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Abstract

Code-Switching (CS) multilingual Automatic
Speech Recognition (ASR) models can tran-
scribe speech containing two or more alter-
nating languages during a conversation. This
paper proposes (1) a new method for creat-
ing code-switching ASR datasets from purely
monolingual data sources, and (2) a novel Con-
catenated Tokenizer that enables ASR models
to generate language ID for each emitted text
token while reusing existing monolingual tok-
enizers. The efficacy of these approaches for
building CS ASR models is demonstrated for
two language pairs, English-Hindi and English-
Spanish, where we achieve new state-of-the-art
results on the Miami Bangor CS evaluation
corpus. In addition to competitive ASR perfor-
mance, the proposed Concatenated Tokenizer
models are highly effective for spoken language
identification, achieving 98%+ accuracy on the
out-of-distribution FLEURS dataset.

1 Introduction

Automatic Speech Recognition (ASR) systems are
moving from specialized monolingual models to
ASR architectures capable of handling multiple lan-
guages simultaneously (Weng et al., 1997; Waibel
et al., 2000; Kannan et al., 2019; Li et al., 2022;
Pratap et al., 2023). Code-Switching (CS) is a
special category of multilingual speech in which
two or more languages or varieties of languages
are used in the same utterance. It can further be
divided into two categories: inter-sentential code-
switching where the switching between languages
happens predominantly at the sentence boundaries
and intra-sentential code-switching, which hap-
pens within the sentence (Myers-Scotton, 1989).

Most of the work in code-switching ASR is de-
pendent on the availability of a good quality code-
switching speech corpus (Sitaram et al., 2019). One
of the questions that we explore in this paper is:
how to better utilize the readily available mono-
lingual speech corpora and train CS ASR systems

that can perform well in real-world code switching
scenarios.

Text post-processing after ASR, e.g. punctua-
tion and capitalization (Guerreiro et al., 2021) and
inverse text normalization (Sunkara et al., 2021),
is another important problem for multilingual and
CS speech systems. Such post-processing is harder
than the monolingual scenario as it requires accu-
rate language identification in addition to transcript
generation. Traditionally, separate Language Iden-
tification (LID) and ASR models have been trained
for the task, usually with a common acoustic en-
coder. Li et al. (Li et al., 2019) was one of the first
few works to propose an end-to-end architecture
for intra-sentential CS ASR. They trained two sep-
arate monolingual ASR systems and a frame-level
LID model. The posteriors of ASR models were
adjusted with the LID scores and greedy decoding
was used without any language model rescoring. In
(Ali et al., 2021), the authors proposed to use multi-
graph weighted finite state transducers, which was
shown to be more effective than Transformer-based
systems for the intra-sentential CS. Recent works
(Seki et al., 2019), (Radford et al., 2022) approach
this problem differently by introducing special LID
symbols such as [EN] [ES], that are added to the
vocabulary for language identification. These sym-
bols are predicted either at the start of the utter-
ance to identify which language the decoded text
belongs to (Radford et al., 2022), or during the ut-
terance to mark spans of decoded tokens belonging
to each language (Seki et al., 2019).

In this paper, we propose a streamlined tech-
nique for learning token level language ID, which
we term Concatenated Tokenizer. Unlike previous
approaches of "aggregating" tokenizers that take
the union of the per-language tokenizer vocabular-
ies (Li et al., 2021) or create a shared sub-word
token set across languages (Pratap et al., 2020a), in
the concatenated tokenizer method we reuse mono-
lingual tokenizers and map them to mutually ex-
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clusive label spaces for each language. This helps
provide explicit language information to the ASR
model while training and leads to inexpensive pre-
diction of token level LID at decoding time.

The main contributions of the paper are as fol-
lows:

1. A scalable and extensible synthetic code-
switching ASR data generation pipeline that
allows us to generate a corpus of any size,
online (e.g. during training) or offline, from
strictly monolingual data sources.

2. The Concatenated Tokenizer method which
can effectively utilize pre-existing monolin-
gual tokenizers and provide token level LID
information while learning multilingual and
CS ASR models.

3. We demonstrate CS speech recognition capa-
bilities of the proposed unified ASR model
on real world data for two language pairs and
spoken language identification capabilities on
the out of distribution FLEURS evaluation
dataset.

2 Multilingual and Code-Switching ASR

Modern Natural Language Processing (NLP) and
ASR models use tokenizers to represent text (Kudo
and Richardson, 2018). The traditional approach
requires that a new tokenizer is learned for each lan-
guage and domain. In ASR, this tokenizer is also
used to reduce the target sequence length to sat-
isfy CTC requirements under aggressive downsam-
pling with respect to original audio length (Graves
et al., 2006). In this section, we discuss the pro-
posed concatenated tokenizer and the synthetic
code-switching data generation pipeline.

2.1 Concatenated Tokenizers
When training multilingual ASR models, mono-
lingual training sets typically have significantly
different characteristics (e.g. total size, quality,
noise levels, etc.), requiring experimentation of
combining them with different ratios for an opti-
mal outcome. Training a different tokenizer on the
combined mixture of datasets for each experiment
becomes a logistical challenge, while the resulting
model must always use the exact same tokenizer
with which they it was trained. Synthetic code-
switching training datasets present an additional
challenge since the tokenizer learns the purely syn-
thetic co-occurrence of adjacent tokens from dif-

Figure 1: Aggregated vs Concatenated (proposed) to-
kenization approaches for a bilingual English-Spanish
example. Spanish text and tokenizer is represented in
red, English text and tokenizer in blue.

ferent languages, which is unlikely to occur in real
code-switching data. Finally, when training a sin-
gle tokenizer on multilingual data, we must disre-
gard the LID information for each token and need
to rely on an external technique if retention of LID
is desirable.

We propose the concatenated tokenizer tech-
nique to mitigate the above issues. Fig. 1 illustrates
this approach when training a bilingual English-
Spanish model with the vocabulary size of 2K. In
the traditional approach, text transcripts are mixed
in some proportion and a tokenizer is trained on the
joint text corpus. LID information is lost and would
need to be re-supplied if desired. For a CS use case,
training a tokenizer on a synthetic code-switching
dataset directly results in it learning arbitrary tran-
sitions between language samples, and is likely to
be avoided.

In the concatenated tokenizer method, we train
English and Spanish tokenizers with a 1K vocab-
ulary size each on the corresponding monolingual
datasets separately. We allocate the range of IDs
from 0 through 1023 to English and 1024 through
2047 to Spanish. To achieve that, after tokenization,
we shift each Spanish token by 1024 to ensure that
it lands in its allocated range. The concatenated
tokenizer has, therefore, also 2K tokens. During
training, we use the English tokenizer (shown in
blue) to tokenize each English sample segment, and
the Spanish tokenizer (red) to tokenize each Span-
ish segment. At inference time, the model predicts
a sequence of token ids. If the token ID is in the
range from 0 to 1023, we know that it is an English
token, and we use the English tokenizer to convert
it to text. Similarly, tokens in the range from 1024
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to 2047 are Spanish and are sent to the Spanish
tokenizer for detokenization. Language ID infor-
mation is embedded in the ID of each token and can
be used in downstream processing of the resulting
text segments. We name our method concatenated
tokenizer because such tokenizer effectively con-
tains more than one separate monolingual tokenizer
with its preserved non-overlapping token space. In
the above example, we chose to allocate the same
number of tokens to English and Spanish, but that
certainly does not need to be the case when dataset
sizes are very different.

Note that the concatenated tokenizer method dif-
fers significantly from the standard technique of
training an aggregated tokenizer on a mixture of
transcripts and then re-injecting the language in-
formation into the tokenized sequences via spe-
cial LID tokens (Seki et al., 2019), (Radford et al.,
2022). In the latter approach, the special LID to-
kens indicate only the beginning and end of each
monolingual span of text.

The design of the concatenated tokenizer allows
us to easily suppress specific languages from in-
ference when it is known that the audio does not
contain them. We simply do not need to compute
probabilities for token IDs in the ranges correspond-
ing to the suppressed languages, simultaneously
improving performance. Fig. 2 illustrates how this
works with the CTC decoder. Conversely, when
adding language(s) to the decoder, we can trans-
fer existing token weights via weight surgery, ini-
tializing weights for the incremental language(s)
from scratch. The same idea works with the Trans-
ducer decoder as well. This allows for a better
decoder initialization while training multilingual
model from monolingual checkpoints, while im-
proving convergence time.

2.2 Synthetic data generation for Code
Switching ASR

Synthetic code-switching data generation was an
essential step in our work. It enabled us to effec-
tively use the monolingual training data available at
our disposal to generate a diverse set of CS speech
training samples which then was utilized by our
model for training. We had to be careful in the data
generation strategy to ensure that we didn’t intro-
duce a bias of any kind that would make model
training easier but would lead to poor performance
on real world code-switching data. For example,
if we simply stitched different speech samples to-

Figure 2: Diagram illustrating the benefits of concate-
nated tokenizers for easy addition/suppression of lan-
guages in multilingual ASR models. For simplicity, we
show a single output step of a bilingual ASR model with
a CTC decoder consisting of one feed-forward fully con-
nected layer (FC) with weights W that maps encoder
representation (dimension denc) to token logits (dimen-
sion dvocab, blank symbol omitted). The concatenated
tokenizer has two languages marked by red and blue.
Due to the non-overlapping token mappings for different
languages in the concatenated tokenizer, the FC weights
can easily be separated and modified independently.

gether it would cause inconsistencies and the differ-
ent amplitudes and background conditions can give
the model easy clues for learning this generated
data. Such inconsistencies would not be found in
real life examples, and hence the model would not
be able to generalize its performance. Furthermore,
we didn’t want to bias the generated samples to
start from or end with a particular language, e.g.
English.

We used the algorithm detailed in Fig. 3 for gen-
erating synthetic CS speech data for two or more
languages from their monolingual speech corpus.
Each language was assigned a sampling frequency.
For each synthetic CS sample we define a max and
min duration, which are controllable parameters.
This allows us to generate samples with a specific
duration distribution and also ensures that the sam-
ples are of similar lengths which leads to lesser
padding during batching, leading to more effec-
tive utilization of the data. To have a control over
leading, trailing silences in the synthetic sample
as well as the gap between concatenated samples,
we introduce three parameters: duration beginning
silence, duration ending silence, duration joining
silence. In the current implementation we use si-
lence, but this can easily be extended to adding
noise with a desired SNR. The next step in the al-
gorithm is removal of leading and trailing silences.
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Figure 3: Flowchart of the synthetic CS sample gen-
eration process for two languages. The controllable
hyperparameters have been underlined. The process can
be used for both online synthetic data generation in the
dataloader or offline creation of synthetic speech corpus
as discussed in Section 2.2.

This ensures that we extract only the speech por-
tion from the individual utterances and discard any
silences in the beginning or end of the utterance.
This allows us to have complete control over the
leading, joining, and trailing silences in the gener-
ated sample using our tunable duration parameters
explained earlier. In our current implementation
we use an amplitude based threshold for removing
silence, but this would be extended to voice activity
detection (VAD) in the future iterations. Another
important step in our algorithm is audio amplitude
normalization and scaling. We perform peak ampli-
tude normalization for each sample before concate-
nation and multiply the normalized sample with
the controllable scaling parameter to ensure that
all samples are in a similar amplitude range before
joining, removing the amplitude bias from individ-
ual datasets that provide the monolingual samples.
It should be noted that a similar synthetic speech
data generation idea was proposed in (Seki et al.,
2018), but our approach is more customizable and

general due to the larger number of controllable
parameters. We found this technique to be use-
ful in generating synthetic samples that are longer
and similar in duration, which accelerates training.
Synthetic CS data generation approaches have also
been explored in the text domain, for training mul-
tilingual language models (Winata et al., 2019) and
translation models (Gupta et al., 2020; Tarunesh
et al., 2021).

In our implementation, we provide both an of-
fline and online version of the synthetic data gener-
ation pipeline. In the offline version, the generated
synthetic corpus using the proposed algorithm is
stored explicitly and can be used to train the ASR
model. In the online version, the synthetic sample
generation process happens in the dataloader, and
is used to feed samples to ASR model for train-
ing. The online data generation approach provides
the advantage of not having to save the generated
synthetic corpus, and hence can be used to rapidly
experiment with different language ratios and other
parameter permutations, generating massive syn-
thetic training CS ASR corpora with no disk space
overhead. The code for the data generation process
is open-sourced and available in NeMo toolkit1.

2.3 Spoken Language Identification

Spoken language identification refers to the task
of identifying the language of a given utterance
directly from audio (Li et al., 2006). This task is
critical for CS ASR because it enables us to reuse
monolingual models to re-score CS decoded output
if we can predict which language was spoken when.
The proposed concatenated tokenizers fit in here
perfectly as they also contain the information of the
language that each predicted token belongs to. To
calculate the efficacy of concatenated tokenizer for
utterance level spoken language identification, we
take the maximum over the predicted language for
each token in the sentence. To ensure a fair com-
parison, we trained our models with the datasets
described in Section 3.1 but evaluated spoken lan-
guage identification performance on the blind test
sets of the FLEURS [26] dataset.

3 Experimental Setup

3.1 Datasets

We used LibriSpeech (Panayotov et al., 2015)(∼
960 hours) as the English corpus. For Spanish,

1https://github.com/NVIDIA/NeMo/scripts/
speech_recognition/code_switching
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we compiled a dataset (∼ 1300 hrs after basic
cleaning) consisting of Mozilla Common Voice
7.0 (Ardila et al., 2020), Multilingual LibriSpeech
(Pratap et al., 2020b), Voxpopuli (et al, 2021) and
Fisher (Graff et al., 2010) (all Spanish). For Hindi
training we used the ULCA dataset (Dhuriya et al.,
2022) (∼ 2,250 hrs after basic cleaning).

For English-Spanish (en-es) and English-Hindi
(en-hi) synthetic CS data generation we follow the
approach outlined in Section 2.2 to generate a 10K
hour training corpus with the following parameters:
max sample duration 19 sec, min sample duration
17 sec, silence duration 0.02 sec, ending silence
duration 0.02 sec, joining silence duration 0.1 sec.
Using the same parameters, we generated 10 hour
synthetic bilingual CS test sets using monolingual
test sets for both language pairs. Language sam-
pling probabilities were a parameter; we experi-
mented with multiple ratios in the course of our
experiments.

We chose the Miami Bangor corpus (Deuchar
et al., 2014), which consists of full conversations,
as the Spanish out-of-distribution CS test set. Indi-
vidual interactions were extracted using provided
timestamps. All utterances less than 2 seconds
were removed. The final evaluation set has 16
hours with 16620 utterances and 35 unique charac-
ters. As the Hindi CS test set, we use the MUCS
2021 corpus (Diwan et al., 2021). We performed
basic cleaning, leading to a 5 hour set with 3136
samples and 89 unique characters.

3.2 Models and Experiments

We used the Conformer-RNNT Large model (Gu-
lati et al., 2020) (∼ 120 M parameters, no exter-
nal LM) and trained it for 200 epochs using the
AdamW optimizer and Noam scheduler with a 20k
steps warmup, 0.0015 peak learning rate and 10−6

minimum learning rate. We performed the follow-
ing experiments:

• Monolingual: We trained monolingual En-
glish, Spanish, and Hindi ASR models (see
Section 3.1). For each language, we trained an
SPE unigram tokenizer (Sennrich et al., 2016)
with a vocabulary size of 1024.

• Bilingual: We trained bilingual English-
Spanish and English-Hindi models. We mixed
the monolingual datasets in different ratios
with the general idea of over-representing the
smaller dataset. We trained two classes of

models, one with the concatenated tokenizer
(Section 2.1) and another with a regular (ag-
gregate) tokenizer trained on the combined
text corpus in the 1:1 ratio. We further per-
formed an initialization study for both lan-
guage pairs by training from scratch or start-
ing from either monolingual checkpoint.

• Code-Switching (CS): We trained CS
English-Spanish and English-Hindi models
using the synthetic code-switching data high-
lighted in Section 3.1. We experimented with
training from scratch and also the correspond-
ing bilingual (non-CS) model. Further, we
investigated using both concatenated and ag-
gregate tokenizers in all the scenarios.

• Language Identification: We used the
English-Spanish and English-Hindi concate-
nated tokenizer trained during the bilin-
gual CS experiments to perform utter-
ance level language identification on the
English (en_us_test, 647 samples), Span-
ish (es_419_test, 908 samples), and Hindi
(hi_in_test, 418 samples) speech samples
from the FLEURS set (Conneau et al., 2023).

4 Results and Discussion

In this section, we present results for the exper-
iments outlined in Section 3.2. Table 1a shows
performance of monolingual, bilingual and CS
English-Spanish models with different tokenizers
on the English Librispeech and Spanish Fisher test
sets. We used dataset mix ratio (English to Span-
ish) of 2:1 for training the bilingual model in order
to balance the training set. The Fisher test set was
chosen to represent model performance on Spanish
because it was the hardest (highest WER) out of
the four Spanish datasets mentioned in Section 3.1.
Similarly, Table 1b presents the results for the dif-
ferent models for English-Hindi language pair. We
used dataset mix ratio (English to Hindi) of 2:1 as
well for the bilingual model, again aiming to bal-
ance the training set. Results were averaged across
three runs and averaged (Liu et al., 2018) over the
five best model checkpoints.

The results for English-Spanish CS experiments
are highlighted in Table 2a and for English-Hindi
in Table 2b. The numbers for monolingual models
are not reported on the code-switching evaluation
datasets as they are relatively poor, as expected.
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Table 1: Monolingual evaluation set results for the English-Spanish and English-Hindi models. We present WER(%)
(lower is better) for multilingual (ml) and code-switched (cs) models trained with concatenated (con) and aggregate
(agg) tokenizers vs monolingual baselines. We observe that the use of the concatenated tokenizer does not hurt
model performance while adding the ability to predict LID for each token.

(a) English-Spanish results on the monolingual English
Librispeech test-other and Spanish Fisher test sets.

English Spanish
Model Tokenizer LS test-other Fisher-test

en mono 5.29 98.37
es mono 85.68 16.14
ml agg 5.00 16.37
ml con 5.14 16.72
cs agg 5.38 16.35
cs con 5.28 16.42

(b) English-Hindi results on the monolingual English Lib-
rispeech test-other and Hindi ULCA eval sets.

English Hindi
Model Tokenizer LS test-other ULCA

en mono 5.29 100
hi mono 100 10.53
ml agg 5.00 10.78
ml con 5.14 10.73
cs agg 5.42 11.35
cs con 5.29 11.64

Table 2: Performance comparison of the code-switched (cs) English-Spanish and English-Hindi models trained with
concatenated (con) and aggregate (agg) tokenizers on both synthetic and real world blind CS evaluation datasets.
The performance of the multilingual (ml) models has also been reported as a benchmark. We observe that cs models
significantly outperform ml models, highlighting the advantage of using the proposed synthetic CS data for training.

(a) Code-switched English-Spanish models: WER(%) on
synthetic and Miami-Bangor CS evaluation sets.

Model Tokenizer synth Miami

cs agg 5.51 50.0
cs con 5.50 53.3

ml agg 16.52 58.78
ml con 24.08 63.54

(b) Code-switched English-Hindi models: WER(%) on syn-
thetic and MUCS CS evaluation sets.

Model Tokenizer synth MUCS

cs agg 6.55 30.3
cs con 6.57 28.78

ml agg 35.70 62.18
ml con 53.01 100

When multilingual models are used to decode code-
switched speech, we observe that they tend to stick
with the language in which the utterance started and
are not able to switch between languages as they
occur within the utterance. This is evidenced by the
correspondingly high WERs in Tables 2a and 2b,
and is consistent with the fact that the models did
not encounter code-switched data during training.

To illustrate, here are sample transcripts from
one English-Spanish code-switched audio:
ML model output: con qué departamento puedo
dejar fitbax sobre mi experiencia de compra en la
tienda que estaba ubicada en one tú threforme ave
CS model output: con qué departamento
puedo dejar feedbacks sobre mi experiencia de
compra en la tienda que estaba ubicada en
one two three fourth avenue
We can see that the ML model is not able to switch
from Spanish (majority language) to English (un-
derlined for easier visual comparison). On the other
hand, the output of the CS model is 100% accurate.

Finally, the results of the Language Identifica-

tion experiments for all the three languages are
presented in Table 3. In the following, we dive
deeper into the results and discuss the findings.

4.1 Bilingual models, effect of model
initialization and tokenizers

From Tables 1a and 1b we observe that the bilin-
gual and CS models achieve comparable perfor-
mance to monolingual models on respective mono-
lingual evaluation sets. This was seen for both
the language pairs considered: English-Hindi and
English-Spanish. It is an interesting result as this
allows us to use a single bilingual code-switched
model instead of creating two separate monolin-
gual models for each language. Initializing training
from either monolingual checkpoint, while accel-
erating training, did not improve the final WER
for both language pairs considered. Using either
a concatenated or an aggregate tokenizer led to
similar performance. However, the concatenated
tokenizer provides additional benefits, such as lan-
guage identification and multilingual LM rescoring,
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Table 3: Spoken language identification using English-
Spanish and English-Hindi concatenated tokenizers on
the FLEURS dataset.

Language # of samples LID accuracy

English 647 98%
(en_us_test) (632/647)

Spanish 908 100%
(es_419_test) (908/908)

Hindi 418 99%
(hi_in_test) (414/418)

as discussed in the Section 4.3.

4.2 Code-Switching models, effect of model
initialization and tokenizers

Table 1a presents the performance of the English-
Spanish CS ASR models on monolingual test sets:
Librispeech and Fisher. Table 2a presents the cor-
responding results on the code-switched sets: syn-
thetic and the Miami Bangor corpus. Similarly,
for the English-Hindi code-switched ASR models,
Table 1b presents the performance on monolingual
test sets: Librispeech and ULCA, while Table 2b
summarizes the results on the code-switching test
sets: synthetic and MUCS. For both language pairs,
we observed that initializing the code-switched
model from the multilingual checkpoint leads to
better results and faster convergence as opposed to
initializing the model from scratch or from either
monolingual checkpoint. We also experimented
with different language dataset mix ratios and de-
termined that the best results are achieved when the
code-switched dataset is roughly balanced. This
may require oversampling of the smaller language.

In (Weller et al., 2022), the authors reported a
performance of 53% on the Miami Bangor corpus,
which shows that our code-switched models per-
form competitively with the state-of-the-art on real
world samples, while being trained purely from
synthetic code-switched data. Another important
observation is that the concatenated tokenizer per-
forms just as well as the aggregate tokenizer for the
CS models and therefore should be preferred given
the additional benefits that it provides. Concluding
the discussion, we now have a single model that
performs well on monolingual, bilingual, as well
as code-switched data.

4.3 Concatenated Tokenizers and Language
identification

Table 3 presents utterance-level spoken language
identification performance of the English-Spanish
and English-Hindi models trained with the concate-
nated tokenizer on the test sets of the FLEURS
dataset. We observe that these models are very ac-
curate at predicting the language of the utterances
directly from speech samples. We find it to be sig-
nificant, since these samples are out of distribution
and were not seen by the model during training.

5 Conclusion

In this paper we investigate training of bilingual
and code-switching models using purely monolin-
gual datasets. We propose two novel techniques:
(1) a real-time and offline synthetic code-switching
data generation pipeline and (2) the concatenated
tokenizer method, which allows the model to pre-
dict language ID directly at the level of individ-
ual tokens. We use these two techniques to train
CS ASR models and find that they match monolin-
gual model performance on monolingual evaluation
benchmarks while performing significantly better
on code-switching data. We evaluate model perfor-
mance against synthetic CS test sets as well as real
world Engish-Spanish Miami Bangor and English-
Hindi MUCS corpora. In addition, we find that the
models display strong performance on LID detec-
tion, which we measure using the FLEURS dataset.
Performance of models trained with the novel con-
catenated tokenizer is similar to models trained
with the regular aggregate tokenizer, while offering
the additional benefit of LID detection. The results
suggest that these approaches could be extended
to additional languages without increasing model
architecture complexity. Further, the excellent LID
capabilities of concatenated tokenizer models can
enable us to use monolingual language models to
rescore and further improve code-switched model
predictions. All of this has implications for further
research. The code and model weights have been
released publicly in NeMo2.

Limitations

In this work we present techniques that enable the
development of code-switching speech recognition
models exclusively from monolingual data sources.
To validate the efficacy of the proposed work, we

2https://github.com/NVIDIA/NeMo
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experimented with two language pairs: English-
Spanish (en-es) and English-Hindi (en-hi). We
selected en-es due to the prevalent bilingual nature
of English and Spanish, while en-hi was chosen as
Hindi and English possess distinct character sets,
thereby allowing us to assess the robustness of our
approach. However, we would need to perform
experiments with a more diverse set of language
pairs to validate if the methods work in general.
Furthermore, more experiments are warranted to
see if the concatenated tokenizer expands to more
than two languages used at a time. As the concate-
nated tokenizer assigns mutually exclusive token
spaces for each language, its size increases with the
inclusion of additional languages. This scalability
challenge may potentially impede the construction
of massive multilingual models. By addressing
these limitations through future research endeav-
ors, we can enhance the comprehensiveness and
applicability of our findings in the realm of code-
switching speech recognition.

Ethics Statement

We adhere to and endorse the principles outlined
in the ACL Ethics Policy. Our work on synthetic
code-switched ASR holds the potential to offer far-
reaching benefits across a spectrum of languages,
spanning from widely spoken to less common ones.
By alleviating the challenges associated with data
collection, our research contributes to the advance-
ment of a more diverse and equitable linguistic
landscape. Furthermore, our exploration of mul-
tilingual models not only streamlines the compu-
tational demands of training and deployment but
also fosters resource efficiency by consolidating
the utility of numerous monolingual models. Fi-
nally, we affirm our commitment to transparency
and openness by sharing all code and models used
in this study, which were exclusively trained on
publicly available datasets, and making them acces-
sible online.
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