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Abstract

This paper contributes to German–English
code-switching research. We provide the
largest corpus of naturally occurring German–
English code-switching, where English is in-
cluded in German text, and two methods for
code-switching identification. The first method
is rule-based, using wordlists and morphologi-
cal processing. We use this method to compile
a corpus of 25.6M tweets employing German–
English code-switching. In our second method,
we continue pretraining of a neural language
model on this corpus and classify tokens based
on embeddings from this language model. Our
systems establish SoTA on our new corpus and
an existing German–English code-switching
benchmark. In particular, we systematically
study code-switching for language-ambiguous
words which can only be resolved in context,
and morphologically mixed words consisting
of both English and German morphemes. We
distribute both corpora and systems to the re-
search community.

1 Introduction

A large proportion of the world’s population is
multilingual, and that naturally means that a large
proportion of the world is code-switching daily,
frequently and routinely (Harris and McGhee Nel-
son, 1992; Grosjean, 2010; Grosjean and Li, 2013).
Code-switching occurs when speakers alternate be-
tween languages; this can happen at the sentence,
word, or even subword level. For many multilin-
gual speakers, code-switching is a natural part of in-
formal language, either as a matter of convenience
or possibly because it allows them to express their
intended meanings more precisely. Several psy-
cholinguistic and sociolinguistic theories of code-
switching exist (Poplack, 1980; Joshi, 1982; Myers-
Scotton, 1997; Muysken, 2000; Green and Abu-
talebi, 2013; Filipović and Hawkins, 2019). The
dominant language is called the matrix language,
while the subordinate language that is included is

Tweet: ich glaub ich muss echt
M

rewatchen
E

like i feel so
empty was soll ich denn jetzt machen
Translation: I think I really have to rewatch it like i feel so
empty what should I do now

Figure 1: German–English code-switching

called the embedded language (Joshi, 1982). We
refer to any text segment in the embedded language
as an island. In the example of code-switching
shown in Figure 1,

E
like i feel so empty is an is-

land.
Many NLP systems are currently developed to

be capable of handling text from informal contexts.
Code-switching places new pressure on these, par-
ticularly for applications that require the recogni-
tion and precise extraction of meaning from code-
switched text, or even the generation of such text.
Available NLP tools lag behind in this respect
(Aguilar and Solorio, 2020; Doğruöz et al., 2021);
in particular large language models perform best
when fine-tuned on natural code-switching data
(Santy et al., 2021). Our work is aimed towards
NLP tools that can better understand and manipu-
late code-switched language.

We are interested in studying naturally occur-
ring code-switching. Social media, where mostly
informal conversation take place, is an ideal source
of such texts. We study code-switching between
English and German, two closely related languages.
We encounter many high-frequency words of iden-
tical form in both languages, such as “was” in Fig-
ure 1, which is a WH-pronoun in German. If the
same string “was” appeared in English, it would be
the past form of ‘to be’. Importantly, the two mean-
ings are entirely unrelated. Such cases constitute an
interesting corner case for code-switched text, and
are called interlingual homographs (IHs, Dijkstra
et al., 1999). A second interesting phenomenon
is that, because German is a morphologically rich
language, its morphology can act on English mor-
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phemes, creating intra-word codeswitching, such
as in the past participle

M
rewatchen in Figure 1.

A third property of the German–English language
pair is the high frequency of English loanwords in
German. Loanwords are words of foreign origin
that have been fully assimilated into the main lan-
guage. Loanwords and code-switching constitute a
grey area in language change: whether something
is a loanword or part of an island is a hotly debated
topic in linguistics (Deuchar, 2020; Treffers-Daller,
2022). While we do not directly address the loan-
word distinction in this work, we believe that our
theory-neutral methods can contribute to an empir-
ical way of addressing this in the future.

In this paper, we study German–English code-
switching with an analytic interest in fine-grained
phenomena (e.g. short islands, mixed morphology
and interlingual homographs). This introduces new
aspects to the automatic study of code-switching.
At the same time, we bring scale to the analysis;
the TONGUESWITCHER Corpus includes 25.6M
German-English code-switching tweets with auto-
matic code-switching identification. We release
our corpus and the two code-switching identifica-
tion methods we developed, one rule-based, one
neural1.

2 Related work

Code-switching identification and language iden-
tification are closely related tasks, but traditional
language identification (LI) tools can only deter-
mine which languages are present in a given text,
not the precise beginning and end of each island.
For instance, the LI tools provided by Chen and
Skiena (2014) and Joulin et al. (2016b; 2016a)
rely on character-based n-gram models. FastText
(Joulin et al., 2016b,a) uses a character-based n-
gram method to compare statistical properties of
the input text with a pre-compiled frequency profile
of each language. It distinguishes 176 languages,
including English and German, alongside similar
languages such as Luxembourgish and Afrikaans.
Polyglot is another such tool, which is able to iden-
tify more than one single language per document
(Chen and Skiena, 2014). It is built from the CLD2
tool from Riesa and Giuliani (2013), which uses
quadgram ranking. Lingua (Stahl, 2023) is a black-
box LI tool that also offers code-switching identifi-
cation for many language pairs, including German–

1Code, models (neural tagger and code-switching language
model, both with demos) and corpus are all online.

English. It combines a language modelling ap-
proach with hard-coded rules. Its code-switching
identification performance has never been experi-
mentally evaluated.

Nguyen et al. (2020; 2021) present rule-
based code-switching identification systems for
Vietnamese–English and Hindi–English mixed text,
which is based on specially-created wordlists for
each of these language pairs. All words that appear
in both wordlists are manually disambiguated by a
human annotator. This is a simple approach to the
task that affords the researchers control over their
system, as it does not require any training.

Osmelak and Wintner (2023) detect code-
switching at a finer-grained level. In their
Denglisch system, tagging proceeds at token-level,
and the following labels are used: D and E for
German and English tokens respectively; SD, SE
and SO for loanwords imported from German into
English, from English imported German, and from
other languages. There is also an Other category
for unclassifiable items, such as punctuation and
emojis, and a Mixed category for words of mixed
morphology.

Several other code-switching approaches also
model mixed morphology. Nguyen and Cornips
(2016) perform morphological analysis with the
Morphessor tool to address Dutch-Limburgish-
English code-switching, and Mager et al. (2019) de-
tect intra-word code-switches in German–Turkish
and Spanish–Wixarika text using RNNs. Osme-
lak and Wintner (2023) use CRFs, a supervised
machine learning framework, in combination with
manually curated features, such as orthography,
n-gram, morphology, function words, frequency,
lexical components and wordlists. The training ma-
terial consists of 950 Reddit comments containing
60K tokens, balanced between English and Ger-
man. They also use automatically-tagged silver-
standard data to the tune of a further 31,500 com-
ments (5 million tokens). In contrast, our solution
does not require any human-annotated training ma-
terial.

For neural code-switching identification, the use
of word embeddings from a multilingual language
model such as mBERT (Devlin et al., 2019) is one
possible approach. mBERT is an encoder-only
transformer-based model which embeds each token
into a 768-D vector. Santy et al. (2021) found it is
best suited when fine-tuned on naturally occurring
code-switching material. Nayak and Joshi (2022)
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pretrain and fintune a BERT-based model for code-
switching identification in Hinglish. They use an
existing tool to collect and automatically label a
large corpus of tweets.

When it comes to gold-standard datasets, the
majority of code-switching datasets are between
(1) languages spoken in India with English (Gupta
et al., 2021; Nguyen et al., 2021; Adda-Decker
et al., 2008), (2) Mandarin with English (Lyu et al.,
2010) and (3) Spanish with English (Mave et al.,
2018; Samih et al., 2016). For German–English
code-switching other than Osmelak and Wintner
(2023), Rijhwani et al. (2017) use a mini-corpus
consisting of 99 Twitter tweets, which is not publi-
cally available. Our corpus is much larger.

3 Corpus construction

The German tweets we use as input were collected
at scale by Kratzke (2022, 2023). The Twitter
language identification algorithm assigns a proba-
ble language at the time of writing of each tweet;
Kratzke chose those that were deemed German.
This resulted in 149.2M input tweets written be-
tween April 2019 to February 2023. We clean the
tweets (URLs are replaced with <URL>, emojis,
emails, phone numbers and mentions are removed)
and run FastText language detection on them, only
keeping tweets that are re-assigned the German tag
or instead assigned an English language tag. This
step eliminates many tweets in Luxembourgish and
other languages too similar to German for Twitter’s
language identifier to catch. 123.7M tweets remain
after this step. In contrast, Osmelak and Wintner
(2023) filter their input to remove those examples
for which Polyglot’s prediction is not both English
and German.

To establish a testset, code-switching annota-
tion was performed by the authors of this paper
on 1252 tweets. We used the Prodigy annotation
tool (Montani and Honnibal, 2018). To use annota-
tion time efficiently, we wanted to make sure that a
good proportion of the cases seen had reasonably
high code-switching occurrences. The tweets were
therefore processed and pre-filtered by a precursor
of TONGUESWITCHER. This system differed from
the final version only marginally, e.g. in the order-
ing of the rules and the quality of the multilingual
stemming algorithm. We then random-sampled
from two subsets: all input tweets (25%), and those
with a high proportion of code-switching (75%).
System annotations were not removed before hu-

man annotation. There were no explicit guidelines.
Annotators discarded tweets in German dialects
such as Swiss German, made sure that German in-
deed acted as the matrix language, and then marked
island start and end points in each surviving tweet.
In 63.5% of cases, boundaries were moved; this
means that annotators did not simply accept the
system’s suggestions. Regarding the annotation
of loanwords, each annotator followed their own
intuition about which words were so common as to
be used as loanwords, additionally using a context-
sensitive definition of loanwords. To establish con-
sistency of the annotation, we randomly sampled
36 tweets consisting of 1172 tokens, which both
annotators labelled. Inter-annotator agreement was
measured at κ=0.68 (N=1172, n=3, k=2; Cohen,
1960). The annotators agreed fully on all tokens in
15 out of the 36 tweets. The distribution of island
sizes in the resulting testset is given in Figure 2.
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Figure 2: Proportion of island sizes in testset. Each
field expresses the total number of tokens occurring in
islands of that size.

4 TongueSwitcher

Our rule-based method takes as input German
tweets and produces labels indicating the language
of each word, or sub-word if the word is of mixed
morphology. The main algorithm applies several
wordlist-based filters to make the decision. Addi-
tional processing applies if a) the word is genuinely
a possible word in both languages or b) it is an intra-
word code switch. All processing in this method is
performed on lowercased words.

4.1 Constructing wordlists

We first compile formal and informal wordlists for
English and German. Our strategy given the re-
sources we have is to compile pure wordlists which
contain words that are guaranteed to be contained
in only one of the two languages (for instance,
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“parser” should not be in either pure list), and a
big wordlist to cover as many words as possible
from the matrix language, German. For the “Pure
English” wordlist, we combine the WortSchatz
Leipzig News Corpora (WL, 15K words, Biemann
et al., 2007) and a scraped version of the online
Urban Dictionary (UD, 13K words, Bierner, 2022),
which contains many informal words and phrases
used in English slang. We remove words that ap-
pear 5 times or fewer in the WL corpus and words
that appear 10 times or fewer in the UD.

For German, we use the WL corpora (65K
words), and add Swiss (37K words) and Austrian
(34K words) as we could not automatically filter
out many input tweets written in these dialects. We
also add the more informal online German dictio-
nary dict.cc (583K words, Hemetsberger, 2023).
This list is the basis for our “Big German” wordlist.
For our multilingual stemming, we also need a
wordlist of pure German roots. We start by col-
lecting a smaller wordlist of words appearing more
than twice only in the German WL corpus.

English loanwords need to be removed from the
German lists. Ideally, we would have an exhaus-
tive list of loanwords to handle such words sepa-
rately, but in reality we have access only to a small
list of 3367 known English loanwords in German,
created by Seidel (2010) from an analysis of the
German magazine Der Spiegel. We remove these
from “Big German”2. We remove an additional
set of suspected loanwords automatically from the
German wordlists, namely all entries from dict.cc
(Hemetsberger, 2023) where the English word and
its German translation are identical and vice versa.
We also remove a large list of boys’, girls’ and city
names (Weiss, 2022a,b; OnTheWorldMap, 2023)
from both wordlists. Names in our approach are
handled based on the surrounding language in our
n-gram processing (step 7 of our algorithm coming
up in §4.2).

Finally, we also want to remove the many non-
language-specific one or two letter words in our
wordlists (e.g. “eh”), which we consider noise.
Such words can arise from typos, abbreviations,
and general processing problems. Unless such
ultra-short words were included in hand-selected

2Another reason for removing these loanwords is that some
display mixed morphology. Our algorithm will not detect
mixed morphology if the full word is already in “Big German”.
By removing them, these words are automatically handled by
our mixed word detection steps.

Big German 709,979
Pure German 92,099
Pure English 20,203
Interlingual homographs 120

Table 1: Wordlists compiled, with number of words

lists3, we removed them from all wordlists.
Even after all these stages, there are still words

appearing in both wordlists (many purely English
words in the German wordlists and vice versa).
Many of these are noise. One could whittle them
down entirely manually, as Nguyen and Bryant
(2020) do. We instead first ask the large language
model (LLM) text-davinci-003 (Brown et al.,
2020) for its guess of the primary language of each
word with the following prompt: In one word,
what language is the word: {}? The LLM
may introduce a bias towards English. We therefore
do not accept the LLMs predictions blindly, but
manually review all classifications. Knowing the
model’s choice still saved time. We removed the
German ones from the English wordlist, and the
English ones from the German wordlists.

When going through this list manually, we also
find some words that are graphically identical and
have the same meaning in both languages (e.g. ‘di-
verse’)4. If such a word is found, it is removed
from all wordlists. We will treat these based on the
surrounding language later.

Finally, we compiled a list of IHs. Under the
assumption that IHs have different POS in the two
languages, we compute a list of such IHs by tag-
ging an English and a German WL corpus, looking
for shared words with at least one different POS,
modulo capitalisation.

The sizes of the resultant wordlists are given in
Table 1.

4.2 Code-switching identification algorithm

Our code-switching identification algorithm is de-
fined as follows. We first tokenize and POS-tag
each cleaned tweet using the Flair upos-multi
multilingual uPOS tagger (Akbik et al., 2018;
Petrov et al., 2012). Then we apply the following
steps to classify each token. These steps are also
visualized as a flow chart in Figure 3; examples of
tokens handled by each step are given in Appendix

3The hand-selected lists contain 28 English one or two-
character words (e.g. ‘of’ and ‘if’) and 24 German one or
two-character words (e.g. ‘zu’ and ‘um’).

4These words are not IHs, because IHs are defined as
having different meanings.
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lookup pure
english wordlist

lookup inter-
lingual homographs EN (1)POS

as English?EN (2)

lookup big
german wordlist

can you do
mixed stemming?

DE (2, 3)

MIX (4)

can you do
statistical-morph?

(lan(stem) == EN and
lan(affix) == DE) or
len(lans(roots)) == 2

MIX (5)

DE, EN (5)

word has umlauts?DE (6)
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Figure 3: The word-level classification subroutine

Table 9. The proportion of tokens in our corpus
identified using each step is given in brackets.
1 (5.8%) If a word is in our pure English wordlist,
it immediately receives an English tag.
2 (9.3%) If a word is a interlingual homograph
(IH), language identification is attempted using the
words’ part of speech tag.
3 (74.6%) Else, we look the word up in our big
German wordlist and assign a German tag if found.
4 (0.2%) If the word is still not identified, a multi-
lingual stemming system we developed recursively
strips affixes (lists taken from Osmelak and Wint-
ner, 2023) from words until a word (or simple vari-
ations: adding a missing trailing ‘e’ or removing
a double last letter) is found in our pure English
wordlist or no more affixes are found. If an English
stem is found with purely German affixes, the word
is given a Mixed label.
5 (1.4%) We next look for known subwords us-
ing a statistical morphological segmentation sub-
system based on HanTa (Wartena, 2019), a train-
able second-order autoregressive model, where
each morpheme depends on the previous two mor-
phemes to predict the most likely morpheme se-
quence. We train HanTa on the (a) Tiger Corpus
(Brants et al., 2002) for German (b) Brown Corpus
(Francis and Kucera, 1964) for English and (c) a
mixture of both, and attempt segmentation in turn
with these three systems, looking for roots in our
pure English or pure German wordlists. This sub-
system also detects fully monolingual compound
word creations, hence the increase in proportion
compared to 0.2% for the previous step.

Split Tweets Sentences Tokens Eng. tokens

Train 24.6M 57.8M 741.9M 82.6M
Dev 1.1M 2.6M 32.9M 3.6M
Test 1.3K 3.0K 37.5K 2.8K

Total 25.6M 60.4M 774.8M 86.2M

Table 2: TONGUESWITCHER Corpus statistics

6 (0.5%) If the unknown word contains an um-
laut, it receives a German tag.
7 (8.2%) Words unknown at this stage which oc-
cur inside single-language islands are assigned the
language of their neighbours. Words at an island
boundary assume the language of the most probable
bigram on either side, based on the frequencies of
the most likely 10,000 bigrams of German and En-
glish we compiled from the WL Corpora for each
language. Otherwise, tokens assume the language
of their nearest identified token.

We implement this algorithm using the frame-
work of Lin and Byrne (2022), resulting in the
TONGUESWITCHER (TS) system. Using this sys-
tem, we next automatically labelled all 123.7M
cleaned input tweets, creating our silver-annotated
data. Based on the silver labels, we excluded tweets
that do not contain at least 50% German tokens, and
at least one English or Mixed token. We split this
corpus by allocating the last two months of data
(Jan, Feb ’23) to a development set. A summary of
the corpus with its silver-standard training/develop-
ment data is given in Table 2. Our silver-standard
data has 11% English tokens.

We sanity-check our corpus and the silver-
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standard annotations by sampling 5 tweets each
for different island sizes (1 to 20 tokens). Out of
the 100 tweets, 64 were true code-switching. Of
the remaining, 9 were translations and 27 were
monolingual. Most of the monolingual mistakes
arose due to the erroneous identification of single-
token loanwords or named entities5. Overall, we
find the precision acceptable, given that the recall
is likely to be higher than in any currently available
corpus. If we had chosen a stricter condition for
tweets that are selected for our corpus, perhaps to
exclude tweets with only a single-token island as
Nayak and Joshi (2022) do, we could easily raise
precision, but would have missed many interesting
border cases of either code-switching insertions or
loanwords. It is precisely these instances that are
valuable to linguists and lexicographers who study
the process of loanwording.

Of the code-switching tweets, we then counted
how many of the system-predicted islands were cor-
rectly identified6. We found that single-token En-
glish islands had a precision of 62.5 (40 predicted),
two-token islands 87.5 (8 predicted), three-token is-
lands 80.0 (10 predicted) and all island sizes greater
than this (65 predicted) had a precision of 100.0.

Two examples of particularly dense code-
switching are shown in Table 3. TS labels example
(1) perfectly, but for example (2) it incorrectly tags
‘performed’, ‘pushen’, ‘Time-to-Market’ and ‘Re-
launch’ as German7. ‘Top-of-mind-Awareness’ is
not segmented correctly by Flair and hence incor-
rectly identified as the language of the surrounding
tokens, which is German.

5 BERT-based system

We also wanted a neural system that is fine-tuned
for German–English identification, so we could in-
vestigate to which degree neural word embeddings
are suited to the task. To that end, we pretrain a
neural language model on the TONGUESWITCHER

Corpus and fine-tune it for token classification. We
then learn the classification layer using the human-
labelled examples from the Denglisch Corpus. This
system is called tsBERT.

5The TS system does not include any named entity rec-
ognizer, or special handling of loanwords, except using the
wordlists and surrounding language.

6We used a lenient definition of boundaries where over-
lap between system-predicted islands and real islands was
sufficient.

7It did so because these words all happen to make their
way into our “Big German” wordlist, and are also not in our
“Pure English” wordlist.‘

6 Experiment

Systems, Competitors, Baselines We evalu-
ate our systems, TONGUESWITCHER (TS) and
tsBERT, against two competitors from the litera-
ture, Denglisch CRF (Osmelak and Wintner, 2023)
and Lingua (Stahl, 2023). The Denglisch system is
not provided as a trained system, so we follow their
procedure in training it. To interpret Denglisch’s
output, we match Denglisch labels onto our re-
duced set as follows: English, German, Mixed are
taken directly. SE becomes English, and SD be-
comes German. Denglisch’s SO labels and punctu-
ation labels are ignored in evaluation.

We construct a strong baseline by prompting the
GPT-4 LLM (OpenAI, 2023) with the prompt given
in Appendix §A.3. We also train baseline neural
classification models by learning the classification
layer directly on (English) BERT (eBERT), Ger-
man BERT (gBERT, DeepsetAI, 2019) and multi-
lingual BERT (mBERT) models.

Datasets We use the TONGUESWITCHER Cor-
pus as pretraining data, and the human-labelled ex-
amples from the Denglisch Corpus (Osmelak and
Wintner, 2023) as finetuning data (after removing
emojis, replacing out-of-vocabulary punctuation
tokens, and removing entries longer than 100 to-
kens).

Our main evaluation uses our own corpus (§3)
with its 1252 tweet testset. We also report results
for our systems and the Denglisch CRF system on
the German–English subpart of the Denglisch Cor-
pus (15% of their corpus sentences, using the same
definition as before). While our BERT-based sys-
tem is trained on their data in the cross-validation
setup, TONGUESWITCHER cannot be trained. We
use this evaluation as a sanity check: if our systems
performed much below the Denglisch system on
this corpus, this would be a cause for alarm.

Training We initialize our BERT-based mod-
els with the bert-base-multilingual-cased
(mBERT) pretrained model (Devlin et al., 2019).
Unlike our rule-based system, this model distin-
guishes between upper and lowercase words. We
continue pretraining for 1 epoch on all 24.6M code-
switching tweets in the TS training corpus. We
finetunne for our task on the Denglisch Corpus
(Osmelak and Wintner, 2023). For evaluation on
their corpus, we train models for the same 10-fold
cross-validation setup as they do. For evaluation
on our testset, we train on 100% of their corpus,
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(1) Pronouns: he/him Height: 1,83m Zodiac: Virgo Smoke: nope Tattoo: 3 Piercings: Ohrringe (mehr will ich
auch nicht, allerhöchstens noch mehr Ohrlöcher) Fav colour: grün Fav drink: Kaffee und oolong milk tea, heiß, mit
einem quarter süss und tapioka bei meinem bubble tea laden
Translation: Pronouns: he/him Height: 1.83m Zodiac: Virgo Smoke: nope Tattoo: 3 piercings: earrings (I don’t
want more, at most more ear piercings) Favorite colour: green Favorite drink: coffee and oolong milk tea, hot, with
a quarter sugar and tapioca at my bubble tea shop

(2) Wenn wir unsere Skills elevaten und die Units gemeinsam performen, werden wir die Sales auf ein neues
Level pushen. Außerdem können wir so den Time-to-Market für den Relaunch shorten. Das bringt zusätzliche
Top-of-mind-Awareness und pushed die Brand in der Community. Ok? Go!
Translation: If we elevate our skills and perform the units together, we will push sales to a new level. This also
allows us to shorten the time-to-market for the relaunch. This brings additional top-of-mind-awareness and pushes
the brand in the community. Ok? Go!

Table 3: Examples from our TONGUESWITCHER Corpus sanity check

as they do when labelling their silver-standard ma-
terial. Training details are given in the Appendix
§A.2.

Metrics We report results separately in token-
based micro-averaged F1 measure (shown as Ft),
and in entity-based F1 measure (shown as Fe). Fe

is defined based on the number of islands of En-
glish inside the German matrix text, with strict
boundaries. We use the BIO format (Ramshaw and
Marcus, 1995) for entity representation. Because
code-switching segments are coherent entities in-
side a text, using an entity-based metric should be
more informative than a token-based one, which
ignores the code-switching context of each token.
We report performance on all islands, and we also
introduce a new metric which measures the perfor-
mance of systems for short islands only, namely
those consisting of 2-4 tokens according to our gold
standard. The statistical test we use throughout
this paper is the two-tailed paired permutation test,
approximated by R = 10, 000, with significance
threshold at α = 0.05.

7 Results
German English Mixed Overall

9907 1972 192 12071

Denglisch 97.5 89.1 25.6 95.5

TS 96.9 87.7 32.4 94.5
tsBERT 98.9 95.5 60.1 97.8

Table 4: Results on Denglisch corpus; in Ft

Table 4 gives results in Ft on the G–E subset of the
Denglisch corpus. Our trained tsBERT model out-
performs trained Denglisch in all categories (differ-
ences significant; 4x p<0.01), setting a new SoTA
on this benchmark. The superiority of tsBERT in
the English category (95.5 vs. 89.1), which is the
core of the task of German–English code-switching

identification, is particularly satisfying. In mixed
word detection, our system achieves a 135% im-
provement over Denglisch.

Revisiting example (2) from Table 3, where
TONGUESWITCHER (TS) made multiple mistakes,
tsBERT fixes all of these mistakes and perfectly
identifies the code-switching. Denglisch pre-
dicts ‘Skills’, ‘elevaten’, ‘Units’, ‘performen’, ‘Re-
launch’, ‘shorten’, ‘pushed’ are all German, and
wrongly suggests that ‘Time-to-Market’ is mixed.

Meanwhile, TS is not trained on any Denglisch
data, as it is rule-based8. In the English and
Mixed categories, TS is statistically indistinguish-
able from Denglisch (p=0.19, p=0.09); in the Ger-
man category, it is significantly outperformed by
Denglisch.

We consider both our systems to pass the sanity
check; we will now turn to our main results on
our own corpus, where no new human-annotated
training material is available to any of the systems.

Table 5 shows the results in precision, recall and
Ft for our corpus.

TONGUESWITCHER (Ft=97.1 overall) and
tsBERT (Ft=97.0 overall) are indistinguishable
from each other, and significantly better than all
baselines and competitors, with the exception of
the category Mixed. In the mixed category, TS is
better than tsBERT (p<0.01), and tsBERT is indis-
tinguishable from all BERT-based baselines. All
other differences are significant, which means that
GPT-4 (Ft=94.3 overall) is inferior to our two TS
systems, as least with our prompting strategy. This
means that TS has established SoTA on our corpus.

TS outperforms all others in the mixed category;
the BERT-based models are the next best. Although

8Note that our treatment of Denglisch’s gold standard (col-
lapsing all ‘Shared German’ tokens to be German) hurts only
TS. For example, TS would say named entities like ‘Berlin’
are English in an otherwise English constituent.
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German English Mixed Overall
29761 2757 129 32647

P R Ft P R Ft P R Ft P R Ft

Lingua 95.8 97.3 96.5 66.5 57.6 61.7 0.0 0.0 0.0 93.6 93.6 93.6
GPT-4 99.2 95.2 97.2 66.2 93.7 77.5 12.2 16.3 14.0 94.8 94.8 94.8
Denglisch CRF 98.4 97.4 97.9 75.1 85.5 79.9 19.0 6.2 9.4 96.0 96.0 96.0

eBERT 98.7 97.4 98.0 78.1 86.7 82.2 23.1 38.0 28.7 96.3 96.3 96.3
gBERT 98.8 97.0 97.9 73.9 87.6 80.1 27.7 34.1 30.6 95.9 95.9 95.9
mBERT 98.7 97.5 98.1 78.1 87.3 82.4 24.9 32.6 28.2 96.4 96.4 96.4

TONGUESWITCHER 99.3 97.6 98.4 79.0 93.8 85.8 48.0 38.0 42.4 97.1 97.1 97.1
tsBERT 99.0 97.9 98.5 81.5 89.1 85.1 25.5 38.8 30.8 97.0 97.0 97.0

Table 5: Results on our testset

Island Short Island (2-4)
1192 365

P R Fe P R Fe

Lingua 25.4 14.0 18.1 27.8 34.5 30.8
GPT-4 44.5 70.1 54.4 50.7 74.5 60.4
Denglisch 49.0 55.5 52.0 53.2 72.3 61.3

eBERT 54.0 61.5 57.5 63.1 70.7 66.7
gBERT 49.2 58.4 53.4 55.3 71.0 62.2
mBERT 54.8 62.0 58.2 63.4 73.7 68.2

TS 58.9 75.7 66.2 57.3 77.3 65.8
tsBERT 60.5 66.5 63.4 66.7 75.9 71.0

Table 6: Island-based results

mixed word identification might be seen as a niche
task given the low occurrence frequency of mixed
words, we are happy to see this result because we
think that the mixing of morphologies is an under-
studied phenomenon. Linguists and cognitive sci-
entists requiring empirical data can profit from a
system such as ours that is able to automatically
detect these cases reasonably well.

It is nice to see the small, but significant im-
provement of our tsBERT system over the other
BERT-based models in most categories (those other
than Mixed). This shows that pretraining with the
TONGUESWITCHER code-switching corpus helps.
This language model trained on code-switching
data may be useful to other researchers working on
German–English tasks other than ours, too.

7.1 Islands
So far, we have presented results in a token-based
metric, but this ignores the fact that code-switching
is a context-sensitive phenomenon: we care less
about how many tokens are of which language over-
all, and more about which textual material forms
an island.

Table 6 gives results for P, R and Fe for islands
and short islands. Again, the two TS systems beat

all competitors and baselines. Lingua is left far
behind. The success of TS on islands is a surpris-
ing result, as the majority of tokens are handled by
this system without any context. One explanation
may be that step 7 in our algorithm (§4.2) performs
contextual smoothing by assigning the labels of
neighbouring tokens to unknown tokens. This han-
dles spelling mistakes and other word creations by
favouring coherent islands.

For short islands, tsBERT and mBERT are joint
winners with Fe=71.0 and Fe=68.2, respectively,
beating TS (65.8), GPT-4 (60.4) and Denglisch
(61.3). TS is better than GPT-4 (p=0.02), while
GPT-4 and Denglisch are indistinguishable. Lin-
gua’s performance, meanwhile, is poor at Fe=30.8.
We suspect Polyglot (Chen and Skiena, 2014)
would have similar problems with this task9.
Denglisch (Osmelak and Wintner, 2023) use Poly-
glot as a filtering tool for all their data and therefore
many cases of short islands of code-switching may
have been lost when the Denglisch corpus was cre-
ated.

7.2 Post-analysis: interlingual homographs

We next performed an analysis of how well the
systems perform on IHs. We compiled a separate
small testset specifically for such cases: tweets con-
taining real IHs. We sorted our previous list of IHs
by the frequency of the less frequent language of
the two (e.g. English ‘war’ rather than the German
verb), and then manually checked up to 100 tweets
in each language for each word. We discarded
words if they show any of the following problems:
the word was only ever encountered as a proper
name in one or both languages (e.g. English “los”),

9We base this on the assertion by Lingua’s authors that
Lingua beat Polyglot experimentally (see GitHub). We have
not verified Polyglot’s performance; it was unsuitable as a
baseline for us, as it cannot predict token-level labels.
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German English Overall
146 130 276

Lingua 70.9 55.7 64.9
GPT-4 92.8 92.0 92.4
Denglisch 74.9 72.0 73.6

eBERT 80.0 80.3 84.1
gBERT 85.4 81.5 83.7
mBRET 84.4 83.7 84.1

TS 84.5 82.8 83.7
tsBERT 89.3 89.1 88.8

Table 7: IH disambiguation results (in Ft)

(3) Tweet: I don’t get
IH

was er damit erreichen will.
Translation: I don’t get what he wants to achieve with
that.

(4) Tweet: fang über nächstes jahr mit abi an but no
problem zeugnis durchschnitt

IH
was 1.5 letztes halb

jahr wird schlechter sein dieses halbjahr tho cuz mental
health yk
Translation: no problem the average result of the end-
of-year report was 1.5 last half-year will be worse this
half-year tho cuz [because] mental health yk [you know]

Table 8: Examples from our IH testset

or the word was so infrequent in German–English
code-switching in the target sense that it didn’t oc-
cur in the top 100 tweets (e.g. English “stark”). We
found 29 true IHs with at least one tweet of true
English and German usage10. For each IH, 2-10
tweets were added to the testset. We attempted to
balance the tweets between German and English
occurrences and prioritised examples where the IH
was at a borderline of an island. This resulted in a
testset of 253 tweets with 276 IH tokens, 47% of
which were in English.

Results are given in Table 7. For IHs, our rule-
based TS (overall Ft=83.7) and neural tsBERT
(overall Ft=88.8) outperform trained Denglisch
(overall Ft=73.6) and Lingua (overall Ft=64.9; all
Denglisch and Lingua results significantly differ-
ent from all other systems). For the BERT systems,
in all categories, eBERT is indistinguishable from
mBERT, which is indistinguishable from gBERT.
TS is indistinguishable from eBERT, gBERT, and
mBERT in all categories. Overall and for German
tokens, it is also indistinguishable from tsBERT.
GPT-4 and tsBERT are indistinguishable in all cat-
egories (p=0.21, 0.13, 0.08).

The “strong baseline” GPT-4 and our neural sys-
tem tsBERT turn out to be best at the hard task

10Namely war, bin, bad, see, die, man, was, made, ran, toll,
falls, hat, dick, drum, links, still, these, fast, hell, handy, fort,
positives, tag, sage, seen, lose, rum, will, not

of disambiguating these words. Table 8 gives two
examples for the IH ‘was’. In German, this string
is a WH-pronoun, whilst in English it is the past
form of ‘to be’. All systems except Lingua cor-
rectly identify (3) as German. In contrast, the only
system to identify the IH in (4) as English is GPT-4.

8 Conclusion

We have presented two methods for German–
English code-switching identification. Our rule-
based system enabled us to collect the largest cor-
pus of naturally occurring code-switching. Our
BERT-based model, trained on this corpus and fine-
tuned on human-annotated data, established SoTA
on an existing German–English benchmark. We
also established SoTA on our newly formed cor-
pus using token and entity-based metrics. A post-
analysis on interlingual homographs revealed that
neural language models are the best systems for
disambiguating these words. Overall, our study
combines two aspects we think are important for
the future of code-switching: a) the use of large-
scale empirical methods on naturally occurring data
and b) an analytic interest in fine-grained linguistic
phenomena.

9 Future work

We are interested in providing a more objective
definition of loanwording, as opposed to genuine
code-switching, in the light of the debate in linguis-
tics, lexicography and cognitive science. Our future
contribution to this topic will centre around the fact
that the distinction can only be made in context,
more specifically in island-context. Therefore, it is
useful to employ the best tool for island detection,
and we have demonstrated here that our systems
for German–English are very effective. Frequency
also plays a role; loanwords which can be con-
sidered part of German will be far more frequent
in German matrix text than any naturally occur-
ring English words in English islands. We release
frequency-sorted data of the top 10,000 islands of
each island length in the TONGUESWITCHER Cor-
pus. This may serve as a starting point for empirical
studies of this challenge.

Limitations

There may be some bias in our gold standard due to
the pre-selection of tweets found by TS. In the fu-
ture, we plan to create a new gold standard entirely
from scratch, even if this requires more annotation
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effort and guidelines. Our current definition relies
on annotators’ intuition too much.

Evaluation of systems such as ours is also diffi-
cult, partly because code-switching language iden-
tification is subjective. In particular, annotators and
NLP systems often introduce English bias (Anasta-
sopoulos and Neubig, 2020; Garrido-Muñoz et al.,
2021).

In our rule-based system, we do not implement
a named entity recognizer. As such, in our corpus,
named entities containing English words are often
incorrectly labelled as English.

The quality of the multilingual part of speech
tagger, alongside its tokenization, also constrains
our method. Tagging all our input tweets with this
tagger required intensive GPU computation.

In terms of our mixed identification methods, our
TONGUESWITCHER system over-segments words
(e.g. verrate), which is a particular problem for
misspelt words.

Ethics Statement

Working with and releasing large corpora of social
media posts raises data privacy concerns. We do
not collect any personal information about the au-
thors of the tweets. We release our corpus to the
research community only.
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A Appendix

A.1 Corpus examples by algorithm step

1 Sagt ein(e) Head(in) of research ! Researchen
Sie mal ein bisschen mehr

2 habn Match mit einer, bin einfach unfähig, dein a
man with a hat , ehem. Schädling

3 Freigabeworkflow für PR Manager sind das

nächste Product Highlight für Insta u Twitter.
4 ich bin grade in einem chat am shittalken mit

einem äußerst platonischen freund
5 Der Vorstand traf sich letztes Wochenende zum

jährlichen Arbeitsweekend , dieses Mal in Thun.
6 Danke ich hänge die dritte Woche mit einer

Nervenwurzelentzündung durch; Schmerzen trotz
starker Medikation tlw from the hell Physio ist gut

7 joko in diesem fußball fit lebt immer noch rent free

in my mind wie schön

Table 9: Example of tokens classified in each step
.

A.2 Training hyperparameters
We use the masked language modelling objective
presented by Devlin et al. (2019). We train us-
ing 4 NVIDIA A100 GPUs, for approximately 30
hours per GPU. We use a batch size of 32, which
amounted to 191,950 steps. We use a learning rate
of 1e-4 with a warmup of 10,000 steps followed by
linear decay, β = (0.9, 0.999) and weight decay
= 0.01.

To learn the classification, we train for 3 epochs
using a learning rate of 3e-5, batch size of 16 and
weight decay = 0.01.

A.3 GPT-4 prompt

Sentence: {tweet} Task: Fill in the following
list of words and their labels by identifying
each of the words in the sentence as English
('E'), Mixed ('M') or German ('G'). Punctuation
should be the same language as its surrounding
associated words. Mixed words switch between
English and German within the word. Only use
the tags 'E', 'M' or 'G'. Fill in: {token_1:
'', token_2: '', ...}

We found the output JSON was rarely malformed
or of a different length to the input tokens, but in
those cases where it was we repeated the prompt.
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