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Abstract
Code-switching (CS), i.e. mixing different lan-
guages in a single sentence, is a common phe-
nomenon in communication and can be chal-
lenging in many Natural Language Processing
(NLP) settings. Previous studies on CS speech
have shown promising results for end-to-end
speech translation (ST), but have been limited
to offline scenarios and to translation to one of
the languages present in the source (monolin-
gual transcription).

In this paper, we focus on two essential yet un-
explored areas for real-world CS speech trans-
lation: streaming settings, and translation to a
third language (i.e., a language not included in
the source). To this end, we extend the Fisher
and Miami test and validation datasets to in-
clude new targets in Spanish and German. Us-
ing this data, we train a model for both offline
and streaming ST and we establish baseline
results for the two settings mentioned earlier.

1 Introduction

Speech technologies are one of the main applica-
tions of machine learning, and are currently de-
ployed in many real-world scenarios. To ensure a
adequate user experience, factors other than accu-
racy need to be taken into account. One of them is
the ability to produce an output in real-time (stream-
ing settings) with a low latency and another one is
effectively handling the distinctive characteristics
inherent in spoken language, like Code-switching.
Code-switching (CS) is the phenomenon in which
a speaker alternates between multiple languages in
a single utterance. Due to globalization (Winata
et al., 2022), it is becoming increasingly prevalent
in spoken language, not only in bilingual commu-
nities but also in monolingual communities.

CS presents a challenge in various natural lan-
guage processing (NLP) settings, such as auto-
matic speech recognition (ASR), machine trans-
lation (MT), and speech translation (ST), due to

∗Work done during an internship at Apple.

the inherent complexity of dealing with two source
languages, as well as the scarcity of CS training
and test data (Jose et al., 2020).

Despite the relevance of ST for CS speech task,
the available literature on the subject is rather lim-
ited. Nakayama et al. (2019) investigate the task
defined as monolingual transcription, i.e. transcrib-
ing a CS utterance using words of only one lan-
guage, hence translating those words that are CS.
Their work proposes and compares different ap-
proaches to evaluate the stated task in Japanese-
English CS to English. Other follow-up work takes
a similar approach (see Section 2).

To date, however, certain essential topics, such
as translation to a language not present in the CS
source or streaming ST, have yet to be explored,
despite its critical importance for real-world us-
age. The primary challenge in translating to a third
language stems from the unavailability of datasets
with such characteristics. Furthermore, streaming
settings present further challenges: achieving a
balance between latency, stability and accuracy is
crucial for delivering a seamless user experience, as
with any streaming task. Besides, CS tasks may re-
quire more context than monolingual ones because
of the added complexity of language mixing. Thus,
addressing the trade-offs between these metrics in
CS streaming ST may prove to be more intricate
than with monolingual data.

In our work, we resolve the two aforementioned
challenges: first, the insufficiency of data and re-
sults for translation to a third language, and second,
the absence of a baseline for streaming CS ST.

To alleviate the data scarcity in CS tasks, we
extend Fisher (Cieri et al., 2004) and Bangor Mi-
ami CS (Deuchar et al., 2014) datasets (combined
English and Spanish source and English targets)
by incorporating Spanish and German targets in
the test and validation sets.1 These additions allow

1Data available at https://github.com/apple/
ml-codeswitching-translations.
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us to evaluate the performance of our models on
monolingual transcription (translation to English
or Spanish), but also for the first time in CS ST into
a third language (German) setting baseline results.

Furthermore, this study is the first on streaming
ST for CS speech, and examines errors in tran-
scripts generated by both offline and streaming
models, considering different latency and flickering
constraints, and different training techniques such
as prefix-sampling. We show that prefix-sampling
does not improve the model performance, and that
errors in CS points appear in the same proportion
streaming and offline ST. Our work sets baseline
results and provides insight into the impact of CS
on the performance of different models, and help-
ing to identify potential points for future research
that can contribute to the advancement of the field.
To sum up, the main contributions of our work are:

• We provide baseline results for streaming ST
for CS speech, contrary to previous work that
focuses on offline settings.

• We provide baseline results to CS ST into a
third language, contrary to previous work that
focuses on monolingual transcription. To do
so, we extend the Fisher-Miami CS dataset,
adding Spanish and German targets.

2 Related Work

During the past few years, there has been an in-
creasing interest in CS tasks. Prior work has fo-
cused in MT (Sinha and Thakur, 2005; Winata
et al., 2021; Zhang et al., 2021; Yang et al., 2020)
and ASR (Lyu et al., 2006; Ahmed and Tan, 2012;
Vu et al., 2012; Johnson et al., 2017; Yue et al.,
2019). However, the topic of CS in ST has been
relatively under-explored, and usually concentrat-
ing only on monolingual transcription (Nakayama
et al., 2019; Hamed et al., 2022; Weller et al.,
2022), and relying on synthetically generated data
(Nakayama et al., 2019; Huber et al., 2022).

The first work on CS ST was done by Nakayama
et al. (2019). The authors analyse different archi-
tectures and training configurations for Japanese-
English CS to English monolingual transcription.

Weller et al. (2022) present a similar work but in
a different language pair. The authors present a CS
dataset with natural English-Spanish CS text and
speech sources and English text targets, gathering
CS sentences in Fisher and Bangor Miami datasets.
With these data, they are able to evaluate ASR and
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Figure 1: Proposed model architecture. The multimodal
encoder supports training on both speech translation and
text translation data. The tagging scheme is designed to
allow generating either the (code-switched) transcript
or a (monolingual) translation.

ST, although the ST setting is actually monolingual
transcription. The authors explore different archi-
tectures through a two-steps training: a pretraining
on non-CS data and a fine-tuning on CS data. They
find that end-to-end ST models obtain higher accu-
racy than cascaded ones and that accuracy on CS
test sets improves after the fine-tuning step without
noticeably impacting performance on non-CS sets.

Later, Hamed et al. (2022) present a corpus for
Egyptian Arabic-English CS tasks. The dataset
contains text and speech CS sources, and targets
in monolingual English and Egyptian Arabic. By
combining these sets the authors are able to study
ASR (from CS speech to CS text), as well as MT
and ST. However, because of the target languages,
both the ST and MT settings are actually monolin-
gual transcription and a text-to-text variant of this
task.

Finally, Huber et al. (2022) present LAST, a
language-agnostic model for ST and ASR that aims
to replace acoustic language ID gated pipelines by
a unique CS model. However, their work focuses
on inter-sentential CS (when a CS happens just at
sentence boundaries) using synthetic data.

3 Model

We adopt the multimodal model design proposed
by Ye et al. (2021) for speech translation (Fig-
ure 1). This model supports speech transcription,
speech translation, and text translation, and lever-
ages paired data of all three tasks through multitask
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training. Similar to Ye et al. (2021), we extract
speech representations using a pretrained wav2vec
2.0 BASE model (Baevski et al., 2020)2 which re-
sults in 20ms per frame. To compute downsam-
pled speech representations, wav2vec 2.0 applies
a stack of three convolutional layers, resulting in
160ms per frame: each layer has a kernel of 3
and a stride of 2. To extract text representations
for multitask text-to-text training, we simply use
a 1024-dimensional embedding layer. Next we
attach an encoder-decoder Transformer (Vaswani
et al., 2017) with pre-layer normalization, a hidden
dimension of 1024, dropout of 0.1, five encoder
layers and three decoder layers. The input to the
encoder is either the downsampled speech represen-
tations, or the embedded source text. In the decoder,
we use 1024-dimensional LSTMs (Hochreiter and
Schmidhuber, 1997) instead of self-attention which
obtained better results in preliminary investiga-
tions.

The model is trained in a multi-task fashion,
where we sum the losses of the transcription task,
text translation task, speech translation task, as well
as a CTC loss (Graves et al., 2006) applied on top
of the full encoder. Tasks are weighted equally.

Importantly to our work, we use a shared de-
coder to perform either transcription or translation,
with a language tag indicating the desired output
language for ST, or the tag <src> to generate a
transcript. Note that the transcript will be equiv-
alent to the translation in the source language for
monolingual sentences, but a special token for tran-
scripts is needed to account for CS sentences.

To employ our model in a streaming setting, we
use the re-translation technique (Niehues et al.,
2018; Weller et al., 2021). This technique re-
translates the utterance to update its prior prediction
as additional information is received. To control
the trade-off between latency, flickering, and accu-
racy, we set a mask on the last k sub-words of the
prior prediction, allowing the model to rewrite only
that part of the output. Therefore, a high k allows
the model to rewrite the whole prediction, obtain-
ing a high accuracy but poor latency and flickering
scores, and on the contrary, setting k = 0 forces
the model to commit to the previous prediction,
hindering the accuracy but leading to no flickering
and the lowest possible latency. Section 5 contains
experiments to obtain the appropriate k.

2Specifically, facebook/wav2vec2-base-960h
via Hugging Face Transformers (Wolf et al., 2020).

4 Datasets

Pre-training
Dataset Language Source #Samples

MuST-C
En-Es Original 270 000
En-De Original 234 000

CoVoST

Es-En Original 64 351
De-En Original 71 831
En-De Original 232 958
Es-De Synthetic 64 351
De-Es Synthetic 71 831

Fisher Es-En Original 130 600

Miami Es-En Original 6 489

Fine-tuning
Dataset Language Source #Samples

Fisher
En/Es-En Original 7 398
En/Es-Es Synthetic 7 398
En/Es-De Synthetic 7 398

Table 1: Summary of the training data used during our
two-steps training.

Although our primary target is CS speech, we
train our models on both monolingual and CS data
due to the scarcity of the latter. In particular, we
use the following datsets:

Bangor Miami (Deuchar et al., 2014): The
dataset contains recorded conversations between
bilingual English/Spanish speakers in casual set-
tings, with a high proportion of naturally occurring
code-switched speech. The recordings were ob-
tained using small digital recorders worn on belts,
resulting in low audio quality with background
noise. We use the splits for CS ST defined by
Weller et al. (2022).

Fisher (Cieri et al., 2004): The dataset was col-
lected for ASR by pairing Spanish speakers lo-
cated in the US and Canada through phone calls.
Although it is not a CS focused dataset, it con-
tains a significant amount of CS utterances due to
the speakers being in English-speaking contexts.
The recording was done through phone recordings
in 2004, which makes it a noisy ASR dataset, al-
though less noisy than Miami. We use the splits for
CS ST defined by Weller et al. (2022).
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CoVoST (Wang et al., 2020): A multilingual
and diversified ST datset based on the Common
Voice project (Ardila et al., 2020). This dataset in-
cludes language pairs from multiple languages into
English, and it includes low resource languages.

MuST-C (Di Gangi et al., 2019): A dataset for
ST research. It is a large-scale, multi-language
dataset that includes speech recordings from En-
glish TED Talks and corresponding human tran-
scriptions and translations. The dataset covers
translation from English to many languages. The
recording context (TED talks) makes it a quality
clean dataset.

4.1 Data Collection
Miami and Fisher CS sets consist of a source in
CS En/Es, along with CS transcripts and mono-
lingual English transcripts as targets. To expand
the range of languages included, we include the
monolingual Spanish transcript, as well as a new
language not used in the source, namely German.
By including this new language, we will be able
to assess the performance of our models in pure
speech translation, as opposed to previous work on
monolingual transcription. Hence, we collect data
for Miami and Fisher CS test and validation sets in
German and Spanish. The data was translated by
professional translators who were native speakers
in the respective target languages.

4.2 Data Usage and Preparation
Following (Weller et al., 2022), we divide our ex-
periments in two steps: (1) pre-training on mono-
lingual data and, (2) fine-tuning on code switched
data.

During the pretraining we use CoVoST (Es-En,
De-En, En-De splits), MuST-C (En-Es, En-De
splits) and the non-CS sets in Fisher and Miami
datasets (Es-En). Additionally, we use MarianMT
3 model from Hugging Face Transformers pack-
age (Wolf et al., 2020) to translate CoVoST De-En
set to Spanish, and Es-En set to German, obtaining
data for the pairs Es-De and De-Es. During the fine-
tuning step, we focus on Fisher’s code-switched
(Es/En-En) training set (7389 samples) and extend
it for Es/En-Es and Es/En-De translation using the
MarianMT model to translate English targets to
German and Spanish.

We use 200 epochs for the pretraining stage
and 100 epochs for finetuning. We use the Adam

3We manually clean the translations afterward.

(Kingma and Ba, 2015) optimizer with α = 5e−4,
β1=0.9, β2=0.98. For pretraining, we use an
inverted square root learning schedule with 500
warm-up steps. For finetuning a tri-stage schedule
with 12.5% warm-up steps, 12.5% hold steps, and
75% decay steps.

For the experiments with prefix sampling, we
use the same training set but prefix-sampling half
of the instances following the approach presented
by Niehues et al. (2018). For a summary of the
data used on each step see Table 1.

5 Experiments

Our experiments follow four main directions: (1)
Finding a reasonable k to control re-translation
flickering and latency, (2) studying the occurrence
of errors around CS switching points, (3) analyzing
the usefulness of prefix-sampling and (4) estab-
lishing baseline numbers for translation to a third
language and for streaming tasks for CS speech, in-
cluding transcription, monolingual translation, and
translation.

To evaluate our models we will use three differ-
ent metrics. To measure the model accuracy we use
BLEU (Papineni et al., 2002) with SACREBLEU
(Post, 2018) and a beam size of 5. To evaluate the
lag between model input and output we use Aver-
age Lag (AL, Ma et al. (2019)), and to measure
the flickering we use Normalized Erasure (NE, Ari-
vazhagan et al. (2020)). Additionally, we use WER
to evaluate ASR performance.

5.1 Metrics Trade-off and k Analysis

As described in Section 3, our model uses re-
translation (Niehues et al., 2018) to generate a
streaming output. Following the re-translation ap-
proach, we mask the last k sub-words of an out-
put when predicting the following one. We eval-
uate latency, flickering and accuracy metrics for
k ∈ {0, 5, 10, 15, 20, 25, 30,+∞}. As shown in
Figure 2, results are consistent for Fisher and Mi-
ami datasets and across the different language pairs.
All metrics increase together with k. However the
gap between 30 and +∞ is much higher in AL and
NE than in BLEU. BLEU shows improvements for
higher k but it is more stable than the other metrics.
For this reason, we henceforth use k = 15, since
BLEU scores are close to optimal while NE and
AL are still low.
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Figure 2: BLEU, Normalized Erasure and Average Lag scores under different streaming constraints. In each
prediction step, the model has to commit to the previous prediction except for the last k tokens (sub-words). We
evaluate the performance of the model for k ∈ {0, 5, 10, 15, 20, 25, 30,+∞}.

Fisher Miami
CS Mono. CS Mono.

Model En Es De En De En Es De En De

BLEU(↑)
FISHER CS 23.3 30.3 12.2 22.9 12.8 19.7 16.0 6.4 11.9 5.9
FISHER CS W/ PREFIXES 23.7 30.9 12.2 22.0 13.0 22.1 18.3 7.0 13.9 6.7
(WELLER ET AL., 2022) † 25.6 - - 26.1 - 14.7 - - 17.6 -

AL(↓) FISHER CS 0.6 0.5 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.3
FISHER CS W/ PREFIXES 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.4 0.4

NE(↓) FISHER CS 1.2 1.2 1.3 1.1 1.4 1.2 1.2 1.4 1.0 1.2
FISHER CS W/ PREFIXES 1.2 1.0 1.2 1.2 1.0 1.0 1.0 1.1 1.6 0.8

Table 2: BLEU, Average Lag (seconds), and Normalized Erasure scores in streaming Speech Translation, for
trainings with and without prefix sampling. In every experiment we set k = 15. †: Best results reported by Weller
et al. (2022) in offline ST.

5.2 Code-Switches and Errors in Predictions

We hypothesize that CS points are points of high
linguistic uncertainty and, therefore, comparably
hard to predict or translate. Hence, words around
CS switch points would tend to be predicted wrong.
We analyze this phenomenon for an ASR task com-
paring offline and streaming models with the aim
of: (1) confirming or denying that more wrong pre-
dictions happen near CS points, (2) studying how
offline or streaming ST can affect the conclusion
of (1).

We analyze the predicted transcripts of our
model in the ASR 4 task on Fisher CS test set under
three different inference constraints: a streaming
model with k = 0 (which has no flickering and the

4Note that this can only be evaluated in ASR (not ST),
because of the need of a CS target.

lowest possible latency), a streaming model with
k = 15 (which we have found to be a reasonable
choice to obtain a better accuracy without a criti-
cal effect on flickering and latency) and an offline
model (which would be equivalent to a streaming
model where k = +∞). We establish a recall-
based metric and count words in the reference tran-
script as predicted right if the word appears in the
predicted transcript, and as predicted wrong other-
wise. We study the proportion of words that are
predicted right and their distance (in words) to a
CS point. Hence, those words at a distance of 1 are
right before or after a CS, and so on. To do so, we
define the Recall at distance d as:

R(d) =
right_pred(d)

right_pred(d) + wrong_pred(d)
(1)
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Fisher Miami
CS Mono. CS Mono.

Model En Es De En De En Es De En De

BLEU(↑) FISHER CS 41.8 45.8 24.27 35.5 23.7 49.4 41.8 19.9 31.7 19.5
FISHER CS W/ PREFIXES 41.8 44.1 22.9 35.7 22.5 48.1 38.7 19.1 32.2 18.9

AL(↓) FISHER CS 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2
FISHER CS W/ PREFIXES 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2

NE(↓) FISHER CS 0.06 0.04 0.06 0.04 0.04 0.00 0.00 0.00 0.00 0.00
FISHER CS W/ PREFIXES 0.04 0.04 0.06 0.04 0.04 0.00 0.00 0.00 0.00 0.00

Table 3: BLEU, Average Lag (seconds), and Normalized Erasure scores in streaming Text Translation, for trainings
with and without prefix sampling. In every experiment we set k = 15.
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Figure 3: Analysis of errors in the prediction of words
for different distances to a CS point under different
inference constraints.

The results in Figure 3 show that CS points im-
pact the model’s accuracy. Those words at a dis-
tance of 1 are predicted wrong in the highest pro-
portion for every model. However, starting from
d = 2, the recall increases only slightly, or stays
close to constant, so the effect of a CS does not
last long. Secondly, we also see that although the
streaming setting with k = 0 has an overall worse
recall, having less available context when making
the predictions does not affect those words close
to CS points more than those that are not. In par-
ticular, we see that the drop between d = 2 and
d = 1 is lower for the streaming model with k = 0.
This indicates that, contrary to what we expected,
the lack of context in streaming ST does not have
a negative impact on CS points, and therefore, the
model needs the same context to properly predict
CS or not CS words.

5.3 Usefulness of Prefix-sampling

A frequently used technique to train streaming mod-
els consists of sampling prefixes from part of the
training data. We study the impact of using this
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Figure 4: Analysis of errors in the prediction of words
for different distances to a CS point, with and without
prefix-sampling the training set.

technique in accuracy, latency, and flickering met-
rics and its impact on errors around CS points.

To analyze the usefulness of this training strat-
egy, we compare a model trained on the Fisher CS
set against a model trained on the same set but sub-
stituting half of the complete utterances by prefixes.
As shown in Table 2, prefix-sampling produced an
improvement in BLEU scores, especially in Miami
test sets (up to +2.4). Surprisingly, this training
strategy that aims to improve the performance in la-
tency or flickering worsens the Average Lag scores
and does not significantly impact Normalized Era-
sure.

Furthermore, we study whether prefix sampling
impacts the accuracy of the predictions around CS
points. In Figure 4, we use the same recall metric
as in Section 5.2 to compare both models. We see
that prefix training degrades the accuracy of the
predictions around CS points, especially in those
words at a distance of 1, where the recall drops
from 0.51 in the standard training to 0.45 in prefixes
training.
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Fisher Miami
Model CS Mono CS Mono

WER(↓) FISHER CS 34.9 29.8 63.3 63.5
FISHER CS W/ PREFIXES 35.4 29.9 60.6 58.1

AL(↓) FISHER CS 1.0 0.8 0.8 0.6
FISHER CS W/ PREFIXES 0.5 0.4 0.5 0.3

NE(↓) FISHER CS 1.2 1.0 1.2 1.1
FISHER CS W/ PREFIXES 1.1 0.8 1.2 0.6

Table 4: WER, Average Lag (seconds), and Normalized Erasure scores in streaming Automatic Speech Recognition,
for trainings with and without prefix sampling. In every experiment we set k = 15.

5.4 Performance Analysis
After the experiments described in previous sec-
tions, we have found that using prefix-sampling
does not lead to a noticeable performance improve-
ment. Furthermore, we have seen that masking the
last 15 sub-words in each step during the transla-
tion of a sentence shows an optimal trade-off be-
tween the different evaluation metrics. Since there
is no previous work in CS streaming ST, we can not
fairly compare our results to previous work, and
therefore we aim to set baseline numbers. However
we compare the BLEU scores of our model to the
scores obtained by (Weller et al., 2022) for offline
ST to English (Table 2), to analyse if the perfor-
mance drop between offline and streaming ST is
reasonable. As expected, our streaming model suf-
fers a performance degradation in most of the test
sets compared to the offline model in previous work.
However, CS ST to English in the Miami dataset
obtains an improvement of up to +7.4 BLEU.

When analyzing the performance of German
translation we see that there is an important drop
compared to English and Spanish translation (both
present on the source). CS Speech Translation is
commonly studied and evaluated just in translation
to languages present in the source, therefore we
believe that the performance drop in German is a
relevant finding that shows the importance of not
relying just on monolingual transcription when aim-
ing for CS ST and sets a baseline result for further
work in translation to a third language. Regarding
Average Lag and Normalized Erasure, we present
our results as a baseline, since previous work using
Fisher and Miami datasets was done in offline tasks.
However, to have an estimation of the quality of
our model in these metrics, we compare our scores
with the ones obtained by Weller et al. (2021) on
MuST-C data, which are over 1 for both metrics. In
Table 2, we can see that we obtain similar scores,
therefore we conclude that the performance of our

model is reasonable regarding flickering and lag.

5.5 Results in Machine Translation and
Automatic Speech Recognition

Although the main scope of this work in Speech
Translation, we evaluate our models for Machine
Translation and Automatic Speech Recognition too.
We can easily do this given that the model we are
using is multitask and allows us to work on each
of the three settings by switching the the input
type and properly defining the a tag to generate the
output.

In Table 3 we can see the results obtained for
MT. We see that, as in ST, prefix sampling does
not improve AL and NE scores. Furthermore, in
the case of MT using prefixes degrades the perfor-
mance of the majority of the models. Regarding
BLEU scores, we observe that as in ST those tasks
that consist on translating to a language present
in the source obtain a much higher accuracy than
those where we translate to German.

In Table 4 we see the results for the ASR setting.
In this case, prefix sampling does work as expected
regarding AL and NE scores, being the models
with prefixes the ones with lower scores. However,
it still has a negative impact on the performance of
the models, specially in Miami test sets. Regarding
WER, the scores obtained for the Miami dataset are
much worse than the ones obtained by Fisher ones,
a pattern that we have not observed in translation
tasks. This could be due to the fact that during
the pretraining, the data used for translation tasks
comes from many different datasets, allowing the
model to properly learn to generalize. However, the
available data with CS targets corresponds mostly
to the Fisher dataset (130 600 samples), compared
to only 6 487 from the Miami dataset (see Table 1
for more details on the data distribution).
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6 Conclusions

In this work, we have tackled two open ends in
CS ST: translation to a third language and stream-
ing settigns. To do so, we have trained offline
and streaming models for direct translation and
transcription of CS speech. Furthermore, we have
extended Fisher and Miami test and validation sets
with new Spanish and German targets. By doing
this we have been able to analyse not only mono-
lingual transcription, but also pure translation. We
have observed a drop of up to 18 BLEU points be-
tween the two settings, showcasing the importance
of not relying on monolingual transcription when
aiming for ST models, as has been commonly done
in previous work. Given the greater complexity
of translating to a third language as compared to
monolingual translation, we think that incorporat-
ing additional data would be necessary to tackle
the accuracy drop. However, since natural code-
switched data is limited and generating synthetic
data is beyond the scope of this study, we leave this
for future research.

To summarize, our work presents new data, an
in depth analysis of the impact of CS in the predic-
tions, and results for streaming CS Speech Transla-
tion and translation to a third language, which can
serve as a baseline for future work in a field that
although relevant is still far from solved.

Limitations

Our work is limited to high-resource languages
such as English, German, and Spanish. Therefore,
further work needs to be done tackling low resource
languages in order to achieve real-world CS trans-
lation.
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