are reflected in the lexical ini-
tialization and that context is integrated for disam-
biguation in higher layers. Our cross-lingual results
indicate that sharing of tokens and contexts across
languages has an influence on probing accuracy.

Our experiments are restricted to five languages:
English, Dutch, German, Arabic, and Ambharic. In
future work, we will extend our experiments to
more languages. We plan to investigate the im-
pact of optimizing the probing classifier with cross-
lingual training data. Training on the data of other
languages extends the fund of concepts in the clas-
sifier, which is comparable to an expand model for
multilingual wordnets.

Our method is limited by the annotations in con-
texts. It is therefore difficult to extend it to other
words and concepts than entity names. Neverthe-
less, the entity results can be seen as a proof of
concept to develop more sophisticated methods for
analyzing concept relations in multilingual models.
When more sense-tagged data becomes available,
this method can also be applied to other words and
concepts.
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A Result of English Monosemous and
Polysemous Model With Baseline

EN-Mono DE-Mono NL-Mono AM-Mono AR-Mono EN-Poly DE-Poly NL-Poly AR-Poly
Majority-Vote 0.13 0.12 0.11 0.16 0.12 0.15 0.15 0.15 0.15
Word Embeddings 0.87 0.13 0.10 NA NA 0.30 0.19 0.21 NA
Tt-1df 0.53 0.28 0.28 0.21 0.16 0.46 0.28 0.29 0.18
Layer-0 0.92 0.76 0.85 0.36 0.44 0.22 0.22 0.23 0.23
Layer-1 0.92 0.79 0.86 0.38 0.47 0.27 0.26 0.26 0.2
Layer-2 0.93 0.78 0.84 0.47 0.53 0.31 0.33 0.33 0.25
Layer-3 0.94 0.84 0.87 0.5 0.6 0.33 0.35 0.37 0.31
Layer-4 0.92 0.83 0.88 0.46 0.67 0.35 0.35 0.37 0.33
Layer-5 0.92 0.83 0.87 0.49 0.67 0.35 0.35 0.36 0.31
Layer-6 0.91 0.81 0.85 0.49 0.67 0.36 0.37 0.39 0.33
Layer-7 0.9 0.8 0.85 0.46 0.66 0.34 0.36 0.37 0.32
Layer-8 0.88 0.78 0.84 0.45 0.65 0.36 0.35 0.35 0.33
Layer-9 0.86 0.78 0.83 0.44 0.62 0.35 0.35 0.35 0.31
Layer-10 0.85 0.77 0.83 0.41 0.63 0.35 0.36 0.36 0.32
Layer-11 0.84 0.75 0.83 0.41 0.61 0.35 0.34 0.35 0.29
Layer-12 0.82 0.71 0.79 0.41 0.59 0.36 0.33 0.34 0.31
Majority-Vote 0.13 0.12 0.11 0.16 0.12 0.15 0.15 0.15 0.15
Word Embeddings 0.87 0.13 0.10 NA NA 0.30 0.19 0.21 NA
Tf-1df 0.53 0.28 0.28 0.21 0.16 0.46 0.28 0.29 0.18
Layer-0 0.92 0.76 0.85 0.36 0.44 0.22 0.22 0.23 0.23
Layer-1 0.92 0.79 0.86 0.38 0.47 0.27 0.26 0.26 0.2
Layer-2 0.93 0.78 0.84 0.47 0.53 0.31 0.33 0.33 0.25
Layer-3 0.94 0.84 0.87 0.5 0.6 0.33 0.35 0.37 0.31
Layer-4 0.92 0.83 0.88 0.46 0.67 0.35 0.35 0.37 0.33
Layer-5 0.92 0.83 0.87 0.49 0.67 0.35 0.35 0.36 0.31
Layer-6 0.91 0.81 0.85 0.49 0.67 0.36 0.37 0.39 0.33
Layer-7 0.9 0.8 0.85 0.46 0.66 0.34 0.36 0.37 0.32
Layer-8 0.88 0.78 0.84 0.45 0.65 0.36 0.35 0.35 0.33
Layer-9 0.86 0.78 0.83 0.44 0.62 0.35 0.35 0.35 0.31
Layer-10 0.85 0.77 0.83 0.41 0.63 0.35 0.36 0.36 0.32
Layer-11 0.84 0.75 0.83 0.41 0.61 0.35 0.34 0.35 0.29
Layer-12 0.82 0.71 0.79 0.41 0.59 0.36 0.33 0.34 0.31

B Distribution of Selected Ambiguous

Entities

Entity LOC ORG PER
Mercury 562 215 26
Sirius 391 481 42
Olympus 177 3 11
Uranus 385 7 169
Reich 12 16 266
Cloud 22 63

Ceres 191 49 21
Aquarius 124 11 59
Chimera 85 17
Vesta 75 9 29
Quartz 12 73 7
Regulus 8 23 67
Terra 42 21 66
Sol 26 64 56
Lab 16 58 7
Triton 16 51 12
Solaris 9 24
Tyre 7 28
Electra 9 28 17
Beguinage 23 7 8
Prana 12 19 16
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Abstract

Verbs like make, have and get present chal-
lenges for applications requiring automatic
word sense discrimination. These verbs are
both highly frequent and polysemous, with
semantically “full” readings, as in make din-
ner, and “light” readings, as in make a re-
quest. Lexical resources like WordNet en-
code dozens of senses, making discrimination
difficult and inviting proposals for reducing
the number of entries or grouping them into
coarser-grained supersenses. We propose a
data-driven, linguistically-based approach to
establishing a motivated sense inventory, fo-
cusing on make to establish a proof of concept.

From several large, syntactically annotated
corpora, we extract nouns that are comple-
ments of the verb make, and group them into
clusters based on their Word2Vec semantic
vectors. We manually inspect, for each clus-
ter, the words with vectors closest to the cen-
troid as well as a random sample of words
within the cluster. The results show that the
clusters reflect an intuitively plausible sense
discrimination of make. As an evaluation, we
test whether words within a given cluster co-
occur in coordination phrases, such as apples
and oranges, as prior work has shown that
such conjoined nouns are semantically related.
Conversely, noun complements from different
clusters are less likely to be conjoined. Thus,
coordination provides a similarity metric in-
dependent of the contextual embeddings used
for clustering. Our results pave the way for
a WordNet sense inventory that, while not in-
consistent with the present one, would reduce
it significantly and hold promise for improved
automatic word sense discrimination.

1 Background and Related Work

Jespersen coined the term light verb to denote verbs
like have, take and make that carry little (but not
zero) semantic information and that select for a

noun, verb, or adjective complement to form a com-
plex predicate. In their light verb use, these verbs
are semantically bleached versions of main verbs
as in (1a) and (1b), respectively:

(1) a.

She made an attempt to prove the theo-
rem.

b. She made a birthday party for her best
friend.

English light verbs usually have a corresponding
simple full verb (e.g., attempt), but there are a num-
ber of subtle semantic distinctions between the light
verb construction and the full verb (for a discussion
see Kearns (2002)).

Automatic word sense disambiguation often re-
lies on look-up in lexical resources like WordNet,
where one confronts the challenge of dozens of
different senses. WordNet includes 49 senses for
make, an inventory that is often criticized by its
users, but that is in fact comparable to the num-
ber of sense distinctions found in other lexical re-
sources. For example, Merriam-Webster lists 25
main senses of the transitive verb, most of them
with multiple subsenses. Even more vexing is the
fact that light and full verb uses of make are not dis-
tinguished. Different proposals for grouping senses
into semantically underspecified clusters have been
made (Hughes and Prakash, 2006; Wei et al., 2015),
but different automatic or manual efforts have re-
sulted in multiple sense inventories that overlap
only partially.

We propose a data-driven method to suggest a
reduced sense inventory for make based on clus-
ters of its nominal complements. We also intro-
duce a novel evaluation plan that is motivated by
our previous study of coordination structures. In
such structures, two constituents are conjoined
by a coordinating conjunction, such as and or
or. Prior work has shown that conjoined nouns
are semantically related as measured via various
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WordNet relations like synonymy, antonymy, and
co-hyponymy (Kallini and Fellbaum, 2022). This
makes anomalous utterances, such as apples and/or
texting gloves, or instances of zeugma, as in she
made a salad and a mess in the kitchen, unlikely or
humorous. To our knowledge, previous attempts at
sense distinctions via argument selection have con-
sidered only single noun complements of a verb, a
difficult task given that light verbs combine with
a large number of nouns. Our focus in this paper
is on make, but we expect our analysis to extend
straightforwardly to other light verbs.

2 Approach

We distinguish different senses of make by exam-
ining its nominal complements, or nouns that it se-
lects as a direct object. We reason that these noun
complements must be sufficiently semantically sim-
ilar for the verb phrases headed by make to be well
formed, and that grouping these nouns can reveal
distinct uses of make that point to different senses.
To achieve this aim, we extract complements from
dependency corpora and find groupings by cluster-
ing their word embeddings. '

2.1 Universal Dependencies Corpora

We extract complements of make from corpora an-
notated within the Universal Dependencies (UD)
project, which aims to provide a consistent depen-
dency treebank annotation across many languages
(Nivre et al., 2020). We use several English UD
corpora to identify complements, and these corpora
are listed and detailed in Table 1.

UD annotates direct objects of verbs with the
OBJ dependency relation. An example sentence
showing the dependency relation between a form of
make and its direct object is shown in Figure 1. Our
complement extraction script requires input files in
the CoNLL-U format, the typical format in which
UD corpora are provided. In the CoNLL-U format,
sentences are represented using one or more lines,
where each line corresponds to a single token or
word. Several fields are used to describe each token
or word, but we mainly use the HEAD field, which
is a pointer to the word token’s head in the sentence,
and the DEPREL field, which represents the basic
universal dependency relation to the head. If the
HEAD of a word token is a form of the verb make,
and its DEPREL relation is OBJ, then it is a direct

'Our code is available online at https://github.
com/jkallini/LightVerbAnalysis.

John made a sandwich

PROPN VERB DET NOUN

Figure 1: A sentence that uses the OBJ relation in UD
to link make to its direct object.

object and thus a complement of make. We use a
CoNLL-U parser to process corpus files into nested
Python dictionaries (Stenstrom, 2021) and perform
this check for each token in the corpora to extract
complements.

2.2 Complement Clustering

To find groupings of complements, we perform
k-means clustering on the complements’ word em-
beddings. We use Google’s Word2Vec word em-
beddings, which are 300-dimensional vectors pre-
trained on the Google News dataset (Mikolov et al.,
2013a,b). We present two clustering analyses in
this paper. As a first simple method, we run k-
means clustering with £ = 30 clusters on the unal-
tered 300-dimensional word vectors corresponding
to the complements of make. In the second method,
we also use principal component analysis (PCA)
to reduce the embedding dimensionality for the
complements’ vectors and extract features that are
relevant to the cluster structure, and we measure
inertia to find an optimal value of k for clustering.
PCA constructs a set of uncorrelated directions, or
“components,” that are ordered by their variance.
Previous work has shown that removing features
with low variance using PCA provides a filter that
results in a more robust clustering, i.e. clusters
with clearer structure that are less sensitive to noise
(Ben-Hur and Guyon, 2003).

Figure 2 plots cumulative explained variance as
well as individual explained variance as a function
of the PCA index. Based on the cumulative ex-
plained variance plot, we determined that there is
important information to be gained from the first
150 principal components, so we use the first 150
PCA features for the second clustering analysis.
Along with PCA, we additionally performed an
analysis of inertia, which measures how well the
data is captured by clustering for different values
of k, as shown in Figure 3. After trying values of
k € [1,30], we chose k = 15 clusters based on the
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Corpus Words Sentences Complements Example media/sources

EWT 254,825 16,621 197 weblogs, newsgroups, emails, reviews, etc.
GUM 135,886 7,397 145 interviews, news stories, academic writings, etc.

GUMReddit 16,356 895 25 Reddit posts

LinES 94,217 5,243 109 fiction, nonfiction, spoken media
Atis 61,879 5,432 39 airline travel information

ParTUT 49,633 2,090 53 legal documents, news stories, webpages, etc.
PUD 21,176 1,000 21 news, wikipedia

Table 1: Word counts, sentence counts, make complement counts, and example sources for each corpus we use
(Silveira et al., 2014; Zeldes, 2017; Behzad and Zeldes, 2020; Zeman et al., 2017)
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Figure 2: Explained variance plot derived from PCA
on Word2Vec word embeddings.

elbow in the graph. For both clustering approaches,
we used quantile outlier detection to filter out clus-
ters that had too many or too few members. This
removed clusters corresponding to senses that were
either too generic or very specific.

2.3 Evaluation Using Coordination

Our evaluation is motivated by our previous work
showing that pairs of nouns conjoined in coordina-
tion phrases are semantically similar; if the com-
plements within a single cluster are sufficiently
semantically similar in their functions as well as
their contextual embedding representations, then
we expect these complements to co-occur in coordi-
nation structures. To derive coordination data, we
analyzed both automatically and manually parsed
constituency corpora with Penn Treebank-style an-
notations collected for our previous study on co-
ordination (Kallini and Fellbaum, 2021). We ob-
tained constituency annotations of raw sentences
from the Corpus of Contemporary American En-
glish (COCA) (Davies, 2015) using the Berkeley
Neural Parser, a state-of-the-art constituency parser

Inertia for Different k Values
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Figure 3: Inertia for different values of k.

X
Y CC Z
Ist Conjunct ~ Conjunction  2nd Conjunct

Figure 4: Simple ternary-branching coordination with
Penn Treebank-style constituency annotations.

(Kitaev and Klein, 2018). As a second data source,
we used a version of the Penn Treebank with an
improved coordination annotation (Ficler and Gold-
berg, 2016). Figure 4 shows an example of a simple
instance of coordination in a constituency tree.

We performed this coordination analysis for two
lexically-rich clusters, and we indeed found it to be
the case that complements from the same cluster
would more often co-occur in coordination struc-
tures. This result is detailed in the next section.

For less lexically-rich clusters, we devise an ad-
ditional evaluation plan inspired by coordination.
We use an independent similarity metric to com-
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pare complements within clusters as well as com-
plements between clusters. First, we generate com-
plement pairs. For instance, take A and B to be dis-
tinct clusters. We can measure the similarity of the
complements within these two clusters by generat-
ing a list of complement pairs, A x B. The average
similarity of complement pairs in A x B should
be less than the average similarity of complement
pairs in A x A or B x B.> We use Wu-Palmer sim-
ilarity as the metric for comparison, and to derive
senses for each complement, we use the Lesk al-
gorithm for word sense disambiguation, where the
provided context is the sentence in the UD corpus
in which the complement appeared.

3 Results and Discussion

In total, we found 493 noun complements of make
in the corpora after removing stopwords and tokens
that are not present in the Word2Vec dictionary.
The clusters found using simple k-means clustering
with £ = 30 clusters are summarized in Table 2.
Outlier clusters have been removed from this table,
so we present a reduced set of 26 clusters. The
clusters found using k-means clustering with £ =
15 clusters using PCA are summarized in Table 3.
Figure 5 presents a visualization of complement
clusters from this second analysis using the first
two PCA components.

The second clustering analysis motivates a sig-
nificantly reduced sense inventory while aligning
with senses of make currently present in WordNet.
For instance, there is a clear cluster for cases where
make corresponds to cooking or preparing food
(cluster #7 in Table 3). The cluster including com-
plements like impact, donation, and contribution
roughly correspond to its “give” meaning. The clus-
ter with noun complements related to “mistakes”
relates to the sense of “causing” or giving rise to
an event.

However, our first analysis with a larger number
of clusters captures some meaningful distinctions
that are lost with a smaller value of k. For instance,
this analysis provides a cluster of complements like
statue and sculpture that correspond to the sense
of “building” or “creating.” The cluster contain-
ing money presents the sense of “gaining,” and the
cluster with complements such as progress and im-

2When computing pairs between distinct clusters A and
B, we use the cross product. When computing in-cluster
pairs for a single cluster A, we compute the combinations of
elements in A. This avoids duplicate pairs or pairs in which
both elements correspond to the same complement instance.

Cluster # Size

Centroid Words

Sample Words

=3

coup, coup_d’_etat, coup_d’_état

coup

entry, metastasis, breast

metastasis, breast, entry

word, phrase, |

word, reference, lyric

noise, ambient_noise, noises

noise, sound

sense, impression, feel

sense, assumption, r

alteration, revision, change

change, adjustment, alter

decision, recc N, anno

conclusion , request

statue, bronze_statue, sculpture

statue, sculpture

oo | & w|of—

friend, mother, daughter

child, love, mother

comment, leave

comment

cat, pet, bird

pet, cat, bird

effort, attempt, endeavor

project, plan, amendment

vodka, bottle, brandy

wine, bottle, vodka

contribution, donation, contributions

contribution, donation

reservation, reservations

reservation

money, funds, dollars

money, profit, buck

mistake, blunder, error

blunder, mistake, error

dessert, sandwich, soup

lunch, cheeseburger, food

debut, appearance, debuts

cameo, debut, appearance

joke, laugh, chuckle

chatter, mischief, joke

difference, disparity, discrepancy

distinction, gap, impact

appointment, appointments

appointment

progress, strides, improvement

recovery, improvement, progress

remarks, press_release

statement, speech, filling

adaptation, adaption, film

adaptation, film

deal, agreement, offer

sale, package, transfer

Table 2: Size, word vectors close to the centroid, and a
sample of cluster member words for 26 clusters created
from basic k-means clustering.

Cluster # Size Sample Words
0 22 friend, life, love, girl, cat
N 144 spot, stay, wave, west, nightlife
2 24 modification, alteration, change, adjustment, revision
3 114 comparison, sculpture, statue, cover, distinction
4 4 comment
5 25 tour, travel, visit, pilgrimage, trip
6 9 noise
7 30 vodka, soup, wine, potato, food
8 21 objection, conclusion, proposal, submission, decision
9 11 blunder, error, mistake
10 33 deal, negotiation, effort, offer, attempt
11 12 debut, landfall, appearance, cameo
12 13 statement, announcement, speech
13 11 sense
14 20  impact, donation, difference, contribution, improvement

* Cluster identified as an outlier based on size.

Table 3: Size and sample words for each of the 15 clus-
ters created from k-means clustering with PCA.

provement presents the sense of “reaching for a
goal.”

3.1 Evaluation Results and Discussion

For the evaluation using coordination structures,
we picked two clusters and tested whether comple-
ments within those clusters tended to co-occur in
coordination phrases pulled from separate, indepen-
dent corpus data. We chose clusters 3 and 7 since
these were lexically-rich compared to some oth-
ers that were large but contained repeated entries.
The results show, generally, that complements from
within the same cluster tend to coordinate more
often than complements paired from different clus-
ters. We found 26 instances of coordinations where
both conjuncts were members of cluster #3, such
as “meaning and reference” and “writing and lan-
guage.” We found even more for cluster #7, since
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Visualization of Complement Clusters Using PCA
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Figure 5: Visualization of complement clusters using the first two PCA components.

this cluster contains many types of food; there were
93 instances of coordination where both conjuncts
were from cluster #7, such as “lunch or dinner,”
and “wine or cocktails.” There were fewer (21)
coordinations where conjuncts came from different
clusters, such as “money and food.”

We extended this initial analysis to cover the
other clusters by generating complement pairs and
measuring their Wu-Palmer similarity. Figure 6
shows that complement pairs where both comple-
ments are within the same cluster have a higher
average Wu-Palmer similarity than pairs where the
complements are members of different clusters,
as shown by the brightness of the diagonal in the
heatmap. The average similarity of complements
within the same cluster was about 0.60, while the
average similarity of complements between differ-
ent clusters was 0.27. These two evaluation steps
generally show that the clusters represent nouns
that are not only semantically similar based on
contextual embeddings but also on their functional
similarity.

4 Limitations

A limitation of our coordination evaluation ap-
proach is that the clusters to be compared must
have a large number of unique members. We found
two such lexically-rich clusters, but most clusters
did not contain many members that were also at-
tested in coordination phrases. We expect that with
more complement data (beyond the 493 nouns from
this study), we can obtain larger clusters that will

be better suited for this coordination evaluation.
The senses captured by these clusters also require
a manual evaluation in order to reach the optimal
sense distinctions, but we expect that the method-
ology provided in this paper can aid the process
through the use of real-world data.

5 Conclusion

In this paper, we presented a clustering analysis of
complements of the light verb make using anno-
tated UD corpora that can pave the way toward a
reduced WordNet sense inventory for this verb. Fur-
thermore, we proposed and tested a novel method
using coordination structures to evaluate the robust-
ness of the complement clustering. Future direc-
tions may apply this approach straightforwardly to
other light verbs whose large sense inventories in
WordNet have stymied word sense disambiguation
efforts.
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Abstract

In this paper, we analyse and compare several
correction methods of knowledge resources
with the purpose of improving the abilities of
systems that require commonsense reasoning
with the least possible human-effort. To this
end, we cross-check the WordNet meronymy
relation member against the knowledge en-
coded in a SUMO-based first-order logic on-
tology on the basis of the mapping between
WordNet and SUMO. In particular, we fo-
cus on the knowledge in WordNet regarding
the taxonomy of animals and plants. De-
spite being created manually, these knowl-
edge resources —WordNet, SUMO and their
mapping— are not free of errors and discrepan-
cies. Thus, we propose three correction meth-
ods by semi-automatically improving the align-
ment between WordNet and SUMO, by per-
forming some few corrections in SUMO and by
combining the above two strategies. The eval-
uation of each method includes the required
human-effort and the achieved improvement on
unseen data from the WebChild project, that is
tested using first-order logic automated theo-
rem provers.

1 Introduction

The areas of commonsense knowledge represen-
tation and commonsense reasoning are of great
interest for their application in many tasks related
to Natural Language Processing (NLP) e.g. Recog-
nizing Textual Entailment (RTE) (Bos and Markert,
2006; Dagan et al., 2013; Abzianidze, 2017), Nat-
ural Language Inference (NLI) (Bowman et al.,
2015) or Interpretable Semantic Textual Similarity
(ISTS) (Lopez-Gazpio et al., 2017). In the litera-
ture, among the knowledge resources, WordNet
(Fellbaum, 1998) is one of the most frequently
used semantic resources that is applied to NLP
tasks. Furthermore, WordNet interlinks many other
semantic resources e.g. the EuroWordNet Top On-

tology (Rodriguez et al., 1998), or SUMO! (Niles
and Pease, 2001).

When linking lexical resources such as WordNet
(Fellbaum, 1998) and ontologies such as SUMO
(Niles and Pease, 2001), DOLCE (Gangemi et al.,
2002) or OpenCYC (Reed and Lenat, 2002), Prevot
et al. (2005) generalised these three methodologi-
cal options: restructuring, populating and aligning.
But, moreover, ontologies and lexical resources can
also be used to cross-check them and validate the
knowledge content encoded.

In order to automatically cross-check the knowl-
edge in WordNet and SUMO, Alvez et al. (2015,
2019) introduced a general framework that enables
evaluating the competency of SUMO-based ontolo-
gies like Adimen-SUMO (Alvez et al., 2012) and
proposed a method for the automatic creation of
competency questions (CQs) (Griininger and Fox,
1995). Their proposal is based on several prede-
fined question patterns (QPs) that are instantiated
using information from WordNet and its mapping
into SUMO (Niles and Pease, 2003). In addition,
the authors described an application of first-order
logic (FOL) automated theorem provers (ATPs)
for the automatic evaluation of the proposed CQs.
However, a low percentage of the meronymy pairs
from WordNet can be validated against SUMO us-
ing the proposed framework, as reported by Alvez
and Rigau (2018); Alvez et al. (2018). Overall,
three possible causes for this low validation ratio
have been identified:

* Incorrect mappings between WordNet and
SUMO: two cases are presented in Table 1.
The first one is valid because the knowledge
from WordNet, SUMO and its mapping is
correctly aligned: individuals (parent).) with
an instance of BiologicalAttribute as property
can be members of instances of FamilyGroup
(family?). However, the second case is invalid:

"http://www.ontologyportal.org
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Part Whole
parent).: family?:
. " Subsumed by Lo Subsumed by
Valid a father or . . . primary social .
BiologicalAttribute FamilyGroup
mother; (...) group; (. ..)
hyaena,,: . .
Invalid doglike nocturnal Subs.umed by family_Hyaenidae,,: Subs.umed by
Canine hyenas Canine

mammal (. ..)

Table 1: Valid and invalid examples of the relation member

Canine (whole) is characterised as an individ-
ual (i.e. not a group); therefore, it cannot have
members. In order to be able to validate the
pair, family_Hyaenidae,ll should be corrected
to be subsumed by GroupOfAnimals.

* Discrepancies in the knowledge encoded in
WordNet and SUMO: the groups (species,
genus, family, order, ...) in the taxonomy
of animals and plants are connected by the
relation member of WordNet, while the rela-
tion member of SUMO connects individuals
(which cannot be groups) to their groups.

¢ Limitations of ATPs.

In this paper, our aim is shedding light on the
sources of difficulty when correcting knowledge
resources, which is a mainly manual and never end-
ing task. Exactly, we want to discover which cor-
rection methods and strategies lead to maximising
the improvement with the least possible human-
effort. To this end, we consider three correction ap-
proaches: i) the correction of the mapping between
WordNet and SUMO on the basis of the Word-
Net hierarchy and our manual error analysis of the
results reported in Alvez et al. (2018); ii) the cor-
rection of the knowledge in SUMO in order to its
alignment to WordNet; iii) the combination of the
previous two approaches. We report on a practical
evaluation of the impact of each correction method
on unseen data provided by the WebChild project
(Tandon et al., 2014, 2017), which is a large col-
lection of commonsense knowledge that has been
automatically extracted and disambiguated from
Web contents. To the best of our knowledge, this is
the first work dealing with the problem of correct-
ing FOL commonsense resources.

Outline. First, we present the related work in the
next section and review the knowledge resources
and evaluation framework in Section 3. Then, we

describe the proposed correction methods in Sec-
tion 4 and provide the evaluation results in Section
5. Finally, we conclude and outline the future work
in Section 6.

2 Related Work

In this section, we present the works related to
meronymy knowledge and its acquisition, cross-
checking resources, mapping error detection and
ontology debugging and repairing.

Meronymy is a semantic relation that connects
the parts and the whole. This connection can
be functional, homeomeric/homeomerous (con-
sisting of similar parts), separable or simultane-
ous (Campenhoudt, 1996). In the typology of
meronymy relations, the most important subrela-
tions are constituent-object, member-collection and
material-object. The importance of meronymy is
pointed out by vor der Briick and Helbig (2010),
which extract meronymy relations from Wikipedia
by means of a logic-oriented approach. According
to them, meronymy is necessary for many NLP
tasks such as question answering. Following their
example, if someone asks about the earthquakes
in Europe, then the question could be answered
thanks to the meronymy relation if we had the data
of each European country.

Both manual and automated attempts have been
made to acquire meronymy knowledge. Among the
first ones, there are more than 22,000 meronymic
pairs in WordNet (Fellbaum, 1998), that have been
manually constructed and reviewed. WordNet is
a large lexical database of English where nouns,
verbs, adjectives and adverbs are grouped into sets
of synonyms called synsets,” each one denoting a
distinct concept. Moreover, synsets are interlinked

%In this paper, we will refer to the synsets using the format
word,,, where s is the sense number and p is the part-of-speech:
n for nouns and v for verbs e.g. plant? means that the word
plant is a noun and that we are referring to its second sense in
WordNet.
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by means of lexical-semantic relations. WordNet
encodes three main meronymy relations that relate
noun synsets: i) part, the general meronymy re-
lation; ii) member, which relates particulars and
groups; and iii) substance, which relates physical
matters and things. In total, WordNet v3.0 includes
22,187 (ordered) meronymy relations (around 10 %
of the relations between synset pairs in WordNet):
9,097 pairs using part, 12,293 pairs using mem-
ber and 797 pairs using substance. For example,
the synsets fongue), and mouth), are related by part,
lamb}, and genus_Ovis}, are related by member, and

neuroglial, and gliomal, are related by substance.

Furthermore, additional relations were manually
added to WordNet in Lebani and Pianta (2012) on
the basis of featural descriptions. However, the
coverage of the collected meronymy knowledge is
quite restricted. This limitation is also present in
some automated proposals like ConceptNet (Speer
et al., 2017), which has been obtained by crowd-
sourcing and contains around 20,000 meronymy
relation pairs between non-disambiguated words.

The coverage of the automatically acquired
meronymy knowledge is larger in other works.
For example, PWKB (the part-whole KB) (Tan-
don et al., 2016), which has been integrated into
WebChild v2.0 (Tandon et al., 2017), consists of al-
most 6 millions of disambiguated meronymy pairs
that have been obtained from Web contents and im-
age tags by combining pattern-based information
extraction methods and logical reasoning. How-
ever, this KB suffers from low salience since more
pairs were obtained by expanding a small set of
relations. A complementary resource is hasPartKB
(Bhakthavatsalam et al., 2020), which contains
more salient and accurate hasPart relations (around
50,000) extracted from a large corpus of generic
statements. Finally, Quasimodo (Romero et al.,
2019) and Aristo Tuple KB (Mishra et al., 2017)
contain several thousands of non-disambiguated
meronymy pairs, but their coverage is rather lim-
ited.

The knowledge in all the above cited resources
is restricted to relation pairs. Regarding general
knowledge, SUMO (Niles and Pease, 2001) con-
tains both facts and axioms that encode more ab-
stract information and properties about meronymy.

In relation with cross-checking knowledge re-
sources, Alvez et al. (2008) exploit the EuroWord-
Net Top Ontology (Rodriguez et al., 1998) and its
mapping to WordNet for detecting many ontolog-

ical conflicts and inconsistencies in the WordNet
nominal hierarchy.

Most of the works presented for error correction
both in the mapping and in the ontologies have
been proposed for OWL ontologies. Relating map-
ping error detection and correction, many methods
have been proposed to detect mapping errors or in-
valid mappings between ontologies, knowledge re-
sources, dictionaries and thesauri (Reis et al., 2015).
Similar to us, Pathak and Chute (2009) reason-
ing strategies for the biomedical domain. Exactly,
they use description logics to detect inconsisten-
cies since they consider that ontologies are consis-
tent, and therefore, errors come from the mappings.
Wang and Xu (2012) divided the mapping errors in
four categories (from now on, Wang&Xu classifica-
tion): redundant, imprecise, inconsistent and abnor-
mal mappings. Correction strategies are presented
in Abacha et al. (2016) for the biomedical domain,
where questions are proposed to experts in order
to validate the mapping and the ontology. Surveys
on mapping maintenance and ontology matching
are respectively presented in Reis et al. (2015) and
Ochieng and S. Kyanda (2018). Relating ontology
error detection, recent work on ontology debugging
involves detecting hidden modelling errors: Tey-
mourlouie et al. (2018) use DBpedia during the on-
tology debugging process to detect contradictions
in ontologies that seem coherent. Unfortunately, as
far as we know, no correction approach has been
proposed.

3 Knowledge Resources and Evaluation
Framework for WordNet Meronymy

In this section, we describe the knowledge re-
sources and framework that enable the automatic
evaluation of the meronymy relation member of
WordNet by using Automated Theorem Provers
(ATPs).

Adimen-SUMO (Alvez et al., 2012) is a first-
order logic (FOL) ontology obtained by means of
a suitable transformation of most of the knowl-
edge (around 88 % of the axioms) in the fop and
middle levels of SUMO (Niles and Pease, 2001).
Adimen-SUMO enables the application of state-of-
the-art FOL ATPs such as Vampire (Kovacs and
Voronkov, 2013) and E (Schulz, 2002) in order to
automatically reason on the basis of the knowledge
in SUMO (Niles and Pease, 2001). SUMO is organ-
ised around the notions of particulars (also called
instances or objects) and classes by means of the
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meta-predicates instance and subclass. Amongst
them, SUMO also differentiates relations and at-
tributes, and provides specific predicates for their
use that are inherited by Adimen-SUMO e.g. sub-
relation and attribute. We denote the nature of
SUMO concepts by adding as subscript the follow-
ing symbols: o for SUMO objects, ¢ for SUMO
classes, r for SUMO relations, a for SUMO at-
tributes and A for classes of SUMO attributes.
For example: Waist,, GroupOfAnimals., material,,
Solid, and BiologicalAttribute 4.

WordNet and SUMO are linked by means of a
semantic mapping that connects WordNet synsets
to SUMO concepts using three relations: equiva-
lence, subsumption and instance (Niles and Pease,
2003). The mapping relation equivalence connects
WordNet synsets and SUMO concepts that are se-
mantically equivalent. Subsumption (or instance)
is used when the semantics of the WordNet synsets
is less general than (or instance of) the semantics
of the SUMO concepts to which the synsets are
connected. For example, the synset lamb]., is con-
nected to Lamb,.. by equivalence and neuroglial,
is connected to Tissue. by subsumption. From
now on, we denote the semantic mapping rela-
tions by concatenating the symbols ‘= ’ (equiv-
alence), ‘“+’ (subsumption) and ‘@’ (instance) to
the corresponding SUMO concept e.g. lamb}. is
connected to Lamb.= and neuroglia), is connected
to Tissue.+.

For the automatic evaluation of the WordNet
meronymy relations, we apply the framework in-
troduced in Alvez et al. (2019), which is an adap-
tation of the method proposed in Griininger and
Fox (1995) for the formal design and evaluation of
ontologies on the basis of Competency Questions
(CQs). This framework enables the use of ATPs
in order to automatically classify CQs as follows:
CQs are decided to be passing (if proved to be
entailed by the ontology), non-passing (their nega-
tions are proved to be entailed by the ontology) and
unresolved (neither the CQs nor their negations are
proved to be entailed by the ontology).

Furthermore, we adapt the Question Patterns
(QPs) for the meronymy relation member intro-
duced in Alvez and Rigau (2018); Alvez et al.
(2018), which enable the translation of its seman-
tics into a suitable CQ or yield a semantically incor-
rect conjecture according to the restrictions for rela-
tions provided by SUMO. Those QPs employs the
translation of the mapping information of synsets

into Adimen-SUMO statements that is described
in Alvez et al. (2019), which characterises the se-
mantics of WordNet synsets in terms of SUMO
instances and requires the use of a new variable
for each synset. There is a different QP for each
possible combination of mapping relations, which
states the quantification of the introduced variables
and the logical connectives that enable the con-
struction of the final CQ. For example, the synsets
sheep} and flock® are respectively connected to
Sheep.= and Group.+. Thus, we use the second
QP proposed in Alvez and Rigau (2018) because of
the use of the mapping relations equivalence and
subsumption, and obtain the following conjecture:

(forall (7X)
(=>
($instance ?X Sheep)
(exists (7Y)
(and
($instance 7Y Group)
(member 72X 7Y)))))

Finally, the WordNet meronymy pairs on mem-
ber can be classified according to the following
categories depending of: a) if the member pair is
translated into a CQ, then it is decided to be vali-
dated, unvalidated or unknown if the CQ is pass-
ing, non-passing or unresolved respectively; b) the
member pairs that yield to semantically incorrect
conjectures are classified as unvalidated.

By using the above described framework and
regarding the original versions of SUMO and its
mapping from WordNet, from the 12,293 member
pairs provided by WordNet only 19 are validated,
while 11,963 pairs are unvalidated and 311 remains
unknown. Moreover, from the 11,963 unvalidated
pairs, only 24 yield a correct CQ. That is, the direct
application of the introduced evaluation framework
just allows to validate a mere 1.5% of the member
pairs encoded in WordNet and, apparently, most of
the unvalidated pairs yield semantically incorrect
SUMO conjectures. This may be an indication of
both misalignment in the knowledge encoded in
WordNet and SUMO and the existence of a large
number of discrepancies in their mapping.

4 Knowledge Correction Methods

In this section, we introduce the proposed correc-
tion strategies for knowledge resources. For our
analysis and interventions, we have used the in-
formation contained in the Multilingual Central
Repository (Gonzalez-Agirre et al., 2012). Ex-
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actly, we have consulted: the Basic Level Con-
cepts (BLCs) (Izquierdo et al., 2007), which are
frequent and salient concepts in WordNet that try
to represent as many concepts as possible (abstract
concepts) and as many distinctive features as possi-
ble (concrete concepts); the Top Concept Ontology
(TCO) (Rodriguez et al., 1998); the Semantic Files
(SF) from WordNet and the WordNet Domains
(WND) (Bentivogli et al., 2004). Moreover, we
have also consulted SUMO and its documentation.

4.1 Correction of the mapping

We have performed two kinds of interventions in
order to realign the mapping between WordNet and
SUMO: 1) structural corrections in the BLCs; 2)
opportunistic corrections based on an error analy-
sis. In both phases, we have performed a manual
analysis that has served as the basis for proposing
some criteria in order to automatically propagate
or expand the corrections.

For performing structural corrections, from the
800 BLCs in WordNet we have manually inspected
the topmost 200 ones. To that end, we have used
information from WordNet, TCO and SUMO and
for each BLC, we have decided whether the map-
ping was correct or not. If we have not considered
it as correct, we have proposed a new mapping
for it. During this intervention we have tried to
make as few changes as possible; so, if the origi-
nal mapping was acceptable, then it has not been
changed. It is important to note that at this cor-
rection phase we have considered all the synsets
from WordNet without restricting to those that are
related to meronymy, that is, what we correct can
appear or not in our benchmark.

This way, we have manually corrected the map-
ping of 50 BLCs (25 %). This manual correction
can be classified in two types: a) groups that are
characterised as individual classes (38 synsets),
most of them related to plants and animals; b)
punctual mapping errors (12 synsets). Following
Wangé&Xu classification, these errors are imprecise
or inconsistent mappings: exactly, 10 are imprecise
mappings and 40 are inconsistent. For example:

s dicot_genus)., (“genus of flowering plants

having two cotyledons (embryonic leaves)
in the seed which usually appear at ger-
mination”) and fish_genusl, (“any of vari-
ous genus of fish”) belong to the first type
of corrections because they were incorrectly
connected to FloweringPlant.+ and Fish.+

and have now been linked to Group.+ and
GroupOfAnimals.+ respectively.

s agency) (“an administrative unit of govern-
ment:”) and substancel, (“the real physi-
cal matter of which a person or thing con-
sists:””) belong to the second type of correc-
tions because agencyl, was imprecisely con-
nected to PoliticalOrganization.= (updated to
GovernmentOrganization.+) and substance}l

was incorrectly connected to Object.= (cor-
rected to Substance.=).

During this intervention, we have been able to re-
vise and correct when necessary around 20 BLCs
per hour and, in total, we have spent 10 hours.

After the manual correction of the BLCs, we
have automatically propagated the corrected BLC
mappings to their hyponyms based on the following
criterion:

Propagate the corrected as long as the hy-
ponym and its BLC are equally mapped
in the original mapping.

By proceeding in this way, we have corrected a
total of 3,883 mappings.

For the opportunistic correction of the mapping
based on an error analysis, we have inspected the
unclassified pairs in the experimentation introduced
at the end of Section 3. More concretely, we have
grouped the synset pairs according to their map-
ping to SUMO and ordered them by frequency.
Apparently, most of the detected errors are due to
the fact that species, genera, families, orders, etc.
(taxonomic biological classification) and galaxies,
constellations, etc. (collections of planets, stars,
asteroids, etc.) are connected to SUMO classes rep-
resenting individuals and not groups (group errors
as presented before and inconsistent according to
Wang&Xu classification). In order to correct this
type of errors, we have designed four very simple
heuristics:

1. If the synset is an hyponym of group) in
WordNet, is connected to both Animal+ and
Group+ in the TCO, is connected to a sub-
class of Animal. in SUMO and some of the
words family, genus, order, suborder, class,
phylum, subphylum, kingdom, subkingdom,
division, subdivision, algae, superfamily, sub-
family, superorder, group, subclass or super-
class occurs in its gloss, then map the synset
to GroupOfAnimals.+.
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2. If the synset is a hyponym of groupl, in Word-
Net, is connected to both Plant+ and Group+
in the TCO, is connected to a subclass of
Plant. in SUMO and some of the words fam-
ily, genus, order, suborder, class, phylum, sub-
phylum, kingdom, subkingdom, division, sub-
division, algae, superfamily, subfamily, super-
order, group occurs in its gloss, then map the
synset to Group.+.

3. If the synset is a hyponym of groupl in
WordNet, is connected to Group+ in the
TCO, is connected to a subclass of ei-
ther Microorganism,, Virus., Bacterium,. or
Fungus. in SUMO and some of the words
family, genus, order, suborder, class, phylum,
subphylum, kingdom, subkingdom, division,
subdivision, algae, superfamily, subfamily, su-
perorder, group occurs in its gloss, then map
the synset to Group.+.

4. If the synset is connected to a subclass of
AstronomicalBody. in SUMO and the word
constellation occurs in its gloss, then map the
synset to Group.+.

It is worth noting that there is no concept for rep-
resenting groups of either plants, microorganisms,
viruses, bacteria, fungi or astronomical bodies in
SUMO. For example, the synset animal_kingdom,
(“taxonomic kingdom comprising all living or
extinct animals”) was incorrectly connected to
Animal.= and its mapping has been corrected to
GroupOfAnimals +.

Furthermore, corrections have been also propa-
gated as described for structural corrections. This
way, the mapping of 1,961 synsets has been cor-
rected with an human-effort of 2 hours.

4.2 Matching Knowledge Discrepancies

The objective of this intervention is detecting
and solving the knowledge discrepancies between
WordNet and SUMO that prevent the validation
of many pairs where the mapping information is
correct. For this purpose, we have augmented the
manual error analysis described in the above sub-
section by also considering unvalidated pairs.
Overall, most of the detected conflicts are re-
lated to organisms. With respect to unvalidated
pairs, the main problem is that the relation be-
tween taxonomic groups cannot be expressed in
terms of SUMO due to the domain restrictions of
the SUMO predicate member,. In particular, the

first argument of member, is restricted to be an in-
stance of SelfConnectedObject., which is disjoint
with the SUMO class Collection. and hence dis-
joint with the SUMO class Group.. Consequently,
we cannot construct a SUMO statement that ex-
presses that an instance of Group. is a member
of another instance of Group., as required for the
validation of the examples in Table 1. In order to
overcome this problem, we have proposed to re-
place the domain restriction of the first argument
of the SUMO predicate member,: instead of being
instance of SelfConnectedObject,., our proposal is
restricting the first argument of member, to be in-
stance of Object., which is superclass of Group,. (1
axiom corrected). In addition, the characterization
of GroupOfPeople. and GroupOfAnimals. has to be
accordingly updated: in the new proposed axioma-
tization, the members of GroupOfPeople. can be in-
stances of either Human, or GroupOfPeople., and
the members of an instance of GroupOfAnimals,.
can be either instances Animal,. that are not instance
of Human, or instances of GroupOfAnimals, (2 ax-
ioms corrected).

Regarding unclassified member pairs, by a
manual inspection of SUMO we have detected
that the characterization of concepts represent-
ing groups is too weak. More concretely,
there is no concept for the representation of
groups of plants and the existing concepts
for the representation of groups —Group,. for
general groups; GroupOfPeople., AgeGroup,,
FamilyGroup., SocialUnit., EthnicGroup. and
BeliefGroup, for groups of people; GroupOfAn-
imals and Brood,. for groups of animals— are only
partially characterised. More concretely, the nature
of the members of each kind of group is properly re-
stricted, but individuals (including the instances of
Agent,) are not restricted to belong to some groups.
In order to solve these issues, we have created and
characterised a new concept for groups of plants
(GroupOfPlants., 3 new axioms) and introduced
another 9 new axioms for the characterization of
groups).

In total, our interventions have required a human-
effort of 2 hours.

4.3 Joining Mapping and Ontology
Corrections

In order to integrate both interventions, we have
made some changes in the mapping.

On one hand, we have updated the mapping of
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9 synsets from the top 200 BLCs from Group.+
to GroupOfPlants.+, and this change has been
propagated to 1,961 synsets. On the other hand,
we have redefined the second heuristic presented
in Subsection 4.1 in order to map the synset to
GroupOfPlants.+. The updated heuristic is the
following:

e If the synset is an hyponym of the synset
group’ in WordNet and is connected to a sub-
class of Plant. in SUMO, then map the synset
to GroupOfPlants .+

This heuristic is directly applied to 356 synsets
and propagated to another 85 synsets. In total, we
have updated 2,411 mappings that were previously
mapped to Group.+.

All these interventions have been performed with
almost no human-effort.

5 Evaluation

In this section, we evaluate the proposed knowl-
edge correction methods on both seen and unseen
data, which is extracted from the WebChild project.
In Table 2, we report on the results obtained by
applying the evaluation framework described in
Section 3 for the different intervention phases in
WordNet (initial, correction of the mapping, match-
ing knowledge discrepancies and joint intervention)
and in WebChild data (initial and joint interven-
tion). For each phase, we provide the number of
pairs that are validated/unvalidated/unknown (Vali-
dated, Unvalidated and Unknown columns respec-
tively) and three metrics that measure the perfor-
mance of the evaluation: recall (calculated as the
ratio between validated pairs and total pairs); preci-
sion (calculated as the ratio between validated pairs
and validated+unvalidated pairs); and F'1 (calcu-
lated as the harmonic mean of precision and recall)
values. In the case of unvalidated pairs, we pro-
vide both the total number of pairs (T column) and
the number of pairs which yield a correct CQ (C
column).

Regarding seen data, it is easy to see that match-
ing knowledge discrepancies outperforms mapping
correction, although the improvement is low in both
cases: correcting the mapping turns almost a half
of the previously unvalidated pairs into unknown
while matching knowledge discrepancies increases
a bit the number of validated pairs. However, by
combining both interventions the improvement is
much higher: the amount of validated pairs is 500

times bigger and the amount of unvalidated pairs is
almost 15 times smaller.

With respect to the data extracted from the We-
bChild project, the combined intervention heavily
improves the results again, although the impact is
a bit lower: many pairs still remain unknown and
the ratio between validated and unvalidated pairs
is lower than in the case of WordNet. For a better
understanding of these results, we have manually
analysed a sample of WebChild pairs consisting
of five randomly selected cases from each output
(validated, unvalidated and unknown).

Considering the validated pairs, 4/5 have been
classified as validated for good reasons, e.g.
Acrocomial, is member of Palmae.. The only error
is a wrong pair in the knowledge base: the synset
genus> (“(biology) taxonomic group containing
one or more species”) is incorrectly asserted to be
member of Carapidael, (“pearlfishes: related to
the Brotulidae™).

From the unvalidated pairs, 2/5 pairs are wrong
so they have been correctly classified as unval-
idated e.g. superphylum! is not a member of
locative_role},. However, 3/5 pairs are correct and
should have been validated, but there are map-
ping errors e.g. Auriculariaceae), is member of
Tremellales)., although the pair is classified as un-
validated because Tremellales. is still mapped to
Fungus..

Finally, in relation to unknown pairs, one pair is
correct —rice_weevill, is member of Sitophylus} —
and 4/5 pairs are wrong, e.g. relativel is not a
member of Ming_dynasty),. However, these pairs
cannot be resolved by ATPs because the required
information is missed in the ontology or, as in the
case of the correct pair, due to resource (specially
time) restrictions.

6 Conclusions and Future Work

In this paper we have reported on several correc-
tion methods for the knowledge about meronymy in
WordNet, SUMO and their mapping with the aim
of improving the abilities of systems that require
commonsense reasoning. To this end, we have
applied FOL ATPs on a large set of CQs automati-
cally constructed on the basis of several predefined
QPs and the knowledge of the involved resources.
Since finding and correcting errors in knowledge
resources has always been time-consuming and
required quite a lot of manual work, we have fo-
cused on the human-effort required for each cor-
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Unvalidated

Data Phase Validated T C Unknown Recall Precision F1
Initial 19 11,963 24 311  0.002 0.002 0.002
WordNet Mapping 29 6,561 5,811 5,703  0.002 0.004 0.003
Knowledge 132 11,603 30 558 0.011 0.011 0.011
Joint 10,071 808 58 1,414 0.819 0.926 0.869
) Initial 82 35,377 102 3,368  0.002 0.002 0.002
WebChild Joint 18,569 3,526 136 17,032 0475 0.840 0.607

Table 2: Evaluation of the knowledge correction methods

rection strategy. As a result, we have been able to
increase the number of WordNet pairs that can be
validated against the knowledge in SUMO with a
total human-effort of 14 hours. All the resources
—the corrected mapping, the augmented ontology
and the experimental reports— are available at the
Adimen-SUMO webpage.?

By analysing our evaluation results on Word-
Net, it seems at first glance to be worth investing
effort correcting and matching the knowledge of
the involved resources, since the improvement is
slightly higher (see Table 2) and has required less
human-effort (2 hours against 12 hours), although
the combined strategy leads to the better results
with almost no additional human-effort. More con-
cretely, at the initial stage only a 0.15 % of the
member pairs in WordNet could be validated and
our interventions have enabled the validation of
almost 82 % of the pairs.

Regarding the evaluation on unseen data, we
have confirmed that our interventions are correct,
although there is still a lot of work to do. Fur-
thermore, our detailed analysis revealed some as-
pects for future work. For example, the capture of
metonymy, solving additional misalignments (e.g.
classifying humans as animals) and the need of
analysing the inheritance of relations.

Moreover, we plan to test if the improved knowl-
edge resources also obtain better results in other
benchmarks based on antonymy and semantic roles
(Alvez et al., 2017), and we would like to carry out
similar experiments in other datasets e.g. BLESS*
(Baroni and Lenci, 2010). Additionally, we also
plan to consider additional WordNet relations: for
example, the remaining relations about meronymy
part and substance, cause or the semantic roles
described in the Morphosemantic links (Fellbaum

*http://adimen.si.ehu.es/web/
AdimenSUMO

*https://sites.google.com/site/
geometricalmodels/shared-evaluation

et al., 2009).

Longer term research includes a new mapping
between WordNet and SUMO on the basis of for-
mulae instead of labels, with the aim of providing a
more precise definition of the semantics of synsets
in terms of the SUMO language.
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Abstract

This paper studies the application of pre-
trained BERT in the acquisition of synonyms,
antonyms, hypernyms and hyponyms in Por-
tuguese. Masked patterns indicating those rela-
tions were compiled with the help of a service
for validating semantic relations, and then used
for prompting three pretrained BERT models,
one multilingual and two for Portuguese (base
and large). Predictions for the masks were
evaluated in two different test sets. Results
achieved by the monolingual models are inter-
esting enough for considering these models as a
source for enriching wordnets, especially when
predicting hypernyms of nouns. Previously re-
ported performances on prediction were im-
proved with new patterns and with the large
model. When it comes to selecting the related
word from a set of four options, performance
is even better, but not enough for outperform-
ing the selection of the most similar word, as
computed with static word embeddings.

1 Introduction

As it happens for many other tasks in the domain of
Natural Language Processing (NLP), transformer-
based language models have been explored in the
acquisition of semantic relations, towards their ap-
plication in the creation or enrichment of knowl-
edge bases, or on their direct usage as knowledge
bases (AlKhamissi et al., 2022). More precisely,
having in mind that a typical application of lan-
guage models is text completion, transformer-based
models have been used for completing lexical pat-
terns, in what can be seen as a shortcut to earlier
research on the acquisition of relations from tex-
tual corpora (e.g., Hearst (1992)). If the focus are
lexico-semantic relations, such an approach can be
useful for enriching wordnets (Fellbaum, 1998).
In this study, we build on previous efforts,
specifically those targeting the Portuguese lan-
guage (Gongalo Oliveira, 2022), and evaluate
the acquisition of synonymy, antonymy, and

hypernymy-hyponymy from BERT models, namely
the base and large versions of BERT pretrained ex-
clusively for Portuguese (Souza et al., 2020), and
the multilingual BERT. Evaluation is made on two
test sets, both covering different variations of the
target relations, and starting with source words, but
with different goals: in B2SG (Wilkens et al., 2016),
a related word has to be selected from four options;
in TALES (Gongalo Oliveira et al., 2020), one re-
lated word has to be predicted. Since the approach
is not just dependent on the models, several patterns
were handcrafted for each target relation, building
on previous work, but also on the adaptation of
patterns used in the scope of VARRA (Freitas et al.,
2015), a service for searching for and validating
instances of lexico-semantic relations by resorting
to Portuguese corpora.

After fixing the first argument of each instance
as the source word, patterns were used to prompt
the BERT models, results were evaluated in the test
sets, and conclusions were drawn. Performance
with the multilingual model was poor, and the large
model is generally the best option. When selecting
the correct candidate in B2SG, results are positive,
but end up being outperformed by simply selecting
the option that maximises similarity, computed in
a model fine-tuned for computing semantic simi-
larity or in static word embeddings. Predicting the
related words is more challenging. Nevertheless,
top performances are achieved when predicting hy-
pernyms and results can still be useful for suggest-
ing new relation instances to wordnets. Moreover,
using the large version of the model and including
the VARRA patterns contributed to improvements
in previously reported performance in TALES.

In the remainder of the paper, Section 2
overviews related work on the automatic acqui-
sition of semantic relations from text and language
models; Section 3 describes the adopted approach
in more detail, focusing on the patterns, the test
sets and the models; Section 4 reports on the best
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patterns for each relation and test set, together with
their performance; Section 5 summarises the main
conclusions and future directions of this work.

2 Related Work

The enrichment of wordnets with relations ex-
tracted automatically from corpora has a long tradi-
tion, following the work of Hearst (1992), where a
set of lexico-syntactic patterns denoting hyponymy
was presented and applied to the acquisition of
relation instances. To minimise human interven-
tion, hyponymy patterns were learned automati-
cally with distant supervision (Snow et al., 2005),
and patterns for other relations were learned and
ranked with weak (Pantel and Pennacchiotti, 20006),
in both cases using seed examples from Princeton
WordNet (Fellbaum, 1998). On relation extraction
from Portuguese text (de Abreu et al., 2013), only
a minority is focused on lexico-semantic relations.
These include rule-based approaches for acquiring
hyponymy (de Freitas and Quental, 2007) and part-
of (Markov et al., 2014) relations from corpora;
as well as other relations from dictionary defini-
tions (Gongalo Oliveira et al., 2008).

A more recent alternative is to acquire rela-
tions from distributional models, such as word
embeddings. Even if relations are not explicit,
analogies (Mikolov et al., 2013) have been com-
puted for a broad range of syntactic and seman-
tic relations. Besides the unsupervised discov-
ery of hypernymy instances (Chang et al., 2018),
the performance of simple analogy was improved
by learning to compute related words from mul-
tiple examples (Drozd et al., 2016), more specif-
ically, from the BATS test set, which covers syn-
onymy, antonymy and hypernymy, among other
syntactic and encyclopaedic relations. The previ-
ous were also applied to Portuguese word embed-
dings, when used to solve lexico-semantic analo-
gies in TALES (Gongalo Oliveira et al., 2020), a
test of with the same format as BATS (Drozd et al.,
2016). Despite the low accuracy, among the pre-
dictions there are useful suggestions that may be
manually added to wordnets, as it happened with
OpenWordNet-PT (Gongalo Oliveira et al., 2021).

But the current paradigm in NLP are transformer-
based models, like BERT (Devlin et al., 2019)
or GPT (Radford et al., 2019), and there has
also been work on using them as knowledge
bases (AlKhamissi et al., 2022). Even if they
are not ready for explicitly retrieving semantic

relations, using the right prompts can result in
the acquisition of related words, in what can be
seen as a shortcut for earlier corpora-based ap-
proaches, i.e., these models are pre-trained in
large collections of text and are good at filling
blanks (Petroni et al., 2019; Ettinger, 2020), com-
pleting sentences (Radford et al., 2019), or comput-
ing their likelihood (Goldberg, 2019; Paes, 2021).

Among other efforts, pretrained BERT has been
assessed for the presence of relational knowledge
using discrete prompts (Petroni et al., 2019); for
relation induction (Bouraoui et al., 2020), start-
ing with a small number of patterns and seeds;
or for classifying semantic relations based on at-
tention weights (Chizhikova et al., 2022). Some
researchers conclude that the prompting approach
suits better some relations (e.g., hypernymy) than
others (Ettinger, 2020), while others have shown
that BERT is not very good at predicting hy-
ponymy relations inherited through transitivity (Lin
and Ng, 2022). For Portuguese, recent work ex-
ploited BERT for detecting hyponymy pairs (Paes,
2021), ranking automatically extracted relation in-
stances (Gongalo Oliveira, 2022), or acquiring new
instances (Gongalo Oliveira, 2022).

3 Approach

Gongalo Oliveira (2022) proposed the acquisi-
tion of lexico-semantic relations from BERTim-
bau (Souza et al., 2020), a BERT model pre-trained
for Portuguese, using prompts that indicated the tar-
get relations. Since BERT is pretrained on masked
language modelling in a large corpus, the pre-
trained version should be enough for acquiring
lexico-semantic relations. Some considerations
were made on setting the prompts and results were
evaluated in the TALES (Gongalo Oliveira et al.,
2020) test of lexico-semantic analogies. However,
results were limited to using BERTimbau-base and
to an initial set of handcrafted patterns. Here, we
augment the previous work by considering a sec-
ond dataset, B2SG, other BERT models, and ad-
ditional patterns adapted from VARRA (Freitas
et al., 2015), which lead to improvements on per-
formance. Moreover, we discuss synonymy in
more detail.

3.1 Prompts

Our approach consists of acquiring triples
(x1,7,29), where r is a relation predicate and
x1 and z9 are the relation arguments. This is
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performed by prompting masked language mod-
els (MLMs) with cloze-style patterns indicating the
target relation (), where one of the arguments (1)
is fixed and the other (x9) is masked. For instance,
the lexical pattern “a x2 is a type of x1”
typically indicates hypernym(x, z2). Thus, to ac-
quire hypernyms of dog, 1 and x5 are respectively
replaced by the word dog and by the [MASK]

token, resulting in the prompt “a dog is a
type of [MASK]”. Expected predictions for
the [MASK] would be animal or mammal.

Useful patterns for acquiring the relations
of interest were compiled and made available
by Gongalo Oliveira (2022). However, they did not
cover several patterns handcrafted for VARRA (Fre-
itas et al., 2015), a service for searching for
and validating instances of semantic relations in
Portuguese, through the corpora of the AC/DC
project (Santos and Bick, 2000). So, we decided to
review the original list and include adaptations of
the VARRA patterns. Table 1 illustrates this adap-
tation with some patterns and the resulting masked
prompts. Since VARRA patterns include regular
expressions, with some optional and alternative to-
kens, some adaptations resulted in more than one
masked pattern.

3.2 Test Sets

Two different datasets were used for assessing to
what extent BERT could predict correctly-related
words for the masks. B2SG (Wilkens et al., 2016) is
similar to the WordNet-Based Synonymy Test (Fre-
itag et al., 2005), but based on the Portuguese part
of BabelNet (Navigli and Ponzetto, 2012) and par-
tially evaluated by humans'. It contains frequent
Portuguese nouns and verbs (source words) fol-
lowed by four candidates, out of which only one
is related, and is organised in six relations: syn-
onymy (1,171 entries for nouns, 435 for verbs),
antonymy (145 nouns, 167 verbs), and hyper-
nymy (758 nouns, 198 verbs), all of them used
in this study. The following are examples for noun-
synonymy and verb-hypernymy:

e cataclismo desastre_noun talha_noun
obesidade_noun alusdo_noun
(cataclysm  disaster carving obesity allusion)

e danificar lesar_verb rastrear_verb
divertir_verb embaracar_verb
(damage  harm track amuse embarrass)

'B®SG is available from http://www.inf.ufrgs.
br/pln/resource/B2SG.zip

When using source words as the fixed argument,
B2SG can be used for assessing whether BERT
ranks the related candidate as the best fit for
the mask.

TALES (Gongalo Oliveira et al., 2020) is
a test of lexico-semantic analogies, created
from the contents of ten Portuguese lexical re-
sources”. It covers 14 relation types, but we fo-
cus on ten: synonymy (nouns, verbs, and adjec-
tives); antonymy (adjectives); hypernymy and hy-
ponymy (each between abstract nouns, concrete
nouns, and verbs). TALES format is similar to
BATS (Drozd et al., 2016). For each relation, it
includes 50 entries with two columns: a source
word and a list of related words (target). The fol-
lowing are examples for antonymy and concrete-

hyponymy:

* novo velho/idoso/entradote
(young old/aged/oldish);

e edificio construgdo/estrutura/artefato
(building construction/structured/artefact)

When using source words as the fixed argument,
TALES can be used for assessing whether the pre-
dictions for the mask correspond to target words.
Since the adopted naming of the files can be
confusing, we note that in the hypernymy files of
B2SG, the source word is a hyponym of the correct
option, whereas in the hypernymy files of TALES,
the source word is a hypernym of the target words.

3.3 Masked Language Models

Three BERT models were used in this study,
namely, two versions of BERTimbau (Souza et al.,
2020), for Portuguese, and the multilingual ver-
sion of BERT. All of them are available from
the HuggingFace hub and were used with the
transformers® Python library. Specifically,
for answering TALES, the £i11-mask pipeline
of this library was used. For B2SG, we re-
sorted to the FitBERT* tool, also based on the
transformers library.

BERTimbau was pretrained in a large corpus
of Brazilian Portuguese and has two versions:
BERTimbau-base’, hereafter BERT-base, with 12

TALES is available from https://github.
com/NLP-CISUC/PT-LexicalSemantics/tree/
master/TALESv1.1

*https://huggingface.co/transformers/

*https://github.com/Qordobacode/
fitbert

51'1eu:r:almi1r1d/}:)ert—loase—portuguese—cased
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Relation | VARRA Masked

Synonym-of [lema="PALAVRAL1"] "," "isto" "&" "," [lema="PALAVRA2"] X,, isto é, [MASK]

Antonym-of [word="nem|sejal|quer"] [lema="PALAVRAL"] [lema=","]x nem X;, nem [MASK]
[word="nem|sejalquer"] [lema="PALAVRA2"] seja X1, seja [MASK]

quer Xj, quer [MASK]

Hypernym-of [lema="PALAVRAL1"] [pos="ADJ.*"]x [lema=","]* [lema="tal"]=x X1, tal como [MASK]
"como" [pos="DET.x"]* [pos="ADJ.x"]* [lema="PALAVRA2"

Hypernym-of [lema="PALAVRA2" & pos="N.x"] "e" [lema="outro"] X1 e outro [MASK]
[lema="PALAVRALl" & pos="N.x"]

Table 1: VARRA patterns and their adaptation to masked patterns.

layers and 110M parameters; and BERTimbau-
large$, hereafter BERT-base, with 24 layers and
335M parameters. The multilingual BERT, here-
after BERT-ML’, was pretrained on Wikipedia for
104 languages, has 12 layers and 110M parameters.

The multilingual model XLM-RoBERTA-large®
was also explored, but it performed around the
random chance in B2SG (25% accuracy), so its
results are omitted.

4 Results

This section reports on the best patterns for each
test and relation, and discusses the achieved evalua-
tion scores. For each test, scores are also compared
with alternative approaches.

4.1 Performance in B2SG

After fixing the source words for the prompt (X1),
BERT models were assessed in the selection of the
related word for each entry in B2SG, out of the
four options. FitBERT was used for this — given
a masked sentence and a list of options, this tool
ranks the options according to their suitability for
the mask, based on pre-softmax logit scores, as
performed by Goldberg (2019).

From the resulting ranks, we compute two met-
rics: accuracy, i.e., the proportion of entries for
which the related word was ranked first; and the
average rank of the related word, a continuous
value between 1 (top) and 4 (bottom). Table 2
summarises the achieved results. For each rela-
tion, it shows the most accurate pattern for each
model, followed by its accuracy (Acc) and average
rank (Rank) for the three models. When the best
pattern was the same for multiple models, the table
includes the best patterns overall. Patterns are trans-
lated to English, and those adapted from VARRA
are marked with a V. The full list of patterns is
available from a GitHub repository®.

6neuralmind/bert—large—portuguese—cased
7bert—base—multilingual—cased
8xlm—roberta—large
*https://github.com/NLP-CISUC/

The first conclusion is that BERT-large is the
best option for every relation but verb-antonymy,
where the highest rank is achieved with this model,
but not the highest accuracy, which is by BERT-
base. This is not surprising because BERT-large
has more layers and more parameters, used for bet-
ter representations that should result in better pre-
dictions, even if this is not always the case. On the
other hand, performance with BERT-ML is gener-
ally above random chance (25%), but consistently
lower than for the other models. This only confirms
that monolingual models are a better option for this
monolingual task.

Performance is better for relations between
nouns than for relations between verbs. The
best performance is for noun-antonymy, followed
by noun-hypernymy, and the worse is for verb-
synonymy and verb-antonymy. This suggests either
that relations between verbs are more difficult to
capture by lexical patterns, or that the best patterns
for verb relations are harder to think of.

Since the entries of B2SG are limited to four
options, a suitable approach for answering this test
would be to simply select the candidate that max-
imises similarity with the source word. To analyse
how the adopted pattern-based approach compares
to the previous approach in this test, we resorted to
embeddings for selecting the candidate word that
was the most similar to the source. Different BERT
models and models of static word embeddings were
tested, namely: (i) CLS token of BERT-base and
of BERT-large; (ii) mean pooling of BERT-base
and BERT-large tokens; (iii) BERTimbau-large
fine-tuned for Semantic Textual Similarity in Por-
tugueselo; (iv) 300-sized word2vec (CBOW and
Skip-gram) and GloVe embeddings, pretrained for
Portuguese (Hartmann et al., 2017). Table 3 puts
the accuracies of the previous side-by-side with the
best accuracies of the pattern-based approach.

With BERT-large, the best performance for syn-
onymy was slightly improved, but this was not

PT-LexicalSemantics/tree/master/Patterns

l0rufimelo/bert7largefportuguesefcasedfsts
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. BERT-ML BERT-base BERT-large
Relation PoS Pattern Acc Rank Ace Rank Acc Rank
Synonym-of N X1 é o mesmo que [MASK] 0.35 2.22 0.57 1.71 0.64 1.58
(X is the same as [MASK])
Synonym-of N X1, isto é, [MASK] VvV | 033 2.23 0.58 1.71 0.62 1.60
(X1, this is, [MASK])
Synonym-of N X1 é sinénimo de Xp 0.37 2.20 0.50 1.88 0.52 1.82
(X is a synonym of [MASK])
Synonym-of \Y X1, isto é, [MASK] 0.32 2.28 0.50 1.80 0.56 1.67
(X1, this is, [MASK])
Synonym-of \Y% X1, ou seja, [MASK] 0.49 1.85 0.54 1.73 0.37 2.17
(X1, i.e., [MASK])
Synonym-of v querer Xj é o mesmo que querer [MASK] 0.38 2.14 0.47 1.86 0.44 1.86
(willing to X1 is the same as willing to [MASK])
Antonym-of N nem [MASK], nem X, 1% 0.44 2.03 0.76 1.64 0.77 1.36
(not X1, nor [MASK])
Antonym-of N X1 é o contrario de [MASK] 0.46 1.92 0.72 1.44 0.77 1.37
(X is the opposite of [MASK])
Antonym-of N X1 é diferente de Xso 0.40 2.06 0.68 1.51 0.72 1.43
(X is different than [MASK])
Antonym-of \" se estd a X1 ndo esta a [MASK] 0.46 1.95 0.60 1.69 0.62 1.61
(if itis X1, it is not [MASK])
Antonym-of \% nem [MASK], nem X3 \% 0.29 2.31 0.63 1.64 0.61 1.61
(not X1, nor [MASK])
Antonym-of A% quer X;, quer [MASK] VvV | 030 2.26 0.60 1.71 0.61 1.69
(whether X'; or [MASK])
Hypernym-of N X1, isto é, um tipo de [MASK] 1% 0.44 2.02 0.68 1.50 0.71 143
(X1, this is, a type of [MASK])
Hypernym-of N X1, isto é, uma espécie de [MASK] 1% 0.41 2.06 0.63 1.57 0.70 1.44
(X1, this is, a kind of [MASK])
Hypernym-of N X1 é um tipo de [MASK] 0.42 2.04 0.65 1.58 0.67 1.54
(X1 is a type of [MASK])
Hypernym-of v a X1 ou outras formas de [MASK] V | 036 2.20 0.61 1.60 0.66 1.54
(X or other forms of [MASK])
Hypernym-of \% a X; ou outros modos de [MASK] 0.37 2.13 0.57 1.65 0.61 1.56
(X1 or other modes of [MASK])
Hypernym-of \Y% [MASK] é hiperdénimo de X3 0.19 2.59 0.47 1.79 0.62 1.60
([MASK] is a hypernym of X 1)
Table 2: Best performing patterns in BZSG and their performance.
Relation PoS BERT-b BERT-1 BERT-b BERT-1 BERT-b BERT-1 BERT-STS | CBOW  Skip GloVe
(patterns) (patterns) (CLS) (CLS) (tokens) (tokens)
Synonym-of N 0.58 0.64 0.60 0.67 0.59 0.66 0.80 0.71 0.83 0.81
Synonym-of \% 0.54 0.56 0.55 0.51 0.54 0.54 0.75 0.66 0.68 0.70
Antonym-of N 0.76 0.77 0.72 0.63 0.69 0.64 0.78 0.70 0.81 0.83
Antonym-of A\ 0.63 0.62 0.51 0.51 0.49 0.57 0.68 0.67 0.69 0.71
Hypernym-of N 0.68 0.71 0.59 0.61 0.59 0.62 0.76 0.65 0.76 0.80
Hypernym-of \ 0.61 0.66 0.52 0.51 0.54 0.54 0.71 0.64 0.66 0.70

Table 3: Accuracy of similarity methods in B2SG.

the case for the other relations, suggesting that syn-
onymy is better captured by approaches for comput-
ing semantic similarity, even if trained in longer se-
quences, than with fixed patterns. With BERT-STS,
performance was improved for all relations. De-
spite being fine-tuned for computing the similar-
ity between sentences, the model showed to adapt
well-enough to single words, as in B2SG, also con-
firming the benefits of fine-tuning. But this is was
still not enough for outperforming the best static
word embeddings, GloVe, in all relations. In fact,
BERT-STS only achieved the best performance in
two relations, both between verbs (synonymy and
hypernymy). This might be related to the higher
number of inflections of verbs and how each model
handles them, i.e., a different entry for each in-
flection in static word embeddings vs word piece
tokenization and contextual embeddings in BERT.

Nevertheless, the fact that all target relations are
connected to similarity, plus the constrain of only
four candidates, make GloVe embeddings the best
option overall for B2SG, with the top performance
in half of the relations.

4.2 Performance in TALES

With TALES, we wanted to assess how well the
pattern-based approach could be used for actually
predicting the related words, not restricted to a
set of options. For each prompt, again, we fix
the source word and use the models for predicting
words for the mask. Based on the predictions, two
metrics are computed, namely: accuracy, i.e., the
proportion of entries for which the first prediction
was correct; accuracy @10, i.e., the proportion of
entries for which a correct prediction was among
the top-10 predictions.

Table 4 summarises the achieved results. For
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each relation, it shows the most accurate pattern
for each BERTimbau model, followed by its ac-
curacy (Acc) and accuracy @10 (Acc@10) for the
three models. When the best pattern is the same for
both, the table includes the two best patterns. Pat-
terns are translated to English, and those adapted
from VARRA are followed by a V.

As expected, when predictions are not con-
strained to four options, performance is much
lower. BERT-large tends to perform better than
BERT-base, except for hyponymy relations. i.e.,
when predicting hypernyms. Curiously, top perfor-
mances are achieved for these relations, between
abstract and concrete nouns, which is in line with
previous work for English (Ettinger, 2020). A
probable cause is the smaller number of hyper-
nyms when compared to hyponyms. On the other
hand, the lowest performances are in the prediction
of synonym adjectives, concrete hyponyms, and
verb hypernyms.

We note that some of the top performances
were achieved by VARRA patterns, including
for hypernymy and hyponymy. A particularly
productive pattern was “um (a) X;, isto &,
um tipo de [MASK]”, which achieved the
best performance in abstract and concrete hy-
ponymy. In addition to the new patterns,
BERT-large also contributed to an overall improve-
ment of the performances reported in previous
work (Gongalo Oliveira, 2022). We highlight the
improvements on the relations between abstract
nouns, specifically, an increase of 0.26 points in
the accuracy of abstract hyponymy and of 0.14 in
abstract hypernymy.

As in previous work, we compared the perfor-
mances achieved by this approach with those of
analogy-solving methods in static word embed-
dings. Table 5 puts the best accuracies with the
pattern-based approach side-by-side the best ac-
curacies with the four analogy-solving methods
used by Drozd et al. (2016) — Similarity, 3CosAdd,
3CosAvg, LRCos — in the same three models of
static word embeddings used in the B2SG.

There are three relations for which performance
is better with static word embeddings. Two of
them are noun-synonymy and adjective-synonymy,
which confirms the anticipated challenge of captur-
ing synonymy with a single lexical pattern. The
third relation is verb-hypernymy, for which there
were no patterns in VARRA, and we could not add
many more to the used list. Using BERT-large

made it possible to improve the performance for
concrete-hypernymy.

5 Conclusion

This paper reports on the experimentation of BERT
models for Portuguese for answering relation tests,
by prompting them with patterns that indicate syn-
onymy, antonymy, hypernymy and hyponymy re-
lations. Our first conclusion was that monolingual
models perform substantially better than a multi-
lingual model. Second, when it comes to selecting
the related word from a limited set of options, the
proposed approach performs ok, even if better for
relations between nouns than between verbs. How-
ever, this turns out not being so useful, because it
is outperformed by simply selecting the most simi-
lar word, as computed in a fine-tuned BERT or in
static word embeddings. Third, this approach can
be used for predicting related words, in this case,
better for noun hypernyms, as in previous work for
English (Ettinger, 2020). We also note the posi-
tive impact of using BERT-large and of including
the patterns of a relation validation service, which
enabled the improvement of previously reported
results in the same dataset.

At the same time, there is still much room for im-
provement, and performances achieved suggest that
it might be risky to create or enrich a knowledge
base in a completely automatic fashion. Yet, given
that the reported evaluation ends up being limited
by the contents of the test sets, in the future, it
could be interesting to test how far one could go by
adopting this approach for the creation of a knowl-
edge base completely from scratch. Additional
conclusions could be taken from manually evalu-
ating a sample of extracted instances. We should,
nevertheless, look at BERT as an alternative source
of knowledge, capable of providing suggestions
for enriching knowledge bases, even if they need
to be manually-validated before actual inclusion.
This would be similar to what happened in the en-
richment of OpenWordNet-PT (Gongalo Oliveira
etal., 2021), with suggestions computed from static
word embeddings.

Finally, given that the prompts play a key role
on this approach, it is always on our mind to test
more and more patterns. So far, performance could
be improved with the inclusion of patterns from a
relation validation service, but additional patterns,
potentially better, could be discovered by process-
ing large corpora, as others did (Jiang et al., 2020;
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. BERT-ML BERT-base BERT-large
Relation PoS Pattern Acc  Acc@10 | Acc  Acc@10 | Acc  Acc@l10
Synonym-of N X1 é sinénimo de [MASK] 0.02 0.20 0.28 0.64 0.20 0.70
(X is a synonym of [MASK])
Synonym-of N X1 é o mesmo que [MASK] 0.04 0.08 0.20 0.58 0.20 0.66
(X is the same as [MASK])
Synonym-of \" X1 é o mesmo que [MASK] 0.12 0.24 0.12 0.80 0.34 0.90
(X is the same as[MASK])
Synonym-of v estar a X1 é o mesmo que estar a [MASK] 0.18 0.44 0.20 0.68 0.26 0.82
(to be X is the same to be [MASK])
Synonym-of ADJ estar X1 é o mesmo que estar [MASK]. 0.14 0.42 0.06 0.46 0.24 0.54
(being X1 is the same as being [MASK])
Synonym-of ADJ ser X; é o mesmo que ser [MASK]. 0.06 0.24 0.14 0.54 0.22 0.64
(being X7 is the same as being [MASK])
Antonym-of ADJ ser [MASK] é o contrario de ser Xi 0.08 0.22 0.26 0.40 0.38 0.48
(being X is the opposite of being [MASK])
Antonym-of ADJ nem X;, nem [MASK] 1% 0.02 0.06 0.34 0.40 0.34 0.46
(not X1, nor [MASK])
Hypernym-of | Abstract a [MASK] é um tipo de X 0.08 0.24 0.22 0.60 0.38 0.66
(the [MASK] is a type of X1)
Hypernym-of Abstract uma [MASK], isto é, um tipo de X; 0.04 0.32 0.32 0.70 0.26 0.62
(a [MASK], this is, a type of X 1)
Hypernym-of | Concrete o [MASK], que € um tipo de X; 0.08 0.20 0.20 0.54 0.24 0.56
(the [MASK], which is a type of X1)
Hypernym-of | Concrete a [MASK] é um tipo de X 0.04 0.12 0.14 0.38 0.22 0.36
(the [MASK] is a type of X1)
Hypernym-of v como [MASK] e outros modos de X; 0.00 0.04 0.08 0.54 0.20 0.58
(like [MASK] and other modes of X1)
Hypernym-of \% como [MASK] ou outras maneiras de <r> 0.00 0.02 0.12 0.42 0.08 0.24
(like [MASK] and other manners of X)
Hyponym-of Abstract um X;i, isto é, um tipo de [MASK] V| 0.02 0.46 0.24 0.60 0.40 0.62
(a X1, this is, a type of [MASK])
Hyponym-of Abstract uma X, isto é, uma espécie de [MASK] Vv | 0.06 0.38 0.12 0.66 0.28 0.64
(a X1, this is, a kind of [MASK])
Hyponym-of | Concrete uma X1, isto é, um tipo de [MASK] V| 010 0.40 0.60 0.88 0.56 0.80
(a X1, this is, a type of [MASK])
Hyponym-of Concrete um X3, isto é, um tipo de [MASK] 1% 0.06 0.32 0.58 0.88 0.58 0.88
(a X1, this is, a type of [MASK])
Hyponym-of v como X1 ou outras maneiras de [MASK] 0.18 0.54 0.24 0.64 0.18 0.70
(like X1 and other manners of [MASK])
Hyponym-of \' X1 é como [MASK], mas 0.08 0.10 0.08 0.24 0.12 0.50
(X is like [MASK], but)
Table 4: Best performing patterns in TALES and their performance.
Relation PoS BERT-base  BERT-large Sim 3CosAdd  3CosAvg  LRCos
Synonym-of N 0.28 0.20 0.28 0.18* 0.32% 0.38T
Synonym-of \Y% 0.12 0.34 0.20% 0.12% 0.24% 0.30"
Synonym-of ADJ 0.06 0.24 0.26™ 0.10" 028+ 026"
Antonym-of ADJ 0.26 0.38 0.20" 0.14* 0.24% 0.28*
Hypernym-of | Abstract 0.22 0.38 0207 0.06%F 020" 0.16*+
Hypernym-of | Concrete 0.20 0.24 0.18% 0.10% 0.20* 0.20%
Hypernym-of \Y 0.08 0.20 0.14* 0.08% 0.12% 0.22*
Hyponym-of | Abstract 0.24 0.40 0.08* 0.08" 0.10" 0.12*
Hyponym-of | Concrete 0.60 0.56 0.10%  0.04%*+ 0.14% 0.28%
Hyponym-of \ 0.24 0.18 0.147 0.16* 0.16*+ 0.22%

Table 5: Accuracy of analogy-solving methods in TALES. *GloVe; *word2vec-skip; *word2vec-cbow.

Bouraoui et al., 2020). In any case, having in mind
reproducibility and future improvements, the list of
patterns was made available for anyone willing to
use it.
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Abstract

Data augmentation is a difficult task in Natural
Language Processing. Simple methods that can
be relatively easily applied in other domains
like insertion, deletion or substitution, mostly
result in changing the sentence meaning sig-
nificantly and obtaining an incorrect example.
Wordnets are potentially a perfect source of
rich and high quality data that when integrated
with the powerful capacity of generative mod-
els can help to solve this complex task. In this
work, we use plWordNet, which is a wordnet
of the Polish language, to explore the capability
of encoder-decoder architectures in data aug-
mentation of sense glosses. We discuss the
limitations of generative methods and perform
qualitative review of generated data samples.

1 Introduction

Transformer models have appeared to be very suc-
cessful in solving a large variety of Natural Lan-
guage Processing tasks and applications. The re-
search on neural language modeling has been in-
tensified in recent years and has yielded many new
developments, such as pre-trained autoregressive
language models for text generation. Text gener-
ation models such as BART (Lewis et al., 2020),
GPT (Brown et al., 2020) or T5 (Raffel et al., 2020)
have increased the performance even further, due
to their few-shot abilities (Radford et al., 2019).

The knowledge resources such as wordnets
(Miller et al., 1990) are often incomplete and still
require constant development, especially for low-
resourced languages. In Stowosie¢ (Dziob et al.,
2019) (also called plWordNet) — a wordnet of the
Polish language, one of the largest wordnets in the
world — over 40% senses still lack a definition, and
over 60% of senses do not have any sense use ex-
ample. This area might be addressed by utilising
large language models pre-trained on text genera-
tion tasks. Adding missing definitions and sense
use examples is a crucial task for further wordnet
development.

The definition generation problem is tightly in-
terconnected with Word Sense Disambiguation
(WSD) problem, as the words have different mean-
ings in different contexts. The modern language
models have significantly improved WSD perfor-
mance in recent years. Transformer-based models
such as BERT (Devlin et al., 2019) have proved to
be very effective in contextual word sense recogni-
tion (Bevilacqua et al., 2021). While very effective,
large language models require at least a small data
sample to effectively fine-tune them for the WSD
task. Nevertheless, large pre-trained language mod-
els with billions of parameters have been shown to
require less training data to effectively tune them
for downstream tasks (Chowdhery et al., 2022).

In this paper, we investigate generation abilities
of large pre-trained language models in the task of
wordnet gloss generation for the Polish language.
We treat this problem as a data augmentation prob-
lem, as some senses in under-resourced wordnets
are missing their definitions. We evaluate gloss
generation performance on the example of Polish
wordnet — Stowosie¢ (Dziob et al., 2019) — in the
version 4.2.!

2 Related Work

The acquisition and completion of missing sense
glosses has been addressed in the literature in many
different ways. Enrichment of synset glosses in
wordnets can be partially achieved by utilising ma-
chine translation models (Chakravarthi et al., 2019).
However, these approaches do not take into account
the discrepancy between sense inventories in dif-
ferent languages, as some senses do not exist in
the source or target languages. Thus, an automated
translation of Princeton WordNet glosses (Miller
et al., 1990) to other language might not be able

'The code and the training data, as well as the generated
sense definitions, are available at https://gitlab.
clarin-pl.eu/knowledge-extraction/
prototypes/gwc—-t5-wordnet.
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to completely solve the task of gloss completion.
The other approaches rely on interlinking the word-
nets with external resources and semantic networks
such as multilingual thesauri in linked open data,
Wikipedia?, Wikidata®, BabelNet (Navigli et al.,
2021), or with Open Multilingual WordNet grid
(Bond and Foster, 2013). Some solutions solve the
problem as a joint task in which translations and po-
tential glosses available in large semantic networks
are analysed with WSD algorithms to increase the
accuracy of gloss acquisition (Camacho-Collados
et al., 2019). Still, an overall coverage of senses is
strongly dependent on the target domain of applica-
tion, and for specific domains the WSD models are
biased towards more frequent senses. The closest
to our work are generative approaches in which the
encoder—decoder architectures are used to generate
definitions in an autoregressive manner and treating
the language models as knowledge bases (Huang
et al., 2021; Mickus et al., 2021; Bevilacqua et al.,
2020; Zhang et al., 2022). The approaches such as
(Huang et al., 2021) utilise large pre-trained trans-
formers, mainly T5 (Raffel et al., 2020) and BART
(Lewis et al., 2020) models, to generate definitions.
The solution proposed in (Huang et al., 2021) is
the closest to our work since it’s based on the same
pre-trained TS transformer architecture, but the au-
thors have added reranking models to control the
specificity of generated sense definitions. In our
work we expand the research on generative defi-
nition acquisition and investigate the performance
of raw generative language models for the Polish
language. The Japanese corpus for definition gen-
eration (Huang et al., 2022) also provides words
with usage and definition, but it was generated via
linking Wikidata items with sentences in Wikipedia
articles.

3 Methods

3.1 Text Generation Models

Text generation task is formally de-
fined as conditional sequence generation
Y = (y1,y2,---,ynm), Where a model should
predict sequence ) conditioned on the sequen-
tial input data X = (z1,292,...,2p), with
p(VIX) = p(yl,y2,...,ypm|X). The models
for text generation task usually descend from
sequence-to-sequence architectures with sequential
encoders and sequential decoders. Modern text

https://www.wikipedia.org/
*https://www.wikidata.org

generators such as BART (Lewis et al., 2020),
T5 (Raffel et al., 2020), or GPT (Radford et al.,
2018, 2019; Brown et al., 2020) utilise transformer
networks and autoregressive decoders. In this
work, we investigate text generation abilities
of pre-trained TS5 language models for Polish
language, more specifically the p1T5 language
models (Chrabrowa et al., 2022) pre-trained on
Polish corpora.

3.2 Sense Definitions and Sense Examples

Following (Huang et al., 2021), we prepared a
dataset of sense definitions and sense use examples
for target words selected for the task of definition
generation. Princeton WordNet has a great collec-
tion of glosses and sense examples, which have
been frequently used in various natural language
processing tasks, including word sense disambigua-
tion (Huang et al., 2019; Bevilacqua and Navigli,
2020). Polish sense inventories, such as plWord-
Net, do not provide complete description of senses
in terms of their glosses and sense use examples.
Thus, we decided to incorporate sense annotated
corpora from (Janz et al., 2022) and (Hajnicz and
Bartosiak, 2019) to obtain a larger and diversified
collection of sense definitions and their usage ex-
amples.

3.3 TS5 for Definition Generation

Let D = {(w, D, E)}}Y, will be a dataset with
instances representing a sense use example E
and sense definitions D of a target word w and
its sense s € S,,. Glosses D and a sense use
examples E are defined as sequences of tokens
D = (d1,d2,...,dT) and £ = (61,62,...,61\/[).
The senses and their textual descriptions are ob-
tained from the sense inventory s € S. We use
the data from plWordNet and additional sense-
annotated corpora (see Section 3.2).

To fine-tune a model to the definition genera-
tion task for target words and their sense use con-
texts, we prepare the training data according to
the methodology presented in (Raffel et al., 2020;
Zhang et al., 2022) for the TS model. A single
training example consists of a word and its sense
use example concatenated with a colon, e.g. ,,cat:
the cat was jumping on the bed in the middle of
the night”. The target for TS model represents the
definition of the sense expressed by the given sense
use example (,feline mammal usually having thick
soft fur and no ability to roar, domestic cats”).
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We split the dataset into two parts (D, Dr),
where Dy, is a labeled training corpus for text gener-
ation model, and Dr is the held-out testing sample
with lemmas outside the training set — lexical data
split. The generation task is defined as follows.

T

p(D|E,w) = [[ p(Diw, Di—1,..., D1, E)
t=1

4 Evaluation

Output of generative models was a definition for a
given word in relation to the particular context and
the evaluation of such an output is a nontrivial task.
In language generation different evaluation metrics
are used. We chose BLEU (Papineni et al., 2002)
and ROUGE (Lin, 2004) metrics which are widely
applied in many benchmarks. This automatic eval-
uation gave us information, if a model is overfitting
to provided data or not. We could also estimate the
difference between basic and large models perfor-
mance on the test set. But to evaluate definitions
properly, syntactic-level metrics are not sufficient.
That is why we also performed manual validation
of the generated definitions together with doing er-
ror analysis of the model’s predictions. The manual
validation was performed by professional lexicog-
raphers specialising in wordnets. We used a subset
of error tags from (Huang et al., 2021) as a basis
for our manual evaluation, namely:

* self-reference —error is assigned when
a word being defined is described by using the
word itself,

* completely-wrong — the word being de-
fined has been assigned a definition represent-
ing as wrong sense,

* partially-wrong —some part of the gen-
erated definition is incorrect or refers to a dif-
ferent sense,

e incoherent — the definition contains con-
tradictory parts.

To decrease memorisation impact on our eval-
uation, we evaluated the predictions by ensuring
both the lemmas and the definitions in our test data
were not included in the training dataset. We also
provide the results with respect to part-of-speech
of analysed lemmas.

Hard evaluation In this setting, a lexicographer
accepts a generated definition if and only if any of
the defined errors has not occurred in it.

Soft evaluation A generated definition is consid-
ered to be correct, even if the self-reference
or partially—-wrong errors have been spotted,
but other errors are not observed.

4.1 Experimental Setting

We fine-tuned a pre-trained plT5 (Chrabrowa et al.,
2022) generative language model for the task of def-
inition generation. We trained p1T5-base and
plT5-1arge models available on HuggingFace®
model repository. They have correspondingly 220
millions a parameters and 770 millions parameters.
We trained them on single Nvidia RTX3090 GPU.
The batch size for p1 T5-base was set to 16 and
the model was trained for 40 epochs. In case of
plT5-1large, the batch size was set to 4 and the
model was trained for 15 epochs, due to increased
computational complexity of the model. We ap-
plied batch gradient accumulation steps for every
8 the batches and set a learning rate to le-4. The
prompts of pre-selected TS5 language models were
setto’ [generate definition]’.

4.2 Datasets

Training Data To train the models we used the
following sense annotated corpora. The main
dataset used for training was created from plWord-
Net’s sense definitions and sense use examples.

* Verb’s Valency Dictionary — Sktadnica (SK)
is a sense-annotated treebank (Hajnicz,
2014) used as a benchmark dataset for
knowledge-based WSD solutions for Polish
language (Kedzia et al., 2015). The dataset
was updated at PolEval’s WSD competition
Task 3 (Janz et al.).

* The Corpus of Wroclaw University of Sci-
ence and Technology (KPWr) (Broda et al.,
2012) — contains the documents from vari-
ous sources and represents different genres
and domains. The manual sense annotation
was based on a lexical sampling approach —
the occurrences of words pre-selected by ex-
perts were manually annotated with senses in
relation to their contexts (Broda et al., 2012;
Kedzia et al., 2015). In (Janz et al.) the corpus

*https://huggingface.co
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was extended with full-text sense annotation
— 100 documents were manually tagged with
plWordNet senses.

* Sherlock Holmes: The Adventure of The
Speckled Band (SPEC) by Sir Arthur Conan
Doyle, translated to Polish by a team of ex-
perts as a part of The NTU Multilingual Cor-
pus (Tan and Bond, 2011). The corpus was
manually tagged both with morphological in-
formation and sense tags (Janz et al.).

All of the aforementioned datasets are fully com-
patible with sense inventory of plWordNet 4.2, as
they were described in (Janz et al., 2022). To
improve the coverage of senses, we incorporated
additional silver dataset built upon plWordNet
Corpus 10.0 (Kocon and Gawor, 2019), in short
KGR10.

* Data Sample for Monosemous Lemmas — the
KGR10 corpus is a corpus built from web-
based data sources, covering a broad range
of styles, genres and topics. It contains over
4 billion tokens with over 18 million dis-
tinct words. We synthesized a collection of
additional sense use examples by extracting
context windows from KGR10 corpus for
senses representing potentially monosemous
lemmas. To select monosemous lemmas we
used p]lWordNet’s sense inventory, mainly its
multi-word expressions and lemmas with sin-
gle sense and lower occurrence frequency in
the corpus.

Test Data We prepared two distinct test sets for
the evaluation. The first test set was prepared for
manual evaluation, and the second test set was cre-
ated to perform automated evaluation using BLEU
and Rouge-L scores.

To create the test set for automated evaluation,
we have split the data from p]lWordNet and sense-
annotated corpora into training part and test part.
We acquired almost 237k examples with words, us-
age examples and definitions. From those examples
around 213k were acquired from plWordNet, 6.2k
from The Corpus of Wroclaw University of Science
and Technology (KPWr), 16k from Verb’s Valency
Dictionary, and 1.5k Sherlock Holmes. To create
the test set, we randomly sampled 10k examples.

The test set for manual evaluation contained 146
examples with words and representative usage ex-
amples. We sampled these examples from the test

set prepared for automated evaluation. All usage
examples were new and were not seen by the model
before. We split the data by words according to
the following criteria. There were 102 instances
that were already provided with expected sense
definition in plWordNet. We denoted this subset
as WordNet+. The subset of 44 words that had no
definition in plWordNet was denoted as WordNet-.
The examples were given to experts to measure
defining capabilities of language models.

5 Results and Discussion

The results indicate that there is a significant dif-
ference between base and large model sizes. Our
automatic evaluation results on 10k test set con-
taining definitions from plWordNet, showed that
BLEU score (see figure 1) and Rouge-L score (see
figure 2) were getting better over time at higher
pace for the large model than for the base model.
The highest scores achieved after 13k iterations
were (0.31, 0.44) and (0.44, 0.54) for BLEU score
and Rouge-L score, respectively. The final differ-
ence in scores was greater than 0./ for both metrics.

05 4
0.44

0.4 4

0.32
0.3 4

0.2 +

BLEU score

plT5-base

0.1~ plT5-large

0.0 +

0 5000 10000 15000 20000 25000

Optimisation steps

Figure 1: Evaluation of text generation models in the
task of definition generation. We plot the performance
of fine-tuned language models measured by BLEU score
with respect to optimisation steps during fine-tuning.
One iteration is equal to 256 shown examples.

The examples of generated definitions for pro-
vided contexts (see Table 1) showed different defini-
tion patterns. The first example represents the word
to devastate. The model generated a correct defini-
tion explaining the meaning of analysed word. The
second example, the word to solve, was explained
using the word itself and passed the soft evaluation.
However, the generated definition did not pass the
hard evaluation test (definiendum case). The third
example, the word covered by, had its meaning
correctly explained by the generated definition in
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Figure 2: Evaluation of text generation models in the
task of definition generation. We plot the performance
of fine-tuned language models measured by ROUGE
score with respect to optimisation steps during fine-
tuning. One iteration is equal to 256 shown examples.

the given context, and the model did not repeat the
existing definition from plWordNet. The fourth
example, the word fapir, shows that the model was
able to use previously acquired knowledge from
Wikipedia pages or other knowledge bases (avail-
able at pre-training time) and created a new defini-
tion for that word, even though it was not present
in pIWordNet.

We also provided some examples of errors in the
generated definitions (see Table 2 ). For the word
anesthetized, the model resolved the first part of the
definition correctly, but the second part was contra-
dictory, because a person who is under anesthesia is
out of touch with reality. The second example, the
word fo guide, was defined using the word itself,
and was classified by the expert as incorrect. The
third example represents the word get involved. It
was defined in an unspecific way, and semantically
the definition is only partially correct. In the fourth
example, the word snarky not only defines itself,
but the definition is wrong and the word is used in
an incorrect sense.

The overall results are presented in Table 4. We
measured the average accuracy of the model’s pre-
dictions according to experts. There was a substan-
tial difference between plT5-base and plT5-large
models, where the larger model was better by more
than 10 percent points in the overall evaluation.
The words that existed already in plWordNet were
easier to be defined and the unseen words seemed
to be more challenging for the model. The main rea-
son for that is that the model was able to memorize
well seen texts and generated definitions accord-
ingly, but for the unseen examples, we expected
the model to generate definitions for meanings that

have not been seen before.gw There were cases,
where the model was able to access knowledge
from pre-training corpora and use it to generate
definition for new words. The accuracy difference
between word examples that were not defined in
plWordNet for hard evaluation and soft evaluation
is almost doubled for both models. This may be
the result of the model’s understanding of the main
concept of the word it defines, but at the same time
hallucinating the definition, resulting in a formally
incorrect definition. Another reason why the model
performs poorly on unseen examples is that the
sense-annotated resources for Polish language may
be insufficient for learning to define senses com-
pletely unrelated to the training data and existing in
completely different areas of p]WordNet’s lexico-
semantic structure. This issue will be investigated
in our future work.

6 Conclusion

The plWordNet definitions and usage examples are
perfect data source for fine-tuning TS5 generative
models. Fine-tuned models are able to understand
the new task and partially to generate definitions
of unseen word senses. There is a significant dif-
ference in performance for seen and unseen words.
Models are able to memorize definitions for exam-
ples in training set and modify them. Large model
performs better than base, not only in automatic
evaluation but also when evaluated by trained lin-
guist. It is able to generalize better and recall more
from it’s memory.

As our results are promising, we believe that
further research in this area will lead to models that
are able to generalize better and define polysemic
words properly in different contexts. Those models
can be applied to WSD, Entity Linking and other
knowledge intensive tasks.
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Word

Context

Generated Definition

wyniszczad,

verb

(to devastate)

»Wreszcie Swiadczenia na rzecz gospodarki
okazaty sig wyniszczajqce. Stopa akumulacji

kapitatu osiqgneta bezprecedensowy poziom.”

(Finally, the benefits to the economy have
proved devastating in the economic field: the
rate of capital accumulation has reached un-

precedented levels)

powodowaé, ze co$ nie nadaje
sie do uzytku albo stracito

jakies$ swoje funkcie;

cause something to become
unusable or lose some of its

functions;

rozwiazywacé, verb ,, Ich zdaniem obiekt tego rodzaju zostanie zapoznawac¢ sie z jakims

zrealizowany dopiero wowczas, gdy maszyna  problemem, rozwiazywadé go,

bedzie w stanie rozwiqzywac zadania, ktérych  odgadywaé na podstawie jakich$

dotqd nie udato sig¢ rozwiqzac cztowiekowi, i przestanek

to nie na skutek braku szybkosci i doktadnos¢”

(to solve) (In their opinion, an object of this kind will be get acquainted with some

realized only when the machine will be able problem, solve it, make a

to solve tasks that humans have so far failed guess based on some premises

to solve, and not due to a lack of speed and

accuracy.)

opieka, noun »Klient Rekuperatory od pierwszego dnia czynno$c¢, zabezpieczenie

Sfunkcjonowania systemu objety jest opiekq kogos lub czegos$ przed czyms,

Dziatu Serwisowego, ktory jest do dyspozycji strzezenie czego$, chronienie

od poniedziatku do piqtku” przed zagrozeniami

(covered by) (The customer of Rekuperatory from the first action, protecting someone

day of operation of the system is covered by the or something from something,

Service Department, which is available from guarding something, protecting

Monday to Friday) from threats

tapirek, noun wlapirek podszedt i otart pysk o noge Hala. tapir gdérski, Tapirus

Wielki waz wpatrywat si¢ w niego gtodnym pinchaque - ssak z rodziny

wzrokiem, a potem cofnat gtowe i z potwornq  tapirowatych, najmniejszy

sitq uderzyt niq o drzwi klatki.” sposrdéd czterech gatunkéw i
jedyny, ktdéry moze zyé na
wolnosci poza regionem lasoéw
tropikalnych;

(Tapir) (Tapir approached and rubbed his snout mountain tapir, Tapirus
against Hal’s leg. The big snake stared at pinchaque - a mammal of the

him with hungry eyes.)

tapir family, the smallest of
the four species and the only
one that can live in the wild

outside the rainforest region;

Table 1: A sample of correctly predicted definitions for test words and their contexts. The T5 model was provided
with words and their sense use examples as an input for definition generation.
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Word Context Generated Definition Error Tag
znieczulony, adj ,Nic nie czutem! — Byt o cztowieku: taki, incoherent
pan znieczulony, sir. Zresztq ktéry jest pod
podobno to nie boli.” wplywem znieczulenia,
ma kontakt z
rzeczywistoscia;
(anesthetized) (I didn’t feel anything! - You about a person:
were anesthetized, sir. Anyway, one who is under
supposedly it doesn’t hurt.) anesthesia, is in
touch with reality;
przyswiecaé, verb W rzeczywistosci zapewne przyswiecad, definiendum
przy$Swiecata  mi  zupelnie przyswiecaé komus;
bezsensowna — mysl, zeby
sprobowac utozy¢ z kamieni cos
w rodzaju muru.”
(to guide) (In fact, I was probably guided to guide, to guide
by a completely nonsensical someone;
thought to try to arrange some-
thing like a wall out of the
stones.)
wiktaé, verb ,, Niestety, dziewczyna pada ofi- przenosnie: pakowacd partially-wrong
arq zakazanej mitosci i wikta sie  sie w cos$, dawad sie
w niebezpieczny romans.” wciagnalé czemus$ lub
komus;
(get involved) (Unfortunately, the girl falls metaphorically: get
prey to forbidden love and get sucked into something
involved in a dangerous affair)  or someone;
warkliwy, adj »Gdy spytatem go o tego taki, ktéry Jjest completely-wrong
cztowieka, przyznat warkliwym peten warczenia,
tonem, Ze jest najlepszy z catej ~warczacy;
zgrai.”
(snarky) (When I asked him about the One that is full of
man, he admitted in a snarky growling, growling

tone that he was the best of the
bunch.)

Table 2: A sample of incorrectly predicted definitions for test words and their contexts. The predictions were tagged
with error tags explaining possible error types in definition generation.
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Polysemic Word

Context

Generated Definition

zamek, noun Na gorze widniat wielki, pigkny zamek otoczony budowla mieszkalna, rezydencja
fosa.” pana, krdéla, ksiecia lub
magnata.

(castle) (On the mountain was a large, beautiful castle A residential building, the

surrounded by a moat.) residence of a lord, king,
prince or magnate.
zamek, noun ,» Masz rozpiety zamek w spodniach.” wyrdb tekstylny, ktdry ma
zamek, Jjest skonstruowany w taki
sposdéb, ze mozna go zamknac.

(zipper) ( You have the zipper of your pants undone.) a textile product that has a
lock is constructed in such a
way that it can be closed.

zamek, noun ,,Dorobit sobie klucz do zamka.” urzadzenie do zamykania np.
drzwi, szuflad, walizek.

(lock) (He made up a key for the lock.) A device for locking, for
example, doors, drawers,
suitcases.

zamek, noun ,.Po raz ktorys z kolei odciqgnqt zamek i zajrzat  mechanizm broni palnej,
do komory nabojowej swego katasznikowa.” wyposazony w ruchomy zamek.
(bolt) (For the umpteenth time, he pulled back the bolt firearms mechanism, equipped

and looked into the cartridge chamber of his
kalashnikov.)

with a movable bolt.

Table 3: A sample of predicted definitions for polysemic word in polish language zamek.
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Model All samples WordNet™ WordNet™
hard eval.  soft eval. | hard eval.  soft eval. | hard eval.  soft eval.

plT5-base 0.43 0.62 0.82 0.95 0.27 0.54

plT5-large 0.59 0.74 0.95 0.99 0.37 0.64

Table 4: Manual evaluation of T5-based definition generation models on test data sample of 200 words with
examples. We provide the accuracy of text generation model for hard evaluation and soft evaluation settings.
We split the evaluation into three distinct settings: i) WordNet™ — testing on senses with a proper definition in
plWordNet, ii) WordNet™ — testing on senses which definitions are missing in plWordNet, iii) testing on all test

samples.
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Abstract

Recent advances in Word Sense Disambigua-
tion suggest neural language models can be
successfully improved by incorporating knowl-
edge base structure. Such class of models are
called hybrid solutions. We propose a method
of improving hybrid WSD models by harness-
ing data augmentation techniques and bilingual
training. The data augmentation consist of
structure augmentation using interlingual con-
nections between wordnets and text data aug-
mentation based on multilingual glosses and
usage examples. We utilise language-agnostic
neural model trained both with SemCor and
Princeton WordNet gloss and example corpora,
as well as with Polish WordNet glosses and
usage examples. This augmentation technique
proves to make well-known hybrid WSD ar-
chitecture to be competitive, when compared
to current State-of-the-Art models, even more
complex.

1 Introduction

Word Sense Disambiguation is well recognised is-
sue in Natural Language Processing. Due to word
ambiguity it is impossible to give a priori a proper
semantic interpretation of a text, so senses ought to
be disamiguated. In recent years a great improve-
ment has been achieved in the field with the use of
deep neural networks (DNN). For low-resourced
languages, however, WSD is still an open problem
because of the lack of large-scale sense annotated
corpora required by modern neural models.

Large number of categories (which are senses
themselves) makes the task very hard for DNN
classifiers, because of the bottleneck of sense an-
notation sparseness. Constructing a large sense
annotated corpus is a very laborious task, so this
problem affects NLP for most world languages (the
estimated number of which exceeds 6,000). On the
other hand, even NLP for languages that possess
vast WSD corpora (i.e. SemCors and extensive
wordnet-based corpora) has to cope with a huge

number of senses that are rarely occurring in texts
(for such senses the available DNN representation
might not be sufficient).

Two main solutions have been proposed to these
problems: first, the usage of knowledge bases fa-
cilitates WSD algorithm through propagating infor-
mation within a semantic network. Second, the use
of pre-trained language models, especially multilin-
gual (or language agnostic) allows to train a model
on existing resources (especially English ones) and
apply it to a new language context.

We present a slight but successful modification
of the EWISER model (Bevilacqua and Navigli,
2020a) in which we merge both approaches. The
novelty lies in special data augmentation technique
focused on structural properties of knowledge bases
in other than English language, namely Polish.
Starting from EWISER language-agnostic archi-
tecture pre-trained on English and Polish sense
annotated datasets, we then propagate DNN vec-
tor representations through combined structures
of Princeton WordNet and Polish Wordnet, two
largest nowadays wordnets in the world. This mod-
ification boost the WSD multilingual performance
above current State-of-the-Art solutions based on
multilingual language models e.g. XL-WSD frame-
work (Pasini et al., 2021), and gives comparable
behaviour to earlier SOTA model of CONSEC, de-
spite the fact that EWISER architecture - even with
our modifications - is much simpler.

2 Related Work

The supervised approaches have proved to be the
most effective solution to WSD when a represen-
tative training sample is available. With recent
progress in neural language modeling the super-
vised solutions have been improved even more and
outperformed earlier models on almost every single
benchmark. However, the existing WSD data yet
has its flaws, including a non-representative train-
ing sample for verb, adverb and adjective senses,
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most frequent sense bias, and limited sense cover-
age. Although very successful, the supervised mod-
els are overfitting easily to training samples which
harms their generalisation abilities and reduces
sense coverage when non-representative samples
are used for training (Kumar et al., 2019; Bevilac-
qua and Navigli, 2020a). The knowledge-based
solutions were designed to increase the coverage of
underrepresented word senses when a limited train-
ing sample is available. However, the performance
gap between supervised and knowledge-based solu-
tions encouraged the researchers to focus more on
former approaches. The prior work on supervised
models considered WSD task as token classifica-
tion problem where the model learns to generate
discrete labels representing predicted meanings (la-
cobacci et al., 2016; Raganato et al., 2017; Popov,
2018). A typical architecture consisted of neural
context encoder and sense discrimination layer e.g.
LSTM with attention and softmax layer trained
on SemCor data to disambiguate tokens in a fully
supervised manner.

Recent studies in the area of Word Sense Disam-
biguation show that the most successful solutions
are based on hybrid architectures with a strong
emphasis on zero-shot supervision. A zero-shot
component was introduced to replace full super-
vision and improve the ability of generalising to
unseen senses (Kumar et al., 2019). Subsequent
approaches utilised the benefits of transformer ar-
chitectures (Huang et al., 2019; Du et al., 2019)
and representation learning using external knowl-
edge sources, such as sense definitions (Luo et al.,
2018; Huang et al., 2019; Blevins and Zettlemoyer,
2020) and sense usage examples. On the other
hand, structural properties of lexico-semantic net-
works used to be ignored in neural architectures.
Recent studies show that hybrid solutions utilising
textual descriptions of senses together with their
structural properties can also improve WSD perfor-
mance.

Most related to our work is XL-WSD frame-
work with a crosslingual benchmark built on the
basis of Open Multilingual WordNet data and Ba-
belNet resources. The benchmark has been intro-
duced as a platform to evaluate zero-shot WSD
methods and crosslingual transfer with multilin-
gual language models. Other multilingual solutions
include MULAN (Barba et al., 2021a), EWISER
(Bevilacqua and Navigli, 2020a), CONSEC (Barba
et al., 2021b). However, only few of them were

actually evaluated against all of datasets available
in XL-WSD framework. The usual crosslingual
evaluation setting consists of English, Spanish,
French, German and Italian datasets proposed at Se-
mEval competition. XL-WSD was a step towards
preparing a crosslingual evaluation at scale includ-
ing more languages. As far as we know, none of
the previous solutions evaluated within XL-WSD
framework were hybrid models joining neural text
encoders with structural knowledge base features.

Regarding the Negative Transfer phenomenon,
several studies were focused on identification of
troublesome NLP tasks where simultaneous fine-
tuning of multilingual language models to down-
stream tasks has a harmful impact on model perfor-
mance (Wang et al., 2020). However, none of them
were focused strictly on WSD task. It is an open
issue whether Negative Transfer occurs when fine
tuning multilingual language models to WSD task.

3 Resources

3.1 XL-WSD Framework

Pasini et al. (Pasini et al., 2021) prepared a frame-
work of gold-standard resources for testing WSD
models for 17 languages and English. They started
from a sense inventories created on the basis of
a version of Open Multilingual Wordnet (OMW)
(Bond and Paik, 2012), and the extended version
of OMW (based on Wiktionary data sets) (Bond
and Foster, 2013). OMW identifiers are simply
PWN synset IDs, so a new sense is announced each
time a lemma is ascribed a new PWN synset. The
sense inventories are obtainable online.! Princeton
WordNet synset IDs were translated to BabelNet
internal identifiers for authors’ convenience. The
authors pre-trained multilingual language model
based on XLM-RoBERTa architecture (Conneau
et al., 2020) to assess cross-lingual transfer capabil-
ities of these models in a word sense disambigua-
tion task. We made use of XL-WSD inventories
of 14 languages (excluding Italian, Japanese and
Korean due to sense inventory issues and missing
senses discovered in XL-WSD framework).

Our models were trained on Princeton WordNet
glosses and usage examples, as well as on SemCor
and tested on SemEval tasks and texts (glosses and
usage examples) from several wordnets. Table 1
describes the data sets in terms of annotated text
origin (as either wordnet-based or SemEval-based).

"https://sapienzanlp.github.io/x1l-wsd/
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Language Type #Instances
en SemEval 8 062
bg WN-based 9 968
ca WN-based 1947
da WN-based 4 400
de SemEval 862
es SemEval 1851
et WN-based 1999
eu WN-based 1580
fr SemEval 1160
gl WN-based 2561
hr WN-based 6333
hu WN-based 4428
nl WN-based 4 400
sl WN-based 2032
zh WN-based 9568

Table 1: Language-specific test sets, their type and size
as reported in (Pasini et al., 2021) publication. SemEval
datasets usually are easier to disambiguate when com-
pared against WN-based datasets.

Link type Count
i-hyponyms 181 029
i-hypernyms 181 032
i-synonyms 93 654
Total 455715

Table 2: Number of interlingual connections between
plWordNet-3.2 and Princeton WordNet by category.

3.2 Polish Data

Polish WordNet (pIWN) was heavily inter-linked
with Princeton WordNet (Rudnicka et al., 2012).
More than two hundred thousand relation in-
stances were used linking Polish-English counter-
part synsets, among which inter-lingual synonymy,
inter-lingual hyponymy and inter-lingual hyper-
nymy were the most prominent. In Table 2 we
present newest statistics concerning the manual
mapping (Dziob et al., 2019). We used the map-
ping in the process of augmenting the structure
of PWN with new links (see Sec. 4.1 below for
details).

4 Models

As a baseline architecture we decided to use
EWISER (Bevilacqua and Navigli, 2020b) as
its codebase is extensible and freely available.

EWISER is a supervised hybrid architecture utilis-
ing sense annotated corpora and knowledge base
structure simultaneously. The model is based on
transformer architecture with additional sense dis-
crimination layer and structured logit mechanism
injecting structural information into model during
training. The key idea is to utilise existing wordnet
links between senses to reinforce training proce-
dure and incorporate logit scores of neighboring
senses into scoring function of word’s candidate
meanings.

4.1 Augmenting the Structure

We augmented Princeton WordNet, PWN (Fell-
baum, 1998), structure with semantic relations ob-
tained from Polish WordNet, plWN (Maziarz et al.,
2016) in the following manner:

Consider two pairs of counterpart synsets from
pIWN and PWN #/WN  [ore o pwN
GO e ey

and

, where “I-rel” signifies an
inter-lingual relationship. Each time when there
exists a short path between the two Polish synsets
in pIWN, we add a new link: sF’WV ¢« sPWN
to PWN. We assumed that for synonymous coun-
terparts the distance should not exceed 2, while
for homonymous counterparts the maximum path
length was set to 1.

The above assumptions were fulfilled with sim-
ple matrix algebra. Let’s talk about separate sets:
(i) I"™P of all p]IWN synsets that have their /-
hypernyms or /-hyponyms on the PWN side and
@i1) I°Y™ of all pIWN synsets that have their /-
synonyms in PWN.

(1) For the I-hyponymy/I-hypernymy case the
procedure is straightforward. We simply took
the original adjacency p]WN matrix A and fil-
ter it leaving only synsets from the set I"P i.e.
H = {aij}; jerrm-

(i) For the I-synonymy case we started from
the pIWN adjacency matrix A and took its square
S = A? (i.e. the matrix product of 2 copies of
A). Its elements {s;; } are indexed by synset iden-
tifiers 7,5 and represent the number of random
walks of length 2 on the pIWN graph (Kranda,
2011). Calculating S" = {signs;;}, i.e. setting
non-zero elements of the matrix to 1, and adding
A+ (5" —1) = M = {m;;}, we get a matrix with
new adjacency links (representing the distance of
2 or less steps in the original graph A). Out of
the matrix M we construct the new matrix £ with
picking up only those synsets that are in the set
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Isyn’ ie. B = {mij}@je[syn.
Taking into account all relationships obtainable

from matrices H and E we finally land with the set
of new links to be added to PWN.

4.2 Augmenting the Data

Nearly 146,000 Polish synsets are described by a
gloss and/or by (a) usage example(s). These sam-
ples were used to extend EWISER’s training data.
To obtain their textual descriptions we used inter-
lingual links from pIWordNet 3.2 including inter-
lingual synonymy, hyponymy and hypernymy.

In (Pasini et al., 2021) authors used machine
translated PWN glosses and usage examples and
found no significant improvement over other mod-
els. In contrast to their approach, we used Polish
glosses and native natural language examples avoid-
ing translation disadvantages (see Sec. 4.3 below
for details).

4.3 Bilingual Training

To investigate the impact of bilingual training on
WSD performance we built a mixed sense inven-
tory consisting of Polish and English lemmas with
their candidate meanings. To create this inventory
we used interlingual mapping between Polish and
English wordnet meanings, mainly synonymy, hy-
pernymy and hyponymy links. We believe multilin-
gual downstream task fine-tuning might be benefi-
cial for tasks such as WSD, since it is strongly inter-
connected with training procedure of multilingual
language models (usually on parallel corpora), e.g.
multilingual MLM in XLM-R. However, for tasks
such as POS tagging or NER recognition issues
such as Negative Transfer (also called Negative In-
terference) model performance is decreased during
multilingual training (Wang et al., 2020). Thus
our work is one of the first attempts to investigate
Negative Transfer phenomenon in WSD task.

S Experiments

In this section we present the results of our ex-
perimental part. We decided to split evaluation
into two different settings. First, we would like
to investigate the impact of underlying language
model on WSD performance. The second setting
is focused on data augmentation using plWordNet
data (the network structure, as well as glosses and
examples).

5.1 Settings

The authors of EWISER in their original work
integrated their architecture with mBERT lan-
guage model (Devlin et al., 2019). However, re-
cent progress on multilingual language modeling
brought new and more effective language models
such as XLM-RoBERTa (Conneau et al., 2020),
TS5 (Raffel et al., 2020), mBART (Liu et al., 2020).
The XLM architecture is oftenly choosed as a main
language model for various downstream tasks. It
was also the basis for crosslingual evaluation of
zero-shot solutions within XI-WSD framework.
However, as far as we know, the XLLM architecture
has never been evaluated within hybrid WSD ap-
proaches. Thus, in our first setting we evaluate the
EWISER architecture with XLM-RoBERTa-Large
model as underlying context encoder.

In second setting we focused mainly on the pro-
posed data augmentation methods — structure ex-
pansion and corpora expansion. We investigate
the impact of Polish data on WSD performance
in English as well as in multilingual setting with
multiple languages. The first baseline solution
utilises a zero-shot architecture proposed in XL-
WSD framework with XLMR-Large model. Con-
trary to EWISER, this architecture is not a hybrid
solution and does not utilise structural properties
of knowledge bases. We split this experiment into
two parts. The first part is focused on structure
augmentation using interlingual synonymy and re-
lation propagation over wordnet. The second part
of this setting evaluates a joint model where the
structure augmentation technique is combined with
additional sense data including glosses and sense
utterances. A bilingual dataset and bilingual sense
inventory are used to train the joint model.

5.2 Hyperparameter Tuning

The hyperparameters were finetuned using a pre-
selected validation set. We chose SemEval 2015
data set as our development data following the way
it was used in the literature. We applied early stop-
ping procedure to prevent the models from overfit-
ting to training data, as it was proposed in (Bevilac-
qua and Navigli, 2020b). The experiments were
repeated at least 5 times for each model.

6 Results and Discussion

In tests on 15 languages our technique turned out
to be successful in beating the XL-WSD and the
EWISER model and comparable to some extent
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Figure 1: The DNN architecture of EWISER. We pro-
vided Polish language data both for XLM-RoBERTa
language model (pIWordNet glosses and usage exam-
ples) and for the output neural network layer (new re-
lation instances for Princeton WordNet derived from
plWordNet).

with the CONSEC model. Table 3 illustrates mul-
tilingual performance of all models, as compared
with baselines - EWISER, CONSEC? and XLM-
RoBERTa from XL-WSD framework.

Since testing data sets were constructed indepen-
dently, we decided to compare average model F1
performances. U-Mann-Whitney paired test was
applied to the task, separately for CONSEC and for
XL-WSD with EWISER) and p-values were cor-
rected for false discovery ratio through Benjamini-
Hochberg procedure (Benjamini and Hochberg,
1995). Our two models performed better on aver-
age than XL-WSD (XLMR-L) and EWISER base-
line models (for 15 languages) and not worse than
CONSEC model (for 6 languages).

Presented in this paper experiments proved that
augmenting English training data sets with glosses
and examples from other than English wordnet can
lead to the improvement of a multilingual WSD
algorithm. The proposed novel technique of aug-
menting Princeton WordNet structure also resulted
in better than or equal to SOTA scores. Surpris-
ingly, used here EWISER architecture is simpler
than current SOTA DNN models. This suggests the
validity of training data enlargement and curation
techniques. The step that could not be fully super-
seded by constructing new, even more sophisticated

The evaluation of CONSEC model was limited to the
results provided by the authors in (Barba et al., 2021b). At
the time of publication, the training procedure was not fully
reproducible and the codebase was incompatible with XL-
WSD sense indices.

DNN architectures.

In the future we plan to investigate new ways
of enriching Princeton WordNet structure with re-
lation instances derivable from Polish WordNet
network. Since we utilised only separate sets of
I-synonyms and /-hyponyms//-hypernyms, it is ob-
vious that these two types of bilingual counterparts
could be treated jointly. For instance, we may link
in PWN an English /-synonym with an English /-
hyponym, if a path is not too long. This enrichment
will provide us with new, high quality relations.
Also testing different path lengths via plWordNet
is planned.
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Abstract

Most of the major databases on the semantic
web have links to Princeton WordNet (PWN)
synonym set (synset) identifiers, which differ
for each PWN release, and are thus incompati-
ble between versions. On the other hand, both
PWN and the more recent Open English Word-
net (OEWN) provide permanent word sense
identifiers (the sense keys), which can solve
this interoperability problem.

We present an algorithm that runs in linear time,
to automatically derive a synset mapping be-
tween any pair of Wordnet versions that use
PWN sense keys. This allows to update old
WordNet links, and seamlessly interoperate
with newer English Wordnet versions for which
no prior mapping exists.

By applying the proposed algorithm on the fly,
at load time, we combine the Open Multilin-
gual Wordnet (OMW 1.4, which uses old PWN
3.0 identifiers) with OEWN Edition 2021, and
obtain almost perfect precision and recall. We
compare the results of our approach using re-
spectively synset offsets, versus the Collabora-
tive InterLingual Index (CILI version 1.0) as
synset identifiers, and find that the synset off-
sets perform better than CILI 1.0 in all cases,
except a few ties.

1 Introduction

All the available multilingual wordnets (Bond et al.,
2014) and important knowledge bases on the se-
mantic web (Navigli and Ponzetto, 2010; Niles
and Pease, 2003; Suchanek et al., 2008; Nielsen,
2018) were originally linked to different versions
of Princeton WordNet (PWN) (Fellbaum, 1998), us-
ing version-specific synset offsets (WordNet-team,
2010, Wndb), which differ between releases, so
mappings are necessary for interoperation, and for
updating to a later English Wordnet versions.
Many of these resources have been remapped
to Wordnet 3.0 or Wordnet 3.1, using offset to
offset mappings obtained by relaxation labelling

(Daudé et al., 2000), offset to ILI (InterLingual
Index) mappings (Vossen, 2002; Vossen et al.,
2016; Bond et al., 2016), sensekey to sensekey map-
pings (WordNet-team, 2010, Sensemap), and off-
set to offset mappings relying on sense key per-
sistence (Kafe, 2018). Contrary to synset off-
sets, the sensekeys persist across database versions
(WordNet-team, 2010, Senseidx), and can thus sup-
port the derivation of mappings with high precision
and recall.

PWN sensekeys (WordNet-team, 2010, Sen-
seidx) are composite database keys representing
one particular word sense. They consist in the con-
catenation of the identifiers for the corresponding
lemma and its lexfile, lex_id, and eventually head
adjective (see examples in sections 2.1, 3.2 and
4.2). Each PWN version includes an index.sense
file, linking the sense keys to their corresponding
synset offsets.

However, the necessary mappings between
synsets linked to different PWN versions are not
always available, either because a resource is too
new, or has too few users to justify the production
of a mapping. This causes potentially long delays
for interoperability, which may remain impossible
as long as no relevant mapping exists. For exam-
ple, Edition 2022 of the Open English Wordnet
(OEWN") (McCrae et al., 2020) was released re-
cently, and the wndb? project has also published
the same data in a PWN-compatible format (includ-
ing the relevant index.sense). These two variants
of the OEWN 2022 Edition use different, mutually
incompatible synset offsets; no mapping exists for
neither yet, and no known project currently aims to
produce such mappings.

On the other hand, OEWN has adopted PWN
sensekeys as its main sense identifier, so it is easy to

]https://github.com/globalwordnet/
english-wordnet

https://github.com/x—englishwordnet/
wndb
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extract a sense index from the database, and almost
instantly produce a sensekey-based mapping, since
this only requires joining the index.sense of the
relevant wordnet versions. Therefore, we propose
to carry out the mapping process on the fly, when-
ever loading wordnets that are linked to different
English Wordnet (PWN or OEWN) versions.

2 Methods

2.1 Mapping Strategy

Between two Wordnet versions, word senses can
be either added or removed, and the same applies to
synonym sets, in the case where all their elements
are respectively completely new or entirely deleted.
In addition to that, synonym sets can also be split
and/or merged, when one or more of their elements
are moved to another (existing or new) synset.

For example, between versions 3.0 and 3.1 of
PWN, Pluto was moved from the god of the un-
derworld in Greek mythology, to the synset with
the names of the corresponding Roman "god of the
underworld":

Sense Key PWNg,(] CILI;;.() CILI3.1 PWN';l
aides%1:18:00:: 09570298-n 186957 86957 09593427-n
aidoneus%1:18:00::  09570298-n 186957 186957 (09593427-n
hades%1:18:00:: 09570298-n 186957 86957 09593427-n
pluto%1:18:00:: 09570298-n 186957  i86958 09593643-n
dis%1:18:00:: 09570522-n 186958 186958 09593643-n
orcus%1:18:00:: 09570522-n 186958 186958 09593643-n
dis_pater%1:18:00:: 4 A 186958 09593643-n

The problem is that foreign language translations
of the involved synsets cannot deal with this change
by simply applying a concept to offset mapping like
the Collaborative Interlingual index (CILI3). In the
French Wordnet, for example, Pluton is a synonym
of Hadeés and Aides, and thus a member of the
Greek gods, and remains so, even after applying
the CILI mapping. Unlike the English Pluto, the
French Pluton keeps the CILI i86957 identifier, and
still translates to Hades in later English Wordnet
versions. Conversely, the French translation of the
PWN 3.1 synset with CILI i86958 does not include
Pluton. To adequately deal with this situation, the
French Pluton would need a link to the correspond-
ing English sense key, instead of being linked at
the synset level.

Here, where both gods are the same and the name
Plouton actually exists in the Greek mythology, it
would make sense to apply the map-to-all strategy,
and insert Pluto in both target synsets, as in the

3https://github.com/globalwordnet/cili

mappings from the Sense Key Index (SKI)*. But
mapping to all possible targets is not guaranteed to
be adequate in all cases, so it is always preferable
to review all the synset splits manually.

We aim to support wordnet interoperability in the
general-purpose natural language toolkit NLTK>
(Bird et al., 2009), which is increasingly used in
very diverse Machine Learning projects, without
specialized lexicographic knowledge. So a one-
to-many synset mapping strategy would not be an
adequate default, because users would not know
how to choose the most adequate target synset from
a list of mapping candidates. In such cases, it is
more convenient that the system only picks one
target synset for each source synset.

Mapping the wordnets on the fly, at load time,
requires an algorithm that performs as close to in-
stantly as possible, so we prefer a simple frequency-
based approach, rather than a more complex analy-
sis of relation links. Therefore, we map each source
synset to the target that retains most of the source
lemmas and, in the case of equality, to the synset
with the highest offset. In most cases, though, the
choice is limited to one single target synset, since
choosing between synsets is only relevant in the
cases where a source synset is split into two (or
eventually three) synsets. These cases are rare
(Kafe, 2018), so candidates with an equal number
of lemmas are even rarer.

So we apply a many-to-one mapping strategy,
where potentially many (though most often only
one) source synsets are merged into a single target
synset. This is the only difference between this
work and the many-to-many mappings from the
Sense Key Index (SKI), resulting in slightly dif-
ferent numbers of False Positives (fp) and False
Negatives (fn), and only tiny differences in overall
performance.

2.2 Linear Time Algorithm

Algorithm 1 constructs a mapping between two
English Wordnet (PWN or OEWN) versions (re-
spectively source and target), using intermediate
mappings, implemented here as Python dictionar-
ies (see the NLTK listing in Appendix A).

First, we construct a mapping from the sensekeys
to the corresponding synset identifier (synset_id)
for each of the source and target Wordnet ver-
sions. For this, we use either the index.sense file

*https://github.com/ekaf/ski
5https://www.nltk.org
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Algorithm 1 Map synsets from source to target Wordnet version using sense keys

SENSE_INDEX 4 rce < {V sense € source : sensexey — synset_id
SENSE_INDEX 4y get { V sense € target : senseye, — synset_id

MAP_TO_MANY < {V synset_id

source

source }

target

€ values(SENSE_INDEX oy ¢ ) & Synset_id, ... — 0}

for senserey € SENSE_INDEX oy ce M SENSE_INDEX 4 gcr dO

MAP_TO_MANY [synset_id
end for
MAP_TO_ONE < { V synset_id
return MAP_TO_ONE

.append(synset_id

Sou’rce]

source

€ MAP_TO_MANY : synset_id

target)

— argmax(count(synset_id, ,,...;)) }

source

included in each PWN release, or the sense id at-
tribute of the OEWN senses, since OEWN now
uses sensekeys directly as its main sense identifier.
NLTK does not yet support ILI identifiers, so the
current NLTK implementation can only use offset-
part_of_speech synset identifiers, but it is straight-
forward to replace these by ILI concept identifiers.
Each sensekey is linked to at most one synset in
each version, but may be absent from either the
source or target version (in the cases where a sense
was added or removed). This step does one pass
over the index.sense, which consists in one record
per sensekey, so its complexity is obviously linear.

Then the MAP_TO_MANY step joins the two
INDEX_SENSE maps in order to produce a
synset_to_many mapping from the source synset
identifiers to lists of corresponding synset identi-
fiers in rarget. Python sets are implemented as
hash tables, with O(1) lookup, so the intersection
of both versions’ sense keys is computed in O(n)
time. Then we do one pass over the sources’ off-
sets, to initialize empty candidate bags, and one
pass over the common sense keys, to populate the
MAP_TO_MANY mapping, which is identical to the
corresponding SKI mapping (Kafe, 2018).

Finally, a MAP_TO_ONE step chooses the most
adequate target synset for each source synset,
among a bag of candidates provided by the
MAP_TO_MANY mapping. This step is optional for
use cases where we want to retain all the candidate
targets. Here, we use the maz® function to pick
the target synset that retains most lemmas from the
source synset, but we also discuss using sort as
an alternative in section 4.3. We do one pass over
each of the candidate bags, where we use the O(n)
max function to pick the target synset, so this step
also runs in linear time.

®Thanks to Steven Bird, who reviewed the initial imple-
mentation, and pointed out that max is quicker than sort.

2.3 Complexity

Since each of its steps runs in linear time, the total
complexity of this mapping algorithm is also O(n),
where n corresponds to the numbers of sense keys
and synset offsets in the involved wordnets. To our
knowledge, this is the simplest mapping algorithm
yet proposed for wordnets, and considerably less
complex than the deep relation analysis in Daudé
et al. (2000) and Daudé et al. (2001), although
both approaches have similar performance, but also
complementary strengths and weaknesses (Kafe,
2018).

2.4 Implementation

We first integrated this mapping process in the
wordnet library of NLTK version 3.6.6, and used it
to map the multilingual wordnets from OMW 1.4
(Bond et al., 2020) at load time, converting their
PWN 3.0 synset identifiers to those used in any
of the more recent English Wordnets, in order to
support the seamless interoperation of the involved
databases.

NLTK is developed on an open software develop-
ment platform’, which provides free access for all,
to not only the software code, but also its various
incarnations, and the corresponding discussions
before and after its release. Everyone is free to
modify the source code, and welcome to contribute
improvements back to the community.

When using synset offsets, the implementation
differs from algorithm 1 by adding a supplemen-
tary mapping link from adjectives, when the source
synset is an adjective satellite. This is necessary
for handling OMW data, where most languages ig-
nore the satellite category. But this step does not
apply to ILI identifiers, since these don’t include
any part-of-speech reference.

We rewrote the implementation for NLTK ver-
sion 3.8, in order to closely follow algorithm 1. In
the initial implementation, the source wordnet was
hard-coded to PWN version 3.0, for handling the

71’1ttps ://github.com/nltk/nltk
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OMW data. An optional version parameter has
been added in the forthcoming NLTK 3.8.2, which
allows to produce mappings for any pair of En-
glish Wordnet versions. Appendix A includes the
listing of this slightly more elaborated implemen-
tation, which additionally collects the split or lost
synsets in structures called respectively splits and
nomayp, which should be useful for further improv-
ing the mappings. We also adapted the functions
in the appendix for the Wn® library (Goodman and
Bond, 2021), in order to compare the performance
of algorithm 1 using respectively synset offsets ver-
sus ILIs as synset identifiers. We thus used Wn to
produce the M apcrry results in table 1, while we
computed the Mapo et results in table 1 using
both NLTK and Wr, and verified that both libraries
yield identical outputs.

3 Results
3.1

Table 1 displays the number of synsets and lem-
mas in NLTK’s data package for OMW 1.4, when
loaded with respectively the default PWN 3.0, and
OEWN Edition 2021. The languages are listed by
their number of synsets in decreasing order, and
we report the number of synsets lost, as well as per-
centages, when mapping between the two English
Wordnet versions, using either synset offsets or the
CILI 1.0 synset identifiers currently included in the
Wn library.

All the multilingual wordnets suffer a loss in the
mapping, but this loss is almost negligible with
either type of synset identifier: at most 0.19% (cor-
responding to 99.81% recall) for Standard Arabic
with synset offsets, and 0.21% using CILI with
Lithuanian. Except a small number of ties with
the smallest wordnets, the synset offset mappings
perform better than the CILI 1.0 mappings in all
cases. This is surprising since the CILI mappings
were partially curated manually, so we expected
them to provide an advantage over the completely
automatic offset mappings. However, the differ-
ence is small, and might be attributed to known
issues ° with the CILI 1.0 mappings, which could
be remedied in a future version.

With PWN 3.0, some numbers are identical to
those reported by Bond et al. (2014). These con-
cern wordnets that have not been updated since

Multilingual Coverage

8https ://github.com/goodmami/wn

CILI  issue  #16, https://github.com/
globalwordnet/cili/issues/16

OMW 1.0. On the other hand, some wordnets in
OMW 1.4 are not current, as for ex. the Basque,
Catalan, Galician and Spanish wordnets date back
to the 2012 edition of the Multilingual Core Repos-
itory (MCR) described by Gonzalez-Agirre et al.
(2012), although the coverage of these wordnets
was greatly expanded in the 2016 edition of MCR.

NLTK also has a PWN 3.1 data package, where
the mapping loss is usually less than half, com-
pared to OEWN 2021, and for ex. only 0.09% for
Standard Arabic, corresponding to 99.91% recall.
We also mapped two variants of OEWN Edition
2022: the official release 10, and an alternative
version provided by the XEWN!! project. Their
databases have different sizes, and hence different
synset offsets, but both yielded identical mapping
losses, which were slightly better than OEWN 2021
in all cases, for ex. 0.17% synset lost with Stan-
dard Arabic. Standard mappings are not likely to
become available for different variants of the same
Wordnet version, so an advantage of our method is
that it nevertheless allows a downstream compari-
son of these variants, which would not be possible
otherwise.

3.2 Splits and Merges

As a consequence of our mapping strategy, where
we only pick one target for each source synset, the
synsets are never split. On the contrary, all lemmas
belonging to a source synset, that would be split
according to a many-to-many strategy, are mapped
to the same target synset, and synonymy persists.

With the example from section 2.1, since Pluto
is not split out of its source synset, it is not merged
into its farget synset, but remains a synonym of the
other Greek gods:

Sense Key PWN;, CILIzo CILI3; PWN;
aides%1:18:00:: 09570298-n 86957 186957 09593427-n
aidoneus%1:18:00::  09570298-n 86957 86957 (09593427-n
hades%1:18:00:: 09570298-n 86957 86957 09593427-n
pluto%1:18:00:: 09570298-n 86957 186957 (09593427-n
dis%1:18:00:: 09570522-n 86958 186958 09593643-n
orcus%1:18:00:: 09570522-n 86958 186958 (09593643-n
dis_pater%1:18:00:: 4 4 186958 09593643-n

The result is mostly a one-to-one mapping, with
only 44 many-to-one cases occurring, when differ-
ent source synsets are merged into the same target
synset. Our method maps all the merged foreign
language synsets to their correct target, as for ex.
with the baseball example below. This contrasts

lOhttps ://en-word.net/static/

english-wordnet-2022.zip
111’1ttps ://github.com/x-englishwordnet
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Table 1: Multilingual synsets in OMW 1.4 mapped to OEWN 2021 using synset offsets vs. CILI 1.0

Synsets Mapofset Mapcrrr
Language PWN 3.0 OEWN 2021  Lost % OEWN 2021  Lost %
English 117659 117454 205 0.17 117427 232 0.20
Finnish 116763 116562 201 0.17 116535 228 0.20
Thai 73350 73240 110 0.15 73223 127 0.17
French 59091 59015 76 0.13 59005 86 0.15
Japanese 57184 57086 98 0.17 57080 104 0.18
Romanian 56026 55941 8 0.15 55931 95 0.17
Catalan 45826 45773 53 0.12 45769 57 0.12
Portuguese 43895 43844 51 0.12 43840 55 0.13
Slovenian 42583 42520 63 0.15 42513 70 0.16
Mandarin Chinese 42300 42249 51 0.12 42240 60 0.14
Spanish 38512 38431 81 0.21 38418 94 0.24
Indonesian 38085 38018 67 0.18 38011 74 0.19
Standard Malay 36911 36843 68 0.18 36836 75 0.20
Italian 35001 34964 37 0.11 34960 41 0.12
Polish 33826 33798 28 0.08 33794 32 0.09
Dutch 30177 30154 23 0.08 30151 26 0.09
Basque 29413 29387 26 0.09 29386 27 0.09
Croatian 23115 23081 34 0.15 23077 38 0.16
Galician 19311 19290 21 0.11 19283 28 0.14
Slovak 18507 18478 29 0.16 18472 35 0.19
Modern Greek (1453-) 18049 18025 24 0.13 18023 26 0.14
Italian (iwn) 15563 15553 10 0.06 15553 10 0.06
Standard Arabic 9916 9897 19 0.19 9896 20 0.20
Lithuanian 9462 9446 16 0.17 9442 20 0.21
Swedish 6796 6784 12 0.18 6784 12 0.18
Hebrew 5448 5441 7 0.13 5439 9 0.17
Bulgarian 4959 4950 9 0.18 4950 9 0.18
Icelandic 4951 4942 9 0.18 4942 9 0.18
Albanian 4675 4668 7 0.15 4668 7 0.15
Danish 4476 4468 8 0.18 4468 8 0.18
Norwegian Bokmal 4455 4447 8 0.18 4447 8 0.18
Norwegian Nynorsk 3671 3666 5 0.14 3666 5 0.14
Average 32811.12 32762.97 48.16 0.15 32757.16 5397 0.16

We computed the Mapo f ¢+ results using both the NLTK and Wn software libraries, and the Mapc 7,1 results with
only Wn, since NLTK does not yet support ILI identifiers.
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with the current implementation of the Wn library’s
standard franslate function, which finds no transla-
tion for the first PWN3 g synset (i37881) in PWNs3 ;.
Conversely, translating i37882 back from PWN3 ;
to PWN3 g, Wn does not find the 37881 lemmas.

Sense Key PWN;y CILI3, CILI3, PWN;,
baseball%1:04:00:: 00471613-n: 137881 137882 00472688-n
baseball_game%1:04:00:: 00471613-n: 137881 137882 00472688-n

ball%1:04:01:: 00474568-n 137882  i37882 00472688-n

The problem is that Wn only knows the corre-
spondence between ILIs and offsets within each
involved Wordnet version, but has no mapping be-
tween these versions. Merged synsets disappear
in translation'?, because only one of the merged
CILI identifiers is available in the target, so the
synsets with the other ILIs are no longer reach-
able. This problem with merged ILIs in Wn only
concerns a small number of synsets, since each
foreign language wordnet covers only a fraction of
the 44 merged English synsets. It does not affect
the Mapc s results in Table 1, since we computed
these using our mapping algorithm, instead of Wn’s
standard translate function.

3.3 Performance

We found that our method could not map 205 En-
glish synset offsets from PWN 3.0 to an OEWN
2021 target. The small mapping losses in table 1
correspond to the subset of these 205 synsets in-
cluded in each multilingual wordnet. These losses
represent all the negatives in a confusion matrix,
amounting to the addition of the True Negatives
(tn), which were truly removed in the target Word-
net, and the False Negatives (fn), which we ideally
should be able to map. So among the mapping
losses, only the fin are fallacies.

The minority lemmas in the split English synsets,
which are induly mapped to the same synset as
in the source, constitute the False Positives (fp).
These only amount to the 44 splits between PWN
3.0 and OEWN 2021, so their number is small,
compared to the True Positives (117454 minus
eventual sense key violations).

Synsets Mapped Not Mapped
True PW N3N OEW Nogoq 0
tp = 117454 tn=0
. PWN.
False Splits EOEW?VZOE
fp=44 fn =205

12https ://github.com/goodmami/wn/
issues/179

We evaluate the performance of our algorithm
using the values above, and obtain almost perfect
performance results:

tp

precision = = 0.9996 (1)
tp+ fp
t
recall = —2—— = 0.9983 2)
tp+ fn
1= 2 x precision x recall 0.0080  (3)

precision + recall

Thus, the overall performance of the English
mapping is 99.89%, which compares favorably
with more complex mapping strategies like Daudé
et al. (2000).

Comparing the lost English synsets between the
two types of synset identifiers (offsets vs. ILIs), we
found that 143 were lost using both types, while 62
were only lost with offsets (always due to satellite
adjectives becoming standard adjectives), and 89
were only lost with CILI 1.0. The respective addi-
tions of these losses yield the total loss reported for
English in table 1 (205 with offsets vs. 232 with
the ILI).

4 Discussion

We have shown that mapping between different En-
glish Wordnet versions is feasible in linear time, by
relying on the stability of PWN sense keys. Our
method allows to transparently update the database
links on-the-fly, to another English Wordnet ver-
sion, even though no prior mapping exists yet. This
can benefit any database linked with an English
Wordnet, and enhance any downstream task that
uses such a database.

4.1 Coverage and Integrity

Our results show that almost all the vocabulary of
the multilingual wordnets in OMW 1.4 persisted
after the mapping.

Some doubts remain necessarily, though, con-
cerning the referential integrity of the sensekeys, on
which the mappings rely. Sensekeys are meant to
always refer to the same wordsense across wordnet
versions, but Kafe (2018) reported a few violations
of sensekeys’ referential integrity. The number
of these violations seems negligible in PWN, but
their impact has not yet been studied in OEWN.
However, the fact that OEWN now uses the PWN
sensekeys as principal wordsense identifier, is a
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reason for considering that the sensekeys are in-
deed persistent in OEWN, and that we can rely on
their referential integrity in theory. Still, it would
be helpful to investigate in practice, whether the
addition of a new wordsense in OEWN could entail
a modification of the sensekeys for other existing
senses of the same word.

4.2 Challenges and Opportunities

In the mapping between PWN 3.0 and OEWN
2021, which we investigated here, our method
displayed two shortcomings: 205 English synsets
were completely lost in the mapping, and 44 split
synsets were somewhat arbitrarily mapped to one
single target. It is questionable, to which extent any
automatic mapping can provide linguistically satis-
fying targets for each of these cases. Fortunately,
their number is sufficiently small to allow a manual
review, of which we can already attempt to sketch
some outlines.

It is possible, for ex., to identify genuinely lost
synsets, which do not have any plausible target.
This happens when all the words included in the
source synset are completely absent from the tar-
get Wordnet version. Here, it occurred in particu-
lar with a number of racially tainted expressions,
like the synset {darky, darkie, darkey}, defined
as "(ethnic slur) offensive term for Black people".
In these cases, relaxing the equivalence criteria,
and mapping the synset to for ex. a superordinate,
would entail losing an essential nuance, and might
of